
N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 137–150, 2007.
© Springer-Verlag Berlin Heidelberg 2007

GPX - Gardens Point XML IR at INEX 2006

Shlomo Geva

Faculty of Information Technology
Queensland University of Technology

Queensland 4001 Australia
s.geva@qut.edu.au

Abstract. The INEX 2006 evaluation was based on the Wikipedia collection in
XML format. It consisted of several tasks that required different approaches to
element selection. In this paper we describe the approach that we adopted in an
attempt to satisfy the requirements of all the tasks, Thorough, Focused,
Relevant in Context, and Best in Context. We have used the same underlying
system to approach all tasks. The retrieval strategy is based on the construction
of a collection sub-tree, consisting of all nodes that contain one or more of the
search terms. Nodes containing search terms were then assigned a score using
the GPX ranking scheme which incorporates TF-IDF or BM25 variants, but
extends them. Scores are recursively propagated to ancestors in the document
XML tree, and finally all scoring XML elements are ranked. We present results
that demonstrate that the approach is versatile and produces consistently good
performance. We also provide empirical analysis of the GPX ranking scheme
and compare its performance against a baseline TF-IDF and a BM25 scoring
scheme..

Keywords: XML IR Information Retrieval GPX INEX Evaluation.

1 Introduction

The INEX 2006 Ad-hoc track consisted of 4 tasks, namely Thorough, Focused, All in
Context and Best in Context retrieval. These tasks are described elsewhere in the
proceedings. We have used the 2005 GPX search engine algorithms with some minor
modifications [1,3]. The software was ported in 2006 from C# and MS-Access to Java
and the Apache Derby relational database. This was done to achieve speedup in
searching, but the basic system remained almost unchanged. We implemented
extended support for more complex queries [2], lifting some of the limitations of
NEXI. GPX thus represents an evolving system that started in 2004 and its evolution
documented in the annual workshop proceedings. The reader is invited to read the
2004 and 2005 descriptions of GPX for more detail [1,3]. In this paper we describe
the approaches we took to the various tasks in 2006 and discuss the results. Finally,
we analyze the performance of the GPX scoring scheme by comparing it against TF-
IDF and BM25 [4]. In the following sections we have also attempted to provide a
comprehensive enough description of GPX so that it can be reproduced on the back of
any XML index system that supports the retrieval of XPath inverted lists.

138 S. Geva

2 The GPX Search Engine

For the sake of completeness we provide a brief description of GPX. The search
engine is based on XPath inverted lists. For each term in the collection we maintain
an inverted list of XPath specifications. This includes the file name, the absolute
XPath identifying a specific XML element, and the term position within the element.
The actual data structure is designed for efficient storage and retrieval of the inverted
lists which are considerably less concise by comparison with basic text retrieval
inverted lists.

2.1 Inverted List Representation

We have chosen to implement GPX using a relational database as backbone
architecture; however, the system is in fact based on a traditional inverted list which
was extended to support XML IR. The choice is motivated by the extensive off the
shelf functionality of a DBMS and ease of programming of all I/O operations. We do
not however use any of the expensive recovery and concurrency mechanisms that the
DBMS supports by using minimal footprint embedded mode executables. The
software that we used is the Apache Derby1 open source DBMS, freely available
under Apache License, Version 2.0. Derby’s footprint is small -- about 2 megabytes
for the base engine and embedded JDBC driver.

In principle, before optimising the database schema, a suitable inverted list for our
purposes consists of a single table with the following structure:

Term-Context = { Term, File-Name, XPath, Position }

This structure is sufficient to allow us, given a term, to retrieve all contexts in
which the term appears. The Position column allows us to support phrase searches or
proximity operators. The collection contains approximately 140 million postings
hence each byte in a posting contributes 140MB to the size of the inverted list
(ignoring other overheads). It is obvious that this structure is exceedingly redundant
and the representation of postings in the list can become very expensive. We describe
several ways by which we kept the inverted lists index size under control.

There are approximately 2 million unique terms in the collection. It is not
necessary to store the Term column in the table because it could be stored in an
auxiliary table, recording the Term, Start position, and End position in the inverted
list table. However, this makes it more difficult to manage a dynamic collection where
insertions and deletions are allowed. We have chosen not to adopt this approach.
However, we do map a term to Term-ID. The Term-ID is only a 4 byte integer and an
auxiliary table provides the mapping of Term to Term-ID. Terms usually exceed 4
bytes, particularly since there is always an overhead of several bytes if variable length
strings are used. Similarly, file names are very long and so a simple normalization is
performed to map a File-Name to a File-ID. With about 660,000 files in the collection
4 bytes are sufficient. The Position column can be safely stored on 2 bytes since text
nodes do not exceed 64KB.

1 http://db.apache.org/derby/

 GPX - Gardens Point XML IR at INEX 2006 139

The representation of the XPath is more problematic. The tag names can be rather
long, and XPath expressions can contain numerous nodes and be very long. We could
have encoded tag names - there are less than 256 meaningful tags so one byte could
suffice to represent a tag. We have chosen not to do so because that would render the
lists unreadable without decoding and this was inconvenient. With XPath lengths
varying from 10 bytes to over 300 in this collection, the overhead of storing the
explicit XPath is significant even with coding. We observe that each unique XPath is
repeated in the inverted list for each term in the same node, and the XPaths
themselves are repeated in many files. For instance, almost every article in the
collection has a node /article[1]/body[1]/p[1]. There is significant redundancy here
already, but furthermore, many paths which are not identical share a common sub-
path. This suggests a compression scheme like LZW might be effective. We
considered this to be unnecessary, particularly given the processing overheads and so
we have adopted the following simple yet effective compression scheme.

Consider the XPath:

 /article[1]/bdy[1]/sec[5]/p[3]

This could be represented by two expressions, a Tag-set and an Index-set:

Tag-set: article/bdy/sec/p

Index-Set: 1/1/5/3

The original XPath can be reconstructed from the tag-set and the index-set. It turns

out that there are over 48,000 unique tag-sets, and about 500,000 unique index-sets in
the collection. We assign to each tag set and each index-set a hash code and create
auxiliary database tables mapping the hash-codes to the corresponding tag-set and
index-set entries. These hash tables are small enough to be held in memory and so
run-time decoding is efficient. We have used Java’s inbuilt hash code function. It is
only a 32 bit code, but given the number of elements the risk of hash collisions is
minimal and we take it.

Finally, in order to implement BM25 it is necessary to record node sizes. So an
XPath table is maintained where the XPath is represented by a hash code computed
from the concatenation of the FileName and the XPath columns. We use a 63 bit
MD5 hash code because there are about 25 million distinct nodes in the collection and
the probability of a collision is too high with Java’s 32 bit inbuilt hash function. We
use 63 bits although MD5 provides a 64bit code since Java’s Long integers are limited
to the constant 0x7FFFFFFFFFFFFFFF.

Finally, the database schema consists of the following tables:

 Term-Context ={ Term-ID, File-ID, XPath-Tag-ID, XPath-IDX-ID, Position }
 Terms = { Term, Term-ID }
 Files = { File-Name, File-ID }
 TagSet = { XPath-Tag-ID, Tag-Set }
 IndexSet = { XPath-IDX-ID, Index-Set }
 XPathSize = { XPath-ID, Node-Size }

140 S. Geva

The size of the database is 15GB and this represents an overhead of about 3:1 over
the source documents (uncompressed). This is quite acceptable with current disk costs
and capacities even if much more efficient representations are possible.

Some performance figures of this database are as follows. The time it takes to
parse and load the 659,388 files on a 3GHz PC with 2 GB RAM is 9 hours. When the
search engine is started, the Files, TagSet, IndexSet, and XPathSize tables are loaded
into RAM – this takes about 15 seconds. The only required I/O operations during a
search are then on the Terms table and the Term-Context inverted list table. The
average time to evaluate a topic is 7.2 seconds, but a few topics take more than 30
seconds to evaluate on account of having more terms and longer inverted lists that
correspond to common terms.

2.2 The GPX Ranking Scheme

Retrieval is performed by processing the NEXI expression and interpreting the query
constraints to combine the inverted lists. In the simple case of a CO query we simply
compute scores for all elements that contain at least one of the search terms. Several steps
are followed in evaluating a query and these are described in the following sub-sections.

2.2.1 Calculation of Text Nodes Score
Equation 1: Calculation of element relevance score from its content

∑−
n

=i i

in

f

t
K=L

1

1

 (1)

Here n is the count of unique query terms contained within the element, and K is a
small integer (we used K=5). The term Kn-1 scales up the score of elements having
multiple distinct query terms. This heuristic of rewarding the appearance of multiple
distinct terms can conversely be viewed as taking more strongly into account the
absence of query terms in a document. Here it is done by rewarding elements that do
contain more distinct query terms. The system is not sensitive to the value of K as
demonstrated in the results section and a value of k=5 is adequate. The summation is
performed over all n terms that are found within the element where ti is the frequency
of the ith query term in the element and fi is the frequency of the ith query term in the
collection. Similar results are obtained if we use the TF-IDF to compute the sum, but
it does not lead to significantly different results in our experience. We describe the
results of experiments with TF-IDF and with BM25 in a later section. At INEX 2006
we used the term inverse collection frequency and refer to it as TF-ICF (as distinct
from other TF-IDF variants.)

Finally, phrases are weighted more heavily than individual terms (phrase weight
are multiplied by 10) and nodes that contain query terms that are preceded by a minus
sign (undesirable) are not returned at all.

2.2.2 The GPX NEXI Interpretation
The GPX search engine supports an extended set of functionalities which are a
superset of NEXI. These are described in more detail by Geva et al in [3]. Here we
limit the discussion to the details which are relevant to the INEX 2006 evaluation.

 GPX - Gardens Point XML IR at INEX 2006 141

The evaluation of a NEXI expression always starts by converting the query
expression from postfix to infix for sequential evaluation. For example, consider the
query –

//article[about(.,Albert Einstein)]/body[about(.//figure,Copenhagen) OR
 about(.//section,Bohr)]

The query is converted to the following stack oriented evaluation specification –

1) PUSH(//article[about(.,Albert Einstein)])
2) PUSH(//article/body[about(.//figure,Copenhagen)])
3) PUSH(//article/body[about(.//section,Bohr)]
4) PUSH(OR(POP, POP))
5) PUSH(SUPPORT(POP,POP))

This set of operations is evaluated by using an inverted lists stack. The first 3 steps
evaluate the 3 distinct filters that appear in the NEXI expression. Each list of elements
satisfies its respective about clause. In step 4 the top two lists are ORed and the
resulting list pushed back onto the stack. This effectively evaluates the OR operator
on the body element. In the final step the SUPPORT operator is applied to take into
account the filter on the article node which “supports” the selection of the body node
on account of content which is not necessarily contained in the body. The
implementation of OR, AND, and SUPPORT is now explained.

The OR operator computes the union of two inverted lists, X and Y. The call to
OR(X,Y) returns a new list. Elements in the lists identify XML result elements by
file-id, full XPath expression, and relevance score. The OR operator performs a set
union whereby elements that appear in both lists are merged and their scores added
together. Other elements that appear in either list keep their original scores.

The AND operator computes the intersection of two inverted lists, X and Y. In
GPX this operator is not necessarily a strict set intersection but can be loosely
interpreted in one of three ways. The default option is to simply implement it as
OR(X,Y). However, in some queries the user really means AND in a strict sense;
therefore, a second option is to implement it as a strict set intersection - only XML
elements that appear in both X and Y are kept, and their scores are added together.
This option is too restrictive because sometimes the lists contain overlapping elements
and then the relationship with respect to AND is unclear. By insisting on a strict
match many relevant results are lost. The third implementation keeps overlapping
nodes, combines the scores, but keeps only the largest node (oldest common
ancestor). In the experiments that we report in the next section, we used the first
(default) option. This seems to work quite well in most instances, and works better on
average.

The SUPPORT operator does not have an equivalent set operator and is specific to
our interpretation of NEXI. In NEXI, we refer to support elements and target
elements. Target elements are those elements that appear at the tail of the NEXI
expression with a filter, while support elements are internal elements with filters that
appear along the path to the target elements. The SUPPORT operator takes a list of
nodes in X that provide support to the selection of nodes from list Y. For instance,
when we look for paragraphs about Americium in articles with abstracts about the

142 S. Geva

Periodic Table, the target elements are paragraphs about Americium, and paragraphs
are supported by abstracts about the Periodic Table. Both the support and target
elements must have a common ancestor within the document tree. In the case of the
Wikipedia this is the article element. The supporting abstract must appear in the same
article as the supported paragraphs. The support operator identifies for each result
element in Y, all the support elements in X, and combines the scores. It is important
to note that all the elements in Y are returned, regardless of support. However,
elements with support have an increased score.

2.2.3 The GPX Derivation of a Full Recall Base
Having computed the scores of all elements in the collection which contain query
terms directly as text within the XML node, we must proceed to consider the scores of
elements on account of their relevant descendents. The scores of retrieved elements
are now recursively propagated upwards in the document XML tree according to the
following scheme.
Equation 2: Calculation of a Branch Element Relevance Score

∑+

n

=i
iLD(n)L=R

1
0 (2)

Where:

 L0 = the score of the current node (from Equation 1), zero by default
 n = the number of children elements
 D(n) = N1 if n = 1
 = N2 Otherwise
 Li = the relevance score of the ith child element

The introduction of the term L0 was necessary when moving from the IEEE articles
collection to the Wikipedia since text appeared only in leaf nodes in the IEEE
collection, but many Wikipedia nodes contained both direct text and descendents with
text. The value of the decay factor D depends on the number of relevant children that
the branch has. If the branch has one relevant child then the decay constant is smaller.
Generally we have 0<=N1<=N2<1. A branch with only one relevant child will be
ranked lower than its child. The decay factor N2 may be chosen large enough so that
a branch with several relevant children will be ranked higher than its descendants.
Thus, a section with a single relevant paragraph would be judged less relevant than
the paragraph itself, but a section with several relevant paragraphs might be ranked
higher than any of its descendent paragraphs.

It is attractive to consider the use of node size directly in score propagation. As we
progress upwards through the tree, node specificity tends to decrease, but coverage
(recall) can increase when multiple descendents are combined in an ancestor node.
Node size can provide some direct information in relation to precision, but we were
unable to discover a robust way to incorporate the node size into Equation 2.

Finally, the cost of propagating the scores can be very high. Many of the terms that
appear in the topics are rather common. This leads to a very high computational load.
In order to reduce the total time it took to generate the results we have imposed two
limitations. All terms that occur with a frequency greater than 100,000 in the

 GPX - Gardens Point XML IR at INEX 2006 143

collection were treated as stop-words and ignored. This proved to be of little
consequence with the topic set on hand. Of course one can imagine situations when
this would be a costly decision. This reduced the processing time of the entire set of
topics by 50% with very minimal degradation in MAep values (less than 1%). The
second limitation that we imposed was more severe. It reduced the processing time by
more than 7 fold. The limitation was placed on the number of nodes that were taken
forward from the first phase (Equation 1) towards generation of the full recall base.
We have taken the 3000 highest scoring nodes at most. In some instances hundreds of
thousands of scoring elements were dropped. This meant that incomplete information
was used in propagating scores upwards in the document tree. As it turns out this did
make a significant difference to precision and recall. This performance cost is
discussed later in the experimental section. It must be noted that both limitations can
be lifted at the cost of increased processing time which can be reduced by other means
without sacrificing precision and recall – for instance, by storing inverted lists for
word-grams instead of single terms. With extremely common terms this could reduce
the list lengths by several orders of magnitude by reducing the time required to
complete the I/O and set operations over the lists.

After the scores of all nodes are computed GPX proceeds to add the score of the
Article node in each document to the score of each node in the article (including the
article node itself). This heuristic correction is intended to generally push up the
scores of elements that appear in documents that are more relevant. Empirically we
were able to establish that better results may be obtained in this manner.

Finally, we note that GPX is based on a simple variation of TFIDF. Robertson
provides a comprehensive discussion of various theoretical arguments for IDF [5], but
in the end IDF is still a heuristic approach, and so is GPX.

3 Experimental Results

In this section we present and discuss the results that were obtained at INEX 2006.
We also present the results of an empirical sensitivity analysis of various parameters
of the GPX search engine, performed with the Wikipedia collection.

3.1 Thorough Retrieval

All the QUT runs were generated with GPX search engine, starting with thorough
retrieval. We have experimented with several settings of the decay factor, with strict
and loose interpretation of NEXI expressions, and with various query expansion
techniques. The official results of the Thorough Retrieval task are reproduced in
Figure 1. The solid line is the GPX submission that was ranked 3rd, with a MAep
value of 0.0699. This is just 0.001 below the top submission, but qualitatively there
seems to be a difference - the precision of the GPX run is slightly lower at low recall
levels, but the overall recall (area under the curve) is higher. This run was obtained
with N1=0.11 and N2=0.31 in determining D(n) in Equation 2. Both GPX runs were
CO runs. The COS runs did not perform as well. This is the reverse of what was
observed with the IEEE CS collection that was used in earlier evaluations. We
attribute the difference to the apparent lack of semantic tagging in the Wikipedia.

144 S. Geva

The solid dash-dot line corresponds to the GPX run which was ranked 9th with MAep
value of 0.0620 and was obtained with the values of the decay parameter N1=0.31
and N2=0.71. Qualitatively it is similar to the other runs in the top 10.

The solid dotted line is an unofficial run that corresponds to exactly the same
system setting as our best official run, except that we kept 30,000 elements rather than
3,000 in producing the full recall base through score propagation (equation 2). The
MAep increased by 10% to 0.077. This is a very significant improvement and it
quantifies the cost of more efficient retrieval. Instead of 15 minutes, it took 111
minutes to generate a complete run submission of 125 topics.

Another difference between the two GPX runs is that the better performing run (by
MAep) was produced by adding to the CO title element a support filter. The filter was
placed over the article name. In this manner, elements that appeared in articles whose
name was about the same keywords as the title received a boosted score. This was
simply achieved by adding the filter to the title. For example,

//article[about(.,X Y Z)] //article[about(./name,(X Y Z)]//*[about(.,X Y Z)]

It should be noted that in GPX the meaning of the “//*” path specification is “this

node or any descendents” rather than “any descendent”. The modified expression is
evaluated by GPX in the usual manner and supported nodes receive an additional
score from the support element – if found in the same article. The heuristic is obvious
– if the search terms appear in the Wikipedia article name itself then it is more
probable that the article is relevant.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
task: thorough

ef
fo

rt
-p

re
ci

si
on

gain-recall

Fig. 1. GPX Thorough Retrieval

 GPX - Gardens Point XML IR at INEX 2006 145

3.2 Focused Retrieval

Focused Retrieval starts with the thorough results recall base. The highest scoring
elements on a path are selected by keeping only elements that have a higher score
than any of their descendents or ancestors. Figures 2 and 3 depict the official plots,
with the solid heavy line corresponding to the best official GPX submission. Again,
the unofficial dotted line was later produced by running GPX with the same setting as
the best official run, but taking the top 30,000 elements rather than the top 3,000 in
generating the thorough recall base from which the focused run was produced. The
performance difference is again quite large. There is a clear incentive to write a more
efficient implementation of GPX that will keep processing low while providing a
significant performance improvement.

3.3 Best in Context

We tested a trivial approach here – we simply kept the highest scoring element in
each document appearing in the recall base. This simple approach seems to have
produced good results with the BEPD metric. The GPX submission was ranked 3rd
with the setting A=0.01. This, according to the official BEP metric documentation,
means that the system was comparatively successful in pinpointing the BEP. Low A
values favor runs that return elements that are very close to the BEP.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

task: focused, overlap off

nx
cg

rank

Fig. 2. GPX Focused Retrieval, with overlap OFF

146 S. Geva

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

task: focused, overlap on

nx
cg

rank

Fig. 3. GPX Focused Retrieval, with overlap ON

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

task: All In Context

P
re

ci
si

on

Recall

Fig. 4. GPX All in Context Retrieval

 GPX - Gardens Point XML IR at INEX 2006 147

3.4 All in Context

The objective of the task was to balance article retrieval and element retrieval. Whole
articles are first ranked in descending order of relevance and within each article a set
of non-overlapping most focused elements are grouped. We have used the focused
results, which were overlap free already, but grouped the elements within articles and
sorted the articles by score. The results are reasonable but performance suffers
because the focused recall base is not ideal for this task. The focused recall base
retains the most relevant elements in the collection, but out of context. This means
that high recall within article is not assured. Nodes that have a lower score can drop
out of the top 1500 elements of the Focused run. This works against All in Context
retrieval where the F-Score of an article demands high recall within each article. In
addition to this, since from the outset we have only considered the top 3000 elements
in generating the thorough recall base, even the thorough recall base was incomplete.
This means that elements that might otherwise appear in highly ranked articles were
never retained. Figure 4 depicts the official results with the GPX best run depicted as
a heavy solid line.

3.5 Empirical Evaluation of GPX Scoring

In this section we present the results of empirical evaluation of the GPX scoring
strategy. We study the effect of each of the components in Equation 1 and Equation 2.
In order to evaluate the sensitivity of the evaluation to the score propagation constant
D(n) in Equation 2, we have fixed all other parameters, and used N1=N2=N, and
varied the value of N in small steps from zero to one. The results are summarized in
Table 1.

Table 1. The impact of choice D(n)

D(n) Thorough
MAep

Focussed nxCG@50
overlap OFF

Focussed nxCG@50
overlap ON

All in Context
MAep

0 0.017 0.262 0.219 0.082

0.1 0.039 0.280 0.231 0.117

0.2 0.049 0.289 0.232 0.125

0.3 0.056 0.296 0.237 0.131

0.4 0.062 0.298 0.233 0.135

0.5 0.066 0.287 0.234 0.142

0.6 0.068 0.268 0.235 0.148

0.7 0.070 0.248 0.230 0.153

0.8 0.069 0.235 0.223 0.156

0.9 0.069 0.218 0.211 0.157

1.0 0.068 0.154 0.158 0.100

148 S. Geva

The best performance is achieved at different D(n) values for the different tasks. In
the Thorough and All in Context higher values (0.8) produce better results since
higher D(n) values lead to exhaustive selection within article. In the Focused task
lower values (0.3) produce better results since precision is favoured by lower D(n)
values. This is also confirmed in our official run results. Importantly however, the
performance is not extremely sensitive to the selected value and there is no
catastrophic degradation of performance for some values.

In order to ascertain that the heuristic motivation to Equation 1 is indeed sound, we
have conducted experiments where we evaluated the individual components in
isolation. Figures 5 and 6 depict the performance of runs when the score calculation is
based on the number of unique query terms alone (Kn-1), on a TFIDF variation alone
(TFICF or BM25), and on the combination of the two as in Equation 1. It is clear that
when both components are used the performance is much improved (dotted line).
Furthermore, there is no advantage to using BM25 over the simpler TFICF variation.
This is not surprising since most text elements are small and BM25 is indeed expected
to make little difference for small documents [4]. We have used BM25 with the default
values K1=2 and b=0.75, but other values produced similar results.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
task: thorough

ef
fo

rt
-p

re
ci

si
on

gain-recall

Kn-1

TFICF

kn-1*TFICF

Fig. 5. GPX with TFICF

Finally, we tested several variations for the value of K in Equation 2. While
holding all other parameters constant we have varied the value of K from 1 to 50.
Figure 7 depicts the results. There is an improvement as K values increase to about 5
and then for values of between 5 and 50 there is no further improvement and the

 GPX - Gardens Point XML IR at INEX 2006 149

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
task: thorough

ef
fo

rt
-p

re
ci

si
on

gain-recall

Kn-1

BM25

kn-1*BM25

Fig. 6. GPX with BM25

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
task: Thorough

ef
fo

rt
-p

re
ci

si
on

gain-recall

k=1

k=2

k=5
k=8

k=10

k=50

Fig. 7. GPX with varying K values

150 S. Geva

performance is stabilized. This can be understood as follows. Equation 1 heavily
rewards elements that contain more distinct terms, through Kn-1. The TFIDF
component in Equation 1 moderates that score. Once the value of K is large enough
the moderation that is contributed by the TFIDF component is no longer sufficient to
moderate the rank order of elements with a very different number of distinct query
terms.

4 Conclusions

GPX performed rather well on the Wikipedia in most tasks. This result demonstrates
that the method is quite robust since GPX was designed and implemented with the
IEEE collection, but evaluated with the Wikipedia. The best relative performance was
achieved in the Thorough, Focused (overlap off) , and BEP tasks. The performance in
the All in Context task and Focused (overlap on) was not quite as good, but
respectable nevertheless. Future work will focus on ranking strategies that take node
size and structure into account in an explicit manner, to try and capture the intuitively
appealing F-Score calculation which was used in the evaluation of the All in Context
task. More work is also required on improving search efficiency. List processing is
extensive and the current implementation is CPU bound rather than I/O bound. A
response time of 7 seconds per topic is inadequate for implementing a high
throughput online system. We are unable to compare the efficiency of our system
with that of other systems at this stage because the INEX evaluation does not formally
support a systematic comparison of this aspect.

References

1. Geva, S.: GPX - Gardens Point XML Information Retrieval INEX 2004. In: Fuhr, N.,
Lalmas, M., Malik, S., Szlavik, Z. (eds.) Advances in XML Information Retrieval. Third
International Workshop of the Initiative for the Evaluation of XML. LNCS, pp. 211–223.
Springer, Heidelberg (2005)

2. Geva, S.: GPX - Gardens Point XML IR at INEX 2005, INEX 2005. In: Fuhr, N., Lalmas,
M., Malik, S., Kazai, G. (eds.) Advances in XML Information Retrieval. Fourth
International Workshop of the Initiative for the Evaluation of XML. LNCS, pp. 240–253.
Springer, Heidelberg (2006)

3. Geva, S., Tannier, X., Hassler, M.: XOR - XML Oriented Retrieval Language, SIGIR 2006,
Workshop on XML Element Retrieval Methodology, Proceedings online at:
http:/www.cs.otago.ac.nz/sigirmw/Proceedings.pdf

4. Robertson, S.E., Sparck Jones, K.: Simple, proven approaches to text retrieval, University
of Cambridge Technical Report UCAM-CL-TR-356, ISSN 1476-2986, December 1994, last
updated February 2006. http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-356.pdf

5. Robertson, S.: Understanding Inverse Document Frequency: On theoretical arguments for
IDF. Journal of Documentation 60(5), 503–520 (2004)

	GPX - Gardens Point XML IR at INEX 2006
	Introduction
	The GPX Search Engine
	Inverted List Representation
	The GPX Ranking Scheme

	Experimental Results
	Thorough Retrieval
	Focused Retrieval
	Best in Context
	All in Context
	Empirical Evaluation of GPX Scoring

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

