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Abstract. Retrieval queries that combine structural constraints with
keyword search are placing new challenges on retrieval systems. This
paper presents TReX—a new retrieval system for XML. TReX can effi-
ciently return either all the answers to a given query or only the top-k
answers. In this paper, we discuss our participation in the annual Initia-
tive for the Evaluation of XML Retrieval (INEX) workshop in the ad-hoc
track. Our main contribution is to investigate the use of summaries and
the flexibility they provide when dealing with structural constraints. We
describe algorithms for retrieval using summaries. Experimental results
are presented showing that TReX answers queries efficiently and effec-
tively.

1 Introduction

Recent research efforts have combined the structured data management capabili-
ties of databases with the powerful keyword search capabilities of information re-
trieval (IR) systems. One of the best known of these research efforts is the INEX
[1] initiative. INEX is a forum dedicated to research in information retrieval
from collections of XML documents. In XML retrieval, queries are combinations
of keywords (content queries), structural hints (vague queries) and structural
constraints (strict queries). Query responses are composed of XML document
fragments (i.e., specific elements) that satisfy the structural conditions and are
returned ranked according to relevance criteria based on the content and struc-
tural components of the query.

To assess the effectiveness of the ranked answers returned by XML retrieval
systems, human judgments are collected for the answers to standard queries,
which are called topics, on XML collections. The collections are shared among
all of the INEX participants. Based on the collections, INEX participants pro-
pose and agree on the topics for the human judges. System implementors develop
their ranking criteria and assess the quality of the answers from their systems
against the human judgments. Participants’ ranking criteria generally use well-
established IR techniques for content scoring that have been extended to incor-
porate the structural conditions specified in the topic. We refer to this extension
as structural scoring. The XML retrieval community is just starting to develop an
understanding of structural scoring. We expect that in the coming years a wide
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range of different techniques will be proposed and assessed. To this effect, our
efforts have concentrated on developing an XML retrieval system that supports
flexible structural scoring. We believe that this will foster more experimenta-
tion and will help move forward the state-of-the-art over the long term as we
begin to understand the different ways that structure is used in XML retrieval.
Our contention is that XML retrieval systems must be capable of efficiently
combining IR evaluation techniques with new structural ranking capabilities.
There are still a wide spectrum of challenges to overcome. As an example, this
is illustrated in the strict interpretation of structural constraints because these
constraints have the same efficiency demands on the system as those placed on a
structured XML query engine (i.e., those posed on an XPath or XQuery capable
processor). TReX is a step toward overcoming these challenges.

In this paper we describe the techniques used by the TReX system to sup-
port efficient, effective and flexible XML retrieval. TReX retrieves relevant XML
fragments by simultaneously using indexes on paths in the XML (summaries)
and indexes on keywords (inverted lists). Previous work has established the ad-
vantages of using summaries for structured XML queries [6]. This paper applies
summaries to content and vague structure retrieval queries. Two methods for
computing queries are considered. In the exhaustive method, queries are com-
puted directly from the indexes. Our second method is meant for quickly com-
puting the top-k answers to a query. It relies on the exhaustive method to first
precompute and store lists of ranked elements for each query keyword and path
expression. Then, the system employs the threshold algorithm (TA) for efficiently
combining the ranks according to the keywords in the query. We provide exper-
imental results showing the efficiency and the effectiveness of TReX ’s use of
summaries in support of flexible structural scoring in XML retrieval.

Several proposals in the literature extend the traditional keyword-style re-
trieval to the XML model [8,13,14]. Vague structural conditions were introduced
in [23] and complemented with full-text conditions in [3,4]. A query algebra for IR
style processing of XML data was introduced in [5]. Although only for keyword
queries, XRANK [13] is the only system that provides efficient support for finding
the top-k results. Other recent proposals for XML ranked retrieval include [17]
and [20]. The former uses dataguides and TA-style top-k algorithms [11], but
differs from our work in that their experiments are limited to DB-like queries
rather than XML retrieval queries. In contrast, [20] focuses on efficient evalu-
ation of approximate structural matches without considering keyword search.
The closest work to ours is TopX [24]. We follow the baseline top-k algorithm
described in that work, but we do not use their probability predictor function
nor invoke costly random access to resolve structural constraints. Our scoring
model is similar to existing scoring models such as TopX [24] and BM25E [18].
The main difference from TopX and BM25E is that tags (element names) are the
only structural constraints influencing the score whereas, in TReX , the scoring
function uses more flexible summary-based constraints.

The structure of the paper is as follows. Section 2 introduces the retrieval
queries supported by the TReX system. Section 3 introduces summaries. Section
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4 describes the evaluation mechanisms used by TReX . Finally, Section 5 presents
experimental evidence of the effectiveness and efficiency of TReX .

2 Retrieval Queries

TReX is designed for evaluating NEXI queries [25] over a given XML corpus.
NEXI (Narrowed Extended XPath I ) is a query language for specifying retrieval
queries. It was devised and has been used in the context of the Initiative for
the Evaluation of XML Retrieval (INEX)[19]. NEXI is built upon XPath [7].
On the one hand, it narrows XPath by excluding function symbols and some
axes. On the other hand, it extends XPath with the function about(), which
denotes a vague interpretation of its input. A NEXI query is composed of two
types of constraints, structural and textual. The about() function can be applied
to both. The structural constraints are expressed in XPath-like syntax and the
textual constraints are keywords.

Example 1. Consider the following NEXI query
//article[about(., XML retrieval)]//sec[about(., inverted list)].
This query specifies a search for sections that are relevant to the keywords “in-
verted list” that appear in articles that are relevant to “XML retrieval”.

The answer to a query consists of elements that satisfy the structural and textual
constraints. The elements, in an answer, are ranked according to their relevance
to the search. In general, elements that contain the specified search terms should
be ranked higher than elements that do not. For instance, the answer to the query
in Example 1 are sec elements that are descendants of article elements, i.e.,
elements that are in the answer to the XPath expression //article//sec. All
sec elements in the answer should be ranked according to their relevance to
the keywords “inverted” and “list”, and the relevance of their ancestor article
elements to the keywords “XML” and “retrieval”.

The scoring function TReX uses is a version of the Okapi BM25 formula [10]
modified for XML. The TReX function is a generalization of the scoring func-
tion employed in the TopX query engine [24]. Its novelty is that the score of an
element is given with respect to a set S of elements specified by the structural
constraints of the query. Before presenting the formula, we provide some nec-
essary notation. We denote by tf (t, e) the term frequency of the term t in the
element e. This function returns the number of occurrences of t in the textual
content of e, where the textual content is considered a bag of terms. We denote
by ef S(t) the element frequency of a search term t, with respect to a set S of el-
ements. This function returns the number of elements that contain t, among the
elements in S. The length of an element e, denoted length(e), is the number of
words in the textual content of e. That is, length(e) =

∑
{t|t is a term in e} tf (t, e).

Finally, we denote the size of a set S by |S|.
Given a list t1, . . . , tm of terms, an element set S and an element e in S, the

BM25 score of e is given by the following formula.
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scores(e | t1, . . . , tm) =
m∑

i=1

(k1 + 1) · tf (ti, e)
K + tf (ti, e)

· log
(

|S| − ef S(ti) + 0.5
ef S(ti) + 0.5

)

where

K = k1

(

(1 − b) + b · length(e)
avg{length(e′) | e′ ∈ S}

)

Okapi BM25 was originally developed using statistics of all documents in
the corpus. In the context of XML, BM25 has been modified to use statistics
at the granularity of elements. One may note that any scoring function based
on term-frequency could be used with no loss of generality in our approach. In
comparison, TReX uses statistics within groups of elements defined by structural
constraints. More formally, our BM25 formula uses frequency statistics with
respect to an element set S rather than using only statistics with respect to
entire documents or individual elements. Usually, S is taken to be the set of all
elements satisfying the structural constraints of the query. For instance, in the
query from Example 1, S contains all the elements in the answer to the XPath
expression //article//sec.

As tuning parameters we use the same values used in TopX. Thus, we set
k1 to 10.5 and b to 0.75. Note that k1 controls the non-linear term-frequency
effects, and b controls the element-length normalization [10]. In order to answer
retrieval queries efficiently, TReX uses inverted lists for finding elements that
contain the keywords, and summaries for finding elements that comply with the
structural constraints. Summaries are discussed in the next section.

3 Structural Summaries

Structural summaries are data structures used for locating specific fragments of
the data, such as nodes and subtrees. They group together elements that are
indistinguishable with respect to a query or a class of queries in some XML
query language. By accessing relevant data directly, summaries help to avoid
sequential scans of entire documents during query evaluation. In addition, they
can be used to describe the instance by keeping record of its structural properties,
such as hierarchical relationships, degree of nesting, and label paths. A typical
summarization of the XML tree structure is a labeled tree that describes its labels
and edges in a concise way. In addition, XML tree nodes are partitioned into
equivalence classes according to their labels or the label paths they belong to.
Each node in the summary tree has one such equivalence class (usually called
its extent in the literature) associated to it.

The partition can be induced by different criteria. For instance, the tag sum-
mary clusters together nodes with the same tag. The tag summary has as many
extents (equivalence classes) as different tags are in the XML tree. The incoming
summary, in contrast, partitions nodes based on the label paths from the root to
the nodes, i.e., the incoming label paths. Thus, nodes with the same incoming
label path will belong to the same extent. It is easy to see that the extents of the
incoming summary are in fact a refinement of the tag summary extents, because
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Fig. 1. Fragment of the incoming and alias incoming summary trees for the INEX
IEEE collection

in order for two nodes to have the same incoming label path they also need to
have the same label. The left-hand side of Figure 1 shows a fragment of the
incoming summary tree for the INEX IEEE collection. (The complete incoming
summary with no aliases has 11563 nodes. For the tag summary, the number of
nodes is 185. The total size of the alias incoming summary is 7860. The alias
tag summary has 145 nodes.) In Figure 1, the numbers below the nodes are
the summary node identifiers, or sid’s for short. For instance, all XML nodes
that end with the path books/journal/article belong to the same incoming
summary extent and, according to our summary in Figure 1, have sid 7. A sid
not only identifies a summary node but also includes all XML nodes that belong
to the summary node’s extent. Note that if two XML nodes have the same sid,
then by definition one node cannot encapsulate the other.

In an XML retrieval environment, oftentimes different elements with different
tags represent the same type of information. For instance, article sections in the
IEEE collection are in some places referred to as sec and in other places as ss1
or ss2. Since sec, ss1 and ss2 are semantically the same. For a summary to
reflect that fact, we make use of the alias mapping provided by INEX to replace
all synonyms by their alias (sec in our example). The right-hand side of Figure
1 shows a fragment of the alias incoming summary tree for the INEX IEEE
collection.

An alias mapping collapses different summary nodes in the non-aliased sum-
mary into a single summary node in the aliased summary. This collapse can hap-
pen for two different reasons. The first one is that nodes are combined into one
because their tags are aliases of the same tag. For instance, nodes with sid’s 82
and 281 in the incoming summary of Figure 1 are combined into summary node
sid 82 in the alias incoming because tags ss1 and ss2 are mapped to (aliased
with) sec. This type of collapse can happen in both tag and incoming sum-
maries. The second type of collapse is only possible in the incoming summary:
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two nodes collapse because their ancestors collapse. This is the case of nodes
with sid’s 84 and 283 on the left-hand side of the figure. When nodes with sid’s
82 and 281 were combined into one, the incoming label path to nodes with sid’s
84 and 283 became the same and thus the two nodes were also combined into
one.

Our system generates an XPath expression for each sid, which computes pre-
cisely the set of document nodes in its extent. Attaching an arbitrary XPath
expression to each sid gives us the ability to precompute arbitrary path condi-
tions in our summaries. In addition, the use of XPath provides us with a uniform
mechanism for creating and manipulating TReX summaries.

Since our system uses sid’s internally, changing the summary only impacts the
sid’s used during query evaluation. This provides the flexibility to use different
summaries transparently in TReX . Any summary proposal in the literature can
in fact be used in TReX. Examples of such proposals are region inclusion graphs
(RIGs) [9], dataguides [12], the T-index family [21], ToXin [22], A(k)-index [16],
F&B-Index and F+B-Index [15]. RIGs are examples of tag summaries whereas
dataguides, 1-index, ToXin, and A(k)-index are incoming summaries. All these
proposals can be expressed in our system using XPath expressions, which gives
us the ability mix and match them in our summaries.

3.1 NEXI Evaluation Using Summaries

We now explain how to use structural summaries for evaluating retrieval queries.
The evaluation of a NEXI retrieval query in TReX is done in two phases: trans-
lation and retrieval.

In the translation phase, each path p in the query from the root to an about()
function is translated to a set of sid’s and a set of terms. Let Ep be the set of
elements in the result of evaluating p on all the documents in the corpus. The
set of sid’s consists of all the summary nodes whose extent has a non-empty
intersection with Ep. The set of terms consists of all the terms that appear in
the about() function at the end of each path p. For example, consider the query
in Example 1 over the INEX IEEE collection, and the incoming summary with
aliases shown on the right-hand side of Figure 1. Then, the set of sid’s for the
path //article//sec is {46, 82, 89, 493, 607, 619, 630, 761, 1995, 2239}. The set
of terms is {inverted, list}. For the path //article that also leads to an about()
function, the set of sid’s is {7} and the set of terms is {XML, retrieval}.

In the retrieval phase, elements are retrieved according to the sets of sid’s
and terms generated in the translation phase. For a set of sid’s [sid1, . . . , sidm]
and a set of terms [t1, . . . , tn], the system retrieves the elements that (1) are
in the extent of a node with sid in sid1, . . . , sidm, and (2) contain at least one
of the terms t1, . . . , tn. For each such element e, term and element frequencies
are computed and a BM25 score scores(e | t1, . . . , tn) is calculated, where S
is the extent in which e is a member. The following section discusses how the
algorithms of the retrieval phase were implemented in TReX.
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Elements(SID, docID, endPos, length)

PostingLists(token, docID, offset, postingDataEntry)

RPL(token, iR, SID, docID, endPos, rplDataEntry)

Fig. 2. The schemes of the tables TReX stores

4 Exhaustive Retrieval Algorithm

In this section, we describe the exhaustive retrieval algorithm (ERA) for the
retrieval phase of query evaluation. As explained in Section 3.1, the input to
ERA consists of a list of sid’s and a list of terms. An element of a document in
the corpus is considered relevant , if (1) it is in the extent of one of the given sid’s
and (2) it contains at least one of the given terms. ERA finds all the relevant
elements. In addition, for each relevant element e and for each term t among
the given terms, ERA computes the frequency of t in e, (i.e., the number of
times that t appears in e). These term frequencies are the basis for ranking the
elements of the result, as was discussed in Section 2. Note that ERA can be used
not only with BM25 but also with any other ranking method that is based on
term frequency.

For evaluating queries, ERA uses a structural summary of the corpus and
inverted lists. An inverted list stores all the positions where each term appears.
Positions are represented in TReX as pairs of a document identifier and an offset
from the beginning of the document. Summaries and inverted lists are stored as
indexed relational tables. The following section describes these tables, and in
Section 4.2 we present ERA.

4.1 Data Structures

In TReX, the structural summary and the inverted lists are stored in two indexed
tables named Elements and PostingLists. The schemes of these tables are
shown in Figure 2. In the figure, keys are underlined. For each table, an index
provides ordered sequential access to the tuples according to the keys.

The Elements table contains an entry for each element in the corpus. SID is
the summary id of the element. The field docID holds the identifier of the docu-
ment in which the element appears. The endPos is the position in the document
where the element ends, and length is the length of the element. Note that we
can compute the start position of each element by subtracting the length from
the end position.

The PostingLists table is actually the inverted lists. For each term, all the
positions where this term appears are stored in the table. The position of the
term is represented by the identifier of the document in which the term appears
and an offset from the beginning of this document. The token field is the token
(i.e., term) that the entry represents. In each tuple, the postingDataEntry
is a list of the form doc1, o

1
1, . . . , o

1
i1 , doc2, o

2
1, . . . , o

2
i2 , . . . , dock, ok

1 , . . . , ok
ik

where
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doc1, . . . , dock is a sorted list of document identifiers, and each oj
1, . . . , o

j
ij

is a
sorted list of offsets indicating the positions where the token appears in the
document docj . The posting list may become too long for storing it in a single
tuple. So it may be divided and stored across several tuples. In order to access
the parts of the posting list in order of position, the fields docID and offset in
postingDataEntry are part of the key.

For technical reasons, we also add a maximal dummy position denoted m-pos
to the end of the last postingDataEntry list of each term. The position m-pos is
maximal in the sense that no real position can exceed it. This is done to detect
the end of each posting list.

4.2 The Exhaustive Algorithm

We now show how ERA computes a query result from the data in the Elements
and PostingLists tables. The main code is presented in Figure 3. Before we
explain the code, we describe the iterators used in ERA. There are two principle
iterators; one for the Elements table and the second for the PostingLists table.
The first iterator searches over the index of Elements. For a sid s, let iterator Is

return all the positions of relevant elements in s in ascending order of (docID,
endPos). The function call Is.firstElement() returns the first tuple in Elements
whose sid is equal to s. The function call Is.nextElementAfter(p) returns the
element with the lowest position greater than p in extent s where p is a tuple
of the form (docID, endPos). If no element is found then a dummy element is
returned—an element with end position equal to m-pos and length equal to zero.
The second iterator searches over the index of PostingLists. For a given term
t, an iterator It over the posting list of t is created. It contains a single function
It.nextPosition() that successively returns the next position in the posting list
of t.

We now explain the code of ERA given in Figure 3. The input to the algo-
rithm consists of a list of sid’s sid1, . . . , sidm and a list of terms t1, . . . , tn. The
initialization of the algorithm involves creating variables for results and the nec-
essary iterators. Lines 1 and 2 creates an empty list L to store the results of the
computation and an array C of size m × n to keep intermediate count values of
appearances of terms in elements. The purpose of C is to record for m different
elements how many times each term among t1, . . . , tn has been seen in these
elements. For each sid and term, iterators over Elements and PostingLists re-
spectively, are constructed in lines 3–8 and the initial values from these iterators
are stored in vectors ei and posj, respectively.

After the initialization, the algorithm iterates over all the positions where one
of the given terms appears. In each iteration, the lowest position not handled
so far is being considered. We denote this position by posx and the term that it
refers to by tx. For the term tx and each one of the elements that are currently
being processed, the algorithm checks whether these elements contain tx and
updates C accordingly. More precisely, when an element ei is being processed,
it has three possible relationships with tx, which we explain next.



Efficient, Effective and Flexible XML Retrieval Using Summaries 97

ERA((sid1, . . . , sidm), (t1, . . . , tn))

Input: A list of sid’s and a list of terms
Output: The relevant elements with their term frequencies
1: let L be a new empty list
2: let C[m][n] be an array of size m × n having 0 in all the cells
3: for i = 1 to m do
4: create a new iterator Isidi over elements in the extent of sidi

5: ei ← Isidi .firstElement()
6: for j = 1 to n do
7: create a new iterator Itj over the positions of tj

8: posj ← Itj .nextPosition(tj)
9: repeat

10: let x be the index for which posx = min{pos1, . . . , posn}, and let tx be the term
that starts in position posx

11: for i = 1 to m do
12: if posx < start(ei) then
13: {do nothing}
14: else if start(ei) < posx < end(ei) then
15: C[i][x] ← C[i][x] + 1
16: else if end(ei) < posx then
17: if there is a non-zero cell in the row C[i][1, . . . , n] then
18: create a new list tfei

from the n values C[i][1, . . . , n]
19: add (ei, tfei

) to L
20: reset all the cells C[i][1, . . . , n] to 0
21: ei ← Isidi .nextElementAfter(posx)
22: if start(ei) < posx < end(ei) then
23: C[i][x] ← C[i][x] + 1
24: posx ← Itx .nextPosition()
25: until for all the terms, the maximal position m-pos has been reached
26: return L

Fig. 3. Retrieving the relevant elements

If the element ei starts after posx, then tx is not contained in ei and the counts
in C should not be changed. Yet, at this point, term appearances in positions
greater than posx may be inside ei. Thus, ei still needs to be processed. In this
case, no action is being done (lines 12–13). If posx is between the start position
of ei and the end position of ei then we encountered an appearance of tx inside
ei. In this case, the counting in C is updated (lines 14–15).

If the element ei ends before posx, then there is no need to change C. Further-
more, since all the following appearances of terms will be in a position greater
than posx, at this point in the run, the counting of frequencies for ei is complete
and we can replace ei with the next element from the extent of sidi. If at least
one of the term frequencies of ei is greater than zero, then we add ei and its
frequencies to the list L (lines 17–20). We then replace ei with the next element
in the extent of sidi (line 21) and start the counting for this element. Note that
the term being processed can be inside the new element and in this case we need
to immediately update the counting for this new element (lines 22–23).

When the dummy maximal position has been reached for all terms, the com-
putation is complete and L can be returned. TReX implements ERA using
iterators so that relevant elements can be provided as soon as the computation
of their term frequencies is complete. We do not provide the details in this paper.
In post-processing, we compute the BM25 scores for the retrieved elements and
sort them by their respective scores.
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4.3 Relevance Posting Lists

ERA finds the relevant elements and, initializes them with their term frequencies,
and sorts them by their end position. After computing the BM25 score of each
element and sorting the elements by these scores, the result is stored because
these results can be used to efficiently evaluate the query as a top-k query. TReX
stores these results as relevance posting lists (RPLs) of the terms. An RPL of a
term t is a list of elements that contain t, with each element’s relevance score and
sid. Elements in an RPL are sorted according to their relevance, in descending
order. Rather than physically storing and maintaining many different lists, in
TReX, all RPLs are stored in a single relation named RPL. The schema of this
relation is shown in Figure 2. Each tuple in the RPL relation contains part of
the RPL of some term t. The term t is stored in the token field, and the RPL
(or a part of it) is stored in the rplDataEntry field. The field rplDataEntry
holds a list of 5-tuples, where each 5-tuple identifies an element and consists
of (1) a relevance score, (2) an sid, (3) a document identifier, (4) an offset
to end position, and (5) a length. The elements in rplDataEntry are sorted
in a decreasing order according to their relevance score. For each 5-tuple, the
combination of sid, document identifier and offset-to-end are used as unique
identifiers for elements. The attributes iR, SID, docID and endPos in RPL contain
the values of the first element in rplDataEntry for ordering divided lists.

In TReX, given a list sid1, . . . , sidm of sid’s and a list t1, . . . , tn of terms,
RPLs can be used to efficiently compute top-k answers. Let t be one of the
terms t1, . . . , tn. The top-k relevant elements with respect tot and sid1, . . . , sidm

can be easily retrieved from the RPL of t by iterating over this RPL and selecting
the top elements whose sid is among sid1, . . . , sidm. Note that the elements are
provided sorted by their rank. We can then use threshold algorithm (TA), similar
to the one used in TopX [24], in order to combine for each element its scores in
the n RPLs, and return the top-k answers. Note that this algorithm is a version
of the TA algorithm proved by Fagin et al. [11] which is instance optimal in
terms of the number of readings from the lists.

5 Experimental Results

We experimented with TReX in order to measure the efficiency and effectiveness
of our retrieval methods. Two other goals of our experiments were to investigate
the influence of using different summaries on the system’s performance and to
compare the running time of ERA against TA. We implemented TReX in Java
and used Berkeley DB (BDB) for the indexed tables. Our initial experiments
were conducted over the IEEE collection provided in the INEX 2005 benchmark.
This collection contains 16819 XML documents, and it has a size of 0.76GB. For
the IEEE collection, the sizes of the tables Elements and PostingLists, stored
in BDB, were 1.52GB and 8.05GB, respectively. Follow up experiments were
conducted on the Wikipedia collection which contains approximately 645,719
documents and has a size of 5.01GB. The follow up experiments used the same
basic configuration as was used for the IEEE collection.
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Table 1. NEXI Queries and Translations for IEEE

Query ID NEXI Query

203 sec[about(., code signing verification)]

223 article[about(.//sec, wireless ATM multimedia)]

233 article[about (.//bdy, synthesizers) and about (.//bdy, music)]

236 article[about(., machine translation approaches -programming)]

260 bdy//*[about(., model checking state space explosion)]

Query ID Tag sid’s Incoming sid’s Keywords

203 6, 40 7, 46, 82, 89, 493, 607, 619,
630, 761, 1995, 2239 code, signing, verification

223 6, 40 7, 46, 82, 89, 493, 607, 619,
630, 761, 1995, 2239 wireless, ATM, multimedia

233 6,32 7,33 synthesizers, music

236 6 7 machine, translation, approaches

260 6, 32 7, 33 model, checking, state, space, explosion

We tested TReX on many INEX queries; however, we report here only the
detailed results of five arbitrary queries from IEEE that seemed to us as rep-
resenting the typical behavior of all the other queries. Similarly, the follow up
results from five arbitrary queries from Wikipedia show that performance with
a larger corpus was comparable to IEEE results. Table 1 shows the queries we
chose and the translation of the IEEE queries for both the tag summary and
incoming summary. Table 2 shows the queries we chose and the number of sid’s
used in the query translations for the incoming summary.

Table 2. NEXI Queries and Number of sid’s in Translations for Wikipedia

Query
ID NEXI Query # of

sid’s

291 article//figure[about(., Olympian god goddess)] 1388
292 article//figure[about(., Renaissance painting Italian Flemish -French -German)] 1388
346 article[about(.,+unrealscript language api tutorial)] 4
356 article[about(.,natural language processing) and about(.,information retrieval)] 4
388 article[about(.,rhinoplasty)] 4

Table 3. Average Evaluation Time (in seconds) ERA Using Incoming and Tag Sum-
maries for IEEE

Query ID Tag
Summary

Incoming
Summary

Efficiency
Improvement

203 4873 1651 66%
233 1991 696 65%
236 5643 1812 68%
260 8860 1640 81%
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Table 4. Average Evaluation Time (in seconds) TA Using Incoming Summary for
IEEE

Query ID top10 top50 top100 top500 top1000 top1500
203 28 61 93 227 312 486
233 0.59 0.94 0.98 1 0.77 0.73
236 4 16 21 41 53 60
260 14 59 92 237 359 460

Table 5. Evaluation Time (in seconds) ERA Using Incoming for Wikipedia

Query ID Incoming
Summary

291 1953
292 3435
346 1092
356 1283
388 637

The Wikipedia results in Table 5 were generated using incoming summaries
with alias. The structure of the summary tree for Wikipedia is significantly
larger and more complex than that of the IEEE corpus. The Wikipedia contains
about 6 times more sid’s than IEEE. The evaluation times for Wikipedia were
in the same scale of magnitude as IEEE. The IEEE topics were structurally
constrained to article bodies and article sections. Wikipedia queries 291 and
292 were constrained to figures in articles. Wikipedia queries 346, 356 and 388
were structurally constrained to articles. From these results, we conjecture that
the factors in determining the running time of queries are the number of sid’s
considered, the size of the sid summary extents, and, most importantly, the
number of matching tokens in the corpus.

Although we evaluated our queries on both the IEEE collection and Wikipedia,
wemeasure the effectiveness of our retrieval techniques only on the IEEEcollection.
The results are presented in Tables 3 and 4. We compared our results to the results
of other INEX participants. This is shown below in Figure 4. We ran the compar-
isons using the INEX Evaluation Package EvalJ[2]. In this comparison, recall and
precision of query results are computed based on ranking performed by humans.

Figure 4 shows the comparative effectiveness of two representative queries,
Query 203 and Query 223 (listed in Table 1), using the tag summary and the in-
coming summary. The results of TReX are depicted with a bold line whereas the
results of other INEX participants are depicted with light gray lines. Intuitively,
each line shows the precision gained, as a function of the recall, for a single sys-
tem. That is, a line of a system S going through a point (r, p) means that for a
given k the top-k answers have a recall of r, and the precision of these k answers
is p. The graphs in Figure 4 show that the incoming summary provides better
results than the tag summary; however, the superiority of the incoming summary
is not always the case. Note that, for Query 203, when using the incoming sum-
mary, 50% of the elements a human would include in the answer were given the
highest scores by TReX, which means that they could be retrieved with 100%
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(a) Query 203 - Tag Sum-
mary

(b) Query 203 - Incoming
Summary

(c) Query 223 - Tag Sum-
mary

(d) Query 223 - Incoming
Summary

Fig. 4. Comparative effectiveness of TReX using EvalJ among other INEX 2005 par-
ticipants

precision. Our tests suggest that the effectiveness of TReX is comparable to, and
in many cases better than, the effectiveness of other systems that participated
in INEX.

An important conclusion from our experiments is that summaries have a ma-
jor influence on the efficiency and effectiveness of the system. Specifically, TReX
had performed better with incoming summary than with tag summary. One ex-
planation of this is that the tag summary does not take into account the ancestor-
descendant relationship among elements, and thus, the partition it provides for
the elements is coarser than the partition provided by the incoming summary.
This means that every sid represents more elements, and so, more elements need
to be processed by ERA. Also, using summaries causes query results to be less
accurate because the structural constraints are evaluated in a flexible way that
stems from the type of summary employed. These results are promising but not
definitive. In the future, we hope to address this issue with more broad-ranging
experimental results. We leave the question of how to choose an appropriate
summary for future work.

6 Conclusion

In this paper we presented TReX—a system for efficient XML retrieval us-
ing summaries. The main contribution of our work is showing how to utilize
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summaries for a vague interpretation of structural constraints: either when all
the answers to a query must be returned or when only the top-k answers are
needed. We tested our retrieval algorithm on data and queries from INEX. The
tests show that our retrieval method is efficient and effective. Our results provide
a new and general perspective to structural evaluation in INEX. The flexibility
and efficiency of the approach is coupled with a general framework so XML sum-
maries can be easily incorporated into any XML retrieval system. Future work
includes a study of the potential of using summaries for answering queries under
a strict interpretation of the structural constraints. It also includes a study of
the relationship between exhaustive retrieval and top-k query answering.
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