


Lecture Notes
in Control and Information Sciences 366

Editors: M. Thoma, M. Morari



Francesco Bullo, Kenji Fujimoto (Eds.)

Lagrangian and Hamiltonian
Methods for Nonlinear
Control 2006
Proceedings from the 3rd IFAC Workshop,
Nagoya, Japan, July 2006

ABC



Series Advisory Board
F. Allgöwer, P. Fleming, P. Kokotovic,
A.B. Kurzhanski, H. Kwakernaak,
A. Rantzer, J.N. Tsitsiklis

Editors
Francesco Bullo
Mechanical Engineering Department
University of California at Santa Barbara
2338 Engineering Bldg II
Santa Barbara, CA 93106-5070
USA
Email: bullo@engineering.ucsb.edu

Kenji Fujimoto
Department of Mechanical Science and Engineering
Nagoya University
Furo-cho, Chikusa-ku, Nagoya, 464-8603
Japan
Email: k.fujimoto@ieee.org

Library of Congress Control Number: 2007931367

ISSN print edition: 0170-8643
ISSN electronic edition: 1610-7411
ISBN-10 3-540-73889-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-73889-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or
parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in
its current version, and permission for use must always be obtained from Springer. Violations are liable for
prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
c© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.

Typesetting: by the authors and SPS using a Springer LATEX macro package

Printed on acid-free paper SPIN: 11898436 89/SPS 5 4 3 2 1 0



Preface

This proceedings volume documents the 3rd IFAC Workshop on Lagrangian
and Hamiltonian Methods in Nonlinear Control (LHMNLC’06) that was held
in Nagoya, Japan, on July 19-21, 2006. The first workshop in this series was
chaired and organized by Professors N. E. Leonard and R. Ortega, and was held
in Princeton, USA, in March 2000. The second one was chaired and organized
by Professors A. Astolfi, F. Gordillo and A. J. van der Schaft, and was held in
Seville, Spain, in April 2003.

A vibrant synergy is documented between areas such as nonlinear control and
optimal control theory, differential and Riemannian geometry, Lagrangian and
Hamiltonian mechanics, nonsmooth optimization, and dynamical systems. The
articles in this volume focus on technological areas including not only control of
mechanical systems, but also geometric optimization, networked control, control
of chemical processes, robotic locomotion, quantum systems, multi-agent sys-
tems, and robotic grasping and telemanipulation. Novel scientific contribution
are proposed in a wide variety of techniques including synchronization, control
Lyapunov functions, energy and power-based control, optimization algorithms,
fault-tolerant control, geometric reduction theory, and iterative learning control,
to name a few.

Financial support for the workshop was provided by the 21st Century COE
Program (Tokyo Institute of Technology) “Innovation of Creative Engineering
through the Development of Advanced Robotics,” the Suzuki Foundation, the
Daiko Foundation and the University of Nagoya. We also would like to thank
all the participants to the workshop, all the members of the national and in-
ternational organizing committees, the IFAC Secretariat, the IFAC Publications
Committee, and the Springer-Verlag review board for the LNCIS series.

Santa Barbara, USA, and Nagoya, Japan, Francesco Bullo
June 2007 Kenji Fujimoto
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A Differential-Geometric Approach for
Bernstein’s Degrees-of-Freedom Problem

Suguru Arimoto

Department of Robotics, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga,
525-8577 Japan
arimoto@se.ritsumei.ac.jp
Nagoya, RIKEN

Summary. This article challenges Bernstein’s problem of redundant degrees of free-
dom (DOF) that remains unsolved from the control-theoretic point of view as well as
from the standpoint of both neuro-physiology and robotics. Firstly, a rather simpler but
mysterious control problem of movements of human-like multi-joint reaching with ex-
cess DOFs is analyzed from Newtonian mechanics and differential geometry. Secondly,
another illustrative control problem that seems to be sophisticated and complicated is
tackled, which is to find a sensory coordinated control signal for 3-Dimensional stable
grasping and object manipulation by a pair of robot fingers with multiple joints under
the effect of gravity and nonholonomic constraints. In each illustrative control problem,
it is possible to find a simple control signal that renders each corresponding closed-loop
dynamics stable on its corresponding equilibrium-point manifold. It is claimed, how-
ever, that convergences of solutions of closed-loop dynamics to an equilibrium-point
manifold can not be analyzed by using Lyapunov’s direct method, because a Lyapunov-
like energy form can not be positive definite due to redundancy of DOFs. Instead, a
novel definition called “stability on a manifold” based upon the concept of Riemannian
distance on the constraint manifold is introduced in both illustrative problems and
used in the analysis of convergence of solution trajectories. It is also shown that finite-
ness of Riemannian metrics plays an important role in evaluation of the performance
of control in both problems.

1 Introduction

This paper is concerned with one of unsolved problems posed more than a half
century ago by A.N. Bernstein as the Degrees-of-Freedom problem[14, 15], par-
ticularly, in case of human or robotic multi-joint movements of reaching as shown
in Fig.1. The problem in case of Fig.1 is how to generate a joint motion so as
to transfer the endpoint of an upper limb with four joints (shoulder, elbow,
wrist, and finger MP joint) to a given target point xd = (xd, yd) in the two-
dimensional horizontal plane. Since the objective task xd is given in the task
space x ∈ X(= R2) and the joint coordinates q = (q1, q2, q3, q4)T are of four-
dimension, there exists an infinite number of inverses qd that realize x(qd) = xd

F. Bullo et al. (Eds.): Lag. & Hamil. Methods for Nonlin. Ctrl., LNCIS 366, pp. 1–28, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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q2

q1

q3

x

y

q4

End Point
x =(x ,y )0 0

Desired Point
x =(x ,y )d dd

xy-Plane0
T

T

Fig. 1. “Reaching” by means of a surplus DOF system of arm-hand dynamics

and hence the problem of obtaining inverse kinematics from the task descrip-
tion space X to the 4-dimensional joint space becomes ill-posed. Under this
circumstances, however, it is necessary to generate joint motions q(t) starting
from a given initial point x(0) = (x(0), y(0)) in X with some initial posture
q(0) = (q1(0), · · · , q4(0))T and leading the endpoint trajectory x(t) to reach the
target xd as t→∞. In order to get rid of such ill-posedness, many methods have
been proposed as surveyed in a special issue of the journal (see [16]) and a book
specially dedicated to problems of DOF redundancy (see [17]). Most of them are
based on an idea of introducing some extra and artificial performance index for
determining uniquely an appropriate joint space trajectory by minimizing it. In
fact, examples of such performance index in robotics research are the followings:
kinetic energy, quadratic norm of joint control torque, manipulability index, vir-
tual fatigue function, etc. Most of proposed methods have been explicitly or
implicitly based on the Jacobian pseudoinverse approach for planning an opti-
mized joint velocity trajectory q̇(t) = J+(q)ẋd(t) together with an extra term
(I − J+(q)J(q))v, where v is determined by optimizing the performance index,
J(q) stands for the Jacobian matrix of task coordinates x in joint coordinates q,
and J+(q) the pseudoinverse of J(q). In the history of robot control the idea of
use of the pseudoinverse for generation of joint trajectories for redundant robots
was initiated by [18]. However, it is impossible to calculate J+(qd) in advance
because qd is undetermined. Therefore, it is recommended that a control signal
u to be exerted through joint actuators of the robot is designed as

u = H(q)J+(ẍd − J̇ q̇) + h(q, q̇)
+{I − J+(q)J(q)}v + g(q) (1)

where H(q) stands for the inertia matrix, h(q, q̇) denotes direct compensation
for the coriolis and centrifugal forces, and g(q) compensation for the gravity
term. On the other hand, there is the vast literature of research works con-
cerned with even a simple multi-joint reaching motion or pointing movement in
physiology, which are, for example, [19], [20], and [21]. Most of them published in
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physiological journals are more or less affected by the equilibrium point (EP)
hypothesis of motor control found by [22], observed by [23], and argued explic-
itly by [24] as spring-like motion of a group of muscles. This EP hypothesis can
be interpreted in the control-theoretic language such that for a specified arm
endpoint xd in cartesian space the central part of control for reaching it must
be composed of the term JT(q)K(x−xd) which corresponds to assuming intro-
duction of an artificial potential ∆xTK∆x/2 in the external world (task space),
where ∆x = x − xd. This idea is also known in robotics as PD feedback with
damping shaping first proposed by [25]. In the case of redundant multi-joint
reaching, however, there arises the same problem of ill-posedness of inverse kine-
matics. Thus, in parallel with the vast literature ([16, 17]) in robotics research,
many methods for elimination of redundancy of DOFs have been proposed in
the physiological literature. Most of them are samely based on introduction of
extra performance criterion to be optimized, which are in the following: squared
norm of joint jerks (rate of change of acceleration), energy, effort applied dur-
ing movement, minimum-torque, and minimum torque-change and some other
cost functions though some of them are not used for redundancy resolution.
Nevertheless, even all performance indices that lead successfully to unique de-
termination of the inverse kinematics are not well-grounded physiologically and
none of physiological evidence or principle that associates such a performance
index to generation of human movements could be found.

In this article, we resolve this ill-posedness of inverse kinematics without con-
sidering any kind of inverse problems and without introducing any type of ar-
tificial performance index for the multi-joint reaching problems posed above.
Instead, we use a surprisingly simpler sensory feedback scheme described as

u = −Cq̇ − JT(q)k∆x (2)

or

u = −C0q̇ − JT(q)(cẋ + k∆x) (3)

where ∆x = x−xd, k a single stiffness parameter, C and C0 a positive diagonal
matrix corresponding to joint damping factors, and c a single positive damp-
ing parameter. It is proved theoretically that adequate choices of damping gain
matrices C and stiffness parameter k render the closed-loop system dynamics
convergent as time elapses, that is, x(t)→ xd and q̇(t) → 0 as t→∞. However,
owing to the joint redundancy, the convergence in task space does not directly
imply the convergence of joint variables q(t) to some posture. In the paper, by
introducing a novel concept named “stability on a manifold” it is shown that
q(t) remains in a specified region in joint space so that there does not arise any
unexpected self-motion inherent to redundant systems (see [26]). In other words,
the control scheme of eq.(2) suggests that the problem of elimination of joint re-
dundancy need not be solved but can be ignored in control of the dynamics. Or it
can be said that a natural physical principle for economies of skilled motions like
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the principle of least action in Newtonian mechanics may work in elimination of
redundancy. Another concept named “transferability to a submanifold” is also
introduced for discussing the asymptotic convergence in a case of middle-range
reaching. These two concepts were originally and very recently defined in cases
of control of multi-fingered hands with joint redundancy (see [27, 28]).

The latter part of the paper discusses how to construct a mathematical model
of 3-D object grasping and manipulation by a pair of 3-D robot fingers with
multi-joints. A noteworthy difference of modeling of 3-D object grasping from
that of 2-D object is that the instantaneous axis of rotation of the object is fixed
in the latter case but it is time-varying in the former case. Hence, dynamics of
the overall fingers-object system is subject to non-holonomic constraints regard-
ing a 3-D orthogonal matrix consisting of three mutually orthogonal unit-vectors
fixed at the object. A further difference arises due to the physical assumption
that spinning around the opposing axis between the two contact points does
no more arise, which induces another nonholonomic constraint. It is shown that
Lagrange’s equation of motion of the overall system can be derived from Hamil-
ton’s principle without violating the causality that governs the nonholonomic
constraints. Then, a simple control signal constructed on the basis of finger-
thumb opposable forces and an object-mass estimator is proposed and shown
to accomplish stable grasping in a dynamic sense without using object infor-
mation or external sensing. This is called “blind grasping” if in addition the
overall closed-loop dynamics converge to a state of force/torque balance. Stabil-
ity and asymptotic stability (in this paper, this is called “transferability”) under
the gravity effect and the nonholonomic constraints are proved on the basis of
principle of least action and Morse theory.

2 Closed-Loop Dynamics of Multi-joint Reaching
Movement

Lagrange’s equation of motion of a multi-joint system whose motion is confined
to a plane as shown in Fig.1 is described by the formula (see [29])

H(q)q̈ +
{

1
2
Ḣ(q) + S(q, q̇)

}
q̇ = u (4)

where q = (q1, q2, q3, q4)T denotes the vector of joint angles, H(q) the inertia
matrix, and S(q, q̇)q̇ the gyroscopic force term including centrifugal and Coriolis
forces. It is well known that the inertia matrix H(q) is symmetric and positive
definite and there exist a positive constant hm together with a positive definite
constant diagonal matrix H0 such that

hmH0 ≤ H(q) ≤ H0 (5)

for any q. It should be also noted that S(q, q̇) is skew symmetric and linear and
homogeneous in q̇. Any entry of H(q) and S(q, q̇) is constant or a sinusoidal
function of components of q.
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Fig. 2. Initial posture of the arm-hand system with four joints. The point (xd, yd)
denotes the target for the robot endpoint.
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Fig. 3. S) Starting posture, F) Final posture, U) Unreasonable posture

For a given specified target position xd = (xd, yd)T as shown in Fig.2, if the
control input of eq.(3) is used at joint actuators then the closed-loop equation
of motion of the system can be expressed as
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H(q)q̈ +
{

1
2
Ḣ(q) + S(q, q̇) + C0

}
q̇

+ JT(q)
{
cẋ + k∆x

}
= 0 (6)

which follows from substitution of eq.(3) into eq.(4). Since ẋ = J(q)q̇, the inner
product of eq.(6) with q̇ is reduced to

d
dt

E = −q̇TC0q̇ − c‖ẋ‖2 (7)

where E stands for the total energy, i.e.,

E(q, q̇) =
1
2

{
q̇TH(q)q̇ + k‖∆x‖2

}
(8)

Evidently the first term of this quantity E stands for the kinetic energy of
the system. The second term is called an artificial potential in this paper that
appears due to addition of control signal −JT(q)k∆x based on the error ∆x
expressed in cartesian space. As it is well known in robot control (see [29]), the
relation of eq.(7) denotes passivity of the closed-loop dynamics of eq.(6). It also
reminds us of Lyapunov’s stability analysis, since it shows that the derivative
of a scalar function E in time t is negative semi-definite. However, it should be
noted that the scalar function E(q, q̇) is not positive definite with respect to
the state vector (q, q̇) ∈ R8. In fact, E includes only a quadratic term of two-
dimensional vector ∆x except the kinetic energy as a positive definite quadratic
function of q̇. Therefore, it is natural and reasonable to introduce a manifold of
2-dimension defined as

M2 = {(q, q̇) : E(q, q̇) = 0 (q̇ = 0,x(q) = xd)}

which is called the zero space in the literature of robotics research (for example,
[30]). Next, consider a posture (q0, 0) with still state (i.e., q̇ = 0) whose endpoint
is located at xd, i.e., x(q0) = xd and hence (q0, 0) ∈M2, and analyze stability of
motion of the closed-loop dynamics in a neighborhood of this equilibrium state.
This equilibrium state in R8 is called in this paper the reference equilibrium
state.

3 Riemannian Metrics and Stability on a Manifold

According to terminologies of differential geometry, the set of all generalized
position vector q = (q1, · · · , qn)T is called the n-dimensional configuration space,
a set of all q̇ = (q̇1, · · · , q̇n) at a given position q is called a tangent space, and
the set of all tangent spaces for all q is called the tangent bundle. For a given
target endpoint xd in task space the set of all vectors q satisfying x(q) = xd

constitutes a two-dimensional manifold:

M2(xd) = {q : x(q) = xd} (9)
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When an initial position q = q(0) with q̇(0) = 0, the reaching movement can
be expressed by a trajectory of q(t) in the configuration space that is a solu-
tion to the closed-loop equation of motion expressed by eq.(6) with satisfying
initial conditions q(0) and q̇(0) = 0. Then, the total length of movements of q(t)
meaured by the metric along the trajectory q(t)

R(q(0))=
∫ q(∞)∈M2(xd)

q(0)∈M2(x(0))

√√√√1
2

n∑
i,j=1

hij(q)dqidqj (10)

can be rewritten in the form

R(q(0)) =
∫ ∞

0

√
1
2

∑
hij(q(t))q̇i(t)q̇j(t) dt

=
∫ ∞

0

√
1
2
q̇T(t)H(q(t))q̇(t) dt (11)

where H(q) = (hij(q)), provided that q̇(t) ∈ L1(0,∞).
It is also interesting to note that the original equation of motion of the robot

arm depicted in Fig.1 and expressed in eq.(4) can be recast into the following
form by multiplying eq.(4) with H−1(q):

d2

dt2
qi +

∑
m,n

Γ i
nm

dqm

dt

dqn

dt
=
∑

j

hijuj (12)

where hij denotes (i, j)-entry of H−1(q) and Γ i
nm Christoffel’s symbol. Notwith-

standing such a mathematically simple expression of eq.(12), it loses physical
meanings of the problem. In fact the finiteness of the Riemannian metrics such
as eqs.(10) and (11) should be proved by gaining a physical insight into the
expression of motion equation via eqs.(4) and (6). In this expository arricle the
proof of finiteness of R(q(0)) is omitted (it can be found in a separate paper
[34]). In differential geometry, eq.(4) is written in the form

4∑
j=1

hij(q)q̈j +
4∑

j,k=1

Γijk(q)q̇j q̇k = ui (13)

by using another Christoffel’s symbol called the second kind. When the external
torque ui is zero, a solution trajectory q(t) to eq.(12) or eq.(13) starting from
a given initial position to a target position q(1) is called the geodesics. Then,
the Riemannian distance between two points q0 on the configuration R4 can be
defined as

R(q0, q1)

= min
q(t)

∫ 1

0

√
1
2

∑
i,j

hij(q(t))q̇i(t)q̇j(t) dt (14)
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where minimization is taken over all curves q(t) parametrized by t ∈ [0, 1] in
such a way as q(0) = q0 and q(1) = q1. The optimal curve that attains R(q0, q1)
is shown to satisfy eq.(12) or equivalently eq.(13) when u = 0. It should be
remarked at this stage that

1) The Riemannian distance R(q0, q1) is invariant under any transformation
t = g(s) satisfying dt/ds > 0 and T = g−1(1) and 0 = g−1(0), because it follows
that ∫ T

0

√∑
i,j

1
2
hij(q̃(s))

dq̃i

ds

dq̃j

ds
ds

=
∫ T

0

√√√√∑
i,j

1
2
hij(q(t))·

(
dqi

dt

dt

ds

)
·
(

dqi

dt

dt

ds

)
ds

=
∫ 1

0

√∑
i,j

1
2
hij(q(t))

dqi

dt

dqj

dt
dt (15)

where q̃(s) = q(g(s)).

2) If the curve q(t) for t ∈ [0, 1] minimizes the interal of eq.(14), then the quantity

L(q, q̇) =
√

1
2

∑
i,j

hij(q)q̇iq̇j (16)

is constant for all t ∈ [0, 1]. This follows from taking an inner product between
q̇(t) and eq.(4) with u = 0, which yields

0 = q̇T
{

Hq̈ +
(

1
2
Ḣ + S

)
q̇

}
=

d
dt

{
1
2
q̇TH(q)q̇

}
(17)

This shows (1/2)q̇TH(q)q̇ = const.

It is now necessary to introduce the concept of neighborhoods of the refer-
ence equilibrium state (q0, 0) ∈ M2 in R8, which are conveniently defined with
positive parameters ρ > 0 and r0 > 0 as

N8(ρ, r0)
=
{
(q, q̇) : E(q, q̇) ≤ ρ2 and R(q, q0) ≤ r0

}
The necessity of imposing the inequality condition R(q, q0) ≤ r0 comes from
avoiding arise of possible movements such as self-motion ([26]) due to redundancy
of DOFs far from the original posture. In fact, for the given endpoint xd with
the reference state as shown by the mark F) in Fig.3, one possible state with
the posture marked by S) in Fig.3 may be inside N8(ρ, r0) but another state
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Fig. 4. Definitions of “stability on a manifold” and “transferability to a submanifold”

marked by U) must be excluded from the neighborhood N8(ρ, r0) by choosing
r0 > 0 appropriately, because the overall posture of U) is by far deviated from
that of the original reference equilibrium state (q0, 0). Further, it is necessary to
assume that the reference equilibrium state (q0, 0) is considerably distant from
the posture that has singularity of Jacobian matrix J(q), which happens if and
only if q2 = q3 = q4 = 0.

We are now in a position to define the concept of stability of the reference
equilibrium state lying on the manifold M2.

Definition 1. If for an arbitrarily given ε > 0 there exist a constant δ > 0
depending on ε and another constant r1 > 0 independent of ε and less than
r0 such that a solution trajectory (q(t), q̇(t)) of the closed-loop dynamics of
eq.(6) starting from any initial state (q(0), q̇(0)) inside N8(δ(ε), r1) remains
in N8(ε, r0), then the reference equilibrium state (q0, 0) is called stable on a
manifold (see Fig.4).

Definition 2. If for a reference equilibrium state (q0, 0) ∈ R8 there exist con-
stants ε1 > 0 and r1 > 0 (r1 < r0) such that any solution of the closed-
loop dynamics of eq.(6) starting from an arbitrary initial state in N8(ε1, r1)
remains in N8(ε1, r0) and converges asymptotically as t→∞ to some point on
M2 ∩N8(ε1, r0), then the neighborhood N8(ε1, r1) of the reference equilibrium
state (q0, 0) is said to be transferable to a subset of M2 including q0.

This definition means that, even if a still state (q0, 0) ∈ M2 of the multi-joint
system is forced to move instantly to a different state (q(0), q̇(0)) in a neighbor-
hood of (q0, 0) by being exerted from some external disturbance, the sensory
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feedback control of eq.(3) assures that the system’s state soon recovers to an-
other still state (q∞, 0) ∈M2∩N8(ε1, r0) whose endpoint attains at the original
point x(q∞) = xd though the convergent posture q∞ possibly differs from the
original one q0 but remains within R(q, q0) ≤ r0.

4 Middle-Range Reaching

According to the energy balance law expressed by eq.(7), the total energy
E(t)(= E(q(t), q̇(t))) is decreasing with increasing t as far as q̇ �= 0 for an
arbitrary positive definite damping gain matrix C0. However, the motion profile
x(t) of the endpoint is quite sensitive to choice for ci > 0 for i = 1, · · · , 4 where
C0 = diag(c1, · · · , c4) though for a broad range of choice for ci (i = 1, · · · , 4)
the endpoint x(t) eventually converges to the target if the stiffness k is chosen
adequately. For example, we show several endpoint trajectories for different k in
Fig.5 obtained by computer simulation based on a human model shown in Table 1
in the case that the initial point x(0) in task space X(= R2), its corresponding

Table 1. Lengths of upper arm (l1), lower arm (l2), palm (l3), and index finger (l4)
together with corresponding link masses and inertia moments. The data are taken from
a 5 years old child.

link1 length (m) l1 0.175
link2 length (m) l2 0.170
link3 length (m) l3 0.0600
link4 length (m) l4 0.0600

link1 cylinder radius (m) r1 0.0247
link2 cylinder radius (m) r2 0.0223
link3 cuboid height (m) h3 0.0600
link3 cuboid depth (m) d3 0.0210

link4 cylinder radius (m) r4 0.00509
link1 mass (kg) m1 0.335
link2 mass (kg) m2 0.266
link3 mass (kg) m3 0.0756
link4 mass (kg) m4 0.00488

link1 inertia moment (kgm2) I1 9.07 × 10−4

link2 inertia moment (kgm2) I2 6.73 × 10−4

link3 inertia moment (kgm2) I3 2.55 × 10−5

link4 inertia moment (kgm2) I4 1.50 × 10−6

initial posture q(0), and the target xd in task space X are set as in Table 2,
where damping gains in eq.(3) are chosen as

c = 0.0 (Ns/m),
c1 = c2 = c3 = c4 = 0.0025 (Nms)

(18)
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The endpoint trajectory x(t) starting from the initial posture shown as S) in
Fig.3 is going to approach the target but overruns and oscillates around the
target xd, but in a long run it converges to the target and stops with the final
posture shown as U) in Fig.3 when k = 10.0 (N/m) is chosen.

Table 2. Initial conditions and the target for middle-range reaching

Arm posture : q1(0)=28.15
◦
, q2(0)=51.14

◦
,

: q3(0)=36.40
◦
, q4(0)=67.82

◦

Endpoint position (m) : x(0) = (0.10, 0.30)T

Target position (m) : xd = (−0.20, 0.20)T

Distance (m) : ‖∆x(0)‖ = 0.3162

Table 3. Numerical values of inertia matrix H(q(t)) at t = 0 in the case of middle-range
reaching (Unit: kgm2)

H(q(0)) =

�
���

2.776 × 10−2 9.707 × 10−3 4.639 × 10−4 −2.021 × 10−5

9.707 × 10−3 5.730 × 10−3 4.679 × 10−4 3.091 × 10−6

4.639 × 10−4 4.679 × 10−4 1.236 × 10−4 9.210 × 10−6

−2.021 × 10−5 3.091 × 10−6 9.210 × 10−6 5.892 × 10−6

�
���
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Fig. 5. Endpoint trajectories of multi-joint reaching movements when inadequate
damping factors are selected

According to [31], human skilled multi-joint reaching is characterized as fol-
lows:

a) The profile of the endpoint trajectory in task space X becomes closely
rectilinear,

b) the velocity profile of it in X becomes symmetric and bell-shaped,
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Fig. 6. Endpoint trajectories x(t) in the case of middle-range reaching movements

c) the acceleration profile has double peaks,
d) but each profile of time histories of joint angles qi(t) and angular velocities

q̇i(t) may differ for i = 1, 2, · · · , 4.

We are now in a position to answer to the question whether it is possible to
find a set of adequate damping factors c and ci (i = 1, · · · , 4) together with an
adequate stiffness parameter k > 0 so that the sensory feedback of eq.(2) or eq.(3)
leads to the skilled motion of reaching realizing an approximately rectilinear
endpoint trajectory without incurring any noteworthy self-motion. We first select
damping factors as follows:

c = 0.0 (Ns/m)
c1 =0.59, c2=0.38, c3=0.098, c4=0.019 (Nms) (19)

Then, numerical solutions of the closed-loop dynamics of eq.(6) for different
stiffness parameters give rise to transient responses of the endpoint trajectory
(x(t), y(t)) in Fig.6. As shown in Figs.6, the endpoint trajectories become well
approximately rectilinear and do not change much for different stiffness param-
eters, though the speed of convergence to the target depends on k. The best
choice of k in this chosen set of damping factors given in eq.(19) must be around
k = 10.0 (N/m).

Now let us discuss how to select such a good set of damping factors as in
eq.(19). If one of the tightest (smallest) diagonal matrix H0 satisfying eq.(5) is
found, then it is possible to select C in such a way that

C ≥ 3.0H1/2
0 (20)

Further, it should be noted that such a matrix H0 can be selected as the smallest
constant diagonal matrix satisfying

H(q)≤H0 for all q such that ‖x(q)−xd‖≤r (21)
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where r denotes the euclidean distance between the starting endpoint point
x(0) (= (x(0), y(0))T) and the target xd, because according to eq.(7) the end-
point should remain inside the circle ‖x(t)−xd‖ ≤ r for any t > 0. In the case of
middle-range reaching with r = 31.62 (cm) for a typical five-years old child with
1.07 (m) in height, the initial value of H(q) with the posture shown in Fig.2 is
evaluated as in Table 3. We evaluate a tighter bound H0 starting from the data
of H(q(0)) in Table 3 by adding each possible contribution of off-diagonal ele-
ment |Hij(q(0))| to Hii(q(0)) and Hjj(q(0)). By the same computer simulation,
we find that such a choice of C = 3.0H1/2

0 as numerically given in eq.(19) gives
rise to

9.0C−1H(q)C−1 < I4 (22)

during the transient process of reaching.

5 Virtual Spring/Damper Hypothesis

Since the endpoint trajectory in the case of middle-range reaching as shown in
Fig.6 is not so close to the straight line, better damping factors were sought
for so as to make the endpoint trajectory more closely rectilinear. However,
finding out such a set of adequate damping factors for each motion was very
laborious. Furthermore, according to physiological data on muscle contraction
([32]), the magnitudes c1 and c2 in eq.(19) corresponding to passive damping
factors for shoulder and elbow joints are too big to be compared with actual
viscosity of contractile muscles ([32, 33]). Therefore, we suggest another form of
control signals introduced as in eq.(3). Apparently, this control signal plays a
role of a parallel pair of mechanical damper and spring that draws the endpoint
of the whole arm to the target as shown in Fig.7. Based on the closed-loop
dynamics eq.(6), we conducted numerical simulations of middle-range reaching.
For comparison of the effectiveness of control signal shown in eq.(3) with that
of eq.(2), the same physical parameters of the arm model, initial posture, and
target point as in the simulation of Fig.6 are set as given in Tables 1 and 2.
As shown in Fig.8, endpoint trajectories in this case become rectilinear almost
completely from the beginning to the final stage even in the case of middle-range
reaching movements. In this case, the damping factors C0 in eq.(3) are set as
C0 = 0.1C, that is,

C0 =diag(0.059, 0.038, 0.0098, 0.0019) (Nms) (23)

and the coefficient for dampings in task space c in eq.(3) is set as c = 4.5 (Ns/m).
Each passive damping factor C0 corresponding to each joint can be reduced to
the range of 10 percent of C. Thus, from simulation results of Fig.6 and Fig.8,
it is shown that the control signal of eq.(3) adding the damping effect in task
space can lead to movements of more skilled multi-joint reaching than the control
signals of eq.(2) in various situations.
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Fig. 8. Endpoint trajectories x(t) in case of middle reaching movements when damping
factors based upon “Virtual spring/damper hypothesis” are used

6 Theoretical Proof of Transferability

As argued in Section 2, the Lyapunov-like relation of eq.(7) does neither di-
rectly imply the transferability of any neighborhood N8(ε1, r1) of a reference
equilibrium state (q0, 0) nor its stability on a manifold. Similary to eq.(11), we
introduce the quantity
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X(q(0)) =
∫ ∞

0

√
k/2‖∆x(t)‖dt (24)

measured along the endpoint trajectory of the solution to eq.(6) starting from a
given initial state (q(0), q̇(0)). First, it is necessary to remark that the Lyapunov-
like relation of eq.(7) implies only

0 ≤
∫ ∞

0

{
q̇T(t)C0q̇(t)+c‖ẋ(t)‖2

}
dt ≤ E(0) (25)

that is, q̇(t) ∈ L2(0,∞) and ẋ(t) ∈ L2(0,∞), where we denote E(q(t), q̇(t)) by
E(t) for brevity. It should be also noted that LaSalle’s invariance theorem can
not be applied for eq.(7) because E(q, q̇) is not positive definite in the state (q, q̇).
However, it is possible to show that q̇(t) → 0 and ẋ(t) → 0 as t → ∞ uniformly.
In fact, eq.(7) implies 0 ≤ E(t) ≤ E(0) and shows that q̇(t) and ∆x(t) are uni-
formly bounded. Hence, from eq.(6) q̈(t) must be also uniformly bounded. This
means that q̇(t) is uniformly continuous in t and also belongs to L2(0,∞), which
implies q̇(t) → 0 as t → ∞ according to a well-known lemma (for example see
Appendix C of the book ([29])). Similarly ∆x(t) → 0 as t → ∞. Nevertheless,
this result does not imply the finiteness of metrics R(q(0)) defined by eq.(11) and
X(q(0)) of eq.(24) for a given target x = xd. Thus, it is crucial to gain a deep in-
sight into the physical properties of Γijk in eq.(13), or equivalently the second term
{(1/2)Ḣ +S}q̇ of the left hand side of eq.(4). In particular, it is important to ana-
lyze physical interactions between the term kJT(q)∆x exerted from the external
spring-like force k∆x and the torque contributed from the inertia term in eq.(6).
In the previous paper ([34]), we introduced another quadratic function defined as

W =
1
2
q̇TH(q)q̇ +

k

2
(1 + αζ)‖∆x‖2

+α
√

k∆xT(J+(q))TH(q)q̇ (26)

with a positive parameter 1 ≥ α > 0 and showed that (1−α)E ≤W ≤ (1+α)E
and there exist a positive constant γ(α) dependening on α > 0 such that

W (t) ≤ e−γ(α)tW (0) (27)

and

E(t) ≤ e−γ(α)t

1− α
W (0) ≤ 1 + α

1− α
e−γ(α)tE(0) (28)

where we set ζ = c/
√

k. This shows that E(t) converges to zero exponentially
in t. Therefore,

√
E(t) is also convergent to zero as t → ∞ with exponent

{−γ(α)/2}t. Thus, it is now possible to prove the stability on a manifold and
transferability of solution trajectories of eq.(6).

Proposition 1. For a given reference state (q0, 0) lying on M2 with satisfying
x(q0) = xd, then any solution trajectory of eq.(6) starting from an arbitrary
initial state (q(0), q̇(0)) belonging to a smaller neighborhood N8(ε1, r1) of (q0, 0)
with some ε1 < ρ and r1 < r0 remains to stay in the neighborhood N8(ρ, r0) of
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(q0, 0). Moreover, the positional solution trajectory converges asymptotically to
some point of M2. That is, N8(ε1, r1) is transferable to M2.

Proof. Since
√

E(t) is exponentially convergent to zero according to eq.(28), we
can set {

R(q(0)) ≤ dR

√
E(0)

X(q(0)) ≤ dR

√
E(0)

(29)

with a common constant dR > 0. Then, we choose r1 > 0 and δ(ε) in such a way
that

r1 <
r0

2
, ε1 < min

{
r0

2dR
, ρ

}
(30)

Consider a solution (q(t), q̇(t)) of eq.(6) starting from an aribitrary state (q(0),
q̇(0)) inside the neighborhood N8(ε1, r1) of (q0, 0) and notice that at any position
q(T ) along the position trajectory q(t) of this solution it follows that

R(q(T ), q0) ≤ R(q(T ), q(0)) + R(q(0), q0)
≤ R(q(T ), q(0)) + r1 (31)

Since the position trajectory q(t) starting from q(0) at t = 0 and reaching q(T )
at t = T is a special curve in the configuration space, it follows from the meaning
of Riemannian distance that

R(q(T ), q(0)) ≤
∫ T

0

√
1
2
q̇TH(q(t))q̇(t)dt

≤
∫ T

0

√
E(t)dt ≤ dR

√
E(0)

= dR

√
E(q(0), q̇(0)) ≤ dRε1 (32)

Substituting this into eq.(31) and referring to eq.(30) conclude that

R(q(T ), q0) ≤ dRε1 + r1 < r0 (33)

At the same time, eq.(30) implies E(q(t), q̇(t)) ≤ E(0) = ε2
1 < ρ2. This completes

the proof.

In the above proof, if we choose δ(ε) for an arbitrarily given ε > 0 in such a way
that

δ(ε) = min
{

r0

2dR
, ρ, ε

}
(34)

then it is possible to show that

Theorem 1. If (q0, 0) ∈M2 and at any pose q satisfying R(q, q0) < r0 the Jaco-
bian matrix J(q) = ∂x(q)/∂qT is nondegenerate, then the reference equilibrium
state (q0, 0) is stable on a manifold.

Theorem 2. Under the same assumption on q0, there exists a pair of positive
numbers (ε1, r1) such that the neighborhood N8(ε1, r1) of q0 is transferable to
a subset of M2.
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Fig. 9. The coordinates of the overall fingers-object system. The coordinates Oxyz is
fixed at the frame.

7 3-D Grasping Under Nonholonomic Constraints

Next, we will discuss a problem of modeling physical interactions of a 3D-object
by a pair of robot fingers with multi-joint whose ends are rigid and hemispherical
(see Fig.9). Consider motion of a rigid object with parallel flat surfaces, which is
grasped by a pair of robot fingers with 3 DOFs and 3 DOFs as shown in Fig.9.
When the distance from the straight line

−−−→
O1O2 (opposition axis) connecting

two contact points between finger-ends and object surfaces to the vertical axis
through the object mass center in the direction of gravity becomes large, there
arises a spinning motion of the object around that opposition axis. This paper
considers the problem of modeling of pinching in the situation that this spinning
motion ceases after that the center of mass of the object came sufficiently close to
a point beneath the opposing axis and there will no more arise such spinning due
to dry friction between finger-ends and object surfaces. The cease of spinning,
however, induces a non-holonomic constraint among rotational angular velocities
ωX , ωY and ωZ around X , Y , and Z axis, respectively, where Oc.m. − XY Z
denotes the cartesian coordinates fixed at the object as shown in Fig.10. Since
the opposing axis is expressed as

−−−→
O1O2 = x1−x2 where xi = (xi, yi, zi)T denotes
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Oc.m.

O01
Y1

Z1

l1

r1

contact point

Z

X

Y

q12

O1

φ1

η1

Fig. 10. Mutually orthogonal unit vectors rX , rY and rZ express the rotational motion
of the object. The pair (ηi, φi) for (i = 1, 2) expresses the spherical coordinates of each
hemispherical finger end.

the cartesian coordinates of contact point Oi (see Fig.10), the cease of spinning
motion around the axis

−−−→
O1O2 implies that the instantaneous axis of rotation of

the object is orthogonal to x1 − x2, that is,

ωT(x1 − x2) = 0 (35)

which is rewritten into the form

ωX = −ξyωY − ξzωZ (36)

ξy =
y1 − y2

x1 − x2
, ξz =

z1 − z2

x1 − x2
(37)

where ω = (ωX , ωY , ωZ)T. On the other hand, denote the cartesian coordinates
of the object mass center Oc.m. by x = (x, y, z)T based on the frame coordinates
O − xyz and three mutually orthogonal unit vectors fixed at the object frame
by rX , rY and rZ . Then, the 3× 3 rotation matrix

R(t) = (rX , rY , rZ) (38)

belongs to SO(3) and is subject to the first-order differential equation

d
dt

R(t) = R(t)Ω(t) (39)

where

Ω(t) =

⎛⎝ 0 −ωZ ωY

ωZ 0 −ωX

−ωY ωX 0

⎞⎠ (40)



A Differential-Geometric Approach for Bernstein’s DOF Problem 19

The equation (39) expresses another nonholonomic constraint on rotational mo-
tion of the object. Next, denote the position of the center of each hemispherical
finger-end by x0i = (x0i, y0i, z0i)T. Then, it is possible to notice that (see Fig.10)

xi = x0i − (−1)irirX (41)
x = x0i − (−1)i(ri + li)rX − YirY − ZirZ (42)

Since each contact point Oi can be expressed by the coordinates ((−1)ili, Yi, Zi)
based on the object frame Oc.m.−XY Z, taking an inner product between eq.(42)
and rX gives rise to

Qi = −(ri + li)− (−1)i(x− x0i)TrX = 0, i = 1, 2 (43)

which express holonomic constraints of contacts between finger-ends and the
object. The rolling constraints between finger-ends and object surfaces can be
expressed by equalities of two contact point velocities expressed on the finger-end
surfaces and on the object surfaces in terms of orthogonal coordinates (rY , rZ).
In fact, they are expressed as

(−1)irir
T
Y

{
ṙX − (ez × rX)(q̇T

i ei)− (ex × rX)q̇i0
}

=
d
dt

Yi (44)

(−1)irir
T
Z

{
ṙX − (ez × rX)(q̇T

i ei)− (ex × rX)q̇i0
}

=
d
dt

Zi (45)

where e1 = (1, 1)T, e2 = (0, 1, 1)T, ez = (0, 0, 1)T, ex = (1, 0, 0)T, and q̇10 = 0
since the left finger has no joint in the x-axis. These four equalities expressing
rolling constraints are non-holonomic, but they are Pfaffian since they can be
expressed in linear homogeneous forms of velocity variables as follows:

− (−1)iri

{
θ̇ + rZz ṗi + rZxq̇i0

}
= Ẏi, i = 1, 2 (46)

(−1)iri

{
φ̇− rY zṗi − rY xq̇i0

}
= Żi, i = 1, 2 (47)

where pi = qT
i ei for i = 1, 2 and we conveniently express ωZ = θ̇ and ωY = ψ̇

(i.e., θ signifies an indefinite integral of ωZ and ψ does that of ωY ), and rZz

denotes the z-component of rZ , and rZx and others have a similar meaning.
Note that ṙX in eqs.(44) and (45) represents the angular velocities of the object
surfaces (Y Z-planes), ṙX = −ωZrY + ωY rZ from eq.(40), (ez × rX)(q̇T

i ei)
expresses the velocity of the contact point Oi on the finger-end surface induced
by the net angular velocity of all joints with the z-axis of finger i, and (ex×rX)q̇i0
does a similar meaning. Thus, the rolling constraints can be expressed with
accompany of Lagrange’s multipliers λY i for eq.(44) and λZi for eq.(45) such
that

λY i

{
Y T

qiq̇i + Y T
xiẋ + Yθiθ̇ + Yψiψ̇

}
= 0 (48)

λZi

{
ZT

qiq̇i + ZT
xiẋ + Zθiθ̇ + Zψiψ̇

}
= 0 (49)
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where Y qi, Zqi, and others are shown in Table 4. Corresponding to eq.(43), we
introduce the scalar quantity with multipliers f1 and f2 as follows:

Q = f1Q1 + f2Q2 = 0 (50)

The Lagrangian for the overall fingers-object system can now be expressed by
the scalar quantity

L = K − P + Q (51)

where K denotes the total kinetic energy expressed as

K =
1
2

∑
i=1,2

q̇T
i Hi(qi)q̇i +

1
2
M
(
ẋ2 + ẏ2 + ż2)

+
1
2
(ωZ , ωY )H0(ωZ , ωY )T (52)

and P denotes the total potential energy expressed as

P = P1(q1) + P2(q2)−Mgy (53)

where Hi(qi) stands for the inertia matrix for finger i, M the mass of the object,
Pi(qi) the potential energy of finger i, g the gravity constant and H0 is given in
the following:

H0 =

⎛⎜⎜⎜⎜⎝
IZZ + ξ2

zIXX IY Z + ξyξzIXX

−2ξzIZX −ξzIY X − ξyIXZ

IY Z + ξyξzIXX IY Y + ξ2
yIXX

−ξzIY X − ξyIXZ −2ξyIY X

⎞⎟⎟⎟⎟⎠ (54)

provided that the inertia matrix of the object around its mass center Oc.m. is
expressed as

H =

⎛⎝ IXX IXY IXZ

IXY IY Y IY Z

IXZ IY Z IZZ

⎞⎠ (55)

It should be noted that the kinetic energy of the object can be expressed as K0 =
(1/2)ωT

0 H0ω0 = (1/2)ωTHω under the nonholonomic constraint of eq.(35),
where ω0 = (ωZ , ωY )T.

8 Lagrange’s Equation of the Overall Fingers-Object
System

By applying the variational principle∫ t1

t0

{
δL− uT

1 δq1 − uT
2 δq2

}
dt =
∫ t1

t0

∑
i=1,2

{
λY iF

T
Y iδX + λZiF

T
ZiδX

}
dt (56)
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Table 4. Partial derivatives of holonomic constraints with respect to position variables

∂Q

∂qi
= fi

�
∂Qi

∂qi

�
= (−1)ifiJ

T
i (qi)rX , Ji(qi) =

∂x0i

∂qT
i

, i = 1, 2 (T-1)

∂Q

∂x
= f1

�
∂Q1

∂x

�
+ f2

�
∂Q2

∂x

�
= (f1 − f2)rX (T-2)

∂Q

∂θ
= f1

∂Q1

∂θ
+ f2

∂Q2

∂θ
= −f1Y1 + f2Y2 (T-3)

∂Q

∂ψ
= f1

∂Q1

∂ψ
+ f2

∂Q2

∂ψ
= f1Z1 − f2Z2 (T-4)

Y qi = JT
i (qi)rY + ri

�
(−1)irZzei + rZxe0i

�
(T-5)

Zqi = JT
i (qi)rZ + ri

�
(−1)irY zei + rY xe0i

�
(T-6)

Y xi = −rY , Zxi = −rZ (T-7)

Yθi =
∂Yi

∂θ
+ (−1)iri = (−1)ili − ξzZi (T-8)

Yψi =
∂Yi

∂ψ
= −ξyZi, Zθi =

∂Zi

∂θ
= ξzYi (T-9)

Zψi =
∂Zi

∂ψ
− (−1)iri = (−1)ili + ξyYi (T-10)

to the Lagrangian L defined by eq. (51), we obtain

HẌ+
(

1
2
Ḣ+S+C

)
Ẋ−Aλ+Mge = u (57)

where e = (06, 1, 03)T, λ = (f1, f2, λY 1, λY 2, λZ1, λZ2)T, u = (uT
1 , uT

2 , 05)T,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X = (qT
1 , qT

2 ,xT, θ, ψ)T, C = diag(C1, C2, 05)

H =

⎛⎜⎜⎜⎝
H1 02×3 02×3 02×2

03×2 H2 03×3 03×2

03×2 03×3 Mr2I3 03×2

02×2 02×3 02×3 H0

⎞⎟⎟⎟⎠

S =

⎛⎜⎜⎜⎝
S1 02×3 02×3 S14

03×2 S2 03×3 S24

03×2 03×3 03×3 03×2

−ST
14 −ST

24 02×3 S0

⎞⎟⎟⎟⎠

(58)

and
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A =

⎛⎜⎜⎜⎜⎝
−JT

1 rX 02 Y q1 02 Zq1 02
03 JT

2 rX 03 Y q2 03 Zq2
rX −rX −rY −rY −rZ −rZ

−Y1 Y2 −l1 − ξzZ1 l2 − ξzZ2 −ξyZ1 −ξyZ2
Z1 −Z2 ξzY1 ξzY2 −l1 + ξyY1 l2 + ξyY2

⎞⎟⎟⎟⎟⎠ (59)

where F Y 1 and F Z1 are defined as 10-dimensional vector-valued functions ap-
pearing in the third and fifth columns of matrix A and F Y 2 and F Z2 the fourth
and sixth columns respectively, and

S0 =
(

0 s12
−s12 0

)
, Si4 = −1

2

{
∂ωT

0 H0

∂qi

}

s12 =
1
2

(
∂h11

∂ψ
− ∂h12

∂θ

)
ωZ +

1
2

(
∂h12

∂ψ
− ∂h22

∂θ

)
ωY (60)

where we denote the (i, j)-entry of H0 by hij . Obviously from the variational
principle of eq.(56), it follows that∫ t

0

⎧⎨⎩∑
i=1,2

q̇T
i ui

⎫⎬⎭ dτ = K(t) + P (t)−K(0)− P (0) (61)

This relation can be utilized later in derivation of the passivity for a class of
closed-loop dynamics when control signals ui are designed in a form of function
of state variables of robot fingers. Note that dynamics of the object exressed in
eq.(57) can not be controlled directly from the control ui (i = 1, 2) but must
be controlled indirectly through constraint forces fi, λZi, and λY i (i = 1, 2).
It is also important to note that the position variables θ and ψ do not appear
explicitly in eq.(59) which expresses the Lagrange equation for rotational motion
of the object, because they (θ and ψ) do not appear in the right hand sides
of (T-8) to (T-10). These variables (θ and ψ) should be determined on the
basis of nonholonomic constraint expressed by eq.(39). Thus, it can be claimed
that the overall system dynamics of eq.(57) together with the nonholonomic
constraint of eq.(39) does not contradict the causality. Furthermore, it should
be remarked that the use of Pfaffian constraints of eqs.(46) and (47) instead
of nonholonomic expessions of eqs.(44) and (45) must be reasonable under the
argument of “infinitesimal rotation” (see [35]) of the object and thereby partial
derivatives of constraints Qi = 0 (i = 1, 2) and eqs.(46) and (47) in θ and ψ can
be obtained through partial derivatives of rX , rY , and rZ in θ and ψ under the
nonholonomic constraint of eq.(35), which are given as follows (see [36]):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂rX

∂θ
= rY ,

∂rX

∂ψ
= −rZ

∂rY

∂θ
= −rX − ξzrZ ,

∂rY

∂ψ
= −ξyrZ

∂rZ

∂θ
= ξzrY ,

∂rZ

∂ψ
= rX + ξyrY

(62)
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9 Control for Stable Blind Grasping

Even if the gravity affects motion of the object and fingers as shown in Fig.9, it
is possible to construct a control signal for stable grasping in a dynamic sense
without knowing object kinematics or using external sensing (visual or tactile).
The signal is defined as

ui = gi(qi)− Ciq̇i +
(−1)ifd

r1 + r2
JT

i (qi)(x01 − x02)

−M̂g

2
∂y0i

∂qi
− riN̂iei − riN̂0ie0i, i = 1, 2 (63)

where

M̂(t)=M̂(0) +
g

2γM

∑
i=1,2

(y0i(t)− y0i(0)) (64)

N̂i(t)=
ri

γi

2∑
j=1

{qij(t)− qij(0)} , N̂02(t)=
r2

γ0
(q20(t)− q20(0)) (65)

Note that M̂(t) plays a role of estimator for the unknown object mass M . Signals
N̂i(t) (i = 1, 2) and N̂02 are not any of estimators but play an important role in
suppressing excess movements of rotation of finger joints together with damping
terms −Ciq̇i.

Before discussing stability of closed-loop system that can be obtained by sub-
stituting eq. (63) into eq. (57), we need the following definitions:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∆fi = fi − f0 − (−1)i Mg

2
rXy

∆λY i = λY i+(−1)i
fd (Y1−Y2)

r1 + r2
−Mg

2
rY y

∆λZi = λZi + (−1)i fd (Z1−Z2)
r1 + r2

−Mg

2
rZy

(66)

∆M = M̂ −M, ∆Ni = N̂i −Ni, ∆N0 = N̂02 −N0 (67)

Ni = (−1)i

{
Mg

2
(rZz +rY z)−

fd

r1+r2
(rZz(Y1−Y2)−rY z(Z1−Z2))

}
(68)

N02 =
Mg

2
(rZx + rY x)− fd

r1+r2
{rZx(Y1 − Y2)− rY z(Z1 − Z2)} (69)

and describe the closed-loop equation in the following vector-matrix form:

HẌ+
(

1
2
Ḣ+S+C

)
Ẋ−A∆λ−B∆m=0 (70)

where ∆λ = (∆f1, ∆f2, ∆λY 1, ∆λY 2, ∆λZ1, ∆λZ2)T, ∆m = (∆Mg/2, ∆N1,
∆N2, ∆N0, r

−1
θ SZ , r−1

ψ SY )T, eθ = (1, 0)T, eψ = (0, 1)T, and
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B =

⎛⎜⎜⎜⎜⎜⎜⎝

∂y01

∂q1
r1e1 02 02 02 02

∂y02

∂q2
03 r2e2 r2e02 03 03

03×4 03×2
02×4 rθeθ rψeψ

⎞⎟⎟⎟⎟⎟⎟⎠ (71)

SZ = ∂W/∂θ, SY = ∂W/∂ψ (72)

and W stands for

W =
fd

2(r1 + r2)
{
(Y1 − Y2)2 + (Z1 − Z2)2

}
+

γM

2
∆M2

+
Mg

2

[
(Y1 + Y2)rY y − {(l1 + r1)− (l2 + r2)} rXy

+(Z1 + Z2)rZy

]
+
∑

i=1,2

γi

2
N̂2

i +
γ0

2
N̂2

02 (73)

In derivation of the form of eq.(70) the relations

Mg

2
JT

i (qi) {rXyrX + rY yrY + rZyrZ} =
Mg

2

(
∂y0i

∂qi

)
(74)

and ∑
i=1,2

q̇T
i ui =

d
dt

{
P1 + P2 −

fd

2(r1 + r2)
‖x01 − x02‖2

−γM

2
M̂2 −

∑
i=1,2

γi

2
N̂2

i −
γ0

2
N̂2

0

}
+
∑

i=1,2

q̇T
i Ciq̇i (75)

play a crucial role. From these two relations it is possible to verify that

d
dt

(K + W ) = −
∑
i=1,2

q̇T
i Ciq̇i (76)

At the same time it is important to note from eq.(74) that the third term of the
right hand side of W in eq.(73) is equivalent to

Mg

2

[
(Y1 + Y2)rY y − {(l1 + r1)− (l2 + r2)} rXy + (Z1 + Z2)rZy

]
= Mg

{
y − y01 + y02

2

}
(77)

This means physically that the unknown potential energy (−Mgy) is approxi-
mated by the quantity M̂g(y01+y02)/2 that can be calculated by using measured
data on finger joint angles.
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Now, consider minimization of the scalar function W in position variables X
under constraints of eqs.(43), (46), and (47). Since X is of 10-dimension and
there are two holonomic constraints, the following five variables

p1 = q11 + q12, p2 = q21 + q22, q20, θ, ψ (78)

are independent and sufficient for minimization of W under the constraints.
Then, it is possible to check that the Hessian matrix of W in p1, p2, q20, θ,
and ψ becomes positive definite in a broad region in X ∈ R10 provided that
γM , γi, γ0 and fd are properly chosen. From this fact, it is possible to ascertain
that there exists a critical point X∗ ∈ R10 at which W (X) attains the minimum
W (X∗) = Wm under constraints of eqs.(43), (46), and (47). This critical position
X = X∗ must satisfy the gradient equation:

A∆λ + B∆m = 0 (79)

which is the same as the equation of eq.(70) when Ẋ = 0 and Ẍ = 0. In
other words, eq.(70) can be regarded as Lagrange’s equation of motion with the
Lagrangian L = K −W and the external torque CẊ and Pfaffian constraints
appearing as a dissipation term. Thus, the critical position X = X∗ should be
treated as an attractor in such a way that any closed-loop solution to eq.(70)
starting from an arbitrary initial state (X(0), Ẋ(0)) in a neighborhood of (X∗, 0)
converges asymptotically to the critical state (X∗, 0).

10 Stability on a Constraint Manifold

The stability problem mentioned above can be treated in terms of differential
geometry. Denote the position state vector by X = (qT

1 , qT
2 , x̄T, θ, ψ)T and its

corresponding time-derivative by Ẋ = (q̇T
1 , q̇T

2 , ˙̄xT, ωZ , ωY )T. The set of all vec-
tors X constituting a 10-dimensional vector space R10 is called the configuration
space. This space is embedded in the state space R20 = {(X, Ẋ)}. Next, define
the 8-dimensional space

M8 = {X : Qi = 0, i = 1, 2}

which is called a constraint manifold. Further, at each point X on M8 it is
possible to define a tangent space TM4 in such a way that

TM4(X) =
{
Ẋ : Q̇i = 0, eq.(46), eq.(47), i = 1, 2

}
At this stage, it is possible to suppose formally a tangent boundle define as

T (X, Ẋ) =
{
(X , Ẋ) : Qi = 0, Q̇i = 0, eq.(46), and eq.(47) for i = 1, 2

}
though it seems difficult to determine how many dimensions the set T (X, Ẋ)
has. Nevertheless, finiteness of the Riemannian metric
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∫ ∞

0

√
Kdt =

∫ ∞

0

√√√√∑
i=1,2

{
1
2
q̇T
i Hiq̇i

}
+

M

2
‖ẋ‖2 +

1
2
ωT

0 H0ω0 dt

< +∞ (80)

plays a crusial role in verification of the stability of an equilibrium position state
X∗ lying on M8. It is also important to note that the integral∫ ∞

0

√
(W −Wm) dt < +∞ (81)

is also finite, where Wm is the minimum of W under the constraints of Qi = 0
eqs.(46) and (47) for i = 1, 2. Further, it is interesting to notice that eq. (80)
implies that the locus of each rolling contact point on its corresponding object
called E. Cartan’s development ([37]) becomes finite in its total length over semi-
infinite time interval [0,∞). Finally, if it is possible to define a neighborhood of
the critical state (X∗, 0) by means of the Riemannian distance from X(0) to
X∗ on the manifold M8 in such a way that

R(X(0),X∗) = min
T (X ,Ẋ)

∫ t

0

√∑
i,j

hij(X)ẊiẊj dt (82)

thenit ispossibletodiscussproblemsofstabilityoftheequilibriumstatecorrespond-
ing to a certain state satisfying force/torque balance (i.e., stable grasp) in a rigorous
mathematical argument and asymptotic stability (transferability). In illustrative
example of Fig.9, the fingers-object system is not redundant in DOFs. In cases of
redundant fingers-object systems, all equilibrium states constitute a manifold, too.
Then,aMorse-theoretictreatment(see[38])ofcriticalpointswouldbecomeessential
in relation to the problem of minimization of the artificial potential on a constraint
manifold. Such an example of stability of 3-D grasp is treated recently in [39].

11 Conclusions

In this expository article a differential-geometric approach is presented for ana-
lyzing Lagrange’s equations of the two control-theoretic problems of non-linear
mechanical systems: 1) multi-joint point-to-point reaching movements under re-
dundant DOFs and 2) 3-D object grasping and manipulation by means of a
pair of robot fingers with multi-joints. It is shown that finiteness of Riemannian
metrics naturally introduced on tangent bundles associated with a configuration
space or a constraint manifold plays a key role in verification of stability and
convergence of solution trajectories of the closed-loop dynamics.
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Nonsmooth Riemannian Optimization with
Applications to Sphere Packing and Grasping
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Summary. This paper presents a survey on Riemannian geometry methods for
smooth and nonsmooth constrained optimization. Gradient and subgradient descent
algorithms on a Riemannian manifold are discussed. We illustrate the methods by
applications from robotics and multi antenna communication. Gradient descent algo-
rithms for dextrous hand grasping and for sphere packing problems on Grassmann
manifolds are presented respectively.

1 Introduction

Riemannian optimization is a rather recent branch of constrained optimization
theory that attempts to analyze and develop optimization algorithms by fully
exploiting the information that is inherent in the differential geometric structure
of the constraint set. Despite a number of important recent contributions, see e.g.
[9, 14, 22, 23, 25], the use of differential geometric tools in modern optimization
textbooks is confined to standard Lagrange multiplier techniques and therefore
implicit, at best.

In this paper we survey some basic Riemannian optimization techniques that
have played an important role in recent applications to geometric mechanics.
First we illustrate our methods with a nonsmooth Rayleigh cost function. Then
we focus our discussion on two major applications. First we tackle the problem of
computing an optimal sphere packing on a Grassmann manifold with respect to
the chordal distance. Such packings are of interest for coding theory [2, 11, 16].
The second application deals with the computation of optimal force distributions
for multi–fingered dextrous robot hands. Following previous work [5, 12], the task
is reformulated as a semidefinite optimization problem for which a Riemannian
gradient algorithm yields good convergence results.
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2 Riemannian Optimization

2.1 Riemannian Geometry

To enhance the clarity of our subsequent discussion of Riemannian optimization
algorithms, we begin with a brief summary of well known definitions and results
from differential geometry; for further details we refer to any modern textbook
on Riemannian geometry, e.g. [10]. Let M denote an n-dimensional Riemannian
manifold with Riemannian metric <,> and let df denote the differential of a
smooth function f on M . In the sequel we will often write, as usual, Xf :=
dfX for the Lie derivative of f with respect to a smooth vector field X . A
Riemannian or Levi-Civita connection ∇ on M assigns to each pair of
vector fields X,Y on M a vector field ∇XY such that for all smooth functions
f on M :

(i) (X,Y ) �→ ∇XY is bilinear in X,Y .
(ii) ∇fXY = f∇XY .
(iii) ∇X(fY ) = f∇XY + (dfX)Y.
(iv) ∇XY −∇Y X = [X,Y ].
(v) X < Y,Z >=< ∇XY, Z > + < Y,∇XZ >.

It is easy to see that these conditions (i)–(v) uniquely specify the Levi-Civita
connection. Recalling the definition of a geodesic, we note, that for any smooth
curve x : I → M , ẋ(t) �= 0, there exists locally a smooth vector field X : M →
TM such that ẋ(t) = X(x(t)). By inspection, it is then easily seen that

∇ẋẋ := (∇XX) (x(t))

is independent of the choice of the vector field extension X . We call ∇ẋẋ the
geodesic operator. A smooth curve γ : I →M is called a geodesic, if

∇γ̇ γ̇ = 0

holds for all t ∈ I. It is a well known and easily established fact from the theory
of ordinary differential equations, that geodesics always exist. However, such
geodesics may only be defined on a sufficiently small time interval I around
0; if geodesics exist for all t ∈ R and all initial conditions, then M is called
geodesically complete. Any compact manifold is geodesically complete. In the
sequel, we will mostly deal with geodesically complete Riemannian manifolds.
The Riemannian exponential map is then a well-defined smooth map

exp : TM →M

on the tangent bundle, given by expx(v) = γ(1), where γ is the unique geodesic
through x with initial velocity v. It is easily seen that this implies expx(tv) = γ(t)
for all t where γ is defined.

We now come to the definitions of gradient and Hessian in Riemannian ge-
ometry. The Riemannian gradient of a smooth function f : M → R on a
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Riemannian manifold M is the uniquely defined smooth vector field grad f on
M such that

df(x)v =< grad f(x), v >x

holds for all x ∈M , v ∈ TxM .
The definition of the Hessian is slightly more complicated and it depends on

the use of geodesics. The Riemannian Hessian of a smooth function f : M →
R at x ∈M is the quadratic form on the tangent space

Hf (x) : TxM × TxM → R,

defined for each tangent vector ξ ∈ TxM by

Hf (x)(ξ, ξ) := (f ◦ γ)′′(0).

Here γ : I → M is a geodesic, with γ(0) = x and γ̇(0) = ξ. The Riemannian
Hesse operator is the uniquely determined linear map

Hf (x) : TxM → TxM

satisfying
Hf (x)(ξ, η) =< Hf (x)ξ, η >x

for all tangent vectors ξ, η ∈ TxM .
There is an equivalent characterization in terms of the Levi-Civita connection.

Proposition 1. Let x ∈M , ξ, η ∈ TaM be tangent vectors and X,Y be smooth
vectors fields on M with X(x) = ξ, Y (x) = η. Then the Riemannian Hesse form
and Hesse operator, respectively, are given as

Hf (x)(ξ, η) = X(Y f)(x)− (∇XY )f(x)
Hf (x)ξ = (∇Xgradf)(x).

In particularly, for any smooth curve x : I → M

∇ẋgrad f(x) = Hf (x)ẋ.

As an example we consider the Rayleigh quotient function f : Sn → R, f(x) =
1
2x

�Ax, on the Euclidean n-sphere Sn := {x ∈ Rn+1|‖x‖2 = 1}, where A is a
symmetric (n + 1) × (n + 1)-matrix. Endow Sn with the Riemannian metric
induced by the standard Euclidean inner product on Rn+1. Then Riemannian
gradient and Hessian are respectively

grad f(x) = (I − xx�)Ax

Hf(x) = (A− x�AxI)|TxSn .
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2.2 Gradient Algorithms

Gradient-descent algorithms are the most basic optimization methods on a mani-
fold. Despite their simplicity they are often useful to obtain a quick improvement
of a previous estimate to an optimum. In the sequel, let f : M → R denote a
smooth function with compact sublevel sets. By this assumption the global min-
imum of f on M exists. We will assume that M is a real analytic manifold that
carries a real analytic Riemannian metric < ·, · >. Let ||v|| := √

< v, v > denote
the associated norms on the tangent spaces TxM . We can use continuous-time
or discrete-time gradient-like methods to search for minima of f .

In the continuous-time case a gradient-like descent flow for minimizing f
is given by a differential equation

ẋ = X(x)

on M such that each x ∈ M with X(x) = 0 is a critical point1of f and for any
compact subset K ⊂M there exists εK > 0 for which the angle condition

〈X(x), grad f(x)〉 ≤ −εK‖X(x)‖‖gradf(x)‖

holds for all x ∈ K. Obviously, the gradient descent flow

ẋ = −gradf(x)

is included in this class (with εK = 1). Standard arguments from Lyapunov
theory show the convergence of the solutions to the set of critical points [14].
However, pointwise convergence to single equilibrium points holds only under
additional regularity assumptions on the function f . For example, a result of
�Lojasiewicz [20] establishes convergence of trajectories of gradient flows1to single
equilibrium points for arbitrary real analytic functions f . This can be extended
to gradient-like descent flows, see [1, 3] and for more general results [17, 18].

Theorem 1. The ω–limit sets of the solutions of a gradient-like descent flow are
contained in the set of critical points of f . If f is analytic, then each solution
either converges to a single point or has empty ω–limit set.

The pointwise convergence fails in the general smooth case. If the angle con-
dition is relaxed to 〈gradf(x), X(x)〉 < 0 for points x ∈ M with X(x) �= 0,
gradf(x) �= 0, then the pointwise convergence fails even for analytic f as the
example f(x, y) = (x2 + y2 − 1)2,

X(x, y) = f(x, y)
((
−y
x

)
− f(x, y)

(
x
y

))
in R2 shows.

We now discuss discrete-time gradient-like algorithms. Let x0 ∈M be any ini-
tial point and αt denote a sequence of non-negative numbers. The Riemannian
gradient-like descent algorithm is given by an iteration
1 This corrects inexact statements in [8].
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xt+1 = expxt
(αtvt) ,

where the descent directions vt are assumed to satisfy an angle condition

〈vt, gradf(xt)〉 ≤ −ε‖vt‖‖gradf(xt)‖

with ε > 0 a constant depending only on x0. Here, we normalize the descent
directions such that ‖vt‖ = ‖gradf(xt)‖. The step-sizes αt are often not chosen
as constant but rather by sophisticated step-size selection schemes to ensure
descent of the iterates, i.e. f(xt+1) < f(xt), and convergence to the set of
critical points. One example of such a step-size selection scheme is the so-called
Armijo step-size rule2

αt = max{τµl | f(xt)− f
(
expxt

(
τµlvt

))
≥ −στµldf(xt)(vt)}

with σ, µ ∈ (0, 1), τ > 0 constants independent of t. The special case of

vt = −grad f(xt)

is simply called gradient descent. We have the following convergence results,
cf. [1, 17, 25].

Theorem 2. For the Armijo step-size rule, the gradient-like descent iteration
converges to the set of critical points. If f is analytic, then it converges to a
single critical point.

Note, that some arguments from [25] for the first statement can be directly
extended from gradient to gradient-like descent.

The gradient descent scheme can be extended to nonsmooth, Lipschitz con-
tinuous functions as well. In this case, Clarke’s concept of a subgradient on a
Banach space [6] needs to be generalized to arbitrary Riemannian manifolds,
which is straightforward to do. For our purposes it is sufficient to confine to the
following more restrictive setting, which helps us to formulate the basic concepts
in an easily accessible form. Thus we assume, that f : M → R is defined as the
pointwise maximum

f(x) = max
i=1,...,m

fi(x)

of smooth functions fi : M → R, i = 1, . . . ,m with compact sublevel sets.
Define

If (x) = {i ∈ {1, . . . ,m} | f(x) = fi(x)}.
Here, the subgradient of f is

gradf(x) = co{gradfi(x) | i ∈ If (x)}

where co denotes the convex hull. See [18, 19] for the discussion of general Lip-
schitz continuous cost functions.
2 This adjusts the incorrect formula for the Armijo rule in [8].
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The continuous-time subgradient algorithm is given by the subgradient dif-
ferential inclusion

ẋ ∈ −gradf(x). (1)

Solutions of (1) are defined as absolutely continuous functions, which satisfy
the differential inclusion almost everywhere. Upper semicontinuity of gradf(x)
ensures the existence of solutions, which are though not necessarily unique [4].

Theorem 3. For any x0 ∈ M , a solution of (1) starting in x0 exists and all
solutions converge to the set of critical points of f , i.e. to the set {x ∈ M | 0 ∈
gradf(x)}.
Theorem 3 can be proved by extending the chain-rule for the max-function from
[21] to the Riemannian subgradient by local charts. Thus for a solution γ we have
− d

dtf(γ(t)) ≥ min{||v||2 | v ∈ gradf(γ(t))} for all points t where f(γ(t)) and
γ(t) are differentiable. Absolute continuity of f(γ(t)) and upper semicontinuity
of grad f then yield the desired result.

Similar to gradient-like flows one can construct discrete-time versions of the
subgradient algorithm. However, not every v ∈ −gradf(x) a step size selec-
tion scheme like the Armijo rule would be well-defined. Hence, we define the
Riemannian subgradient descent by

xt+1 = expxt
(αtvt)) ,

with the descent directions vt satisfying the descent condition

∀w ∈ gradf(xt) : 〈vt, w〉 < 0.

Note, that under mild conditions on f , the set grad f(xt) consists generically
only of one element. In general, a suitable choice for vt is vt = −π0(grad f(xt)),
where π0 denotes the minimum-distance projection of 0 to grad f(xt) in TxtM .
We use this descent direction in the sequel.

The discrete subgradient descent allows the possibility of converging to non-
critical points, even for step size selection schemes like the Armijo rule. However,
if for all t we have −vt ∈ grad f(xt) and the step sizes satisfy

∑∞
t=1 αt = ∞ and

αt → 0, then it can be shown that the subgradient descent converges to the set
of critical points [18, 24]. Note that in [24] only the Euclidean case is considered.
Interestingly, the αt can be chosen independently of the cost function f , for
example the harmonic step sizes αt = t−1 can be used. However, such general
step sizes have often bad convergence properties. Thus a careful adaption to the
actual cost function is usually necessary.

3 Applications

3.1 Rayleigh Quotients on the Sphere Sn−1

We consider the maximum of m Rayleigh quotients on the sphere Sn−1, i.e.

f(x) = max
i=1,...,m

fi(x) = max
i=1,...,m

1
2
x�Aix (2)

Ai ∈ Rn×n symmetric. Our aim is to find a minimum of f .
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The sphere Sn−1 is treated as a submanifold of Rn with the standard Rieman-
nian metric. As mentioned in Subsection 2.1 the gradient of 1

2x
�Aix on Sn−1

with respect to this metric is (I − xx�)Aix. Thus we have

gradf(x) = co{Aix | i ∈ If (x)} − 2f(x)x.

To calculate the directions vt = −π0(grad f(xt)) we have to solve the optimiza-
tion problem

min
ti≥0,

�
ti=1

∥∥∥∥∥∥
∑

i∈If (xt)

tiAixt − 2f(xt)xt

∥∥∥∥∥∥
2

.

Straightforward calculations show that this problem is equivalent to

min
ti≥0,

�
ti=1

∥∥∥∥∥∥
∑

i∈If (xt)

tiAixt

∥∥∥∥∥∥
2

.

This problem can be solved by e.g. quadratic programming methods. Note, that
generically we will not meet points where several x�

t Aixt achieve the maximum
simultaneously, thus this optimization problem will not increase the computa-
tional costs of this algorithm very much. Given v ∈ TxS

n−1, ‖v‖ = 1, the
geodesic γ(s) at x in direction v is easily calculated as γ(s) = cos(s)x + sin(s)v.
This gives the subgradient iteration

xt+1 = cos(αt‖vt‖)xt − sin(αt‖vt‖)‖vt‖−1vt.

The the minimum of the cost function is achieved for the step size

αt = argmin
α≥0

{f(cos(α‖vt‖)xt + sin(α‖vt‖)‖vt‖−1vt}.

Solving this problem is equivalent to

min
α≥0

max
i=1,...,m

y(α)�
(

x�
t Aixt x�

t Aivt

v�t Aixt v�t Aivt

)
y(α)

with y(α) = (cos(α‖vt‖), ‖vt‖−1 sin(α‖vt‖))�, i.e. it is equivalent to our opti-
mization problem on a one dimensional sphere. Note, that even for this “opti-
mal” step size there is no general convergence result known. In fact, there are
examples of convex functions on Rn, where the convergence with such a step size
fails [15].

In Figure 1 the results3 of the above algorithm are plotted for 20 randomly
chosen symmetric matrices in R3×3. We used the Armijo step size rule with
σ = 10−4, τ = 1/2, µ = 0.9, and the harmonic step size rule with αt = 1/(2t).
The algorithm with Armijo step sizes was stopped if the µl fell below 2−16. In our
simulations the both step size rules yield convergence to similar values in many
3 These adjust the incorrect simulations in [8] for this problem.



36 G. Dirr, U. Helmke, and C. Lageman

cases, although the harmonic rule did not show monotone decrease of the cost
function f(xt). However, there were significant number of cases, where once the
Armijo rule or once the harmonic step size produced substantially better results.
This effect might be caused by convergence to non-optimal critical points or local
minima.
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Fig. 1. Subgradient descent for the cost function (2) with 20 (3 × 3)-matrices

3.2 Sphere Packings on Grassmannians

Next, we discuss the packing of m spherical balls on a real Grassmann manifold
with respect to the chordal distance. In [7], the packing problem on the real
Grassmannian was approached by a family of smooth cost functions. In [2],
the authors considered smooth exponential-type approximations of a nonsmooth
cost function for the sphere packing problem on the complex Grassmannian. We
present here a nonsmooth descent approach to this sphere packing problem. For a
thorough discussion we refer the reader to [18, 19]. The real Grassmann manifold
is the smooth manifold of k-dimensional linear subspaces of Rn. Mapping a
subspace to the associated orthogonal projector, we can identify the Grassmann
manifold with the Grassmannian

Grass(n, k) = {P ∈ Rn×n | P� = P, P 2 = P, tr (P ) = k},

see [14]. The tangent space of Grass(n, k) in a point P is given by

TP Grass(n, k) = {[P,Ω] | Ω ∈ so(n)}

with so(n) = {Ω ∈ Rn×n | Ω� = −Ω}. We denote by KP the kernel of the
linear map so(n)→ TP Grass(n, k), X �→ [P,X ] and by K⊥

p the set

K⊥
P := {Ω ∈ so(n) | ∀Θ ∈ KP : tr (Ω�Θ) = 0}.

Any Ω ∈ so(n) is uniquely decomposed into
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Ω = ΩP + Ω⊥
P

with ΩP ∈ KP , Ω⊥
P ∈ K⊥

p . We equip the Grassmannian with the normal
Riemannian metric [14]

〈[P,Ω], [P,Θ]〉 := −tr (Ω⊥
P Θ⊥

P ), [P,Ω], [P,Θ] ∈ TP Grass(n, k).

The geodesics on Grass(n, k) with respect to the normal metric have the form

γ(t) = exp(t[η, P ])P exp(t[η, P ])�, η ∈ TP Grass(n, k),

where exp denotes the matrix exponential function [13].
On Grass(n, k) the chordal distance dist(P,Q) is defined by

dist(P,Q) =
√

2‖P −Q‖F .

It can be shown that this definition is equivalent to the definition via the principal
angles between the subspaces, see [7].

The sphere packing problem consists of finding m identical, non-overlapping
balls Br(Pi) = {Q ∈ Grass(n, k) | dist(P,Q) < r}, i = 1, . . . ,m, such that their
radius is maximized. This problem is equivalent to maximizing

min
i<j

dist(Pi, Pj)2

for the chordal distance on Grass(n, k). However, this is equivalent to finding
the minima of the cost function

f(P1, . . . , Pm) = max
i<j

tr (PiPj)

on the m-fold product of Grass(n, k). The gradient of the function h(P,Q) =
tr (PQ) on Grass(n, k) ×Grass(n, k) with respect to the product of the normal
Riemannian metric is given by

gradh(P,Q) = ([P, [P,Q]], [Q, [Q,P ]]).

For the m-fold product space of the Grassmannian equipped with the product
metric, we get the following formula for the subgradient of f ,

gradf(P1, . . . , Pm) = co{(. . . , [Pi, [Pi, Pj ]], . . . , [Pj , [Pj , Pi]], . . .) |
i < j, tr (PiPj) = f(P1, . . . , Pj)}.

The subgradient iteration gives a sequence of m-tuples (P t
1 , . . . , P

t
m) of ele-

ments of Grass(n, k) which are updated by the rule

P t+1
i = exp(αt[ηt

i , P
t
i ])P t

i exp(αt[ηt
i , P

t
i ])�

where (ηt
1, . . . , η

t
m) = −π0(grad f(P t

1 , . . . , P
t
m))/‖π0(grad f(P t

1 , . . . , P
t
m))‖ is the

steepest descent direction and αt a suitable step size. Note, that we nor-
malized the descent direction to length 1. In our experience, this ad hoc
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modification of the Armijo rule produces better results for the sphere pack-
ing problem. For alternative implementations of the algorithm we refer
to [19].

In Figure 2 the results of our algorithm for packing 10 points in Grass(16, 8)
are shown. The initial points on Grass(16, 8) were constructed by the following
method: For each initial point, we chose a Θ ∈ SO(n) with Θ = exp(10(A −
A�)/2) for A ∈ Rn×n with entries randomly distributed in [−1, 1]. Each initial
point was then calculated by

Θ�
(

Ik 0
0 0

)
Θ.

The diagram compares the minimal squared chordal distance for the Armijo
rule, σ = 10−4, τ = 1, µ = 1/2, and for the harmonic step size selection
αt = (0.3t + 1)−1. The algorithm with Armijo step sizes was stopped if µl

fell below 2−16. For the choice of initial points by the construction above,
the harmonic step size showed slightly better convergence properties. How-
ever, in simulations with different constructions of initial configurations, espe-
cially for bad initial configurations with respect to the cost function, the har-
monic step size performed worse than the Armijo step size. Hence, we can-
not give a conclusive result which step size rule is better for general initial
values.
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Fig. 2. Subgradient descent for sphere packing problem for 10 points on Grass(16, 8)

3.3 Sphere Packing on the Lagrange Grassmannian

The next example is the sphere packing problem on the Lagrange Grass-
mann manifold, i.e. the manifold of Lagrangian subspaces of R2n. This case has
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apparently not been discussed in the literature before. A subspace V of R2n is
called Lagrangian if for all v, w ∈ V the equation

v�Jw = 0, with J =
(

0 In

−In 0

)
holds. Naturally, the Lagrange Grassmannian is a submanifold of the Grassmann
manifold of n-dimensional subspaces of R2n. Further note that a symmetric pro-
jection matrix P onto a Lagrangian subspaces must satisfy PJP = 0. Therefore
we can identify the Lagrange Grassmannian with

LGrass(n) = {P ∈ R2n×2n | P� = P, P 2 = P, PJP = 0, tr (P ) = n}.

The tangent spaces of LGrass(n) at a point P is given by

TP LGrass(n) = {[P,Ω] | Ω ∈ osp(2n)}

with osp(2n) the skew-symmetric Hamiltonian matrices, i.e.

osp(2n) = {Ω ∈ R2n×2n | Ω� = −Ω,ΩJ − JΩ = 0}.

We define the normal metric as for the Grassmannian. Setting KP the kernel of
the map osp(2n) → TP LGrass(n), X �→ [P,X ] and K⊥

P = {Ω ∈ osp(2n) | ∀Θ ∈
KP : tr (Ω�Θ) = 0} we decompose every Ω ∈ osp(2n) as Ω = ΩP + Ω⊥

P , ΩP ∈
KP , Ω⊥

P ∈ K⊥
P . The normal metric is again given by

〈[P,Ω], [P,Θ]〉 = −tr (Ω⊥
P Θ⊥

P ), [P,Ω], [P,Θ] ∈ TP LGrass(n).

It can be shown that this is just the restriction of the normal metric on
Grass(2n, n) to LGrass(n) [13]. The geodesics are again given by the formula

γ(t) = exp(t[η, P ])P exp(t[η, P ])�, η ∈ TP LGrass(n).

As a submanifold of Grass(2n, n), the chordal distance is well defined on
LGrass(n). The sphere packing problem on LGrass(n) with respect to the chordal
distance, is again equivalent to minimizing the cost function

f(P1, . . . , Pm) = max
i<j

tr (PiPj)

on the m-fold product space of the Lagrange Grassmannian. Obviously, this
is just the restriction of the cost function of Subsection 3.2 to the submanifold
LGrass(n)×. . .×LGrass(n). Analogous arguments for the general Grassmannian
show that the subgradient of f is given by

gradf(P1, . . . , Pm) = co{(. . . , [Pi, [Pi, Pj ]], . . . , [Pj , [Pj , Pi]], . . .) |
i < j, tr (PiPj) = f(P1, . . . , Pj)}.

Furthermore, we get as the subgradient descent iteration the sequence of m-
tuples (P t

1 , . . . , P
t
m) which are calculated by
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P t+1
i = exp(αt[ηt

i , P
t
i ])P t

i exp(αt[ηt
i , P

t
i ])�

where (ηt
1, . . . , η

t
m) = −π0(grad f(P t

1 , . . . , P
t
m))/‖π0(grad f(P t

1 , . . . , P
t
m))‖ is the

steepest descent direction and αt a suitable step size. The steepest descent di-
rection is again normalized to length 1.

Thus the subgradient descent iteration for the sphere packing problem on the
Lagrange Grassmannian with respect to the chordal distance is just the descent
algorithm on the Grassmannian with an initial tuple (P 0

1 , . . . , P 0
m) an element

of the m-fold product of the Lagrange Grassmannian.
Figure 3 shows the results of our algorithm for packing 10 points in LGrass(8).

The initial points were chosen on LGrass(8) with a similar method as for
Grass(16, 8). The figure compares the minimal squared chordal distance for the
Armijo rule, σ = 10−4, τ = 1, µ = 1/2, and for the harmonic step size selection
αt = (0.3t+1)−1. Again, the algorithm with Armijo step sizes was stopped if µl

fell below 2−16. The simulations behaved similar as for Grass(16, 8). Although
we did not experiment with different constructions for the initial points, it is ex-
pected that the performance of the algorithm with harmonic step sizes degrades
again significantly for constructions which produce bad initial configurations.
Again, we cannot make a conclusive statement which step size selection is better
in general.
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Fig. 3. Subgradient descent for sphere packing problem for 10 points on LGrass(8)

3.4 Grasping Force Optimization

The last problem we consider is taken from robotics, i.e. the computing of op-
timal forces in multi-finger dextrous hand grasping. The goal here is to achieve
balancing of the external forces together with minimizing contact forces with-
out violating nonlinear Coulomb friction constraints. In early work, linear and
nonlinear programming techniques have been used but these approaches led to
ill–conditioned problems and did not provide real time implementations. In [5],
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real time implementations have been achieved by reformulating the problem as
a semidefinite optimization task on affinely constrained cones of positive def-
inite matrices. A cost function is minimized that is the sum of a linear cost
involving the total finger forces and a barrier term that prevents slippage at
the finger contacts during the algorithm. Improvements of such algorithms have
been developed in [12] where a damped Newton algorithm is proposed with lo-
cally quadratic convergence rates. Here, we consider extensions that allow the
treatment of nonsmooth convex costs.

Specifically, we consider the case of semidefinite optimization over an affinely
constrained cone of symmetric matrices. Let S(n) denote the vector space of
n × n block diagonal matrices S = diag (S1, · · · , SN), where Si = S�

i are real
symmetric matrices of fixed sizes r1 > 0, · · · , rN > 0, r1 + ... + rN = n. In the
application to grasping we take r1 = ... = rN = 2. Let

P = {P ∈ S(n) | P = P� > 0}

denote the cone of block-diagonal positive definite symmetric matrices. In the
grasping application the total sum of the finger forces is given by a linear
trace function tr(WP), while a natural barrier term for preventing slippage is
− log detP . External forces acting on the object are modelled by linear trace
constraints tr(AjP) = bj, j = 1, · · · ,m, where A1, · · · , Am ∈ S(n) are linearly
independent symmetric matrices with tr(AiAj) = δij and b1, · · · , bm are scalars.
In the grasping problem m = 6.

Thus the total grasping force optimization problem is equivalent to the con-
strained optimization task for the smooth, strictly convex function

f : C → R, f(P ) = tr(WP)− log detP

on the constraint set

C = {P ∈ P | tr(AjP) = bj, j = 1, · · · ,m}.

Here W ∈ P is assumed to be positive definite. We describe now different ap-
proaches to this problem via Riemannian optimization methods.

In a first step we compute the gradient for the restriction of the non-constant
Riemannian metric 〈·, ·〉P ,

< ξ, η >P := tr(P−1ξP−1η), ξ, η ∈ TPP

on P to C. The orthogonal projection of the set S(n) of symmetric matrices onto
the tangent space TPC with respect to the inner product < ·, · >P on S(n) is
easily seen to be

ΠP : S(n) → TPC, ξ �→ ξ −
m∑

i=1

λjPAjP,

where λ = (λ1, · · · , λm)� is uniquely defined by
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λ = Γ−1τ, Γ := (trPAiPAj)mi,j=1 =
(
γij)m

i,j=1

and τ = (tr(A1ξ), · · · , tr(Amξ))�.
The associated Riemannian gradient is easily computable as follows.

Theorem 4. Endow C with the Riemannian metric defined by < ·, · >P . The
Riemannian gradient grad f(P ) of f on C is

PWP − P −
m∑

i,j=1

γij(tr(AiPWP)− bi)PAjP.

Note that grad f(P ) coincides with the Newton direction with respect to the
standard, constant metric < ξ, η >= tr (ξη) [12]. Using the strict convexity of
the cost function one then derives the following global convergence result for
a variant of the gradient method, which uses the straight lines P + tη as an
approximation of the geodesics with respect to < ·, · >P ; [12]. Thus we are not
implementing the Riemannian gradient descent algorithm, but an approximation
to it that is were easily computable.

Theorem 5. For any P ∈ C let ν(P ) = ‖gradf(P )‖P and

α(P ) :=
1 + 2ν(P )−

√
1 + 4ν(P )

2ν2(P )
∈ [0, 1].

For any initial condition P0 ∈ C, the gradient algorithm

Pt+1 = Pt − α(Pt)

⎛⎝PtWPt − Pt −
m∑

j=1

λjPtAjPt

⎞⎠
converges quadratically fast to the unique global optimum P∗ of f on C. Here
λj = λj(Pt) is defined as above.

A difficulty of the above gradient algorithm is that it requires the computation
of feasible initial point P0 ∈ C to start the algorithm. Often, the computation of
such feasible points is at least as difficult as the subsequent entire optimization
process and the development of efficient numerical optimization algorithms that
do not rely on the prior knowledge of a feasible point is an open research problem.
Therefore, we do not consider here any discrete-time algorithms that combine
optimization steps with the computation of feasible. However, it is relatively
easy to develop continuous-time algorithms that achieve this purpose.

Theorem 6. Let µ = µ(P ) = (µ1, · · · , µm)�, µ = Γ−1σ, Γ := (trPAiPAj)mi,j=1

and σ = (tr(A1(PWP − 2P)) + b1, · · · , tr(Am(PWP − 2P)) + bm)�. Then the
differential equation

Ṗ = P − PWP +
m∑

j=1

µjPAjP

converges from any initial condition P0 ∈ P exponentially fast to the global
minimum Pmin ∈ C of f : C → R.
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The proof of this result is a straightforward consequence of LaSalle’s invariance
principle and the fact that

d

dt
tr(AjP) = −tr(AjP) + bj, j = 1, · · · ,m

holds for any solution P (t) of the differential equation.
In some applications, the total sum of finger forces may not be the right cost

to impose on the problem. Thus one might replace the sum by a maximum. Such
issues arise e.g. if dealing with the minimization of the maximal admissible forces
at the fingers. This leads to the following subgradient optimization and is dis-
cussed now. Let W = diag (W1, . . . ,Wm) ∈ P and Ŵk = diag (0, . . . ,Wk, . . . , 0).
Then we are faced with a constrained optimization task for the nonsmooth,
strictly convex function on C

F (P ) = max
k=1,...,m

(
tr(ŴkP)

)
− log det P.

Thus F (P ) = max(F1(P ), ..., FN (P )) and Fk(P ) = tr(ŴkP) − log detP . The
gradient of Fr on C for the Riemannian metric 〈·, ·〉P is

gradFr(P) = PW(r)P− P−
m∑

i,j=1

γij(tr(AiPW(r)P)− bi)PAjP.

For the continuous-time subgradient descent method

Ṗ ∈ −gradF (P ),

we get the following differential inclusion.

Theorem 7. Let P (t) be a solution of

Ṗ ∈ − co{PŴkP − P −
m∑

j=1

λkjPAjP | k ∈ IF (x)}

with λk = (λk1, . . . , λkm)�, λk = λk(P ) = Γ−1σk, Γ = (tr(PAiPAj))
m
i,j=1,

σk = (tr(A1PŴkP) − b1, . . . , tr(AmPŴkP) − bm). If the initial condition P (0)
is contained in C then F (P (t)) is decreasing and P (t) converges to the global
minimum of F (P ).

Instead of using subgradient descent methods for the nonsmooth function F one
can also apply optimization methods to appropriate smooth approximations of
F . For example, one may consider, for any integer q ≥ 1, the smooth strictly
convex functions on C

Φq(P ) :=

(
m∑

k=1

(
tr(ŴkP)

)q
)1/q

− log detP.

Note, that for q = 1 this coincides with the previously discussed cost function.
We obtain the following convergence result.
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Theorem 8. Let

Ω :=

(
m∑

k=1

(
tr(ŴkP)

)q
) 1−q

q m∑
k=1

(
tr(ŴkP)

)q−1
Ŵk

µ = µ(P ) = (µ1, · · · , µm)�, µ = Γ−1σ, Γ := (trPAiPAj)mi,j=1 and σ =
(tr(A1(PΩP − 2P)) + b1, · · · , tr(Am(PΩP − 2P)) + bm)�. Then the differential
equation

Ṗ = P − PΩP +
m∑

j=1

µjPAjP

converges from any initial condition P0 ∈ P exponentially fast to the global
minimum P q

min ∈ C of Φq : C → R. For q →∞ the sequence of minima P q
min ∈ C

converges to the global minimum of F on C.

This result is shown by similar arguments as Theorem 6.
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Summary. In this paper we study the problem of synchronization of networked La-
grangian systems. This problem arises in applications such as the control of multiple
robots, formation control of UAV’s, mobile sensor networks, Kuramoto oscillators, and
teleoperation. We assume that the agents exchange position and velocity information
over a network described by an interconnection graph. We consider only linear inter-
connections on balanced, directed graphs but similar results can also be derived for
nonlinear interconnections on undirected graphs. Our results exploit the well-known
passivity property of Lagrangian mechanical systems. We demonstrate synchronization
on both fixed and switching graphs. In the case of fixed graphs, the passivity prop-
erty allows us, in addition, to treat the practically important problem of time delay in
communication.

1 Introduction and Motivation

In this paper we study the problem of synchronization of multiple Lagrangian
systems that are interconnected over a network. This problem arises in several
application domains, including the control of multiple robots, formation control
of UAV’s, mobile sensor networks, Kuramoto oscillators, and teleoperation. We
treat this problem in the context of passivity-based control [20] exploiting the
well-known passivity property of Lagrangian mechanical systems [27]. The pas-
sivity property allows us, in addition, to treat the practically important problem
of time delay in communication. Most of the results in this paper are from [2]
and are presented in detail in [5, 4]. Therefore, in this paper, we will present an
abridged exposition of the main ideas and refer the reader to the aforementioned
references for many of the details.

The problem of communication and control in multi-agent systems is currently
a topic of intense research and there are many results available in the literature.
We can mention here only a small portion of the literature in this area. For
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example, group coordination and formation stability problems are addressed
in [1, 14, 7, 16, 15, 30, 6]. Agreement, group consensus and oscillator synchro-
nization problems have been studied in [3, 9, 10, 11, 13, 17, 23, 26, 19, 25, 28, 31].
The effect of communication delay on some of the aforementioned agreement pro-
tocols has been studied in [19, 29, 31, 32]. Passivity-based approaches have been
used in [21, 1, 22]. The assumption of passivity is a natural one for the types
of problems considered. Many of the existing results in the literature, in fact,
model the agents as velocity-controlled particles; in other words, as first-order
integrators, which are the simplest type of passive systems.

2 Background

2.1 Passivity

In this paper we view the multi-agent coordination problem from an input-output
perspective. In such a framework multiple agents exchange output information
with their neighbors and construct control strategies, using their own outputs
and the outputs received from their neighbors, to achieve the coordination ob-
jective. To set the background and notation for what follows, consider a control
affine nonlinear system of the form

Σ

{
ẋ = f(x) + g(x)u
y = h(x) (1)

where x ∈ Rn, u ∈ Rm, and y ∈ Rm. The functions f(.) ∈ Rn, g(.) ∈ Rn×m,
and h(.) ∈ Rm are assumed to be sufficiently smooth. The admissible inputs are
taken to be piecewise continuous and locally square integrable and we note that
the dimensions of the input and output are the same. We assume, for simplicity,
that f(0) = 0 and h(0) = 0.

Definition 1. The nonlinear system Σ is said to be passive if there exists a C1

storage function V (x) ≥ 0, V (0) = 0 and a function S(x) ≥ 0 such that for all
t ≥ 0:

V (x(t)) − V (x(0)) =
∫ t

0 uT (s)y(s)ds−
∫ t

0 S(x(s))ds (2)

The system Σ is strictly passive if S(x) > 0 and lossless if S(x) = 0.

An important characterization of passive systems is the following result, due to
Moylan [18]:

Theorem 1. The following statements are equivalent.

1. The system (1) is passive
2. There exists a C1 scalar storage function V : Rn → R, V (x) ≥ 0, V (0) = 0,

and S(x) ≥ 0 such that

LfV (x) = −S(x)
LgV (x) = hT (x) (3)

where LfV (x) and LgV (x) are the Lie derivatives of V with respect to f and
g, respectively.
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2.2 Lagrangian Systems

Following [27], the Euler-Lagrange equations of motion for an n-degree-of-
freedom mechanical system is given as

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ

where q ∈ Rn is the vector of generalized configuration coordinates, τ ∈ Rn

is the vector of generalized forces acting on the system, M(q) is the n × n
symmetric, positive definite inertia matrix, C(q, q̇)q̇ is the matrix of Coriolis
and centripetal torques and g(q) is the vector of gravitational torques. Although
the above equations of motion are coupled and nonlinear, they exhibit certain
fundamental properties due to their Lagrangian dynamic structure, the most
important of which is the well-known skew-symmetry of the matrix Ṁ − 2C.

The skew-symmetry property implies passivity of the Euler-Lagrange dy-
namics from input τ to output q̇. More generally, we can induce passivity in
a Lagrangian system with different choice of output and a preliminary feedback
control. This is know as Feedback Passivation [24]. To this end, we choose a
preliminary control input as

τ = −M(q)λq̇ − C(q, q̇)λq + g(q) + u

where λ is a positive diagonal matrix and u is an additional control input. Setting
r = q̇ + λq we obtain the system

q̇ = −λq + r

M(q)ṙ + C(q, q̇)r = u

which is of the form

ẋ = f(x) + g(x)u

with state vector x = (q, r) and vector fields f and g given by

f(x) =
(

−λq + r
−M(q)−1C(q, q̇)r

)
; g(x) =

(
0

M(q)−1

)
It is easily shown, using the skew-symmetry property, that the above system is
passive with input u, output y = h(x) = r, and storage function

V (x) = rT M(q)r

This system will be the one considered in the remainder of the paper.

2.3 Graph Theory and Communication Topology

Information exchange between agents can be represented as a graph. We give
here some basic terminology and definitions from graph theory [8] sufficient to
follow the subsequent development.
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Definition 2. By an (information) graph G we mean a finite set V(G) =
{vi, . . . , vN}, whose elements are called nodes or vertices, together with set
E(G) ⊂ V ×V, whose elements are called edges. An edge is therefore an ordered
pair of distinct vertices.

If, for all (vi, vj) ∈ E(G), the edge (vj , vi) ∈ E(G) then the graph is said to be
undirected. Otherwise, it is called a directed graph.

An edge (vi, vj) is said to be incoming with respect to vj and outgoing
with respect to vi and can be represented as an arrow with vertex vi as its tail
and vertex vj as its head.

The in-degree of a vertex v ∈ G is the number of edges that have this vertex
as a head. Similarly, the out-degree of a vertex v ∈ G is the number of edges
that have this vertex as the tail.

If the in-degree equals the out-degree for all vertices v ∈ V(G), then the graph
is said to be balanced.

A path of length r in a directed graph is a sequence v0, . . . , vr of r+1 distinct
vertices such that for every i ∈ {0, . . . , r − 1}, (vi, vi+1) is an edge.

A weak path is a sequence v0, . . . , vr of r + 1 distinct vertices such that for
each i ∈ {0, . . . , r − 1} either (vi, vi+1) or (vi+1, vi) is an edge.

A directed graph is strongly connected if any two vertices can be joined by
a path and is weakly connected if any two vertices can be joined by a weak
path.

An important property of balanced graphs is the following [8],

Lemma 1. Let G be a directed graph and suppose it is balanced. Then G is
strongly connected if and only if it is weakly connected.

3 Synchronization

In this section we present our main results on synchronization of Lagrangian
systems. Consider N Lagrangian systems, each with passive dynamics of the
form

ẋi = fi(xi) + gi(xi)ui

yi = hi(xi)
(4)

for i = 1, . . . , N .

Definition 3. 1) The agents are said to state synchronize (or synchronize) if

lim
t→∞ |xi(t)− xj(t)| = 0 ∀i, j = 1, . . . , N (5)

2) The agents are said to output synchronize if

lim
t→∞ |yi(t)− yj(t)| = 0 ∀i, j = 1, . . . , N (6)

In general, of course, output synchronization is a weaker property than state
synchronization. In the particular case of the Lagrangian system (4), with output
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y = r, output synchronization is equivalent to state synchronization. To see this
note that

rj(t)− ri(t) = (q̇j(t) + λqj(t))− (q̇i(t) + λqi(t))
= ėij(t) + λeij(t) (7)

where eij(t) = qj(t)−qi(t). Equation (7) represents an exponentially stable linear
system with input rj(t)− ri(t). As shown, for example, in [20], it follows that if
rj − ri is an L2 signal that converges asymptotically to zero, then

lim
t→∞ |eij(t)| = 0 ∀i, j = 1, . . . , N

from which state synchronization follows immediately. Therefore, in the remain-
der of this paper we will consider the problem of output synchronization of the
networked systems (4).

Our main assumption in this section is the following:

A1: The agents are weakly connected pointwise in time and form a balanced
graph with respect to information exchange. Hence the information graph is
also strongly connected from Lemma 1.

We first analyze the case when the communication topology is fixed, i.e., the in-
formation graph does not change with time. Suppose that the agents are coupled
together using the control

ui =
∑
j∈Ni

K(yj − yi), i = 1, . . . , N (8)

where K is a positive constant and Ni is the set of agents transmitting their
outputs to the ith agent.

Theorem 2. Consider the dynamical system described by (4) with the con-
trol (8). Then under assumption A1, all solutions of the nonlinear system (4),(8)
are bounded and the agents output synchronize.

Proof: Consider a storage function for the N agent system as

V = 2(V1 + · · ·+ VN ) (9)

where Vi is the storage function for agent i. Using Theorem (1) and the control
law (8), the derivative of V along trajectories of the system is

V̇ = 2
∑N

i=1(LfiVi + LgiViui)
= = 2

∑N
i=1(−Si(xi) + yT

i ui)
= −2

∑N
i=1 Si(xi) + 2

∑N
i=1
∑

j∈Ni
yT

i K(yj − yi)
(10)

As the information exchange graph is balanced, it can be shown, after some
computation [2], that
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V̇ ≤ −K

N∑
i=1

∑
j∈Ni

(yi − yj)T (yi − yj) ≤ 0 (11)

and, hence, all signals are bounded. Lasalle’s Invariance Principle [12] and strong
connectivity of the network can then be invoked to prove output synchronization
of (4).

The Case of Switching Topology

We next consider the case when the graph topology is not constant, such as
in nearest neighbor scenarios. In the case of linear coupling, it turns out that
output synchronization is still guaranteed for switching graphs under fairly mild
assumptions.

Consider now the coupling control law

ui(t) =
∑

j∈Ni(t)

K(t)(yj − yi), i = 1, . . . , N (12)

In this equation we allow both the gain K(t) > 0 and the set Ni of neighbors
of agent i to be time-dependent. We assume that the gain K(t) is piecewise
continuous and satisfies

Kl ≤ K(t) ≤ Kb, Kl,Kb > 0 ∀i, j (13)

Theorem 3. Consider the dynamical system described by (4), coupled together
using the control law (12) together with the assumption A1. Suppose, in addition,
that there are at most finitely many switches in the graph topology on any finite
time interval. Then all solution trajectories are bounded and the agents output
synchronize.

A more interesting scenario occurs when the agents are allowed to lose connec-
tivity at every instant, but maintain connectivity in an average sense to be made
precise. Let tij(e), tij(d) denote the time instances at which the information link
or the edge (i, j) is established and broken respectively. In the subsequent anal-
ysis we require that

tij(d)− tij(e) ≥ δij > 0 ∀i, j ∈ E (14)

The above assumption is similar to the dwell time assumption in Theorem 5
of [9], but is less stringent as it does not require the dwell time to be the same for
every agent, but implies it it to be uniformly bounded away from zero. The notion
of joint connectivity was introduced in [9] (see also [31]), and has been used by
several authors including [17, 23, 26]. The agents are said to be jointly connected
across the time interval [t, t+T ], T > 0 if the agents are weakly connected across
the union ∪σ∈[t,t+T ]E(G(σ)). Note that the above assumption (14) implies that
there are only finitely many distinct graphs in this union for each T . Under a
modified assumption
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A2: The agents form a balanced information graph pointwise in time, and there
exists an infinite sequence of bounded, non-overlapping time intervals across
which the agents are jointly connected,

we can now prove the following:

Theorem 4. Consider the dynamical system described by (4), coupled together
using the control described by (12) together with the assumption A2. Then all
solution trajectories are bounded and the agents output synchronize.

Proof. We note that a proof for this result implies Theorem 3 as a corollary. The
proof basically proceeds by demonstrating that

V = 2(V1 + . . . + VN ) (15)

is a common storage function for the switching system [33]. Using the pointwise
balanced nature of the information graph, as in Theorem 2, the derivative of
(15) can be written as

V̇ (t) = −2
N∑

i=1

Si(xi)−K(t)
N∑

i=1

∑
j∈Ni(t)

(yi − yj)T (yi − yj) ≤ 0 (16)

implying that all trajectories of the nonlinear system described by (4) and (12)
are bounded. Also, limt→∞ V (t) exists and is finite since V is lower bounded by
zero. Consider a infinite sequence V (ti) i = 1, . . . , where the times ti approach
infinity as i approaches infinity. Then, using Cauchy’s convergence criteria, ∀ε ≥
0 ∃M > 0 s.t ∀k > l ≥M

|V (tl)− V (tk)| ≤ ε (17)

As the above statement is true ∀k, l > M , in particular we choose k, l such
that the time interval [tk, tl] encompasses some time interval across which the
agents are jointly connected. Existence of such a time interval is guaranteed by
assumption A2. Therefore, from (16),

|
N∑

i=1

∑
j∈Ni(tk,tl)

∫ tk

tl

K(t)(yi − yj)T (yi − yj)dt| ≤ ε

⇒ |
∑

j∈Ni(tk,tl)

∫ tk

tl

K(t)(yi − yj)T (yi − yj)dt| ≤ ε ∀i

⇒ |
∑

j∈Ni(tk,tl)

∫ tij(d)

tij(e)
K(t)(yi − yj)T (yi − yj)dt| ≤ ε ∀i

As ε is arbitrary this implies

lim
t→∞

∫ t+δij

t

||yi − yj ||2dt = 0, ∀j ∈ Ni(t, t + T ), ∀i
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As xi ∈ L∞, ∀i, ẏi ∈ L∞, ∀i, and hence the above limit implies that

lim
t→∞ ||yi − yj || = 0 ∀j ∈ Ni(t, t + T ) ∀i

Weak connectivity of the network across the time interval [t, t + T ] then guar-
antees output synchronization.

Remark 1

1. If the graph is undirected, the above results are still valid in the case that
different gains (or weights) Kij(t) couple the agents, provided Kij(t) =
Kji(t) ∀i, j.

3.1 Output Synchronization with Time Delay

In this section, we study the problem of output synchronization when there are
communication delays in the network. The delays are assumed to be constant
and bounded, Tij denotes the communication delay from the ith agent to the jth

agent. We do not assume Tij to be necessarily equal to Tji.

Definition 4. The agents are said to output synchronize if

lim
t→∞ |yi(t− Tij)− yj(t)| = 0 ∀i, j (18)

where Tij is the sum of the delays along the path from the ith agent to the jth

agent.

As before, for the class of systems considered here, output synchronization in
the above sense implies state synchronization

lim
t→∞ |xi(t− Tij)− xj(t)| = 0 ∀i, j (19)

Let the agents be coupled together using the control

ui(t) =
∑
j∈Ni

K(yj(t− Tji)− yi) (20)

where K > 0 is a constant.

A3: In addition to assumption A1, we assume that there exists a unique path
between any two nodes.

It is to be noted that assumption A3 is needed to ensure uniqueness of Tij ∀j �= i.

Theorem 5. Consider the dynamical system described by (4) with the control
law (20). Then under the assumption A3, all trajectories of the nonlinear sys-
tem (4), (20) are bounded and the agents output synchronize in the sense of (18).
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Proof: Consider a storage function for the N -agent system as

V = K
N∑

i=1

∑
j∈Ni

∫ t

t−Tji

yT
j (τ)yj(τ)dτ + 2(V1 + . . . + VN ) (21)

The derivative of V along trajectories of the system is given as

V̇ = K

N∑
i=1

∑
j∈Ni

(yT
j yj − yj(t− Tji)T yj(t− Tji)) + 2

N∑
i=1

(LfiVi + LgiViui)

Using Theorem (1), the derivative reduces to

V̇ = K

N∑
i=1

∑
j∈Ni

(yT
j yj − yj(t− Tji)T yj(t− Tji)) + 2

N∑
i=1

(−Si(xi) + yT
i ui)

= K

N∑
i=1

∑
j∈Ni)

(yT
j yj − yj(t− Tji)T yj(t− Tji))

−2
N∑

i=1

Si(xi) + 2
N∑

i=1

∑
j∈Ni

yT
i K(yj(t− Tji)− yi)

As the graph is balanced, it can be shown that

V̇ ≤ −K

N∑
i=1

∑
j∈Ni

(yj(t− Tji)− yi)T (yj(t− Tji)− yi)

≤ 0

Therefore every solution is bounded and limt→∞ V (t) exists and is finite. Bar-
balat’s Lemma [12] can be used to show that

limt→∞ |yj(t− Tji)− yi| = 0 ∀j ∈ Ni i = 1, . . . , N

Strong connectivity of the interconnection graph then implies output synchro-
nization of (4) in the sense of (18). (See [2] for the details.)

Example 1: As a simple example, consider four point masses with dynamics

miq̈i = τi ; i = 1, . . . , 4 (22)

It was shown recently in [14] that the flocking and consensus problem for sec-
ond order drift free systems is nontrivial, and mimicking the linear consensus
protocols, for example [19], can potentially make the system unstable for cer-
tain choices of the coupling gains. We apply the proposed methodology to ensure
asymptotic convergence of the position and velocity tracking errors to the origin.
Following our above derivation, applying the preliminary feedback

τi = −miλq̇i + ui ; i = 1, . . . , 4 (23)
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the systems reduce to

q̇i = −λqi + ri

miṙi = ui ; i = 1, . . . , 4 (24)

where ri = q̇i + λqi. Let the communication structure among the agents be
described by a ring topology as shown in Figure 1.

1

2 3
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Fig. 1. The agents of Example 1 communicate in a ring topology
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Fig. 2. Simulation with m1 = 1, m2 = 2, m3 = 4, m4 = 4.5, K = 1, λ = 1. The four
agents synchronize in spite of the communication delay.

Then the closed loop dynamics are given as

q̇1 = −q1 + r1 ; m1ṙ1 = K(r2(t− T21)− r1)
q̇2 = −q2 + r2 ; m2ṙ2 = K(r3(t− T32)− r2)
q̇3 = −q3 + r3 ; m3ṙ3 = K(r4(t− T43)− r3)
q̇4 = −q4 + r4 ; m4ṙ4 = K(r1(t− T14)− r4)

(25)

where Tij denotes the delay from the ith agent to the jth agent. In this simulation
T21 = .1s, T32 = .2s, T43 = 1s, T14 = 1.5s and as seen in Figure 2, the agents
synchronize asymptotically.
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4 Conclusions

In this paper the multi-agent coordination and control problem for Lagrangian
systems was treated from an input-output perspective. Given agents with non-
linear control affine, input/output passive, open loop stable dynamics, con-
trol laws were developed to achieve output synchronization. In the specific
case where the coupling control is linear in the outputs, it was shown that
output synchronization is robust to arbitrary constant (bounded) time
delays.

It is easy to extend the results in this paper to underactuated systems pro-
vided that the zero-dynamics are asymptotically stable, i.e. provided that the
system is minimum phase (See [21] for some results along this line.) However,
since underactuated Lagrangian systems are typically only weakly minimum
phase, the extension of the present results to underactuated systems is still
open.

The problem of input saturation is also an important problem to consider.
For example, in a mobile robot or UAV application, the agents spatial and/or
velocity separation may initially be large, which may lead to large control effort.
This problem, and the general problem of nonlinear coupling among the agents,
is treated in [5], where we show that output synchronization is still possible
provided that the interconnection graph is undirected.
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1 Introduction

A key issue when dealing with distributed parameter systems is the solution of
the set of partial differential equations that compose the system model. Even if
we restrict our analysis to the linear case, it is often impossible to find a closed-
form solution for this kind of equations, especially in control applications, where
the forcing action on the system generates time-varying boundary conditions.
Therefore, numerical solvers play a key role as support tools for the analysis of
this kind of systems.

The algorithm presented here aims to provide a discretization procedure for
lossless distributed port-Hamiltonian systems with spatial domain Z ≡ [0, L] ⊂
R. This work has been inspired by [6], where a spatial discretization procedure
based on a particular type of mixed finite element and able to provide a finite
dimensional input/output approximated system has been introduced. More in
details, from the analysis of the geometric structure of an infinite dimensional
port Hamiltonian system (i.e. of its Stokes–Dirac structure, [15]), a finite di-
mensional approximation still in port Hamiltonian form can be obtained. In this
work, an extension to a wider class of distributed port Hamiltonian systems
is illustrated. More precisely, it is possible to approximate infinite dimensional
systems with higher order derivatives in the spatial variable.

In finite dimensions, a Dirac structure is a particular linear subset D of the
space of power variables F × E in which F and E are finite dimensional vector
spaces in duality representing the space of flows and efforts respectively. Main
property is that, given (f, e) ∈ D, the associated power 〈f, e〉 is equal to 0, where
〈, 〉 is the duality product, [3, 14]. Then, this subset is able to mathematically
describe the flows of energy within the system and between the system itself
and the environment. The same property holds in the infinite dimensional case,
with the difference that also the space of boundary terms W has to be taken
into account. The Stokes–Dirac structure is, then, a subspace of F × E × W
characterized by an energy conservation property which allows to relate the
variation of internal energy with the boundary power flow.

In [15], flows and efforts of the infinite dimensional system were elements
of spaces of differential forms [4] and the corresponding discretization method
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[6] was therefore accomplished through an approximation of these forms via
Whitney forms [1], the differential form counterpart of the test functions used
in the finite element method. The approach followed here is on the other hand
based on the formulation described in [8, 13], which assumes that the power
variables are vector-valued smooth functions with compact support. Even if the
physical meaning of flow and effort is lost, this approach simplifies the definition
of Stokes–Dirac structures in the case of higher order derivatives in the spatial
variables and, at the same time, brings the port Hamiltonian framework closer to
the classical theory of infinite dimensional systems [7], for which well-established
results on analysis and control exist, [2].

At first, the analysis will be focused on linear mathematical models where
only first-order spatial derivatives appear, then the extension of the procedure
in case of higher-order derivatives will be briefly outlined. It is worth of mention
that the introduction of a limited amount of non-linearity in the model does not
preclude the application of this method, as briefly discussed in [11].

2 Problem Description and Notation

As discussed in [15, 8, 13], the classical notion of power-conserving structure,
i.e. of Dirac structure, the heart of the port-Hamiltonian framework [14], needs
to be reviewed in infinite dimensions in order to take into account the power
flow through the boundary of the system. The result is the so-called Stokes-
Dirac structure which can be defined as follows, under the hypothesis of one-
dimensional spatial domain Z = [0, L], L > 0.

Denote by F the space of flows, which is the set of vector-valued smooth
functions defined on Z with compact support and assume for simplicity that the
space of efforts is E ≡ F . Then, a possible definition of Stokes–Dirac structure
D is:

D :=
{

(f, e, w) ∈ F × E × F | f = −J e, w = BJ (e)
}

(1)

where J is a skew-adjoint matrix constant differential operator given by:

J := −
N∑

h=0

Ah
∂h

∂zh
(2)

with Ah = (−1)h+1AT
h and N ≥ 1 the order of the operator. Moreover, BJ is

an operator induced by J which defines the boundary variables w and, conse-
quently, the space of boundary terms W . In the case of one-dimensional spatial
domain, this space results into a (finite dimensional) linear space of proper dimen-
sion. These objects can be easily determined by integrating eTf on Z, which pro-
vides the variation of internal energy, and applying the Stokes theorem. Roughly
speaking,W is given by the restriction of the effort e and of its derivatives up to
the (N − 1)-th order on the boundary ∂Z ≡ {0, L} of the spatial domain.

The fundamental hypothesis of the algorithm is the possibility to define a
power port on ∂Z, i.e. a pair flow/effort whose combination should provide the
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power flowing inside the system. In other words, it is required to partition the
boundary variables in couples of power conjugate inputs and outputs. Since the
definition (1) of Stokes–Dirac structure developed around the differential op-
erator (2) does not automatically guarantee such a property, in the following
sections some fairly general sufficient conditions to check whether the procedure
can be applied or not are illustrated. Finally, for the sake of compactness, ma-
trices r × s containing only zeros will be written as 0r,s and In will represent a
n× n identity matrix.

3 Discretization of First-Order Structures

Let us start by setting N = 1 in (2). From (1), the relation between internal
flows and efforts is given by:

f = A0e + A1
∂e

∂z
(3)

where it has been assumed that f =
(
f1, . . . , fn

)T, e =
(
e1, . . . , en

)T and A0 and
A1 are n×n matrices. If φ = f −A0e are the modified flows, (3) can be written as:

φ = A1
∂e

∂z
(4)

Intuitively, this means that the efforts linked algebraically with the flows, i.e. the
efforts upon which A0 acts, have the same nature and thus it is useful lumping
them together. Now, it is necessary to check whether the problem is well-posed,
in other words whether the differential operator A1

∂
∂z allows the definition of a

power port on the boundary.

Assumption 3.1. A1 has even rank equal to 2l.

Assumption 3.2. There exists a rotation matrix R and an l × l matrix A1/2
such that A1 may be written in the form:

Ã1 = RTA1R =

⎛⎜⎝ 0l,l 0l,n−2l A1/2

0n−2l,l 0n−2l,n−2l 0n−2l,l

AT
1/2 0l,n−2l 0l,l

⎞⎟⎠ (5)

As it turns out, assuming the block structure (5) for the A1 matrix is not par-
ticularly restrictive. In many important cases [15, 12, 10], the system equa-
tions are already in the desired form, thus R = In, or this can be achieved
by means of a simple row/column permutation. Differently, when the equa-
tions are not expressed in term of power variables, but of their linear combi-
nations, the discretization procedure calls for a change of variables in order to
let the underlying port structure appear. Since A1 is symmetric, it is always
possible to find a matrix R1 composed by n orthogonal eigenvectors such that
RT

1 A1R1 = diag(λ1, . . . , λn). As prescribed by Assumption 3.1, the number of
non-zero eigenvalues is 2l. Then, let Λ+ := {λi : λi > 0} and Λ− := {λi : λi < 0}.



64 L. Bassi, A. Macchelli, and C. Melchiorri

Since, from Assumption 3.2, we have that Λ+ = −Λ− = Λ, it is possible to
isolate a power port quite easily. Let us choose R1 such that:

A′
1 = RT

1 A1R1 =

⎛⎜⎝ Λ 0l,n−2l 0l,l

0n−2l,l 0n−2l,n−2l 0n−2l,l

0l,l 0l,n−2l −Λ

⎞⎟⎠
Then, the desired change of variables is given by R = R1R2, where

R2 =

⎛⎜⎝
1√
2
Il 0l,n−2l

1√
2
Il

0n−2l,l In−2l 0n−2l,l

− 1√
2
Il 0l,n−2l

1√
2
Il

⎞⎟⎠ and Ã1 =

⎛⎜⎝ 0l,l 0l,n−2l Λ

0n−2l,l 0n−2l,n−2l 0n−2l,l

Λ 0l,n−2l 0l,l

⎞⎟⎠
Since the eigenvalues of A1 define the slopes of the characteristic curves of

the linear partial differential equation ∂tu = A1∂zu, i.e. the curves where the
solution remains constant, the constraint Λ+ = −Λ− requires the system to
have two families of real characteristics, or two classes of wave-like solutions,
which is a general consequence of power conservation. It is possible to conclude,
then, that the well-posedness of the discretization problem is strictly related, as
expected, to the energetic properties of the system. The remaining part of this
section will therefore refer to first order Stokes–Dirac structures for which A1 in
(3) is in the form (5).

Denote by Zab := {z : z ∈ [a, b]} a small portion of the one-dimensional
domain Z, with 0 ≤ a < b ≤ L. For every i = 1, . . . , n, the flows f i and φi are
approximated as:

f i(t, z) = f i
ab(t)ω

i
ab(z) φi(t, z) = φi

ab(t)ω
i
ab(z) (6)

with
∫
Zab

ωi
ab = 1, whereas the efforts ei are treated as

ei(t, z) = ei
a(t)ωi

a(z) + ei
b(t)ω

i
b(z) (7)

with ωi
a(a) = ωi

b(b) = 1 and ωi
a(b) = ωi

b(a) = 0. Clearly, it is possible to rewrite
(4) as:

φi
abω

i
ab =

n∑
j=1

Aij
1

(
ej

a

∂ωj
a

∂z
+ ej

b

∂ωj
b

∂z

)
(8)

Assumption 3.3 (compatibility of forms, [6]). The approximating functions
ωi

ab, ωi
a, ωi

b should be chosen in such a way that for every ei
a and ei

b is possible
to find a group of quantities φi

ab that satisfies (4).

This assumption provides additional constraints for the ω functions (6) and (7).
In particular, for every i and j such that Aij

1 �= 0:

−∂ωj
a

∂z
=

∂ωj
b

∂z
= ωi

ab

∂

∂z
(ωj

a + ωj
b) = 0 ⇒ ωj

a + ωj
b = 1∫

Zab

(ωj
a + ωj

b)ω
j
ab =

∫
Zab

ωj
ab = 1

(9)
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Once the conditions (9) have been taken into account, (8) can be written as:

φab = A1(eb − ea) (10)

Assumptions 3.1 and 3.2 guarantee that it is possible to divide the boundary
variables into two components, i.e. a flow and an effort, so that a port can be
defined. The boundary variables fB

a , fB
b , eB

a and eB
b are simply the restriction

along the boundary of the efforts, and therefore can be equated to the discretized
efforts ea and eb as follows:

fB
a =

(
e1

a, . . . , e
l
a

)T
fB

b =
(
e1

b , . . . , e
l
b

)T
eB

a =
(
en−l+1

a , . . . , en
a

)T
eB

b =
(
en−l+1

b , . . . , en
b

)T (11)

Taking into account (5), the power balance associated to the small portion
of the system with spatial domain Zab is given by the sum of the variation of
internal energy and the power flow through the boundary in z = a and z = b:

Pnet
ab =

∫
Zab

n∑
i=1

eif i + fB
a

T
A1/2e

B
a − fB

b

T
A1/2e

B
b

¿From the fundamental energy conservation property of the Stokes–Dirac struc-
tures, it is clear that Pnet

ab = 0. From (6) and (7) and since A0 is skew-symmetric,
we get:

Pnet
ab =

∑
j∈σ

f j
ab

(
αj

abe
j
a + (1− αj

ab)e
j
b

)
+ fB

a

T
A1/2e

B
a − fB

b

T
A1/2e

B
b (12)

where σ = {1, . . . , l, n− l + 1, . . . , n} and

αj
ab =

⎧⎨⎩
∫
Zab

ωj
abω

j
a if j ∈ σ

0 otherwise

Among the coefficients αj
ab, at most l are independent. In fact, given two pairs

of functions ωi
ab, ωi

a and ωj
ab, ωj

a for which Aij
1 �= 0, we have that:∫

Zab

(
ωi

abω
i
a + ωj

abω
j
a

)
= −

∫
Zab

(
∂ωj

a

∂z
ωi

a +
∂ωi

a

∂z
ωj

a

)
= −

∫
Zab

∂

∂z

(
ωi

aω
j
a

)
= 1

and, consequently:

αj
ab = 1− αi

ab =: αi
ba, ∀i, j : Aij

1 �= 0 (13)

From the power balance relation (12), it is possible to define the finite dimen-
sional efforts ej

ab which are dual to f j
ab for every j ∈ σ:( (

e1
ab, . . . , e

l
ab

)T(
en−l+1

ab , . . . , en
ab

)T
)

=

(
ᾱab,1 0l,l

0l,l ᾱab,2

)(
fB

a

eB
a

)
+

(
ᾱba,1 0l,l

0l,l ᾱba,2

)(
fB

b

eB
b

)
(14)
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where ᾱab,1 := diag(α1
ab, . . . , α

l
ab), ᾱab,2 := diag(αn−l+1

ab , . . . , αn
ab), ᾱba,1 :=

diag(α1
ba, . . . , α

l
ba) and ᾱba,2 := diag(αn−l+1

ba , . . . , αn
ba). Finally, it is necessary to

derive an equation linking the discretized flows fab and the discretized modified
flows φab. This is possible under the following assumption.

Assumption 3.4. The functions ωi
ab must be consistent for each couple of vari-

ables that are linked through an algebraic relation, i.e.:

∀Aij
0 , Aik

0 �= 0⇒ ωj
ab(z) = ωk

ab(z)

Since φ = f −A0, taking into account (6), (7), the properties of the ω functions
(9) and the definition of the boundary power variables (11), we have:

φi
abω

i
ab = f i

abω
i
ab −

n∑
k=1

Aik
0
(
ek

aω
k
a + ek

bω
k
b

)
φi

abω
i
abω

k
ab = f i

abω
i
abω

k
ab −

n∑
k=1

Aik
0
(
ek

aω
k
aωk

ab + ek
bω

k
b ωk

ab

)

(
f i

ab − φi
ab

) ∫
Zab

ωi
abω

k
ab =

n∑
k=1

Aik
0

(
ek

a

αk
ab︷ ︸︸ ︷∫

Zab

ωk
aωk

ab +ek
b

αk
ba︷ ︸︸ ︷∫

Zab

ωk
b ωk

ab

)
︸ ︷︷ ︸

ek
ab

fab = φab +
A0

ᾱ
eab ⇒ fab =

⎛⎜⎝ A1/2(eB
b − eB

a )
0n−2l,1

AT
1/2(f

B
b − fB

a )

⎞⎟⎠+ ᾱ−1A0eab (15)

where ᾱ := diag(
∫
Zab

ωi
abω

k
ab), with i, k = 1, . . . , n and k such that Aik

0 �= 0.
Note that ᾱ−1A0 is still skew-symmetric since ᾱ is a diagonal matrix and thanks
to Assumption 3.4.

In order to get an explicit form of the finite-dimensional dynamics, it is nec-
essary to choose an input and its dual output. This algorithm assumes that such
choice is given by:

u =
(
e1B

a , . . . , elB
a , 01,n−2l,−f1B

b , . . . ,−f lB
b

)T

y =
(
f1B

a , . . . , f lB
a , 01,n−2l, e

1B
b , . . . , elB

b

)T (16)

Then, from (14), we have that:

fB
a = ᾱ−1

ab,1

(
e1

ab, . . . , e
l
ab

)T
− ᾱba,1ᾱ

−1
ab,1f

B
b

eB
b = ᾱ−1

ba,2

(
en−l+1

ab , . . . , en
ab

)T
− ᾱab,2ᾱ

−1
ba,2e

B
a
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so that the following relations to be used with (15) are obtained:

A1/2
(
eB

b − eB
a

)
= A1/2

⎡⎢⎢⎢⎣ᾱ−1
ba,2

⎛⎜⎝ en−l+1
ab

...
en

ab

⎞⎟⎠− (ᾱab,2ᾱ
−1
ba,2 + Il

)
︸ ︷︷ ︸

ᾱ−1
ba,2

eB
a

⎤⎥⎥⎥⎦

AT
1/2

(
fB

b − fB
a

)
= AT

1/2

⎡⎢⎢⎢⎣−ᾱ−1
ab,1

⎛⎜⎝ e1
ab
...

el
ab

⎞⎟⎠− (ᾱba,1ᾱ
−1
ab,1 + Il

)
︸ ︷︷ ︸

ᾱ−1
ab,1

(−fB
b )

⎤⎥⎥⎥⎦
It is now necessary to investigate if and under which conditions a finite-

dimensional port-Hamiltonian system in input/output form [14] can be deduced
from (15). Generally speaking, it is necessary to take into account the fact that
more than a single effort variable may be related to any given flow. If, at first,
the interdependencies among the α variables are considered, from (13) we have
that αi

ab,1 = αj
ba,2 for every i and j such that Aij

1/2 �= 0. Therefore,

A1/2ᾱ
−1
ba,2 = A1/2ᾱ

−1
ab,1 and AT

1/2ᾱ
−1
ab,1 = AT

1/2ᾱ
−1
ba,2 (17)

As for the input/output map, it is useful to rewrite (15) in the following form:{
−fab = J∆eab + G∆B∆u

y = (G∆)T eab + D∆u
(18)

where u and y have been defined in (16), while

J∆ =

⎛⎜⎝ 0l,l 0l,n−2l A1/2α
−1
ba,2

0n−2l,l 0n−2l,n−2l 0n−2l,l

−AT
1/2α

−1
ab,1 0l,n−2l 0l,l

⎞⎟⎠− ᾱ−1A0

G∆ =

⎛⎜⎝ ᾱ−1
ab,1 0l,n−2l 0l,l

0n−2l,l 0n−2l,n−2l 0n−2l,l

0l,l 0l,n−2l ᾱ−1
ba,2

⎞⎟⎠ B∆ =

⎛⎜⎝ A1/2 0l,n−2l 0l,l

0n−2l,l 0n−2l,n−2l 0n−2l,l

0l,l 0l,n−2l AT
1/2

⎞⎟⎠
D∆ =

⎛⎜⎝ 0l,l 0l,n−2l ᾱba,1ᾱ
−1
ab,1

0n−2l,l 0n−2l,n−2l 0n−2l,l

ᾱab,2ᾱ
−1
ba,2 0l,n−2l 0l,l

⎞⎟⎠
Finally, since it is possible to prove through the use of (17) that J∆ and BT

∆D∆

are skew-symmetric, the power balance of the system is given by:

eT
abfab + yTB∆u = 0

where B∆ represents the fact that multiple couplings occur between flows and
efforts in order to generate the power flow through the boundary.
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4 Extension to Higher Order Derivatives

Let us now consider a larger class of systems, by allowing N ≥ 2 in (2). This
involves the presence of higher order derivatives, and the necessity to consider
as boundary variables also the restriction on the boundary of the efforts’ deriva-
tives up to the (N − 1)-th order. The discretization problem may be solved by
introducing a number of auxiliary variables so that it is possible to write the
system equations in a form where only first-order derivatives appear. Flows and
efforts can be redefined as follows:

f =
(
f1, . . . , fn, f1

�
1, . . . , fn

�
1, . . . , f1

�
(N−1), . . . , fn

�
(N−1)

)T

e =
(
e1, . . . , en, e1∂1, . . . , en∂1, . . . , e1∂(N−1), . . . , en∂(N−1)

)T (19)

Then, assuming that in (2) AN is non-singular, it can be shown [7] that relation
f = −J e can be equivalently rewritten in the form:

f = A0e + A1
∂e
∂z

(20)

where:

A0 =

⎛⎜⎜⎜⎜⎝
A0 0n,n · · · 0n,n

0n,n 0n,n · · · 0n,n

...
...

. . .
...

0n,n 0n,n · · · 0n,n

⎞⎟⎟⎟⎟⎠ A1 =

⎛⎜⎜⎜⎜⎝
A1 A2 · · · AN

−A2 A3 · · · 0n,n

...
...

. . .
...

(−1)N+1AN 0n,n · · · 0n,n

⎞⎟⎟⎟⎟⎠
Since the power balance of the system is preserved, provided that the ad-

ditional ports are terminated properly, the discretization of the Stokes–Dirac
structure may be carried out following the procedure described in the previous
section, and then by imposing the correct termination on the ports of the finite
element. It is easy to show that the correct power balance is restored with the
following termination of the additional ports:⎛⎜⎜⎜⎜⎝

f
�

1

f
�

2

...

f
�

(N−1)

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
−A2 −A3 · · · −AN

A3 −A4 · · · 0n,n

...
...

. . .
...

(−1)h+1AN 0n,n · · · 0n,n

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

e∂1

e∂2

...

e∂(N−1)

⎞⎟⎟⎟⎟⎠
An example of the procedure is reported in Sect. 6.2.

5 Energy Flow Discretization

The procedure described in the previous sections addresses the discretization of
the Stokes-Dirac structure. However, a distributed port Hamiltonian system is
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complete only once the port behavior of this structure is specified. In infinite
dimensions, if ξ denotes the energy variable, the Hamiltonian function H is
defined as

H(ξ) =
∫
Z

H(ξ(z, t))dz (21)

where H is the energy density. The port Hamiltonian system with Stokes–Dirac
structure (2) and Hamiltonian (21) follows, then, from the port behavior f = −ξ̇
and e = δξH, where δ denotes the variational derivative [15, 13]:{

ξ̇ = J δξH
w = BJ (δξH)

In order to be able to terminate appropriately the ports of the finite ele-
ment, it is necessary to have a lumped-parameter representation also for the
energy part of the system. Energy variables ξ and flows f have the same
geometric nature. This fact can be used in order to carry out an approxi-
mation in the form (6) by imposing that ξi(z, t) = xi(t)ωi

ab(z), with x =(
x1, . . . , xn

)T energy variable of the finite dimensional approximation. Then,
if we assume that H in (21) is quadratic, i.e. H = 1

2ξ
TΣ ξ, the discretized

energy function is again quadratic and given by Hab(x) = 1
2x

TSab x, where
Sij

ab =
∫
Zab

ωi
abΣ

ijωj
ab. The finite-dimensional model is completed once fab = −ẋ

and eab = ∂Hab

∂x .

6 Examples

6.1 The Timoshenko Beam

The Timoshenko beam model with spatial domain Z = [0, L] has a Stokes–Dirac
structure characterized by the following differential relation, [5, 9]:⎛⎜⎜⎝

fpt

fpr

f εt

f εr

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0 0 −∂z 0
0 0 −1 −∂z

−∂z 1 0 0
0 −∂z 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

ept

epr

eεt

eεr

⎞⎟⎟⎠
for which (φpt , φpr , φεt , φεr ) := (fpt , fpr + eεt , f εt − epr , f εr) are the modified
flows. In this case, relation (10) becomes:⎛⎜⎜⎜⎝

φpt

ab

φpr

ab

φεt

ab

φεr

ab

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

ept

b − ept
a

epr

b − epr
a

eεt

b − eεt
a

eεr

b − eεr
a

⎞⎟⎟⎟⎠
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with the beam model that satisfies Assumption 3.2 without further permutations.
The boundary variables, then, can be chosen as:

w =
(
f tB

a , f tB
b , f rB

a , f rB
b , etB

a , etB
b , erB

a , erB
b

)T

≡
(
ept

a , ept

b , epr
a , epr

b , eεt
a , eεt

b , eεr
a , eεr

b

)T

while the net power in the portion Zab = [a, b] of the beam is

Pnet
ab =

∫
Zab

∑
i

eif i + f tB
b etB

b − f tB
a etB

a + f rB
b erB

b − f rB
a erB

a

=
∑

i

f i
ab

(
αi

abe
i
a + αi

bae
i
b

)
+ f tB

b etB
b − f tB

a etB
a + f rB

b erB
b − f rB

a erB
a

i ∈ {pt, pr, εt, εr}, which leads to the definition of the distributed efforts
ept

ab := αt
abe

pt
a + αt

bae
pt

b , epr

ab := αr
abe

pr
a + αr

bae
pr

b , eεt

ab := αt
bae

εt
a + αt

abe
εt

b and
eεr

ab := αr
bae

εr
a + αr

abe
εr

b . From Assumption 3.4, which relates f and φ, we have

that φpt

ab = fpt

ab , φpr

ab = fpr

ab + e
εt
ab

αεtpr , φεt

ab = f εt

ab −
epr

ab

αεtpr and φεr

ab = f εr

ab , where
αεtpr =

∫
Zab

ωεt

abω
pr

ab . The final step is to rearrange the previous results in order
to obtain a finite dimensional Dirac structure in the form (18) provided that
u = (−etB

a ,−erB
a , f tB

b , f rB
b )T and y = (f tB

a , f rB
a , etB

b , erB
b )T:

J∆ =

⎛⎜⎜⎜⎝
0 0 1

αt
ab

0
0 0 1

αεtpr

1
αr

ab

− 1
αt

ab
− 1

αεtpr 0 0
0 − 1

αr
ab

0 0

⎞⎟⎟⎟⎠ G∆ =

⎛⎜⎜⎜⎝
1

αt
ab

0 0 0
0 1

αr
ab

0 0
0 0 1

αt
ab

0
0 0 0 1

αr
ab

⎞⎟⎟⎟⎠

D∆ =

⎛⎜⎜⎜⎜⎜⎝
0 0 −αt

ba

αt
ab

0

0 0 0 −αr
ba

αr
ab

αt
ba

αt
ab

0 0 0

0 αr
ba

αr
ab

0 0

⎞⎟⎟⎟⎟⎟⎠ B∆ = I4

As far as concerns the ξ = (pt, pr, εt, εr)
T, it is reasonable to use the same

discretization technique (6), i.e. pt = Pt,abω
pt

ab, pr = Pr,abω
pr

ab , εt = Et,abω
εt

ab and
εr = Er,abω

εr

ab, which implies:

dPt,ab

dt
= −fpt

ab

dPr,ab

dt
= −fpr

ab

dEab,t

dt
= −f εt

ab

dEab,r

dt
= −f εr

ab

Finally, it is necessary to discretize the Hamiltonian function:

H(pt, pr, εt, εr) =
1
2

∫
Z

(
p2

t

ρ
+

p2
r

Iρ
+ Kε2t + EIε2r

)
dz
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that can be written for the finite element as:

Hab(Pt,ab, Pr,ab, Et,ab, Er,ab) =
1
2

(
P 2

t,ab

ρab
+

P 2
r,ab

Iρ,ab
+ KabE

2
t,ab + EIabE

2
r,ab

)

where ρ−1
ab =

∫
Zab

(
ω

pt
ab

ρ

)
ωpt

ab, I−1
ρ,ab =

∫
Zab

(
ωpr

ab

Iρ

)
ωpr

ab , Kab =
∫
Zab

ωεt

abKωεt

ab and

EIab =
∫
Zab

ωεr

abEIωεr

ab. This implies that the discretized effort variables ei
ab are

now equal to the gradient of the Hamiltonian function Hab.
The discretized model for the entire beam follows from its finite element by

partitioning the domain Z = [�0, �1] ∪ · · · ∪ [�M−1, �M ], repeating the previous
steps for each of the M portions, and interconnecting the finite elements that
are adjacent. The total discretized model has the ports (f tB

�0
, f rB

�0
, etB

�0
, erB

�0
) and

(f tB
�M

, f rB
�M

, etB
�M

, erB
�M

). Its energy is given by:

1
2

M∑
k=1

(
P 2

t,�k−1,�k

ρ�k−1,�k

+
P 2

r,�k−1,�k

Iρ,�k−1,�k

+ K�k−1,�k
E2

t,�k−1,�k
+ EI�k−1,�k

E2
r,�k−1,�k

)

6.2 A Generic Second-Order Structure

Let us consider the Stokes–Dirac structure (1) where in (2) we have N = 2,
A0 = A1 = 0 and

A2 =

(
0 1
−1 0

)

As previously discussed, the finite dimensional approximation of the intercon-

nection structure can be obtained once f = −J e is written in first-order form,
where f = (f1, f2)

T and e = (e1, e2)
T. This means introducing some additional

variables, as specified by (19):

f =
(
f1, f1

�
1, f2, f2

�
1
)T

e =
(
e1, e1∂1, e2, e2∂1

)T

Then, the equivalent system (20) is characterized by:

A0 = 04,4 and A1 =

⎛⎜⎜⎜⎝
0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

⎞⎟⎟⎟⎠
while the finite dimensional Dirac structure in the form (18) results to be
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(
−f1

ab

−f2
ab

)
=

(
0 − 1

α1
abα2

ba
1

α1
abα2

ba
0

)
︸ ︷︷ ︸

J∆

(
e1

ab

e2
ab

)
+

(
1

α1
abα2

ba

1
α1

ab
0 0

0 0 1
α1

abα2
ba
− 1

α2
ba

)
︸ ︷︷ ︸

G∆B∆

u

y =

⎛⎜⎜⎜⎜⎝
1

α1
ab

0
− 1

α1
abα2

ba
0

0 1
α2

ba

0 1
α1

abα2
ba

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

GT
∆

(
e1

ab

e2
ab

)
+

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 α1

ba

α1
ab

0

0 0 − 1
α1

ab
α2

ba

α2
ab

α2
ba

−α2
ab

α2
ba

0 0 0

− 1
α1

abα2
ba
−α1

ba

α1
ab

0 0

⎞⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

D∆

u

with u =
(
e1B

a , e1∂1B
a ,−f1B

b ,−f1∂1B
b

)T and y =
(
f1B

a , f1∂1B
a , e1B

b , e1∂1B
b

)T.

7 Conclusions

In this work, the discretization procedure for distributed port Hamiltonian sys-
tems introduced in [6] has been generalized in order to cope with a wider set
of dynamical systems. The algorithm operates in two steps. Once the geometric
structure which describes internal and boundary power flows (i.e. the Stokes–
Dirac structure) is discretized, the port behavior of the energy storing elements
is approximated. Main property of the simplified model is that it obeys the same
energy balance relation. The procedure is described for distributed systems with
Stokes–Dirac structure defined by a first order differential operator, while the
extension to the higher order case is briefly outlined. A couple of examples have
been included to better illustrate the main steps of the algorithm.
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Summary. This paper presents a general modeling method to construct a virtual
Lagrangian for infinite-dimensional systems. If the system is self-adjoint in the sense
of the Frétchet derivative, there exists some Lagrangian for a stationary condition of
variational problems. A system having such a Lagrangian can be formulated as a field
port-Lagrangian system by using a Stokes-Dirac structure on a variational complex.
However, it is unknown whether any infinite-dimensional system can be expressed as
an Euler-Lagrange equation. Then, we introduce a virtual Lagrangian with a homotopy
operator. The virtual Lagrangian defines a self-adjoint subsystem, which is realized by
a cancellation of non-self-adjoint error subsystems.

1 Introduction

From the viewpoint of control applications, model-based control has been one
of significant strategies in robotics. One such control is the method of port-
Hamiltonian systems, which has been developed as the general framework of
passivity [13]. The port-Hamiltonian systems describe a pair of energy variables
such that the product is equal to its power. The port-Hamiltonian system can
be connected to each subsystem written as a port-Hamiltonian system through
the boundary ports while preserving the total energy. Such a power-conserving
property is characterized by a Dirac structure [14]. In particular, distributed
parameter systems are written in such a formulation by using a Stokes-Dirac
structure [1]. The Stokes-Dirac structure is defined using differential forms on
a spatial domain with a boundary. The structure means that the change in the
interior energy is equal to the power supplied to the system through its boundary.
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springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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The internal energy variables can be stabilized by damping injection in terms of
a boundary control.

On the other hand, many important physical systems are introduced from
variational calculus of a Lagrangian. The correspondence between the field
Euler-Lagrange equations and a field port-Lagrangian system, which is coun-
terpart of distributed port-Hamiltonian systems, has been established by us-
ing a Stokes-Dirac structure on a variational complex [7]. If there exists at
least one Lagrangian on the system, then the system can be written as a field
port-Lagrangian system. However, it is not clear whether every system has
a Lagrangian or not. The existence of a Lagrangian has been considered in
mathematical physics [8, 9, 10]. However, in the topic of automatic control, we
require the stability of a given unknown system regardless of its physical mean-
ing, and it is necessary to elaborate a methodology for a more general case.

In this paper, a general modeling method is presented to construct a virtual
Lagrangian for infinite-dimensional systems.

First, we introduce a unified notation for a higher order differential structure,
called a jet bundle. To put the above more concretely, let us consider a situation
in which a differential function �� ∈ A defines the Euler-Lagrange equation
�� = 0 for a variational problem L =

∫
L dx, where A denotes the space

of smooth functions L(x, u(v)) depending on x, u, and the derivatives of u up
to some finite order v. If �� is determined by a self-adjoint Fréchet derivative
D∗
�� = D�� , then�� = E (L), where E is an Euler operator that implies a variational

derivative. Conversely, if �� = E (L) for some L, then D�� is self-adjoint. The
conditions of the operator D�� are often referred to as the Helmholtz conditions.
In this case, the Lagrangian can be reconstructed with a homotopy operator [17].
For example, a homogeneous system of linear differential equations �� [u] = 0
comprises the Euler-Lagrange equations for a variational problem if and only
if the matrix of the differential operators is self-adjoint, where the Lagrangian
density is simply 1/2 (u · �� [u]).

Next, for the case that the whole differential equation �� cannot be recon-
structed by homotopy operators, we will give a method constructing of a vir-
tual Lagrangian on variational complexes with homotopy operators for a general
infinite-dimensional system. The method can extract both a subsystem ��E as-
sociated with virtual Lagrangian Lv and an error term ��A from the original
system. The word ’virtual’ means that the subsystem can be compensated for
the error term by a control. Since the time derivative of the Lagrangian can
be considered as a power consisting of pair of generalized energy variables, this
approach naturally clarifies the correspondence between infinite-dimensional sys-
tems and field port-Lagrangian systems.

2 Mathematical Preliminaries

This section introduces the required mathematical concepts and follows the ref-
erences [17, 16].
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Higher order partial derivatives of a smooth real-valued function f(x) =
f(x1, · · · , xm) are denoted by ∂Jf(x) = ∂kf(x) / ∂xj1∂xj2 · · · ∂xjk , where
J = (j1, · · · , jk) is a multi-index of order k and x = (x1, · · · , xm) are m inde-
pendent variables. If f : X → U is a smooth function from X � Rm to U � Rl,
there are m · pk numbers uα

J = ∂Jfα(x), where uα = (u1, · · · , ul) are l depen-
dent variables and pk :=

(
m+k−1

k

)
. Let Uk := Rm·pk be an Euclidean space of

this dimension. The v-th prolongation u(v) = pr(v) f(x) : X → U (v) is defined by
uα

J = ∂Jfα(x) ⊂ Uk, where U (v) := U ×U1× · · · ×Uv. We introduce the v-th jet
space M (v) = X×U (v). Let A be a space of smooth functions P [u] := P (x, u(v))
called a differential function. Consider a fiber bundle (M,π,X), called a jet bun-
dle, defined by the union M :=

⋃
(x,u)∈M M (v)|(x,u), where x are horizontal

variables and u are vertical variables. A smooth section of the bundle is defined
by uα = fα(x).

Let a 1-form duJ be the basic form on the fiber of M . duJ consists of the
vertical variables u and all their derivatives uJ . Such a differential form ω̂ =
PJ duJ1 ∧ · · · ∧ duJk

defined by duJ is called a vertical k-form, where PJ ∈ A .
A vertical differential d̂ is defined for ω̂ in the same manner as the exterior
differential of an ordinary differential form. As opposed to the vertical differential
on the complex, a homotopy operator is defined as follows:

ĥ(ω) =
∫ 1

0

[(∑
J

uJ
∂

∂uJ

)
�ω(λu)

]
λ−1 dλ . (1)

such that ĥ ◦ ĥ = 0. Then, a vertical complex {Λ̂•, d̂} can be defined. Total
derivative Di = ∂ / ∂xi + uJ,i(∂ / ∂uJ) acts on the basic forms by Di duJ =
d(DiuJ) = duJ,i.

Let us consider an equivalence relation on the space of vertical forms Λ̂•, with
[ω̂] = ω̂ + div η̂, ω̂, η̂ ∈ Λ̂k. The equivalence class defines functional k-forms
Λk∗ = Λ̂k / div(Λ̂k)p. Note that derivations on a fiber are not always exact, but
the equivalent class achieves the exactness of sequences. The natural projection
from Λ̂k to Λk

∗ is denoted by an integral sign
∫

ω̂ dx which stands for [ω̂]. This
definition gives the integration by parts formula,∫

ψ̂ ∧Diη̂ dx = −
∫

(Diψ̂) ∧ η̂ dx , (2)

where ψ̂ ∈ Λ̂k, η̂ ∈ Λ̂l. Let ω =
∫

ω̂ dx be a functional k-form corresponding to
the vertical k-form ω̂. The variational differential of ω is the functional (k + 1)-
form corresponding to the vertical differential of ω: δω =

∫
d̂ω̂ dx. On vertically

star-shaped domains, the variational differential determines an exact complex
{Λ•∗, δ} called a variational complex. Let L =

∫
L(x, u(v)) dx be a Lagrangian

density functional. The variational of L is the functional 1-form,

δL =
∫ {

∂L
∂uJ

duJ

}
dx =

∫ {
E (L) · du

}
dx , (3)
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where E = (−D)J · (∂ / ∂uJ) is the Euler operator. The relation E (L) ≡ 0 yields
the Euler-Lagrange equations.

Let P [u] = P (x, u(v)) ∈ A r be an r-tuple of differential functions. The Fréchet
derivative of P is the differential operator DP : A l → A r defined such that

DP (S) =
d

dε

∣∣∣∣
ε=0

P
[
u + εS[u]

]
(4)

for any S ∈ A l. Then the Fréchet derivative of a general r-tuple P =
(P1, · · · , Pr) and the adjoint D∗

P : A r → A l are

(DP )µν =
∑

J

∂Pµ

∂uν
J

·DJ , (D∗
P )νµ =

∑
J

(−D)J ·
∂Pµ

∂uν
J

, (5)

respectively, where µ = 1, · · · , r , ν = 1, · · · , l. The operator DP is self-adjoint
if D∗

P = DP .

The above framework gives us the following structure called a field port-
Lagrangian system [7].

Theorem 1. Consider a linear subspace D having a Stokes-Dirac structure on
a variational complex such that

D =

⎧⎨⎩ (f, e)

∣∣∣∣∣
⎡⎣fp

fr

fq

⎤⎦ =

⎡⎣ 0 −I Di

I 0 0
Di 0 0

⎤⎦⎡⎣ep

er

eq

⎤⎦ ,

[
fb

eb

]
=
[

ep|
∂X

−eq|
∂X

]⎫⎬⎭ , (6)

where f = (fp, fq, fr, fb) ∈ {Λ̂1
c(M)}3 × Λ̂0(∂M), e = (ep, eq, er, eb) ∈

{Λ̂0(M)}3 × Λ̂0(∂M), Di is the total differential operator as regards all spa-
tial variables, the summation rule is used for the suffix i, and I = idM is the
identity operator. Regarding (6), define

f =
(

∂L
∂uα

−Di
∂L
∂uα

i

, −∂0φ
α, −∂0φ

α
i

)
, e =

(
−φα

0 ,
∂L
∂φα

,
∂L
∂φα

i

)
, (7)

where φα(x) are field quantities, α is an index of independent components of the
field, x is a set of spatial coordinates x1, · · · , xm and a time coordinate x0 = t,
φα

µ = ∂φα / ∂xµ = ∂µφα for µ = 0, · · · ,m, Λ̂1
c(M) is a space of vertical 1-forms

with the coefficient in Z2, and we use the identification T = ι ◦ ĥ such that
ĥ : Λ̂1

c ↪→ Λ̂0 and ι : Λ̂0 �→ A . Then the first row of (6) corresponds to an
Euler-Lagrange equation. The second and the third rows of (6) define an identity
relation of higher order variables.

The representation (6) can be extended to a higher order structure and a
multi-variable structure [7].
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3 Decomposition of Self-adjoint Subsystems

A self-adjointness of Hamiltonian systems has been discussed in [11]. The study
of nonlinear adjoint operators is a current topic [12]. The self-adjointness of
Fréchet derivatives is an important property in the framework of variational
problems [17, pp. 364].

Theorem 2. Consider a differential function �� ∈ A p defined on a vertically
star-shaped domain Z ⊂ M . Then, �� = E (L) for some variational problem
L =

∫
L dx ∈ Λ0

∗ if and only if the Fréchet derivative D�� is self-adjoint D∗
�� = D�� .

In this case, a Lagrangian for �� can be explicitly constructed using the homotopy
formula

L [u] =
∫ {∫ 1

0
u · �� [λu] dλ

}
dx . (8)

Based on this fact, we have the following result.

Theorem 3. On a vertically star-shaped domain, an arbitrary system of dif-
ferential equations �� = 0 can be uniquely written as the sum of a self-adjoint
system ��E = 0 and a non-self-adjoint system ��A = 0 except for total divergence
terms on Λ̂0(M), that is,

�� = ��E ⊕��A , (9)

where D∗
��E = D��E and D∗

��A �= D��A .

First, we need the following for the proof of Theorem 3. We shall attempt to
connect the de Rham complex with the vertical complex with regard to a coho-
mology group. Let N be an oriented compact Riemannian n-dimensional man-
ifold. The de Rham complex {Ω•(N), d} consists of spaces of differential forms
Ω•(N) and an exterior differential dk : Ωk(N)→ Ωk+1(N). A dimension of the
domain N of Ω•(N) is usually assumed to be finite. In this case, we can use the
following useful relations [18, pp. 159-160]. One of them is the Hodge decomposi-
tion: Ωk(N) = Hk(N)⊕ dΩk−1(N)⊕ d†Ωk+1(N), where d† = (−1)n(k+1)+1∗d∗
is an adjoint operator of d. The other is the Hodge theorem that gives the exis-
tence of the isomorphism Hk

DR(N) → Hk(N), where Hk is a space of harmonic
forms that is a finite subspace of Ωk(N). On the other hand, the total manifold
M has an infinite-dimension, because the dimension of Λ̂k(M) is still indefinite.
Nevertheless, the space restricted to an appropriate finite dimension is used in a
practice. As such, we cannot use the Hodge decomposition, because the Hodge
star operator ∗ is no longer valid on the vertical complex of jet bundles. Ac-
cordingly, we consider the condition determining a common structure on both
complexes as a morphism between complexes. The common structure means the
cohomology groups. Indeed, let G be a category of Abelian groups and Co(G) be
a category of complexes {A•, B•} with a morphism f• : Hom(A•, B•) such that
′dk ◦ fk = fk+1 ◦ dk, where dk = Hom(Ak, Ak+1) and ′dk = Hom(Bk, Bk+1).



80 G. Nishida, M. Yamakita, and Z. Luo

Let Hk(A•) = Kerdk / Im dk−1 be a k-th cohomology group of A•. The coho-
mology group plays the role of a covariant functor Hk(−) : Co(G) � G in terms
of category theory [19]. As a result, the above definition gives the identification
between the de Rham complex {Ω•(N), d} and the vertical complex {Λ̂•(M), d̂}
on a star-shaped domain, because N and M are spaces having the same coho-
mology, where a star-shaped domain is contractible (� Rn) and the de Rham
cohomology of Rn is trivial; that is, Hk

DR(Rn) = {R, if k = 0; 0, if k > 0} from
Poincaré’s lemma [18].

Lemma 1. Let us consider a vertically star-shaped region Z ⊂ M on a v-th jet
bundle. Then, for k > 0, an arbitrary vertical k-form can be uniquely written as

Λ̂k(M) = d̂Λ̂k−1(M)⊕ ĥΛ̂k+1(M) . (10)

Proof. The direct sum decomposition of de Rham complexes on a star-shaped
domain: Ωk(N) = dΩk−1(N)⊕hΩk+1(N) has been given on an oriented compact
Riemannian manifold N [15]. Consider the case that the degree of jet bundles is
restricted to be finite. If we assume that the dimension of the fiber U (v) of M is
equal to the dimension N , the cohomology of both N and M is the same, that
is, trivial. ��

Proof of Theorem 3. For any ω ∈ Λ̂k(M), Lemma 1 gives the expression ω =
d̂η + ĥθ, where η ∈ Λ̂k−1(M) and θ ∈ Λ̂k+1(M). Let us consider a self-adjoint
systems �� = 0 that are defined by the variation K =

∫
ω dx, ω = �� du. In this

case, the Lagrangian can be calculated by ĥω. Actually, from the exactness of
Λ̂•, the following should be zero.

δK =
∫

d̂(�� ) ∧ du dx =
∫
D�� (du) ∧ du dx

=
∫

1
2
du ∧

(
D∗
��E −D��E

)
du+

(
D�� − D��E

)
(du) ∧ du dx

=
∫
D��A(du) ∧ du dx . (11)

If there exists d̂ω ∈ Λ̂2(M), then θ = ĥd̂ω is an anti-exact form on Λ̂1(M).
However, according to the assumption, there is no such form θ on a self-adjoint
system. Thus, d̂ĥω = ω. Consequently, exact forms on Λ̂1(M) are related to some
Lagrangian density L =

∫
L =

∫
ĥω; hence, the system ��E defined by d̂L = 0

is self-adjoint. On the other hand, anti-exact forms on Λ̂1(M) are mapped to
zero on Λ̂0(M); hence such forms correspond to a non-self-adjoint system ��A.��

Corollary 1. If
[
�� − (d̂ĥ + ĥd̂)��

]
du = 0 ∈ Λ̂1, then ��E = d̂ĥ�� = �� − ĥd̂��

and ��A = ĥd̂�� = �� − d̂ĥ�� .

Proof. If the cohomology is trivial, then �� du = 0 is equal to (d̂ĥ+ ĥd̂)�� du = 0.
Hence the proof follows from Theorem 3. ��
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4 Boundary Conditions and Reconstruction of Virtual
Lagrangian

Identifying total divergence terms on the variational complex allows us to use
the integration by parts formula (2). Eliminating the total divergence terms is
equivalent to assuming that all boundary conditions are zero. However, the as-
sumption is somewhat conservative. In this section, we will reduce the restriction
of this assumption. First, we introduce a unified notation for the integration by
parts formula with explicit treatment of boundary conditions. Then, the relation
between boundary conditions and the self-adjointness of the Fréchet derivative is
discussed. Next, we consider the minimum combination of fixed boundary con-
ditions to define a one-to-one correspondence between a vertical derivative and
an Euler operator.

Definition 1. Let J = {j1, · · · , jk} be a set of ordered indexes of partial dif-
ferentials for any k > 0. Then J is a fixed combination of k indexes in J . For
Ji ⊂ J , we have

J = {Ji, J̄i} =
{
{j1, · · · , ji}, {ji+1, · · · , jk}

}
. (12)

Let us define a functional 1-form such that

Ξi =
∫ {

(−D)Ji

∂L
∂uJ

·DJ̄i
(du)

}
dx . (13)

By using this definition, we have the following relations.

Lemma 2

Ξ0 =
∫ {

d̂L
}

dx , Ξk =
∫ {

E (L) du
}

dx . (14)

Proof. The following relation can be considered:

Ξ0 =
∫ {

(−D)0
∂L
∂uJ

·DJ (du)
}

dx =
∫ {

∂L
∂uJ

duJ

}
dx =

∫ {
d̂L
}

dx , (15)

Ξk =
∫ {

(−D)J
∂L
∂uJ

·D0(du)
}

dx =
∫ {

E (L) du
}

dx , (16)

where D0 = idM . Then the relations (14) have been given. ��

Lemma 3. If we consider the boundary conditions:

Φi =
∫

Dji

{
(−D)Ji−1

∂L
∂uJ

·DJ̄i
(du)

}
dx (17)

explicitly, then we have Ξi−1 = Ξi + Φi.

Proof. The relation follows directly from definition 1 and the integration by parts
formula. ��
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Definition 2. If the boundary conditions are fixed Φi = 0 for any ji, functional
1-forms can be integrated by parts as follows: ς(ji) : Λ1

∗ � Ξi−1 �→ Ξi ∈ Λ1
∗,

where i = 1, · · · , k and ς is an invertible map.

From the above definition, we have the following relation.

0 −→ L
δ−→ Ξ0

ς(j1)−→ Ξ1
ς(j2)−→ · · · ς(jk)−→ Ξk

δ−→ C −→ · · · , (18)

where C ∈ Λ2∗. Thus, the integration by parts formula is repeatedly used from the
variational derivative of the Lagrangian: Ξ0 to the determination of the Euler-
Lagrange equation: Ξk. Conversely, if we consider Lagrangian reconstruction,
the information about the zero boundary conditions from Ξk to Ξ0 is necessary.

Proposition 1. Consider an integration by parts formulation σ : Ξ0 → Ξk,
where σ = ς(jk) ◦ · · · ◦ ς(j1). If there exists at least one set of ordered indexes
J = {j1, · · · , jk} such that the boundary conditions are fixed by zero for any set
of unordered indexes J = (j1, · · · , jk); that is, ∃J s.t. Φi = 0 (i = 1, · · · , k),
then σ is one-to-one.

Proof. The action of ς(ji) can be written as follows:∫ {
∂L
∂uJ

·Dji(du)
}

dx +
∫ {

Dji

(
∂L
∂uJ

)
du

}
dx =

∫
Dji

{
∂L
∂uJ

du

}
dx .

(19)

The right-hand side of (19) is assumed to be a zero in the sequence (18). ��

Next, we can consider the following relation, that is, a virtual Lagrangian con-
struction with homotopy operators, by using the previous definitions.

Proposition 2. If the system has a self-adjoint Fréchet derivative D�� = D∗
�� ,

then Ξ0 = Ξk.

Proof. The proposition follows directly from lemma 2. ��

This leads to a concrete calculation of homotopy operators.

Proposition 3. Consider a system which has a self-adjoint Fréchet derivative
D�� = D∗

�� . Then g = ĥ ◦ σ−1.

0 �� L
δ �� Ξ0

ĥ ��

σ �� Ξk
g

����
��

δ �� C �� · · ·

0 �� L ′ δ �� Ξ ′
0

σ �� Ξ ′
k

δ �� C ′ �� · · ·
(20)

where ĥ is a homotopy operator on a vertical complex and δ is a variational
derivative.

Proof. From proposition 2, there exists σ = ς(jk) ◦ · · · ◦ ς(j1), ji ∈ J for any
J = (j1, · · · , jk), which corresponds with the situation of proposition 1. ��
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Needless to say, proposition 3 always holds on a variational complex. Finally, the
next theorem gives the main result of the virtual Lagrangian reconstruction.

Theorem 4. Let Z ⊂ M be vertically star-shaped. Consider a decomposition
�� = �̃� + α, where �̃� = d̂ĥ�� and α ∈ Λ̂1. If there exists σ in the sense of
Proposition 3, ĥ�� gives the virtual Lagrangian Lv which determines the subsys-
tem �̃� of �� .

Proof. If there exists some Lagrangian Lv such that d̂Lv ⊂ �� , then we can
write �� = d̂Lv ⊕ α, where α ∈ Λ̂1 defines a non-self-adjoint subsystem by
Theorem 3. Then if the Lagrangian Lv is given once, the stationary condition
of the variational E (Lv) ≡ 0 is decided uniquely. In other words, there does not
exist any η ∈ Λ̂0 such that α = d̂η. ��

Conversely, if the boundary conditions have not been explicitly given, the test
of self-adjointness of Fréchet derivatives results in a failure although the real
Lagrangian of the system can be reconstructed [17]. In this case, the setting of
the free boundary conditions keeps the total divergence terms going in existence.
Actually, such a total divergence term can be considered as the part of field port-
Lagrangian systems. The next section shows an example of this situation.

5 Example

We consider the virtual Lagrangian reconstruction as an inverse problem of the
calculus of variations and the transformation from the self-adjoint subsystem to
field port-Lagrangian systems.

Example 1. Let m = l = 1. The differential equation

�� = −utt + uxxxx + u2uxxx + u3
x (21)

which has Fréchet derivatives: D�� = −D2
t + D4

x + u2D3
x + 3u2

xDx + 2uuxxx and
D∗
�� = −D2

t + D4
x − u2D3

x − 3u2
xDx − 12uxuxx. It is clear that D�� �= D∗

�� . Next,
we consider the virtual Lagrangian Lv of �� . Let ω = �� · du. We can consider a
virtual Lagrangian as follows.

L 1
v (ω) =

∫
ĥ
(
�� · du

)
dx . (22)

However, (22) still has an error,

ζ = ω − d̂ĥ(ω) =
(
3u3

x + 6uuxuxx + u2uxxx

)
du , (23)

in comparison with the Euler-Lagrange expression. If (23) can be canceled out,
(22) can be regarded as the new Lagrangian of the revised system, where

ĥ
(
ω
)

= −1
2
uutt +

1
4
uu3

x +
1
4
u2uxxx +

1
2
uuxxxx ,

d̂ĥ(ω) =
(
−utt − 2u3

x − 6uuxuxx + uxxxx

)
du .
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The second virtual Lagrangian for the compensated system ψ = ω − ζ can be
written as follows:

L 2
v =

∫
ĥ(ψ) dx =

∫ (
−1

2
uutt −

1
2
uu3

x −
3
2
u2uxuxx +

1
2
uuxxxx

)
dx , (24)

�̃� = d̂ĥ(ψ) =
(
−utt − 2u3

x − 6uuxuxx + uxxxx

)
du . (25)

Here, note that d̂ĥ(ψ) = d̂ĥ(ω). Next, we rewrite the system �̃� = ut dut +(
−2u3

x − 6uuxuxx + uxxxx

)
du in the field port-Lagrangian formulation.

d̂L 2
v = −1

2
u dutt +

1
2
u duxxxx −

3
2
u2ux duxx −

3
2
(
uu2

x + u2uxx

)
dux

+
(
−1

2
utt −

1
2
u3

x − 3uuxuxx +
1
2
uxxxx

)
du

= Dt

{
u
}

dut + Dx

[
D3

x

{
1
2
u

}
−Dx

{
3
2
u2ux

}
+

3
2
(
uu2

x + u2uxx

)]
du

+
(
−1

2
u3

x − 3uuxuxx +
1
2
uxxxx

)
du . (26)

From the derivation of the virtual Lagrangian, energy variables are defined in
two different ways. One of them is as follows:

fp = −∂tut , ep = −dut ,

fr = −∂tdu , er = −1
2
u3

x − 3uuxuxx +
1
2
uxxxx ,

fq = −∂tdux , eq = −D3
x

{
1
2
u

}
+ Dx

{
3
2
u2ux

}
− 3

2
(
uu2

x + u2uxx

)
. (27)

In this case, we have a standard form of field port-Lagrangian systems,⎡⎣fp

fr

fq

⎤⎦ =

⎡⎣ 0 −I Dx

I 0 0
Dx 0 0

⎤⎦⎡⎣ep

er

eq

⎤⎦ ,

[
fb

eb

]
=
[

ep|
∂Z

−eq|
∂Z

]
. (28)

The other way, which includes a lot of energy variables unlike the previous
definitions, is as follows:

fp = −∂tut , ep = −dut ,

fr = −∂tdu , er = −1
2
u3

x − 3uuxuxx +
1
2
uxxxx ,

fq1 = −∂tdux , eq1 = −3
2
(
uu2

x + u2uxx

)
,

fq2 = −∂tduxx , eq2 = −3
2
u2ux ,

fq4 = −∂tduxxxx , eq4 =
1
2
u . (29)
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Hence, we obtain the higher order representation:⎡⎢⎢⎢⎢⎣
fp

fr

fq1
fq2
fq4

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0 −I Dx −D2

x −D4
x

I 0 0 0 0
Dx 0 0 0 0
D2

x 0 0 0 0
D4

x 0 0 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

ep

er

eq1
eq2
eq4

⎤⎥⎥⎥⎥⎦ ,

f b =
[
ep|∂Z

, Dxep|∂Z
, ep|∂Z

, D3
xep|∂Z

, D2
xep|∂Z

, Dxep|∂Z
, ep|∂Z

]�
,

eb =
[
−eq1|∂Z

, −eq2|∂Z
, Dxeq2|∂Z

,

− eq4|∂Z
, Dxeq4|∂Z

, −D2
xeq4|∂Z

, D3
xeq4|∂Z

]�
. (30)

This is as different an expression from (28) as it looks. However, if we substitute
the following zero boundary conditions into the boundary ports of (30), we set
the same system.

Ξ0(−eq2, Dxep)
ς(x)

�� Ξ1(Dxeq2, ep) ,

Ξ0(−eq4, D
3
xep)

ς(x)
�� Ξ1(Dxeq4, D

2
xep)

ς(x)
�� · · ·

· · · �� Ξ2(−D2
xeq4, Dxep)

ς(x)
�� Ξ3(D3

xeq4, ep) ,

(31)

where Ξi(e, f) =
∫

(e ·f) dx. The above representations have the same error term
ζ as that of the original system (21).

6 Conclusions

We presented the virtual Lagrangian construction method for non-self-adjoint
infinite-dimensional systems. The key result of this study is that every non-self
adjoint system includes a self-adjoint subsystem and a non-self-adjoint subsys-
tem and the system decomposition is unique. If the control can compensate the
non-self adjoint subsystem, the controlled system becomes a self-adjoint system.
We can apply the formal field-port-Lagrangian representation to the self-adjoint
subsystem. The non-self adjoint subsystem corresponds with a distributed en-
ergy structure. If the distributed energy structure has an internal network of
unidirectional flows, the structure is equal to an irreversible energy structure [3].
In the present study, the concrete meaning of the virtual Lagrangian has not
been mentioned. A more quantitative evaluation of such a subsystem should be
elaborated for actual applications. We will consider this problem in our future
work.
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1 Introduction

The success in a model-based direct discrete-time design for nonlinear sampled-
data control systems depends on the availability of a good discrete-time plant
model to use for the design. Unfortunately, even if the continuous-time model of
a plant is known, we cannot in general compute the exact discrete-time model of
the plant, since it requires computing an explicit analytic solution of a nonlinear
differential equation. One way to solve the problem of finding a good model is by
using an approximate model of the plant. A general framework for stabilization
of sampled-data nonlinear systems via their approximate discrete-time models
was presented in [11]. It is suggested that approximate discrete-time models
can be obtained using various numerical algorithms, such as Runge-Kutta and
multistep methods. Yet, to the best of the authors knowledge, almost all available
results on this direction view the systems as dissipative systems, whereas for
design purpose, there are many systems that are better modeled as Hamiltonian
conservative systems.

The issues of constructing a discrete-time model for Hamiltonian conserva-
tive systems are in general more complicated than those for dissipative systems.
The discretization is usually directed to preserving two important properties,
symplectic mapping and Hamiltonian conservation. Many researchers have been
putting a lot of effort to study the discretization of Hamiltonian conservative sys-
tems, focusing mainly on obtaining algorithms that are computationally robust
to model the dynamics of a Hamiltonian systems for long time simulations (see
[3, 9, 14, 15] and references therein). Unfortunately, although many of the algo-
rithms are satisfactory for numerical modeling, they are often too complicated
to use for control design purposes.

This paper presents a review of the result from [7] and its generalization
to nonseparable, underactuated Hamiltonian systems. Our main results apply

F. Bullo et al. (Eds.): Lag. & Hamil. Methods for Nonlin. Ctrl., LNCIS 366, pp. 87–98, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007



88 D.S. Laila and A. Astolfi

the idea of making the Lyapunov difference more negative than what is ob-
tained when using an emulation controller. This approach helps avoiding loss
of stability (due to the loss of Hamiltonian conservation under sampling) that
inevitably occurs when we use emulation controller. For fully actuated systems,
under certain conditions, this goal is achieved simply by replacing a gradient in
continuous-time design with a discrete gradient in the discrete-time design using
the coordinate increment discrete gradient [4]. Further, the generalization of our
design obtained by modifying the discrete gradient to guarantee the decrease of
the Lyapunov difference when applying our result to underactuated systems is
presented. An example is provided to illustrate the usefulness of the results.

2 Preliminaries

2.1 Definitions and Notation

The set of real and natural numbers (including 0) are denoted respectively
by R and N. Given an arbitrary matrix G, we denote the transpose and the
Moore-Penrose inverse of G by G� and G+, respectively. Moreover, IG :=
G(G�G)−1G� = GG+ and OG := I − IG. If G is invertible, then IG = I
and OG = O, where I and O are the identity matrix and the zero matrix, re-
spectively. For any function H(i, j), we define ∇iH(i, j) := ∂H(i, j)/∂i, and
similar definition holds for the discrete gradient ∇iH(i, j) (more details in Sub-
section 2.3). Due to limited space the arguments of functions are often dropped
whenever they are clear from the context.

Consider continuous-time Hamiltonian systems[
q̇
ṗ

]
=
[

0 In

−In 0

] [
∇qH
∇pH

]
+
[

0
G(q)

]
u, (1)

where p ∈ Rn and q ∈ Rn are the states, and u ∈ Rm, m ≤ n, is the control.
The matrix G ∈ Rn×m. If m = n the system is called fully actuated, whereas
if m < n it is called underactuated. The Hamiltonian function of the system is
defined as the sum of the kinetic and the potential energy,

H(q, p) = K(q, p) + V (q) =
1
2
p�M−1(q)p + V (q), (2)

where M(·) is the symmetric inertia matrix. System (1) is called a separable
Hamiltonian system if the matrix M is constant, i.e.

H(q, p) = K(p) + V (q) =
1
2
p�M−1p + V (q). (3)

2.2 Continuous-Time IDA-PBC Design

The design method we are developing in this paper is known as IDA-PBC design,
which is well-known in the continuous-time context as a powerful tool to solve
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the stabilization problem for Hamiltonian systems [13]. Although IDA-PBC de-
sign is applicable to a broader class of systems (see [1]), it applies naturally to
Hamiltonian systems due to the special structure of this class of systems. The
idea is to construct a controller for system (1) so that the stabilization is achieved
assigning a desired energy function

Hd(q, p) = Kd(p, q) + Vd(q) =
1
2
p�M−1

d (q)p + Vd(q) (4)

that has an isolated minimum at the desired equilibrium point (qe, 0) of the
closed-loop system. The IDA-PBC design consists of two steps. First, design
the energy shaping controller ues to reshape the total energy of the system to
obtain the target dynamic; second, design the damping injection controller udi

to achieve asymptotic stability. Hence, an IDA-PBC controller is of the form

u = ues(q, p) + udi(q, p). (5)

The desired Hamiltonian dynamics take the form[
q̇
ṗ

]
= [Jd(q, p)−Rd(q, p)]

[
∇qHd

∇pHd

]
, (6)

where

Jd = −J�
d =

[
0 M−1Md

−MdM
−1 J2(q, p)

]
; Rd = R�

d =
[
0 0
0 GKvG

�

]
,

with Kv = K�
v > 0 and J2(·) skew symmetric. The controller ues is obtained by

solving[
0 In

−In 0

] [
∇qH
∇pH

]
+
[

0
G(q)

]
ues =

[
0 M−1Md

−MdM
−1 J2(q, p)

] [
∇qHd

∇pHd

]
. (7)

Note that for separable Hamiltonian systems, the parameter J2 can be set to
zero (see [13]). The first row of (7) is directly satisfied, and the second row can
be written as

Gues = ∇qH −MdM
−1∇qHd + J2M

−1
d p. (8)

If G is full column rank (not necessarily invertible), the following constraint must
be satisfied:

G⊥{∇qH −MdM
−1∇qHd + J2M

−1
d p
}

= 0, (9)

with G⊥ a full rank left annihilator of G (G⊥G = 0). If PDE (9) is solvable, ues

is obtained as

ues = G+(∇qH −MdM
−1∇qHd + J2M

−1
d p
)
. (10)

The target dynamics when applying ues also represent a Hamiltonian system.
Hence the energy of the new dynamics is also conserved. Moreover, the damping
injection controller udi is constructed as

udi = −KvG
�∇pHd , kv > 0 (11)

which drives the state to the equilibrium point, provided that a detectability
condition is satisfied.
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2.3 Discrete-Time Model

As shown in Section 2.2, the objective of designing the energy shaping controller
ues is to shape the total energy of the system while keeping the closed-loop
system conservative. For this, we are free to choose a method to construct the
discrete-time model of the system that would lead to almost conserving the
desired energy function with the discrete-time energy shaping controller. We
choose to use the Euler model, which is not Hamiltonian conserving, but better
preserves the Hamiltonian structure of the plant, i.e.

q(k + 1) = q(k) + T q̇(k)
p(k + 1) = p(k) + T ṗ(k),

(12)

with q(k) := q(kT ) and p(k) := p(kT ), k ∈ N, and T > 0 the sampling period.
The formulae for constructing the IDA-PBC controller involve computing the

gradient of the Hamiltonian. Recall that for a continuous-time function H(x),
x := (q p)�, the gradient is defined as

∇H(x) := gradH(x) =
[
∂H(x)
∂x1

, · · · , ∂H(x)
∂xn

]�
.

In numerical analysis, the discrete-time analogy of the gradient of a function is
called a discrete gradient. There are various forms of discrete gradients, which are
introduced based on the purpose of use and applications. In general, a discrete
gradient is defined in [3] as follows.

Definition 1. Let H(x) be a differentiable function of x ∈ Rn. Then ∇H(x(k),
x(k + 1)) is a discrete gradient of H(x) if it is continuous and{

∇H(x(k), x(k + 1))�[x(k + 1)− x(k)] = H(x(k + 1))−H(x(k))
∇H(x(k), x(k)) = ∇H(x) .

�

In this paper, we use the coordinate increment discrete gradient introduced in
[4]. We also use the standard definition of asymptotic stability (AS), semiglobal
practical asymptotic stability (SPAS) and semiglobal practical asymptotic sta-
bility Lyapunov function [5, 11].

3 Main Results

To begin with, we present a simple example to illustrate the ideas that motivate
our main results.

3.1 Motivating Example

Given the dynamic model of a nonlinear pendulum

q̇ = p, ṗ = − sin(q) + u. (13)
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Note that this system belongs to the class of separable Hamiltonian systems,
as the Hamiltonian of this system is

H(q, p) = K(p) + V (q) = p2/2− cos(q). (14)

The equilibrium point to be stabilized is the origin. Choosing Md = I, Vd =
− cos(q) + k1

2 q2 + 1, k1 ≥ 1 and J2 = 0, we assign the desired energy function

Hd(q, p) = Kd(p) + Vd(q) =
1
2
p2 − cos(q) +

k1

2
q2 + 1.

The energy shaping and the damping injection controllers for the system (13)
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Fig. 1. States trajectory of the nonlinear pendulum

are obtained as

ues(t) = ∇qH −MdM
−1∇qHd = −k1q, (15a)

udi(t) = −kvG
�∇pHd = −kvp, (15b)

with kv > 0. Applying u(t) := ues(t) + udi(t) to (13), yields Ḣd(p, q) = −kvp2,
which, by LaSalle Invariance Principle, shows that u(t) asymptotically stabilizes
the system (13). Note that the emulation controller u(k) := ues(k) + udi(k)
obtained by sample and hold of the controller u(t) is a SPAS controller for the
plant (13) [6]. Now we replace the controller (15a) with the following discrete-
time controller1

uT
es(k) = ∇qH(q(k), p(k))−MdM

−1∇qHd(k, k + 1) ≈ ues(k)− k1

2
Tp(k), (16)

for T sufficiently small (so that sin(Tα) ≈ Tα and cos(Tα) ≈ 1), and let uT
di(k) =

udi(k).
1 Hd(k, k + 1) := Hd(q(k), p(k), q(k + 1), p(k + 1)).
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Taking the trajectory of the continuous-time system as reference,
Figure 1 shows that applying the discrete-time controller uT (k) := uT

es(k)+uT
di(k)

keeps the trajectory of the closed-loop system closer to the reference than using
the emulation controller u(k). In the simulation we have used the initial state
(q◦, p◦) = (π

2 − 0.2, 1
2 ), k1 = 1, kv = 1 and T = 0.35. This phenomenon is partly

explained by Figure 2, which displays the desired Hamiltonian function when ap-
plying only the energy shaping controller to the plant. Applying the controllers
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Fig. 2. Desired energy function Hd with kv = 0

(16) and (15a) respectively to the Euler model of (13) and then computing the

difference between ∆H
uT

es

d and ∆Hues

d , the corresponding desired energy differ-

ence with each controller, we obtain ∆H
uT

es

d −∆Hues

d = −k1
2 T 2p2+O(T 3), which

shows that ∆H
uT

es

d is more negative than ∆Hues

d in a practical sense. With the
same damping injection controller, we see in Figure 1 that the discrete-time
controller uT (k) outperforms the emulation controller u(k).

Remark 1. It is known that Euler approximation is not Hamiltonian conserving.
To avoid confusion about the motivation of using this method in our construction
we emphasize that IDA-PBC design does not involve Hamiltonian conservation
as in the numerical analysis context and we need to distinguish these two dif-
ferent issues. Constructing ues is not aimed to conserve the Hamiltonian of the
system, but to transform the system to another Hamiltonian system by using
feedback and reshaping the energy of the system (defining the desired Hamil-
tonian). Therefore, the use of Euler approximation in this context is justified.

�

3.2 Discrete-Time IDA-PBC Design

In this subsection we present our main results, namely the discrete-time IDA-
PBC design. We consider a class of Hamiltonian systems (1) with Hamiltonian
(2). The Euler model of system (1) is
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q(k + 1) = q(k) + T∇pH(q(k), p(k))

p(k + 1) = p(k)− T
(
∇qH(q(k), p(k))−Gu(k)

)
.

(17)

Suppose all conditions of the continuous-time design hold, and we have assigned
the desired energy function (4) for the system. We are now ready to state our
main results.

A. Fully actuated separable Hamiltonian systems. We consider the class of sep-
arable Hamiltonian systems, a considerably simple subclass of Hamiltonian sys-
tems that is still practical in linear system design. Suppose the system is fully
actuated, i.e. the matrix G is full rank and invertible. We state the following
theorem.

Theorem 1. Consider the Euler model (17) of the separable Hamiltonian system
(1) with Hamiltonian (3). The discrete-time controller uT = uT

es + uT
di where

uT
es = G+

(
∇qV −MdM

−1∇qVd

)
(18a)

uT
di = −KvG

�∇pKd(p) = −KvG
�M−1

d p, (18b)

with Kv = K�
v > 0 and ∇qVd := ∇qVd(q(k), q(k + 1)) the coordinate increment

discrete gradient of Vd, is a SPAS controller for the Euler model (17). Moreover,
the function

W (q, p) = Hd(q, p) + εqT p, (19)

with ε > 0 sufficiently small is a SPAS Lyapunov function for the system (17),
(18). �

Proof of Theorem 1: Suppose Md and Vd have been obtained by assigning the
desired energy function Hd for the system in the same way as in the continuous-
time design. Comparing the formulae of the discrete-time controller (18) and the
formulae of the continuous-time controller (10), (11), the only different is the
term ∇qVd that appears in (18a), replacing ∇qVd of (10). Since Euler method
is used to build the discrete-time model of the plant, the coordinate increment
discrete gradient can then be written as

∇qVd = ∇qVd + TLV q̇ = ∇qVd + TLV M−1p, (20)

where LV is an n× n matrix. Hence, the difference between the two controllers
can be written as

uT (k)− u(k) = uT
es(k) + uT

di(k)− ues(k)− udi(k)

= −G+MdM
−1 (∇qVd −∇qHd

)
= −TG+MdM

−1LV M−1p

=: −TG+MdMp =: T ũ(k),

where we defined M := M−1LV M−1. Hence, the controller (18) takes form
uT (k) := u(k) + T ũ(k).
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We use the fact that limT→0 uT (kT ) → u(t), where u(t) is the AS controller
(5), to conclude practical asymptotic stability of the closed-loop system. The
semiglobal property comes from the fact that T is also dependent on the set in
which the initial states are defined. Moreover,

∆W (q, p) = Hd(q(k + 1), p(k + 1)) + εp(k + 1)�q(k + 1)

−Hd(q(k), p(k)) − εp(k)�q(k)

= −TKv(G�M−1
d p)�(G�M−1

d p)− T 2p�Mp + εTp�M−1p

+ εT (MdM
−1∇qVd)�q − T 2ε(MdM

−1LV M−1p)�q + O(T 3).

Note that since ∇qVd(0) = 0, using the Mean Value Theorem we can write
∇qVd(q) = ∇qVd(q)−∇qVd(0) ≤ (∇qqVd(q))�θq = θL�

V q with θ ∈ (0, 1). Hence

∆W (q, p) = −Tp�M1p− εT (MdM
−1θLV q)�q

− T 2ε(MdM
−1LV M−1p)�q + O(T 3)

= −Tp�M1p− εθT q�M2q + O(T 3),

with M1 := (G�M−1
d )�(G�M−1

d ) + TM − εM−1 and M2 := (MdM
−1LV )�

positive definite for T > 0 and ε > 0 sufficiently small. Hence ∆W (q, p) is
negative definite for T > 0 and ε > 0 sufficiently small, and therefore W is a
strict Lyapunov function for the closed-loop system (17), (18), and this completes
the proof of the theorem. �

Discussion 1: The proof of Theorem 1 provides the qualitative argument that
the discrete-time controller (18) is a SPAS controller for the plant (17). In fact
we observe in the motivating example in Subsection 3.1 that our discrete-time
controller significantly outperforms the emulation controller which is also a SPAS
controller for the same plant. To clarify this, we concentrate on the effect of the
energy shaping controller, on which the two controllers differ.

The desired Hamiltonian difference for the discrete-time model is computed
as

∆Hd = Hd(q(k + 1), p(k + 1))−Hd(q(k), p(k))

=
1
2
p(k + 1)�M−1

d p(k + 1) + Vd(q(k + 1))− 1
2
p(k)�M−1

d p(k)− Vd(q(k)).

By direct calculation and using the Mean Value Theorem, applying the controller
(18a) to Euler model (17) yields

∆H
uT

es

d = −T 2p�M−1LV M−1p + O(T 2), (21)

with O(T 2) sign indefinite. Replacing (18a) with the emulation of controller
(10), we can compute ∆Hues

d . Without loss of generality, due to full actuation,
we assume that Vd(q) is convex and at least twice differentiable with respect to

q. Subtracting ∆Hues

d from ∆H
uT

es

d we obtain
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∆H
uT

es

d −∆Hues

d = −T 2p�Mp + O(T 3),

where M := M−1LV M−1 and LV := ∇qqVd are positive semidefinite matrices.

The fact that ∆H
uT

es

d is more negative than ∆Hues

d explains why uT (k) performs
better than u(k).

B. Underactuated, nonseparable Hamiltonian systems. We have considered fully
actuated systems when stating Theorem 1. However, most mechanical systems,
for what Hamiltonian model is used, are underactuated. The next result, which is
proved in [8], is a generalization of Theorem 1 to a more general class of underac-
tuated Hamiltonian systems. We emphasize that for nonseparable Hamiltonian
systems (1) the inertia matrices M(·) and Md(·) are functions of q.

Theorem 2. Consider the Euler model (17) of Hamiltonian system (1) with
Hamiltonian (2). Then the discrete-time controller uT = uT

es + uT
di where

uT
es = G+

(
∇qH −MdM

−1
[∆Hd

∆q

]
+ J2M

−1
d p
)

(22a)

uT
di = −KvG

�∇pHd = −KvG
�M−1

d p, (22b)

with Kv = K�
v > 0,

[
∆Hd

∆q

]
:= ∇qHd + TκLV (q)M−1p, κ > 0 and a matrix

LV such that M := M−1
d IGMdM

−1LV M−1 is positive semidefinite, is a SPAS
controller for the Euler model (17). �

Solving the PDEs in the construction of the controller (22) in Theorem 2 is
in general very difficult due to the system that is nonseparable. To solve this
problem, linearized model of the plant at the equilibrium point which is then in
the form of separable Hamiltonian system may be used to design the controller.
In this case, the problem reduces to the case of Theorem 1. However, while with
the controller (22) the stabilization is achieved in a semiglobal practical sense,
with linearization we can only obtain local stability. Nevertheless, this technique
is useful when solving the stabilization problem of, for instance, a pendulum
system where the swing up and the stabilization can be seen as two separate
problems. The example presented in Section 4 shows that the Euler based IDA-
PBC controller obtained using a linearized model of the plant results in a larger
domain of attraction (DOA) than the DOA with emulated linearized controller.

Corollary 1. Consider the Euler model (17) of the linearization of the Hamil-
tonian system (1). Then the discrete-time controller uT = uT

es + uT
di where uT

es

and uT
di follow (18a) and (18b) respectively, is a locally asymptotically stabilizing

controller for the Euler model (17) of the original nonlinear Hamiltonian system
(1). �

Remark 2. In Theorems 1 and 2 (as well as Corollary 1) we have solved the sta-
bilization problem for the approximate model (17), whereas in application we
are more interested in the stability of the sampled-data system, when imple-
menting the controller (22) to stabilize the continuous-time plant (1). Using the
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results of [12, 10], we conclude SPAS of the sampled-data system from SPAS
of the closed-loop approximate model, the consistency of the Euler model (17)
with respect to the exact discrete-time model of (1), uniform boundedness of the
controller (22) and uniform boundedness of the sampled-data solutions. �

4 Example

We consider the stabilization of a cart and pendulum system [2], with

M =
[

α β cos(q1)
β cos(q1) γ

]
, G =

[
0
1

]
(23)

and V (q) = c cos(q1), where α := ml2, β := ml, γ := Ms + m and c := mgl
with the cart mass Ms = 0.14kg, the pendulum bob mass m = 0.44kg, the
pendulum length l = 0.215m and g = 9.8ms−2. q1 = θ is the pendulum angle
from its upright position and q2 = s is the cart position. The control objective
is to stabilize the continuous-time system at the origin. As the controllers to be
designed are implemented digitally, the system is a sampled-data control system.
Assuming that the swing up of the pendulum is taken care by a separate control,
we use the linearization of the kinetic energy about the upright position of the
pendulum for the design. Hence in the matrix M we use the approximation
cos(q1) ≈ 1.

Continuous-time controller design: A continuous-time IDA-PBC controller for
system (23) is first designed using the construction provided in [13]. The desired
inertia matrix is chosen in the form

Md =
[
a1 a2
a2 a3

]
(24)

where a1 := α, a2 := αγ
β + ν and a3 :=

( αγ
β +ν)2

α + ν, and the desired potential
energy in the form

Vd =
c(αγ − β2)
a1γ − a2β

cos(q1) +
(

q2 +
a1β − a2γ

a1γ − a2β
q1

)2

:= −σ cos(q1) + (q2 + λq1)
2
.

Following the design procedure given in [13], we obtain an IDA-PBC controller
as follow,

ues = k1

[(
MsL

3

ν
+ l2
)

q1 + lq2

]
+
(
ml + Ms + m +

ν

l

)
g sin(q1),

udi = kv

(
(Ms + m)l + ν

νml2
p1 −

1
ν

p2

)
.

(25)

Discrete-time controller design: Applying Corollary 1, we obtain a discrete-time
IDA-PBC controller as follows.



Direct Discrete-Time Design for Sampled-Data Hamiltonian Control Systems 97

uT
es(k) = ues(k)− TG+MdM

−1LV M−1p(k)

uT
di(k) = udi(k)

(26)

where

LV = k2

[
σ sin(q1) + k1λ

2 k1λ
k1λ k1

]
, σ < 0, k2 > 0.

Both controllers (25) and (26) SPA stabilize the closed-loop linearized model
and locally asymptotically stabilize the closed-loop nonlinear system. In this ex-
ample we apply the controllers to control the original nonlinear plant. For initial
conditions that are relatively close to the equilibrium and with fast sampling,
both controllers (25) and (26) perform well in stabilizing the closed-loop sys-
tem. However, as the initial condition gets larger and the sampling is slower,
the controller (25) destabilizes the equilibrium point of the system whereas the
controller (26) still performs very well. Figure (3) shows the simulation results
for (q10, q20, p10, p20) = (0.15,−0.5, 0.1, 0), ν = 0.1, k1 = 10, kv = 1, k2 = 8 and
T = 0.01.
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Fig. 3. Response of the pendulum on cart system
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1 Introduction

A bilateral telemanipulator is a robotic system that allows the interaction with
remote environments and it is composed by a controlled local robot (the master)
and a controlled remote robot (the slave) interconnected through a communica-
tion channel. The motion imposed to the master by the human is transmitted to
the slave which moves accordingly; when the slave interacts with a remote envi-
ronment, the interaction force is fed back to the master side in order to improve
the perception of the remote environment felt by the user. Passivity theory is a
very suitable tool for the implementation of bilateral telemanipulation schemes
over delayed communication channels. In passivity based telemanipulation, both
master and slave are controlled by means of passive impedance controllers and
master and slave sides are interconnected through a scattering based communi-
cation channel [1, 8] which allows an exchange of information which is passive
independently of any constant communication delay. In this way, the overall tele-
manipulation system is passive and, consequently, its behavior is stable both in
case of free motion and in case of interaction with any passive environment. In
[12, 11], a generic framework for geometric telemanipulation of port-Hamiltonian
systems [13] has been proposed; master and slave are interconnected through in-
trinsically passive port-Hamiltonian impedance controllers which allow to shape
the energetic behavior of the robots and to achieve desired dynamic properties
at master and slave sides. Local and remote sides are interconnected through
a scattering based communication channel that allows a lossless exchange of
energy.

When using scattering based communication channels, local and remote sides
exchange only velocity and force information and this can cause the rise of a
position error between master and slave which is particularly evident during in-
teraction tasks [3, 6]. Thus, the human operator feels the remote environment
as if it was at a position different from the real one and this kinematic mis-
match degrades the performances of the overall system. In [14, 8] a physical

F. Bullo et al. (Eds.): Lag. & Hamil. Methods for Nonlin. Ctrl., LNCIS 366, pp. 99–110, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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interpretation of a scattering based communication channel is given and it is
shown that the magnitude of the position error can be determined by measuring
the interaction force between the slave and the environment and by the knowl-
edge of the impedance of the scattering transformation. Several works addressed
the problem of position tracking in telemanipulation, see for example [3, 6, 8].

In [2] a linear telemanipulator with a linear intrinsically passive controllers is
considered and the controller is endowed with a virtual variable rest length spring
that allows to compensate the position error without altering the impedance
perceived by the operator. In order to preserve passivity, part of the energy
injected into the system is used for changing the rest length of the spring; this
energy deviation introduces a spurious effect which deteriorates the perception
of the user and, furthermore, it can lead to slow transients in the compensation.
In this contribution we exploit the port-Hamiltonian framework to extend the
ideas reported in [2] to nonlinear telemanipulators. Furthermore, we show how it
is possible to exploit the interconnection structure of port-Hamiltonian systems
to implement the kinematic compensation without requiring any deviation of
the energy introduced by the user and, consequently, avoiding any disturbing
spurious effect and the limitation on the transient behavior of the compensation
phase.

The rest of the document is organized as follows: in Sec. 2 some background on
port-Hamiltonian systems and on port-Hamiltonian telemanipulation is given.
In Sec. 3 we show how to modify the interconnection structure of the port-
Hamiltonian controller at the slave side to store the energy that would be dissi-
pated in the impedance matching process and in Sec. 4 we will further modify the
slave controller for exploiting the stored energy for compensating the position
error. In Sec. 5 some simulations to validate the obtained results are proposed
and in Sec. 6 some conclusions are drawn.

2 Background

2.1 Port-Hamiltonian Systems

We can consider a port-Hamiltonian system as composed of a state manifold X , a
lower bounded energy function H : X → R corresponding to the internal energy,
a network structure, represented by a skew-symmetric matrix, D(x) = −DT (x)
whose graph has the mathematical structure of a Dirac structure, which a state
dependent power continuous interconnection structure, and an interconnection
port represented by a pair of dual power variables (e, f) ∈ V ∗ × V called effort
and flow respectively. This port is used to interact energetically with the system:
the power supplied through a port is equal to eT f . We can furthermore split the
interaction port in more sub-ports, each of which can be used to model differ-
ent power flows. We will indicate with the subscript I the power ports by means
of which the system interacts with the rest of the world, with the subscript C the
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power ports associated with the storage of energy and with the subscript R the
power ports relative to power dissipation. Summarizing, we have:⎛⎝eI

fC

eR

⎞⎠ = D(x)

⎛⎝fI

eC

fR

⎞⎠ (1)

where D(x) is a skew symmetric matrix representing the Dirac structure. Loosely
speaking, a port-Hamiltonian system is made up of a set of energy processing
elements (energy storing, energy dissipating and sources of energy) that exchange
energy by means of their power ports through a set of energy paths which form a
power preserving interconnection that can be modeled as a Dirac structure. Using
Eq.(1), it can be easily seen that port-Hamiltonian systems are passive because
of the skew-symmetry of D(x). A very broad class of physical systems, both
linear and non linear, can be modeled within the port-Hamiltonian framework
which can therefore be used to model telemanipulation systems endowed with
nonlinear robots. For further information the reader is addressed to [13].

2.2 Port-Hamiltonian Based Bilateral Telemanipulation

The port-Hamiltonian based bilateral telemanipulation scheme is represented in
Fig. 1 in a bond-graph notation. Both master and slave robots can be modeled as
port-Hamiltonian systems. The slave is interconnected in a power preserving way
to a port-Hamiltonian controller which acts as an intrinsically passive impedance
controller [11]. In the considered scheme, we use only one impedance controller
at the slave side, as recently proposed in [8], instead of two impedance con-
trollers, as proposed in [12, 11]. Master and slave sides exchange power through
a transmission line that is characterized, in general, by a non negligible com-
munication delay. Each power port by means of which master and slave sides
exchange power through the communication channel is characterized by an effort
e(t) and by a flow f(t) and it can be equivalently represented by an incoming
power wave s+(t) and an outgoing power wave s−(t) defined as
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⎧⎨⎩
s+(t) = 1√

2
N−1(e(t) + Zf(t))

s−(t) = 1√
2
N−1(e(t)− Zf(t))

(2)

where Z = NN > 0 is the symmetric positive definite impedance of the scatter-
ing transformation. In order to get a passive exchange of energy independently of
any constant communication delay, the power ports connected to the transmis-
sion line are decomposed into a pair of scattering variables which are transmitted
along the channel [7, 12]. The controller is used to impose the impedance per-
ceived by the user and it can be physically interpreted as a set of (possibly
non linear, [9]) elastic, inertial and dissipative elements interconnected together.
In order to avoid the wave reflection phenomenon [8, 12], which arises when
using scattering based communication channels and which highly degrades per-
formances, the controller is endowed with a dissipative element (RD) which im-
plements the so called impedance matching. This element must be characterized
by the following port behavior:

eD = ZfD (3)

where (eD, fD) is the power port of the dissipative element, fD = fs and Z is
the impedance of the scattering transformation.

Since a port-Hamiltonian based bilateral telemanipulator is made up of pas-
sive subsystems interconnected in a power preserving way, the overall system
is intrinsically passive and, therefore, characterized by a stable behavior. For
further details the reader is addressed to [12, 11].

3 Impedance Matching Through a Storing Element

The role of the dissipating element added to the controller to implement
impedance matching, is to absorb the energy content of the scattering wave
that otherwise would be reflected back to the master side. In order to use the
energy that is absorbed for compensating the position error, we would like to
store, instead of dissipating, the energy absorbed during the impedance match-
ing process. Thus, we have to replace the dissipating element with a storing
element, that we call tank. The port behavior of an energy storing element is
described by ⎧⎨⎩

ẋT = fC

eC = ∂HT

∂xT

(4)

where (eC , fC) is the power port through which the element exchanges energy,
xC is the state and HT (·) is a lower bounded function corresponding to the
stored energy. If we simply replaced the dissipative element RD with a storing
element we wouldn’t achieve the port behavior described by Eq.(3) and, conse-
quently, we wouldn’t match the impedance of the communication channel. This
is mainly due to the fact that energy storing elements and energy dissipating el-
ements process energy in two different ways: the first perform a reversible energy
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transformation (i.e. energy can be both absorbed and released) while the latter
perform an irreversible energy transformation (i.e. energy can travel only in one
direction). In order to keep on implementing the required impedance matching,
we need to force the port behavior reported in Eq.(3) and, therefore, we need
to force the storing element to process energy irreversibly. The way in which an
element processes energy is determined either by its constitutive equations or
by the energetic interconnection that joins it to the rest of the system. Thus,
we have to modify the interconnection structure that joins the tank to the rest
of the controller in such a way that energy is always absorbed and that the
port behavior reported in Eq.(3) is reproduced. In the following we will indicate
with diag(ai), i = 1, . . . , n the n× n diagonal matrix whose diagonal entries are
a1 . . . an. Furthermore, we will drop the dependence on time of efforts and flows
to lighten the notation.

Proposition 1. Consider the control structure reported in Fig. 2 where IMITIF
represents the following modulation law:⎧⎨⎩fT = mbfD

eD = mT
b eT

mb = Zdiag(
fDi

eTi

) i = 1, . . . , n (5)

where fDi and eTi represent the ith component of the vectors fD and eT respec-
tively. If eTi �= 0, the tank element absorbs energy and the behavior implemented
at the port (eD, fD) is that reported in Eq.(3).

Proof. We first prove that energy is always absorbed by the tank. The power
flowing into the tank is given by eT

T fT . Using Eq.(5) we have that:

eT
T fT = eT

T mbfD = eT
T Zdiag(

fDi

eTi

)fD (6)

since Z is symmetric and positive definite we can write:
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eT
T fT = eT

T diag(
fDi

eTi

)︸ ︷︷ ︸
fT

D

ZfD = fT
DZfD > 0 (7)

Thus, power is always flowing into the tank and, therefore, the tank always
absorbs energy. Furthermore we have that

eD = mT
b eT = diag(

fDi

eTi

)ZT eT = Z diag(
fDi

eTi

)eT︸ ︷︷ ︸
fD

= ZfD (8)

which proves that the behavior implemented at the port (eD, fD) is that reported
in Eq.(3)

Remark 1. In case eTi = ∂HT

∂xTi
= 0, the modulation reported in Eq.(5) is not

well defined. This situation can be avoided by choosing, for example, an energy
tank characterized by a function 1/2xT

TKxT with K diagonal positive definite
and by precharging the tank by considering an initial configuration xT such that
xTi > 0 ∀i. In this way, since the tank always absorbs energy following Eq.(3),
it is impossible that one of the components of eT goes to zero.

Since their port behavior is the same, the user perceives the dissipative element
used to implement the impedance matching proposed in [12] and the energy tank
in the same way. Thus the energy storing process is completely hidden to the
user that can keep on using the system without taking care of the modification
made on the control structure and without feeling any spurious dynamic effect
while charging the tank.

Finally, let us remark that the modulation reported in Eq.(5) is power pre-
serving since it can be easily seen that eT

T fT = eT
DfD and therefore we can embed

it in the interconnection structure that joins all the energy processing elements
of the controller achieving a new augmented power preserving interconnection
structure Ica(x, xT ). The controller keeps on being passive, which is our main ob-
jective, but it cannot be modeled as a port-Hamiltonian system anymore since its
interconnection structure cannot be modeled as a Dirac structure, which cannot
be modulated by power variables [13]. This is due to the fact that for modeling
irreversible energy transfers towards storing elements, it is necessary to consider
a nonlinear (e.g. depending on power variables) interconnection structure, see
[4, 5] for further details.

4 The Transfer Interconnection Structure

In port-Hamiltonian telemanipulation, the controller always contains at least
one elastic element which is used to implement the stiffness of the impedance
perceived by the human operator [12, 11]. An elastic element is an energy storing
element characterized by a power port (e, f) through which it exchanges energy
and by a behavior described by
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ẋ(t) = f(t)

e(t) = ∂H
∂x

(9)

where x is the state associated to the energy storing process, H(x − l) is the
lower bounded energy function, usually characterized by a global minimum con-
figuration, and l is a constant configuration that models the rest length of the
elastic element, namely an offset in its dynamic behavior. In order to consider
variable rest length elements, we model l as a state variable and we endow the
elastic element with an extra power port (eL, fL) through which it is possible to
exchange energy for modifying l [9]. Thus the behavior of a variable rest length
spring is represented by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = f(t)

l̇(t) = fL(t)

e(t) = ∂H
∂x

eL(t) = ∂H
∂l

(10)

In [8] it is shown that, at steady state, the position mismatch that takes place
between master and slave sides is given by:

∆ = TZ−1eenv (11)

where eenv is the effort applied by the remote environment, T is the transmission
delay and Z is the impedance of the scattering transformation. Thus, during
contact tasks, the user perceives the remote environment as if it was in a different
position. To give a proper perception, at steady state, for the same force on
both sides the positions of master and slave should be the same. The idea for
eliminating this error is to introduce an offset that compensates it by changing
the rest length of the elastic element of the controller. Once the compensation
has been done, the user can interact with the environment (e.g. sliding over a
surface while applying a certain force) that is felt at its effective position at the
master side.

To change the rest length, it is necessary to exchange energy via the length
port (eL, fL). In order to preserve the passivity of the overall scheme we do not
have to inject extra energy into the system for the compensation process and,
therefore, we want to use the energy stored into the tank we described in Sec. 3.
Thus, it is necessary to be able to drive energy from the tank to the length
port and viceversa. In order to implement this energy exchange we interpose an
interconnection structure, that we call transfer interconnection structure, that
joins the length port and the tank port. The following result can be proven:

Proposition 2. Let (eT , fT ) and (eL, fL) be the tank port and the length port re-
spectively and interconnect them with the interconnection structure IT described
by
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fT

fL

)
=
(

0 −mt

mt 0

)(
eT

eL

)
(12)

where
mt = diag(γieLieTi) i = 1 . . . n (13)

If γi > 0 ∀i then energy is extracted from the tank and injected into the length
port while if γi < 0 ∀i then energy is extracted from the length port and injected
into the tank.

Proof. Using Eq.(12), we have that

eT
LfL = eT

Ldiag(γieLieTi)eT =
n∑

i=0

γi(eLi)
2(eTi)

2 (14)

and that
eT

LfL = eT
LmteT = −eT

TfT (15)

Thus, from Eq.(14) and Eq.(15), we have that the transfer interconnection struc-
ture is power preserving and that if γi > 0 ∀i, then −eT

TfT = eT
LfL > 0 which

means that energy is extracted from the tank port and injected in the length
port. Instead, if γi < 0 ∀i we have that −eT

TfT = eT
LfL < 0 which means that

energy is extracted from the length port and injected into the tank port.

Thus, introducing the interconnection structure described in Eq.(12) between
the tank port and the length port it is possible to drive the energy flow by prop-
erly setting the control parameter γ. The signs of the elements of γ determine
the direction of the power transfer while their magnitudes can be used to boost
the power transfer allowing us to achieve an energy transfer which is as fast as
desired. In order to eliminate the position error introduced by the scattering
based communication channel, we need to introduce an offset that compensates
what reported in Eq.(11). Thus, the target rest length of the elastic element in-
troduced in the controller has to be set to lT = −TZ−1eenv the effort exchanged
with the environment eenv can be measured by means of force sensors on the
slave robot. For each component of the rest length, we need to properly set the
control parameters γi depending on whether energy has to be extracted from or
supplied to the length port to reach the target.

Using Eq.(10) it is possible to see that if li < lTi , then the ith component of
the length has to increase and therefore, it is necessary to set fLi > 0. If ∂H

∂li
> 0,

requiring fLi > 0 means requiring a positive power flow towards the length port
and thus, in this case, it is necessary to set γi > 0. On the other hand, if ∂H

∂li
< 0,

requiring fLi > 0 means requiring a negative power flow towards the length port
or, equivalently, a positive power flow towards the tank; thus in this case it is
necessary to set γi < 0. Similar considerations hold in case it is required fLi < 0.
Thus, once the sign of the components of fL is determined by comparing l with
lT , it is necessary to check the sign of the components of ∂H

∂l to determine the
sign of the transfer parameter γ. Summarizing, the following tuning algorithm
can be used:
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• If sign(lTi − li) = sign(∂H
∂li

) then γi > 0

• If sign(lTi − li) �= sign(∂H
∂li

) then γi < 0

Remark 2. The proposed tuning strategy can give rise to chattering phenomena
which can degrade the perception felt by the user. This can be avoided using
standard control techniques as boundary layers [10].

We can now put together the tank implementation described in Sec. 3 and the
energy transfer mechanism described in Eq.(12) to get the overall controller
which is represented in Fig. 3 in a bond graph notation. We can distinguish
two power preserving interconnection structures: Ica and IT interconnected in
a power preserving way. The first derives directly from the port-Hamiltonian
impedance control which implements the dynamics perceived by the user aug-
mented by the modulation reported in Eq.(5). The transfer structure IT allows
us to control the energy transfer between the tank CI T and the length port of
the elastic element CI . When extracting energy from the tank, it is necessary to
be careful. In fact, it is necessary to leave some energy into the tank to avoid the
problems reported in Remark 1. This can be done by setting an energy thresh-
old below which energy extraction is forbidden. It can happen that the energy
stored in the tank is not sufficient for performing the desired rest length vari-
ation; in this case only a partial compensation is achieved. Nevertheless, while
using the telemanipulator, more and more energy is stored in the tank and, since
the energy injected in the elastic element is released back in the tank when the
slave goes from contact to free motion, we will surely arrive at a point where
there will always be a sufficient amount of energy for implementing the required
compensation. Intuitively, the overall controller is passive since the energy used
for implementing the kinematic compensation is that stored into the energy
tank which comes from the impedance matching process. More formally, intrin-
sic passivity of the controller can be proven by recalling that a power preserving
interconnection of two power preserving structures is still power preserving [5].



108 C. Secchi, S. Stramigioli, and C. Fantuzzi

0 5 10 15 20 25 30

0

0.5

1

1.5

(a) Master position with PD con-
troller

0 5 10 15 20 25 30

0

0.5

1

1.5

(b) Slave position with PD con-
troller

0 5 10 15 20 25 30

0

0.5

1

1.5

(c) Master position with the pro-
posed controller

0 5 10 15 20 25 30

0

0.5

1

1.5

(d) Slave position with the pro-
posed controller

Fig. 4. Contact task

Thus, the interconnection of Ica and IT gives a controller made by a nonlinear
power preserving interconnection of energy storing elements, energy dissipating
elements and interaction ports. It can be easily seen that the interconnection
structure can still be represented as a skew-symmetric matrix and that, there-
fore, the controller, even if it cannot be modeled as a port-Hamiltonian system,
is intrinsically passive.

5 Simulations

We consider a simple one degree of freedom telemanipulator where master
and slave are simple masses of 0.5 Kg. The slave is interconnected to a port-
Hamiltonian impedance controller and local and remote sides are joined through
a scattering based communication channel characterized by an impedance Z = 1
and by a transmission delay T = 0.5 s in both senses of communication. The
port-Hamiltonian controller is a simple PD, physically equivalent to the parallel
of a spring with stiffness K = 200 N/m and a damper with dissipation coefficient
b = 1 Nsec/m used to match the impedance of the communication channel.

We consider a contact task and we compare the behaviors of the system
when using a PD controller and the proposed control scheme. The user applies
a constant force eH = 1 N and the slave gets in contact with a rigid visco-
elastic wall characterized by a stiffness Kw = 5000 N/m and by a damping
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bw = 40 Ns/m at position x = 1 m. Master and slave positions are reported in
Fig. 4. The slave robot stops when it meets the wall and the interaction force is
fed back to the master side. In case the PD controller is adopted (Fig. 4(a) and
Fig. 4(b)) we can see that the interaction force is fed back to the master side
through the transmission line and that it equilibrates the force applied by the
user. Nevertheless, because of the scattering based nature of the communication
channel, a significant position mismatch exists between master and slave position
at the equilibrium. Thus, the user experiences a good force feedback but a bad
kinematic feedback. If the proposed control scheme is used, the interaction force
is still fed back to the master side and it equilibrates the force applied by the
user implementing the same force feedback as in the case PD control is used.
Furthermore, when the slave gets in touch with the environment, the rest length
of the spring is changed to introduce an offset that compensates that introduced
by the communication channel; the compensation is passivity preserving since
it uses the energy that is stored in the tank through the impedance matching
process. We can see in Fig. 4(c) and Fig. 4(d) that the position mismatch between
master and slave drastically decreases giving thus to the user both a good force
feedback and a good kinematic feedback.

6 Conclusions

In this contribution we have proposed a novel control algorithm for port-
Hamiltonian based bilateral telemanipulation. It allows to compensate the po-
sition error introduced by the scattering based communication channel during
contact tasks while preserving passivity of the overall scheme without requiring
the direct intervention of the user. The controller that we have obtained is no
more a port-Hamiltonian system but it is still passive and, therefore, the sta-
ble behavior of the overall telemanipulation system is still guaranteed. Future
work aims at an experimental implementation of the proposed algorithm and
at experimentally proving its usefulness in improving the perception of the re-
mote environment. We will also focus on the use of the proposed control strategy
for Internet based communication channels where the communication delay is
variable and some packets can get lost.
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Summary. Interconnection and damping assignment passivity-based control (IDA-
PBC) is a recently developed method for nonlinear controller design. A majority of the
examples of IDA-PBC found in literature are from the electro-mechanical domain. To
show its applicability in other domains, in this work IDA-PBC is used to design a stabi-
lizing controller for a process control example, the four-tank system. Both simulations
and real experiments are provided for this example system.

1 Introduction

Interconnection and damping assignment passivity-based control (IDA-PBC) is
a technique that regulates the behavior of nonlinear systems assigning a desired
port-Hamiltonian structure to the closed loop. IDA-PBC was introduced by [3],
and has been illustrated with examples such as mass-balance systems, electrical
motors, magnetic levitation systems, the inverted pendulum etc. See [2] for a
general survey of IDA-PBC with a list of references. See also [4].

Examples of IDA-PBC applications that are reported in the literature are
mainly from the electrical and mechanical domains. However, the port-
Hamiltonian framework is also applicable to systems and control problems from
the chemical engineering domain and to process control. One of the few examples
of IDA-PBC in process control is the averaging level control problem considered
in [5]. In chemical engineering port-Hamiltonians are not the standard modeling
framework – in many cases there are only identified models without any physical
meaning of the states and the right hand side of the differential equations, in
other cases energy, the key design variable in IDA-PBC, is not so easy to define.
In these cases, IDA-PBC can still be used to find a closed-loop port-Hamiltonian
system with an energy function which does not necessarily have physical mean-
ing, but is suitable as a Lyapunov function guaranteeing stability. In this paper
it will be shown how to use IDA-PBC for a typical example in process control,
namely the four-tank system, and we will discuss issues related to its practical
application.

It is well known that the main obstacle with IDA-PBC is the so-called match-
ing equation for making the closed loop a port-Hamiltonian system. The match-
ing equation consists of a set of PDE’s which generally becomes increasingly
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springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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difficult to solve as the system order increases. Examples in the literature are
hence low-order, typically only two or three states.

The four-tank system considered in this paper is illustrated in Figure 1. It
is a fourth order system, but when the input flows are directed only to the
upper tanks, it consists of two decoupled two-tank subsystems. In this case the
matching equation is easily solved and a control law for the two input flows can
be determined. When part of the input flows are directed to the lower tanks,
the two subsystems are interconnected through the inputs and the full fourth-
order system must be considered when applying IDA-PBC. This makes the four-
tank system a particularly suitable example for looking at what happens when
two subsystems are interconnected. There are similarities in the structure of
the interconnected and the decoupled system, and it is reasonable to assume
that there are also similarities in the solution of the matching equation for the
respective cases.

Tank 1

Tank 3

Tank 2 

Tank 4

Pump 1 Pump 2

γ1 γ2

x1
x2

x4x3

u1 u2

Fig. 1. The four-tank system

The general idea is that IDA-PBC based controller design for an intercon-
nected system in some cases can be done in an incremental fashion by first
finding solutions to smaller decoupled problems. These solutions can then be of
help for finding a solution when the subsystems are interconnected in some way.
Chemical plants are typically high-order systems consisting of several subsystems
which are interconnected via pipes or in cascaded loops etc. Finding a solution
of the matching equation for the whole system is difficult at best. A systematic
way of designing controllers by solving the matching equations “bottom-up” will
make it easier to apply IDA-PBC in process control.

The four-tank system is used as an example in a first attempt to understand
and use these properties. More specifically, it is shown how a solution of the
matching equation for the two-tank system can be used when trying to find a
solution of the matching equation for the full system with interaction through
the input.



IDA-PBC of a Four-Tank System 113

There are only few experimental results with IDA-PBC available in the litera-
ture, most application examples are verified with simulations only. The IDA-PBC
controller derived in this paper for the four-tank system is implemented on a lab
experiment. It is shown how steady state offset due to modelling errors can be
removed by using the internal model principle and adding error states to the
dynamical system.

The paper is organized as follows. In Section 2 a short overview of the IDA-
PBC methodology is given. In Section 3 we apply IDA-PBC to the four-tank
system. Two cases will be discussed, the decoupled case where the matching
equation is easy to solve, and the interconnected case in which the matching
equation gets more complex. The solution in the decoupled case is shown to
be useful in the sense that it helps in finding a solution for the interconnected
case. In Section 4 the controller for the four-tank system is tested both with
simulations and real life experiments. We conclude with Section 5.

2 Basic IDA-PBC Theory

Given an input affine system

ẋ = f(x) + g(x)u (1)

with x ∈ Rn, u ∈ Rm. The idea of IDA-PBC is to make the closed loop with
u = β(x) an explicit port-Hamiltonian system of the form

ẋ = (Jd(x)−Rd(x))∇Hd(x), (2)

where Jd(x) is a skew-symmetrix matrix, Rd(x) is a symmetric, positive semi-
definite matrix and Hd(x) is the Hamiltonian of the closed loop. ∇Hd(x) =
∂
∂xHd(x) is the gradient of Hd(x). To make (1) equal (2), we need to find a
solution of the matching equation

f(x) + g(x)β(x) = (Jd(x) −Rd(x))∇Hd(x), (3)

using Jd(x), Rd(x) and Hd(x) as design variables. The origin of the closed-
loop system is stable if the desired Hamiltonian Hd(x) is positive definite. This
becomes clear when differentiating Hd(x) along closed-loop trajectories:

d
dt

Hd(x) = −∇T Hd(x)Rd(x)∇Hd(x) ≤ 0. (4)

Thus Hd(x) > 0 serves as a Lyapunov function and the origin of the closed loop
is stable. Asymptotic stability is guaranteed if Rd(x) is strictly positive definite.
If Rd(x) and Hd(x) are only locally positive definite, local stability is guaranteed.

There are different strategies for solving the matching equation. The approach
used here is to split (3) into two parts; a fully actuated part and an un-actuated
part. Let g⊥(x) denote a maximum rank left annihilator of g(x) and g†(x) a left
inverse of g(x), i.e. g⊥(x)g(x) = 0 and g†(x)g(x) = I. Multiplying (3) from the
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left for one with g⊥(x) and as a second case with g†(x) gives a PDE and an
algebraic equation

g⊥f = g⊥(Jd −Rd)∇Hd, (5)

β = g† {(Jd −Rd)∇Hd − f} , (6)

where for simplicity, the arguments have been left out. Functions Jd = −JT
d ,

Rd ≥ 0 and Hd must be found such that (5) is satisfied and the Hamiltonian
has an isolated minimum at the desired equilibrium point x∗. The following two
conditions are imposed on the Hamiltonian:

• Necessary extremum assignment condition:

∇Hd(x∗) = 0. (7)

• Sufficient minimum assignment condition:

∇2Hd(x∗) > 0. (8)

The control law u = β(x) can then be calculated directly from (6).
In the four-tank application below, the input matrix g is constant. We will

further assume Jd and Rd to be constant matrices. Although possibly restrictive,
this assumption makes (5) linear in the partial derivatives, and hence simpler to
solve.

Remark 1. It is not necessary to require the system to be input affine, systems of
the form ẋ = f(x, u) may also be considered. However, the procedure for solving
the matching equation will necessarily have to follow a different path.

3 The Four-Tank System

The four-tank system is a multi-input multi-output nonlinear system consisting
of four tanks filled with water as illustrated in Figure 1. The water flows from
the two upper tanks into the lower tanks and from there into a reservoir. There
are two input flows, u1 and u2, and the goal is to stabilize the levels x1 and x2 of
the lower tanks at the desired values. Two valves γ1 and γ2 are used to split each
input flow in two directions which renders the system more or less interacting.
The valve positions are not actuated, and are thus not considered as inputs to
the system, but as parameters.

3.1 System Dynamics

Using Torricelli’s law for the outflows of each tank, the dynamic model for the
four tank system can be written as [1]

ẋ = f(x) + g(x)u, (9)
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where

f(x) =

⎡⎢⎢⎢⎢⎣
−a1

√
2gx1

A1
+ a3

√
2gx3

A1

−a2
√

2gx2
A2

+ a4
√

2gx4
A2

−a3
√

2gx3
A3

−a4
√

2gx4
A4

⎤⎥⎥⎥⎥⎦ , (10)

g(x) =

⎡⎢⎢⎣
γ1
A1

0
0 γ2

A2

0 1−γ2
A3

1−γ1
A4

0

⎤⎥⎥⎦ , (11)

and x = [x1, x2, x3, x4]T , u = [u1, u2]T . The state variables xi, i = 1, . . . , 4
represent the tank levels, ui, i = 1, 2 the input flows, Ai, i = 1, . . . , 4 the cross
sections of the tanks, ai, i = 1, . . . , 4 the cross sections of the outlet holes and
g = 981 cm/s2 is the gravitational constant. The valve parameters γ1, γ2 ∈ [0, 1]
determine how much of the input flows are directed into the lower tanks. The
parameter values of Ai and ai for the lab experiment are given in Table 1. To
avoid confusion with the gravitational constant g, we will in the following write
g(x) for the input matrix, even though it is independent of x.

Table 1. System parameter values

Ai (cm2) ai (cm2)

i = 1, 2: 50.3 0.233
i = 3, 4: 28.3 0.127

When γ1 = γ2 = 0, all the water is entering in the upper tanks, and the
overall system consists of two decoupled two-tank systems. Let’s therefore first
design a controller for this smaller problem.

3.2 Controller Design for the Two-Tank System

Consider a two-tank system with one input flow split between two tanks;[
ẋ1
ẋ2

]
=

[
−a1

√
2gx1

A1
+ a2

√
2gx2

A1

−a2
√

2gx2
A2

]
︸ ︷︷ ︸

f(x)

+
[ γ

A1
1−γ
A2

]
︸ ︷︷ ︸

g(x)

u. (12)

The state variables x1 and x2 represent the water level in the lower and the
upper tank respectively. The valve parameter γ ∈ [0, 1] determines how much
water is directed to the the different tanks; a value of zero directs all the water
to the upper tank. Following the procedure outlined in Section 2, we will now
design a controller which stabilizes the water level of the lower tank.
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For the two-tank system, a left annihilator and a left inverse of g(x) are given
by

g⊥(x) =
[
(1 − γ)A1, −γA2

]
, (13)

g†(x) =
[
A1, A2

]
(14)

respectively.
The interconnection and damping matrices Jd and Rd are initially chosen to

be constant, but otherwise free as

Jd −Rd =
[

0 j
−j 0

]
−
[
r1 r3
r3 r2

]
. (15)

Rd is positive definite for r1, r2 > 0 and r1r2 − r2
3 > 0. The parameter j can

take any constant value. Written out, the matching equation (5) to be solved
becomes

− (1 − γ)a1
√

2gx1 + a2
√

2gx2 = {−(1− γ)A1r1 + γA2(j + r3)}
∂Hd

∂x1

+ {(1− γ)A1(j − r3) + γA2r2}
∂Hd

∂x2
. (16)

To simplify (16), we choose j = −r3 and r3 = −A2r2/(2A1) to get

−(1− γ)a1
√

2gx1 + a2
√

2gx2 = −(1− γ)A1r1
∂Hd

∂x1
+ A2r2

∂Hd

∂x2
(17)

with a solution

Hd(x) =
2a1
√

2g
3A1r1

x
3/2
1 +

2a2
√

2g
3A2r2

x
3/2
2 + Φ(z). (18)

The first two terms on the right hand side are the particular solution. The
homogeneous solution, Φ(z), where z = x1

A1r1
+ (1−γ)x2

A2r2
= pT x, is chosen such

that the closed-loop system is stabilized, i.e. such that Hd is positive definite
with a minimum at the desired equilibrium point x∗.

Remark 2. The gradient of the homogeneous solution is ∂
∂xΦ = ∂z

∂x
∂
∂zΦ = p ∂

∂zΦ.
Hence, (5) is satisfied for allΦ(pT x) with p in the null space of g⊥(x)(Jd −Rd).

One possibility, yielding a simple controller, is to choose a quadratic function
Φ(z) = 1/2qz̃T z̃ + lT z where z̃ = z− z∗ and q > 0 and l are scalars. For equilib-
rium assignment, i.e. ∇Hd(x∗) = 0, we let l = −a1

√
2gx∗

1 = −a2
√

2gx∗
2/(1−γ).

Note that since there is only one input, only one level can be independently
stabilized. The Hessian of Hd is calculated as

∇2Hd =

[
a1

√
2g

2A1r1
√

x1
0

0 a2
√

2g
2A2r2

√
x2

]
+ qppT . (19)
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The Hessian is positive definite for all positive x and hence x∗ is a unique mini-
mum of Hd(x).

The control law for the two-tank system is found from (6) as

β(x) =

=−1︷ ︸︸ ︷
g†(x)(Jd −Rd)p(qpT x̃ + l)

= −kT x̃ + u∗, (20)

where x̃ = x − x∗, kT = qpT = [ q
A1r1

, (1−γ)q
A2r2

] and u∗ = −l. Note that p in this
case was normalized such that g†(x)(Jd−Rd)p = −1. The controller parameters
are r1, r2 and q, the latter may be chosen equal to one without loss of generality.
The closed loop is asymptotically stable if r1 > 0 and 0 < r2 < 4r1(A1/A2)2,
which makes the damping matrix Rd positive definite. To simplify slightly, define
k1 = (A1r1)−1 and k2 = (A2r2)−1, the control law can then be written

u = β(x) = −k1x̃1 − (1 − γ)k2x̃2 + u∗, (21)

which is asymptotically stabilizing provided k1 > 0 and k2 > k1A2/(4A1).
The simplifications in this subsection may look somewhat arbitrary. To sum-

marize, two main simplifications were used: First we assumed Jd and Rd con-
stant. Secondly, some of the elements of Jd and Rd were chosen such that (16)
was simplified. Finally, with these simplification, a positive definite Hamiltonian
was found. Had the Hamiltonian not been positive definite, one would have to
try over again, using other simplifications, in an iterative fashion.

With the above calulations in mind, it is now time to look at the larger four-
tank system.

3.3 Controller Design for the Four-Tank System

Before designing a controller for the four-tank system, it is instructive to write
the open-loop system in a port-Hamiltonian form. To achieve zero steady-state
offset for the water level in the two lower tanks, x1 and x2, the four-tank system
described in Section 3.1 is extended with two error states:

ẋ5 = kI1

(
a1
√

2gx1 − a1
√

2gx∗
1

)
, (22)

ẋ6 = kI2

(
a2
√

2gx2 − a2
√

2gx∗
2

)
. (23)

If the extended system is stabilized, i.e. if ẋ goes to zero, then x1 and x2 will
converge to their desired values. Observe that the errors in the outflows of tank
1 and 2 are being integrated. The reason for choosing such an error term in-
stead of the classical integrated state error is that the square root will show
up in the gradient of the Hamiltonian, making it possible to keep the damping
and interconnection matrices constant, similar to what was seen in the previous
section.
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Inspired by the Hamiltonian (18) for the two-tank system, and adding terms
linear in in the error variables, define the Hamiltonian for the open-loop four-
tank system as

H(x) =
4∑

i=1

2
3
kiai

√
2gx3/2

i + k1a1
√

2gx∗
1x5 + k2a2

√
2gx∗

2x6. (24)

With this Hamiltonian, the extended four-tank system can be written

ẋ = (J −R)∇H(x) + g(x)u, (25)

where x is the extended state vector and

J −R =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1
k1A1

0 1
k3A1

0 0 0
0 −1

k2A2
0 1

k4A2
0 0

0 0 −1
k3A3

0 0 0
0 0 0 −1

k4A4
0 0

kI1
k1

0 0 0 −kI1
k1

0
0 kI2

k2
0 0 0 −kI2

k2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
g(x) =

[
γ1
A1

0 0 1−γ1
A4

0 0
0 γ2

A2

1−γ2
A3

0 0 0

]T

.

Similar to the two-tank system, the damping matrix R is positive definite if
k1, k2 > 0, k3 > k1A3/(4A1), k4 > k2A4/(4A2) and additionally, the integral
terms kI1 < 4− k1/k3 and kI2 < 4− k2/k4.

Remark 3. There are other ways of writing the system in a port-Hamiltonian
form. The advantage of this particular choice is that J−R is constant. A different
approach would be e.g. to choose the Hamiltonian as the total volume of water,
which would be physically more meaningful, and use nonlinear damping and
interconnection matrices.

To solve the matching equation, we first choose a left annihilator and a left
inverse of g(x) as

g⊥(x) =

⎡⎢⎢⎢⎢⎢⎢⎣
(1 − γ1)A1 0 0 0

0 (1 − γ2)A2 0 0
0 −γ2A3 0 0

−γ1A4 0 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

T

, (26)

g†(x) =
[
A1 0 0 A4 0 0
0 A2 A3 0 0 0

]
(27)

respectively. If the interconnection and damping matrices are kept unchanged,
i.e. Jd −Rd = J −R, a solution to (5) is given by
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Hd(x) = H(x) +
1
2
x̃T PT QPx̃ + lT Px, (28)

where P gives a basis for the kernel of g⊥(Jd −Rd) (see Remark 2)and l is used
to place the equilibrium point at x∗. One possible P is given by

P =

⎡⎢⎢⎢⎢⎢⎢⎣
γ1k1 (1− γ2)k1

(1− γ1)k2 γ2k2
0 (1− γ2)k3

(1− γ1)k4 0
γ1k1 (1− γ2)k1

(1− γ1)k2 γ2k2

⎤⎥⎥⎥⎥⎥⎥⎦

T

. (29)

Some calculations show that selecting

l = −
[

γ1 1− γ2
1− γ1 γ2

]−1 [
a1
√

2gx∗
1

a2
√

2gx∗
2

]
(30)

= −
[

0 1− γ2
1− γ1 0

]−1 [
a3
√

2gx∗
3

a4
√

2gx∗
4

]
(31)

will make ∇Hd(x∗) = 0.
The Hessian of the energy function,

∇2Hd(x) = diag{kiai

√
2g

2
√

xi
, 0, 0}+ PT QP, (32)

can be shown to be positive definite if Q > 0, hence the system is asymptotically
stable if Rd > 0.

Using (6) together with J −R = Jd −Rd, the control law is obtained as

β(x) =

=−I︷ ︸︸ ︷
g†(x)(Jd −Rd)PT (QPx̃ + l)

= −Kx̃ + u∗, (33)

where K = QP and u∗ = −l. The controller is a PI-type state feedback controller
with a nonlinear integral term. The controller has tuning parameters k1 to k4,
kI1, kI2 and Q which has to be chosen such that the controller asymptotically
stabilizes x1 and x2, that is k1, k2 > 0, k3 > k1A3/(4A1), k4 > k2A4/(4A2) and
kI1 < 4− k1/k3, kI2 < 4− k2/k4 (⇒ Rd > 0) and Q > 0 (⇒ Hd > 0).

4 Simulations and Experiments

Simulations were performed with the model and experimental runs were con-
ducted on the lab setup discussed in Section 3.1 with valve parameters γ1 =
γ2 = 0.6.
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To avoid integrator wind-up, the error states x5 and x6 were only integrated
when none of the water pumps were saturated. If saturation occured in any
pump, both derivatives ẋ5 and ẋ6 were simply set to zero.

The controller parameter values used in simulations and experiments, found
by trial and error, are listed in Table 2. Since the system has a symmetry, the
same values are used for similar parameters, i.e. for k1 and k2 etc.

Table 2. Controller parameter values

k1, k2 k3, k4 kI1, kI2 Q
10 5.0 0.13 I2×2
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Fig. 2. Response of the four-tank system with controller given by (33). Solid line:
Experimental result. Dashed line: Simulation result.

The result of applying a step in the desired values for the lower tanks from
x∗

1 = x∗
2 = 10 cm to x∗

1 = x∗
2 = 15 cm at time t = 25 seconds is shown in Figure 2.

There is evidently a small model/plant mismatch since the steady state levels
of the upper tanks, x3 and x4, are different in the simulation (solid line) and in
the experiment (dashed line). There is practically no difference in the dynamic
response for the lower tank levels. The integral term makes sure that the lower
tank levels converge to the desired value also in the experiment. Experiments
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with no integral action in the controller showed a steady-state offset (not shown).
Saturation occurs during the transient phase, but causes no serious problems.

5 Discussion and Conclusion

We have shown how IDA-PBC can be used to design a controller with guaranteed
stability properties for the four-tank system. Even though the controller in this
case may be seen as very simple, the Hamiltonian, which acts as a Lyapunov
function guaranteeing stability, is not trivial.

The controller design was done incrementally. First it was shown how to de-
sign a controller for the two-tank system, where it was easy to find a solu-
tion to the matching equation just by visual inspection. Going from the two-
tank to the four-tank system was, due to the port-Hamiltonian setup, only
a matter of extending everything in a natural way. The open- and closed-
loop interconnection and damping matrices were chosen equal and constant,
which made it easier to solve the matching equation. Terms were added to the
closed-loop Hamiltonian to stabilize the desired equilibrium. The internal model
principle was used when adding two output error states. This guaranteed no
steady-state offset in the two lower levels even in the case of some parametric
uncertainties.

To verify that the controller works, simulations were performed and the con-
troller was implemented on a lab scale experiment. The performance of the con-
troller was in both cases satisfactory, and even though there were some smaller
discrepancies between simulations and experimental results, the convergence of
the water levels in the lower tanks were close to identical.

The way IDA-PBC was used here is perhaps not revealing its main strength.
It was used to stabilize the closed-loop system, which in itself is of course not
unimportant. However, the interconnection and damping assignment part of
IDA-PBC was not exploited. As mentioned above, the structure of the inter-
connection and damping matrices was left unchanged. This may actually be
where IDA-PBC has one of its strengths; the possibility of coherently decom-
posing and rebuilding the internal structure of a system. However, no matter
how attractive this may sound, it is not necessarily easy to determine what
a “good” interconnection structure could or would look like. In most exam-
ples in the literature it is either left unchanged, like in this work, or changed
in a way such that the matching equation for the respective problem is sim-
plified. There is a need for further investigations to understand and use these
properties.
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Summary. In the present work we are interested on the derivation of power-based
passivity properties for a certain class of non-linear mechanical systems. While for
general mechanical systems, it is of common use to adopt a storage function related to
the system’s energy in order to show passivity and stabilize the system on a desired
equilibrium point(e.g., IDA-PBC [1]), we want here to obtain similar properties related
to the system’s power. The motivation arises from the idea that in some engineering
applications(satellite orbit motion, aircraft dynamic,etc...)seems more sensible to cope
with the power flowing into the system instead of the energy that, for stabilization
purposes, means to consider the systems’s equilibrium the state for which the energy
flow-rate(i.e.,system’s power)achieve its minimum. In this respect, we recall first the
power-based description for a certain class of (non)-linear mechanical systems given in
[2] and then we give sufficient conditions to obtain power-based passivity properties,
provided a suitable choice of port-variables. We conclude with the example of the
inverted pendulum on the cart.

1 Introduction

In a previous work of the authors [2] an electrical interpretation of the mo-
tion equations of mechanical systems moving in a plane has been provided
via the Brayton-Moser equations. In particular, it is proved that under certain
generic assumptions the system’s behavior derived from its Lagrangian func-
tion can be alternatively described through a power-based representation in an
electrical fashion. It can be viewed as an extension of the well-known analogy
mass/inductor, spring/capacitor and damper/resistor for linear mechanical sys-
tems to a larger class of (possibly) nonlinear systems. The double pendulum and
the inverted pendulum on the cart are the illustrative examples which have been
studied and electrically interpreted as nonlinear RLC circuits.

We are here interested on exploiting this power-based description for such
mechanical system class in order to achieve a new passivity property using
as port variables the external forces/torques and the linear/angular accelera-
tion,and with the storage function being related to the system’s power.
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In Section 2 we will first recall the fundamentals of Euler-Lagrange(EL) and
Brayton-Moser(BM) equations in the standard form. Via the introduction of the
pseudo-inductor the Brayton-Moser equations can be extended to a large class
of non-linear mechanical systems, [2]. This is reviewed in Section 3, and followed
by the presentation of the main result. Taking inspiration from [3] we provide
a method to generate storage function candidates based on the power. We give
sufficient conditions to show the power-based passivity properties. We conclude
the paper in section 4 with the example of the the inverted pendulum on the cart
for which our passivity conditions have a clear physical meaning.

2 Preliminaries

2.1 Euler-Lagrange Systems (EL)

The standard Euler-Lagrange equations (e.g., [1]) for an r degrees of freedom
mechanical system with generalized coordinates q ∈ Rr and external forces τ ∈
Rr are given by

d

dt

(
∂L(q, q̇)

∂q̇

)
− ∂L(q, q̇)

∂q
= τ (1)

where

L(q, q̇) � T (q, q̇)− V(q) (2)

is the so-called Lagrangian function, T (q, q̇) is the kinetic energy which is of the
form

T (q, q̇) =
1
2
q̇T D(q)q̇, (3)

where D(q) ∈ Rr×r is a symmetric positive definite matrix, and V(q) is the
potential function which is assumed to be bounded from below. Furthermore,
dissipative elements can be included via the Rayleigh dissipation function as
part of the external forces.

2.2 RLC-Circuits: The Brayton-Moser Equations (BM)

The electrical circuits considered in this paper are complete RLC-circuits in
which all the elements can be nonlinear. The standard definitions of respectively
inductance and capacitance matrices are given by

L(iρ) =
∂φρ(iρ)

∂iρ
, C(vσ) =

∂qσ(vσ)
∂vσ

where iρ ∈ Rr represents the currents flowing through the inductors and φρ(iρ) ∈
Rr is the related magnetic flux vector. On the other hand vσ ∈ Rs defines the
voltages across the capacitors and the vector qσ(vσ) ∈ Rs represents the charges
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stored in the capacitors. From [4] we know that the differential equations of such
electrical circuits have the special form

Q(x)ẋ = ∇P (x) (4)

where x = (iρ, vσ) ∈ Rr+s, ∇ = (∂/∂iρ, ∂/∂vσ)T , and

Q(x) =
[
−L(iρ) 0

0 C(vσ)

]
. (5)

Furthermore the mixed potential function P (x) which contains the intercon-
nection and resistive structure of the circuit is defined as

P (x) = −F (iρ) + G(vσ) + iρ
T Λvσ. (6)

F : Rr → R and G : Rs → R being the current potential (content) related
with the current-controlled resistors (R) and the voltage potential (co-content)
related with the voltage-controlled resistors (i.e., conductors, G), respectively.
More specifically, the content and co-content are defined by the integrals∫ iρ

0
v̂R(i′ρ)di

′
ρ,

∫ vσ

0
îG(v′σ)dv′σ,

where v̂R(iρ) and îG(vσ) are the characteristic functions of the (current-controlled)
resistors and conductors (voltage-controlled resistors), respectively. The r×s ma-
trix Λ is given by the interconnection of the inductors and capacitors, and the
elements of Λ are in {−1, 0, 1}.

2.3 Definitions

In order to introduce the electrical counter part of the position dependent mass
we introduce the so-called pseudo-inductor. This is an inductor, but now relating
the magnetic flux linkages to current and the voltage, which differs from the
“usual” electrical case, i.e.,

φ = fφ(x). (7)

where φ ∈ Rr is the flux related to the inductors. This definition lead to the
following implicit relation between voltage and current

vρ =
dφ

dt
=

∂fφ

∂iρ

diρ
dt

+
∂fφ

∂vσ

dvσ

dt
. (8)

Now, define the pseudo-inductance matrix and the co-pseudo-inductance ma-
trix as

L̃(x) =
∂fφ

∂iρ
, M̃(x) =

∂fφ

∂vσ
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respectively, then (8) can be written as

vρ = L̃(x)
diρ
dt

+ M̃(x)
dvσ

dt
. (9)

Similarly, we will consider a capacitor as a function relating the charge and
the voltage, i.e.,

qσj = fv
j (vσj) , j = 1, . . . , s. (10)

By defining the non-negative capacitance matrix

C(vσ) = diag

[
∂fv

j (vσj)
∂vσj

]
, j = 1, . . . , s,

we have from differentiation of (10) that

iσ = C(vσ)
dvσ

dt
. (11)

3 Power-Based Description for a Class of Mechanical
Systems

In [2] the authors enlarged the class of mechanical systems for which an electri-
cal interpretation can be provided replacing the generalized coordinates vector
(q̇, q) ∈ R2r by the electrical states vector (iρ, vσ) ∈ Rr+s. In order to make
the following relation a one-to-one mapping the equivalent circuit has to present
a number of inductors r equal to the capacitors s. Moreover, all conservative
forces acting on the masses should be (locally) invertible functions of its angular
or linear position. The main result of [2] is as follows.

Theorem 1. Consider the general Lagrangian function (2). Assume that:

A1.(interconnection) iρ = iσ, 1

A2.(force-position link) qσj = fv
j (vσj) ∈ C1 with j = 1, . . . , r is a set of invert-

ible functions such that:

• ∂fv
j (vσj)
∂vσj

= Cj(vσj),
• f q

j (qσj) = vσj .

Then: the Euler-Lagrange (1) equations can be rewritten in terms of the Brayton-
Moser framework as follows⎡⎣−D̃(vσ) −[D̄(x) − D̂(x)]C(vσ)

0 C(vσ)

⎤⎦⎡⎣ diρ

dt

dvσ

dt

⎤⎦ =

⎡⎢⎣
∂P (x)

∂iρ

∂P (x)
∂vσ

⎤⎥⎦
1 Implying that s = r and Λ = I . See Remark 4 of [2] for the physical implications.
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with
P (x) = −F (iρ) + G(vσ) + iρ

T vσ,

being the mixed potential function P (iρ, vσ) and where

D̂(iρ, vσ) =

⎡⎢⎣
1
2 iρ

T ∂D(qρ)
∂qρ1

|qρ=fv(vσ)

. . .
1
2 iρ

T ∂D(qρ)
∂qρr

|qρ=fv(vσ)

⎤⎥⎦ (12)

C(vσ) = diag

[
∂fv

j (vσj)
∂vσj

, j = 1, . . . , r
]

(13)

D̃(vσ) = D(qρ)|qρ=fv(vσ) (14)

D̄(iρ, vσ) =

⎡⎢⎢⎢⎣
a11(iρ, vσ) · · · a1r(iρ, vσ)

...
. . .

...

ar1(iρ, vσ) · · · arr(iρ, vσ)

⎤⎥⎥⎥⎦ (15)

with aij(iρ, vσ) = iρ
T C−1(vσ)∇vσD̃ij(vσ) for i, j ∈ {1, r}.

Corollary 1. As a consequence of Theorem 1, recalling the definitions of the
pseudo-inductor and the capacitor adopted in (9) and (11) respectively, the BM
equations can be then re-written in the following more compact form

Q̃(x)ẋ = ∇P (x) (16)

with

Q̃(x) =

⎡⎣−L̃(vσ) −M̃(iρ, vσ)

0 C(vσ)

⎤⎦
and where L̃(vσ) = D̃(vσ), M̃(iρ, vσ) =

[ ˙̃
D(vσ)− D̂(iρ, vσ)

]
C(vσ).

Remark 1. The former result can been interpreted in two ways. From one side
we established under which conditions–A1 and A2–a mechanical systems de-
scribed by EL equations, through derivation of an energy-based function called
Lagrangian, has a clear electrical counterpart based on the classical states anal-
ogy force/voltage and speed/current. On the other side, we state that this class
of mechanical systems that can be electrically interpretable yields a power-based
description in the BM framework. Under this second perspective we will present,
in the further section, our main result.

3.1 Power-Based Passivity Properties

This section is dedicated to the derivation of passivity sufficient conditions for
that class of mechanical systems that admits the power-based description given
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in (16). For that we have to find a storage function candidate and a corresponding
set of port variables. It is then instrumental for the derivation of the next theorem
to re-define the mixed-potential function P (x) extracting the voltage sources
vs ∈ Rl with l ≤ r, from the content term F (iρ) as follows

P (x) = P̃ (x) − xT Bvs (17)

with B = (Bs, 0)T and Bs ∈ Rr×l.

Remark 2. In equation (4) we restricted our analysis to circuits having only volt-
age sources in series with inductors. This choice seems to be sensible considering
that the mechanical counterpart of a current source is a velocity source which
have no clear sense from a physical view point.

Storage Function Candidate

Following the procedure of [3], we can pre-multiply (16) by ẋT obtaining

ẋT Q̃(x)ẋ = ẋT∇xP̃ (x) − ẋT Bvs

that can be re-arranged as follows

dP̃

dt
(x) = ẋT Bvs + ẋT Q̃(x)ẋ (18)

and which consists of the sum of two terms. The first one represents the inner
product of the source variables in the suited form ẋT Bvs = vT

s
˙̂
is, where we

assume the vector is ∈ Rl indicating the correspondent current terms flowing
from each inductor series-connected voltage source.

The second one is a quadratic term. In general Q̃(x) is not symmetric and its
symmetric part is sign indefinite making difficult the derivation of the power-
balance inequality we are looking for. In order to overcome this drawback we
follow the same procedure exploited in [3],[4],[5] that basically provides a method
to describe the system (16) by another admissible pair, say Q̃a(x) and Pa(x).
For instance, if the new pair fulfills the following conditions:

C1.Q̃T
a (x) + Q̃a(x) ≤ 0

C2. P̃a(x) : Rs+r → R is positive semi-definite scalar function

we may state that

dP̃a

dt
(x) ≤ ẋT Bvs (19)

being P̃a(x) the storage function candidate related to Pa(x) by (17), the pair

(vs,
˙̂
is) is passive and can serve as port-variables.



Towards PBC Strategies for a Class of Nonlinear Mechanical Systems 129

Power-Balance Inequality and Passivity Requirements

In the next theorem we will provide some conditions for passivity that may
be useful for control in the power-based framework. In particular, we refer to
a previous work of the second author [3] where the storage function has the
dimension of power and is defined as a re-shaped mixed potential function P̃a(x).
This new function is then related to a new matrix Q̃a(x) and both, having
common solutions for (16), are related to the original pair Q̃(x), P̃ (x) by the
following relations2

Q̃a(x) =
{
λI + 1

2∇2P̃ (x)Π(x) + 1
2∇[∇T P̃ (x)Π(x)]

}
Q̃(x)

P̃a(x) = λP̃ (x) + 1
2∇T P̃ (x)Π(x)∇P̃ (x)

with Π(x) ∈ Rr×r a symmetric matrix and λ ∈ R any constant.

Theorem 2. Consider an electrical system for which the dynamics is described
by (16) and assume A1 and A2 hold. Moreover, Assume that

A3.(positivity) pseudo-inductors and capacitors matrices are positive definite
A4.(linearity in the content) F (iρ) = −(1/2)iρT Rρiρ with the current-controlled

resistor matrix Rρ being constant and positive definite
A5.(damping condition)∥∥∥−2R−1

ρ M̃(x)C−1(vσ) + M̃T (x)L̃−1(vσ)M̃(x)C−1(vσ) + β(x)
∥∥∥ ≤ 1

with
β(x) =

∂

∂vσ

[
iρ

T L̃(vσ)R−1
ρ C−1(vσ)

]
.

A6.(technical assumption)

L̃(vσ)R−1
ρ C−1(vσ) ≥ 0

then

∫ t

0
vT

s (t′)
dis
dt′

dt′ ≥ P̃a(x(t)) − P̃a(x(0)). (20)

Proof. First, we set the matrix Π(x) and the scalar λ in order to guarantee the
semi-definite positivity of the storage function P̃a(x) and to satisfy the following
requirement3

Q̃a(x)T + Q̃a(x) ≤ 0. (21)
2 See [5] for a detailed proof of this statement.
3 If these two conditions are matched the overall system, for which the dynamics

can be written as �Q−1(x)∇P (x) = − �Q−1
a (x)∇Pa(x) = (diρ/dt, dvσ/dt)T , is then

asymptotically stable.
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Define

λ = −1,
Π(x) = diag[2R−1

ρ , 2L̃(vσ)R−1
ρ C−1(vσ)].

Considering a mixed potential function P (x) fitting the Assumption A4 and
reminding that Assumption A1 ⇒ Λ = I, we obtain

Q̃a(x) =

⎡⎣ −L̃(vσ) −M̃(x) + 2L(vσ)R−1
ρ

−2R−1
ρ L̃(vσ) − [I − β(x)]C(vσ)− 2R−1

ρ M̃(x)

⎤⎦
that, under Assumptions A3 and A5, satisfies (21). We refer to the appendix
for a detailed development of the former statement. Furthermore, the storage
function candidate becomes

P̃a(x) =
1
2
(Rρiρ + vσ)T R−1

ρ (Rρiρ + vσ) +

+
1
2
vσ

T R−1
ρ vσ + iρ

T L̃(vσ)R−1
ρ C−1(vσ)iρ (22)

that, under Assumption A6, is clearly positive definite.

Remark 3. Assumption A5 is an important condition that can be satisfied for
small values of the matrix R−1

ρ —which represent the LTI resistors placed in
series to each inductor— and/or with a weak mutual-coupling action provided
by the presence of the matrix M̃(x). Since M̃(x) depends linearly on the current
vector iρ—see M̃(x) definition provided in Theorem 1—, we can state that for
slow motion or well-damped dynamics, A5 holds.

4 The Inverted Pendulum on a Cart

An interesting example of mechanical system to study is the inverted pendulum
with rigid massless rod (of length l) placed on a cart as shown if Fig. 1. It is
often used to test the performance of controllers that stabilize the pendulum
mass m2 to its natural unstable equilibrium point through a force F acting just
on the cart of mass m1. The equations describing the dynamics of the to masses
could be computed considering as state variables the angular position of the row
with the vertical axis θ and the cart distance z−z0 to a fixed reference (z0 = 0).
The motion dynamic of each mass can be determined via the Euler-Lagrange
equations

(m1 + m2)z̈ + m2l cos θθ̈ −m2l sin θθ̇2 = F −R1ż

m2l
2θ̈ + m2l cos θz̈ −m2gl sin θ = −R2θ̇ (23)

where the generalized coordinates related to the position of each mass and its
derivative representing the corresponding velocities are respectively
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Fig. 1. Inverted pendulum on a cart

q = (z, θ)T , q̇ = (ż, θ̇)T .

Applying the following coordinates transformation4

[
z
θ

]
=

⎡⎣ C1vσ1

fv
2 (vσ2) = arcsin

( vσ2
K

)
⎤⎦ ,

[
ż

θ̇

]
=

⎡⎣ iρ1

iρ2

⎤⎦ (24)

with K = −m2gl and considering that Assumptions A1 and A2 are clearly satis-
fied we can express the motion equations (23) via the Brayton-Moser framework

Q̃(x)ẋ = ∇P (x) (25)

with

Q̃(x) =

⎡⎢⎢⎣
−(m1 + m2) −m2l cos fv

2 (vσ2) 0 m2l sin fv
2 (vσ2)iρ2C2(vσ2)

−m2l cos fv
2 (vσ2) −m2l

2 0 0
0 0 C1 0
0 0 0 C2(vσ2)

⎤⎥⎥⎦
and

P (x) = −vT
s iρ +

1
2
iρ

T Rρiρ + iρ
T vσ,

being

vs = (F, 0)T , Rρ = diag(R1, R2) , C2(vσ) =
∂fv

2 (vσ2)
∂vσ2

and C1 ∈ R+ an arbitrary constant. Now that we have expressed the mechanical
system model by (25) we can use the Theorem 2 in order to get the explicit
passivity condition. By choosing
4 The relation(q̇, q) ⇔ (iρ, vσ) is one-to-one only when θ belongs to the open interval

(−π
2 , π

2 ).
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λ = −1 , Π(x) = diag[2R−1
ρ , 2L̃(vσ)R−1

ρ C−1(vσ)],

after some algebraic computations we get the final local condition

∥∥∥∥∥∥∥
⎡⎢⎣ 0 2m2l sin fv

2 (vσ2)iρ2R
−1
1

0 [m2l sin fv
2 (vσ2)]

2

m1+m2−m2 cos2 fv
2 (vσ2)

+ iρ1
iρ2

m2l sin fv
2 (vσ2)C2(vσ2)R

−1
2

⎤⎥⎦
∥∥∥∥∥∥∥ ≤ 1 (26)

achieved for C1 → ∞. The former suitable choice of C1 parameter is arbitrary
because it depends on the coordinates transformation we arbitrary fixed. Of
course, in order to apply Theorem 2 we have to verify, together with condition
(26), that Assumption 6 holds, that means

∥∥∥∥∥∥
⎡⎣ 0 m2l cos fv

2 (vσ2)R
−1
2 C−1

2

0 m2l
2R−1

2 C−1
2 (vσ2)

⎤⎦∥∥∥∥∥∥ ≥ 0. (27)

From the overlap of (26) and (27), we deduce that∫ t

0
F

˙̂
iρ1(τ)dτ ≥ P̃a(t)− P̃a(0)

with P̃a(x) given by (22), holds.

5 Conclusion and Outlooks

Our main purpose in this document was to present an alternative way to describe
the dynamics of a large class of (possibly non-)linear mechanical systems within
a framework–the Bryton-Moser equations–that relates the power to the trajec-
tories of the system instead of energy, and derive from it sufficient conditions for
passivity. This should be consider as a preliminary step towards stabilization of
mechanical and electromechanical systems using passivity arguments–as already
suggested in [5])–.
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Appendix

Here, we show that given Assumptions A3 and A5 of Theorem 2, the positivity
of Qa(x) is established, i.e., (21) holds. Indeed, computing the symmetric part
of Qa(x) we obtain

Ha(x) =

⎡⎣ L̃(vσ) M̃(x)

M̃T (x) [I − β(x)]C(vσ) + 2R−1
ρ M̃(x)

⎤⎦ .

Then, provided the positivity of L̃(vσ) by A3, we compute the Schur’s com-
plement of Ha(x) and imposing its positivity we obtain

[I − β(x)]C(vσ) + 2R−1
ρ M̃(x) ≥ M̃T (x)L̃−1(vσ)M̃(x)

Let’s re-write the above inequality as follows

I ≥ −2R−1
ρ M̃(x)C−1(vσ) + M̃T (x)L̃−1(vσ)M̃(x)C−1(vσ) + β(x),

as a consequence of Perron’s theorem5 and reminding that the spectral norm
applying on any squared matrix A ∈ Rr×r is defined as

||A|| =
√

ρ(AT A)

we have

1 ≥
∥∥∥−2R−1

ρ M̃(x)C−1(vσ) + M̃T (x)L̃−1(vσ)M̃(x)C−1(vσ) + β(x)
∥∥∥

which is true by Assumption A5.

5 See lemma 8.4.2 of [6].
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Summary. It is well known that energy balancing control is stymied by the presence
of pervasive dissipation. To overcome this problem in electrical circuits, the authors
recently proposed the alternative paradigm of power shaping—where, as suggested by
its name, stabilization is achieved shaping a function akin to power instead of the
energy function. In this paper we extend this technique to general nonlinear systems
and apply it for the stabilization of the benchmark tunnel diode circuit. It is shown
that, in contrast with other techniques recently reported in the literature, e.g. piece–
wise approximation of nonlinearities, power shaping yields a simple linear static state
feedback that ensures (robust) global asymptotic stability of the desired equilibrium.

Keywords: Passivity–based control, nonlinear control, stability, nonlinear systems.

1 Introduction and Background

Passive systems constitute a very important class of dynamical systems for which
the stored energy cannot exceed the energy supplied to them by the external
environment—the difference being the dissipated energy. In view of this energy–
balancing feature, it is clear that passivity is intimately related with the property
of stability, a sine qua non condition for any controller design. Furthermore,
invoking the universal principle of energy conservation, it may be argued that all
physical systems are passive with respect to some suitably defined port variables
that couple the system with the environment. It is not surprising then that, since
the introduction of the first passivity–based controller (PBC) more than two
decades ago [1, 2], we have witnessed an ever increasing popularity of passivity
as a building block for controller design for all classes of physical systems.
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PBC can be used to stabilize a given equilibrium point. In this case we must
modify the energy function—that will qualify as a Lyapunov function—to assign
a minimum at this point, a step called energy shaping; which, combined with
damping injection, constitute the two main stages of PBC [3, 4]. There are
several ways to achieve energy shaping, the most physically appealing being the
so–called energy–balancing PBC (or control by interconnection) method [4, 5].
With this procedure the energy function assigned to the closed–loop system is the
difference between the total energy of the system and the energy supplied by the
controller, hence the name energy balancing. Unfortunately, energy balancing
PBC is stymied by the presence of pervasive dissipation, that is, the existence of
dissipative elements, e.g. resistors, whose power does not vanish at the desired
equilibrium point.

To put our contribution in perspective let us briefly recall the principles of
energy–balancing control [6]. Consider a system whose state space representation
is given by1

ẋ = f(x) + g(x)u,

y = h(x) (1)

where x ∈ Rn, and u,y ∈ Rm are the input and output vectors, respectively.
We assume that the system (1) satisfies the energy–balance inequality, that is,
along all trajectories compatible with u : [0, t]→ Rm,

H(x(t))−H(x(0)) ≤
∫ t

0
u�(τ)y(τ)dτ (2)

where H : Rn → R is the stored energy function.2 In energy–balancing control,
we look for a control such that the energy supplied by the controller can be
expressed as a function of the state. Indeed, from (2) we see that for any function
û : Rn → Rm such that

−
∫ t

0
û�(x(τ))h(x(τ))dτ = Ha(x(t))−Ha(x(0)) (3)

for some function Ha : Rn → R, the control u = û(x) + v will ensure that the
closed–loop system satisfies

Hd(x(t)) −Hd(x(0)) ≤
∫ t

0
v�(τ)y(τ)dτ

where Hd(x) = H(x) + Ha(x) is the new total energy function. If, furthermore,
x� = arg minHd(x) then x� will be a stable equilibrium of the closed–loop sys-
tem (with Lyapunov function the difference between the stored and the supplied
energies Hd(x)).
1 All vectors defined in the paper are column vectors, even the gradient of a scalar

function that we denote with the operator ∇ = ∂/∂x. Also, we use (·)′ to denote
differentiation for functions of scalar arguments. To simplify the expressions, the
arguments of all functions will be omitted, and will be explicitly written only the
first time that the function is defined.

2 Notice that no assumption of non–negativity on H(x) is imposed. If H(x) ≥ 0, the
system (1) is said to be passive with conjugated port variables (u, y).
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Unfortunately, as shown in [6], energy–balancing stabilization is stymied by
the existence of pervasive dissipation—term which refers to the existence of
dissipative elements whose power does not vanish at the desired equilibrium
point. More precisely, since solving (3) is equivalent to the solution of the PDE

(Ḣa =) ∇H�
a [f + gû�] = −û�h, (4)

and the left hand side is equal to zero at x�, it is clear that the method is
applicable only to systems verifying û�(x�)h(x�) = 0. To overcome this obstacle
in nonlinear RLC circuits the paradigm of power shaping was introduced in [7]—
where, as suggested by its name, stabilization is achieved shaping the power
instead of the energy function. The starting point for the method is a description
of the circuit using Brayton–Moser equations [8]

Q(x)ẋ = ∇P + G(x)u, (5)

where Q : Rn → Rn×n is a full rank matrix containing the generalized inductance
and capacitance matrices and P : Rn → R is the circuits mixed potential which
has units of power, see [7, 9] for further details. We make the observation that
if Q + Q� ≤ 0 then the system satisfies the power balance inequality

P (x(t))− P (x(0)) ≤
∫ t

0
u�(τ)ỹ(τ)dτ

with ỹ = h̃(x,u) and

h̃(x,u) := −G�(x)Q−1(x)[∇P + G(x)u]. (6)

This property follows immediately pre-multiplying (5) by ẋ� and then integrat-
ing. The mixed potential function is shaped with the control u = û where

Gû = ∇Pa (7)

for some Pa : Rn → R. This yields the closed–loop system Qẋ = ∇Pd, with
total power function

Pd(x) := P (x) + Pa(x),

and the equilibrium will be stable if x� = argmin Pd(x).
Two key observations are, first, that the resulting controller is power–balancing,

in the sense that the power function assigned to the closed–loop system is the
difference between the total power of the system and the power supplied by the
controller. Indeed, from (6) and (7) we have that

Ṗa = −û�(x)h̃(x, û(x)) (8)

which, upon integration, establishes the claimed property. Second, in contrast
with energy–balancing control, power–balancing is applicable to systems with
pervasive dissipation. Indeed, in contrast with (4), the right hand side of (8) is
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always zero at the equilibrium, therefore, this equation may be solvable even if
û�(x�)h(x�) �= 0.

As indicated above, instrumental for the application of power shaping is the
description of the system in the form (5). To make the procedure applicable to
nonlinear systems described by (1) we apply in the paper Poincare’s Lemma
to derive necessary and sufficient conditions to achieve this transformation. We
prove in this way that the power–shaping problem boils down to the solution of
two linear homogeneous PDEs.

We illustrate the methodology using the textbook example of the tunnel diode
[10]. In contrast with the existing techniques for this problem, e.g., approximat-
ing the nonlinearities using piecewise–affine functions and convex optimization
techniques [11], or designs based on linear approximations [10], we show that
power shaping yields a simple (partial static state feedback) linear controller
that (robustly) globally asymptotically stabilizes the circuit.

2 Power–Shaping Control

The main contribution of this paper is contained in the following.

Proposition 1. Consider the general nonlinear system (1). Assume

A.1 There exist a matrix Q : Rn → Rn×n, |Q| �= 0, that
i) solves the partial differential equation

∇(Qf) = [∇(Qf )]�, (9)

ii) and verifies Q + Q� ≤ 0.
A.2 There exist a scalar function Pa : Rn → R verifying

iii)
g⊥Q−1∇Pa = 0,

where g⊥(x) is a full–rank left annihilator of g,3 and
iv) x� = argminPd(x), where

Pd(x) :=
∫

[Q(x)f(x)]�dx + Pa(x) (10)

Under these conditions, the control law

u =
(
g�Q�Qg

)−1
g�Q�∇Pa (11)

ensures x� is a (locally) stable equilibrium with Lyapunov function Pd. Assume,
in addition,

A.3 x� is an isolated minimum of Pd and the largest invariant set contained in
the set

{x ∈ Rn|∇�Pd(Q−1 + Q−�)∇Pd = 0}
equals {x�}.

3 That is, g⊥g = 0, and rank(g⊥) = n − m.
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Then, the equilibrium is asymptotically stable and an estimate of its domain of
attraction is given by the largest bounded level set {x ∈ Rn | Pd(x) ≤ c}.
Proof. The first part of the proof consist of showing that, under Assumption
A.1, system (1) can be written in the form (5). To this end, invoking Poincare’s
lemma we have that (9) is equivalent to the existence of P : Rn → R such that

Qf = ∇P. (12)

Substituting (1) in the above equation and taking into account the full–rank
property of Q in A.1, we get (5) with G := Qg.

To prove the stability claim, we proceed as follows. Define G⊥(x) := g⊥(x)
Q−1(x), that is a full–rank left annihilator of G, and the full–rank matrix[

G⊥

G�

]
. (13)

Left–multiplying equation (5) by (13) yields[
G⊥

G�

]
Qẋ =

[
G⊥∇P

G�∇P + G�Gu

]
. (14)

Noticing from (10) and (12) that P = Pd − Pa, equation (14) becomes[
G⊥

G�

]
Qẋ =

[
G⊥(∇Pd −∇Pa)

G�(∇Pd −∇Pa) + G�Gu

]
Now, substituting the control action (11) and iii) of A.2., we finally get the
closed–loop dynamics

Qẋ = ∇Pd.

Taking the time derivative of Pd along the closed–loop dynamics we have

Ṗd =
1
2
ẋ�(Q + Q�)ẋ.

Because of ii) of Assumption A.1, Ṗd ≤ 0 and Pd qualifies as a Lyapunov function.
From the closed–loop equation we have ẋ = Q−1(x)∇Pd, hence Ṗd can be
rewritten as

Ṗd =
1
2
∇�PdQ−�(Q + Q�)Q−1∇Pd

Asymptotic stability follows immediately, with Assumption A.3, invoking La
Salle’s invariance principle. This completes the proof.

Assumption A.1 of Proposition 1 involves the solution of the PDE (9) subject to
the sign constraint ii)—which may be difficult to satisfy. In [7] we have proposed a
procedure to, starting from a pair {Q, P} describing the dynamics (5), explicitly
generate alternative pairs {Q̃, P̃} that also describe the dynamics. That is, that
satisfy

Q̃ẋ = ∇P̃ + G̃u, (15)

where G̃ = Q̃g. For ease of reference in the sequel, we repeat here this result
adapting the notation to the present context.
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Proposition 2. [7] Let Q be an invertible matrix solution of (9) and define the
full–rank matrix

Q̃(x) :=
[
1
2
∇ (Qf)M +

1
2
∇�(MQf) + λI

]
Q,

where λ ∈ R and M = M� : Rn → Rn×n, are arbitrary. Then, system (5) is
equivalently described by (15), where

P̃ := λ

∫
(Qf)�dx +

1
2
f�Q�MQf

Remark 1. Clearly, the power–shaping stage of the procedure—after transforma-
tion of the system (1) into the form (5)—is the same as the one proposed in [5] for
energy shaping using interconnection and damping assignment passivity–based
control (IDA–PBC). Additional remarks on the relation between these tech-
niques may be found in [9, 12] and in the recent work [13] where a control by
interconnection perspective is given to power shaping. Indeed, for port–controlled
Hamiltonian (PCH) systems4

ẋ = [J(x)−R(x)]∇H + g(x)u
y = g�(x)∇H

with full–rank matrix J − R, a trivial solution of (9) is obtained by setting
Q = (J−R)−1. This case has been studied in [14], where it is shown that PCH
systems satisfy

H(x(t))−H(x(0)) ≤
∫ t

0
ỹ�(τ)u(τ)dτ

with the output (6), i.e. ỹ = −g�[J−R]−�{[J−R]∇H + gu}, and an energy–
balancing interpretation is given to IDA–PBC. Equivalence between IDA–PBC
and power shaping has been proved in [13], by viewing power–shaping as control
by interconnection with port variables (u, ỹ), instead of the standard (u,y) [4].

3 The Tunnel Diode

In this section we illustrate the power shaping methodology of Proposition 1 with
the benchmark example of the tunnel diode circuit. We show that this technique
yields a simple linear controller that ensures robust global asymptotic stability
of the desired equilibrium.

3.1 Model Description

Consider the nonlinear circuit of Figure 1 which represents the approximate
behavior of a tunnel diode [10]. The dynamics of the circuit is given by

4 We refer the reader to [4] for a complete treatment on PCH systems.
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Fig. 1. Tunnel diode circuit

ẋ1 = −R
L x1 − 1

Lx2 + u
L

ẋ2 = 1
C x1 − 1

C h(x2)
(16)

where x1 is the current through the inductor L and x2 the voltage across the
capacitor C. The function h : R → R represents the characteristic curve of
the tunnel diode depicted in Figure 2. The assignable equilibrium points of the
circuit are determined by x�

1 = h(x�
2), with the corresponding constant control

u� = Rh(x�
2) + x�

2. It is easy to see that, for all (non–zero) equilibrium states,
the steady–state power extracted from the controller (u�x�

1) is nonzero. Conse-
quently, it is not possible to stabilize the circuit via energy–balancing. To state
our main result we assume the following:

A.4 minx2 h′(x2) > −RC
L .

As indicated in Remark 2, this assumption is made for simplicity and can be
easily replaced by the knowledge of a lower bound on h′.5

3.2 Control Design

Proposition 3. Consider the dynamic equations of the tunnel diode circuit (16),
which verifies Assumption A.4. The power–shaping procedure of Proposition 1
yields a linear (partial) state feedback control

u = −k(x2 − x�
2) + u�. (17)

If the tuning parameter k > 0 satisfies

k > −[1 + Rh′(x�
2)], (18)

x� is a globally asymptotically stable equilibrium of the closed loop with Lya-
punov function
5 We notice that Assumption A.4 coincides with the constraint given in [15] to exclude

the appearance of limit cycles in this kind of circuits.
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Fig. 2. Tunnel diode characteristic h(x2) and equilibrium points

Pd(x) =
R

L

∫ x2

0
h(τ)dτ +

1
2C

(x1−h(x2))2 +
k

2L
(x2−x�

2)
2 +

1
2L

(x2−u�)2. (19)

Proof. We look for a matrix Q(x) such that Assumption A.1 of Proposition 1 is
satisfied. Let us propose the simplest form

Q(x) =
[

0 1
−1 q(x)

]
where q : R2 → R≤0 is a function to be defined. Computing Qf , and making
q function only of x2, we see that the integrability condition (9) reduces to
− 1

C h′ = R
L + q

C . Hence, a suitable matrix is given by

Q(x2) =
[

0 1
−1 −RC

L − h′(x2)

]
, (20)

which is invertible for all x2 and, under Assumption A.4, verifies Q + Q� ≤ 0.
Condition iii) of Proposition 1 becomes ∂Pa

∂x1
= 0, indicating that Pa cannot

be a function of x1. Hence, we fix Pa = Ψ(x2), where Ψ(·) is an arbitrary differ-
entiable function that must be chosen so that Pd = P + Pa has minimum at x�.
Computing P from (10) we get

Pd =
R

L

∫ x2

0
h(τ)dτ +

1
2C

(x1 − h(x2))2 +
1

2L
x2

2 + Ψ(x2),

that should satisfy

∇Pd|x=x	 =
[

0
R
L h(x�

2) + x	
2

L + Ψ ′(x�
2)

]
≡
[
0
0

]
and
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∇2Pd

∣∣
x=x	 =

[
1
C −h′(x	

2)
C

−h′(x	
2)

C
1
L + R

L h′(x�
2) + (h′(x	

2))2

C + Ψ ′′(x�
2)

]
> 0

An obvious selection is then to “complete the squares”

Ψ(x2) =
k

2L
(x2 − x�

2)
2 − x2u

�

L
,

for which the conditions above are satisfied provided (18) holds.
Thus, the resulting Lyapunov function Pd is given by (19), which has a unique

global minimum at x�. From (11) we obtain the simple linear state feedback (17).
This completes the proof.

To illustrate the general power–shaping procedure we have decided to start from
a description of the circuit in the form (1) and explicitly solve the PDE (9). This
step can be avoided writing the circuit in Brayton–Moser form (5) and invoking
Proposition 2. In this case we have

Q =
[
−L 0
0 C

]
, G =

[
1
0

]
, P = −

∫ x2

0
h(τ)dτ +

R

2
x2

1 + x1x2.

We note that the mixed potential P has, indeed, units of power and that Q +
Q� � 0, hence a new pair {Q̃, P̃} must be generated. Selecting

M =
[ 1

L 0
0 1

C

]
, λ = −R

L
,

and invoking Proposition 2, the dynamic equations of the tunnel diode (16) can
be equivalently written as (15), with

Q̃(x2) =
[

0 1
−1 −RC

L − h′(x2)

]
,

which correspond to the matrix (20) obtained solving the PDE (9), the new
mixed potential

P̃ (x) =
R

L

∫ x2

0
h(τ)dτ +

1
2C

(x1 − h(x2))2 +
1

2L
x2

2,

and G̃ = [0 − 1
L ]�. Power shaping is completed along the lines of Proposition

1, but now considering the system in the form (15)

Remark 2. Assumption A.4 is satisfied if the resistance R is large enough. If it
is not the case, a possible solution is to apply a preliminary feedback, −Rax1,
with

Ra > −
(

L

C
min
x2

h′(x2) + R

)
.
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Fig. 3. Inductor current x1

Remark 3. Knowledge of the system parameters in the power–shaping controller
(17) is required only for the computation of u�. Doing a perturbation analysis it
can be shown that an error on this constant induces a steady–state error, that
can be reduced increasing the gain k—justifying the claimed “robust” qualifier.
On the other hand, for all practical purposes, the term u� can be replaced by
an integral action on the voltage error. Current research is under way to study
the stability properties of this PI control.

3.3 Simulation Results

The element values of the circuit, taken from [11, 10], are R = 1.5 kΩ , L = 5 nH,
C = 2 pF, u� = 1.2 with the currents measured in mA, voltage in Volts and
time in nanoseconds. The equation for the characteristic curve of the nonlinear
resistor is

h(x2) = 17.76x2 − 103.79x2
2 + 229.62x3

2 − 226.31x4
2 + 83.72x5

2

It can be proved that Assumption A.4 is satisfied. In open loop the circuit has
two stable equilibrium points, corresponding to x�

2a and x�
2c of Fig. 2.

The equilibrium to be stabilized is x�
2b = 0.2853 V, also indicated in Fig. 2.

According to Proposition 3, the gain k of the controller should satisfy k > 4.46.
The results of simulation are depicted in Figures 3 and 4 with the dashed line
representing the desired equilibrium. The initial conditions were set as x1(0) =
0.0005, x2(0) = 0.1 and the gain k = 5.

If the equilibrium to be stabilized is x�
2a (or x�

2c), then we have h′(x�
2a) > 0

(resp. h′(x�
2c) > 0) and the gain condition (18) is satisfied for any k > 0 (even

some negative values of the gain k do not destabilize these equilibrium points)—
this is, of course, consistent with the fact that x�

2b is an (open–loop) unstable
equilibrium, while the other two are stable.
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Fig. 4. Capacitor voltage x2

4 Concluding Remarks

In this paper we have extended the power–shaping methodology, proposed in [7]
for RLC circuits, to general nonlinear systems. We have illustrated this technique
with the dynamic model of the tunnel diode. The resulting control law is a simple
linear (partial) state feedback controller that ensures (robust) global asymptotic
stability of the desired equilibrium point. The simplicity of this controller, which
results from the effective exploitation of the physical structure of the system,
should be contrasted with the daunting complexity of the “solution” proposed
in [11]. This example, and many other that have been reported in the literature
where PBC yields simple sensible solutions, see e.g. [3, 16] and the references
therein, casts serious doubts on the pertinence of piece–wise approximation of
nonlinearities to control physical systems.

Among the issues that remain open and are currently being explored are the
solvability of the PDE (9) for different kind of systems and other applications of
power shaping, for instance, to mechanical and electro-mechanical systems.
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1 Introduction

Stabilization of underactuated mechanical systems shaping their energy func-
tion, but preserving the systems structure, has attracted the attention of control
researchers for several years. While fully actuated mechanical systems admit an
arbitrary shaping of the potential energy by means of feedback, and therefore
stabilization to any desired equilibrium, this is in general not possible for un-
deractuated systems. In certain cases this problem can be overcome by also
modifying the kinetic energy of the system. The idea of total energy shap-
ing was first introduced in [2] with the two main approaches being now: the
method of controlled Lagrangians [6] and interconnection and damping assign-
ment passivity–based control (IDA–PBC) [13], see also the closely related work
[8]. In both cases stabilization (of a desired equilibrium) is achieved identify-
ing the class of systems—Lagrangian for the first method and Hamiltonian for
IDA–PBC—that can possibly be obtained via feedback. The conditions under
which such a feedback law exists are called matching conditions, and consist of
a set of nonlinear partial differential equations (PDEs). In case these PDEs can
be solved the original control system and the target dynamic system are said to
match.

A lot of research effort has been devoted to the solution of the matching
equations. In [6] the authors give a series of conditions on the system and the
assignable inertia matrices such that the PDEs can be solved. Also, techniques
to solve the PDEs have been reported in [5],[4] and some geometric aspects of
the equations are investigated in [10]. The case of underactuation degree one
systems has been studied in detail in [3] and [1]. In the latter we proved that,
if the inertia matrix and the force induced by the potential energy (on the
unactuated coordinate) are independent of the unactuated coordinate, then the
PDEs can be explicitly solved. In [11] explicit solutions are also given for a class of
two degrees–of–freedom systems, that includes the interesting Acrobot example.

In this paper we pursue the investigation aimed at providing constructive
solutions to the PDEs. We concentrate our attention on the PDE associated to
the kinetic energy which is nonlinear and non–homogeneous and whose solution,
that defines the desired inertia matrix, must be positive definite. We study the
possibility of eliminating the forcing term in this PDE. Our main contribution
is the proof that it is possible to achieve this objective re–parametrizing the
target dynamics and introducing a change of coordinates in the original system.
The class of coordinate changes that yields an homogenous PDE is a solution
of another PDE—similar to the kinetic energy PDE—but this time without
the requirement of positive definiteness. Furthermore, it is shown that, in the
particular case of transformation to the Lagrangian coordinates, the possibility
of simplifying the PDEs is determined by the interaction between the Coriolis
forces and the actuation structure. We illustrate the result with the example of
the pendulum on a cart.

Notation: Unless indicated otherwise, all vectors in the paper are column vec-
tors, even the gradient of a scalar function: ∇(·) = ∂

∂(·)—when clear from the
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context the subindex in ∇ will be omitted. To simplify the expressions, the ar-
guments of all functions will be omitted, and will be explicitly written only the
first time that the function is defined.

Caveat: This is an abridged version of the paper, where, for space reasons, all
proofs have been omitted. The full version of the paper is available upon request
to the authors.

2 Background on IDA–PBC and Problem Formulation

In [5] and [7], it has been shown that the PDEs of the controlled Lagrangian
method and IDA–PBC are the same, therefore, in the sequel we will restrict our
attention to IDA–PBC—for which a brief review is now presented. IDA–PBC
was introduced in [13] to regulate the position of underactuated mechanical
systems of the form

Σ :
[
q̇
ṗ

]
=
[

0 In

−In 0

] [
∇qH
∇pH

]
+
[

0
G(q)

]
u, (1)

where q ∈ Rn, p ∈ Rn are the generalized position and momenta, respectively,
u ∈ Rm and G ∈ Rn×m with rank G = m < n,

H(q, p) =
1
2
p�M−1(q)p + V (q) (2)

is the total energy with M = M� > 0 the inertia matrix, and V the poten-
tial energy. The main result of [13] is the proof that for all matrices Md(q) =
M�

d (q) ∈ Rn×n and functions Vd(q) that satisfy the PDEs

G⊥ {MdM
−1∇q(p�M−1

d p)− 2J2M
−1
d p
}

= G⊥∇q(p�M−1p) (3)

G⊥MdM
−1∇Vd = G⊥∇V, (4)

for some J2(q, p) = −J�
2 (q, p) ∈ Rn×n and a full rank left annihilator G⊥(q) ∈

R(n−m)×n of G, i.e., G⊥G = 0 and rank(G⊥) = n − m, the system (1) in
closed–loop with the IDA–PBC u = û(q, p), where

û(q, p) = (G�G)−1G�(∇qH −MdM
−1∇qHd + J2M

−1
d p), (5)

takes the Hamiltonian form

Σd :
[
q̇
ṗ

]
=
[

0 M−1Md

−MdM
−1 J2

] [
∇qHd

∇pHd

]
, (6)

where the new total energy function is Hd(q, p) = 1
2p�M−1

d (q)p+Vd(q). Further,
if Md is positive definite in a neighborhood of q� ∈ Rn and q� = arg minVd(q),
then (q�, 0) is a stable equilibrium point of (6) with Lyapunov function Hd.

Clearly, the success of IDA–PBC relies on the possibility of solving the PDEs
(3) and (4). Particularly troublesome is the kinetic energy (KE) PDE (3), which
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is nonlinear and non–homogeneous, and whose solution must be positive definite.
In this brief note we investigate the possibility of eliminating the forcing term
G⊥∇q(p�M−1p) in this PDE—via coordinate changes and re-parametrization
of the target dynamics.

The presence of the forcing term introduces a quadratic term in Md in the
KE PDE that renders very difficult its solution—even with the help of the free
skew–symmetric matrix J2. To reveal this deleterious effect let us eliminate the
dependence on p and re-write the PDE in the equivalent form, see [13] and [1]
for further details,

n∑
i=1

[
(G⊥

k MdM
−1ei)

∂Md

∂qi
− (G⊥

k ei)Md
∂M−1

∂qi
Md

]
= −[J (q)A�

k (q) +Ak(q)J �(q)], (7)

for k = 1, . . . , n − m, where ei ∈ Rn is the i–th vector of the n–dimensional
Euclidean basis,

J (q) �
[
α1(q)

... α2(q)
... · · ·

... αno(q)
]
∈ Rn×no ,

is a free matrix, αi ∈ Rn, i = 1, . . . , no � n
2 (n− 1) and we have defined the row

vectors G⊥
k ∈ R1×n,

G⊥ �
[
(G⊥

1 )� . . . (G⊥
n−m)�

]�
,

Ak � −
[
W1
(
G⊥

k

)�
, . . . ,Wno

(
G⊥

k

)�] ∈ Rn×no ,

with the Wi ∈ Rn×n skew–symmetric matrices with elements 1s and 0s. For
instance, for n = 3 we get

W1 �

⎡⎣ 0 1 0
−1 0 0
0 0 0

⎤⎦ , W2 �

⎡⎣ 0 0 1
0 0 0
−1 0 0

⎤⎦ ,

W3 �

⎡⎣ 0 0 0
0 0 1
0 −1 0

⎤⎦ . (8)

Remark 1. We bring to the readers attention the fact that the target dynamics
Σd is parameterized by the triple {Md, Vd, J2}. Re–parameterization of the target
dynamics is a key step introduced in this paper.

Remark 2. As shown in [1], with the definitions above, the free matrix J2 can be
written as

J2 =
no∑
i=1

p�M−1
d αiWi, (9)

and the terms G⊥
k J2, that appear in (3), become G⊥

k J2 = p�M−1
d JA�

k . Equation
(7) is obtained factoring (3) in the form p�M−1

d [ · ]M−1
d p, taking the symmet-

ric part of the matrices JA�
k and setting the expression in brackets, which is

independent of p, equal to zero.
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Remark 3. In [1] we proved that, if n −m = 1 and the inertia matrix and the
force induced by the potential energy (on the unactuated coordinate) are inde-
pendent of the unactuated coordinate, then the PDEs can be explicitly solved.
The first assumption on the inertia matrix implies, precisely, that the forcing
term G⊥∇q(p�M−1p) = 0, which is essential for the construction of the solu-
tions (see Proposition 3).

3 Generating an Homogeneous Kinetic Energy PDE

Our strategy to eliminate the forcing term in the KE PDE consists of two steps.
First, we express system (1) in the new coordinates (q, p̃), with p = T (q)p̃, where
T ∈ Rn×n is full rank, yielding:

Σ̃ :
[
q̇
˙̃p

]
=
[

0 T−�

−T−1 F22

] [
∇qH̃

∇p̃H̃

]
+
[

0
T−1G

]
u, (10)

where
F22 = −T−1 [S(q, p̃)− S�(q, p̃)

]
T−�,

H̃(q, p̃) =
1
2
p̃�T�(q)M−1(q)T (q)p̃ + V (q)

and
S(q, p̃) = ∇q(T (q)p̃). (11)

It’s worth noting that these equations can be seen as a particular form of the
Boltzmann-Hamel equations (see [14]), in which p̃ is the vector of quasi-velocities,
related to the velocity vector q̇ by means of the relation p̃ = T−1(q)M(q)q̇.

Second, we define new target dynamics, in the coordinates (q, p̃), as

Σ̃d :
[
q̇
˙̃p

]
=
[

0 F12

−F�
12 J̃2(q, p̃)

] [
∇qH̃d

∇p̃H̃d

]
, (12)

where
H̃d(q, p̃) =

1
2
p̃�M̃−1

d (q)p̃ + Ṽd(q), (13)

F12 = M−1(q)T (q)M̃d(q), M̃d ∈ Rn×n and J̃2 = −J̃�
2 is free. The proposed

target dynamics are clearly “compatible” with the new system representation—
in the sense that the first n equations are already “matched”. In Section 4
we establish the connection between (12) and the target dynamic system (6)
expressed in the new coordinates—see also Remark 7.

To state our main result we need the following assumption.

Assumption A. The full rank matrix T is such that, for k = 1, . . . , n−m,
n∑

i=1

[
T�M−1eiG

⊥
k

∂T

∂qi
+

∂T�

∂qi
(eiG

⊥
k )�M−1T + G⊥

k eiT
�∂M−1

∂qi
T

]
= 0. (14)
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Proposition 1. Consider the system (1) and the partial change of coordinates
p = T (q)p̃ where T satisfies Assumption A. For all matrices M̃d(q) = M̃�

d (q) ∈
Rn×n and functions Ṽd(q) that satisfy the PDEs

G⊥T
[
M̃dT

�M−1∇q(p̃�M̃−1
d p̃)− 2J̃2M̃

−1
d p̃
]

= 0 (15)

G⊥TM̃dT
�M−1∇Ṽd = G⊥∇V, (16)

for some J̃2(q, p̃) = −J̃�
2 (q, p̃) ∈ Rn×n, the system (1) in closed–loop with the

IDA–PBC u = ˆ̃u(q, p̃), where

ˆ̃u(q, p̃) = (G�G)−1G�
(
∇qH + Ṫ p̃− TM̃dT

�M−1∇qH̃d + T J̃2M̃
−1
d p̃
)

(17)

takes, in the coordinates (q, p̃), the Hamiltonian form (12), (13).

Proposition 2. Assumption A holds with T = M if and only if

G⊥(q)C(q, q̇)q̇ = 0, (18)

where C ∈ Rn×n is the matrix of Coriolis and centrifugal forces of the mechanical
system (1).

Now we state a slightly modified version of a result reported in [1], which gives
a constructive solution of the homogeneous KE PDE (15) for systems with un-
deractuation degree one.

Proposition 3. Consider equation (15). Suppose that n −m = 1, M does not
depend on the unactuated coordinate, and the matrices G and T are function of
a single element of q, say qr, r ∈ {1, . . . , n}. Then, for all desired locally positive
definite inertia matrices of the form

M̃d(qr) =
∫ qr

q	
r

T−1(µ)G(µ)Ψ(µ)G�(µ)T−T (µ)dµ + M̃0
d (19)

where the matrix function Ψ = Ψ� ∈ R(n−1)×(n−1) and the constant matrix
M̃0

d = (M̃0
d )� > 0 ∈ Rn×n, may be arbitrarily chosen, there exists a matrix J̃2

such that the KE PDE (15) holds in a neighborhood of q�
r .

Remark 4. Comparing (3) with (15) we notice the absence of the forcing term in
the latter—therefore, the PDE that needs to be solved is (in principle) simpler.
As it will be shown in Proposition 4, this simplification has been achieved without
modifying the potential energy PDE (4), but it is subject to the condition of
finding a matrix T satisfying Assumption A.

Remark 5. It is interesting to compare the original KE PDE (7) and the addi-
tional PDE that needs to be solved (14). At first glance, it may be argued that
(14) is as complicated as, if not more complicated than, (7). Notice, however,
that the terms eiG

⊥
k in (14) are matrices with only one non–zero row, while
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G⊥
k MdM

−1ei in (7) is a scalar that “mixes” all the terms in Md. Also, we stress
the fact that, contrary to Md that must be symmetric and positive definite, the
only condition on T is invertibility. For instance, in the example of the pendu-
lum on a cart system, a solution to (14) is trivially obtained while no obvious
solution for (7) is available.

Remark 6. To establish Proposition 1 we didn’t need to use the transformed
system dynamics (10) in Hamiltonian form. This is consistent with the fact that
IDA–PBC is applicable to systems in the general form ẋ = f(x) + g(x)u; see
e.g., [12].

Remark 7. Clearly, changing coordinates of the system and the target dynam-
ics does not affect the matching conditions and, consequently, the PDEs will
be equivalent. The subtlety here is that, as indicated in Remark 1, the tar-
get dynamic system Σd is parameterized by the triple {Md, Vd, J2}, while the
system Σ̃d is parameterized by the triple {M̃d, Ṽd, J̃2}. Along the same lines,
feedback actions of the form u = α(q, p) + β(q, p)v, with β ∈ Rm×m full rank,
will not affect the PDEs—that “live in Ker G”. Indeed, for a system of the form
ẋ = f(x) + g(x)u and target dynamics ẋ = F (x)∇Hd the matching equations
are g⊥f = g⊥F∇Hd, with g⊥g = 0, independently of the feedback action.

4 Solving the Original PDEs

Proposition 1 establishes that, solving the new PDEs (15), (16), the system Σ
described by equations (1) in closed–loop with the IDA–PBC (17) takes, in the
coordinates (q, p̃), the Hamiltonian form Σ̃d described by equations (13). Three
natural questions arise.

• What are the dynamics of the closed–loop system in the original coordinates
(q, p)?

• What is the relationship between the solutions of the new matching problem
{M̃d, Ṽd, J̃2} and the solutions of the original matching problem {Md, Vd, J2}?

• What is the relationship between the original matching controller û(q, p) and
the new one ˆ̃u(q, p̃)?

The answers to these questions are given in the proposition below. The ra-
tionale of the proposition is best explained referring to Fig. 1. The connections
between the nodes Σ, Σ̃ and Σ̃d are given by Proposition 1. It remains to es-
tablish the connection with the original target dynamics node Σd. Towards this
end, we write Σd, described by equations (6), in the new coordinates and prove
the existence of a bijective mapping Ψ : {M̃d, Ṽd, J̃2} → {Md, Vd, J2}, that makes
the transformed system equal to Σ̃d—that is, with the same structure matrix
and the same Hamiltonian function.1 This proves that Σ and Σd match and,
consequently, the corresponding parameters {Md, Vd, J2} solve the PDEs and
define the control û(q, p).
1 The mapping Ψ can also be derived computing the Poisson brackets of the coordi-

nates (q, p̃), as done in [5] to establish the equivalence between controlled Lagrangians
and IDA–PBC.
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ΣdΣ

Σ̃dΣ̃

(q, p)

(q, p̃)
{M̃d, Ṽd, J̃2}

{Md, Vd, J2}

ˆ̃u

û

Γ, ΦΦ

(q, p)

(q, p̃)

Fig. 1. Diagrammatic description of the systems transformations

Proposition 4. The triple {M̃d, Ṽd, J̃2} solves the new matching equations (15),
(16) if and only if the triple {Md, Vd, J2} solves the original matching equations
(3),(4), where2

Md = TM̃dT
�

Vd = Ṽd

J2(q, p) = T J̃2(q, T−1p)T� + S(q, T−1p)M−1TM̃dT
�

−TM̃dT
�M−1S�(q, T−1p) (20)

and S(q, p̃) is given in (11). Furthermore, the control (5) that matches Σ to Σd

is obtained as û(q, p) = ˆ̃u(q, T−1(q)p), with ˆ̃u defined in (17).

5 The Pendulum on a Cart Example

The dynamic equations of the pendulum on a cart are given by (1) with n = 2,
m = 1, and

M(q1) =
[

1 b cos q1
b cos q1 c

]
, V (q1) = a cos q1,

G = e2, a =
g

�
, b =

1
�
, c =

M + m

m�2

where q1 denotes the pendulum angle with the upright vertical, q2 the cart
position, m and � are, respectively, the mass and the length of the pendulum,
M is the mass of the cart and g is the gravity acceleration. The equilibrium to
be stabilized is the upward position of the pendulum with the cart placed in any
desired location, which corresponds to q1� = 0 and an arbitrary q2�.

Noting that G⊥ = e�1 , the KE PDE (7) takes the form

2∑
i=1

(e�1 MdM
−1ei)

∂Md

∂qi
−Md

∂M−1

∂q1
Md = −

[
0 α1(q)

α1(q) 2α2(q)

]
, (21)

2 For simplicity, we have omitted the argument q in the functions that depend only
on q.
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with αi being free functions. Using these functions we can “solve” two of the
three equations above, so it remains only one PDE to be solved. To simplify the
expression of this equation we make Md function only of q1 leading to the ODE

(cm11 − bm12 cos q1)
dm11

dq1

=
2b sin q1

c− b2 cos2 q1
[b cos q1(cm2

11 + m2
12)− (c + b2 cos2 q1)m11m12],

where mij(q1) is the ij–element of the matrix Md. Even using m12 as a degree
of freedom finding a solution to this ODE is a daunting task.

To simplify the PDE we proceed, then, to apply the technique proposed in
the paper. By computing the Coriolis and centrifugal forces matrix using the
Christoffel symbols of the second kind [9], it is easy to see that the condition
G⊥Cq̇ = 0 is satisfied. Therefore, we propose to take T = M and search for a
solution of the homogeneous PDE (15), which becomes:

G⊥M
[
M̃d∇q(p̃�M̃−1

d p̃)− 2J̃2M̃
−1
d p̃
]

= 0. (22)

It is easy to see that the hypotheses of Proposition 3 are satisfied with r = 1.
By selecting

Ψ(µ) =
−k sinµ

m3 − b2 cos2 µ
, M̃0

d =
[

kb2

3 cos3 q1� −kb
2 cos2 q1�

−kb
2 cos2 q1� k cos q1� + m0

22

]
with k > 0 and m0

22 ≥ 0 free parameters, it follows that a solution is provided
by

M̃d =
[

kb2

3 cos3 q1 −kb
2 cos2 q1

−kb
2 cos2 q1 k cos q1 + m0

22

]
, J̃2 = p̃�M̃−1

d

[
α1
α2

] [
0 1
−1 0

]
.

Such a solution is positive definite and bounded for all q1 ∈ (−π
2 , π

2 ).
Regarding the potential energy, it can be seen that a solution of the PDE (16)

is given by

Ṽd =
3a

kb2 cos2 q1
+

P

2

[
q2 − q2� +

3
b

ln(sec q1 + tan q1) +
6m0

22

kb
tan q1

]2
,

with P > 0 arbitrary and q2� the cart position to be stabilized. The asymptotic
analysis of the closed–loop system and some simulations may be found in [1],
where the problem has been solved by using Lagrangian coordinates and carrying
out a partial feedback linearization.

6 Conclusions

In this paper we have investigated a way to simplify the solution of the matching
equations of IDA-PBC for a class of underactuated mechanical systems. We have
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shown that it is possible to transform the KE PDE into an homogeneous one by
using coordinate transformations and a re-parametrization of the target dynam-
ics. This can be achieved provided that a solution of another PDE, involving the
coordinates transformation matrix, can be found. This new PDE is similar to
the kinetic energy PDE, but without the requirement of positive definiteness of
its solutions. Moreover, it has been shown that in the particular case of transfor-
mation to the Lagrangian coordinates, the possibility of simplifying the PDEs
is determined by the interaction between the Coriolis and centrifugal forces and
the actuation structure. The proposed technique has been successfully applied
to the pendulum on a cart.
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1 Introduction

Passivity–based control (PBC) is a generic name given to a family of controller
design techniques that achieves system stabilization via the route of passivation,
that is, rendering the closed–loop system passive with a desired storage function
(that usually qualifies as a Lyapunov function for the stability analysis.) If the
passivity property turns out to be output strict, with an output signal with
respect to which the system is detectable, then asymptotic stability is ensured.
See the monographs [5, 12], and [6] for a recent survey.

As is well–known, [12], a passive system can be rendered strictly passive simply
adding a negative feedback loop around the passive output—an action sometimes
called LgV control, [10]. For this reason, it has been found convenient in some
applications, in particular for mechanical systems, [11], [8], to split the control
action into the sum of two terms, an energy–shaping term which, as indicated
by its name, is responsible of assigning the desired energy/storage function to
the passive map, and a second LgV term that injects damping for asymptotic
stability. The purpose of this paper is to bring to the readers attention the fact
that splitting the control action in this way is not without loss of generality, and
effectively reduces the set of problems that can be solved via PBC. This assertion
is, of course, not surprising since it is clear that, to achieve strict passivity, the
procedure described above is just one of many other possible ways. Our point is
illustrated with the IDA–PBC design methodology proposed in [4]. To enlarge
the set of systems that can be stabilized via IDA–PBC we suggest to carry out
simultaneously the energy shaping and the damping injection stages and refer to
this variation of the method as SIDA–PBC.

F. Bullo et al. (Eds.): Lag. & Hamil. Methods for Nonlin. Ctrl., LNCIS 366, pp. 157–169, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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We illustrate the application of SIDA–PBC with two practically important
examples. First, we show that the fundamental problem of induction motor
torque and rotor flux regulation cannot be solved with two stage IDA–PBC. It
is, however, solvable with SIDA–PBC. Second, we prove that with SIDA–PBC
we can shape the total energy of the full (electrical and mechanical) dynamics
of a doubly–fed induction generator used in power flow regulation tasks while,
as reported in [1], with two stage IDA–PBC only the electrical energy could
be shaped. Simulation results of these examples are presented to illustrate the
performance improvement obtained with SIDA–PBC.

2 PBC with Simultaneous Energy Shaping and Damping
Injection

We consider the problem of stabilization of an equilibrium point for nonlinear
systems of the form

ẋ = f(x, t) + g(x)u (1)

where x ∈ Rn is the state vector, u ∈ Rm,m < n is the control action and g(x) is
assumed full rank. In two–stage IDA–PBC this objective is achieved as follows,
see [4, 13] for further details. First, decompose the control signal in two terms

u = ues + udi (2)

where ues is responsible of the energy–shaping stage and udi injects the damping.
Second, solve the key matching equation1

g⊥(x)f(x, t) = g⊥(x)Jd(x, t)∇Hd (3)

for some functions

Jd : Rn × R → Rn×n, Hd : Rn → R,

satisfying the skew–symmetry condition for the interconnection matrix

Jd(x, t) + J�
d (x, t) = 0, (4)

and the equilibrium assignment condition for the desired total stored energy

x� = arg min Hd(x) (5)

with x� ∈ Rn the equilibrium to be stabilized2 and g⊥(x) ∈ R(n−m)×n a full–
rank left–annihilator of g(x), that is, g⊥(x)g(x) = 0 and rank g⊥(x) = n−m.

As shown in [4] system (1) in closed-loop with the control (2), with

ues = [g�(x)g(x)]−1g�(x){Jd(x, t)∇Hd − f(x, t)}. (6)
1 All vectors in the paper are column vectors, even the gradient of a scalar function

denoted ∇(·) = ∂
∂(·) . When clear from the context the subindex will be omitted.

2 That is, x� is a member of the set {x̄ ∈ Rn | g⊥(x̄)f(x̄, t) = 0, ∀t ∈ R}.
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yields a port–controlled Hamiltonian (PCH) system of the form

ẋ = Jd(x, t)∇Hd + g(x)udi

y = g�(x)∇Hd. (7)

The system (7) without damping injection term is conservative, i.e., Ḣd = 0, with
x� a stable equilibrium (with Lyapunov function Hd(x)). To add dissipation we
feedback the passive output y, for instance, with

udi = −Kdiy, Kdi = K�
di > 0,

to finally obtain the PCH system with dissipation

ẋ = [Jd(x, t)−Rd(x)]∇Hd + g(x)v
y = g�(x)∇Hd. (8)

where the damping matrix Rd(x) = R�
d (x) ≥ 0 is defined by

Rd(x) = g(x)Kdig
�(x),

and we have added a signal v to (2) to define the port variables. Since the new
closed–loop system (with v = 0) satisfies Ḣd = −y�Kdiy, it can be proved (see
for example Lemma 3.2.8 of [12] for the autonomous systems case) that the
equilibrium x� will now be asymptotically stable if it is detectable from y, i.e.,
if the implication (y(t) ≡ 0 ⇒ limt→∞ x(t) = x�) is true.

Obviously, the key for the success of IDA–PBC is the solution of the matching
equation (3). With the motivation of enlarging the class of systems for which this
equation is solvable we propose in this paper to avoid the decomposition of the
control into energy–shaping and damping injection terms. Instead, we suggest
to carry out simultaneously both stages and replace (3), with the SIDA–PBC
matching equations

g⊥(x)f(x, t) = g⊥(x)Fd(x, t)∇Hd, (9)

to replace the constraint (4) by the strictly weaker condition

Fd(x, t) + F�
d (x, t) ≤ 0, (10)

and define the control as

u = [g�(x)g(x)]−1g�(x){Fd(x, t)∇Hd − f(x, t)}.

Since the set of skew–symmetric matrices is strictly contained in the set of
matrices with negative semi–definite symmetric part, it is clear that the set of
functions {f(x, t), g(x)} for which (3)—subject to the constraint (4)—is solvable
is strictly smaller than the set for which (9), subject to (10), is solvable.
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Remark 1. There exists several techniques to solve the matching equations (3)
(resp., (9)), with two extremes cases being the purely algebraic approach of [2]
and the PDE approach of [4]. In the former Hd(x) is a priori fixed, which makes
(3) (resp., (9)) an algebraic equation that is solved for Jd(x, t) (resp., Fd(x, t))—
subject to the constraint (4) (resp., (10)). On the other hand, in the latter Jd(x, t)
(resp., Fd(x, t)) is fixed making (3) (resp., (9)) a PDE that is solved for Hd(x).
We refer the interested reader to [6] for a detailed discussion on these, as well
as other, methods of solution of the matching equations. In this paper we will
adopt the algebraic approach.

Remark 2. Similarly to IDA–PBC, application of SIDA–PBC also yields a closed–
loop PCH system of the form (8) with

Jd(x, t) = 1
2 [Fd(x, t)− F�

d (x, t)],

Rd(x, t) = 1
2 [Fd(x, t) + F�

d (x, t)].

Remark 3. To make IDA–PBC applicable to non–autonomous systems, which
will be required in the induction motor application, we have presented above a
slight variation of the method. Notice that the matrices Jd and Rd may depend
explicitly on time. Clearly, their skew–symmetry and non–negativity properties
must now hold uniformly in time as well.

3 Induction Motor Control Via SIDA–PBC

In this section we will show that the problem of output feedback torque control
of induction motors is not solvable via two–stage IDA–PBC but it is solvable
with SIDA–PBC. An interesting feature of our SIDA–PBC is that we establish
here (Lyapunov) stability of a given equilibrium that generates the desired torque
and rotor flux amplitude.

The standard two-phase model, which rotates at an arbitrary speed ωs ∈ R,
is given by [13]

ẋ12 = − [γI2 + (npω + u3)J ]x12

+α1 (I2 − TrnpωJ )x34 + α2u12 (11)

ẋ34 = −(
1
Tr

I2 + J u3)x34 +
Lsr

Tr
x12 (12)

ω̇ = α3x
�
12J x34 −

τL

Jm
(13)

in which I2 ∈ R2×2 is the identity matrix, J = −J T ∈ R2×2, x12 ∈ R2 are
the stator currents, x34 ∈ R2 the rotor fluxes, ω ∈ R the rotor speed, u12 ∈ R2

are the stator voltages, τL ∈ R is the load torque and u3 := ωs − npω. All
the parameters are positive and defined in the usual way. Notice that, as first
pointed out in the control literature in [7], the signal u3 acts as an additional
control input. We will select u3 to transform the periodic orbits of the system
into constant equilibria.
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We are interested in this paper in the problem of regulation of the motor
torque and the rotor flux amplitude

y =
[
y1
y2

]
=
[
Jmα3x

�
12J x34

|x34|

]
, (14)

to some constant desired values y� = col(y1�, y2�), where | · | is the Euclidean
norm, assuming that the only signals available for measurement are x12 and ω.

To solve this problem using (S)IDA–PBC it is necessary to express the control
objective in terms of a desired equilibrium. In this sense, it can be shown that
for the induction motor model (11)–(13) with output functions (14) and

u3 = u3� :=
Rr

np

y1�

y2
2�

. (15)

the set of assignable equilibrium points, denoted col(x̄12, x̄34, ω̄) ∈ R5, which are
compatible with the desired outputs y� is defined by

x̄12 =
1

Lsr

[
1 −Lr

np

y1	

y2
2	

Lr

np

y1	

y2
2	

1

]
x̄34

|x̄34| = y2� (16)

with ω̄ arbitrary.

Remark 4. From (13) and (14) we see that to operate the system in equilibrium,
y1� = τL—hence, to define the desired equilibrium the load torque needs to be
known. In practical applications, an outer loop PI control around the velocity
error is usually added. The output of the integrator, on one hand, provides an
estimate of τL while, on the other hand, ensures that speed also converges to
the desired value as shown via simulations below. A scheme that removes this
assumption has recently been proposed in [3].

As indicated in Remark 1, in this paper we will adopt the algebraic approach to
solve the matching equations. To this end, we will consider a quadratic in errors
energy function of the form

Hd(x) =
1
2
(x− x�)�P (x− x�), (17)

with P = P� > 0 a matrix to be determined. Moreover, the problem formula-
tion is simplified by using the generic symbol F (x, t) to denote either Jd(x, t)
or Fd(x, t), and identifying the IDA and SIDA approaches by imposing either
F (x, t) + F�(x, t) = 0 or F (x, t) + F�(x, t) ≤ 0, respectively.

Since we are interested here in torque control, and this is only defined by
the stator currents and the rotor fluxes, its regulation can be achieved applying
IDA–PBC to the electrical subsystem only. Boundedness of ω will be established
in a subsequent analysis.
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If the electrical subsystem (11), (12), with u3 = u3� and u = u12, is written
in the form (1), then, selecting g⊥ =

[
02×2 I2

]
, it is possible to notice that the

matching equations (3) and (9) concern only the third and fourth rows of f(x, t)
and they take the form

−(
1
Tr

I2 + J u3�)x34 +
Lsr

Tr
x12 = [F3(x, t) F4(x, t)]P (x− x�), (18)

where, to simplify the notation, we partition F (x, t) into Fi ∈ R2×2, i = 1, . . . , 4,
sub-matrices.

On the other hand, considering the constraint imposed by the possibility of
measuring only x12 and ω, from (6) it is possible to see that the control can be
written, factoring the components that depend on the unmeasurable quantity
x34, as

u12 = û12(x12, ω) +
1
α2

S(x, t)x34

with û12(x12, ω) given in (21). Hence, it is clear that to verify the output feedback
condition it must be satisfied that

S(x, t) := α1 [Trnpω(t)J − I2] + F1(x, t)P2 + F2(x, t)P3 = 0, (19)

where we have partitioned the symmetric matrix P into Pi ∈ R2×2, i = 1, 2, 3,
sub-matrices.

In order to show that the energy–shaping problem is not solvable, it is possible
to establish that condition F (x, t) + F�(x, t) = 0 is equivalent to

G = P−1
3 (−G�)P3.

where

G :=
1
λ

[
Lsr

Tr
P3 + P1 (α1I2 − λβ2J )

]
with λ ∈ R, λ �= 0, β2 ∈ R and P3 a full rank matrix.

Consequently, G must be similar to −G�, and both necessarily have the same
eigenvalues. A necessary condition for the latter is that trace(G) = 0, that
clearly is not satisfied.

On the other hand, it can be shown that F2(t) = α1 [I2 − Trnpω(t)J ]P−1
3 ,

F3 = Lsr

Tr
P−1

1 , F4 = −
(

1
Tr

I2 + u3�J
)

P−1
3 and P2 = 0, with F1(x, t), P1, P3

free, provide a solution to (18) and (19). Moreover, if P1 = Lsr

Tr
I2, P3 = α1I2

and F1(t) = −K(ω(t)), with

K(ω(t)) >
Lsr

LsLr − L2
sr

[
1 +

1
4
(Trnpω(t))2

]
I2 (20)

then F (t) + F�(t) < 0.
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The final part of the design is the explicit definition of the resulting controller,
given by u3 = Rr

np

y1	

y2
2	

and u12 = û12(x12, ω) with

û12(x12, ω) =
1
α2

[γI2 + (npω + u3�)J ]x12 −
α1

α2
(I2 − TrnpωJ )x34�

− Lsr

α2Tr
K(ω)(x12 − x12�) (21)

and K(ω) satisfying (20), which guarantees that the equilibrium x� is globally
exponentially stable while ω remains bounded.

The performance of the proposed SIDA–PBC was investigated by simulations
using the motor parameters reported in [7]. The rotor flux equilibrium value was
set to x34� = col (β, 0) with β = 2, while x12� were computed according to (16).
In the experiment, with the motor at standstill and a startup zero load torque, a
profile for this latter variable was considered going first to τL = 20Nm and later
on to τL = 40Nm. In Figure 1 it is shown how the generated torque regulation
objective is achieved.

The second experiment was aimed to illustrate the claim stated in Remark 4
regarding the estimation of the load torque with speed control purposes. In this
sense, the control input u3 was set to

u3 = û3� = Rr
ŷ1�

y2
2�

where the estimate of the load torque is obtained as the output of a PI controller,
defined over the speed error between the actual and the desired velocities, of the
form

ŷ1�(t) = kp (ω(t)− ω�) + ki

∫ t

0
(ω(s)− ω�) ds

Figure 2 shows the rotor speed behavior when the desired velocity is initially
ω� = 100rpm and at t = 50sec it is changed to ω� = 150rpm. In this simulation
it was considered τL = 10Nm, ki = −.1 and kp = −1. All the other parameters
were the same than in the first experiment.
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Fig. 2. Speed behavior with estimated load torque

4 Total Energy–Shaping of a Doubly–Fed Induction
Generator

The second considered example in this paper is related with the control of a
doubly-fed induction machine (DFIM) [9]. In this case the device acts as an
energy–switching device between a local energy storing element (a flywheel) and
the electrical power network. The control objective is to change the direction of
the power flow (towards or from the flywheel) depending on the load demand.
In [1] the equilibria associated to these regimes is stabilized with an IDA–PBC
that shapes the electrical energy, treating the mechanical dynamics as a cascaded
subsystem. The purpose of this section is to show that using SIDA–PBC it is
possible to shape the energy function of the complete system dynamics, resulting
in a controller with improved power–flow regulation performance due to the
possibility of considering a fast response of the mechanical speed. To the best of
our knowledge, this is the first control algorithm for this class of systems that
provides for this additional degree of freedom.

We consider the configuration for the DFIM studied in [1] where a repre-
sentation in the dq framework rotating at the (constant) angular speed of the
AC source (ωs) is assumed. The energy function of the overall system is H(z) =
1
2z

�L−1z, and the model is given by

ż = [J(is, ω)−R]∇H +

⎡⎣ vs

O2×1
τL

⎤⎦+

⎡⎣O2×2
I2

O1×2

⎤⎦u (22)

where

L =

⎡⎣ LsI2 LsrI2 O2×1
LsrI2 LrI2 O2×1
O1×2 O1×2 Jm

⎤⎦ = L� > 0

is the generalized inductance matrix, vs ∈ R2, τL ∈ R are, respectively, the stator
voltage and the external mechanical torque, which are constant, u ∈ R2 are the
rotor control voltages, z = col(λs, λr, Jmω) ∈ R5, where λs, λr ∈ R2 are the
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stator and rotor fluxes, respectively, and ω ∈ R is the mechanical speed. The
(skew–symmetric) structure and damping matrices are

J(is, ω) :=

⎡⎣ −ωsLsJ −ωsLsrJ O2×1
−ωsLsrJ −(ωs − ω)LrJ LsrJ is

O1×2 Lsri
�
s J 0

⎤⎦ ,

R :=

⎡⎣RsI2 O2×2 O2×1
O2×2 RrI2 O2×1
O1×2 O1×2 Br

⎤⎦ > 0,

All machine parameters are defined in the usual way. Also note that the vector
χ = col(is, ir, ω) ∈ R5×5, where is, ir ∈ R2 are the stator and rotor currents,
respectively, satisfies z = Lχ.

Clearly, the fixed point equations for (22) are given by z� = Lχ�, with χ� :=
col(is�, ir�, ω�) the solutions of

−(ωsLsJ + RsI2)is� − ωsLsrJ ir� + vs = 0

Lsri
�
s�J ir� −Brω� + τL = 0, (23)

As discussed in [1], the direction of the power flow can be regulated commuting
between two controllers that stabilize two different equilibrium points.

In order to obtain the controller that stabilizes the desired equilibrium, as done
in Section 3 we will design our SIDA–PBC adopting the algebraic approach. For,
we fix the desired energy function as

Hd(z) =
1
2
(z − z�)�P (z − z�), P = P� > 0. (24)

Thus SIDA–PBC design reduces to finding a matrix Fd(z) such that the right–
hand term of (22) equals Fd(z)P (z − z�) and verifying Fd(z) + F�

d (z) ≤ 0. To
simplify the solution we restrict P to be diagonal while

Fd(z) =

⎡⎣F11(z) F12(z) O2×1
F21(z) F22(z) F23(z)
F�

31(z) F�
32(z) F33(z)

⎤⎦ ,

It can be shown that if F11 = − 1
ps

(
ωsJ + Lr

µ RsI2

)
and F12 = Lsr

prµRsI2 with

µ := LsLr − L2
sr > 0, with F31 = Lsr

psµJ λr�, F32(z) = −Lsr

prµJ λs, F33 = − Br

pωJm
,

while
F21 = −F12, F23(z) = −F32(z), F22 = − kr

2pr
I2 < 0

yields

Fd(z) + F�
d (z) =

⎡⎢⎣ −
2LrRs

psµ I2 O2×2
Lsr

psµJ λr�

O2×2 −kr

pr
I2 O2×1

−Lsr

psµλ�
r�J O1×2 − 2Br

pωJm

⎤⎥⎦ . (25)
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A simple Schur’s complement analysis establishes that Fd(z)+F�
d (z) < 0 if and

only if the free parameters ps and pω satisfy

ps >

(
JmL2

sr

4BrLrRsµ
|λr�|2

)
pω. (26)

Once we have solved the SIDA–PBC matching equations, the design is com-
pleted computing the controller which in this case is given as the static feedback
control

u =Rrir + (ωs − ω)J (Lsris + Lrir)

−ks(Lsĩs + Lsr ĩr)− kr(Lsr ĩs + Lr ĩr) + kωJ λsω̃ (27)

where kr > 0, kω > 0 and ks >
L2

sr

4BrLrµ |λr�|2kω . Considering this control law,
the equilibrium z� is globally exponentially stable.

In spite of the remarkable stability properties of the proposed scheme, it can be
seen that (27) has an strong dependence on Rr, which is in general an uncertain
parameter. With the aim of robustifying this control law it is possible to develope
an adaptive version in the following way.

Replacing (27) by

u =(ωs − ω)J (Lsris + Lrir)

−ks(Lsĩs + Lsr ĩr)− kr(Lsr ĩs + Lr ĩr) + kωJ λsω̃ + R̂rir, (28)

where R̂r is an estimate of Rr that we have to generate on-line, we define the
parameter error R̃r = R̂r −Rr. The closed-loop system has the form

ż = F∇Hd + R̃rBir,

where B = [O2×2, I2, O1×2]
T .
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To complete the design we propose a Lyapunov function

W (z, R̃r) = Hd +
1

2ka
R̃2

r

where ka > 0 is the adaptation gain. Its derivative yields, selecting ˙̃Rr =
−ka(∇Hd)�Bir, that

Ẇ = −(∇Hd)�F∇Hd ≤ 0,

which proves the stability of the adaptive system. The resulting adaptation law
is

˙̃Rr = −ka(Lsr ĩs
� − Lr ĩr

�
)prir.

The usefulness of the controller (27) was illustrated by some simulations using
the DFIM parameters of [1]. The controller parameters were selected as ks =
1000, kr = 100 and kω = 0.01. In Figure 3 we compare the speed behavior of
the new SIDA-PBC with the IDA–PBC reported in [1]—that shapes only the
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electrical energy. As can be noticed, SIDA–PBC achieves a much faster speed
response.

To evaluate the adaptive controller (28) the same experiment as before was re-
peated but now varying the rotor resistance parameter Rr. At t = 0.5s the value
of Rr of the model is smoothly increased to Rr = 0.02, simulating temperature
effects. Figures 4 and 5 show the estimation behavior of R̂r and the dynamics
of the mechanical speed, respectively.The convergence of the estimated value of
R̂r to the real value (Figure 4) ensures that the performance of the ideal system
is recovered (Figure 5).

5 Conclusions

We have presented an extension of the highly successful IDA-PBC methodology,
called SIDA–PBC, where the energy–shaping and damping injection tasks are
not performed sequentially, but simultaneously. In this way we enlarge the class
of systems that can be stabilized using PBC and, furthermore, through the con-
sideration of a broader set of desired damping matrices, we provide the designer
with more tuning knobs to improve performance.

This new idea has been applied to solve the long standing problem of IDA–
PBC of induction motors, that turns out to be unsolvable with a two stage
design. Also, by avoiding the classical nested–loop control configuration preva-
lent in electromechanical systems, we have been able to improve the mechanical
response of a DFIM, working both as a motor and a generator. Experimental
validation of the two control algorithms is currently being terminated and will
be reported in the near future.
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In this paper an internal model based approach to implicit Fault Tolerant Control
for port-Hamiltonian systems is presented: the main idea is to cast the problem
into a regulation problem in presence of input disturbances representing exoge-
nous effects of possible faults; this can be solved following an adaptive internal
model based approach. The theoretical machinery exploited is specialized for the
energy-based port-Hamiltonian formalism in order to prove the global asymptot-
ical stability of the solution. Finally an application example is presented in order
to deeply point out the effectiveness of the design procedure presented: a Fault
Tolerant Control problem is solved for a magnetic levitation system affected by
periodic voltage disturbances.

1 Introduction

In large systems, every component provides a certain function and the over-
all system works satisfactorily only if all components provide the service they
are designed for. Therefore, a fault in a single component usually changes the
performances of the overall system. For this reason faults have to be detected
as quickly as possible and decisions that stop the propagation of their effects
have to be made. A weak element in this framework are control loops. In fact
automated systems are vulnerable to faults such as defects in sensors, in actu-
ators and in controllers, which can cause undesired reactions and consequences
as damage to technical parts of the plant, to personnel or to the environment.
In this framework, the design of a Fault Tolerant Control (FTC) architecture
is of crucial importance. FTC systems aims at adapting the control strategy to
the presence of the fault in order to achieve prescribed performances also for the
faulty system. See [2] for an exhaustive overview about FTC systems.

The most common approach in dealing with such a problem is to split the
overall design in two distinct phases. The first phase addresses the so-called
“Fault Detection and Isolation” (FDI) problem, which consists in designing a
filter which, by processing input/output data, is able to detect the presence of
an incipient fault and to isolate it from other faults and/or disturbances (see
[7], [15] and the reference therein). Once the FDI filter has been designed, the

F. Bullo et al. (Eds.): Lag. & Hamil. Methods for Nonlin. Ctrl., LNCIS 366, pp. 171–182, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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second phase usually consists of designing a supervisory unit which, on the basis
of the information provided by the FDI filter, reconfigures the control so as to
compensate for the effect of the fault and to fulfill performances constraint.

In [4] authors introduce a new approach to FTC: the so-called implicit FTC. In
this approach the control reconfiguration does not pass through an explicit FDI
design but, indeed, is achieved by a proper design of a dynamic controller which
is implicitly fault tolerant to all the possible faults whose model is embedded in
the regulator through an internal model. In [3] and [18] this approach has been
specialized for a robot manipulator which is forced to track a desired trajectory
even in presence of malfunctioning causing periodic torque disturbances acting
on joints.

In this paper a framework to deal with implicit FTC problems for port-
Hamiltonian systems is presented. The main idea is to cast the FTC problem into
a regulation and input disturbance suppression problem and to solve this prob-
lem with an adaptive internal model based regulator: this framework is justified
by the observation that in many case the resulting effect of the occurrence of a
fault is the arising of constant or periodical spurious disturbances superimposed
to the control input variables (see [20], [6], [19], [25], [21]).

The theoretical machinery exploited in order to prove the global asymptotical
stability of the solution exposed is the nonlinear regulation theory, specialized
for the energy-based port-Hamiltonian formalism in order to take advantage of
its peculiar properties. In [12] port-Hamiltonian systems were introduced as a
generalization of Hamiltonian systems, described by Hamilton’s canonical equa-
tions, which may represent general physical systems (e.g. mechanical, electric and
electro-mechanical systems, nonholomic systems and their combinations)(see [17]
for further references). Hence this formalism appears to perfectly suit in order
to deal with general FTC design problems.

In Section 2, an implicit FTC problem is considered and cast into a problem of
exogenous input disturbance suppression for a generic port-Hamiltonian system.
The regulation problem is stated and an adaptive internal model based controller
able to globally asymptotically solve this problem is introduced under certain
assumption regarding the system into account.

It is worth to remark that the control algorithm presented in this section
is able to deal with faults affecting the plant whose effects can be modeled
as functions (of time) within a finitely-parametrized family of such functions:
i.e. exogenous constant and sinusoidal disturbances characterized by unknown
amplitude, phase and frequency; the hypothesis of not perfect knowledge of the
characteristic frequencies introduces a complex issue to deal with: in the last
years this problem has been pointed out and addressed using different design
techniques (see [16], [11], [22], [13], [23] and references therein). In this paper a
solution, relying on simple Lyapunov based consideration is presented.

In order to enlighten the practical effectiveness of the implicit FTC solution
presented, in Section 3, the problem is solved for a magnetic levitation system
affected by periodic voltage disturbances.
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2 Input Disturbance Suppression Problem and Its
Adaptive Solution

In this section we present a generic control algorithm able to solve an implicit
FTC problem for port-Hamiltonian systems. The class of faults considered con-
sists in all possible faults whose effects reflect into the arise of additive actu-
ators disturbances modeled as exogenous input signals belonging to the class
of constant and sinusoidal disturbances characterized by unknown amplitude,
phase and frequency. The design procedure will define an implicit Fault Toler-
ant controller based on the internal model principle able to reject perfectly the
disturbances due to the occurrence of a fault: the reconfiguration phase is hence
implicitly attained while, testing the internal state of the controller, is it possible
to perform the FDI phase.

Consider a generic port-Hamiltonian system with an exogenous disturbance
δ(t) acting through the input channel:

ẋ = (J(x) −R(x))
∂H

∂x
+ gu− gδ (1)

where x ∈ IRn, u ∈ IRm, H : IRn → IR is the energy function (Hamiltonian func-
tion), J(x) is a skew symmetric matrix (J(x) = −JT(x)), R(x) is a symmetric
semi-positive definite matrix (R(x) = RT(x)) and g ∈ IRn×m.

The disturbance Γw is generated by an exosystem defined by{
ẇ = Sw

δ = Γw
(2)

with s = 2k + 1, w ∈ IRs; Γ ∈ IRs×m is a known matrix and S is defined by

S = diag{S0, S1, . . . , Sk} (3)

where S0 = 0,

Si =
[

0 ωi

−ωi 0

]
ωi > 0 i = 1, . . . , k . (4)

The initial condition of the exosystem is w(0) ∈ W , with W ⊆ IRs bounded
compact set.

In this discussion the dimension s of matrix S is known but all characteristic
frequencies ωi will be unknown but ranging within known compact sets, i.e.
ωmin

i ≤ ωi ≤ ωmax
i .

In this set up the lack of knowledge of the exogenous disturbance reflects
into the lack of knowledge of the initial state w(0) of the exosystem and of
the characteristic frequencies. For instance, any disturbance obtained by linear
combination of a constant term and sinusoidal signals with unknown frequencies,
amplitudes and phases are considered.

The problem to address is to regulate the system to the origin in despite of
the presence of exogenous disturbances due to faults, hence obtaining a fault
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tolerant behavior for the system into account; it will be remarked later that the
solution presented is even able to supply estimates of the disturbances occurred
after the arise of a fault, solving the connected FDI problem.

The problem can be easily cast as a regulation problem (see [10], [5], [9],
[1]) complicated by the lack of knowledge of the matrix S: the controller to be
designed embeds an internal model of the exogenous disturbances and will be
augmented by an adaptive mechanism in order to estimate the characteristic
frequencies of the disturbances.

The internal model unit is designed according to the procedure proposed in
[13] (canonical internal model). Given a symmetric, negative definite Hurwitz
matrix F and any matrix G such that the couple (F,G) is controllable, denote
by Y the unique nonsingular matrix solution of the Sylvester equation1

Y S − FY = GΓ (5)

and define the matrix Ψ := ΓY −1.
As matrix S is unknown, the solution Y of the Sylvester equation (5), and

hence matrix Ψ are not known; for this reason an adaptation law is designed.
The estimated term is Ψ̂ and the adaptation error is easily defined as

Ψ̃ij = Ψ̂ij − Ψij ,
i = (1, · · · ,m)
j = (1, · · · , s) .

Considering now two vectors containing every element of matrix Ψ and Ψ̂

Φ =
(
Ψ11 · · · Ψ1s · · · Ψm1 · · · Ψms

)T
Φ̂ =

(
Ψ̂11 · · · Ψ̂1s · · · Ψ̂m1 · · · Ψ̂ms

)T
and defining Φ̃ = Φ̂ − Φ it is possible to state the main result in the following
proposition.

Proposition 1. Consider the port-Hamiltonian system (1), affected by exoge-
nous signals generated by the autonomous system (2), (3), (4).
Suppose that the following hypotheses hold:

H1: there exists two numbers ηx ∈ IR− and ηΨ ∈ IR and a matrix Q ∈ IRn×n

such that for all χ ∈ IRs the following holds

−∂TH

∂x
R(x)

∂H

∂x
+

∂TH

∂x
gΨχ ≤ ηx‖Qx‖2 + ηΨ‖Qx‖‖χ‖ ; (6)

H2: the origin of the auxiliary system

ẋ = (J(x) −R(x))
∂H

∂x
+ gσ

σ̇ = −gT ∂H

∂x
1 Existence and uniqueness of the matrix Y follow from the fact that S and F have

disjoint spectrum. The fact that Y is nonsingular can be easily proved using observ-
ability of the pairs (S, Γ ) and controllability of the pair (F, G).
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is the largest invariant set characterized by

∂TH

∂x
R(x)

∂H

∂x
= 0 .

Then the controller (adaptive internal model unit):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ξ̇ = (F + GΨ̂)ξ − FAx + A(J(x) −R(x))

∂H

∂x
−AgΨ̂Ax

˙̂
Φ = −Π(x, ξ)T

∂H

∂x

u = Ψ̂ξ − Ψ̂Ax ,

(7)

where A is chosen according to Ag = G, Π(x, ξ) is a suitably defined updating
term designed such that

Π(x, ξ)Φ̃ = gΨ̃(ξ −Ax) ,

F is a suitably defined symmetric Hurwitz matrix and G is a suitably defined ma-
trix such that the couple (F,G) is controllable, is able to asymptotically stabilize
the origin of system (1), zeroing the effect of the exogenous disturbances.

Sketch of the proof. Considering the Hamiltonian function H(x) as Lyapunov
function, it is possible to use hypothesis H1 and simple Young’s inequality based
consideration to prove that Ḣ(x) ≤ 0. LaSalle invariance principle and hypoth-
esis H2 make then possible to state the asymptotic convergence of the state x
to the origin. In next section this proof will be presented in extended form for
the particular system considered.

Remark 1. It is worth to remark that, though the main hypotheses H1 and H2
could appear a bit conservative, they refer to the a system of the form (1) that
could be not the original plant but the port-Hamiltonian formulation of the orig-
inal system already controlled to attain specific tasks; this a priori control action
could be suitably designed such that the resulting system satisfies conditions H1
and H2. In particular, it could be easily shown that hypothesis H1 is always
verified if the system into account is characterized by a quadratic Hamiltonian
function. To enlighten the effectiveness of the property remarked here, in section
3 a magnetic levitation system is taken into account: the original system does
not satisfy both conditions but, with a suitably defined control action able to
perform even a regulation objective and a change of coordinates, the resulting
system is in the form (1) satisfying H1 and H2; hence the control algorithm in-
troduced can be used to solve the FTC problem. Moreover a control procedure
able to impose particular shape and properties to the controlled system is the
well known IDA-PBC (see [24], [14] and reference therein for a survey about
this control strategy): this control strategy is able to design a suitable port-
Hamiltonian controller such that the interconnected system (original plant and
IDA-PBC controller) results in the form of a desired objective port-Hamiltonian
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system. It is easy to realize that one of the characteristic step of the IDA-PBC
control strategy is the definition of a target system, usually described by the
classical port-Hamiltonian structure, characterizing the resulting dynamic after
that the controller is designed and connected: this target system could be as-
sumed to be of the form (1), imposing moreover that all the assumption imposed
by Proposition 1 are satisfied.

An interesting research topic, that is still in development, regards the condi-
tion to impose to the original system, and to the original problem, such that, for
example, an IDA-PBC control strategy makes it possible to cast the problem in
the framework presented.

Remark 2. It is interesting to see that, thanks to Proposition 1, the FDI phase
can be carried out by testing the state of the internal model unit which auto-
matically activates to offset the presence of the fault. Hence this phase, which is
usually the starting point for the design of the FTC system, is postponed to the
reconfiguration phase. More in detail it is possible to show that the control ac-
tion u is composed by a stabilizing term asymptotically vanishing (Ψ̂Ax) and by
an internal model term (Ψ̂ξ) that asymptotically rejects the disturbance: hence
testing the internal model state ξ and the adaptation term Ψ̂ it is possible to
reconstruct asymptotically the fault effect Γw acting on the system.

In the following section, an interesting example is presented to point out the
main properties of the FTC algorithm presented above.

3 An Example: Magnetic Levitation System

In this section we consider a typical example of electro-mechanical system such as
the magnetic levitation plant shown in fig. 1. A typical problem, in applications
where magnetic levitation principle is used for low-friction rotating machinery,
is the arising of sinusoidal disturbances superimposed to the electrical variables
when some faults such as any radial imbalance in the rotating components occur
(see [25], [19], [20], [21], [6]). Moreover, magnitude and frequency of such dis-
turbances are directly related to severity of the imbalance and rotational speed

g

x

i

v+ t)

M

1

Fig. 1. A sphere in a vertical magnetic field
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and therefore unknown. Hence it is very interesting to show how it is possible to
apply the general framework illustrated in section 2 to a maglev system subject
to an exogenous disturbance δ(t) superimposing to the control voltage.

In this section we are going to introduce the port-Hamiltonian model of the
system (see [8]) and to design a suitable control action in order to solve a regu-
lation objective while satisfying the requirements of Proposition 1; this make it
possible to design an adaptive internal model based controller to avoid the effect
of the disturbances.

Calling x1 the vertical position of the sphere (whose mass is defined by M),
x2 its velocity, x3 = L(x1)i, where L(x1) is the system inductance and i is
the current flowing into the electrical circuit, v the voltage control input, r the
resistance of the coil and g the gravitational constant, it is possible to introduce
the model of the system as

ẋ = (J −R)
∂H

∂x
+ g(v + δ) (8)

where x =
(
x1 x2 x3

)T,

J =

⎡⎣ 0 1 0
−1 0 0
0 0 0

⎤⎦ , R =

⎡⎣0 0 0
0 0 0
0 0 r

⎤⎦ , g =

⎡⎣0
0
1

⎤⎦ ,

the Hamiltonian H(x) is defined by

H(x) =
x2

3

2L(x1)
+

x2
2

2M
+ Mgx1 ,

and
L(x1) =

c1

c2 − x1
+ L0 ,

with c1, c2 and L0 suitably defined physical parameters.

3.1 Nominal Regulation Control Design

In this section we design a state feedback controller able to solve a regulation
problem for system (8) satisfying, in the meantime, all condition imposed by
Proposition 1.

Denoting with xdes
1 the desired position of the sphere, it is possible to introduce

a change of coordinates and a control action to solve the regulation problem and
satisfy the requirements of Proposition 1: define error coordinates as

x̃1 := x1 − xdes
1

x̃2 := x2 − xdes
2 = x2 −Mẋdes

1 = x2

x̃3 := x3 − xdes
3 (x̃1, x̃2, x

des
1 ) = x3 −

√
2L2

(
∂L

∂x1

)−1(
Mg − x̃1 −

x̃2

M

)
.

(9)
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Simple computations make it possible to write time derivatives of these new
error coordinates as

˙̃x1 =
x̃2

M

˙̃x2 =
(x̃3 + 2xdes

3 )
2L2

∂L

∂x1
x̃3 − x̃1 −

x̃2

M

˙̃x3 = −K1x̃3 −
(x̃3 + 2xdes

3 )
2L2

∂L

∂x1

x̃2

M
+ v′ − δ(t)

(10)

where the control action has been set to

v = v′ +
r

L
xdes

3 + ẋdes
3 − (x̃3 + 2xdes

3 )
2L2

∂L

∂x1

x̃2

M
−Kx̃3 (11)

with K = K1 − r/L and K1 positive design gain.
Defining a new Hamiltonian function as

H̃(x̃) :=
1
2
x̃2

1 +
x̃2

2

2M
+

1
2
x̃2

3

is possible to write (10) as a pHs

˙̃x = [J̃(x̃)− R̃]
∂H̃

∂x̃
+ g(v′ + δ(t)) (12)

with

J̃(x̃) =

⎡⎣ 0 1 0
−1 0 J̃23(x̃)
0 −J̃23(x̃) 0

⎤⎦ , J̃23(x̃) =
(x̃3 + 2xdes

3 )
2L2

∂L

∂x1

and

R̃ =

⎡⎣0 0 0
0 1 0
0 0 K1

⎤⎦ .

It is easy to realize that, in absence of external disturbances (δ(t) ≡ 0), the
controller (11) is able to solve the regulation problem as, asymptotically, error
system (12) converges to the origin.

Moreover, it is worth to remark the instrumental role played by the change
of coordinates (9): the origin of the auxiliary system

˙̃x = [J̃(x̃)− R̃]
∂H̃

∂x̃
+ gσ

σ̇ = −gT ∂H̃

∂x̃

(13)

is now the unique invariant set characterized by

∂TH̃

∂x̃
R̃

∂H̃

∂x̃
= 0 ,

and the Hamiltonian function H̃(x̃) is now quadratic; hypotheses H1 and H2 of
Proposition 1 are therefore satisfied.
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3.2 Adaptive Internal Model Design

State again the input disturbance suppression problem considering the voltage
disturbance δ(t) = Γw as generated by a neutrally stable autonomous exosys-
tem like the one defined by (2), (3) and (4): the problem fits in the framework
presented in section 2 and it is possible to design an adaptive internal model
controller following Proposition 1.

The resulting control law generated by the adaptive internal model unit is
defined by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ξ̇ = (F + GΨ̂)ξ − FGx̃3 −GK1x̃3 −G
(x̃3 + 2xdes

3 )
2L2

∂L

∂x1

x̃2

M
−GΨ̂Gx̃3

˙̂
Φ = −(ξ −Gx̃3)x̃3

v′ = Ψ̂ξ − Ψ̂Gx̃3

(14)

The remaining part of the section is devoted to prove the asymptotic convergence
of the error state x̃ to the origin in presence of disturbance δ.

Defining the changes of coordinate

χ = ξ − Y w −Gx̃3 (15)

system (12) with controller (14) identifies an interconnection described by:

˙̄x = [J̄(x̄)− R̄]
∂Hx(x̄)

∂x̄
+ Λ (16)

with
x̄ =

(
x̃ χ Φ̃ w

)T
,

the Hamiltonian function Hx(x̄) defined by

Hx(x̄) = H̃(x̃) +
1
2
χTχ +

1
2
Φ̃TΦ̃ +

1
2
wTw

the skew-symmetric interconnection matrix J̄(x̄) defined by:

J̄(x̄) =

⎛⎜⎜⎝
J̃(x̃) 0 g(χ + Y w)T 0

0 0 0 0
−(χ + Y w)gT 0 0 0

0 0 0 S

⎞⎟⎟⎠
the positive semi-definite damping matrix R̄ defined as:

R̄ =

⎛⎜⎜⎝
R̃ 0 0 0
0 −F 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠
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and Λ defined by:
Λ =

(
gΨχ 0 0 0

)T
.

Consider the Lyapunov function V = Hx(x̄): simple computations show that its
time derivative is

V̇ = −∂TH̃

∂x̃
R̃

∂H̃

∂x̃
+

∂TH̃

∂x̃
gΨχ + χTFχ .

As (6) holds then there exist real numbers ηK1 ∈ IR−, ηF ∈ IR− and ηΨ ∈ IR,
such that

V̇ ≤ −‖x̃2‖2 + ηK1‖x̃3‖2 + ηF ‖χ‖2 + ηΨ‖x̃3‖‖χ‖ .

Using a Young’s inequality argumentation is is possible to state that

V̇ ≤ −‖x̃2‖2 + ηK1‖x̃3‖2 + ηF ‖χ‖2 +
ηΨ

2
ε‖x̃3‖2 +

ηΨ

2ε
‖χ‖2 ,

for a certain value of ε. Choosing ε = −ηK1/ηΨ , it comes out that

V̇ ≤ −‖x̃2‖2 +
ηK1

2
‖x̃3‖2 +

(
ηF −

η2
Ψ

2ηx

)
‖χ‖2 , (17)

hence choosing matrix F such that

ηF <
η2

Ψ

2ηK1

,

it turns out that V̇ ≤ 0 and, for LaSalle invariance principle, system’s trajectory
are asymptotically captured by the largest invariant set characterized by V̇ = 0.
This set is the same considered for the auxiliary system (13) augmented with
the autonomous dynamics ẇ = Sw; hence the system asymptotically converge
to

lim
t→∞(x̃, χ) = (0, 0)

solving the input disturbance suppression problem.

4 Conclusions

In this paper an internal model based approach to implicit FTC for port-
Hamiltonian systems is presented. The main idea is to cast the original problem
into a regulation problem complicated by the presence of input disturbances and
to solve this new problem with an adaptive internal model based approach. This
adaptive internal model design procedure is presented exploiting the energy-
based characteristic properties of this formalism in order to prove the global
asymptotical stability of the solution.

To deeply point out the effectiveness of the design procedure presented, an im-
plicit fault tolerant regulation control problem is solved for a magnetic levitation
system.
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Summary. The purpose of this paper is to apply methods from geometric mechanics
to the analysis and control of bipedal robotic walkers. We begin by introducing a gen-
eralization of Routhian reduction, functional Routhian Reduction, which allows for the
conserved quantities to be functions of the cyclic variables rather than constants. Since
bipedal robotic walkers are naturally modeled as hybrid systems, which are inherently
nonsmooth, in order to apply this framework to these systems it is necessary to first
extend functional Routhian reduction to a hybrid setting. We apply this extension,
along with potential shaping and controlled symmetries, to derive a feedback control
law that provably results in walking gaits on flat ground for a three-dimensional bipedal
walker given walking gaits in two dimensions.

1 Introduction

Geometric reduction plays an essential role in understanding physical systems
modeled by Lagrangians or Hamiltonians; the simplest being Routhian reduction
first discovered in the 1860’s (cf. [6]). In the case of Routhian reduction, symme-
tries in the system are characterized by cyclic variables, which are coordinates of
the configuration space that do not appear in the Lagrangian. Using these sym-
metries, one can reduce the dimensionality of the phase space (by “dividing”
out by the symmetries) and define a corresponding Lagrangian on this reduced
phase space. The main result of geometric reduction is that we can understand
the behavior of the full-order system in terms of the behavior of the reduced
system and vice versa.

In classical geometric reduction the conserved quantities used to reduce and
reconstruct systems are constants; this indicates that the “cyclic” variables
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eliminated when passing to the reduced phase space are typically uncontrolled.
Yet it is often the case that these variables are the ones of interest—it may be
desirable to control the cyclic variables while not affecting the reduced order
system. This motivates an extension of Routhian reduction to the case when the
conserved quantities are functions of the cyclic variables instead of constants.

These concepts motivate our main goal:

Develop a feedback control law that results in walking gaits on flat ground
for a three-dimensional bipedal robotic walker given walking gaits for
a two-dimensional bipedal robotic walker.

In order to achieve this goal, we begin by considering Lagrangians that are
cyclic except for an additional non-cyclic term in the potential energy, i.e.,
almost-cyclic Lagrangians. When Routhian reduction is performed with a func-
tion (of a cyclic variable) the result is a Lagrangian on the reduced phase-space:
the functional Routhian. We are able to show that the dynamics of an almost-
cyclic Lagrangian satisfying certain initial conditions project to dynamics of the
corresponding functional Routhian, and dynamics of the functional Routhian
can be used to reconstruct dynamics of the full-order system. In order to use
this result to develop control strategies for bipedal walkers, it first must be gen-
eralized to a hybrid setting. That is, after discussing how to explicitly obtain a
hybrid system model of a bipedal walker (Section 2), we generalize functional
Routhian reduction to a hybrid setting (Section 3), demonstrating that hybrid
flows of the reduced and full order system are related in a way analogous to the
continuous result.

We then proceed to consider two-dimensional (2D) bipedal walkers. It is well-
known that 2D bipedal walkers can walk down shallow slopes without actuation
(cf. [7], [3]). [10] used this observation to develop a positional feedback control
strategy that allows for walking on flat ground. In Section 4, we use these results
to obtain a hybrid system, H s

2D, modeling a 2D bipedal robot that walks on flat
ground.

In Section 5 we consider three-dimensional (3D) bipedal walkers. Our main
result is a positional feedback control law that produces walking gaits in three
dimensions. To obtain this controller we shape the potential energy of the La-
grangian describing the dynamics of the 3D bipedal walker so that it becomes
an almost-cyclic Lagrangian, where the cyclic variable is the roll (the unstable
component) of the walker. We are able to control the roll through our choice of
a non-cyclic term in the potential energy. Since the functional Routhian hybrid
system obtained by reducing this system is H s

2D, by picking the “correct” func-
tion of the roll, we can force the roll to go to zero for certain initial conditions.
That is, we obtain a non-trivial set of initial conditions that provably result in
three-dimensional walking.

Space constraints prevent us from including proofs for the results stated in
this paper; these can be found in [1].
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2 Lagrangian Hybrid Systems

We begin this section by defining (simple) hybrid systems and hybrid flows (as
introduced in [2]); for more on general hybrid systems, see [5] and the references
therein. We then turn our attention to introducing a special class of hybrid
systems that will be important when discussing bipedal robots: unilaterally con-
strained Lagrangian hybrid systems. It will be seen that bipedal robotic walkers
are naturally modeled by systems of this form.

Definition 1. A simple hybrid system1 is a tuple:

H = (D,G,R, f),

where

• D is a smooth manifold, called the domain,
• G is an embedded submanifold of D called the guard,
• R : G → D is a smooth map called the reset map (or impact equations),
• f is a vector field or control system (in which case we call H a controlled

hybrid system) on D, i.e., ẋ = f(x) or ẋ = f(x, u), respectively.

Hybrid flows. A hybrid flow (or execution) is a tuple

χH = (Λ, I, C),

where

• Λ = {0, 1, 2, . . .} ⊆ N is a finite or infinite indexing set.
• I = {Ii}i∈Λ is a hybrid interval where Ii = [τi, τi+1] if i, i + 1 ∈ Λ and

IN−1 = [τN−1, τN ] or [τN−1, τN ) or [τN−1,∞) if |Λ| = N , N finite. Here,
τi, τi+1, τN ∈ R and τi ≤ τi+1.

• C = {ci}i∈Λ is a collection of integral curves of f , i.e., ċi(t) = f(ci(t)) for all
i ∈ Λ.

We require that the following conditions hold for every i, i + 1 ∈ Λ,

(i) ci(τi+1) ∈ G,
(ii) R(ci(τi+1)) = ci+1(τi+1).

The initial condition for the hybrid flow is c0(τ0).

Lagrangians. Let Q be a configuration space, assumed to be a smooth manifold,
and TQ the tangent bundle of Q. In this paper, we will consider Lagrangians
L : TQ → R describing mechanical, or robotic, systems; that is, Lagrangians
given in coordinates by:

L(q, q̇) =
1
2
q̇T M(q)q̇ − V (q), (1)

1 So named because of their simple discrete structure, i.e., a simple hybrid system has
a single domain, guard and reset map.
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where M(q) is the inertial matrix, 1
2 q̇

T M(q)q̇ is the kinetic energy and V (q) is the
potential energy. In this case, the Euler-Lagrange equations yield the equations
of motion for the system:

M(q)q̈ + C(q, q̇)q̇ + N(q) = 0,

where C(q, q̇) is the Coriolis matrix (cf. [8]) and N(q) = ∂V
∂q (q). The Lagrangian

vector field, fL, associated to L takes the familiar form:

(q̇, q̈) = fL(q, q̇) =
(
q̇,M(q)−1(−C(q, q̇)q̇ −N(q))

)
.

Controlled Lagrangians. We will also be interested in controlled Lagrangians.
In this case, the equations of motion for the system have the form:

M(q)q̈ + C(q, q̇)q̇ + N(q) = Bu,

where we assume that B is an invertible matrix. The result is a control system
of the form:

(q̇, q̈) = fL(q, q̇, u) =
(
q̇,M(q)−1(−C(q, q̇)q̇ −N(q) + Bu)

)
.

In the future, it will be clear from context whether for a Lagrangian L we are
dealing with a corresponding vector field (q̇, q̈) = fL(q, q̇) or a control system
(q̇, q̈) = fL(q, q̇, u).

Unilateral constraints. It is often the case that the set of admissible configu-
rations for a mechanical system is determined by a unilateral constraint function,
which is a smooth function h : Q → R such that h−1(0) is a manifold, i.e., 0 is
a regular value of h. For bipedal walkers this function is the height of the non-
stance (or swing) foot above the ground. In this case, we can explicitly construct
the domain and the guard of a hybrid system:

Dh = {(q, q̇) ∈ TQ : h(q) ≥ 0},
Gh = {(q, q̇) ∈ TQ : h(q) = 0 and dhq q̇ < 0},

where in coordinates dhq =
(

∂h
∂q1

(q) · · · ∂h
∂qn

(q)
)

.

Definition 2. We say that H = (D,G,R, f) is a unilaterally constrained La-
grangian hybrid system w.r.t. a Lagrangian L : TQ → R and a unilateral con-
straint function h : Q→ R if D = Dh, G = Gh and f = fL.

Impact Equations. In order to determine the impact equations (or reset
map) for the hybrid system H , we typically will utilize an additional constraint
function. A kinematic constraint function is a smooth function Υ : Q → Rυ

(υ ≥ 1); this function usually describes the position of the end-effector of a
kinematic chain, e.g., in the case of bipedal robots, this is the position of the
swing foot. Using this kinematic constraint function one obtains a reset map
R(q, q̇) = (q, Pq(q̇)), where Pq : TqQ→ TqQ with

Pq(q̇) = q̇ −M(q)−1dΥT
q (dΥqM(q)−1dΥT

q )−1dΥq q̇.

This reset map models a perfectly plastic impact without slipping and was de-
rived using the set-up in [4] together with block-diagonal matrix inversion.
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3 Functional Routhian Reduction

In this section, we introduce a variation of classical Routhian reduction termed
functional Routhian reduction. Conditions are given on when this type of reduc-
tion can be performed on continuous and hybrid systems.

Shape space. We begin by considering an abelian Lie group, G, given by:

G = (S1 × S1 × · · · × S1)︸ ︷︷ ︸
m−times

×Rp,

with k = m + p = dim(G); here S1 is the circle. The starting point for classical
Routhian reduction is a configuration space of the form Q = S × G, where S is
called the shape space; we denote an element q ∈ Q by q = (θ, ϕ) where θ ∈ S
and ϕ ∈ G. Note that we have a projection map π : TS × TG → TS where
(θ, θ̇, ϕ, ϕ̇) �→ (θ, θ̇).

Almost-Cyclic Lagrangians. We will be interested (in the context of bipedal
walking) in Lagrangians of a very special form. We say that a Lagrangian Lλ :
TS × TG → R is almost-cyclic if, in coordinates, it has the form:

Lλ(θ, θ̇, ϕ, ϕ̇) =
1
2

(
θ̇
ϕ̇

)T (
Mθ(θ) 0

0 Mϕ(θ)

)(
θ̇
ϕ̇

)
− Vλ(θ, ϕ), (2)

where
Vλ(θ, ϕ) = Ṽ (θ)− 1

2
λ(ϕ)T M−1

ϕ (θ)λ(ϕ)

for some function λ : G → Rk with a symmetric Jacobian, i.e.,(
∂λ

∂ϕ

)T

=
∂λ

∂ϕ
.

Here Mθ(θ) ∈ Rn×n and Mϕ(θ) ∈ Rk×k are both symmetric positive definite
matrices with n = dim(S).

Momentum maps. Fundamental to reduction is the notion of a momentum
map J : TQ→ Rk, which makes explicit the conserved quantities in the system.
In the framework we are considering here,

J(θ, θ̇, ϕ, ϕ̇) =
∂Lλ

∂ϕ̇
(θ, θ̇, ϕ, ϕ̇) = Mϕ(θ)ϕ̇.

Typically, one sets the momentum map equal to a constant µ ∈ Rk; this defines
the conserved quantities of the system. In our framework, we will breach this
convention and set J equal to a function: this motivates the name functional
Routhian reduction.

Functional Routhians. For an almost-cyclic Lagrangian Lλ as given in (2),
define the corresponding functional Routhian L̃ : TS → R by:
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L̃(θ, θ̇) =
[
Lλ(θ, θ̇, ϕ, ϕ̇)− λ(ϕ)T ϕ̇

]∣∣∣
J(θ,θ̇,ϕ,ϕ̇)=λ(ϕ)

Because J(θ, θ̇, ϕ, ϕ̇) = λ(ϕ) implies that ϕ̇ = M−1
ϕ (θ)λ(ϕ), by direct calculation

the functional Routhian is given by:

L̃(θ, θ̇) =
1
2
θ̇T Mθ(θ)θ̇ − Ṽ (θ).

That is, any Lagrangian of the form given in (1) is the functional Routhian of
an almost-cyclic Lagrangian.

We can relate solutions of the Lagrangian vector field f
�L to solutions of the

Lagrangian vector field fLλ
and vice versa (in a way analogous to the classical

Routhian reduction result, see [6]).

Theorem 1. Let Lλ be an almost-cyclic Lagrangian, and L̃ the corresponding
functional Routhian. Then (θ(t), θ̇(t), ϕ(t), ϕ̇(t)) is a solution to the vector field
fLλ

on [t0, tF ] with
ϕ̇(t0) = M−1

ϕ (θ(t0))λ(ϕ(t0)),

if and only if (θ(t), θ̇(t)) is a solution to the vector field f
�L and (ϕ(t), ϕ̇(t))

satisfies:
ϕ̇(t) = M−1

ϕ (θ(t))λ(ϕ(t)).

We now have the necessary material needed to introduce our framework for
hybrid functional Routhian reduction.

Definition 3. If Hλ = (Dh, Gh, R, fLλ
) is a unilaterally constrained Lagrangian

hybrid system, Hλ is almost-cyclic if the following conditions hold:

• Q = S ×G,
• h : Q = S × G → R is cyclic, ∂h

∂ϕ = 0, and so can be viewed as a function
h̃ : S → R,

• Lλ : TS × TG → R is almost-cyclic,
• πϕ(R(θ, θ̇, ϕ, ϕ̇)) = ϕ, where πϕ is the projection onto the ϕ-component,
• The following diagram commutes:

Rk

Gh
R �

J |Gh

�

Dh

J |Dh

�

Gh̃

π
� R̃ � Dh̃

π
�

for some map R̃ : Gh̃ → Dh̃.
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Hybrid functional Routhian. If Hλ = (Dh, Gh, R, fLλ
) is an almost-cyclic

unilaterally constrained Lagrangian hybrid system, we can associate to this hy-
brid system a reduced hybrid system, termed a functional Routhian hybrid sys-
tem, denoted by H̃ and defined by:

H̃ := (Dh̃, Gh̃, R̃, f
�L).

The following theorem quantifies the relationship between Hλ and H̃ .

Theorem 2. Let Hλ be a cyclic unilaterally constrained Lagrangian hybrid sys-
tem, and H̃ the associated functional Routhian hybrid system. Then χHλ =
(Λ, I, {(θi, θ̇i, ϕi, ϕ̇i)}i∈Λ) is a hybrid flow of Hλ with

ϕ̇0(τ0) = M−1
ϕ (θ0(τ0))λ(ϕ0(τ0)),

if and only if χ
�H = (Λ, I, {θi, θ̇i}i∈Λ) is a hybrid flow of H̃ and {(ϕi, ϕ̇i)}i∈Λ

satisfies:

ϕ̇i(t) = M−1
ϕ (θi(t))λ(ϕi(t)), ϕi+1(τi+1) = ϕi(τi+1).

4 Controlled Symmetries Applied to 2D Bipedal Walkers

In this section, we begin by studying the standard model of a two-dimensional
bipedal robotic walker walking down a slope (walkers of this form have been
well-studied by [7] and [3], to name a few). We then use controlled symmetries
to shape the potential energy of the Lagrangian describing this model so that it
can walk stably on flat ground.

2D biped model. We begin by introducing a model describing a controlled
bipedal robot walking in two dimensions down a slope of γ degrees. That is, we
explicitly construct the controlled hybrid system

H γ
2D = (Dγ

2D, Gγ
2D, R2D, f2D).

describing this system.
The configuration space for the 2D biped is Q2D = T2, the two-dimensional

torus, and the Lagrangian describing this system is:

L2D(θ, θ̇) =
1
2
θ̇T M2D(θ)θ̇ − V2D(θ),

where θ = (θns, θs)T . Table 1 gives M2D(θ) and V2D(θ).
Using the controlled Euler-Lagrange equations, the dynamics for the walker

are given by:
M2D(θ)θ̈ + C2D(θ, θ̇)θ̇ + N2D(θ) = B2Du.

These equations yield the control system: (θ̇, θ̈) = f2D(θ, θ̇, u) := fL2D(θ, θ̇, u).
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Fig. 1. Two-dimensional bipedal robot

We construct Dγ
2D and Gγ

2D by applying the methods outlined in Section 2
to the unilateral constraint function: hγ

2D(θ) = cos(θs) − cos(θns) + (sin(θs) −
sin(θns)) tan(γ), which gives the height of the foot of the walker above the slope
with normalized unit leg length.

Finally, the reset map R2D is given by:

R2D(θ, θ̇) =
(
S2Dθ, P2D(θ)θ̇

)
,

where S2D and P2D(θ) are given in Table 1. Note that this reset map was com-
puted using the methods outlined in Section 2 coupled with the condition that
the stance foot is fixed (see [4] for more details).

Setting the control u = 0 yields the standard model of a 2D passive bipedal
robot walking down a slope. For such a model, it has been well-established (for
example, in [3]) that for certain γ, H γ

2D has a walking gait. For the rest of the
paper we pick, once and for all, such a γ.

Controlled Symmetries. Controlled symmetries were introduced in [9] and
later in [10] in order to shape the potential of bipedal robotic walkers to allow
for stable walking on flat ground based on stable walking down a slope. We will
briefly apply the results of this work to derive a feedback control law that yields
a hybrid system, H s

2D, with stable walking gaits on flat ground.
The main idea of [10] is that inherent symmetries in H γ

2D can be used to
“rotate the world” (via a group action) to allow for walking on flat ground.
Specifically, we have a group action Φ : S1 ×Q2D → Q2D denoted by:

Φ(γ, θ) := (θns − γ, θs − γ)T ,

for γ ∈ S1. Using this, define the following feedback control law:

u = Kγ
2D(θ) := B−1

2D
∂

∂θ
(V2D(θ) − V2D(Φ(γ, θ))) .
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Table 1. Additional equations for H2D and H3D

Additional equations for H2D:

M2D(θ) =

�
l2m
4 − l2m cos(θs−θns)

2

− l2m cos(θs−θns)
2

l2m
4 + l2(m + M)

�
S2D =

�
0 1
1 0

�

V2D(θ) =
1
2
gl((3m + 2M) cos(θs) − m cos(θns)) B2D =

�−1 0
1 1

�

P2D(θ) =
1

−3m − 4M + 2m cos(2(θs − θns))�
2m cos(θns − θs) m − 4(m + M) cos(2(θns − θs))

m −2(m + 2M) cos(θns − θs)

�

Additional equations for H3D:

m3D(θ) =
1
8
(l2(6m + 4M) + l2(m cos(2θns) −

8m cos(θns) cos(θs) + (5m + 4M) cos(2θs))

V3D(θ, ϕ) = V2D(θ) cos(ϕ)

p3D(θ) =
−m cos(2θns) + 8(m + M) cos(θns) cos(θs) − m(2 + cos(2θs))

6m + 4M + (5m + 4M) cos(2θns) − 8m cos(θns) cos(θs) + m cos(2θs)

Applying this control law to the control system (q̇, q̈) = f2D(θ, θ̇, u) yields the
dynamical system:

(θ̇, θ̈) = fγ
2D(θ, θ̇) := f2D(θ, θ̇,Kγ

2D(θ))

which is just the vector field associated to the Lagrangian

Lγ
2D(θ, θ̇) =

1
2
θ̇T M2D(θ)θ̇ − V γ

2D(θ),

where V γ
2D(θ) := V2D(Φ(γ, θ)). That is, fγ

2D = fLγ
2D

.
Now define, for some γ that results in stable passive walking for H γ

2D,

H s
2D := (D0

2D, G0
2D, R2D, fγ

2D),

which is a unilaterally constrained Lagrangian hybrid system. In particular, it
is related to H γ

2D as follows:

Theorem 3 ([10]). χH s
2D = (Λ, I, {(Φ(γ, θi), θ̇i)}i∈Λ) is a hybrid flow of H s

2D
if χH γ

2D = (Λ, I, {(θi, θ̇i)}i∈Λ) is a hybrid flow of H γ
2D.

The importance of this theorem lies in the fact that it implies that if H γ
2D walks

(stably) on a slope, then H s
2D walks (stably) on flat ground.
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5 Functional Routhian Reduction Applied to 3D Bipedal
Walkers

In this section we construct a control law that results in stable walking for
a simple model of a 3D bipedal robotic walker. In order to achieve this goal,
we shape the potential energy of this model via feedback control so that when
hybrid functional Routhian reduction is carried out, the result is the 2D walker
H s

2D introduced in the previous section. We utilize Theorem 2 to demonstrate
that this implies that the 3D walker has a walking gait on flat ground (in three
dimensions). This is the main contribution of this work.

3D biped model. We now introduce the model describing a controlled bipedal
robot walking in three dimensions on flat ground, i.e., we will explicitly construct
the controlled hybrid system describing this system:

H3D = (D3D, G3D, R3D, f3D).

The configuration space for the 3D biped is Q3D = T2×S and the Lagrangian
describing this system is given by:

L3D(θ, θ̇, ϕ, ϕ̇) =
1
2

(
θ̇
ϕ̇

)T (
M2D(θ) 0

0 m3D(θ)

)(
θ̇
ϕ̇

)
− V3D(θ, ϕ),

where m3D(θ) is given in the Table 1. Note that, referring to the notation intro-
duced in Section 3, Mθ(θ) = M2D(θ) and Mϕ(θ) = m3D(θ). Also note that L3D
is nearly cyclic; it is only the potential energy that prevents its cyclicity. This
will motivate the use of a control law that shapes this potential energy.

Using the controlled Euler-Lagrange equations, the dynamics for the walker
are given by:

M3D(q)q̈ + C3D(q, q̇)q̇ + N3D(q) = B3Du,

with q = (θ, ϕ) and

B3D =
(

B2D 0
0 1

)
.

These equations yield the control system: (q̇, q̈) = f3D(q, q̇, u) := fL3D(q, q̇, u).
We construct D3D and G3D by applying the methods outlined in Section 2 to

the unilateral constraint function

h3D(θ, ϕ) = h0
2D(θ) = cos(θs)− cos(θns).

This function gives the normalized height of the foot of the walker above flat
ground with the implicit assumption that ϕ ∈ (−π/2, π/2) (which allows us to
disregard the scaling factor cos(ϕ) that would have been present). The result is
that h3D is cyclic.

Finally, the reset map R3D is given by:

R3D(θ, θ̇, ϕ, ϕ̇) =
(
S2Dθ, P2D(θ)θ̇, ϕ, p3D(θ)ϕ̇

)
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Fig. 2. Three-dimensional bipedal robot

where p3D(θ) is given in Table 1. Note that this map was again computed using
the methods outlined in Section 2 coupled with the condition that the stance
foot is fixed.

Control law construction. We now proceed to construct a feedback con-
trol law for H3D that makes this hybrid system an almost-cyclic unilaterally
constrained Lagrangian hybrid system, H α

3D. We will then demonstrate, using
Theorem 2, that H α

3D has a walking gait by relating it to H s
2D.

Define the feedback control law parameterized by α ∈ R:

u = Kα
3D(q)

:= B−1
3D

∂

∂q

(
V3D(q)− V γ

2D(θ) +
1
2

α2ϕ2

m3D(θ)

)
Applying this control law to the control system (q̇, q̈) = f3D(q, q̇, u) yields the
dynamical system:

(q̇, q̈) = fα
3D(q, q̇) := f3D(q, q̇,Kα

3D(q)),

which is just the vector field associated to the almost-cyclic Lagrangian

Lα
3D(θ, θ̇, ϕ, ϕ̇) =

1
2

(
θ̇
ϕ̇

)T (
M2D(θ) 0

0 m3D(θ)

)(
θ̇
ϕ̇

)
− V α

3D(θ, ϕ),

where

V α
3D(θ, ϕ) = V γ

2D(θ) − 1
2

α2ϕ2

m3D(θ)
.

That is, fα
3D = fLα

3D
.
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Let
H α

3D := (D3D, G3D, R3D, fα
3D),

which is a unilaterally constrained Lagrangian hybrid system.

Applying hybrid functional Routhian reduction. Using the methods out-
lined in Section 3, there is a momentum map J3D : TQ3D → R given by:

J3D(θ, θ̇, ϕ, ϕ̇) = m3D(θ)ϕ̇.

Setting J3D(θ, θ̇, ϕ, ϕ̇) = λ(ϕ) = −αϕ implies that

ϕ̇ = − αϕ

m3D(θ)
.

The importance of H α
3D is illustrated by:

Proposition 1. H α
3D is an almost-cyclic unilaterally constrained Lagrangian hy-

brid system. Moreover, the following diagram commutes:

Rk

G3D
R3D �

J3D|G3D

�

D3D

J3D|D3D

�

G2D

π
� R2D � D2D

π
�

Therefore, H s
2D is the functional Routhian hybrid system associated with H α

3D.

This result allows us to prove—using Theorem 2—that the control law used to
construct H α

3D in fact results in walking in three dimensions.

Theorem 4. χH α
3D = (Λ, I, {(θi, θ̇i, ϕi, ϕ̇i)}i∈Λ) is a hybrid flow of H α

3D with

ϕ̇0(τ0) = − αϕ0(τ0)
m3D(θ0(τ0))

, (3)

if and only if χH s
2D = (Λ, I, {θi, θ̇i}i∈Λ) is a hybrid flow of H s

2D and {(ϕi, ϕ̇i)}i∈Λ

satisfies:

ϕ̇i(t) = − αϕi(t)
m3D(θi(t))

, ϕi+1(τi+1) = ϕi(τi+1). (4)

To better understand the implications of Theorem 4, suppose that χH α
3D =

(Λ, I, {(θi, θ̇i, ϕi, ϕ̇i)}i∈Λ) is a hybrid flow of H α
3D. If this hybrid flow has an

initial condition satisfying (3) with α > 0 and the corresponding hybrid flow,
χH s

2D = (Λ, I, {θi, θ̇i}i∈Λ), of H s
2D is a walking gait in 2D:
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Fig. 3. θns, θs and ϕ over time for different initial values of ϕ (top). A walking gait
for the three-dimensional bipedal robot (bottom).

Λ = N, lim
i→∞

τi = ∞, θi(τi) = θi+1(τi+1),

then the result is walking in three dimensions. This follows from the fact that
θ and θ̇ will have the same behavior over time for the full-order system—the
bipedal robot will walk. Moreover, since Theorem 4 implies that (4) holds, the
walker stabilizes to the “upright” position. That is, the roll ϕ will tend to zero as
time goes to infinity since (4) essentially defines a stable linear system ϕ̇ = −αϕ
(because m3D(θi(t)) > 0 and α > 0), which controls the behavior of ϕ when (3)
is satisfied. This convergence can be seen in Fig. 3 along with a walking gait of
the 3D walker.



196 A.D. Ames et al.

References

1. A. D. Ames. A Categorical Theory of Hybrid Systems. PhD thesis, University of
California, Berkeley, 2006.

2. A. D. Ames and S. Sastry. Hybrid Routhian reduction of hybrid Lagrangians and
Lagrangian hybrid systems. In American Control Conference, Minneapolis, MN,
2006.

3. A. Goswami, B. Thuilot, and B. Espiau. Compass-like biped robot part I : Stability
and bifurcation of passive gaits. Rapport de recherche de l’INRIA, 1996.

4. J.W. Grizzle, G. Abba, and F. Plestan. Asymptotically stable walking for biped
robots: Analysis via systems with impulse effects. IEEE Transactions on Automatic
Control, 46(1):51–64, 2001.

5. J. Lygeros, K. H. Johansson, S. Simic, J. Zhang, and S. Sastry. Dynamical prop-
erties of hybrid automata. IEEE Transactions on Automatic Control, 48:2– 17,
2003.

6. J. E. Marsden and T. S. Ratiu. Introduction to Mechanics and Symmetry, vol-
ume 17 of Texts in Applied Mathematics. Springer, 1999.

7. T. McGeer. Passive dynamic walking. International Journal of Robotics Research,
9(2):62–82, 1990.

8. R. M. Murray, Z. Li, and S. Sastry. A Mathematical Introduction to Robotic Ma-
nipulation. CRC Press, 1993.

9. M. W. Spong and F. Bullo. Controlled symmetries and passive walking. In IFAC
World Congress, Barcelona, Spain, 2002.

10. M. W. Spong and F. Bullo. Controlled symmetries and passive walking. IEEE
Transactions on Automatic Control, 50(7):1025– 1031, 2005.



Gait Generation for a Hopping Robot Via
Iterative Learning Control Based on Variational
Symmetry

Satoshi Satoh1, Kenji Fujimoto2, and Sang-Ho Hyon3,4

1 Department of Mechanical Science and Engineering, Graduate School of
Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
s satou@nuem.nagoya-u.ac.jp

2 Department of Mechanical Science and Engineering, Graduate School of
Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
k.fujimoto@ieee.org

3 Computational Brain Project, ICORP, JST
4 ATR, Computational Neuroscience Laboratories 2-2-2 Hikaridai,

Kyoto, 619-0288, Japan
sangho@atr.jp

Summary. This paper proposes a novel framework to generate optimal gait trajecto-
ries for a one-legged hopping robot via iterative learning control. This method gener-
ates gait trajectories which are solutions of a class of optimal control problems without
using precise knowledge of the plant model. It is expected to produce natural gait
movements such as that of a passive walker. Some numerical examples demonstrate
the effectiveness of the proposed method.

1 Introduction

Passive dynamic walking originally studied by McGeer [1] inspires many re-
searchers to work on a gait generation problem for walking robots. They try
to design more natural and less energy consuming gait trajectories than those
produced by conventional walking control such as ZMP based control. Behavior
analysis of passive walkers were investigated, e.g, in [2, 3]. There are some re-
sults on gait generation based on passive dynamic walking [4, 5, 6] by designing
appropriate feedback control systems such that the closed loop systems behave
like passive walkers. In particular, a hopping robot modelled in [7] has a hop-
ping gait for which the input signal coincides with zero, that is, this robot can
be regarded as a passive walker walking on a horizontal plane. Furthermore, an
adaptive control system for this robot to achieve a walking gait with zero input
was proposed in the authors’ former result [8].

The objective of this paper is to generate optimal walking gait trajectories for
a hopping robot via iterative learning control without using precise knowledge of
the plant model. To this end, we formulate an optimal control type cost function
and try to find a control input minimizing it by iterative learning technique based

F. Bullo et al. (Eds.): Lag. & Hamil. Methods for Nonlin. Ctrl., LNCIS 366, pp. 197–208, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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on variational symmetry of Hamiltonian control systems [9], which can solve a
class of optimal control problems by iteration of experiments. For this purpose,
two novel techniques with respect to iterative learning control are proposed: One
is a technique to take the time derivatives of the output signal into account in the
iterative learning control by employing a pseudo adjoint of the time derivative
operator. The other is a cost function to achieve time symmetric gait trajectories
to guarantee stable walking without a fall. Furthermore, the proposed learning
scheme is applied to the hopping robot in [7] and the corresponding numerical
simulations demonstrate its advantage.

2 Iterative Learning Control Based on Variational
Symmetry

This section refers to the iterative learning control (ILC) method based on vari-
ational symmetry in [9] briefly.

2.1 Variational Symmetry of Hamiltonian Systems

Consider a Hamiltonian system with dissipation and a controlled Hamiltonian
H(x, u, t) described by

Σ :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ = (J −R)

∂H(x, u, t)
∂x

T

, x(t0) = x0

y = −∂H(x, u, t)
∂u

T
. (1)

Here x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rr describe the state, the input and
the output, respectively. The structure matrix J ∈ Rn×n and the dissipation
matrix R ∈ Rn×n are skew-symmetric and symmetric positive semi-definite,
respectively. The matrix R represents dissipative elements. In this paper the
Hamiltonian system in (1) is written as y = Σ(u). For this system, the following
theorem holds. This property is called variational symmetry of Hamiltonian
control systems.

Theorem 1. [9] Consider the Hamiltonian system in (1). Suppose that J and
R are constant and that there exists a nonsingular matrix T ∈ Rn×n satisfying

J = −TJ T−1

R = TR T−1

∂2H(x, u, t)
∂(x, u)2

=
(

T 0
0 I

)
∂2H(x, u, t)

∂(x, u)2

(
T−1 0
0 I

)
.

Suppose moreover that J −R is nonsingular. Then the variational system dΣ of
Σ and its adjoint (dΣ)∗ of Σ have almost the same state-space realizations.
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Remark 1. Suppose the Hessian of the Hamiltonian with respect to (x, u) satisfies

∂2H(x, u, t)
∂(x, u)2

(t− t0) =
∂2H(x, u, t)

∂(x, u)2
(t1 − t), ∀t ∈ [t0, t1].

Then under appropriate initial conditions of Σ,

(dΣ(u))∗(v) ≈ R ◦ (Σ(u +R(v)) −Σ(u)) (2)

holds when v is small where R is a time-reversal operator defined by R(u)(t −
t0) = u(t1 − t) for ∀t ∈ [t0, t1].

Equation (2) implies that we can calculate the input-output mapping of the
variational adjoint by only using the input-output data of the original system.

2.2 Optimal Control Via Iterative Learning

Let us consider the system Σ in (1) and a cost function Γ : Lm
2 [t0, t1] ×

Lr
2[t0, t1]→ R as follows

Γ (u, y) =
1
2

∫ t1

t0

(
u(t)TΛuu(t) + (y(t)− yd(t))TΛy(y(t)− yd(t))

)
dt,

where yd ∈ Lr
2[t0, t1] represents a desired output and Λu ∈ Rm×m and Λy ∈

Rr×r are positive definite matrices. The objective is to find the optimal input
minimizing the cost function Γ (u, y). Note that the Fréchet derivative of Γ is
dΓ (u, y). It follows from well-known Riesz’s representation theorem that there
exists an operator Γ ′(u, y) such that

d(Γ (u, y)) = dΓ (u, y)(du, dy)
= 〈Γ ′(u, y), (du, dy)〉L2 .

Here we can calculate

d(Γ (u, y)) = 〈(Λuu, Λy(y − yd)), (du, dy)〉L2

= 〈Λuu, du〉L2 + 〈Λy(y − yd), dΣ(u)(du)〉L2

= 〈Λuu + (dΣ(u))∗Λy(y − yd), du〉L2 .

Therefore the steepest descent method implies that we should change the input
u such that

du = −K
(
Λuu + (dΣ(u))∗Λy(y − yd)

)
,

where K is an appropriate positive gain. Hence the iteration law should be taken
as

u(i+1) = u(i) −K(i)
(
Λuu(i) + (dΣ(u))∗Λy(y(i) − yd)

)
. (3)

Here i denotes the i-th iteration in laboratory experiments. Suppose Equation
(2) holds, then ILC law based on variational symmetry is given by
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u(2i−1) = u(2i−2) +R(Λy(y(2i−2) − yd)) (4)

u(2i) = u(2i−2) −K(2i−2)
(
Λuu(2i−2) +R(y(2i−1) − y(2i−2))

)
(5)

provided that the initial input u(0) is equivalent to zero.
This pair of iteration laws Equations (4) and (5) implies that this learning

procedure needs two steps laboratory experiments. In the (2i-1)-th iteration, we
can calculate the input and output signals of (dΣ(u))∗ by Equation (2) with the
output signal of Σ(u + R(v)). Input for the 2i-th iteration is generated by (3)
with these signals.

3 Extension of ILC for Time Derivatives

Let us recall that there is a constraint with respect to cost functions in the
iterative learning control method in [9]. For the system Σ in (1), a possible
choice of an optimal control type cost function used in the iterative learning
control is a functional of u and y, and it is not possible to choose a functional
of ẏ the time derivative of the output. However, the signal ẏ often plays an
important role in control of mechanical systems. In particular, it is important
to check the behavior of ẏ for the gait trajectory generation problem. In this
section, we extend the iterative learning control method referred in the previous
section to take the time derivative ẏ into account.

Let us consider the Hamiltonian system in (1) and suppose that the following
assumption holds.

assumptionps 1. The conditions dy(t0) = 0 and dy(t1) = 0 hold.

In the iterative learning control, it is assumed that all the initial conditions
are the same in each laboratory experiment in general. Therefore the condition
dy(t0) = 0 always holds. But the other one dy(t1) = 0 does not hold in general.
In order to let the latter condition dy(t1) = 0 hold approximately, we can employ

an optimal control type cost function such as
∫ t1

t1−ε ‖y(t)−yd(t)‖2dt with a small
constant ε > 0 as in [10].

3.1 Pseudo Adjoint of the Time Derivative Operator

Here we investigate a pseudo adjoint of the time derivative operator to take
account of the time derivative of the output signal ẏ in the iterative learning
control procedure.

Consider a differentiable signal ξ ∈ L2[t0, t1] and a time derivative operator
D(·) which maps the signal ξ into its time derivative is defined by

D(ξ)(t) :=
dξ(t)
dt

. (6)

Let us provide the following lemma to define the pseudo adjoint of the time
derivative operator.
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Lemma 1. Consider differentiable signals ξ and η ∈ L2[t0, t1]. Suppose that the
signal ξ satisfies the condition

ξ(t0) = ξ(t1) = 0. (7)

Then the following equation holds

〈η,D(ξ)〉L2 = 〈−D(η), ξ〉L2 . (8)

Proof. Consider the inner product of η and D(ξ). Let us calculate that

〈η,D(ξ)〉L2 =
∫ t1

t0
η(t)T

dξ(t)
dt

dt =
[
η(t)Tξ(t)

]t1
t0
−
∫ t1

t0

dη(t)
dt

T

ξ(t)dt.

Since ξ(t) satisfies the condition (7),
[
η(t)Tξ(t)

]t1
t0

= 0 holds and we can calculate
that

〈η,D(ξ)〉L2 = −
∫ t1

t0

dη(t)
dt

T

ξ(t)dt = 〈−D(η), ξ〉L2 . (9)

Then (9) implies (8). ��
This lemma implies

D∗ = −D

for a certain class of input signals.

3.2 Application to Iterative Learning Control

Here we take the following cost function to illustrate the proposed method

Γ (ẏ) =
1
2

∫ t1

t0

(
(ẏ(t)− ẏd(t))TΛẏ(ẏ(t)− ẏd(t))

)
dt. (10)

Here ẏd is a differentiable desired velocity which satisfies ẏd ∈ L2[t0, t1]. Suppose
that the output y satisfies Assumption 1. Then we have

d(Γ (ẏ)) = 〈Λẏ(ẏ − ẏd), dẏ〉L2 .

The authors’ former result [9] can not directly apply to this cost function (10)
because it contains ẏ. Here let us rewrite ẏ as ẏ = D(y) with the time derivative
operator D(·) defined in (6). Then we have

dẏ = dD(y)(dy).

Note that the time derivative operator is linear, we obtain dẏ = D(dy). Using
Assumption 1 and (8), we can obtain

d(Γ (ẏ)) = 〈Λẏ(ẏ − ẏd), D(dy)〉L2

= 〈−D
(
Λẏ(ẏ − ẏd)

)
, dy〉L2

= 〈(dΣ(u))∗
(
−D(Λẏ(ẏ − ẏd))

)
, du〉L2.

As we mentioned above, the proposed method allows one to apply the ILC
method to cost functions of state variables which do not appear in the output y.
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Table 1. Notations

Notation Meaning Unit
r0 natural leg length m
m total mass kg
g gravity acceleration m/s2

Kl leg spring stiffness kgm2

Kh hip spring stiffness kgm2

Ts stance time s
Tf flight time s

4 Optimal Gait Generation

In this section, a cost function to generate a symmetric gait is proposed, to which
the proposed method in the previous section is applied.

4.1 Description of the Plant

Let us consider a passive hopping robot in [7, 8] depicted in Fig. 1. The body
and the leg have mass mb and ml and moment of inertia Jb and Ju respectively.
The distance between the hip joint and the center of mass of the leg is d. Let
us define the equivalent leg inertia Jl := Ju + mbmld

2/(mb + ml). Let us also
define the control force of the leg ρ and the control torque of the hip joint τ .
Table 1 shows other notations. Furthermore, some assumptions are assumed on
this robot. An important one is as follows. See [7, 8] for the rest of them.

f

d

q

t

Hip spring

Foot

Kl

Leg spring

Kh

Jb

Ju ml 

(no-mass)X
Z

mb

r

r 

Fig. 1. Description of the plant

assumptionps 2. The foot does not bounce back nor slip on the ground (inelas-
tic impulsive impact).

A notion of phases is introduced: the stance phase and the flight phase. When
the leg touches the ground the robot is said to be in the stance phase, and when



Gait Generation for a Hopping Robot Via Iterative Learning Control 203

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Horizontal distance [m]

Ve
rt

ic
al

 h
ei

gh
t [

m
]

Stance phase Flight phase 

Fig. 2. Subsequent one step of hopping. (The robot moves from left to right.)

the leg is above the ground it is said to be in the flight phase. The stance time
represents the time interval during the stance phase and the flight time is defined
in a similar way. The robot moves between these two phases alternately. See
Fig. 2.

In the stance phase, let us define the generalized coordinate q as q :=
(r, θ, φ)T ∈ R× S1× S1, the generalized momentum p as p := (pr, pθ, pφ)T ∈ R3,
input u as u := (ρ, τ)T ∈ R2 and the inertia matrix M(q) as

M(q) :=

⎛⎝m 0 0
0 Jl + mr2 0
0 0 Jb

⎞⎠ ∈ R3×3.

Then, the dynamics is described as a Hamiltonian system in (1) with the Hamil-
tonian H(q, p, u) represented as

H(q, p, u) =
1
2
pTM(q)−1p−mgr(1 − cos θ)

+
1
2
Kl(r − r0)2 +

1
2
Kh(θ − φ)2 − uT

(
1 0 0
0 1 −1

)
q. (11)

Let us consider the dynamics in the flight phase as below⎧⎪⎪⎨⎪⎪⎩
ẍ = 0
z̈ = −g

Jlθ̈ + Jbφ̈ = 0
Jbφ̈ = Kh(θ − φ) + τf

.

Here the variables x and z represent the horizontal and vertical positions of the
center of mass and τf is the control torque.

4.2 Problem Setting

This section sets the control problem to get the periodic gait based on [11].
Consider the behavior in a flight phase and let J denote the map from the
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initial state to the terminal state in this phase. This map can be regarded as a
discrete map which connects two adjacent stance phases. Then the desired map
of J is given by

Js := (r, θ, φ, pr, pθ, pφ) �→ (r,−θ,−φ,−pr, pθ, pφ). (12)

Let us explain why such a map Js in (12) is desired. Let us define the flow Φt

in the stance phase with no inputs, i.e., ρ ≡ τ ≡ 0 by Φt := (q(t0), p(t0)) �→
(q(t0 + t), p(t0 + t)). For Equations (11) and (12), the Hamiltonian H(q, p, 0) is
invariant with respect to Js. Therefore Js and Φt satisfy Js ◦ΦTs = id where id
represents the identity mapping. If this equation holds, then a periodic gait is
generated.

The leg angle θ is the most important state variable, because it has a direct
effect to avoid falling. However, it is difficult to control the variable θ in the
stance phase, since this robot has no foot. As in [11], we apply no input in the
stance phase, and try to control the variable θ to let J = Js hold in the flight
phase.

In [8], dead-beat control is used. Although it works well, it requires the precise
knowledge of the plant system. Here we try to use iterative learning control
based on variational symmetry with a special cost function given in the following
section which will generate an optimal flow in the flight phase without the precise
knowledge of the system.

4.3 Application of Iterative Learning Control

Let us define the desired values of θ and θ̇ as follows (we let t0 = 0 for simplicity
in what follows)

θd := θ
∣∣
t=Ts+Tf

= −θ
∣∣
t=Ts

(13)

θ̇d := θ̇
∣∣
t=Ts+Tf

= θ̇
∣∣
t=Ts

. (14)

As for the model mentioned above, energy dissipation occurs at the touchdown.
Let E− and E+ represent the energies just before the touchdown and just after
it. Then ∆E the variation of the energy between them can be calculated as

∆E := E− − E+ =
mJl

2(Jl + mr2
0)

µ2
− (15)

by [8], where µ− is defined by

µ− := vx− cos θ− + vz− sin θ− +
r0

Jl + mr2
0
pθ− .

Here vx− and vz− represent the horizontal and vertical velocity of the center of
mass. If the total mechanical energy is completely preserved, that is, a condition

µ− = 0 (16)
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holds at the touchdown, then it is expected that periodic gait trajectories are
autonomously generated. In fact, [8] implies that the condition (16) is satisfied
if the control objects (13) and (14) are achieved, and if the initial condition is
appropriately chosen (the way how to choose is described in [8]).

Now we propose a novel cost function as

Γ (θ, θ̇, u) :=
Kθ

2
‖θ − (−R(θ))‖2L2

+
Kθ̇

2
‖θ̇ −R(θ̇)‖2L2

+
Ku

2
‖u‖2L2

(17)

where Kθ, Kθ̇ and Ku represent appropriate positive constants. R is the time-
reversal operator as defined in Sect. 2. The first and the second terms in the
right hand side of Equation (17) are expected to make Assumption 1 approxi-
mately hold. It is expected that we can generate an optimal trajectory satisfying
Equations (13) and (14) which minimizes the L2 norm of the control input. Fur-
thermore, there is no energy transfer except for the control input.

Let us recall the fact that gait trajectories are essentially periodic. However,
ILC can not generate periodic trajectories. Let us connect the stance flow Φt

and that generated by the cost function (17). Take the connected trajectory as
a single period of a periodic gait trajectory. Therefore if Equation (16) holds,
then we can generate the optimal periodic trajectory.

Now, let us define the input u = τf and the output y = θ. We can calculate
the iteration law as in (3) and in (11) (Derivation of the law is omitted due to
limitations of space)

u(2i−1) = u(2i−2) +R
(
2Kθ(id +R)(y(2i−2))− 2Kθ̇(id−R)(ÿ(2i−2))

)
(18)

u(2i) = u(2i−2) −K(2i−2)

(
Kuu(2i−2) +R

(
y(2i−1) − y(2i−2)

))
. (19)

5 Simulation

We apply the proposed iteration law in (18) and (19) to the hopping robot
introduced in the previous section. We proceed 50 steps of the learning algorithm,
that is, we execute 100 simulations.
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Fig. 3. Cost function
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Fig. 6. Variation of the Energy ∆E

Fig. 3 shows that the cost function (17) almost decreases at each experiment.
This implies that the output trajectory converges to the optimal one smoothly.
Since we choose the initial input u(0)(t) ≡ 0, Assumption 1 does not hold in
the beginning. This is probably the reason why the cost function increases in
the beginning of the learning procedure. In Figs. 4 and 5, the solid lines show
the responses of θ and θ̇ at the last step and the dotted lines depict the initial
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trajectories corresponding to 0 input. These figures show that both θ and θ̇
converge to the trajectories satisfying Equations (13) and (14). Furthermore,
Fig. 6 exhibits that the variation of the energy at the touchdown ∆E in (15)
converges to zero automatically.

6 Conclusion

In this paper, we have proposed an extension of the iterative learning control
based on variational symmetry employing a pseudo adjoint of the time derivative
operator. This allows one to execute iterative learning with optimal control type
cost function including time derivatives of the output signals. Application of
this method to gait generation problem for a hopping robot derives an optimal
gait trajectories without using precise knowledge of the plant. Finally, numerical
simulations have demonstrated the effectiveness of the proposed method.

Although we succeed in generating optimal gait trajectories minimizing the L2
norm of the control input, they are not optimal in a sense that the hopping gaits
with zero input, passive gaits, are not obtained. This is because the algorithm
proposed in this paper can not take into account the variation of the initial
conditions. However passive gaits depend on their initial conditions. It means
that only the input iteration can not generate such gaits. In our recent result
in [12], we propose a novel algorithm to generate passive gaits by employing an
update law for the initial conditions as well as that for the feedforward input.

The proposed cost function can not deal with asymmetric gaits. Our another
result in [13], a certain class of non-symmetric periodic gaits are considered.
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Summary. An energy balance equation with respect to a control contact system pro-
vides port outputs which are conjugated to inputs. These conjugate variables are used
to define the composition of port contact systems in the framework of contact geome-
try. We then propose a power-conserving interconnection structure, which generalizes
the interconnection by Dirac structures in the Hamiltonian formalism. Furthermore,
the composed system is again a port contact system, as illustrated on the example of
a gas-piston system undergoing some irreversible transformation.

1 Introduction

The properties of the control systems arising from models of physical systems
reveal to be extremely useful for the design of control laws of nonlinear systems
not only for stabilizing purposes but also for the design of the closed-loop behav-
ior [19]. For electro-mechanical systems, the Lagrangian and Hamiltonian frame-
work revealed to be best suited to represent their physical properties. Their state
space is naturally endowed with symplectic, Poisson or Dirac structures arising
from the variational formulation and eventual symmetries [1] [3] [11] or directly
from the interconnection structure of complex physical systems like electrical or
hydraulic networks and spatial mechanisms [12] and constraints [20] [21]. How-
ever the Hamiltonian and Lagrangian framework represent only the dynamics of
reversible physical systems (in the sense of Thermodynamics). If the dissipation
can no more be neglected, usually the Hamiltonian systems are augmented with
a dissipative output feedback term [4] and lead to define dissipative Hamilto-
nian systems (defined on a so-called Leibniz bracket [15]) augmented with input
and outputs maps [19]. From a thermodynamic perspective this means that the
Hamiltonian function represent the free energy of the physical system which is
not conserved. However there is a way of representing simultaneously (internal)
energy conservation and irreversibility which uses model structures arising from
Irreversible Thermodynamics and which has been developed in the context of
Chemical Engineering. These systems are defined on the differentiable manifolds
endowed with a contact structure which is canonically associated with the phase
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space in Reversible Thermodynamics [9] [3] [16]. On these contact manifolds,
a class of control systems has been defined, called conservative control contact
systems, which encompasses both reversible and irreversible systems and allows
to express in both cases the conservation of the total energy [5] [6].

In this paper we shall consider port contact systems as defined in [7] and define
their composition by power continuous interconnection structure which strictly
generalize Dirac structures used for the composition of port Hamiltonian systems
[21].

The sketch of the paper is the following. In the second section we shall briefly
recall the definition and motivation of conservative contact systems. In the third
section, we shall recall the definition of the port conjugated variables and then
define the composition (or interconnection) of conservative contact systems. This
is then illustrated in details on the example of a gas in a cylinder submitted to
irreversible transformations.

2 Conservative Contact Systems

In this section we shall recall the motivation and definition of conservative con-
tact systems. The reader is referred to [11] [3] and [1] for a detailed definition
of the objects of contact geometry and will find a very brief summary in the
appendix of this paper.

2.1 Definition and Motivation

The properties of thermodynamical systems are mathematically defined as the
space of 1-jets of real functions of its extensive variables corresponding to their
fundamental equation [8] [9] [13]. If one denotes the manifold of extensive vari-
ables (excluding the internal energy) by N , it is known that the space of 1-jets
of functions on N may be identified with R× T ∗N [11]. This space is called the
Thermodynamic Phase Space and has a canonical geometric structure, called
contact form, which plays an analogous role as the Liouville form for cotangent
bundle of differentiable manifolds. It may then be shown that the Thermody-
namic Properties of physical systems (including thermodynamical systems but
also mechanical and electro-magnetic systems) is defined by a Legendre subman-
ifold of the associated Thermodynamic Phase Space T [9] [3] [13] [14].

It has been shown in previous work that the dynamics of open physical systems
undergoing reversible or irreversible transformations may also be formulated in
terms of contact geometry [5] [7] [6]. This has lead to the definition of a class of
control contact systems that we have called conservative control contact systems
[5] [6].

Definition 1. A conservative control contact system is defined by the m + 5-
tuple (M, E ,L,K0, . . . ,Km,U), where (M, E) is a strict contact manifold with
L a given Legendre submanifold, the Ki’s are smooth real-valued functions on
M, called contact Hamiltonians, which are identically zero on L, and U denotes
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the space of inputs functions uj. The dynamics is then given by the differential
equation:

d
dt

(x0, x, p) = XK0 +
m∑

j=1

uj XKj . (1)

This system may be interpreted in the context of physical system’ modelling as
follows. Firstly the differential equation (1) defines a control contact system in
a very similar way to control Hamiltonian systems [17] [18]. It is defined by an
internal contact Hamiltonian K0 generating the drift dynamics XK0 and by in-
teraction contact Hamiltonians Kj defining the external action on the system by
the control vector fields XKj . It is interesting to note that, for physical systems,
the contact Hamiltonians have the dimension of power and that they are defined
by the law of fluxes of the system (heat conduction, chemical reaction kinetics
or diffusion).

However the system is also defined by a second objet: the Legendre submani-
fold L which represents the Thermodynamic properties of the system. Practically
this Legendre submanifold is generated by a potential energy function (for in-
stance, the internal energy or free energy of a thermodynamic system, the kinetic
and potential energy of a mechanical system). The contact Hamiltonians have
to satisfy the compatibility conditions, i.e. Ki|L ≡ 0, which are essential as they
express the first principle of Thermodynamics. In other words the conservative
control contact system leaves invariant the Legendre submanifold. More precisely
these conditions follow from the following result [16].

Theorem 1. Let (M, E) be a strictly contact manifold and denote θ its contact
form. Let L denote a Legendre submanifold. Then Xf is tangent to L if and only
if f is identically zero on L.

Finally note that actually only the restriction of the conservative contact system
to the Legendre submanifold (where the first principle is satisfied) is relevant for
the description of the dynamics of the system.

Example 1. (Lift of a dissipative Hamiltonian system) This example has been
treated in details in [6]. Consider an autonomous dissipative Hamiltonian system
defined on N by the equation

ẋ = (J(x) −D(x))
∂H0

∂x
(x) , (2)

where D is the symmetric positive definite matrix of friction. Notice that the
tensor J − D defines a Leibniz bracket [15]. It has been shown that it may be
embedded into a contact vector field considering:

• the extended base manifold Ne = R×N , and its associated extended ther-
modynamic phase space Te = R× T ∗Ne � (x0, x, S, p, pS)

• the Legendre submanifold generated by He: He(x, S) = H0(x) + T0S
• the contact Hamiltonian function

Ke = −〈p, ẋ〉+ pS

T0

∂H0

∂x

t

D(x)
∂H0

∂x
. (3)
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3 Interconnection of Port Contact Systems

In this section, the definition of port outputs conjugated to the control inputs
is recalled [7] [6]. The composition of port contact systems is then defined using
a power continuous interconnection structure which is not necessarily a Dirac
structure, generalizing hence the result in [7]. This latter result is illustrated
on the example of a gas under in a cylinder under a piston undergoing some
irreversible processes.

3.1 Port Contact Systems and Losslessness

Consider a differentiable real-valued function f on M and its variation with
respect to a conservative control contact system (of definition 1). A straightfor-
ward calculation, given below in canonical coordinates1, leads to the following
balance equation :

df

dt
=

m∑
j=1

yj
f + sf , (4)

where yj
f denotes the f -conjugated output variable associated with the input uj :

yj
f = {Kj, f}+ f

∂Kj

∂x0 , (5)

and sf denotes the source term defined by:

sf = {K0, f}+ f
∂K0

∂x0 . (6)

For a conserved quantity, the source term is expected to be zero. However, as has
been shown in [7] there is no reason to require it on the entire state space but
rather only on the Legendre submanifold. This lead to the following definition
of a conserved quantity.

Definition 2. A conserved quantity of a conservative control contact system is
a real-valued function f defined on M such that

sf |L = 0 . (7)

Definition 3 ([7]). A port contact system is a control contact system with the
additional condition that there exists a generating function U of a Legendre sub-
manifold that is a conserved quantity, completed with the U -conjugated output
yj

U defined as in (5).

Example 2. [5] Consider a port Hamiltonian system defined on a manifold N
endowed with the pseudo-Poisson tensor Λ, the Hamiltonian H0(x) ∈ C∞(N ), an

1 Recall that the Jacobi bracket {·, ·} of functions on M is defined as {f, g} =
i([Xf , Xg])θ , where θ is the contact form defining E , and [·, ·] denotes the Lie bracket.
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input vector u(t) = (u1, . . . , um)T function of t, m input vector fields g1, . . . , gm

on N , and the equations :{
ẋ = Λ#(dxH0(x)) +

∑m
i=1 ui(t) gi(x)

y j
p = Lgj .H0(x) (8)

Its lift on the thermodynamic phase space T = R × T ∗N with canonical
coordinates (ε, x, p), is a port contact system with internal contact Hamilto-
nian K0 = Λ(p, dH0), the internal contact interaction contact Hamiltonian are
Kj = 〈dH0−p, gj〉. The port conjugated output variables defined in (5) becomes

yj
H0

=
∂H0

∂x

T

gj = LgjH0 . (9)

It is remarkable that they correspond precisely to the outputs called port outputs
defined in (8).

3.2 Interconnection of Two Port Contact Systems

In this section we consider the interconnection or composition of port contact
systems.

Consider now two differential manifolds Ni of dimension ni with coordinates
xi = (x1

i , . . . , x
ni

i ), for i = 1, 2. Each 1-jet space T i over Ni is endowed with
a canonical contact structure whose contact form is denoted by θi. We now
construct the composed state space in the same way. Denote by N the whole
product base space N1 ×N2. Then, the 1-jet bundle T over N is also endowed
with a canonical contact form θ whose local expression is

θ = dx0 −
n1+n2∑

j=1

pj dxj , (10)

where xj = xj
1 and pj = p1

j if 1 ≤ j ≤ n1, else xj = xj−n1
2 and pj = p2

j−n1
if

n1 + 1 ≤ j ≤ n1 + n2.
According to definition 3, consider two port contact systems (Ni, Ui,K

i
j) on

T i with contact Hamiltonian Ki defined as

Ki = Ki
0 +

ni∑
j=1

ui
j Ki

j , (11)

satisfying the invariance condition with respect to the conserved quantity Ui,
i = 1, 2. We define the new (conserved) generating function U of the Legendre
submanifold of the composed state space as U1 + U2.

Denote by m the number of input variables involved in the interconnection
(m ≤ min(m1,m2)). Without loss of generality we may suppose that the first
m variables are involved in the interconnection. Denote u = (u1

j , u
2
j) and y =

(yj
1, y

j
2), j = 1, . . . ,m.
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Proposition 1. The composition of two port contact systems (Ni, Ui,K
i
j)i=1,2

with respect to a power continuous interconnection relation

u = Φ(y) together with Φ(y)T y = 0 , (12)

is the port contact system on the Thermodynamical Phase Space R×T ∗ (N1 ×N2)
defined with respect to the Legendre LU1+U2 and the contact Hamiltonian
K(x, p, Φ(y)), where K(x, p, u1, u2) = K1 + K2.

It is obvious to see that the invariance condition is satisfied by K on LU . We now
show that U is a conserved quantity of the interconnected system thus obtained,
when restricted to the Legendre submanifold LU . Indeed, let us compute its
time-derivative

dU

dt |LU

=
m∑

j=1

[
uj

1{K1
j , U1}+ uj

2{K2
j , U2}

]
|LU

, (13)

which is zero by (12) and (5).
The interconnection defined in the proposition 1, strictly generalize the inter-

connections defined by Dirac structures [20] [21]. Indeed the map Φ in equation
(12) defines a power continuous relation but is not necessarily linear hence does
not define a vector bundle. As an illustration of this feature we shall present in
the next paragraph an example of such a non-linear power continuous intercon-
nection.

3.3 A Gas in a Cylinder Under a Piston

In this paragraph will shall consider a system composed of a gas in a cylinder
closed by a piston subject to the gravity. In a first instance, we shall consider
that this system undergoes reversible transformations. In this case the inter-
connection structure defining the interaction between the gas and the piston is
defined by a Dirac structure (as has been shown in [10]). In a second instance,
we shall consider that the system undergoes some irreversible transformations
due to mechanical friction or viscosity of the gas. In this case the interconnection
structure is defined by some map Φ which is non-linear.

F

U(S,V)

m

Fig. 1. A gas under a piston
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Reversible Transformations Gas Under a Piston

This system may be decomposed in two elementary subsystems, namely the
ideal gas undergoing some mechanical work and a mass (the piston) submitted
to external forces.

The dynamics of the ideal gas undergoing some mechanical work may be de-
fined as a conservative contact system defined on the Thermodynamic Phase
Space Tgas = R×R6 �

{
x0, xj , pj

}
where xi denotes the extensive variables and

pi the conjugated intensive variables. Its thermodynamic properties are given by
the Legendre submanifold LU generated by the internal energy. As the gas is
considered to be in equilibrium in the control volume, the drift dynamics is of
course zero. And the external mechanical work provided by an external pressure
P e and variation of volume fe

V leads to the interaction contact Hamiltonian:

Ki
gas = (p2 − P ) fe

V , (14)

with the U -conjugated port output yU = −P .
The dynamics of the piston is given as the lift of a standard Hamiltonian

systems on the associated Thermodynamic Phase Space following [5]:

Tmec = R× R4 �
{
x0, xpot, xkin, ppot, pkin

}
, (15)

where xpot denotes the altitude of the piston and xkin its kinetic momentum.
The Legendre submanifold Lmec is generated by the total mechanical energy:
H0 = 1

2m xkin2 + mgxpot, which defines the two intensive variables, the velocity
v of the piston and the gravity force F :

ppot|Lmec
= F = mg

pkin|Lmec
= v = xkin

m

}
. (16)

The drift dynamics of the piston may be represented by a conservative contact
system with internal contact Hamiltonian

K0
mec = − (ppot, pkin)

(
0 1
−1 0

)(
F
v

)
. (17)

Associated with the external force F e exerted on the piston is the interaction
contact Hamiltonian:

Ki
mec = (pkin − v) F e , (18)

and the H0-conjugated output: yH0 = v, i.e. the velocity of the piston. In this
first case, following [10], we consider that the composed system is reversible and
the interconnection is given by the linear relation :(

fe
V

F e

)
=
(

0 A
−A 0

) (
(−P )

v

)
, (19)

where A denotes the area of the piston and defining a Dirac structure on the
port variables fe

V , F e, (−P ), v.
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The dynamics of the gas with piston is then given as the composed conserva-
tive contact system on the composed Thermodynamic Phase Space:

TGP = R× R10

�
{
x0, xj , pj, x

pot, xkin, ppot, pkin

}
j=1,..,3 ,

(20)

with Legendre submanifold generated by the sum of the internal energy and the
mechanical energy U(S, V,N) + H0(xpot, xkin) with contact Hamiltonian:

Ktot = K0
mec + (p2 − P ) Av + (pkin − v) AP (21)

It is interesting to notice that the x-component of the contact field XKtot re-
stricted to LU+H0 is precisely the port Hamiltonian system proposed in [10].

Irreversible Transformations

In this second case we shall assume that there is some mechanical friction and
that the lost mechanical energy is converted entirely into a heat flow in the gas.

Firstly the thermodynamical model of the gas, LU , is remained unchanged.
But its dynamics has to be changed as follows, as now there might be a heat flow
induced by the mechanical losses. Denoting by fe

S = Qe

T the flow of entropy asso-
ciated with the external heat flow Qe, there has to be an additional interaction
contact Hamiltonian to consider:

KS = (p1 − T ) fe
S , (22)

with its conjugate port output ys
U = T .

Consider that the mechanical losses come from a viscous friction with co-
efficient ν. The friction losses will be generated by an additional interaction
Hamiltonian associated with the dissipative force F d:

Kd
mec = (pkin − v) F d , (23)

with conjugated output v.
The dissipation losses will be taken into account as an additional interconnec-

tion relation associated with the transformation of part of the mechanical energy
in heat. Firstly the friction force is defined and secondly the power continuity of
the interconnection defined as follows :

(F d, fe
S) = Φ(v, T ) = (νv, (−v/T )νv) (24)

An essential feature of this power continuous interconnection is, that it is not
a Dirac structure on the port variables (F d, fe

S , v, T ) as the map Φ in (24) is
nonlinear.

The composed system piston and gas is defined on TGP , defined in (20), with
the canonical contact structure. The properties of the systems are defined pre-
cisely as for the reversible case by the Legendre submanifold LU+H0 . The contact
Hamiltonian is obtained according to the proposition 1
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Kirr = Ktot +
(
pkin − (p1/T )v

)
νv . (25)

It is immediately seen that the contact Hamiltonian satisfies the invariance con-
dition Kirr|LU+H0

= 0. Note that an analogous expression hold if one consider
that the gas undergoes some irreversible transformation due to its viscosity.
The dynamics restricted to the the Legendre submanifold and projected on the
extensive coordinates is:

dxS

dt

∣∣∣
L

= dS
dt = −∂Ktot

∂pS
= 1

T νv2

dxV

dt

∣∣∣
L

= dV
dt = −∂Ktot

∂pV
= Av

dxN

dt

∣∣∣
L

= dN
dt = −∂Ktot

∂pN
= 0

dxpot

dt

∣∣∣
L

= dz
dt = −∂Ktot

∂ppot
v

dxkin

dt

∣∣∣
L

= dπ
dt = −∂Ktot

∂pkin
= −F + AP = −mg + AP

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(26)

It may be noted that this formulation of an irreversible transformation of a gas-
cylinder system encompasses (by setting ν = 0) the formulation of reversible
transformation using a port Hamiltonian system defined on a Dirac structures
proposed [10].

4 Conclusion

In this paper we have suggested a definition of power continuous interconnection
of conservative contact systems which strictly generalizes the Dirac structures
which define the interconnection of port Hamiltonian systems [21]. However the
power continuity properties of the interconnection allow to compose conservative
contact systems. We have illustrated this in details on the example of a gas in
a cylinder and submitted to mechanical work by a piston. On this example we
have considered firstly the reversible case, according to the example in [10], and
secondly the irreversible by considering some mechanical friction and the entropy
balance associated with it.
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5 Appendix: Reminder on Contact Geometry

In this section we shall briefly recall the basic concepts of contact geometry
(following [11] and [3]).

Let M be an 2n + 1-dimensional, connected, differentiable manifold of class
C∞.

Definition 4 ([11]). A Pfaffian equation on M is a vector subbundle E of rank
1 of T ∗M. The pair (M, E) is a strictly contact structure if there exists a form
θ of constant class 2n + 1, called contact form, that determines E.

Using Darboux’s theorem, one shows the existence of canonical coordinates
(x0, x1, . . . , xn, p1, . . . , pn) in a neighborhood V of any x ∈M such that

θ|V = dx0 − pidxi. (27)

Definition 5 ([11]). A Legendre submanifold of a (2n+1)-dimensional contact
manifold (M, E) is an n-dimensional submanifold L of M that is an integral
manifold of E.

Legendre submanifolds are locally generated by some generating function.

Theorem 2 ([2]). For a given set of canonical coordinates and any partition
I∪J of the set of indices {1, . . . , n} and for any differentiable function F (xI , pJ)
of n variables, i ∈ I, j ∈ J , the formulas

x0 = F − pJ
∂F

∂pJ
, xJ = − ∂F

∂pJ
, pI =

∂F

∂xI
(28)

define a Legendre submanifold of R2n+1 denoted LF . Conversely, every Legen-
dre submanifold of R2n+1 is defined in a neighborhood of every point by these
formulas, for at least one of the 2n possible choices of the subset I.

Finally we shall recall the definition of the class of vector fields, called contact
vector fields, which preserve the contact structure and may be characterized
using the following result.

Proposition 2 ([11]). A vector field X on (M, E) is an contact vector field if
and only if there exists a differentiable function ρ such that

L(X) θ = ρ θ, (29)

where L(X) denotes the Lie derivative with respect to the vector field X. When
ρ vanishes, X is an infinitesimal automorphism of the contact structure.

The set of contact vector fields forms a Lie subalgebra of the Lie algebra of
vector fields on M.

Analogously to the case of Hamiltonian vector fields, one may associate some
generating function to the contact vector fields. Actually there exists an isomor-
phism Φ between contact vector fields and differentiable function on M which
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associate to a contact vector field X a function called contact Hamiltonian and
defined by :

Φ(X) = i(X)θ, (30)

where i(X) denotes the contraction of a form by the vector field X . In the sequel
we shall denote the contact vector field associated with a function f by :

Xf = Φ−1(f). (31)

The contact vector field Xf may be expressed in canonical coordinates in terms
of the generating function, as follows :

Xf =

(
f −

n∑
k=1

pk
∂f

∂pk

)
∂

∂x0 +
∂f

∂x0

(
n∑

k=1

pk
∂

∂pk

)
+

n∑
k=1

(
∂f

∂xk

∂

∂pk
− ∂f

∂pk

∂

∂xk

)
.

(32)

Furthermore the isomorphism Φ transports the Lie algebra structure on the
differentiable function on M and defines the following bracket that we shall use
in the sequel :

{f, g} = i([Xf , Xg])θ, (33)

whose expression in canonical coordinates is given by

{f, g} =
n∑

k=1

(
∂f

∂xk

∂g

∂pk
− ∂g

∂xk

∂f

∂pk

)
+

(
f −

n∑
k=1

pk
∂f

∂pk

)
∂g

∂x0 −
(

g −
n∑

k=1

pk
∂g

∂pk

)
∂f

∂x0 .

(34)
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Summary. The rolling sphere problem on En consists of determining the path of
minimal length traced by the point of contact of the oriented unit sphere Sn as it
rolls without slipping between two boundary points of En × SOn. This problem is
extended to the following cases of rolling: Hn on En, Sn

ρ on Sn
σ, and Hn

ρ on Hn
σ , where

σ �= ρ are the radii of the spheres or hyperboloids. The term “rolling” is generalized
to an isometric sense: the length of a curve is measured using the Riemannian metric
of the stationary manifold while the orientation of the rolling object is described by
a matrix from its isometry group. These problems constitute left-invariant optimal
control problems on Lie groups, whose Hamiltonian equations reveal certain integrals
of motion and show, on the level of Lie algebras, that all of the above problems are
governed by a single set of equations.

Keywords: Hamiltonian systems, isometric, rolling, sub-Riemannian, sphere.

1 Introduction: Euclidean Cases

The rolling sphere problems arise from the following kinematic question posed
by Hammersley [3] and later by Brockett and Dai [2]:

Suppose that an oriented ball is rolled on a plane by moving a plate that
remains parallel to the plane while touching the ball. Assume that the ball rolls
without slipping : it does not slide on either plate and the moving plate cannot
rotate about its normal axis. How should the ball be rolled from one orientation
to another and from one point of the stationary plate to another so that the
path on the stationary plate traced by the point of contact has minimal length?

To formulate this kinematic problem as a mathematical problem, it is natural
to identify the stationary plate with the plane E2 = {x ∈ R3 : x1 = 0} in the
ambient space R3 having canonical frame {e1, e2, e3}. The ball is modelled by the
unit sphere S2 whose center has its first coordinate equal to 1. The orientation
of the sphere is defined by a matrix R in SO3(R) satisfying fi = R ei, where
F = (f1, f2, f3} is an orthonormal frame affixed to the sphere at its center. In
this setting, each point (x,R) of the configuration space E2 × SO3 corresponds
to the sphere having orientation R whose point of contact with the stationary
plane is given by x.

F. Bullo et al. (Eds.): Lag. & Hamil. Methods for Nonlin. Ctrl., LNCIS 366, pp. 221–231, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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The assumption of rolling without slipping means that the velocity of the point
of contact relative to the stationary plate is equal to zero at all times during a
roll. The fact that the motions of the sphere are controlled by the moving plate
implies that the rolling along a particular curve x(t) in the stationary plane
determines the orientation R(t) of the sphere during the roll: that is, curves
(x(t), R(t)) and (x(t), S(t)) in E2 × SO3(R) correspond to the actual motions
of the sphere if and only if R(t) = S(t) for all t. It was then shown in Jurdjevic
[5] that the motions of the oriented sphere subject to the above constraints are
given by the following system of differential equations in G = E2 × SO3:

dx

dt
=
(

0
u

)
dR

dt
= R

(
0 −uT

u 0

)
(1)

where u ∈ L∞([0, T ], R2) and [0, T ] is a finite interval; u(t) will be called the
control. The solutions g(t) = (x(t), R(t)) of (1) are then referred to as the tra-
jectories generated by the control u(t).

Since
∫ T

0

√
u2

1(t) + u2
2(t) dt is the length of x(t) in the interval [0, T ], the

kinematic problem of Hammersley and Brockett is naturally phrased as an op-
timal two-point boundary value control problem on G. To arrive at the pre-
cise formulation, define

∫ T

0

√
u2

1(t) + u2
2(t) dt to be the length of a trajectory

g(t) = (x(t), R(t)) in the interval [0, T ]. If g0 and g1 are any fixed points in G, let
Traj(g0, g1) denote the set of all trajectories g(t) = (x(t), R(t)) of (1) satisfying
the boundary conditions g(0) = g0, g(T ) = g1 (T depends on the control). The
kinematic problem of Hammersley and Brockett can be stated as the problem
of finding a trajectory in Traj(g0, g1) whose length is minimal among all trajec-
tories in Traj(g0, g1). It is well known (for example, see Liu and Sussmann [9])
that the preceding problem can be recast as a time-optimal problem of finding a
trajectory g(t) = (x(t), R(t)) of (1) with g(0) = g0 that reaches g1 in a minimum
time by the trajectories generated by controls u(t) constrained by ‖u(t)‖ = 1.
In such a case the length of an optimal curve is equal to the minimal time of
transfer from g0 to g1.

The extension of Hammersley-Brockett problem to arbitrary dimensions is im-
mediate: simply replace equation (1) by an analogous equation in G = En ×
SOn+1, where the control u is in L∞([0, T ], Rn) with [0, T ] compact, and then
paraphrase the planar optimal control problem in G = En × SOn+1; this prob-
lem is studied in detail in Zimmerman [10]. However, it is less immediate that
the n-dimensional Hammersley-Brockett problem has a natural formulation in the
Lorentzian geometry of the ambient space Rn+1 with the Euclidean inner product∑n+1

i=1 xiyi replaced by the Lorentzian inner product x1y1−
∑n+1

i=2 xiyi . In this
geometry, the unit sphere Sn = {x ∈ Rn+1 :

∑n+1
i=1 x2

i = 1} is replaced by the unit
hyperboloid Hn = {x ∈ Rn+1 : x2

1 −
∑n+1

i=2 x2
i = 1, x1 < 0} and the orientation

of the hyperboloid is given by a matrix R in SO0(1, n), the connected component
of the isometry group of Hn through the identity. The configuration space of the
hyperboloid “rolling” on the Euclidean space En = {x ∈ Rn+1 : x1 = 0} is equal
to G = En × SO0(1, n).
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The hyperbolic Hammersley-Brockett problem can be phrased together with
its Euclidean antecedent as a sub-Riemannian optimal control problem on G =
En × SOε with ε = ±1, where SO1 = SOn+1 and SO−1 = SO0(1, n), in terms
of the trajectories of

dx

dt
=
(

0
u

)
dR

dt
= R

(
0 −εuT

u 0

)
(2)

where the control u ∈ L∞([0, T ], Rn) and [0, T ] is a finite interval.

Definition 1. Let Trajε(g0, g1) denote the set of all trajectories of (2) that con-
form to the boundary condtions g(0) = g0, g(T ) = g1. The Euclidean rolling
sphere problem (ERSP) is the optimal control problem of finding a trajectory
g(t) = (x(t), R(t)) in Trajε(g0, g1) whose length

∫ T

0

√
u2

1(t) + · · ·+ u2
n(t) dt is

minimal relative to Trajε(g0, g1).

2 Non-Euclidean Rolling Problems

In contrast to the ERSP, where the stationary manifold is a Euclidean space
En, the non-Euclidean rolling sphere problem (NRSP) pertains to the two
situations in which the manifold Sn

ρ or Hn
ρ rolls on the corresponding manifold

Sn
σ or Hn

σ with σ �= ρ. Additional definitions and notations are required to
formulate these non-Euclidean cases. To begin with, amalgamate the Euclidean
and the Lorentzian geometry of Rn+1 in terms of a single parameter ε and write
〈x, y〉ε = x1y1 + ε

∑n+1
i=2 xiyi, for ε = ±1. The form corresponding to ε = 1 will

be called Euclidean while the other will be called hyperbolic. These forms can be
used to define the Euclidean/hyperbolic length ‖x‖ε of any vector x ∈ Rn+1 to
be ‖x‖ε =

√
| 〈x, x〉 |ε; in the Euclidean case abbreviate ‖x‖1 to ‖x‖. The group

that leaves 〈x, y〉ε invariant will be denoted by Oε and the connected components
that contain the group identity will be denoted by SOε. It is well known that
SOε is equal to SOn+1 or SO0(1, n) for ε equal to 1 or −1 respectively.

Now let Sσ,ε(c) =
{
x ∈ Rn+1

∣∣ 〈x− c, x− c〉ε = σ2
}

so that Sσ,1(c) is the Eu-
clidean sphere of radius σ centered at c, while Sσ,−1(c) is the hyperbolic sphere
of radius σ centered at c. A hyperbolic sphere is a manifold comprised of two dis-
connected sheets: S+

σ,−1(c) is the sheet lying in the region x1 > c1 and S−
σ ,−1(c)

is the sheet lying in the region x1 < c1. In general there are two kinds of rolling:
rolling on the “outside” of the stationary manifold and rolling on the “inside” of
the stationary manifold. Since conceptually there is little difference between the
two kinds of rolling, only the outside rollings will be considered in this paper. To
be consistent with the Euclidean situations, certain matching of sheets need to
made in the hyperbolic case. For that reason, define S−

ρ,−1(c) to be the rolling
sphere and S+

σ ,−1(c) to be the stationary sphere. For convenience, let us refer
to any S±

σ,ε(c) as a “sphere”, and if σ = 1 then write Sε(c) in lieu of S1,ε(c).
An oriented sphere is a sphere Sσ,ε(c) together with a frame of vectors F =

{f1, f2, ..., fn+1}. Only frames F that satisfy F = RE for some R ∈ SOε, where
E = {e1, e2, ..., en+1} denotes the canonical frame in Rn+1, will be considered.
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(In this notation F = RE means that fi = Rei for i = 1, ..., n+ 1.) The matrix
R will be referred to as the orientation of the sphere. Strictly speaking, an
oriented sphere lives in the space Rn+1 × SOε, but we will visualize the frame
F as being attached to the centre of the sphere and view the oriented sphere as
an object in Rn+1.

Let us now turn our attention back to the NRSP, where the stationary
manifold Mε is either the Euclidean sphere Sσ,ε(0) or the hyperbolic one-sheeted
manifold S+

σ,ε(0) and the rolling manifold Mρ,ε is either the Euclidean sphere
Sρ,1(c0) or the hyperboloid S−

ρ,−1(c0) with σ �= ρ. It will be convenient to write
Sρ,ε(c0) for any of the preceding cases. “Rolling” motions of an oriented sphere
(Sρ,ε(c0), R0) arise from the action of SEε = Rn+1 � SOε, a generalization of
the group of motions, on Rn+1 × SOε: the action of (x̄, R̄) ∈ SEε on a point
(p, R) ∈ Rn+1 × SOε is given by the formula

(x̄, R̄) · (p, R) = (x̄ + c0 + R̄(p− c0), R̄R) (3)

Any curve in SEε, that moves an oriented sphere (Sρ,ε(c0), R0) through Rn+1 in
such a way that the sphere always maintains tangential contact with a stationary
manifold M , is said to induce an isometric rolling of (Sρ,ε(c0), R0) on M . See
Jurdjevic and Zimmerman [8] for a formal definition of isometric rolling.

Proposition 1. (Jurdjevic and Zimmerman [8]) Suppose that the sphere
Sρ,ε(c0), with initial orientation R0, rolls isometrically without slipping on the
outside of Mε = Sσ,ε(0) from an initial time 0 to some finite terminal time
T > 0. Then the path x(t) traced by the point of contact and the orientation
R(t) are given by the equations

x = σSe0 R = Ŝ−1S

where (S(t), Ŝ(t)) are the solution curves in Gε,ε = SOε×SOε of the equations

dS

dt
= αSUε

dŜ

dt
= βŜUε (4)

α =
ρ

ρ + σ
β = α− 1.

The matrix Uε(t) is of the form
(

0 −εu(t)T

u(t) 0

)
for some u ∈ L∞([0, T ] , Rn)

and S(0) is any matrix in SOε that satisfies σS(0)e1 = σ
σ+ρc0 with Ŝ(0) =

R−1
0 S(0).

To complete the formulation of NRSP, the notion of length for the solutions
of equations (4) must be introduced. If g(t) = (S(t), Ŝ(t)) is any solution of (4)
on a finite interval [0, T ] containing points t0 and t1, then the length

∥∥g[t0,t1]
∥∥

ε

of g(t) between g(t0) and g(t1) is defined to be
∫ t1

t0
‖u(t)‖dt. Suppose that a

curve (x(t), R(t)) defined on a finite interval [0, T ] corresponds to an isometric
rolling of the sphere Sρ,ε(c0) on the stationary manifold Mε. According to the
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proposition above, the curve traced by the point of contact with the stationary
sphere is given by x(t) = σS(t)e0 where (S(t), Ŝ(t)) is a solution curve of (4),
and the orientation R(t) is given by R(t) = Ŝ−1(t)S(t). It is then shown in
Jurdjevic and Zimmerman [8] that the length of x(t) is minimal among all rollings
of Sρ,ε(c0) that connect the points (x(0), R(0)) and (x(T ), R(T )) if and only if
the length of g(t) = (S(t), Ŝ(t)) is minimal among all solutions of (4) that
connect the submanifolds N0 =

{(
Š, R(0)−1Š

)
∈ Gε,ε : σŠe1 = x(0)

}
and N1 ={(

Š, R(T )−1Š
)
∈ Gε,ε : σŠe1 = x(T )

}
. Thus the NRSP can be stated entirely

in terms of control system (4):

Definition 2. Let Trajε,ε(N0, N1) denote the set of all trajectories of (4) that
conform to the boundary condtions g(0) ∈ N0, g(T ) ∈ N1. Then the NRSP
is the optimal control problem of finding a trajectory g(t) = (S(t), Ŝ(t)) in
Trajε,ε(N0, N1) whose length

∫ T

0 ‖u(t)‖ dt is minimal relative to Trajε,ε(N0, N1).

3 Hamiltonians and Extremal Equations

The Pontryagin maximum principle of optimal control (PMP) states that each
optimal trajectory is the projection of an extremal curve in the cotangent bundle
of the underlying manifold on which the variational problem is defined. Since
each rolling sphere problem is defined on a Lie group G, the associated extremal
curves evolve on the cotangent bundle T∗G. To preserve the left-invariant sym-
metries in our variational problems, the cotangent bundle T∗G is realized as
the product G × g∗, where g∗ denotes the dual of the Lie algebra g of G. In
this identification an element ξ in the cotangent space T∗

gG is identified with
(g, �) ∈ G× g∗ via the relation ξ(gA) = �(A) for each A ∈ g.

The extremal equations obtained through (PMP) will be absorbed in the
following general framework, explained in full detail in Jurdjevic [5] or Jurdjevic
[6]. Functions H on G×g∗ are called Hamiltonians. They are called left invariant
Hamiltonians if they are constant on the first factor. Stated differently, left-
invariant Hamiltonians coincide with the functions on g∗. Any left-invariant
vector field X(g) = gA induces a left-invariant Hamiltonian H(�) = �(A), where
� ∈ g∗. Such a Hamiltonian is called the Hamiltonian of X.

In general, H denotes the Hamiltonian vector field associated with any Hamil-
tonian H . When H is a left invariant Hamiltonian then dH is a linear function on
g∗ and hence is an element of g. In such a case, H(g, �) = (gdH,−ad∗(dH�)(�))
and the integral curves (g(t), �(t)) of H are the solution curves

dg

dt
= gdH�

d�

dt
= −ad∗(dH�)(�) (5)

where ad∗(dH�(�))(A) = � ([dH�, A]) for all A ∈ g. The preceding differential
equations will be referred to as Hamiltonian equations on a Lie group G.

For our purposes it will be convenient to consider the Hamiltonian equa-
tions on G× g rather than on G× g∗. On semi-simple Lie algebras, any scalar
multiple of the Killing form is non-degenerate and invariant (in the sense that
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〈[A,B] , C〉 = 〈A, [B,C]〉), and hence provides a natural identification of g∗ with
g. In this identification, each � ∈ g∗ is identified with L ∈ g via the relation
�(A) = 〈L,A〉 for all A ∈ g. Then equations (5) are identified with equations

dg

dt
= gdH

dL

dt
= [dH,L] (6)

With this setting in mind, let us now return to the problems at hand. The
sub-Riemannian differential control systems in this paper are of the form

dg

dt
=

n∑
i=1

uiXi(g) (7)

where X1, ..., Xn are left invariant vector fields on a Lie group G. It is well-known
that minimizing length is equivalent to minimizing energy on a fixed interval.
Since it is more convenient to work with energy rather than length, each of our
variational problems asks for the minimum of 1

2

∫ T

0 ‖u(t)‖2 dt over the solution
curves of system (7) subject to the appropriate boundary conditions with T > 0
fixed. For this class of left-invariant optimal control problems it is a simple matter,
based on the maximality condition of PMP, to show that the normal extremals
are the integral curves of a single Hamiltonian function on g∗ given by

H =
1
2

n∑
i=1

H2
i (8)

where H1, ..., Hk are the Hamiltonians of the vector fields X1, ..., Xn. The abnor-
mal extremals will be ignored since the Goh condition (Agrachev and Sachkov
[1]) can be used to show that every optimal solution is the projection of a normal
extremal curve (Jurdjevic and Zimmerman [8]).

The ERSP is defined on Gε = Rn × SOε with Lie algebra gε. If soε denotes
the Lie algebra of SOε, then soε = pε ⊕ k, where pε is the collection of ma-

trices
{(

0 −εpT

p 0

)∣∣∣∣ p ∈ Rn

}
, and k is equal to the Lie algebra of the isotropy

group Ke1 consisting of the antisymmetric matrices
{(

0 0
0 K̃

)∣∣∣∣ K̃ T = −K̃

}
.

The reader can readily verify the relations

[k, k] = k [k, pε] = pε [pε, pε] = k (9)

Then points �̆ of g∗ε will be identified with elements L̆ = (a, L) = (a, P + K) of
gε where a ∈ Rn, P ∈ pε and K ∈ k.

Similar to Zimmerman [10], the normal extremal equations associated with
the ERSP are the solutions of

dx

dt
= a + p

dR

dt
= RUε

da

dt
= 0 (10)

dK

dt
= [Uε, P ]

dP

dt
= [Uε,K]

where Uε =
(

0 −ε(a + p)T

a + p 0

)
.
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Let us now turn to the extremal equations for the NRSP on the cotangent
bundle of Gε,ε = SOε × SOε. Letting gε,ε denote the Lie algebra soε × soε of
Gε,ε, then each L̆ = (L, L̂) ∈ gε,ε will be written as L = K + P , and L̂ = K̂ + P̂
according to the Cartan decompositions (9) in each factor. Now set Ei,ε =(

0 −εẽT
i

ẽi 0

)
for i = 1, . . . , n, where {ẽ1, ẽ2, ..., ẽn} denotes the canonical basis

of Rn. The Hamiltonians Hi, that correspond to the vector fields Xi(S, Ŝ) =(
αSEi,ε, βŜEi,ε

)
and that span the distribution associated with the NRSP, are

given by:
Hi(�̆) = �̆(Xi) = αpi + βp̂i (11)

Therefore, normal extremal curves are the integral curves of the Hamiltonian
vector field H associated with Hamiltonian H = 1

2

∑n
i=1 (αpi + βp̂i)

2 and are
given by the following equations:

d
dt

(S, Ŝ) = (S, Ŝ)(dH)
dL̆

dt
=
[
dH, L̆

]
It follows that dH = (αUε, βUε) with Uε = αP + βP̂ , and the above equations
can be written more explicitly as:

dS

dt
= αSUε

dŜ

dt
= βŜUε (12)

dK

dt
= α [Uε, P ]

dK̂

dt
= β

[
Uε, P̂

]
dP

dt
= α [Uε,K]

dP̂

dt
= β

[
Uε, K̂

]
The extremal equations for the NRSP must also meet the transversality

conditions specified by PMP. Recall that the boundary submanifolds for the
lifted problem are

N0 =
{(

Š, R−1
0 Š
)
∈ Gε,ε

∣∣σŠe1 = x0
}

N1 =
{(

Š, S−1
0 Š

)
∈ Gε,ε

∣∣σŠe1 = y0
}

The tangent space of N0 at (Š, R−1
0 Š) is equal to

{(
ŠB,R−1

0 ŠB
)
|B ∈ k

}
, and

the tangent space of N1 at (Š, S−1
0 Š) is equal to

{(
ŠB, S−1

0 ŠB
)
|B ∈ k

}
. There-

fore each extremal curve �̆(t) = (�(t), �̂(t)) satisfies (�(0) + �̂(0))(B) = 0 and
(�(T ) + �̂(T ))(B) = 0 for all B ∈ k. After the identifications with matrices,
K(0) + K̂(0) = 0 and K(T ) + K̂(T ) = 0. But then K(t) + K̂(t) = 0 for all t
because K(t) + K̂(t) is constant, as becomes evident upon a cursory inspection
of equations (12).

The transversality condition K(t)+K̂(t) = 0 should be added to the normal ex-
tremal equations (12), in which case it is easy to see that Ă = βP (t)+αP̂ (t) is an-
other constant of motion because β dP

dt (t)+αdP̂
dt (t) = αβ[Uε(t),K(t)+ K̂(t)] = 0.
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With the aid of this constant of motion equations, (12) can be brought to
a form that reveals remarkable similarity to the equations (10) that corre-
spond to the ERSP. This form is obtained as follows. Along extremal curves,
P (t) = Ă

β −
α
β P̂ (t) which further implies that Uε(t) = β2−α2

β P̂ (t) + α
β Ă. Let

K̄ = (β2 − α2)K̂ P̄ = (α2 − β2)P̂
Ā = −αĂ Ūε = −βUε = P̄ + Ā

and in addition, let R̄ = I1,nŜI1,n where I1,n =
(

1 0
0 −Ĩ

)
. The rescaling factor

β2 − α2 is not equal to 0 since σ �= ρ, and consequently the preceding trans-
formations are invertible. In terms of the transformed variables, equations (12)
become:

dS

dt
=

ρ

σ
SŪε

dR̄

dt
= R̄Ūε (13)

dK

dt
=

ρ

σ

[
Ūε, P

] dK̄

dt
=
[
Ūε, P̄

]
dP

dt
=

ρ

σ

[
Ūε,K

] dP̄

dt
=
[
Ūε, K̄

]
The equations for the variables R̄, K̄, P̄ , Ā, Ūε take exactly the same form as in
the Euclidean case. Furthermore, the transformed variables have no bearing on
the solution S(t) nor on the length of the projected curve x(t) = σS(t)e1. If we
agree to set ρ = 1, σ = ∞, S = I for the ERSP, then the following equations
with Ūε = Ā + P̄ describe all our rolling sphere problems:

dx

dt
= ρSŪεe1

dS

dt
=

ρ

σ
SŪε

dR̄

dt
= R̄Ūε

dK̄

dt
=
[
Ūε, P̄

] dP̄

dt
=
[
Ūε, K̄

] dĀ

dt
= 0

4 Integrability

Let us now restrict our attention to solutions of the extremal equations for low

dimensions under the assumption that the constant A =
(

0 −εaT

a 0

)
is conve-

niently reduced such that a = µẽ1 (integrability of the rolling sphere problems
is studied in more detail in Jurdjevic and Zimmerman [8]).

n = 2. In this case write

P =

⎛⎝ 0 −εp1 −εp2
p1 0 0
p2 0 0

⎞⎠ K =

⎛⎝ 0 0 0
0 0 −q
0 q 0

⎞⎠
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so that the extremal equations take the form

dp1

dt
= −qp2

dp2

dt
= q(µ + p1)

dq

dt
= −εµp2 (14)

As in Jurdjevic [4], the solutions of (14) are most naturally expressed through
the mathematical pendulum defined by the integrals of motion χ1 = ‖p‖2 + εq2,
χ2 = ‖A + P‖. These integrals define the energy E of the pendulum as

E =
1
2
‖K‖2 − ε 〈A,P 〉 =

q2

2
− εµp1

=
ε

2
(
χ1 − χ2

2 + µ2)
The angle θ(t) of the pendulum is defined by

p1(t) + µ = χ2cos θ(t) p2(t) = χ2sin θ(t) (15)

Since −χ2 sin θ(t)dθ
dt = dp1

dt = −qχ2sin θ(t),

dθ

dt
= q = ±

√
2 (E + εµ(χ2cosθ − µ)).

Thus θ(t) can be expressed in terms of elliptic integrals, and the remaining vari-
ables p1, p2 are then obtained from equations (15). The remaining integrations
down to the group level, and further down to the stationary manifold, can be
carried out in a manner analogous to that used by Jurdjevic [6] in integrating
the equations for the elastic problem.

n = 3. Here write

L = K + P =
(

0 −εpT

p K̃

)
K̃ =

⎛⎝ 0 −q3 q2
q3 0 −q1
−q2 q1 0

⎞⎠
As in the case with n = 2, the integrals of motion χ1 = ‖q‖2 + ε ‖q‖2 and

χ2 = ‖A + P‖ imply the existence of a related conserved quantity E given by

E =
1
2
‖K‖2 − ε 〈A,P 〉 =

1
2
‖q‖2 − εµp1

which can be identified with the energy function for the heavy top of Lagrange
(LHT). In this analogy with the top K̃ is viewed as the moments matrix with
all the principal moments of inertia equal to 1, while the term εµp1 corresponds
to external torque due to gravity.

These mechanical analogues, the mathematical pendulum for n = 2 together
with LHT for n = 3, as remarkable as they may seem at first, are a part of
a larger pattern observed in Jurdjevic [5] that mechanical tops form invariant
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subsystems of elastic problems. This topic is further explored in Jurdjevic and
Zimmerman [8], where it is shown that all solutions of the Euler-Griffiths elastic
problems investigated in Jurdjevic and Monroy-Perez [7] are also solutions of the
rolling sphere problems. To elaborate more amply, note first that q1 is constant
along the extremal curves and therefore, the “reduced” energy E0 = q2

2+q2
3−εµp1

is also an integral of motion. It follows that the “reduced” curvature function
ξ = q2

2 + q2
3 satisfies the differential equation dξ

dt = µ(q2p3 − q3p2), and therefore

1
4µ2

(
dξ

dt

)2

= (q2
2 + q2

3)(p
2
2 + p2

3)− (q2p2 + q3p3)2

= ξ
(
χ2

2 − (µ + p1)2
)
− (c− q1p1)

2

=
ξ

(
χ2

2 −
(
µ + ε

2µ(ξ − E0)
)2
)

−
(
c− εq1

2µ (ξ − E0)
)2

where c = p · q. Hence ξ is solvable in terms of elliptic integrals. The spherical
variables, defined by the relations µ + p1 = χ2cos θ, p2 = χ2sin θ sin ψ, p3 =
χ2sin θ cos ψ, conform to the differential equation −sin θ dθ

dt = dp1
dt = ε

2
dξ
dt along

the extremal curves. Hence,(
dθ

dt

)2

= 2 (E0 − ε(χ2cos θ + µ))

− 1
χ2

2sin
2θ

(c− q1(χ2cos θ + µ))2

is also solvable in terms of elliptic integrals. The angle θ is known as the nutation
angle. The reader is referred to Jurdjevic [5] for the relation of ψ to θ and to
the remaining details of integration on soε.
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Summary. This paper begins by recalling how a constraint distribution on a configu-
ration manifold induces a Dirac structure together with an implicit Lagrangian system,
a construction that is valid even for degenerate Lagrangians. In such degenerate cases,
it is shown in this paper that an implicit Hamiltonian system can be constructed by
using a generalized Legendre transformation, where the primary constraints are in-
corporated into a generalized Hamiltonian on the Pontryagin bundle. Some examples
of degenerate Lagrangians for L–C circuits, nonholonomic systems, and point vortices
illustrate the theory.

1 Introduction

In recent years, the theory of implicit Hamiltonian systems has been developed
along with associated formulations of physical systems, such as L-C circuits and
nonholonomic systems. This is a useful analytical tool, in which Dirac struc-
tures are employed to help understand how interconnected system elements are
energetically related and are systematically incorporated into the Hamiltonian
formalism; see, for instance, [9, 2, 8, 1]. The notion of Dirac structures, which
was first developed in [3], is also relevant to Dirac’s theory of constraints for
degenerate Lagrangian systems. However, research has only just begun on the
theory of implicit Lagrangian systems, and, in addition there is a need to un-
derstand how they are related to implicit Hamiltonian systems as well as with
Dirac’s theory of constraints.

Recently, the theory of implicit Lagrangian systems, namely, a Lagrangian
analogue of implicit Hamiltonian systems, has been developed by [10, 11]. This
theory, which also makes use of Dirac structures, has similar examples that can
be systematically treated from the Lagrangian viewpoint, namely nonholonomic
mechanical systems and degenerate Lagrangian systems, such as L-C circuits.

In the present paper, we investigate systems with degenerate Lagrangians and,
following [10], we first show how to construct a Dirac structure on the cotangent

F. Bullo et al. (Eds.): Lag. & Hamil. Methods for Nonlin. Ctrl., LNCIS 366, pp. 233–247, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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bundle T ∗Q induced from a constraint distribution on a configuration manifold
Q. Second, we demonstrate how an implicit Lagrangian system can be con-
structed from the induced Dirac structure. Using this framework, we show how
to construct an implicit Hamiltonian system from a given, possibly degenerate,
Lagrangian. To do this, we make use of a generalized Legendre transformation
for degenerate Lagrangians to define a Hamiltonian on a constraint momentum
space P ⊂ T ∗Q and also define a generalized Hamiltonian on the Pontryagin
bundle TQ⊕ T ∗Q by combining primary constraints in the sense of Dirac with
the Hamiltonian. Thus, we show how degenerate Lagrangian systems that are
useful in L-C circuits as well as in nonholonomic systems, can be represented
in the context of both implicit Lagrangian systems and Hamiltonian systems.
Lastly, we illustrate an example of degenerate Lagrangians for point vortices and
the KdV equations.

2 Induced Dirac Structures

Dirac Structures. We begin by reviewing the definition of a Dirac structure
on a vector space, following [3].

Let V be an n-dimensional vector space, V ∗ be its dual space, and let 〈· , ·〉
be the natural paring between V ∗ and V . Define the symmetric paring 〈〈·, ·〉〉 on
V ⊕ V ∗ by

〈〈 (v, α), (v̄, ᾱ) 〉〉 = 〈α, v̄〉+ 〈ᾱ, v〉,
for (v, α), (v̄, ᾱ) ∈ V ⊕ V ∗. A Dirac structure on V is a subspace D ⊂ V ⊕ V ∗

such that D = D⊥, where D⊥ is the orthogonal of D relative to the pairing
〈〈·, ·〉〉.

Let M be a smooth differentiable manifold whose tangent bundle is denoted
as TM and whose cotangent bundle is denoted as T ∗M . Let TM ⊕T ∗M denote
the Whitney sum bundle over M ; that is, it is the bundle over the base M
and with fiber over the point x ∈ M equal to TxM × T ∗

xM . An (almost) Dirac
structure on M is a subbundle D ⊂ TM ⊕ T ∗M that is a Dirac structure in the
sense of vector spaces at each point x ∈M .

In geometric mechanics, (almost) Dirac structures provide a simultaneous gen-
eralization of both two-forms (not necessarily closed, and possibly degenerate)
as well as almost Poisson structures (that is brackets that need not satisfy the
Jacobi identity). An integrable Dirac structure, which corresponds in geometric
mechanics to assuming the two-form is closed or to assuming Jacobi’s identity
for the Poisson tensor, is one that satisfies

〈£X1α2, X3〉+ 〈£X2α3, X1〉+ 〈£X3α1, X2〉 = 0,

for all pairs of vector fields and one-forms (X1, α1), (X2, α2), (X3, α3) that take
values in D and where £X denotes the Lie derivative along the vector field X
on M .

Induced Dirac Structures. We now construct induced Dirac structure, an
essential ingredient in the setting of implicit Lagrangian systems; see [10].
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Let Q be an n-dimensional configuration manifold, whose kinematic con-
straints are given by a constraint distribution ∆Q ⊂ TQ, which is defined, at
each q ∈ Q, by

∆Q(q) = {v ∈ TqQ | 〈ωa(q), v〉 = 0, a = 1, ...,m},

where ωa are m one-forms on Q. Define the distribution ∆T ∗Q on T ∗Q by

∆T ∗Q = (TπQ)−1(∆Q) ⊂ TT ∗Q,

where TπQ : TT ∗Q → TQ is the tangent map of πQ : T ∗Q → Q, while the
annihilator of ∆T ∗Q can be defined for each z = (q, p) ∈ T ∗Q, by

∆◦
T ∗Q(z) = {αz ∈ T ∗

z T ∗Q | 〈αz , wz〉 = 0 for all wz ∈ ∆T ∗Q(z)}.

Let Ω be the canonical symplectic structure on T ∗Q and Ω� : TT ∗Q→ T ∗T ∗Q
be the associated bundle map. Then, a Dirac structure D∆Q on T ∗Q induced
from the constraint distribution ∆Q can be defined for each z = (q, p) ∈ T ∗Q,
by

D∆Q(z) = { (wz , αz) ∈ TzT
∗Q× T ∗

z T ∗Q | wz ∈ ∆T ∗Q(z),

and αz −Ω�(z) · wz ∈ ∆◦
T ∗Q(z) }.

Local Representation. Let us choose local coordinates qi on Q so that lo-
cally, Q is represented by an open set U ⊂ Rn. The constraint set ∆Q defines
a subspace of TQ, which we denote by ∆(q) ⊂ Rn at each point q ∈ U . If
the dimension of the constraint space is n − m, then we can choose a basis
em+1(q), em+2(q), . . . , en(q) of ∆(q).

The constraint sets can be also represented by the annihilator of ∆(q), which is
denoted by ∆◦(q), spanned by such one-forms that we write as ω1, ω2, . . . , ωm.
Since the cotangent bundle projection πQ : T ∗Q → Q is locally denoted as
(q, p) �→ q, its tangent map may be locally given by TπQ : (q, p, q̇, ṗ) �→ (q, q̇).
So, we can locally represent ∆T ∗Q as

∆T ∗Q
∼=
{
v(q,p) = (q, p, q̇, ṗ) | q ∈ U, q̇ ∈ ∆(q)

}
.

Then, the annihilator of ∆T ∗Q is locally represented as

∆◦
T ∗Q

∼=
{
α(q,p) = (q, p, α, w) | q ∈ U, α ∈ ∆◦(q) and w = 0

}
.

Because of the local formula Ω�(z) · vz = (q, p,−ṗ, q̇), the condition αz −Ω�(z) ·
vz ∈ ∆◦

T ∗Q reads
α + ṗ ∈ ∆◦(q), and w − q̇ = 0.

Thus, the induced Dirac structure is locally represented by

D∆Q(z) = {((q, p, q̇, ṗ), (q, p, α, w)) | q̇ ∈ ∆(q), w = q̇, α + ṗ ∈ ∆◦(q)} . (1)



236 H. Yoshimura and J.E. Marsden

3 Implicit Lagrangian Systems

Dirac Differential Operator. Let L : TQ → R be a Lagrangian (possibly
degenerate). The differential of L is the map dL : TQ→ T ∗TQ, which is locally
given, for each (q, v) ∈ TQ, by

dL =
(

q, v,
∂L

∂q
,
∂L

∂v

)
.

Define the Dirac differential of a Lagrangian L, to be the map

DL : TQ→ T ∗T ∗Q

defined by
DL = γQ ◦ dL.

Here, the map γQ : T ∗TQ → T ∗T ∗Q is the natural symplectomorphism (see
[10]), which is defined by

γQ = Ω� ◦ κ−1
Q ,

where Ω� : TT ∗Q → T ∗T ∗Q is the induced map from Ω and κQ : TT ∗Q →
T ∗TQ is the natural symplectomorphism (see [7]). In coordinates, the symplec-
tomorphism γQ : T ∗TQ→ T ∗T ∗Q is given by

(q, δq, δp, p) �→ (q, p,−δp, δq)

and hence the Dirac differential of L is locally given, at each (q, v) ∈ TQ, by

DL =
(

q,
∂L

∂v
,−∂L

∂q
, v

)
. (2)

Implicit Lagrangian Systems. An implicit Lagrangian system is a triple
(L,∆Q, X), which satisfies the condition

(X,DL) ∈ D∆Q , (3)

where X : ∆Q ⊕ P ⊂ TQ ⊕ T ∗Q → TT ∗Q is a partial vector field defined at
points (v, p) ∈ ∆Q×P , where P = FL(∆Q); that is, X assigns a vector in TpT

∗Q
to each point (q, v, p) ∈ ∆Q ⊕ P . We write X(q, v, p) = (q, p, q̇, ṗ), so that q̇ and
ṗ are functions of (q, v, p).

Equality of base points in (3) implies that p is given by the Legendre trans-
formation, and so one can equivalently say that X depends only on (q, v) with
p determined by the Legendre transform. That is, equation (3) means that for
each (q, v) ∈ ∆Q ⊂ TQ, we have

(X(q, v, p),DL(q, v)) ∈ D∆Q(q, p), (4)

where (q, p) = FL(q, v). It follows from equations (1), (2) and (4) that

p =
∂L

∂v
, q̇ ∈ ∆(q), q̇ = v, and ṗ− ∂L

∂q
∈ ∆◦(q). (5)



Dirac Structures and the Legendre Transformation 237

A solution curve of an implicit Lagrangian system (L,∆Q, X) is a curve
(q(t), v(t), p(t)) ∈ TQ ⊕ T ∗Q, t1 ≤ t ≤ t2, such that it is an integral curve
of X in the sense that the time derivative of (q(t), p(t)) = FL(q(t), v(t)) coin-
cides with the value of X(q(t), v(t), p(t)), which is a vector in T ∗Q at the point
(q(t), p(t)) = FL(q(t), v(t)).

Note that for the case ∆Q = TQ the condition of an implicit Lagrangian
system is equivalent to the Euler–Lagrange equations ṗ = ∂L/∂q together with
the second order condition q̇ = v.

Energy Conservation. We now show that energy is conserved for any implicit
Lagrangian system (L,∆Q, X). Define the generalized energy E on TQ ⊕ T ∗Q
by

E(q, v, p) = 〈p, v〉 − L(q, v).

Let (q(t), v(t)), t1 ≤ t ≤ t2, be the solution curve of implicit Lagrangian systems
together with (q(t), p(t)) = FL(q(t), v(t)); thus,

d

dt
E(q, v, p) = 〈ṗ, v〉+ 〈p, v̇〉 − ∂L

∂q
q̇ − ∂L

∂v
v̇

=
〈

ṗ− ∂L

∂q
, v

〉
which vanishes since q̇ = v ∈ ∆(q), p = ∂L/∂v and ṗ− ∂L/∂q ∈ ∆◦(q).

Remark. Using the generalized energy E on TQ⊕ T ∗Q, the condition for an
implicit Lagrangian system (L,∆Q, X), namely, (X,DL) ∈ D∆Q , can be restated
as (X,dE|TT ∗Q) ∈ D∆Q together with the Legendre transform P = FL(∆Q).
Namely, the following relation holds, for each (q, v) ∈ ∆Q,(

X(q, v, p),dE(q, v, p)|T(q,p)T ∗Q

)
∈ D∆Q(q, p),

together with (q, p) = FL(q, v). The restriction dE(q, v, p)|T(q,p)T ∗Q is under-
stood in the sense that T(q,p)T

∗Q is naturally included in T(q,v,p)(TQ⊕ T ∗Q).

Coordinate Representation. In coordinates, since the one-forms ω1, ..., ωm

span a basis of the annihilator ∆◦(q) at each q ∈ U ⊂ Rn, it follows that
equation (5) can be represented in terms of Lagrange multipliers µa, a = 1, ...,m
as follows: (

q̇i

ṗi

)
=
(

0 1
−1 0

)(− ∂L
∂qi

vi

)
+
(

0
µa ωa

i (q)

)
,

pi =
∂L

∂vi
,

0 = ωa
i (q) vi,

(6)

where ωa = ωa
i dqi.
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Later, we shall see that L–C circuits, which are a typical degenerate La-
grangian system, can be represented by equation (6) in the context of implicit
Lagrangian systems [10].

Example: Lagrangians Linear in the Velocity. Consider a system with the
Lagrangian L : TQ→ R given by

L(qi, vi) = 〈αi(qj), vi〉 − h(qi), i, j = 1, ..., n,

where α is a one-form on Q and h is a function on Q. This form arises in various
physical systems such as point vortices and the KdV equation (see, for instance,
[5, 6]). It is obvious that the Lagrangian is degenerate.

Since there are no kinematic constraints, it follows from equation (6) that
equations of motion are given by

q̇i = vi,

ṗi =
∂L

∂qi
=

∂αj(q)
∂qi

vj − ∂h(q)
∂qi

,

pi =
∂L

∂vi
= αi(q).

4 Implicit Hamiltonian Systems

Degenerate Lagrangians. Let Q be a manifold, L be a Lagrangian on TQ
and ∆Q a given constraint distribution on Q. The constraint momentum space
P ⊂ T ∗Q is defined to be the image of ∆Q under the Legendre transform
FL : TQ→ T ∗Q; namely, P = FL(∆Q), which in coordinates, is represented by

(qi, pi) =
(

qi,
∂L

∂vi

)
, i = 1, ..., n.

Now, suppose that L is degenerate; that is,

det
[

∂2L

∂vi∂vj

]
= 0; i, j = 1, ..., n,

and also that the dimension of Pq at each q ∈ Q is a fixed integer k (0 ≤ k < n),
and the submanifold P can be represented by, at each q ∈ Q,

Pq =
{
p ∈ T ∗

q Q | φA(q, p) = 0, A = k + 1, ..., n
}

, (7)

where φA, A = k + 1, ..., n, are functions on T ∗
q Q. The functions φA(q, p) = 0 in

equation (7) are called primary constraints when ∆Q = TQ (see, for instance,
[4]), and we shall continue to call them primary constraints even in the case
of ∆Q ⊂ TQ. Needless to say, if the Lagrangian is regular, then there are no
primary constraints.

Thus, we can choose the local coordinates (qi, pλ), i = 1, ..., n; λ = 1, ..., k for
P ⊂ T ∗Q together with the partial Legendre transform
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pλ =
∂L

∂vλ
, λ = 1, ..., k,

where

det
[

∂2L

∂vλ∂vµ

]
�= 0; λ, µ = 1, ..., k,

and v = (vλ, vA) are local coordinates for TqQ and with the constraints v ∈ ∆(q).

Generalized Legendre Transform. Define a generalized energy E on the
Pontryagin bundle TQ⊕ T ∗Q by

E(qi, vi, pi) = pi v
i − L(qi, vi)

= pλ vλ + pA vA − L(qi, vλ, vA),

where pi = (pλ, pA). Then, the Hamiltonian HP on P can be defined by

HP (qi, pλ) = stat vi E(qi, vi, pi)|P,

where stat vi is the stationarity operator (defining a critical point in the vari-
able v). In view of the primary constraints in (7), we can define a generalized
Hamiltonian H by

H(qi, vi, pi) = HP (qi, pλ) + φA(qi, pi) vA.

which has the property that H |P = HP (but it does depend on how we split the
coordinates for pi and vi). In the above, vA, A = k+1, ..., n, are local coordinates
for an (n− k)-dimensional subspace of TqQ, which can be regarded as Lagrange
multipliers for the primary constraints φA(qi, pi) = 0. The range of the index A
varies according to the degeneracy of the Lagrangian, namely, 0 ≤ k < n. So,
the generalized Hamiltonian H may be regarded as a function on TQ⊕ T ∗Q.

Implicit Hamiltonian Systems. The differential of the generalized Hamilto-
nian H : TQ⊕T ∗Q→ R is in coordinates given by, for each (q, v, p) ∈ TQ⊕T ∗Q,

dH(q, v, p) =
(

∂H

∂q
,
∂H

∂v
,
∂H

∂p

)
,

where we can obtain the primary constraints by setting

∂H

∂v
= φA(qi, pi) = 0, A = k + 1, ..., n.

Meanwhile, since dH(q, v, p) takes its values in T ∗
(q,v,p)(TQ⊕T ∗Q), the restriction

of the differential of H to T(q,p)T
∗Q is

dH(q, v, p)|T(q,p)T ∗Q =
(

∂H

∂q
,
∂H

∂p

)
.
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Then, an implicit Hamiltonian system is a triple (H,∆Q, X), which satisfies the
condition

(X(q, p),dH(q, v, p)|T(q,p)T ∗Q) ∈ D∆Q(q, p), (8)

where X = (q, p, q̇, ṗ) is a vector filed on T ∗Q.

The local expression for implicit Hamiltonian systems in equation (8) is given
by

q̇ =
∂H(q, v, p)

∂p
∈ ∆(q), ṗ +

∂H(q, v, p)
∂q

∈ ∆◦(q) (9)

and with the primary constraints

∂H(q, v, p)
∂v

= φA(q, p) = 0. (10)

Coordinate Representation. In coordinates, recall the one-forms ω1, ..., ωm

span a basis of the annihilator ∆◦(q) at each q ∈ U ∈ Rn, and it follows from
equations (9) and (10) that

(
q̇i

ṗi

)
=
(

0 1
−1 0

)⎛⎜⎜⎝
∂H(q, v, p)

∂qi

∂H(q, v, p)
∂pi

⎞⎟⎟⎠+
(

0
µa ωa

i (q)

)
,

0 = ωa
i (q)

∂H(q, v, p)
∂pi

, (11)

0 = φA(qi, pi), A = k + 1, ..., n,

where ωa = ωa
i dqi and we employed the Lagrange multipliers µa, a = 1, ...,m.

Example of a Lagrangian Linear in the Velocity. Again let us consider
the example the Lagrangian L : TQ→ R, which is given by

L(qi, vi) = 〈αi(qj), vi〉 − h(qi), i, j = 1, ..., n.

By a direct computation, we obtain the primary constraints as

φi(qj , pj) = pi −
∂L

∂vi
= pi − αi(qj) = 0,

so that the submanifold P is the graph of α in T ∗Q. Define a generalized energy
E on TQ⊕ T ∗Q by

E(qi, vi, pi) = pi v
i − L(qi, vi)

= (pi − αi(qj)) vi + h(qi)

and the Hamiltonian HP on P can be defined by

HP (qi, pi) = stat vi E(qi, vi, pi)|P = h(qi),
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where pi = αi(qj). Hence, the generalized Hamiltonian H on TQ⊕T ∗Q is given
by

H(qi, vi, pi) = HP (qi, pi) + φi(qi, pi) vi

= h(qi) + (pi − αi(qj)) vi,

where we note H |P = HP . Therefore, the equations of motion are given, in the
context of implicit Hamiltonian systems, by

q̇i =
∂H

∂pi
= vi,

ṗi = −∂H

∂qi
=

∂αj(q)
∂qi

vj − ∂h(q)
∂qi

,

∂H

∂vi
= φi(qj , pj) = pi − αi(qj) = 0.

5 Examples of L–C Circuits

As an Implicit Lagrangian System. Consider the illustrative example
of an L–C circuit shown in Fig. 1, which was also investigated in [8]. In the
L–C circuit, the configuration space W is a 4-dimensional vector space, that
is, W = R4. Then, we have TW (∼= W × W ) and T ∗W (∼= W × W ∗). Let
q = (qL, qC1 , qC2 , qC3) ∈ W denote charges and f = (fL, fC1 , fC2, fC3) ∈ TqW
currents associated with the L–C circuit.

L

C1C2 C3

eC3

fC3fC2

eC2 eC1

fC1

fL

eL

Fig. 1. L-C Circuit

The set of currents satisfying the KCL (Kirchhoff current law) constraints
forms a constraint subspace ∆ ⊂ TW , which we shall call the constraint KCL
space that is defined, for each q ∈W , by

∆(q) = {f ∈ TqW | 〈ωa, f〉 = 0, a = 1, 2},

where f = (f1, f2, f3, f4) = (fL, fC1 , fC2, fC3) and ωa denote 2-independent
covectors (or one-forms) represented, in coordinates, by
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ωa = ωa
k dqk, a = 1, 2; k = 1, ..., 4,

where q = (q1, q2, q3, q4) = (qL, qC1 , qC2 , qC3). In this example, the coefficients
ωa

k are given in matrix representation by

ωa
k =

(
−1 0 1 0
0 −1 1 −1

)
.

Consistent with the general theory, the induced distribution ∆T ∗W on T ∗W is
defined by the KCL constraint distribution ∆ ⊂ TW by

∆T ∗W = (TπW )−1(∆) ⊂ TT ∗W,

where πW : T ∗W → W is the canonical projection and TπW : TT ∗W → TW .
Recall that the constraint set ∆ ⊂ TW is represented as the simultaneous kernel
of a number of constraint one-forms; that is, the annihilator of ∆(q), which is
denoted by ∆◦(q), is spanned by such one-forms, that we write as ω1, ω2, . . . , ωm.
Now writing the projection map πW : T ∗W → W locally as (q, p) �→ q, its
tangent map is locally given by TπW : (q, p, q̇, ṗ) �→ (q, q̇). Then, we can locally
represent ∆T ∗W as

∆T ∗W
∼=
{
v(q,p) = (q, p, q̇, ṗ) | q ∈ U, q̇ ∈ ∆(q)

}
.

Let points in T ∗T ∗W be locally denoted by α(q,p) = (q, p, α, w), where α is a
covector and w is a vector, and the annihilator of ∆T ∗W is

∆◦
T ∗W

∼=
{
α(q,p) = (q, p, α, w) | q ∈ U, α ∈ ∆◦(q) and w = 0

}
.

Recall also from equation (1) that the Dirac structure D∆ on T ∗W induced from
the KCL constraint distribution ∆ is locally given, for each (q, p) ∈ T ∗W , by

D∆(q, p) = {((q, p, q̇, ṗ), (q, p, α, w)) | q̇ ∈ ∆(q), w = q̇, α + ṗ ∈ ∆◦(q)} .

Let T : TW → R be the magnetic energy of the L-C circuit, which is defined
by the inductance L such that

Tq(f) =
1
2
L (fL)2,

and let V : W → R be the electric potential energy of the L-C circuit, which is
defined by capacitors C1, C2, and C3 such that

V (q) =
1
2

(qC1)2

C1
+

1
2

(qC2)2

C2
+

1
2

(qC3)2

C3
.

Then, we can define the Lagrangian of the L–C circuit L : TW → R by

L(q, f) = Tq(f)− V (q)

=
1
2
L (fL)2 − 1

2
(qC1)2

C1
− 1

2
(qC2)2

C2
− 1

2
(qC3)2

C3
.
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It is obvious that the Lagrangian L : TW → R of the L-C circuit is degenerate,
since

det
[

∂2L
∂f i∂f j

]
= 0; i, j = 1, ..., 4.

The constraint flux linkage subspace is defined by the Legendre transform:

P = FL(∆) ⊂ T ∗W.

In coordinates, (q, p) = FL(q, f) ∈ T ∗W , and it follows

(pL, pC1 , pC2 , pC3) =
(

∂L
∂fL

,
∂L

∂fC1

,
∂L

∂fC2

,
∂L

∂fC3

)
,

from which we obtain
pL = LfL

and with the constraints

pC1 = 0, pC2 = 0, pC3 = 0,

which correspond to primary constraints in the sense of Dirac. Needless to say,
the primary constraints form the constraint flux linkage subspace P ⊂ T ∗W ,
which immediately reads

(q, p) = (qL, qC1 , qC2 , qC3 , pL, 0, 0, 0) ∈ P.

Let X : TW ⊕ T ∗W → TT ∗W be a partial vector field on T ∗W , defined at
each point in P , with components denoted by

X(q, f, p) = (q̇L, q̇C1 , q̇C2 , q̇C3 , ṗL, 0, 0, 0) .

Since the differential of the Lagrangian dL(q, f) = (∂L/∂q, ∂L/∂f) is given by

dL(q, f) =
(

0,−qC1

C1
,−qC2

C2
,−qC3

C3
, LfL, 0, 0, 0

)
,

the Dirac differential of the Lagrangian DL(q, f) = (−∂L/∂q, f) is given by

DL (q, f) =
(

0,
qC1

C1
,
qC2

C2
,
qC3

C3
, fL, fC1, fC2 , fC3

)
together with p = ∂L/∂f .

Thus, the L-C circuit can be represented in the context of implicit Lagrangian
systems (L, ∆,X) by requiring that, for each (q, f) ∈ ∆ ⊂ TW ,

(X(q, f, p),DL(q, f)) ∈ D∆(q, p)

holds and with the Legendre transform (q, p) = FL(q, f). Therefore, the implicit
Lagrangian system for this L-C circuit may be locally described by
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q̇L

q̇C1

q̇C2

q̇C3

ṗL

0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
qC1
C1
qC2
C2
qC3
C3

fL

fC1

fC2

fC3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
0 0
0 0

−1 0
0 −1
1 1
0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(

µ1
µ2

)

together with the Legendre transformation

pL = LfL.

The above equations of motion are supplemented by the KCL constraints

(
0
0

)
=
(
−1 0 1 0
0 −1 1 −1

)⎛⎜⎜⎝
fL

fC1

fC2

fC3

⎞⎟⎟⎠ .

Finally, we can obtain the implicit Lagrangian system for this L-C circuit as

q̇L = fL, q̇C1 = fC1 , q̇C2 = fC2 , q̇C3 = fC3 ,

ṗL = −µ1,

µ2 = −qC1

C1
, µ1 = −µ2 +

qC2

C2
, µ2 = −qC3

C3
,

pL = LfL,

fL = fC2 , fC1 = fC2 − fC3 .

Representation as an Implicit Hamiltonian System. Next, let us il-
lustrate this example of an L-C circuit in the context of implicit Hamiltonian
systems via the generalized Legendre transformation.

First, define the generalized energy E on TW ⊕ T ∗W by

E(qi, f i, pi) = pi f
i − L(qi, f i)

= pL fL + pC1 fC1 + pC2 fC2 + pC3 fC3

− 1
2
L (fL)2 +

1
2

(qC1)2

C1
+

1
2

(qC2)2

C2
+

1
2

(qC3)2

C3
.

In the above, (p1, p2, p3, p4) = (pL, pC1 , pC2 , pC3). Therefore, we can define the
constrained Hamiltonian HP on P ⊂ T ∗W by

HP (qi, pλ) = stat fi E(qi, f i, pi)|P

=
1
2
L−1 (pL)2 +

1
2

(qC1)2

C1
+

1
2

(qC2)2

C2
+

1
2

(qC3)2

C3
,
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where λ = 1, that is, p1 = pL and we employed the inverse partial Legendre
transformation

fL = L−1 pL.

Since the primary constraints are given by

φ2 = pC1 = 0, φ3 = pC2 = 0, φ4 = pC3 = 0,

we can define a generalized Hamiltonian H on TW ⊕ T ∗W by

H(qi, f i, pi) = HP (qi, pλ) + φA(qi, pi) fA

=
1
2
L−1 (pL)2 +

1
2

(qC1)2

C1
+

1
2

(qC2)2

C2
+

1
2

(qC3)2

C3

+ pC1 fC1 + pC2 fC2 + pC3 fC3 .

The differential of H is given by

dH =
(

qi, f i, pi,
∂H

∂qi
,
∂H

∂f i
,
∂H

∂pi

)
.

Considering the primary constraints, we can set

∂H

∂fA
= φA(qi, pi) = pA = 0, A = 2, 3, 4.

restriction dH(q, f, p) : T(q,f,p)(TW ⊕ T ∗W )→ R to T(q,p)T
∗W is

dH(q, f, p)|T(q,p)T ∗W =
(

∂H

∂qi
,
∂H

∂pi

)
,

which gives

dH(q, f, p)|T(q,p)T ∗W =
(

0,
qC1

C1
,
qC2

C2
,
qC3

C3
, L−1pL, fC1 , fC2, fC3

)
.

Hence, the L-C circuit can be represented as an implicit Hamiltonian system
(H,∆,X) that satisfies, for each (q, p) ∈ T ∗W ,

(X(q, p),dH(q, f, p)|T(q,p)T ∗W ) ∈ D∆(q, p)

together with the primary constraints

∂H

∂f
= 0.

Recall that the vector filed X on T ∗W is given in coordinates by

X(q, p) = (q̇L, q̇C1 , q̇C2 , q̇C3 , ṗL, 0, 0, 0) .

Then, it follows from equation (11) that the implicit Hamiltonian system for the
L-C circuit can be represented in coordinates as
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q̇L

q̇C1

q̇C2

q̇C3

ṗL

0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
qC1
C1
qC2
C2
qC3
C3

L−1 pL

fC1

fC2

fC3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
0 0
0 0

−1 0
0 −1
1 1
0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(

µ1
µ2

)
,

where the primary constraints

pC2 = pC3 = p4 = 0

have been incorporated. The above equations of motion are accompanied with
the KCL constraints

(
0
0

)
=
(
−1 0 1 0
0 −1 1 −1

)⎛⎜⎜⎝
L−1 pL

fC1

fC2

fC3

⎞⎟⎟⎠ .

Finally, the implicit Hamiltonian system for the L-C circuit can be locally given
as follows:

q̇L = L−1 pL, q̇C1 = fC1 , q̇C2 = fC2 , q̇C3 = fC3 ,

ṗL = −µ1,

µ2 = −qC1

C1
, µ1 = −µ2 +

qC2

C2
, µ2 = −qC3

C3
,

L−1 pL = fC2, fC1 = fC2 − fC3 .

It seems that this Hamiltonian view of this electric circuit is consistent with that
presented in [8] and [2]. Note that the present approach derives the Hamiltonian
structure in a systematic way from a degenerate Lagrangian, whereas the direct
Hamiltonian approach requires some ingenuity to derive and its applicability to
all cases is not clear.

6 Conclusions

The paper started by reviewing how a Dirac structure on a cotangent bundle is
induced from a constraint distribution. In this context, implicit Lagrangian sys-
tems can be introduced in association with this induced Dirac structure, which is
available for degenerate Lagrangians. It was shown how an implicit Hamiltonian
system can be defined by a generalized Legendre transformation, starting with
a generalized Hamiltonian on the Pontryagin bundle of a configuration manifold
by incorporating the primary constraints that are present due to the possible de-
generacy of the Lagrangian. The techniques were illustrated via some examples
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of degenerate Lagrangians with constraints, namely for L–C circuits and point
vortices, as well as for nonholonomic systems, where the Lagrangian is typically
nondegenerate, but constraints are present.
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Control of a Class of 1-Generator Nonholonomic
System with Drift Through Input-Dependent
Coordinate Transformation
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1 Introduction

In this paper, a new control strategy for a class of 1-generator nonholonomic
systems with drift is proposed:

y
(k1)
1 = u1

y
(k2)
2 = u2

y
(k3)
3 = �31(y3, . . . , y

(k3)
3 )

+ �32(y2, . . . , y
(k2−1)
2 )× �g(u1, y1, . . . , y

(k1−1)
1 )

...

y(kn)
n = �n1(yn, . . . , y(kn)

n )

+ �n2(yn−1, . . . , y
(kn−1−1)
n−1 )× �g(u1, y1, . . . , y

(k1−1)
1 ),

(1)

where each �∗(·) represents a homogeneous linear term. This system is an asym-
metric affine nonholonomic system of the form ẋ = f(x)+g(x)u with 1-generator
controllability structure. including such as high-order chained form [5], under-
actuated surface vessel [4] and so on.

The proposed strategy is based on a coordinate transformation which is directly
controlled by one of the input to the system. By this transformation, the original
system is decomposed into two linear subsystems; one is a linear time-invariant sub-
systemwhichgoverns the generator dynamics, and theother is a linear timevarying
representing the remaining dynamics. Control of the original nonholonomic system
is reduced to the linear control problem under a certain input constraint.

For a similar class of systems, Imura et. al. [1] have presented the control
method for 3-variable 2nd-order chained form. Their method is based on a track-
ing to a pre-designed trajectory which satisfies the nonholonomic constraints.
However, generalization to the n-variable and higher order case is not discussed
therein.

Laiou and Astolfi [2] have introduced a controller design for the generalized
high-order chained system, based on a state-dependent discontinuous coordinate

F. Bullo et al. (Eds.): Lag. & Hamil. Methods for Nonlin. Ctrl., LNCIS 366, pp. 249–258, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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transformation. The resultant controller is discontinuous and achieves an almost
exponential stability, namely, the exponential stability except for the case in
which the initial conditions lies in a sub-manifold of zero-measure. This method,
however, cannot be combined with non-feedback method such as partial feedback
with partial trajectory-planning.

Marchand and Alamir[3] also have presented an input-dependent coordinate
transformation and designed a stabilizing controller for the 1st-order chained
form. Nevertheless, the targeted system is the 1st-order chained form, and the
high-order chained form system has not been considered in their work.

Ourmethod canbe applied to a class similar to the one presented in [2] and also is
flexible in that the resultant control strategy is not necessarily be a pure feedback.

This paper is organized as follows. Section 2 is the main result, in which our
proposed transformation, basic control strategy is introduced.

Section 3 contains a design example; state regulation of the nonholonomic
underactuated surface vessel is solved by our strategy. Finally, section 4 includes
some concluding remarks.

2 The Method

The essence of our method is the transformation of the original nonholonomic
system (1) into the following form:

dx1

dt
= Agx1 + Bgv1 (2a)

dξ

dt
=
(

Aξ +
v̇1

v1
Gξ

)
ξ + Bξu2. (2b)

In this form, the input v1 := �g(u1, y1, . . . , y
(k1−1)
1 ) represents the generator part

of the original system.
Once the original nonholonomic system (1) is transformed into the proposed

form (2), the problem is to control these two linear systems under the constraint
v1 �= 0. The task can be performed utilizing various linear tools.

In this section, the main result is presented. Firstly, proposed coordinate trans-
formation is presented in 2.1. Secondly, a basic control strategy of the trans-
formed system is presented in 2.2 with an example to design a discontinuous
controller.

2.1 Coordinate Transformation

Proposed transformation is summarized in the following theorem.
Theorem 1. Let us define the state variable of the asymmetric affine non-
holonomic system (1) as

xi =

⎡⎢⎢⎢⎣
xi1
xi2
...

xi ki

⎤⎥⎥⎥⎦ :=

⎡⎢⎢⎢⎣
yi

ẏi

...
y
(ki−1)
i

⎤⎥⎥⎥⎦ (3a)
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x̄ :=

⎡⎢⎢⎢⎣
xn

xn−1
...
x2

⎤⎥⎥⎥⎦ (3b)

Then the system (1) is transformed into two linear subsystems (2) by the
following input transformation:

v1 := �g(u1, y1, . . . , y
(k1−1)
1 ) = �g(u1, x1), (4)

and the input-dependent coordinate transformation:

ξ :=

⎡⎢⎢⎢⎣
ξn

ξn−1
...
ξ2

⎤⎥⎥⎥⎦ = diag
(

1
v1

n−2 Ikn , . . . ,
1

v1
i−2 Iki , . . . , Ik2

)
x̄, (5)

in which I∗’s denote the identity.
Proof. For the x1-subsystem, one have

v1 = �g(u1, x1)

= ag
uu1 +

k1∑
i=1

ag
i x1i, where ag

u �= 0, ag
i �= 0,

since �g(u1, y1, . . . , y
(k1−1)
1 ) = �g(u1, x1) is a homogeneous linear term by the

assumption. Thus, by letting

u1 =
1
ag

u

(
v1 −

k1∑
i=1

ag
i x1i

)
, (6)

the subsystem of x1 is the following linear time-invariant subsystem:

dx1

dt
=

⎡⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎦x1 +

⎡⎢⎢⎢⎢⎢⎣
0
0
...
0
1

⎤⎥⎥⎥⎥⎥⎦u1

=

⎡⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−ag

1 −ag
2 −ag

3 · · · −ak1
g

⎤⎥⎥⎥⎥⎥⎦x1 +

⎡⎢⎢⎢⎢⎢⎣
0
0
...
0
1

ag
u

⎤⎥⎥⎥⎥⎥⎦ v1

=:Agx1 + Bgv1
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and thus one have
dx1

dt
= Agx1 + Bgv1. (2a)

Next, for x2, one have

dξ2

dt
= A2ξ2 + B2u2, (7)

from the coordinate transformation x2 = ξ2. Similarly, for xi(i = 3, . . . , n),
Letting

�i1(yi, . . . , yi
(ki−1))=:

ki∑
j=1

ai
jxij (8)

�i2(yi−1, . . . , yi−1
(ki−1−1))=:

ki∑
j=1

gi
jxi−1j (9)

results in

ẋi1 = xi2

...
ẋiki−1 = xiki

ẋiki =
ki∑

j=1

ai
jxij + v1

ki−1∑
j=1

gi
jxi−1j

which is equivalent to

dxi

dt
=

⎡⎢⎢⎢⎣
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
ai
1 ai

2 · · · aki

i

⎤⎥⎥⎥⎦xi + v1

⎡⎢⎢⎢⎣
0 · · · 0
...

...
0 · · · 0
gi
1 · · · gi

ki−1

⎤⎥⎥⎥⎦xi−1

=: Ãixi + v1Âixi−1.

Finally, since the time derivative of ξ is as follows:

dξi

dt
=

d
dt

(
1

v1
i−2 xi

)
= −(i− 2)

v̇1

v1
i−1 xi +

1
v1

i−2 ẋi

= −(i− 2)
v̇1

v1
· xi

v1
i−2 +

1
v1

i−2

(
Ãixi + v1Âixi−1

)
= −(i− 2)

v̇1

v1
· xi

v1
i−2 + Ãi

xi

v1
i−2 + Âi

xi−1

v1
i−3

=
[
Ãi − (i− 2)

v̇1

v1
Iki

]
ξi + Âiξi−1,
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by letting

Aξ :=

⎡⎢⎢⎢⎢⎢⎣
Ãkn Âkn O · · · O

O Ãkn−1 Âkn−1 · · · O
...

...
. . . . . .

...
O O · · · Ãk3 Âk3

O O · · · O Ak2

⎤⎥⎥⎥⎥⎥⎦ , (10)

Bξ :=

⎡⎢⎢⎢⎢⎢⎣
O
O
...
O
B2

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
0
0
...
0
1

⎤⎥⎥⎥⎥⎥⎦ , (11)

and

Gξ :=diag [(n− 2)Ikn , . . . , (i− 2)Iki , . . . ,Ok2 ] , (12)

one have the ξ-subsystem (2b). ��

2.2 Control of the Transformed System

In this subsection, basic strategy is shown for designing the controller of the
transformed system (2). The policy is as follows:

i) Control two subsystems (2a) and (2b) simultaneously.
ii) Keep the input v1 non-vanishing to prevent the singularity of the transfor-

mation (5).
iii) Stabilize the ξ-subsystem (2b) regarding as if v̇1/v1 is a system disturbance.
iv) Keep the input v1 be bounded when t→∞. This assures that ξ → 0 implies

x̄→ 0.

As far as the above conditions are satisfied, one can choose the various methods
appropriate for the situations. Among them, discontinuous controller design is
presented below in this paper.

Firstly, we introduce the following proposition.

Proposition 1. Suppose that the subsystem (2a) is controllable or at least un-
controllable poles are real and stable. Then there exists a linear feedback for the
subsystem (2a) such that:

i) There exists a set of initial conditions of x1 such that v1 �= 0, ∀t > 0, which
implies that nonsingularity of the coordinate transformation (5).

ii) v̇1/v1 is bounded ∀t > 0 and converges to a real value as t → ∞. Further-
more, this limit is not depends on the initial condition x1(0).

iii) the ξ-subsystem becomes a so-called linearly bounded nonlinear system of
the form



254 T. Sagami, M. Sampei, and S. Nakaura

dξ

dt
= (Aξ + αGξ + ∆(t))ξ + Bξu2, (13)

where ∆(t) is the matrix function which satisfies

lim
t→∞∆(t) = 0, and

∫ ∞

0
‖∆(t)‖ dt <∞. (14)

Proof. By the assumption, one can make the poles of the closed loop system
of x1 to be stable real poles: −α1, . . . ,−αk1 , where 0 < α1 < · · · < αk1 by
some linear feedback. This means that the input of the subsystem (2a) can be
parametrized by a set of linear functions φi(·), i = 1, . . . , k1 such as

v1(t) =
k1∑

i=0

φi(x1(0)) exp(−αit).

Since the coefficient φi(x1(0)) only depends on the initial condition x1(0), it is
possible to choose a initial condition such that v1(t) converges to zero without
changing its sign. For example, selecting such that all φi(x1(0)) have same sign
is sufficient.

For such initial condition x1(0), v̇1/v1 is bounded for all t > 0 and converges
to the slowest pole −α1:

v̇1

v1
=
∑k1

i=0−αiφi(x1(0)) exp(−αit)∑k1
i=0 φi(x1(0)) exp(−αit)

→ −α1 (t →∞).

Therefore, the subsystem of ξ can be represented as the form

dξ

dt
= (Aξ + αGξ + ∆(t))ξ + Bξu2,

where

∆(t) =
(

α1 +
v̇1

v1

)
Gξ,

and ∆(t) exponentially converges to zero matrix.
Finally, exponential rate of convergence of v̇1/v1 implies the boundedness of∫∞

0 ‖∆(t)‖ dt. ��

By Proposition 1, the linear time-varying subsystem (2b) can be represented as
a linear system with asymptotically converging disturbance (13). Such kind of
systems can be stabilized by the linear control. For example Slotine and Li shows
the following result.

Lemma 1. Quoted from [6, p. 115] Consider a linear time-varying system of
the form:

ẋ = (A + ∆(t))x (15)
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where the matrix A is constant and Hurwitz, and the time-varying matrix ∆(t)
is such that

lim
t→∞ ∆(t) = 0, and

∫ ∞

0
‖∆(t)‖ dt <∞.

Then the system (15) is globally exponentially stable.

As has been shown above, one can design a linear feedback controller which 1)
converges the x1 for some initial conditions and 2) globally exponentially stabilize
ξ with Proposition 1 and Lemma 1. Furthermore, it implies the convergence of
the state of the original system.

The reason is as follows. By the definition (5), one have the following inverse
transformation (nonsingular if v1 = 0):

x̄ = diag
(
v1

n−2Ikn , . . . , v1
i−2Iki , . . . .Ik2

)
ξ.

Thus ξ → 0 and v1 → 0 implies x̄→ 0.
It is to be noted that the discontinuous controller design is one of the applica-

tions of our approach. Since the input v1 of the x1-subsystem (2a) is regarded as
a system disturbance in the ξ-subsystem (2b), feedback for the x1 is not essen-
tial. In other words, as far as the system disturbance v̇1/v1 does not violate the
stability of the ξ-subsystem, one can control the x1-subsystem arbitrarily, with
such as feedforward controller, discrete-valued controller and so on. This prop-
erty is of importance for a practical purpose. Because such systems that does not
allow any static-smooth feedback controller requires some auxiliary controller to
escape the states from the singularity sub-manifold. Our proposed approach al-
lows us to use the same feedback controller for the ξ-subsystem, which improve
the partial regulation of the system state.

3 Numerical Example

In this section, control of an underactuated surface vessel is presented as a numer-
ical example of the proposed method. It is known that there exists a coordinate
and input transformations by which the vessel system is transformed into the
equation of the form (1). Our method is applied to the transformed system, and
a discontinuous controller is designed.

3.1 Underactuated Surface Vessel

Let us consider the equation of motion of an under-actuated surface vessel [4]:

ẍ = u1 (16a)
ÿ = u2 (16b)

ψ̈ = u1 tanψ +
cy

m
(ẋ tanψ − ẏ) , (16c)
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Fig. 1. Control of a Surface Vessel: state/input

in which x and y is a position, ψ the azimuth angle of the vessel, and the inputs
u1, u2 are some function of its surge force and angular acceleration.

Laiou and Astolfi has shown that the system (16) can be transformed into the
following form:

z̈11 = w1, (17a)
z̈21 = w2, (17b)
z̈31 = z21w1 + ż11z21 − ż31, (17c)

by some coordinate and input transformation.
Since (17) is a subclass of the (1), it can be transformed into the proposed

form (2) by the following input and coordinate transformation:

v1 :=w1 + z12

ξ :=diag
(

1
v1

,
1
v1

, 1, 1
)⎡⎢⎢⎣

z31
z32
z21
z22.

⎤⎥⎥⎦
A discontinuous controller is designed with the result in Proposition 1. Feed-

back gain is chosen as follows

w1 =
[
−2.0 −2.0

]
z1

w2 =
[
−1.51× 102 −1.09× 102 −3.74× 10 −8.70

]
ξ.

(18)
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Fig. 2. Control of a Surface Vessel: trajectory

Figure 1 shows the (exponential) convergence of the states, time-derivative of
the states, and inputs of the vessel.

Figure 2 is a plot of the trajectory (line and circles) and orientation (arrows)
of the vessel system with the controller (18).

Note that the set of initial conditions of z1 such that v1 = 0 is{
z1 | z11(0) + z12(0) = 0

}
(19)

in this case. Unless the initial condition z1(0) lines in this set, the state and
input converges to the origin exponentially.

4 Conclusion

In this paper, a new methodology for a class of nonholonomic system is pre-
sented. Proposed approach utilizes a special coordinate transformation which is
dependent on one of the input to the system.

The essence of the method is to decompose the original nonholonomic system
into two linear subsystems by the proposed transformation. Once the original
system is transformed into the proposed form, control problem is reduced to
the linear control problem with an input constraint(v1 �= 0). Therefore, various
methods can be used for controlling the transformed subsystems.

Among them, discontinuous feedback controller design is presented as an ex-
ample. In this example, resultant controller drives the state to the origin, if the
initial value of the one subsystem satisfies a certain condition.
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Summary. We propose a class of second order mechanical systems on Grassmann
manifolds that converge to the dominant eigenspace of a given symmetric matrix. Such
second order flows for principal subspace analysis are derived from a modification of the
familiar Euler–Lagrange equation by inserting a suitable damping term. The kinetic
energy of the system is defined by the Riemannian metric on the Grassmannian while
the potential energy is given by a trace function, that is defined by the symmetric
matrix. Convergence of the algorithm to the dominant subspace is shown for generic
initial conditions and a comparison with the Oja flow is made.

1 Introduction

In this paper we explore the computational abilities of second order mechani-
cal systems as a tool for principal subspace analysis (PSA). This amounts to
study certain optimization problems on Grassmann manifolds and complements
previous approaches via gradient flows solving eigenvalue problems; see [11].
Specifically, we focus on trace minimization problems on Grassmann manifolds
for computing the first few dominant eigenvectors of a positive semidefinite co-
variance matrix. Using the Hessian as a dissipation term, we derive an apparently
new class of mechanical systems on Grassmann manifolds for which–under mild
conditions–global convergence to the principal subspace of a given positive defi-
nite covariance matrix can be established.

Our results are obtained as a special case of a more general approach to
construct second order mechanical systems on an arbitrary Riemannian manifold
for cost function optimization. Explicitly, we consider a damped version

∇ẋẋ = −grad f(x)− Hessf(x)ẋ

of the Euler–Lagrange equations on Riemannian manifolds, with the Hessian of
the potential function entering as a friction term. We refer to these equations
as the Newton Euler-Lagrange equations, as they coincide for ∇ẋẋ = 0 with
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the continuous analog of the Newton method on a manifold. As is well known,
the dynamics of dissipative mechanical systems may exhibit rather unintuitive
behaviour, such as inherent instability properties. Thus the task of designing
well-behaved second order dynamics on a manifold is a nontrivial one. For general
results on dissipative mechanical systems on Lie groups and principal bundles
we refer to [5, 6]. Here our purpose is to insert damping terms that preserve
the well-known convergence properties of gradient flows. Although some specific
dissipation terms were already introduced in [5, 6], such as e.g. a double bracket
dissipation based on Brockett’s work [7], the idea of systematically using Hessian
friction terms for constrained optimization on manifolds has so far been explored
only in a few papers. The only prior work we are aware of are the papers by
[3, 1, 2], as well as that by [8]. In [3, 1], the authors consider the Euler–Lagrange
equations on a Hilbert space, modified by a suitable Hessian damping term.
Pointwise convergence to the critical points of a real analytic potential function is
shown using Lyapunov techniques and the Lojasiewicz inequality. However their
analysis is limited to the Hilbert space case and the more interesting problem of
mechanical systems on Riemannian manifolds has not beeen considered. Since a
constant scalar product on the ambient Hilbert space is used, one cannot easily
extend their analysis via local coordinate charts to a manifold. In [2], a partial
extension is given to gradient flows on Riemannian manifolds, but again this
analysis does not immediately carry over to second order dynamics on manifolds.
Brockett’s work [8] is somewhat closer in spirit to what we are doing. His starting
point is a Lagrangian mechanical system on a Riemannian manifold, coupled to
a heath bath. As we will see, there is a straightforward geometric procedure to
write down such equations in the deterministic case.

2 Newton–Euler–Lagrange Equations

We now introduce the equation of motion for the second order mechanical sys-
tems we are interested in. Let (M,< ·, · >) denote an n-dimensional Riemannian
manifold and let f : M → R denote a smooth function. In Lagrangian mechanics,
the cost function f : M → R defines the potential function, while the Rieman-
nian metric defines the kinetic energy K : TM → R

K(x; v) :=
1
2
‖v‖2x.

The associated Lagrangian and Hamiltonian, respectively, are the smooth func-
tions on the tangent bundle L,H : TM → R, defined by

L(x, v) = K(x; v)− f(x), H(x, v) = K(x; v) + f(x).

The pair (M,L) is often called a simple mechanical system on M . In Lagrangian
mechanics one considers the problem of finding the extrema of the variational
problem for the energy functional

E(x) =
1
2

∫ b

a

‖ẋ(t)‖2dt−
∫ b

a

f(x(t))dt.
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Let grad f denote the Riemannian gradient vector field of f on M and Hf(x) :
TxM→ TxM denote the Riemannian Hesse operator, i.e.

Hf(x)ξ = ∇ξgradf(x) ∀ξ ∈ TxM.

Thus Hf(x) denotes the Hesse operator of f that is associated with the Levi-
Civita connection ∇ on M . Let ∇ẋẋ denote the geodesic operator. With the
terms at hand we can define the Newton Euler–Lagrange equation.

Definition 1. The Newton Euler-Lagrange equation on the Riemannian
manifold M is the second order differential equation

∇ẋẋ = −grad f(x)−Hf(x)ẋ. (1)

Note that this equation differs from the usual Euler–Lagrange equation

∇ẋẋ = −grad f(x)

just by the presence of the dissipation term defined by the Hessian operator.
Our goal is to analyze (1) as a general second order optimization method, and

explore its behavior for specific computational tasks, such as for principal and
minor component analysis. Before entering into the discussion of principal com-
ponent analysis we make some general comments on the convergence properties
of (1). First note, that for any solution x(t) of (1), the Hamiltonian function
satisfies

d

dt
H(x(t), ẋ(t)) =< ẋ,∇ẋẋ > + < grad f(x), ẋ >

= − < Hf(x)ẋ, ẋ > .

Thus positive definiteness of the Hessian, i.e. strong convexity of f , would imply,
that H acts as a Lyapunov function for (1). However, this will not be the case
in general and therefore a more refined argument has to be given, in order to
ensure global convergence to the critical points of f . Note that the equilibria of
(1) are precisely the points (x∞, ẋ∞) ∈ TM , where x∞ is a critical point of f
on M and ẋ∞ = 0. The following result clarifies the convergence properties of
the Newton–Euler–Lagrange flow.

Theorem 1. Let f : M → R be a smooth function with compact sublevel sets.
Assume that there exists no nonconstant geodesic x : I →M on M such that

grad f(x(t)) = 0 ∀t ∈ I.

(This condition is e.g. satisfied if f has only isolated critical points.) Then the
solutions x(t) of (1) exist for all t and converge for t →∞ to the set of critical
points of f , which are also the equilibrium points of the flow. If f has only isolated
critical points, then the solutions converge to single equilibrium points.

Proof. Consider V : TM → R, defined by

V (x, ẋ) := f(x) +
1
2
‖ẋ + grad f(x)‖2.
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The Lie deriviative along any solution x(t) of (1) is V̇ =

< gradf(x), ẋ > + < ẋ + grad f(x),∇ẋẋ +∇ẋgrad f(x) >

using the compatibility property of the Levi-Civita connection with the metric.
Moreover,

∇ẋgrad f(x) = Hf(x)ẋ

and therefore V̇ =

< grad f(x), ẋ > + < ẋ + grad f(x),−grad f(x) >

= −‖grad f(x)‖2.
(2)

Thus V (t) decreases along the solutions of (1). By the definition of V this shows
that both f(x) and ‖ẋ + grad f(x)‖2 are bounded from above. Since f has
compact sublevel sets this implies that x and ẋ are positively bounded and
therefore the solutions exist for all t ≥ 0. Moreover, by LaSalle’s invariance
principle, (x(t), ẋ(t)) converges to the maximal invariant and connected subset
of

X := {(x, y) ∈ TM | grad f(x) = 0}
of the associated first order system

ẋ = y

∇yy = −grad f(x)−Hf(x)y.
(3)

Suppose there exists a nontrivial solution (x, y) of this first order system that
is contained in X . Then grad f(x(t)) = 0 and therefore by differentiation also
∇ẋgrad f(x) = Hf(x)ẋ = 0. Thus ∇ẋẋ = 0 which implies that x is a geodesic. By
our assumption thus x is a constant curve and therefore a critical point. This
proves the claim.

The above result shows that the Newton Euler-Lagrange flow will converge to the
set of critical points of f . The question arises under which conditions pointwise
convergence to individual critical points happens. Of course, this will not be the
case in general. The following result holds for a slightly stronger damped version
than (1).

Theorem 2 ([12]). Let M be a real analytic submanifold and f a real analytic
function of M . Let α > 0. Then the ω–limit set of any solution x(t) of

∇ẋẋ = −grad f(x)− αẋ−Hf(x)ẋ. (4)

consists of at most one point. In particular, if f has compact sublevel sets on M ,
then every solution x(t) of (4) converges to a single critical point of f .

We now characterize the local stability properties of the equilibrium points of
(1).
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Lemma 1. The linearization of (4) at an equilibrium point (x∞, ẋ∞ = 0) is the
linear differential equation on the tangent space Tx∞M

ξ̈ + (αI + A)ξ̇ + Aξ = 0, (5)

where ξ ∈ Tx∞M and A = Hf(x∞).

Proof. The linearization of the Hessian operator at a critical point is just A, and
at a critical point the identity

Dgradf(x∞) = Hf(x∞)

holds. The result follows.

In order to compute the eigenvalues of the second order system we note the
following lemma.

Lemma 2. Let 0 ≤ α ≤ 1. The discriminant of the polynomial s2 +(α+λ)s+λ
is zero if and only if λ = λ− or λ = λ+, where

λ± = 2− α± 2
√

1− α ≥ 0.

For λ− < λ < λ+ the discriminant is negative, and the roots s−, s+ are complex
with negative real part. For λ > λ+ or if 0 < λ < λ−, the discriminant is positive
and the real roots s−, s+ are negative. For λ < 0, one root is positive and the
other negative.

This leads to the following characterization of the spectrum of the linearization
of the flows (1), (4).

Theorem 3. Let 0 ≤ α ≤ 1. Let f : M → R denote a Morse function. Then the
dimensions of the positive eigenspace of the Riemannian Hessian Hf(x∞) and of
the negative eigenspace of the linearization B of (1) at an equilibrium point x∞,
respectively, satisfy:

2dimEig+Hf(x∞) = dimEig−B.

In particular, the local minima of f are precisely the local attractors of (1).

3 Second Order Principal Subspace Flows

Principal component analysis is a statistical estimation techniques for analyzing
the covariance structure of stochastic signals. It is based on the estimation of the
first few dominant eigenvectors of the associated covariance matrix. In the neural
networks literature, see e.g. [9], a lot of algorithms have been developed to achieve
that task. Their analysis is mainly based on the study of associated matrix
differential equations, derived from ideas of stochastic approximation; see [4].
The most prominent of such flows for principal component analysis is that of [13],
[14]. Following Oja’s work, other differential equations have been proposed with
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similar convergence properties; see [9]. See also [15] for a rigorous convergence
analysis of generalized flows for principal component analysis. Since such flows
were not derived from any physical first principles, the question arises whether
there exist any Hamiltonian or Lagrangian system that can be used for principal
component analysis. It is the purpose of this paper to show that the answer
to this question is “yes”, by presenting second order flows that can be used for
principal subspace analysis, i.e. flows that are capable of computing the invariant
subpsace defined by the first p largest eigenvalues. We do so by describing flows
on Grassmann manifolds that converge to the dominant invariant subspace of
a covariance matrix A and thus perform the principal subspace analysis. See
[10] for a related description of principal component flows on Stiefel manifolds
(without proof details).

We now consider the closely related task of optimizing a trace function on
the Grassmann manifold for principal subspace analysis. Thus let A denote a
real symmetric n × n matrix, given e.g. as the covariance matrix for random
data vectors x1, · · · , xN . Let λ1 ≥ · · · ≥ λn denote the eigenvalues of A, denoted
in decreasing form. The p-dimensional principal subspace Vpca of A is defined
as the eigenspace associated with λ1 ≥ · · · ≥ λp. The computation of Vpca is
well known to be equivalent to a maximization problem of the trace function
tr(AP) on the set rank p selfadjoint projection operators of Rn, thus on a Grass-
mann manifold. Here we identify the Grassmann manifold with the isospectral
set Grass(p, Rn) of real symmetric projection operators of rank p. Note that we
can uniquely identify any projection operator P with its image space and there-
fore Grass(p, Rn) can be identified the Grassmann manifold of p-dimensional
linear subspaces of Rn. In this case one can develop the Riemannian geometry
of the Grassmann manifold directly in terms of the ambient space of symmetric
matrices, which leads to simple expressions for the geodesics and Newton Euler–
Lagrange equations. Let S(n) and so(n) denote the vector spaces of n × n real
symmetric and skew-symmetric matrices, respectively. We consider S(n), so(n)
as inner product spaces, endowed with the innner product 〈X,Y 〉 := tr(X�Y).
The following result is verified by a straightforward computation, which we omit.
It enables us to explicitly compute the Levi-Civita connection on the Grassmann
manifold.

Proposition 1. For any selfadjoint projection operator P ∈ Grass(p, Rn), the
linear map

πP : S(n)→ S(n), X �→ [P, [P,X ]]

is a self-adjoint projection onto the tangent space TP Grass(p, Rn).

There are at least two natural Riemannian metrics defined on the Grassmannian
Grass(p, Rn), the induced metric and the normal metric. The induced Rieman-
nian metric on Grass(p, Rn) is defined by the Frobenius inner product on the
tangent spaces

〈X,Y 〉 := tr(XY)

for all X,Y ∈ TP Grass(p, Rn), P ∈ Grass(p, Rn). The normal Riemannian metric
has a somewhat more complicated definition. Since it can be shown to coincide
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with the induced Riemannian metric we do not discuss it here. In order to
determine the geodesics, we apply Proposition 1 to compute the Levi-Civita
connection ∇ on the Riemannian manifold Grass(p, Rn). Thus for any two vector
fields X,Y on Grass(p, Rn), the Levi-Civita connection is given as

∇XY (P ) = πP (DY (P )X(P )) ∀P ∈ Grass(p, Rn).

Therefore the geodesics on Grass(p, Rn) are characterized as

∇Ṗ Ṗ = [P, [P, P̈ ]] = 0. (6)

Since πP is a projection operator onto the tangent space of the Grassmannian,
we obtain for any smooth curve P (t) on Grass(p, Rn) the identity

Ṗ = [P, [P, Ṗ ]]. (7)

Thus, by differentiating this identity we conclude

P̈ = [Ṗ , [P, Ṗ ]] + [P, [P, P̈ ]]. (8)

This shows

Theorem 4. The geodesics of Grass(p, Rn) are exactly the solutions of the sec-
ond order differential equation

P̈ + [Ṗ , [Ṗ , P ]] = 0. (9)

It is possible to solve this quadratic matrix differential equation explicitly, by
showing that any solution P (t) with initial conditions P (0) = P0 ∈ Grass(p, Rn),
Ṗ (0) = Ṗ0 is given as

P (t) = et[Ṗ0,P0]P0e
−t[Ṗ0,P0]. (10)

We have already seen that the covariant second derivative with respect to the
Levi-Civita connection on Grass(p, Rn) is given as

∇Ṗ Ṗ = P̈ + [Ṗ , [Ṗ , P ]].

This leads to the following result.

Theorem 5. The Newton Euler Lagrange equation on Grass(p, Rn) is

P̈ + [Ṗ , [Ṗ , P ]] + grad f(P) + Hf(P)Ṗ = 0. (11)

Equivalently, the associated first order system on the tangent bundle
TGrass(p, Rn) is

Ṗ = L

L̇ = −[L, [L, P ]]− grad f(P)−Hf(P)L = 0.
(12)

Using the cost function f(P ) = tr(AP) we obtain the following result that ex-
hibits the Newton Euler-Lagrange equation as a principal subspace flow.
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Theorem 6. The Newton Euler-Lagrange equation for f(P ) = tr(AP) on
Grass(p, Rn) is

P̈ + [Ṗ , [Ṗ , P ]] + [P, [P,A]] + [P, [Ṗ , A]] = 0. (13)

The solutions of (13) converge from any generic initial condition to the unique
projection operator P∞ that is associated with the principal subspace Vpca of A.

Proof. By inspection, the Riemannian gradient for the trace function tr(AP) is
given as

grad f(P) = [P, [P,A]],

see [11]. The Riemannian Hesse operator is given as

Hf(P)L = ∇Lgrad f(P)

and thus coincides with

Hf(P)L = ad2
P ([L, [P,A]] + [P, [L,A]])

= ad2
P ([L, [P,A]]) + [P, [L,A]]

= [P, [L,A]]

since it is easily seen that ad2
P ([L, [P,A]]) = [P, [P, [L, [P,A]]]] = 0 holds for

any tangent vector L of the Grassmannian. THus the Newton Euler-Lagrange
equation has the stated form.

If the eigenvalues of A are distinct, then f has only finitely many isolated criti-
cal points on the Grassmannian. Moreover, the unique local and global minimum
is given as Vpca. Therefore, Theorem 1 implies that, for any initial condition on
the Grassmannian, the flow converges to a single equilibrium point. By Theorem
3, the principal subspace Vpca is the only local attractor of the flow and all the
other critical points have stable manifolds of positive codimension. Since the
union of the stable manifolds of these unstable critical points therefore forms a
set of positive codimension, its complement is everywhere dense. Thus the flow
converges to Vpca from a generic set of initial conditions.

One can compare this flow with well-known first order flows for principal com-
ponent analysis. The proper extension of Oja’s flow to a principal subspace
flow is

Ṗ = −[P, [P,A]],

i.e. Brockett’s double bracket gradient flow of the trace function f(P ) = tr(AP)
on the Grassmannian; c.f. [11]. Covariant differentiation of a slution of this flow
yields

P̈ + [Ṗ , [Ṗ , P ]] + [P, [Ṗ , A]] = 0,

which differs from (13) only by the double bracket term [P, [P,A]].
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Summary. An open problem, set by Yu.Orlov in his contribution to the volume ”Open
Problems in Mathematical Systems and Control Theory”, V.Blondel, A.Megretski
Eds., 2004, regards regularization of optimal control-affine problems with control-
independent state-quadratic cost. It is asked whether the infima of the regularized
(by adding squared L2-norm of controls) functionals converge to the infimum of the
original functional?

We show that this question can be resolved by an elementary argument. We claim
that one should study minimizing sequences of the original functional, rather than its
infimum. We advocate the relevance of this question, formulating it via notion of order
of singularity of an optimal problem. We study this question and provide computations
of the order of singularity for arbitrary singular linear-quadratic problem and also for
some classes of nonlinear control-affine problems. Some open problems are set.

1 Introduction

We consider nonlinear optimal control-affine problems of the form

JT
0 (u(·)) =

∫ T

0
x(t)′Px(t)dt → min,

ẋ = f(x) + G(x)u, (1)
x(0) = x0, x(T ) = xT ,

where T ≤ +∞, P > 0 is symmetric positive-definite matrix,

u = (u1, . . . , uk), G = (g1|g2|...|gk) ,

and f, gj are smooth vector fields. For T = +∞ one takes xT = 0.
This problem is singular in the sense that it lacks coercivity with respect to

control parameters and therefore existence of classical minimizers is not guar-
anteed. In fact even in the simplest singular linear-quadratic case, where f is
linear and gj are constant, there exist so-called ’cheap’ generalized minimizing
controls, which belong to a space of distributions.
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We aim to characterize the order of singularity of problem (1) in terms of
approximability of its generalized minimizers. Knowing this order would allow
for construction of proper regularizations.

Our motivation started with an open question set in contribution of Yu.Orlov
[16] to a recently published volume ”Open Problems in Mathematical Systems
and Control Theory”, V.Blondel, A.Megretski Eds, Princeton University Press,
2004:

Question 1. Do the infima of the regularized problem

JT
ε (u(·)) =

∫ +∞

0
x(t)′Px(t) + ε2|u(t)|2dt

ẋ = f(x) + G(x)u, (2)
x(0) = x0, x(T ) = xT ,

converge to the infimum of the problem (1)?

We start with (positively) answering this question by means of an elementary
reasoning. Then we argue that these are not the infima of the regularized func-
tionals but rather the elements of minimizing sequences of J∞

0 which are worth
studying.

To study them we introduce notion of order of singularity of the problem
(1), which characterizes asymptotics of norms of its ε-minimizers. We provide
detailed analysis of this characteristic for singular linear-quadratic problems, and
obtain partial results in some nonlinear cases. Some open problems are set.

2 Convergence of Regularized Optimal Values

Positive answer to the Question 1 of the Introduction is contained in the following
simple result.

Proposition 1. If for finite or infinite T there exist minimizing sequences of
square-integrable controls um ∈ L2[0, T ] for JT

0 , then

lim
ε→0

inf JT
ε = inf JT

0 .

Proof. Without loss of generality one may think that JT
0 (um) ≤ inf JT

0 + 1/m.
Let ‖um‖L2 = νm; note that the sequence νm is not necessarily bounded.

For the penalized functional JT
ε of (2):

inf JT
0 ≤ inf JT

ε ≤ JT
ε (um) =

= JT
0 (um) + εν2

m ≤ inf JT
0 + 1/m + εν2

m.

Taking εm = ν−2
m /m we conclude that

inf JT
0 ≤ inf JT

εm
≤ JT

εm
(um) ≤ inf JT

0 + 2/m,

and hence lim
ε→0

inf JT
ε = inf JT

0 .



Approximation of Generalized Minimizers and Regularization 271

Corollary 1. Let the assumptions of the Proposition 1 hold and for each ε > 0,
let uε(·) be a minimizer of the corresponding regularized problem (2). Then

lim
ε→0

JT
0 (uε) = inf JT

0 .

Proof
inf JT

0 ≤ JT
0 (uε) ≤ JT

ε (uε) = inf JT
ε .

Proposition 1 leaves some possibility of negative answer to the Question 1, when-
ever all the minimizing sequences contain non square-integrable controls. This
may happen for example, if T = +∞ and f(0) �= 0. Still under an assumption
of local stabilizability the existence of minimizing sequences of square-integrable
controls in the infinite-horizon case is guaranteed.

Definition 1. The control affine system of (1) is locally stabilizable of order
α > 0 if there exists a Lipschitzian feedback ū(x) (ū(0) = 0), and constant C
such that for each initial point x0 from some neighborhood Ω of the origin

|x(t;x0)| ≤ C|x0|(t + 1)−α.

Proposition 2. Assume T = +∞. Let the control system in (1) be locally sta-
bilizable of order α > 1

2 and inf J∞
0 be finite. Then the Question 1 of the Intro-

duction admits positive answer.

Sketch of the proof. Consider a minimizing sequence {u(m)}, such that J∞
0 (u(m)) ≤

inf J∞
0 + 1

m , and let u denote a feedback control satisfying the conditions of Def-
inition 1. It can be shown that there exists a sequence {Tm ∈]0,+∞[,m ∈ IN}
such that the controls

ũ(m)(t) =

{
u(m)(t) if t ≤ Tm

u(xu(t)) if t > Tm

are square integrable and satisfy J∞
0 (u(m)) ≤ inf J∞

0 + 2
m . Hence the result

follows from Proposition 1.

3 Order of Singularity: Problem Setting

We set another question in relation to the problem (1). It regards asymptotics
of L2-norms ‖uε(·)‖L2 of ε-minimizers {uε} of the functional JT

0 . If inf JT
0 is

finite, then for generic data and for any minimizing sequence um(·) of controls
for JT

0 the norms ‖um(·)‖L2

m→∞−→ +∞. Therefore JT
ε (um) m→∞−→ +∞ for any

fixed ε > 0, i.e. minimizing sequences for JT
0 exhibit ”singular behavior”.

In order to measure the degree of singularity we introduce the following quan-
tity σ.

Definition 2. Let Uε be the set of controls which steer the control system (1)
from the initial point x0 to a point from ε-neighborhood of xT and such that
JT

0 (u) ≤ inf JT
0 + ε. The value
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σ = lim sup
ε→0+

inf
{
ln ‖u‖L2

: u(·) ∈ Uε

}
ln 1

ε

. (3)

is called order of singularity of the problem (1).

In the rest of the paper we proceed with a study of the order of singularity.

4 The Singular Linear-Quadratic Case

In this Section we demonstrate relevance of the introduced order of singularity
σ by examining singular linear-quadratic case, i.e. the problem (1) with linear
controlled dynamics:

ẋ = Ax + Bu. (4)

In this case one may consider a more general cost functional, than in (1), namely:

JT
0 (u) =

∫ T

0
x′Px + 2u′Qx + u′Rudτ, (5)

where R ≥ 0 is a symmetric singular matrix, and symmetric P is allowed to have
negative eigenvalues. We assume T < +∞.

A complete description of generalized minimizers of this problem has been
provided in [8, 9]. The minimizers are proved to belong to some Sobolev space
H−r, with integer r related to a desingularization procedure, which reduces the
initial singular problem to a regular linear-quadratic problem.

It turns out that in this case the order of singularity σ introduced by (3) is
tightly connected with r and with approximability of distributions-like minimiz-
ers in Sobolev norms.

Proposition 3. Given the problem (4)-(5) and generic boundary data x0, xT :

σ = r − 1
2
.

For linear dynamics (4) and positive state-quadratic cost functional one obtains.

Corollary 2. For the problem (1) with linear dynamics (4), cost functional∫ T

0 x′Pxdt, (P > 0) and generic boundary data, the order of singularity is

σ =
1
2
.

Complete analysis is possible for arbitrary boundary data. The space IRn × IRn

of boundary data admits a stratification. Different orders of singularity corre-
spond to different open strata of this stratification. The dependence of σ on the
boundary data is lower semicontinuous. Possible values of σ are

σ =
i + 1/2

2(j − i)− 1
: 0 ≤ i < j ≤ n. (6)

A more extensive presentation of the study of order of singularity σ in the
singular linear-quadratic case can be found in [10].
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5 Singularity of Nonlinear Control-Affine Problems

While we managed to characterize the order of singularity for singular linear
quadratic problems, similar questions for control-affine nonlinear problem (1)
remain essentially open.

Question 2. Is the set of possible values of σ for problems (1) finite? Is the value
of σ semiinteger for generic boundary data? Do all possible positive values of σ
have the form (6)? Does this set of numbers correspond to a (local) stratification
of the state space?

It is interesting to compare the invariant σ with the order of singularity intro-
duced in [13, 14]). Other notions, which seem to be related to the questions, we
discuss in this paper, are the one of complexity and enthropy of sub-Riemannian
paths, which have been extensively studied recently ([7, 11]). Although our con-
text is not sub-Riemannian, general approaches look similar.

We provide some partial answers for control-affine problem (1) with positive
state-quadratic cost.

Apparently commutativity/noncommutativity of controlled vector fields af-
fects the value of order of singularity σ a great deal. The connection between
the commutativity/noncommutativity and the generalized minimizers is an es-
tablished fact [15, 2, 17, 3]. Yet it is not well understood, how the Lie structure
is revealed in the properties of generalized minimizers.

We make a first step by providing an upper estimate for order of singularity σ
in general control-affine control-commutative case and then estimate σ for some
noncommutative examples and provide general answer for driftless case.

The following assumptions of commutativity and generalized coercivity are to
be made.

Assumption. For the problem (1)

i) The controlled vector fields gj are pairwise commuting: ∀k, � : [gk, g�] = 0;
in the following theorem we assume them to be constant.

ii0)The drift vector field f is subquadratic at infinity, meaning that:

‖f(x)‖ ≤ φ(‖x‖), lim
‖x‖→∞

φ(‖x‖)/‖x‖2 = 0.

A stronger assumption is

ii1)The drift vector field f and its first derivatives are subquadratic at infinity,
meaning that:

‖f(x)‖+ ‖Df(x)‖ ≤ φ(‖x‖), lim
‖x‖→∞

φ(‖x‖)/‖x‖2 = 0.

Theorem 1 (order of singularity for input-commutative case). Under
the Assumptions i) and ii1) for the problem (1) order of singularity:

σ ≤ 3/2.
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6 Sketch of the Proof of the Theorem 1

First we proceed with a transformation, which appeared under the name of
’reduction’ in [1] and proved to be useful for analysis of control-affine systems
without apriori bounds on the value of controls.

To simplify our presentation we will assume the vector fields gj to be con-
stant and linearly independent. The upper estimate (1) and our method of proof
both hold also without this simplification. Note that under the commutativity
assumption gj can be transformed locally into constant vector fields by change
of variables.

For constant vector fields ’reduction’ amounts to time-variant substitution of
state variable

x = y + Gv(t), v(t) =
∫ t

0
u(s)ds.

This substitution leads us to the following ’reduced’ problem

ẏ = f(y + Gv(t)) (7)∫ T

0
(y∗Py + 2y∗PGv + v∗G∗PGv)dt → min . (8)

with boundary conditions

y(0) = x0, y(t) = xT + GV, V ∈ IRm. (9)

This is a nonlinear optimal control problem, which is coercive with respect
to the new control v, given that v �→ v∗G∗PGv is a positive definite quadratic
form and f(y + Gv(t)) has (at most) subquadratic growth, as ‖v‖ → ∞.

This problem though lacks convexity with respect to v: for fixed y the set

Φ(y) = {(y∗Py + 2y∗PGv + v∗G∗PGv, f(y + Gv)), v ∈ IRk}

is in general nonconvex. For example for scalar v this set is a curve in IRn+1.
Therefore classical minimizers of the reduced problem (7)-(9) may cease to

exist, but assumptions for existence of relaxed minimizer (see for example [4,
Ch.11], or [6, Ch.8]) are satisfied. Recall that a relaxed control can be seen as a
family t �→ µt of probability measures in the space of v ∈ IRk; the family t �→ µt

is measurable in the weak sense with respect to t ∈ [0, T ].
The corresponding dynamic equation and the functional become

ẏ = 〈µt, f(y + Gv)〉 (10)∫ T

0
〈µt, (y∗Py + 2y∗PGv + v∗G∗PGv)〉dt → min,

where for any χ(·, v) : 〈µt, χ(·, v)〉 =
∫

χ(·, v)dµt(v).

Proposition 4. Under the Assumptions i)-ii0) from the previous Section, the
reduced problem (7)-(9) possesses minimizer t �→ µt in the class of relaxed con-
trols.
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In fact basing on the latter Proposition one is able to conclude existence of
generalized minimizer of the original problem (1), which belongs to the space
W−1,∞([0, T ],P), where P is the space of probabilistic measures on the space IRk

of control parameters. This minimizer coincides with the generalized derivative
∂µt/∂t.

To proceed further and to apply the Gamkrelidze Approximation Lemma
([5, 6]) we need the minimizing trajectory to be Lipschitzian. To guarantee this
Lipschitzian property we reinforce the Assumption ii0) to ii1). Under this as-
sumption we can proceed by using a compactification of the set of control pa-
rameters (cf. [6]) of the problem. This method has been successfully used in [18]
for establishing Lipschitzian regularity of nonrelaxed minimizers in the problems
with control-affine dynamics. In the relaxed case a more intricate way of com-
pactification is needed. We will comment on this matter in much more general
context on other occasion.

Under the reinforced coercivity assumption the following result holds

Proposition 5. Under coercivity assumptions i)-ii1) from the previous Section
minimizing relaxed trajectories of the problem (10) are Lipschitzian, with the
possible exception of abnormal relaxed minimizers.

The rest of the proof consists of two approximation steps. At a first stage we ap-
proximate the relaxed minimizer µt of the reduced problem (7)-(9) by a piecewise
continuous control wε(·) in such a way that the (final point of the) trajectory
and the functional of (7), driven by wε(·), are ε-close to the (final point of the)
trajectory and the functional of (10).

At second stage we approximate the piecewise-continuous control wε(·) by an
absolutely continuous control vε(·) ∈ W1,2 whose derivative uε(·) = v̇ε becomes
ε-minimizing control for the original problem (1). The asymptotics (as ε →
+0) of L2-norm of uε(·), or all the same, W1,2-norm of vε(·) provides an upper
estimate for the order of singularity σ.

To proceed with the first approximation step we slightly modify the construc-
tion [6] of piecewise constant control which ε-approximates relaxed control µt in
so-called relaxation metric. The main concern is to ’control’ the number of in-
tervals of continuity, or rather the variation of the approximating function wε(·).
We prove the following

Proposition 6. For each small ε > 0 there exists piecewise-constant control
wε(·), with Nε = (n+2)[T/ε] intervals of constancy, such that the trajectory and
the value of the functional of (7), driven by wε(·), are ε-close in C0[0, T ]× IR to
the trajectory and the functional of (10).

Asymptotics of the variation of this control is O(ε−1), as ε→ 0.
Passing to the second step, we alter wε(·) at Nε = 2(n + 2)[T/ε] intervals of

lengths ∆, adjacent to the points of discontinuity of wε(·). We assume ∆ > 0
to be small enough, so that the corresponding intervals do not intersect. We
substitute at these intervals constant pieces by linear ones, thus transforming
wε(·) into (absolutely) continuous piecewise-linear function v∆(·).
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It is rather evident, that under such approximation the trajectory and the
value of the cost functional are changed by the value O(Nε∆). As far as Nε =
O(ε−1), as ε → +0, and we want the error of approximation to be O(ε), we
choose

∆ = ε2. (11)

Control vε2 (·) of the reduced system (7) corresponds to the control d
dtvε2(·) for

the original control-affine system of (1). This latter time-derivative is nonvanish-
ing on Nε = O(ε−1) intervals of length ∆ = ε2. The magnitude of uε(·) = v̇ε2(·)
is O(ε−2) on these intervals. Therefore

‖uε(·)‖L2 = ‖v̇ε2(·)‖L2 !
(
(ε−2)2ε2ε−1)1/2

, (12)

as ε→ 0, and we conclude σ ≤ 3/2.

6.1 Order of Singularity for Input-Commutative Case: A
Conjecture

We conjecture that the statement of the theorem, we have just proved, can be
strengthened.

Conjecture. Under the assumptions of the Theorem 1 order of singularity of
the problem (1)

σ ≤ 1.

Our conjecture relies on Proposition 6, which is a key fragment of the proof. We
trust that its statement can be reinforced: there exists a piecewise continuous
control wε(·) with ≤ O(ε−1) intervals of continuity, such that the end-point of
the trajectory and the value of the functional of (7) driven by wε(·) are ε2-close
to the end-point of the trajectory and the value of the functional of (10).

If this holds true then taking ∆ = ε3 instead of (11) we arrive to the estimate
‖uε(·)‖L2 ! O(ε2) in a computation analogous to (12). As a consequence we
conclude σ ≤ 1.

6.2 An Example

Example 1. Consider optimal control-affine problem

ẋ = f(x) + g1(x)u1, x = (x1, x2, x3),
f = x1∂/∂x2 + γ(x1)(x2

1 − 1)∂/∂x3, g1 = ∂/∂x1,

JT
0 =

∫ 1

0
(x2

1 + x2
2 + x2

3)dt→ min,

x(0) = 0, x(1) = 0,

where γ(x) is a smooth function supported at [−2, 2] ⊂ IR, 0 ≤ γ(x) ≤ 1 and
γ(x) ≡ 1 on [− 3

2 ,
3
2 ].
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In coordinates the dynamics of the problem is

ẋ1 = u1, ẋ2 = x1, ẋ3 = γ(x1)(x2
1 − 1). (13)

To estimate the infimum of this problem note that

0 =
∫ 1

0
γ(x1(t))(x2

1(t)− 1)dt ≤
∫ 1

0
x2

1(t)dt− 1,

and hence JT
0 ≥ 1. Now we construct a minimizing sequence of controls uN(·),

such that JT
0 (uN )→ 1 as N → +∞.

First take the indicator function p(t) of the interval [0, 1] and construct
piecewise-constant function

qN (t) =
2N−1∑
j=0

(−1)jp(2Nt− j);

N being a large integer. Its intervals of constancy are of lengths (2N )−1.
At the second moment we alter the function qN on the intervals

[0, N−3], [1−N−3, 1],
[j(2N)−1 −N−3, j(2N)−1 + N−3], j = 1, . . . , 2N − 1. (14)

We substitute on these intervals constant pieces by linear ones transforming
it into piecewise-linear continuous function qc

N (t), whose boundary values are:
qc
N (0) = qc

N (T ) = 0.
This piecewise-linear (absolutely) continuous function corresponds to a

piecewise-constant control u1(t) = q̇c
N (t) supported on the intervals (14). Am-

plitude of this control is O(N3) and its L2-norm admits an estimate

‖u1(t)‖L2 � ((N3)2N−3N)1/2 = N2,

as N → +∞.
Taking x1(t) = qc

N (t) and substituting it into second and third equations
of (13), we conclude that the corresponding solution satisfies the conditions
x2(1) = 0, x3(1) = O(N−2), as N → +∞. Besides∫ 1

0
(x2

1 + x2
2 + x2

3)dt− 1 = O(N−2), as N → +∞.

Therefore the order of singularity σ is ≤ 1.

7 Non-commutative Driftless Case: General Result

It turns out that the non-commutative driftless case

JT
0 (u(·)) =

∫ T

0
x(t)′Px(t)dt → min,
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ẋ =
r∑

j=1

gjuj, x(0) = x0, x(T ) = xT ,

is rather simple. In this case the value of the order of singularity equals σ = 1/2
for generic boundary data, and it does not depend on the Lie structure of the
system of vector fields {g1, . . . , gr}.

In order to see this, consider the case when the system {g1, . . . , gr} has com-
plete Lie rank. Then, roughly speaking, generalized optimal trajectory consists of
three ’pieces’: an initial ’jump’, which brings it to the origin O, a constant piece
x(t) ≡ O, t ∈]0, T [, and a final ’jump’ to the end point x(T ) = xT . Evidently
inf JT

0 = 0 and a simple homogeneity based argument shows that σ ≤ 1/2.
To prove that in fact σ = 1/2, we assume x0 �= O, fix ε > 0 and take a control

uε, such that

JT
0 (uε) =

∫ T

0
x′

uε
(t)Pxuε(t)dt < inf JT

0 + ε = ε. (15)

Consider the set {x ∈ IRn| x′Px ≤ (1/2)x′
0Px0}; let ρ be the distance from x0 to

this set. Since x′Px is positive definite, one concludes from the inequality (15),
that there exists tε < 2ε

x′
0Px0

such that xuε(tε)∗Pxuε(tε) < (1/2)x′
0Px0. Then,

by Cauchy-Schwarz inequality, the control needed to achieve xuε(tε) from x0 in
time tε, must satisfy the estimate ‖uε‖2L2[0,T ] ≥ ρt−1

ε ≥ Cε−1, for some C > 0.
More details on the proof as well as treatment of general noncommutative

case will be addressed in further publications.
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1 Introduction

This paper is part of a research project started with [2] and [3] aiming to use
Hamiltonian methods to study second order conditions in optimal control. It
is the opinion of the authors that a complete understanding of the problem in
Hamiltonian terms will lead to a deeper insight into the synthesis problem.

We consider the minimum–time problem with fixed end–points for a control–
affine system on a manifold M :

minimize T (1)

subject to

ξ̇(t) = f0(ξ(t)) + u1f1(ξ(t)) + u2f2(ξ(t)) (2)

ξ(0) = x̂0 , ξ(T ) = x̂f (3)

u ≡ (u1, u2) ∈ U := [−1, 1]2

where f0, f1, f2 are C∞ vector fields.
The aim of the authors is to give second order sufficient conditions for a

reference normal Pontryagin extremal (T̂ , ξ̂, û) to be a local optimizer in the
strong topology.

In problems with free final time, “strong local” may have two meanings:

• ξ̂ is optimal for the problem with respect to a neighborhood of the graph of
ξ̂ in M × R and hence local with respect to both state and final time. We
call this type of local optimality (state, time)–local.

• ξ̂ is optimal for the problem with respect to a neighborhood of the range of
ξ̂ in M and hence local only with respect to the state. We call this type of
local optimality state–local.

State–local optimality implies (state, time)–local optimality, but they are not
equivalent, see [6].

F. Bullo et al. (Eds.): Lag. & Hamil. Methods for Nonlin. Ctrl., LNCIS 366, pp. 281–291, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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The authors faced the problem of state local–optimality in [6], when the ex-
tremal is bang–bang, and the problem of (time, state)–local optimality for a
single–input control system in [9], when the reference trajectory is totally sin-
gular, and in [7] when it is bang–singular, i.e. it is the concatenation of a bang
arc and of a singular arc. Also we should mention the papers by different au-
thors who considered minimum time optimality: [4], [5], [8], the book [1] and the
references therein.

In this paper we consider (time, state)–local optimality of a reference trajec-
tory which is the concatenation of a bang arc and a partially singular arc on
a n–dimensional manifold M , n ≥ 3, namely we consider the case when û2 is
bang and û1 switches from bang to singular at time τ̂1 ∈ (0, T̂ ). Without loss
of generality we can assume û2 ≡ 1 and û1 ≡ 1 along its bang–arc, so that the
time–dependent reference vector field is given by

f̂t =

{
f0 + f1 + f2 := f+ t ∈ [0, τ̂1)
f0 + û1(t)f1 + f2 := fs

t t ∈ [τ̂1, T̂ ].

The aim of the authors is to prove that regularity conditions on the bang arc and
the positivity of a suitable second variation associated to the partially singular
arc are sufficient to prove optimality.

The result is proved using Hamiltonian methods, which consist in construct-
ing a field of non–intersecting state–extremals covering a neighborhood of the
graph of the reference trajectory. Here we need a non–smooth modification of
the method which is explained in Section 3.

In the present case the natural second variation associated to the trajectory
cannot be coercive (see Subsection 2.1) and we require

1. regularity conditions on the bang arc which are the strengthening of the
necessary ones needed for the minimum–time problem with fixed end–points
x̂0 and

x̂1 := ξ̂(τ̂1).

2. on the singular arc we assume the coercivity of a suitable second variation.
This condition is a little stronger than the coercivity of the second variation
of the minimum time problem with fixed end–points x̂1, x̂f .

2 Statement of the Result

Denote by � the elements of T ∗M and by π : T ∗M →M the canonical projection.
For notational simplicity we also denote q = π�. Moreover, for a possibly time–
dependent Hamiltonian Ht we denote by

−→
H t the corresponding Hamiltonian

vector field and by Ht the flow from time τ̂1 to time t of
−→
H t. Equivalently Ht(�)

can be seen as the solution at time t of the Hamiltonian system defined by Ht

with initial condition H
�τ1(�) = �.

Recall that every possibly time–dependent vector field ft defines a Hamilto-
nian function Ht on T ∗M by
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Ht(�) := 〈� , ft(q)〉 ,

in particular we denote by Ĥt, H+, Hi, the Hamiltonian functions associated to
the vector fields f̂t, f+, fi, i = 0, 1, 2, respectively.

Pontryagin Maximum Principle (PMP) for this problem reads as follows:
There exists λ̂ : [0, T̂ ]→ T ∗M such that

˙̂
λ(t) =

−→
Ĥt(λ̂(t)) , πλ̂(t) = ξ̂(t) (4)

Ĥt(λ̂(t)) = max
u∈U

{(
H0 +

2∑
i=1

uiHi

)
(λ̂(t))

}
= p0 ∈ {0, 1} . (5)

We assume λ̂ to be a normal extremal, i.e. p0 = 1.
From PMP, introducing for i = 0, 1, 2 the functions

ϕi := Hi ◦ λ̂ : [0, T̂ ]→ R,

we obtain

ϕ2(t) ≥ 0 for any t ∈ [0, T̂ ] (6)

ϕ1(t) ≥ 0 on the bang arc (7)

ϕ1(t) ≡ ϕ̇1(t) ≡ 0 on the singular arc (8)

ϕ̈1(τ̂−
1 ) ≥ 0 . (9)

We strengthen the above conditions (6)–(7)–(9) assuming that û1 is regular
degenerating on the bang arc and that û2 is a regular bang control, namely we
assume

A1 ϕ1(t) > 0, t ∈ [0, τ̂1) and ϕ̈1(τ̂−
1 ) > 0;

A2 ϕ2(t) > 0, t ∈ [0, T̂ ].

We give the conditions on the singular arc fixing the control u2 and considering
the single input control system

ξ̇(t) = f̃(ξ(t)) + u1(t)f1(ξ(t)) (10)

where f̃ is defined by
f̃ := f0 + f2.

Introducing the Poisson parentheses {·, ·} between Hamiltonian functions and
the Lie brackets [·, ·] between vector fields we obtain from (8) on [τ̂1, T̂ ]:

〈λ̂(t) , f1(ξ̂(t))〉 = H1(λ̂(t)) = 0 (11)

〈λ̂(t) , [f̃ , f1](ξ̂(t))〉 = {H̃,H1}(λ̂(t)) = 0 (12)

〈λ̂(t) , û1(t)[f1, [f̃ , f1]] + [f̃ , [f̃ , f1]]〉(ξ̂(t))
= û1(t){H1, {H̃,H1}}(λ̂(t)) + {H̃, {H̃,H1}}(λ̂(t)) ≡ 0 .

(13)
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Along the u1–singular arc we state the following regularity assumptions:

A3 (SGLC) Strong generalized Legendre condition

{H1, {H̃,H1}}(λ̂(t)) > 0 ∀t ∈ [τ̂1, T̂ ] . (14)

A4 f1, [f̃ , f1] are linearly independent along the range of ξ̂|[�τ1,�T ].

Remark 1. {H1, {H̃,H1}}(λ̂(t)) ≥ 0 is a necessary condition for optimality, see
for example [1].

Remark 2. Assumption A4 cannot be fulfilled if dimM ≤ 2, and it is a generic
condition if dimM ≥ 3. Moreover A4 together with PMP for the normal case
imply that f1, [f̃ , f1], [f1, [f̃ , f1]] are linearly independent near the reference
trajectory.

Defining

Σ :={� ∈ T ∗M : H1(�) = 0},

S :=
{
� ∈ Σ : {H̃,H1}(�) = 0 , {H1, {H̃,H1}}(�) > 0

}
,

we obtain that the Hamiltonian function H defined near S by

H := H̃ − {H̃, {H̃,H1}}
{H1, {H̃,H1}}

H1

is such that

• −→
H is tangent to S,

• �̂1 := λ̂(τ̂1) ∈ S
• λ̂(t) = Ht(�̂1) for any t ∈ [τ̂1, T̂ ],

• λ̂([τ̂1, T̂ ]) ⊂ S ⊂ Σ.

In order to introduce the second order condition on the u1–singular arc define

Γe := {expσ[f̃ , f1] ◦ exp sf1(x̂1) : (s, σ) ∈ R2}

and consider the following minimum time problem:

minimize T subject to

ξ̇(t) = fs
t (ξ(t)) + w(t)[f̃ , f1](ξ(t)) +

w(t)2

2
[f1, [f̃ , f1]](ξ(t)) (15)

ξ(τ̂1) ∈ Γe, ξ(T ) = x̂f .

Remark that the triplet (T̂ , w ≡ 0, ξ̂|[�τ1,�T ]) is a normal Pontryagin extremal with

λ̂|[�τ1,�T ] as adjoint covector and denote by J ′′
st the associated standard second

variation. We make the following assumption:

A5 J ′′
st is coercive.
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Remark 3. Notice that the natural second variation L′′ of the minimum time
problem with fixed end–points x̂1, x̂f for system (10) is the standard second
variation of the minimum time problem for system (15) with initial condition
ξ(τ̂1) ∈ {exp sf1(x̂1) : s ∈ R}, ξ(T ) = x̂f , see [9].

In the case when the Hamiltonians H and H̃ coincide on S, we can give the
following more explicit condition:

A5–bis Let H and H̃ coincide on S and let Ω(t) be the fundamental solution
to the variational system associated to the reference trajectory:

Ω̇(t) = Df̃(ξ̂(t))Ω(t) , Ω(τ̂1) = Id .

The coercivity of J ′′
st is equivalent to:

f1(ξ̂(t)) and Ω(t, τ̂1)[f̃ , f1](x̂1) are linearly independent for t ∈ [τ̂1, T̂ ].
Remark that if dimM = 3, the condition H = H̃ on S can be assumed

without loss of generality (see Remark 4.2 in [7]).
We prove the following result:

Theorem 1. If Assumptions A1 through A5 hold, then (T̂ , û, ξ̂) is a local opti-
mizer in the strong topology.

2.1 Necessary Conditions

The extended second variation that naturally appears is the one we get consid-
ering the sub–problem of (1)–(2)–(3) described as follows. By means of a time
reparametrization we allow the switching time τ̂1 and the final time T̂ to move
and, at the same time, we let u1 vary on the singular arc. In this way we get a
sub–problem in the fixed time–interval [0, T̂ ]. Moreover we merge the variations
v ∈ L2[τ̂1, T̂ ] of the singular control into R× L2[τ̂1, T̂ ] by

v �→
(

a :=
∫

�T

�τ1

v(s) d s, w : t �→
∫

�T

t

v(s) d s

)
and we obtain the extended second variation as a functional

J ′′ : R2 × R× L2((τ̂1, T̂ )) → R ,

where (a, w) ∈ R×L2((τ̂1, T̂ )) is the couple of parameters we have just defined,
while

ε := (ε1, ε2) ∈ R2

takes account of the variations of the lengths of the bang and of the singular
arc, respectively.

To evaluate J ′′ denote by
Ŝt : M →M

the flow from time τ̂1 to time t of the reference vector field f̂t and by g1
t the

pull–back of f1 from time t to time τ̂1 along the reference flow:

g1
t (x) := Ŝ−1

t∗ f1 ◦ Ŝt(x) .
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Let β : M → R be any function such that dβ(x̂1) = −λ̂(τ̂1). Using the notation

g · β(x) := 〈Dβ(x) , g(x)〉

for a vector field g, we calculate the second variation for the above described
problem using the arguments in [1], [9], [7], obtaining:

J ′′[ε, a, w]2 =
ε2
1

2
f+ · f+ · β(x̂1) +

a2

2
f1 · f1 · β(x̂1)+

+ a ε1 f+ · f1 · β(x̂1)−
ε2
2

2
fs
�τ1
· fs

�τ1
· β(x̂1) + ε2 ζ(τ̂1) · fs

�τ1
· β(x̂1)+

+
1
2

∫
�T

�τ1

(
w2(s) [ġ1

s , g
1
s ] · β(x̂1) + 2w(s) ζ(s) · ġ1

s · β(x̂1)
)
ds

(16)

with the linear constraint

ζ̇(s) = w(s)ġ1
s(x̂1) s ∈ (τ̂1, T̂ )

ζ(τ̂1) = ε1f
+(x̂1) + ε2f

s
�τ1

(x̂1) + af1(x̂1), ζ(T̂ ) = 0 .
(17)

It is easy to see that J ′′ cannot be coercive. In fact, consider the identity

f0 + û1(τ̂1)f1 + f2 = f+ − bf1 , b := 1− û1(τ̂1),

and choose (ε, a, w) = (1,−1,−b, w ≡ 0). Such a choice is admissible and yields
J ′′(ε, a, w) = 0.

Remark 4. J ′′ restricted to ε = 0 is the second variation L′′ described in Re-
mark 3.

3 Hamiltonian Methods

In this Section we describe the non–smooth modification of the standard Hamil-
tonian method used to prove sufficient conditions in optimal control. Roughly
speaking the method consists in constructing a field of extremals by projecting
on the state–space M the flow of the maximized Hamiltonian Hmax emanat-
ing from a horizontal Lagrangean sub–manifold. Equivalently one can choose a
Hamiltonian greater than or equal to Hmax and coinciding with Hmax on the
range of the adjoint covector.

In this case we are not able to obtain a field of state–extremals covering a
neighborhood of the graph of ξ̂ using a unique smooth Lagrangean sub–manifold
and we proceed in the following way.

Step 1. We define a time–dependent Hamiltonian Kt, t ∈ [τ̂1, T̂ ] and a horizontal
Lagrangean sub–manifold Λ projecting on a neighborhood O of x̂1 and defined
by

Λ := {dα(x) : x ∈ O},

where α is a smooth function such that dα(x̂1) = λ̂(τ̂1). We require the following
properties on Kt and Λ:
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1. Kt ≥ Hmax
|Σ on [τ̂1, T̂ ], Kt ◦ λ̂ = Ĥt ◦ λ̂ ,

−→
K t ◦ λ̂ =

−→
Ĥ t ◦ λ̂ ,

−→
K t is tangent

to Σ;
2. Λ ⊂ Σ;
3. id×π ◦ K : (t, �) ∈ [τ̂1, T̂ ] × Λ �→ (t, π ◦ Kt(�)) ∈ [τ̂1, T̂ ] × M is a local

diffeomorphism.

Step 2. First we define a smooth function α̃ ≥ α on O such that the “half”
Lagrangean sub–manifold defined by

Λ̃+ :=
{
�̃ = d α̃(x) : x ∈ O , f1 · α̃(x) ≥ 0

}
has the property

H1(H+
t (�̃)) > 0 ∀(t, �̃) ∈ [0, τ̂1)× Λ̃+. (18)

Afterwards we consider

Λ− := {� ∈ Λ : f1 · α̃(q) ≤ 0}

and we prove that

Λ− ∩ Λ̃+ = {� = dα(x) : f1 · α̃(x) = 0} (19)

and that
H1(H+

t (�̃)) > 0 ∀(t, �̃) ∈ [0, τ̂1)× Λ−. (20)

Remark that
Λ
�τ1 := Λ̃+ ∪ Λ−

is a continuous piecewise smooth Lagrangean sub–manifold and that

id×π ◦ H+ : (t, �) ∈ [0, τ̂1]× Λ
�τ1 → (t, π ◦ H+

t (�)) ∈ [0, τ̂1]×M

is a local diffeomorphism.
If we can fulfill the above requirements, then we can complete the proof by

lifting any admissible trajectory ξ : [0, T ]→M , to T ∗M by

µ(t) =

{
µB(t) =

(
t, (π ◦ H+

t )−1(ξ(t))
)

t ∈ [0, τ̂1]

µS(t) =
(
t, (π ◦ Kt)−1(ξ(t))

)
t ∈ [τ̂1, T̂ ].

Remark that we can apply this procedure only if T ≤ T̂ and the graph of ξ
belongs to a sufficiently small neighborhood of the graph of ξ̂.

Namely, let p d q be the canonical Liouville form on T ∗M . Denoting

ΩB = [0, τ̂1]× Λ
�τ1 , ΩS = [τ̂1, T̂ ]× Λ ,

standard symplectic methods show that the one forms ωB and ωS defined by

ωB = H+∗ (p d q −H+ d t
)

, ωS = K∗ (p d q −K d t)

are exact on ΩB and on ΩS , respectively.
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Denoting moreover

µ̂(t) = (t, λ̂(τ̂1)), t ∈ [0, T̂ ], �(t) = (t, (π ◦ Kt)−1(x̂f )), t ∈ [T, T̂ ]

we can compute

0 =
∫

µS

ωS +
∫

�

ωS −
∫
�µ|[�τ1, �T ]

ωS + α(ξ(τ̂1))− α(x̂1) .

Since, by the properties of Kt,
∫

µS

ωS ≤ 0 and
∫
�µ|[�τ1, �T ]

ωS = 0, we obtain

0 ≤
∫

�

ωS + α(ξ(τ̂1))− α(x̂1) .

On the other hand

Kt((π ◦ Kt)−1(x̂f )) = K
�τ1(λ̂(τ̂1)) = 1 + O(t− τ̂1)

so that ∫
�

ωS =
∫ �T

T

−Kt((π ◦ Kt)−1(x̂f ))) d t = T − T̂ + o(|T − T̂ |)

and
α(ξ(τ̂1))− α(x̂1) ≥ T̂ − T + o(|T̂ − T |) .

Using the same symplectic argument on ΩB we compute

0 =
∫

µB

ωB −
∫
�µ|[0,�τ1]

ωB + α̃(x̂1)−

⎧⎨⎩α̃(ξ(τ̂1)) if f1 · α̃(ξ(τ̂1)) > 0

α(ξ(τ̂1)) if f1 · α̃(ξ(τ̂1)) ≤ 0

Inequalities (18) and (20) give
∫

µB

ωB ≤ 0 and
∫
�µ|[0,�τ1]

ωB = 0, so that, since α̃ ≥ α,

we finally get

0 ≥ α(ξ(τ̂1))− α(x̂1) ≥ T̂ − T + o(|T̂ − T |).

If T is sufficiently close to T̂ we can deduce T = T̂ .

4 Proof of Theorem 1

To complete the proof of Theorem 1 we only need to show that it is possible to
accomplish the requirements in Steps 1 and 2 of the previous Section.
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4.1 Step 1

On the singular arc we have reduced ourselves to the single input system (10)
with singular reference control, hence we can use the results in [9] where it is
proved that there exists a neighborhood U of S in T ∗M and a function

ρ : U → R

such that

1. the Hamiltonian vector field
−→
K t associated to the Hamiltonian function

Kt(�) := Ĥt +
ρ

2
{H̃,H1}2 is tangent to Σ.

2. ρ(�) =
1

{H1, {H̃,H1}}(�)
∀� ∈ S, so that ρ > 0 on U .

It is easy to see that the requirements in a) of Step 1 are fulfilled by Kt.
Consider a chart at x̂1 defined in O and such that

f1 ≡
∂

∂x1
,

[f̃ , f1](x) =
∂

∂x2
+ x1

( ∂

∂x3
+ O(x)

)
,

[f1, [f̃ , f1]](x) =
∂

∂x3
+ O(x) ,

this can be obtained by assumption A4. Moreover, in these coordinates, we get

�̂1 =
n∑

i=3

λi dxi, λ3 > 0.

With the same proof of [9] and [7] we can show that there exists a sufficiently
large b such that

α(x) =
n∑

i=3

(
λixi +

b

2
x2

i

)
has the properties required in b) and c) of Step 1.

4.2 Step 2

Define
α̃(x) = α(x) +

b

2
x2

1

and remark that
f1 · α(x) = 0 and f1 · α̃(x) = bx1

so that
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Λ
�τ1 = {dα(x) : x1 ≤ 0} ∪ {d α̃(x) : x1 ≥ 0};

Λ̃+ ∩ Λ− = {dα(x) : x1 = 0}.

hence (19) is fulfilled. The following Lemma proves that (18)–(20) are fulfilled
and hence Theorem 1 is proved.

Lemma 1. Possibly restricting O,

H1(H+
t (�)) ≥ 0

for any (t, �) ∈ [0, τ̂1]× Λ
�τ1.

Proof. Since
[f1, [f̃ , f1]] · α̃(x̂1) = [f1, [f̃ , f1]] · α(x̂1) = λ3,

we can choose, possibly restricting O, ε > 0 such that

[f1, [f̃ , f1]] · α̃(exp((t− τ̂1)f̃)(x)) > 0 ,

[f1, [f̃ , f1]] · α(exp((t− τ̂1)f̃)(x)) > 0

for any (t, x) ∈ [τ̂1 − ε, τ̂1]×O.
With a Taylor expansion with respect to t we get

H1(H+
t )(�)) = H1(�) + (t− τ̂1)

{
H+, H1

}
(�)+

+
(t− τ̂1)2

2
{
H1,
{
H+, H1

}}
(H+

s(t)(�))

for some s(t) ∈ (t, τ̂1).
If � ∈ Λ̃+ then we have

H1(H+
t (�)) = f1 · α̃(x) + (t− τ̂1)[f̃ , f1] · α̃(x)+

+
(t− τ̂1)2

2
[f1, [f̃ , f1]] · α̃

(
Ŝs(t)(x)

)
≥ x1 [b + (t− τ̂1)(1 + bx3 + O(x))]

which is greater than or equal to 0.
If � ∈ Λ− then we have

H1(H+
t (�)) = f1 · α(x) + (t− τ̂1)[f̃ , f1] · α(x)+

+
(t− τ̂1)2

2
[f1, [f̃ , f1]] · α

(
Ŝs(t)(x)

)
≥ x1(t− τ̂1) (1 + bx3 + O(x))

which is greater than or equal to 0.
Since H1(λ̂(t)) > 0 for any t ∈ [0, τ̂1), there exists δ > 0 such that H1(λ̂(t)) ≥ δ

for any t ∈ [0, τ̂1 − ε], so that we may assume

H1(H+
t (�)) ≥ δ

2

for any (t, �) ∈ [0, τ̂1 − ε]× Λ
�τ1 . This completes the proof of the lemma.
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Summary. We describe different strategies for using a semi-classical controller to
engineer Hamiltonians for quantum systems to solve control problems such as quantum
state or process engineering and optimization of observables.

1 Introduction

Extending control to the quantum domain, i.e., to physical systems whose be-
havior is not governed by classical laws but dominated by quantum effects, has
become an important area of research recently. It is also an essential prereq-
uisite for the development of novel technologies such as quantum information
processing, as well as new applications in quantum optics, quantum electron-
ics, or quantum chemistry. Choreographing the behavior of interacting quantum
particles is a rather difficult task in general, for a variety of reasons, including
the destructive effects of uncontrollable interactions with the environment and
measurement backaction, both of which lead to loss of coherence, for instance.
Yet, many problems in quantum optics, quantum electronics, atomic physics,
molecular chemistry, and quantum computing can be reduced to quantum state
or process engineering, and optimization of observables, which can be solved us-
ing Hamiltonian engineering techniques. In this paper we outline and compare
different strategies for accomplishing this in various quantum settings.

2 Control System Model

A control system must obviously consist of a system to be controlled and a con-
troller. In quantum control the former is always quantum-mechanical. The latter
can be either quantum or classical, and it may seem natural to choose another
quantum system as the controller. Indeed, this is useful for some applications,
for instance in quantum optics [14]. The main challenge in general though, and
the focus of this paper, is control at the interface between the quantum world
and the classical world we experience, i.e., control of systems that obey the
laws of quantum physics using semi-classical sensors and actuators that interact
with the quantum system but accept classical input (such as different settings of
the classical control switches of the laboratory equipment) and return classical
information (See Fig. 1).

F. Bullo et al. (Eds.): Lag. & Hamil. Methods for Nonlin. Ctrl., LNCIS 366, pp. 293–304, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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This model is applicable to many quantum control settings. For example,
the quantum system could be an ensemble of molecules involved in a chemical
reaction, subject to laser pulses produced by an actuator consisting of a laser
source and pulse shaping equipment, and a detector that might consist of a
mass spectrometer to identify the reaction products. It could be a solid-state
system such as an ensemble of quantum dots representing qubits, with actua-
tors and sensors consisting of control electrodes and single-electron transistors,
respectively. It could be an ensemble of molecules with nuclear spins subject
to actuators generating magnetic and radio-frequency fields, and sensors that
detect the magnetization of the sample, etc.

3 System Dynamics

In the setting defined above the state of the system can be represented either by
a Hilbert space vector |Ψ(t)〉, or more generally, a density operator ρ(t), i.e., a
positive trace-one operator acting on the system’s Hilbert space H. Although the
full Hilbert spaces of most quantum systems are hardly finite or separable—even
the Hilbert space of the hydrogen atom is not separable if the full continuum
of ionized states is included, we are usually only interested in controlling the
dynamics of a finite-dimensional subspace of the system’s full Hilbert space (e.g.,
a subset of bound states of an atom), and full control of an infinite-dimensional
system is generally not possible in any case [see e.g. [12]]. We will therefore
assume in this paper that the Hilbert spaces of interest are finite-dimensional,
and thus all operators have matrix representations, etc.

Neglecting decoherence and the effect of measurements for a moment, the
evolution of the quantum system to be controlled is governed by the Schrodinger
equation

d

dt
|Ψ(t)〉 = − i

�
H [f(t)]|Ψ(t)〉, (1)

or the (equivalent) quantum Liouville equation

d

dt
ρ(t) = − i

�
[H [f(t)], ρ(t)] , (2)

where [A,B] = AB − BA is the commutator. � = h/2π, where h is the Planck
constant, but we will often choose units such that � = 1. Thus, the dynamics
is determined by the Hamiltonian H [f(t)], which is an operator acting on the
system’s Hilbert space H, and depends on a set of (classical) control fields f (t) =
(f1(t), . . . , fM (t)) produced by the actuators.

The main difference between Eqs (1) and (2) is that the former applies only
to pure-state systems, while the latter applies equally to pure and mixed-state
systems (quantum ensembles). Moreover, unlike the Schrodinger equation, the
quantum Liouville equation can be generalized for systems subject to deco-
herence or weak measurements by adding (non-Hamiltonian) superoperators
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Fig. 1. Semi-classical Quantum Control Model

[operators acting on Hilbert space operators such as ρ(t)] to account for the
contributions of measurements and dissipation to the dynamics of the system

ρ̇(t) = LH [ρ(t)] + LM [ρ(t)] + LD[ρ(t)], (3)

where LH [ρ(t)] = −i [H [f(t)], ρ(t)]. The main difference between LM and LD is
conceptual: the former depends on the measurements performed, i.e., the config-
uration of the sensors, which we can control, the latter on usually uncontrollable
interactions of the system with the environment.

Due to the physically prescribed evolution equations for quantum systems,
quantum control—at least in the classical controller model described—is funda-
mentally non-linear, even in the case of open-loop control. In the special case
when the system’s interaction with both sensors and the environment is negligi-
ble (which is obviously only possible for open-loop control), the system’s dynam-
ics is completely determined by a Hamiltonian operator H [f(t)], and the main
task of quantum control is to find effective ways to engineer this Hamiltonian
to achieve a desired objective. For simplicity we will restrict our attention here
mostly to Hamiltonian engineering in this case, although many of the techniques
are still useful in the more there general case when the system is subject to mea-
surements and/or uncontrollable interactions with the environment [Eq. (3)].

4 Quantum Control Objectives

Although the objectives vary depending on the application, most problems in
quantum control can be reduced to quantum process engineering, quantum state
engineering or optimization of observables. The first, quantum process engineer-
ing, involves finding a Hamiltonian H [f(t)] such that

exp+

[
−i

∫ tF

t0

H [f(t)] dt
]

= U, (4)

where U is a desired target process, and the subscript + indicates that the
exponential must be interpreted as a time-ordered exponential with positive
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time-ordering due to the time-dependent nature of the Hamiltonian. This prob-
lem is of particular interest in quantum computing, where the target processes
are quantum logic gates. In general, not every process can be implemented for a
given system, and the set of reachable processes is determined by the dynamical
Lie group associated with the set of Hamiltonians {H [f(t)] : f (t) ∈ A}, where A
is the set of admissible controls that can be produced by the actuators and satisfy
physical constraints, e.g., on the field strength, etc. For example, for a Hamilto-
nian system a necessary (minimum) requirement is that U be a unitary operator
(acting on the system’s Hilbert space), and other constraints may restrict the set
of reachable operators further. However, if the target process is reachable then
there are usually many controls f (t) and corresponding Hamiltonians H [f(t)],
which give rise to the same process.

The second problem, quantum state engineering, requires finding a Hamilto-
nian H [f(t)] such that (a) |Ψ(tF )〉 = |Ψ1〉, |Ψ(t0)〉 = |Ψ0〉, and |Ψ(t)〉 satisfies
the dynamical equation (1), or (b) ρ(tF ) = ρ1, ρ(t0) = ρ0, and ρ(t) satisfies the
dynamical equation (2) [or (3) in the general case], where ρ0 [|Ψ0〉] and ρ1 [|Ψ0〉]
represent the initial and target state, respectively.

The final problem, optimization of observables, requires finding a Hamilto-
nian such that the expectation value (or ensemble average) of an observable
A, Tr[Aρ(tF )], assumes a maximum or minimum at a certain time tF , given
that the state ρ(t) evolves according to Eq. (2) and satisfies an initial condi-
tion ρ(t0) = ρ0. Problems of this type arise frequently in atomic and molecular
physics and chemistry, where the observables of interest can range from the posi-
tion or momentum of a particle, to the dipole moment or the vibrational energy
of a molecular bond, etc., but they are also relevant in quantum computing
where we wish to maximize the gate fidelity or the projection of the system onto
subspaces that are robust with regard to decoherence, etc.

While the second problem may appear much simpler than the first, it can be
shown that for a generic quantum ensemble, i.e., a quantum ensemble described
by a density operator ρ with a maximum number of distinct eigenvalues, the
problems of quantum state and process engineering are essentially equivalent,
up to a usually unobservable (and hence insignificant) global phase factor. Simi-
larly, the third problem is equivalent to quantum process engineering if the initial
state of the system is a generic quantum ensemble and the target observable is
represented by an operator A with distinct eigenvalues (occurring with multi-
plicity 1). It should be noted, however, that this equivalence does not hold for
pure-state systems, which are always represented by density operators of rank
1, and for which process engineering is in general a much harder problem than
the others. See e.g. [9]

5 Hamiltonian Engineering

Having shown how many problems in quantum control can be reduced to Hamil-
tonian engineering problems, we shall now consider various strategies for find-
ing and implementing control Hamiltonians for quantum systems, and their
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advantages and drawbacks. So far, we have not made any assumptions about
the structure of the Hamiltonian H [f(t)] or the nature of the control fields f(t)
applied, both of which depend on the specific physical systems considered. While
we will try to avoid being too specific some additional assumptions are necessary.

We can always partition H [f (t)] into a system part HS , which describes the
system’s intrinsic dynamics and is independent of the controller, and a control
part HC [f(t)]. Although HC [f (t)] can depend on the control functions fm(t) in a
nonlinear fashion, in many situations assuming a linear dependence on the field
components fm(t)

HC [f (t)] =
M∑

m=1

fm(t)Hm, (5)

is a reasonably good approximation. Furthermore, while in some applications
such as solid-state architectures with multiple control electrodes, there are nat-
urally multiple independent fields, in many applications there is only a single
effective control field such as the electromagnetic field induced by a laser pulse,
a maser or radio-frequency field, for instance, and thus the control Hamiltonian
simplifies further HC [f(t)] = f(t)H1.

In the control-linear case (5), a necessary and sufficient condition for being
able to engineer any (unitary) process up to a global phase factor is that the
Lie algebra generated by iHS and iHm, m = 1, . . . ,M is either u(N) or su(N),
where N is the dimension of the relevant Hilbert space H [1, 10]. As outlined in
the previous section, this is also a necessary and sufficient condition for quan-
tum state or observable controllability, at least for generic quantum ensembles
and observables. Most quantum systems can be shown to be controllable, but
constructive control can be challenging.

5.1 Geometric Control Techniques

Given a set of (independent) control Hamiltonians Hm, m = 1, . . . ,M , which is
complete in that the iHm generate the entire Lie algebra, the simplest general
strategy we can pursue is to expand the (unitary) target process U into a product
of elementary (complex) rotations exp(icHm) in a cyclic, iterating pattern

U =
K∏

k=1

[
M∏

m=1

exp(ickmHm)

]
(6)

and determine the constants ckm in the expansion using Lie group decomposition
methods, from which we can derive suitable values for the field strengths fmk and
control pulse lengths tmk via the relation cmk =

∫ tmk

0 fmk(t) dt, which reduces
to cmk = fmktmk for piecewise constant fields.

If the Hm are orthogonal, Tr[HmHn] = const. δmn, then there are well-
developed geometric techniques to solve this type of problem. Explicit solutions
have been developed especially for many problems involving spin−1/2 parti-
cles, which are of interest in nuclear magnetic resonance (NMR) applications
(see, e.g. [2]), and even constructive algorithms for the generation of arbitrary
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unitary operators on n-qubits via SU(2n) decompositions have been proposed [8].
For non-qubit systems the problem is harder but some explicit decomposition
algorithms for simple N -level systems have also been proposed (e.g. [7]).

In practice, however, most physical systems are subject to internal system dy-
namics in addition to the control-induced dynamics. This leads to a drift term
HS , which is usually non-trivial and cannot be turned off. In principle, we can
include this term in the expansion (6) by replacing the control Hamiltonians
Hm by HS + Hm, for example. However, even if the Hm are orthogonal, the
new effective Hamiltonians in the expansion are usually not, which significantly
complicates the problem. Moreover, even if we find a decomposition for a given
problem, it may not be physically realizable as the ckm could be negative. Since
the control coefficient corresponding to HS is fixed (fS = 1), implementing such
a rotation would require letting the system evolve for negative times, which is
usually impossible (except possibly if the evolution of the system is periodic).
Decomposition techniques for non-orthogonal Hamiltonians that take these con-
straints into account exist for SU(2) [6] but even in this simple case the resulting
pulse sequences are much more complicated and for higher-dimensional systems
even the minimum number of pulses necessary to generate a desired unitary
transformation given non-orthogonal Hamiltonians is generally not known.

The usual way to circumvent the problem of drift is by transforming to a
rotating frame (RF). For instance, we can define

|n(t)〉 = e−itEn |n〉, (7)

where {|n〉 : n = 1, . . . , N = dimH} is a basis ofH consisting of eigenstates |n〉 of
HS with eigenvalues (energies) En, HS |n〉 = En|n〉. Setting US(t) = exp(−itHS)
the dynamics in the rotating frame is governed by the new (interaction picture)
Hamiltonian

H ′
C [f (t)] = US(t)†HC [f(t)]US(t). (8)

Thuswehave transformedaway thedrift termbut thepreviously time-independent
Hamiltonians Hm in the control-linear approximation are now time-dependent

H ′
m = US(t)†HmUS(t). (9)

However, for certain applications we can decompose the control fields into several
distinct frequency components. An especially useful decomposition is

f(t) =
∑

n,n′>n

Ann′(t) cos(ωnn′t + φnn′), (10)

where ωnn′ = En′ − En is the transition frequency between states |n′〉 and |n〉,
Ann′(t) are “amplitude functions” and φnn′ constant phases. If the system is (a)
strongly regular, i.e., ωnn′ �= ωmm′ unless (n, n′) = (m,m′), and (b) the transi-
tion frequencies ωnn′ are sufficiently well separated, then choosing control fields
of the form (10) with amplitude functions Ann′(t) that vary slowly compared to
ω−1

nn′ , enables us to address individual transitions via frequency selective pulses,
and decompose the control Hamiltonian as
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H ′
C =

∑
n,n′>n

Ann′(t) cos(ωnn′t + φnn′) US(t)†Hnn′US(t), (11)

where Hnn′ = dnn′ [|n〉〈n′| + |n′〉〈n|] and dnn′ is the dipole moment (or cou-
pling strength) of the transition. Inserting US(t) =

∑N
n=1 e−iωnt|n〉〈n| and

2 cos(ωnn′t + φnn′ ) = e+i(ωnn′ t+φnn′) +e−i(ωnn′t+φnn′), we obtain after simpli-
fication

H ′
C =

1
2

∑
n,n′>n

Ann′(t)
[
eiφnn′ |n〉〈n′|+ e−iφnn′ |n′〉〈n|

]
(12)

+Ann′(t)
[
e−i(2ωnn′ t+φnn′)|n〉〈n′|+ ei(2ωnn′ t+φnn′)|n′〉〈n|

]
If each control pulse fnn′(t) is much longer than ω−1

nn′ then the contribution of
the terms oscillating with frequency 2ωnn′ will average to zero over the length
of the pulse. Hence we can drop these terms and simplify Eq. (12) to

HRWA
C =

∑
n,n′>n

Ωnn′(t)Hnn′ (φnn′) (13)

where Ωnn′ = 1
2Ann′(t)dnn′ , Hnn′(φnn′) = xnn′ cosφnn′ + ynn′ sinφnn′ , and

xnn′ = |n〉〈n′|+ |n′〉〈n|. ynn′ = i(|n〉〈n′| − |n′〉〈n|). The resulting rotating wave
approximation (RWA) Hamiltonian (13) is drift-free with time-independent com-
ponents Hnn′ , as desired.

The RF and RWA are ubiquitous in physics, and the RWA control Hamil-
tonian is the starting point for the design of control schemes using geometric
techniques in many applications. As the derivation shows, however, it relies on
the validity of several assumptions such as strong regularity of the system, con-
trol dynamics much slower than the intrinsic system dynamics (control pulses
must be much longer than the oscillation periods 2π/ωnn′ for (10) and RWA to
make sense), and the negligibility of any off-resonant excitation. For an analysis
of the validity of geometric control schemes for atomic and molecular systems
see e.g. [9].

In practice there are often further complications. For example, for multi-
partite systems with fixed coupling, the drift term HS usually consists of two
parts: the internal Hamiltonian governing the intrinsic dynamics of the compo-
nent systems, and a coupling term governing the interaction between the parts.
Since the time-scales of the internal dynamics and coherent oscillations induced
by the weak coupling terms are often vastly different, the rotating frame transfor-
mation (7) must be modified in this case to obtain a useful RWA Hamiltonian.
Given n two-level systems (e.g., spin-1/2 particles) with internal Hamiltonian
H

(k)
S = 1

2ωkσ
(k)
z , where σ

(k)
z is an n-factor tensor product whose kth factor is

σz = diag(1,−1) and all others the identity I = diag(1, 1), one usually trans-
forms into a multiply-rotating frame given by US(t) = exp[−it

∑
k H

(k)
S ]. This

results in a simplified RWA Hamiltonian with a residual drift term, which is
in practice often neglected by assuming in addition that the control pulses are
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sufficiently strong (hard) so that the influence of the drift term is negligible and
the control Hamiltonians can be assumed to be effectively orthogonal for the
decomposition. Thus, now the control pulses at once must be hard (and fast)
enough so that inter-qubit coupling is negligible, but slow enough so that the
RWA remains valid and off-resonant excitation negligible.

5.2 Optimal Strategies for Fast Control

If we wish to achieve control on time-scales comparable to the intrinsic dynamics
of the system, or wish to control systems with too many or insufficiently distinct
transition frequencies, as is the case for complex molecular systems in chemistry
for example, then a different approach is required. A promising alternative is to
formulate the control problem in terms of optimization of an objective functional
such as the distance from a target state or target process, the expectation value
of an observable or the gate fidelity, subject to the constraint that the dynamical
evolution equations (1), (2) or (3) be satisfied.

A particularly flexible approach is to formulate the control problem as a vari-
ational problem by defining a functional J = A − D − C, which incorporates
the objective A, the dynamical constraints D and the costs C and depends on
variational trial functions, and to use variational calculus to find necessary and
sufficient conditions for an extremum. For instance, a very popular choice in
physical chemistry involves setting A = Tr[Aρ(tF )], where A is a (Hermitian)
operator representing the objective (e.g., A could be the projector |Ψ〉〈Ψ | onto
a target state |Ψ〉), with a dynamical constraint functional given by

D =
∫ tF

t0

Tr
[
Av(t)

(
ρ̇v + Lf (t)[ρv(t)]

)]
dt (14)

where Lf (t)[ρv(t)] = LH[f (t)|[ρv(t)] + LM [ρv(t)] + LD[ρv(t)] and ρv(t) and Av(t)
are variational trial functions (Lagrange multipliers) for the state (density op-
erator) and observable, respectively, and a cost term related to the control field
energies

C =
M∑

m=1

λm

2

∫ tF

t0

|fm(t)|2 (15)

where λm are penalty weights. Setting the independent variations of J with
regard to Av, ρv and fm to 0, a necessary condition for J to have an extremum,
then leads to a set of coupled differential equations with mixed boundary condi-
tions, the Euler-Lagrange equations, which can be solved numerically to obtain
a solution for the control fields fm(t) and the corresponding trajectories for the
state ρ(t) and the observable A(t).

The key advantages of this approach are that we can deal with complex (and
even non-linear) control Hamiltonians (no RWA or other approximations re-
quired), and are in fact not limited to Hamiltonian systems at all, and a wide
range of costs or trade-offs can be taken into account. A drawback is that the
Euler-Lagrange equations are almost always nontrivial and can only be solved



Hamiltonian Engineering for Quantum Systems 301

Fig. 2. Optimally shaped pulse and corresponding projection of system state ρ(t) onto
target state, Tr[Aρ(t)] with A = |ψBell〉〈ψBell|, for preparation of Bell state |ψBell〉 =
1√
2
(|00〉 + |11〉) for a two-qubit system with fixed Heisenberg coupling governed by

HS = 0.9σ
(1)
z +σ

(2)
z +0.1(σx ⊗σx +σy ⊗σy +σz ⊗σz) and HC [f(t)] = f(t)(σ(1)

x +σ
(2)
x )

and ρ0 = |00〉〈00|. The projection onto target state exhibits oscillatory behavior in the
stationary frame as expected for a non-stationary target state, but grows in magnitude
and reaches close to 100% at the target time. The Fourier decomposition of the pulse
(inset) shows peaks at the single qubit resonance frequencies 1.8 and 2.0, as expected.

using numerical techniques. However, efficient algorithms with good convergence
properties exist for a large class of problems (see e.g. [4]), and promising results
have been obtained for various applications, especially laser control of molecular
systems using ultra-fast (sub-picosecond) pulses, a regime well outside the realm
of applicability for frequency-selective geometric control schemes. An example
of a shaped pulse obtained for the problem of Bell state preparation for system
of two coupled spins is given in Fig 2.

5.3 Robust Control Through Adiabatic Passage

On the opposite end of the spectrum are adiabatic techniques. Rather than
applying control fields to induce (fast) transitions between various states of
the system by absorption or emission of field quanta (usually photons), adia-
batic techniques rely on (slow) continuous deformation of the energy surfaces
by strong, slowly varying control fields, and adiabatic following of the system’s
state, making use of the eigenstate decomposition of the Hamiltonian

H [f (t)] =
N∑

n=1

εn(t)|Ψn(t)〉〈Ψn(t)|. (16)

For a Hamiltonian with a control-induced time-dependence the eigenvalues εn(t)
and corresponding eigenstates |Ψn(t)〉 vary in time. The idea of adiabatic pas-
sage is that if we start in a particular initial state |Ψ0〉, which will usually be
an eigenstate of the system’s intrinsic Hamiltonian HS , and then slowly switch
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on and vary suitable control fields f(t), then rather than inducing spontaneous
transitions to other states, the state |Ψ(t)〉 is going to remain an eigenstate of the
Hamiltonian and follow the path determined by the control fields via Eq. (16).
Adiabatic passage is the basis for many control schemes in atomic physics [11],
most notably STIRAP.

The simplest example is population transfer in a three-level Λ-system (see
Fig. 3) simultaneously driven by two fields fm(t) = Am(t) cos(ωmt), m = 1, 2,
that resonantly excite the 1 → 2 and 2 → 3 transitions, respectively. In this case
the RWA Hamiltonian (13) simplifies to

HRWA
C = −

⎡⎣ 0 Ω1(t) 0
Ω1(t) 0 Ω2(t)

0 Ω2(t) 0

⎤⎦ (17)

with Ωm = dm,m+1Am/2 for m = 1, 2. Setting Ω =
√

Ω2
1 + Ω2

2 and θ(t) =
arctan[Ω1(t)/Ω2(t)], it is easy to verify that the eigenstates of this Hamiltonian
are |Ψ±(t)〉 = Ω1|1〉 ± Ω|2〉 + Ω2|3〉 for λ± = ±Ω, respectively, and |Ψ0(t)〉 =
cos θ(t)|1〉 − sin θ(t)|3〉 for λ0 = 0. Thus, if the system is initially in state |1〉,
then applying control fields such that Ω1(t)/Ω2(t) changes (sufficiently slowly)
from 0 at t0 to ∞ at tF , results in adiabatic passage of the system from state
|1〉 = |Ψ0(0)〉 to |3〉 = |Ψ0(tF )〉 as θ(t) goes from 0 to π/2. STIRAP is based
on the realization that we can achieve this simply by applying two overlapping
Gaussian pulses in a counter-intuitive sequence, i.e, so that Ω2(t) starts and
ends before Ω1(t) as shown in Fig. 2. Since the upper level |2〉 is decoupled, i.e.,
not populated during this process, the transfer is robust against decay from the
excited state, which is often a major limiting factor in the control of atomic or
molecular systems, although it must be noted that the scheme is sensitive with
regard to other forms of decoherence etc.

Fig. 3. STIRAP pulse sequence (top) for robust population transfer from state |1〉 to
state |3〉 (bottom) for three-level Λ system (inset)
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5.4 Learning Control Via Closed-Loop Experiments

A potential problem with all of the techniques described so far is their reliance
on a model of the system. Unfortunately, such models are not always available,
especially for complex systems. While improved techniques for quantum con-
trol system identification will hopefully eventually allow us to overcome this
problem, an alternative which has already been successfully demonstrated in
the laboratory (see e.g. [5]) are experimental closed-loop learning techniques [3].
The former must not be confused with real-time quantum feedback control [13].
While both schemes rely on (classical) information gained from measurements,
the former involve repeated experiments on many copies of the system, while the
latter rely on continuous observation of the same system via weak measurements
(e.g. homodyne detection or passive photodetectors).

Closed-loop learning techniques are essentially adaptive, using feedback to
guide an evolutionary process. There are many variations but the basic strategy
is simple. We define an objective functional, usually called fitness function, and
select an initial set (population) of control fields. Each of these is then applied to
an identical copy of the system, and the observable measured to determine the
fitness of the field. Then a new generation of control fields is computed from a
subset of (mostly) well-performing fields using a set of predefined rules for muta-
tions and crossovers, and the experiments are repeated with the new generation
of fields until we have arrived at a population of fields with a sufficiently high
fitness.

Although there are some disadvantages to this approach (requirement of many
identical copies of the system or the ability to efficiently re-initialize the system
in the same state after each experiment, need for high experimental duty cycles
due to slow convergence, etc.), closed-loop learning techniques have proved useful
in the laboratory for a wide range of systems, and incorporating feedback from
such closed-loop learning experiments in some form is likely to be essential for
quantum control to succeed in the laboratory. A particularly promising avenue
may be adaptive system identification strategies based on feedback from closed-
loop experiments.

This work was supported by the Cambridge-MIT Institute’s Quantum Tech-
nology Project and an EPSRC Advanced Fellowship.
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1 Introduction

It is said that “human hand” is an agent of the brain. This might attract at-
tention from many prominent robot engineers and researchers who eventually
attempted to design multi-fingered robot hands that mimic human hands. In
the history of development of multi-fingered robot hands (see the literature
[1] ∼ [5]), a variety of sophisticated robot hands designed and make are indeed
reported. However, most of them have not yet been used widely in practice such
as assembly tasks and other automation lines in place of human hands. The most
important reason of this must be owing to the high cost of manufacturing such
multi-fingered hands with many joints together with expensive sensing devices
such as tactile and/or force sensors, which can not redeem human potentials of
flexibility and versatility in execution of a variety of tasks. In fact, multi-fingered
robot hands were used only in open-loop control(see [2]) and the importance of
sensory feedback was not discussed in the literature until around the year of 2000
(see [12]). This paper firstly introduces a mathematical model of full dynamics
of planar but vertical motion a rigid object grasped by a pair of two and three
d.o.f fingers with soft and deformable tips whose shape is hemispherical. The
behavior of the soft finger tips is lumped-parameterized by assuming that the
soft material is distributively composed of massless springs with spring constant
k (stiffness constant per unit area) and dampers in parallel.

Secondly, motivated from the previous result concerning “blind grasping” in
the case of rigid finger-ends (see [11]), a class of control signals is proposed,
which can be constructed easily by using only physical parameters of fingers and
measurement data on finger joints. It is shown theoretically that such a control

F. Bullo et al. (Eds.): Lag. & Hamil. Methods for Nonlin. Ctrl., LNCIS 366, pp. 305–316, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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signal renders the closed-loop dynamics asymptotically stable on an equilibrium
manifold satisfying the force/torque balance in a dynamic sense. This shows
that a pair of robot fingers can grasp a thing securely in a blind manner, that
is, without knowing object kinematics or using external sensings such as tac-
tile or visual sensing. Numerical simulation results are also given to verify the
theoretical results.

2 Dynamics of PINCHING

Firstly let us derive dynamics of pinch motion by a pair of two and three DOF
(Degrees-of-Freedom) fingers with soft tips (see Fig. 1). In this setup, symbols O
and O′ denote first joint centers of the left and right fingers respectively, point O
also denotes the origin of Cartesian coordinates fixed at the base frame, and Oc.m.

denotes the center of mass of the object whose position is expressed in terms of
x = (x, y)T of the Cartesian coordinates. Symbols O1 and O2 denote centers of

q q

q q
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Y1
Y2

f f
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λ2

∆x1

λ1

θ

Fig. 1. Two robot fingers pinching an object with parallel flat surfaces under the
gravity effect

area contacts whose Cartesian coordinates are described as x1 = (x1, y1)T and
x2 = (x2, y2)T respectively and O01 and O02 denote centers of hemispherical
soft finger tips which are expressed in terms of Cartesian coordinates as x0i =
(x0i, y0i)T,(i=1,2) respectively. Next let us denote the Y -component of center O1
of area-contact of the left finger in terms of Cartesian coordinates (X,Y ) fixed
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Fig. 2. Definition of physical variables

at the object (see Figs.1 and 2) by Y1 and that of the right finger by Y2. Other
symbols L, li, and lij are defined in Fig.1. Then, obviously it follows that

∆xi = ri + li + (−1)i (x− x0i)
T

rX , i = 1, 2 (1)
xi = x0i − (−1)i (ri −∆xi) rX , i = 1, 2 (2)

where ∆xi(i = 1, 2) denote the maximum displacements of deformation arised at
the centers of area-contact respectively and rX = (cos θ,− sin θ)T. Similarly, it
follows that

x = x1 + l1rX − Y1rY = x2 − l2rX − Y2rY (3)

from which it follows that

Yi = (x0i − x)T rY , i = 1, 2 (4)

where rY = (sin θ, cos θ)T. Since velocities of O1 (or O2) (the center of the left
(or right) hand contact area, see Fig.2) in terms of finger-end coordinates and
in terms of object coordinates Oc.m. −XY are equal, it follows that

− (ri −∆xi)
d
dt

(
3π
2
− (−1)iθ − qT

i ei

)
=

d
dt

Yi, i = 1, 2 (5)

Equation (5) is of the form of total differentials. Hence, it is reasonable to intro-
duce Lagrange multiplies λi in such a way that

0 = λi

{
dYi

dt
+ (ri −∆xi)

d
dt

φi

}
, i = 1, 2 (6)

φi =
3
2
π − (−1)iθ − qT

i ei, i = 1, 2 (7)

where c1 and c2 are a constant of integration.
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According to the lumped-parametrization of contact forces caused by defo-
mation of finger-tip material (see[6] and Appendix A), the reproducing force
f̄i(∆xi) arising in the direction normal to the object surfaces at the center Oi of
contact area is characterized as

f̄i(∆xi) = ki∆x2
i , i = 1, 2 (8)

with stiffness parameter ki > 0[N/m2]. Furthermore, we assume that lumped
parametrized viscous forces also arise from distributed viscosity of the finger-tip
material, which are accompanied with reproducing forces in such a way that

fi (∆xi, ∆ẋi) = f̄i (∆xi) + ξi (∆xi)∆ẋi, i = 1, 2 (9)

where ξi(∆xi) is a positive scalar function increasing with increase of ∆xi. Then
the total potential energy of reproducing forces and the total kinetic energy can
be given as

P = P1 + P2 −Mgy +
2∑

i=1

∫ ∆xi

0
f̄i(ξ)dξ (10)

K =
1
2

{∑
i=1,2

q̇T
i Hi(qi)q̇i + M ‖ ẋ ‖2 +Iθ̇2

}
(11)

where Hi(i = 1, 2) denote the inertia matrices of the fingers i = 1, 2, I the
inertia moment of the object, M the mass of the object, Pi the potential energy
for finger i, and −Mgy denotes that of the object. Finally, the Lagrange equation
of motion of the overall system can be derived by applying Hamilton’s principle
described as∫ t1

t0

[
δ (K−P )−

∑
i=1,2

∂ 1
2

{
ξi(∆xi)∆ẋ2

i

}
∂∆ẋi

δ∆xi+
∑

i=1,2

uT
i δqi

]
dt

=−
∑

i=1,2

λi

{
∂Yi

∂z
+(ri−∆xi)

∂φi

∂z

}
(12)

where z = (qT
1 , qT

2 , x, y, θ)T, which results in

Hi(qi)q̈i +
(

1
2
Ḣi + Si

)
q̇i − (−1)ifiJ

T
0irX

+λi

{
(ri −∆xi)ei − JT

0irY

}
+ gi(qi) = ui (13)

M ẍ− (rX , rY ) (f1 − f2,−λ1 − λ2)
T − (0,Mg)T = 0 (14)

Iθ̈ − f1Y1 + f2Y2 + l1λ1 − l2λ2 = 0 (15)

where JT
0i = ∂xT

0i/∂qi. It is obvious that the input-ouput pair {u = (u1,u2)T,
q̇ = (q̇1, q̇2)T} concerning the dynamics of eqs.(13) to (15) satisfies the equation∫ t

0

(
q̇T

1 u1+q̇T
2 u2
)
dτ =E(t)−E(0)−

∫ t

0

∑
i=1,2

ξ (∆xi(τ)) ∆ẋ2
i (τ)dτ (16)

where E = K + P.



Stability Analysis of 2-D Object Grasping 309

3 Control Signals for Blind Grasping

Motivated from the analysis in the case of rigid rolling contacts between rigid
finger-ends and a rigid object (see [12]), we propose the following control signal
that should exert torques on finger joints:

ui = gi(qi)− ciq̇i + (−1)i fd

r1 + r2
JT

0i

(
x01 − x02
y01 − y02

)
−M̂g

2

(
∂y0i

∂qi

)
− riN̂iei, i = 1, 2 (17)

where

M̂ = M̂(0) +
∫ t

0

gγ−1
M

2

∑
i=1,2

(
∂y0i

∂qi

)T

q̇i dτ

= M̂(0) +
gγ−1

M

2
(y01(t) + y02(t)− y01(0)− y02(0)) (18)

N̂i = γ−1
Ni

∫ t

0

(
rie

T
i q̇i

)
dτ = γ−1

Ni
rie

T
i (qi(t)− qi(0)) (i = 1, 2) (19)

and γM and γNi(i = 1, 2) are positive constants.

4 Theoretical Proof of Feasibility of Blind Grasping

First, define⎧⎪⎨⎪⎩
∆fi = fi + (−1)i Mg

2 sin θ + fd

r1+r2
(x01 − x02)

T
rX

∆λi = λi − Mg
2 cos θ + (−1)i fd

r1+r2
(x01 − x02)

T
rY

Ni = (−1)i fd

r1+r2
(x01 − x02)

T
rY − Mg

2 cos θ

(20)

{
S = −fd

(
1− ∆x1+∆x2

r1+r2

)
(Y1 − Y2)− Mg

2 N

N = (Y1 + Y2) sin θ − (l1 − l2) cos θ
(21)

Note that from eq.(4) and eq.(1){
(x01 − x02)

T
rY = Y1 − Y2

− (x01 − x02)
T rX = l1 + l2 + r1 + r2 − (∆x1 + ∆x2)

(22)

Next define

f0 = fd

{
1 +

l1 + l2 −∆x1 −∆x2

r1 + r2

}
(23)

Differently from the case of rigid finger-ends [11], f0 is not a constant but de-
pendent on the magnitude of ∆x1 + ∆x2. Nevertheless, it is possible to find
∆xdi(i = 1, 2) for a given fd > 0 so that they satisfy
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f̄i(∆xdi) =
(

1 +
l1 + l2 −∆xd1 −∆xd2

r1 + r2

)
fd, i = 1, 2 (24)

because f̄i(∆x) is of the form of f̄i(∆x) = ki∆x2 [6]. Then, by substituting
eq.(16) into eq.(12) and referring to eqs.(19) to (21), we obtain the closed-loop
dynamics of the overall fingers-object system in the following way:

Hi(qi)q̈i +
(

1
2
Ḣi + Si

)
q̇i − (−1)i∆fiJ

T
0irX

−∆λirλi −∆Mg
∂y0i

∂qi

− ri∆Niei = 0 (25)

M ẍ−(∆f1−∆f2)rX−(∆λ1+∆λ2)rY =0 (26)
Iθ̈ −∆f1Y1 + ∆f2Y2 + l1∆λ1 − l2∆λ2 + S = 0 (27)

where ∆Ni = N̂i − (1−∆xi/ri)Ni(i = 1, 2) and

rλi = −
{

(ri −∆xi)ei − JT
0irY

}
(28)

Then, it is important to note that along a solution to the equations of (25) to
(27) under the constraints of eq.(5) the following energy relation is satisfied:

d
dt

W =
∑

i=1,2

−
{

ci‖q̇i‖2 + ξ(∆xi)∆ẋ2
i

}
(29)

where

W = K + ∆P +
fd

2(r1 + r2)
(Y1 − Y2)

2+
γM

2
∆M2

+
∑

i=1,2

γNi

2
N̂2

i +
Mg

2

{
(y01 + y02 − 2y)

}
(30)

y01 + y02

2
− y =

Y1 + Y2

2
cos θ − 1

2

{
(l1 − l2)

+(r1 − r2)− (∆x1 −∆x2)
}

sin θ (31)

∆P =
∑

i=1,2

∫ δxi

0

{
f̄i(∆xdi+ξ)−f̄i(∆xdi)

}
dξ (32)

where δxi = ∆xi −∆xdi. Now, it is convenient to define

∆λ=
(
∆f̄1,∆f̄2,∆λ1,∆λ2,

∆M

2
g,∆N1,∆N2,

S

r3

)T

(33)
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A=

⎡⎢⎢⎢⎢⎣
−JT

1 rX 0 rλ1 0
0 JT

2 rX 0 rλ2
r cos θ −r cos θ−r sin θ −r sin θ
−r sin θ r sin θ −r cos θ−r cos θ

Y1 −Y2 −l1 l2

⎤⎥⎥⎥⎥⎦, D =

⎡⎢⎢⎢⎢⎢⎣
−∂y01

∂q1
−r1e1 0 0

−∂y02
∂q2

0 −r2e2 0
0 0 0 0
0 0 0 0
0 0 0 r3

⎤⎥⎥⎥⎥⎥⎦(34)

where ∆f̄i = ∆fi − ξi(∆xi)∆ẋi. Then, the closed-loop dynamics of (25), (26),
and (27) can be expressed in the following unified matrix-vector form:

H ¨̄z +
(

1
2
Ḣ + S

)
˙̄z + C ˙̄z − [A,D]∆λ +

∑
i=1,2

ξi(∆xi)∆ẋi

(
∂∆xi

∂z̄

)
= 0 (35)

where z̄ =
(
qT

1 , qT
2 , r−1xT, θ

)T,{
H = diag(H1, H2, r

2MI2, I), S = diag(S1, S2, 0, 0, 0)
C = diag(c1I3, c2I2, 0, 0, 0) (36)

a positive scale factor r is introduced to balance numerical values of coefficients
among motion equations in terms of ẋ with the physical unit of force [N] and
rotational motion equations of q̇i and θ̇ with the unit of torque [Nm], and r3 > 0
is also an appropriate scale factor. Next, define

p1 =
3∑

j=1

qij , p2 =
2∑

j=1

qij (37)

and note that (Y1−Y2)2 and N̂2
i are quadratic in θ, p1, and p2. It follows from the

definition of ∆P that ∆P is a positive definite function in δx1 and δx2. Hence,
it is easy to check that W has a minimum Wm under the constraints of eq.(5).
This means that ‖ ˙̄z‖ is bounded and thereby it is possible to show that ‖∆λ‖ is
bounded from eq.(35) and constraints of eq.(5). Thus, ¨̄z becomes bounded and
thereby ˙̄z becomes uniformly continuous in t. Since q̇i(t)(i = 1, 2) and ∆ẋi are
in L2(0,∞) from (29), Barbalat’s lemma implies that q̇i(t) → 0 and ∆ẋi(t)→ 0
as t → ∞, which means that θ̇(t) → 0 as t → ∞ from constraints of eq.(5).
Since the matrix [A,D] is of an 8 × 8 squared matrix and nonsingular as easily
checked, it follows that ∆λ(t) → 0 as t →∞. Thus, as t →∞ the force/torque
balance is established in a dynamic sense.

The proof presented above has been rather sketchy owing to limitation of
given pages, but it can be ascertained by carrying out numerical simulations.

Further, it should be remarked that dynamics of the overall fingers-object
system depicted in Fig.1 is redundant in degrees-of-freedom. In fact, the dimen-
sion of the generalized position coordinates is eight and there are two holonomic
constraints concerning rolling. Therefore, the total d.o.f of the overall system
is six. Then, the force/torque balance is realized through specification of phys-
ical values of ∆x1, ∆x2, λ1, λ2, and the magnitude of y − (y01 + y02)/2. Thus,
one d.o.f is redundant. Actually, blind grasping can be realized when each robot
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finger has the two d.o.f, though in this case ∆λ(t) in (35) converges to some
non-zero constant vector ∆λ∞ as t→∞. The details of the discussions includ-
ing exponential convergence of ∆λ(t) to zero (in a redundant case) or to some
constant ∆λ∞ (in the non-redundant case) as t → ∞ must be omitted in this
paper due to the page limitation.

5 Numerical Simulation of 2-D Case

We carried out computer simulation for an object with non-parallel flat surfaces
as shown in Fig.1. Control signals as defined in eq.(17) are applied to dynam-
ics of the overall finger-object systemthat are expressed as Lagrange’s equation
of motion given in eqs.(13) to (15). In the simulation, the constraints of eq.(5)
can be ensured by using Baumgarte’s method called the CSM (Constraint Sta-
bilization Method). Physical parameters of the fingers-object system are given
in Table 1 and physical gains in control signals are given in Talbe 2. Transient
responses of principal physical variables appearing in the closed-loop dynamics
are shown in Fig.3 from (a) to (j). It is seen from Fig.3 that except Y1 − Y2 and
θ all magnitudes of constraint forces fi and λi(i = 1, 2) converge to their corre-
spponding target values respectively, that is, ∆f̄i and ∆λi converge to zero as
t→∞. Other variables ∆M , ∆Ni(i = 1, 2), and S converge to zero as t →∞,
too. It should be also noted that Y1 − Y2 and θ also converge to some constant
values as seen from Fig.3 (a) and (b). At the initial position, we set ∆x1 = 0
and ∆x2 = 0 and therefore f1 = 0 and f2 = 0. As seen from (c) and(d) of Fig.3,
∆f̄i(i = 1, 2) are around −2.5[N] at t = 0 because of f1 = f2 = 0 at t = 0.
However, once fi > 0 just after t > 0, fi(∆xi, ∆ẋi)(i = 1, 2) are kept to be
positive forever, which means that contacts between finger-ends and the object
are maintained throughout movements of the overall system.

Table 1. Physical parameters

link length link weight link inertia moment
length [m] mass [kg] inertia moment [kgm2]
l11 = l21 0.065 m11 = m21 0.045 I11 = I21 1.584 × 10−5

l12 0.039 m12 0.025 I12 3.169 × 10−6

l13 0.026 m13 0.015 I13 8.450 × 10−7

l22 0.065 m22 0.040 I22 1.408 × 10−5

radius of length base length object length
fingertip [m] length [m] width [m]
r1 = r2 0.010 L 0.063 l1 = l2 0.0015

object length object inertia moment stiffness of stiffness
height [m] inertia moment [m] fingertip [N/m2]
h 0.050 I 1.333 × 10−5 k1 = k2 3.000 × 105

viscosity of fingertip viscosity [Ns/m2]
c∆1 = c∆2 1000
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Fig. 3. Transient responses of physical variables
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Table 2. Parameters of Control Signals & Initial Value of Estimator

internal force force [N] damping coefficient coefficient [Nms/rad]
fd 1.0 c1 = c2 0.003

regressor gain gain [mrad/N] regressor gain gain [m2/kgs2]
γM 0.01 γN1 = γN2 0.001

initial value of object estimate mass [kg]
M(0) 0.010

6 Conclusions

This paper shows that there exists a class of control signals constructed from
using only finger kinematics and measurement data of finger joint angles, which
enable a pair of multi-d.o.f fingers with soft finger-tips to grasp a rigid object
securely and manipulate it towards an equilibrium state of force/torque balance.
This shows that even a pair of robot fingers can grasp an object securely in
a blind manner like human grasp it even if they close their eyes. A sketchy
proof of convergence of solution trajectories of the closed-loop dynamics toward
an equilibrium state satisfying the force/torque balance is given and computer
simulation results verify the validity of the theoretical prediction.
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Appendix A

As shown in Fig.A, a narrow strip with width rdθ and radius r sin θ in the
contact area produces a reproducing force in the direction to the center O0i of
the curvature of the hemisphere with the magnitude

k(2πr sin θ)dθ × r(cos θ − cos θ0) cos θ (A-1)

where k denotes the stiffness parameter of the soft and defomable material per
unit area, (2πr2 sin θ)dθ is the area of the narrow circular strip as shown in
Fig.A, and

r(cos θ − cos θ)
cos θ

=
(

r − r −∆x

cos θ

)
= r − r cos θ0

cos θ
(A-2)

denotes the length of deformation at angle θ. Since the total reproducing force
with magnitude (A-1) generated from the narrow circular strip contributes to the
direction ∆x (the arrow denoted by f in Fig.A) by cos θ, the total reproducing
force can be expressed as the integral

f̄ =
∫ θ0

0
2πkr2 sin θ(cos θ − cos θ0)dθ

= πkr2(1− cos θ0)2 = πk∆x2 (A-3)

This means that the reproducing force produced by the deformed area can be
approximately expressed by an increasing function of ∆x (the maximum length
of displacement). It should be noted that the moment M = (Mx,My,Mz)T

around O0i becomes

−−−→
O0iP × k

−−→
PQdS (A-4)

where dS = r2 sin θdθdφ (which denotes an infinitesimally small area shown in
Fig.8). It is evident to see that the integral of eq.(A-4) over φ in[0, 2π] times θ
in [0, θ0] vanishes due to the symmetry of sinusoidal functions sinφ and cosφ
appearing in eq.(A-4). Thus, the moment acting around the point O0i caused by
overall deformations of the soft material becomes zero.
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Fig. A. Geometric relations related to lumped-parametrization of finger-tip stress
distribution into a single reproducing force focused on the center of curvature O0i

As to the lumped-parametrization of distributed viscous forces, a similar argument can
be applied. It can be concluded that the viscous force acting to the point O0i can be
expressed in the form of ξi(∆xi)∆ẋi, where ξi(∆xi) is an increasing function of ∆xi.
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Summary. A geodesic-based formulation of geometric PD tracking control for fully
actuated mechanical systems is derived from the Riemannian metric. The region of
stability is determined directly from the magnitude of the system’s injectivity radius
and, for a restricted set of control problems, the locus of cut points about a desired
reference point in the manifold. Exponential stability is proven for controlled motion
along a geodesic, yielding a particularly simple, yet elegant, methodology for control
design.

1 Introduction

Many recent advances in control theory have evolved from the machinery of
differential geometry and topology. Specifically, regarding the theory of control
design as addressed in [1, 2, 3], it has clearly been demonstrated that Riemannian
geometry can be employed to naturally approach a variety of control design
problems and obtain a unique perspective on commonly used control logic. Of
particular interest to us is the notion of the geodesic spring introduced by Bullo,
Murray, and Sarti in [1].

In [1], F. Bullo et.al. introduce a geodesic based proportional–derivative (PD)
fixed point tracking controller on S2. The generalization of this design philosophy,
completed in [2], creates a geometric tracking control law rooted in Riemannian
geometry. The resulting control architecture is shown to hinge upon inexorably
linked geometric notions of configuration and velocity error that ensure closed
loop stability.

As the geodesic spring paradigm of [1] seemed to be the original impetus
for [2], it would be natural and thus highly desirable to return to a geodesic
setting for tracking on Riemannian manifolds. Indeed, that is the purpose of
this writing. We are particularly interested in demonstrating how a machine’s
intrinsic geometry (i.e. the geometry induced by the kinetic energy tensor) can
be exploited within the general framework of [1]. In particular, we demonstrate

F. Bullo et al. (Eds.): Lag. & Hamil. Methods for Nonlin. Ctrl., LNCIS 366, pp. 317–328, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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that free motion is the glue that binds geometrically natural representations of
configuration and velocity error. As a result, the ensuing control design explicitly
realizes the aforementioned paradigm.

This paper is organized as follows. Section 2.1 makes note of the needed back-
ground material and notational conventions. The control system and a glimpse
of the framework introduced in [2] is summarized in Section 2.2. The main con-
tributions are provided in Section 3. In particular we prove, as a corollary to
the main control result of Bullo and Murray, an exponential stability result that
makes use of intrinsic geometric implements. In addition, the conditions under
which our control law results in geodesic spring-damper dynamics are explained.

2 Background

2.1 Intrinsic Geometry

Assuming a knowledge of intrinsic geometry, we begin by setting the notation
for the requisite notions from that subject. Specific details regarding the subject
matter in this brief exposition can be found in [4].

• Q a connected, complete Riemannian manifold with metric, g
• A smooth curve σ in Q on [a, b] is called a segment connecting q = σ(b) and

r = σ(a) with S(r, q) the set of all segments connecting q and r.
• The length of a segment is

lσ(r, q) =
∫ b

a

√
g

(
dσ

du
,
dσ

du

)
du

• The Riemannian manifold’s intrinsic distance is defined by

dist(r, q) = inf
σ∈ S(q, r)

lσ(r, q) .

• Let ∇ be the Levi-Civita connection with D
du the covariant derivative, wrt

∇, of vector fields on smooth curves; The geodesic equations are given by
D
duγ

′
= 0

• exp : TQ→ Q the exponential mapping
• For q in a normal neighborhood of r ∈ Q,

dist(r, q) = lγ(r, q) (1)

where γ is the unique geodesic from r to q
• σr→q : TrQ→ TqQ the point–wise, smooth linear parallel transport mapping

defined by
∇σ′ V = 0 (2)

• C(r) the cut-locus of r ∈ Q
• The injectivity radius of r, Inj(r) and the injectivity radius of Q, Inj(Q):

Inj(r) = inf
q∈C(r)

dist(r, q) and Inj(Q) = inf
r∈Q

Inj(r)
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• If f is a mapping between manifolds then denote fy(x) ∆= f(x, y)|y fixed and

fx(y) ∆= f(x, y)|x fixed

2.2 Dynamics and Control

Let us begin here by describing the potential-free (post compensated), fully ac-
tuated, simple, mechanical, control system or more simply, an abstract machine.
An abstract machine is a mathematical construct of the form [Q, g,F ], where i)
Q is a smooth n–dimensional manifold called the configuration manifold and ii)
g is a Riemannian metric on Q and iii) F is a full rank control co-distribution.
The abstract machine dynamics are given by

g� Dγ̇

dt
= uiFi . (3)

We now highlight the control design framework of [2, 3], beginning with the
generalized concept of position error.

Definition 1. [Configuration Error] Let P be a subbundle of Q × Q with
connected fibre F such that π(P ) = Q and dim(F ) = dim(Q). A smooth function
ϕ : P → R is a Configuration Error Function if for each fixed r ∈ Q, ϕr(q) is
smooth, symmetric, proper, and bounded from below and ϕ satisfies i) ϕ(r, r) = 0
and ii) dϕr(q)|q=r = 0 and iii) Hess ϕr(q)|q=r is positive definite.

As shown in [3], one can define the L-sublevel set of ϕr as ϕ−1
r (≤ L) =

ϕ−1((−∞, L]) and the connected component of the L-sublevel set ϕ−1
r (≤ L)

containing x0 ∈ Q as ϕ−1
r (≤ L, x0). Let

Lreg(ϕr(q), r)
∆= sup

{
L ∈ R |q ∈ ϕ−1

r (≤ L, r) \ {r} ⇒ dϕr(q) �= 0
}

Lreg(ϕ,Q) ∆= inf {Lreg(ϕr(q), r) | r ∈ Q}

A configuration error function ϕ is uniformly quadratic if Lreg(ϕ,Q) > 0 and if,
for all L ∈ (0, Lreg(ϕ,Q)) and r ∈ Q, there exist two constants 0 < a ≤ b such
that for all q ∈ ϕ−1

r (BL(0))\{r}, we have

0 < a ‖dϕr(q)‖2g ≤ ϕ(r, q) ≤ b ‖dϕr(q)‖2g (4)

where ‖ · ‖g denotes the induced or operator norm w.r.t. the norm associated to
the inner product g.

Next we need to describe the generalized notion of velocity error. This requires
the concept of transport map T . A transport map is simply a construct through
which one can compare velocities which reside in different fibers of the tangent
bundle TQ. Thus, given a curve (r(t), q(t)) ∈ P one may define a velocity error
in TqQ by

ė = q̇ − Tr→q ṙ

where Tr→q denotes the evaluation of T at p = (r, q). The formal definition of a
transport mapping is as follows.
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Definition 2. [Transport Map] A Transport Mapping is a smooth bitensor
field1 T on the previously defined subbundle P of Q × Q satisfying: i) Tr→q ∈
GL(TrQ, TqQ) and ii) Tr→r = id.

A given transport mapping is said to be compatible with configuration error ϕ if
it satisfies the relation

dϕq(r) = −T ∗
r→q (dϕr(q)) .

Finally, we conclude this section by stating a main theorem of [2].

Theorem 1 (Bullo and Murray). Consider the control system in equa-
tion (3), and let {r(t), t ∈ R+} be a twice differentiable reference trajectory. Let
ϕ be an error function on Q×Q, T a transport map satisfying the compatibility
condition, and Kd a dissipation function.

If the control input is defined as F = FPD + FFF with

FPD = −dϕr(q)−Kdė

FFF = g�(q)
(

(∇q̇Tr→q)ṙ +
d

dt
|q fixed(Tr→q ṙ)

)
then the curve q(t) = r(t) is stable with Liapunov function

Wtotal(q, q̇, r, ṙ) = ϕ(r, q) +
1
2
g(ė, ė) .

In addition, if the error function ϕ satisfies the quadratic assumption with a
constant L, and if the boundedness assumptions

d1 ≤ inf
q∈Q

‖Kd(q)‖g ≤ sup
q∈Q

‖Kd(q)‖g ≤ d2

sup
(r,q)∈Q×Q

‖∇Tr→q‖g <∞

sup
(r,q)∈Q×Q

‖∇dϕr(q)‖g <∞

sup
t∈R

‖ṙ‖g <∞

where 0 < d1 ≤ d2, hold, then the curve q(t) = r(t) is locally exponentially stable
with Liapunov function Wtotal from all initial conditions (q(0), q̇(0)) such that

Wtotal(0) < L .

1 See [5] (pg. 48) for bitensors (or alternatively two-point tensors) in classical physics
coordinate notation. Alternatively, a bitensor field is a map (r, q) �→ φ(r, q),
(r, q) ∈ P ⊆ Q × Q,with φ(r, q) interpreted as an element of GL(TrQ, TqQ). The
bitensor approach to transport mappings is completely equivalent to the vector bun-
dle mapping approach of [3].
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3 Intrinsic Tracking Control

Theorem 1 does not tell one how to actually select the configuration error ϕ and
a compatible transport mapping T . In our view and in the spirit of [1], intrinsic
geometry provides a natural pair. In this section we show, as a corollary to
Theorem 1, that the function

ϕ(r, q) =
1
2
dist(r, q)2 (5)

and the traditional parallel transport along length minimizing geodesics, form a
compatible configuration error-transport mapping pair.

To this end, we begin by specifying a submanifold P of Q × Q on which
equation (1) holds and lγ(r, q) depends smoothly on p = (r, q) ∈ P . Assume that
Inj(Q) is non-zero and consider the fibered submanifold of TQ defined by

BQInj(Q)
∆=
{
v ∈ TQ :

√
g (v, v) < Inj(Q)

}
.

This is, in fact, a subbundle of TQ.
We now describe an embedding of BQInj(Q) into Q×Q. The embedded space

is the appropriate domain for (5).

Proposition 1. f : BQInj(Q) → Q × Q defined by f(v) = (π(v), exp(v)) is an
embedding.

Proof. The map f bijective and has local form F (r,v) = (r,Exp(r,v)). exp is
a differentiable function and thus all partials of Exp exist and are smooth. TF
is a triangular block matrix with diagonal (I, TExpr) and thus is injective so
long as TExpr is. Given any fixed r ∈ Q, if vr ∈ BInj(Q)(0), then expr(v) is
not a conjugate point of r and so T Expr(v) is injective. By the inverse function
theorem, f is a local diffeomorphism and the result follows.

Given a Riemannian manifold Q with non-zero injectivity radius, we define the
bundle EQ

∆= F (BQInj(Q)) with fiber over each point r diffeomorphic to a normal
neighborhood centered at r of radius Inj(Q).

Corollary 1. Let Q be a manifold with Inj(Q) > 0. Then for p = (r, q) ∈ EQ,
there exists a unique (unit speed), length minimizing geodesic γ between r and q
that is differentiably dependent on r and q. As a consequence, equation (1) holds
and depends smoothly on p.

This corollary allows us to now make some preparatory calculations. Consider
a curve p : R → EQ : u �→ (r(u), q(u)) which does not touch the diagonal of
Q × Q. Composing this curve with lγ provides a length function with domain,
codomain R parameterized by u, which we shall also denote by lγ . To which
lγ we refer should be clear by context. Being it the case that lγ : EQ → R is
smooth and the curve p is smooth, lγ : R → R is smooth and we may take its
derivative with respect to the parameter u.
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Let η(s, u) be the family of length minimizing geodesics parameterized by arc
length, s, between r(u) and q(u). Select some fixed parameter value and call it
u∗. Taking γ(s) to be the minimizing geodesic between r = r(u)|u∗ and q =
q(u)|u∗ we see that η(s, u) is a geodesic variation of γ(s) with boundary values
η(s, u)|s=lγ (u) = q(u) and η(s, u)|s=0 = r(u). That η(s, u) depends smoothly on
the boundary values q(u) and r(u) follows from corollary 1.

One finds dlγ

du to be related to the partials of η at u∗ through the metric by
the first variation formula, which is stated in the following lemma.

Lemma 1. [Gauss] Let the curve p and the geodesic variation η(s, u) be as de-
scribed in the above discussion. Then

dlγ

du

∣∣∣
u∗

= g

(
dq

du

∣∣∣
u∗

,
∂η

∂s

∣∣∣
(lγ(u∗),u∗)

)
− g

(
dr

du

∣∣∣
u∗

,
∂η

∂s

∣∣∣
(0,u∗)

)
This lemma proves to be invaluable as it is the foundation of the following vital
result.

We know by corollary 1 that lγ is smooth on EQ and thus the differentials
dlγq and dlγr exist. Using the Gauss lemma, we can calculate them.

Corollary 2. Let the circumstances be those given in Lemma 1. Then the dif-
ferential of the length function with respect to q and to r are, respectively

dlγr (q) = g�(q)
dγ

ds
(lγ(r, q)) (6)

dlγq (r) = −g�(r)
dγ

ds
(0) (7)

where, in the right members of these equations, γ is the unique geodesic segment
connecting q to r.

Proof. Consider the vector vq and let σ(u) ∈ vq. Using the curve σ we may
create, in accord with the above discussions, a curve p(u) = (r, σ(u)) ∈ EQ and
an associated geodesic variation η(s, u) in which one endpoint, namely r, is fixed.
It follows from Lemma 1 that

[dlγr ](vq) = vq(lγr )

=
d

du
lγr (u)

∣∣∣
u=0

= g

(
vq,

∂η

∂s
(lγ(0), 0)

)
= g

(
vq,

dγ

ds
(lγ(r, q))

)
=
[
g�(q)

dγ

ds
(lγ(r, q))

]
(vq)

Since such is the case for all vq ∈ TqQ the result follows. Equation (7) follows
along exactly the same lines.
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The following series of results ensure that the main objective of this paper is
met.

Theorem 2 (Intrinsic Configuration Error). Assuming Inj(Q) > 0, the
function

ϕ(r, q) =
1
2
(lγ(r, q))2 (8)

is a uniformly quadratic tracking error function with Lreg = 1
2 (Inj(Q))2.

Proof. The proof that this mapping is tracking error function is indeed simple
if we make use of a normal chart (U,ψ) centered at r. In such a chart we have
the representation Φr(q1, . . . , qn) = 1

2 (q2
1 + . . . + q2

n). The local expression of
the differential is then (dΦr)ψ(q) =

[
q1 . . . qn

]
. So (dΦr)ψ(r)=0 = 0 and r is a

critical point of ϕr. This is a geometric property and does not depend on the
local representation. Since r is a critical point of ϕr, the Hessian of this function
Hessϕr is coordinate independent and is positive definite provided the matrix[

∂2Φr

∂qi∂qj

]
is positive definite for any chart whatsoever we should choose. Using

normal coordinates we obtain the identity matrix which completes the discussion
concerning the conjecture that ϕr is a tracking error function.

We now demonstrate that ϕ is uniformly quadratic with Lreg = 1
2 (Inj(Q))2.

Let r ∈ Q. For a given geodesic γ emanating from r, ϕ is defined only within
the injectivity radius and dϕr �= 0 for every interval [0, L] with L < 1

2 (Inj(Q))2.
Hence Lreg(ϕr(q), r) = 1

2 (Inj(Q))2 for each r ∈ Q. Taking the infimum over all
r ∈ Q, we have Lreg(ϕ,Q) = 1

2 (Inj(Q))2.
Now, using the Cauchy-Schwarz inequality, we have, suppressing the evalua-

tion of dγ
ds at lγ(r, q),

|dϕr(q)vq |2 = (lγ)2g
(

dγ

ds
, vq

)2

≤ (lγ)2g (vq, vq) .

Taking the square root of both sides and then the supremum over |vq| = 1, it is
clear that ‖dϕr(q)‖g can be no greater than lγ . If we take vq = dγ

ds |s=lγ (r,q), the
supremum is reached and thus the result. Taking a = b = 1

2 in inequality (4)
completes the discussion.

Lemma 2. The parallel transport of two vectors vr, wr ∈ TrQ from a point r to
another point q along a curve γ ⊂ Q, denoted γr→q, preserves the length of each
vector and the inner product between the transport of vr, wr in the Riemannian
metric g (·, ·).

Theorem 3 (Intrinsic Transport Map). Parallel transport along length min-
imizing geodesics is a transport mapping on EQ.

Proof. Writing the parallel transport equations out in coordinates we get the
IVP
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dvk

du
+ Γ k

ijv
j dσi

du
= 0 k = 1, . . . , n

with vk(0) = vk
0 . Thus we get a linear (possibly nonautonomous) system and

a unique solution with infinite continuation is assured. The solution at u∗ is
determined by the associated state transition matrix Φ(u∗, 0). So we see that,
within a chart, parallel transport is, point–wise, a smooth linear mapping with
local representation Φ. This conclusion, however, remains true even if we have
need of involving multiple charts along the way from r to q. It is, therefore, clear
that σr→q describes a bitensor field over EQ.

By the definition of parallel transport, σr→r = id. Further, Lemma 2 in-
dicates that parallel transport preserves frames. Thus, we also know that
σr→q ∈ GL(TrQ, TqQ). Should we show that σr→q is smooth, then we may
conclude that it is a transport mapping. We now take the argument up.

The geodesic field on TQ is smooth. So, by the theory of ordinary differential
equations, the geodesics depend smoothly on the initial data. Further, since f is
a diffeomorphism of BQInj(Q) onto EQ, the length minimizing geodesics depend
smoothly on the boundary data (r, q) ∈ EQ. Thus the field described by equa-
tion (2) is smoothly parameterized by the boundary data (r, q) ∈ EQ. Hence, call-
ing upon the theory of ordinary differential equations once more, we determine that
the solutions V (u; vr, (r, q)) depend smoothly on the initial condition vr and the
boundary data (r, q). Therefore, σr→q takes smooth fields to smooth sections of
Q× TQ. That is, for Y ∈ X (Q), V (1;Y (r), (r, q)) is a smooth section of Q× TQ.

Theorem 4 (Compatibility). The parallel transport along length minimizing
geodesics and the tracking error function (8) are compatible in the sense that

dϕq(r) = −γ∗
r→q (dϕr(q)) .

Proof. Since dϕr(q) = lγ(r, q)dlγr (q), dϕq(r) = lγ(r, q)dlγq (r), and γ∗
r→q is a

linear operator, we need only show

d(lγq (r)) = −γ∗
r→q (d(lγr (q))) .

Consider an arbitrary vector vr ∈ TrQ. Computing directly:

[dlγq (r)](vr)
eq.(7)
=
[
−g�(r)

dγ

ds
(0)
]

(vr)

= −g

(
dγ

ds
(0), vr

)
Lm.2= −g

(
γr→q

dγ

ds
(0), γr→qvr

)
= −g

(
dγ

ds
(lγ(r, q)), γr→qvr

)
=
[
−γ∗

r→q

(
g�(q)

dγ

ds

∣∣∣
lγ(r,q)

)]
(vr)

eq.(6)
=
[
−γ∗

r→q (dlγr (q))
]
(vr) .

This calculation holds for all vr ∈ TrQ and so the result.
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We thus have the following generalization of [1], or an instance of Theorem 1, in
which the intrinsic geometry of an abstract machine creates a closed-loop system
analogous to a geodesic mass–spring–damper.

Corollary 3. Suppose that one has an abstract machine with dynamics given by
equation (3). Further assume that the machine’s configuration manifold Q has
a positive injectivity radius. Let the control force be defined as F = FFB + FFF
where

FFB = −α dϕr(q)− β g�(q)ė
= −α g�(q) grad ϕr − β g�(q)ė

= −α dist(r, q) g�(q)
dγ

ds
− β g�(q)ė

ė = q̇ − γr→q ṙ

FFF = g�(q)
(

D
dt

γr→qṙ

)
where ϕ(r, q) is the tracking error function given in equation (8) and γ is the
unique minimizing geodesic between q(t) and r(t) at time t. Let

V (t) =
1
2

α dist2(r(t), q(t)) +
1
2

g (ė(t), ė(t))

be the Liapunov candidate. Then, r(t) is stable and should the boundedness condi-
tions of Theorem 1 be satisfied of P = EQ, the curve r(t) is locally exponentially
stable from all initial conditions satisfying

dist2(r(0), q(0)) +
1
α

g (ė(0), ė(0)) < Inj(Q)2. (9)

In the next theorem, we show that this particular design induces the mass–
spring–damper paradigm explicitly when the reference trajectory and mechanical
system initial condition belongs to TIm(γ). We shall also see that corollary 3 has
another advantage.

Theorem 5. Let r(t) be a smooth curve with image contained within a geodesic
path γ ⊂ Q, where Q is a manifold with positive injectivity radius. For any initial
condition of the mechanical system satisfying i) Inequality 9, ii) q(0) ∈ Im(γ)
and iii) q̇(0) ∈ Tq(0)Im(γ) the closed loop solution q to equation (3) under the
control law of corollary (3) satisfies 1) q(t) lies in the trace of γ for all t > 0
and 2) q(t) = r(t) is exponentially stable with rate of convergence dictated by α
and β.

Proof. Choosing a base point o ∈ Im(γ) and a unit tangent vector vo ∈ ToIm(γ),
parameterize the curve γ by the associated signed arc length measure s so that
γ(s) ∆= γ(s, vo). Let the reference trajectory be parameterized by, say sr(t), so
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that r(t) = γ(sr(t)). Now, let us assume momentarily or “guess” that the signed
arc length difference ∆s(t), where dist(r, q) = |∆s(t)|, between the points r(t)
and q(t) satisfies the mass–spring–damper differential equation:

∆s̈ = −α∆s− β∆ṡ . (10)

We show that the solution to the closed loop dynamic system under the control
action of corollary 3 is

q(t) = γ(sr(t) + ∆s(t)) .

During our computations we will suppress the functional dependence on t. Taking
derivatives, we have the velocity vectors

q̇ =
dγ

ds

∣∣∣
(sr+∆s)

(ṡr + ∆ṡ) and ṙ =
dγ

ds

∣∣∣
sr

ṡr.

The parallel transport of ṙ(t) to the base point q(t) is given by

γr→q ṙ = γr→q
dγ

ds

∣∣∣
sr

ṡr =
dγ

ds

∣∣∣
(sr+∆s)

ṡr

and so ė = q̇ − γr→qṙ = dγ
ds

∣∣∣
(sr+∆s)

∆ṡ. Taking the covariant derivative of the

velocity error vector, we have, suppressing the evaluation of dγ
ds at

sr + ∆s,

Dė

dt
=

D
dt

(
dγ

ds
∆ṡ

)
=

D
dt

(
dγ

ds

)
∆ṡ +

dγ

ds
∆s̈

=
D
ds

(
dγ

ds

)
(ṡr + ∆ṡ) ∆ṡ +

dγ

ds
∆s̈ =

dγ

ds
∆s̈

as D
ds

dγ
ds = 0 due to the fact that γ is a geodesic. Substituting (10), we have

Dė

dt
=

dγ

ds

∣∣∣
(sr+∆s)

(−α∆s− β∆ṡ)

= −α gradϕr(q)− β ė

Under the operator g�(q) we arrive at the closed loop dynamics given by the
control law of Corollary 3. By uniqueness of solutions we find that our “guess”
of the mass–spring–damper dynamics in equation (10) was correct. Furthermore,
note that the Liapunov function presented in Corollary 3 takes the form

V (t) =
α

2
∆s2 +

1
2
g (ė, ė)

=
α

2
∆s2 +

1
2
∆ṡ2

∣∣∣∣dγds
∣∣∣∣2

=
α

2
∆s2 +

1
2
∆ṡ2

on the geodesic. This is a Liapunov function we’re used to seeing for the mass-
spring damper.
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For this restricted case, we can design the arc length and arc length rate to be
over-damped, critically damped, or under-damped through judicious choice of
positive constants α and β. Hence, this is a very practical design tool for those
interested in tuning the performance of an abstract machine. Imbedded in this
geometric control methodology is a second order linear, time-invariant ODE in
kinetic energy distance. It is seen that the relative kinetic energy dissipates as
the mechanical system’s trajectory converges to the reference trajectory.

Another interesting consequence unfolds if we further restrict to the set point
control problem with zero initial conditions.

Corollary 4. Let S(r) ∆= Q \ C(r). Let ṙ(t) = q̇(0) = 0. Then there exists a
control law such that q(t) exponentially converges to r for all q(0) ∈ S(r).

Proof. Choose α and β as to ensure the ODE in equation (10) is over-damped.
The definitions for arc length and parallel transport can be extended along each
geodesic up until its intersection with the cut locus. The arc length is strictly
decreasing and the trajectory length can never leave the geodesic between r
and q(0). The convergence is exponential using the same proof argument of
Theorem 5.

4 Conclusions

Since the definitions and control design in [2] are heavily influenced by Rieman-
nian geometry, it should come as little surprise that natural distance and parallel
transport should fit within the context of any self-consistent control theory so
modeled. The abstraction of position and velocity error described in [2, 3] il-
lustrates the role of compatibility in stabilization; in other words, position and
velocity errors should be linked by geometry to ensure stability. Furthermore,
geodesic lines can provide that link and serve as an intrinsic basis for control.
Thus, this contribution provides a simple, yet elegant, solution that directly
addresses the geodesic spring paradigm in control.
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Shape Control of a Multi-agent System Using
Tensegrity Structures

Benjamin Nabet and Naomi Ehrich Leonard

Mechanical and Aerospace Engineering, Princeton University, Princeton,
NJ 08544 USA
{bnabet,naomi}@princeton.edu

Summary. We present a new coordinated control law for a group of vehicles in the
plane that stabilizes an arbitrary desired group shape. The control law is derived for
an arbitrary shape using models of tensegrity structures which are spatial networks of
interconnected struts and cables. The symmetries in the coupled system and the energy-
momentum method are used to investigate stability of relative equilibria corresponding
to steady translations of the prescribed rigid shape.

1 Introduction

We address shape control of a group of mobile agents or vehicles in the plane.
Shape refers to the geometry, configuration or formation of the group and is
invariant under translation and rotation of the group as a whole. In [1], shape
coordinates are defined based on Jacobi coordinates and a law to control small
formations on Jacobi shape space is derived using a control Lyapunov function.
In this paper, we use models of tensegrity structures to synthesize and analyze
the shape dynamics of a group.

Shape control and, more generally, collective control of multi-agent systems
have applications in a variety of engineering problems. One specific application
motivating this research is the control of a fleet of autonomous underwater ve-
hicles (AUVs) recently used for an adaptive sampling experiment in Monterey
Bay, CA (AOSN), see e.g. [2, 3]. For the design of mobile sensors carrying out
sampling or searching tasks, the configuration of the group can be critical. De-
pending on the field that is being surveyed, smaller or larger formations might
be more efficient, and certain shapes of the group might be preferable for esti-
mating field parameters such as gradients or higher-order derivatives from noisy
measurements made by the mobile sensors, see e.g., the problem of generating a
contour plot with a mobile sensor network [4].

We present a constructive method to stabilize an arbitrary planar shape for
a group of n vehicles using virtual tensegrity structures. We model each of the
n vehicles as a particle, moving in the plane, under the influence of a control
force. The control forces are designed as if the particle group forms a tensegrity

F. Bullo et al. (Eds.): Lag. & Hamil. Methods for Nonlin. Ctrl., LNCIS 366, pp. 329–339, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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structure in which particles are treated like nodes and connections between par-
ticles simulate struts or cables. Stabilization of relative equilibria corresponding
to the desired shape in steady translation is investigated using symmetries in
the multi-agent system together with the energy-momentum method.

Tensegrity structures [5] are geometric structures formed by a combination of
struts (in compression) and cables (in tension) which we classify together more
generally as edges. The edges of a tensegrity structure meet at nodes. A generic
combination of cables and struts will not be in equilibrium; if the corresponding
structure were physically built, it would collapse. We define tensegrity structures
as only those structures that are in equilibrium. The artist Kenneth Snelson [6]
built the first tensegrity structure, and Buckminster Fuller [7] coined the term
tensegrity by combining the words tension and integrity.

Tensegrity structures have been widely studied with different motivations and
approaches. For instance, there is growing interest in tensegrities in the context of
designing structures whose shape can be adjusted and controlled. Models of the
forces and formalization of the notion of stability for tensegrity structures were
proposed by Connelly through an energy approach in [8, 9, 10, 11]. Tensegrity
structures have also been used to model biological systems such as proteins, [12]
or cellular structure, [13]. It is known [5] that the shape of a tensegrity structure
can be changed substantially with little change in the potential energy of the
structure. This motivates us in part to use tensegrity structures as a model for
shape control of a group of vehicles.

In this paper, we define a tensegrity structure that realizes any arbitrary
desired shape. Each vehicle, modelled as a particle, is identified with one node
of the tensegrity structure. The edges of the tensegrity structure correspond to
communications and direction of forces between the vehicles. If an edge is a
cable, the force is attractive; if the edge is a strut then the force is repulsive.
The magnitude of the forces depends on the tensegrity structure parameters
and the relative distance between the vehicles associated with the edge. In this
setting, it is possible to see a tensegrity structure as an undirected graph with
the interconnection between nodes weighted by the magnitude of the force. This
allows us to use the formalism and results from algebraic graph theory. We note
that because we use virtual tensegrity structures our model cannot impose the
constraints that physical struts only increase in length and cables only decrease
in length; an important consequence is the need for a nonlinear model that
isolates the desired equilibrium shape. In Sections 2 and 3 of this paper we
discuss different models for the forces. In Section 4 we present a systematic
method to generate any shape. In Section 5 we investigate the stability of the
generated shapes.

2 Linear Force Model

In this section we describe the simplest way of modelling the forces induced by
the two types of edges of a tensegrity structure. We then find the relationship
between the choice of cables, struts and parameters for the corresponding model
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and the equilibria. We model cables as springs with zero rest length and struts
as springs with zero rest length and with a negative spring constant [8, 9]. Hence
if we consider two nodes i, j we have

−→
f i→j = ωij(−→qi −−→qj ) = −−→f j→i, (1)

where
−→
f i→j ∈ R2 is the force applied to node j as a result of the presence

of node i. Here, −→qi = (xi, yi) ∈ R2 is the position vector of node i and ωij is
the spring constant of the edge ij. The spring constant ωij is positive if ij is
a strut, negative if ij is a cable and zero if there is no connection between the
nodes i and j. We call ωij the stress of the edge ij. The absolute position of the
structure in the plane is given by a vector q ∈ R2n which we call a placement.

Let x = (x1, . . . , xn)T and y = (y1, . . . , yn)T , then q =
(
x
y

)
. The potential

energy of a tensegrity structure is

Eω(q) =
1
2

n∑
i=1

n∑
j=i+1

ωij‖−→qj −−→qi ‖2. (2)

We write
∑
i<j

to represent
n∑

i=1

n∑
j=i+1

. We note that this potential increases as we

stretch the cables or shrink the struts. Using cartesian coordinates in the plane,
equation (2) becomes

Eω(q) =
1
2

(∑
i<j

ωij(xj − xi)2 +
∑
i<j

ωij(yj − yi)2
)
. (3)

The equilibria of the system are the critical points of the potential (3). We
rewrite (3) to more easily calculate the critical points.

Using notations from algebraic graph theory, we consider the undirected graph
G = (V,E), where V is the set of nodes and E the set of edges. Let dj be the
degree of node j, then the Laplacian L of the graph G is the n×n matrix defined
by

Lij =

⎧⎨⎩dj if i = j
−1 if (i, j) ∈ E
0 otherwise.

(4)

In our setting communications are not identical from one edge to the other, but
rather are weighted by the spring constants ωij .

Our goal is to solve for and stabilize a tensegrity structure. To do this we solve
for the weights ωij . A tensegrity structure can then be viewed as an undirected
graph for which we define the weighted Laplacian Ω by

Ωij =
{∑n

j=1 ωij if i = j

−ωij if i �= j.

This matrix Ω introduced by Connelly (but derived in a different way) in [8] is
called the stress matrix. The stress matrix is an n×n symmetric matrix and the
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n-dimensional vector 1 =
(
1 · · · 1

)T
is in the kernel of Ω (the last property is

true for all Laplacians). Using this matrix, we can rewrite the potential (3) as

Eω(q) =
1
2
qT (Ω ⊗ I2)q,

where I2 is the 2 × 2 identity matrix and Ω ⊗ I2 is the 2n× 2n block diagonal

matrix
(

Ω 0
0 Ω

)
. It is now easy to see that the critical points, and hence the

equilibria, are given by
qT (Ω ⊗ I2) = 0. (5)

Using the fact that the stress matrix is symmetric, we see that a placement
qe is an equilibrium if and only if xe and ye are in the kernel of Ω. Recall that 1
is in the kernel of Ω. Assuming that the nodes are not all in a line, xe,ye and 1
are linearly independent. We can conclude that with this model, a combination
of cables and struts will have an equilibrium if and only if rank(Ω) ≤ n− 3. We
assume from now on that n ≥ 4. By choosing the stresses of the edges of the
structure so that rank(Ω) = n− 3, the kernel of the stress matrix Ω is exactly
three dimensional, and we can prescribe the shape of the equilibrium.

However, we cannot prescribe the size of the equilibrium configuration. Indeed
if ker(Ω) = span{xe,ye,1} then the structure described by qe = (αxe, βye)
is also an equilibrium ∀α, β ∈ R. For real tensegrities this is not a problem
because the cable and strut constraints preclude the existence of any but the
original equilibrium. In the virtual setting, however, where we cannot impose
the constraints, we get a continuum of equilibria which is not desirable. For
example, if we prescribe the tensegrity to be a square, it will be the case that
not only all squares but also all rectangles will be equilibria. In the next section
we exploit the simple equation (5), derived using the linear model (1), that
determines the tensegrity shape as a function of the parameters ωij . We propose
a nonlinear model for the forces along edges that isolates a tensegrity, fixing both
shape and size.

3 Nonlinear Force Model

In the previous section we chose to model the forces between a pair of nodes
with a linear function of the relative distance between the nodes. We now model
the forces along the edges as nonlinear springs with finite, nonzero rest length.
Cables will always be longer than their rest length and struts will always be
shorter than their rest length. We consider two nodes i, j and we define

−→
f i→j = αij |ωij |

rij − Lij

rij
(−→q i −−→q j). (6)

Here rij = ‖−→q i −−→q j‖ is the relative distance between nodes i and j, Lij is the
rest length of the spring that models the edge ij, ωij is the spring constant from
model (1) and αij is a scalar parameter that fixes the spring constant of model
(6) for the edge ij.
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The corresponding potential energy is

Eω(q) =
1
2

∑
i<j

αij |ωij |(rij − Lij)2. (7)

The equilibria of this system can be found by solving for the critical points of
the potential (7). After some manipulation, we find that the critical points of
(7) are given by

n∑
j=1

αij |ωij |(−→qj −−→qi )(1−
Lij

rij
) = 0, i = 1, . . . , n.

¿From this set of equations, we can define an analogue of the stress matrix Ω of
(2). The new stress matrix is not a constant matrix. Rather it depends on the
relative distances between pairs of nodes. We define

ω̃ij(x,y) = αij |ωij |(1−
Lij

rij
) (8)

to be the stress of the edge ij. The entries of the new stress matrix are given by

Ω̃ij(x,y) =
{∑n

k=1 ω̃ik(x,y) if i = j
−ω̃ij(x,y) if i �= j.

We note that the vector 1 is also in the kernel of Ω̃, ∀ (x,y) ∈ Rn × Rn. Now
if we wish the placement qe = (xe,ye) to be the tensegrity structure (i.e the
stable equilibrium of the system), we need to pick (if possible) the parameters
αij , ωij , Lij so that Ω̃(xe,ye)xe = 0

Ω̃(xe,ye)ye = 0.

As a first step we choose parameters αij and Lij for all i, j so that Ω̃(xe,ye) =
Ω. If edge ij is a cable, then ωij > 0, and by (8) we have ω̃ij = αijωij(1− Lij

rij
).

To make ω̃ij(xe,ye) = ωij , we make αij(1 − Lij

re
ij

) = 1 where re
ij is the relative

distance between nodes i and j for the desired placement. This last equation is
solved by picking αij = 2 and Lij = 1

2r
e
ij . If edge ij is a strut, then ωij < 0, and

by (8) we have ω̃ij = −αijωij(1− Lij

rij
). We make αij(1 − Lij

re
ij

) = −1 by picking
αij = 1 and Lij = 2re

ij . The choice of Lij and αij is not unique (in case of a
strut or a cable); the effect of picking other values for parameters αij and Lij is
to be determined.

We show in the next section, that we can also find parameters ωij independent
of parameters αij and Lij , so that ker(Ω) = span{xe,ye,1}, and such that the
nonzero eigenvalues of Ω are all positive. This makes the equilibrium qe =
(xe,ye) an isolated minimum of the potential (modulo rigid transformations),
i.e., our choices ensure that we have the right combination of struts and cables
to make qe = (xe,ye) a tensegrity structure.
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4 Construction of the Constant Stress Matrix

In this section we solve the following problem: given a desired placement qe =
(xe,ye), find stresses ωij such that ker(Ω) = span{xe,ye,1} and the nonzero
eigenvalues of Ω are positive.

We know that Ω is symmetric, hence it has only real eigenvalues and can be
diagonalized using an orthonormal basis. As mentioned previously, if we do not
consider the case when all the nodes are in a line, then xe,ye and 1 are linearly
independent. We can complete these three vectors with n − 3 others so that
we have a basis of Rn. Then if we apply the Gram-Schmidt procedure to those
vectors, we get an orthonormal basis (v1, . . . ,vn) for Rn that satisfies

span{v1,v2,v3} = span{xe,ye,1}.

Now we define the n×n diagonalmatrix D with diagonal elements (0, 0, 0, 1, . . . , 1)
and the orthonormal n×n matrix Λ =

(
v1 · · · vn

)
. If we compute ΛDΛT we have

a symmetric positive semi-definite matrix with its kernel equal to span{xe,ye,1}.
Setting Ω = ΛDΛT determines the values of stresses ωij that make the placement
qe = (xe,ye) a tensegrity structure. The effect of choosing smaller or larger
positive eigenvalues for Ω (set here to 1) is to be determined.

5 Relative Equilibrium Stability

In this section we use the energy-momentum method to look at the stability of
the relative equilibrium corresponding to the tensegrity structure modelled by (6)
in steady translation. The energy-momentum method is a technique for proving
stability of relative equilibria [14]. For simple mechanical systems, we have the
following setting: a configuration space Q, a symplectic manifold P = T ∗Q with
a symplectic action of a Lie group G on P , an equivariant momentum map
J : P �→ g∗ and a G-invariant Hamiltonian H : P �→ R. Here g∗ is the dual of
the Lie algebra g of G. If the Hamiltonian vector at the point ze ∈ P points in
the direction of the group orbit through ze, then the point is called a relative
equilibrium. Let µ = J(ze).

Theorem 1. Relative Equilibrium Theorem [14] ze is a relative equilibrium
if and only if there is a ξ ∈ g such that ze is a critical point of the augmented
Hamiltonian Hξ(z) := H(z)− 〈J− µ, ξ〉.

Definition 1 [14]. Let S be a subspace of TzeP such that S ⊂ kerDJ(ze) and S
is transverse to the Gµ-orbit within kerDJ(ze), where Gµ = {g ∈ G | g · µ = µ},
µ ∈ g∗ and g · µ is the coadjoint action of G on g∗.

Theorem 2. Energy Momentum Theorem
[14]. If δ2Hξ(ze) is definite on the subspace S, then ze is Gµ-orbitally stable in
J−1(µ) and G-orbitally stable in P .
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For our system, the configuration space is Q = (R2)n, q = (x,y) ∈ Q and
an element in the cotangent bundle z ∈ T ∗Q can be written as z = (q,p) =
(x,y,px,py). Assuming unit mass nodes, the system kinetic energy is 1/2(‖ẋ‖2+
‖ẏ‖2) and px = ẋ and py = ẏ. The Hamiltonian of the system is given by

H(z) =
1
2
(‖px‖2 + ‖py‖2) +

1
2

∑
i<j

αij |ωij |(rij − Lij)2.

Noting the fact that the potential energy of the system only depends on the
relative distances between nodes, we have that the Hamiltonian of the system is
invariant under the following action of the Lie group SE(2) on Q:

g.q = (cos θx− sin θy + Tx1, sin θx + cos θy + Ty1), (9)

where g = (θ, Tx, Ty) ∈ SE(2). Let g(t) ∈ SE(2) such that g(0) = (0, 0, 0) and
ġ(0) = ξ = (ω, Vx, Vy) ∈ se(2) = g. The infinitesimal generator corresponding to
the action (9) is

ξQ(q) =
d

dt

∣∣∣∣
t=0

g(t) · (x,y)

= (−ωy + Vx1, ωx + Vy1).

The momentum map J : T ∗Q �→ g∗ is given by the formula [15]

〈J(x,y,px,py), ξ〉 = 〈(px,py), ξQ(q)〉. (10)

¿From equation (10), we get

J(z) =

⎛⎝〈x,py〉 − 〈y,px〉∑
pxi∑
pyi

⎞⎠ . (11)

The components of the momentum map are the total angular momentum of
the tensegrity about the origin and the total linear momenta in the x and y
directions.

Let qe = (xe,ye) correspond to a tensegrity as designed in the previous
sections. Let ξ = (ω, Vx, Vy) ∈ se(2). By Theorem 1, the relative equilibria
ze = (xe,ye,pe

x,p
e
y) ∈ R4n satisfy

∂Hξ

∂x
(ze) = −ωpe

y + Ωxe = 0 (12)

∂Hξ

∂y
(ze) = ωpe

x + Ωye = 0 (13)

∂Hξ

∂px
(ze) = pe

x + ωye − Vx1 = 0 (14)

∂Hξ

∂py
(ze) = pe

y − ωxe − Vy1 = 0 . (15)
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By design Ωxe = Ωye = 0. Choosing ξ = (0, Vx, Vy) and (pe
x,p

e
y) = (Vx1, Vy1),

we satisfy equations (12)-(15). Therefore ze = (xe,ye, Vx1, Vy1) is a relative
equilibria of the system.

Next we compute δ2Hξ(ze), the second variation of Hξ evaluated at the rela-
tive equilibrium:

δ2Hξ(ze) =

⎛⎜⎜⎝
Ω + Lωx(qe) Lωxy(qe) 0n 0n

Lωxy(qe) Ω + Lωy(qe) 0n 0n

0n 0n In 0n

0n 0n 0n In

⎞⎟⎟⎠ (16)

where the ijth element of each matrix is

Lωx(i, j) =

⎧⎨⎩−αij |ωij | (xi−xj)2Lij

r3
ij

if i �= j∑n
j=1j �=i αij |ωij | (xi−xj)2Lij

r3
ij

if i = j

Lωy(i, j) =

⎧⎨⎩−αij |ωij | (yi−yj)2Lij

r3
ij

if i �= j∑n
j=1j �=i αij |ωij | (yi−yj)2Lij

r3
ij

if i = j

and

Lωxy(i, j) =⎧⎨⎩−αij |ωij | (xi−xj)(yi−yj)Lij

r3
ij

if i �= j∑n
j=1j �=i αij |ωij | (xi−xj)(yi−yj)Lij

r3
ij

if i = j.

We first show that this matrix is positive semi-definite. This is equivalent to
proving that the top left 2n by 2n block in (16) given by

K =
(

Ω + Lωx(qe) Lωxy(qe)
Lωxy(qe) Ω + Lωy(qe)

)
(17)

is positive semi-definite. Recall that we have designed Ω to be positive semi-
definite. The matrices Lωx and Lωy are symmetric and have all their off diagonal
terms negative. The diagonal terms are positive so that each row sums to 0. In
other words, Lωx and Lωy are diagonally dominant symmetric matrices. From the
Gersgorin theorem [16] those two matrices are positive semi-definite. We assert

(and will prove in a later publication) that
(

Lωx Lωxy

Lωxy Lωy

)
≥ 0. This implies that

K ≥ 0 and δ2Hξ(ze) ≥ 0.

Lemma 1. The kernel of δ2Hξ(ze) is equal to

span

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

1
0
0
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0
1
0
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
−ye

xe

0
0

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ .
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Proof: See the appendix.

We now investigate if the vectors in the kernel of δ2Hξ(ze) are in S (given by
Definition 1). First we compute DJ(ze) to be

DJ(ze) =
(
Vy1T −Vx1T −yeT xeT

)
.

Next we compute Gµ. In our case, G = SE(2) and µ ∈ se(2)∗. By (11), we
have µ = J(ze) = (µ1, nVx, nVy). Let g = (θ, Tx, Ty) ∈ SE(2) then the coadjoint
action g · µ is

Ad∗(θ,Tx,Ty)−1(µ1, nVx, nVy)

= (µ1 −R(θ)V · JT, R(θ)V),

R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
, J =

(
0 1
−1 0

)
,

T =
(

Tx

Ty

)
, V =

(
nVx

nVy

)
.

If V �= 0 then

Gµ = {g ∈ SE(2) | R(θ) = I and VxTy = VyTx}.

Having computed DJ(ze) and Gµ, we can now compute S as follows [14]. Let

V = {δq ∈ TqeQ | 〈δq, ξQ(qe)〉 = 0 ∀ξ ∈ gµ}. (18)

Then,
S = {δz ∈ kerDJ(ze) | TπQ · δz ∈ V} (19)

where πQ : T ∗Q → Q is the projection. This leads to δz = (δq,0,0) ∈ S if and
only if

(
Vx1T Vy1T

)(δx
δy

)
= 0 (20)

(
Vy1T −Vx1T

)(δx
δy

)
= 0. (21)

Since there exist α, β ∈ R such that

δq =
(

δx
δy

)
= α

(
1
0

)
+ β

(
0
1

)
+
(
−ye

xe

)
(22)

satisfies both (20)-(21), then δz = (δq,0,0) ∈ S is also in the kernel of δ2Hξ(ze).
Thus, the Energy Momentum Theorem does not provide a conclusive result on

the stability of the relative equilibrium ze. However, we note that δz = (δq,0,0)
with δq given by (22) corresponds to a rotation of the tensegrity about its center
of mass. Any rotated tensegrity moving with constant velocity is just another
relative equilibrium. Indeed there is a continuum of relative equilibria for a given
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tensegrity shape moving at constant velocity, parameterized by the orientation
of the tensegrity. Simulations restricted to a constant momentum surface with
µ = (0, nVx, nVy) reveal no rotational drift. In the full space, simulations exhibit
drift only in the SE(2) directions, i.e., translational and rotational drift. Of
particular note, there are solutions in the full space, near the relative equilibrium
studied, that correspond to a rotating and translating formation.

6 Final Remarks

We present a new coordinated control law for a group of vehicles in the plane
that creates an arbitrary desired group shape. The control law is derived for
an arbitrary shape using tensegrity structures modelled by (6). The symmetries
in the coupled system and the energy-momentum method are used to investi-
gate stability of relative equilibria corresponding to steady translations of the
prescribed rigid shape. The energy momentum method alone does not provide
conclusive results; however, the relative equilibrium does appear to be stable
when the dynamics are restricted to the constant momentum surface. The anal-
ysis led to the discovery of solutions in the full space corresponding to rotating
and translating formations; One way of dealing with these rotating solutions,
seems to add damping in the dynamics. Simulations of the system with damp-
ing seem to suggest that the relative equilibrium we studied becomes stable
even when we do not restrain ourselves to the constant momentum surface. The
formation rotating and translating is not anymore an equilibrium.
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APPENDIX: Proof of Lemma 1

Proving Lemma 1 is equivalent to proving that the kernel of K is exactly equal
to the span of

{w1,w2,w3} =
{(

1
0

)
,

(
0
1

)
,

(
−ye

xe

)}
.

We can rewrite K as

K = K1 + K2 =
(

Ω 0n

0n Ω

)
+
(

Lωx Lωxy

Lωxy Lωy

)
.

Since K1, K2 are symmetric positive semi-definite,

q ∈ ker(K)⇐⇒ q ∈ ker(K1) and q ∈ ker(K2).

By design {w1,w2,w3} are in the kernel of K1. By direct computation, they are
also in the kernel of K2. We now show that the kernel of K2 is exactly equal
to the span of {w1,w2,w3}. Since we exclude the case of all nodes in a line,
the span of {w1,w2,w3} is three dimensional. We complete {w1,w2,w3} with
2n− 3 vectors {w4, . . . ,w2n} from the canonical basis of R2n making sure that
we have 2n linearly independent vectors. It is then easy to check that

K2vi �= 0 ∀i ≥ 4

and so the kernel of K2 and therefore the kernel of K is exactly spanned by
{w1,w2,w3}. �
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Summary. In this paper we present some additional results regarding the pumping-
damping strategy for swinging up a pendulum introduced in [3]. Here, the family of
energy functions is enlarged and the corresponding pumping-damping functions are
proposed giving rise to new smooth controllers that swing up and stabilize the pen-
dulum. Furthermore, a generalization of the stability criterion is introduced for this
larger class of controllers.

Keywords: Pendulum, Shaping Hamiltonians, Swing-up, Energy management.

1 Introduction

The family of the inverted pendula has attracted the attention of control re-
searchers in recent decades as a benchmark for testing and evaluating a wide
range of classical and contemporary nonlinear control methods. As it is well
known the inverted pendulum displays two main problems: swinging up the
pendulum to the upright position and stabilizing it in this position once it is
reached. The classical solution to this problem is given in [4], and is based on
energy considerations. However, this solution is a hybrid one. A main challenge
for the control community has been to find a single smooth law that copes with
the global problem of leading the pendulum from the hanging position (or any
other initial state, both in position and velocity) to the upright one. A solution
to that problem is given in [2, 3]. In the present paper we generalize the results
of [3] to a larger class of energy functions and pumping-damping strategies.

We consider the simplest version of the pendulum [4]: the control action is
the acceleration of the pivot and, thus, a 2-dimensional model is used. Here, we
return to the idea of [3]. First, an energy shaping control law is designed in such a
way that: 1) the closed-loop energy presents a minimum at the desired position;
and 2) the energy shaping controller is globally defined. Since the chosen target
energy has other minima different than the desired equilibrium, a combination
of energy dissipation (damping) and injection (pumping) is needed in order to

F. Bullo et al. (Eds.): Lag. & Hamil. Methods for Nonlin. Ctrl., LNCIS 366, pp. 341–352, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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globally stabilize the origin. To that end an oval closed curve circumscribing
about the region where pumping is needed was introduced in [3] for a quite
simple case. The resultant law is smooth, no commutations are needed, and the
origin of the final closed-loop system is almost-globally asymptotically stable.
In this paper, we enlarge the family of controllers based on these ideas, giving
several examples of control laws that fulfil the control objective and we broaden
also the pumping-damping strategies with the new concept of circumscribing
ovals.

The paper is organized as follows. Section 2 presents a family of suitable target
energy functions for the pendulum, as well as the pumping-damping idea. In
Section 3, several examples of controllers belonging to the family are presented.
In Section 4 a stability criterion which generalices the one in [3] is introduced.
The paper closes with a Section of conclusions.

2 Energy Shaping and Pumping-Damping

The normalized model of the pendulum system is

ẋ1 = x2
ẋ2 = sinx1 − u cosx1,

(1)

being x1 the angular position of the pendulum (the origin at the upright position)
and x2 the velocity, so it is defined on the manifold S ×R.

To design a controller for the swing up problem the potential energy shaping
method is used. For the moment we will focus in the choice of the energy function
and, thus, a conservative target system will be chosen, leaving for later damping-
pumping addition. For this, consider the desired system

ẋ1 = x2
ẋ2 = −V ′

d(x1),
(2)

which is a Hamiltonian system with Hamiltonian function

Hd(x1, x2) = Vd(x1) +
x2

2

2
, (3)

where Vd should have a single minimum at the desired upright position. Thus, we
should impose that V ′

d(0) = 0, V ′′
d (0) > 0, and for symmetry reasons, Vd(x1) =

Vd(−x1).
To solve the matching problem of (1) and (2) a good choice of V ′

d , in order to
avoid the division by cosx1, is

V ′
d = − sinx1 + β(x1) cosx1, (4)

and then, u = β(x1).
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π
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Fig. 1. Main properties shared by the Vd belonging to the family (5)

A family of functions Vd that fulfills these conditions for appropriate values
of parameters ai is given by

Vd = a0 + cosx1 − a2 cos2 x1 − a3 cos3 x1 − · · · , (5)

which yields

V ′
d = − sin x1 + sin x1 cos x1(2a2 + 3a3 cos x1 + ...), (6)

and therefore β(x1) = sinx1(2a2 +3a3 cosx1 + ...) to match expression (5) with
(4). It should be noted that function Hd given by (3) and (5) is conservative for
system (1) with u = β(x1).

The simplest case of this family is obtained by taking a0 = −1/4a, a2 = a
and ak = 0, ∀k > 2, which leads to

Vd(x1) = cosx1 − a cos2 x1 −
1
4a

. (7)

and then to the feedback law

u = ues = 2a sinx1, (8)

where the notation ues has been introduced in order to point out that this is an
energy-shaping control law. This controller is studied in [3].

We consider now the problem of the choice of the energy variation strategy.
Notice that a pure damping control law would not work. To see this, consider
the shape of any Vd belonging to family (5). It can be seen that it displays the
traits shown in Fig. 1. This means the there is at least a maximum at x1 = x0

1 in
the interval (0, π/2) (resp. (−π/2, 0)). These maxima will give rise to saddles in
the energy function (3). Out of the interval (−x0

1, x
0
1) there must exist at least

one minima (see Fig. 1). With pure damping strategies, these extra minima give
rise to undesired attraction basins, which we will call in the sequel “undesirable
wells” in the energy landscape, because they preclude the global nature of the
stability of the equilibrium at the upright position.

To overcome the difficulty with the undesirable wells we propose a strategy
that consists in pumping energy to make the trajectories to leave them. This
strategy is discussed in the following.
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System (1) has as passive output y = −x2 cosx1. This means that taking as
input u = −kay the system behaves in such a way that Hd decreases. However
our goal is to increase Hd in the regions where pumping of energy is needed.
Therefore we should modulate the sign of ka according needs.

If we make u = ues +upd (where upd stands for pumping-damping) in (1), the
instantaneous energy variation is given by

Ḣd = −x2upd cosx1. (9)

We take ka = bF (x1, x2) where b > 0 and function F is negative in the region of
the state space where we want to pump energy into the system and positive where
we desire to damp the system. Then, upd = bx2F (x1, x2) cosx1, and therefore
the control law is

u = β(x1)︸ ︷︷ ︸
ues

+ bx2F (x1, x2) cosx1︸ ︷︷ ︸
upd

. (10)

The first term of this controller can be interpreted as a nonlinear spring and we
can therefore call it the “spring term”. This term makes the pendulum to behave
conservative. The second one is the pumping-damping term. In the next Section
the problem of choosing appropriate F functions for different Vd is discussed.

3 Different Choices of the Energy Function

In this Section three concrete cases for the energy function Vd are considered.
All the cases are based on the same idea: first, an Vd belonging to the family (5)
and with a minimum at the origin is chosen; then a control law is defined with
the following structure:

u = ues + bx2F (x1, x2) cos x1, (11)

where ues shapes the energy in order to obtain the corresponding

Hd(x1, x2) = Vd +
x2

2

2
, (12)

and F (x1, x2) = 0 is an appropriated oval that circumscribes about the bound-
aries of the undesirable wells introduced by the shape of Vd. Parameter b > 0
defines the amount of energy that is pumped or damped.

3.1 A Case with Three Wells

Consider the following potential energy function that belongs to the family (5)

VdA(x1) = − cos 3x1

3
− 1

3
= cos x1 − 4

3
cos3 x1 − 1

3
, (13)

which is shown in Fig. 2. It can be seen that it has three minima. The central
one corresponds to the desired position and the other two are undesirable. The
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Fig. 3. Curve x2
2
2 + VdA(x1, x2) = 0. In solid the boundaries of the undesirable wells.

constant term in this function has been chosen so that the undesirable wells are
bounded by HdA = VdA + x2

2/2 = 0. These boundaries are shown in Fig. 3.
VdA of Eq. (13) yields

uesA = 4 cosx1 sinx1 = 2 sin 2x1, (14)

that accomplishes the matching goal.
Note in Fig. 3 that neither of the undesirable wells contains the hanging posi-

tion, which is an unstable equilibrium of saddle type. This fact induces a differ-
ence with respect to the case studied in [3]: Here the equilibrium (x1, x2) = (π, 0)
is a saddle even in absence of pumping-damping, while in [3] this equilibrium is
a center for b = 0 and unstable for b �= 0.

In order to find a curve that circumscribes about the undesirable wells we
choose a family of curves of the form

x2
2

2
+ α0 + α1 cosx1 + α2 cos2 x1 = 0. (15)

Imposing that the curve passes through the points (π/3, 0) and (π, 0) and that
the curve is tangent to x2

2/2 + VdA = 0 we obtain:

FA(x1, x2) =
x2

2

2
− 1 + cosx1 + 2 cos2 x1 (16)
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Fig. 4. Shape of FA = 0 (dashed) circumscribing about the boundaries of the unde-
sirable wells associated with the curve x2

2/2 + VdA(x1) = 0 (solid)
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Fig. 5. Results of two simulations corresponding to controller (17) with b = 0.4

The curve FA = 0 is represented in Fig. 4. With respect to [3], a term in cos2 x1
has been added to shape appropriately the oval.

Therefore, we propose a controller such as (11) that now becomes

u = 2a sin 2x1 + bx2FA(x1, x2) cosx1, (17)

with FA given by (16).
Simulations show the good performance of this controller (Fig. 5). If the initial

condition is the hanging position at rest, this controller does not need energy
injection (as does the one in [3]) for leaving this hanging position, as shown in
the simulation that appears on the right of Fig. 5.

Remark 1. Other choices of circumscribing curves are possible. For example
(Fig. 6)

F̃A(x1, x2) = cosx1 −
1
2

+
2x2

2

3
, (18)

which corresponds to α2 = 0, and remembers the ovals used in [3]. Simulations
show that this controller works satisfactorily. However, it will be seen below that
in this case the stability criteria proposed in the current paper does not guaranty
stability. This fact justifies the inclusion of the term cos2 x1 in F .
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3.2 A Case with Asymmetrical Undesirable Wells

Another interesting Vd (represented in Fig. 7) is obtained by the choice a0 =
−
√

2/6, a3 = 8/3 and a2k+1 = 0, ∀k �= 0 in (5), which gives [1]

VdB (x1) = cosx1 −
8
3

cos3 x1 −
√

2
6

. (19)

As before, the term a0 has been chosen so that the undesirable wells are bounded
by VdB = 0. In this last case the matching yields

uesB = 4 sin 2x1. (20)

The shape of VdB is shown in Fig. 7. It displays two undesirable wells that
are asymmetrical, in the sense that the maximum values at both sides of the
undesirable wells are different.

The asymmetry of the undesirable wells leads to the fact that, in absence
of pumping and damping, their boundaries are no more heteroclinic orbits but
homoclinic ones (Fig. 8). Figure 8 shows that the closed curve defined by

x2
2

2
− 4 +

√
2

6
+

1 + 2
√

2
3

cos x1 +
2
√

2 + 8
3

cos2 x1 = 0, (21)
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−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x1/π

x
2

Fig. 8. Curves x2
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−1 −0.5 0 0.5 1
−2

−1

0

1

2

x
1
/π

x 2

0 5 10 15 20 25
−5

0

5

Time

u

Fig. 9. Results of a simulation corresponding to the case (20)–(21) with b = 0.4

circumscribes about the two undesirable wells. It is worthy to note that in this
case the circumscribing curve is split in two, one for each well.

As before, simulations show the good performance of this controller (Fig. 9).

3.3 A More Sophisticated Case

Many other Vd belonging to the same family can be conceived. Recalling (5),
this expression can be rewritten as

Vd = a0 + cosx1 − cos2 x1(a2 + a3 cosx1 + · · · , )

therefore
Vd = a0 + cosx1 − cos2 x1f(cosx1)

where f(y) has to be chosen such that Vd has the appropriate shape (a minimum
at the desired upright position) and it has a series expansion of the form

f(y) = b0 + b1y + b2y
2 + · · ·

For instance, f(y) = exp(y)(1 + y) yields

VdC = cos x1 − cos2 x1 exp(cos x1)(1 + cos x1) − 0.1497, (22)

which is shown in Fig. 10. With VdC and applying the same procedure as before
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u = sinx1 exp(cosx1)(2 + 4 cosx1 + cosx2
1)

+ bx2FC(x1, x2) cosx1, (23)

where a reasonable oval circumscribing about the only undesirable well is given by

FC(x1, x2) = 2x2
2 + 4 cosx1 − 1. (24)

Figure 12 shows the good results for two simulations of the system with the
resultant control law.
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Fig. 12. Example of trajectory (top) and control signal (bottom) showing the good
behavior of controller (23-24) with b = 1.75



350 J. Aracil, F. Gordillo, and K.J. Åström

4 A Stability Criterion

The stability criterion presented in [3] for the concrete case studied there, is
generalized here for the whole family of energy functions (5) considered in the
current paper. For each Vd(x1, x2) having a minimum at the origin, the cor-
responding F (x1, x2) is chosen in such a way that it circumscribes about the
undesirable wells. Once function F is chosen, the following functions can be
defined:

• ϕH(x1) (with x1 ∈ [0, π]) as the x2 coordinate of the upper curve defined by
H(x1, x2) = V (x1) + x2

2/2 = 0. For the values of x1 where no value of x2
satisfies this last expression, take ϕH(x1) = 0.

• ϕF (x1) as the x2 coordinate of the upper curve defined by F (x1, x2) = 0.
This curve will only be defined in some set Ω. Let Ω̄ be the complement set
of Ω in [0, π], that is Ω̄ = [0, π]\Ω.

•

Φ =
�

Ω̄

ϕH(x1) cos2(x1)F (x1, ϕH(x1))dx1

+
�

Ω

ϕF (x1) cos2(x1)F (x1, ϕH(x1))dx1 (25)

Theorem 1. Consider system (1) with control law (11) and F defined in such
a way that F = 0 circumscribes about the boundaries of the undesirable wells.
The origin is almost-globally asymptotically stable if Φ > 0.

Proof. : Only a sketch of the proof is given here1. Due to the pumping mechanism
inside the ovals, it is easy to see that trajectories go out of the undesirable wells.
Consider a trajectory once out of any undesirable well. It can reach the desired
well or turn around the manifold S ×R. In the first case, asymptotic stability is
guaranteed by Lyapunov theory. In the second case, we can compute the energy
balance through a 2π turn. From Eq. (9) the energy change along such a turn is
given by

∆Hd(x1, x2) = −
∫ π

−π

bx2 cos2 x1F (x1, x2)dx1,

where ∆Hd is the net energy loss along a 2π cycle of x1. It can be shown that
∆Hd > Φ, because Φ, according to its definition in (25), gives a conservative
measure of the bounds of the net energy loss during a 2π cycle (for details, see
[3]). This measure is conservative in the sense that energy injection is overesti-
mated, while damping is underestimated. In consequence Φ > 0 means that the
dissipation is higher than energy injection, and so the trajectory in the state
space shrinks until it reaches the central well where stability is guaranteed by
Lyapunov theory.
1 We are considering only the case where, in the definition of Φ, Ω = [0, π] and

consequently Ω̄ = Ø. The case where Ω̄ �= Ø is a little more involved but leads to
the same conclusions.
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Table 1 shows the corresponding values of Φ for the examples given above.
As was said before, stability is not guaranteed for the third case in this table,
since for this case Φ < 0, in spite of the fact that the system seems to be
stable by simulation. This fact shows the conservativeness of the criterion. In
any case, the corresponding controller was included just for illustrative purposes
since it is clearly outperformed by the ones corresponding to line 2 in Table
1. For the rest of the proposed controllers Theorem 1 guarantees stability. An
open problem is the performance comparison of the different choices for potential
energy functions as well as for the circumscribing ovals.

Table 1. Values of Φ for the examples of Sect 3

Vd(x1) F (x1, x2) Φ

Vd in [3] F in [3] 0.0598
with a = 1

VdA Eq. (13) FA Eq. (16) 1.9846
VdA Eq. (13) F̃A Eq. (18) −0.4481
VdB Eq. (19) FB Eq. (21) 7.0034
VdC Eq. (22) FC Eq. (24) 28.3871

5 Conclusions

In this paper a further elaboration of the approach to the swing up problem
of the inverted pendulum introduced in [3] is presented. Te approach is based
in a two step procedure. First a feedback law is applied such that the desired
equilibria becomes stable although not asymptotically stable. However, this in-
troduces more equilibria in the closed loop system. Then, the damping term is
added to introduce damping around the desired equilibrium to change it from
being stable to being asymptotically stable; and moreover, negative damping
(energy pumping) is introduced in the region around the undesirable equilibria
to make them unstable. In this way a single controller is obtained that swings up
the pendulum and stabilizes it from almost all initial conditions (positions and
velocities). In the present paper the results of the previous one are extended to
a wider class of energy functions. Furthermore, a new concept of circumscribing
ovals is introduced that considerably deepens the approach. For these energy
functions and circumscribing ovals a stability criterion is stated that generalices
the one of [3]. Four different controllers based on this approach are included in
the paper.
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1 Introduction

Recently, the investigation of design approaches to nonlinear control, which can
thoroughly exploit the structure and the properties of the physical systems, has
been given much attention due to the designed controllers with relatively simple
form and effective operation. And it has been shown that for the mechanical
and electromechnical systems, by incorporating the Hamiltonian structure into
passivity-based control design techniques, the controllers based on physical con-
siderations can be obtained [1],[2],[3]. This design idea has been successfully re-
alized in the control of power systems and a lot of achievements have been gotten
(see e.g. [1]-[9]). In [4], the fact that the power system with excitation control is
a Hamiltonian structure is exploited by selecting a storage function constructed
by system potential and kinetic energy and an appropriate passivating output on
the basis of physical arguments. Along this research line, the excitation control
problem for multi-machine power systems has been investigated in [5],[6]. More-
over, an adaptive L2 disturbance attenuation controller based on Hamiltonian
structure has been provided for power systems in [7].

However, the selected storage function does not necessarily have a minimum
at the desired equilibrium, or the stability region at the desired equilibrium is
not large enough for the requirement of the transient stability of power system.
In this case, it is required by injecting damping and pre-feedback to shape the
energy function with the modified function such that the closed-loop system has
dissipative Hamiltonian structure and the stability region is enlarged. This tech-
nique is called interconnection and damping assignment passivity-based control
(IDA-PBC) in [3]. The IDA-PBC design method is applied to the single excita-
tion loop problem of power system in [8] and the excitation and governor dual

F. Bullo et al. (Eds.): Lag. & Hamil. Methods for Nonlin. Ctrl., LNCIS 366, pp. 353–364, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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loop control problem in [9]. It should be noted that in IDA-PBC design tech-
nique, the energy shaping is achieved by modifying the pattern of energy transfer
between the mechanical and the electrical components of the system and assign-
ing the damping in the electrical dynamic description, not directly assigning the
mechanical damping in the swing equation. While, the damping coefficient in
the swing equation just is an important factor influencing the transient stability
of the power system.

Motivated by this intuition, in this paper a novel energy-shaping design
method, called an energy-shaping with direct mechanical damping injection ap-
proach, is provided for enhancing the transient stability of power systems. The
main feature of this method is that a compensation damping is directly injected
into the mechanical damping in the swing equation. The adjusted parameters
of the designed controller have directly corresponding relation to the physical
meaning of the mechanical damping and electrical damping of power system,
and the mechanical damping and electrical damping are assigned separately by
selecting an appropriate output regulation variable. The remaining of the pa-
per is organized as follows. The problem is descried in section 2. In section 3,
a direct mechanical damping assignment method is presented to design an exci-
tation controller. The design idea of direct mechanical damping injection is also
extended to the adaptive excitation controller for power system with transmis-
sion line faults and parameters uncertainties. Simulation results for four cases
with different three phase short circuit fault and the unknown perturbation in
the mechanical power are given in section 4. A comparison with the results via
the controller designed in [8] is also provided. Concluding remarks follow in final
section.

2 Problem Description

For the clarification of the design idea, a single-machine infinite-bus system with
the excitation control is considered, which is described as [10]⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

δ̇ = ωsωr

ω̇r =
1
M
{−Dωr + Pm − Pe(t)}

Ė′
q =

1
Td0

{
−XdΣ

X ′
dΣ

E′
q +

Xd −X ′
d

X ′
dΣ

Vs cos δ + uf

} (1)

where Pe(t) is the active electrical power delivered by the generator, which is
given by

Pe(t) =
Vs

X ′
dΣ

E′
q sin δ − V 2

s

2
Xq −X ′

d

XqΣX ′
dΣ

sin 2δ

δ(t) denotes the rotor angle of the generator, ωr(t) the relative angular speed of
the generator, ωs the synchronous rotating speed. E′

q(t) is the q axis transient
potential, Vs the voltage at the infinite bus. Pm is the turbine mechanical input
power. D is the damping constant, M the inertia constant. XdΣ = Xd+XT +XL
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is the total reactance which takes into account the direct axis reactance of the
generator Xd, the reactance of the transmission line XL and the reactance of
the transformer XT . X ′

dΣ = X ′
d + XT + XL with X ′

d denoting the direct axis
transient reactance of the generator. XqΣ = Xq +XT +XL with Xq denoting the
generator q axis transient reactance. Td0 is time constant of the field winding.
uf is the control input of the SCR amplifier of the generator.

Due to the excitation control considered only, the mechanical power Pm is
assumed to be a constant in the nominal model (1). If (δs, ωrs, E

′
qs) denotes the

operating equilibrium of the system, it satisfies the following condition

ωrs = 0, Pes = a1E
′
qs sin δs − a2 sin 2δs = Pm, ufs = bE′

qs − c cos δs (2)

where

a1 =
Vs

X ′
dΣ

, a2 =
V 2

s

2
Xq −X ′

d

XqΣX ′
dΣ

, b =
XdΣ

X ′
dΣ

, c =
Xd −X ′

d

X ′
dΣ

Vs

ufs is the static value of the excitation control. For the simplification of descrip-
tion, the system (1) can be rewritten as the following form⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

δ̇ = ωsωr

ω̇r =
1
M
{−Dωr + Pm − Pe0 − a1(E′

q − E′
qs) sin δ}

Ė′
q =

1
Td0

{
−bE′

q + c cos δ + uf

} (3)

where Pe0 = a1E
′
qs sin δ − a2 sin 2δ.

Note that δs ∈ (0, π
2 ) and there is another unstable equilibrium point

(δu, 0, E′
qs) with sin δu = sin δs for the system (1), which may be close to the

stable one making the stability region very small. From the characteristic of
the system (3) it can be seen that if there exists an excitation controller not
only compensating the damping of the electrical dynamics (namely increasing
the coefficient b) but directly assigning the mechanical damping (increasing the
coefficient D), the system will have better dynamic properties and large stabil-
ity margin. And in this case, the tuning parameters of the controller will have
directly corresponding relation to the desired mechanical damping and electrical
damping of the system.

Therefore, an objective of this paper is to provide a design method with direct
mechanical damping injection to excitation controller uf = α(δ, ωr, E

′
q) such that

the resulting closed-loop system has large asymptotical stability region at the
desired equilibrium (δs, ωs, E

′
qs).

In addition, it is probable in practice that there exist short circuits fault in
the transmission line and perturbation in the mechanical power. When the short
circuits fault occurs in the transmission line, the transmission reactance XL

varied causes the variation of parameters a1, a2, b and c. It can be seen from (2)
that the variation of the system parameters will cause the equilibrium to shift,
so that the generator may be driven to be unstable, loss of synchronous. When
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the parameter uncertainties are considered, let θ1 = a1, θ2 = a2, θ3 = b, θ4 = c,
then, the system (1) can be rewritten as the following⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

δ̇ = ωsωr

ω̇r =
1
M
{Pm −Dωr − θ1E

′
q sin δ + θ2 sin 2δ}

Ė′
q =

1
Td0

{
−θ3E

′
q + θ4 cos δ + uf

} (4)

Therefore, the other objective of this paper is to solve the problem of the
transient stabilization for the system (4) with the unknown parameters θi, (i =
1, 2, 3, 4, 5), θ5 = Pm, which can be formulated as follows: with help of the
method of energy-shaping with direct mechanical damping injection, to design
an adaptive excitation controller{

uf = α(δ, ωr, E
′
q, θ̂)

˙̂
θ = β(δ, ωr, E

′
q, θ̂)

(5)

such that the resulting closed-loop system is Lyapunov stable at the only equi-
librium (δs, ωs, E

′
qs, θ̂s) and δ → δs, ω → ωs, E′

q → E′
qs as t → ∞, where θ̂ is

the estimate of θ = [θ1 θ2 θ3 θ4 Pm]T .

3 Design with Direct Mechanical Damping Injection

First, an energy-shaping with direct mechanical damping injection approach will
be presented to derive an excitation controller for the system (3).

One output regulation variable y is defined

y = −a1(E′
q − E′

qs) sin δ + KDωr (6)

with the tuning parameter KD > 0, then, the subsystem (δ, ωr) of (3) is equiv-
alent to the following form⎧⎨⎩

δ̇ = ωsωr

ω̇r =
1
M
{Pm − Pe0 − (D + KD)ωr + y} (7)

It is seen that KD is directly added into the term of the mechanical damping,
tuning KD is equivalent to directly assigning the mechanical damping D. And
the dynamics of the output variable y is described as the following form

ẏ = −a1 sin δ

Td0
(−bE′

q + c cos δ + uf )− a1∆E′
qωsωr cos δ

+
KD

M
{Pm − Pe0 − (D + KD)ωr + y}

(8)

with ∆E′
q = E′

q − E′
qs.
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It is well known [10] that for the second order swing equation of power system
the classical transient energy function consists of the kinetic and potential energy
of the system, i.e.

W (δ, ωr) =
1
2
Mωsω

2
r +
∫ δ

δs

(Pe − Pm)dδ (9)

Thus, for the power system with excitation control law, a candidate of storage
function is constructed as the following form

H(δ, ωr, E
′
q) =

1
2
Mωsω

2
r +
∫ δ

δs

(Pe0 − Pm)dδ +
1
2
y2 (10)

Then, let the system state variable x = [δ ωr y]T , the partial differential of H
along the state variable x can be calculated as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂H

∂δ
= Pe0 − Pm

∂H

∂ωr
= Mωsωr

∂H

∂y
= y

(11)

Motivated by the design idea of the passivity-based control with Hamiltonian
system structure, the objective is to find a excitation control law such that the
resulting closed-loop system has the Hamiltonian structure with Hamiltonian
function H as (10), i.e. the resulting closed-loop system can be represented as
the form

ẋ = [J(x) −R(x)]
∂H

∂x
(x) (12)

where H(x) is the desired total energy function, which has a minimum at the
desired equilibrium xs = (δs, ωrs, E

′
qs), J(x) = −JT (x) and R(x) = RT (x) ≥

0 are some desired interconnection and damping matrices, respectively. Thus,
choose the interconnection and damping matrices J(x), R(x) as

J(x) =

⎡⎢⎢⎢⎢⎣
0

1
M

0

− 1
M

0
1
M

0 − 1
M

0

⎤⎥⎥⎥⎥⎦ , R(x) =

⎡⎢⎣ 0 0 0

0
D + KD

M2ωs
0

0 0 Ky

⎤⎥⎦ (13)

with the tuning parameter Ky > 0, then, the subsystem (δ, ωr) (7) can be
represented as ⎧⎪⎪⎨⎪⎪⎩

δ̇ =
1
M

∂H

∂ωr

ω̇r = − 1
M

∂H

∂δ
− D+KD

M2ωs

∂H

∂ωr
+

1
M

∂H

∂y

(14)
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and the dynamics of y is described as

ẏ = − 1
M

∂H

∂ωr
− 1

M

∂H

∂y
= −ωsωr −Kyy (15)

It is noted that tuning Ky can directly play a role to improve the dynamic
property of y(E′

q).
Further, from comparison (8) with (15), it follows that the excitation control

law can be chosen as

uf = bE′
q − c cos δ +

Td0

a1 sin δ

{
ωsωr − a1∆E′

qωsωr cos δ

+
KD

M
[Pm − Pe0 − (D + KD)ωr + y] + Kyy

} (16)

such that the model (12) is matched with an energy function of the form (10).
Therefore, the following conclusion can be reached:

Proposition 1. For the system (1), if the state feedback excitation controller
is designed as (16) with the tuning parameters KD and Ky for the mechan-
ical damping and electrical damping, the resulting closed loop system takes
the form (12), (13) and is asymptotically stable at the desired equilibrium
xs = (δs, ωrs, E

′
qs), J(x) = −JT (x) with Lyapunov function H as form (10).

Proof. From the above analysis, it follows that with the choices of J(x), R(x) in
(13) the closed loop system consisting of (1) with (16) matches the model (12).
Hence, along the trajectories of (12), the time derivative of the Hamiltonian
function H constructed as the form (10) satisfies the following equality

Ḣ(δ, ωr, E
′
q) = −∂T H

∂x
R(x)

∂H

∂x
= −(D + KD)ωsω

2
r −Kyy

2 (17)

H plays the role of Lyapunov function, which ensures the Lyapunove stability
at the point (ωr = 0, y = 0).

Furthermore, from LaSalle invariance principle, it follows that ωr → 0 and
y → 0 as t→∞. Then, by the definition of y, E′

q → E′
qs as t→∞.

On the other hand, from the dynamical description of (1) with (16), it follows
that Pm = a1E

′
qs sin δ − a2 sin 2δ as t → ∞. This means that δ → δs from the

equilibrium condition. Hence, the result is concluded that the closed-loop system
is asymptotically stable at the equilibrium (δs, 0, E′

qs) as t→∞. �

Remark 1. It should be noted that the distinguishing feature of the proposed
design method is the mechanical damping compensation is feeded back to the
excitation loop and the mechanical and electrical damping can be separately
arbitrarily assigned.

Remark 2. Based on the above design idea, by modifying the output regulation
variable

y = −θ̂1(E′
q − E′

qs) sin δ + KDωr (18)
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an adaptive excitation controller can be designed as

uf = θ̂3E
′
q−θ̂4 cos δ+

Td0

θ̂1 sin δ

{
KD

M
[P̂m−θ̂1E

′
q sin δ+θ̂2 sin 2δ−Dωr]

+ωsωr− ˙̂
1θ∆E′

q sin δ−θ̂1∆E′
qωsωr cos δ+Kyy

}
(19)

˙̂
θ1 =− 1

r1

(
ωsωr+

KD

M
y

)
E′

q sin δ,
˙̂
θ2=

1
r2

KD

M
y sin 2δ (20)

˙̂
θ3 =

1
r3Td0

yθ̂1E
′
q sin δ,

˙̂
θ4=− 1

2r4Td0
yθ̂1 sin 2δ, ˙̂

Pm=
1
r5

KD

M
y (21)

with the Lyapunov function constructed as

V (δ, ωr, E
′
q, θ̂) = H(δ, ωr, E

′
q) +

1
2
(θ − θ̂)T Γ (θ − θ̂) (22)

such that the closed loop system is locally Lyapunov stable at the unknown
equilibrium (δs, ωrs, E

′
qs) (δs < π

2 ), and δ → δs, ωrs → 0, E′
q → E′

qs as t→∞.

4 Simulation Research and Results

The physical parameters of the power system employed for the simulation re-
search are given as follows:

ωs = 1, D = 0.1, M = 7, Td0 = 8, Vs = 0.995,
Xd = 1.8, X ′

d = 0.3, Xq = 1.76, XT = 0.15, Xl1 = 0.5, Xl2 = 0.93.

and XL, XdΣ, X ′
dΣ, XqΣ can be calculated as

XL = 0.3252, XdΣ = 2.2752, X ′
dΣ = 0.7752, XqΣ = 2.2352

The fault considered in simulations is a symmetrical three phase short circuit
fault which occurs on one of the transmission lines. The following four cases with
different fault sequences and the unknown perturbation in the mechanical power
are discussed.

Case 1. Temporary Fault. The system is in a pre-fault steady state, a short
circuit fault occurs at t = 0.5s on the transmission line Xl2,, the fault is removed
by opening the breakers of the faulted line at t = 0.7s, the transmission line is
restored at t = 2s and the system is in a post-fault state.

Case 2. Permanent Fault. The system is in a pre-fault steady state, a short
circuit fault occurs at t = 0.5s on the transmission line Xl2, the fault is removed
by opening the breakers of the faulted line at t = 0.7s, the system is in a post-
fault state.

Case 3. Temporary Fault and Unknown Perturbation. The system is in a pre-
fault steady state, a short circuit fault occurs at t = 0.5s on the transmission line
Xl1, the fault is removed by opening the breakers of the faulted line at t = 0.7s,



360 X. Jiao, Y. Sun, and T. Shen

0 10 20 30 40
1.18

1.2

1.22

1.24

1.26
angle δ [rad]

0 10 20 30 40
−0.01

0

0.01

0.02
angle speed ω−ω

s
 [p.u.]

0 10 20 30 40

0.95

1

1.05

transient potential E’
q
 [p.u.] 

0 10 20 30 40
1

1.05

1.1

1.15
terminal voltage V

t
 [p.u.]

0 10 20 30 40
1.8

2

2.2

2.4

2.6

control law u

Fig. 1. Responses for case 1 with temporary fault in transmission line

the transmission line is restored at t = 2s and the system is in a post-fault
state. Meanwhile, there exists a perturbation in the mechanical power between
t = 0.5s and t = 1s.

Case 4. Temporary Fault and Turbine Failure. The system is in a pre-fault
steady state, a short circuit fault occurs at t = 0.5s on the transmission line
Xl1, the fault is removed by opening the breakers of the faulted line at t = 0.7s,
the transmission line is restored at t = 2s and the system is in a post-fault state.
Meanwhile, sudden turbine failure happens at t = 0.5s and the fault is not
recovered so that the mechanical power abruptly change to an unknown value.

By employing the proposed excitation control law, we obtained the follow-
ing simulation results, which are shown as the solid curves in Fig.1-4. In the
simulation, the tuning parameters of the proposed controller are chosen as
KD = 4, Ky = 2. Moreover, for comparison, the results via the controller
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Fig. 2. Responses for case 2 with permanent fault in transmission line

designed in [8] are also given as the dash curves in Fig.1-4. The Hamiltonian
function and the excitation controller are designed in [8] as follows:

H2(δ, ωr, E
′
q) =

1
2
Mωsω

2
r + Pm(δs − δ) + a1E

′
q(cos δs − cos δ)

+
1
2
a2(cos 2δ − cos 2δs) +

a1b

2c
(E′

q − E′
qs)

2 + Φ(δ, E′
q)

+α1a1

{
δ cos δs − sin δ +

b

c
δ(E′

q − E′
qs +

α1

2
δ)
} (23)

with

Φ(δ, E′
q) = −α1a1b

c
δs[α1(δ − δs) + (E′

q − E′
qs)] +

γ

2α2
1
[α1(δ − δs) + (E′

q − E′
qs)]

2
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Fig. 3. Responses for case 3 with temporary fault and unknown perturbation

uf2 =bE′
qs−c cos δs−

1
T ′

d0

{
ra1(cos δs−cos δ)+(rα2+

γ

α2
1

c

a1T ′
d0

)(E′
q−E′

qs)

+α1ωsωr+(r+
c

a1T ′
d0

)α1α2(δ−δs)
}

(24)

where the tuning parameters r > 0, α1 > 0 and α2 = γ
α2

1
+ a1b

c . In the simulation,
the tuning parameters of the proposed controller are chosen as r = 0.4, α1 =
1, γ = 15.

From the simulation results shown in Fig.1-4, it can be concluded that
1. The excitation controller proposed in this paper can effectively improve

transient stability of the power system. The system can keep transiently stable
even in the case where a large sudden variation occurs in the transmission line
and there exists a large amount of the uncertainty in the parameters of power
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Fig. 4. Responses for case 4 with temporary fault and turbine failure

system, such as in case 2 and case 4. While under case 2 and case 4, the system
forced by the excitation controller designed in [8] is unstable.

2. The excitation controller proposed in this paper can achieve better dynamic
properties, i.e. the control law rendering the system to converge quickly to a
stable equilibrium point, irrespective of the operating equilibrium point of the
system and the fault sequence.

5 Conclusions

A novel energy-shaping with direct mechanical damping injection design method
is provided for control of power systems. The main feature of this method is that
the mechanical damping and electrical damping are separately assigned so that
the tuning parameters of the proposed controller have directly corresponding
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relation to the assigned coefficients of the mechanical damping and electrical
damping. The theoretical analysis and simulation results all show that the ex-
citation controller designed by the proposed method can enlarge the stability
region of the closed-loop equilibrium and improves the dynamical properties of
the system.
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Summary. A particular family of Hamiltonian functions is considered. Such functions
are quadratic in the moment variables and arise in spaceflight mechanics when the av-
eraged system of energy minimizing trajectories of the Kepler equation is computed.
An important issue of perturbation theory and averaging is to provide integrable ap-
proximations of nonlinear systems. It turns out that such integrability properties hold
here.

Keywords: Controlled Kepler equation, averaging, quadratic Hamiltonians, Rieman-
nian problems.

1 Introduction

As explained in [4], the energy minimizing trajectories of the controlled Kepler
equation [7] can be approximated by trajectories of an averaged system. The
coplanar single-input system we consider is

q̈ = −µ
q

r3 + u
q̇

|q̇| (1)

for the energy performance index
∫ tf

0 |u|2 → min, where q is the position vector
in R2 and r the radius (q2

1 + q2
2)

1/2. Except in §5 where the real system is
considered for the numerical computations, the gravitation constant µ will be
normalized to one in the text. In accordance with (1), the thrust is directed
along the speed q̇—that is tangential—, and if we restrict ourselves to bounded
trajectories, the state space in coordinates (q, q̇) is the four-dimensional manifold
Q = {r > 0, q̇2/2 − 1/r < 0}. Like the system with two inputs, this single-
input model is shown to be controllable and is physically important since it
is interpretated as the limit of cone-constrained problems where the control
has to remain in a cone directed by the velocity of the spacecraft. In modern
applications such as low-thrust orbit transfer [7], controls are very small and act
as perturbations not only in (1), but also in the Hamiltonian system provided by
Pontryagin maximum principle and describing the extremals with respect to the
energy criterion. Such a point of view is standard in celestial mechanics, see for
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instance [9]. In the framework of Hamiltonian systems, one defines the averaged
dynamical system [1] to retrieve the action of the perturbation up to first order.

The averaging process is presented in §2. Then we recall in §3 how a Rieman-
nian control problem can be associated with a Hamiltonian such as the averaged
one, which is quadratic in the moment variable p. Averaging is intended to pro-
vide an integrable approximation of the perturbation of an integrable system,
here the coplanar Kepler equations. Integrability of the canonical equations is
addressed in §4, first for a two-dimensional subsystem, then for the full system
with three degrees of freedom. We end by providing in §5 energy minimizing
trajectories obtained by continuation from the averaged system.

2 Averaged System

Defining the feedback u′ = u/|v| where v stands for q̇, the system (1) is written
as an affine single-input control one,

ẋ = F0(x) + u′F1(x), (2)

where x is the state (q, q̇), and where

F0 = − q

r3

∂

∂v
, F1 = v

∂

∂v
·

Computing Lie brackets of the two vector fields up to length three, one checks
that [5]

[F0, F1] = −v
∂

∂q
− q

r3

∂

∂v
,

[F1, [F0, F1]] = −F0,

[F0, [F0, F1]] =
2q
r3

∂

∂q
+

2
r5

[
(2q2

1 − q2
2)v1 + 3q1q2v2

] ∂

∂v1

+
2
r5

[
3q1q2v1 + (2q2

2 − q2
1)v2

] ∂

∂v2
·

Hence, F0, F1, [F0, F1] and [F0, [F0, F1]] form a frame, and the system, whose
drift F0 is periodic, is controllable [8]. So as to perform averaging, we change
coordinates and replace the cartesian ones by an angle, the longitude l, together
with three first integrals of the unperturbed motion: x = (l, n, e, ω) where n is
the mean movement, e the eccentricity, and ω the argument of pericenter (see,
e.g., [9]). The mean movement, the eccentricity and the argument of pericenter
define the geometry of the osculating elliptic orbit, while the longitude represents
the position on the ellipse. In these coordinates, Q = {n > 0, e < 1}, and

l̇ =
n[1 + e cos(l − ω)]2

(1− e2)3/2 ,

in order that trajectories can be reparameterized by the cumulated longitude.
Before doing so, we consider the system (2) with performance index
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∫ tf

0
u2dt =

∫ tf

0
u′2|v|2dt→ min,

fixed endpoints, and free final time tf . More precisely, the final cumulated lon-
gitude, l ∈ R, is fixed to lf . For lf big enough, there are admissible trajecto-
ries. Indeed, since the system is controllable, there are trajectories such that
l(tf ) = lf mod 2π. Then, setting the control to zero, n, e and ω remain un-
changed while the longitude is increased until it reaches the desired lf .

Proposition 1. The problem of the minimization of energy with fixed cumulated
longitude and free final time admits no abnormal extremals.

Proof. The Hamiltonian of the problem is H = p0u′2v2 + H0 + u′H1. For an
abnormal extremal, p0 is zero, and H1 = 0 because of the maximization con-
dition of Pontryagin maximum principle. Then, by differentiation, {H0, H1} =
{H0, {H0, H1}} + u′{H1, {H0, H1}} = 0. Since the final time is free, H = 0 so
that H0 is also zero. As [F1, [F0, F1]] is colinear to F0, {H1, {H0, H1}} is also
zero. Using the fact that F0, F1, [F0, F1] and [F0, [F0, F1]] form a frame, we get
the contradiction. �

It is shown in [4] that, up to a renormalization, the averaged Hamiltonian asso-
ciated to normal extremals of the system reparameterized by longitude is

H =
1

2n5/3

[
n2p2

n +
4
9

(1− e2)3/2

1 + (1− e2)1/2 p2
e +

4
9

1− e2

1 + (1− e2)1/2

p2
ω

e2

]
, (3)

which defines a quadratic form of full rank with respect to the moment p. The
underlying Riemannian problem is presented in the next section.

3 Associated Riemannian Metric

The averaged system can be seen as a rotating deformable solid. The first and
second coordinates define the geometry of the solid, an ellipse of given eccen-
tricity e and semi-major axis a (a3n2 = 1)—actually, up to a homothety, the
geometry is defined by e alone—, while the third one, ω, fixes the angle of rota-
tion around its center. As we are now going to see, the system is associated with
the Riemannian problem whose distribution is

ṅ = u1n
1/6,

ė = u2
g(e)1/2

n5/6 ,

ω̇ = u3
k(e)1/2

n5/6 ,

so that the cyclicity of ω implies that there is coupling between the deformation
and the rotation: the geometry acts on the rotation, not the converse.
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The averaged Hamiltonian is clearly normalized to

H(q, p) =
1
2
xα
(
x2p2

x + g(y)p2
y + k(y)p2

z

)
(4)

setting α = −5/3, g(y) = (4/9)(1 − y2)3/2/[1 + (1 − y2)1/2], and k(y) =
[4/(9e2)](1− y2)/[1 + (1− y2)1/2].

Remark 1. In the case of two controls, when the direction of the thrust is not
prescribed anymore, the averaged Hamiltonian obtained in [3] also belongs to
the same class, still with α = −5/3.

For α not zero, the Hamiltonian (4) defines a quadratic form in p parameterized
by q = (x, y, z) in Q = {x > 0}, and this form can be written as a sum of squares
[3]. The task is straightforward here since we have orthogonal coordinates [2], in
order that

H =
1
2

3∑
i=1

Pi(q, p)2

with Pi = 〈p, Fi(q)〉, i = 1, . . . , 3, F1 = x1+α/2∂/∂x, F2 = xα/2g1/2(y)∂/∂y, and
F3 = xα/2k1/2(y)∂/∂z. Hence, H can be seen as the Hamiltonian associated with
the Riemannian problem [6] with dynamics q̇ =

∑3
i=1 uiFi(q), u = (u1, u2, u3)

in R3, and criterion
∫ tf

0 |u|2dt→ min with prescribed final time (again denoted
tf for the sake of simplicity). Writing the dynamics q̇ = B(q)u, one has |u|2 =(
(BBT )−1(q)q̇|q̇

)
and the Riemannian metric is

ds2 =
1
xα

(
dx2

x2 +
dy2

g(y)
+

dz2

k(y)

)
. (5)

As z is a cyclic coordinate of the Hamiltonian, the system can be restricted to the
two-dimensional subspace Q0 = Q∩ {z = 0}. We start by studying integrability
on this subspace.

4 Integrability

We first compute a normal form of the metric.

Lemma 1. A normal form for the metric (5) of the full system is

ds2 = du2 + u2
(

dv2 +
dw2

l(v)

)
.

Proof. Consider the change of coordinates defined by u = −2/(αxα/2), v = ϕ(y),
w = z, where ϕ is the quadrature

ϕ =
|α|
2

∫
dy

g1/2(y)
·

Letting l = (4/α2)k ◦ ϕ−1, one gets the desired expression. �
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Corollary 1. A normal form of the Hamiltonian is

H =
1
2
p2

u +
1
u2H2

with H2 = (1/2)(p2
v + l(v)p2

w).

Restricted to Q0 = Q ∩ {w = 0} and {pw = 0}, the Hamiltonian becomes
H = (1/2)(p2

u + 1
u2 p2

v) and the metric is in polar form, ds2 = du2 + u2dv2. It
is clearly isometric to the flat metric in dimension two so that, in coordinates
u cos v, u sin v, the proposition hereafter holds.

Proposition 2. The geodesics of the two-dimensional subsystem are straight
lines.

Using the complex notation c = c1t + c2 to parameterize such lines, we are
able to write the geodesics in the original coordinates, x = [4/(α2|c|2)]1/α, y =
ϕ−1(arg(c)). We address now integrability of the system in dimension three.

Our first step is to reduce the analysis to the study of the Liouville metric [2]
ds2 = dv2 + dw2/l(v). To this end, we have the following lemma.

Lemma 2. The squared coordinate u2 is a polynomial of degree two in t.

Proof. The canonical equations in (u, pu) are u̇ = ∂H/∂pu = pu and ṗu =
−∂H/∂u = 2H2/u

3. As a result, d(upu)/dt = p2
u +2H2/u

2 that is equal to twice
the Hamiltonian. Then, d2u2/dt2 = 4H , whence the conclusion. �

The main result follows.

Proposition 3. The full three-dimensional system is integrable by quadratures.

Proof. The two variables u, pu are computed thanks to the previous lemma. If we
reparameterize the system in the remaining terms according to the time change
dτ = dt/u2, we obtain the canonical equations of the auxiliary Hamiltonian H2 =
(1/2)(p2

v + l(v)p2
w) with two degrees of freedom. Since w is a cyclic coordinate,

pw is a first integral in involution with H2 which is then integrable by Liouville
theorem. �

Remark 2. The metric associated with H2, ds2 = dv2 + dw2/l(v), is a Liouville
metric, that is a metric of the form (f(x) + g(y))(dx2 + dy2) since

ds2 = l−1(v)
[
(l1/2dv)2 + dw2

]
.

As such, it is known to be integrable [2]. Moreover, the relevant quadrature is
obviously deduced from the canonical equations:

v̇2 + l(v)p2
w = constant.

Remark 3. Liouville integrability is also obtained by noting that H , H2 and pw

are three independent first integrals in involution.
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In summary, the three quadratures used to integrate the whole system are:

ϕ =
|α|
2

∫
dy

g1/2(y)
,

τ =
∫

dt

u2(t)
,

ψ =
∫

dv

(1 − bl(v))1/2 ,

where u2 is a degree two polynomial in t, l = k◦ϕ−1 and b a constant. We end the
paper by expliciting some of this computations for the application considered.

5 Numerical Results

According to the previous sections, the whole system is integrable and the two-
dimensional subsystem1 is flat. The first quadrature can be explicitly computed,

ϕ(e) =
5
4
arcsin[1− 2(1− e2)1/2], (6)

as well as the associated coordinates on Q0.
Namely, in dimension two,

n = n = (5|c|/6)6/5, (7)

e = ±
[
1− (1− sin((4/5) arg c))2

4

]1/2

, (8)

where c = c1t+c2 is, as in §4, a complex polynomial of degree one in t. Equation
(8) is multiform because the quadrature (6) defines a diffeomorphism either of
]−1, 0[ or ]0, 1[ to ]−5π/8, 5π/8[. Even in the two-dimensional case, contact with
the boundary of Q0 may occur, either with the parabolic boundary {e = 1},
or with {n = 0} (see [3] for a discussion in the two-input situation). We do
not touch this point here and restrict ourselves to complete geodesics. Clearly
then, when t → ∞, n → n∞ = ∞ (that is a → 0, a semi-major axis) and
e → e∞ = ±[1 − (1/4) (1− sin((4/5) arg∞))2]1/2, where arg∞ = arg c1 when
c1 is not zero, arg c2 otherwise (stationary case). This asymptotic behaviour is
summarized in the last proposition.

Table 1. Boundary conditions

Variable Initial cond. Final cond.
n 5.2475e − 1 h−1 2.6251e − 1 h−1

e 0.75 0
ω 0 rad 0 rad

1 This subsystem is important in practice since it corresponds to transfers towards
circular orbits.
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Fig. 1. Energy minimizing transfer towards the geostationary orbit, final time tf =
19.290 hours. The trajectory is the solid line that osculates the dashed intermediary
orbits of the averaged system.

−80 −60 −40 −20 0 20 40 60
−50

−40

−30

−20

−10

0

10

20

30

40

50

q
1

q 2

Fig. 2. Energy minimizing transfer towards the geostationary orbit, final time tf =
77.160 hours (solid line)
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Fig. 3. Energy minimizing transfer towards the geostationary orbit, final time tf =
154.32 hours (solid line)

Proposition 4. The (non-stationary) complete trajectories of the two-dimen-
sional system converge to a collision with a limit value of the eccentricity.

We end the section with numerical results. Using the boundary conditions of ta-
ble 1, the analytical solution of the two-dimensional averaged subsystem is used
to initialize the computation of energy minimizing trajectories of Kepler equa-
tion (1) by a standard shooting method. The gravitation constant is the Earth
constant, µ = 5165.8620912 Mm3·h−2, and the target is the geostationary orbit
(the initial orbit around the Earth is taken low and eccentric). Results are given
for different values of the fixed final time at figures 1 to 3. As the transfer time
increases, there are more and more revolutions that osculate intermediate orbits
of the averaged motion with a growing accuracy, thus illustrating convergence
towards the averaged problem.

References

1. V. I. Arnold. Mathematical Methods of Classical Mechanics. Springer-Verlag, New-
York, 1978.

2. A. V. Bolsinov and A. T. Fomenko. Integrable geodesics flows on two dimensional
surfaces. Kluwer, New-York, 2000.

3. B. Bonnard and J.-B. Caillau. Riemannian metric of the averaged energy minimiza-
tion problem in orbital transfer with low thrust. Ann. Inst. H. Poincaré Anal. Non
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Summary. In this paper we analyze the equations of motion of a submerged rigid
body. Our motivation is based on recent developments done in trajectory design for
this problem. Our goal is to relate some properties of singular extremals to the ex-
istence of decoupling vector fields. The ideas displayed in this paper can be viewed
as a starting point to a geometric formulation of the trajectory design problem for
mechanical systems with potential and external forces.

Keywords: Submerged Rigid Body, Decoupling Vector Fields, Singular Trajectories.

1 Introduction

A very important class of control systems, even though they are non-generic, is
the class of controlled mechanical systems. Examples of these systems include the
planar rigid body with a single variable direction thruster, the snakeboard, and
underwater vehicles; see for instance [2, 9, 11]. We are interested in trajectory
design problems for such systems.

All the computations in this paper are carried out on the following system:
a controlled submerged rigid body. This application is particularly well adapted
to our analysis for several reasons. First, there is a clear practical motivation
coming from the recent trend to build autonomous underwater vehicles. The
authors are currently working on implementing their techniques on a real vehi-
cle, see [8]. The other reasons are more mathematically oriented. An underwater
vehicle can be modeled as a simple mechanical control system, i.e. coming from
a Lagrangian of the form kinetic minus potential energy, with dissipative forces.
The uncontrolled dissipative forces reflect the damping of the system, and the
restoring forces are represented in the potential forces. The corresponding sys-
tem, when neglecting the external forces, has been extensively studied and thus
serves as a good starting point for our analysis, see [3] and references therein.
Clearly, the external forces introduce additional challenges for the trajectory
design problem.

In [6, 7], we develop a numerical algorithm to compute time efficient trajec-
tories for a controlled submerged rigid body that can be implemented on a real
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vehicle. The motivation and discussion of this algorithm are application oriented.
We call our algorithm the Switching Time Parametrization Algorithm (STPA).
These papers are application oriented. In [8] we describe experiments on a real
vehicle based on this algorithm. The experiments are performed at the Univer-
sity of Hawaii in collaboration with the Autonomous System Laboratory from
the College of Engineering. A major goal is to establish a mathematical formu-
lation of the STPA based on the differential geometric properties of the system;
such as the notion of decoupling vector fields. This paper initiates a discussion
in that direction.

The key notions involved in the discussions of this paper are the ones of decou-
pling vector fields for invariant systems on a Lie group, namely the configuration
space of a rigid body SE(3), and the notion of singular extremals coming from
optimal control. Our analysis is based on [1, 3, 4] for the notion of decoupling
vector fields and on [5, 9] for the properties of singular extremals in our appli-
cation.

The outline of this paper is as follows. In Section 2 we introduce the equa-
tions of motion for a controlled submerged rigid body. Section 3 introduces the
definition of decoupling vector fields for an invariant system on a Lie group, and
we recall the results for a controlled rigid body when neglecting the external
forces. Section 4 is concerned with the application of the maximum principle to
our situation and the properties of singular extremals. Our main contribution is
in Section 5 where we relate the two notions introduced before.

2 Equations of Motion for Underwater Vehicles

Due to subtle differences in notation and reference frames, we include a short
derivation of the equations of motion for a controlled rigid body immersed in
a real fluid. By real fluid we mean an ideal fluid which is not inviscid. Notice
that a real fluid is assumed to be irrotational but that from a practical point
of view a viscous fluid is rotational: the definition of a real fluid used in this
paper is introduced for theoretical reasons. This concise derivation is based on
the equations found in [10].

We will identify the position and orientation of the rigid body, with respect to
the inertial frame, with an element (b, R) of the Special Euclidean group of order
3; (b, R) ∈ SE(3). We take b = (x, y, z)t ∈ R3 to denote the position vector for
the origin of the body frame, and R ∈ SO(3) as the rotation matrix describing
the orientation of the body. The translational and angular velocities in the body-
fixed frame are denoted by ν = (u, v, w)t and Ω = (p, q, r)t respectively. It follows
that the kinematic equations for a rigid body are given by

ḃ = Rν and Ṙ = R Ω̂, (1)

where the operator̂ : R3 → so(3) is defined by ŷ z = y × z; so(3) being the
space of 3 × 3 skew-symmetric matrices. By letting p be the total translational
momentum, and π the total angular momentum in the inertial frame, and P,Π
be the respective quantities in the body-fixed frame, we get that p = RP and
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π = RΠ + b̂ p. Differentiating the later two expressions, we express the dynamic
equations of motion with the following:

Ṗ = P̂ Ω + F (2)

Π̇ = Π̂Ω + P̂ ν +
k∑

i=1

(Rt(xi − b))×Rtfi + τ (3)

where F = Rt(
∑k

i=1 fi), τ = Rt(
∑l

i=1 τi) represent the external forces and
torques in the body-fixed frame, and xi is the vector from the origin of the
inertial frame to the line of action of the force fi. Next, we compute the total
kinetic energy of the system in order to express equations (2) and (3) in terms
of linear and angular velocities. To this end, we note that the kinetic energy of
the body, Tbody, is given by

Tbody =
1
2

(
v
Ω

)t(
mI3 −mr̂CG

mr̂CG Jb

)(
v
Ω

)
(4)

where m is the mass of the rigid body, I3 is the 3× 3-identity matrix and rCG is
a vector that denotes the location of the body’s center of gravity with respect to
the origin of the body-fixed frame. The matrix Jb represents the body moments
of inertia. Based on Kirchhoff’s equations we have that the kinetic energy of the
fluid, Tfluid, is given by:

Tfluid =
1
2

(
v
Ω

)t(
Mf Ct

f

Cf Jf

)(
v
Ω

)
(5)

where Mf , Jf and Cf are respectively referred to as the added mass coefficients,
the added moments of inertia coefficients and the added cross-terms. These co-
efficients depend on the fluid’s density and on the vehicle’s shape. By adding the
above relations as shown, the total kinetic energy is given by:

Tbody + Tfluid = T =
1
2

(
v
Ω

)t

I

(
v
Ω

)
, (6)

I =
(

mI3 + Mf −mr̂CG + Ct
f

mr̂CG + Cf Jb + Jf

)
(7)

where I =
(

I11 I12
It
12 I22

)
. Which we can simplify into:

T =
1
2
(νt I11 ν + 2Ωt It

12 ν + Ωt I22 Ω). (8)

Here we add the assumption that b, the origin of the body-fixed frame, is located
at CG; equivalently, r̂CG = 0. We assume the body has three planes of symme-
try. Hence choosing the body axes to coincide with the principal axes of inertia
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implies that Jb, Mf and Jf are diagonal, while Cf is zero. This leads to P =
(mI3 + Mf )ν = Mν and Π = (Jb + Jf )Ω = JΩ. It follows from equations (2)
and (3) that Mν̇ = Mν ×Ω + F and JΩ̇ = JΩ ×Ω + Mν × ν +

∑k
i=1(R

t(xi −
b)) × Rtfi + τ , where the terms Mν × Ω, JΩ × Ω and Mν × ν account for
the Coriolis and centripetal effects. The Coriolis and centripetal effects seen
in the above equations can also be expressed in terms of ∇; the Levi-Civita
affine-connection for the Riemannian metric induced by the kinetic energy T .
Explicitly, if γ(t) = (b(t), R(t)) is a curve in SE(3), and γ′(t) = (ν(t), Ω(t)) is its
pseudo-velocity (1), then

∇γ′γ′ =
(

ν̇ + M−1
(
Ω ×Mν

)
Ω̇ + J−1

(
Ω × JΩ + ν ×Mν

)) . (9)

Let us now discuss the external forces acting on a submerged rigid body. We
assume that the vehicle is neutrally buoyant, which means that the buoyancy
force and the gravitational force cancel each other. Since the origin of the body-
fixed frame is CG, the only restoring force acting on the vehicle is the torque
from the buoyancy force induced upon listing, rCB × RtρgVk. Here rCB is the
vector from CG to CB , where ρ is the fluid density, g the acceleration of gravity,
V the volume of fluid displaced by the rigid body and k the unit vector pointing
in the direction of gravity. Additional hydrodynamic forces experienced by the
rigid body are due to drag effects. We make the assumption that we have a drag
force Dν(ν) and a drag momentum DΩ(Ω) quadratic in the velocities and we
neglect the off-diagonal terms. We summarize our computations in the following
definition.

Definition 1. Under our assumptions, the equations of motion, in the body-fixed
frame, for a rigid body submerged in a real fluid are given by:

Mν̇ = Mν ×Ω + Dν(ν)ν + F

JΩ̇ = JΩ ×Ω + Mν × ν

+ DΩ(Ω)Ω − rCB ×RtρgVk + τ

(10)

where M accounts for the mass of the rigid body and the added mass coefficients,
J accounts for the body moments of inertia and the added moments of inertia
coefficients. The matrices Dν(ν), DΩ(Ω) represent respectively the drag force
and momentum, while the restoring force acting on the body is due to the torque
induced by the buoyancy force. Finally, F = (f1, f2, f3)t and τ = (τ1, τ2, τ3)t

account for the control.

Section 3 of this paper deals with the geometric properties of the system. In
that section the domain of control is assumed to be unbounded, thus allowing
us to identify some important geometric structures. Once these structures are
identified, we will discard the unbounded assumption since the controls repre-
sent forces with limited power, such as thrusters. Subsequent sections will, for
simplicity, assume the domain of control to be F = {f ∈ R3 | −1 ≤ f1,2,3 ≤ 1},
T = {τ ∈ R3 | −1 ≤ τ1,2,3 ≤ 1}. An admissible control is a measurable bounded
function ϕ : [0, T ]→ U = F × T .
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A final remark concerns the equations of motion of a rigid body moving in the
air. In this case, the dissipation term due to the drag and the restoring forces are
negligible. Moreover, since the density of air is much smaller than that of water
we can neglect the terms due to the added mass tensor. We are then left with
the well known equations of motion of a rigid body moving in the air. These
equations can serve as a first approximation when considering a real fluid.

3 Affine-Connection Control Systems and Decoupling
Vector Fields

Together, equations (1) and (10) form a first-order affine control system on the
tangent bundle T SE(3) that represents the second-order forced affine-connection
control system on SE(3)

∇γ′γ′ =
(

M−1
(
Dν(ν)ν + F

)
J−1
(
DΩ(Ω)Ω − rCB ×RtρgVk + τ

)) . (11)

In the absence of a restoring force rCB ×Rtρg∇k, a drag momentum DΩ(Ω)Ω,
and a drag force Dν(ν)ν the equations of motion (11) represent a left-invariant
affine-connection control system on the Lie group SE(3),

∇γ′γ′ =
(

M−1F
J−1τ

)
. (12)

Definition 2. An affine-connection control system on a manifold Q is deter-
mined by an affine-connection, ∇, and a constant-rank distribution Y ⊂ TQ. A
trajectory for the system is a curve γ : [0, T ]→ Q such that γ′ : [0, T ]→ TQ is
absolutely continuous, γ′(0) = 0 ∈ Tγ(0)Q, and ∇γ′(t)γ

′(t) ∈ Yγ(t) for almost all
t ∈ [0, T ].

A common presentation for such a system is ∇γ′(t)γ
′(t) =

∑k
a=1 ua(t)Ya(γ(t)),

where u1(t), . . . , uk(t) are measurable controls and Y1, . . . , Yk are independent
vector-fields on Q that span Y.

Just as equation (11) on SE(3) is equivalent to equations (1) and (10) on
T SE(3), an affine-connection control system on Q is equivalent to an affine
control system on TQ. The equivalence is realized via the geodesic spray of an
affine-connection and the vertical lift of tangent vectors to Q.

Definition 3. Let v ∈ TqQ ⊂ TQ, then the vertical lift at v is a map vlftv :
TqQ→ TvTQ. For w ∈ TqQ, we define vlftv(w) = d

dt (v+tw)|t=0. In components,

vlftv(w) =
(

0
w

)
∈ TvTQ.

Definition 4. The geodesic spray of ∇ is the vector field S, on TQ, that gener-
ates geodesic flow. Specifically, for v ∈ TqQ, S(v) = d

dtγ
′
v(t)|t=0 where γv is the

unique ∇-geodesic such that γv(0) = q and γ′
v(0) = v.
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In the special case of our Levi-Civita connection (9),

S(b, R, ν,Ω) =

⎛⎜⎜⎝
ν
Ω

−M−1
(
Ω ×Mν

)
−J−1

(
Ω × JΩ + ν ×Mν

)
⎞⎟⎟⎠ .

For this presentation of S(b, R, ν,Ω), the components are expressed relative to
the standard left-invariant basis of vector fields on T SE(3) rather than coordi-
nate vector fields. Equation (1) can be used to recover expressions for ḃ and Ṙ.

Given an affine-connection control system ∇γ′γ′ =
∑k

a=1 ua(t)Ya(γ(t)) on
Q, we associate to it the following affine control system: Υ ′(t) = S(Υ (t)) +∑k

a=1 ua(t) vlft(Ya) on TQ. In [3, p224] the authors show that trajectories for the
affine-connection control system on Q map bijectively to trajectories for the affine
control system on TQ whose initial points lie on the zero-section. The bijection
maps the trajectory γ : [0, T ]→ Q to the trajectory Υ = γ′ : [0, T ]→ TQ.

Definition 5. A decoupling vector field for an affine-connection control sys-
tem is a vector field V on Q having the property that every reparametrized
integral curve for V is a trajectory for the affine-connection control system.
More precisely, let γ : [0, S] → Q be a solution for γ′(s) = V (γ(s)) and let
s : [0, T ] → [0, S] satisfy s(0) = s′(0) = s′(T ) = 0, s(T ) = S, s′(t) > 0
for t ∈ (0, T ), and (γ ◦ s)′ : [0, T ] → TQ is absolutely continuous. Then
γ ◦ s : [0, T ]→ Q is a trajectory for the affine-connection control system.

A necessary and sufficient condition for V to be a decoupling vector field is that
both V and ∇V V are sections of Y [3, p. 426]. Notice that if Y = TQ then
every vector field is a decoupling vector field, and if Y = Span{Y } then V is a
decoupling vector field if and only if both V and ∇V V are multiples of Y .

Decoupling vector fields for an under-actuated system (12) are analyzed in
[4]. In the under-actuated setting, decoupling vector fields are found by solving
a system of homogeneous quadratic polynomials in several variables. For our
model, the control forces F = (f1, f2, f3)t and τ = (τ1, τ2, τ3)t are unconstrained;
the model is a fully-actuated affine-connection control system. In this case there
are no quadratic polynomials to solve and every left-invariant vector field is a
decoupling vector field. Something interesting can occur, however, when we seek
single-input subsystems that admit a decoupling vector field. Let us start with
a single-input affine-connection control system, where the input vector field is
Y = (F, τ)t. As mentioned above, to be decoupling for Y = Span {Y } a vector
field V , as well as ∇V V , must be a multiple of Y .

Proposition 1. Let ∇ be the affine connection (9) and consider the single input
affine-connection control system ∇γ′γ′ = u(t)Y (γ(t)), where Y = (F, τ)t. Then
V = (F, τ)t is a decoupling vector field for Y if and only if V is a multiple
of (ei, ei)t, where e1, e2, e3 is the standard basis for R3, or all but one of its
components are zero.
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Proof. The conditions for V to be decoupling eventually reduce to finding an
eigenvector belonging to a real eigenvalue for the following matrix:(

−τ̂ 0
−F̂ −τ̂

)(
M 0
0 J

)(
F
τ

)
= λ

(
M 0
0 J

)(
F
τ

)
. (13)

It is equivalent to −τ̂MF = λMF and −F̂MF − τ̂ Jτ = λJτ . Since λ is real
and τ̂ is skew-symmetric, λ = 0. If F is zero, we have that τ̂ Jτ = τ × Jτ = 0.
We see that V = (0, τ)t will be a decoupling vector field for Y = (0, τ)t provided
τ is an eigenvector for J . Similarly, when τ = 0, then we must have λ = 0
and F̂MF = F × MF = 0. We see that V = (F, 0)t will be a decoupling
vector field for Y = (F, 0)t provided F is an eigenvector for M . Since M and
J are diagonal matrices, the eigenvectors are precisely those for which all but
one of {f1, f2, f3, τ1, τ2, τ3} are zero. Assume now F �= 0. It follows that MF =
µτ where µ is some constant and −F̂MF − τ̂ Jτ = 0. This last equality is
equivalent to τ × (Jτ − µF ) = 0 or in other words Jτ − µF = ατ where α is
a constant. By using the two previous relations between F and τ , we have that
(J −µ2M−1)τ = ατ . Since J −µ2M−1 is diagonal, τ is an eigenvector if all but
one of its component are zero. The same is deduced them for F .

We note that if we consider the case when all but one of the {f1, f2, f3, τ1, τ2, τ3}
are zero, these decoupling vector fields are exactly the pure motions for a rigid
body moving in air, and were investigated in [7].

4 Singular Extremals

Our goal is to establish a relation between singular extremals arising in optimal
control and the conditions for a vector field to be decoupling. To this end, we
first recall the notion of singular extremals.

Consider the minimum time problem for a controlled submerged rigid body.
We assume the domain of control to be as stated in Section 2. Since the neces-
sary conditions of the maximum principle are local, we assume the equations of
motion expressed in local coordinates found in [7].

We introduce ψ, a triple of Euler angles for R ∈ SO(3); η = (b, ψ), local
coordinates for (b, R) ∈ SE(3); χ = (η, ν,Ω), local coordinates for T SE(3); and
let χ0 = χ(0) and χT = χ(T ) be the initial and final states for our submerged
rigid body. We let Θ be the 3 × 3 matrix for which ψ̇ = ΘΩ and, as always,
ḃ = Rν. Note first, that the equations of motion derived in the previous section
can be written as an affine control system:

χ̇(t) = Y0(χ(t)) +
6∑

i=1

Yi(t)ϕi(t) (14)

where ϕ = (F, τ)t is the control and the drift Y0 is given by
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Y0 =

⎛⎜⎜⎝
Rν
ΘΩ

M−1[Mν ×Ω + Dν(ν)ν]
J−1a41

⎞⎟⎟⎠ (15)

with a41 = JΩ × Ω + Mν × ν + DΩ(Ω)Ω − rCB × Rtρg‖. Notice that when
neglecting the external forces, the drift is the geodesic spray. The input vector
fields are given by:

Yi = vlft(I−1
i ) =

⎛⎝ 0
0

I−1
i

⎞⎠ (16)

with I−1
i being the ith column of the matrix I−1 =

(
M−1 0

0 J−1

)
.

Assume that there exists an admissible time-optimal control ϕ : [0, T ] → U ,
such that the corresponding trajectory χ = (η, ν,Ω) is a solution of the equations
of motion, in Section 2, and steers the body from χ0 to χT . The Maximum
Principle, see [12], implies that there exists an absolutely continuous vector λ =
(λη, λν , λΩ) : [0, T ]→ R12, λ(t) �= 0 for all t, such that the following conditions
hold almost everywhere:

η̇ =
∂H

∂λη
, ν̇ =

∂H

∂λν
, Ω̇ =

∂H

∂λΩ
, (17)

λ̇η = −∂H

∂η
, λ̇ν = −∂H

∂ν
, λ̇Ω = −∂H

∂Ω
(18)

where the Hamiltonian function H is given by

H(χ, λ, ϕ) = λt
η(Rν,ΘΩ)t + λt

νM
−1[Mν ×Ω + Dν(ν)ν + F ]

+ λt
ΩJ−1[JΩ ×Ω + Mν × ν + DΩ(Ω)Ω − rCB ×Rtρg∇k + τ ].

Additionally, the maximum condition

H(χ(t), λ(t), ϕ(t)) = max
γ∈U

H(χ(t), λ(t), γ)

holds for almost every t. The maximum of the Hamiltonian is constant along
the solutions of (17), (18) and must satisfy H(χ(t), λ(t), ϕ(t)) = λ0, λ0 ≥ 0. A
triple (χ, λ, ϕ) that satisfies the Maximum Principle is called an extremal, and
the vector function λ is called the adjoint vector.

The component φi, i = 1, . . . , 6, of the vectors λt
νM

−1 and λt
ΩJ−1 are called

the switching functions. The maximum condition, along with the control domain
U and the form of the equations of motion, is equivalent almost everywhere to
ϕi(t) = −1 if φi(t) < 0 and ϕi(t) = +1 if φi(t) > 0 for i = 1, . . . , 6. Notice
that from our assumptions on the fluid and the body, the matrices M and J are
diagonal. It follows that the switching functions are, modulo a constant, the last
six components of the adjoint vector, and are absolutely continuous. Clearly, the
zeros of the switching functions determine the structure of the extremals. We



Controlling a Submerged Rigid Body: A Geometric Analysis 383

are interested in the case when a switching function is identically zero on a non
trivial interval [t1, t2]. We say that the extremal is singular in the corresponding
control on this interval. To compute a singular control ϕi we must differentiate
the switching function φi.

We finish the section with these computations. By construction, we have that
φi(t) = λt(t)Yi. It is then a standard fact that the derivative φ̇i along an extremal
is given by:

φ̇i(t) = λt(t)[Y0, Yi](χ(t)) +
6∑

j=1

λt(t)[Yj , Yi](t)ϕj(t) (19)

where [ , ] denotes the Lie bracket of vector fields. Since the vector fields Yi are
constants, their Lie brackets are zero and the switching functions have absolutely
continuous derivatives: φ̇(t) = λt(t)[Y0, Yi](χ(t)). Differentiating once more, we
obtain

φ̈i(t) = λt(t) ad2
Y0

Yi(χ(t)) +
6∑

j=1

λt(t)[Yj , [Y0, Yi]](χ(t))ϕj(t)

Proposition 2. For a rigid body moving in the air, the following holds:

[Yi, [Y0, Yi]](χ) ≡ 0, i = 1, . . . , 6. (20)

In a real fluid, the previous Lie bracket is not zero but satisfies:

[Yi, [Y0, Yi]](χ) ∈ Span{Yi}, i = 1, . . . , 6. (21)

Proof. A first remark is that only quadratic terms with respect to the velocities
in Y0 can produce a non zero component for [Yj , [Y0, Yi]](χ(t)). Hence we have
that [Yj , [Y0, Yi]](χ) ∈ Span{Y1, . . . , Y6}. Moreover, it is an easy verification that
under our assumptions neither Mν × Ω, JΩ × Ω nor Mν × ν contains terms
of the form u2, v2, w2, p2, q2, r2. We can conclude that for a rigid body moving
in air (or more generally when we neglect the external forces) the Lie brackets
[Yi, [Y0, Yi]](χ) are identically zero for i = 1, . . . , 6. In a real fluid, this deduction
is not possible since the drag terms, as assumed in this paper, will produce a
non zero component. However, it can be verified that in a real fluid the only
non zero component of[Yi, [Y0, Yi]](χ) is a multiple of Yi. Note that the restoring
forces play no role in the value of this Lie bracket.

Equations (20) and (21) can be interpreted in terms of the order of singular
extremals. Along a ϕi-singular arc, let q be such that d2q

dt2q φi is the lowest order
derivative in which ϕi appears explicitly with a nonzero coefficient. We define q
as the order of the singular control ϕi. This definition assumes the well known
result that a singular control ϕi first appears explicitly in an even order derivative
of φi, see [13].
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Proposition 3. Let χ be an extremal that is singular for the component ϕi of the
control while the other ones are bang. Then, for a submerged rigid body moving
in air or in a real fluid, the singular control is of order at least 2.

Proof. Let us assume χ is an extremal that is singular for the component ϕi of
the control while the other ones are constant, i.e. the function φi is identically
zero along the extremal. We can compute the singular control from equation
(20) as long as the term λt[Yi, [Y0, Yi]](χ) is non zero. From Proposition 2, this
Lie bracket is zero for a rigid body moving in air and a multiple of Yi for a real
fluid. Since along the extremal φi = λtYi = 0 the result is true in a real fluid
as well. This means that we must compute at least the fourth derivative of the
switching function to obtain the singular control as a feedback.

5 Main Observation

The main result consists of an observation that suggests directions for further
study. The observation concerns a possible relationship between singular ex-
tremals of order greater than 1 and decoupling vector fields. As seen above, for
a rigid body moving in the air the order of the singular control ϕi is greater
than 1 since it satisfies the condition [Yi, [Y0, Yi]](χ) ≡ 0. Note that this also
implies that Yi is a decoupling vector field for the single-input affine control
system where every control is set to 0 except for ϕi. This last result was already
proved in Proposition 1 using an ad hoc method without referring to singular
extremals or differential geometric properties of the system. To see the relation
between equation 20 and Proposition 1 we note that Yi is the vertical lift of
the control (F, τ) = (0, . . . , 1, . . . , 0), where the 1 is in the ith position. We also
note that for a rigid body moving in the air Y0 (14) is the geodesic spray for
the Levi-Civita affine connection (9). The final ingredient is the easily verifiable
equation [vlft(X), [S, vlft(X)]] = vlft(2∇XX). Hence [Yi, [Y0, Yi]](χ) ≡ 0 says
that ∇YiYi = 0, where we abuse notation by using Yi to also denote the vector
field whose vertical lift is Yi. So Yi being auto-parallel implies that it is decou-
pling and that ϕi has order greater than one. This establishes a relationship
between the condition that V is a decoupling vector field if both V and ∇V V
are sections of Y and Lie bracket properties of singular extremals for the time
minimal problem.

For a forced affine-connection control system, such as a submerged rigid body
in a real fluid, we should be somewhat cautious since the notion of a decou-
pling vector field is not clearly defined. Singular extremals, however, certainly
are and the condition [Yi, [Y0, Yi]](χ) ∈ Span{Yi} still holds in our case. This
perhaps suggests a proper generalization and characterization of the notion of a
decoupling vector field for forced affine-connection control systems.

6 Thanks

The authors would like to warmly thank A.D. Lewis for very illuminating dis-
cussions and suggestions.
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1 Introduction

Hamiltonian control systems [11, 6] are the systems described by Hamilton’s
canonical equations which represent general physical systems. Recently port-
controlled Hamiltonian systems are introduced as a generalization of Hamilto-
nian systems [3]. They can represent not only ordinary mechanical, electrical
and electro-mechanical systems, but also nonholonomic systems [4]. The special
structure of physical systems allows us to utilize the passivity which they in-
nately possess and a lot of fruitful results were obtained so far. These methods
are so called passivity based control [8].

One of the advantages of passivity based control is robustness against physical
parameter variations. Utilizing the intrinsic passive property of physical systems,
it is easy to stabilize the system with few dynamic parameters. In addition, some
optimal gains are clarified to improve transient behavior in the cases of a class
of mechanical Hamiltonian systems [10] and redundant manipulators [9].

On the other hand, when we control a robotic manipulators in practice, these
discussion can be useful only before the settling time. After the manipulator
endpoint converses to the neighborhood of the desired point in free space, the
endpoint interacts with the environment which is not free space any more. This
means that the endlink mass is not constant and the perturbation of the mass
is unknown in the case of unstructured environment. The discussion after the
settling time is required in the case of robotic pick-and-place manipulators apart
from the other Hamiltonian systems, such as magnetic levitation systems and
vehicle systems.

In order to discuss this matter, the concept of the structured singular value is
needed. The structured singular value is a well-known measure of not only the
stability margin for structured uncertainty but also robust performance.

However, unfortunately, the structured singular value can not be expressed
explicitly and not be calculated exactly in general.

F. Bullo et al. (Eds.): Lag. & Hamil. Methods for Nonlin. Ctrl., LNCIS 366, pp. 387–396, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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In this paper, we solve this problem and derive the explicit and exact struc-
tured singular value of robotic manipulators. In Section II, we focus on a dy-
namics with endlink mass perturbation after the settling time. In Section III, as
a main result of this paper, we derive the explicit and exact structured singular
value by using the structural property of the dynamics, In Section IV, quantita-
tively, we analyze the robust stability of passivity based control. In Section V,
we conclude this paper.

2 Port Hamiltonian Systems

2.1 Port Hamiltonian Systems [12]

A port Hamiltonian system with a Hamiltonian H is a system with the following
state-space realization.{

ẋ = J(x, t)∂H
∂x (x, t)T + g(x, t)u

y = g(x, t)T ∂H
∂x (x, t)T (1)

where u, y ∈ Rm, x ∈ Rn and J is skew-symmetric, i.e. J = −JT . Port Hamil-
tonian systems are natural generalization of physical systems. The following
properties of such systems are known.

Lemma 1. [12] Consider the system (1). Suppose Hamiltonian H is lower
bounded and satisfies ∂H/∂t ≤ 0. Then the system is passive with respect to
the storage function H, and the following feedback renders (u, y) → 0. Further-
more, if the system is zero-state detectable, then the following feedback renders
the system asymptotically stable

u = −Cy (2)

where C > 0 is any positive definite matrix.

The zero-state detectability, which is assumed in Lemma 1, does not always
hold for general systems. In such a case, the stabilization method by generalized
canonical transformation [1] is useful.

2.2 Dynamics After Settling

The following Hamiltonian system is considered here.⎧⎪⎨⎪⎩
[
q̇
ṗ

]
=
[

0 I
−I 0

][∂H
∂q

T

∂H
∂p

T

]
+
[
0
I

]
u

y = ∂H
∂p (q, p)T

(3)

with the Hamiltonian

H =
1
2
pT M(q)−1p (4)
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q1

q2

Fig. 1. Two-link manipulator

where M(q) is mass matrix which makes this system equivalent to equations
of motion of robotic manipulators and q, p ∈ Rn are position and momentum,
respectively.

By using the stabilization procedure based on the generalized canonical trans-
formation, the following controller renders (q, p) → (qd, 0).

u = −Cy +
∂U

∂q

T

. (5)

where qd is the desired position and U is a positive definite function with U = 0
at q = qd.

Here, we assume the moment of inertia is linear with respect to the link mass
(homogeneous link) and describe the case of n = 2 shown in Fig.1 for simplicity.
In addition, let U(q) = −(K/2)(q− qd)2 and K and C be diagonal without lose
of generality. From the following process in this paper, we can see there are few
difficulties to extend the results to the more general cases.

After the settling time, the closed-loop system of (6), (7) and (8), which is
nothing but the classical Hamiltonian system,[

q̇
ṗ

]
=
[

0 I
−I −C

]⎡⎣∂(H+U)
∂q

T

∂(H+U)
∂p

T

⎤⎦ ≡ fcl(q, p) (6)

with the Hamiltonian

H =
1
2
pT

[
a + c + 2bcos(q2) c + bcos(q2)

c + bcos(q2) c

]−1

p (7)

can be approximated as the following linearized system around the desired point.

ẋ =
∂fcl

∂x
x ≡ Aclx =

[
0 I2

−ApK −ApC

]
x (8)

where x = (q, p)T and

Ap =

[
c

−ac+b2cos2(qd2)
−(c+bcos(qd2))
−ac+b2cos2(qd2)−(c+bcos(qd2))

−ac+b2cos2(qd2)
a+c+2bcos(qd2)
−ac+b2cos2(qd2)

]
. (9)
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Remark. Acl is NOT constant because the parameters in Ap depend on the
perturbation of the endlink mass m. For example, in the case of two homogeneous
rectangular links with mass mi and moment of inertia Ii, these parameters are⎧⎨⎩

a = I1 + m1r
2
1 + ml21

b = ml1r2
c = I2 + mr2

2

(10)

where li is link length and ri is the distance form the joints to the enter of mass.
See [5] for the details of these physical parameters.

The above stabilization procedure is equivalent to the energy shaping and
damping injection [7]. However, we emphasize the canonical transformation ap-
proach for two reasons. First, we can clearly see that the passivity based control
(5) preserves Hamiltonian structure and the controlled manipulators are noth-
ing but new manipulators with spring and damping (6). This gives an important
interpretation to the following results in this paper. Second, in our next work,
we will extend the following results to tracking and dynamic output feedback
stabilization cases which are the results due to the canonical transformation
approach.

Strictly speaking, the above linearization procedure should be after the Leg-
endre transformation: (q, p)→ (q, q̇), because the state p is the momentum and
depends on the perturbation of the endlink mass m. However results in this
paper are the same because Coriolis and centrifugal forces in ṗ are high-order
nonlinear terms.

3 Exact Structured Singular Value

In this section, as the main result of this paper, we derive an exact and explicit
expression of the structured singular value of the robotic manipulators with
endlink mass perturbation after the settling time.

3.1 Structured Singular Value

Consider the loop shown in Fig.2. For M ∈ Cn×n, structured singular value µ
is defined as

µ∆(M)=
1

min{σ̄(∆)|∆ ∈∆, det(I −M∆)=0} (11)

unless no ∆ ∈∆ makes I −M∆ singular, in which case µ∆ := 0 , where

∆ = {diag(δ1Ir1, ..., δSIrS , ∆1, ..., ∆F ) s.t. δi ∈ C, ∆j ∈ Cmj×mj},
S∑

i=1

ri +
F∑

j=1

mj = n. (12)

The following theorem and lemma are fundamental results of robust linear
control theory.
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Theorem 1. Let b > 0. The loop shown in Fig.2 is well-posed and internally
stable for all ∆(•) ∈M(∆) with ‖∆‖∞ < 1/b if and only if

supω∈R µ∆(M(jω)) ≤ b (13)

where ω is frequency and M(∆) is the set of all block diagonal and stable ratio-
nal transfer functions that have block structures such as ∆.

Lemma 2. The structured singular value is related to the following linear algebra
quantities as

ρ(M) ≤ µ(M) ≤ σ̄(M)) (14)

where ρ(M) is the spectrum radius and σ̄(M) is the largest singular value. The
first equality holds at (S, F ) = (1, 0) and the second equality holds at (S, F ) =
(0, 1).

Unfortunately, in general, the structured singular value can not be expressed ex-
plicitly though the lower bound and the upper bounds in (14) can. Furthermore,
the difference between these bounds can be large arbitrary, so these bounds can
not be used for the estimation. In many practical cases, this difficulty is avoided
by numerical methods, even though we can not yet get the exact structured
singular value due to non-convex optimization problem.

3.2 Exact Structured Singular Value of Robotic Manipulators

In this subsection, we give an explicit and exact structured singular value of the
robotic manipulation system with endlink mass perturbation after the settling
time.

Theorem 2. Suppose the system in (12) has the following the endlink mass
perturbation,

m = m̄ + δm (15)

where m̄ is the nominal endlink mass and δm is the corresponding perturbation.
Then, the structured singular value is explicitly expressed as

µ∆(M) = maxi

∣∣∣∣λi

([
A B
C D

])∣∣∣∣ (16)

where λ(•) is eigenvalue, ∆ = δmI, a = a1m + a2, b = b1m, c = c1m,

A =
[

0 I
−KAs −CAs

]
(17)

B =
[ 1

m̄I 0 0 1
m̄I

0 1
m̄I BsK BsC

BlI 0 0 BlI 0
0 BlI 0 0 0

]
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∆

M  

 

Fig. 2. Closed-loop system with structured uncertainty

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−A
I

−m̄A
m̄I
−m̄2A
m̄2I
−m̄3A
m̄3I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(18)

D=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
m̄I At −BlI −Bt 0 0 0 0
0 0 0 0 0 0 0 0
0 m̄At −m̄BlI −Bt 0 0 0 0
0 I 0 0 0 0 0 0
0 m̄2At c1a1I −m̄Bt 0 0 0 0
0 m̄I 0 I 0 0 0 0
0 m̄3At m̄c1a1I −m̄2Bt I 0 0 0
0 m̄2I 0 m̄I 0 I 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(19)

Before the proof of this theorem, we discuss the guideline. In this proof, we focus
on two special structures of the closed-loop systems. First, the uncertainty of this
robotic manipulation system is structured, that is, the perturbation exist in only
the endlink mass, while the whole system is physically modeled. This means that
if we can pull out the perturbation as ∆ = δmI, the first equality of (14) holds.

Now assume

Acl = Ācl + δmÃcl. (20)

In this case, intuitively, it is easy to give the corresponding M(s) as[
Ācl + Ãcl I

Ãcl 0

]
= Ãcl(sI − (Ācl + Ãcl))−1. (21)

However the elements of Acl in (9) are not affine of m and (20) does not hold.
It is not trivial but difficult to derive the corresponding M(s) to ∆. So, we need
more detail structural property of the closed-loop system.
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Proof of Theorem 2
We focus on a structural property that the parameters in (9) are affine of the
endlink mass:

(a b c) = m(a1 b1 c1) + (a2 0 0), (22)

due to homogeneous links. The elements of Acl are written in rational polynomial
form. This fact implies that the corresponding descriptor form of (9) makes the
elements polynomial form with respect to m as follows,

Edesẋ = Adesx (23)

where

Edes ={(−a1c1 + b2
1cos2(qd2))m2 − a2c1m}I4 ≡ NI4,

Ades = NAcl (24)

In this case, the following relations hold [2],

[Edes Ades] = Fu

(
∆, M̄

)
= Fu

(
∆, S

([
0 I
P Po

]
, M̃

))
where S(•, •) is the star product, Fu(•, •) is the lower linear fractional transfor-
mation and

P = I,
Po = m̄I,
∆ = δmI.

(25)

Now, δms of Acl are successfully pulled out and the corresponding M is given as
follows,

M =
[

E−1
0 A0 E−1

0 M̄21

−M̄12aE
−1
0 A0+M̄12b M̄11−M̄12aE

−1
0 M̄21

]
where E0, A0 are the corresponding nominal values of (23) and

M̄ =
[
M̄11

[
M̄12a M̄12b

]
M̄21 M̄22

]
. (26)

From here, it is a straightforward calculation to confirm

M =
[
A B
C D

]
(27)

with (17), (18), (18) and (19).
Recall that ∆ is the repeated scalar block with only one scalar and the first

equality in (14) holds. That is, the structured singular value is expressed exactly
and explicitly. (Q.E.D.)
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Remark. From the proof procedure, it is clear that this result can be easily
extended to the more general cases such as n ≥ 3 with the other function U ,
such as that of gravity compensator. These cases are omitted here only because
of the space limitation.

Theorem 2 is a very fundamental result in the field of robotics. First, based on
Theorem 2, we can study many problems after the settling time, such as robust
performance in the presence of the perturbation. Second, the structured singular
value with the passivity based control is interpreted as the structured singular
value of manipulator itself, because the passivity based control (5) preserves the
Hamiltonian structure as we see in Section II.

4 Robust Stability Analysis

In this section, as a demonstrative application of Theorem 2, we quantitatively
analyze the robust stability of the passivity based control. As we mentioned in
Section I, the passivity based control is qualitatively said to be robust and there
are some papers of experimental comparison between the conventional control
(e,g. computed torque control) and the passivity based control. However, there
are few papers to discuss the robust stability of the passivity based control

quantitatively and theoretically .
In general, unmodeled dynamics exists in high-frequency region. However, in

Theorem 2, the direct term D of transfer function matrix M(s), is not zero, that
is, M(s) is not strictly proper. This means that the endlink mass perturbation
can lose the robust stability in the high-frequency region.

Now, we focus the following quantity M(∞) = D based on the continuity of
the structured singular value, µ : Cn×n → R.

Theorem 3. Consider the structured singular value (16) of robotic manipulation
system (9) after the settling time. Then, the structured singular value is given as

µ∆(M(∞))=

⎧⎪⎨⎪⎩
1/m̄, cos2(qd2) ≤ r∣∣∣1/(m̄ + a2c1/(a1c1 − b2

1cos2(qd2))
∣∣∣, otherwise.

with
r = c1(2a1 + (a2/m̄))/(2b2

1).

(28)

The size of square matrix D, that is, the order of the characteristic equation of
D is larger than four. Generally we can not derive analytical eigenvalues of the
corresponding large matrices, because we can not solve the m-th (m > 4) order
algebra equations. So, again, we need to focus on structural properties of robotic
manipulators.

Proof of Theorem 3
The structure of D is not triangular but has the same property:

det(D) = det([dij ]) = Πn
i=1 dii. (29)
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This is confirmed as the following. First, by using the following equation, in
repeat,

det(D) = det(Dii)det(Djj −DjiD
−1
jj Dij), (30)

(i, j) =
{
(1, 2) (det(D22) �= 0)
(2, 1) (det(D11) �= 0) , (31)

(30) is reduced to

det(D) = det
(

1
m̄

I

)
det (−m̄BlI) det (0) . (32)

Then, from the structure of BlI, the property (29) is confirmed.
The eigenvalues of matrices with the property (29) is equal to the diagonal

components dii. Now, we can explicitly derive the spectrum of D as{
0, − 1

m̄
, − 1

m̄ + a2c1/(a1c1 − b2
1cos2(qd2))

}
(33)

The remaining parts, such as a calculation of r, are trivial and the proof is
straightforward calculation. (Q.E.D.)

Remark. It is shown that the structured singular value (28) is the same as that
of computed torque controls. That is, the robust stability is independent of the
identified parameter errors in high frequency region. However, in low frequency
region, or the steady-state, the robust stability of computed torque controls
depends on the identified parameters â, b̂, ĉ of (10) as

µ∆(M(0)) = max
{

b̂2cos2(qd2)−âĉ
4k1(−3k2+cos2(qd2))

,

2âĉ−(2b̂2+âĉ)cos2(qd2)+b̂2cos4(qd2)
4k1(−3k2+cos2(qd2))

} (34)

apart from that of passivity based controls:

µ∆(M(0)) = 1
4k1(−3k2+cos2(qd2)) , (35)

where the detail of k1 and k2 are omitted for their uniqueness.
It is an interesting result that the structured singular value (28) does not de-

pend on the controller gains K and C and determined by the only link parameter,
even though M(∞) in (4) depends on the gains. This fact seems to point out
“an importance of link design (mechanical design) more than controller design in
passivity based control”, all the more because the passivity based control utilizes
physical properties of link dynamics more than the computed torque control.

5 Conclusion

In this paper, we derive the explicit and exact structured singular value of robotic
manipulators after the settling time. We derive the exact and explicit structured
singular value by using structural properties. Furthermore, quantitatively, we
analyze the robust stability of the passivity based control.
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Appendix

As = −1
me

[ −c1 b1cos(qd2) + c1

b1cos(qd2) + c1
a2+m̄(a1+c1+2bcos(qd2))

m̄me

]
At =

[
0 I

−KAl −CAl

]
Al = −1

me

[
−c1 b1cos(qd2) + c1

b1cos(qd2) + c1
a2+m̄(a1+c1+2b1cos(qd2))

c1a1−b21cos2(qd2)

]
Bs = 1

m̄me

[
c1 −(b1cos(qd2) + c1)

−(b1cos(qd2) + c1) a1 + c1 + 2bcos(qd2)

]
Bt =

[
0 Bl

0 0

]
Bl = a1c1−b21cos

2(qd2)
m̄me

me = a2c1 + m̄(a1c1 − b2
1cos2(qd2)).



Author Index

Acosta, José Ángel, 147
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