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Abstract. We address the problem of learning to map automatically flat
and semi-structured documents onto a mediated target XML schema.
We propose a machine learning approach where the mapping between
input and target documents is learned from examples. Complex trans-
formations can be learned using only pairs of input and corresponding
target documents. From a machine learning point of view, the structure
mapping task raises important complexity challenges. Hence we propose
an original model which scales well to real world applications. We pro-
vide learning and inference procedures with low complexity. The model
sequentially builds the target XML document by processing the input
document node per node. We demonstrate the efficiency of our model on
two structure mapping tasks. Up to our knowledge, there are no other
model yet able to solve these tasks.

1 Introduction

Semantically rich data like textual or multimedia documents tend to be en-
coded using semi-structured formats. Content elements are organized according
to some structure that reflects logical, syntactic or semantic relations between
these elements. For instance, XML and, to a lesser extent, HTML allow us to
identify elements in a document (like its title or links to other documents) and
to describe relations between those elements (e.g. we can identify the author of a
specific part of the text). Additional information such as metadata, annotations,
etc., is often added to the content description leading to richer descriptions.

The question of heterogeneity is central for semi-structured data: documents
often come in many different formats and from heterogeneous sources. Web data
sources for example use a large variety of models and syntaxes. Although XML
has emerged as a standard for encoding semi-structured sources, the syntax and
semantic of XML documents following different DTDs or schemas will be differ-
ent. For managing or accessing an XML collection built from several sources, a
correspondence between the different document formats has to be established.
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Note that in the case of XML collections, the schemas themselves may be known
or unknown depending on the source. For HTML data, each site will develop its
own presentation and rendering format. Thus even in the case of HTML where
the syntax is homogeneous across documents, there is a large variety of formats.
Extracting information from different HTML web sites also requires to specify
some type of mapping between the specific Web sites formats and the predefined
format required by an application.

Designing structure mappings, in order to define correspondences between the
different schemas or formats of different sources is thus a key problem to develop
applications exploiting and accessing semi-structured sources. This problem has
been addressed for some times by the database and to a lesser extent by the
document communities for different conversion tasks and settings. Anyway, the
real world solution is to perform a manual correspondence between heterogeneous
schemas or towards a mediated schema via structured document transformation
languages, like XSLT. Given the multiplicity and the rapid growth of information
sources, manually specifying the correspondence between sources is clearly a
bottleneck to the process of document integration and reuse. Automating the
design of these transformations has rapidly become a challenge.

This work was realized in the context of the PASCAL/INEX XML Document
Mining Challenge1. This challenge proposes, as an extension to XML categoriza-
tion and clustering, a track concerning the Structure mapping task. The goal of
this task is to learn to transform HTML/flat document to an XML mediated
schema as described previously.

We propose here to learn the transformation from examples. The learning
system relies on a training set provided by the user. Each training example is
made of an input document and the corresponding target document. The system
will directly learn the transformation from these examples. Input documents may
come with heterogeneous structures or simply with no structure at all. The man-
ual specification of document mappings is replaced here with the development
of a training set of transformed documents. This allows to consider problems
where the input schema is not explicitly given or cases where this schema is too
general so that no explicit mapping can be defined (this is the case for many
HTML conversion applications). Besides, the proposed method only requires to
provide a set of transformed documents and this task will be much easier than
the manual development of a transformation script.

The structure mapping task we are solving is described in section 2. Our
solution is detailed in part 3 and experiments performed on two different real
world tasks are presented and discussed in section 4.

2 Structure Mapping Task

2.1 Description

The structure mapping task addresses the problem of learning document trans-
formations given a set of examples. The task is seen as a supervised learning
1 http://xmlmining.lip6.fr
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problem where inputs and outputs are semi-structured documents. Input doc-
uments may come from different sources and may take different formats like
flat text, wikitext, HTML or different XML schemas. Output documents are
expressed in XML. Given the set of learning examples, the aim is to learn an
inference procedure able to convert any input document of the same family.

The structure mapping task encompasses a large variety of real applications
like:

– Semantic Web: conversion from raw HTML to semantically enriched XML.
Example sources include forums, blogs, wiki-based sites, domain specific sites
(music, movies, houses, ...).

– Wrapping of Web pages: conversion from the relevant information in web-
pages to XML.

– Legacy Document conversion: conversion from flat text, loosely structured
text, or any other layout oriented format (e.g. PDF) to XML.

Fig. 1. Example of XML heterogeneity. The same movie description extracted from
three sources: two HTML styles and one XML general movie schema.

Figure 1 illustrates an example of XML to XML conversion. As can be seen
in this simple example the structure mapping task involves many different kind
of elementary transformations, e.g. relabelling, node creation and suppression,
node displacement. These actions can have global consistency constraints, e.g.
conserving textual content order or being valid with respect to a DTD.

2.2 Formalization

Structure mapping consists in transforming din ∈ Din into an XML document
d∗out ∈ Dout where Din is the set of possible input documents and Dout is the
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set of possible output documents. For example, Din is the set of all documents
that are valid given a specific XML schema. As training data, an user provides
a set of pair

{
(di

in, di∗
out)

}
i∈[1,N ] where N is the number of examples, din is an

input document in Di
in and di∗

out is the corresponding output document in Dout.
A structure mapping model is a function fθ : Din → Dout that maps input

documents into target documents. Such a model is parameterized by θ which
is vector of real parameters. The quality of a structure mapping can be mea-
sured with a user supplied loss-function. This function is a dissimilarity measure
between output documents : Δ : Dout × Dout → [0, 1]. Good models will pro-
duce low loss. Learning is done by finding the parameters θ that minimize the
empirical risk on the training set:

θ∗ = argmin
θ

1
N

N∑

i=1

Δ(fθ(di
in), di∗

out) (1)

Structure mapping models have to deal with two major difficulties. First,
they have to support a large variety of transformations. The family fθ must
thus be expressive enough to express them. The other difficulty is related to the
size of Dout which is exponential in the length of documents. A such problem
makes full exploration of the output space intractable. The usual solution for this
type of problem is to use dynamic programming techniques in order to efficiently
explore the space of possible solutions. For the document transformation problem
addressed here, the complexity of the inference step is so high that even dynamic
programming does not lead to scalable solutions [1].

3 Proposed Model

Because of the exponential number of valid output documents that can corre-
spond to a given input document, the simple strategy, which consists in generat-
ing all possible output to select the best one, is unrealistic. One way to break the
complexity of the task, is to decompose it into simpler sub-problems. This can
be achieved by the incremental structure mapping (ISM) algorithm we propose.

First, we describe the ISM process in the case of a simple HTML to XML
structure mapping example. We then detail our general structure mapping in-
ference algorithm. Finally, we present the learning algorithm that allows to find
the parameters θ which minimize the empirical risk on the training set.

3.1 Incremental Structure Mapping

ISM rely on the idea that the structure mapping can be realized by considering
successively each leaf of the input document and working out its position in the
output document. The process is decomposed into successive elementary steps.
Each of these steps do two things: reading/analysing a part of the input docu-
ment and adding corresponding nodes in the current output document. Figure 2
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Fig. 2. 1)We initialize the process with the empty output tree (denoted ε). 2) First step:
we focus on the first input leaf (with content “Example”). We enumerate building-step
candidates. For each of this candidates there is an associated score. In this example the
best building-step has score 1 and consists in adding “Example” as the output Document
Title. 3) End of first step: the content “Example” has been added in the current output
document. 4) Second step: we focus on the second input leaf, consider building-step can-
didates, where the best one is to add “Francis Maes” as the Document Author. 5) At
the beginning of the third step, the Author has been added in the partial output tree. 6)
Final state of the ISM process (after 5 steps) the current output tree is completed and
can be returned to the user. We see in the final output tree that the Section nodes have
been inserted between the two already existing nodes Title and Author.
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Algorithm 1. Structure Mapping Inference
din ∈ Din: the input document
φ : Lin × Bout → �p: the representation function
θ : �p: the learned parameters
1: dout ← ε
2: for all input leaf ni ∈ din do
3: candidates ← computeOutputCandidatePaths(din,dout)

�
SKIP

4: outputpath ← argmaxc∈candidates < φ(ni, c), θ >
5: if outputpath = SKIP then
6: continue (with next input leaf)
7: else
8: dout ← addNodeInOutputTree(din, outputpath, dout)
9: end if

10: end for
return dout

gives an illustrative example where an HTML document is being converted into
XML.

We initialize the process with the empty output tree denoted ε. After initial-
ization we iterate ISM steps, one for each input leaf. Thus an ISM step starts
with selecting a new input leaf. Given this input leaf and the current output
tree, we compute a set of building-step candidates. Each of these candidates is
a particular way to insert the current input leaf content into the current par-
tial output tree. It defines both new node labels and new node positions in the
existing tree. Each building-step candidate has also an associated score. This
score quantifies the immediate interest of executing a particular building-step.
The model then chooses the best scoring building-step candidate, execute it and
starts with the next ISM step.

The key idea with ISM is that instead of considering all valid output docu-
ments we consider only the valid building-steps at each step of the process. This
way, the complexity of structure mapping only depends on the number of ISM
steps and on the average number of candidates per step.

3.2 Inference Algorithm

The behavior of ISM is directly related to the scoring function of building-step
candidates. This scores are only available for training document pairs. In the
general case, these scores will be estimated using a linear predictor. Learning
the ISM model from document pair examples is reduced to learning the ISM
score predictor. Learning is described below, see 3.3. For the moment, let us
consider that the model has been learned. Algorithm 1. shows the general ISM
inference procedure.

The ISM inference algorithm has three parameters: the input document din ∈
Din and two parameters which defines the score predictor. In order to predict
such a score, we first describe a (input leaf ∈ Lin, building-step candidate ∈
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Bout) pair using the φ function. This function produces a feature vector in �p.
Examples of such features are given in table 1. We produce features by combining
state features with action features. To describe a (state,action) pair, we make the
cross product between all state events and all action events. This way, φ produces
sparse joint (state,action) representations where the number of distinct features
p ranges usually from 103 to 106.

Table 1. Some examples of features which jointly describe a (input node, building-
step) pair using the φ function. These features are usually binary (valued in {0, 1}) but
general real valued features are also possible (e.g. the percentage of upper case words).
The features are generated in a data-driven way: a feature is considered only once it
is observed in the learning data. Depending on the corpora, the features vectors have
from 103 to 106 distinct components.

Description Value
We are processing the first input node and

the building-step has labels DOCUMENT TITLE. 1
The input node has label IT and

the building-step has labels DOCUMENT AUTHOR. 1
The current input leaf has 3 parents and

the building-step inserts the node between a TITLE and a SECTION. 0
The last word of the current input node is “footnote” and

the building-step is SKIP. 1
The last word of the input node is punctuation symbol and

the building-step has labels DOCUMENT SECTION TEXT. 0
... ...

Given a description in �p, the score is estimated by a dot product between
the description vector and the parameters vector (θ ∈ �p). The dot product
between two vectors is denoted < ., . >.

ISM inference is performed by iterating over input leaves. For each of this
nodes, we first enumerate the set of building-step candidates (line 3). In order
to include the possibility to skip some input leaves we also consider the SKIP
building-step. SKIPing a node means that this node will not be included in
the output tree. In line 4, we estimate the scores of all candidates using our
linear predictor. The best estimated building-step candidate is chosen. If the
best building-step is SKIP we can continue with the next input leaf (line 6).
In any other case, the building-step is executed with the addNodeInOutputTree
function (line 8). This produces a new partial output tree dout. Once all input
leaves have been processed, the ISM is fulfilled and we return the current output
tree dout to the user.

3.3 Learning Algorithm

The ISM learning procedure is described in algorithm 2.. It aims at finding the
parameters θ that leads to a good structure mapping inference procedure.
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Algorithm 2. Structure Mapping Learning
S =

�
(di

in, di∗
out)

�
i∈[1,N]: Training Set

φ : Lin × Bout → �p: the representation function
1: θ ← 0
2: repeat
3: din, d∗

out ← pickTrainingPair(S)
4: dout ← structureMappingInference(din, φ, θ)
5: loss ← Δ(dout, d

∗
out)

6: for all ni ∈ din do
7: θ ← applyGradientCorrection(θ, ni, loss)
8: end for
9: until convergence of θ

return θ

The algorithm has two parameters: the training set S of document pairs and
the representation function φ described in previous section. The algorithm re-
turns the learned parameters θ that can be used in inference.

ISM learning is done by iteratively evaluating and improving the parameter
vector θ. In each iteration, we pick randomly a new training document pair (line
3). We then evaluate the current parameters θ by calling the inference procedure
(line 4) and computing the resulting loss (line 5). We can now improve the
parameters θ by applying a little correction for each ISM step that was performed
during inference (line 6-8).

The details of the learning procedure are omitted here for the sake of clar-
ity. However algorithms 1. and 2. relies on established machine learning tech-
niques. Briefly, the ISM procedure can be modelled as a Markov Decision Process
(MDP) [2]. MDPs provides a mathematical framework for modelling sequential
decision-making problems. They are used in a variety of areas, including robot-
ics, automated control, economics and in manufacturing. The fields of Reinforce-
ment Learning [3] and Approximate Dynamic Programming [4] provides several
learning algorithms for solving MDPs. Our learning procedure can be seen as a
particular case of the Sarsa(0) algorithm. We differ the interested reader to [5]
for more details.

4 Experiments

4.1 Tasks and Corpora

We present here experiments performed in the context of the INEX Structure
Mapping Challenge. The challenge focuses on two corpora. The first is the INEX
IEEE corpus which is composed of 12017 scientific articles in XML format. Each
document comes from a journal (18 different journals). The documents are given
in two versions: a flat segmented version and the XML version. The structure
mapping task aims at recovering the XML structure using only the text segments
as input. The segments are given in the exact order. The second corpora is
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made of more than 13000 movie descriptions available in three versions: two
different XHTML versions and one mediated XML version. This corresponds to
a scenario where two different websites have to be mapped onto a predefined
mediated schema. The transformation includes node suppression and some node
displacements.

In order to compare our model, we also made experiments on the Shakespeare
corpora2. As in [6], we have randomly selected 60 Shakespearean scenes from the
collection. These scenes have an average length of 85 leaf nodes and 20 internal
nodes over 7 distinct tags. As a baseline, we implemented the model of [6] which
is based on probabilistic context free grammars and maximum entropy classifiers.
Due to its complexity (roughly cubic in the number of input leafs wheras ours
is linear) this model cannot be applied to the others corpora.

Each corpus is split in two parts: 50% for training and 50% for testing. The
table 2 summarizes the properties of our corpora.

Table 2. Description of the corpora used in our experiments. From left to right: the
name of the corpus, the task, the number of documents, the mean number of internal
nodes per document, the mean number of leaves per document, the number of disctinct
tags.

Corpus Tasks Corpus size Internal Nodes Leaves Labels
INEX IEEE Flat → XML 12,017 docs ≈ 200 ≈ 500 139

Movie 1 XHTML → XML 13,045 docs ≈ 78 ≈ 31 16
Movie 2 XHTML → XML 13,038 docs ≈ 49 ≈ 40 19

Shakespeare Flat → XML 60 docs ≈ 20 ≈ 85 7

4.2 Loss Function and Evaluation Measures

In order to evaluate the quality of structure mapping we have used two measures:
Fcontent and Fstructure. The first measure reflects the quality of document leaves
labelling. The second measure reflects the quality of the internal tree structure.
Both measure are the mean of a F1 score computed for all (predicted document,
correct document) pairs. For Fcontent we compute the F1 score between leaves
labels. This first measure is similar to the Word Error Ratio used in natural
language. Fstructure is based on the F1 score between all subtrees. This F1 score
between two trees is computed in the following way:

1. Build the set of all subtrees of the two trees. There is one sub-tree per node
of the document

2. Compute recall and precision on the subtrees. Two subtrees are identical iff
they have the same label, the same text (for leaves), and the same children
trees (for internal nodes).

3. Compute the F1 score: F1 = 2∗Recall∗Precision
Recall+Precision .

2 http://metalab.unc.edu/bosak/xml/eg/shaks200.zip
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This corresponds to a common measure in the natural language parsing field
(under the name of F1 parsing score). Note that this measure decreases quickly
with only a few errors. For example if there is only one labelling error in a leaf,
the Fstructure measure typically equals to ≈ 80%.

4.3 Results

The loss-function Δ(dout, d
∗
out) used for training the model is based on the

Fstructure measure:

Δ(dout, d
∗
out) = 1 − Fstructure(dout, d

∗
out)

Figure 4.3 shows the results obtained for the different experiments. All Fcontent

scores are greater than 75 % while the more difficult Fstructure is still greater
than ≈ 60 %. These scores have to be contrasted with the intrinsic difficulty of
the structure mapping tasks. For example for INEX, the only hints for predicted
between more than hundred labels come from the textual content of the input
document.

Corpus Method Fcontent Fstructure Learning time Testing time
INEX IEEE ISM 75.8 % 67.5 % ≈ 2 days ≈ 2 s / doc

Movie 1 ISM 80.3 % 65.8 % ≈ 17 min ≈ 0.08 s / doc
Movie 2 ISM 75.4 % 57.0 % ≈ 19 min ≈ 0.07 s / doc

Shakespeare ISM 89.4 % 84.4 % ≈ 20 min ≈ 0.02 s / doc
Shakespeare PCFG+ME 98.7 % 97.9 % ≈ 2 min ≈ 1 min / doc

Fig. 3. Structure mapping results on the tree corpora. Two measure are used: Fcontent

and Fstructure. Approximate learning and testing time are indicated - the experiments
were performed on a standard 3.2Ghz Computer.

These results also show how fast ISM is at testing time. Most documents are
processed in less than one second. This mean that ISM could be used with large
scale corpora containing thousands or millions documents.

The Shakespeare database shows a comparison between ISM and our baseline
called PCFG+ME (see part 4.1). ISM scores are less good than the baseline
scores. A first explanation for this phenomenon is that PCFG+ME does a global
optimization using Dynamic Programming. This has to be contrasted with ISM
which performs a greedy search of the output tree. We also suspect ISM to
suffer from over-fitting since there are few documents and many distinct features
(see 1).

On the other side, ISM is approximatively thousand times faster in inference
than the baseline. Moreover, due to its complexity the baseline cannot be ap-
plied to our real world corpora. We believe that in the context of heterogeneous
information retrieval, fast inference time is much more important than perfect
structure mapping.
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5 Related Work

Several approaches to automating document transformation have been explored
ranging from syntactic methods based on grammar transformations or tree trans-
ducers to statistical techniques. A majority of them only consider the structural
document information and do not exploit content nodes. Even this structural
information is used in a limited way and most methods exploit only a few struc-
tural relationships. Many of them heavily rely on task specific heuristics. Current
approaches to document transformation are usually limited to one transforma-
tion task or to one type of data. Besides, most proposed techniques do not scale
to large collections.

In the database community automatic or semi-automatic data integration —
known as schema matching — has been a major concern for many years. A
recent taxonomy and review of these approaches can be found in [7]. [8] de-
scribes one of the most complete approach which can handle ontologies, SQL
and XML data. The matching task is formulated as a supervised multi-label
classification problem. While many ideas of the database community can be
helpful, their corpora are completely different from the textual corpora used in
the IR community: all documents — even XML ones — keep an attribute-value
structure like for relational database and are thus much smaller and more reg-
ular than for textual documents; textual data hardly appears in those corpora.
With database corpora, finding the label of a piece of information is enough to
build the corresponding tree because each element usually appears once in the
tree structure. Document structure mapping, also shares similarities with the
information extraction task, which aims at automatically extracting instances of
specified classes and/or relations from raw text and more recently from HTML
pages. Recent works in this field [9] have also highlighted the need to consider
structure information and relations between extracted fields.

The structure mapping model proposed here is related to other Machine
Learning models of the literature. Different authors ([10], [11]) have proposed
to use natural language formalisms like probabilistic context free grammars
(PCFG) to describe the internal structure of documents. Early experiments [1]
showed that the complexity of tree building algorithms is so high that they can-
not be used on large corpora like INEX. The work closest to ours is [6]. They
address the HTML to XML document conversion problem. They make use of
PCFGs for parsing text segment sequences and of a maximum entropy classifier
for assigning tags to segments.

6 Conclusion

We have described a general model for mapping heterogeneous document repre-
sentations onto a target structured format. This model learns the transformation
from examples of input and target document pairs. It is based on a new formula-
tion of the structure mapping problem based on Deterministic Markov Decision
Processes. This formulation allows us to deal with a large variety of tasks rang-
ing from the automatic construction of a target structure from flat documents
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to the mapping of XML collections onto a target schema. The model operates
fast and scales well with large collections. We have shown its efficiency on two
real world large scale tasks.
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