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Preface

This proceedings volume documents the 3rd IFAC Workshop on Lagrangian
and Hamiltonian Methods in Nonlinear Control (LHMNLC’06) that was held
in Nagoya, Japan, on July 19-21, 2006. The first workshop in this series was
chaired and organized by Professors N. E. Leonard and R. Ortega, and was held
in Princeton, USA, in March 2000. The second one was chaired and organized
by Professors A. Astolfi, F. Gordillo and A. J. van der Schaft, and was held in
Seville, Spain, in April 2003.

A vibrant synergy is documented between areas such as nonlinear control and
optimal control theory, differential and Riemannian geometry, Lagrangian and
Hamiltonian mechanics, nonsmooth optimization, and dynamical systems. The
articles in this volume focus on technological areas including not only control of
mechanical systems, but also geometric optimization, networked control, control
of chemical processes, robotic locomotion, quantum systems, multi-agent sys-
tems, and robotic grasping and telemanipulation. Novel scientific contribution
are proposed in a wide variety of techniques including synchronization, control
Lyapunov functions, energy and power-based control, optimization algorithms,
fault-tolerant control, geometric reduction theory, and iterative learning control,
to name a few.

Financial support for the workshop was provided by the 21st Century COE
Program (Tokyo Institute of Technology) “Innovation of Creative Engineering
through the Development of Advanced Robotics,” the Suzuki Foundation, the
Daiko Foundation and the University of Nagoya. We also would like to thank
all the participants to the workshop, all the members of the national and in-
ternational organizing committees, the IFAC Secretariat, the IFAC Publications
Committee, and the Springer-Verlag review board for the LNCIS series.

Santa Barbara, USA, and Nagoya, Japan, Francesco Bullo
June 2007 Kenji Fujimoto
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A Differential-Geometric Approach for
Bernstein’s Degrees-of-Freedom Problem

Suguru Arimoto

Department of Robotics, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga,
525-8577 Japan
arimoto@se.ritsumei.ac.jp

Nagoya, RIKEN

Summary. This article challenges Bernstein’s problem of redundant degrees of free-
dom (DOF) that remains unsolved from the control-theoretic point of view as well as
from the standpoint of both neuro-physiology and robotics. Firstly, a rather simpler but
mysterious control problem of movements of human-like multi-joint reaching with ex-
cess DOF's is analyzed from Newtonian mechanics and differential geometry. Secondly,
another illustrative control problem that seems to be sophisticated and complicated is
tackled, which is to find a sensory coordinated control signal for 3-Dimensional stable
grasping and object manipulation by a pair of robot fingers with multiple joints under
the effect of gravity and nonholonomic constraints. In each illustrative control problem,
it is possible to find a simple control signal that renders each corresponding closed-loop
dynamics stable on its corresponding equilibrium-point manifold. It is claimed, how-
ever, that convergences of solutions of closed-loop dynamics to an equilibrium-point
manifold can not be analyzed by using Lyapunov’s direct method, because a Lyapunov-
like energy form can not be positive definite due to redundancy of DOF's. Instead, a
novel definition called “stability on a manifold” based upon the concept of Riemannian
distance on the constraint manifold is introduced in both illustrative problems and
used in the analysis of convergence of solution trajectories. It is also shown that finite-
ness of Riemannian metrics plays an important role in evaluation of the performance
of control in both problems.

1 Introduction

This paper is concerned with one of unsolved problems posed more than a half
century ago by A.N. Bernstein as the Degrees-of-Freedom problem[14, 15], par-
ticularly, in case of human or robotic multi-joint movements of reaching as shown
in Fig.1. The problem in case of Fig.1 is how to generate a joint motion so as
to transfer the endpoint of an upper limb with four joints (shoulder, elbow,
wrist, and finger MP joint) to a given target point 4 = (x4, y4) in the two-
dimensional horizontal plane. Since the objective task x4 is given in the task
space £ € X (= R?) and the joint coordinates ¢ = (g1, ¢2, 3, q1)" are of four-
dimension, there exists an infinite number of inverses gy that realize x(qq) = x4

F. Bullo et al. (Eds.): Lag. & Hamil. Methods for Nonlin. Ctrl., LNCIS 366, pp. 1-28, 2007.
springerlink.com © Springer-Verlag Berlin Heidelberg 2007
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End Point

Xo=(x9,y0)" .
Desired Point 00) xy-Plane

X =(Xg.Va )T\
X

Fig. 1. “Reaching” by means of a surplus DOF system of arm-hand dynamics

and hence the problem of obtaining inverse kinematics from the task descrip-
tion space X to the 4-dimensional joint space becomes ill-posed. Under this
circumstances, however, it is necessary to generate joint motions ¢(t) starting
from a given initial point (0) = (z(0), y¥(0)) in X with some initial posture
q(0) = (q1(0),---, 4(0))™ and leading the endpoint trajectory x(t) to reach the
target x4 as t — oo. In order to get rid of such ill-posedness, many methods have
been proposed as surveyed in a special issue of the journal (see [16]) and a book
specially dedicated to problems of DOF redundancy (see [17]). Most of them are
based on an idea of introducing some extra and artificial performance index for
determining uniquely an appropriate joint space trajectory by minimizing it. In
fact, examples of such performance index in robotics research are the followings:
kinetic energy, quadratic norm of joint control torque, manipulability index, vir-
tual fatigue function, etc. Most of proposed methods have been explicitly or
implicitly based on the Jacobian pseudoinverse approach for planning an opti-
mized joint velocity trajectory ¢(t) = JT(q)x4(t) together with an extra term
(I —J"(q)J(q))v, where v is determined by optimizing the performance index,
J(q) stands for the Jacobian matrix of task coordinates & in joint coordinates g,
and J*(g) the pseudoinverse of J(g). In the history of robot control the idea of
use of the pseudoinverse for generation of joint trajectories for redundant robots
was initiated by [18]. However, it is impossible to calculate J*(gq) in advance
because ¢4 is undetermined. Therefore, it is recommended that a control signal
u to be exerted through joint actuators of the robot is designed as

u=H(q)J " (&a— JG) + h(q,q)
+{I - J () J(9)}v +9(q) (1)

where H(q) stands for the inertia matrix, h(q,¢) denotes direct compensation
for the coriolis and centrifugal forces, and g(q) compensation for the gravity
term. On the other hand, there is the vast literature of research works con-
cerned with even a simple multi-joint reaching motion or pointing movement in
physiology, which are, for example, [19], [20], and [21]. Most of them published in
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physiological journals are more or less affected by the equilibrium point (EP)
hypothesis of motor control found by [22], observed by [23], and argued explic-
itly by [24] as spring-like motion of a group of muscles. This EP hypothesis can
be interpreted in the control-theoretic language such that for a specified arm
endpoint x4 in cartesian space the central part of control for reaching it must
be composed of the term J7T(¢)K (z — x4) which corresponds to assuming intro-
duction of an artificial potential AzT K Az /2 in the external world (task space),
where Ax = x — x4. This idea is also known in robotics as PD feedback with
damping shaping first proposed by [25]. In the case of redundant multi-joint
reaching, however, there arises the same problem of ill-posedness of inverse kine-
matics. Thus, in parallel with the vast literature ([16, 17]) in robotics research,
many methods for elimination of redundancy of DOFs have been proposed in
the physiological literature. Most of them are samely based on introduction of
extra performance criterion to be optimized, which are in the following: squared
norm of joint jerks (rate of change of acceleration), energy, effort applied dur-
ing movement, minimum-torque, and minimum torque-change and some other
cost functions though some of them are not used for redundancy resolution.
Nevertheless, even all performance indices that lead successfully to unique de-
termination of the inverse kinematics are not well-grounded physiologically and
none of physiological evidence or principle that associates such a performance
index to generation of human movements could be found.

In this article, we resolve this ill-posedness of inverse kinematics without con-
sidering any kind of inverse problems and without introducing any type of ar-
tificial performance index for the multi-joint reaching problems posed above.
Instead, we use a surprisingly simpler sensory feedback scheme described as

u=—Cq—J (q)kAx (2)
or
u=—Cof — J(q)(cit + kAx) (3)

where Ax = & — x4, k a single stiffness parameter, C and Cj a positive diagonal
matrix corresponding to joint damping factors, and ¢ a single positive damp-
ing parameter. It is proved theoretically that adequate choices of damping gain
matrices C' and stiffness parameter k render the closed-loop system dynamics
convergent as time elapses, that is, (t) — x4 and ¢(t) — 0 as t — oo. However,
owing to the joint redundancy, the convergence in task space does not directly
imply the convergence of joint variables ¢(t) to some posture. In the paper, by
introducing a novel concept named “stability on a manifold” it is shown that
q(t) remains in a specified region in joint space so that there does not arise any
unexpected self-motion inherent to redundant systems (see [26]). In other words,
the control scheme of eq.(2) suggests that the problem of elimination of joint re-
dundancy need not be solved but can be ignored in control of the dynamics. Or it
can be said that a natural physical principle for economies of skilled motions like
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the principle of least action in Newtonian mechanics may work in elimination of
redundancy. Another concept named “transferability to a submanifold” is also
introduced for discussing the asymptotic convergence in a case of middle-range
reaching. These two concepts were originally and very recently defined in cases
of control of multi-fingered hands with joint redundancy (see [27, 28]).

The latter part of the paper discusses how to construct a mathematical model
of 3-D object grasping and manipulation by a pair of 3-D robot fingers with
multi-joints. A noteworthy difference of modeling of 3-D object grasping from
that of 2-D object is that the instantaneous axis of rotation of the object is fixed
in the latter case but it is time-varying in the former case. Hence, dynamics of
the overall fingers-object system is subject to non-holonomic constraints regard-
ing a 3-D orthogonal matrix consisting of three mutually orthogonal unit-vectors
fixed at the object. A further difference arises due to the physical assumption
that spinning around the opposing axis between the two contact points does
no more arise, which induces another nonholonomic constraint. It is shown that
Lagrange’s equation of motion of the overall system can be derived from Hamil-
ton’s principle without violating the causality that governs the nonholonomic
constraints. Then, a simple control signal constructed on the basis of finger-
thumb opposable forces and an object-mass estimator is proposed and shown
to accomplish stable grasping in a dynamic sense without using object infor-
mation or external sensing. This is called “blind grasping” if in addition the
overall closed-loop dynamics converge to a state of force/torque balance. Stabil-
ity and asymptotic stability (in this paper, this is called “transferability”) under
the gravity effect and the nonholonomic constraints are proved on the basis of
principle of least action and Morse theory.

2 Closed-Loop Dynamics of Multi-joint Reaching
Movement

Lagrange’s equation of motion of a multi-joint system whose motion is confined
to a plane as shown in Fig.1 is described by the formula (see [29])

HG@)i+{ 1) + S0 pi=u (@)

where ¢ = (q1, g2, g3, @1)T denotes the vector of joint angles, H(q) the inertia
matrix, and S(q, ¢)¢ the gyroscopic force term including centrifugal and Coriolis
forces. It is well known that the inertia matrix H(q) is symmetric and positive
definite and there exist a positive constant h,, together with a positive definite
constant diagonal matrix Hy such that

for any ¢. It should be also noted that S(g, ¢) is skew symmetric and linear and
homogeneous in ¢. Any entry of H(q) and S(g, ¢) is constant or a sinusoidal
function of components of q.
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Fig. 2. Initial posture of the arm-hand system with four joints. The point (z4, ya)
denotes the target for the robot endpoint.
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Fig. 3. S) Starting posture, F) Final posture, U) Unreasonable posture
For a given specified target position 4 = (24, y4)* as shown in Fig.2, if the
control input of eq.(3) is used at joint actuators then the closed-loop equation
of motion of the system can be expressed as
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HG@)i+ {7 + S0+ Co b
+JT(q){c:'B+kAw} =0 (6)

which follows from substitution of eq.(3) into eq.(4). Since & = J(q)g, the inner
product of eq.(6) with ¢ is reduced to

B = " Coq — ol 7)

where E stands for the total energy, i.e.,

Blg.q) =  {d"H(g)d + k| Az} (®)

2
Evidently the first term of this quantity E stands for the kinetic energy of
the system. The second term is called an artificial potential in this paper that
appears due to addition of control signal —JT(q)kAz based on the error Az
expressed in cartesian space. As it is well known in robot control (see [29]), the
relation of eq.(7) denotes passivity of the closed-loop dynamics of eq.(6). It also
reminds us of Lyapunov’s stability analysis, since it shows that the derivative
of a scalar function F in time ¢ is negative semi-definite. However, it should be
noted that the scalar function E(q, ¢) is not positive definite with respect to
the state vector (¢, ¢) € R8. In fact, E includes only a quadratic term of two-
dimensional vector Az except the kinetic energy as a positive definite quadratic
function of ¢. Therefore, it is natural and reasonable to introduce a manifold of
2-dimension defined as

Mz ={(g,q) : E(q,4) =0 (¢ =0,z(q) = za)}

which is called the zero space in the literature of robotics research (for example,
[30]). Next, consider a posture (¢", 0) with still state (i.e., ¢ = 0) whose endpoint
is located at x4, i.e., (¢°) = x4 and hence (¢°, 0) € Ma, and analyze stability of
motion of the closed-loop dynamics in a neighborhood of this equilibrium state.
This equilibrium state in R® is called in this paper the reference equilibrium
state.

3 Riemannian Metrics and Stability on a Manifold

According to terminologies of differential geometry, the set of all generalized
position vector ¢ = (g1, - ,qn)" is called the n-dimensional configuration space,
aset of all ¢ = (¢1,--,¢n) at a given position ¢ is called a tangent space, and
the set of all tangent spaces for all ¢ is called the tangent bundle. For a given
target endpoint x4 in task space the set of all vectors ¢ satisfying x(q) = x4
constitutes a two-dimensional manifold:

Ma(xa) = {q: x(q) = za} (9)
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When an initial position ¢ = ¢(0) with ¢(0) = 0, the reaching movement can
be expressed by a trajectory of ¢(t) in the configuration space that is a solu-
tion to the closed-loop equation of motion expressed by eq.(6) with satisfying
initial conditions ¢(0) and ¢(0) = 0. Then, the total length of movements of ¢(t)
meaured by the metric along the trajectory ¢(¢)

q(o0)EM2 (X q)
R(g(0)) / }jhw Jdgudg; (10)
q

(0)€ M2 (T(0)) ” A

can be rewritten in the form
rao) = [y St

- ["\hironamina (1)

where H(q) = (h;j(q)), provided that ¢(¢) € L*(0, 00).

It is also interesting to note that the original equation of motion of the robot
arm depicted in Fig.1 and expressed in eq.(4) can be recast into the following
form by multiplying eq.(4) with H~1(q):

dgm dgn id
dt2 qZ + E nmo g d¢ E h Juj (12)
J

where hi/ denotes (i, j)-entry of H~!(g) and I'!, Christoffel’s symbol. Notwith-
standing such a mathematically simple expression of eq.(12), it loses physical
meanings of the problem. In fact the finiteness of the Riemannian metrics such
as eqs.(10) and (11) should be proved by gaining a physical insight into the
expression of motion equation via egs.(4) and (6). In this expository arricle the
proof of finiteness of R(g(0)) is omitted (it can be found in a separate paper
[34]). In differential geometry, eq.(4) is written in the form

4

> hii@)dg + Y in(9)djdn = ui (13)

Jj=1 J,k=1

by using another Christoffel’s symbol called the second kind. When the external
torque w; is zero, a solution trajectory ¢(t) to eq.(12) or eq.(13) starting from
a given initial position to a target position ¢(1) is called the geodesics. Then,
the Riemannian distance between two points ¢° on the configuration R* can be
defined as

R(q"

—r;}ltgl/ \/ > his(a(h)di(£)d; () dt (14)
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where minimization is taken over all curves ¢(t) parametrized by ¢t € [0,1] in
such a way as ¢(0) = ¢ and ¢(1) = ¢*. The optimal curve that attains R(q°, ¢')
is shown to satisfy eq.(12) or equivalently eq.(13) when u = 0. It should be
remarked at this stage that

1) The Riemannian distance R(q’,q') is invariant under any transformation
t = g(s) satisfying dt/ds > 0 and T = g~1(1) and 0 = g~1(0), because it follows
that

T 1, ..dg dg;
/ > oo g g1 4
dqi dt dqi dt
/ JZ hisla (dt ds) (dt ds)ds
o y dg; dQJ
_/O Zj: QhU (q(t)) Var qp (15)

where g(s) = q(g(s))-
2) If the curve ¢(t) for ¢ € [0, 1] minimizes the interal of eq.(14), then the quantity

L) = | 3 @iy (16)

is constant for all ¢ € [0, 1]. This follows from taking an inner product between
¢(t) and eq.(4) with u = 0, which yields

0=4" {Hq+(;H+S>Q}
- {am i) (17)

This shows (1/2)¢T H(q)¢ = const.

It is now necessary to introduce the concept of neighborhoods of the refer-
ence equilibrium state (¢°, 0) € My in R®, which are conveniently defined with
positive parameters p > 0 and r9 > 0 as

Ns(p7T0)
={(q, ) < p” and R(q,q") <ro}

The necessity of imposing the inequality condition R(q,¢°) < 7o comes from
avoiding arise of possible movements such as self-motion ([26]) due to redundancy
of DOFs far from the original posture. In fact, for the given endpoint x4 with
the reference state as shown by the mark F) in Fig.3, one possible state with
the posture marked by S) in Fig.3 may be inside N®(p,7) but another state



A Differential-Geometric Approach for Bernstein’s DOF Problem 9
(g=),0) M, X
A
8
— N (e.%)
4 Xd

——N°(5, 1)

(g, 4)
q

solution ! 7o 0
trajectory | q

q

Fig. 4. Definitions of “stability on a manifold” and “transferability to a submanifold”

marked by U) must be excluded from the neighborhood N®(p, r¢) by choosing
ro > 0 appropriately, because the overall posture of U) is by far deviated from
that of the original reference equilibrium state (¢°, 0). Further, it is necessary to
assume that the reference equilibrium state (g%, 0) is considerably distant from
the posture that has singularity of Jacobian matrix J(q), which happens if and
only if g2 = g3 = ¢4 = 0.

We are now in a position to define the concept of stability of the reference
equilibrium state lying on the manifold Ms.

Definition 1. If for an arbitrarily given € > 0 there exist a constant § > 0
depending on ¢ and another constant r; > 0 independent of ¢ and less than
ro such that a solution trajectory (q(t), ¢(t)) of the closed-loop dynamics of
eq.(6) starting from any initial state (g(0), ¢(0)) inside N®(6(g), 1) remains
in N8(e, rg), then the reference equilibrium state (¢°, 0) is called stable on a
manifold (see Fig.4).

Definition 2. If for a reference equilibrium state (¢°, 0) € R® there exist con-
stants e;7 > 0 and 7 > 0 (r1 < 7o) such that any solution of the closed-
loop dynamics of eq.(6) starting from an arbitrary initial state in N8(eq1, 1)
remains in N8(e1, rg) and converges asymptotically as t — co to some point on
My N N8(eq, 79), then the neighborhood N®(eq, r1) of the reference equilibrium
state (¢¥, 0) is said to be transferable to a subset of M5 including ¢°.

This definition means that, even if a still state (¢°, 0) € My of the multi-joint
system is forced to move instantly to a different state (¢(0), ¢(0)) in a neighbor-
hood of (g%, 0) by being exerted from some external disturbance, the sensory
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feedback control of eq.(3) assures that the system’s state soon recovers to an-
other still state (¢>°, 0) € MaNN8(e1, 79) whose endpoint attains at the original
point x(¢>°) = x4 though the convergent posture ¢ possibly differs from the
original one ¢° but remains within R(q, ¢°) < 0.

4 Middle-Range Reaching

According to the energy balance law expressed by eq.(7), the total energy
E(t)(= E(q(t), q(t))) is decreasing with increasing ¢ as far as ¢ # 0 for an
arbitrary positive definite damping gain matrix Cy. However, the motion profile
x(t) of the endpoint is quite sensitive to choice for ¢; > 0 for i = 1,--- ,4 where
Cp = diag(cy, -+ ,cq4) though for a broad range of choice for ¢; (i = 1,--- ,4)
the endpoint x(t) eventually converges to the target if the stiffness k is chosen
adequately. For example, we show several endpoint trajectories for different k in
Fig.5 obtained by computer simulation based on a human model shown in Table 1
in the case that the initial point z(0) in task space X (= R?), its corresponding

Table 1. Lengths of upper arm (l1), lower arm (l2), palm (I3), and index finger (l4)
together with corresponding link masses and inertia moments. The data are taken from
a b years old child.

link1 length (m) I 0.175
link2 length (m) la 0.170
link3 length (m) I3 0.0600
link4 length (m) ls 0.0600

linkl cylinder radius (m) r; 0.0247
link2 cylinder radius (m) 72 0.0223
link3 cuboid height (m)  hs 0.0600
link3 cuboid depth (m)  ds 0.0210
link4 cylinder radius (m) 74  0.00509
link1 mass (kg) m1 0.335
link2 mass (kg) ma 0.266
link3 mass (kg) ms  0.0756
link4 mass (kg) mys  0.00488
link1 inertia moment (kgm?) I; 9.07 x 107*
link2 inertia moment (kgm?) I, 6.73 x 10™*
link3 inertia moment (kgm?) I 2.55 x 107°
link4 inertia moment (kgm?) Iy 1.50 x 1078

initial posture ¢(0), and the target x4 in task space X are set as in Table 2,
where damping gains in eq.(3) are chosen as

¢ = 0.0 (Ns/m),

18
€1 = ca = c3 = ¢4 = 0.0025 (Nms) (18)
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The endpoint trajectory x(t) starting from the initial posture shown as S) in

Fig.3 is going to approach the target but

overruns and oscillates around the

target x4, but in a long run it converges to the target and stops with the final
posture shown as U) in Fig.3 when & = 10.0 (N/m) is chosen.

Table 2. Initial conditions and the target for middle-range reaching

Arm posture q(0)=
q3(0)=
Endpoint position (m) :
Target position (m)
Distance (m)

Table 3. Numerical values of inertia matrix H (
reaching (Unit: kgm?)

2.776 x 1072 9.707 x 1073

9.707 x 1072 5.730 x 1073
H@O) = | 639 « 104 4.679 x 10~
—2.021 x 107° 3.091 x 10~°
T T T T T T T
0.5 k=20 T
—————— k= 4.0
= 04f =T k=60 i
I k=80 . Iy e
= k=100 Initial position 1 g
= i -
O 03F o O - =
= 5]
1) 2
=9 )
g 2
S 02F 4 g
? 3
> >
0.1 i
= -
1 n 1 n 1 n 1 n 1 1
03 02 -0.1 0 0.1 02
x-component (m)
(a)

z(0) = (0.10, 0.30

=51.14°,

=67.82°
T

28.15", g2(0
36.40°, q4(0

= =

)
0.20, 0.20)*

zq = (-
Az(0)]| = 0.3162

q(t)) at ¢ = 0 in the case of middle-range

4.639 x 1074 —2.021 x 107

4.679 x 107*  3.091 x 10~¢
1.236 x 107*  9.210 x 107
9.210 x 107¢  5.892 x 1076
T T T T T
k=20
04—~~~ k=40 i
------- k= 6.0 »
----------- Initial

position |

0.1

I \ I \ I \ I
-0.1 0 0.1

x-component (m)

(b)

-0.3

Fig. 5. Endpoint trajectories of multi-joint reaching movements when inadequate

damping factors are selected

According to [31], human skilled multi-joint reaching is characterized as fol-

lows:

a) The profile of the endpoint trajectory in task space X becomes closely

rectilinear,

b) the velocity profile of it in X becomes symmetric and bell-shaped,
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Fig. 6. Endpoint trajectories (¢) in the case of middle-range reaching movements

c) the acceleration profile has double peaks,
d) but each profile of time histories of joint angles g;(t) and angular velocities
¢i(t) may differ fori =1,2,--- ,4.

We are now in a position to answer to the question whether it is possible to
find a set of adequate damping factors ¢ and ¢; (i = 1,--- ,4) together with an
adequate stiffness parameter k > 0 so that the sensory feedback of eq.(2) or eq.(3)
leads to the skilled motion of reaching realizing an approximately rectilinear
endpoint trajectory without incurring any noteworthy self-motion. We first select
damping factors as follows:

¢ =0.0(Ns/m)
c1=0.59, c3=0.38, c3=0.098, ¢; =0.019 (Nms) (19)

Then, numerical solutions of the closed-loop dynamics of eq.(6) for different
stiffness parameters give rise to transient responses of the endpoint trajectory
(z(t), y(t)) in Fig.6. As shown in Figs.6, the endpoint trajectories become well
approximately rectilinear and do not change much for different stiffness param-
eters, though the speed of convergence to the target depends on k. The best
choice of k in this chosen set of damping factors given in eq.(19) must be around
k =10.0 (N/m).

Now let us discuss how to select such a good set of damping factors as in
eq.(19). If one of the tightest (smallest) diagonal matrix Hy satisfying eq.(5) is
found, then it is possible to select C' in such a way that

C > 3.0H)? (20)

Further, it should be noted that such a matrix Hy can be selected as the smallest
constant diagonal matrix satisfying

H(q) < Hj for all ¢ such that ||x(q) —x4| <7 (21)
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where r denotes the euclidean distance between the starting endpoint point
x(0) (= (2(0), y(0))T) and the target x4, because according to eq.(7) the end-
point should remain inside the circle ||@(t) — 24| < r for any ¢ > 0. In the case of
middle-range reaching with r» = 31.62 (cm) for a typical five-years old child with
1.07 (m) in height, the initial value of H(gq) with the posture shown in Fig.2 is
evaluated as in Table 3. We evaluate a tighter bound Hj starting from the data
of H(q(0)) in Table 3 by adding each possible contribution of off-diagonal ele-
ment |H;;(q(0))| to Hi;(¢(0)) and H;;(g(0)). By the same computer simulation,
we find that such a choice of C' = 3.0H5/ ? as numerically given in eq.(19) gives
rise to

9.0C~'H(¢)C™' < I4 (22)

during the transient process of reaching.

5 Virtual Spring/Damper Hypothesis

Since the endpoint trajectory in the case of middle-range reaching as shown in
Fig.6 is not so close to the straight line, better damping factors were sought
for so as to make the endpoint trajectory more closely rectilinear. However,
finding out such a set of adequate damping factors for each motion was very
laborious. Furthermore, according to physiological data on muscle contraction
([32]), the magnitudes ¢; and ¢ in eq.(19) corresponding to passive damping
factors for shoulder and elbow joints are too big to be compared with actual
viscosity of contractile muscles ([32, 33]). Therefore, we suggest another form of
control signals introduced as in eq.(3). Apparently, this control signal plays a
role of a parallel pair of mechanical damper and spring that draws the endpoint
of the whole arm to the target as shown in Fig.7. Based on the closed-loop
dynamics eq.(6), we conducted numerical simulations of middle-range reaching.
For comparison of the effectiveness of control signal shown in eq.(3) with that
of eq.(2), the same physical parameters of the arm model, initial posture, and
target point as in the simulation of Fig.6 are set as given in Tables 1 and 2.
As shown in Fig.8, endpoint trajectories in this case become rectilinear almost
completely from the beginning to the final stage even in the case of middle-range
reaching movements. In this case, the damping factors Cy in eq.(3) are set as
Co = 0.1C, that is,

Co =diag(0.059, 0.038, 0.0098, 0.0019) (Nms) (23)

and the coefficient for dampings in task space ¢ in eq.(3) is set as ¢ = 4.5 (Ns/m).
Each passive damping factor Cy corresponding to each joint can be reduced to
the range of 10 percent of C. Thus, from simulation results of Fig.6 and Fig.8,
it is shown that the control signal of eq.(3) adding the damping effect in task
space can lead to movements of more skilled multi-joint reaching than the control
signals of eq.(2) in various situations.
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Fig. 8. Endpoint trajectories «(¢) in case of middle reaching movements when damping

factors based upon “Virtual spring/damper hypothesis” are used

6 Theoretical Proof of Transferability

As argued in Section 2, the Lyapunov-like relation of eq.(7) does neither di-
rectly imply the transferability of any neighborhood N®(e1,71) of a reference
equilibrium state (g%, 0) nor its stability on a manifold. Similary to eq.(11), we

introduce the quantity
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X(q(0)) = / " kg2 Az(t)] e (24)

measured along the endpoint trajectory of the solution to eq.(6) starting from a
given initial state (¢(0), ¢(0)). First, it is necessary to remark that the Lyapunov-
like relation of eq.(7) implies only

0< / T OCodt) + &)} df < E(0) (25)

that is, ¢(t) € L%(0,00) and #(t) € L?(0,00), where we denote E(q(t),q(t)) by
E(t) for brevity. It should be also noted that LaSalle’s invariance theorem can
not be applied for eq.(7) because E(q, ¢) is not positive definite in the state (g, g).
However, it is possible to show that ¢(¢t) — 0 and &(¢) — 0 as ¢t — oo uniformly.
In fact, eq.(7) implies 0 < E(t) < E(0) and shows that ¢(t) and Axz(t) are uni-
formly bounded. Hence, from eq.(6) ¢(¢) must be also uniformly bounded. This
means that ¢(¢) is uniformly continuous in ¢ and also belongs to L?(0, 00), which
implies ¢(t) — 0 as t — oo according to a well-known lemma (for example see
Appendix C of the book ([29])). Similarly Az(t) — 0 as t — oo. Nevertheless,
this result does not imply the finiteness of metrics R(¢(0)) defined by eq.(11) and
X (q(0)) of eq.(24) for a given target © = x4. Thus, it is crucial to gain a deep in-
sight into the physical properties of I';; in eq.(13), or equivalently the second term
{(1/2)H 4 S} of the left hand side of eq.(4). In particular, it is important to ana-
lyze physical interactions between the term kJ 7 (q) Az exerted from the external
spring-like force kAx and the torque contributed from the inertia term in eq.(6).
In the previous paper ([34]), we introduced another quadratic function defined as

k

- (1+aQ)] Az?
+avkAz" (I (q))TH(q)d (26)

with a positive parameter 1 > « > 0 and showed that (1—a)E < W < (14 «a)E

and there exist a positive constant 7(«) dependening on « > 0 such that

1. )
W = 2qTH(Q)q +

W (t) < e (0) (27)
and
e—’Y(Oé)t 1 + 6]
E@#) < < (@)t 2
M=, WO e @B (28)

where we set ¢ = ¢/vk. This shows that E(t) converges to zero exponentially
in ¢. Therefore, \/ E(t) is also convergent to zero as t — oo with exponent
{=~(a)/2}t. Thus, it is now possible to prove the stability on a manifold and
transferability of solution trajectories of eq.(6).

Proposition 1. For a given reference state (¢°,0) lying on M, with satisfying
x(q°) = x4, then any solution trajectory of eq.(6) starting from an arbitrary
initial state (¢(0),¢(0)) belonging to a smaller neighborhood N®(ey,r1) of (¢°,0)
with some g1 < p and r; < 7 remains to stay in the neighborhood N®(p, o) of
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(¢°,0). Moreover, the positional solution trajectory converges asymptotically to
some point of My. That is, N8(e1,r1) is transferable to M.

Proof. Since \/E(t) is exponentially convergent to zero according to eq.(28), we
can set

{R(q(O)) < dr+/E(0) (29)

X(9(0)) < dr/E(0)

with a common constant dg > 0. Then, we choose 1 > 0 and §(¢) in such a way
that

r < 7;7 g1 < min{i&m} (30)

Consider a solution (¢(t),¢(t)) of eq.(6) starting from an aribitrary state (g(0),
4(0)) inside the neighborhood N®(e1,r1) of (¢°,0) and notice that at any position
q(T) along the position trajectory ¢(t) of this solution it follows that

R(q(T),q"°) < R(q(T), q(0)) + R(q(0),¢")
< R(q(T),q(0)) + 71 (31)

Since the position trajectory ¢(t) starting from ¢(0) at ¢ = 0 and reaching ¢(T")
at ¢ = T is a special curve in the configuration space, it follows from the meaning
of Riemannian distance that

T
Ra()a0) < [ aoioa

T
< / VE@)dt < dg\/E(0)
0
= drv/E(q(0),4(0)) < drex (32)
Substituting this into eq.(31) and referring to eq.(30) conclude that
R(q(T),q°) < dre1 + 11 <10 (33)

At the same time, eq.(30) implies E(q(t), §(t)) < E(0) = €3 < p?. This completes
the proof.

In the above proof, if we choose §(¢) for an arbitrarily given e > 0 in such a way
that

§() = min { ;;loR D, 5} (34)

then it is possible to show that

Theorem 1. If (¢, 0) € M; and at any pose ¢ satisfying R(q, ¢°) < ro the Jaco-
bian matrix J(q) = 0z(q)/dq" is nondegenerate, then the reference equilibrium
state (¢°,0) is stable on a manifold.

Theorem 2. Under the same assumption on ¢°, there exists a pair of positive
numbers (g1,71) such that the neighborhood N®(e1,71) of ¢° is transferable to
a subset of M.



A Differential-Geometric Approach for Bernstein’s DOF Problem 17

o) A

e

N4 )
[
[

\ “T l2
y 1
ng

Fig. 9. The coordinates of the overall fingers-object system. The coordinates Ogy. is
fixed at the frame.

7 3-D Grasping Under Nonholonomic Constraints

Next, we will discuss a problem of modeling physical interactions of a 3D-object
by a pair of robot fingers with multi-joint whose ends are rigid and hemispherical
(see Fig.9). Consider motion of a rigid object with parallel flat surfaces, which is
grasped by a pair of robot fingers with 3 DOFi,md 3 DOF's as shown in Fig.9.
When the distance from the straight line O;05 (opposition axis) connecting
two contact points between finger-ends and object surfaces to the vertical axis
through the object mass center in the direction of gravity becomes large, there
arises a spinning motion of the object around that opposition axis. This paper
considers the problem of modeling of pinching in the situation that this spinning
motion ceases after that the center of mass of the object came sufficiently close to
a point beneath the opposing axis and there will no more arise such spinning due
to dry friction between finger-ends and object surfaces. The cease of spinning,
however, induces a non-holonomic constraint among rotational angular velocities
wx, wy and wyz around X, Y, and Z axis, respectively, where O, ,, — XY Z
denotes the cartesian coordinates fixed at the object as shown in Fig.10. Since
the opposing axis is expressed as (TO; = x1—x2 where x; = (z;,yi, zi)T denotes
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\ 0,
/ contact point

Ny

Fig. 10. Mutually orthogonal unit vectors r x, ry and rz express the rotational motion
of the object. The pair (7:, ¢:) for (i = 1,2) expresses the spherical coordinates of each
hemispherical finger end.

the cartesian coordinates of contact point O; (see Fig.10), the cease of spinning

—
motion around the axis 0102 implies that the instantaneous axis of rotation of
the object is orthogonal to 1 — x2, that is,

wh(xy —x2) =0 (35)

which is rewritten into the form

wx — —fwa — fzwz (36)
€, = Z/l—y27 ¢, = 21— 22 (37)
1 — T2 1 — T2

where w = (wx,wy,wz)T. On the other hand, denote the cartesian coordinates
of the object mass center O.,,. by € = (z,y, 2)T based on the frame coordinates
O — zyz and three mutually orthogonal unit vectors fixed at the object frame
by rx,ry and rz. Then, the 3 x 3 rotation matrix

R(t) = (rx,ry,7rz) (38)
belongs to SO(3) and is subject to the first-order differential equation
d
dt R(t) = R(t)02(t) (39)

where
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The equation (39) expresses another nonholonomic constraint on rotational mo-
tion of the object. Next, denote the position of the center of each hemispherical
finger-end by xo; = (70s, Yoi, 20i) - Then, it is possible to notice that (see Fig.10)

r; = Lo; — (—1)iTi1°X (41)
)
Since each contact point O; can be expressed by the coordinates ((—1)l;,Y;, Z;)

based on the object frame O, ,,,. — XY Z, taking an inner product between eq.(42)
and rx gives rise to

x =xo; — (—1)"(r; + l))rx — Yiry — Zirz

—
W
[\)

Qi = _(Ti —+ ll) — (—1)Z($ — :BOi)TT‘X = 0, = 1, 2 (43)

which express holonomic constraints of contacts between finger-ends and the
object. The rolling constraints between finger-ends and object surfaces can be
expressed by equalities of two contact point velocities expressed on the finger-end
surfaces and on the object surfaces in terms of orthogonal coordinates (ry,7z).
In fact, they are expressed as

(—=1)'riry {Px — (€. x Tx)(d] €;) — (€x X rx)dio } = ;tYi (44)
(—l)i’l”i'l"’; {'l"X — (ez X Tx)((j;rei) — (ew X ""X)dio} = d Zi (45)

d¢

where e; = (1,1)T, e; = (0,1,1)%, e, = (0,0,1)T, e, = (1,0,0)T, and ¢10 = 0
since the left finger has no joint in the z-axis. These four equalities expressing
rolling constraints are non-holonomic, but they are Pfaffian since they can be
expressed in linear homogeneous forms of velocity variables as follows:

—(=1)'r; {9 +rz.pi + V"quio} =Y, i=1,2 (46)
(=1)'r; {¢ — Ty :Pi — TYzqz'o} =7, i=1,2 (47)

where p; = gle; for i = 1,2 and we conveniently express wy = 0 and wy = 1/)
(i.e., 0 signifies an indefinite integral of wz and ¢ does that of wy), and rz,
denotes the z-component of rz, and rz, and others have a similar meaning.
Note that 7x in eqs.(44) and (45) represents the angular velocities of the object
surfaces (Y Z-planes), x = —wzry + wyrz from eq.(40), (e, x rx)(¢}e;)
expresses the velocity of the contact point O; on the finger-end surface induced
by the net angular velocity of all joints with the z-axis of finger ¢, and (e, X7 x )dio
does a similar meaning. Thus, the rolling constraints can be expressed with
accompany of Lagrange’s multipliers Ay, for eq.(44) and Ayz; for eq.(45) such
that

Ay {Y;Fidi +Yo&+ Yol + Y¢i¢} =0 (48)

Azi {Z’;(ji + ZL. @+ Zgi + Z¢i¢} =0 (49)
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where Y4, Z4;, and others are shown in Table 4. Corresponding to eq.(43), we
introduce the scalar quantity with multipliers f; and f5 as follows:

Q= Q1+ f2Q2=0 (50)

The Lagrangian for the overall fingers-object system can now be expressed by
the scalar quantity

L=K—-P+Q (51)

where K denotes the total kinetic energy expressed as

1 . .1 . . .

i=1,2
+;(wz7wy)Ho(wZ7wy)T (52)

and P denotes the total potential energy expressed as
P = Pi(q1) + P2(q2) — Mgy (53)

where H;(g;) stands for the inertia matrix for finger ¢, M the mass of the object,
P;(g;) the potential energy of finger ¢, g the gravity constant and Hy is given in
the following:

Iz +&Ixx  Iyz+&EIxx
=28 1zx  —&Avx —&ylxz

H, (54)
Iyz +&EIxx  Iyy + & Ixx

& Iyvx —&ylxz —2&, Iy x

provided that the inertia matrix of the object around its mass center Og . is
expressed as

Ixx Ixy Ixz
H=|Ixy Iyy Iyz (55)
Ixz Iyz Izz
It should be noted that the kinetic energy of the object can be expressed as Ky =
(1/2)wd Hywo = (1/2)wTHw under the nonholonomic constraint of eq.(35),
where wo = (wz,wy)T.

8 Lagrange’s Equation of the Overall Fingers-Object
System

By applying the variational principle

tl tl
(6L — uT6g, — ulogy} dt = / 3 {)\yl-F?/iéX + /\ZiFEi(SX} dt (56)

to to =12
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Table 4. Partial derivatives of holonomic constraints with respect to position variables

to the Lagrangian L defined by eq. (51), we obtain

where e = (0g,1,03)7T,

and

0Q _ , (0Qi
8(]7; _fz<

gg =h (aa%) 5 (aa%) = (= fo)rx

oQ 0Q1 0Q2

90 =fi 90 + f2 90 =—f1iY1 + foYo
gﬁ _ 88?/)1 + o 88?/}2 — 70— faZs

Y = J (g)ry + i {(—1)'rz-€i + rzee0i }

Z i = JiT(qi)'rZ + 7 {(—1)iTYzei + TYze()i}

Yzi=-ry, Zzxi=-rz

Yoi= op + (=1)'ri = (1)l — €. Z;
aY; _ - _0Z; _ _

Yyi = o =—&Zi, Zoi= 90 €Y
0Z; i i

Zyi = —(=D'ri = (1)l + &Y

oY

HX—F(;H—FS—FC’) X —AX+Mge=u

H; O2x3 0O2x3 O2x2

O3x2 Hz 03x3 03x2

H = 5
03x2 03x3 M1r<I3 03%2
O2x2 O2x3 0O2x3 Hy
S1 0O2x3 O2x3 Sia
g_ O3x2 S2 03x3 Soa

03x2 03x3 03x3 O3%2
—Sa —S;E; Oax3 Sp

8(11-) = (=1)"fidi (@)rx,  Ji(g:) = dqf’

X = (Q;Faq;r7wT70a¢)Ta C = diag(01302305)

(57)

A= (f1. fo, Avis Ay, Az1, Az2) T, w = (uf, ul, 05)7,

(58)
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—Jir’l"X 02 qu 02 qu 02
03 JETX (2 Y, 03 Z g
A= rx —Tx —ry —ry —Tyz -Trz (59)
-1 Yo L —-&Z11—-82y &7, —&yZo
Zy —Zo &Y &Ys —hL+&Y b+EYe

where Fy, and Fz; are defined as 10-dimensional vector-valued functions ap-
pearing in the third and fifth columns of matrix A and Fy, and F z5 the fourth
and sixth columns respectively, and

_ 0 S12 o 1 ango
So = (—312 0 >, Sia = 2{ 94

. 1 8h11 8h12 1 8h12 8h22
512_2(%‘ ae>wz+2(a¢_ 69)“”” (60)

where we denote the (i, j)-entry of Hy by h;;. Obviously from the variational
principle of eq.(56), it follows that

/ t > ¢lui pdr = K(t) + P(t) — K(0) — P(0) (61)
0

i=1,2

This relation can be utilized later in derivation of the passivity for a class of
closed-loop dynamics when control signals u; are designed in a form of function
of state variables of robot fingers. Note that dynamics of the object exressed in
eq.(57) can not be controlled directly from the control u; (¢ = 1,2) but must
be controlled indirectly through constraint forces fi;, Az;, and Ay; (i = 1,2).
It is also important to note that the position variables # and 1 do not appear
explicitly in eq.(59) which expresses the Lagrange equation for rotational motion
of the object, because they (6 and ) do not appear in the right hand sides
of (T-8) to (T-10). These variables (6 and ) should be determined on the
basis of nonholonomic constraint expressed by eq.(39). Thus, it can be claimed
that the overall system dynamics of eq.(57) together with the nonholonomic
constraint of eq.(39) does not contradict the causality. Furthermore, it should
be remarked that the use of Pfaffian constraints of eqs.(46) and (47) instead
of nonholonomic expessions of eqs.(44) and (45) must be reasonable under the
argument of “infinitesimal rotation” (see [35]) of the object and thereby partial
derivatives of constraints Q; = 0 (¢ = 1,2) and eqs.(46) and (47) in 6 and ¢ can
be obtained through partial derivatives of rx, ry, and rz in § and ¥ under the
nonholonomic constraint of eq.(35), which are given as follows (see [36]):

8rX - 87‘){ - _r

69 - Y 8¢ - Z

31"y a’l”y

g = "X &rz, o =—&Tz (62)
8TZ 8TZ

90 = gz'r}ﬁ 81/} =rx + é.yTY
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9 Control for Stable Blind Grasping

Even if the gravity affects motion of the object and fingers as shown in Fig.9, it
is possible to construct a control signal for stable grasping in a dynamic sense
without knowing object kinematics or using external sensing (visual or tactile).
The signal is defined as

u; = gi(q:) — Cidi + (r:l_z:{;d J (@) (o1 — @o2)
g Dyoi S . .
— ]\gg a?i](z — TiNiei — TiN0i60i7 1= 1, 2 (63)
where
W) =N0) + 0 37 (oi®) — yoi(0)) (64)
i=1,2

2

Ni(t) = ;f > {ais(t) — 4 (0)},  Noa(t)= ;f) (20(t) — g20(0))  (65)
T jzl

Note that M (t) plays a role of estimator for the unknown object mass M. Signals
Ni(t) (i = 1,2) and Ny are not any of estimators but play an important role in
suppressing excess movements of rotation of finger joints together with damping
terms _O’LQ'L

Before discussing stability of closed-loop system that can be obtained by sub-
stituting eq. (63) into eq. (57), we need the following definitions:

Af; = fi— fo— (1) ]\/.2/9

i fa(Y1—Y2) My

T‘Xy

Adyi = Ayi+(-1) 1+ 1o 9 Yy (66)
i fa(Z1—2Z2) Mg
Az = Azi + (-1 -
Az Azi + ( ) 1+ 172 2 "2y
AM =M — M, AN;=N;—N;, ANy = Nyz — Ny (67)
(M
N; = (—1)1{ QQ(TZZ-H‘YZ)— Ja (TZz(Yl—Yé)—TYz(Zl—ZQ))} (68)
T1 —|—T2
M
Noz2 = zg(rzx +rys) — Ja {rza(Y1 =Y2) —ry.(Z1 — Z2)} (69)
T1—|—T2

and describe the closed-loop equation in the following vector-matrix form:
. 1. .
HX+<2H+S+C>X—AA)\—BAm:0 (70)

where AN = (Afl,AfQ,A>\Y17AAY2,A>\Z:[7AAZQ)T, Am = (AMg/Q,ANl,
ANy, ANg, 15" Sz.15'Sv)T, e = (1,0)T, ey = (0,1)", and



24 S. Arimoto

0
vor riep Oz 02 02 02
oq
0
B = ay02 O3 799 roege 03 O3 (71)
q2
03x4 03x2
024 TO€H Teh €y
7z =0W/00, Sy =0W/oy (72)
and W stands for
= v vz - 2y M A2
2(T1 + T2) 2

7[00+ Yoy — {0+ r) — a2},

+(Z1 + Za)rzy | + > N+ NG, (73)

1=1,2

s

In derivation of the form of eq.(70) the relations

M M OYoi
YT @) rxyrx +rvyry +rzgrg)y =70 (00 (74)
2 2 8%’
and
. d fa
T 2
E U= P+ P Lol — T
i_l,zq dt{ ' 2 2(r1 +12) Ior 02|
’VM Vi Yo
2 E N2 NO} § Q'L Ciq; (75)
1=1,2 1=1,2

play a crucial role. From these two relations it is possible to verify that

d
K 147
g E+TW) 121:2 d; Cidi (76)

At the same time it is important to note from eq.(74) that the third term of the
right hand side of W in eq.(73) is equivalent to

P[00+ ¥adryy — {1 +0) = (1)) ry + (s + Zo)rzy |

— Mg {y _ Yo1 ;yoz} (77)

This means physically that the unknown potential energy (—=Mgy) is approxi-
mated by the quantity M g(yo1+yo02)/2 that can be calculated by using measured
data on finger joint angles.
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Now, consider minimization of the scalar function W in position variables X
under constraints of egs.(43), (46), and (47). Since X is of 10-dimension and
there are two holonomic constraints, the following five variables

P1=qu1 +qi2, P2=¢q21+q2, g, 0, ¥ (78)

are independent and sufficient for minimization of W under the constraints.
Then, it is possible to check that the Hessian matrix of W in p1, p2, go0, 0,
and 1 becomes positive definite in a broad region in X € R'? provided that
Y, Vi, Yo and fgq are properly chosen. From this fact, it is possible to ascertain
that there exists a critical point X* € R'? at which W (X)) attains the minimum
W(X™) = W,, under constraints of eqs.(43), (46), and (47). This critical position
X = X™ must satisfy the gradient equation:

AAX + BAm =0 (79)

which is the same as the equation of eq.(70) when X =0and X = 0. In
other words, eq.(70) can be regarded as Lagrange’s equation of motion with the
Lagrangian L = K — W and the external torque C X and Pfaffian constraints
appearing as a dissipation term. Thus, the critical position X = X should be
treated as an attractor in such a way that any closed-loop solution to eq.(70)
starting from an arbitrary initial state (X (0), X (0)) in a neighborhood of (X*,0)
converges asymptotically to the critical state (X*,0).

10 Stability on a Constraint Manifold

The stability problem mentioned above can be treated in terms of differential
geometry. Denote the position state vector by X = (¢ ,q3 ,&",0,¢)" and its
corresponding time-derivative by X = (¢, 43,27, wz,wy)T. The set of all vec-
tors X constituting a 10-dimensional vector space R'? is called the configuration
space. This space is embedded in the state space R?° = {(X, X )}. Next, define
the 8-dimensional space

MgZ{XQZZOJZLQ}

which is called a constraint manifold. Further, at each point X on Mg it is
possible to define a tangent space T'My in such a way that

TMy(X) = {X -0 =0, eq.(46), eq.(47), i = 1,2}
At this stage, it is possible to suppose formally a tangent boundle define as
T(X,X)= {(X7X) :Qi =0,Q; =0, eq.(46), and eq.(47) for i = 172}

though it seems difficult to determine how many dimensions the set T'(X, X)
has. Nevertheless, finiteness of the Riemannian metric
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1 M 1
/ VEKdt = / {2qiTHiq'i}+ o 11 + jw§ Howo dt
1=1,2

< 400 (80)

plays a crusial role in verification of the stability of an equilibrium position state
X* lying on M. It is also important to note that the integral

/OO V(W = W,,)dt < 400 (81)
0

is also finite, where W, is the minimum of W under the constraints of Q; = 0
eqs.(46) and (47) for i = 1,2. Further, it is interesting to notice that eq. (80)
implies that the locus of each rolling contact point on its corresponding object
called E. Cartan’s development ([37]) becomes finite in its total length over semi-
infinite time interval [0, 00). Finally, if it is possible to define a neighborhood of
the critical state (X™,0) by means of the Riemannian distance from X (0) to
X* on the manifold Mg in such a way that

R(X(0),X*) = gl(uk)/ \/Zhij(X)Xindt (82)

thenitispossibletodiscuss problemsof stability of the equilibrium state correspond-
ing to a certain state satisfying force/torque balance (i.e., stable grasp) in a rigorous
mathematical argument and asymptotic stability (transferability). In illustrative
example of 