
N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 82–88, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Dynamic Element Retrieval in a Semi-structured
Collection

Carolyn J. Crouch, Donald B. Crouch, Murthy Ganapathibhotla, and Vishal Bakshi

Department of Computer Science
University of Minnesota Duluth

Duluth, MN 55812
(218) 726-7607

ccrouch@d.umn.edu

Abstract. This paper describes our methodology for the dynamic retrieval of
XML elements, an overview of its implementation in a structured environment,
and the challenges introduced by applying it to the INEX Wikipedia [4]
collection, which can more aptly be described as semi-structured. Our system is
based on the vector space model [9] and its basic functions are performed using
the Smart experimental retrieval system [8]. A major change in the system this
year is the incorporation of a method for the dynamic computation of query
term weights [6] to be correlated with the dynamically generated and weighted
element vectors. Dynamic element retrieval requires only a single indexing of
the document collection at the level of the basic indexing node (in this case, the
paragraph). It returns a rank-ordered list of elements equivalent to that produced
by the same query against an all-element index of the collection. (A detailed
description of this method appears in [1].) As we move from a well structured
collection, such as the INEX IEEE documents, to Wikipedia, changes in the
structure of the articles must be accommodated.

1 Introduction

When we began our work with INEX in 2002, our goal was to assess the utility of
Salton’s vector space model [9] for XML retrieval. Familiarity with Smart [8] and
faith in its capabilities led us to believe that this approach was promising if problems
such as flexible retrieval (i.e., retrieval of elements at the desired degree of
granularity) and ranking issues could be resolved. For the past several years, our
research has focused on an approach for the dynamic retrieval of elements which
provides a solution to both these problems.

The evolution of this approach is described in our earlier workshop papers, in
particular [2] and [3]. In dealing with the INEX IEEE collections, we utilized Fox’s
extended vector space model [5], which allows for the incorporation of objective
identifiers (such as date of publication) along with the normal content identifiers in
the representation of a document. The body portion of the document (i.e., its text) is
represented by one of the subjective subvectors in the extended vector representation.

 Dynamic Element Retrieval in a Semi-structured Collection 83

The INEX Wikipedia collection [4] does not carry with it the corresponding
information. Wikipedia articles are easily represented within the traditional vector
space model, as seen below.

In INEX 2006 we use a system which generates and retrieves elements
dynamically and returns a rank-ordered list of elements to the user. Results published
elsewhere have demonstrated the successful utilization of this approach for structured
retrieval [1]. Our current investigations center on how best to employ this approach in
dealing with semi-structured data.

2 Background

This section presents a brief overview of the model and term weighting method upon
which our system is based—i.e., the vector space model and Lnu-ltu term weighting.
Details of this weighting scheme may be found in [10,11]. It is of particular interest in
element retrieval where the elements often vary considerably in length, depending on
type (e.g., paragraph versus section and body). Lnu-ltu weighting attempts to deal
with the ranking issues resulting from disparity in document (element) length. (See
[1] for a more detailed discussion of this issue.)

A basic model in information retrieval is the vector space model [9], wherein
documents and queries are represented as weighted term vectors. The weight
assigned to a term is indicative of the contribution of that term to the meaning of the
document. The similarity between vectors (e.g., document and query) is represented
by the mathematical similarity of the corresponding term vectors.

Of particular interest in this work is the issue of term weighting. We found in
earlier experiments that best results were achieved when Lnu-ltu term weighting [11]
was used with inner product as the similarity measure. Lnu term weights, used for the
element vectors, are defined below:

))__log(1())_log(1(frequencytermaveragefrequencyterm +÷+

))__(()1(pivottermsuniquenumberslopeslope ÷×+−

where tf represents term frequency, slope is an empirically determined constant, and
pivot is the average number of unique terms per document, calculated across the
entire collection. Query terms are weighted using the ltu formula, as follows.

)log())_log(1(knNfrequencyterm ÷×+

__

))__(()1(pivottermsuniquenumberslopeslope ÷×+−

Note that this formula depends both on N (the collection size) and nk (the number of
elements that contain the term).

84 C.J. Crouch et al.

3 System Description

This section describes first the current operation of the system and then a particular
problem of interest that was solved during the past year by Ganapathibhotla—a
method for the dynamic ltu-weighting of the query [6].

3.1 Dynamic Element Retrieval

XML text is processed in this system as follows. The documents are parsed using a
simple XML parser which we wrote. We selected the paragraph—in our view, the
smallest meaningful unit of text—as our basic indexing unit in the early stages of
investigation. Thus a parsing of the documents into paragraphs is produced:
paragraphs and queries are translated into Smart format and indexed by Smart. Lnu-
ltu term weighting is applied. Retrieval takes place by running the ltu-weighted topics
against the Lnu-weighted paragraph indexing of the collection using Smart. The
result is a list of elements (paragraphs) ordered by decreasing similarity to the query.

Consider all the elements in this list having a non-zero correlation with the query.
Each such element represents a terminal node (or paragraph) in the body of a
document with some relationship to the query. Please note that although we have
used the term paragraph here as a designator for smallest meaningful unit, in this
context it means all the leaf nodes of a document tree. Thus the term paragraph can
be used to refer to figure captions, lists, section titles, tables, abstracts—all the
content-bearing elements that partition the document into mutually exclusive parts.
Although some of these elements may not be leaf nodes according to their DTDs, they
are treated as leaf nodes in this context because their child nodes are too small to be
meaningful units in themselves.

For a particular query, Q, a search by Q against the paragraph index identified
above produces a rank-ordered list of elements. Those elements having a positive
correlation with Q identify the set of all documents of possible interest to it. We
consider the n top-ranked elements in this list. Our method of dynamic element
retrieval builds a tree representation for each document having an element in this list.
Each tree is built based on a schema of the document (produced as a by-product of
parsing). Given its set of terminal nodes in the form of term-frequency vectors, a
document tree is built, bottom-up, according to its schema [3,7]. The content of each
internal node is based solely on the content of its children. As each element vector is
produced, it is Lnu-weighted and correlated with Q, which is itself ltu-weighted.
After all element vectors, including the body element, have been generated, weighted
and correlated with Q, the process continues with the next document. The resulting set
of element vectors (i.e., all the elements from each document with a terminal node in
the set of n top-ranked elements retrieved by Q) are then sorted and the top-ranked
elements are reported.

3.2 Dynamic Query Weighting

Consider the formulas for term weighting given in Section 2. The Lnu term weighting
of the element vectors at execution time is a relatively simple process. Lnu weights
do not require information on global frequency that is not available in the dynamic

 Dynamic Element Retrieval in a Semi-structured Collection 85

environment. The values of slope and pivot having been previously determined for
the collection, Lnu weights are quickly computed.

The situation with the dynamic computation of the query term weights is quite
different. Consider the ltu formula. At each level in the document tree, the values of N
and nk are element-dependent. Dynamic element retrieval is based on an initial
retrieval against a paragraph indexing of the collection. The values of N (the number
of paragraphs in the collection) and nk (the number of paragraphs containing the term)
are readily available as a by-product of the indexing process. In order for Q to be
correctly weighted and correlated against each element vector in the document tree,
the values of N and nk associated with each query term must be the corresponding
global values (i.e., the number of elements in the collection and the number of
elements containing the query term).

The value of N is easily supplied by keeping track of the various types of elements
encountered during the parsing process. Obtaining the value of nk associated with a
specific query term is more challenging. We have its (local) value at the level of the
terminal node (i.e., paragraph). To determine its global value (i.e., the number of
elements containing the term), we need information about the structure of each
document tree in which the term is contained. In particular, for each occurrence of
the term as a word type in a terminal node, we need to determine the number of parent
elements in which it occurs. For example, suppose query term t1 occurs in two
different paragraphs of the same document. We need know whether both paragraphs
occur as children of the same parent node (say subsection) or as children of different
parents (two different subsections), and so on up the tree. And this process must be
repeated for every document tree which contains t1.

A very clever way to determine the number of containing elements for a particular
term was devised by Ganapathibhotla [6], using the inverted file entry associated with
the term in the paragraph indexing and a mapping between paragraph identifiers and
their xpaths (required in our system for interaction between Smart and INEX
formats). (See [1], [6] for details.) The calculation of nk at execution time, clearly not
feasible if it were required in the weighting of element vectors, is quite feasible in the
weighting of query vectors, which are by their nature very short in comparison.

3.3 What About n?

There are very few parameters of interest associated with our method of dynamic
element retrieval. Slope and pivot, used in the Lnu-ltu term weighting scheme, are
collection dependent; determining slope requires some investigation and tuning. But
the only truly interesting parameter (in the sense that it determines the number of trees
generated and hence largely the time required for dynamic element retrieval) is n—
the number of top-ranked paragraphs fed to our dynamic retrieval routine. It
determines the upper bound on the number of trees built for each query. The actual
number is determined by the number of paragraphs in this set belonging to the same
document or set of documents.

Although not reported here in detail, our experiments with the 2004 and 2005
INEX IEEE collections reveal some interesting results. In these experiments, n varied

86 C.J. Crouch et al.

from 1 to 1000 (specifically, n = 1, 5, 10, 25, 50, 100, 250, 500, 1000). For the 2004
collection, under both generalized and strict quantizations and considering values of
P@n for 10, 20, 50, 100, 500, and 1500 and average precision, dynamic element
retrieval never required a value of n greater than 100 to produce a result equivalent to
retrieval against the all-element index. For the 2005 collection, the results were very
similar. The average number of trees built per query at n = 100 was 64 (for 2004) and
66 (for 2005). Looking at the average number of trees generated per query over all
specified values of n greater than 50 indicates that, on average, fewer than 2/3 n trees
are actually built.

For reasons discussed in the following section, corresponding experiments for the
INEX Wikipedia collection are still in progress.

4 Problems Posed by Semi-structured Data

We encountered some interesting problems in adapting our method for dynamic
element retrieval to the INEX Wikipedia collection. The IEEE collections are well
structured. We found these traditional documents could be represented quite naturally
using Fox’s extended vector space model. Wikipedia documents, on the other hand,
are easily represented using the traditional vector space model. The really significant
difference between these two collections from our point of view, however, lies in how
they are structured. Dynamic element retrieval depends on having all the terminal
nodes of a document represented in the paragraph index. The initial paragraph
retrieval gives us a good indication of which documents are of interest to the query in
this case because all paragraphs that correlate highly with it are identified (thereby
identifying their parent documents). The Wikipedia collection, on the other hand,
contains untagged text which is distributed throughout the documents at the body and
section levels. This untagged text cannot be retrieved except as a component of its
parent element.

This is not a problem with respect to retrieval from an all-element index. The
elements are parsed, collected, and indexed. Retrieval takes place in the normal
manner. With dynamic element retrieval, untagged text impacts the method at two
points: (1) during parsing, when untagged text must be identified (to be subsequently
used in generating the document schemas so that the bottom-up generation of the
document tree can take place properly with untagged text included at its parent level);
and (2) during the initial retrieval against the paragraph (or terminal node) index,
when documents potentially important to the query are identified. The interesting
question here, which we have yet to answer, is whether the untagged text is important
from a retrieval viewpoint.

Our current methodology deals with this problem by gathering all untagged text
within an element and treating it as a separate child element (equivalent to a
paragraph element) of its parent. Thus untagged text within a section becomes a
separate element, (specially tagged as an <mt> element), which is attached to its
parent section, and untagged text at the body level is treated similarly and attached as
a child of the body element. Using this approach, dynamic element retrieval can
proceed in the same manner used for structured text. The issue of interest here is

 Dynamic Element Retrieval in a Semi-structured Collection 87

whether the inclusion of <mt> elements with the paragraph elements in the initial
retrieval materially affects the elements retrieved dynamically and if so, to what
extent.

Experiments are currently underway to determine the answers to this and other,
related questions. The system requires tuning against the relevance assessments to
determine an appropriate value of slope in the Lnu-ltu term weighting formula; the
process, while straight-forward, is time-consuming. The size of this collection is also
a factor. We have faced a number of space-related issues and hardware failures which
have deterred progress on this work.

5 Conclusions

Our current system has achieved its major goal—it retrieves elements dynamically
and returns a rank-ordered list of elements equivalent to that retrieved by a search of
the corresponding all-element index. Exact Lnu-ltu term weights are utilized in this
process. It requires only a single indexing of the collection at the paragraph level
rather than either an all-element or multiple indexings, which are expensive to
produce and maintain. As [1] shows, this method works well for structured retrieval.
As we adapt our methods for utilization in the semi-structured environment of the
INEX Wikipedia collection, we aim to determine the impact of this structural change
on the retrieval process.

References

[1] Crouch, C.: Dynamic element retrieval in a structured environment. ACM Transactions
on Information Systems 24(4), 437–454 (2006)

[2] Crouch, C., Mahajan, A., Bellamkonda, A.: Flexible retrieval based on the vector space
model. In: Fuhr, N., Lalmas, M., Malik, S., Szlávik, Z. (eds.) INEX 2004. LNCS,
vol. 3493, pp. 292–302. Springer, Heidelberg (2005)

[3] Crouch, C., Khanna, S., Potnis, P., Daddapaneni, N.: The dynamic retrieval of XML
elements. In: Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.) INEX 2005. LNCS,
vol. 3977, pp. 268–281. Springer, Heidelberg (2006)

[4] Denoyer, L., Gallineri, P.: The Wikipedia XML corpus. In: INEX Workshop Pre-
Proceedings, pp. 367–372. (2006) http://inex.is.informatik.uni-duisberg.de/2006

[5] Fox, E.A.: Extending the Boolean and vector space models of information retrieval with
p-norm queries and multiple concept types. Ph.D. Dissertation, Department of Computer
Science, Cornell University (1983)

[6] Ganapathibhotla, M.: Query processing in a flexible retrieval environment. M.S. Thesis,
Department of Computer Science, University of Minnesota Duluth, Duluth, MN (2006)
http://www.d.umn.edu/cs/thesis/Ganapathibhotla.pdf

[7] Khanna, S.: Design and implementation of a flexible retrieval system. M.S. Thesis,
Department of Computer Science, University of Minnesota Duluth, Duluth, MN (2005)
http://www.d.umn.edu/cs/thesis/khanna.pdf

[8] Salton, G. (ed.): The Smart Rretrieval System—Experiments in Automatic Document
Processing. Prentice-Hall, Englewood Cliffs (1971)

88 C.J. Crouch et al.

[9] Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Comm.
ACM 18(11), 613–620 (1975)

[10] Singhal, A.: AT&T at TREC-6. In: The Sixth Text REtrieval Conf (TREC-6), NIST SP
500-240, pp. 215–225 (1998)

[11] Singhal, A., Buckley, C., Mitra, M.: Pivoted document length normalization. In: Proc. of
the 19th Annual International ACM SIGIR Conference, pp. 21–29 (1996)

	Dynamic Element Retrieval in a Semi-structured Collection
	Introduction
	Background
	System Description
	Dynamic Element Retrieval
	Dynamic Query Weighting
	What About n?

	Problems Posed by Semi-structured Data
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

