
N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 473–484, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Evaluating the Performance of XML Document
Clustering by Structure Only

Tien Tran and Richi Nayak

Faculty of Information Technology, Queensland University of Technology
Brisbane, Australia

t4.tran@qut.edu.au, r.nayak@qut.edu.au

Abstract. This paper reports the results and experiments performed on the
INEX 2006 Document Mining Challenge Corpus with the PCXSS clustering
method. The PCXSS method is a progressive clustering method that computes
the similarity between a new XML document and existing clusters by
considering the structures within documents. We conducted the clustering task
on the INEX and Wikipedia data sets.

Keywords: Clustering, XML document mining, Structural mining, INEX,
XML, Structural similarity.

1 Introduction

With the emergence of XML standard, XML documents are widely accepted by many
industries such as business, education, entertainment and government [2]. With the
continuous growth of XML data, many issues concerning with the management of
large XML data sources have also arisen. For efficient data management and
retrieval, a possible solution is to group XML documents based on their structure and
content. The clustering of XML documents facilitates a number of applications such
as improved information retrieval, document classification analysis, structure
summary, improved query processing [1, 8] and so on.

The clustering process categorizes the XML data based on a similarity measure
without the prior knowledge on the taxonomy [4]. Clustering techniques have
frequently been used to group similar database objects and text data. However,
clustering of XML documents is more challenging because a XML document has a
hierarchical structure and there exist relationships between element objects at various
levels.

We propose to use the PCXSS algorithm [7] that is developed to deal with the
heterogeneous XML schemas to cluster the INEX 2006 Document Mining Challenge
Corpuses [3]. The PCXSS (Progressively Clustering XML by Structural Similarity)
algorithm employs a global criterion function CPSim (common path coefficient) that
measures the similarity between an XML document and existing clusters of XML
documents, instead of computing the pair-wise similarity between two data objects.
The PCXSS, originally developed for the purpose of clustering of heterogeneous
XML schemas, has been modified and applied to cluster the INEX 2006 XML
documents by considering only the structure of XML documents.

474 T. Tran and R. Nayak

Our philosophy is based on the common usage of XML that is, XML is mainly
used for representing the text data in the structured format. Based on this, we assume
that a clustering algorithm should group the documents that share a similar structure.
For example, documents from the publication domain would have different structure
from the documents from the movie domain. Our initial work has shown that the
structure of the documents plays a prominent role in grouping the similar XML
documents [6]. The semantic difference in tag names can be avoided during the
clustering process. In these experiments, we also have not included the instances. The
inclusion of instances (the contents within the tag) incurs an additional computing
cost. We would like to test the hypothesis such as how important is the structure of
the XML documents when categories of documents are mainly based on theme such
as the INEX 2006 Document Mining Challenge Corpuses.

The next section gives an overview of the PCXSS methodology. Interested readers
can read [7] for a more detailed discussion on this methodology. Phases of the PCXSS
method are then described further in Sections 3 and 4. Section 5 reports the results,
experiments and data analysis performed on INEX and Wikipedia data sets. The
paper is then concluded and further work is outlined in Section 6.

2 The PCXSS Method: Overview

Fig. 1 illustrates a high level view of the PCXSS method. The pre-processing phase
decomposes every XML document into the structured path information called node
paths. Each path contains the node properties from the root node to the leaf node. The
first stage of the clustering phase i.e., ‘structure matching,’ measures the structural
similarity between node paths of a XML document and other objects (the existing
clusters). This stage determines the similarity between two objects according to the
nodes they share common in their paths. The output of the structure matching stage is
the common path coefficients (CPSim) between the document and all existing
clusters. The second stage of the clustering phase groups the XML document into an
existing cluster with which it has the maximum CPSim or assigns it to a new cluster.

A number of modifications have been made to the PCXSS method in order to
experiment with the INEX 2006 corpus. Firstly, the pre-processing phase extracts the
structure of every XML documents into X_Paths where only the name of the element
is considered. Other information such as data type and constraints are ignored.
Secondly, the structure matching of the clustering phase measures the structural
similarity between X_Paths of a document and of clusters considering only the exact
match between element names. We do not consider the various semantic and
syntactic meanings that an element name can have during the structure matching. We
have shown elsewhere that semantics of an element name (such as person vs. people)
in XML documents do not make any significant contribution when determining
similarity between two XML documents [6].

3 PCXSS Phase 1: Pre-processing

All documents in the INEX collection or in the Wikipedia collection conform to only
one DTD schema. As a result, we do not perform the pre-processing of element

 Evaluating the Performance of XML Document Clustering by Structure Only 475

Fig. 1. The PCXSS Methodology

names while inferring the structure of the documents. Only a simple pre-processing
step has been applied on the XML documents. An XML document is first parsed and
modelled as the labelled tree (Fig. 2). The attribute of an element is modelled exactly
the same way as its child elements. The tree is then decomposed into X_Paths to
represent the structure of the XML document.

An X_Path is formally defined as an ordered sequence of tags from a root to a leaf
node which includes hierarchical structure. An XML document consists of many
X_Path sequences and the order of X_Paths is ignored because each X_Path is
considered as an individual item in the XML document structure. Moreover,
duplicated X_Paths in a document structure are eliminated. After the pre-processing
of XML documents, documents are represented as a collection of distinct X_Paths.

4 PCXSS Phase 2: Clustering

The clustering phase consists of two stages: structure matching and clustering. At
structure matching stage, the similarity between a XML document and existing
clusters is measured. The output of this stage is a similarity value called CPSim
(Common Path Similarity) between an XML document and a cluster. CPSim is then
used in the clustering stage to group the XML document into an existing cluster with
which it has the maximum CPSim, or assigns it to a new cluster if (1) the clustering
number has not yet exceeded and (2) CPSim does not exceed the clustering threshold.

4.1 Structure Matching Stage

Each node in a node path of a document is matched with the node in a node path of
the clusters, and then aggregated to form the node path (or structure) similarity.

4.1.1 Node Matching
The node matching process measures the similarity between the nodes in node paths
by considering the name similarity only. While clustering XML schemas, PCXSS also
includes the data type similarity (Tsim) and constraints similarity (Csim). As the
INEX 2006 documents follow the same schema, neither semantic nor syntactic
similarity computation is needed on the element name matching. Additionally, the
exact matching process on element names saves a significant computation effort.
Consequently, node matching depends on the exact match of the node names. For
example, the last node at level 2 in Fig 2 is ‘bdy’. Consider another tree that contains

476 T. Tran and R. Nayak

a node named as ‘body’. If we compare these two trees, these two nodes will not be
considered similar; however, they are syntactically similar. In a similar fashion, a
node named as ‘person’ in one tree and a node named as ‘people’ in another tree will
not be considered similar, although, they are semantically similar. The NodeSim
value between element names is equal to 1 if they have an identical name else it is
assigned with a 0.

Fig. 2. An XML Document (article) & its Tree Representation

4.1.2 Structure Similarity
The frequency of common nodes appearing in two XML structures is not sufficient to
measure the similarity of XML data. XML is different from other web documents
such as HTML or text because it contains the hierarchical structure and relationships
between elements. The order of where the element resides in the structure is
important in determining the structural similarity between the XML document and
existing clusters.

The structural similarity between two XML documents is measured by first finding
the common nodes between two paths and then finding the common paths between
two trees. The structure matching process in PCXSS is advanced by starting at leaf
node between two paths to detect more similar elements within structures.

Common nodes finding. The degree of similarity between two node paths, defined as
path similarity coefficient (Psim), is measured by considering the common nodes
coefficient (CNC) between two paths. The CNC is the sum of NodeSim of the nodes
between two paths P1 and P2 as shown in Fig. 3. Psim of paths, P1 and P2 is the
maximum similarity of the two CNC functions (P1 to P2 and P2 to P1) with respect to
the maximum number of node in both paths, P1 and P2, defined as:

),(

),(),,((
),(

21

1221
21 PPMax

PPCNCPPCNCMax
PPPsim =

 (1)

 Evaluating the Performance of XML Document Clustering by Structure Only 477

Function:),(21 PPCNC

Sim:= 0; for each in
1P∈

 while j not end of
2P length

 if (NodeSim(in ,
jn)) ==1

 Sim += NodeSim(
in ,

jn)

 j--
 break from ‘while’ loop

 else
 j--
 end if
 end while
end for
return Sim

Fig. 3. The CNC function

Fig. 4 shows an example of traversing through the CNC function.
Consider two paths: Path1 (1/2/3/4/5/6) and Path2 (1/2/4/5/6). Path1 contains 6

element names that are showed as numbers for convenience. The following steps are
iterated when calculating the CNC function:

1. Start at the leaf element of both paths (j=5, i=4). If the NodeSim coefficient of

the leaf elements equals to 1 (a match) then increase Sim by NodeSim coefficient
and go to step 2 else go to step 3.

2. Move both paths to the next level (j--, i--) and start element matching at this
level. If the NodeSim coefficient of these elements equals to 1 (a match) then
increase Sim by NodeSim coefficient and repeat step 2 else move to step 3.

3. Move only Path 1 to the next level (j--) then start element matching in the
original level of Path 2 (i) to the new element of Path 1.

Fig. 4. Example of CNC Matching

478 T. Tran and R. Nayak

The CNC function is not transitional. It means that CNC(P1, P2) is not equal to
CNC(P2,P1). This is due to the fact that if the leaf element from P1 can not be found in
P2 then no further matching is required. However, in some cases, one path may be a
sub-path of the other. If P2 is a sub-path of P1, and if the leaf element can not be
found in P2 then the CNC(P1, P2) returns 0. However CNC(P2, P1) will return a value
according to the matching. As a consequence, both CNC(P1, P2) and CNC(P2,P1) are
computed and the maximum of the two is used to measure the degree of similarity
between the two paths.

The Psim value is monitored by a path similarity threshold. The threshold
determines whether the two node paths are similar. If the Psim of two node paths
exceeds the path similarity threshold then it is used to determine the structural
similarity between the trees and existing clusters.

Common paths finding. PCXSS measures common paths (1) between two trees and
(2) between a tree and a cluster.

Tree to Tree Matching: The tree to tree matching is the matching between a new tree
and a cluster that contains only one tree. This is defined as:

),(

)),(max(

),(
21

1

||

1
21

1 2

TPathTPathMax

PPPsim

TreeTreeCPSim

TPath

i

TPath

j

ji∑ ∫
= ==

(2)

CPSim is the common path similarity between two XML trees. The CPSim of trees,
Tree1 and Tree2 is the sum of the best path similar coefficient (Psim) of paths, Pi and
Pj with respect to the maximum number of paths, |TPath1| and |TPath2| of trees, Tree1

and Tree2, respectively. The clustering process in PCXSS works on the assumption
that only one path from Tree1 matches with one path in Tree2. Thus, it only selects
the maximum Psim between each pair of paths of Tree1 and Tree2.

Tree to Cluster Matching: The tree to cluster matching is the matching between a new
tree and the common paths in a cluster. The common paths are the similar paths that
are shared among the trees within the cluster (normally a cluster must contain at least
2 or more trees in the cluster to have the common paths or else the tree to tree
matching is required). Initially, the common paths are derived in the tree to tree
matching. Then every time a new tree is assigned to the cluster, the similar paths are
added to the cluster if paths are not already in the cluster. The tree to cluster
matching is defined as:

|)(|

)),(max(

),(

||

1

||

1

TPathMax

PPPsim

ClusterTreeCPSim

TPath

i

CPath

j

ji∑ ∫
= ==

(3)

Similar to the tree to tree matching, CPSim between a tree and a cluster is the sum of
the best Psim of paths, Pi and Pj w. r. t. the number of paths, |TPath| in the Tree.

 Evaluating the Performance of XML Document Clustering by Structure Only 479

4.2 Clustering Stage

PCXSS is an incremental clustering method. It first starts off with no cluster. When
a new tree comes in, it is assigned to a new cluster. When a next tree comes in,
CPSim is computed between the tree and the existing cluster. If CPSim exceeds the
clustering threshold and the cluster has the largest CPSim with the tree then the tree is
assigned to that cluster else it is assigned to a new cluster. The node paths of the tree
that are used to compute the CPSim are then added to the cluster. The node paths in
the cluster are referred to as common paths. The common paths in the cluster are then
used to measure the CPSim between the cluster and new trees. Since the common
paths (instead of all the node paths of the trees held within a cluster) are used to
compute CPSim with new trees, the computation time reduces significantly. In
addition, the cluster contains only the distinct common paths (duplicate paths are
removed from the cluster).

5 Experiment and Discussion

Test data. The data used in the experiments are the INEX corpus and Wikipedia
corpus from the INEX XML Mining Challenge 2006. Table 1 shows the properties of
the experimental corpus.

 Table 1. Test Data Sets

Test Data No. of Classes No.of XML documents Size
(MB)

INEX 18 6054 259
Wikipedia 60 75047 530

Evaluation methods. For the INEX XML Mining Challenge 2006, the clustering
solutions are measured using the f1-measures: micro-average f1 and macro-average
f1. These measures are used to evaluate multi-labeled classification (more than 2
labels). To understand how micro-average f1 and macro-average f1 are measured, it
is necessary to revisit the precision, recall and f1-measure. For example, for binary
classification, the precision (p), recall (r) and f1-measure are defined below, where A
stands for the number of positive samples which are predicted as positive, B stands
for the number of false negative samples which are predicted as positive, and C stands
for the number of false positive samples which are predicted as negative

BAAp += / CAAr += / rpprf += /21

In a multi-label classification, summing up A, B and C values from all binary
classifications respectively and then these values are used to calculate f1 value is
called micro-average f1 measure. The macro-average f1 is derived from averaging
the f1 values from all binary classifications. Refer to paper [5] for more information
on f1 measure for multi-label classification. Micro and macro f1 measures are

480 T. Tran and R. Nayak

applied directly on multi-label classification solutions for evaluation. However, to
measure the clustering solutions, the clustering solutions are first converted to
classification solutions before calculating the micro and macro f1 measures.

Experiments and Results. We submitted 3 results for the INEX test data and 1 result
for the Wikipedia test data to the INEX XML Document Mining track 2006. The
varied submissions were made due to the results obtained by setting different
thresholds during experiments. The results of the clustering solutions performed by
PCXSS are shown in Table 2.

 Table 2. Results from INEX XML Mining Track 2006

Clustering Threshold Categories
Discovery

Micro F1 Macro
F1

0.5 (INEX) 7 0.072944 0.039460
0.7 (INEX) 6 0.088004 0.044307
0.8 (INEX) 7 0.088824 0.044641
0.3 (Wikipedia) 20 0.120460 0.037375

The F1 measure of the clustering solutions obtained with PCXSS on the INEX and
Wikipedia test data are low. We examined the results and our experimental setups to
find out why the clustering solutions have low performance. Firstly, we used the
different thresholds to see whether does the threshold value is a reason for poor
performances. The results do not seem to improve much by varying the threshold
values.

Secondly, we eliminate attributes of an element to see whether it can improve the
clustering solutions. The results in Table 3 show that the removals of the attributes of
the elements somewhat improve the clustering results using the same thresholds.
However, the results are not yet satisfactory. The reason for the improvement may be
that the attributes contained by the Wikipedia and INEX corpuses do not play an
importance in understanding the structure of the XML document itself.

 Table 3. Clustering Solution without the Attributes

Clustering Threshold Categories
Discovery

Micro F1 Macro F1

0.5 (INEX) 7 0.149186 0.090254
0.7 (INEX) 10 0.150553 0.096187
0.8 (INEX) 10 0.150553 0.096187

The clustering solution using a clustering threshold of 0.8 in table 2 is further
analysed. This clustering solution has discovered 7 out of 18 true categories. Table 4
below shows the mapping between 18 clusters that have been generated by PCXSS
and the true categories.

 Evaluating the Performance of XML Document Clustering by Structure Only 481

Table 4. Mapping of 18 Clusters Discovered by PCXSS to its True Category

18 Clusters Discover by PCXSS True Category
11 11
10 3
13 17
12 13
15 3
14 3
17 5
16 3
18 14
1 3
3 13
2 3
5 3
4 3
7 3
6 12
9 3
8 5

It shows that the documents in category 3 are widely spread out over the 18 clusters
that have been discovered by PCXSS. This can happen due to many reasons. Firstly
the XML documents from same category (in this case 3) are not grouped together into
one cluster by PCXSS due to the differences in structure and size. The PCXSS
algorithm mainly derives the solution based on structure similarity. Moreover, the
contents within tags play a significant role in measuring the similarity between
documents of the INEX corpus in which documents conform to only one schema. We
have ignored the contents within tags in our experiments.

To achieve some success, we tried another modification to the clustering
algorithm. The principle is to increase the time performance while maintaining the
accuracy. Since the accuracy obtained is not very high, we decided to measure the
similarity between a XML document with the first tree in the cluster without using
common paths. We only consider the first tree that formed the cluster instead of
comparing with all the common paths (of all trees) that are included in the cluster.
The results of the INEX corpus are shown in Table 5.

The clustering solutions achieve somewhat better results than those in Table 3. It
shows that the clustering on common paths on these kinds of data may not be
sufficient enough without including the contents within tags.

PCXSS with the Iteration Phase. The XML documents are grouped according to
CPSim between an XML document and existing trees. We do not include further
iterations to refine the clustering process. Due to the absence of iteration phase, the
clustering process highly depends upon the order of the data set and the clustering
threshold. Consider this scenario: the clustering threshold is firmly set as 0.8 in the

482 T. Tran and R. Nayak

 Table 5. Results from the Modification of the Clustering Alogrithm in PCXSS

Clustering
Threshold

Categories
Discovery

Micro F1 Macro F1

0.8 (INEX) 9 0.179525 0.115392
0.9 (INEX) 9 0.174740 0.118604
0.3 (INEX) 6 0.103753 0.051152
0.4 (INEX) 7 0.126618 0.086362
0.4 (Wikipedia) 18 0.121828 0.050716
0.7 (Wikipedia) 10 0.125178 0.033793
0.6 (Wikipedia) 13 0.126537 0.034368

experiment. CPsim between two documents from the same domain is measured as
0.75 while processing. These documents are not considered to be grouped together
according to this predefined threshold.

With the current PCXSS clustering process when the desired number of cluster is
reached, for the remaining data set, PCXSS will not use the predefined threshold but
will find the best similarity from the existing cluster that this remaining data set can
be grouped into. This in turn creates a problem at the start when two documents
belong to the same group are split into two different clusters. Due to this problem, the
experiment is then extended the PCXSS clustering process by including the iteration
phase.

The iteration works as follows: after the PCXSS clustering process ends (with the
clustering number greater than the predefined one), the iteration phase starts by going
through all the existing clusters and merging clusters together if their similarity is
greater than the clustering threshold until the desired number of cluster is reached. At
the end of the iteration phase if the number of existing clusters is still greater than the
desired number of cluster, the iteration phase starts again and the clustering threshold
will be decremented by 0.1 until the number of desired cluster is reached.
Decrementing the clustering threshold can help to identify two clusters that contain
documents from the same domain but have the similarity values lower than the rigid
predefined clustering threshold. These two clusters can be merged together.

The experiment uses 0.7 for the clustering threshold and runs the PCXSS with the
iteration phase on INEX 6054 test data. The micro and macro F1 of the clustering
solution are 0.095 and 0.057 respectively, which are lower than PCXSS with no
iteration phase shown in Table 2. We can argue here that the iteration phase proposed
in this experiment is not suitable. The reasons are twofold: (1) XML documents from
different categories contain many overlapping tags and (2) XML documents from the
same category greatly vary in size. For example, XML documents from the ‘an’
category have an XML document that is 1KB and another document is 276KB in
document size, where there is a big gap difference in both tags and content. These
two documents surely can never be grouped together if XML documents from
different categories have many overlapping tags and content.

During the testing and analysis of the INEX data set, it has been ascertained that
even if PCXSS is extended by including contents in the clustering process, the
clustering solution will not be that much better if no training or learning is done on

 Evaluating the Performance of XML Document Clustering by Structure Only 483

the INEX data set because two documents from the same category may contain
different content and keywords (where semantic learning of the content or keywords
may require). Thus, the INEX test data is more suitable for the classification task
rather than for the clustering task.

Based on all the experiments above, it can be ascertained that measuring the
structure similarity in the documents derived from the same schema do not show any
advantage. The usual methods of matrix computations considering only the contents
of documents such as vector space or neural networks may have been more
appropriate here. The structure overlapping in the documents of the corpus due to
deriving from the same schema and the large variations in the sizes and structures of
documents from the same category also downplay the PCXSS clustering process.

6 Conclusions and Future Work

This paper presented the experience of applying the PCXSS clustering method
considering only the structure of the XML document to cluster the data of the INEX
2006 document mining challenge. Our aim was to explore whether the structure of the
XML documents overplay the instances (contents within tags) of the documents for
the clustering task. The experiments show that the structure matching employed by
PCXSS alone can not be applied well on the INEX documents especially when the
XML documents conform to only one schema. Furthermore, INEX documents are
data-centric based where the structure of the document plays a small role in
determining the similarity between INEX documents.

The development of the PCXSS clustering algorithm originally meant to cluster the
heterogeneous schemas. Use of PCXSS on the XML documents may need a number
of extensions such as the learning of instance and data type for a more efficient
clustering solution.

For future work, PCXSS will be extended to include the learning of content and to
develop a more suitable iteration phase for the clustering process so that it is not
highly depended on the predefined threshold. The effect of the size and of the order of
the XML documents will also be thoroughly investigated in PCXSS. The PCXSS
method will be appropriately modified to reduce those effects.

References

1. Boukottaya, A., Vanoirbeek, C.: Schema matching for transforming structured documents.
In: 2005 ACM symposium on Document engineering. Bristol, United Kingdom (November
02-04, 2005)

2. Bray, T., et al.: Extensible Markup Language (XML) 1.0 (Third Edition) W3C Recommen-
dation (2004)

3. Denoyer, L., Gallinari, P.: Report on the XML Mining Track at INEX 2005 and INEX
2006. In: INEX 2006 (2006)

4. Han, J., Kamber, M.: Data Mining. In: Concepts and Techiques, Morgan Kaufmann, Seattle,
Washington, USA (2001)

5. Luo, X., Zincir-Heywood, N.: Evaluation of two systems on multi-class multi-label
document classification. In: ISMIS05, New York, USA (2005)

484 T. Tran and R. Nayak

6. Nayak, R.: Investigating Semantic Measures in XML Clustering. In: The 2006 IEEE/ACM
International Conference on Web Intelligence. Hong Kong (December 2006)

7. Nayak, R., Tran, T.: A Progressive Clustering Algorithm to Group the XML Data by
Structural and Semantic Similarity. To be published in International Journal of Pattern
Recognition and Artifical Intelligence (Data of Acceptance: 9th October 2006)

8. Nayak, R., Witt, R., Tonev, A.: Data Mining and XML documents. In: The 2002
International Workshop on the Web and Database (WebDB 2002) (June 24-27, 2002)

	Evaluating the Performance of XML Document Clustering by Structure Only
	Introduction
	The PCXSS Method: Overview
	PCXSS Phase 1: Pre-processing
	PCXSS Phase 2: Clustering
	Structure Matching Stage
	Clustering Stage

	Experiment and Discussion
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

