

Lecture Notes in Computer Science 4518
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Norbert Fuhr Mounia Lalmas
Andrew Trotman (Eds.)

Comparative Evaluation
of XML Information
Retrieval Systems

5th International Workshop of the Initiative
for the Evaluation of XML Retrieval, INEX 2006
Dagstuhl Castle, Germany, December 17-20, 2006
Revised and Selected Papers

13

Volume Editors

Norbert Fuhr
Department of Informatics
University of Duisburg-Essen, 47048 Duisburg, Germany
E-mail: norbert.fuhr@uni-due.de

Mounia Lalmas
Department of Computer Science
Queen Mary, University of London, London, UK
E-mail: mounia@dcs.qmul.ac.uk

Andrew Trotman
Department of Computer Science
University of Otago
Dunedin, New Zealand
E-mail: andrew@cs.otago.ac.nz

Library of Congress Control Number: 2007932681

CR Subject Classification (1998): H.3, H.4, H.2

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-73887-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-73887-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12098521 06/3180 5 4 3 2 1 0

Preface

Welcome to the fifth workshop of the Initiative for the Evaluation of XML Re-
trieval (INEX)!

Now in its fifth year, INEX is an established evaluation forum for XML
information retrieval (IR), with over 80 participating organizations worldwide.
Its aim is to provide an infrastructure, in the form of a large XML test collection
and appropriate scoring methods, for the evaluation of XML IR systems.

XML IR plays an increasingly important role in many information access
systems (e.g., digital libraries, Web, intranet) where content is more and more a
mixture of text, multimedia, and metadata, formatted according to the adopted
W3C standard for information repositories, the so-called eXtensible Markup
Language (XML). The ultimate goal of such systems is to provide the right
content to their end-users. However, while many of today’s information access
systems still treat documents as single large (text) blocks, XML offers the oppor-
tunity to exploit the internal structure of documents in order to allow for more
precise access, thus providing more specific answers to user requests. Providing
effective access to XML-based content is therefore a key issue for the success of
these systems.

In total, nine research tracks were included in INEX 2006, which studied dif-
ferent aspects of XML information access: Ad-hoc, Interactive, Use Case, Mul-
timedia, Relevance Feedback, Heterogeneous, Document Mining, Natural Lan-
guage Processing, and Entity Ranking. The Use Case and Entity Ranking tracks
were new in 2006. The consolidation of the existing tracks, and the expansion
to new areas offered by the two new tracks, allowed INEX to grow in reach.

The aim of the INEX 2006 workshop was to bring together researchers in
the field of XML IR who participated in the INEX 2006 campaign. During the
past year participating organizations contributed to the building of a large-scale
XML test collection by creating topics, performing retrieval runs and providing
relevance assessments. The workshop concluded the results of this large-scale
effort, summarized and addressed the encountered issues and devised a work
plan for the future evaluation of XML retrieval systems.

INEX was funded by the DELOS Network of Excellence on Digital Libraries,
to which we are very thankful. We gratefully thank the organizers of the var-
ious tasks and tracks, who did a superb job. Finally, special thanks go to the
participating organizations and individuals for their contributions.

March 2007 Norbert Fuhr
Mounia Lalmas

Andrew Trotman

Organization

Project Leaders

Norbert Fuhr University of Duisburg-Essen, Germany
Mounia Lalmas Queen Mary, University of London, UK

Contact Persons

Saadia Malik University of Duisburg-Essen, Germany
Zoltn Szlavik Queen Mary, University of London, UK

Wikipedia Document Collection

Ludovic Denoyer Universite Paris 6, France
Martin Theobald Max Planck Institute for Informatics, Germany

Use Case Studies

Andrew Trotman University of Otago, New Zealand
Nils Pharo Oslo University College, Norway

Topic Format Specification

Andrew Trotman University of Otago, New Zealand
Birger Larsen Royal School of LIS, Denmark

Task Description

Jaap Kamps University of Amsterdam, The Netherlands
Charles Clarke University of Waterloo, Canada

Online Relevance Assessment Tool

Benjamin Piwowarski Yahoo! Research Latin America, Chile

Metrics

Gabriella Kazai Microsoft Research Cambridge, UK
Stephen Robertson Microsoft Research Cambridge, UK
Paul Ogilvie Carnegie Mellon University , USA

VIII Organization

Relevance Feedback Task

Yosi Mass IBM Research Lab, Israel
Ralf Schenkel Max Planck Institute for Informatics, Germany

Natural Query Language Task

Shlomo Geva Queensland University of Technology, Australia
Xavier Tannier XEROX, France

Heterogeneous Collection Track

Ingo Frommholz University of Duisburg-Essen, Germany
Ray Larson University of California, Berkeley, USA

Interactive Track

Birger Larsen Royal School of LIS, Denmark
Anastasios Tombros Queen Mary, University of London, UK
Saadia Malik University of Duisburg-Essen, Germany

Document Mining Track

Ludovic Denoyer Universite Paris 6, France
Anne-Marie Vercoustre Inria-Rocquencourt, France
Patrick Gallinari Universite Paris 6, France

XML Multimedia Track

Roelof van Zwol Yahoo! Research, Spain
Thijs Westerveld CWI, The Netherlands

XML Entity Search Track

Arjen de Vries CWI, The Netherlands
Nick Craswell Microsoft Research Cambridge, UK

Table of Contents

Methodology

Overview of INEX 2006 . 1
Saadia Malik, Andrew Trotman, Mounia Lalmas, and Norbert Fuhr

The Wikipedia XML Corpus . 12
Ludovic Denoyer and Patrick Gallinari

INEX 2006 Evaluation Measures . 20
Mounia Lalmas, Gabriella Kazai, Jaap Kamps, Jovan Pehcevski,
Benjamin Piwowarski, and Stephen Robertson

Choosing an Ideal Recall-Base for the Evaluation of the Focused Task:
Sensitivity Analysis of the XCG Evaluation Measures 35

Gabriella Kazai

Ad Hoc Track

A Method of Preferential Unification of Plural Retrieved Elements for
XML Retrieval Task . 45

Hiroki Tanioka

CISR at INEX 2006 . 57
Wei Lu, Stephen Robertson, and Andrew Macfarlane

Compact Representations in XML Retrieval . 64
Fang Huang, Stuart Watt, David Harper, and Malcolm Clark

CSIRO’s Participation in INEX 2006 . 73
Alexander Krumpholz and David Hawking

Dynamic Element Retrieval in a Semi-structured Collection 82
Carolyn J. Crouch, Donald B. Crouch,
Murthy Ganapathibhotla, and Vishal Bakshi

Efficient, Effective and Flexible XML Retrieval Using Summaries 89
M.S. Ali, Mariano Consens, Xin Gu, Yaron Kanza,
Flavio Rizzolo, and Raquel Stasiu

Evaluating Structured Information Retrieval and Multimedia Retrieval
Using PF/Tijah . 104

Thijs Westerveld, Henning Rode, Roel van Os, Djoerd Hiemstra,
Georgina Ramı́rez, Vojkan Mihajlović, and Arjen P. de Vries

X Table of Contents

EXTIRP: Baseline Retrieval from Wikipedia . 115
Miro Lehtonen and Antoine Doucet

Filtering and Clustering XML Retrieval Results . 121
Jaap Kamps, Marijn Koolen, and Börkur Sigurbjörnsson

GPX - Gardens Point XML IR at INEX 2006 . 137
Shlomo Geva

IBM HRL at INEX 06 . 151
Yosi Mass

Indexing “Reading Paths” for a Structured Information Retrieval at
INEX 2006 . 160

Mathias Géry

Influence Diagrams and Structured Retrieval: Garnata Implementing
the SID and CID Models at INEX’06 . 165

Luis M. de Campos, Juan M. Fernández-Luna, Juan F. Huete, and
Alfonso E. Romero

Information Theoretic Retrieval with Structured Queries and
Documents . 178

Claudio Carpineto, Giovanni Romano, and Caterina Caracciolo

SIRIUS XML IR System at INEX 2006: Approximate Matching of
Structure and Textual Content . 185

Eugen Popovici, Gildas Ménier, and Pierre-François Marteau

Structured Content-Only Information Retrieval Using Term Proximity
and Propagation of Title Terms . 200

Michel Beigbeder

Supervised and Semi-supervised Machine Learning Ranking 213
Jean-Noël Vittaut and Patrick Gallinari

The University of Kaiserslautern at INEX 2006 . 223
Philipp Dopichaj

TopX – AdHoc Track and Feedback Task . 233
Martin Theobald, Andreas Broschart, Ralf Schenkel,
Silvana Solomon, and Gerhard Weikum

Tuning and Evolving Retrieval Engine by Training on Previous INEX
Testbeds . 243

Gilles Hubert

Using Language Models and the HITS Algorithm for XML Retrieval . . . 253
Benny Kimelfeld, Eitan Kovacs, Yehoshua Sagiv, and Dan Yahav

Table of Contents XI

Using Topic Shifts in XML Retrieval at INEX 2006 261
Elham Ashoori and Mounia Lalmas

XSee: Structure Xposed . 271
Roelof van Zwol and Wouter Weerkamp

Natural Language Processing Track

Shallow Parsing of INEX Queries . 284
Häıfa Zargayouna, Victor Rosas, and Sylvie Salotti

Using Rich Document Representation in XML Information Retrieval . . . 294
Fahimeh Raja, Mostafa Keikha, Masued Rahgozar, and
Farhad Oroumchian

NLPX at INEX 2006 . 302
Alan Woodley and Shlomo Geva

Heterogeneous Collection Track

The Heterogeneous Collection Track at INEX 2006 312
Ingo Frommholz and Ray Larson

Probabilistic Retrieval Approaches for Thorough and Heterogeneous
XML Retrieval . 318

Ray R. Larson

Multimedia Track

The INEX 2006 Multimedia Track . 331
Thijs Westerveld and Roelof van Zwol

Fusing Visual and Textual Retrieval Techniques to Effectively Search
Large Collections of Wikipedia Images . 345

C. Lau, D. Tjondronegoro, J. Zhang, S. Geva, and Y. Liu

Social Media Retrieval Using Image Features and Structured Text 358
D.N.F. Awang Iskandar, Jovan Pehcevski, James A. Thom, and
S.M.M. Tahaghoghi

XFIRM at INEX 2006. Ad-Hoc, Relevance Feedback and MultiMedia
Tracks . 373

Lobna Hlaoua, Mouna Torjmen, Karen Pinel-Sauvagnat, and
Mohand Boughanem

Interactive Track

The Interactive Track at INEX 2006 . 387
Saadia Malik, Anastasios Tombros, and Birger Larsen

XII Table of Contents

Use Case Track

XML-IR Users and Use Cases . 400
Andrew Trotman, Nils Pharo, and Miro Lehtonen

A Taxonomy for XML Retrieval Use Cases . 413
Miro Lehtonen, Nils Pharo, and Andrew Trotman

What XML-IR Users May Want . 423
Alan Woodley, Shlomo Geva, and Sylvia L. Edwards

Document Track

Report on the XML Mining Track at INEX 2005 and INEX 2006 432
Ludovic Denoyer, Patrick Gallinari, and Anne-Marie Vercoustre

Classifying XML Documents Based on Structure/Content Similarity 444
Guangming Xing, Jinhua Guo, and Zhonghang Xia

Document Mining Using Graph Neural Network . 458
S.L. Yong, M. Hagenbuchner, A.C. Tsoi, F. Scarselli, and M. Gori

Evaluating the Performance of XML Document Clustering by Structure
Only . 473

Tien Tran and Richi Nayak

FAT-CAT: Frequent Attributes Tree Based Classification 485
Jeroen De Knijf

Unsupervised Classification of Text-Centric XML Document
Collections . 497

Antoine Doucet and Miro Lehtonen

XML Document Mining Using Contextual Self-organizing Maps for
Structures . 510

M. Kc, M. Hagenbuchner, A.C. Tsoi, F. Scarselli, A. Sperduti, and
M. Gori

XML Document Transformation with Conditional Random Fields 525
Rémi Gilleron, Florent Jousse, Isabelle Tellier, and Marc Tommasi

XML Structure Mapping . 540
Francis Maes, Ludovic Denoyer, and Patrick Gallinari

Author Index . 553

Overview of INEX 2006

Saadia Malik1, Andrew Trotman2, Mounia Lalmas3, and Norbert Fuhr1

1 University of Duisburg-Essen, Duisburg, Germany
{malik,fuhr}@is.informatik.uni-duisburg.de

2 University of Otago, Dunedin, New Zealand
andrew@cs.otago.ac.nz

3 Queen Mary, University of London, London, UK
mounia@dcs.qmul.ac.uk

Abstract. Since 2002, INEX has been working towards the goal of establishing
an infrastructure, in the form of a large XML test collection and appropriate scor-
ing methods, for the evaluation of content-oriented XML retrieval systems. This
paper provides an overview of the work carried out as part of INEX 2006.

1 Introduction

The continuous growth in XML1 information repositories has been matched by increas-
ing efforts in the development of XML retrieval systems (e.g. [1,2]), in large part aim-
ing at supporting content-oriented XML retrieval. These systems exploit the available
structural information, as marked up in XML, in documents, in order to return docu-
ment components – the so-called XML elements – instead of complete documents in
response to a user query. This is of particular benefit for information repositories con-
taining long documents or documents covering a wide variety of topics (e.g. books,
user manuals, legal documents), where users’ effort to locate relevant content can be
reduced by directing them to the most relevant parts of these documents. For example,
in response to a user’s query on a collection of scientific articles marked-up in XML,
an XML retrieval system may return a mixture of paragraph, section, article, or other
elements that have been estimated as best answers to the user’s query. As the number
of XML retrieval systems increases, so does the need to evaluate their effectiveness.

The INitiative for the Evaluation of XML retrieval (INEX)2, which was set up in
2002, established an infrastructure and provided means, in the form of large test col-
lections and appropriate scoring methods, for evaluating how effective content-oriented
XML search systems are. As a result of a collaborative effort during the course of 2006,
the INEX test collection has been further extended with the addition of the Wikipedia
collection, new topics, and new assessments. Using the constructed test collection and
the developed set of measures, the retrieval effectiveness of the participants’ XML
search engines were evaluated and their results compared.

This paper presents an overview of INEX 2006. Section 2 gives a brief summary of
this year’s participants. Section 3 provides an overview of the test collection. Section 4

1 http://www.w3.org/XML/
2 http://inex.is.informatik.uni-duisburg.de/

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 1–11, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 S. Malik et al.

outlines the retrieval tasks in the main ad hoc track. Section 5 reports some statistics of
the submitted runs. Section 6 describes the relevance assessment phase. The different
measures used to evaluate retrieval performance are described in a separate paper [6].
Section 7 provides a short description of the tracks at INEX 2006.

2 Participating Organizations

In reponse to the call for participation, issued in March 2006, 68 organizations regis-
tered. Throughout the year a number of groups dropped out due to resource require-
ments, while 23 groups joined later during the year. The final 50 active groups along
with details of their participation is summarized in Table 1.

3 The Test Collection

Test collections consist of three parts: a set of documents, a set of information needs
called topics and a set of relevance assessments listing the relevant documents for each
topic. Although a test collection for XML retrieval consists of the same three parts, each
component is rather different from its traditional information retrieval counterpart.

In traditional information retrieval test collections, documents are considered as units
of unstructured text, queries are generally treated as bags of terms or phrases, and rel-
evance assessments provide judgments whether a document as a whole is relevant to
a query or not. XML documents organize their content into smaller, nested structural
elements. Each of these elements in the document’s hierarchy, along with the document
itself (the root of the hierarchy), represent a retrievable unit. In addition, with the use
of XML query languages, users of an XML retrieval system can express their informa-
tion need as a combination of content and structural conditions, e.g. users can restrict
their search to specific structural elements within the collection. Consequently, the rel-
evance assessments for an XML collection must also consider the structural nature of
the documents and provide assessments at different levels of the document hierarchy.

3.1 Documents

INEX 2006 uses a different document collection than in previous years [9], made from
English documents from the Wikipedia3. The collection is made up of the XML full-
texts of 659,388 articles of the Wikipedia project, covering a hierarchy of 113,483 cat-
egories, and totaling more than 60 Gigabytes (4.6 Gigabytes without images) and 30
million elements. The collection has a structure containing text, more than 300,000 im-
ages and some structured parts corresponding to the Wikipedia templates (about 5000
different tags). The collection has a structure similar to the IEEE collection, which was
used up to 2005 in INEX. On average an article contains 161.35 XML nodes, where
the average depth of an element is 6.72. For a detailed description of the document
collection used for the ad hoc and other tracks at INEX 2006 see [3].

3 http://en.wikipedia.org

Overview of INEX 2006 3

Table 1. List of active INEX 2006 participants

Submitted Submitted AssessedOrganizations
topics runs topics

Utrecht University 6 11 3
University of California, Berkeley 1 2 3
University of Otago 6 0 3
Queensland University of Technology 6 24 3
Queen Mary University of London 4 12 3
Ecoles des Mines de Saint-Etienne 6 9 3
University of Granada 6 2 3
Indian Statistical Institute 0 2 3
University of Tampere 6 0 3
La Trobe University 6 0 3
University of Kaiserslautern, 6 24 3
City University London 6 13 3
RMIT University 6 12 3
IRIT 9 23 3
Max-Planck-Institut fuer Informatik 6 19 3
University of Cambridge 6 0 3
CSIRO 4 8 3
University of Wollongong in Dubai 5 7 3
University of Amsterdam 8 13 3
Fondazione Ugo Bordoni 6 6 3
The Hebrew University of Jerusalem 6 24 3
Royal School of LIS 6 0 3
University of Toronto 6 1 3
Universität Duisburg-Essen 2 0 1
Oslo University College 3 7 3
University of Waterloo 0 0 3
University of Massachusetts Amherst 6 0 3
Kyungpook National University 0 0 3
University of Rostock 6 3 3
LIP6 5 12 3
CWI and University of Twente 6 23 3
University of Helsinki 4 3 3
The Robert Gordon University 6 6 3
IBM Haifa Research Lab 0 18 3
LIPN 1 0 3
CLIPS-IMAG 6 0 3
Université de Saint-Etienne 6 3 3
Justsystem Corporation 0 12 3
University of South-Brittany 0 20 3
Joint Research Centre 0 0 3
University of Minnesota Duluth 6 14 3
Huazhong University of Science & Technology 0 0 3
Dalhousie University 0 0 3
University College of Boras 0 0 3
Université Libre de Bruxelles 0 0 3
Universidad de Chile

Organizations participated only in XML document mining track

INRIA
Western Kentucky University
University of Wolongong

Organization participated only in interactive track

Rutgers University

3.2 Topics

Querying XML documents with respect to content can be with or without respect to
structure. Taking this into account, INEX identifies two types of topics:

4 S. Malik et al.

Table 2. Statistics on CO+S topics on the INEX 2006 test collection

CO+S
No. of topics 125
Average length of title (in words) 4.2
Use of boolean operators (and/or) in title 14
Use of (+/-) in title 61
Use of phrases in title 120
Use of boolean operators (and/or) in castitle 65
Use of (+/-) in castitle 49
Use of phrases in castitle 120
Average length of narrative (in words) 94
Average length of topic description (in words) 14
Average length of topic ontopic_keywords (in words) 6

– Content-only (CO) topics are requests that do not include reference to the document
structure. They are, in a sense, the traditional topics used in information retrieval
test collections. In XML retrieval, the results to such topics can be elements of
various complexity, e.g. at different levels of the XML documents’ structure.

– Content-and-structure (CAS) topics are requests that contain conditions referring
both to content and structure of a document. These conditions may refer to the
content of specific elements (e.g. the elements to be returned must contain a section
about a particular topic), or may specify the type of the requested answer elements
(e.g. sections should be retrieved).

In previous years a distinction was made between CO and CAS topics. Topic were also
designed for use in multiple tracks (such as the natural language track and interactive
track) and so contained multiple variant queries for each purpose. Since 2006, these
have all been combined into a single topic type: the Content Only + Structure (CO+S)
topic. All the information needed by the different tasks and tracks are expressed in each
topic, but in different parts of that topic.

Topic Format. Topics are made up of several parts; these parts explain the same infor-
mation need, but for different purposes.

<narrative>:A detailed explanation of the information need and the description of
what makes an element relevant or not. The <narrative> explains not only what
information is being sought, but also the context and motivation of the information
need, i.e., why the information is being sought and what work-task it might help to
solve. Assessments are made on compliance to the <narrative> alone.

<title>: A short explanation of the information need. It serves as a summary of the
content of the user’s information need. A word in the <title> can have a + or −
prefix, where + is used to emphasize an important concept, and − is used to denote
an unwanted concept.

<castitle>: A short explanation of the information need, specifying any structural re-
quirements. As with a topic <title>, a word in the <castitle> can have a + or − prefix,

Overview of INEX 2006 5

where + is used to emphasize an important concept, and − is used to denote an un-
wanted concept. The <castitle> is expressed in the NEXI query language [14].

<description>: A brief description of the information need written in natural language
– used in the natural language track. The description is as precise, concise, and as
informative as the <title> and <castitle> combined.

<ontopic_keywords>: Terms and phrases that are likely to appear in most relevant
documents. For example, if the user is searching for information about element
retrieval and the query has the <title> “INEX” then <ontopic_keywords> might be:
“element, XML”.

The DTD of the topics is shown in Figure 1. The attributes of a topic are: topic_id
(which in INEX 2006 ranges from 289 to 413) and ct_no, which refers to the candidate
topic number (ranging from 1 to 2184). An example topic can be seen in Figure 2.

<!ELEMENT inex_topic (title,castitle?,description,
narrative,ontopic_keywords)>

<!ATTLIST inex_topic
topic_id CDATA #REQUIRED
ct_no CDATA #REQUIRED

>
<!ELEMENT title (#PCDATA)>
<!ELEMENT castitle (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT narrative (#PCDATA)>
<!ELEMENT ontopic_keywords (#PCDATA)>

Fig. 1. Topic DTD

Topics were created by participating groups. Each participant was asked to submit up
to 6 candidate topics. A detailed guideline was provided to the participants for the topic
creation [10]. Several steps were identified for this process: 1) initial topic statement
creation, 2) exploration phase, 3) topic refinement, and 4) topic selection. The first three
steps were performed by the participants themselves while the selection of topics was
performed by the INEX organizers.

During the first step, participants created their initial topic statement. These were
treated as a user’s description of their information need and were formed without regard
to system capabilities or collection peculiarities to avoid artificial or collection biased
queries. During the collection exploration phase, participants estimated the number of
relevant results to their candidate topics. The TopX XML retrieval system [12] was
provided to participants to help with this task. Participants were asked to judge the
top 25 retrieved results and record for each found relevant result its file name and its
XPath. Those topics having at least 2 relevant results but less than 20 results were to be
submitted as candidate topics. In the topic refinement stage, the topics were finalised
ensuring coherency and that each part of the topic could be used in stand-alone fashion.

4 This number is exceeding the total candidate topic number (203) due to the deletion of some
candidate topics by topic authors.

6 S. Malik et al.

<inex_topic topic_id="408" ct_no="202">

<title>
"electroconvulsive therapy" depression
</title>

<castitle>
//*[about(.,"electroconvulsive therapy" depression)]
</castitle>

<description>
Find me information about the treatment of depression with
electroconvulsive therapy
</description>

<narrative>
An old friend of mine suffers from depressions. Usually
medication keeps him well, but occasionally he is admitted
to hospital with heavy depressions. The treatments often
involve shock therapy (electroconvulsive therapy or ECT).
I am worried about the long term effect of ECT and would
like to learn why passing an electrical current through
the brain can help cure depressions, how it works, and
if there are any alternatives. Relevant elements will
discuss one of these issues. Elements that deal with ECT
for other mental illnesses than depresseion are not relevant.
The purpose of the search is to find information that will
make me better capable of understanding my friends illness.
</narrative>

<ontopic_keywords>
ECT, electroshock, "induced convulsion", seizure
</ontopic_keywords>

</inex_topic>

Fig. 2. A CO+S topic from the INEX 2006 test collection

After the completion of the first three stages, topics were submitted to INEX. A total
of 203 candidate topics were received, of which 125 topics were selected. The topic
selection was based on a combination of criteria such as 1) balancing the number of
topics across all participants, 2) eliminating topics that were considered too ambiguous
or too difficult to judge, 3) uniqueness of topics, 4) considering their suitability to the
different tracks, and 5) syntactic correctness.

4 Retrieval Tasks

The retrieval task to be performed by the participating groups of INEX 2006 is defined
as the ad hoc retrieval of XML elements. In information retrieval literature [15], ad hoc

Overview of INEX 2006 7

retrieval is described as a simulation of how a library might be used and involves the
searching of a static set of documents using a new set of topics. Here the collection con-
sists of XML documents composed of different granularities of nested XML elements,
each of which represents a possible unit of retrieval. The user’s query may also contain
structural constraints or hints in addition to the content conditions. In addition, the out-
put of an XML retrieval system may follow the traditional ranked list presentation, or
may extend to non-linear forms, such as grouping of elements per document.

Within the ad hoc XML retrieval task, four sub-tasks were defined based on the
different assumptions regarding a search system’s output and learning aims.

4.1 Thorough Task

The core system task underlying most XML retrieval strategies is the ability to estimate
the relevance of retrievable elements in the collection. Hence, the thorough task asks
systems to return elements ranked by their relevance to the topic of request. Since the
retrieved elements are meant for further processing (either by a dedicated interface, or
by other tools) there are no display-related assumptions nor user-related assumptions
underlying the task.

The aims for this task included establishing: How good systems are at estimating the
relevance of XML elements, how well systems can locate all the relevant elements in
the collection, and how much structural constraints improve retrieval.

4.2 Focused Task

The scenario underlying this task is the return, to the user, of a ranked list of elements
for the topic of request. The task requires systems to find the most focused elements that
satisfy an information need, without returning “overlapping” elements (e.g. a paragraph
and its container section). That is, for a given topic, elements in the result list may not
contain text already contained in previous element. The task is similar to the thorough
task in that it requires a ranking of XML elements, but here systems are required not
only to estimate the relevance of elements, but also to decide which elements are the
most focused non-overlapping.

The learning aims for this task include establishing: how the focused task differs
from the thorough task, if the focused task can be reduced to a straightforward filter
on the thorough task, which techniques are effective at early ranks, and how structural
constraints help retrieval.

4.3 Relevant in Context Task

The scenario underlying this task is the return of relevant information (captured by a
set of elements) within the context of the full article. A result, an article devoted to
the topic of request, will contain a lot of relevant information across many elements.
The task requires systems to find a set of elements that corresponds to (all) relevant
information in each article. The set of result elements should not contain overlaps.

The learning aims for this task include establishing: how the relevant in context task
differs from the thorough and focused tasks, which techniques are effective at locating
relevance within an article, and how structural constraints help retrieval.

8 S. Malik et al.

4.4 Best in Context Task

The scenario underlying this task is finding the best entry point from which to start read-
ing a relevant document. Even a document completely devoted to the topic of request
will only have one best starting point to read, even if this is the start of the document.
This task requires systems to find the XML elements that correspond to these best entry
points.

The learning aims for this task include establishing: how the best in context task
differs from the relevant in context task, how best entry points relate to the relevance of
elements, and how structural constraints help retrieval.

5 Submissions

Participating organizations evaluated the 125 INEX 2006 topics against the Wikipedia
document collection and produced an ordered list of XML elements as the retrieval
results for each topic. Participants could use either the <title> or <castitle> of the CO+S
topics. The top 1500 elements of each topic’s retrieval results were then submitted to
INEX. For each topic, around 500 articles along with their elements were pooled from
all the submissions in a round robin fashion for assessment. Table 3 shows the pooling
effect on the CO+S topics.

Table 3. Pooling effect for CO+S topics

CO+S topics

number of documents submitted 126111
number of documents in pools 63684
number of elements submitted 281761
number of elements in pools 137559

Table 4. Number of runs submitted to the four ad hoc tasks

Tasks runs

Thorough 106
Focused 85
Relevant in context 65
Best in context 77

6 Assessments

Relevance in INEX is defined according to the notion of specificity, which is the ex-
tent to which an element focuses on the topic. Previously, INEX used a more complex

Overview of INEX 2006 9

definition of relevance but a number of studies showed that specificity alone was suf-
ficient to determine an unambigious rank order of search systems with respect to their
effectiveness (see, for example, [11]).

The specificity of an element is determined by an assessor using the highlighting
method introduced at INEX 2005. In this approach the specificity of any (partially high-
lighted) elements can be calculated automatically as some function of the contained
relevant and irrelevant content (for example the ratio of one to the other). Specificity
is, thus, measured on a continuous scale in the range [0, 1], where 1 represents a fully
specific (relevant) element and 0 a non relevant element.

Fig. 3. X-RAI Article view

Assessment was done using an online assessment tool developed specifically for
this purpose (see Figure 3). A relevance assessment guide [8] explaining how to assess
relevance was distributed to the participants. In short, the assessors had only to highlight
relevant text fragments from articles identified as candidates using the pooling strategy.
These highlighted passages were then automatically converted into element specificity
scores. Assessors were also asked to identify best entry points, one per relevant article.

7 INEX 2006 Tracks

In addition to the main ad hoc track, six research tracks were included, each study-
ing a different aspect of XML information retrieval: Interactive, Relevance Feedback,

10 S. Malik et al.

Heterogeneous, Natural Language Processing, Multimedia, and Document Mining.
Two new tracks were added in 2006: Use Case and Entity ranking.

In its fourth year, the Interactive Track (iTrack) put emphasis on comparing XML
element retrieval with passage retrieval, and on investigating differences between mul-
tiple dimensions of the search tasks. This year the track required substantial work and
data collection, so was not completed before the INEX 2006 workshop. The track con-
tinues into 2007 [7].

The Relevance Feedback track investigated approaches to relevanc feedback that
considered the structural hints. To limit the number of submissions a subset of ad hoc
track tasks were chosen for participants to test their algorithms. These include the thor-
ough task with CO and CAS topics. The reported evaluation score for each relevance
feedback submission measures the relative and absolute improvement of the relevance
feedback run over the original base run and the significance level under the t-test and
the Wilxocon signed-rank test.

The Heterogeneous Collection track was setup to cope with the challenges posed
by heterogenous collections, which are syntactic (collections based on different DTDs),
semantic (collections covering diverse topics) and genre (different document types) in
heterogeneity. This year the track focused on finalising the heterogeneous collection and
on topic definition. Based on this, the track will continue in 2007 with the evaluation of
submitted runs. This year’s track details can be found in [5].

The Natural Language Processing (NLP) track focused on whether it is possible
to express topics in natural language, to be then used as a basis for retrieval. Two tasks
were defined NLQ2NEXI and NLQ. NLQ2NEXI requires the translation of a natural
language query, provided in the <description> element of a topic, into a formal INEX
<castitle> element. The NLQ task has no restrictions on the use of any NLP technique
to interpret the queries as they appear in the <description> element of a topic.The objec-
tive is not only to compare between different NLP based systems, but to also compare
the results obtained with natural language queries with the results obtained with NEXI
queries by any other system in the ad hoc track. During the topic creation stage, it was
ensured that the description component of the topics were equivalent in meanings to
their corresponding NEXI title, so it was possible to re-use the same topics, relevance
assessments and evaluation procedures as in the ad hoc track. The descriptions were
used as input to natural language processing tools, which would process them into rep-
resentations suitable for XML search engines.

The main objective of the Multimedia track was to provide an evaluation platform
for structured document access systems that do not only include text in the retrieval
process, but also other types of media, such as images, speech, and video. Full details
of the track can be found in [16].

The aim of the Document Mining track, run in collaboration with the PASCAL
network of Excellence5, was to develop machine learning methods for structured data
mining and to evaluate these methods for XML document mining tasks. Full details of
the track can be found in [4].

The aim of the Use Case track was to identify the potential users, scenarios and
use-cases of XML retrieval systems. As a result, commercial XML search engines have

5 http://www.pascal-network.org/

Overview of INEX 2006 11

now been identified. XML (and other semi-structured formats) are being used behind
the scenes in some on-line search engines without user knowledge. Book search engines
that follow a thorough retrieval strategy have also been identified [13].

The aim of the Entity Ranking track was to examine list completion and associative
ranking. In the former, entities of the same kind as those in a given list were to be
extracted from the document collection. In the latter, a similar list to a given list, but
on a different topic, was to be extracted from the document collection. Guidelines were
drafted, a wide range of potential participants actively approached us, but this did not
materialize into sufficient support to run a full track. Given the interest in the track at
the INEX workshop, the track will continue in 2007.

References

1. Baeza-Yates, R., Fuhr, N., Maarek, Y.: XML and information retrieval, SIGIR workshop
SIGIR Forum, vol. 36(2) (2002)

2. Blanken, H., Grabs, T., Schek, H.-J., Schenkel, R., Weikum, G. (eds.): Intelligent Search on
XML Data, Applications, Languages, Models, Implementations, and Benchmarks (2003)

3. Denoyer, L., Gallinari, P.: Wikipedia XML corpus at INEX 2006. In: INEX 2006 Proceedings
(2007)

4. Denoyer, L., Gallinari, P.: Report on the XML Mining Track at INEX 2005 and INEX 2006
- Categorization and Clustering of XML Documents. In: INEX 2006 Proceedings (2007)

5. Frommholz, I., Larson, R.: The heterogeneous collection track at INEX 2006. In: INEX 2006
Proceedings (2007)

6. Lalmas, M., Kazai, G., Kamps, J., Pehcevski, J., Piwowarski, B., Robertson, S.: INEX 2006
Evaluation Measures. In: INEX 2006 Proceedings (2007)

7. Larsen, B., Malik, S., Tombros, A.: The interactive track at INEX 2006. In: INEX 2006
Proceedings (2007)

8. Lalmas, M., Piwowarski, B.: INEX 2006 relevance assessment guide. In: INEX 2006 Pre-
roceedings (2006)

9. Lalmas, M., Tombros, A.: INEX 2002 - 2006: Understanding XML Retrieval Evaluation. In:
DELOS Conference on Digital Libraries, Tirrenia, Pisa, Italy (2007)

10. Larsen, B., Trotman, A.: INEX 2006 guidelines for topic development. In: INEX 2006 Pre-
proceedings (2006)

11. Ogilvie, P., Lalmas, M.: Investigating the exhaustivity dimension in content-oriented XML
element retrieval evaluation. In: CIKM (2006)

12. Theobald, M., Schenkel, R., Weikum, G.: An efficient and versatile query engine for topx
search. In: VLDB, pp. 625–636. ACM, New York (2005)

13. Trotman, A., Pharo, N., Lehtonen, M.: XML-IR users and use cases. In: INEX 2006 Pro-
ceedings (2007)

14. Trotman, A., Sigurbjornsson, B.: Narrowed extended XPATH I (NEXI). In: INEX 2004 Pro-
ceedings (2005)

15. Voorhees, E., Harman, D. (eds.): The Tenth Text REtrieval Conference (TREC 2001) (2001)
16. Westerveld, T., van Zwol, R.: The INEX 2006 multimedia track. In: INEX 2006 Proceedings

(2007)

The Wikipedia XML Corpus

Ludovic Denoyer and Patrick Gallinari

Laboratoire d’Informatique de Paris 6
8 rue du capitaine Scott

75015 Paris

{ludovic.denoyer,patrick.gallinari}@lip6.fr
http://www-connex.lip6.fr/denoyer/wikipediaXML

Abstract. This article presents the general Wikipedia XML Collection
developped for Structured Information Retrieval and Structured Machine
Learning. This collection has been built from the Wikipedia Enclyclope-
dia. We detail particularly here which parts of this collection have been
used during INEX 2006 for the Ad-hoc track and for the XML Mining
track. Note that other tracks of INEX - multimedia track for example -
have also been based on this collection.

1 Introduction

Wikipedia1 is a well known free content, multilingual encyclopedia written col-
laboratively by contributors around the world. Anybody can edit an article using
a wiki markup language that offers a simplified alternative to HTML. This en-
cyclopedia is composed of millions of articles in different languages.

Content-oriented XML retrieval is an area of Information Retrieval (IR) re-
search that is receiving an increasing interest. There already exists a very active
community in the IR/ XML domain which started to work on XML search en-
gines and XML textual data. This community is mainly organized since 2002
around the INEX initiative (INitiative for the Evaluation of XML Retrieval)
which is funded by the DELOS network of excellence on Digital Libraries.

In this article, we describe a set of XML collections based on Wikipedia.
These collections can be used in a large variety of XML IR/Machine Learning
tasks like ad-hoc retrieval, categorization, clustering or structure mapping. These
corpora are currently used for both, INEX 20062 and the XML Document Mining
Challenge3. The article provides a description of the corpus.

The collections are downloadable on the website:

– http://www-connex.lip6.fr/∼denoyer/wikipediaXML

1 http://www.wikipedia.org
2 http://inex.is.informatik.uni-duisburg.de/2006
3 http://xmlmining.lip6.fr

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 12–19, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Wikipedia XML Corpus 13

2 Description of the Corpus

The corpus is composed of 8 main collections corresponding to 8 different
languages4 : English, French, German, Dutch, Spanish, Chinese, Arabian and
Japanese. Each collection is a set of XML documents built using Wikipedia and
encoded in UTF-8. In addition to these 8 collections, we also provide different
additional collections for other IR/Machine Learning tasks like categorization
and clustering, NLP, machine translation, multimedia IR, entity search, etc.

2.1 Main Collections

The main collections are a set of XML files in 8 different languages. The table 1
gives a detailed description of each collection.

Table 1. General statistics about the Main Collections

Collection name Language Number of documents Size of the collection (MegaBytes)

main-english English 659,388 ≈ 4,600
20060130 french French 110,838 ≈ 730
20060123 german German 305,099 ≈ 2,079
20060227 dutch Dutch 125,004 ≈ 607
20060130 spanish Spanish 79,236 ≈ 504
20060303 chinese Chinese 56,661 ≈ 360
20060326 arabian Arabian 11,637 ≈ 53
20060303 japanese Japanese 187,492 ≈ 1,425

Each collection contains a set of documents where each filename is a number
corresponding to the id of the file (for example : 15243.xml). Each id is unique
and each file corresponds to an article of Wikipedia. We only kept articles and
removed all the wikipedia pages corresponding to ”‘Talks”’, ”‘Template”’, etc..
Each file is an UTF-8 document which is created from the wikitext of the original
article. Figure 1 gives an example of an English article extracted from the corpus.

Tag labels. We introduced different tags in order to represent the different
parts of a document. We distinguish two types of tags:

– The general tags (article,section, paragraph,etc.) that do not depend on the
language of the collection. These tags correspond to the structural informa-
tion contained in the wikitext format (for example : == Main part == is
transformed into <title>Main part< /title>)

– The template tags (template infobox,etc.) represent the information con-
tained into the wikipedia templates. Wikipedia templates are used to repre-
sent a repetitive type of information. For example, each country described
into wikipedia starts with a table containing its population, language, size,etc.

4 Some additional languages will be added during the next months.

14 L. Denoyer and P. Gallinari

the wiki text

The XML obtained

Fig. 1. Example of wiki → XML transformation for the Anarchy article (12.xml)

In order to uniformize this type of information, wikipedia uses templates.
These templates are translated into XML using tags starting by template ...
(for example : template country). The template tags depend on the language
of the collection because the templates are not the same depending on the
language of the wikipedia collection used. An example of template is given
in figure 2.

The Table 2 gives a summary of most frequent tags of the english collection.

DTD of the collection. Due to the irregularities of the structures of the docu-
ments, it is not possible to build a relevant DTD for the wikipedia XML corpus.

The Wikipedia XML Corpus 15

Table 2. Distribution and description of the main different XML node labels in the
collection

Tag Number of XML nodes Description

collectionlink ≈ 17 millions Hyperlink to a document of the collection
unknownlink ≈ 4 millions Hyperlink to a document that does not exist in wikipedia
outsidelink ≈ 850,000 Hyperlink to a website

wikipedialink ≈ 850,000 Hyperlink to a wikipedia page (which is not in the collection)
languagelink ≈ 800,000 Hyperlink to the same page in an other laguage

emph2 ≈ 2 millions Emphasis level 2
emph3 ≈ 1.5 millions Emphasis level 3
emph4 ≈ 1,000 Emphasis level 4
emph5 ≈ 81,000 Emphasis level 5

table ≈ 92,000 Table
row ≈ 1 millions Row of a table
cell ≈ 3.7 millions Cell of a table

template ≈ 2.5 millions Template tags

title ≈ 1.6 millions Title of articles

p ≈ 2.8 millions Paragraph

item ≈ 5.6 millions Item of a list or enumeration

....

We give in Figure 3 an idea of the schema underlying the collection using a
graphical representation of the tags inclusion.

General statistics about the Wikipedia XML collection are given in table 3

2.2 Categories

The documents of the wikipedia XML collections are organized in a hierarchy
of categories defined by the authors of the articles. For each main collection, we
propose a set of files describing:

– the hierarchy of categories (file : categories hcategories.csv)
– the categories of each articles (file : categories categories.csv)
– the categories names (file : categories name.csv)

Table 3. Statistics about the structure of the documents from the Main Collections

Language Mean size of document (bytes) Mean Document Depth Number of Nodes/Document

English 7,261 6.72 161.35
French 6,902 7.07 175.54
German 7,106 6.76 151.99
Dutch 5,092 6.41 122.8
Spanish 6,669 6.65 165.74
Chinese 6,664 6.91 179.23
Arabian 4,826 5.85 182.1
Japanese 7,973 7.1 94.96

Table 4 gives statistics about the categories.

16 L. Denoyer and P. Gallinari

(wiki)

(xml) (html)

Fig. 2. Example of template conversion. A template (wiki) is converted using the tem-
plate ... tags (xml). It correspond to a structured information of a wikipedia article
(html).

The Wikipedia XML Corpus 17

N = 1,000

N = 100,000

N = 1,000,000

Fig. 3. This figure shows the schema of the documents (like a DTD). In this graph,
each node corresponds to a possible XML node label. Two nodes (n1, n2) are connected
if there exist at least N XML nodes with tag n2 that have a child with tag n1 in the
corpus. For example, in the graph where N=1,000,000, the edge between section and
article means that at least 1 million XML nodes with label section have a parent with
label article.

18 L. Denoyer and P. Gallinari

Table 4. Statistics about the categories of the Main Collections

Language Number of categories in the hierarchy Mean number of categories for each document

English 113,483 2.2849
French 28,600 1.9570
German 27,981 2.5840
Dutch 13,847 1.6628
Spanish 12,462 1.6180
Chinese 27,147 2.0797
Japanese 26,730 2.0039

3 INEX 2006 Collections

3.1 Adhoc Collection

The collection used of the adhoc track during INEX 2006 is based on the english
version of the wikipedia XML. Table 5 gives some general statistics over this
collection and the Figure 4 gives the distribution of the documents with respect
to their number of nodes.

Table 5. Statistics on the INEX 2006 AdHoc Corpus

Number of documents 659,388

Number of elements ≈ 52 millions

Size of the vocabulary ≈ 2 millions (depending on the preprocessing)

Number of tags ≈ 1,200

We do not detail here the description of the assesments made by the partici-
pants of INEX 2006.

Fig. 4. Distribution of the documents wrt the number of doxels

The Wikipedia XML Corpus 19

Table 6. Statistics about the XML Document Mining Challenge Collection (Single-
Label Categorization Collection)

Number of categories 60

Number of documents 150,094

Number of train documents 75,047

Number of test documents 75,047

Mean number of categories for each document 1

Structure of the corpus The directory documents contains all the corre-
sponding articles. The directory relfiles contains
one file per category giving the id of the docu-
ments that belongs to this category5.

3.2 XML Mining Track Collection

We provide a specific collection where each document belongs to exactly one
category. This collection was used for the last yerar of the XML Mining Track.
It is composed of the documents of the preceding collection belonging to a sin-
gle category. This collection can be used for categorization and clustering of
documents (see table 6). This collection is aimed at categorization/clustering
benchmark.

4 Conclusion

This article report describes the main XML collections based on Wikipedia and
developed for Structured Information Retrieval, Structured Machine Learning
and Natural Language processing. Then, we detail the collection used during
INEX 2006 for both the general adhoc retrieval track and the XML Mining
track. Note that there exist some other corpus based on wikipedia XML for
different tasks : Natural Language Processing, linguistic annotation, Question
answering,etc.

Acknowlegment

The wikipediaXML corpus is distributed under the GPL Documentation license.
It is completely free and can be used for non-profit educational and research
purposes. All publications based on the wikipediaXML corpus should cite this
article.

INEX 2006 Evaluation Measures

Mounia Lalmas1, Gabriella Kazai2, Jaap Kamps3, Jovan Pehcevski4,
Benjamin Piwowarski5, and Stephen Robertson2

1 Queen Mary, University of London, United Kingdom
mounia@dcs.qmul.ac.uk

2 Microsoft Research Cambridge, United Kingdom
{gabkaz,ser}@microsoft.com

3 University of Amsterdam, The Netherlands
kamps@science.uva.nl

4 INRIA Rocquencourt, France
Jovan.Pehcevski@inria.fr

5 Yahoo! Research Latin America, Chile
bpiwowar@yahoo-inc.com

Abstract. This paper describes the official measures of retrieval effec-
tiveness employed at the ad hoc track of INEX 2006.

1 Introduction

Since its launch in 2002, INEX has been challenged by the issue of how to measure
an XML retrieval system’s effectiveness. The main complication comes from how
to consider the dependency between elements when evaluating effectiveness.

As discussed in Section 2, the ad hoc track at INEX 2006 has four retrieval
tasks, namely focused task, thorough task, relevant in context task, and best in
context task. INEX 2006 uses various sets of measures to evaluate these tasks:

– The XCG measures introduced at INEX 2005 [4] were used to evaluate the
thorough and the focused retrieval tasks (Sections 4 and 5, respectively).

– A new generalized precision measure was introduced to evaluate the relevant
in context retrieval task (Section 6). This measure is based directly on the
text highlighted by the assessors, just as the HiXEval measures [9].

– A distance measure, BEPD, was defined to evaluate the best in context
retrieval (Section 7).

– The EPRUM measures originally defined in [10] were adapted to also eval-
uate the best in context retrieval task (Section 7).

This paper is organized as follows. In Section 2, we describe the INEX 2006 ad
hoc retrieval tasks, including their motivations. In Section 3, we describe how rel-
evance is defined in INEX 2006. The evaluations of each task are described in the
next four sections (Sections 4 to 7). We finish the paper with some discussions.

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 20–34, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

INEX 2006 Evaluation Measures 21

2 Ad Hoc Retrieval Tasks

The main INEX activity is the ad hoc retrieval task, where the collection consists
of XML documents, composed of different granularity of nested XML elements,
each of which represents a possible unit of retrieval. A major departure from
traditional information retrieval is that XML retrieval systems need not only
score elements with respect to their relevance to a query, but also determine the
appropriate level of element granularity to return to users. The user’s query may
also contain structural constraints or hints in addition to the content conditions.
In addition, the output of an XML retrieval system may follow the traditional
ranked list presentation, or may extend to non-linear forms, such as grouping of
elements per document.

Up to 2004, ad hoc retrieval was defined as the general task of returning,
instead of whole documents, those XML elements that are most relevant to
the user’s query. In other words, systems should return elements that contain as
much relevant information and as little irrelevant information as possible. Within
this general task, several sub-tasks were defined, where the main difference was
the treatment of the structural constraints.

However, within this general task, the actual relationship between retrieved
elements was not considered, and many systems returned overlapping elements
(e.g. nested elements). What most systems did was to estimate the relevance
of XML elements, which is different to identifying the most relevant elements.
This had very strong implications with respect to measuring effectiveness, where
approaches that attempted to identify the most relevant elements, and to return
only those, performed poorly. As a result, the focused task was defined in 2005,
intended for approaches aiming at targeting the appropriate level of granularity
of relevant content that should be returned to the user for a given topic. The
aim was for systems to find the most relevant element on a path within a given
document containing relevant information and return to the user only this most
appropriate unit of retrieval. Returning overlapping elements was not permitted.
The INEX ad hoc general task, as carried out by most systems up to 2004, was
renamed in 2005 as the thorough task.

Within the focused and thorough tasks, the output of XML retrieval systems
was assumed to be a ranked list of XML elements, ordered by their presumed
relevance to the query. User studies [11] suggested that users were expecting to
see returned elements grouped per document, and to have access to the overall
context of an element. The fetch & browse task was introduced in 2005 for this
reason. The aim was to first identify relevant documents (the fetching phase), and
then to identify the most relevant elements within the fetched documents (the
browsing phase). In 2005, no explicit constraints were given regarding whether
returning overlapping elements within a document was allowed. The rationale
was that there should be a combination of how many documents to return, and
within each document, how many relevant elements to return.

In 2006, the same task, renamed the relevant in context task, required sys-
tems to return for each document an unranked set of non-overlapping elements,

22 M. Lalmas et al.

covering the relevant material in the document. These elements could be shown
to the users, for example, as highlighted text, or through the use of a heat-map.

In addition, a new task was introduced in 2006, the best in context task, where
the aim was to find the best entry point, here a single element, for starting to
read documents with relevant information. This new task can be viewed as an
extreme case of the fetch & browse approach, where only one element is returned
per document.

To summarize, INEX 2006 investigated the following four ad hoc retrieval
tasks, defined as follows [1]:

– Thorough: This task asks systems to estimate the relevance of all XML
elements in the searched collection and return a ranked list of the top 1500
elements.

– Focused: This task asks systems to return a ranked list of the most focused
XML elements, where result elements should not overlap (e.g. a paragraph
and its container section should not both be returned). Here systems are
forced to choose from overlapping relevant elements those that represent the
most appropriate units of retrieval.

– Relevant in context: This task asks systems to return to the user the most
focused, relevant XML elements clustered by the unit of the document that
they are contained within. An alternative way to phrase the task is to return
documents with the most focused, relevant elements indicated (e.g. high-
lighted) within.

– Best in context: This task asks systems to return a single best entry point
to the user per relevant document.

For all tasks, systems could use the title field of the topics (content-only topics)
or the castitle of the topics (content-and-structure topics) - see [8] for description
of the INEX 2006 topics.

3 Relevance Assessments

In INEX 2006, relevance assessments were obtained by assessors highlighting
relevant text fragments in the documents, which correspond to wikipedia ar-
ticles (see [8] for description of the document collection). XML elements that
contained some highlighted text were then considered as relevant (to varying de-
gree). A default assumption here is that if an XML element is relevant (to some
degree), then its ascendant elements will all be relevant (to varying degrees) due
to the subsumption of the descendant elements’ content. For each relevant XML
element, the size of the contained highlighted text fragment (in number of char-
acters) is recorded as well as the total size of the element (again, in number of
characters). These two statistics form the basis of calculating an XML element’s
relevance score, which in 2006 corresponds to its specificity score [7].

The specificity score, spec(ei) ∈ [0, 1], of an element ei is calculated as the
ratio of the number of highlighted characters contained within the XML element,

INEX 2006 Evaluation Measures 23

rsize(ei), to the total number of characters contained by the element, size(ei):

spec(ei) =
rsize(ei)
size(ei)

(1)

4 Evaluation of the Thorough Task

4.1 Assumptions

This task is based on the assumption that all XML elements of a searched col-
lection can be ranked by their relevance to a given topic. The task of a system
here is then to return a ranked list of the top 1500 relevant XML elements, in
descreasing order of relevance. No assumptions are made regarding the presen-
tation of the results to the user: the output of a system here can simply be
considered as an intermediate stage, which may then be processed for display-
ing to the user (e.g. filtered, clustered, etc.). The goal of this task is to test a
system’s ability to produce the correct ranking. Issues, like overlap (e.g. when a
paragraph and its container section are both returned) are ignored during the
evaluation of this task.

4.2 Evaluation Measures

Two indicators of system performance were employed in the evaluation of the
thorough task: effort-precision/gain-recall (ep/gr) graph and mean average effort-
precision (MAep). These are both members of the eXtended Cumulated Gain
(XCG) measures [4], which are extensions of the Cumulated Gain based mea-
sures [3]. These were developed specifically for graded (non-binary) relevance
values and with the aim to allow information retrieval systems to be credited
according to the retrieved documents’ degree of relevance.

From the family of XCG measures, ep/gr and MAep were selected as they
provide an overall picture of retrieval effectiveness across the complete range of
recall. The motivation for this choice is the recall-oriented nature of the task,
e.g. rank all elements of the collection and return the top 1500 results. MAep
summarizes retrieval effectiveness into a single number, while an ep/gr graph
allows for a more detailed view, ploting ep at 100 recall points {0.01, 0.02, ..., 1}.

Gain value. The definition of all XCG measures is based on the underlying
concept of the value of gain, xG[i], that a user obtains when examining the i-th
result in the ranked output of an XML retrieval system. Given a ranked list of
elements, where the element IDs are replaced with their relevance scores, the
cumulated gain at rank i, denoted as xCG[i], is computed as the sum of the
relevance scores up to that rank:

xCG[i] =
i∑

j=1

xG[j] (2)

24 M. Lalmas et al.

Assuming that users prefer to be returned more relevant elements first, an
ideal gain vector, xI, can be derived for each topic by filling the rank positions
with the relevance scores of the relevant elements in decreasing order of their
relevance scores. The corresponding cumulated ideal gain vector is denoted as
xCI and is calculated analogue to xCG[i]. Both xG[i] and xI[j] are calculated
using the element’s specificity value:

xG[i] = spec(ei) (3)

xI[j] = spec(ej) (4)

where ei is the i-th element in the system ranking, ej is the j-th element in the
ideal ranking, and the specificity score is given in Equation 1.

Effort-precision/gain-recall. Effort-precision at a given cumulated gain value,
r, measures the amount of relative effort (where effort is measured in terms of
number of visited ranks) that the user is required to spend when scanning a
system’s result ranking compared to the effort an ideal ranking would take in
order to reach the given level of gain (illustrated by the horizontal line drawn at
the cumulated gain value of r in Figure 1):

ep[r] =
iideal

irun
(5)

iideal is the rank position at which the cumulated gain of r is reached by the
ideal curve and irun is the rank position at which the cumulated gain of r is
reached by the system run.

Fig. 1. Calculation of nxCG and effort-precision ep

INEX 2006 Evaluation Measures 25

By scaling the recall axis to [0, 1] (i.e. dividing by the total gain), effort-
precision can be measured at arbitrary recall points, gr[i] [5]:

gr[i] =
xCG[i]
xCI[n]

=

∑i
j=1 xG[j]

∑n
j=1 xI[j]

(6)

where n is the total number of relevant elements in the full recall-base of the
given topic. The range for i is [0, 1500], where 1500 is the maximum length of a
result list that participants could submit.

As with standard precision/recall, for averaging across topics, interpolation
techniques are necessary to estimate effort-precision values at non-natural gain-
recall points, e.g. at standard recall points {0.1, .., 1}.

The non-interpolated mean average effort-precision, denoted as MAep, is cal-
culated by averaging the effort-precision values obtained for each rank where a
relevant document is returned. For not retrieved relevant elements, a precision
score of 0 is used.

4.3 Results Reported at INEX 2006

For the thorough task we report the following measures over all topics:

– non-interpolated mean average effort-precision (MAep)
– effort-precision/gain-recall up to rank 1500 (ep/gr)

5 Evaluation of the Focused Task

5.1 Assumptions

In this task, systems are asked to return the ranked list of the top 1500 most
focused, relevant XML elements for each given topic, without returning over-
lapping elements. The task is similar to the thorough task in that it requires a
ranking of XML elements, but here systems are required not only to estimate
the relevance of elements, but also to decide which element(s), from a tree of
relevant elements, are the most focused non-overlapping one(s).

5.2 Evaluation Measures

The normalized cumulated gain nxCG[RCV] measure, from the XCG family of
measures, was used in the evaluation of the focused task. System performance
was reported at several rank cutoff values (RCV).

Normalized cumulated gain. For a given topic, the normalized cumulated
gain measure is obtained by dividing a retrieval run’s xCG vector by the corre-
sponding ideal xCI vector (see Section 4 for the definition of these two vectors):

nxCG[i] :=
xCG[i]
xCI[i]

(7)

26 M. Lalmas et al.

xCG[i] takes its values from the full recall-base of the given topic and i ∈ [0, 1500]
where 1500 is the maximum length of a result list that participants could submit.
xCI[i] takes its values from the ideal recall-base (described below) and i ranges
from 0 and the number of relevant elements for the given topic in the ideal recall-
base. The gain values xI[j] used in xCI[i] are given by Equation 4. The gain
values used in xCG[i] are normalized as follows. For the j-th retrieved element,
where j ranges from 1 to i:

xGnorm[j] = min(xG[j], xG[jideal] −
∑

S

xG[k]) (8)

where xG[·] is given by Equation 3, jideal is the rank of the ideal element that
is on the same relevant path as the j-th relevant element, and S is the set
of elements that overlap with that ideal element and that have been retrieved
before rank j. The normalization ensures that a system retrieving all descendant
relevant elements of an ideal element cannot achieve a better overall score then
if it retrieved the ideal element.

For a given rank i, nxCG[i] reflects the relative gain the user accumulated
up to that rank, compared to the gain he/she could have attained if the system
would have produced the optimum ranking. As illustrated in Figure 1, nxCG is
calculated by taking measurements on both the system and the ideal rankings’
cumulated gain curves along the vertical line drawn at rank i. Here, rank position
is used as the control variable and cumulated gain as the dependent variable.

Recall-bases. The evaluation of the focused retrieval task requires two recall-
bases. The full recall-base is the list of all elements that contains any relevant
information (which therefore includes all parents of any such element), already
used in the thorough task. The ideal recall-base is a subset of the full recall-
base, where overlap between relevant reference elements is removed so that the
identified subset represents the set of ideal answers, i.e. the most focused elements
that should be returned to the user.

The selection of ideal elements into the ideal recall-base is done by traversing
an article’s XML tree and selecting from the set of overlapping relevant elements,
those with the highest gain value. The methodology to traverse an XML tree
and select the ideal elements is as follows [10]: Given any two elements on a
relevant path,1 the element with the higher score is selected. In case two elements’
scores are equal, the one higher in the tree is chosen (i.e. parent/ascendant).
The procedure is applied recursively to all overlapping pairs of elements along a
relevant path until one element remains. After all relevant paths in a document’s
tree have been processed, a final filtering is applied to eliminate any possible
overlap among ideal elements, keeping from two overlapping ideal paths the
shortest one.

1 A relevant path is a path in an article file’s XML tree, whose root element is the
article element and whose leaf element is a relevant element.

INEX 2006 Evaluation Measures 27

5.3 Results Reported at INEX 2006

For the focused task we report the following measures over all topics:

–normalized cumulative gains at low RCV (i.e. early ranks) (nxCG[5,10,25,50])

6 Evaluation of the Relevant in Context Task

6.1 Assumptions

The relevant in context task is document (here Wikipedia article) retrieval, where
not only the relevant articles should be retrieved but also a set of XML elements
representing the relevant information within each article. In this task, there
is a fixed result presentation format defined. Systems are expected to return,
for each relevant XML Wikipedia article, a set of elements that focused on
the relevant information within the article. The Wikipedia articles should be
ranked in decreasing order of relevance, but there should not be a ranking of
the contained XML elements. The set of result elements should not contain
overlapping elements.

6.2 Evaluation Measures

The evaluation of this task is based on a ranked list of articles, where per article
we obtain a score reflecting how well the retrieved set of elements corresponds
to the relevant information in the article.

Score per article. For a retrieved article, the text retrieved by the selected set
of elements is compared to the text highlighted by the assessor [9]. We calculate
the following:

– Precision, as the fraction of retrieved text (in bytes) that is highlighted;
– Recall, as the fraction of highlighted text (in bytes) that is retrieved; and
– F-Score, as the combination of precision and recall using their harmonic

mean, resulting in a score in [0,1] per article.

More formally, let a be a retrieved article, and let e be an element that belongs
to Ea, the set of retrieved elements from article a. Let rsize(e) be the amount
of highlighted (relevant) text contained by e (if there is no highlighted text in
the element, rsize(e) = 0). Let size(e) be the total number of characters (bytes)
contained by e, and let Trel(a) be the total amount of (highlighted) relevant
text for the article a.

We measure the fraction of retrieved text that is highlighted for article a as:

P (a) =

∑
e∈Ea

rsize(e)
∑

e∈Ea

size(e)
(9)

28 M. Lalmas et al.

The P (a) measure ensures that, to achieve a high precision value for the
article a, the set of retrieved elements for that article needs to contain as little
non-relevant information as possible.

We measure the fraction of highlighted text that is retrieved for article a as:

R(a) =

∑
e∈Ea

rsize(e)

Trel(a)
(10)

The R(a) measure ensures that, to achieve a high recall value for the article
a, the set of retrieved elements for that article needs to contain as much relevant
information as possible.

The final score per article is calculated by combining the two precision and
recall scores in the standard F-score (the harmonic mean) as follows:

F (a) =
2 · P (a) · R(a)
P (a) + R(a)

(11)

The resulting F-score varies between 0 (article without relevance, or none
of the relevance is retrieved) and 1 (all relevant text is retrieved and nothing
more).2 For retrieved non-relevant articles, P (a) = R(a) = F (a) = 0.

Scores for ranked list of articles. We have a ranked list of articles, and
for each article we have an F-score F (ar) ∈ [0, 1], where ar is the article re-
trieved at rank r. Hence, we need a generalized measure, and we utilise the most
straightforward generalization of precision and recall as defined in [5].

Over the ranked list of articles, we calculate the following:

– generalized precision (gP [r]), as the sum of F-scores up to an article-rank r,
divided by the rank r; and

– generalized recall (gR[r]), as the number of articles with relevance retrieved
up to an article-rank r, divided by the total number of articles with relevance.

More formally, let us assume that for an INEX 2006 topic there are in to-
tal Numrel articles with relevance, and let us also assume that the function
rel(ar) = 1 if article ar contains relevant information, and rel(ar) = 0 other-
wise. At each rank r of the list of ranked articles, generalized precision is defined
as:

gP [r] =

r∑
i=1

F (ai)

r
(12)

2 This task is very similar to the INEX assessors’ task, who are highlighting relevant
information in a pooled set of articles. Note that the assessors can highlight sentences,
whereas systems can only return XML elements. This makes it impossible for a
system to obtain a perfect score of 1 (although the theoretical maximum will be
close to 1).

INEX 2006 Evaluation Measures 29

At each rank r of the list of ranked articles, generalized recall is defined as:

gR[r] =

r∑
i=1

rel(ai)

Numrel
(13)

These generalized measures are compatible with the standard precision/recall
measures used in traditional information retrieval. Specifically, the average gen-
eralized precision (AgP) for an INEX 2006 topic can be calculated by averaging
the generalized precision at natural recall points where generalized recall in-
creases. That is, averaging the generalized precision at ranks where an article
with relevance is retrieved (the generalized precision of non-retrieved articles
with relevance is 0). When looking at a set of topics, the mean average general-
ized precision (MAgP) is simply the mean of the average generalized precision
scores per topic.

6.3 Results Reported at INEX 2006

For the relevant in context task we report the following measures over all topics:

– mean average generalized precision (MAgP)
– generalized precision at early ranks (gP [5, 10, 25, 50])

The official evaluation is based on the overall MAgP measure.

7 Evaluation of the Best in Context Task

7.1 Assumptions

In this task, systems are required to return a ranked list of best entry points
(BEP), one per article, to the user, representing the point in the article where
they should start reading the relevant information in the article. The aim of
the task is to first identify relevant articles, and then to identify the elements
corresponding to the best entry points for the returned articles. Articles should
be ranked according to their relevance.

7.2 Evaluation Measures

The evaluation of this task is performed with two measures, a distance measure,
BEPD (for BEP-distance), and an extension of precision/recall (EPRUM) [10].
Both measures give a score of 0 for a ranked article that is not relevant, i.e. does
not contain a BEP for the current topic.

30 M. Lalmas et al.

BEPD. This measure is constructed as follows. For each document in a ranked
list, s(x, b) will measure how close the system-proposed entry point x is to the
BEP b (as above, s is 0 if the article is not relevant). Closeness is assumed to
be an inverse function of distance, with a maximum value of 1 if and only if
the system hits the BEP and a minimum value of zero. We first measure the
distance d(x, b) in arbitrary units (characters). Next we remove the arbitrariness
by normalizing d by the average article length L in characters (d′ = d/L). Finally
we make an inverse transformation to a [0, 1] scale (f(d′) = A/(A + d′)), with a
controlling parameter A > 0, which can be turned up to allow longer distances
without much penalty, or down to reward systems which get very close to the
BEP. The resulting formula is:

s(x, b) = A × L

A × L + d(x, b)
(14)

A value of A = 10 will give a score close to 1 for any answer in a relevant article;
a value such as A = 0.1 will favour systems that return elements very close to
the BEP.

BEPD for a single topic/ranked list is the sum of s values for the articles in
the list divided by the total number of BEPs for this topic. Thus a system is
penalized both for not retrieving the right articles and (to some extent controlled
by A) for not pointing to the right places in the articles it does retrieve. This
measure is averaged in the usual way over topics.

EPRUM-BEP-Exh-BEPDistance. The EPRUM measure is an extension of
precision/recall developed for structured document collections and fine-grained
user models [10]. While standard precision-recall assumes a simple user model,
where the user consults retrieved elements (elements returned by the retrieval
system) independently, EPRUM can capture the scenario where the user consults
the context of retrieved elements. Most measures assume that a user sees the
elements in their order of appearance in the result list. EPRUM on the other
hand considers these elements as entry points to the collection from where the
user can navigate to find relevant elements.

As in the classical precision at a given recall definition, the recall value R is the
number of relevant elements the user wants to see. The recall level � (0 < � ≤ 1)
is defined as the ratio of a recall R to the total number T of relevant units. The
generalisation lies in the definition of the minimum number of ranks m the user
needs to consult in the list to reach a recall level �, or said otherwise a recall
value of �T .

The user starts considering the first rank of the list. If (s)he finds more than
�T relevant elements at this rank, then the information need is satisfied and
(s)he stops. In this case, the user effort has been restricted to the consultation of
the first rank of the list (m is 1). If not, (s)he proceeds to the second rank, etc.
The definition of precision is based on the comparison of two minimum values:
the minimum rank that achieves the specified recall over all the possible lists,
and over the evaluated list. For a given recall level �, precision is defined as:

INEX 2006 Evaluation Measures 31

Precision@� = E

⎡

⎢⎢⎢⎢⎢⎢⎣

achievement
indicator

for a recall �
×

minimum number of
consulted list items for

achieving a recall � over all lists
minimum number of

consulted list items for achieving
a recall � over the evaluated list

⎤

⎥⎥⎥⎥⎥⎥⎦
(15)

where the achievement indicator is used to set the precision to 0 if the recall
level cannot be reached for the evaluated list. This is compatible with the classical
definition of precision at a given recall where the precision is set to 0 if the list
does not contain enough relevant elements.

Similarly, we can extend the definition of precision at a given rank r with this
definition:

Precision@r =
1
r

× E

⎡

⎢⎢⎣

minimum number of consulted
list items (over all lists)

for achieving the same level of
recall as the evaluated run

⎤

⎥⎥⎦ (16)

EPRUM is defined by three parameters stating: (1) the rewarded elements, i.e.
here the BEPs. (2) the relevance value of an element, which is set to 1 since
there was only one relevance level (i.e. exhaustivity value [7]) in INEX 2006;
and (3) the probability that the user goes from one element in the list to a
target (BEP). For the best in context retrieval task, this probability is defined
as s(x, b), as defined in Equation 14, for any BEP b. This behaviour is de-
fined stochastically, i.e. we only know that a random user sees the BEP with
probability s(x, b) if presented the element x in the list. With these settings, a
ranking only made of BEPs will obtain a constant precision of 1 for all recall
levels. The performance slowly decreases when returned elements are further
away from the BEPs, and reach 0 when returned elements are not in relevant
articles.

7.3 Results Reported at INEX 2006

For the best in context task we report the following measures over all topics.

– BEPD
– EPRUM-BEP-Exh-BEPDistance precision recall graph
– EPRUM-BEP-Exh-BEPDistance precision averaged over all recall values

(mean average precision)

Although we reported results for the values 0.01, 0.1, 1, 10, 100 for the parameter
A, the official evaluation is based on the value A = 0.1.

32 M. Lalmas et al.

8 Discussions

8.1 Too Small Elements

Because of how relevance was assessed in INEX 2006, a high number of fully
highlighted elements – the figure reported at the INEX workshop was 18% –
(which will then obtain a specificity score of 1) were of link type (i.e. collection-
link, wikipedialink, redirectlink, unknownlink, outsidelink, weblink, etc.). This
led to concerns regarding the use of such a set of relevance assessments to eval-
uate retrieval performance using the XCG measures.

Using the INEX 2005 assessment process would have avoided this problem
because any element with some highlighted (relevant) content would have to be
further assessed according to how exhaustive it was. The exhaustivity value of
”?” was used to express that an element was too small to provide any meaningful
information.

We therefore created a second set of assessments, where all link element types
were ignored. For both the focused and the thorough tasks, the XCG measures
were applied using this filtered assessment set. We then examined correlation
when using the two sets of relevance assessments (the full set and the filtered
set) by calculating the Kendall τ correlation [2] between their resulting respective
system rankings. Previous work has considered all rankings with correlations
greater than 0.9 as equivalent and rankings with correlation less than 0.8 as
containing noticeable differences [12].

Table 1. Correlation of the XCG measures using the full and the filtered assessments

focused task

nxCG[5] 0.9292135
nxCG[10] 0.933427
nxCG[25] 0.8989332
nxCG[50] 0.8748597

thorough task

MAep 0.9484281

Table 1 shows that for the focused retrieval task, as evaluated by the XCG
measures, how to consider the so-called too small elements seems important, as
they can affect, to some extent, effectiveness measures. The change between the
full to filtered set of assessments does not affect the relevant in context, and
best in context tasks, because the metrics used to evaluate these tasks were not
affected by the problem of too small elements. The official results of INEX 2006
for the focused and thorough tasks are based on the filtered assessments.

8.2 Ideal Recall-Base

For the focused retrieval task, as described in Section 5, the cumulated gain
xCG[i] at rank i take its values from the full recall-base, whereas the cumulated

INEX 2006 Evaluation Measures 33

gain xCI[i] (for the ideal vector) takes its values from the ideal recall-base. One
possible approach is for xCI[i] to also take its value in the full recall-base. The
resulting system ranking was compared to the initial one, also using Kendall τ
correlation measure.

Table 2. Correlation of the nxCG[DCV] results for the focused task, when the ideal
recall-base is build as defined in Section 5 and when it corresponds to the full recall-base

nxCG[10] 0.8025281
nxCG[25] 0.844944
nxCG[5] 0.8185393
nxCG[50] 0.8420758

We can see that there is a small difference in the ranking of retrieval ap-
proaches. Given that the ideal gain vector is then built from the full set of
relevant elements, i.e. the full recall-base, which contains overlapping XML el-
ements, systems can never achieve 100% recall (as the task did not allow runs
to return overlapping results). This, however, presents less of an issue when
performance is measured at low rank cutoffs. A more serious problem is that
what is measured here does not correspond to the task. Since all relevant ele-
ments in the full recall-base are considered ideal, systems are in effect rewarded
for the retrieval of any relevant element, not just the most focused elements.
Therefore, any improvement in performance cannot be attributed to a system’s
ability in locating the most focused element. We can only say that well perform-
ing systems were able to return relevant elements within the top RCV ranks.
Furthermore, given that measuring performance at low rank cutoffs is highly
sensitive to the individual measuring points, especially those very early in the
ranking, the retrieval of relevant, but not ideal elements, can impact on the score
quite significantly.

References

1. Clarke, C., Kamps, J., Lalmas, M.: INEX 2006 retrieval task and result submission
specification. In: Fuhr, N., Lalmas, M., Trotman, A., (eds), INEX 2006 Workshop
Pre-Proceedings, pp. 381–388 (2006)

2. Conover, W.: Practical Non-Parametric Statistics, 2nd edn. John Wiley & Sons,
Inc, New York, NY (1980)

3. Järvelin, K., Kekäläinen, J.: Cumulated Gain-based evaluation of IR techniques.
ACM Transactions on Information Systems (ACM TOIS) 20(4), 422–446 (2002)

4. Kazai, G., Lalmas, M.: eXtended Cumulated Gain Measures for the Evaluation
of Content-oriented XML Retrieval. ACM Transactions on Information Systems
(ACM TOIS) 24(4), 503–542 (2006)

5. Kekäläinen, J., Järvelin, K.: Using graded relevance assessments in IR evaluation.
Journal of the American Society for Information Science and Technology 53(13),
1120–1129 (2002)

34 M. Lalmas et al.

6. Lalmas, M.: INEX 2005 retrieval task and result submission specification. In: Fuhr,
N., Lalmas, M., Malik, S., Kazai, G. (eds.) INEX 2005. LNCS, vol. 3977, pp. 385–
390. Springer, Heidelberg (2006)

7. Lalmas, M., Tombros, A.: INEX 2002 - 2006: Understanding XML Retrieval Eval-
uation. In: DELOS Conference on Digital Libraries, Tirrenia, Pisa, Italy (2007)

8. Malik, S., Trotman, A., Lalmas, M., Fuhr, N.: Overview of INEX 2006. In: Compar-
ative Evaluation of XML Information Retrieval Systems, 5th International Work-
shop of the Initiative for the Evaluation of XML Retrieval, INEX 2006 (2007)

9. Pehcevski, J., Thom, J.A.: HiXEval: Highlighting XML retrieval evaluation. In:
Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.) INEX 2005. LNCS, vol. 3977, pp.
43–57. Springer, Heidelberg (2006)

10. Piwowarski, B., Dupret, G.: Evaluation in (XML) information retrieval: Expected
precision-recall with user modelling (EPRUM). In: Proceedings of the 29th Annual
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval (2006)

11. Tombros, T., Larsen, B., Malik, S.: The interactive track at INEX 2004. In: Fuhr,
N., Lalmas, M., Malik, S., Szlávik, Z. (eds.) INEX 2004. LNCS, vol. 3493, Springer,
Heidelberg (2005)

12. Voorhees, E.M.: Evaluation by highly relevant documents. In: Proceedings of the
24th annual international ACM SIGIR conference on Research and development
in information retrieval, pp. 74–82. ACM Press, New York (2001)

Choosing an Ideal Recall-Base for the

Evaluation of the Focused Task: Sensitivity
Analysis of the XCG Evaluation Measures

Gabriella Kazai

Microsoft Research,
Cambridge, UK

gabkaz@microsoft.com

Abstract. The paper investigates the measures of retrieval effectiveness
employed in the ad-hoc track of INEX 2006. In particular, it looks at how
the evaluation of the Focused task is affected when different methodology
is employed in generating the so-called ideal recall-base, which forms
the ground-truth of the evaluation. The results show that the choice of
methodology can impact on the obtained performance scores and the
relative ranking of systems in relation to each other, especially when
the effectiveness scores are uniformly low across all systems. Most XCG
measures show very similar levels of sensitivity to changes in the ideal
recall-base.

1 Introduction

INEX 2006 defined four retrieval tasks within the ad-hoc track: Thorough, Fo-
cused, Relevant in Context, and Best in Context tasks. In the Thorough task,
systems are to estimate the relevance of all XML elements in the collection and
return a ranked list of the top 1500 results. The Focused task asks systems to
return a ranked list of the “most focused” XML elements that satisfy the in-
formation need, without returning overlapping elements (e.g. a paragraph and
its container section element). The Relevant in Context task is much like the
Focused task, but here the ranked list consists of groups of the most focused
elements, clustered by the unit of an article in the Wikipedia collection. Finally,
in the Best in Context task, systems are required to return a ranked list of best
entry points (one per article) to the user, representing the point in the article
where users should start reading.

Apart from the latter task, for which separate best entry point judgements
are obtained, the evaluation of the first three tasks relies on the (same) set
of relevance assessments collected from human judges. These assessments are
collected in the form of highlighted text passages, which are then automatically
converted into assessments on XML elements. Due to the inherent nesting of
XML elements, the resulting “full” recall-base consists of overlapping relevant
XML elements (e.g. both a relevant paragraph element and its container section
element will be included).

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 35–44, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

36 G. Kazai

The full recall-base is then used directly to evaluate the Thorough task,
whereby the ranked list of elements in the recall-base is compared against the
rankings produced by the retrieval systems. However, due to the introduced over-
lap of XML elements, this recall-base is not directly suitable for the evaluation of
the Focused task [2], which requires an overlap-free recall-base, containing only
the most focused, relevant XML elements.

In [1] a procedure was proposed to filter the full recall-base and generate
a so-called ideal recall-base, where overlap is removed. The methodology has
since been questioned and alternative methods have also been proposed, e.g.
in [3]. In this paper, we examine and compare a number of different methods
for the construction of the ideal recall-base. The question we investigate is not
so much the problem of which method is correct, but how the conclusion of the
evaluation is actually affected by the choice of this methodology. If the evaluation
measures are sensitive to changes in the ideal recall-base then greater care needs
to be taken to define the criteria for creating an ideal recall-base. On the other
hand, if there is high agreement on the relative system rankings produced by
the different methods, then one can spend less effort on tuning this parameter
of the evaluation.

The paper is structured as follows. In Section 2 we introduce the problem in
more detail, in Section 3 we describe the various methods for deriving an ideal
recall-base, and in Section 4 we examine the correlation between the conclu-
sions of the evaluation based on these different ideal recall-bases. We close with
conclusions in Section 5.

2 Relevance Assessments

The relevance assessment procedure for INEX 2006 is based on a yellow-marker
design and involves the highlighting of relevant text fragments in the articles of
the Wikipedia collection by human judges. The collected relevance assessments
are, hence, in the form of arbitrary sized text passages, which are not con-
strained by XML element boundaries. This is illustrated in Figure 1, where the
highlighted relevant text fragment spans across a couple of paragraphs, starting
in the middle of the first paragraph.

Fig. 1. Relevance assessments are collected as highlighted text fragments

Choosing an Ideal Recall-Base for the Evaluation of the Focused Task 37

The obtained relevant passages are then converted into assessments on XML
elements. The conversion involves adding all XML elements that contain any
highlighted text fragment to the recall-base. Due to the nested organisation of
XML elements in an XML document’s tree, a single highlighted text fragment
typically adds several relevant XML elements to the recall-base1. For example,
the excerpt from one of the INEX 2006 topic’s relevance assessments in Figure 2
shows that a single highlighted text passage within the Wikipedia article of
2267781 is converted into four overlapping, relevant XML elements.

For each relevant XML element in the recall-base, the number of highlighted
characters contained within the element (@rsize) is recorded, as well as the
element’s length in number of characters (@size).

<file collection="wikipedia" name="2267781">
<passage start="/article[1]/body[1]/section[1]/p[5]/text()[1].89"

end="/article[1]/body[1]/section[1]/p[5]/text()[1].199"
size="111"/>

<element path="/article[1]/body[1]/section[1]/p[5]" exhaustivity="2"
size="569" rsize="111"/>

<element path="/article[1]/body[1]/section[1]" exhaustivity="2"
size="8470" rsize="111"/>

<element path="/article[1]/body[1]" exhaustivity="2"
size="20356" rsize="111"/>

<element path="/article[1]" exhaustivity="2" size="20376" rsize="111"/>
</file>

Fig. 2. Excerpt from an INEX’06 topic’s relevance assessments file. The @size attribute
stores the XML element’s length (in characters), while the @rsize attribute corresponds
to the number of highlighted characters within the element.

Unlike in previous years, where relevance assessments were collected along two
dimensions, specificity and exhaustivity, INEX 2006 only measures specificity.
Exhaustivity, which is defined as the extent to which the document compo-
nent (XML element) discusses the topic of request, is assumed a constant factor
bearing no effect on the relevance score of an XML element. Specificity, which
is defined as the extent to which a document component focuses on the topic of
request, is calculated automatically as: the ratio of the number of highlighted
characters contained within the XML element and the length of the element
(rsize/size). Specificity hence can take any value in [0, 1].

Since exhaustivity is a constant, the relevance score of an XML element is a
function of the specificity score only.

1 Since an ascendant node subsumes its descendant nodes’ content, if a given XML
node is relevant (to some degree), then all its ascendant nodes will also be relevant
(to varying degrees).

38 G. Kazai

3 Construction of an Ideal Recall-Base

A result of the adopted procedure to convert highlighted text fragments into rel-
evance assessments on XML elements is that the derived full recall-base consists
of overlapping XML elements. While this full recall-base can be used to evaluate
the Thorough task, it is not appropriate for the evaluation of the Focused task.

In order to evaluate the Focused task, where overlap is not allowed, it is neces-
sary to remove overlapping elements from the full recall-base. For this purpose,
we define an ideal recall-base as a subset of the full recall-base, where overlap
is removed so that the identified subset represents the set of ideal answers: the
“most focused” relevant XML elements.

A range of methods can be defined to construct such an ideal recall-base: one
may start from the highlighted relevant passages and select those XML elements
as ideal nodes that completely cover the highlighted content while maximise the
specificity score. Alternatively, we may select all leaf nodes that contain some
highlighted content. Other methods may incorporate heuristics which consider
“too small” nodes when deciding about the appropriate level of granularity.
Alternative methods, e.g. [2,1,3], start from the full recall-base and aim to select
nodes based on their combined exhaustivity and specificity values.

Rather than focusing on how these, or other, methods relate to particular
criteria concerning the definition of what a “most focused” (or most appropriate
granularity) relevant XML element might be, we are interested in the effect that
the choice of such a method will have on the evaluation. For this reason, we
define – and later experiment with – the following ideal recall-bases:

– Standard: The selection of ideal nodes into the ideal recall-base is done
through the definition of a scoring function and a methodology for travers-
ing an article’s XML tree. The scoring function is used to associate with
each node a relevance score, indicating its value to the user. In the case of
INEX 2006, this score is the obtained specificity score. The methodology to
traverse an XML tree and select the ideal nodes is as follows [3]: Given any
two components on a relevant path2, the component with the higher score is
selected. In case two components’ scores are equal, the one higher in the tree
is chosen (i.e. parent/ascendant). The procedure is applied recursively to all
overlapping pairs of components along a relevant path until one element re-
mains. After all relevant paths in a document’s tree have been processed, a
final filtering is applied to eliminate any possible overlap among ideal com-
ponents, keeping from two overlapping ideal paths the shortest one. We refer
to this method as the Standard method, as it was used in the official eval-
uation of the Focused task at INEX 2006. From the sample tree shown in
Figure 3 this method selects the nodes: c and d.

– Standard Descendant (S. Desc.): This follows the Standard method above,
only from two components with equal scores, it selects the descendant node

2 A relevant path is a path in an article file’s XML tree, whose root node is the article
element and whose leaf node is a relevant component.

Choosing an Ideal Recall-Base for the Evaluation of the Focused Task 39

(instead of the ascendant) [2]. This method was used in the official evaluation
of the Focused task at INEX 2005. From the sample tree in Figure 3 this
method selects the nodes: d, g and h.

– Leaf Nodes: This method simply selects all leaf nodes from all relevant paths.
In Figure 3, this method selects the nodes: d, g and h.

– Parent of Leaf Nodes (P. of Leaf): This method selects as ideal node the
parent node of a relevant leaf node. In Figure 3, this method selects the
nodes: b, e and f.

– Article Nodes: This method selects the article’s root element as ideal node.
In Figure 3, this method selects the node: a.

– Full Recall-Base (Full RB): For comparison reasons, we also use the full
recall-base where all relevant nodes, including overlapping nodes, appear
in the ideal set. From the sample tree in Figure 3, this method selects all
relevant nodes: a, b, c, d, e, f, g and h.

Fig. 3. An example XML tree. Relevant nodes are indicated by filled circles. The
specificity score is shown next to each relevant node.

The Leaf and Article Nodes methods represent the two extremes of all possible
selection mechanisms.

In the case when the full recall-base is used (which contains overlapping XML
elements), systems can never achieve 100% recall (as the task did not allow runs
to return overlapping results). Despite this, the evaluation may still be able to
give us the correct relative ranking of systems’ performances. Furthermore, the
issue of 100% recall could be considered less of an issue when performance is
measured at low document cutoff values (DCV). Hence, we also investigate the
conclusions of the evaluation based on the full recall-base to gauge if these scores
can be used to predict system performance within the Focused task.

4 Experiments

To test the effect of the ideal recall-base construction methodology on the con-
clusions of the evaluation, we used all 85 runs submitted to the Focused task3

3 Note that some of these runs were disqualified from the official results as they con-
tained overlapping components. This is however does not cause an issue in our in-
vestigations as the XCG measures handle overlap.

40 G. Kazai

and evaluated these using the XCG measures listed in Table 1. A detailed ex-
planation of the XCG measures can be found in [1].

Table 1. XCG measures

XCG measure Description

nxCG[DCV] Normalised cumulated gain at a given document cutoff value,
calculated as the ratio of gain accumulated by the system up
to the given rank and the gain that could be accumulated by
the optimum best ranking.

MAnxCG[DCV] Average of nxCG[i] values over i ∈ [1, DCV], calculated for
each query, and then averaged over the set of test queries.

ep/gr graph Effort-precision/gain-recall graph, where ep is calculated for
100 recall points in [0, 1] and where a given value of ep reflects
the amount of relative effort required compared to an ideal
scenario in order to reach a predefined level of gain.

MAep Average ep, calculated for each query as the average of the
ep values obtained for each rank where a relevant document
is found, then averaged over the set of test queries. For not
retrieved relevant documents a precision score of 0 is assigned.

Q Extended version of Sakai’s Q-measure [4], which incorporates
the rank position when calculating the cumulated gain, ensur-
ing that performance is calculated against an always increasing
ideal value.

R Extended version of Sakai’s R-measure [4], measuring perfor-
mance at R rank documents, where R is the total number of
relevant documents.

We used version 4 of the relevance assessments files.
Tables 2-6 show the correlation statistics for Kendall’s τ (and Pearson’s ρ)

over the effectiveness scores obtained based on the the various ideal recall-bases
and the full recall-base.

All measures project a very similar message: the choice of an ideal recall-base
methodology can impact on the conclusions of the evaluation. The highest dis-
agreement and least correlation – as expected – is found between the Article
Node and the Leaf Nodes methods (as these represent the two extreme strate-
gies). This means that the relative ranking of systems’ will vary the most if the
ideal recall-base is changed from containing relevant leaf nodes to article ele-
ments. Kendall’s correlation values range for most measures from 0.31 to 0.39.
The most stable measures (least sensitive to such a change of the ideal recall-
base) are Q (0.49) and MAnxCG[5] (0.44). The most sensitive measure (and
hence least stable) is the ep/gr graph. Here the relationship between the system
rankings produced by the Article Node and the Leaf Nodes methods is totally
random (-0.01): the fact that a system is ranked high by one method provides
no clue as to how the other method would rank it.

The highest correlation is found between the Standard Descendant method
and the Leaf Nodes method. All of the measures show strong agreement

Choosing an Ideal Recall-Base for the Evaluation of the Focused Task 41

(≥ 0.91) between the conclusions of the evaluation based on these two meth-
ods. A reason for this could be that these methods – although based on rather
different mechanisms for selecting ideal nodes – may have a large number of ideal
nodes in common. Although we did not check for this explicitly, the fact that
they both have an average depth of approximately 5.2 supports this argument
(Leaf Nodes has 73007 ideal nodes in total for all queries with total specificity
score of 144256.8, while S. Desc. has a total of 71815 ideal nodes with total
specificity score of 141992).

The Standard ideal recall-base is, however, different from the above two (with a
total of 18725 nodes of averagedepth of 3.7, and a total specificity score of 35811.96
over all queries), yet for nxCG[1500] and MAnxCG[1500], the Standard method
highly agrees with the conclusions of the evaluation produced both by the Stan-
dard Descendant and the Leaf Nodes ideal recall-bases. For the rest of the mea-
sures, the Standard method shows better alignment with the Standard Descen-
dant and the Leaf Nodes methods, compared to the Parent of Leaf Nodes (average
depth of 3.07) and the Article Node (all nodes here have depth of 1) methods.

Comparing the nxCG measures at various cutoffs, we see that as the cutoff is
increased, the results produced by the Standard, S. Desc., Leaf Node and P. of
Leaf Nodes methods tend to agree more with each other’s conclusions, and tend
to disagree with the results of the Article Node method. The same can be said
for the MAnxCG measures. Between the nxCG and MAnxCG measures, we can
see that the latter is more resilient to changes in the ideal recall-base at lower
cutoffs. At higher cutoffs, both measures are stable, and at DCV = 1500 they
actually produce the same correlation scores (they are affected by changes in the
ideal recall-base at the same rate).

The correlation figures for the overall performance measures (ep averaged over
the 11 standard recall points, MAep, Q and R) indicate that the conclusions of
the evaluation are again sensitive to changes in the ideal recall-base, especially
where the effectiveness scores are very low across all systems. This is best seen for
the ep/gr graphs, where for higher recall points, almost all systems score 0. The
R measure has similar sensitivity properties to MAep, while Q shows the most
resilience.

Looking at the conclusions of the evaluations based on the various ideal recall-
bases compared to the conclusions drawn based on the full recall-base, we see
that the latter could only be used as a reasonable estimate of relative system per-
formances when the ideal recall-base is the largest subset of the full recall-base.
For example, there is strong agreement between the relative system rankings ob-
tained with the Full Recall-Base and the Standard Descendant and Leaf Nodes
ideal recall-bases. The relative ranking of system performances obtained based on
the Standard method, however, does not correlate very highly (≤ 0.9) with the
conclusions of the evaluation based on the Full Recall-Base. This means that sys-
tems ranked high by one method may not necessarily be judged the same way by
the other method. Therefore, we cannot safely rely on the conclusions of the eval-
uation based on the full recall-base when the “most focused” elements are defined
through the Standard method.

42 G. Kazai

Table 2. Kendall (and Pearson) correlation statistics for nxCG and MAnxCG at var-
ious cutoffs

DCV = 5 S. Desc. Leaf Node P. of Leaf Article Full RB

Standard nxCG 0.82 (0.98) 0.81 (0.98) 0.59 (0.93) 0.48 (0.81) 0.80 (0.98)
MAnxCG 0.88 (0.99) 0.86 (0.99) 0.66 (0.96) 0.53 (0.85) 0.85 (0.99)

S. Desc. nxCG 0.98 (1.00) 0.45 (0.86) 0.38 (0.74) 0.95 (1.00)
MAnxCG 0.97 (1.00) 0.56 (0.93) 0.46 (0.82) 0.95 (1.00)

Leaf Node nxCG 0.44 (0.85) 0.36 (0.73) 0.96 (1.00)
MAnxCG 0.54 (0.92) 0.44 (0.81) 0.97 (1.00)

P. of Leaf nxCG 0.82 (0.95) 0.44 (0.86)
MAnxCG 0.77 (0.95) 0.54 (0.93)

Article nxCG 0.37 (0.73)
MAnxCG 0.43 (0.81)

DCV = 10 S. Desc. Leaf Node P. of Leaf Article Full RB

Standard nxCG 0.83 (0.98) 0.82 (0.97) 0.59 (0.91) 0.44 (0.76) 0.80 (0.97)
MAnxCG 0.84 (0.99) 0.82 (0.98) 0.64 (0.94) 0.51 (0.82) 0.80 (0.98)

S. Desc. nxCG 0.98 (1.00) 0.45 (0.82) 0.32 (0.65) 0.96 (1.00)
MAnxCG 0.98 (1.00) 0.50 (0.89) 0.40 (0.76) 0.95 (1.00)

Leaf Node nxCG 0.43 (0.81) 0.31 (0.64) 0.97 (1.00)
MAnxCG 0.49 (0.88) 0.39 (0.75) 0.97 (1.00)

P. of Leaf nxCG 0.78 (0.94) 0.43 (0.81)
MAnxCG 0.79 (0.95) 0.48 (0.88)

Article nxCG 0.31 (0.65)
MAnxCG 0.38 (0.76)

DCV = 50 S. Desc. Leaf Node P. of Leaf Article Full RB

Standard nxCG 0.87 (0.97) 0.87 (0.96) 0.71 (0.92) 0.47 (0.70) 0.85 (0.96)
MAnxCG 0.86 (0.97) 0.85 (0.97) 0.64 (0.92) 0.47 (0.75) 0.83 (0.97)

S. Desc. nxCG 0.99 (1.00) 0.60 (0.81) 0.38 (0.57) 0.96 (0.99)
MAnxCG 0.99 (1.00) 0.51 (0.83) 0.35 (0.64) 0.96 (0.99)

Leaf Node nxCG 0.59 (0.81) 0.37 (0.56) 0.96 (0.99)
MAnxCG 0.50 (0.82) 0.34 (0.63) 0.97 (0.99)

P. of Leaf nxCG 0.73 (0.91) 0.59 (0.81)
MAnxCG 0.75 (0.93) 0.51 (0.83)

Article nxCG 0.38 (0.57)
MAnxCG 0.35 (0.64)

DCV = 1500 S. Desc. Leaf Node P. of Leaf Article Full RB

Standard nxCG 0.93 (0.98) 0.91 (0.98) 0.77 (0.92) 0.47 (0.65) 0.90 (0.97)
MAnxCG 0.92 (0.98) 0.91 (0.98) 0.77 (0.92) 0.47 (0.64) 0.90 (0.97)

S. Desc. nxCG 0.98 (1.00) 0.70 (0.84) 0.40 (0.54) 0.95 (0.99)
MAnxCG 0.99 (1.00) 0.70 (0.84) 0.40 (0.54) 0.95 (0.99)

Leaf Node nxCG 0.69 (0.83) 0.39 (0.52) 0.97 (0.99)
MAnxCG 0.69 (0.83) 0.39 (0.53) 0.96 (0.99)

P. of Leaf nxCG 0.70 (0.89) 0.70 (0.84)
MAnxCG 0.68 (0.89) 0.70 (0.84)

Article nxCG 0.40 (0.54)
MAnxCG 0.41 (0.55)

Choosing an Ideal Recall-Base for the Evaluation of the Focused Task 43

Table 3. Kendall (and Pearson) correlation statistics for ep averaged over the standard
11 recall points

Average ep S. Desc. Leaf Node P. of Leaf Article Full RB

Standard 0.58 (0.76) 0.60 (0.71) 0.44 (0.64) 0.14 (0.08) 0.56 (0.54)
S. Desc. 0.92 (0.96) 0.29 (0.31) 0.03 (-0.03) 0.69 (0.71)
Leaf Node 0.25 (0.25) -0.01 (-0.05) 0.70 (0.71)
P. of Leaf 0.52 (0.53) 0.15 (0.10)
Article -0.06 (-0.08)

Table 4. Kendall (and Pearson) correlation statistics for MAep

MAep S. Desc. Leaf Node P. of Leaf Article Full RB

Standard 0.86 (0.93) 0.85 (0.93) 0.60 (0.82) 0.45 (0.57) 0.84 (0.90)
S. Desc. 0.98 (1.00) 0.49 (0.61) 0.34 (0.34) 0.95 (0.97)
Leaf Node 0.48 (0.59) 0.33 (0.32) 0.95 (0.97)
P. of Leaf 0.82 (0.92) 0.49 (0.58)
Article 0.35 (0.33)

Table 5. Kendall (and Pearson) correlation statistics for Q

Q S. Desc. Leaf Node P. of Leaf Article Full RB

Standard 0.87 (0.95) 0.85 (0.94) 0.71 (0.90) 0.62 (0.77) 0.83 (0.89)
S. Desc. 0.99 (1.00) 0.59 (0.73) 0.51 (0.58) 0.94 (0.96)
Leaf Node 0.58 (0.72) 0.49 (0.56) 0.95 (0.96)
P. of Leaf 0.91 (0.97) 0.59 (0.69)
Article 0.50 (0.53)

Table 6. Kendall (and Pearson) correlation statistics for R

R S. Desc. Leaf Node P. of Leaf Article Full RB

Standard 0.85 (0.95) 0.84 (0.94) 0.61 (0.87) 0.48 (0.74) 0.79 (0.92)
S. Desc. 0.99 (1.00) 0.47 (0.70) 0.35 (0.54) 0.92 (0.98)
Leaf Node 0.47 (0.69) 0.35 (0.52) 0.92 (0.98)
P. of Leaf 0.86 (0.97) 0.44 (0.65)
Article 0.33 (0.49)

5 Conclusions

In this paper we investigated the effect that the ideal recall-base construction
methodology has on the conclusions of the evaluation of the Focused task at INEX
2006.

The results show that the methodology can impact on the obtained perfor-
mance scores and the relative ranking of systems in relation to each other, es-
pecially when the effectiveness scores are uniformly low across all systems. The

44 G. Kazai

maximum disagreement was found between the two extreme strategies (Article
Node and the Leaf Nodes methods), showing a correlation of only around 0.35 for
most of the measures. This, however, indicates an upper bound, i.e. when no cri-
terion is given for the definition of the concept of “most focused” XML element.
However, given a criterion, the space of possible ideal recall-bases can be largely
reduced (and hence the agreement increased).

We found that the most stable measures (least sensitive to such a change of
the ideal recall-base) were Q (0.49) and MAnxCG[5] (0.44). The most sensitive
measure (and hence least stable) was the ep/gr graph due to the uniformly low
scores at higher recall levels across all systems.

Our findings regarding the use of the full recall-base is that it can only be used
as a reasonable estimate of relative system performances when the ideal recall-
base is a sufficiently large subset of the full recall-base (e.g. when “most focused”
elements are Leaf Nodes). However, we cannot safely rely on the conclusions of the
evaluation based on the full recall-base if the “most focused” elements are defined
through the Standard method.

Our future work will focus on quantifying the sensitivity of a measure based on
the ratio of common nodes to all nodes contained within two ideal recall-bases.

References

1. Kazai, G., Lalmas, M.: eXtended Cumulated Gain Measures for the Evaluation of
Content-oriented XML Retrieval. ACM Transactions on Information Systems (ACM
TOIS) 24(4), 503–542 (2006)

2. Kazai, G., Lalmas, M., de Vries, A.: The overlap problem in content-oriented XML
retrieval evaluation. In: Proceedings of the 27th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, Sheffield, UK,
July 2004, pp. 72–79. ACM, New York (2004)

3. Piwowarski, B., Gallinari, P., Dupret, G.: Precision recall with user modeling
(PRUM): Application to structed information retrievel. ACM Transaction on Infor-
mation System, vol. 25(1) (2007)

4. Sakai, T.: New performance metrics based on multigrade relevance: Their application
to question answering. In: NTCIR Workshop 4 Meeting Working Notes (June 2004)

A Method of Preferential Unification of Plural Retrieved
Elements for XML Retrieval Task

Hiroki Tanioka

Innovative Technology R&D, JustSystems Corporation,
Brains Park Kawauchi-cho Tokushima-shi Tokushima, Japan

hiroki tanioka@justsystem.co.jp

Abstract. We developed a passage retrieval system for XML documents using
the vector space model. To be more flexible for the query, we also developed
a method of unification of multiple retrieved elements and a fragment indexing
system. Our system is composed of an inverted file and an XML Path Language
(XPath) path list. The validity of the method was tested as part of the ad hoc track
in the Initiative for the Evaluation of XML Retrieval (INEX) 2006.

1 Introduction

In the research field of document information retrieval (IR), the unit of retrieval re-
sults returned by IR systems is a whole document or a document fragment, like a para-
graph in passage retrieval. Traditional IR systems based on the vector space model
compute feature vectors of the units and calculate the similarities between the units and
the query. But nonetheless the problem of fragmentation of appropriate units still re-
mains unsolved, which creates difficulties for the text segmentation task for IR, as with
the automatic text summarization in document processing and the object segmentation
in image processing.

Our research goal is to design and create an IR system which can be used for all types
of user requirement. Therefore we think the unit of retrieval result should be neither a
fixed portion nor a fixed element level of the XML document. If users have a variety of
purposes, then preparing all possible units in advance is an expensive and even infea-
sible task, due to the combinatorial explosion in the number of element combinations.
We propose an efficient index structure and flexible IR system for XML documents.

Overlap Removal. In an XML retrieval setting as shown in Figure 1, it is not an easy
to identify the most appropriate elements to return to the user. IR systems have a dif-
ficult task to find out which are the most exhaustive and specific elements in the tree
and return only these to the user, and producing result lists without overlapping ele-
ments. The problem is called overlap removal. So far, most of the approaches presented
remove overlap by filtering the ranked lists by post-processing. Basically, by selecting
the highest scored element from the ranked paths [8,11].

However, when the ideal unit from all element levels is needed by the user, it is the
maximization problem of choosing possible elements which can fit into one unit. This
problem is NP-hard as it is the knapsack problem. In addition, the space complexity is
also high as it requires preparing all combinations in advance. To solve this problem,

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 45–56, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

46 H. Tanioka

Fig. 1. XML document sample and multi-level element lists

one of the solution is the reduction of the amount of element levels, and the other is the
improvement of memory efficiency when preparing all combinations.

Non-Overlapping. We propose a strategy for retrieving units of multi-level elements.
Our strategy makes an index of atomic elements in order to obviate the difficulties of
overlap removal and memory efficiency as shown in Figure 2. This means our strategy
has non-overlapping elements. Meanwhile, our strategy must also determine the appro-
priate units in the retrieve phase. Hence, to unify the retrieved elements quickly, we also
propose using a sliding window over the sequence of retrieved elements.

So far, we have proposed two ideas, the index of non-overlapping elements and the
sliding window. But we must explore the possibility of them. In other words, our re-
search purpose is to examine the “applicability” and the “scalability” about both the
index of non-overlapping elements and the way of using a sliding window. This article
describes the points and the validation of results of our proposed index structure and
relevance calculation algorithm. Our motivations in INEX 2006 are listed bellow.

A Method of Preferential Unification of Plural Retrieved Elements 47

Fig. 2. XML document sample and non-overlapped element lists

1. To verify the “applicability” of the index structure and relevance calculation algo-
rithm. The accuracy of retrieving results is tested.

2. To test the “scalability” of the index structure and relevance calculation algorithm,
the following size and time are measured; the size of an inverted file (space com-
plexity) and the processing time of retrieval (time complexity).

The rest of the article is divided into three sections. In section 2, we describe an ar-
chitecture of our indexing and retrieving system for XML documents. In section 3, we
describe experimental results. And in section 4, we discuss results and future work.

2 System Description

In this section we describe the architecture of our IR system as shown in Figure 3. The
IR models include both an indexing method which builds the index of non-overlapping
elements and a scoring method which calculates the similarities by using a sliding win-
dow.

For XML documents, one issue is the parsing method of text, excluding XML tags.
So our system stems and casefolds, and also converts to lowercase. Another issue is the
parsing method of the XML structure. The specification of the INEX collection uses
some compositions of a small number of fundamental statistical values:

— ft,d, the frequency of term t in document d;
— ft,q, the frequency of term t in the query q;

48 H. Tanioka

Fig. 3. System image diagram

— ft, the number of documents containing one or more occurrences of term t;
— Ft, the number of occurrences of term t in the collection;
— m, the number of parsed terms in the query q;
— L, the number of elements in the collection.
— N, the number of documents in the collection; and
— n, the number of indexed terms in the collection.

The system contains a morphological analyzer using a hidden Markov model and XML
parser written in Java (J2SE 1.4).

2.1 Indexing

We develop the IR system which is based on the vector space model using terms (as
words)[2]. Our inverted file-based system (indexer and searcher) is partitioned (inverted
files are spread across the processors). The indexer builds an XPath list to unify the
retrieved elements, and an IDF index to reduce the calculation cost. During query eval-
uation, the query is decomposed into indexed terms by the searcher, and each indexed
term is sent to the processor that holds the corresponding documents. Then, to calculate
the similarities, the IDF index and the XPath list are used.

We develop two types of inverted file-based system for comparison, One is for XML
articles, and the other one is for all XML elements.

Article Index. For XML articles, a unit is a whole XML document containing all terms
appearing at any nesting level within the <article> tag. This type of inverted file-based
system is commonly used by a traditional inverted file for document retrieval[13].

The theoretical complexity is O(Nn), regarding space complexity for storing an in-
verted file, which is derived from two values. The intention is that space complexity

A Method of Preferential Unification of Plural Retrieved Elements 49

Fig. 4. Fragment indexing algorithm image

depends on the number of documents N and indexed terms n in the collection, to store
the inverted file.

Element Index. For all XML elements, a unit is an XML element within the <article>
tag. Every unit is non-overlapping. But in this case, to build retrieved results, or to unify
the retrieved elements for a query, all units need to identify text and also the address of
the XML element, as shown in Figure 4.

The theoretical complexity is O(Ln + Lb), regarding space complexity for storing
an inverted file and an XPath list, which depends on two factors. These are the size of
the inverted file and the XPath list. For the inverted file, the size of the inverted file is
Ln. Let a be an average number of elements in documents (within an <article> tag).
Then, the number of elements L is a times as much as the number of documents N (i.e.
Ln = aNn; Element Index is larger then Article Index). Furthermore, for the XPath list,
let b be an average depth of absolute XPath, then the size of an XPath list is Lb.

XPath List. XPath is a language for addressing parts of an XML document[1]. In our
scheme, an element in an XML document is identified by two parts, a file path of the
XML document as article and an absolute path of the element in the XML document
(our system does not support XML tag attributes). Hence, the file path identifies the
XML document in the collection. And the absolute XPath expression identifies the

50 H. Tanioka

Fig. 5. Fragment indexing algorithm flowchart

XML element within an XML document, by indicating the position of the element
relative to the root element, for instance:

File path : C:/INEX/ex/2001/x0321.xml
Absolute XPath : /article[1]/bdy[1]/sec[5]/p[3]

If the multi-level element index is overlapping, the size of inverted file is b times as much
as the size of the inverted file Ln. This means that several elements have duplication
of same terms. Hence, the worst-case space complexity of storing an inverted file is
O(Lnb+Lb). The relation between non-overlapping Ono and overlapping Oov is as below,

Ln + Lb = L · (n + b), Lnb + Lb = L · (nb + b),

Ono(L · (n + b)) < Oov(L · (nb + b))

we have inequality, since 1 < b � n, non-overlapping is consistently smaller than
overlapping in terms of space complexity.

Fragment Indexing. Figure 5 shows an algorithm of making an inverted file for all
XML elements with a coordinated XPath list. We call the indexing method the fragment
indexing algorithm. The inverted file is composed of three members: a word, a node

A Method of Preferential Unification of Plural Retrieved Elements 51

identifier, and a frequency of the word in the node. The XPath list is numbered at all
nodes of the XML trees inorder, separately from the inverted file.

The inorder traversal is utilized as a tool to assess the relationships of parent-child or
sibling. To illustrate with the following example,

XPath 1 : /article[1],
XPath 2 : /article[1]/bdy[1],
XPath 3 : /article[1]/bdy[1]/sec[1],
XPath 4 : /article[1]/bdy[1]/sec[2],
XPath 5 : /article[1]/bdy[2],

starting from the root node, XPath 1 is as an origin of XPath list (XPath 1 ⊂ others),
XPath 2 is the child of XPath 1 (XPath 1 ⊂ XPath 2), XPath 3 is the child of XPath 2
(XPath 2 ⊂ XPath 3), XPath 4 is also the child of XPath 2 and the sibling of XPath 3
(XPath 2 ⊂ XPath 4), and XPath 5 is the child of XPath 1 and the sibling of XPath 2
(XPath 1 ⊂ XPath 5).

When the scan method is selected appropriately, the retrieval time is expected to be
reduced. But this system uses the simple method of scanning the XPath list on HDD
written in Java (J2SE 1.4).

2.2 Retrieval Model

Figure 6 shows an overview of this retrieval framework. This system is based on the
vector space model with the tf-idf (term frequency-inverse document frequency) weight.

Vector Space Model. The system employs the traditional vector space model with
tf-idf for XML document retrieval. And the system has a typical problem, which is
to merge retrieved elements from the inverted files and to sort retrieved results. Our
approach uses two sequences (Primary Sequence and Secondary Sequence) as shown
in Figure 6. All retrieved elements are stored in the primary sequence, and then the top x
ranking elements are selected in the primary sequence, by the priority queue algorithm
on the secondary sequence.
Tf-idf Weighting. In the case of Article Index, let N be the total number of documents
in the system and fi be the document frequency of term ti. The normalized frequency
is t f A

i, j of term ti in document d j and inverse document frequency id f A
i for ti. And, let

wi be the weight in a query q = (w1,w2, · · · ,wm), where wi ≥ 0, wi = fi,q and m is the
total number of parsed terms in the query. The summation is computed over all terms
which are mentioned in the text of the document d j. If the term ti does not appear in
the document d j, then t f A

i, j = 0. The best known term-weighting schemes and a simple
similarity measure is tf-idf weighting, which are given by

t f A
i, j =

fi, j∑n
k=1 fk, j
, id f A

i = log N
fi

simA(d j, q) =
∑m

i=1 wi · t f A
i, j · id f A

i

scoreA(d j, q) = simA(d j, q)

The theoretical time complexity of retrieving documents is O(m + Nlog(N)) derived
from two values. The intention is that time complexity depends on m which is the num-
ber of terms in the query used to retrieve the documents, and also depends on N is the

52 H. Tanioka

Fig. 6. Preferential unification algorithm image

number of documents that need to be sorted in the results list, at worst all documents in
the collection.

In the case of the Element Index, additionally, to consolidate retrieved elements (i.e.
L is the number of retrieved elements in the worst case), let Dl be the lth set of elements,
which will become a meaningful unit to the user. Then tf-idf weights are given by

t f E
i, j =

fi, j∑n
k=1 fk, j
, id f E

i = log L
fi

simE (d j, q) =
∑m

i=1 wi · t f E
i, j · id f E

i

scoreE(Dl, q) =
∑

dj∈Dl
simE(d j, q)

then time complexity depends on three values, which include an additional process-
ing time of checking connectivity between two elements, in all combinations as worst.
By using brute force, the theoretical complexity is O(m + Llog(L) + L2). Term one is
time complexity, which depends on the number of terms in the query m, and term two
depends on the complexity of sorting all elements L. In addition, term three depends on
the number of a pair of elements L2.

Unification Algorithm. In the case of the Element Index, a method to unify the re-
trieved elements and to combine the scores is required. A sliding window method is

A Method of Preferential Unification of Plural Retrieved Elements 53

Fig. 7. Preferential unification algorithm flowchart

used to unify the retrieved elements and calculate the total similarity between the query
and the unit, by scanning both the primary sequence and the XPath list concurrently,
which is called the preferential unification algorithm as shown in Figure 7.

When the sliding window has applicable conditions, the meaningful units might be
constructed appropriately. Specifically, the sliding window scans sequentially the pri-
mary sequence from end to end. The sliding window checks the relationships of re-
trieved elements, then if the conditions are matched, the scores of retrieved elements
are combined and the top level element is stored in the secondary sequence.

By using sliding window, the theoretical complexity are modified: time complexity of
retrieval using sliding window is O(m+ Llog(L)+ (x+ L)). Here term three is a different
expression from using brute force. L2 → (x+ L), means if 2 < x � L then L2 > (x+ L).
Thus sliding window is smaller than brute force in terms of time complexity. When the
relation between sliding window Osw and brute force Ob f is as below,

Osw(m + Llog(L) + (x + L)) < Ob f (m + Llog(L) + L2)

Unification Conditions. The issue of unifying of the retrieved elements remains. There
are many conditions available for unifying, for instance the following terms.

54 H. Tanioka

Table 1. Thorough task

Run ID Description MAep Rank
VSM 1 TF-IDF 0.0031 90/106
VSM 2 NormTF-IDF 0.0047 89/106
VSM 3 unit=10 0.0064 79/106
∗ep-gr(Quantization:gen, Overlap=off).

Table 2. Focused task

Run ID Description nxCG@50 Rank
VSM 4 unit=10 0.1159 63/85
VSM 5 unit=50 0.0976 73/85
VSM 6 unit=100 0.1149 64/85

∗ Metric:nxCG, Quantization:gen,
Overlap=on.

Table 3. All in context task

Run ID Description F[50] Rank
VSM 7 TF-IDF 0.1193 20/62
VSM 8 NormTF-IDF 0.1238 13/62
VSM 9 unit=10 0.0762 49/62

∗ Metric:hixeval-article, Quantization:
Overlap=off(invalid submissions
are discarded.).

Table 4. Best in context task

Run ID Description At A=1.0 Rank
VSM 10 unit=10 0.2376 50/77
VSM 11 unit=50 0.2912 33/77
VSM 12 unit=100 0.3074 28/77
∗Metric:BEPD.

1. The upper limit of the number of elements.
2. The upper limit of the number of terms.
3. The upper limit of the depth of XPath.
4. The upper limit of the distance between next elements.
5. The relationship between adjacent elements. (sibling or child?).
6. The upper limit of the summation score in the sliding window.

Although, in the experimental conditions, only two conditions are applied (to simplify
the problem). One of the conditions is the upper limit of the number of elements (Unit
Size). And the other is the relationship between adjacent elements. This means a re-
trieved unit is the upper limit of arbitrary size, and also a bunch of XML elements.
Here, a unification score is a sum of retrieved element scores.

3 Experimental Results

The system was only designed for content-only (CO) queries. And, the post-processing
eliminates overlapping elements in each article for some sub-tasks of the ad hoc XML
retrieval task.

3.1 Thorough Task

The THOROUGH TASK, asks systems to estimate the relevance of elements in the col-
lection, and there are no further restrictions. Overlap is permitted. Thus, the system has
no use for post-processing. We produced two runs (VSM {1,2}) with the Article Index
and one run (VSM 3) with the Element Index. The result consists of some retrieved
elements from the Element Index, with upper size limit. Table 1 shows that the Element
Index is better than the Article Index but results are not good in the task. This result is
semantically correct.

A Method of Preferential Unification of Plural Retrieved Elements 55

3.2 Focused Task

The FOCUSED TASK asks systems to return a ranked list of elements to the user. For
the same topic, results may not be overlapping. That is, overlap is not permitted in the
submitted run. We produced three runs (VSM {4,5,6}) using the Element Index with
different upper size limits. It is not necessary to apply the post-processing to reduce
overlapping elements. Table 2 shows the runs are bad at the task.

3.3 All in Context Task

The ALL IN CONTEXT TASK asks systems to return relevant elements clustered per
article to the user. That is, articles may not be interleaved. We produced two runs
(VSM {7,8}) with the Article Index and one run (VSM 9) with the Element Index.
Post-processing is applied to the results from the Element Index to reduce overlap-
ping elements per article. Table 3 shows the runs of Article Index are pretty good
compared to Element Index, this result suggests the basic performance of our retrieval
system is pretty good.

3.4 Best in Context Task

The BEST IN CONTEXT TASK asks systems to return articles with one best entry
point to the user. That is, only single result per article is allowed. We produced three
runs (VSM {10,11,12}) by retrieving from the Element Index. The system applied the
post-processing so that only a single element per article is retrieved. Table 4 shows a
significant difference in the rank of the three runs in the task, in spite of only differences
of unit size.

3.5 Time and Size

Table 5 shows times, then sizes of the inverted files for the Article Index was 936 [MB],
and for the Element Index was 2,100 [MB] excluding XPath list: 1,749 [MB]. The
retrieval time from the Element Index was 30 times as long as from the Article Index,
but the retrieval time from the Element Index was very reasonable for full scanning
retrieved results. The size of the Element Index was four times the size of the Article
Index, which is a reasonable size.

Table 5. Processing time

Searching time [s] Index size
Article Index 2.01 600,000 [files]
Element Index 66.2 57,754,571 [nodes]

∗Searching time is the average of retrieval time per query. Number of nodes per file is about 100
nodes/file. The number of terms (words) is about 2,500,000. Experiments were run on a Celeron
2GHz, 2GB RAM. Implementation was in Java 1.4.

56 H. Tanioka

4 Conclusions

We proposed the fragment indexing system and the preferential unification algorithm.
Even though the system used simple conditions, the experimental results produced var-
ious retrieved results for each task from the same index (the Element Index).

The system has one research issue, that is, the preferential unification algorithm takes
longer than no unification. The cause is the time to scan the XPath list. Further research
is therefore the reduction of scan time for the XPath list, improvement of the accuracy
for various measures, and generalization to XML document retrieval.

References

1. XML Path Language (XPath) Version 1.0., http://www.w3.org/TR/xpath
2. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval (Acm Press Series), pp.

1–69, 141–162. Addison-Wesley, London (1999)
3. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Communi-

cations of the ACM. 18, 613–620 (1975)
4. Evans, D., Lefferts, R.: Design and Evaluation of the CLARIT-TREC-2 system. In Harman,

D.K. (ed.) Proceedings of the Second Text REtrieval Conference (TREC-2). pp. 500–548.
NIST Special Publication (1994)

5. Tanioka, H., Yamamoto, K.: A Distributed Retrieval System for NTCIR-5 Patent Retrieval
Task. In: The 5th NTCIR Workshop Meeting (2005)

6. Grabs, T., Schek, H.-J.: Flexible Information Retrieval on XML Documents. In: Blanken,
H.M., Grabs, T., Schek, H.-J., Schenkel, R., Weikum, G. (eds.) Intelligent Search on XML
Data. LNCS, vol. 2818, pp. 95–106. Springer, Heidelberg (2003)

7. Kazai, G., Gvert, N., Lalmas, M., Fuhr, N.: The INEX evaluation initiative. In: Blanken,
H.M., Grabs, T., Schek, H.-J., Schenkel, R., Weikum, G. (eds.) Intelligent Search on XML
Data. LNCS, vol. 2818, pp. 279–293. Springer, Heidelberg (2003)

8. Sigurbjornsson, B., Kamps, J., de Rijke, M.: An element-based approach to XML retrieval.
In: INEX Workshop Proceedings. pp. 19–26 (2003)

9. Geva, S., Leo-Spork, M.: XPath Inverted File for Information Retrieval. In: INEX Workshop
Proceedings. pp. 110–117 (2003)

10. Kelly, W., Geva, S., Sahama, T., Loke, W.: Distributed XML Information Retrieval. In: INEX
Workshop Proceedings. pp. 126–133 (2003)

11. Mihajlovic, V., Ramirez, G., Westerveld, T., Hiemstra, D., Blok, H.E., de Vries, A.P.: TI-
JAH Scratches INEX 2005: Vague Element Selection, Image Search, Overlap, and Relevance
Feedback. In: Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.) INEX 2005. LNCS, vol. 3977,
pp. 72–87. Springer, Heidelberg (2006)

12. Trotman, A., Geva, S.: Passage Retrieval and XML-Retrieval Tasks. In: Proceedings of the
SIGIR 2006, Workshop on XML Element Retrieval Methodology. pp. 43–50 (2006)

13. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Computing Surveys
(CSUR) 38(2), Article 6 (2006)

http://www.w3.org/TR/xpath

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 57–63, 2007.
© Springer-Verlag Berlin Heidelberg 2007

CISR at INEX 2006

Wei Lu1, Stephen Robertson2,3, and Andrew Macfarlane3

1 Center for Studies of Information Resources, School of Information Management
Wuhan University, China and City University

sa713@soi.city.ac.uk
2 Microsoft Research, Cambridge, U.K.

ser@microsoft.com
3 Centre for Interactive Systems Research, Department of Information Science

City University London
andym@soi.city.ac.uk

Abstract. In this paper, we describe the Centre for Interactive Systems Re-
search’s participation in the INEX 2006 adhoc track. Rather than using a field-
weighted BM25 model in INEX 2005, we revert back to using the traditional
BM25 weighting function. Our main research aims in this year are to investi-
gate the effects of document filtering (by considering only the top-ranked docu-
ments), element filtering by length cut-off and the effect of using phrases. The
initial results show the latter two methods did not do well, while the first one
did well on FOCUSED TASK and RELEVANT IN CONTEXT TASK. Finally,
we propose a novel method for BEST IN CONTEXT TASK, and present our
initial results.

1 Introduction

This is the second year that the CISR has participated in INEX. In INEX 2005, we used
a field-weighted BM25 model and submitted runs for two adhoc CO tasks [1]. Our
results suggest that the method is promising. Subsequent to this, we investigated XML
retrievable units and element inheritance in [2] and the average element length in [3].
This year, rather than further exploiting the field-weighted method, our work focused on
investigating the effects of document filtering, element filtering and using phrases.

In traditional text retrieval systems, a document is usually treated as an independ-
ent unit. But for XML element retrieval, elements in the same document are usually
semantic relevant and are not independent units themselves, e.g., article title, abstract,
and section title to section text in IEEE’s data collection. This raises an issue of how
context elements impact on the effectiveness of XML element retrieval e.g. the im-
pact a parent element has on a child. Some work has been done in this area. Lu et al
[1] and Robertson et al [2] used a field-weighted method to exploit the inheritance
from context elements; Abolhassani et al [4], Geva et al [5] and Ogilive et al [6] used
two different methods to compute the parent element’s weight by merging its sub-
elements weight. Both of these methods consider the element weight inheritance from
context elements but without evidence from the whole document. Sigurbjornsson et al
[7] and Mass et al [8] investigated document weight’s contribution to element re-
trieval by using an interpolation method of merging the document weight into element

58 W. Lu, S. Robertson, and A. Macfarlane

weight. The results show this method is beneficial and has yielded good results at
INEX 2004 and INEX 2005.

In this paper, we use a different approach to element retrieval. That is, we divided
element retrieval into two phases: we conducted document level retrieval and set a
cut-off for the retrieved results (i.e. number of top-ranked documents) and then used
the filtered results to further execute element level XML retrieval. Our aim is to in-
vestigate whether using top weighted documents could produce good results. Because
of time limitations and issues with the newly adopted test collection, we did not com-
pare the two methods directly in our experiments this year.

In order to avoid the too-small element problem, we restrict our set of retrievable
units to article, body, section and paragraph, and set a cut-off for element length to
abandon those elements which are shorter than the cut-off value. We also use phrases
instead of single words to see if it could improve retrieval effectiveness.

In section 2, we describe the BM25 model used in our experiment. Section 3 presents
our results in INEX 2006. In Section 4, we evaluate and compare our results. We con-
clude the paper with closing remarks and future research directions to extend our work..

2 BM25 Model

In this work we use the original BM25 model. This is in contrast to our previous work
in the area at INEX 2005 [1]. We reverted back to the BM25 model so that we could
use it in the first phase of the method we deployed in our INEX 2006 experiments.
For adhoc retrieval, and ignoring any repetition of terms in the query, BM25 can be
simplified to:

))1((

)1(
),(

1

1
j

j

j
j idf

tf
avdl

dl
bbk

tfk
Cdwf

++−

+
= (1)

where C denotes the document collection, tf j is the term frequency of the jth term in
document d, df j is the document frequency of the jth term, dl is the document length,
avdl is the average document length across the collection, N is the total number of
documents in the collection and 1k and b are tuning parameters. We used the

following settings for the tunning parameters as follows: b=0.75, 1k = 1.2. The for-

mula for idf in the traditional version of BM25 may in some circumstances (a very
frequent term in a small collection) go negative. We may avoid this possibility by
reverting to the old form of idf, namely log(N/dfj) [9].

3 Description of the Experiments

Within the adhoc XML retrieval task there are four sub-tasks: BEST IN CONTEXT
TASK, THOROUGH TASK, FOCUSED TASK and RELEVANT IN CONTEXT
TASK . For each sub-task, we submitted 3 runs only for CO queries but none for CAS
queries. Our purpose, in addition to taking part in INEX, is to investigate a two-stage
approach to element retrieval. The details of these experiments are as follows:

 CISR at INEX 2006 59

3.1 Best in Context Task

BEST IN CONTEXT TASK is a new adhoc task which aims at locating the best entry
point of XML retrieval. We used two methods for this task and submitted four runs.
In the first method, we take the element with the highest weight score (best-match
element) in each document as the best entry point. This method was used in the two
submitted runs BEST-BM25-cutoff400 and BEST-BM25-filter1500.

In the second method, we propose a novel way of selecting the best entry point.
The distribution of element weight scores in the document is considered. Our basic
idea is that, given an element, if more than one of its sub-elements has a good score,
then this element should be chosen as the candidate best entry point rather than using
its sub-element as the candidate best entry point. A problem for this particular method
is how to determine a good score. In implementation, we set half the score of the best-
match element in each document as the cut-off for determining a good score and use a
bottom up method for selecting the best entry point. For each document, we find the
best-match element in the document. Then we consider all other elements which do
not overlap with this one. If any of these elements scores higher than half the score of
the best-match element, then it should be included in the scope implied by the entry
point. That is, we move the entry point up to the start of a higher-level element, such
that the higher-level element includes all the high-scoring elements.

For example, in Fig. 1, the best-match element is E and the best-match element
weight score is 2.11, so the cut-off value is 1.055. Using this method, we get the best
entry point B.

In INEX 2006, the two submitted runs BEST-BM25-400-1500-level-p and BEST-
BM25-Level-filter1500 used this method. For the initial evaluation of the effect of
element length cut-off, we tuned element length cut-off between 0 to 550(character
length) on the INEX 2005’s data collection by using metrics Manx(10), Manx(25),
Manx(50). The effect of the cut-off on “gen” Manx measure is shown in Fig.2. From
this figure, we can see that using element length cut-off is beneficial especially to
Manx(10) and Manx(25). We found an increase of 8% for the best tuned Manx(10)
value over the non-tuned value.

Fig. 1. XML element tree with element weight score

60 W. Lu, S. Robertson, and A. Macfarlane

0.250

0.255

0.260

0.265

0.270

0.275

0.280

0.285

0.290

0.295

0 50 100 150 200 250 300 350 400 450 500 550

���������	
�����

�
�
�
��

Manx(10) Manx(25) Manx(50)

Fig. 2. Tuning results of element length cut-off on INEX 2005’s data collection

3.2 Thorough Task

We submitted 3 runs for THOROUGH TASK. They are THOR-BM25-nobody,
THOR-BM25-nobody-cutoff400 and THOR-BM25-400-1500-phrase:

• THOR-BM25-nobody directly uses BM25 to compute the element weight
score;

• THOR-BM25-nobody-cutoff400 is much the same as THOR-BM25-nobody
except the element length cut-off, which filters out elements shorter than a
fixed length, is set to 400;

• THOR-BM25-400-1500-phrase uses the same element length cut-off, and it
also set document result cut-off (1500) (i.e. restricted to the top 1500 ranked
documents) and uses phrases instead of single words.

3.3 Focused Task

The 3 submitted runs for FOCUSED TASK are as follows:

• FOCU-BM25-cutoff400 uses 400 characters length as element length
cut-off;

 CISR at INEX 2006 61

• FOCU-BM25-cutoff400-filter1500 uses the same element length cut-off and
also uses document result cut-off (1500);

• FOCU-BM25-cutoff400-filter1500-phrase is similar to FOCU-BM25-
cutoff400-filter1500 (above) except it uses phrases instead of single terms

3.4 Relevant in Context Task

For this task, we submitted runs All-BM25-cutoff400, All-BM25-cutoff400-filter1500
and All-BM25-cutoff400-filter1500-phrase. These runs use the same conditions as the
ones for FOCUSED TASK. The difference is that the results in the runs are grouped
by articles and without overlap elements.

4 Evaluation

The evaluation results of our runs are shown in Tables 1 to 4. In Table 1, the run us-
ing the basic BM25 model was the best. In Tables 2 and 3, the runs using element
length cut-off do best, which also rank them at the top of all INEX 2006 s correspond-
ing submitted runs. In contrast, the runs using document filtering and phrases did not
do well. Table 4 shows the results of our runs for locating document’s best entry
point. Although the run BEST-BM25-cutoff400 does best among the 4 runs, it can be
seen that the two runs BEST-BM25-400-1500-level-p and BEST-BM25-Level-
filter1500 using the derived novel method do better than the run BEST-BM25-
filter1500. These three runs use the same document result set for locating the best
entry point. Further investigation into why this happens is merited.

Table 1. Results for THOROUGH Task

Metric: ep/gr
Runs

un-filtered filtered

THOR-BM25-nobody 0.0228 0.0431

THOR-BM25-nobody-cutoff400 0.0215 0.0407

THOR-BM25-400-1500-phrase 0.0118 0.0217

Table 2. Results for FOCUSED Task (Using un-filtered assessments)

Metric: nxCG (Overlap=on)
Runs

5 10 25 50

FOCU-BM25-cutoff400 0.3961 0.3428 0.2638 0.2001

FOCU-BM25-cutoff400-
filter1500

0.3054 0.2557 0.1873 0.1335

FOCU-BM25-cutoff400-
filter1500-phrase

0.2849 0.2452 0.1836 0.1332

62 W. Lu, S. Robertson, and A. Macfarlane

Table 3. Results for RELEVANT IN CONTEXT Task

Metric: gP
Runs MAgP

5 10 25 50

All-BM25-cutoff400 0.1161 0.2936 0.2456 0.1622 0.1109

All-BM25-cutoff400-
filter1500

0.0583 0.2227 0.1725 0.1147 0.0741

All-BM25-cutoff400-
filter1500-phrase

0.0602 0.2298 0.1734 0.1155 0.0746

Table 4. Results for BEST IN CONTEXT Task (Using un-filtered assessments)

Metric: BEPD

A=0.01 A=0.1 A=1 A=10 A=100

Metric: EPRUM-BEP-Exh-BEPDistance
Runs

A=0.01 A=0.1 A=1 A=10 A=100

0.0860 0.1311 0.1984 0.3175 0.4532
BEST-BM25-cutoff400

0.0221 0.0435 0.0760 0.1431 0.2349

0.0655 0.1071 0.1706 0.2621 0.3441
BEST-BM25-filter1500

0.0139 0.0311 0.0547 0.0956 0.1384

0.0664 0.1071 0.1710 0.2626 0.3429 BEST-BM25-400-1500-
level-p 0.0147 0.0319 0.0567 0.0989 0.1420

0.0610 0.1087 0.1749 0.2632 0.3413 BEST-BM25-Level-
filter1500 0.0153 0.0367 0.0629 0.1014 0.1395

5 Conclusion

Rather than using field-weighted BM25 model in INEX 2005, we reverted back to
using the basic BM25 model. We exploited the effects of element filtering by length
cut-off, document filtering by result record cut-off and the effects of using phrases.
The results show that the latter two methods did not do well, while the first one did
very well on FOCUSED TASK and RELEVANT IN CONTEXT TASK. Finally, in
the THOROUGH TASK, the results were inconclusive as to whether or not the
method was effective. We also utilized a novel method for BEST IN CONTEXT
TASK. However we did not consider the number of sub-elements and the adjacency
of the relevant elements. These issues need to be investigated further. Given more
time and resources, it would be useful to undertake a full scale study comparing the
field weighting element retrieval used in last years’ INEX and the two stage method

 CISR at INEX 2006 63

utilized for our experiments this year (it would also make sense to consider how to
combine the two methods). In this context we could investigate the issue of sub-
element cardinality and adjacency of element relevant to the information need.

Acknowledgements. This work is supported in part by National Social Science
Foundation of China 06CTQ006.

References

[1] Lu, W., Robertson, S., Macfarlane, A.: Field-Weighted XML Retrieval Based on BM25.
In: Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.) INEX 2005. LNCS, vol. 3977,
Springer, Heidelberg (2006)

[2] Robertson, S., Lu, W., Macfarlane, A.: XML-structured documents: retrievable units and
inheritance. In: Larsen, H.L., Pasi, G., Ortiz-Arroyo, D., Andreasen, T., Christiansen, H.
(eds.) FQAS 2006. LNCS (LNAI), vol. 4027, pp. 121–132. Springer, Heidelberg (2006)

[3] Lu, W., Robertson, S., Macfarlane, A.: Investigating Average Element Length for XML
Retrieval by Using BM25 (submitted to review)

[4] Abolhassani, M., Fuhr, N., Malik, S.: HyREX at INEX, Proceedings of the Second Work-
shop of the Initiative for The Evaluation of XML Retrieval (INEX), December 15-17,
2003, Schloss Dagstuhl, Germany (2003)

[5] Geva, S.: GPX - Gardens Point XML Information Retrieval at INEX 2004. In: Fuhr, N.,
Lalmas, M., Malik, S., Szlávik, Z. (eds.) INEX 2004. LNCS, vol. 3493, Springer, Heidel-
berg (2005)

[6] Ogilvie, P., Callan, J.: Hierarchical Language Models for XML Component Retrieval. In:
Fuhr, N., Lalmas, M., Malik, S., Szlávik, Z. (eds.) INEX 2004. LNCS, vol. 3493, Springer,
Heidelberg (2005)

[7] Sigurbjornsson, B., Kamps, J., Rijke, M.: An element based approach to XML Retrieval.
In: Proceedings of the Second Workshop of the Initiative for The Evaluation of XML Re-
trieval (INEX), December 15-17, 2003, Schloss Dagstuhl, Germany (2003)

[8] Mass, Y., Mandelbrod, M.: Component Ranking and Automatic Query Refinement for
XML Retrieval. In: Fuhr, N., Lalmas, M., Malik, S., Szlávik, Z. (eds.) INEX 2004. LNCS,
vol. 3493, Springer, Heidelberg (2005)

[9] Robertson, S.: Understanding Inverse Document Frequency: On theoretical arguments for
IDF. Journal of Documentation 60, 503–520 (2004)

Compact Representations in XML Retrieval

Fang Huang, Stuart Watt, David Harper, and Malcolm Clark

School of Computing, The Robert Gordon University, Scotland
{fah,sw,djh,mc}@comp.rgu.ac.uk

Abstract. This paper describes the participation of the Information Re-
trieval and Interaction group of Robert Gordon University in the INEX
2006 ad hoc track. We focused on two questions: “What potential evi-
dence do human assessors use to identify relevant XML elements?” and
“How can this evidence be used by computers for the same task?”. Our
main strategy was to investigate evidence taken not only from the con-
tent, but also from the shallow features of how texts were displayed.
We employed the vector space model and the language model combining
estimates based on element full-text and the compact representation of
the element. We analyzed a range of non-content priors to boost retrieval
effectiveness.

1 Introduction

In this paper, we describe our participation in the INEX 2006 ad hoc track.
We conducted experiments to retrieve XML elements that have similar features
judged to be relevant by human assessors. The criteria used by a human assessor
for judging relevance involve a complex variety of individual factors. However,
it is evident that not every word of a given document catches the reader’s eye.
In most cases, people judge a document’s relevance by skimming over the titles,
section titles, figures, tables, and words emphasized in bold or larger fonts. We
proposed, in this paper, to extract and put together all those most representa-
tive words to build a compact form of a document (or an XML element). We
employed retrieval models that emphasized the importance of the compact form
in identifying the relevance of an XML element. We also conducted preliminary
experiments to investigate the potential features of human-retrieved elements re-
gardless of their content, and introduced a range of priors to the language model
to enhance retrieval effectiveness.

The remainder of this paper is organized as follows: Section 2 outlines our ideas
for building a compact representation of an XML element. Section 3 describes
the vector space model we used. The mixture language model is presented in
section 4. Section 5 offers a detailed description and discussion of our INEX
experiments and results. The final part, section 6, concludes with a discussion
and possible directions for future work.

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 64–72, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Compact Representations in XML Retrieval 65

2 Compact Representation of an XML Element

Even a brief look at the procedure adopted by a human assessor when judging
a document’s relevance to a query, shows quite clearly that not all the details
of the document are taken fully into consideration. Some words attract more
or less of the reader’s attention. It is our contention that words appearing in
titles, figure captions, or printed in bold, italics, larger fonts, and different col-
ors are frequently more representative of the document’s relevance. Figure 1
shows a sample text taken from a document named “Hercule Poirot” from the
Wikipedia collection. Extracting words from the figure caption, and words that
are underlined, or displayed in bold or larger size, we get a list of words con-
taining “Hercule Poirot fiction character Belgium England World War I Private
detective Arthur Hastings”. This list of words provides a clue to the meaning
and content of the original text. We therefore believe it can be used to enhance
retrieval effectiveness. Furthermore, the XML structure of the INEX collection
allows automatic locating of these words displayed in certain formats as they are
marked-up in specific tags. Based on this consideration, we proposed to extract

Fig. 1. A sample text

these representative words from the original text to build a compact form of a
text and emphasize its importance in identifying the relevance of the text. In
our experiments, retrieval units were XML elements. Consequently, the method
was adapted to XML element-based (the whole document can be considered as

66 F. Huang et al.

an XML element as well), i.e., for each XML element, we built a compact rep-
resentation of it by extracting words from titles, subtitles, figure captions, and
words printed in bold, italics or larger fonts from the text nested by the element.
The compact form was then used in our retrieval experiments based on vector
space model and mixture language models.

3 Vector Space Model

We used the vector space model based on the default similarity measure in
Lucene[4]. For a collection C, the similarity between a document d and the
query q is measured by:

sim(q, d) =
∑

t∈q

tft,q · idft

normq
· tft,d · idft

normd
· coordq,d · weightt (1)

where
tft,x =

√
freq(t, X) (2)

idft = 1 + log
|C|

freq(t, C)
(3)

normq =
√∑

t∈q

tft,q.idf2
t (4)

normd =
√

|d| (5)

coordq,d =
|q ∩ d|

|q| (6)

weightt = 1 for all term t. In our experiment, retrieval units were XML elements.
An element’s relevance was measured based on the element’s full-text and the
compact representation of the element, i.e.,

sim(q, e) =
sim(q, efull) + sim(q, ecompact)

2
(7)

where e is an XML element, efull is the full text nested in element e, and ecompact

is the compact form of element e.

4 Language Model

We present here a retrieval model based on the language model, i.e., an element’s
relevance to a query is estimated by

P (e|q) ∝ P (e) · P (q|e) (8)

where e is an XML element; q is a query consisting of the terms t1,...,tk; the
prior, P (e), defines the probability of element e being relevant in absence of a
query; P (q|e) is the probability of the query q, given element e.

Compact Representations in XML Retrieval 67

4.1 Probability of the Query

Assuming query terms to be independent, P (q|e) can be calculated according to
a mixture language model:

P (q|e) =
k∏

i=1

(λ · P (ti|C) + (1 − λ) · P (ti|e)) (9)

where λ is the so-called smoothing parameter; C represents the whole collection.
P (ti|C) is the estimate based on the collection used to avoid sparse data problem.

P (ti|C) =
doc−freq(ti, e)∑

t′∈C doc−freq(t′ , C)
(10)

The element language model, P (ti|e), defines where our method differs from
other language models. In our language model, P (ti|e) is estimated by a linear
combination of two parts:

P (ti|e) = λ1 · P (ti|efull) + (1 − λ − λ1) · P (ti|ecompact) (11)

where λ1 is a mixture parameter; P (ti|efull) is a language model for the full-text
of element e; P (ti|ecompact) is the estimate based on the compact representation
of element e. Parameter λ and λ1 play important roles in our model. Previ-
ous experiments[1,8] suggested that there was a correlation between the value
of the smoothing parameter and the size of the retrieval elements. Smaller av-
erage sizes of retrieved elements require more smoothing than larger ones. In
our experiments, the retrieval units, which are XML elements, are relatively
small. Consequently, we set a large smoothing parameter λ = 0.3 and used equal
weights for the full text and the compact representation, i.e., λ1 = 0.35.

4.2 Element Priors

The Prior P (e) defines the probability that the user selects an element e without
a query. Elements are not equally important even though their contents are
ignored. Several previous studies[1,6] reported that a successful element retrieval
approach should be biased toward retrieving large elements. Furthermore, we
believe relevant elements are more likely to appear in certain parts of a document,
e.g., the title, the first paragraph, the first section, etc.

We conducted a preliminary experiment to investigate potential non-content
features that might be used to boost retrieval effectiveness. The features consid-
ered included size, type, location, and the path length of an element. Location
was defined as the local order of an element ignoring its path. The path length
of an element equals to the number of elements which nest it. For example, for
an element /article[1]/p[1] (the first paragraph in the document), type of this
element is ‘paragraph’, location is represented as ‘1’ (the first paragraph), and
the path length is 1. The main objective of our experiment was to find out the

68 F. Huang et al.

distribution of the above features among the relevant elements. Two human as-
sessors were asked to search the Wikipedia collection, retrieve relevant XML
elements, and analyze retrieved results. Details of the procedure were: i) query
creation: we created 216 queries. A query was a list of keywords or a one-sentence
description of the information need which was written in natural language and
without regard to retrieval system capabilities or document collection peculiari-
ties. ii) element retrieval: in this step, each query created in the previous stage
was used to explore the Wikipedia collection. The TopX[7] XML search engine,
which is provided through the INEX website, was used for this task. Human as-
sessors judged the top 100 results retrieved by TopX for each query, assessed the
relevance of each of the retrieved elements, and recorded the path for each of the
relevant elements. iii) feature distribution analysis: paths for relevant elements
were analyzed automatically by a computer program. Results are shown in Table
1. Part (a) of the table shows that the total number of relevant elements is 9142.
Among these elements, most of them are articles, sections, and paragraphs. The
total number of elements of these three types is 8522, which accounts for 93.2%
of the total amount. Part (b) shows the relevant elements tend to appear in the
beginning parts of the text. The whole documents are excluded in this analysis,
as the location feature is not applicable for the whole documents. The total num-
ber of the elements excluding whole documents is 3316. Elements with location
value of ‘1’, ‘2’, ‘3’ account for 88.1%(2920 out of 3316) of the total amount.
Part (c) shows relevant elements are not likely to be nested in depth. Again,
whole documents are excluded. Elements that only nested by the whole article
(path-length=1, e.g., /article/section, /article/p, etc.) constitute the majority
(2089 out of 3316, i.e., 63.0%). Only 8.4% (280 out of 3316) of relevant elements
are of path length longer than 3.Our preliminary experiments indicated that

Table 1. Distribution of element shallow features

(a) (b) (c)

type number

article 5826
section 2098
paragraph 598
others 620
total 9142

location-value number

1 1588
2 789
3 543
≥ 4 396
total 3316

path-length number

1 2089
2 835
3 112
≥ 4 280
total 3316

relevant elements had some non-content features which could be used to boost
retrieval effectiveness. We did not analyze the size of the elements in our experi-
ment, because some studies[1,6] have already concluded that a successful element
retrieval approach should be biased toward retrieving large elements.

Based on the above observation, consider non-content feature set F={|e|,
|epath|, elocation}, where |e| is the size of element e measured in characters; |epath|
is the path length of e; and elocation is the location value of e. Assuming features
are independent, we calculated the prior P (e) by the following equation:

Compact Representations in XML Retrieval 69

P (e) =
3∏

i=1

P (e|Fi) (12)

where Fi is ith feature in set F. In the experiments, we chose a uniform length
filter to ensure the retrieval of larger sized XML elements. The threshold used
to filter out short elements was set to 120 characters, i.e.,

P (e| |e|) =
{

1 |e| ≥ 120
0 otherwise

(13)

The decision to measure in characters instead of words was based on the con-
sideration that smaller segments such as “I like it.” contains little information,
while a sentence with three longer words tends to be more informative.

P (e||epath|), the prior based on epath in our experiments was calculated by:

P (e| |epath|) =
1

1 + |epath| (14)

P (e|elocation), the prior based on the location value was calculated by:

P (e|elocation) =
1

elocation
(15)

5 INEX Experiments

In this section, we present our INEX experiments in participating the Thorough
task.

5.1 Index

We created inverted indexes of the collection using Lucene[4]. Indexes were word-
based. All texts were lower-cased, stop-words removed using a stop-word list, but
no stemming. For each XML element, all text nested inside it was indexed. In
addition to this, we added an extra field which corresponded to the compact
representation of the element. The indexing units could be any types of XML
elements. However, due to the time restrictions placed on our experiments, we
only indexed three types of elements: article, section, and paragraph.

5.2 Query Processing

Our queries were created using terms only in the <title> or <description> parts
of topics. Like the index, queries were word-based. The text was lower-cased and
stop-words were removed, but no stemming was applied. ‘+’, ‘-’ and quoters in
queries were simply removed. We processed the <description> part of topics by
identifying and extracting noun phrases[5] to form queries.

70 F. Huang et al.

5.3 Runs and Results

We submitted a total of six runs to the Thorough task.

1. VSM and nl-VSM: runs using vector space model based on full-text and
compact representation of elements. For VSM, queries were created using
terms in the <title> field. And queries for nl-VSM were created from the
<description> parts.

2. LM-2 and nl-LM-2: runs created using mixture language model based on
full-text and compact representation of elements. Queries for the runs were
created from <title> and <description> fields, respectively.

3. LM-1 and nl-LM-1: runs created using language model based on compact
representation of elements only, i.e., equation (11) in section 4 is replaced by

P (ti|e) = (1 − λ) · P (ti|ecompact) (16)

where λ = 0.3. Queries for the runs were created from <title> and <de-
scription> fields, respectively.

Table 2 lists our results in the INEX official evaluation: the system-oriented
MAep measure and the ranks among all submitted runs. Details of the evaluation
metrics can be found in[3]. We were ranked at 39, 42, 66, 67, 68, and 69 out
of 106 submissions. The vector space model based on combination of full-text
and compact representation outperformed the language models. For runs using
language models, estimates based on compact representation only(i.e., LM-1 and
nl-LM-1) achieved comparable (and slightly better) performances with estimates
based on the combination of full-text and compact representation (i.e., LM-2
and nl-LM-2). This confirmed our hypothesis that the compact representation
generated by extracting words from the original text is effective for element
retrieval. Due to the pressure of time, we did not submit baseline runs for the
retrieval models based on full-text solely for comparison.

Results of each pair of runs using the same retrieval method (e.g., VSM and
nl-VSM) show no significant difference. This prompts us that natural language
queries work quite well after some shallow pre-processing.

Table 2. Thorough results using filtered assessments

RunID MAep Rank

VSM 0.0294 39/106
nl-VSM 0.0290 42/106
LM-1 0.0180 66/106
nl-LM-1 0.0174 68/106
LM-2 0.0178 67/106
nl-LM-2 0.0172 69/106

Compact Representations in XML Retrieval 71

6 Conclusions and Future Work

We have presented, in this paper, our experiments for the INEX 2006 evalua-
tion campaign. We assumed important words could be identified according to
the ways they were displayed in the text. We proposed to generate a compact
representation of an XML element by extracting words appearing in titles, sec-
tion titles, figure captions, tables, and words underlined or emphasized in bold,
italics or larger fonts from the text the element nesting. Our retrieval methods
emphasized the importance of these words in identifying relevance. Results of
the Thorough task showed that estimates based solely on compact representa-
tion performed comparably with estimates using combinations of full-text and
compact representation. This indicated that compact representation provided
clues to content of the original element, as we had assumed.

We also investigated a range of non-content priors. Our preliminary experi-
ment indicated that relevant elements tended to be larger elements, such as whole
articles, sections, paragraphs. Furthermore, relevant elements were more likely
to appear in certain locations, such as the first element (e.g. first paragraph) of
a document. And they were not likely to be deeply nested in the structure. We
implemented priors in our language models, but the limited time at our disposal
meant that we could not submit baseline runs for comparisons of how these
priors work.

Our future work will focus on refining the retrieval models. Currently, the
compact representation of an element is generated by words from certain parts
of the text. However, the effectiveness of this method depends on the type of the
documents. For example, in scientific articles, section titles (such as introduction,
conclusion, etc) are not very useful for relevance judgement, whereas section titles
in news reports are very informative. In the future, we will explore different
patterns for generating compact representations depending on types of texts.
This might involve genre identification techniques. We will investigate different
priors’ effectiveness and how different types of evidence can be combined to boost
retrieval effectiveness.

Acknowledgments

We would like to thank Ulises Cervino Beresi for his help in indexing tasks.

References

1. Kamps, J., Marx, M., de Rijke, M., Sigurbjornsson, B.: XML retrieval: What to
retrieve? In: Proceedings of the 26th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval (2003)

2. Kamps, J., de Rijke, M., Sigurbjornsson, B.M.: Topic field selection and smoothing
for XML retrieeval. In: Proceedings of the 4th Dutch-Belgian Information Retrieval
Workshop (2003)

3. Kazai, G., Lalmas, M.: INEX 2005 evaluation metrics. In: Fuhr, N., Lalmas, M.,
Malik, S., Kazai, G. (eds.) INEX 2005. LNCS, vol. 3977, Springer, Heidelberg (2006)

72 F. Huang et al.

4. Lucene. The Lucene search engine (2005) http://jakarta.apache.org/lucene
5. Ramshaw, L., Marcus, M.: Text chunking using transformation-based learning. In:

Proceedings of the Third ACL Workshop on Very Large Corpora (1995)
6. Sigurbjornsson, B., Kamps, J., de Rijke, M.: An element-based approach to XML

retrieval. In: INEX 2003 Workshop Proceedings (2004)
7. Theobald, M., Schenkel, R., Weikum, G.: An Efficient and Versatile Query Engine

for TopX Search. In: Proceedings of the 31th International Conference on Very Large
Databases (VLDB), Trondheim, Norway (2005)

8. Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied to
ad hoc information retrieval. In: Proceedings of the 24th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval (2001)

http://jakarta.apache.org/lucene

CSIRO’s Participation in INEX 2006

Alexander Krumpholz and David Hawking

CSIRO ICT Centre, Canberra, Australia
{Alexander.Krumpholz,David.Hawking}@csiro.au

Abstract. In this year’s INEX participation, CSIRO took part in the
Ad-hoc Track, contributing to three of the four given tasks, namely the
Thorough Task, the Focused Task and the Best in Context Task.

We relied on our own text-and-metadata retrieval system PADRE for
indexing the data and processing the queries. Since PADRE is designed
to retrieve documents rather than XML elements we preprocessed the
collection to enable retrieval of sub-elements. From the set of queries we
identified all the element-types required to be retrieved. We then added
new pseudo documents corresponding to all the retrievable elements from
the originals. Finally, this expanded collection was indexed with PADRE.

When processing queries, query elements were extracted from the
INEX topics and pre-processed to generate queries in PADRE syntax.
Results were post-processed to achieve the requirements of each partic-
ular task, such as elimination of super- and sub-elements of elements
already retrieved.

Results obtained from this simple-minded approach were not particu-
larly competitive but serve as a good basis for identification of necessary
future enhancements.

1 Introduction

CSIRO’s involvement in the INEX2006[1] Ad Hoc Track1 had three motivations.
First, to explore the new Wikipedia collection[2], second to see how the naive
splitting approach compares to current state-of-the-art XML retrieval engines2,
and third to establish a baseline for our future work.

PADRE, CSIRO’s free-text and metadata retrieval system [4], implements a
slightly modified Okapi BM25 algorithm [5], combined with Web-oriented evi-
dence such as link counts, anchor text, URL length, and penalisation of multiple
results from the same “site”. In order for PADRE to retrieve sub-document
parts like XML elements, the original XML files were split into smaller doc-
uments according to the XML elements relevant for retrieval. Thus, a much
larger collection was indexed, comprising the original documents plus multiple,
potentially overlapping, elements of those documents.

1 Fully described elsewere in this volume.
2 In our only previous participation (in 2002) [3] we successfully applied a similar

approach but used manually generated queries, worked with a different collection and
compared ourselves to a smaller, and presumably less sophisticated set of systems.

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 73–81, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

74 A. Krumpholz and D. Hawking

In all of the Ad Hoc tasks, an ideal retrieval system would be able to identify
all the passages of text which are relevant to the query. This may potentially
require that it be capable of recognizing alternative forms of a query word (e.g.
run, ran and running) and also synonyms etc. (e.g. sprinted, jogged). In our
submitted runs we didn’t use any forms of stemming or query expansion.

In the Focused task, an ideal retrieval system needs to be able to choose which
of a hierarchical set of elements should be retrieved – an element at too high
a level will include too much irrelevant material, while an element at too low a
level may be only part of a passage spanning adjacent elements. We implicitly
relied on the Okapi BM25 scoring algorithm to rank elements within the same
hierarchy (and across hierarchies).

PADRE has the ability to index metadata using metadata classes, which are
represented by a single character. Default metadata classes are used for HTML
to map the title, author and date to different classes. This way a PADRE query
can restrict the search for keywords to specific elements. For example the query
“t:architecture” would only return pages having a title element matching the
term “architecture”. In addition to the default metadata classes defined, PADRE
allows the user to specify project specific configuration files containing the map-
ping of XML elements (and attributes) to metadata classes. The xml.cfg mapping
file used for this experiment is shown in Listing ??.

2 Approaches to INEX Ad-Hoc Tasks

This year the INEX community defined four challenges for the Ad-hoc track:

Thorough Task: The goal of the Thorough Task is to retrieve a ranked list of
elements over the whole collection, regardless of overlap.

Focused Task: The Focused Task also asks for elements ranked over the whole
collection, but does not allow overlaps. Overlaps occur when multiple re-
trieved search results contain identical XML elements. This happens when
a sub-element or super-element of an already returned retrieval result is
returned.

All In Context Task: The All In Context task aims for getting a list of ranked
documents including the relevant, non-overlapping elements within the doc-
ument.

Best In Context Task: The goal is to return a list of ranked documents with
the best entry point for a reader.

Retrieval of structured data is quite related to database query languages and
requires selection and projection operations.

A summary of the different runs is shown in Table 1.
The selection is achieved using the PADRE retrieval engine. In a pre-processing

step we converted the NEXI queries into different PADRE queries which could be
used by the Query Processor. For the two main query types i.e. Context and Struc-
ture (CAS) and Context Only (CO) the PADRE version of the NEXI query could
be used. However, the keywords in the CAS and the CO topics are not identical

CSIRO’s Participation in INEX 2006 75

(see Table 3). In order to explore the effect of this difference a third query has been
constructed by removing the structural hints from each CAS topic.

The projection aspect has been addressed in a post-processing phase. Using
PADRE and the collection of element level sub-documents, we based our runs on
a number of considerations: the standard PADRE version based on the Okapi
BM25 algorithm delivers exactly what the Thorough Task (A) requires. The
simplest possible way to achieve the Focused Task (B) would be to run the same
query used for case (A), while suppressing overlaps by skipping results which are
in fact descendants (sub-elements) or ancestors (super-elements) of a previously
returned result. In order to generate a baseline for the Best In Context Task we
took the simple assumption that Wikipedia articles are covering very specific
topics and that the article itself would be a reasonable entry point for a user.

The following eight runs were submitted:

Table 1. CSIRO’s runs

Run name Selection based on Projection based on

CSIRO-CAS1-A CAS-Title n/a

CSIRO-CAS2-A CAS-Title query specified elements

CSIRO-CO1-A CO-Title n/a

CSIRO-CO1-B CO-Title suppression of overlapping results

CSIRO-CO1-D CO-Title <article> elements

CSIRO-CO2-A CAS-Title without structure n/a

CSIRO-CO2-B CAS-Title without structure suppression of overlapping results

CSIRO-CO2-D CAS-Title without structure <article> elements

3 Architecture

The architecture used is shown in Figure 1.

3.1 Defining Metadata Classes

The xml.cfg specifies the elements indexed and the PADRE metadata classes
used to represent them. The DOC element is an artificial element introduced to
create a collection of sub-documents extracted from the original XML file. (see
section 3.2)

3.2 Splitting Documents

The original XML documents were split into sub-documents in order to exploit
PADRE’s document retrieval capability to actually retrieve sub-documents. We
split each XML document of the collection into sub-documents by extracting all
elements matching one of the following XPath expressions and storing them in
a new XML container document:

76 A. Krumpholz and D. Hawking

Fig. 1. Architecture

– /article
– //section
– //p
– //template

One problem with the current prototype is that sub-elements are not indexed
with the super-element, i.e. metadata classes are disjunct. This would reduce the
chance of a super-element being retrieved, because part of its text is effectively
not indexed.

document,//DOC
a,1,,//DOC/article
b,1,,/body
e,1,,/caption
f,1,,/p
g,1,,/figure
j,1,,/title
l,1,,/table
n,1,,/template
o,1,,/section
p,1,,/template@name
q,1,,/collectionlink
r,1,,//DOC/article/name
w,1,,/link
x,0,,/DOCNO

Listing 1.1. The metadata classes defined in xml.cfg.

CSIRO’s Participation in INEX 2006 77

3.3 Transforming NEXI Topics

INEX topics are specified using the NEXI query language [6]. NEXI is XPath in-
spired, but allows the usage of vague selectors. The query //section[about(.//
p, security)] matches sections that have a descendent element <p> contain-
ing the keyword ’security’.

Table 2. Comparison of the NEXI and PADRE query for topic 293

NEXI //article[about(.,wifi)]//section[about(.,wifi security encryption)]

PADRE a:wifi o:wifi o:security o:encryption

Table 3. A <title> and <castitle> element of topic 349

<title> proprietary implementation +protocol +wireless +security

<castitle> //article[about(., wireless)and about(.//p, security)]
//link[about(., proprietary +implementation)]

<inex-submission participant-id="22" run-id="CSIRO-CO1-B"
task="Focused query="automatic">
<topic-fields title="yes" castitle="no" description="no"

narrative="no" ontopic_keywords="no"/>
<description>Using the title as a query to padre,

but suppressing overlapping results
</description>
<processing-instructions
element-restriction="None"
suppress="Overlap"
padre-blocksize="1600"

>
<query>query.padre_title.uniq.join(’ ’)
</query>

</processing-instructions>
<collections>
<collection>wikipedia</collection>

</collections>
</inex-submission>

Listing 1.2. The run configuration file ‘run cfg’

In order to use the PADRE search engine we had to convert the official NEXI
queries into PADRE queries. The script TopicPadrefier.rb (see figure 1) extracts
the selection and projection component of each original CAS and CO topic,
constructs the closest possible PADRE queries and stores them for future use.
However, PADRE does not allow the definition of an infinite number of metadata
classes and is therefore not expressive enough to correctly build PADRE queries
for all possible NEXI queries. Some of the complex relationships of elements can
therefore not be expressed in a generic manner.

78 A. Krumpholz and D. Hawking

3.4 Running INEX Topics

The result for each run has to be submitted as an XML file matching a DTD
specified by the organizers. Since the Query processor needed processing instruc-
tions for each run, an extended version of the result DTD has been used as input
for the Query processor. The Query processor extracts the processing instruc-
tions from the run specification file and replaces it with the result for the run.
This way the run specification is automatically well documented.

3.5 Post-processing Results

The results have to be post-processed to meet the given tasks: i.e. suppressing
multiple documents, or limiting to required element types or articles. For the
Best In Context task all results other than articles have been suppressed in the
runs CSIRO-CO1-D and CSIRO-CO2-D. For the Content and Structure task
we suppressed all elements different than the structural request extracted from
the query for the run CSIRO-CAS2-A, while we did not modify the result from
PADRE for the runs CSIRO-CAS1-A, CSIRO-CO1-A, and CSIRO-CO2-A. For
the runs CSIRO-CO1-B and CSIRO-CO2-B we matched each result with the
results already delivered to filter out ascended or descended elements.

4 Results

Figures 2-4 show our results in respect to the other participant’s submissions.
Generally we obtained average results, with the following interesting observation:
our structured results are worse than the unstructured ones. The graph and table
in figure 2 show a significant gap between the CO*-A runs and the CAS*-A runs.
(Note that the two CO*-A runs and the two CAS*-A lines in the graph essentially
overlie each other.)

The tables list the runs submitted by CSIRO as well as the best and worst
result for comparison. Notice, that the largest sample number at the bottom
always shows the number of runs submitted for that task.

thorough
Metric:ep-gr

Quantization: gen,Overlap=off

S.No RunId MAep

1 0.0709

33 CSIRO CO2 A 0.0320
36 CSIRO CO1 A 0.0313
78 CSIRO CAS1 A 0.0122
80 CSIRO CAS2 A 0.0111

106 0.0000

Fig. 2. Results: Thorough Task

CSIRO’s Participation in INEX 2006 79

All result sets show the related pairs of CSIRO runs almost side by side in
the rankings, indistinguishable from each other in the small graphs attached.
Figure 2 is the only one containing four runs by our team, one pair at position
33 and 36, the second pair at 78 and 80. We have not yet identified the reason
why the Content Only runs clearly beat the Content And Structure runs. This is
especially interesting since we would expect the additional information coming
from the structure to improve retrieval quality. We suspect the disjunct metadata
classes and the small number of element types we used for splitting contribute
to that phenomenon.

The collocation of the other graphs are due to fact that the Context Only
title and the Context And Structure title usually do not differ a lot.

The runs CAS1-A and CAS2-A share similar qualities as well. Apparently the
element PADRE delivers automatically is often the one that would be specified
in a CAS scenario.

focused
Metric:nxCG

Quantization: gen,Overlap=on

S.No RunId nxCG@5

1 0.3944

18 CSIRO CO1 B 0.3322
21 CSIRO CO2 B 0.3304

85 0.0000

Fig. 3. Results: Focused Task

The Focused task turned out to be the best of our results, even though the
approach of just suppressing duplicates is quite simplistic.

4.1 Failure/Success Analysis

Due to pressure from competing projects, we have been unable to make much
progress on a failure/success analysis of our results.

We plan to construct some simple tools to facilitate comparison of our sub-
mitted result sets against the official results. We would like to identify cases:

Case 1 where we retrieved completely irrelevant items
Case 2 where we failed to retrieve items judged relevant
Case 3 where we retrieved items at higher levels in the XML hierarchy

than the official answer.
Case 4 where we retrieved items at lower levels in the XML hierarchy

than the official answer.
We are particularly interested in using these tools to answer the following

questions:

80 A. Krumpholz and D. Hawking

BestInContext
Metric:

EPRUM-BEP-Exh-BEPDistance

S.No RunId At A=0.01

1 0.0407

41 CSIRO CO1 D 0.0166
43 CSIRO CO2 D 0.0161

77 0.0000

Fig. 4. Results: Best in Context Task

– Why were our attempts to exploit structure so unsuccessful? The scores for
our CAS runs were substantially worse than our CO runs.

– For the Thorough task, Cases 1 and 2 are of particular interest. Did we need
to apply stemming or query expansion? Could we exploit the available link
structure? Were there bugs in our basic system or in pre and post processing
scripts?

– For the Focused task, all four cases may adversely affect results.
– How much improvement might be gained by using a version of PADRE

capable of indexing the same word occurrence as part of multiple overlapping
elements?

– Were PADRE parameters set optimally? For example, were there adverse ef-
fects caused by the web-oriented ranking switched on by default in PADRE?
Was the Okapi b parameter set to optimally take into account the relative
length of documents?

5 Conclusions

One possible conclusion from our relatively unimpressive results this time is
that the XML retrieval community has progressed significantly in recent years
and that using a full text search engine to ‘mimic’ structured retrieval does not
deliver competitive results.

This needs to be confirmed by the failure/success analysis described above.
We look forward to identifying the factors which are most significant in bridg-

ing the gap to state-of-the-art results.

References

1. DELOS Network of Excellence for Digital Libraries: Initiative for the Evaluation of
XML retrieval http://qmir.dcs.qmw.ac.uk/inex/

2. Denoyer, L., Gallinari, P.: The Wikipedia XML Corpus. SIGIR Forum (2006)

http://qmir.dcs.qmw.ac.uk/inex/

CSIRO’s Participation in INEX 2006 81

3. Vercoustre, A.M., Thom, J.A., Krumpholz, A., Mathieson, I., Wilkins, P., Wu, M.,
Craswell, N., Hawking, D.: Csiro inex experiments: Xml search using padre. In:
INEX Workshop 2002, Schloss Dagstuhl, Germany (December 2002)

4. Hawking, D., Bailey, P., Craswell, N.: Efficient and flexible search using text and
metadata. Technical Report TR2000-83, CSIRO Mathematical and Information Sci-
ences (2000) http://www.ted.cmis.csiro.au/∼dave/TR2000-83.ps.gz

5. Robertson, S.E., Walker, S., Hancock-Beaulieu, M.M., Jones, S., Gatford,
M.: Okapi at TREC-3. In: Harman, D.K. (ed.) Proceedings of TREC-3,
Gaithersburg MD, pp. 500–225. NIST special publication (November 1994)
http://trec.nist.gov/pubs/trec3/papers/city.ps.gz

6. Trotman, A., Sigurbjörnsson, B.: Narrowed extended xpath i (nexi). In: Fuhr, N.,
Lalmas, M., Malik, S., Szlávik, Z. (eds.) INEX 2004. LNCS, vol. 3493, pp. 16–40.
Springer, Heidelberg (2005)

http://www.ted.cmis.csiro.au/~dave/TR2000-83.ps.gz
http://trec.nist.gov/pubs/trec3/papers/city.ps.gz

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 82–88, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Dynamic Element Retrieval in a Semi-structured
Collection

Carolyn J. Crouch, Donald B. Crouch, Murthy Ganapathibhotla, and Vishal Bakshi

Department of Computer Science
University of Minnesota Duluth

Duluth, MN 55812
(218) 726-7607

ccrouch@d.umn.edu

Abstract. This paper describes our methodology for the dynamic retrieval of
XML elements, an overview of its implementation in a structured environment,
and the challenges introduced by applying it to the INEX Wikipedia [4]
collection, which can more aptly be described as semi-structured. Our system is
based on the vector space model [9] and its basic functions are performed using
the Smart experimental retrieval system [8]. A major change in the system this
year is the incorporation of a method for the dynamic computation of query
term weights [6] to be correlated with the dynamically generated and weighted
element vectors. Dynamic element retrieval requires only a single indexing of
the document collection at the level of the basic indexing node (in this case, the
paragraph). It returns a rank-ordered list of elements equivalent to that produced
by the same query against an all-element index of the collection. (A detailed
description of this method appears in [1].) As we move from a well structured
collection, such as the INEX IEEE documents, to Wikipedia, changes in the
structure of the articles must be accommodated.

1 Introduction

When we began our work with INEX in 2002, our goal was to assess the utility of
Salton’s vector space model [9] for XML retrieval. Familiarity with Smart [8] and
faith in its capabilities led us to believe that this approach was promising if problems
such as flexible retrieval (i.e., retrieval of elements at the desired degree of
granularity) and ranking issues could be resolved. For the past several years, our
research has focused on an approach for the dynamic retrieval of elements which
provides a solution to both these problems.

The evolution of this approach is described in our earlier workshop papers, in
particular [2] and [3]. In dealing with the INEX IEEE collections, we utilized Fox’s
extended vector space model [5], which allows for the incorporation of objective
identifiers (such as date of publication) along with the normal content identifiers in
the representation of a document. The body portion of the document (i.e., its text) is
represented by one of the subjective subvectors in the extended vector representation.

 Dynamic Element Retrieval in a Semi-structured Collection 83

The INEX Wikipedia collection [4] does not carry with it the corresponding
information. Wikipedia articles are easily represented within the traditional vector
space model, as seen below.

In INEX 2006 we use a system which generates and retrieves elements
dynamically and returns a rank-ordered list of elements to the user. Results published
elsewhere have demonstrated the successful utilization of this approach for structured
retrieval [1]. Our current investigations center on how best to employ this approach in
dealing with semi-structured data.

2 Background

This section presents a brief overview of the model and term weighting method upon
which our system is based—i.e., the vector space model and Lnu-ltu term weighting.
Details of this weighting scheme may be found in [10,11]. It is of particular interest in
element retrieval where the elements often vary considerably in length, depending on
type (e.g., paragraph versus section and body). Lnu-ltu weighting attempts to deal
with the ranking issues resulting from disparity in document (element) length. (See
[1] for a more detailed discussion of this issue.)

A basic model in information retrieval is the vector space model [9], wherein
documents and queries are represented as weighted term vectors. The weight
assigned to a term is indicative of the contribution of that term to the meaning of the
document. The similarity between vectors (e.g., document and query) is represented
by the mathematical similarity of the corresponding term vectors.

Of particular interest in this work is the issue of term weighting. We found in
earlier experiments that best results were achieved when Lnu-ltu term weighting [11]
was used with inner product as the similarity measure. Lnu term weights, used for the
element vectors, are defined below:

))__log(1())_log(1(frequencytermaveragefrequencyterm +÷+

))__(()1(pivottermsuniquenumberslopeslope ÷×+−

where tf represents term frequency, slope is an empirically determined constant, and
pivot is the average number of unique terms per document, calculated across the
entire collection. Query terms are weighted using the ltu formula, as follows.

)log())_log(1(knNfrequencyterm ÷×+

__

))__(()1(pivottermsuniquenumberslopeslope ÷×+−

Note that this formula depends both on N (the collection size) and nk (the number of
elements that contain the term).

84 C.J. Crouch et al.

3 System Description

This section describes first the current operation of the system and then a particular
problem of interest that was solved during the past year by Ganapathibhotla—a
method for the dynamic ltu-weighting of the query [6].

3.1 Dynamic Element Retrieval

XML text is processed in this system as follows. The documents are parsed using a
simple XML parser which we wrote. We selected the paragraph—in our view, the
smallest meaningful unit of text—as our basic indexing unit in the early stages of
investigation. Thus a parsing of the documents into paragraphs is produced:
paragraphs and queries are translated into Smart format and indexed by Smart. Lnu-
ltu term weighting is applied. Retrieval takes place by running the ltu-weighted topics
against the Lnu-weighted paragraph indexing of the collection using Smart. The
result is a list of elements (paragraphs) ordered by decreasing similarity to the query.

Consider all the elements in this list having a non-zero correlation with the query.
Each such element represents a terminal node (or paragraph) in the body of a
document with some relationship to the query. Please note that although we have
used the term paragraph here as a designator for smallest meaningful unit, in this
context it means all the leaf nodes of a document tree. Thus the term paragraph can
be used to refer to figure captions, lists, section titles, tables, abstracts—all the
content-bearing elements that partition the document into mutually exclusive parts.
Although some of these elements may not be leaf nodes according to their DTDs, they
are treated as leaf nodes in this context because their child nodes are too small to be
meaningful units in themselves.

For a particular query, Q, a search by Q against the paragraph index identified
above produces a rank-ordered list of elements. Those elements having a positive
correlation with Q identify the set of all documents of possible interest to it. We
consider the n top-ranked elements in this list. Our method of dynamic element
retrieval builds a tree representation for each document having an element in this list.
Each tree is built based on a schema of the document (produced as a by-product of
parsing). Given its set of terminal nodes in the form of term-frequency vectors, a
document tree is built, bottom-up, according to its schema [3,7]. The content of each
internal node is based solely on the content of its children. As each element vector is
produced, it is Lnu-weighted and correlated with Q, which is itself ltu-weighted.
After all element vectors, including the body element, have been generated, weighted
and correlated with Q, the process continues with the next document. The resulting set
of element vectors (i.e., all the elements from each document with a terminal node in
the set of n top-ranked elements retrieved by Q) are then sorted and the top-ranked
elements are reported.

3.2 Dynamic Query Weighting

Consider the formulas for term weighting given in Section 2. The Lnu term weighting
of the element vectors at execution time is a relatively simple process. Lnu weights
do not require information on global frequency that is not available in the dynamic

 Dynamic Element Retrieval in a Semi-structured Collection 85

environment. The values of slope and pivot having been previously determined for
the collection, Lnu weights are quickly computed.

The situation with the dynamic computation of the query term weights is quite
different. Consider the ltu formula. At each level in the document tree, the values of N
and nk are element-dependent. Dynamic element retrieval is based on an initial
retrieval against a paragraph indexing of the collection. The values of N (the number
of paragraphs in the collection) and nk (the number of paragraphs containing the term)
are readily available as a by-product of the indexing process. In order for Q to be
correctly weighted and correlated against each element vector in the document tree,
the values of N and nk associated with each query term must be the corresponding
global values (i.e., the number of elements in the collection and the number of
elements containing the query term).

The value of N is easily supplied by keeping track of the various types of elements
encountered during the parsing process. Obtaining the value of nk associated with a
specific query term is more challenging. We have its (local) value at the level of the
terminal node (i.e., paragraph). To determine its global value (i.e., the number of
elements containing the term), we need information about the structure of each
document tree in which the term is contained. In particular, for each occurrence of
the term as a word type in a terminal node, we need to determine the number of parent
elements in which it occurs. For example, suppose query term t1 occurs in two
different paragraphs of the same document. We need know whether both paragraphs
occur as children of the same parent node (say subsection) or as children of different
parents (two different subsections), and so on up the tree. And this process must be
repeated for every document tree which contains t1.

A very clever way to determine the number of containing elements for a particular
term was devised by Ganapathibhotla [6], using the inverted file entry associated with
the term in the paragraph indexing and a mapping between paragraph identifiers and
their xpaths (required in our system for interaction between Smart and INEX
formats). (See [1], [6] for details.) The calculation of nk at execution time, clearly not
feasible if it were required in the weighting of element vectors, is quite feasible in the
weighting of query vectors, which are by their nature very short in comparison.

3.3 What About n?

There are very few parameters of interest associated with our method of dynamic
element retrieval. Slope and pivot, used in the Lnu-ltu term weighting scheme, are
collection dependent; determining slope requires some investigation and tuning. But
the only truly interesting parameter (in the sense that it determines the number of trees
generated and hence largely the time required for dynamic element retrieval) is n—
the number of top-ranked paragraphs fed to our dynamic retrieval routine. It
determines the upper bound on the number of trees built for each query. The actual
number is determined by the number of paragraphs in this set belonging to the same
document or set of documents.

Although not reported here in detail, our experiments with the 2004 and 2005
INEX IEEE collections reveal some interesting results. In these experiments, n varied

86 C.J. Crouch et al.

from 1 to 1000 (specifically, n = 1, 5, 10, 25, 50, 100, 250, 500, 1000). For the 2004
collection, under both generalized and strict quantizations and considering values of
P@n for 10, 20, 50, 100, 500, and 1500 and average precision, dynamic element
retrieval never required a value of n greater than 100 to produce a result equivalent to
retrieval against the all-element index. For the 2005 collection, the results were very
similar. The average number of trees built per query at n = 100 was 64 (for 2004) and
66 (for 2005). Looking at the average number of trees generated per query over all
specified values of n greater than 50 indicates that, on average, fewer than 2/3 n trees
are actually built.

For reasons discussed in the following section, corresponding experiments for the
INEX Wikipedia collection are still in progress.

4 Problems Posed by Semi-structured Data

We encountered some interesting problems in adapting our method for dynamic
element retrieval to the INEX Wikipedia collection. The IEEE collections are well
structured. We found these traditional documents could be represented quite naturally
using Fox’s extended vector space model. Wikipedia documents, on the other hand,
are easily represented using the traditional vector space model. The really significant
difference between these two collections from our point of view, however, lies in how
they are structured. Dynamic element retrieval depends on having all the terminal
nodes of a document represented in the paragraph index. The initial paragraph
retrieval gives us a good indication of which documents are of interest to the query in
this case because all paragraphs that correlate highly with it are identified (thereby
identifying their parent documents). The Wikipedia collection, on the other hand,
contains untagged text which is distributed throughout the documents at the body and
section levels. This untagged text cannot be retrieved except as a component of its
parent element.

This is not a problem with respect to retrieval from an all-element index. The
elements are parsed, collected, and indexed. Retrieval takes place in the normal
manner. With dynamic element retrieval, untagged text impacts the method at two
points: (1) during parsing, when untagged text must be identified (to be subsequently
used in generating the document schemas so that the bottom-up generation of the
document tree can take place properly with untagged text included at its parent level);
and (2) during the initial retrieval against the paragraph (or terminal node) index,
when documents potentially important to the query are identified. The interesting
question here, which we have yet to answer, is whether the untagged text is important
from a retrieval viewpoint.

Our current methodology deals with this problem by gathering all untagged text
within an element and treating it as a separate child element (equivalent to a
paragraph element) of its parent. Thus untagged text within a section becomes a
separate element, (specially tagged as an <mt> element), which is attached to its
parent section, and untagged text at the body level is treated similarly and attached as
a child of the body element. Using this approach, dynamic element retrieval can
proceed in the same manner used for structured text. The issue of interest here is

 Dynamic Element Retrieval in a Semi-structured Collection 87

whether the inclusion of <mt> elements with the paragraph elements in the initial
retrieval materially affects the elements retrieved dynamically and if so, to what
extent.

Experiments are currently underway to determine the answers to this and other,
related questions. The system requires tuning against the relevance assessments to
determine an appropriate value of slope in the Lnu-ltu term weighting formula; the
process, while straight-forward, is time-consuming. The size of this collection is also
a factor. We have faced a number of space-related issues and hardware failures which
have deterred progress on this work.

5 Conclusions

Our current system has achieved its major goal—it retrieves elements dynamically
and returns a rank-ordered list of elements equivalent to that retrieved by a search of
the corresponding all-element index. Exact Lnu-ltu term weights are utilized in this
process. It requires only a single indexing of the collection at the paragraph level
rather than either an all-element or multiple indexings, which are expensive to
produce and maintain. As [1] shows, this method works well for structured retrieval.
As we adapt our methods for utilization in the semi-structured environment of the
INEX Wikipedia collection, we aim to determine the impact of this structural change
on the retrieval process.

References

[1] Crouch, C.: Dynamic element retrieval in a structured environment. ACM Transactions
on Information Systems 24(4), 437–454 (2006)

[2] Crouch, C., Mahajan, A., Bellamkonda, A.: Flexible retrieval based on the vector space
model. In: Fuhr, N., Lalmas, M., Malik, S., Szlávik, Z. (eds.) INEX 2004. LNCS,
vol. 3493, pp. 292–302. Springer, Heidelberg (2005)

[3] Crouch, C., Khanna, S., Potnis, P., Daddapaneni, N.: The dynamic retrieval of XML
elements. In: Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.) INEX 2005. LNCS,
vol. 3977, pp. 268–281. Springer, Heidelberg (2006)

[4] Denoyer, L., Gallineri, P.: The Wikipedia XML corpus. In: INEX Workshop Pre-
Proceedings, pp. 367–372. (2006) http://inex.is.informatik.uni-duisberg.de/2006

[5] Fox, E.A.: Extending the Boolean and vector space models of information retrieval with
p-norm queries and multiple concept types. Ph.D. Dissertation, Department of Computer
Science, Cornell University (1983)

[6] Ganapathibhotla, M.: Query processing in a flexible retrieval environment. M.S. Thesis,
Department of Computer Science, University of Minnesota Duluth, Duluth, MN (2006)
http://www.d.umn.edu/cs/thesis/Ganapathibhotla.pdf

[7] Khanna, S.: Design and implementation of a flexible retrieval system. M.S. Thesis,
Department of Computer Science, University of Minnesota Duluth, Duluth, MN (2005)
http://www.d.umn.edu/cs/thesis/khanna.pdf

[8] Salton, G. (ed.): The Smart Rretrieval System—Experiments in Automatic Document
Processing. Prentice-Hall, Englewood Cliffs (1971)

88 C.J. Crouch et al.

[9] Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Comm.
ACM 18(11), 613–620 (1975)

[10] Singhal, A.: AT&T at TREC-6. In: The Sixth Text REtrieval Conf (TREC-6), NIST SP
500-240, pp. 215–225 (1998)

[11] Singhal, A., Buckley, C., Mitra, M.: Pivoted document length normalization. In: Proc. of
the 19th Annual International ACM SIGIR Conference, pp. 21–29 (1996)

Efficient, Effective and Flexible XML Retrieval

Using Summaries

M.S. Ali, Mariano Consens, Xin Gu, Yaron Kanza, Flavio Rizzolo,
and Raquel Stasiu

University of Toronto
{sali,consens,xgu,yaron,flavio,raquel}@cs.toronto.edu

Abstract. Retrieval queries that combine structural constraints with
keyword search are placing new challenges on retrieval systems. This
paper presents TReX—a new retrieval system for XML. TReX can effi-
ciently return either all the answers to a given query or only the top-k
answers. In this paper, we discuss our participation in the annual Initia-
tive for the Evaluation of XML Retrieval (INEX) workshop in the ad-hoc
track. Our main contribution is to investigate the use of summaries and
the flexibility they provide when dealing with structural constraints. We
describe algorithms for retrieval using summaries. Experimental results
are presented showing that TReX answers queries efficiently and effec-
tively.

1 Introduction

Recent research efforts have combined the structured data management capabili-
ties of databases with the powerful keyword search capabilities of information re-
trieval (IR) systems. One of the best known of these research efforts is the INEX
[1] initiative. INEX is a forum dedicated to research in information retrieval
from collections of XML documents. In XML retrieval, queries are combinations
of keywords (content queries), structural hints (vague queries) and structural
constraints (strict queries). Query responses are composed of XML document
fragments (i.e., specific elements) that satisfy the structural conditions and are
returned ranked according to relevance criteria based on the content and struc-
tural components of the query.

To assess the effectiveness of the ranked answers returned by XML retrieval
systems, human judgments are collected for the answers to standard queries,
which are called topics, on XML collections. The collections are shared among
all of the INEX participants. Based on the collections, INEX participants pro-
pose and agree on the topics for the human judges. System implementors develop
their ranking criteria and assess the quality of the answers from their systems
against the human judgments. Participants’ ranking criteria generally use well-
established IR techniques for content scoring that have been extended to incor-
porate the structural conditions specified in the topic. We refer to this extension
as structural scoring. The XML retrieval community is just starting to develop an
understanding of structural scoring. We expect that in the coming years a wide

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 89–103, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

90 M.S. Ali et al.

range of different techniques will be proposed and assessed. To this effect, our
efforts have concentrated on developing an XML retrieval system that supports
flexible structural scoring. We believe that this will foster more experimenta-
tion and will help move forward the state-of-the-art over the long term as we
begin to understand the different ways that structure is used in XML retrieval.
Our contention is that XML retrieval systems must be capable of efficiently
combining IR evaluation techniques with new structural ranking capabilities.
There are still a wide spectrum of challenges to overcome. As an example, this
is illustrated in the strict interpretation of structural constraints because these
constraints have the same efficiency demands on the system as those placed on a
structured XML query engine (i.e., those posed on an XPath or XQuery capable
processor). TReX is a step toward overcoming these challenges.

In this paper we describe the techniques used by the TReX system to sup-
port efficient, effective and flexible XML retrieval. TReX retrieves relevant XML
fragments by simultaneously using indexes on paths in the XML (summaries)
and indexes on keywords (inverted lists). Previous work has established the ad-
vantages of using summaries for structured XML queries [6]. This paper applies
summaries to content and vague structure retrieval queries. Two methods for
computing queries are considered. In the exhaustive method, queries are com-
puted directly from the indexes. Our second method is meant for quickly com-
puting the top-k answers to a query. It relies on the exhaustive method to first
precompute and store lists of ranked elements for each query keyword and path
expression. Then, the system employs the threshold algorithm (TA) for efficiently
combining the ranks according to the keywords in the query. We provide exper-
imental results showing the efficiency and the effectiveness of TReX ’s use of
summaries in support of flexible structural scoring in XML retrieval.

Several proposals in the literature extend the traditional keyword-style re-
trieval to the XML model [8,13,14]. Vague structural conditions were introduced
in [23] and complemented with full-text conditions in [3,4]. A query algebra for IR
style processing of XML data was introduced in [5]. Although only for keyword
queries, XRANK [13] is the only system that provides efficient support for finding
the top-k results. Other recent proposals for XML ranked retrieval include [17]
and [20]. The former uses dataguides and TA-style top-k algorithms [11], but
differs from our work in that their experiments are limited to DB-like queries
rather than XML retrieval queries. In contrast, [20] focuses on efficient evalu-
ation of approximate structural matches without considering keyword search.
The closest work to ours is TopX [24]. We follow the baseline top-k algorithm
described in that work, but we do not use their probability predictor function
nor invoke costly random access to resolve structural constraints. Our scoring
model is similar to existing scoring models such as TopX [24] and BM25E [18].
The main difference from TopX and BM25E is that tags (element names) are the
only structural constraints influencing the score whereas, in TReX , the scoring
function uses more flexible summary-based constraints.

The structure of the paper is as follows. Section 2 introduces the retrieval
queries supported by the TReX system. Section 3 introduces summaries. Section

Efficient, Effective and Flexible XML Retrieval Using Summaries 91

4 describes the evaluation mechanisms used by TReX . Finally, Section 5 presents
experimental evidence of the effectiveness and efficiency of TReX .

2 Retrieval Queries

TReX is designed for evaluating NEXI queries [25] over a given XML corpus.
NEXI (Narrowed Extended XPath I) is a query language for specifying retrieval
queries. It was devised and has been used in the context of the Initiative for
the Evaluation of XML Retrieval (INEX)[19]. NEXI is built upon XPath [7].
On the one hand, it narrows XPath by excluding function symbols and some
axes. On the other hand, it extends XPath with the function about(), which
denotes a vague interpretation of its input. A NEXI query is composed of two
types of constraints, structural and textual. The about() function can be applied
to both. The structural constraints are expressed in XPath-like syntax and the
textual constraints are keywords.

Example 1. Consider the following NEXI query
//article[about(., XML retrieval)]//sec[about(., inverted list)].
This query specifies a search for sections that are relevant to the keywords “in-
verted list” that appear in articles that are relevant to “XML retrieval”.

The answer to a query consists of elements that satisfy the structural and textual
constraints. The elements, in an answer, are ranked according to their relevance
to the search. In general, elements that contain the specified search terms should
be ranked higher than elements that do not. For instance, the answer to the query
in Example 1 are sec elements that are descendants of article elements, i.e.,
elements that are in the answer to the XPath expression //article//sec. All
sec elements in the answer should be ranked according to their relevance to
the keywords “inverted” and “list”, and the relevance of their ancestor article
elements to the keywords “XML” and “retrieval”.

The scoring function TReX uses is a version of the Okapi BM25 formula [10]
modified for XML. The TReX function is a generalization of the scoring func-
tion employed in the TopX query engine [24]. Its novelty is that the score of an
element is given with respect to a set S of elements specified by the structural
constraints of the query. Before presenting the formula, we provide some nec-
essary notation. We denote by tf (t, e) the term frequency of the term t in the
element e. This function returns the number of occurrences of t in the textual
content of e, where the textual content is considered a bag of terms. We denote
by ef S(t) the element frequency of a search term t, with respect to a set S of el-
ements. This function returns the number of elements that contain t, among the
elements in S. The length of an element e, denoted length(e), is the number of
words in the textual content of e. That is, length(e) =

∑
{t|t is a term in e} tf (t, e).

Finally, we denote the size of a set S by |S|.
Given a list t1, . . . , tm of terms, an element set S and an element e in S, the

BM25 score of e is given by the following formula.

92 M.S. Ali et al.

scores(e | t1, . . . , tm) =
m∑

i=1

(k1 + 1) · tf (ti, e)
K + tf (ti, e)

· log
(

|S| − ef S(ti) + 0.5
ef S(ti) + 0.5

)

where

K = k1

(
(1 − b) + b · length(e)

avg{length(e′) | e′ ∈ S}

)

Okapi BM25 was originally developed using statistics of all documents in
the corpus. In the context of XML, BM25 has been modified to use statistics
at the granularity of elements. One may note that any scoring function based
on term-frequency could be used with no loss of generality in our approach. In
comparison, TReX uses statistics within groups of elements defined by structural
constraints. More formally, our BM25 formula uses frequency statistics with
respect to an element set S rather than using only statistics with respect to
entire documents or individual elements. Usually, S is taken to be the set of all
elements satisfying the structural constraints of the query. For instance, in the
query from Example 1, S contains all the elements in the answer to the XPath
expression //article//sec.

As tuning parameters we use the same values used in TopX. Thus, we set
k1 to 10.5 and b to 0.75. Note that k1 controls the non-linear term-frequency
effects, and b controls the element-length normalization [10]. In order to answer
retrieval queries efficiently, TReX uses inverted lists for finding elements that
contain the keywords, and summaries for finding elements that comply with the
structural constraints. Summaries are discussed in the next section.

3 Structural Summaries

Structural summaries are data structures used for locating specific fragments of
the data, such as nodes and subtrees. They group together elements that are
indistinguishable with respect to a query or a class of queries in some XML
query language. By accessing relevant data directly, summaries help to avoid
sequential scans of entire documents during query evaluation. In addition, they
can be used to describe the instance by keeping record of its structural properties,
such as hierarchical relationships, degree of nesting, and label paths. A typical
summarization of the XML tree structure is a labeled tree that describes its labels
and edges in a concise way. In addition, XML tree nodes are partitioned into
equivalence classes according to their labels or the label paths they belong to.
Each node in the summary tree has one such equivalence class (usually called
its extent in the literature) associated to it.

The partition can be induced by different criteria. For instance, the tag sum-
mary clusters together nodes with the same tag. The tag summary has as many
extents (equivalence classes) as different tags are in the XML tree. The incoming
summary, in contrast, partitions nodes based on the label paths from the root to
the nodes, i.e., the incoming label paths. Thus, nodes with the same incoming
label path will belong to the same extent. It is easy to see that the extents of the
incoming summary are in fact a refinement of the tag summary extents, because

Efficient, Effective and Flexible XML Retrieval Using Summaries 93

Fig. 1. Fragment of the incoming and alias incoming summary trees for the INEX
IEEE collection

in order for two nodes to have the same incoming label path they also need to
have the same label. The left-hand side of Figure 1 shows a fragment of the
incoming summary tree for the INEX IEEE collection. (The complete incoming
summary with no aliases has 11563 nodes. For the tag summary, the number of
nodes is 185. The total size of the alias incoming summary is 7860. The alias
tag summary has 145 nodes.) In Figure 1, the numbers below the nodes are
the summary node identifiers, or sid’s for short. For instance, all XML nodes
that end with the path books/journal/article belong to the same incoming
summary extent and, according to our summary in Figure 1, have sid 7. A sid
not only identifies a summary node but also includes all XML nodes that belong
to the summary node’s extent. Note that if two XML nodes have the same sid,
then by definition one node cannot encapsulate the other.

In an XML retrieval environment, oftentimes different elements with different
tags represent the same type of information. For instance, article sections in the
IEEE collection are in some places referred to as sec and in other places as ss1
or ss2. Since sec, ss1 and ss2 are semantically the same. For a summary to
reflect that fact, we make use of the alias mapping provided by INEX to replace
all synonyms by their alias (sec in our example). The right-hand side of Figure
1 shows a fragment of the alias incoming summary tree for the INEX IEEE
collection.

An alias mapping collapses different summary nodes in the non-aliased sum-
mary into a single summary node in the aliased summary. This collapse can hap-
pen for two different reasons. The first one is that nodes are combined into one
because their tags are aliases of the same tag. For instance, nodes with sid’s 82
and 281 in the incoming summary of Figure 1 are combined into summary node
sid 82 in the alias incoming because tags ss1 and ss2 are mapped to (aliased
with) sec. This type of collapse can happen in both tag and incoming sum-
maries. The second type of collapse is only possible in the incoming summary:

94 M.S. Ali et al.

two nodes collapse because their ancestors collapse. This is the case of nodes
with sid’s 84 and 283 on the left-hand side of the figure. When nodes with sid’s
82 and 281 were combined into one, the incoming label path to nodes with sid’s
84 and 283 became the same and thus the two nodes were also combined into
one.

Our system generates an XPath expression for each sid, which computes pre-
cisely the set of document nodes in its extent. Attaching an arbitrary XPath
expression to each sid gives us the ability to precompute arbitrary path condi-
tions in our summaries. In addition, the use of XPath provides us with a uniform
mechanism for creating and manipulating TReX summaries.

Since our system uses sid’s internally, changing the summary only impacts the
sid’s used during query evaluation. This provides the flexibility to use different
summaries transparently in TReX . Any summary proposal in the literature can
in fact be used in TReX. Examples of such proposals are region inclusion graphs
(RIGs) [9], dataguides [12], the T-index family [21], ToXin [22], A(k)-index [16],
F&B-Index and F+B-Index [15]. RIGs are examples of tag summaries whereas
dataguides, 1-index, ToXin, and A(k)-index are incoming summaries. All these
proposals can be expressed in our system using XPath expressions, which gives
us the ability mix and match them in our summaries.

3.1 NEXI Evaluation Using Summaries

We now explain how to use structural summaries for evaluating retrieval queries.
The evaluation of a NEXI retrieval query in TReX is done in two phases: trans-
lation and retrieval.

In the translation phase, each path p in the query from the root to an about()
function is translated to a set of sid’s and a set of terms. Let Ep be the set of
elements in the result of evaluating p on all the documents in the corpus. The
set of sid’s consists of all the summary nodes whose extent has a non-empty
intersection with Ep. The set of terms consists of all the terms that appear in
the about() function at the end of each path p. For example, consider the query
in Example 1 over the INEX IEEE collection, and the incoming summary with
aliases shown on the right-hand side of Figure 1. Then, the set of sid’s for the
path //article//sec is {46, 82, 89, 493, 607, 619, 630, 761, 1995, 2239}. The set
of terms is {inverted, list}. For the path //article that also leads to an about()
function, the set of sid’s is {7} and the set of terms is {XML, retrieval}.

In the retrieval phase, elements are retrieved according to the sets of sid’s
and terms generated in the translation phase. For a set of sid’s [sid1, . . . , sidm]
and a set of terms [t1, . . . , tn], the system retrieves the elements that (1) are
in the extent of a node with sid in sid1, . . . , sidm, and (2) contain at least one
of the terms t1, . . . , tn. For each such element e, term and element frequencies
are computed and a BM25 score scores(e | t1, . . . , tn) is calculated, where S
is the extent in which e is a member. The following section discusses how the
algorithms of the retrieval phase were implemented in TReX.

Efficient, Effective and Flexible XML Retrieval Using Summaries 95

Elements(SID, docID, endPos, length)

PostingLists(token, docID, offset, postingDataEntry)

RPL(token, iR, SID, docID, endPos, rplDataEntry)

Fig. 2. The schemes of the tables TReX stores

4 Exhaustive Retrieval Algorithm

In this section, we describe the exhaustive retrieval algorithm (ERA) for the
retrieval phase of query evaluation. As explained in Section 3.1, the input to
ERA consists of a list of sid’s and a list of terms. An element of a document in
the corpus is considered relevant , if (1) it is in the extent of one of the given sid’s
and (2) it contains at least one of the given terms. ERA finds all the relevant
elements. In addition, for each relevant element e and for each term t among
the given terms, ERA computes the frequency of t in e, (i.e., the number of
times that t appears in e). These term frequencies are the basis for ranking the
elements of the result, as was discussed in Section 2. Note that ERA can be used
not only with BM25 but also with any other ranking method that is based on
term frequency.

For evaluating queries, ERA uses a structural summary of the corpus and
inverted lists. An inverted list stores all the positions where each term appears.
Positions are represented in TReX as pairs of a document identifier and an offset
from the beginning of the document. Summaries and inverted lists are stored as
indexed relational tables. The following section describes these tables, and in
Section 4.2 we present ERA.

4.1 Data Structures

In TReX, the structural summary and the inverted lists are stored in two indexed
tables named Elements and PostingLists. The schemes of these tables are
shown in Figure 2. In the figure, keys are underlined. For each table, an index
provides ordered sequential access to the tuples according to the keys.

The Elements table contains an entry for each element in the corpus. SID is
the summary id of the element. The field docID holds the identifier of the docu-
ment in which the element appears. The endPos is the position in the document
where the element ends, and length is the length of the element. Note that we
can compute the start position of each element by subtracting the length from
the end position.

The PostingLists table is actually the inverted lists. For each term, all the
positions where this term appears are stored in the table. The position of the
term is represented by the identifier of the document in which the term appears
and an offset from the beginning of this document. The token field is the token
(i.e., term) that the entry represents. In each tuple, the postingDataEntry
is a list of the form doc1, o

1
1, . . . , o

1
i1 , doc2, o

2
1, . . . , o

2
i2 , . . . , dock, ok

1 , . . . , ok
ik

where

96 M.S. Ali et al.

doc1, . . . , dock is a sorted list of document identifiers, and each oj
1, . . . , o

j
ij

is a
sorted list of offsets indicating the positions where the token appears in the
document docj . The posting list may become too long for storing it in a single
tuple. So it may be divided and stored across several tuples. In order to access
the parts of the posting list in order of position, the fields docID and offset in
postingDataEntry are part of the key.

For technical reasons, we also add a maximal dummy position denoted m-pos
to the end of the last postingDataEntry list of each term. The position m-pos is
maximal in the sense that no real position can exceed it. This is done to detect
the end of each posting list.

4.2 The Exhaustive Algorithm

We now show how ERA computes a query result from the data in the Elements
and PostingLists tables. The main code is presented in Figure 3. Before we
explain the code, we describe the iterators used in ERA. There are two principle
iterators; one for the Elements table and the second for the PostingLists table.
The first iterator searches over the index of Elements. For a sid s, let iterator Is

return all the positions of relevant elements in s in ascending order of (docID,
endPos). The function call Is.firstElement() returns the first tuple in Elements
whose sid is equal to s. The function call Is.nextElementAfter(p) returns the
element with the lowest position greater than p in extent s where p is a tuple
of the form (docID, endPos). If no element is found then a dummy element is
returned—an element with end position equal to m-pos and length equal to zero.
The second iterator searches over the index of PostingLists. For a given term
t, an iterator It over the posting list of t is created. It contains a single function
It.nextPosition() that successively returns the next position in the posting list
of t.

We now explain the code of ERA given in Figure 3. The input to the algo-
rithm consists of a list of sid’s sid1, . . . , sidm and a list of terms t1, . . . , tn. The
initialization of the algorithm involves creating variables for results and the nec-
essary iterators. Lines 1 and 2 creates an empty list L to store the results of the
computation and an array C of size m × n to keep intermediate count values of
appearances of terms in elements. The purpose of C is to record for m different
elements how many times each term among t1, . . . , tn has been seen in these
elements. For each sid and term, iterators over Elements and PostingLists re-
spectively, are constructed in lines 3–8 and the initial values from these iterators
are stored in vectors ei and posj, respectively.

After the initialization, the algorithm iterates over all the positions where one
of the given terms appears. In each iteration, the lowest position not handled
so far is being considered. We denote this position by posx and the term that it
refers to by tx. For the term tx and each one of the elements that are currently
being processed, the algorithm checks whether these elements contain tx and
updates C accordingly. More precisely, when an element ei is being processed,
it has three possible relationships with tx, which we explain next.

Efficient, Effective and Flexible XML Retrieval Using Summaries 97

ERA((sid1, . . . , sidm), (t1, . . . , tn))

Input: A list of sid’s and a list of terms
Output: The relevant elements with their term frequencies

1: let L be a new empty list
2: let C[m][n] be an array of size m × n having 0 in all the cells
3: for i = 1 to m do
4: create a new iterator Isidi over elements in the extent of sidi

5: ei ← Isidi .firstElement()
6: for j = 1 to n do
7: create a new iterator Itj over the positions of tj

8: posj ← Itj .nextPosition(tj)
9: repeat

10: let x be the index for which posx = min{pos1, . . . , posn}, and let tx be the term
that starts in position posx

11: for i = 1 to m do
12: if posx < start(ei) then
13: {do nothing}
14: else if start(ei) < posx < end(ei) then
15: C[i][x] ← C[i][x] + 1
16: else if end(ei) < posx then
17: if there is a non-zero cell in the row C[i][1, . . . , n] then
18: create a new list tfei

from the n values C[i][1, . . . , n]
19: add (ei, tfei

) to L
20: reset all the cells C[i][1, . . . , n] to 0
21: ei ← Isidi .nextElementAfter(posx)
22: if start(ei) < posx < end(ei) then
23: C[i][x] ← C[i][x] + 1
24: posx ← Itx .nextPosition()
25: until for all the terms, the maximal position m-pos has been reached
26: return L

Fig. 3. Retrieving the relevant elements

If the element ei starts after posx, then tx is not contained in ei and the counts
in C should not be changed. Yet, at this point, term appearances in positions
greater than posx may be inside ei. Thus, ei still needs to be processed. In this
case, no action is being done (lines 12–13). If posx is between the start position
of ei and the end position of ei then we encountered an appearance of tx inside
ei. In this case, the counting in C is updated (lines 14–15).

If the element ei ends before posx, then there is no need to change C. Further-
more, since all the following appearances of terms will be in a position greater
than posx, at this point in the run, the counting of frequencies for ei is complete
and we can replace ei with the next element from the extent of sidi. If at least
one of the term frequencies of ei is greater than zero, then we add ei and its
frequencies to the list L (lines 17–20). We then replace ei with the next element
in the extent of sidi (line 21) and start the counting for this element. Note that
the term being processed can be inside the new element and in this case we need
to immediately update the counting for this new element (lines 22–23).

When the dummy maximal position has been reached for all terms, the com-
putation is complete and L can be returned. TReX implements ERA using
iterators so that relevant elements can be provided as soon as the computation
of their term frequencies is complete. We do not provide the details in this paper.
In post-processing, we compute the BM25 scores for the retrieved elements and
sort them by their respective scores.

98 M.S. Ali et al.

4.3 Relevance Posting Lists

ERA finds the relevant elements and, initializes them with their term frequencies,
and sorts them by their end position. After computing the BM25 score of each
element and sorting the elements by these scores, the result is stored because
these results can be used to efficiently evaluate the query as a top-k query. TReX
stores these results as relevance posting lists (RPLs) of the terms. An RPL of a
term t is a list of elements that contain t, with each element’s relevance score and
sid. Elements in an RPL are sorted according to their relevance, in descending
order. Rather than physically storing and maintaining many different lists, in
TReX, all RPLs are stored in a single relation named RPL. The schema of this
relation is shown in Figure 2. Each tuple in the RPL relation contains part of
the RPL of some term t. The term t is stored in the token field, and the RPL
(or a part of it) is stored in the rplDataEntry field. The field rplDataEntry
holds a list of 5-tuples, where each 5-tuple identifies an element and consists
of (1) a relevance score, (2) an sid, (3) a document identifier, (4) an offset
to end position, and (5) a length. The elements in rplDataEntry are sorted
in a decreasing order according to their relevance score. For each 5-tuple, the
combination of sid, document identifier and offset-to-end are used as unique
identifiers for elements. The attributes iR, SID, docID and endPos in RPL contain
the values of the first element in rplDataEntry for ordering divided lists.

In TReX, given a list sid1, . . . , sidm of sid’s and a list t1, . . . , tn of terms,
RPLs can be used to efficiently compute top-k answers. Let t be one of the
terms t1, . . . , tn. The top-k relevant elements with respect tot and sid1, . . . , sidm

can be easily retrieved from the RPL of t by iterating over this RPL and selecting
the top elements whose sid is among sid1, . . . , sidm. Note that the elements are
provided sorted by their rank. We can then use threshold algorithm (TA), similar
to the one used in TopX [24], in order to combine for each element its scores in
the n RPLs, and return the top-k answers. Note that this algorithm is a version
of the TA algorithm proved by Fagin et al. [11] which is instance optimal in
terms of the number of readings from the lists.

5 Experimental Results

We experimented with TReX in order to measure the efficiency and effectiveness
of our retrieval methods. Two other goals of our experiments were to investigate
the influence of using different summaries on the system’s performance and to
compare the running time of ERA against TA. We implemented TReX in Java
and used Berkeley DB (BDB) for the indexed tables. Our initial experiments
were conducted over the IEEE collection provided in the INEX 2005 benchmark.
This collection contains 16819 XML documents, and it has a size of 0.76GB. For
the IEEE collection, the sizes of the tables Elements and PostingLists, stored
in BDB, were 1.52GB and 8.05GB, respectively. Follow up experiments were
conducted on the Wikipedia collection which contains approximately 645,719
documents and has a size of 5.01GB. The follow up experiments used the same
basic configuration as was used for the IEEE collection.

Efficient, Effective and Flexible XML Retrieval Using Summaries 99

Table 1. NEXI Queries and Translations for IEEE

Query ID NEXI Query

203 sec[about(., code signing verification)]

223 article[about(.//sec, wireless ATM multimedia)]

233 article[about (.//bdy, synthesizers) and about (.//bdy, music)]

236 article[about(., machine translation approaches -programming)]

260 bdy//*[about(., model checking state space explosion)]

Query ID Tag sid’s Incoming sid’s Keywords

203 6, 40
7, 46, 82, 89, 493, 607, 619,

630, 761, 1995, 2239
code, signing, verification

223 6, 40
7, 46, 82, 89, 493, 607, 619,

630, 761, 1995, 2239
wireless, ATM, multimedia

233 6,32 7,33 synthesizers, music

236 6 7 machine, translation, approaches

260 6, 32 7, 33 model, checking, state, space, explosion

We tested TReX on many INEX queries; however, we report here only the
detailed results of five arbitrary queries from IEEE that seemed to us as rep-
resenting the typical behavior of all the other queries. Similarly, the follow up
results from five arbitrary queries from Wikipedia show that performance with
a larger corpus was comparable to IEEE results. Table 1 shows the queries we
chose and the translation of the IEEE queries for both the tag summary and
incoming summary. Table 2 shows the queries we chose and the number of sid’s
used in the query translations for the incoming summary.

Table 2. NEXI Queries and Number of sid’s in Translations for Wikipedia

Query
ID

NEXI Query
of
sid’s

291 article//figure[about(., Olympian god goddess)] 1388
292 article//figure[about(., Renaissance painting Italian Flemish -French -German)] 1388
346 article[about(.,+unrealscript language api tutorial)] 4
356 article[about(.,natural language processing) and about(.,information retrieval)] 4
388 article[about(.,rhinoplasty)] 4

Table 3. Average Evaluation Time (in seconds) ERA Using Incoming and Tag Sum-
maries for IEEE

Query ID
Tag

Summary
Incoming
Summary

Efficiency
Improvement

203 4873 1651 66%
233 1991 696 65%
236 5643 1812 68%
260 8860 1640 81%

100 M.S. Ali et al.

Table 4. Average Evaluation Time (in seconds) TA Using Incoming Summary for
IEEE

Query ID top10 top50 top100 top500 top1000 top1500
203 28 61 93 227 312 486
233 0.59 0.94 0.98 1 0.77 0.73
236 4 16 21 41 53 60
260 14 59 92 237 359 460

Table 5. Evaluation Time (in seconds) ERA Using Incoming for Wikipedia

Query ID
Incoming
Summary

291 1953
292 3435
346 1092
356 1283
388 637

The Wikipedia results in Table 5 were generated using incoming summaries
with alias. The structure of the summary tree for Wikipedia is significantly
larger and more complex than that of the IEEE corpus. The Wikipedia contains
about 6 times more sid’s than IEEE. The evaluation times for Wikipedia were
in the same scale of magnitude as IEEE. The IEEE topics were structurally
constrained to article bodies and article sections. Wikipedia queries 291 and
292 were constrained to figures in articles. Wikipedia queries 346, 356 and 388
were structurally constrained to articles. From these results, we conjecture that
the factors in determining the running time of queries are the number of sid’s
considered, the size of the sid summary extents, and, most importantly, the
number of matching tokens in the corpus.

Although we evaluated our queries on both the IEEE collection and Wikipedia,
wemeasure the effectivenessofour retrieval techniquesonly on the IEEEcollection.
The results are presented in Tables 3 and 4. We compared our results to the results
of other INEX participants. This is shown below in Figure 4. We ran the compar-
isons using the INEX Evaluation Package EvalJ[2]. In this comparison, recall and
precision of query results are computed based on ranking performed by humans.

Figure 4 shows the comparative effectiveness of two representative queries,
Query 203 and Query 223 (listed in Table 1), using the tag summary and the in-
coming summary. The results of TReX are depicted with a bold line whereas the
results of other INEX participants are depicted with light gray lines. Intuitively,
each line shows the precision gained, as a function of the recall, for a single sys-
tem. That is, a line of a system S going through a point (r, p) means that for a
given k the top-k answers have a recall of r, and the precision of these k answers
is p. The graphs in Figure 4 show that the incoming summary provides better
results than the tag summary; however, the superiority of the incoming summary
is not always the case. Note that, for Query 203, when using the incoming sum-
mary, 50% of the elements a human would include in the answer were given the
highest scores by TReX, which means that they could be retrieved with 100%

Efficient, Effective and Flexible XML Retrieval Using Summaries 101

(a) Query 203 - Tag Sum-

mary

(b) Query 203 - Incoming

Summary

(c) Query 223 - Tag Sum-

mary

(d) Query 223 - Incoming

Summary

Fig. 4. Comparative effectiveness of TReX using EvalJ among other INEX 2005 par-
ticipants

precision. Our tests suggest that the effectiveness of TReX is comparable to, and
in many cases better than, the effectiveness of other systems that participated
in INEX.

An important conclusion from our experiments is that summaries have a ma-
jor influence on the efficiency and effectiveness of the system. Specifically, TReX
had performed better with incoming summary than with tag summary. One ex-
planation of this is that the tag summary does not take into account the ancestor-
descendant relationship among elements, and thus, the partition it provides for
the elements is coarser than the partition provided by the incoming summary.
This means that every sid represents more elements, and so, more elements need
to be processed by ERA. Also, using summaries causes query results to be less
accurate because the structural constraints are evaluated in a flexible way that
stems from the type of summary employed. These results are promising but not
definitive. In the future, we hope to address this issue with more broad-ranging
experimental results. We leave the question of how to choose an appropriate
summary for future work.

6 Conclusion

In this paper we presented TReX—a system for efficient XML retrieval us-
ing summaries. The main contribution of our work is showing how to utilize

102 M.S. Ali et al.

summaries for a vague interpretation of structural constraints: either when all
the answers to a query must be returned or when only the top-k answers are
needed. We tested our retrieval algorithm on data and queries from INEX. The
tests show that our retrieval method is efficient and effective. Our results provide
a new and general perspective to structural evaluation in INEX. The flexibility
and efficiency of the approach is coupled with a general framework so XML sum-
maries can be easily incorporated into any XML retrieval system. Future work
includes a study of the potential of using summaries for answering queries under
a strict interpretation of the structural constraints. It also includes a study of
the relationship between exhaustive retrieval and top-k query answering.

References

1. INEX: Initiative for the evaluation of XML retrieval. (2005)
http://inex.is.informatik.uni-duisburg.de:2005

2. EvalJ: INEX evaluation package (2006) http://evalj.sourceforge.net
3. Al-Khalifa, S., Yu, C., Jagadish, H.V.: Querying structured text in an XML data-

bases. In: Proc. SIGMOD Conf., pp. 4–15 (2003)
4. Amer-Yahia, S., Botev, C., Shanmugasundaram, J.: TeXQuery: a full-text search

extension to XQuer. In: Proc. WWW Conf., pp. 583–594 (2004)
5. Amer-Yahia, S., Lakshmanan, L.V.S., Pandit, S.: FleXPath: flexible structure and

full-text querying for XML. In: Proc. SIGMOD Conf., pp. 83–94 (2004)
6. Barta, A., Consens, M.P., Mendelzon, A.O.: Benefits of path summaries in an xml

query optimizer supporting multiple access methods. In: Proc. VLDB Conf., pp.
133–144 (2005)

7. Clark, J., DeRose, S.: XML Path Language (XPath) version 1.0. (1999)
http://www.w3.org/TR/xpath

8. Cohen, S., Mamou, J., Kanza, Y., Sagiv, Y.: XSEarch: A semantic search engine
for XML. In: Proc. VLDB Conf., pp. 45–56 (2003)

9. Consens, M.P., Milo, T.: Optimizing queries on files. In: Proc. SIGMOD Conf., pp.
301–312 (1994)

10. Robertson, et al.: Some simple effective approximations to the 2-poisson model for
probabilistic weighted retrieval. In: Proc. SIGIR Conf., pp. 232–241 (1994)

11. Fagin, et al.: Optimal aggregation algorithms for middleware. In: Proc. PODS
Conf., pp. 102–113 (2001)

12. Goldman, R., Widom, J.: Dataguides: Enabling query formulation and optimiza-
tion in semistructured databases. In: Proc. VLDB Conf., pp. 436–445 (1997)

13. Guo, L., et al.: XRANK: Ranked keyword search over XML documents. In: Proc.
SIGMOD Conf., pp. 16–27 (2003)

14. Hristidis, V., Papakonstantinou, Y., Balmin, A.: Keyword proximity search on
XML graphs. In: Proc. ICDE Conf., pp. 367–378 (2003)

15. Kaushik, et al.: Covering indexes for branching path queries. In: Proc. SIGMOD
Conf., pp. 133–144 (2002)

16. Kaushik, et al.: Exploiting local similarity for indexing paths in graph-structured
data. In: Proc. ICDE Conf., pp. 129–140 (2002)

17. Kaushik, et al.: On the integration of structure indexes and inverted lists. In: Proc.
SIGMOD Conf., pp. 779–790 (2004)

18. Lu, W., Robertson, S.E., MacFarlane, A.: Field-weighted xml retrieval based on
bm25. In: Proc. INEX Workshop, pp. 161–171 (2006)

http://inex.is.informatik.uni- duisburg.de:2005
http://evalj.sourceforge.net
http://www.w3.org/TR/xpath

Efficient, Effective and Flexible XML Retrieval Using Summaries 103

19. Malik, S., et al.: Overview of INEX 2005. In: Fuhr, N., Lalmas, M., Malik, S.,
Kazai, G. (eds.) INEX 2005. LNCS, vol. 3977, Springer, Heidelberg (2006)

20. Marian, A., Amer-Yahia, S., Koudas, N., Srivastava, D.: Adaptive processing of
top-k queries in XML. In: Proc. ICDE Conf., pp. 162–173 (2005)

21. Milo, T., Suciu, D.: Index structures for path expressions. In: Proc. ICDT Conf.,
pp. 277–295 (1999)

22. Rizzolo, F., Mendelzon, A.O.: Indexing XML data with ToXin. In: Proc. WebDB
Workshop, pp. 49–54 (2001)

23. Schlieder, T., Meuss, H.: Querying and ranking XML documents. Journal of the
American Society for Information, Science and Technology 53(6), 489–503 (2002)

24. Theobald, M., Schenkel, R., Weikum, G.: An efficient and versatile query engine
for TopX search. In: Proc. VLDB Conf., pp. 625–636 (2005)

25. Trotman, A., Sigurbjornsson, B.: Narrowed extended XPath I (NEXI). In: Proc.
INEX Workshop, pp. 16–39 (2004)

Evaluating Structured Information Retrieval and

Multimedia Retrieval Using PF/Tijah

Thijs Westerveld1, Henning Rode2, Roel van Os2, Djoerd Hiemstra2,
Georgina Ramı́rez1, Vojkan Mihajlović2, and Arjen P. de Vries1

1 CWI, Amsterdam, The Netherlands
2 University of Twente, Enschede, The Netherlands

Abstract. We used a flexible XML retrieval system for evaluating struc-
tured document retrieval and multimedia retrieval tasks in the context
of the INEX 2006 benchmarks. We investigated the differences between
article and element retrieval for Wikipedia data as well as the influence
of an elements context on its ranking. We found that article retrieval
performed well on many tasks and that pinpointing the relevant pas-
sages inside an article may hurt more than it helps. We found that for
finding images in isolation the associated text is a very good descriptor
in the Wikipedia collection, but we were not very succesful at identifying
relevant multimedia fragments consisting of a combination of text and
images.

1 Introduction

CWI and the University of Twente collaborated again for INEX. This year, we
participated in the Ad Hoc and Multimedia tasks. For both tasks, we relied on the
PF/Tijah system [3], a system for flexible information retrieval from structured
document collections. PF/Tijah integrates NEXI based IR functionality and full
XQuery support.

In the Ad Hoc track we focused on three aspects. First, we studied whether
element retrieval could do better than article retrieval. Second, we experimented
with context weighting. Third, we looked at approaches to identify good entry-
points in relevant articles for the AllInContext and BestInContext tasks.

For the multimedia track, we did not do any image processing, all our ap-
proaches are purely text and context based. For the Multimedia fragments task
(MMfragments), we extended the Wikipedia collection with the metadata from
the image collection. Also, we made sure any submitted result contained at least
one image. We experimented with query variants based on just the title terms
of the distributed topics, as well as with extending this with terms originating
from castitle’s or image examples.

The remainder of this paper is organised as follows. First, we introduce the
PF/Tijah system in Section 2. Then, Sections 3 and 4 discuss our approaches and
results for the Ad Hoc and Multimedia tracks. The paper ends with conclusions
in Section 5.

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 104–114, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Evaluating Structured Information Retrieval and Multimedia Retrieval 105

2 The PF/Tijah System

PF/Tijah is a research project run by the University of Twente with the goal
to create a flexible environment for setting up search systems. By integrating
the PathFinder (PF) XQuery system [2] with the Tijah XML information re-
trieval system [4] it combines database and information retrieval technology. The
PF/Tijah system is part of the open source release of MonetDB/XQuery devel-
oped in cooperation with CWI Amsterdam and the University of München. The
system is available from SourceForge.

PF/Tijah includes out-of-the-box solutions for common tasks like index cre-
ation, stemming, stopword removal, and result ranking for structured queries
(supporting several retrieval models), but it remains the same time open to any
adaptation or extension.

The PF/Tijah system has a number of unique features that distinguish it from
most other open source information retrieval systems:

– It supports retrieving arbitrary parts of the textual data, unlike traditional
information retrieval systems for which the notion of a document or fields
need to be defined up front at indexing time. A query can simply ask for
any XML tag-name as the unit of retrieval without the need to re-index the
collection.

– The system allows complex scoring and ranking of the retrieved results by
directly supporting the NEXI query language.
return

pf:tijah-query($root, "//html[about(.,IR DB)]//p[about(.,XML)]")

– PF/Tijah embeds NEXI queries as functions in the XQuery language. This
way the system supports ad hoc result presentation by means of its query
language. For instance, when searching for a special issue of a journal, it
is easy to print any information from that retrieval result on the screen
in a declarative way (i.e., not by means of a general purpose programming
language), such as the special issue title, its date, the editors and the preface.
This is simply done by means of XQuery element construction. As another
example, we can formulate a query that performs a whole INEX run and
gathers the results in the required output format:
for $topic in doc("/INEX/topics2006.xml")//inex topic

let $result := tijah-query-id($c, $topic/castitle/text())

return

<topic topic-id=.{$topic/@topic id}">
{ for $r in tijah-nodes($result) return

<result>

<file> { $r/name/@id } </file>

<path> { local:getINEXPath($r) } </path>

<rsv> { tijah-score($result, $r) } </rsv>

</result> }
</topic>

106 T. Westerveld et al.

– PF/Tijah supports text search combined with traditional database querying,
including for instance joins on values. For instance, one could formulate the
difficult INEX topic 14 from 2002 in the following way:
Find figures that describe the Corba architecture and the paragraphs that
refer to those figures. Retrieved components should contain both the figure
and the paragraph referring to it.
let $doc := doc("inex.xml")

for $p in tijah-query($doc, "//p[about(.,corba architecture)]")

for $fig in $p/ancestor::article//fig

where $fig/@id = $p//ref/@rid

return <result> { $fig, $p } </result>

Recent developments in the PF/Tijah search module mainly concerned stabil-
ity, scalability and performance. We can index the current Wikipedia collection
in 25 to 30 minutes on a 64 bits machine with a 2Ghz Opteron processor and 8
Gb of memory running Fedora Core 6. Querying times are shown in the following
table:

Simple article query //article[about(.,X)] (top 10, ranking only) 2 sec
Full INEX //article[about(.,X)] query (top 1500, INEX results format) 28 sec
Full INEX //*[about(.,X)] query (top 1500, INEX results format) 141 sec
Complete INEX run

3 Ad Hoc Track

The characteristics of the Wikipedia collection differ considerably from the IEEE
collection used before. This inspired us to test some ideas that seem in partic-
ular suitable for this new collection, but also to revisit some of the approaches
that were successful on IEEE and to test how well these techniques work on a
very different set of documents. We studied element vs. article retrieval, con-
text weighting and the entry-point tasks, each of these is discussed in a separate
subsection below, but first we discuss our general approach.

3.1 Approach

For all our submissions, we employed the PF/Tijah system. We indexed the
entire Wikipedia collection, without removing any structural information. The
index was stemmed and stopwords were removed. All our submissions are based
on the XML variant of the unigram language modelling approach to information
retrieval [4]. Elements are scored based on a mixture of foreground or docu-
ment statistics and background or collection statistic. When we need to combine
information from different levels in the hierarchy, for example for queries like
//article[about(.,X)]//*[about(.,Y)] we use a product of the element scores.
All elements always have a score greater than zero because of the background
statistics. Therefore, the product based combination functions as a weak AND.

Evaluating Structured Information Retrieval and Multimedia Retrieval 107

We believe it is useless to show the same information twice to a user, and thus
removed overlap from all our runs. As a result, all our runs can be interpreted as
submissions for the Focused task and that’s how we evaluate them below. Our
focused runs are constructed from (thorough) pure language modelling runs, by
iteratively going down the ranked lists and removing all lower ranked ancestor
and descendant of a retrieved element.

3.2 Element vs. Article Retrieval

The IEEE collection contains mainly lengthy documents where it makes sense
to retrieve parts rather than the whole document. For the Wikipedia collection
this is the case to a much lesser extend. Wikipedia documents tend to be short
and focused. Moreover, a substantial amount of real Wikipedia queries has a
corresponding Wikipedia document whose title matches the query exactly. This
indicates that for many queries, an entire document may be a good answer.
We investigated this by comparing document retrieval and element retrieval ap-
proaches. To this end, we ran two types of title only queries against our PF/Tijah
system:

– //article[about(.,$title)]

– //*[about(.,$title)]

Where $title is replaced by the terms from the <title> field. The results for
these runs on the Focused task are shown in Figure 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

no
rm

al
is

ed
 C

um
ul

at
ed

 G
ai

n

Rank as %

//article[about(.,$title)]
//*[about(.,$title)]

Fig. 1. Element vs. Article retrieval, normalised Cumulated Gain (overlap: on, quan-
tisation: strict)

108 T. Westerveld et al.

The runs are indistinguishable, indicating it makes no difference whether we
retrieve full articles, or unrestricted elements. If we look closer at the retrieved
elements, this makes sense. Figure 2a shows the element types we retrieved most
in the element run. Almost half of the elements we retrieve are either body or
article, and thus very close to full documents. Another 11% of the retrieved
elements are of type collectionlink, and point indirectly to another article. We
did not exploit this indirection, but these numbers indicate that effectively our
element run was mainly pointing at full documents rather than smaller parts.
This does not mean element retrieval is useless in this collection, though. Many
of the relevant elements are of a much finer granularity, 45% of the relevant items
are either paragraphs (p) or sections (section) (see Figure 2b).

32.5% body 32.7% p
17.3% p 12.4% section
16.3% article 9.0% item
11.2% section 8.4% emph3
11.0% collectionlink 6.3% emph2

Most retrieved element
types with element run

Most relevant element
types

a b

Fig. 2. Element types. Most retrieved in element run (//*[about(.,$title)]) (a) and
most relevant (b) element types

3.3 Context Weighting

Previous INEX results have shown that it is important to take an element’s
context into account. In particular article weighting has been successful [1,4].
Article weighting takes the article context of an element into account; good
elements in good articles will be ranked higher than good elements in bad articles.
We investigated whether article weighting is useful for element retrieval in the
new Wikipedia collection.

In addition, articles in wikipedia have a clear and concise title, which may help
in identifying relevant articles. We experimented with using this name together
with the article content for article retrieval (and as a side-effect for setting the
context for element retrieval).

We compared article retrieval with and without names1:

– //article[about(.,$title)]

– //article[about(.,$title) OR about(.//name,$title)]

And we experimented with article weighting:

– //*[about(.,$title)]

– //article[about(.,$title) OR about(.//name,$title)]//*[about(.,$title)]

1 A limited preliminary study indicated that a disjunctive combination of article con-
tent and name performs better than a conjunctive combination.

Evaluating Structured Information Retrieval and Multimedia Retrieval 109

Figure 3 and 4 show the results for name and article context respectively.
Context and article weighting appear to have no influence on retrieval effective-
ness. Thus context appears to be less influential than in the IEEE collection.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

no
rm

al
is

ed
 C

um
ul

at
ed

 G
ai

n

Rank as %

//article[about(.,$title)]
//article[about(.,$title) OR about(.//name,$title)]

Fig. 3. Normalised Cumulative Gain for article and article OR name runs

3.4 Entrypoint Tasks

We submitted some basic runs for both the AllInContext and the BestInContext
tasks. These submissions started from top 1500 focused runs without overlap.

For AllInContext we grouped the retrieved elements by article and scored
the articles by aggregating the element scores (for top 1500 elements only).
We experimented with both maximum and average as aggregation functions.
Within each article, we simply kept all elements that made it to the top 1500 of
the original focused run. Thus, our AllInContext runs are nothing more than a
re-ordering of the Focused run.

For BestInContext we did something similar. Again, we group by article, but
now we order articles by the sum of the element scores, since we want articles
with a lot of good material on top. Our assumption is a user wants to see all
relevant passages in an article, thus as a best entry point, we simply returned
the first element in document order that was in the focused top 1500. We did
not extend our best entry point run with articles that did not made it to the
focused top 1500, thus our BestInContext runs typically contain fewer than the
allowed 1500 entry-points.

The approach was applied to both the plain and article weighted elements
runs. Figure 5 shows our results in the AllinContext task. The two element
runs (ARTorNAME STAR AVG and ARTorNAME STAR MAX) are indistin-
guishable. The article run (ARTorNAME) is clearly better. Apparently, in this

110 T. Westerveld et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

no
rm

al
is

ed
 C

um
ul

at
ed

 G
ai

n

Rank as %

//*[about(.,$title)]
//article[about(.,$title) OR about(.//name,$title)]//*[about(.,$title)

Fig. 4. Normalised Cumulative Gain for //* runs with and without article weighting

collection, selecting the best elements inside an article is still a hard task, and
the best strategy is to simply return the entire article. Similar results were found
on the BestInContext task:

4 Multimedia Track

The CWI/Utwente participation in the multimedia track is without any image
processing; all our submitted runs are purely text based. Still, we adapted our
runs to cater for the multimedia information needs. We augmented the Wikipedia
collection with metadata, we filtered the results for images and we added some
knowledge about the example images to our queries. Below these approaches are
discussed in detail.

4.1 Augmenting the Collection with Image Metadata

The MMfragments is similar to the Ad Hoc track in that it asks for fragments
from the Wikipedia collection. The main difference is that the information needs
in this task have a clear multimedia character. The idea is that a system would
return fragments containing relevant images together with relevant text. The
PF/Tijah system and the Language Models used are designed for returning
relevant (structured) text. To be able to work with images, we tried to get extra
textual information in, to help us decide which are the relevant images. We
did this by adding text from the image metadata document as available in the
Multimedia images (MMimages) collection. Each < image > tag in the collection
is augmented with the corresponding metadata from the MMimages collection.
We did not try to separate names, users and captions, we simply added the
contents of the entire metadata document as text under the image tag.

Evaluating Structured Information Retrieval and Multimedia Retrieval 111

 0

 0.2

 0.4

 0.6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
ec

is
io

n

recall

{/=26 INEX 2006: Results’ Summary}
{/=20 metric: generalized Precision/Recall}

{/=20 task: AllInContext}

ARTorNAME
ARTorNAME_STAR_AVG
ARTorNAME_STAR_MAX

Fig. 5. AllinContext, generalised precision/recall: cwi/utwente compared to the com-
petition

4.2 Filtering Results

Since the MMfragments deals with multimedia information needs, it seems wise
to return only fragments that contain images. We made sure this was the case
by filtering our results. Not all < image > tags in the Wikipedia correspond to
images that are actually part of the INEX multimedia collections; images that
are not part of these collections will not be visible to users during assessments.
Therefore, we also removed all results that contained references to images that
are not in the collection. This way, we made sure all our returned fragments
contain at least one visible image from the multimedia collections.

4.3 Experiments

We participated in the MMfragments and MMimages tasks. For both tasks, we
experimented with relatively simple text only queries, aiming to show that text
only queries can be competitive. Below we discuss our experimental results.

MMfragments. For MMfragments we submitted one full article run and three
element runs. For the element runs, we did not directly use the given castitle,
but we experimented with runs of the form: //*[about(.,X)], where X contained
some set of terms taken from the topic. We experimented with the following sets
of terms:

STAR TITLE the title field
CAS noMM the terms from the castitle field without the visual examples and

concepts

112 T. Westerveld et al.

CAS MMtext the terms from the castitle field plus the textual terms from the
example images metadata documents (again no concepts).

The article run (ART TITLE), was based on the title field of the topic only.
These queries were run against the augmented collection and the results were

filtered to make sure all returned fragments contain images from the collection.
The results are very disappointing; with mean average effort precision values
of around 0.001. The main reason for this is that, like in the Ad Hoc task, we
remove overlap from the results. This means we submitted Focused runs, while
the results are evaluated using the thorough setting. The results for our thorough
runs that still contain overlap show median performance, see Figure 6.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

In
te

rp
ol

at
ed

 E
ffo

rt
 P

re
ci

si
on

Gain Recall

CAS_MMtext
CAS_noMM

STAR_TITLE
ARTICLE_STAR

Fig. 6. MMfragments results: cwi/utwente runs compared to competition

MMimages For MMimages, we submitted two very basic runs:

article-title An article run, only using the title field of the topic:
article[about(.,$title)]

cas-noMM A castitle run ignoring the visual hints, we removed all image ex-
amples and concept references from the NEXI query.

Figure 7 shows these basic runs give highly competitive performance on the
MMimages task. Clearly it is hard to beat a text only baseline on this task.

5 Conclusion

PF/Tijah was used at INEX for the first time. The flexibility of the system and
the ease with which it allows the modification and combination of XML data

Evaluating Structured Information Retrieval and Multimedia Retrieval 113

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Interpolated Recall at

Interpolated Recall Precision Averages

UTWENTE-frag-article-title
UTWENTE-img-cas-noMM

Fig. 7. MMimages results: cwi/utwente runs compared to the competition

makes it a very useful tool for (XML) IR experiments. For short article only
queries, the system is reasonably fast; for larger queries it takes a bit longer, but
for IR experiments, this is still acceptable.

Without adapting the models we used for the IEEE collection in previous
years, the unigram language modelling approach retrieves elements that are of-
ten (almost) complete articles or links to them. Moreover, for the AllInContext
and BestInContext tasks, the tasks most close to a realistic setting and to the
way the assessment procedure is set-up, retrieving complete articles rather than
smaller elements appears to be a useful strategy. Still, among the known rele-
vant elements are many smaller elements like paragraphs and sections. Perhaps
these smaller relevant elements appear in clusters. Further study is needed to
investigate whether this explains the success of the article retrieval strategies.

Our text only approach to multimedia retrieval was very successful on the
MMimages task, but less so on the MMfragments task. Perhaps a smarter way
of filtering the results is needed to retrieve the appropriate multimedia fragments.

References

1. Arvola, P., Junkkari, M., Kekäläinen, J.: Generalized contextualization method for
xml information retrieval. In: CIKM ’05. Proceedings of the 14th ACM international
conference on Information and knowledge management, New York, NY, pp. 20–27.
ACM Press, New York, NY (2005)

2. Boncz, P., Grust, T., van Keulen, M., Manegold, S., Rittinger, J., Teubner, J.: Mon-
etdb/xquery: a fast xquery processor powered by a relational engine. In: SIGMOD
’06. Proceedings of the 2006 ACM SIGMOD international conference on Manage-
ment of data, New York, NY, pp. 479–490. ACM Press, New York, NY (2006)

114 T. Westerveld et al.

3. Hiemstra, D., Rode, H., van Os, R., Flokstra, J.: Pftijah: text search in an XML data-
bases system. In: Proceedings of the 2nd International Workshop on Open Source
Information Retrieval (OSIR) (2006)

4. List, J., Mihajlovic, V., Ramirez, G., de Vries, A., Hiemstra, D., Blok, H.: Tijah:
Embracing ir methods in xml database. Information Retrieval 8(4), 547–570 (2005)

EXTIRP: Baseline Retrieval from Wikipedia

Miro Lehtonen1 and Antoine Doucet1,2

1 Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2b)

FI–00014 University of Helsinki
Finland

{Miro.Lehtonen,Antoine.Doucet}@cs.helsinki.fi
2 IRISA-INRIA

Campus de Beaulieu
F-35042 Rennes Cedex

France
Antoine.Doucet@irisa.fr

Abstract. The Wikipedia XML documents are considered an interest-
ing challenge to any XML retrieval system that is capable of indexing
and retrieving XML without prior knowledge of the structure. Although
the structure of the Wikipedia XML documents is highly irregular and
thus unpredictable, EXTIRP manages to handle all the well-formed XML
documents without problems. Whether the high flexibility of EXTIRP
also implies high performance concerning the quality of IR has so far
been a question without definite answers. The initial results do not con-
firm any positive answers, but instead, they tempt us to define some
requirements for the XML documents that EXTIRP is expected to in-
dex. The most interesting question stemming from our results is about
the line between high-quality XML markup which aids accurate IR and
noisy “XML spam” that misleads flexible XML search engines.

1 Introduction

The experimental XML retrieval system of University of Helsinki — EXTIRP [1]
— needed only slight modification when adapted to indexing and retrieving in-
formation from the Wikipedia document collection. Application of the existing
methods to a new set of documents was especially interesting: EXTIRP has
previously been tested on the IEEE article collection only, although it can han-
dle documents of arbitrary document types. The previous test results could
be explained by alleged fine-tuning to a single document collection because we
were not able to show how EXTIRP worked on other collections. Therefore, the
Wikipedia documents added another valuable dimension to the testing history
of EXTIRP.

Partly because of our low resources and partly because of our desire to keep
our system from 2005 pristine in that there was no tuning one way or another,
we did not analyse the Wiki documents before they were indexed and queried for
the official submissions. We also have left out many of the characteristic features

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 115–120, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

116 M. Lehtonen and A. Doucet

that have been part of EXTIRP during its short history. These features include
query expansion, intra-document reference analysis, as well as weighting schemes
for titles and inline elements. The remaining system has come close to a baseline
retrieval model based on the vector space model and cosine similarity.

This article is organised as follows. The anatomy of EXTIRP is described in
Section 2. The selection of the index units is explained in Section 3. The results
are analysed in Section 4 and finally conclusions are drawn in Section 5.

2 Background

EXTIRP scans through the document collection and selects disjoint fragments
of XML to be indexed as atomic units. Typical fragments include XML elements
marking sections, subsections, and paragraphs. Examples and more details about
the selection algorithm are included in Section 3. The disjoint fragments are
treated as traditional documents which are independent of each other. The pros
include that the traditional IR methods apply, so we use the vector space model
with a weighting scheme based on the tf*idf. The biggest of the cons is that the
size of the indexed fragments is static, and if bigger or smaller answers are more
appropriate for some query, the fragments have to be either divided further or
combined into bigger fragments.

Two separate inverted indices are built for the fragments. A word index is
created after punctuation and stopwords are removed and the remaining words
are stemmed with the Porter algorithm [2]. The phrase index is based on Maximal
Frequent Sequences (MFS) [3]. Maximal phrases of two or more words are stored
in the phrase index if they occur in seven or more fragments. The threshold of
seven comes from the computational complexity of the algorithm. Although lower
values for the threshold produce more MFSs, the computation itself would take
too long to be practical. More details concerning the configuration of the phrase
index are included in the PhD thesis of Antoine Doucet [4].

When processing the queries, we compute the cosine similarity between the
document and the base term vectors which results in a Word RSV value. In a
similar fashion, each fragment vector gets a similarity score MFS RSV for phrase
similarity. These two scores are aggregated into a single RSV so that the aggre-
gated RSV = α * Word RSV + β * MFS RSV, where α is the number of distinct
query terms and β is the number of distinct query terms in the query phrases.

3 Selective Indexing

The selection of indexed fragments is based on two parameters: fragment size
(min and max) and the proportion of Text and Element nodes (T/E measure)
[5]. The algorithm starts from the document root and traverses the document
tree in document order. The following steps are then iterated:

1. If the element is too big, move on to the next node and start over (from 1).
2. If the content looks like structured data (T/E<1.0), move on to the next

node and start from 1.

EXTIRP: Baseline Retrieval from Wikipedia 117

3. If the element is too small, skip the subtree, move on to the next node and
start from 1.

4. Index the element as an atomic unit, skip the subtree, move on to the next
node and start from 1.

The resulting fragment collection does not cover the whole document collec-
tion. For example, parts of the documents that consist mostly of elements are
discarded. Previous experiments on IEEE articles have shown that the algorithm
works: it reduces the index size and improves retrieval precision. When tested
with the article collection, bibliographic and other data were successfully ex-
cluded from the full-text index [6]. Therefore, the Wikipedia XML documents
were an interesting challenge for our algorithm.

Figure 1 shows the document with the lowest T/E value in the Wikipedia
XML collection. The nested cadre elements are there either because of a faulty
conversion from the Wiki format into XML or because of inconsistency in the
source data. Because of the extra elements, the text content of this document
was not included in the full-text index of EXTIRP, and thus it could not be
retrieved, regardless of the query. However, the nested structures created with the
proliferating XML elements are highly artificial. Therefore, it is questionable to
exclude text content from the full-text index because of such artificial structures.

Our observations raise an interesting question: What is the validity of this
evaluation at INEX, where the test documents can only be used in the evaluation
because the structure is completely useless elsewhere?

4 Results

The results from INEX 2005 showed that the official evaluation metrics [7] do
not favour systems like EXTIRP because there is no reward for returning “too
small” answers. The 2005 version of EXTIRP could not adjust the granularity
of the answers according to the query, but the granularity came directly from
the indexed document fragments [8]. The 2006 version of EXTIRP comes with
the same drawback even though some “near misses” are rewarded.

In 2006, we only submitted one run for the CO.Focused task. The fragment
size in the index was limited to the range of 150–7,000 characters of text content.
Only the title and the keyword part of the queries were considered. The overall
poor results according to the official metrics are shown in Table 1.

The poor overall performance has several possible explanations. First, all an-
swers shorter than 500 bytes of XML markup were discarded because of the
assumption that short answers are not worth retrieving. This assumption no
longer holds as the official metrics reward short answers, too, as long as they
are relevant to the query. We also observe that the rankings with the filtered
assessments are systematically better than those with the original assessments
that include very short relevant answers.

Second, EXTIRP has always had a better performance with the strict quan-
tisation of the assessments than with the generalised one which was the only

118 M. Lehtonen and A. Doucet

</cadre>
</cadre>

</cadre>
</cadre>

</cadre>
</cadre>

</cadre>
</cadre>

</cadre>
</cadre>

</cadre>
</cadre>

</cadre>
</cadre>
1987 "Recent Acquisitions", Tel Aviv Museum of Art
<cadre>
<cadre>
<cadre>
<cadre>
<cadre>
<cadre>
<cadre>
<cadre>
<cadre>
<cadre>
<cadre>
<cadre>
<cadre>
<cadre>
<cadre>
<cadre>
<cadre>
<cadre>
<cadre>
<cadre>

"Recent Acquisitions", Isreal Museum, Jerusalem, Isreal "20 Years of Occupation",
Bograshov Gallery, Tel Aviv, Israel (catelogue) "New Israeli Realism", traveling
exhibition, Omanut La’am (catelogue) "Artisrael, the 1980’s", Leonard Perlson Gallery,
New YorkCity, "Haifa, Portrait of the City", Haifa Museum, Haifa Israel (catelogue)
"Fresh Paint", Tel Aviv Museum of Art (catelogue)

</cadre>
</cadre>

</cadre>
</cadre>

</cadre>
</cadre>

</cadre>
</cadre>

</cadre>
</cadre>

</cadre>
</cadre>

</cadre>
</cadre>

</cadre>
</cadre>

</cadre>
</cadre>

</cadre>
1989 International Biennale of Graphic Art, Ljublijana,
Yugoslavia (catelogue)
<cadre>
<cadre>
<cadre>

Fig. 1. An excerpt from the document ‘3125748.xml’ with a T/E value of 0.14

EXTIRP: Baseline Retrieval from Wikipedia 119

Table 1. The submission “UHel Run1” measured with nxCG, generalised quantisation.
A total of 85 submissions are included in the ranking.

Overlap on Filtered assesments Overlap off Filtered assesments

Cutoff Rank Score Rank Score Rank Score Rank Score

MAP5 67 0.2316 65 0.2299 70 0.2371 68 0.2371

MAP10 70 0.1818 69 0.1821 71 0.1898 69 0.1898

MAP25 73 0.1295 71 0.1315 73 0.1358 71 0.1358

MAP50 74 0.0960 73 0.1001 73 0.0990 72 0.0992

quantisation in 2006. Third, what EXTIRP assumes of the quality of XML is
based on observations of real XML documents that are usable outside the con-
text of INEX. For example, we assume that the XML structure of the documents
is designed before any content is converted into that structure and that the XML
documents have a real use case instead of only being test material for researchers.

Despite the relatively poor performance, the results do show some signs of
stability in the performance of EXTIRP. Along the lines of the previous INEX
results from 2004 and 2005, the relative ranking of EXTIRP decreases as the
cutoff value increases. This supports the earlier observation that EXTIRP is
more geared towards high precision tasks than high recall ones.

5 Conclusion

As a simple implementation of an XML retrieval system, the 2006 version of
EXTIRP serves as a baseline that other more advanced implementations can be
compared with. However, according to the official evaluation metric (XCG), the
performance of this baseline is so poor that other metrics with better results are
necessary for a meaningful comparison. In the future, we are hoping to have a
fully implemented version of our system in order to see where it really stands.
We also look forward to experimenting with more realistic document collections
in order to increase the validity of the results.

References

1. Doucet, A., Aunimo, L., Lehtonen, M., Petit, R.: Accurate Retrieval of XML
Document Fragments using EXTIRP. In: INEX, Workshop Proceedings, Schloss
Dagstuhl, Germany, pp. 73–80 (2003)

2. Porter, M.F.: An algorithm for suffix stripping. Program 14, 130–137 (1980)
3. Ahonen-Myka, H.: Finding all frequent maximal sequences in text. In: Mladenic,

D., Grobelnik, M., (eds.) Proceedings of the 16th International Conference on Ma-
chine Learning ICML-99 Workshop on Machine Learning in Text Data Analysis,
Ljubljana, Slovenia, J. Stefan Institute, pp. 11–17 (1999)

4. Doucet, A.: Advanced Document Description, a Sequential Approach. PhD thesis,
University of Helsinki (2005)

5. Lehtonen, M.: Preparing heterogeneous XML for full-text search. ACM Trans. Inf.
Syst. 24, 455–474 (2006)

120 M. Lehtonen and A. Doucet

6. Lehtonen, M.: Indexing Heterogeneous XML for Full-Text Search. PhD thesis, Uni-
versity of Helsinki (2006)

7. Kazai, G., Lalmas, M.: INEX 2005 Evaluation Measures. In: Fuhr, N., Lalmas,
M., Malik, S., Kazai, G. (eds.) INEX 2005. LNCS, vol. 3977, pp. 16–29. Springer,
Heidelberg (2006)

8. Lehtonen, M.: When a few highly relevant answers are enough. [9] 296–305
9. Fuhr, N., Lalmas, M., Malik, S., Kazai, G., (eds.): Advances in XML Information

Retrieval and Evaluation (Revised Selected Papers). In: Fuhr, N., Lalmas, M., Malik,
S., Kazai, G. (eds.) INEX 2005. LNCS, vol. 3977, Springer, Heidelberg (2006)

Filtering and Clustering XML Retrieval Results

Jaap Kamps1,2, Marijn Koolen1, and Börkur Sigurbjörnsson2,3

1 Archives and Information Science, Faculty of Humanities, University of Amsterdam
2 ISLA, Faculty of Science, University of Amsterdam

3 Yahoo! Research, Barcelona

Abstract. As part of the INEX 2006 Adhoc Track, we conducted a
range of experiments with filtering and clustering XML element retrieval
results. Our basic retrieval engine retrieves arbitrary elements from the
collection (corresponding to the Thorough Task). These runs are filtered
to remove textual overlap between elements (corresponding to the Fo-
cused Task). The resulting runs can be clustered per article (correspond-
ing to the All in Context Task). Finally, we select the “best” element
for each article (corresponding to the Best in Context Task). Our main
findings are the following. First, a complete element index outperforms
a restricted index based on section-structure, albeit the differences are
small. Second, grouping non-overlapping elements per article does not
lead to performance degradation, but may improve scores. Third, all re-
strictions of the “pure” element runs (by removing overlap, by grouping
elements per article, or by selecting a single element per article) lead to
some but only moderate loss of precision.

1 Introduction

In this paper we document the University of Amsterdam’s participation in the
INEX 2006 Adhoc Track. Our overall motivation for INEX 2006 was to investi-
gate the effectiveness of our XML retrieval approaches on a new collection, the
Wikipedia XML corpus [1], which has a different nature than the IEEE collection
used in INEX 2002–2005. What are the characteristics of the new Wikipedia col-
lection, and how do they affect the performance on our element retrieval system?
We want to know which approaches transfer well to a new sort of collection, and
which approaches don’t and why.

During INEX 2006, we conducted a range of experiments with filtering and
clustering XML element retrieval results. Our basic retrieval engine retrieves
arbitrary elements from the collection (corresponding to the Thorough Task).
These runs are filtered to remove textual overlap between elements (correspond-
ing to the Focused Task). The resulting runs can be clustered per article (corre-
sponding to the All in Context Task). Finally, we select the “best” element for
each article (corresponding to the Best in Context Task).

The rest of the paper is organized as follows. First, Section 2 describes the
Wikipedia collection. Next, Section 3 documents the XML retrieval system used
in the experiment. Then, in Section 4, we detail the topics and assessments of the
INEX 2006 Adhoc Track. In four separate sections, we report our experiments

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 121–136, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

122 J. Kamps, M. Koolen, and B. Sigurbjörnsson

Table 1. Wikipedia collection statistics

Description Statistics

of articles 659,388
of elements 52,555,826
of unique tags 1,241
Avg. # of elements per article 79.69
Average depth 4.82

for the Thorough Task (§5); the Focused Task (§6); the All in Context Task (§7);
and the Best in Context Task (§8). Experiments with a mixture language model
are discussed in Section 9. Finally, in Section 10, we discuss our findings and
draw some conclusions.

2 Wikipedia Collection

In previous years, the IEEE collection was used in INEX. This year sees the
introduction of a new collection, based on the English Wikipedia collection [2].
The collection has been converted from the wiki-syntax to an XML format [1].
Whereas the IEEE collection has somewhat over 12,000 documents, the
Wikipedia collection has more than 650,000 documents. To get some idea of
the characteristics of this new collection, we have gathered some statistics. Ta-
ble 1 shows a few basic collection statistics. There are over 50,000,000 elements
using 1,241 different tag names. However, of these, 779 tags occur only once, and
only 120 of them occur more than 10 times in the entire collection. On average,
documents have almost 80 elements, with an average depth of 4.82.

Next, we gathered tag statistics like collection frequency, document frequency
and element length. Table 2 shows the 10 longest elements and their collec-
tion frequency. The length is the average number of words in the element. The
<article> element is the longest element of course, since it always encompasses
all other elements. However, after the <body> element, the other long elements
occur only rarely in the entire collection, and contain only a few hundred words.
Clearly, most of the elements are rather short. Even the average article length
is short, containing no more than 415 words.

In Table 3 the most frequent tag names are listed. Column 2 shows the average
document frequency of the tag name, column 3 shows the collection frequency.
There are many links to other Wiki pages (<collectionlink>s), and many
<unknownlink>s that are not really links (yet). Wiki pages have more than 4
paragraphs (indicated by <p> tags) and more than 2 sections on average.

As shown in Table 4, the elements <article>, <conversionwarning>, <body>
and <name> occur in every single document. Almost all documents have links to
other Wiki pages (99.4%), and more than 70% have text tagged as <unknownlink>
(indicating a topic that could have its own page). Together with the average fre-
quency of the <collectionlink>s, this indicates a very dense link structure.
Apart from that, the textual unit indicating elements <section> and <p> (para-
graph) occur in 69.6% and 82.1% of the documents respectively.

Filtering and Clustering XML Retrieval Results 123

Table 2. Longest elements in Wikipedia collection

Element Mean length Collection freq.

<article> 414.79 659,388
<body> 411.20 659,388
<noinclude> 380.83 14
<h5> 253.18 72
<td align> 249.20 4
<h4> 237.13 307
 198.20 163
<timeline> 186.49 48
<number> 168.72 27
<h3> 163.80 231

Table 3. Most frequent tags in Wikipedia collection

Tag name Document freq. Collection freq.

<collectionlink> 25.80 17,014,573
<item> 8.61 5,682,358
<unknownlink> 5.98 3,947,513
<cell> 5.71 3,770,196
<p> 4.17 2,752,171
<emph2> 4.12 2,721,840
<template> 3.68 2,427,099
<section> 2.44 1,609,725
<title> 2.41 1,592,215
<emph3> 2.24 1,480,877

Table 4. Elements with the highest document frequency in Wikipedia collection

Tag name Document freq. %

<article> 659,388 100.0
<conversionwarning> 659,388 100.0
<body> 659,388 100.0
<name> 659,388 100.0
<collectionlink> 655,561 99.4
<emph3> 587,999 89.2
<p> 541,389 82.1
<unknownlink> 479,830 72.8
<title> 459,253 69.6
<section> 459,252 69.6

The main observation is that elements are small on average. One important
reason for this is the Wikipedia policy of splitting long articles into multiple new

124 J. Kamps, M. Koolen, and B. Sigurbjörnsson

pages.1 The idea is that encyclopedia entries should be focused. If the article
grows too long, it should be split into articles discussing the sub-topics. This is
a policy that closely resembles the main purpose of element retrieval: a relevant
results must be specific. The dense structure of the collection links should make
it easy to navigate to other relevant pages.

3 XML Retrieval System

3.1 Indexing

Our indexing approach is based on our earlier work [3,4,5].

– Element index : Our main index contains all retrievable elements, where we
index all textual content of the element including the textual content of their
descendants. This results in the “traditional” overlapping element index in
the same way as we have done in the previous years [3].

– Section index : We built an index containing only the most frequently re-
trieved elements. Studying the distribution of retrieved elements, we found
that the <article>, <body>, <section> and <p> elements are retrieved far
more often than other elements, and we build an index containing just these
elements. The frequent element left out is <collectionlink>. Since collec-
tion links contain only a few terms at most, and say more about the relevance
of another page, we didn’t add them to the index.

– Article index : We also build an index containing all full-text articles (i.e., all
wikipages) as is standard in IR.

For all indexes, stop-words were removed, but no morphological normalization
such as stemming was applied. Queries are processed similar to the documents,
we use either the CO query or the CAS query, and remove query operators (if
present) from the CO query and the about-functions in the CAS query.

3.2 Retrieval

For all our runs we used a multinomial language model [6]. We use the same
mixture model implementation as we used in earlier years [4]. We assume query
terms to be independent, and rank elements e according to:

P (e|q) ∝ P (e) ·
k∏

i=1

P (ti|e), (1)

1 As http://en.wikipedia.org/wiki/Wikipedia:Summary style reads: “The length
of a given Wikipedia entry tends to grow as people add information to it. This cannot
go on forever: very long entries would cause problems. So we must move information
out of entries periodically. This information should not be removed from Wikipedia:
that would defeat the purpose of the contributions. So we must create new entries
to hold the excised information.” (November 2006).

http://en.wikipedia.org/wiki/Wikipedia:Summary_style

Filtering and Clustering XML Retrieval Results 125

Table 5. Relevant passage statistics

Description Statistics

articles with relevance 5,483
relevant passages 8,737
avg. rel. pass. length 1,098
median rel. pass. length 289

Table 6. Relevant element statistics

Tag name Frequency Avg. length

<p> 15,315 450
<item> 14,375 91
<emph2> 14,322 20
<cell> 13,898 19
<section> 9,291 2,375
<emph3> 5,782 16
<article> 5,481 9342
<body> 5,479 9322
<title> 5,197 21
<template> 4,107 87

where q is a query made out of the terms t1, . . . , tk. We estimate the element
language model by taking a linear interpolation of three language models:

P (ti|e) = λe · Pmle(ti|e) + λd · Pmle(ti|d) + (1 − λe − λd) · Pmle(ti), (2)

where Pmle(·|e) is a language model for element e in document d; Pmle(·|d) is a
language model for document d; and Pmle(·) is a language model of the collection.
The parameters λe and λd are interpolation factors (smoothing parameters).
None of our official submissions used the three layered mixture model proper,
i.e., we use λd = 0 unless indicated otherwise. The default value of λe is 0.15.

Finally, we assign a prior probability to an element e relative to its length in
the following manner:

P (e) =
|e|β∑
e |e|β , (3)

where |e| is the size of an element e. The β parameter introduces a length bias
which is proportional to the element length with β = 1 (the default setting).
For a more thorough description of our retrieval approach we refer to [4]. For
comprehensive experiments on the earlier INEX data, see [7].

4 Topics and Judgments

Assessments are available for 111 topics (numbered 289–298, 300–306, 308–369,
371–376, 378–388, 390–392, 395, 399–407, 409–411, and 413). There is a total

126 J. Kamps, M. Koolen, and B. Sigurbjörnsson

Table 7. Elements containing entire relevant passages

Tag name Frequency

<p> 2,585
<body> 1,639
<section> 1,326
<item> 937
<article> 724
<normallist> 301
<name> 267
<collectionlink> 208
<row> 180
<caption> 174

8,737 relevant passages for these 111 topics in 5,483 different articles. Table 5
shows some statistics of the relevant passages (i.e., the text highlighted as rele-
vant by the assessors).

It is interesting to see that most relevant passages are short. The lengths of
the elements are measured in characters (text offset).

Table 6 looks at the judgments from the vista point of elements containing
only relevant text. After the workshop it was decided that the links in the col-
lection are too small to be relevant. This affects the elements <collectionlink>,
<outsidelink>,<redirectlink>,<unknownlink>,<weblink>, <wikipedialink>.
This has quite some effect on the set of relevant elements, for example, in the
original qrels there were no less than 78,792 <collectionlink> elements high-
lighted by the assessors. Although the links are no longer considered exhaustive,
there are still quite a number of small elements left, like <emph2>, <cell> and
<emph3> (see Table 3). The lengths mentioned are the average lengths of the rel-
evant elements of that type. Longer elements containing relevant text are mostly
<p>, <item> and <section> elements.

The shorter elements often contain only a few words, and often are only a small
part of the entire passage. However, there are still a fair number of elements that
encompass an entire relevant passage. Table 7 shows the frequency of elements
that are the shortest element to contain an entire relevant passage. There are
208 passages that are fully contained within a <collectionlink> element, and
43 more passages contained by other link elements that are considered too small
to be relevant. The passages are not considered too small, so retrieving a larger
element containing the passage still gives some score. Relevance is often found at
the paragraph level. This gives support to our Section index as a viable indexing
strategy. The focus of this year’s relevance metrics is in specificity, though, so
these results might point us in the wrong direction.

5 Experiments for the Thorough Task

For the Thorough Task, we submitted two runs using the CO query (from the
topic’s <title> field) and two runs using the CAS query (from the topic’s

Filtering and Clustering XML Retrieval Results 127

Table 8. Results for the Thorough Task (generalized, off)

Run MAep nxCG@5 nxCG@10 nxCG@25 nxCG@50

thorough element lm 0.0471 0.4120 0.3789 0.3262 0.2790
thorough section lm 0.0431 0.3948 0.3721 0.2977 0.2503

thorough element lm cas.seperate 0.0265 0.2124 0.1761 0.1511 0.1208
thorough element lm cas.joined 0.0222 0.1872 0.1642 0.1410 0.1100

<castitle> field). We regard the Thorough Task as underlying all other tasks,
and all other runs are based on postprocessing them in various ways.

The two Thorough CO runs are:

thorough element lm Language model (λe = 0.15) on the element index.
thorough section lm Language model (λe = 0.15) on the section index.

Our two CAS query runs are also based on postprocessing the CO run based
on the element index. We extract all path-restrictions on the element of request
in the CAS query, and filter the results for elements conforming on all or some
of the location steps.

The two Thorough CAS query runs are:

thorough element lm cas.joined Language model (λe = 0.15) on the element
index, retaining elements that satisfy the complete path expression.

thorough element lm cas.seperate Language model (λe = 0.15) on the ele-
ment index, retaining element that satisfy at least the tagname of the element
of request.

For all submitted runs we used the default length prior parameter β = 1, al-
though XML retrieval may require special length normalization [8]. Since we’re
dealing with a new collection, it is interesting to see whether the different para-
meter settings of the length prior show the same effect on this new collection.
We also experimented with different λe and β setting to see what works, and
what doesn’t.

5.1 Results

We will now discuss the results for the four Adhoc tasks, starting with the
Thorough Task. The Thorough Task puts no restriction on XML elements to
return. Table 8 shows the results for the Thorough Task. We first discuss the
top two runs using the keyword or CO query. We make a few observations:
First, we see that the index containing all XML elements in the collection is
more effective on all measures. Second, we see that difference with the section
index (containing only article, body, section, and paragraph nodes) is relatively
small, especially in terms of precision. This is in line with earlier results on the
IEEE collection, and shows the potential of the much smaller section index. We
now zoom in on the bottom two runs using the structured or CAS query. We
see that the joined run (using the element of request’s full path as a Boolean

128 J. Kamps, M. Koolen, and B. Sigurbjörnsson

Table 9. Results for the Thorough Task (generalized, off) for different parameter
settings

Run MAep nxCG@5 nxCG@10 nxCG@25 nxCG@50

element β = 0.8, λe = 0.15 0.0460 0.3739 0.3383 0.2901 0.2500
element β = 0.9, λe = 0.15 0.0465 0.3820 0.3473 0.2940 0.2502
element β = 1.0, λe = 0.15 0.0471 0.3868 0.3519 0.2982 0.2508
element β = 1.1, λe = 0.15 0.0462 0.3727 0.3317 0.2973 0.2464

element β = 0.8, λe = 0.30 0.0462 0.3884 0.3479 0.2966 0.2525
element β = 0.9, λe = 0.30 0.0465 0.3897 0.3494 0.3004 0.2533
element β = 1.0, λe = 0.30 0.0469 0.3878 0.3512 0.3005 0.2518
element β = 1.1, λe = 0.30 0.0465 0.3867 0.3471 0.2995 0.2501

Fig. 1. Effect of the length prior for the Thorough Task using the element index with
standard smoothing

filter) performs less good than the separate run (filtering only for the tagname
of the element of request). When comparing the results for the CO and CAS
queries, we see that the CO query runs are more effective for both mean average
precision, and for early precision. While the loss of mean average precision can
be expected, the structural hints hold the potential to improve precision. We
should note, however, that the CAS processing was done naively, resulting in
many topics with very few or no results left.

Table 9 shows the results for non-official runs for the Thorough Task, using
different values for the language model parameters. With a higher value of λe

we see the expected gain of precision and loss of recall (or MAep). Also, with
a higher λe value, the length prior parameter β has less effect. The scores for
the λe = 0.30 runs are very similar. With the standard λe = 0.15 the standard
β = 1.0 gives the best results.

Filtering and Clustering XML Retrieval Results 129

Table 10. Results for the Focused Task (generalized, off)

Run nxCG@5 nxCG@10 nxCG@25 nxCG@50 MAep

focused element lm 0.3337 0.2948 0.2252 0.1781 0.0140
focused section lm 0.3386 0.2868 0.2212 0.1834 0.0152

focused element lm cas.seperate 0.2845 0.2288 0.1634 0.1159 0.0080
focused element lm cas.joined 0.2400 0.1981 0.1409 0.1010 0.0069

Figure 1 show the effect of different length prior settings on performance in
terms of MAep. We clearly see that the default value β = 1.0 gives optimal per-
formance with the new assessments. If we compare the new assessments with the
old assessments (where the links are considered exhaustive), we see that a lower
value of β gives better performance. This can be explained by the huge number
of relevant <collectionlink> elements in the old assessments. Lower β values
retrieve more smaller elements, many of which are <collectionlink> elements.

6 Experiments for the Focused Task

For the Focused Task we submitted two runs using the CO query and two runs
using the CAS query. All our Focused Task submissions correspond to a Thor-
ough Task submission, and are post-processed by a straightforward list-based
removal strategy. We traverse the list top-down, and simply remove any element
that is an ancestor or descendant of an element seen earlier in the list. For ex-
ample, if the first result from an article is the article itself, we will not include
any further element from this article.

The resulting two Focused CO runs are:

focused element lm Language model (λe = 0.15) on the element index, with
list-based removal of ancestor or descendant elements.

focused section lm Language model (λe = 0.15) on the section index, with
list-based removal of ancestor or descendant elements.

The resulting two Focused CAS runs are:

focused element lm cas.joined Language model (λe = 0.15) on the element
index, retaining elements that satisfy the complete path expression, and with
list-based removal of ancestor or descendant elements.

focused element lm cas.seperate Language model (λe = 0.15) on the ele-
ment index, retaining element that satisfy at least the tagname of the element
of request, and with list-based removal of ancestor or descendant elements.

We also look at the impact of different levels of smoothing and of length
normalization.

6.1 Results

For the Focused Task, none of the retrieved elements was allowed to contain
text that overlaps with another retrieved element. Table 10 shows the results

130 J. Kamps, M. Koolen, and B. Sigurbjörnsson

Table 11. Results for the Focused Task (generalized, off) for different parameter set-
tings

Run nxCG@5 nxCG@10 nxCG@25 nxCG@50 MAep

element β = 0.8, λe = 0.15 0.3315 0.2923 0.2305 0.1843 0.0144
element β = 1.0, λe = 0.15 0.3337 0.2948 0.2252 0.1781 0.0140
element β = 1.1, λe = 0.15 0.3256 0.2913 0.2208 0.1737 0.0135

element β = 0.5, λe = 0.30 0.3353 0.3025 0.2354 0.1885 0.0144
element β = 1.0, λe = 0.30 0.3410 0.2920 0.2296 0.1790 0.0139
element β = 1.1, λe = 0.30 0.3438 0.2913 0.2264 0.1763 0.0139

for the Focused Task. The results for the official measure (nxCG) are listed first
(columns 2 through 5). The runs based on the section and element index show
almost the same performance for this task. At ranks 5 and 50, the section index
run performs better than the element index run. For the two runs using the
structured query, we see again that the run using only the tagname of the target
element (“separate”) scores better. The CAS query runs are less effective than
the CO query runs, although the difference in performance is much smaller than
for the Thorough Task before.

We evaluate runs here using the same measures as the Thorough Task above,
but since the elements judged relevant in recall base may overlap, performance
can never obtain perfect scores. The Thorough measure MAep is listed in column
6 of Table 10 for comparison. Interestingly, the section index run is outperforming
the element index run for the Focused Task. When comparing the Focused Task
results to the Thorough Task results, we note that, as expected, the scores are
substantially lower. There is a moderate decline for the precision scores, but the
recall (and mean average precision) drops dramatically.

Table 11 shows the results for non-official runs for the Focused Task, using
different values for the language model parameters. As may be expected, a higher
value of λe leads to a minor increase in precision. However, a lower value of β
leads to a small increase at higher ranks and in MAep. This is unexpected
since the corresponding Thorough run is actually inferior to the standard length
normalization (β = 1.0). A possible explanation is the non-overlapping nature
of the Focused runs: in case a long element is selected, this immediate outlaws
a wide range of other elements. A case in point is when the <article> element
is selected, which effectively exhausts the whole article.

7 Experiments for the All in Context Task

For the All in Context Task, we only submitted runs using CO query. Here, we
base our runs on the Thorough Task runs using the section index. We cluster all
elements belonging to the same article together, and order the article clusters
either by the highest scoring element, or by the combined scores of all elements
belonging to the article.

The two All in Context CO runs are:

Filtering and Clustering XML Retrieval Results 131

Table 12. Results for the All in Context Task (generalized precision)

Run MAgP gP@5 gP@10 gP@25 gP@50

all section lm.highest 0.1633 0.3014 0.2633 0.1966 0.1579
all section lm.sum 0.1062 0.1592 0.1351 0.1283 0.1136

Table 13. Results for the All in Context Task (generalized, off)

Run MAep nxCG@5 nxCG@10 nxCG@25 nxCG@50

all section lm.highest 0.0157 0.3357 0.3082 0.2291 0.1898
all section lm.sum 0.0112 0.2454 0.2135 0.1805 0.1477

Table 14. Results for the All In Context Task (generalized, off) for different parameter
settings

Run MAgP gP@5 gP@10 gP@25 gP@50

element β = 1.0, λe = 0.15 0.1509 0.2743 0.2450 0.1858 0.1449
element β = 1.2, λe = 0.15 0.1552 0.2895 0.2611 0.1940 0.1468
element β = 1.4, λe = 0.15 0.1556 0.3031 0.2628 0.1947 0.1472
element β = 1.5, λe = 0.15 0.1532 0.3046 0.2566 0.1934 0.1452

element β = 1.0, λe = 0.30 0.1535 0.2881 0.2489 0.1920 0.1486
element β = 1.2, λe = 0.30 0.1564 0.3054 0.2590 0.1997 0.1518
element β = 1.4, λe = 0.30 0.1579 0.3065 0.2669 0.1993 0.1515
element β = 1.5, λe = 0.30 0.1567 0.3088 0.2650 0.1961 0.1508

all section lm.highest Language model (λe = 0.15) on the section index,
clustered by article and ranked according to the highest scoring element in
an article, and with list-based removal of ancestor or descendant elements.

all section lm.sum Language model (λe = 0.15) on the section index, clus-
tered by article and ranked according to the sum of element scores in an
article, with list-based removal of ancestor or descendant elements.

7.1 Results

For the All in Context Task, there is the further restriction that retrieved ele-
ments must be grouped per article (and still may not overlap). Table 12 shows
the results for the All in Context Task. The official measure is the mean average
generalized precision in column 2. We see that for ranking the groups of elements
from the same article, the best scoring element is a more useful criterion than
the sum of all element scores.

Table 13 also evaluates the runs using the same measures as the Thorough
and Focused Task above. When comparing the All in Context Task results to the
Focused Task results, we see that the clustering by article improves performance
for all measures. That is, clustering the elements per article is more effective
than ranking them on their own similarity score. This is an unexpected result

132 J. Kamps, M. Koolen, and B. Sigurbjörnsson

Table 15. Results for the Best in Context Task (generalized, off)

Run A=0.01 A=0.1 A=1 A=10 A=100

best section lm.highest score 0.1237 0.2103 0.3437 0.5365 0.7369
best section lm.first 0.1237 0.2103 0.3437 0.5365 0.7369
best section lm.article 0.0754 0.1761 0.3027 0.4853 0.7021

Table 16. Results for the Best in Context Task (generalized, off)

Run nxCG@5 nxCG@10 nxCG@25 nxCG@50 MAep

best section lm.highest score 0.3290 0.2796 0.2083 0.1678 0.0131
best section lm.first 0.3290 0.2796 0.2083 0.1678 0.0131
best section lm.article 0.2451 0.1983 0.1424 0.1109 0.0085

that may be related to the organization of information in an encyclopedia like
Wikipedia.

Table 14 shows the results for non-official runs for the All in Context Task,
using different values for the language model parameters. The runs on the el-
ement index are all inferior to the official run on the section index. Again, as
may be expected, a higher value of λe leads to a small increase in precision. In
fact, it also results in an increase of MAep. Moreover, a higher value of β also
leads to an increase of both precision and MAep. A possible explanation is the
generalized precision measure that treats “retrieved articles” as ranks, and the
fact that there is usually only a small number of articles with relevance in the
Wikipedia collection. This leads to an incentive to ensure that at least those
articles are retrieved.

8 Experiments for the Best in Context Task

Finally, for the Best in Context Task we submitted three runs, all based on the CO
query. We use, again, the runs made against the section index, and post-process
them such that only a single result per article is kept in the result file.

best section lm.highest score Language model (λe = 0.15) on the section
index, selecting only the highest scoring element per article.

best section lm.article Language model (λe = 0.15) on the section index,
selecting the article node of each element from an unseen article.

best section lm.first Language model (λe = 0.15) on the section index, se-
lecting only the first element (in reading order) that is retrieved per article.

8.1 Results

For the Best in Context Task, we may only retrieve a single result per article.
For this task, a best-entry-point was obtained from the human judge during the
assessment procedure. With high A values the position of the Best-Entry-Point

Filtering and Clustering XML Retrieval Results 133

Fig. 2. Distance between BEP and first highlighted character

Table 17. Mixture model results for the Thorough Task (generalized, off)

Run MAep nxCG@5 nxCG@10 nxCG@25 nxCG@50

element λe = 0.05, λd = 0.10 0.0433 0.3429 0.3176 0.2776 0.2324
element λe = 0.10, λd = 0.05 0.0447 0.3640 0.3358 0.2918 0.2457
element λe = 0.10, λd = 0.10 0.0447 0.3693 0.3361 0.2939 0.2464
element λe = 0.20, λd = 0.10 0.0452 0.3895 0.3477 0.2976 0.2506
element λe = 0.30, λd = 0.10 0.0452 0.3900 0.3481 0.3041 0.2513

in the article has very little impact, leading to scores of 1 for a Best-Entry-Point
anywhere in the document. Table 15 shows the results for the Best in Context
Task. It is comforting to note that the element selection strategies outperform
the strategy that simply backs off to the whole article. As mentioned above, with
higher A values the position of the BEP has less effect, which can be seen by
the convergence of scores for the different methods. Our Best in Context runs
where based on postprocessing the All in Context run, resulting in the same
performance for selecting the first or highest scoring element. This may be due
to the layered processing of the runs, where the Thorough Task’s section index
run is processed by removing overlap, then clustered by article, and then, finally,
we selecting our final element to retrieve.

In Table 16, we also evaluate runs here using the same measures as the Thor-
ough Task above, so optimal performance will result in still grossly imperfect
scores. When comparing the Best in Context Task results to the All in Context
Task results, we note that there is only a moderate loss of precision for the Best
in Context Task.

134 J. Kamps, M. Koolen, and B. Sigurbjörnsson

This result can be explained if we look at the position of the Best-Entry-Point
relative to the first highlighted character in relevant articles. Figure 2 shows the
distribution of absolute distance in bytes between the Best-Entry-Point and the
position of the first highlighted character (i.e., the position at which the first
passage starts) over articles with relevance. Clearly, assessors predominantly
judge the first highlighted character to be the best point to start reading.

9 Mixture Model Runs

In this section we look at the performance of the multinomial language model
that takes the context of an element into account. We experimented with various
λe and λd values of the mixture language model and compare performance with
the runs mentioned above.

Table 17 shows that less smoothing on the element model improves perfor-
mance, not only for the official MAep measure, but also for precision at all
levels. The difference between λe = 0.20 and λe = 0.30 is very small. If we
compare the results with runs based on the element index and the section index
(see Table 8), performance of the mixture model is comparable to that of the
section index run. Also, setting the article model smoothing parameter λd higher
also slightly improves precision scores. In sum, the mixture language model has
a slight positive effect on precision, but does not improve overall performance.

Table 18 shows the results for the Focused Task. Here, the effects of the two
smoothing parameters are very similar to the Thorough Task. When compared
to the official element and section based runs (Table 10), we see no gain in
performance.

Table 19 shows the results for the All In Context Task, where we restrict
our attention to the article ordering based on the highest scoring element. The
results show the same effect of the smoothing parameters as for the other tasks.
A higher λe leads to better performance. The difference between λe = 0.20 and
λe = 0.30 is very small again. The mixture model can lead to improvement
of precision and MAgP, however the gain is inferior to the increase of length
normalization (see Table 14).

The mixture language model proved far less effective for the Wikipedia col-
lection, than earlier research on the IEEE collection [4]. An obvious source of
explanation is in the relative length of Wikipedia articles: recall that the average

Table 18. Mixture model results for the Focused Task (generalized, off)

Run nxCG@5 nxCG@10 nxCG@25 nxCG@50 MAep

element λe = 0.05, λd = 0.10 0.2987 0.2662 0.1997 0.1542 0.0116
element λe = 0.10, λd = 0.05 0.3219 0.2786 0.2134 0.1639 0.0125
element λe = 0.10, λd = 0.10 0.3220 0.2817 0.2136 0.1639 0.0124
element λe = 0.20, λd = 0.10 0.3334 0.2847 0.2174 0.1688 0.0127
element λe = 0.30, λd = 0.10 0.3335 0.2833 0.2214 0.1696 0.0130

Filtering and Clustering XML Retrieval Results 135

Table 19. Mixture model results for the All In Context Task (generalized, off, highest
scoring element)

Run MAgP gP@5 gP@10 gP@25 gP@50

element λe = 0.05, λd = 0.10 0.1403 0.2603 0.2254 0.1719 0.1319
element λe = 0.10, λd = 0.05 0.1486 0.2786 0.2389 0.1840 0.1397
element λe = 0.10, λd = 0.10 0.1489 0.2804 0.2416 0.1847 0.1405
element λe = 0.20, λd = 0.10 0.1530 0.2957 0.2517 0.1924 0.1472
element λe = 0.30, λd = 0.10 0.1538 0.2969 0.2540 0.1943 0.1480

article contains only 415 words. This makes the article context a less powerful
indicator of relevance, and perhaps the model should be extended to incorpo-
rate the broader of the particular wikipedia page (for example by considering
the rich, semantic link structure).

10 Discussion and Conclusions

This paper documents the University of Amsterdam’s participation in the INEX
2006 Adhoc Track. We participated in all four Adhoc Track tasks, and conducted
a range of experiments with filtering and clustering XML element retrieval re-
sults. Our basic retrieval engine retrieves arbitrary elements from the collection
(corresponding to the Thorough Task). These runs are filtered to remove textual
overlap between elements (corresponding to the Focused Task). The resulting
runs can be clustered per article (corresponding to the All in Context Task).
Finally, we select the “best” element for each article (corresponding to the Best
in Context Task).

Our main findings so far are the following. First, for the Thorough Task, we
see that a complete element index was more effective than a restricted index
based on the sectioning structure, although the difference is not large. We also
see that the keyword or CO query was more effective than the structured or
CAS query. Second, for the Focused Task, we observe a very similar pattern as
for the Thorough Task. This is a reassuring result, because it signals that the
superior performance of the element index is not due to the fact that it contains
many overlapping elements. Third, for the All in Context Task, we find that the
clustering per article is in fact improving the performance when compared to the
corresponding overlap-free Focused Task runs. Fourth, for the Best in Context
Task, we see that element selection outperforms backing off to the whole article,
and obtain—perhaps surprisingly—still agreeable precision scores in terms of
perceived relevance.

Acknowledgments

This research was supported by the Netherlands Organization for Scientific Re-
search (NWO, grants # 612.066.302, 612.066.513, 639.072.601, and 640.001.501),
and by the E.U.’s 6th FP for RTD (project MultiMATCH contract IST-033104).

136 J. Kamps, M. Koolen, and B. Sigurbjörnsson

References

1. Denoyer, L., Gallinari, P.: The Wikipedia XML Corpus. SIGIR Forum 40, 64–69
(2006)

2. Wikipedia: The free encyclopedia (2006) http://en.wikipedia.org/
3. Sigurbjörnsson, B., Kamps, J., de Rijke, M.: An Element-Based Approch to XML

Retrieval. In: INEX, Workshop Proceedings, pp. 19–26 (2003)
4. Sigurbjörnsson, B., Kamps, J., de Rijke, M.: Mixture models, overlap, and structural

hints in XML element retreival. In: Fuhr, N., Lalmas, M., Malik, S., Szlávik, Z. (eds.)
INEX 2004. LNCS, vol. 3493, pp. 196–210. Springer, Heidelberg (2005)

5. Sigurbjörnsson, B., Kamps, J.: The effect of structured queries and selective indexing
on XML retrieval. In: Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.) INEX 2005.
LNCS, vol. 3977, pp. 104–118. Springer, Heidelberg (2006)

6. Hiemstra, D.: Using Language Models for Information Retrieval. PhD thesis, Uni-
versity of Twente (2001)

7. Sigurbjörnsson, B.: Focused Information Access using XML Element Retrieval. SIKS
dissertation series 2006-28, University of Amsterdam (2006)

8. Kamps, J., de Rijke, M., Sigurbjörnsson, B.: The importance of length normalization
for XML retrieval. Information Retrieval 8, 631–654 (2005)

http://en.wikipedia.org/

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 137–150, 2007.
© Springer-Verlag Berlin Heidelberg 2007

GPX - Gardens Point XML IR at INEX 2006

Shlomo Geva

Faculty of Information Technology
Queensland University of Technology

Queensland 4001 Australia
s.geva@qut.edu.au

Abstract. The INEX 2006 evaluation was based on the Wikipedia collection in
XML format. It consisted of several tasks that required different approaches to
element selection. In this paper we describe the approach that we adopted in an
attempt to satisfy the requirements of all the tasks, Thorough, Focused,
Relevant in Context, and Best in Context. We have used the same underlying
system to approach all tasks. The retrieval strategy is based on the construction
of a collection sub-tree, consisting of all nodes that contain one or more of the
search terms. Nodes containing search terms were then assigned a score using
the GPX ranking scheme which incorporates TF-IDF or BM25 variants, but
extends them. Scores are recursively propagated to ancestors in the document
XML tree, and finally all scoring XML elements are ranked. We present results
that demonstrate that the approach is versatile and produces consistently good
performance. We also provide empirical analysis of the GPX ranking scheme
and compare its performance against a baseline TF-IDF and a BM25 scoring
scheme..

Keywords: XML IR Information Retrieval GPX INEX Evaluation.

1 Introduction

The INEX 2006 Ad-hoc track consisted of 4 tasks, namely Thorough, Focused, All in
Context and Best in Context retrieval. These tasks are described elsewhere in the
proceedings. We have used the 2005 GPX search engine algorithms with some minor
modifications [1,3]. The software was ported in 2006 from C# and MS-Access to Java
and the Apache Derby relational database. This was done to achieve speedup in
searching, but the basic system remained almost unchanged. We implemented
extended support for more complex queries [2], lifting some of the limitations of
NEXI. GPX thus represents an evolving system that started in 2004 and its evolution
documented in the annual workshop proceedings. The reader is invited to read the
2004 and 2005 descriptions of GPX for more detail [1,3]. In this paper we describe
the approaches we took to the various tasks in 2006 and discuss the results. Finally,
we analyze the performance of the GPX scoring scheme by comparing it against TF-
IDF and BM25 [4]. In the following sections we have also attempted to provide a
comprehensive enough description of GPX so that it can be reproduced on the back of
any XML index system that supports the retrieval of XPath inverted lists.

138 S. Geva

2 The GPX Search Engine

For the sake of completeness we provide a brief description of GPX. The search
engine is based on XPath inverted lists. For each term in the collection we maintain
an inverted list of XPath specifications. This includes the file name, the absolute
XPath identifying a specific XML element, and the term position within the element.
The actual data structure is designed for efficient storage and retrieval of the inverted
lists which are considerably less concise by comparison with basic text retrieval
inverted lists.

2.1 Inverted List Representation

We have chosen to implement GPX using a relational database as backbone
architecture; however, the system is in fact based on a traditional inverted list which
was extended to support XML IR. The choice is motivated by the extensive off the
shelf functionality of a DBMS and ease of programming of all I/O operations. We do
not however use any of the expensive recovery and concurrency mechanisms that the
DBMS supports by using minimal footprint embedded mode executables. The
software that we used is the Apache Derby1 open source DBMS, freely available
under Apache License, Version 2.0. Derby’s footprint is small -- about 2 megabytes
for the base engine and embedded JDBC driver.

In principle, before optimising the database schema, a suitable inverted list for our
purposes consists of a single table with the following structure:

Term-Context = { Term, File-Name, XPath, Position }

This structure is sufficient to allow us, given a term, to retrieve all contexts in
which the term appears. The Position column allows us to support phrase searches or
proximity operators. The collection contains approximately 140 million postings
hence each byte in a posting contributes 140MB to the size of the inverted list
(ignoring other overheads). It is obvious that this structure is exceedingly redundant
and the representation of postings in the list can become very expensive. We describe
several ways by which we kept the inverted lists index size under control.

There are approximately 2 million unique terms in the collection. It is not
necessary to store the Term column in the table because it could be stored in an
auxiliary table, recording the Term, Start position, and End position in the inverted
list table. However, this makes it more difficult to manage a dynamic collection where
insertions and deletions are allowed. We have chosen not to adopt this approach.
However, we do map a term to Term-ID. The Term-ID is only a 4 byte integer and an
auxiliary table provides the mapping of Term to Term-ID. Terms usually exceed 4
bytes, particularly since there is always an overhead of several bytes if variable length
strings are used. Similarly, file names are very long and so a simple normalization is
performed to map a File-Name to a File-ID. With about 660,000 files in the collection
4 bytes are sufficient. The Position column can be safely stored on 2 bytes since text
nodes do not exceed 64KB.

1 http://db.apache.org/derby/

 GPX - Gardens Point XML IR at INEX 2006 139

The representation of the XPath is more problematic. The tag names can be rather
long, and XPath expressions can contain numerous nodes and be very long. We could
have encoded tag names - there are less than 256 meaningful tags so one byte could
suffice to represent a tag. We have chosen not to do so because that would render the
lists unreadable without decoding and this was inconvenient. With XPath lengths
varying from 10 bytes to over 300 in this collection, the overhead of storing the
explicit XPath is significant even with coding. We observe that each unique XPath is
repeated in the inverted list for each term in the same node, and the XPaths
themselves are repeated in many files. For instance, almost every article in the
collection has a node /article[1]/body[1]/p[1]. There is significant redundancy here
already, but furthermore, many paths which are not identical share a common sub-
path. This suggests a compression scheme like LZW might be effective. We
considered this to be unnecessary, particularly given the processing overheads and so
we have adopted the following simple yet effective compression scheme.

Consider the XPath:

 /article[1]/bdy[1]/sec[5]/p[3]

This could be represented by two expressions, a Tag-set and an Index-set:

Tag-set: article/bdy/sec/p

Index-Set: 1/1/5/3

The original XPath can be reconstructed from the tag-set and the index-set. It turns

out that there are over 48,000 unique tag-sets, and about 500,000 unique index-sets in
the collection. We assign to each tag set and each index-set a hash code and create
auxiliary database tables mapping the hash-codes to the corresponding tag-set and
index-set entries. These hash tables are small enough to be held in memory and so
run-time decoding is efficient. We have used Java’s inbuilt hash code function. It is
only a 32 bit code, but given the number of elements the risk of hash collisions is
minimal and we take it.

Finally, in order to implement BM25 it is necessary to record node sizes. So an
XPath table is maintained where the XPath is represented by a hash code computed
from the concatenation of the FileName and the XPath columns. We use a 63 bit
MD5 hash code because there are about 25 million distinct nodes in the collection and
the probability of a collision is too high with Java’s 32 bit inbuilt hash function. We
use 63 bits although MD5 provides a 64bit code since Java’s Long integers are limited
to the constant 0x7FFFFFFFFFFFFFFF.

Finally, the database schema consists of the following tables:

 Term-Context ={ Term-ID, File-ID, XPath-Tag-ID, XPath-IDX-ID, Position }
 Terms = { Term, Term-ID }
 Files = { File-Name, File-ID }
 TagSet = { XPath-Tag-ID, Tag-Set }
 IndexSet = { XPath-IDX-ID, Index-Set }
 XPathSize = { XPath-ID, Node-Size }

140 S. Geva

The size of the database is 15GB and this represents an overhead of about 3:1 over
the source documents (uncompressed). This is quite acceptable with current disk costs
and capacities even if much more efficient representations are possible.

Some performance figures of this database are as follows. The time it takes to
parse and load the 659,388 files on a 3GHz PC with 2 GB RAM is 9 hours. When the
search engine is started, the Files, TagSet, IndexSet, and XPathSize tables are loaded
into RAM – this takes about 15 seconds. The only required I/O operations during a
search are then on the Terms table and the Term-Context inverted list table. The
average time to evaluate a topic is 7.2 seconds, but a few topics take more than 30
seconds to evaluate on account of having more terms and longer inverted lists that
correspond to common terms.

2.2 The GPX Ranking Scheme

Retrieval is performed by processing the NEXI expression and interpreting the query
constraints to combine the inverted lists. In the simple case of a CO query we simply
compute scores for all elements that contain at least one of the search terms. Several steps
are followed in evaluating a query and these are described in the following sub-sections.

2.2.1 Calculation of Text Nodes Score
Equation 1: Calculation of element relevance score from its content

∑−
n

=i i

in

f

t
K=L

1

1

 (1)

Here n is the count of unique query terms contained within the element, and K is a
small integer (we used K=5). The term Kn-1 scales up the score of elements having
multiple distinct query terms. This heuristic of rewarding the appearance of multiple
distinct terms can conversely be viewed as taking more strongly into account the
absence of query terms in a document. Here it is done by rewarding elements that do
contain more distinct query terms. The system is not sensitive to the value of K as
demonstrated in the results section and a value of k=5 is adequate. The summation is
performed over all n terms that are found within the element where ti is the frequency
of the ith query term in the element and fi is the frequency of the ith query term in the
collection. Similar results are obtained if we use the TF-IDF to compute the sum, but
it does not lead to significantly different results in our experience. We describe the
results of experiments with TF-IDF and with BM25 in a later section. At INEX 2006
we used the term inverse collection frequency and refer to it as TF-ICF (as distinct
from other TF-IDF variants.)

Finally, phrases are weighted more heavily than individual terms (phrase weight
are multiplied by 10) and nodes that contain query terms that are preceded by a minus
sign (undesirable) are not returned at all.

2.2.2 The GPX NEXI Interpretation
The GPX search engine supports an extended set of functionalities which are a
superset of NEXI. These are described in more detail by Geva et al in [3]. Here we
limit the discussion to the details which are relevant to the INEX 2006 evaluation.

 GPX - Gardens Point XML IR at INEX 2006 141

The evaluation of a NEXI expression always starts by converting the query
expression from postfix to infix for sequential evaluation. For example, consider the
query –

//article[about(.,Albert Einstein)]/body[about(.//figure,Copenhagen) OR
 about(.//section,Bohr)]

The query is converted to the following stack oriented evaluation specification –

1) PUSH(//article[about(.,Albert Einstein)])
2) PUSH(//article/body[about(.//figure,Copenhagen)])
3) PUSH(//article/body[about(.//section,Bohr)]
4) PUSH(OR(POP, POP))
5) PUSH(SUPPORT(POP,POP))

This set of operations is evaluated by using an inverted lists stack. The first 3 steps
evaluate the 3 distinct filters that appear in the NEXI expression. Each list of elements
satisfies its respective about clause. In step 4 the top two lists are ORed and the
resulting list pushed back onto the stack. This effectively evaluates the OR operator
on the body element. In the final step the SUPPORT operator is applied to take into
account the filter on the article node which “supports” the selection of the body node
on account of content which is not necessarily contained in the body. The
implementation of OR, AND, and SUPPORT is now explained.

The OR operator computes the union of two inverted lists, X and Y. The call to
OR(X,Y) returns a new list. Elements in the lists identify XML result elements by
file-id, full XPath expression, and relevance score. The OR operator performs a set
union whereby elements that appear in both lists are merged and their scores added
together. Other elements that appear in either list keep their original scores.

The AND operator computes the intersection of two inverted lists, X and Y. In
GPX this operator is not necessarily a strict set intersection but can be loosely
interpreted in one of three ways. The default option is to simply implement it as
OR(X,Y). However, in some queries the user really means AND in a strict sense;
therefore, a second option is to implement it as a strict set intersection - only XML
elements that appear in both X and Y are kept, and their scores are added together.
This option is too restrictive because sometimes the lists contain overlapping elements
and then the relationship with respect to AND is unclear. By insisting on a strict
match many relevant results are lost. The third implementation keeps overlapping
nodes, combines the scores, but keeps only the largest node (oldest common
ancestor). In the experiments that we report in the next section, we used the first
(default) option. This seems to work quite well in most instances, and works better on
average.

The SUPPORT operator does not have an equivalent set operator and is specific to
our interpretation of NEXI. In NEXI, we refer to support elements and target
elements. Target elements are those elements that appear at the tail of the NEXI
expression with a filter, while support elements are internal elements with filters that
appear along the path to the target elements. The SUPPORT operator takes a list of
nodes in X that provide support to the selection of nodes from list Y. For instance,
when we look for paragraphs about Americium in articles with abstracts about the

142 S. Geva

Periodic Table, the target elements are paragraphs about Americium, and paragraphs
are supported by abstracts about the Periodic Table. Both the support and target
elements must have a common ancestor within the document tree. In the case of the
Wikipedia this is the article element. The supporting abstract must appear in the same
article as the supported paragraphs. The support operator identifies for each result
element in Y, all the support elements in X, and combines the scores. It is important
to note that all the elements in Y are returned, regardless of support. However,
elements with support have an increased score.

2.2.3 The GPX Derivation of a Full Recall Base
Having computed the scores of all elements in the collection which contain query
terms directly as text within the XML node, we must proceed to consider the scores of
elements on account of their relevant descendents. The scores of retrieved elements
are now recursively propagated upwards in the document XML tree according to the
following scheme.
Equation 2: Calculation of a Branch Element Relevance Score

∑+

n

=i
iLD(n)L=R

1
0 (2)

Where:

 L0 = the score of the current node (from Equation 1), zero by default
 n = the number of children elements
 D(n) = N1 if n = 1
 = N2 Otherwise
 Li = the relevance score of the ith child element

The introduction of the term L0 was necessary when moving from the IEEE articles
collection to the Wikipedia since text appeared only in leaf nodes in the IEEE
collection, but many Wikipedia nodes contained both direct text and descendents with
text. The value of the decay factor D depends on the number of relevant children that
the branch has. If the branch has one relevant child then the decay constant is smaller.
Generally we have 0<=N1<=N2<1. A branch with only one relevant child will be
ranked lower than its child. The decay factor N2 may be chosen large enough so that
a branch with several relevant children will be ranked higher than its descendants.
Thus, a section with a single relevant paragraph would be judged less relevant than
the paragraph itself, but a section with several relevant paragraphs might be ranked
higher than any of its descendent paragraphs.

It is attractive to consider the use of node size directly in score propagation. As we
progress upwards through the tree, node specificity tends to decrease, but coverage
(recall) can increase when multiple descendents are combined in an ancestor node.
Node size can provide some direct information in relation to precision, but we were
unable to discover a robust way to incorporate the node size into Equation 2.

Finally, the cost of propagating the scores can be very high. Many of the terms that
appear in the topics are rather common. This leads to a very high computational load.
In order to reduce the total time it took to generate the results we have imposed two
limitations. All terms that occur with a frequency greater than 100,000 in the

 GPX - Gardens Point XML IR at INEX 2006 143

collection were treated as stop-words and ignored. This proved to be of little
consequence with the topic set on hand. Of course one can imagine situations when
this would be a costly decision. This reduced the processing time of the entire set of
topics by 50% with very minimal degradation in MAep values (less than 1%). The
second limitation that we imposed was more severe. It reduced the processing time by
more than 7 fold. The limitation was placed on the number of nodes that were taken
forward from the first phase (Equation 1) towards generation of the full recall base.
We have taken the 3000 highest scoring nodes at most. In some instances hundreds of
thousands of scoring elements were dropped. This meant that incomplete information
was used in propagating scores upwards in the document tree. As it turns out this did
make a significant difference to precision and recall. This performance cost is
discussed later in the experimental section. It must be noted that both limitations can
be lifted at the cost of increased processing time which can be reduced by other means
without sacrificing precision and recall – for instance, by storing inverted lists for
word-grams instead of single terms. With extremely common terms this could reduce
the list lengths by several orders of magnitude by reducing the time required to
complete the I/O and set operations over the lists.

After the scores of all nodes are computed GPX proceeds to add the score of the
Article node in each document to the score of each node in the article (including the
article node itself). This heuristic correction is intended to generally push up the
scores of elements that appear in documents that are more relevant. Empirically we
were able to establish that better results may be obtained in this manner.

Finally, we note that GPX is based on a simple variation of TFIDF. Robertson
provides a comprehensive discussion of various theoretical arguments for IDF [5], but
in the end IDF is still a heuristic approach, and so is GPX.

3 Experimental Results

In this section we present and discuss the results that were obtained at INEX 2006.
We also present the results of an empirical sensitivity analysis of various parameters
of the GPX search engine, performed with the Wikipedia collection.

3.1 Thorough Retrieval

All the QUT runs were generated with GPX search engine, starting with thorough
retrieval. We have experimented with several settings of the decay factor, with strict
and loose interpretation of NEXI expressions, and with various query expansion
techniques. The official results of the Thorough Retrieval task are reproduced in
Figure 1. The solid line is the GPX submission that was ranked 3rd, with a MAep
value of 0.0699. This is just 0.001 below the top submission, but qualitatively there
seems to be a difference - the precision of the GPX run is slightly lower at low recall
levels, but the overall recall (area under the curve) is higher. This run was obtained
with N1=0.11 and N2=0.31 in determining D(n) in Equation 2. Both GPX runs were
CO runs. The COS runs did not perform as well. This is the reverse of what was
observed with the IEEE CS collection that was used in earlier evaluations. We
attribute the difference to the apparent lack of semantic tagging in the Wikipedia.

144 S. Geva

The solid dash-dot line corresponds to the GPX run which was ranked 9th with MAep
value of 0.0620 and was obtained with the values of the decay parameter N1=0.31
and N2=0.71. Qualitatively it is similar to the other runs in the top 10.

The solid dotted line is an unofficial run that corresponds to exactly the same
system setting as our best official run, except that we kept 30,000 elements rather than
3,000 in producing the full recall base through score propagation (equation 2). The
MAep increased by 10% to 0.077. This is a very significant improvement and it
quantifies the cost of more efficient retrieval. Instead of 15 minutes, it took 111
minutes to generate a complete run submission of 125 topics.

Another difference between the two GPX runs is that the better performing run (by
MAep) was produced by adding to the CO title element a support filter. The filter was
placed over the article name. In this manner, elements that appeared in articles whose
name was about the same keywords as the title received a boosted score. This was
simply achieved by adding the filter to the title. For example,

//article[about(.,X Y Z)] //article[about(./name,(X Y Z)]//*[about(.,X Y Z)]

It should be noted that in GPX the meaning of the “//*” path specification is “this

node or any descendents” rather than “any descendent”. The modified expression is
evaluated by GPX in the usual manner and supported nodes receive an additional
score from the support element – if found in the same article. The heuristic is obvious
– if the search terms appear in the Wikipedia article name itself then it is more
probable that the article is relevant.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
task: thorough

ef
fo

rt
-p

re
ci

si
on

gain-recall

Fig. 1. GPX Thorough Retrieval

 GPX - Gardens Point XML IR at INEX 2006 145

3.2 Focused Retrieval

Focused Retrieval starts with the thorough results recall base. The highest scoring
elements on a path are selected by keeping only elements that have a higher score
than any of their descendents or ancestors. Figures 2 and 3 depict the official plots,
with the solid heavy line corresponding to the best official GPX submission. Again,
the unofficial dotted line was later produced by running GPX with the same setting as
the best official run, but taking the top 30,000 elements rather than the top 3,000 in
generating the thorough recall base from which the focused run was produced. The
performance difference is again quite large. There is a clear incentive to write a more
efficient implementation of GPX that will keep processing low while providing a
significant performance improvement.

3.3 Best in Context

We tested a trivial approach here – we simply kept the highest scoring element in
each document appearing in the recall base. This simple approach seems to have
produced good results with the BEPD metric. The GPX submission was ranked 3rd
with the setting A=0.01. This, according to the official BEP metric documentation,
means that the system was comparatively successful in pinpointing the BEP. Low A
values favor runs that return elements that are very close to the BEP.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

task: focused, overlap off

nx
cg

rank

Fig. 2. GPX Focused Retrieval, with overlap OFF

146 S. Geva

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

task: focused, overlap on

nx
cg

rank

Fig. 3. GPX Focused Retrieval, with overlap ON

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

task: All In Context

P
re

ci
si

on

Recall

Fig. 4. GPX All in Context Retrieval

 GPX - Gardens Point XML IR at INEX 2006 147

3.4 All in Context

The objective of the task was to balance article retrieval and element retrieval. Whole
articles are first ranked in descending order of relevance and within each article a set
of non-overlapping most focused elements are grouped. We have used the focused
results, which were overlap free already, but grouped the elements within articles and
sorted the articles by score. The results are reasonable but performance suffers
because the focused recall base is not ideal for this task. The focused recall base
retains the most relevant elements in the collection, but out of context. This means
that high recall within article is not assured. Nodes that have a lower score can drop
out of the top 1500 elements of the Focused run. This works against All in Context
retrieval where the F-Score of an article demands high recall within each article. In
addition to this, since from the outset we have only considered the top 3000 elements
in generating the thorough recall base, even the thorough recall base was incomplete.
This means that elements that might otherwise appear in highly ranked articles were
never retained. Figure 4 depicts the official results with the GPX best run depicted as
a heavy solid line.

3.5 Empirical Evaluation of GPX Scoring

In this section we present the results of empirical evaluation of the GPX scoring
strategy. We study the effect of each of the components in Equation 1 and Equation 2.
In order to evaluate the sensitivity of the evaluation to the score propagation constant
D(n) in Equation 2, we have fixed all other parameters, and used N1=N2=N, and
varied the value of N in small steps from zero to one. The results are summarized in
Table 1.

Table 1. The impact of choice D(n)

D(n) Thorough
MAep

Focussed nxCG@50
overlap OFF

Focussed nxCG@50
overlap ON

All in Context
MAep

0 0.017 0.262 0.219 0.082

0.1 0.039 0.280 0.231 0.117

0.2 0.049 0.289 0.232 0.125

0.3 0.056 0.296 0.237 0.131

0.4 0.062 0.298 0.233 0.135

0.5 0.066 0.287 0.234 0.142

0.6 0.068 0.268 0.235 0.148

0.7 0.070 0.248 0.230 0.153

0.8 0.069 0.235 0.223 0.156

0.9 0.069 0.218 0.211 0.157

1.0 0.068 0.154 0.158 0.100

148 S. Geva

The best performance is achieved at different D(n) values for the different tasks. In
the Thorough and All in Context higher values (0.8) produce better results since
higher D(n) values lead to exhaustive selection within article. In the Focused task
lower values (0.3) produce better results since precision is favoured by lower D(n)
values. This is also confirmed in our official run results. Importantly however, the
performance is not extremely sensitive to the selected value and there is no
catastrophic degradation of performance for some values.

In order to ascertain that the heuristic motivation to Equation 1 is indeed sound, we
have conducted experiments where we evaluated the individual components in
isolation. Figures 5 and 6 depict the performance of runs when the score calculation is
based on the number of unique query terms alone (Kn-1), on a TFIDF variation alone
(TFICF or BM25), and on the combination of the two as in Equation 1. It is clear that
when both components are used the performance is much improved (dotted line).
Furthermore, there is no advantage to using BM25 over the simpler TFICF variation.
This is not surprising since most text elements are small and BM25 is indeed expected
to make little difference for small documents [4]. We have used BM25 with the default
values K1=2 and b=0.75, but other values produced similar results.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
task: thorough

ef
fo

rt
-p

re
ci

si
on

gain-recall

Kn-1

TFICF

kn-1*TFICF

Fig. 5. GPX with TFICF

Finally, we tested several variations for the value of K in Equation 2. While
holding all other parameters constant we have varied the value of K from 1 to 50.
Figure 7 depicts the results. There is an improvement as K values increase to about 5
and then for values of between 5 and 50 there is no further improvement and the

 GPX - Gardens Point XML IR at INEX 2006 149

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
task: thorough

ef
fo

rt
-p

re
ci

si
on

gain-recall

Kn-1

BM25

kn-1*BM25

Fig. 6. GPX with BM25

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
task: Thorough

ef
fo

rt
-p

re
ci

si
on

gain-recall

k=1

k=2

k=5
k=8

k=10

k=50

Fig. 7. GPX with varying K values

150 S. Geva

performance is stabilized. This can be understood as follows. Equation 1 heavily
rewards elements that contain more distinct terms, through Kn-1. The TFIDF
component in Equation 1 moderates that score. Once the value of K is large enough
the moderation that is contributed by the TFIDF component is no longer sufficient to
moderate the rank order of elements with a very different number of distinct query
terms.

4 Conclusions

GPX performed rather well on the Wikipedia in most tasks. This result demonstrates
that the method is quite robust since GPX was designed and implemented with the
IEEE collection, but evaluated with the Wikipedia. The best relative performance was
achieved in the Thorough, Focused (overlap off) , and BEP tasks. The performance in
the All in Context task and Focused (overlap on) was not quite as good, but
respectable nevertheless. Future work will focus on ranking strategies that take node
size and structure into account in an explicit manner, to try and capture the intuitively
appealing F-Score calculation which was used in the evaluation of the All in Context
task. More work is also required on improving search efficiency. List processing is
extensive and the current implementation is CPU bound rather than I/O bound. A
response time of 7 seconds per topic is inadequate for implementing a high
throughput online system. We are unable to compare the efficiency of our system
with that of other systems at this stage because the INEX evaluation does not formally
support a systematic comparison of this aspect.

References

1. Geva, S.: GPX - Gardens Point XML Information Retrieval INEX 2004. In: Fuhr, N.,
Lalmas, M., Malik, S., Szlavik, Z. (eds.) Advances in XML Information Retrieval. Third
International Workshop of the Initiative for the Evaluation of XML. LNCS, pp. 211–223.
Springer, Heidelberg (2005)

2. Geva, S.: GPX - Gardens Point XML IR at INEX 2005, INEX 2005. In: Fuhr, N., Lalmas,
M., Malik, S., Kazai, G. (eds.) Advances in XML Information Retrieval. Fourth
International Workshop of the Initiative for the Evaluation of XML. LNCS, pp. 240–253.
Springer, Heidelberg (2006)

3. Geva, S., Tannier, X., Hassler, M.: XOR - XML Oriented Retrieval Language, SIGIR 2006,
Workshop on XML Element Retrieval Methodology, Proceedings online at:
http:/www.cs.otago.ac.nz/sigirmw/Proceedings.pdf

4. Robertson, S.E., Sparck Jones, K.: Simple, proven approaches to text retrieval, University
of Cambridge Technical Report UCAM-CL-TR-356, ISSN 1476-2986, December 1994, last
updated February 2006. http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-356.pdf

5. Robertson, S.: Understanding Inverse Document Frequency: On theoretical arguments for
IDF. Journal of Documentation 60(5), 503–520 (2004)

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 151–159, 2007.
© Springer-Verlag Berlin Heidelberg 2007

IBM HRL at INEX 06

Yosi Mass

IBM Haifa Research Lab
Haifa 31905, Israel

yosimass@il.ibm.com

Abstract. In previous INEX years we presented an XML component ranking
algorithm that was based on separation of nested XML elements to different in-
dices. This worked fine for the IEEE collection which has a small number of
potential component types that can be returned as query results. However, such
an assumption doesn’t scale to this year Wikipedia collection where there is a
large set of potential component types that can be returned. We show a new
version of the Component ranking algorithm that does not assume any knowl-
edge on the set of component types. We then show some preliminary work we
did to exploit the connectivity of the Wikipedia collection to improve ranking.

1 Introduction

The challenge in XML retrieval is to return the most relevant components that satisfy
the user needs. Of most interest is the class of CO (Content Only) queries where the
user doesn’t know anything about the collection structure and issue query in free text.
The search engine then exploits the XML structure to return the most relevant XML
components that satisfy the user needs.

The main challenge in XML retrieval is how to adapt ranking methods from classi-
cal IR that retrieve and rank full documents to rank components inside a document.
The main problem is that classical IR methods work on statistics such as term fre-
quency and document frequency at the document level. This does not perform well at
the component level due to component nesting in XML as explained in [6, 7]

In previous INEX workshops we described a component ranking algorithm [6, 7]
that solved the component nesting problem by running each query against different
indices where each index contains elements of the same type. The idea is to build
different indices for the most informative component types where each index contains
elements of the same type. This worked fine for the IEEE collection where the com-
ponents we choose were {article, abs, bdy, sec, ss1, ss2 and p+ ip1}. This leaves us
with 7 indices which is a manageable solution. However in this year Wikipedia col-
lection we can not pre identify such small number of the most informative collection,
since there are at least hundreds of such potential component types.

In this paper we describe a modified version of the component ranking algorithm
that does not have any assumptions on a pre defined set of potential component types,
but still uses the same idea of a small number of separate indices with no nested

152 Y. Mass

elements. We further show our attempts to exploit the rich connectivity of the
Wikipedia collection to improve component ranking by looking at <collectionlink>
and at their anchor text.

The rest of the paper is organized as follows: In section 2 we describe the modified
component ranking algorithm and in section 3 we describe the addition of <collec-
tionlink> and anchor eext to the ranking algorithm. In section 4 we describe our runs
and results in the adhoc track. We conclude in section 5 with summary and some
conclusions.

2 Component Ranking Algorithm

The basic idea in the Component ranking algorithm [6, 7] is to build different indices
for the most informative component types where each index contains elements of the
same type. The indices we used for the IEEE collection in previous years were {arti-
cle, abs, bdy, sec, ss1, ss2 and p+ip1}.

The component ranking algorithm is described in Fig 1 below. We give here a
short summary while full details can be found in [6, 7]. Given a query Q, we run the
query in parallel on each index (step 1) and then optionally apply an Automatic Query
Refinement (AQR) algorithm such as LARefinement[4] or similar (step 2) on each
result set. Then in step 3, the scores of elements in each result set are normalized to
score(Q,Q) which as described in details in [6], normalizes scores from the different
indices to the same range so that they can be compared. In step 4 we apply a docu-
ment pivot scaling where scores of elements from each index are scaled by the score
of their parent article. Finally all the results sets are merged into a single result set of
all element types.

Fig. 1. Component ranking algorithm

The above algorithm requires some prior knowledge on the collection such as the
element types to index in each of the indices. This doesn’t work for heterogeneous
collection that may have different element types. Moreover even for the Wikipedia
collection it doesn’t work since a simple analysis of the collection shows that there

Search(Q):

For each index i

1. Compute the result set Ri of running Q on index i

2. [Optionally] Apply AQR algorithm on Ri

3. Normalize scores in Ri to [0,1] by normalizing to score(Q,Q)

4. [Optionally] Scale each score by its containing article score from R0

Merge all Ri's to a single result set R composed of all components sorted
by their score

 IBM HRL at INEX 06 153

can be hundreds of possible element types that can be returned. Table 1 below shows
distribution of element types by their size. The table shows the top 20 element types
sorted by their max direct size in tokens. A direct size of an element is the content
directly under it and a total size of an element is the sum of all elements in the tree
below the element. All those top 20 elements and much more are potential to be re-
turned as query results so the method of selecting a small number (e.g. 7) of the most
informative elements does not scale for such collections.

Table 1. Distribution by element type size

We still want to use the component ranking algorithm so we use a different ap-
proach for creating the separate indices. Going back to the roots of the component
ranking algorithm, the motivation for creating the separate indices was two fold: first
to solve the problem of nested elements and second to compare elements of same
nature. We describe below a “Component indexing algorithm” for creating a small
number of indices for any given collection and we show that it satisfies the above two
objectives. The indexing algorithm gets two parameters -

1. minCompSize – the minimum component size (in tokens) to index from each
document

2. numIndices - the number of indices to create.

The indexing algorithm parses (using an XML SAX parser) each document in the
collection and finds all minimal elements that are larger than minCompSize. A mini-
mal element is either a leaf element whose size is larger than minCompSize or the

154 Y. Mass

deepest element in a path whose direct size is larger than minCompSize and it has no
descendant with a direct size larger than minCompSize.

We mark the indices with Index0…Indexn-1 where n = numIndices. For each such
minimal element we extract all its ancestors and if its depth is less than the number of
indices then each ancestor is indexed in a separate index. For example assume
numIndices = 7 then for example the minimal element /article[1]/bdy[1]/p[1] will be
indexed as follows:

Index 0: /article[1]
Index 1: /article[1]/bdy[1]
Index 2: /article[1]/bdy[1]/p[1]

If the depth of a minimal element is greater than the number of indices then we

take the first elements in the path into the first indices and the last elements in the path
into the last indices skipping some elements in between. For example

/article[1]/body[1]/section[7]/table[1]/tr[1]/td[2]/tr[1]/td[2]/tr[1]/td[2]

which has depth 10 will be split into the 7 indices as follows:

index 0 : /article[1]
index 1 : /article[1]/body[1]
index 2 : /article[1]/body[1]/section[7]
index 3: /article[1]/body[1]/section[7]/table[1]/tr[1]/td[2]/tr[1]
index 4: /article[1]/body[1]/section[7]/table[1]/tr[1]/td[2]/tr[1]/td[2]
index 5: /article[1]/body[1]/section[7]/table[1]/tr[1]/td[2]/tr[1]/td[2]/tr[1]
index 6: /article[1]/body[1]/section[7]/table[1]/tr[1]/td[2]/tr[1]/td[2]/tr[1]/td[2]

If a document does not have any minimal element namely it has no element whose

direct size greater than minCompSize then we only index the document itself (e.g.
/article[1]) into index0.

So far we showed how to split a single path into the separate indices. However a
document may have several minimal elements that may have common ancestors so
while building higher level indices we make sure that elements do not repeat. For
example the following minimal set of elements –

/article[1]/body[1]/p[1],
/article[1]/body[1]/section[1]/p[1],
/article[1]/body[1]/section[1]/p[2],
/article[1]/body[1]/section[2]/section[1]/p[1],
/article[1]/body[1]/section[2]/section[1]/p[2],
/article[1]/body[1]/section[2]/section[4]/p[2]
/article[1]/body[1]/p[5],

are split to indices as follows:

 IBM HRL at INEX 06 155

Index 0: /article[1]]

Index 1: /article[1]/body[1]]

Index 2: /article[1]/body[1]/p[1],
 /article[1]/body[1]/section[1],
 /article[1]/body[1]/section[2],
 /article[1]/body[1]/p[5],

Index 3: /article[1]/body[1]/section[1]/p[1],
 /article[1]/body[1]/section[1]/p[2],
 /article[1]/body[1]/section[2]/section[1],
 /article[1]/body[1]/section[2]/section[4]]

Index 4: /article[1]/body[1]/section[2]/section[1]/p[1],
 /article[1]/body[1]/section[2]/section[1]/p[2],
 /article[1]/body[1]/section[2]/section[4]/p[2]

It’s easy to verify that this separation to indices satisfies the first requirements that

elements in each index are not nested. This is because for each document, the ele-
ments indexed in each Indexi (i < mumIndices) are of the same length, therefore can
not be nested. The second requirement of having in each index elements of same
nature is not very intuitive. It does exist in higher level indices for example in Index0
we always index the whole document. Its true that in the last index due to the cutoff
of long depths, some elements can be from dept n-1 but some may be of level m > n-1
so we need more investigation if a different separation to indices is more appropriate.

3 Exploiting <collectionlink> and Anchor Text

The Wikipedia collection is highly connected through internal <collectionlink> links.
For example document 10013.xml contains the link:

<collectionlink xlink:type="simple" xlink:href="18957.xml">

medical
</collectionlink>

which creates a link from document 10013.xml to document 18957.xml. Each such
link is further accompanied by a child text that is actually the way that the pointing
document describes the pointed document. We call this text the “anchor text” of the
link. In the above example the anchor text is “medical”.

It would be interesting to try a PageRank [1] like algorithm to see if it can improve
recall/precision. The PageRank algorithm assigns a value called PageRank to a docu-
ment as a function of the number of incoming links to that document and as a function
of the PageRank of the pointing documents. A document with a higher PageRank is
deemed to be more relevant for a topic than a similar document with a lower
PageRank.

156 Y. Mass

In our submissions we tried a much simpler approach. We just count for each
document the number of incoming links and use this as the document’s weight. We
refer to this weight as the document’s static score. We further add to each document,
the anchor text of all incoming links, but we mark those terms with a special flag so
that later in the ranking algorithm we can assign different weight to them.

Since we do XML retrieval it could be beneficial to assign an individual static
score and anchor text to each XML element. However, since the links in Wikipedia
point to full documents and not to internal XML elements, our indexing schema infers
for each document, the document’s static score and anchor text to all its contained
elements.

A modified component ranking algorithm that takes into account the static score is
depicted in Figure 2 below –

Fig. 2. Component ranking algorithm with static score

The algorithm gets a new parameter SSWeight (static score weight) which is the
weight we give to the static score in the final element’s score. The new step 4 assigns
scores to elements according to the following formula –

Score(e) = SSWeight * estaticscore + (1 – SSWeight) * Score(e)

Where estaticscore is the element’s static score.

4 Runs and Results

We describe our submissions and results for the CO and COS thorough and BestIn-
Context runs. The runs were submitted using the Juru[3] search engine. In all runs we
applied term stemming and we ignored phrase boundaries (namely phrase terms were
treated as simple terms). We treat “+” terms as regular terms and use the “+” only to
boost score of those terms. We treat “-“ terms strictly, namely we never return a result
which has a “-“ term. For all runs we picked minCompSize=20 and numIndices=7
and we added the anchor text to the pointed documents with same weight as regular
terms.

Search(Q, SSWeight)

For each index i

1. Compute the result set Ri of running Q on index i

2. [Optionally] Apply AQR algorithm on Ri

3. Normalize scores in Ri to [0,1] by normalizing to score(Q,Q)

4. [Optionally] Weight scores by their static score

5. [Optionally] Scale each score by its containing document’s score from
R0

Merge all Ri's to a single result set R composed of all components sorted by
their score

 IBM HRL at INEX 06 157

From the 5 steps in the modified component ranking algorithm (see figure 2) we
skipped the optional step 2 namely we didn’t apply Automatic Query Refinement. In
step 5 we used doc pivot 0.5 namely elements scores were composed from 50% of
their original score in their index and 50% of their full document score.

Out official runs are described in the following subsections.

Thorough Runs

We submitted 3 CO runs and 3 COS runs. For the COS runs we translated the topics
to XML Fragments[2, 5] and applied a variant of the component ranking algorithm
(see Figure 2) by using the tags in the first index (the index of the full documents) to
filter out elements from the final result set based on the topic structure. The detailed
algorithm for COS is described in [6].

The results of our thorough runs using the filtered assessment pool1 with Met-
ric:ep-gr, Quantization: gen, overlap=off are summarized in Table 2 below.

Table 2. Results for the thorough run

Rank Run type Run description MAep

7 CO SSWeight=0.1, title + on topic keywords 0.0653

10 CO SSWeight=0.1, title only 0.0619

11 CO SSWeight=0, title only 0.0616

32 COS SSWeight=0.2, with synonyms 0.0323

34 COS SSWeight=0.1, with synonyms 0.0319

47 COS SSWeight=0, no synonyms 0.0242

So we tried several static score weights and for the COS runs we tried runs were

we treat the structure strictly (row 6 – no synonyms) and runs in which we allowed a
more vague structure interpretation (rows 4,5 – with synonyms) by defining {section,
p, item} as synonyms to each other.

Our observations from the results are as follows:

1. The best result was achieved for a topic that used both the title and the on topic
keywords. However we are more interested in the runs which used the title
only (rows 2-6).

2. The 3 CO runs were superior to the COS runs. This strengthens our findings
from last years that structural hints do not seem to contribute to the results.

3. Our naïve static score implementation didn’t change the results much. We can
see that the MAep of the 2nd and 3rd rows is almost identical were one was us-
ing SSWeight 0.1 and one didn’t use static score at all.

1 The filtered assessment pool is the pool after removing small link elements that were inserted

as relevant automatically by the assessment tool.

158 Y. Mass

4. The COS runs with strict structure (row 6) was inferior to COS runs that treat
structure vaguely.

BestInContext Runs

The BestInContext run was performed by first running a thorough run and then a
filtering step on the returned results. In the filtering step we go over the returned
ranked list of elements and pick the first element seen from each document as the best
entry point for that document. We then remove all other elements from same docu-
ment. Our results for the metric BEPD with parameter A=0.01 are summarized in
table 3 below –

Table 3. Results for the BestInContext runs, metric BEPD, A=0.01

Rank Run type Run description MAep

4 CO SSWeight=0, title only 0.1621

5 CO SSWeight=0.1, title only 0.1614

7 CO SSWeight=0.2, title only 0.1608

26 COS SSWeight=0.2, with synonyms 0.1213

29 COS SSWeight=0.1, with synonyms 0.1177

52 COS SSWeight=0, no synonyms 0.0754

Like in the thorough run we can see that our naïve static score implementation for
<collectionlink> did not yield any change and that our CO runs were much superior to
the same COS runs.

The metric parameter A measures how much the returned element is close to the
optimal BEP (Best entry point). High values of A (e.g. 10) tend to give a score of 1 to
any answer in a relevant document; hence the score does not discriminate whether x is
near to or far from the BEP.

For A = 10.0 our runs were ranked top which means that we did rank the docu-
ments correctly but the entry point we returned was not always close to the optimal
BEP.

5 Discussion and Summary

We described a scalable and robust component ranking algorithm that does not re-
quire any pre existing knowledge on the element types that are potential to be re-
turned. This algorithm can work on the Wikipedia collection as well as on any hetero-
geneous collection. We further tried to improve the algorithm by applying a naïve
static score algorithm based on incoming links but it doesn’t seem to improve
much.

 IBM HRL at INEX 06 159

As future work we should investigate the coverage of indexed elements out of all
relevant elements in the assessment pool. This can be used as an indication if our
indexing schema is robust enough. We should also explore other indexing algorithm
that uses combination of direct size and total size for picking minimal elements. And
finally we should try to run a real PageRank[1] algorithm and try different weights for
the added anchor text terms.

References

1. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. In: Pro-
ceedings of the seventh international conference on World Wide Web 7, pp. 107–117 (Sec-
tion 2.1.1 Description of PageRank Calculation) (1998)

2. Broder, A.Z., Maarek, Y., Mandelbrod, M., Mass, Y.: Using XML to Query XML–From
Theory to Practice. In: Proceedings of RIAO’04, Avignon France (April 2004)

3. Carmel, D., Amitay, E., Herscovici, M., Maarek, Y., Petruschka, Y., Soffer, A.: Juru at
TREC 10 - Experiments with Index Pruning. In: Proceedings of NIST TREC 10
(November 2001)

4. Carmel, D., Farchi, E., Petruschka, Y., Soffer, A.: Automatic Query Refinement using Lexi-
cal Affinities with Maximal Information Gain. In: Proceedings of the 25th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval
(2002)

5. Carmel, D., Maarek, Y., Mandelbrod, M., Mass, Y., Soffer, A.: Searching XML Documents
via XML Fragments. In: Proceedings of the 26th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, Toronto, Canada (August
2003)

6. Mass, Y., Mandelbrod, M.: Retrieving the most relevant XML Component. In: Proceedings
of the Second Workshop of the Initiative for The Evaluation of XML Retrieval (INEX), De-
cember 15-17, 2003, Dagstuhl, Germany, pp. 53–58 (2003)

7. Mass, Y., Mandelbrod, M.: Component Ranking and Automatic Query Refinement for
XML Retrieval, Advances in XML Information Retrieval. In: Fuhr, N., Lalmas, M., Malik,
S., Szlávik, Z. (eds.) INEX 2004. LNCS, vol. 3493, pp. 73–84. Springer, Heidelberg (2005)

Indexing “Reading Paths” for a Structured

Information Retrieval at INEX 2006

Mathias Géry

Laboratoire Hubert Curien - UMR CNRS 5516
Université Jean Monnet - Saint-Étienne
Mathias.Géry@univ-st-etienne.fr

Abstract. We present in this paper our XML information retrieval ex-
periments at INEX 2006 (ad-hoc track). We have developed a Structured
Information Retrieval System based on an IR model considering Web
documents as “reading paths”, instead of a set of atomic and flat pages.
Our algorithm is based on information propagation along the reading
paths. We present some preliminary results at INEX 2006 (ad-hoc track).

Keywords: Web Information Retrieval, Indexation, Web structure,
Reading Paths, Information Propagation.

1 Introduction

The Web is obviously structured: it is composed of structured documents (the
HTML pages can be structured), and it has also hypertext characteristics (the
HTML pages can be linked together). The Wikipedia collection used by INEX is
an example of such a structure, even if the structure of XML Wikipedia articles
is quite homogeneous compared to the Web structure. Document structure is an
essential constituent of information description. We have to consider it during
an IR process: the index should represent the semantic content of documents,
including the structure. The IR model has to integrate links and their impact
directly into the document model, instead of applying a simple re-ranking above
a classical system.

In this paper, we present an Information Retrieval model that takes into ac-
count XML structure view as reading paths. The outline of our paper is the fol-
lowing: Section 2 deals with Web Information Retrieval and structure. Section 3
describes the information propagation that allows to index XML documents as
reading paths. Finally, Section 4 presents some preliminary results at INEX 2006.

2 Web Structure and IR

Several research directions have been proposed to improve the use of Web struc-
ture in IR, especially in XML IR as studied by the INEX evaluation campaign.
Some specific techniques propose to query explicitly the structure of documents
(structured queries, [4]), that is not suitable for the heterogeneous Web. Two

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 160–164, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Indexing “Reading Paths” for a Structured Information Retrieval 161

other kind of approaches use the “global link information” (i.e. using the whole
structure independently of the query) for the indexing phase of an IRS: “infor-
mation propagation” and “popularity propagation”. Another kind of approach,
“relevance propagation”, uses the “local link information”, i.e. using structure
considering the query. This kind of propagation considers a subset of the graph,
such as the set of nodes relevants to the query. In both local and global cases,
the idea is to propagate information along the links during the phase of querying
and/or indexing.

Popularity propagation considers that “A good page is a page referenced by
many other good pages”, typically with the calculation of a “prestige score”
for each page. A popular implementation is Google PageRank algorithm, which
calculates such a prestige score at indexing time, independently of the query [1].

Information propagation considers links by propagating information along
them, in order to retrieve the structured documents considering their sub-parts,
but also in order to retrieve the sub-parts considering the whole documents.
For example, XFIRM system propagates words from sub-parts of a document
to the top, and from top to bottom [7]. The search engine Google propagates
words from context (link anchors, i.e. fragments of text, on which a user can click
in order to activate a hypertext link) to a given page considering that “anchors
often provide more accurate descriptions of web pages than the pages themselves”
[1]. The anchors words are added to the index of the referenced page.

Based on the same principle as popularity propagation, relevance propagation
calculates a “prestige score”, for a subset of pages that have been pre-selected
considering the query. For example, the algorithm HITS calculates two “prestige
scores” at query time: the Hubs and Authorities, assuming that “A good hub
links to many good authorities, and a good authority is linked from many good
hubs” [3]).

These link-based techniques show the interest of IR community in using struc-
ture for IR. Search engines seem to give good results on the Web exploiting the
links, but the evaluation of these techniques is generally disappointing. Several
papers in TREC conference (Web track) have showed that there is no significant
improvement of IR quality using the links network [8] [2]. Most of the systems
are based on a Web model simplified to a directed graph with HTML pages as
nodes and hyperlinks as edges (“triple-bag”: bag-of-words, bag-of-nodes (Web
pages), bag-of-links). Few methods try to analyze the meaning of a link, and
how to fully consider it for IR.

We propose a Web model more structured than the uniform “triple-bag”, in
order to improve IR using links-based techniques. This model aims to describe
the information as the authors have thought it, and index the information as
the readers read it.

3 Information Propagation

Our IR model considers three aspects of information reading on the Web. Two
of them consider the reading of a “document” (navigation inside a “document”),

162 M. Géry

and are based on a tree structure and a reading path structure. The third as-
pect deals with the navigation outside a document, considering the concept of
“context”.

INEX collection is composed of structured documents (XML), i.e. based on a
hierarchical structure. Several works propose to propagate information and/or
relevance from sub-parts of a document to the top, and from the top to the
bottom. In this paper, information propagation is also based on a hierarchical
structure, but we focus on the reading paths indexation. We propagate infor-
mation along “reading paths links”, i.e. from one node (section) to its brother
(next section) in the document tree.

3.1 INEX Wikipedia Collection

Ad-hoc collection at INEX 2006 is composed of 659.388 XML articles (Wikipedia
entries). XML documents are composed of sections, sub-sections, paragraphs, etc.
In these experiments, we consider only articles ai and sections si.

∀ai ∈ WikipediaCollection, ai = (s1, s2, ...sj , ...sn)
∀ai ∈ WikipediaCollection,∀sk ∈ ai, sk = (s1, s2, ...sj , ...sn)
INEX Ad-hoc collection test includes 125 queries. Each query is composed

of 5 fields : title, castitle, description, narrative, ontopics keywords. In these
experiments, we have used only the “title” field.

3.2 VSM Atomic Indexation

The atomic document unit considered by our SIRS is a first level XML section
(XML tag <s>). We don’t use sub-sections, sub-sub-sections, paragraphs, etc., or
any other XML element. All the text that appears outside a section is considered
only at article level.

Our system is based on the Vector Space Model (VSM) [6] that has been well
studied for atomic contents. Each article ai and each section si is represented
by a vector of weighted terms:

−→ai = (wi1, wi2 ... wij ... win)
−→sk = (wk1, wk2 ... wkj ... wkn)
n is the number of terms in the collection.

3.3 Information Propagation: Reading Paths for IR

We assume that a reader will generally read sections in their appearing order.
Aiming to simulate human reading and consider this order, our algorithm is
based on reading memory hypothesis: the reading of a si depends on the previ-
ous s1, s2, ...si−1 that were read. For example, the information in the “introduc-
tion” section is generally used to understand the remaining of the reading path
(section 2, section 3, ..., conclusion). Information that is read at the beginning
of the reading path has more importance than the others, considering that it is
reused afterward as reading memory. Thus, the reading memory benefits from
an accumulation effect along the reading path.

Indexing “Reading Paths” for a Structured Information Retrieval 163

Our choice is to propagate information from each section to the following sec-
tions. The terms appearing in a section si have to be considered while calculating
the relevance of all sections sj with i < j.

We assume that the importance of a section on its following sections decrease
with the distance between sections.

(a) ∀ ai ∈ collection, BM25 produces vectors :
ai =, (wi1, wi2 ... wip ... win)

(b) ∀ ai ∈ collection, ∀ sj ∈ ai, BM25 produces vectors :
sj =, (wj1, wj2 ... wjp ... wjn)

(c) ∀ai ∈ collection, for j = 1 to sizeof(ai)
∀sk, k ∈ [j + 1..sizeof(ai)]

if (k - j) <= d max then
sk+ = α.

sj

(k−j)

endif

Fig. 1. Information propagation

The function sizeof(ai) returns the number of sections in ai. The distance
k − j is the distance between two nodes sk and sj , i.e. the number of edges
between sk and sj . The parameters α and dmax (maximum distance) have been
fixed to 0.16 and 3 in our experiments.

4 Preliminary Results

Wikipedia collection at INEX 2006 is composed of 659.388 XML articles. Our
algorithm splits these articles in 1.909.598 first level sections. We use the BM25
weighting function [5], and a simple hand-made stopwords list.

We have submitted 2 runs for the Thorough sub-task of the Ad-Hoc track:

• Sections level 1, BM25 classical indexation (baseline run): without information
propagation, i.e. steps a) and b) of our algorithm.

• Sections level 1, BM25 classical indexation with information propagation, i.e.
steps a), b) and also step c) of our algorithm.

Our baseline run gives a score of 0.0186, ranked 64th/106. Our second run
(simple information propagation), is not conclusive, as the score obtained is be-
low our baseline: 0.0170, ranked 70th/106. We have to investigate more deeply
these experiments, in order to determine the impact of each one of the prop-
agation parameters. We think that we can improve these results, tuning the
parameters and especially taking into account various document granularities,
i.e. various XML elements instead of section level only.

164 M. Géry

5 Conclusion and Future Work

Our model considers the Web as a set of reading paths, instead of a set of flat,
atomic and independent Web pages. Our first experiments at INEX 2006 imple-
ment only one aspect of our IR model: information propagation along reading
path. However, we still have to investigate deeply the impact of our approach
on IR.

Our objectives are to experiment with INEX test collection the other reading
paths specificities. Our problematic covers a large set of questions: Is it inter-
esting to take into account the node order ? To accumulate information along
reading path ? To combine reading path indexation and more classical hierarchi-
cal indexation ? To index a a reading path, i.e. a document composed of several
nodes extracted from distinct parts of a XML document ? How can we extract
these “documents” ? How can we identify reading links ?

References

1. Brin, S., Page, L.: The anatomy of a large-scale Hypertextual Web Search Engine.
In: 7th World Wide Web Conference (WWW’98), Brisbane, Australia (April 1998)

2. Craswell, N., Hawking, D., Wilkinson, R., Wu, M.: Overview of the trec 2003 web
track. In: 12th Text REtrieval Conference, pp. 78–92 (2003)

3. Kleinberg, J.: Authoritative Sources in a Hyperlinked Environnement. Journal of
the ACM 46, 604–632 (1999)

4. Mendelzon, A., Mihaila, G.A., Milo, T.: Querying the World Wide Web. Journal of
Digital Libraries 1, 68–88 (1997)

5. Robertson, S., Zaragoza, H., Taylor, M.: Simple bm25 extension to multiple weighted
fields. In: CIKM 2004, Washington, DC, November 2004, pp. 42–49 (2004)

6. Salton, G., McGill, M.: Introduction to Modern Information Retrieval, Janvier 1983.
McGraw-Hill, New York (1983)

7. Sauvagnat, K., Boughanem, M.: Propositions pour la pondération des termes et
l’évaluation de la pertinence des éléments en recherche d’information structurée. In:
3th COnférence en Recherche d’Informations et Applications (CORIA 2006), Lyon,
France (March 2006)

8. Savoy et, J., Rasolofo, Y.: Report on the TREC-9 Experiment: Link-based Retrieval
and Distributed Collections. In: 9th Text REtrieval Conference, Gaithersburg, Mary-
land, United States (November 2000)

Influence Diagrams and Structured Retrieval:

Garnata Implementing the SID and CID Models
at INEX’06

Luis M. de Campos, Juan M. Fernández-Luna,
Juan F. Huete, and Alfonso E. Romero

Departamento de Ciencias de la Computación e Inteligencia Artificial
E.T.S.I. Informática y de Telecomunicación, Universidad de Granada,

18071 – Granada, Spain
{lci,jmfluna,jhg,aeromero}@decsai.ugr.es

Abstract. This paper exposes the results of our participation in
INEX’06. Two runs were submitted to the Ad Hoc Thorough track ob-
tained with Garnata, our Information Retrieval system for structured
documents. We have implemented two different models based on Influ-
ence Diagrams, the SID and CID models. The result of this first partic-
ipation has been very poor. In the paper, we describe the models, the
system, and analyse the possible reason of such a bad performance.

1 Introduction

Although the research group “Uncertainty Treatment in Artificial Intelligence”
at University of Granada has been participating in INEX since its beginnings,
in this edition it is the first time that their members submit a run to the official
tasks. Until now, our contribution to INEX had been the design of several topics
and the assessments of relevance judgements, but now we have participated with
a new experimental platform to perform structured retrieval using Probabilistic
Graphical Models.

We have participated in the Ad Hoc Track (the Thorough subtask) with
the results given by two models based on Influence Diagrams [5]: the Simple
Influence Diagram Model (SID) and the Context-based Influence Diagram Model
(CID) [2,3]. They have been implemented in the Garnata Retrieval System [4],
a software specifically designed and implemented to work with Probabilistic
Graphical Model-based structured retrieval models, like Bayesian Networks and
Influence Diagrams [7]. As fas as we know, these models are the first attempts
to apply Influence Diagrams to structured retrieval.

It also should be pointed out that the results of this first participation are not
good, and in fact clearly disappointing. In fact, we are in the last positions of
the ranking in the Thorough task. Perhaps, this bad behaviour could be due to
a wrong implementation of the algorithm found in Garnata after studying the
poor performance obtained by the SID and CID models, once the official results
were published. However, after sharping the implementation fact, the results are

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 165–177, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

166 L.M. de Campos et al.

still not good enough. Therefore, as future works we propose a list of possible
improvements in the algorithms trying to identify the problems in them.

Another reason to get such a classification in the ranking could be the free
unspecified parameters of the models. Since they are collection-dependent, those
that we used in the experimentation were not the best, because no Wikipedia
assessments were disposable at that time. We think that the behaviour of both
models could be clearly improved with a more systematic experimentation find-
ing an optimal configuration of the parameters.

In order to describe the models and the software that we have used, this paper
is organised as follows: the next section will introduce Influence Diagrams to the
reader (the formalism used in the models). Sections 3 and 4 will describe the
SID and CID models, and Garnata, the Information Retrieval System, which
implements them, respectively. The following section will discuss how the ex-
perimentation was performed, and try to explain the reasons of the unexpected
performance of the models. This paper will finish with the conclusions and future
works for our system.

2 Introduction to Influence Diagrams

An Influence Diagram [5,9] provides a simple notation for creating decision mod-
els by clarifying the qualitative issues of the factors which need to be considered
and how they are related, i.e. an intuitive representation of the model. They also
have associated an underlying quantitative representation in order to measure
the strength of the relationships: we can quantify uncertain interactions between
random variables and also the decision maker’s options and preferences. The mo-
del is used to determine the optimal decision policy. More formally, an Influence
Diagram is an acyclic directed graph containing three types of nodes (decision,
chance, and utility nodes) and two types of arcs (influence and informative arcs).

Nodes in an Influence Diagram represent various types of variables.

– Decision nodes: Usually drawn as rectangles, these represent variables that
the decision maker controls directly. These variables model the decision al-
ternatives available for the decision maker.

– Chance nodes: Usually drawn as circles, these represent random variables,
i.e. uncertain quantities that are relevant to the decision problem and cannot
be controlled directly. They are quantified by means of conditional probabi-
lity distributions, identical to those used in Bayesian networks1. Predecessors
(parents) of chance nodes that are decision nodes act in exactly the same
way as those predecessors that are chance nodes (they index the conditional
probability tables of the child node).

– Utility nodes: Usually drawn as diamonds, they express the profit or the
preference degree of the consequences derived from the decision process.

1 In fact, the subset of an Influence Diagram that consists only of chance nodes is
a Bayesian network. Thus, an Influence Diagram can also be viewed as a Bayesian
network enlarged with decision and utility nodes.

Influence Diagrams and Structured Retrieval 167

They are quantified by the utility of each of the possible combinations of
outcomes of their parent nodes.

Take Umbrella
P(weather = rain) = 0.2

forecast
(F)

weather

(W)(U)

P(F=sunny|W=rain) =0.1
P(F=cloudy|W=rain)=0.4
P(F=rainy|W=rain)=0.5
P(F=sunny|W=no−rain) =0.7
P(F=cloudy|W=no−rain)=0.2
P(F=rainy|W=no−rain)=0.1

P(weather = no−rain) = 0.8

Utility(W=no−rain, U=T) =10
Utility(W=no−rain, U=F) = 20
Utility(W=rain, U=T) = 70
Utility(W=rain, U=F) = 0

Utility

Fig. 1. An example of an Influence Diagram

There are also different types of arcs in an Influence Diagram, which gene-
rally represent influence. The arcs between chance nodes represent probabilistic
dependences (as it occurs in Bayesian networks). The arcs from a decision node
to a chance node or to a utility node establish that the future decision will affect
the value of the chance node or the profit obtained, respectively. Arcs between
a chance node and a decision node (also called informative) only say that the
value of the chance node will be known at the moment of making the decision.
Finally, arcs from a chance node to a utility node will represent the fact that the
profit depends on the value that this chance node takes. The absence of an arc
between two nodes specifies (conditional) independence relationships. It should
be noted that the absence of an arc is a stronger statement than the presence of
an arc, which only indicates the possibility of dependence.

Some arcs in Influence Diagrams clearly have a causal meaning. In particular, a
directed path from a decision node to a chance node means that the decision will
influence that chance node, in the sense of changing its probability distribution.

A simple example of an Influence Diagram appears in Figure 1. It has two
chance nodes, F and W , representing, the weather forecast in the morning
(sunny, cloudy or rainy), and whether it actually rains during the day (rain
or no-rain), respectively. It has one decision node U , taking an umbrella (with
possible values true or false). The utility node measures the decision maker’s
satisfaction.

With each chance node X in the graph, the quantitative part of an Influence
Diagram associates a set of conditional probability distributions p(X |pa(X)),

168 L.M. de Campos et al.

one for each configuration pa(X) from the parent set of X in the graph, Pa(X),
i.e. for each allocation of values to all the variables in the parent set of X .
If X has no parents (Pa(X) = ∅), then p(X |pa(X)) equals p(X). For each
utility node V , a set of utility values v(pa(V)) is associated, specifying for each
combination of values for the parents of V , a number expressing the desirability
of this combination for the decision maker.

The goal of Influence Diagram modeling is to choose the decision alternative
that will lead to the highest expected gain (utility), i.e. to find the optimal
policy [8]. In order to compute the solution, for each sequence of decisions, the
utilities of its uncertain consequences are weighted with the probabilities that
these consequences will occur.

3 The SID and CID Models

In this section, we shall briefly describe the SID and CID models for structured
retrieval. A complete description of these models can be found in [2,3].

3.1 The Underlying Bayesian Network

In this model, we consider three different kinds of entities which will be rep-
resented by the means of three different kinds of random variables. Namely:
index terms, basic structural units, and complex structural units (see below for
definitions).

Because our models are Influence Diagrams, they are based in an underlying
Bayesian networks which represents a structured document set. This Bayesian
network will contain two kinds of nodes, representing the terms and the structural
units. The former will be given by the set T = {T1, T2, . . . , Tl}. As stated before,
there are two types of structural units: basic structural units, those which only
contain terms (leaf nodes in XML), and complex structural units (non-leaf nodes
in XML), that are composed of other basic or complex units. For those units
containing both text and units (appearing often in Wikipedia), we consider them
as complex units, and the text of that unit is assigned to a new unit called virtual
unit2, a non-retrievable basic unit (see figure 2). The notation for these nodes is
Ub = {B1, B2, . . . , Bm} and Uc = {S1, S2, . . . , Sn}, respectively. Therefore, the
set of all structural units is U = Ub ∪ Uc. In this paper, T or Tk will represent
a term; B or Bi a basic structural unit, and S or Sj a complex structural unit.
Generic structural units (either basic or complex) will be denoted as Ui or U .
Each node T , B or S has associated a binary random variable, which can take its
values from the sets {t−, t+}, {b−, b+} or {s−, s+} (the term/unit is not relevant
or is relevant), respectively. A unit is relevant for a given query if it satisfies the
user’s information need expressed by this query. A term is relevant in the sense
that the user believes that it will appear in relevant units/documents.

2 Of course this unit will not appear in the XPath route of its descendants, is only a
formalism that allow us using the two different kinds of units explained above.

Influence Diagrams and Structured Retrieval 169

...section text... ...section text...LINK

...link text...

SECTION

...section text...

LINK

...link text...

SECTION

SECTION
virtual, non retrievable

...section text...

SECTION

Fig. 2. An example of a virtual unit: after the change, the “section” does not contain
text, only other units

Regarding the arcs of the models, there will be an arc from a given node
(either term or structural unit) to the particular structural unit the node belongs
to. It express the fact that the relevance of a given structural unit to the user
will depend on the relevance values of the different elements (units or terms)
that comprise it. It should be noted that with this criteria, term nodes have no
parents.

Note that the hierarchical structure of the model determines that each struc-
tural unit U ∈ U has only one structural unit as its child: the unique structural
unit containing U (except for the leaf nodes, i.e. the complete documents, which
have no child). We shall denote indistinctly by Hi(U) or Uhi(U) the single child
node associated with node U (with Hi(U) = null if U is a leaf node).

The numerical values for the conditional probabilities have also to be assessed:
p(t+), p(b+|pa(B)), p(s+|pa(S)), for every node in T , Ub and Uc, respectively, and
every configuration of the corresponding parent sets pa(X). A canonical model
proposed in [1] will be used to represent the conditional probabilities which
supports a very efficient inference procedure. These probabilities are defined as
follows:

∀B ∈ Ub, p(b+|pa(B)) =
∑

T∈R(pa(B))

w(T, B) , (1)

∀S ∈ Uc, p(s+|pa(S)) =
∑

U∈R(pa(S))

w(U, S) , (2)

where w(T, B) is a weight associated to each term T belonging to the basic unit
B and w(U, S) is a weight measuring the importance of the unit U within S. In
any case R(pa(U)) is the subset of parents of U (terms for B, and either basic or
complex units for S) relevant in the configuration pa(U), i.e., R(pa(B)) = {T ∈
Pa(B) | t+ ∈ pa(B)} and R(pa(S)) = {U ∈ Pa(S) | u+ ∈ pa(S)}. These weights
can be defined in any way with the only restrictions that

w(T, B) ≥ 0, w(U, S) ≥ 0,
∑

T∈Pa(B)

w(T, B) ≤ 1, and
∑

U∈Pa(S)

w(U, S) ≤ 1.

170 L.M. de Campos et al.

3.2 Constructing the Influence Diagram

Once the Bayesian network has been constructed, it is enlarged by including
decision and utility nodes, and so transforming it into an Influence Diagram.

– Decision nodes: These nodes model the decision variables, representing the
possible alternatives available to the decision maker. One decision node, Ri,
for each structural unit Ui ∈ U . Ri represents the decision variable related to
whether or not to return the structural unit Ui to the user. The two different
values for Ri are r+

i and r−i , meaning ‘retrieve Ui’ and ‘do not retrieve Ui’,
respectively.

– Utility nodes: We shall also consider one utility node, Vi, for each structural
unit Ui ∈ U , ∀i = 1, . . . , |U|. Vi will measure the value of utility for the
corresponding decision.

We shall also consider a global utility node representing the joint utility of
the whole model. This node will be denoted by Σ, meaning we are assuming an
additive behavior of the model. In addition to the arcs between chance nodes
(those present in the Bayesian network), a set of arcs pointing to utility nodes
are also included, employed to indicate which variables have a direct influence
on the desirability of a given decision, i.e. the profit obtained will depend on the
value of these variables. We shall consider two different set of arcs, which will
consistently generate two different Influence Diagrams models:

1. Simple Influence Diagram (SID): We shall only take into account arcs from
chance nodes Ui and decision nodes Ri to the utility nodes Vi, ∀i = 1, . . . , |U|.
These arcs mean that the utility function of Vi depends obviously only on
the decision made and the relevance value of the structural unit considered.
Finally, the utility node Σ has all the utility nodes Vi,j as its parents. These
arcs represent the fact that the joint utility of the model will depend on the
values of the individual utilities of each structural unit.

2. Context-based Influence Diagram (CID): In order to represent that the utility
function of Vi obviously depends on the decision made and the relevance
value of the structural unit considered, we use arcs from each chance node
Ui and decision node Ri to the utility node Vi. Another important set of
arcs are those going from Hi(Ui) to Vi, which represent that the utility of
the decision about retrieving the unit Ui also depends on the relevance of
the unit which contains it (of course, for those units U where Hi(U) = null,
this arc does not exist).
Again, the utility node Σ will have the same set of parents as in the SID
model.

Figure 3 shows an example of both Influence Diagram models: the SID (left-
hand side) and the CID (right-hand side).

Finally, for each node Vi, the associated utility functions must be defined:

1. Utility nodes in SID: For each node Vi, we need to assess a numerical value
for the possible combination of the decision node Ri and the chance node

Influence Diagrams and Structured Retrieval 171

V13

R13

R12

V12

V13

R13

R12

V12

R23 R33

V23 V33

R23 R33

V23 V33

R43

V43

R22

V22

U11

U22

U13
U43U23

U12

U33 R43

V43

R22

V22

U11

U22

U13
U43U23

U12

U33
R13

V11

R11R11

V11

T1T1T1T1T1T1T1T1 T3 T4 T5 T6 T7 T8T2 T9 T10 T11 T3 T4 T5 T6 T7 T8T2 T9 T10 T11

Fig. 3. Influence diagrams for the SID and CID models

representing the structural component Ui. The four values are v(r+
i |u+

i),
v(r−i |u+

i), v(r+
i |u−

i) and v(r−i |u−
i).

2. Utility nodes in CID: For each utility node Vi we have eight parameters,
one for each combination of values of the decision node Ri and the chance
nodes Ui and Hi(Ui) (except for the leaf nodes, which only require four
values). These values are represented by v(ri, ui, uhi(Ui)), with ri ∈ {r−i , r+

i },
ui ∈ {u−

i , u+
i }, and uhi(Ui) ∈ {u−

hi(Ui)
, u+

hi(Ui)
}.

3.3 Inference and Decision Making

To solve an Influence Diagram, the expected utility of each possible decision (for
those situations of interest) has to be computed, thus making decisions which
maximize the expected utility. In our case, the situation of interest corresponds
to the information provided by the user when he/she formulates a query. Let
Q ⊆ T be the set of terms used to express the query. Each term Ti ∈ Q will
be instantiated to either t+i or t−i ; let q be the corresponding configuration of
the variables in Q. We wish to compute the expected utility of each decision
given q. As we have assumed a global additive utility model, and the different
decision variables Ri are not directly linked to each other, we can process each
one independently. The expected utilities for each Ui can be computed for each
model by means of:

– SID Model:

EU(r+
i | q) =

∑

ui∈{u−
i ,u+

i }

v(r+
i , ui,) p(ui|q) , (3)

EU(r−i | q) =
∑

ui∈{u−
i ,u+

i }

v(r−i , ui) p(ui|q) . (4)

172 L.M. de Campos et al.

– CID Model:

EU(r+
i | q) =

∑

ui∈{u
−
i

,u
+
i

}

uhi(Ui)∈
�

u
−
hi(Ui)

,u
+
hi(Ui)

�

v(r+
i , ui, uhi(Ui)) p(ui, uhi(Ui)|q) , (5)

EU(r−i | q) =
∑

ui∈{u
−
i

,u
+
i

}

uhi(Ui)∈
�

u
−
hi(Ui)

,u
+
hi(Ui)

�

v(r−i , ui, uhi(Ui)) p(ui, uhi(Ui)|q) . (6)

In the context of a typical decision making problem, once the expected utilities
are computed, the decision with greatest utility is chosen: this would mean to
retrieve the structural unit Ui if EU(r+

i |q) ≥ EU(r−i |q), and not to retrieve it
otherwise. However, our purpose is not only to make decisions about what to
retrieve but also to give a ranking of those units. The simplest way to do it is to
show them in decreasing order of the utility of retrieving Ui, EU(r+

i |q).
A detailed description of how to compute the posterior probabilities required

in these previous equations can be found in [2,3], but only to mention that
the specific characteristics of the canonical model used to define the conditional
probabilities will allow us to efficiently compute the posterior probabilities in
the following way:

∀B ∈ Ub, p(b+|q) =
∑

T∈Pa(B)\Q

w(T, B) p(t+) +
∑

T∈Pa(B)∩R(q)

w(T, B) , (7)

∀S ∈ Uc, p(s+|q) =
∑

U∈Pa(S)

w(U, S) p(u+|q) . (8)

4 Garnata: An Information Retrieval System for
Structured Documents

Garnata was born as an implementation completely adapted to the models based
on the above Probabilistic Graphical Models to retrieve structured documents,
although other models following the same philosophy could be easily imple-
mented in it. Written in C++, following the object-oriented paradigm, it offers
a wide range of classes and a complete set of utility programs. It implements the
SID and CID models.

It is able to manage different collections, and different indexes over the same
collection. It can choose among different stopword lists (previously inserted into
the system) and use (if desired) Porter’s stemming algorithm.

In our models, several valid weighting schemes could exist because of its ex-
perimental nature. As a consequence, in Garnata, the process of indexing does
not compute the weights (setting all of them to be zero). Instead of that, we have
added the possibility to calculate weights (following a certain weighting scheme)

Influence Diagrams and Structured Retrieval 173

for previously built indexes without inserting into them, and store them in files,
the so-called weight files. Thus, records of that precomputed weight files are
kept in order to provide a fast way to insert one into the index itself in order to
retrieve with it.

To store textual information (terms and identifiers of the final units where they
appear), we use inverted indexes [6]. While the lexicon is kept entirely in memory
(both while indexing and querying), the list of occurrences is read from disk. We
use another file to write the list of relative positions of each term inside a unit
in order to answer queries containing proximity operators or phrases (although
in the current stage of Garnata, they are not used to formulate a query).

To maintain information about the structural units, we use one direct access
file, except for the XPath routes, which are stored separately. Other files keep
relations among units, being accessible with only two disk reads. So, a large
file contains data of each unit itself (identifier, tag, container, position, . . .) and
besides, we can easily manage the following relationships with two disk accesses
(essential for our models):

– Given a non-final unit, returning the list of identifiers of the units that it
contains.

– Given a final unit, returning the container unit and, recursively, all the con-
tainers until a root unit is found.

– Given a final unit, returning the list of contained terms (using a direct index).

The Garnata’s indexing subsystem also implements file compression to speed
up query processing.

Querying subsystem is the most critical part of an IR system. In our case, we
have built structures at indexing time to reduce at maximum the amount of disk
accesses while processing a query, in order to save time and give a short response
time. The algorithm for achieving this task comprises the following steps (not
necessarily in this order):

1. The query is parsed, and occurrences of the component terms are retrieved
from disk.

2. For each occurrence, implied final units are read into memory (if not already
there).

3. For each final unit, its descendants are read into memory (if not already
there).

4. Propagation is carried out, units are sorted by its probability of relevance,
and the result is returned.

The first big bottleneck to be minimized is due to the reading from disk of
the unit objects (containing information about each unit). We will keep two
unit caches in memory: the first one, containing final units, and the second one,
containing complex units. Both will be static caches, meaning that they will
not change the unit stored in each cache slot. Cache is accessed doing a hash
function-like scheme, so for each cache slot, we shall have several candidates
(those identifiers being the hash inverse of the slot identifier).

174 L.M. de Campos et al.

For the final units cache, in each slot, we shall store the unit containing greater
number of terms (among the candidates). For the complex units cache, in each
slot, we shall store the unit containing more final units. These two heuristics has
shown very good time performance in our experiments.

The paper [4] contains a more detailed and technical description of Garnata.

5 Experimental Setting for INEX’06. Analysis of the
Results

5.1 Parameter Setting and Official Runs

In this section, we shall describe the conditions under which we have performed
the two runs submitted to the Thorough task.

First of all, the weighting scheme used in equations 7 and 8 to compute pos-
terior probabilities has basically been a normalized tf-idf scheme for weights of
terms in units. On the other hand, the weights of units included in a complex
unit, Ui, measure to a certain extent, the proportion of the content of the unit Ui

which can be attributed to each one of its components. A detailed explanation
of how they are computed is shown in [2].

With respect to the prior probabilities of relevance of the terms, p(t+), they
can also be defined in any reasonable way, for example an identical probability
for all the terms, p(t+) = p0, ∀T ∈ T , as proposed in [2], specifically, 1

|T | .
Because we are ranking units by the expected utility of retrieving them,

EU(r+
i | q), we only need to assess half of the parameters for each model (those

utilities with r+
i), being two in the SID and four in the CID. Regarding the

utilities for the SID model, for a given unit Ui, the best situation is clearly for
a relevant unit to be retrieved, and the worst situation, for a relevant unit to
be hidden. We therefore fix v(r+

i |u+
i) = 1 and v(r−i |u+

i) = 0. As stated before,
v(r−i |u+

i) and v(r−i |u−
i) are not used. In the context of the CID model, and fol-

lowing the idea of trying to return a unit only when its container is not relevant,
we shall fix these two parameters: v(r+|u+, w−) = 1 and v(r−|u+, w−) = 0, and
set the rest to 0. Therefore, the utility values are those in Table 1.

Table 1. Utility configuration for the CID model

v+
−− v+

−+ v+
++ v+

+−

0.0 0.0 0.0 1.0

In the first row of this table, the superscript is related to the value that the
node Ri is taking. The subscripts refer to the value that units U and W are
taking respectively at the same time.

The choice in the case of the SID model is very clear: we retrieve a unit
when it is relevant. In the CID model, we retrieve a unit when it is relevant and
the unit where it is contained is not relevant. We could say that these values

Influence Diagrams and Structured Retrieval 175

are the default vectors of utilities for both models, which is the reason why we
selected them to run our experiments. We have to recognise that these are really
strong restrictions and could be relaxed obtaining more appropriate values of
the different utilities, but we could not do it due to the lack of time as we were
finishing the development of Garnata when the submission deadline went off.

For the case of the CID model in the Thorough task, this setting is clearly
counterproductive reducing the RSV of lots of units whose container is relevant.
This fact will be discussed in the next subsection.

We should note that we finally compute RSV as EU(r+
i | q) ·nIdfQ(ui), being

nIdfQ(ui) the proportion of the idf of the query terms contained in this unit or
in their ancestors, that is

nIdfQ(ui) =

∑
p∈Q∩ui

idf(p)
∑

t∈Q idf(t)
.

Thus, nIdfQ(ui) ∈ [0, 1], and acts as a correcting factor for the utility (the
more query terms a units contains, the more interesting for the user it is).

With these experimental settings, according to the results published in the
evaluation section of the INEX’06 website 3, considering “Metric:ep-gr, Quanti-
zation: gen, Overlap=off”, we have obtained a mean of effort-precision of 0.0004
with the runs of obtained by Garnata for the two models, occupying the disap-
pointing 97th and 98th positions in the Thorough task.

5.2 Analysis of the Results

Studying the reasons of this bad behaviour, we discovered several bugs in the
software, by which, in some cases, instead of retrieving a certain unit, we were
returning a neighbour. Basically, the software returned a completely different
unit to that which should have been returned. This has been fixed now.

About possible improvements, on the one hand, we have shown that the set
of parameters used for the CID model should not perform well in this task. That
set would clearly perform better choosing the best entry point for an XML file,
but it is not productive in the Thorough task. We have carried an unofficial run
changing the parameters in 1 to (0, 1, 1, 1) and we have obtained a MAep of
0.0015. This is a 375% better than our previous result, but clearly not enough.

On the other hand, using nIdfQ as a correcting factor sets the RSV of a unit
which does not contain query terms to be zero. Since we are using a represen-
tation called virtual unit for units containing both text and units, the contained
units will get a RSV of 0 if they do not contain query terms. However this is not
what is supposed in the evaluation procedure, which assigns a positive RSV to
a unit without query terms contained into other unit with relevant text. That
fact is very common in the Wikipedia collection (assessments contain plenty
of “Collectionlinks” without relevant text) but we are not managing that fact
correctly.
3 http://inex.is.informatik.uni-duisburg.de/2006/adhoc-protected/results/thorough/

Thorough.html

176 L.M. de Campos et al.

6 Conclusions and Future Works

In this paper, we have presented the SID and CID models, and Garnata (the
Information Retrieval System which implements them). These are the retrieval
tools that we have used to participate in this our first edition of INEX, in the
Thorough task. The results are very disappointing as we are at the bottom of
the ranking. We have explained several reasons of this situation that we shall
solve in future editions of the INEX workshop.

With respect to the future works, we intend to have a detailed experimentation
with the IEEE and Wikipedia collections, in order to find automatically those
values for the utility configurations which perform best. We think that selecting
correctly the utilities should make some improvement.

Also, for next edition of INEX, we plan to participate in other tasks, such
as ‘Focused’ or ‘Best in Context’. In the case of this last task, we think that
our models, using the underlying formalism of Influence Diagrams, are spe-
cially designed to make decisions considering the context, and it could perform
acceptably.

Also, we are developing new models based in Probabilistic Graphical Models,
which improve the performance of the SID and CID models, avoiding the limi-
tations of the current. With these actions, we hope to have a better performance
in the future.

Acknowledgments. This work has been jointly supported by the Spanish
Ministerio de Educación and Ciencia, and Junta de Andalućıa, under projects
TIN2005-02516 and TIC276, respectively.

References

1. de Campos, L.M., Fernández-Luna, J.M, Huete, J.F.: The BNR model: foundations
and performance of a Bayesian network-based retrieval model. Int. J. Appr. Rea-
son. 34, 265–285 (2003)

2. de Campos, L.M., Fernández-Luna, J.M., Huete, J.F.: Using context information
in structured document retrieval: An approach using Influence Diagrams. Inform.
Process. Manag. 40(5), 829–847 (2004)

3. de Campos, L.M., Fernández-Luna, J.M., Huete, J.F.: Improving the Context-based
Influence Diagram for Structured Retrieval. In: Losada, D.E., Fernández-Luna, J.M.
(eds.) ECIR 2005. LNCS, vol. 3408, pp. 215–229. Springer, Heidelberg (2005)

4. de Campos, L.M., Fernández-Luna, J.M., Huete, J.F., Romero, A.E.: Garnata: An
Information Retrieval System for Structured Documents based on Probabilistic
Graphical Models. In: Proceedings of the Eleventh International Conference of In-
formation Processing and Management of Uncertainty in Knowledge-Based Systems
(IPMU), pp. 1024–1031 (2006)

5. Jensen, F.V.: Bayesian Networks and Decision Graphs. Springer, Heidelberg (2001)
6. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes. Morgan Kaufmann, San

Francisco (1999)

Influence Diagrams and Structured Retrieval 177

7. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference, San Mateo. Morgan Kaufmann, San Francisco (1988)

8. Shachter, R.: Evaluating Influence Diagrams. Oper. Res. 34, 871–882 (1986)
9. Shachter, R.: Probabilistic Inference and Influence Diagrams. Oper. Res. 36(5), 527–

550 (1988)

Information Theoretic Retrieval with Structured

Queries and Documents

Claudio Carpineto1, Giovanni Romano1, and Caterina Caracciolo2

1 Fondazione Ugo Bordoni, Rome, Italy
{carpinet,romano}@fub.it

2 Food and Agriculture Organization of the UN (FAO), Rome, Italy
caterina.caracciolo@fao.org

Abstract. In this paper we present an extension of information retrieval
based on Kullback-Leibler divergence (with backoff smoothing) to sup-
port structured queries on structured documents. The proposed method
applies to several common retrieval tasks characterized by an implication
relationship among texts, including fielded topics and XML documents.
We discuss how to choose the method parameters to make the computa-
tion of the ranking function efficient. We finally report some experimen-
tal results obtained using a loose approximation of the model based on
a discriminative selection strategy.

1 Introduction

Information retrieval through statistical language modeling has become popular
thanks to its firm theoretical background and good retrieval performance. One
goal of current research on structured information retrieval is thus to extend
such models to take advantage of structure information.

As a structure may be present on documents or queries or both, we are inter-
ested in supporting not only unstructured queries on structured documents, but
also structured queries on unstructured documents as well as structured queries
on structured documents. Most of research work has considered the first task,
i.e., unstructured queries over structured docs, while some papers have addressed
using structured or semistructured queries on unstructured docs. Here we take
a unified approach.

Our basic retrieval model is the well known Kullback-Leibler divergence, with
backoff smoothing. In this paper we show how it can be extended to model
and support structured/unstructured queries on structured/ unstructured doc-
uments. We make a very general assumption on the type of structure imposed
on queries and/or documents, suitable for describing various types of structured
data. We also study how the extended model can be efficiently computed.

We finally report on our experiments at INEX 2006, in which we used an
approximation of the presented model based on a discriminative selection strat-
egy. A full implementation of the model and a more significant evaluation of its
retrieval effectiveness are left for future work.

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 178–184, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Information Theoretic Retrieval with Structured Queries and Documents 179

2 Information-Theoretic Retrieval

Given a query Q and a document D, the score of D relative to Q is given by the
negative of the Kullback-Leibler (KL) divergence of the query language model
θQ from the document language model θD:

score(Q, D) = −KL(θQ|θD) = −
∑

w∈V

p(w|θQ)log
p(w|θQ)
p(w|θD)

(1)

This is a well known technique for ranking documents [4]. In order to compute
expression 1, we need to estimate p(w|θQ) and p(w|θD), i.e., the probability of
the word w given the query language model and the document language model,
respectively.

Usually this is done by using two probability distributions, one for ”seen”
words that occur in the text (query or document), and one for ”unseen” words
that do not occur in the text. This ”smoothing” is due to the fact that a given
text is usually too small a sample to accurately estimate the language model.
One classical smoothing technique is backoff ([3]). It is based on discounting
the probabilities of the seen terms, while the probability mass recuperated in
this way is redistributed over the unseen terms. Usually, the probability of seen
words is given by the maximum likelihood estimate applied to the text, and the
probability of unseen words is estimated from the whole document collection in
the same manner.

Let c(w, T) be the number of times the word w occurs in text T , c(w, C) be
the number of times the word w occurs in the collection C, |T | the number of
words in T , |C| the number of words in C. The probability of the word w given
the text language model is given by:

p(w|θT) =

⎧
⎪⎨

⎪⎩

ψ c(w,T)
|T | if w ∈ T

ξ c(w,C)
|C| if w /∈ T

(2)

This smoothing technique is very popular in the speech recogniton field and
it has also been used for text retrieval ([1], [6]).

3 Structured Information-Theoretic Retrieval

If the collection of documents is structured, the basic information retrieval model
is not satisfactory because it ignores the relationships between the documents.
For instance, in order to retrieve elements (components) from XML documents
it is natural to exploit the tree-based structuring of documents to enrich each
element’s description with the description of related elements [2]. One well known
and more closely related approach [5] was based on KL divergence with linear
interpolation (rather than backoff smoothing) and used distinct language models
and parameters associated with every node of the tree of the document.

180 C. Carpineto, G. Romano, and C. Caracciolo

We take a different approach to model the implication relationship among
documents (we speak of documents rather than elements, meaning the smallest
individual text units). We assume that there is a partial ordering relation (≤)
over the set of documents. For each document D, let D∗ be the set formed by
the words that are contained in any of the documents that are implied by D
according to such a relation, except for the words contained in D itself; i.e.,
D∗ = {w | w ∈ Di\D, D ≤ Di}. This is a very general assumption that holds
for a number of cases of interest characterized by an implication relationship
among texts, including XML documents, fielded topics, thesauri, and retrieval
feedback.

We smooth the original document model by two probability distributions.
The first, estimated from D∗, gives importance to the terms that are logically
related to D. The second, estimated from the document collection, gives non-zero
probabilities to the terms that are neither in the document nor in its implied
documents.

p(w|θD) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α c(w,D)
|D| if w ∈ D

β c(w,D∗)
|D∗| if w ∈ D∗

μ c(w,C)
|C| if w ∈ D ∪ D∗

(3)

In order to ensure that probabilities of all terms sum to 1, the following
relation must hold:

∑

w∈D

α
c(w, D)

|D| +
∑

w∈D∗

β
c(w, D∗)

|D∗| +
∑

w �∈ D∪D∗

μ p(w|C) =

= α + β +
∑

w �∈D∪D∗

μ
c(w, C)

|C| = 1 (4)

The same approach can be also used to estimate the query language model. A
query with an explicit structure, e.g. with a title, a description, and a narrative
field, is usually considered as a bag of words. However, it may be not convenient
to consider all the fields as equally important because some fields may just
contain verbose descriptions of other, shorter fields, and thus the longer fields
should be given a smaller weight.

By analogy with structured documents, we can smooth the original query
model p(w|Q), as determined by the query title, by two probability distribution,
one estimated from the complementary query representation given by the union
of description and narrative (denoted by Q∗), one estimated from the whole
collection.

p(w|θQ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

γ c(w,Q)
|Q| if w ∈ Q

δ c(w,Q∗)
|Q∗| if w ∈ Q∗

π c(w,C)
|C| if w ∈ Q ∪ Q∗

(5)

Information Theoretic Retrieval with Structured Queries and Documents 181

The constraint on the sum of probability is in this case given by:

γ + δ +
∑

w �∈Q∪Q∗

π
c(w, C)

|C| = 1 (6)

Thus, in all we have six parameters (i.e., α, β, μ, γ, δ, π) and two equations
(i.e., equations 4 and 6). Note that these parameters will, in general, be different
for each query and each document. We now discuss how to estimate the parame-
ters in a more compact and elegant way. Then we will show that the resulting
model can be computed efficiently because it does not require to compute the
probabilities of all terms in the collection for each query and each document.

To make the computation of probability estimation more manageable, we
can assume that the parameters are not independent. One possible choice is to
assume that

β = k1 α, μ = k2 α (7)

and
δ = k1 γ, π = k2 γ (8)

The intuitive meaning of this assumption is that the the weight assigned to
logically related or unseen terms should be a fraction of the weight of original
terms, regardless of whether you are considering queries or documents. The val-
ues for k1 and k2 can be chosen using an inverse function of the average length of
Q, D, Q∪Q∗, and D∪D∗, for instance, or using other collection statistics. Alter-
natively, they can be set experimentally with the goal of optimizing a retrieval
performance function, provided that training data are available.

Once the values for k1 and k2 have been determined, it is sufficient to substi-
tute such values in equations 4 and 6 and then find α and γ using the collection
statistics found at indexing time. The next step is the computation of the KL
scores by expression 1, using the values for α and γ found at the earlier step and
expressions 7 and 8 to compute the probabilities in expressions 3 and 5 .

In order to compute expression 1, it is convenient to partition the overall set
of terms in small subsets whose corresponding KL scores are easier to compute.
Consider first that each term can either belong to Q, or Q∗, or Q ∪ Q∗. Also,
each term can either belong to D, or D∗, or D ∪ D∗. The whole set of terms can
thus be expressed by taking the union of all possible intersections between the
Q-partitions and the D-partitions, i.e,

T = (Q ∩ D) ∪ (Q ∩ D∗) ∪ (Q ∩ D ∪ D∗) ∪ (Q∗ ∩ D) ∪ (Q∗ ∩ D∗) ∪
(Q∗ ∩ D ∪ D∗) ∪ (Q ∪ Q∗ ∩ D) ∪ (Q ∪ Q∗ ∩ D∗) ∪ (Q ∪ Q∗ ∩ D ∪ D∗)

The value of KL(θQ|θD) can thus be computed in the following way.

KL(θQ|θD) =
∑

w∈Q∩D

γ
c(w, Q)

|Q| log
γ c(w,Q)

|Q|

α c(w,D)
|D|

+
∑

w∈Q∩D∗

γ
c(w, Q)

|Q| ˙

182 C. Carpineto, G. Romano, and C. Caracciolo

log
γ c(w,Q)

|Q|

k1α
c(w,D∗)
|D∗|

+
∑

w∈Q∩D∪D∗

γ
c(w, Q)

|Q| log
γ c(w,Q)

|Q|

k2α
c(w,C)
|C|

+
∑

w∈Q∗∩D

k1γ
c(w, Q∗)

|Q∗| ˙

log
k1γ

c(w,Q∗)
|Q∗|

α c(w,D)
|D|

+
∑

w∈Q∗∩D

k1γ
c(w, Q∗)

|Q∗| log
k1γ

c(w,Q∗)
|Q∗|

α c(w,D)
|D|

+

∑

w∈Q∗∩D∗

k1γ
c(w, Q∗)

|Q∗| log
k1γ

c(w,Q∗)
|Q∗|

k1α
c(w,D∗)
|D∗|

+
∑

w∈Q∗∩D∪D∗

k1γ
c(w, Q∗)

|Q∗| ˙

log
k1γ

c(w,Q∗)
|Q∗|

k2α
c(w,C)
|C|

+
∑

w∈Q∪Q∗∩D

k2γ
c(w, C)

|C| log
k2γ

c(w,C)
|C|

α c(w,D)
|D|

+

∑

w∈Q∪Q∗∩D∗

k2γ
c(w, C)

|C| log
k2γ

c(w,C)
|C|

k1α
c(w,D∗)
|D∗|

+
∑

w∈Q∪Q∗∩D∪D∗

k2γ
c(w, C)

|C| ˙

log
k2γ

c(w,C)
|C|

k2α
c(w,C)
|C|

Note that the the first eight summands only involve terms that are present in
Q, or Q∗, or D or D∗, and that the last summand can be efficiently computed by
considering the complement of the sum of the probabilities of the terms contained
in Q ∪ Q∗ ∪ D ∪ D∗. Thus, in order to compute KL(θQ|θD), it is necessary to
take into account only the probabilities of the seen terms and the probabilities
of the terms that are logically related to them.

4 Experiments at INEX 2006

Due to tight scheduling and limited resources, we did not have time to experiment
with the full model. In our experiments we used a loose approximation of it.

For each query, we first collected the first 200 results retrieved by a plain
commercial search engine from the online Wikipedia collection in response to
the query title. Then we matched the titles of the retrieved documents against
the titles of the documents contained in the INEX 2006 collection to extract a
set of potentially relevant documents. Clearly, this process was prone to errors
and omissions that may have hurt the final retrieval effectiveness, partly because
the contents of Wikipedia documents usually change over time while the INEX

Information Theoretic Retrieval with Structured Queries and Documents 183

collection is not updated, and partly because we took into account only a small
fraction of the documents in the INEX collection.

We then performed an element level analysis for each INEX 2006 retrieved
document to choose the best element(s) according to a straightforward appli-
cation of the KL divergence. Considering only the terms in the query title and
observing that the probability of terms in the query title was constant for each
query, the determination of score(Q, D) reduced to:

score(Q, D) = −p(w|θQ)
∑

w∈V

(logp(w|θQ) − logp(w|θD)) ∼=
∑

w∈V

logp(w|θD)

In practice, we considered only the four most general XML elements in the
document tree and used the maximum likelihood estimate to compute p(w|θD).
We finally reordered the elements in each document according to their KL scores
and used the combined document-element ranks to submit runs in three tasks:
focused, all in context, and best in context.

The first stage amounted to performing a fast discriminative selection of can-
didate results using a restricted set of features (i.e., full documents instead of
single elements, no information about document structure, query titles only). In
the second stage, a larger set of features was used (essentially intra-document
elements) to perform fine selection/reordering of the results retrieved in the first
stage.

It is conceivable that this two-step strategy may be useful not only to increase
efficiency but also effectiveness, because optimized tools for retrieving full doc-
uments are already available and this may guarantee a high quality pre-filtering
of elements. In the second stage, the full set of features (e.g., elements, docu-
ment structure, query structure) may be brought to bear to maximize retrieval
performance, although we were unfortunately unable to fully experiment with
this approach.

The retrieval performance of our runs was of course in the low part of INEX
2006 ranking. However, given its simplicity and its very limited computational
requirements, the results are quite interesting. They at least represent an indi-
cation that:

- The KL divergence may be effectively used to perform intra-document ele-
ment ranking.

- The discriminative selection strategy may be useful independently of how
the documents are next processed.

5 Conclusions

We presented an extension of KL divergence-based information retrieval that
supports retrieval from structured documents with structured queries. We dis-
cussed parameter estimation and efficiency issues. We also reported some pre-
liminary effectiveness results using a loose approximation of the model based
on a discriminative selection strategy. The next steps of this research are (1) to
implement and experiment with the full model and (2) to test the hypothesis
that a discriminative selection strategy is indeed useful for XML retrieval.

184 C. Carpineto, G. Romano, and C. Caracciolo

References

1. Carpineto, C., De Mori, R., Romano, G., Bigi, B.: An information theoretic approach
to automatic query expansion. ACM Transactions on Information Systems 19(1),
1–27 (2001)

2. Fuhr, N., GrossJohann, K.: XIRQL: A Query Language for Information Retrieval
in XML Documents. In: Proceedings of SIGIR 2001, New Orleans, LA, USA, pp.
172–180 (2001)

3. Katz, S.: Estimation of probabilities from sparses data for language model compo-
nent of a speech recognizer. IEEE Trans. Acoust. Speech Signal Process. 35, 400–401
(1987)

4. Lafferty, J., Zhai, C.: Document language models, query models, and risk mini-
mization for information retrieval. In: Proceedings of the 24th Annual International
ACM SIGIR Conference on Research, Development in Information Retrieval, New
Orleans, LA, USA, pp. 111–119 (2001)

5. Ogilvie, P., Callan, J.: Language Models and Structured Document Retrieval. In:
Proceedings of the INEX 2002 Worksop, Schloss Dagsthul, Germany, pp. 33–40
(2002)

6. Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied
to information retrieval. ACM Transactions on Information Systems 22(2), 179–214
(2004)

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 185–199, 2007.
© Springer-Verlag Berlin Heidelberg 2007

SIRIUS XML IR System at INEX 2006: Approximate
Matching of Structure and Textual Content

Eugen Popovici, Gildas Ménier, and Pierre-François Marteau

VALORIA Laboratory, University of South-Brittany
BP 573, 56017 Vannes Cedex, France

{Eugen.Popovici,Gildas.Menier,
Pierre-Francois.Marteau}@univ-ubs.fr

Abstract. In this paper we report on the retrieval approach taken by the
VALORIA laboratory of the University of South-Brittany while participating at
INEX 2006 ad-hoc track with the SIRIUS XML IR system. SIRIUS retrieves
relevant XML elements by approximate matching both the content and the
structure of the XML documents. A weighted editing distance on XML paths is
used to approximately match the documents structure while the IDF of the
researched terms are used to rank the textual content of the retrieved elements.
We briefly describe the approach and the extensions made to the SIRIUS XML
IR system to address each of the four subtasks of the INEX 2006 ad-hoc track.
Finally we present and analyze the SIRIUS retrieval evaluation results. SIRIUS
runs were ranked on the 1st position out of 77 submitted runs for the Best In
Context task and obtained several top ten results for both the Focused and All
In Context tasks.

1 Introduction

This study reports on the second year of experiments conducted by the VALORIA
laboratory at the University of South-Brittany with the SIRIUS XML IR
system [1] within the framework of the INEX evaluation campaigns.

The main contributions brought relatively to our last year participation are: i) the
evaluation of the retrieval approach against a new collection, a new set of topics and
new tasks, ii) the implementation of the approximate search and indexing process
using a distributed inverted file architecture; and iii) the use of selective indexing
profiles defining how the structure and the content of XML tags should be indexed.
As for the last year we continue to investigate if and how the approximate match of
the structural constraints in the queries may help retrieval and to experiment with
different methods for removing overlapping elements.

The paper is organized as follows. In Section 2 we present the main functionalities
and characteristics of the SIRIUS XML IR system. In Section 3 we introduce our
retrieval approach for the INEX 2006 ad-hoc task. In Section 4 we present and
analyze the SIRIUS retrieval evaluation results for the Thorough, Focused, All In
Context and Best In Context tasks. Finally, in Section 5 we conclude the paper.

186 E. Popovici, G. Ménier, and P.-F. Marteau

2 SIRIUS XML IR System

SIRIUS [2, 3] is a lightweight indexing and search engine for XML documents
developed at the VALORIA laboratory of the University of South-Brittany. The
retrieval approach implemented in SIRIUS is document oriented. It involves an
approximate matching scheme of the structure and textual content. Instead of
managing the matching of whole XML trees, SIRIUS splits the documents object
model in a set of paths. This set is indexed using optimized data structures. In this
view, the request is a path-like expression with conditions on the attribute values. For
instance /document(> date "1994")/chapter(= number 3)/John is a request aiming to
extract the documents (written after 94) with the word John in the chapter number 3.
The matching process takes into account mismatched errors both on the attributes and
on the XML elements. It uses a weighted editing distance on XML paths: this
provides an approximate matching scheme able to manage jointly the request on
textual content and on document structure. The search scheme is extended by a set of
IR retrieval operators, and features a set of thesaurus rewriting rules.

2.1 Indexing Scheme

Each element in an XML document may be composed of a set of possible nested
XML elements, textual pieces of information (TEXT or CDATA), unordered
<attribute, value> pairs, or a mixture of such items. XML documents are generally
represented as rooted, ordered, and labeled trees in which each node corresponds to an
element and each edge represent a parent-child relationship.

XML Context. According to the tree structure, every node n inherits a path p(n)
composed with the nodes that link the root to node n. This path is an ordered sequence
of XML elements potentially associated to unordered <attribute, value> pairs A(ni),
that determines the XML context in which the node is occurring. A tree node n,
containing textual/mixed information can be decomposed into textual sub-elements.
Each string s (or word, lemma, …) of a leaf node is also linked to p(n). This XML
context characterizes the occurrence of s within the document and can be represented
as follows:

p(n)=<n0 , A(n0)> <n1 , A(n1)> …<n , A(nn)> . (1)

Index Model. The indexing process involves the creation of an enriched inverted list
designed for the management of these XML contexts. For this model, the entries of
the inverted lists are the textual sub-elements s of a tree node. For a sub-element s of a
node n, four pieces of information are attached:

− a link to the URI of the document <fileId>,
− the <preorder> and <postorder> positions of the node n in the XML tree,
− an index specifying the positions of s within the document <wordOffset>,
− a link toward its XML context p(n) <ctxtId>.

 SIRIUS XML IR System at INEX 2006 187

2.2 Searching Scheme

Most of the time, for large heterogeneous databases, one cannot assume that the user
knows all of the structures – even in the very optimistic case, when all of the
structural properties are known. Some straightforward approaches (such as the XPath
search scheme [4]) may not be efficient in these cases. As the user cannot be aware of
the complete XML structure of the data base due to its heterogeneity, efficient
searching should involved exact and approximate search mechanisms.

The main structure used in XML is a tree: It seems acceptable to express a search
in term of tree-like requests and approximate matching. We proposed [6], to focus on
path matching rather than on tree matching – in a similar way with the XML fragment
approach [5]. The request should be expressed as a set of path p(r) that is matched
with the set of sub-path p(n) in the document tree. This breaks the algorithmic
complexity of tree matching techniques while still providing high precision
results [6]. This ‘low-level’ matching only manage subpath similarity search with
conditions on the elements and attributes matching. This process is used to design a
more higher-level request language: a full request is a tree of low-level matching
goals (as leafs) with set operators as nodes. These operators are used to merge leaf
results. The whole tree is evaluated to provide a set of ranked answers. The operators
are classical set operators (intersection, union, difference) or dedicated fuzzy merging
processors. The system analyzes a request and produces a set of weighted results. Let
{ (ei, vi) } the set of weighted results produced by the system, where ei is a an element
of the result and vi ∈[0..1] a weight showing the relevance of the returned element to
the request.

Textual Content Ranking Scheme. We compute the relevance value vi ∈[0..1] for
all the XML elements ei containing at least one researched term τ k of a content only
request CO. The ranking scheme takes into account the number and the
discriminating power of the retrieved terms in the collection. We used a dedicated
TFIDF [7] function for this purpose:

∑⋅=
k kkii COev τλξ .),(. (2)

where k is the number of terms τk in the CO request, λk is an IDF weighting factor
specifying the discriminating power of the term τ k in the collection :
λk = 1 – log((1+ |D τ k|) / (1+ |D|)) ; where |D τ k | is the number of documents in
which τ k is occurring ; |D| the total number of documents in the collection ; and ξ a
normalization constant ξ = 1 / Σk (λk) ;

Approximate Path Search. Let pR be a structural constraint, expressed as a path goal
with conditions or constraints to be fulfilled on the attributes. We investigate the
similarity between a pR (coding a path with constraints) and pi

D (a root/../terminal(r)
path of the tree TD associated to an index document D) as follow:

σ (pR , pi
D) = 1/(1+ δL (pR, pi

D)) . (3)

where δL is a dedicated editing distance (see [8]).

188 E. Popovici, G. Ménier, and P.-F. Marteau

The search complexity is O(l(pR).deep(TD).| { pi
D } |) with |{ pi

D }| the size of the
set { pi

D } (i.e. the number of different paths in D, starting at the root and leading to
the last element of the pR request – terminal(r)), l(p) the length of the path p and
deep(T) the deepest level of T. This complexity remains acceptable for this
application as 99% of the XML documents have fewer than 8 levels and their average
depth is 4 [9]. We designed [6] an editing pseudo-distance using a customised cost
matrix to compute the match between a path pi

D and the request path pR. This scheme,
also known as modified Levenshtein distance, computes a minimal sequence of
elementary transformations to get from pi

D to pR . The elementary transformations are:

− Substitution: a node n in pi
D is replaced by a node n’ for a cost Csubst(n, n’).

− Deletion: a node n in pi
D is deleted for a cost Cdel(n),

− Insertion: a node n is inserted in pi
D for a cost Cins(n).

Weighting Scheme for INEX. The NEXI language [10] allows only the descendant
relationship between the nodes in a path. Therefore the XML path expressed in the
request is interpreted as a subsequence of an indexed path, where a subsequence need
not consist of contiguous nodes. To model this, we relaxed in [1] the weights of the
path editing distance in order to allow node deletions in the indexed paths without any
penalty: Cdel(n) = 0, Cins(n) = ξ, and Csubst(n, n’) = ξ . Since a node n not only stands
for an XML element but also for attributes or attributes relations, we compute
Csubst(n, n’) as follows: Csubst(n, n’)={ ξ if (n ≠ n’); ½·ξ if (n = n’)
 & (¬ attCond(n’)); 0 if (n = n’) & (attCond(n’)) }, where attCond stands for a
condition stated in the request that should apply to the attributes.

For a sequence Seq(pi
D, pR) of elementary operations, the global cost GC(Seq(pi

D,
pR)) is computed as the sum of the costs of elementary operations. The
Wagner&Fisher algorithm [11] computes the best Seq(pi

D, pR) (i.e. minimizes GC()
cost) with a complexity of O(length(pi

D) * length(pR)) as stated earlier. Let

δL(pR , pi
D,) = Mink GC(Seqk(p

R, pi
D)) . (4)

Given pR and pi
D, the value for σ (pR , pi

D) → 0 when the number of mismatching
nodes and attribute conditions between pR and pi

D increases. For a perfect match
σ (pR , pi

D) = 1, i.e. all the elements and the conditions on attributes from the request
pR match correspondent XML elements in pi

D .
The weights used to compute the structural similarity relate to an end user having

precise but incomplete information about the XML tags of the indexed collection and
about their ancestor-descendant relationships. The structural similarity takes into
account the order of occurrence of the matched nodes and the number of nodes with
no matching in the request. It heavily penalizes any mismatch relatively to the
information provided by the user but it is independent to mismatches/extra
information extracted from the indexed paths.

Merging Structure and Content Matching Scores. We add structural matching
information to the set of solutions returned by the system using a weighted linear
aggregation between the conditions on structure σ (pR , pi

D) and the initial/textual
ranking score vi as follows:

i
D

i
R

i vppv ⋅−+⋅=)1(),(' βσβ . (5)

 SIRIUS XML IR System at INEX 2006 189

The value of the β∈[0..1] parameter may be used to emphasize the importance of the
structural versus textual content matching scores.

3 SIRIUS Approach for the INEX 2006 Ad-Hoc Task

The retrieval task we are addressing at INEX 2006 is the ad-hoc retrieval of XML
documents. This involves the searching of a document collection of 4.6 GB made of
659,388 English articles from Wikipedia using a set of 125 topics. The structural part
of the collection corresponds to the Wikipedia templates (about 5000 different tags).
The topics may contain both content and structural conditions and, in response to a
query, arbitrary XML elements may be retrieved by the system. An example of an
INEX 2006 topic with the title and castitle expressed in NEXI language [10] is given
in Fig. 1.

Fig. 1. An excerpt of the INEX 2006 topic 406

Content only (CO) queries contain just search terms (see the title part in Fig. 1)
while the content and structure (CAS) queries (see the castitle part in Fig. 1) are topic
statements that contain explicit references to the XML structure, and explicitly
specify the contexts of the user’s interest (e.g. target elements) and/or the context of
certain search concepts (e.g. support elements).

3.1 Indexing the Wikipedia Collection

SIRIUS has the capability of using indexing profiles for a specific collection. The
indexing profiles are composed of rules defining how the structure and the content of
each specified XML tag should be indexed. By default, all the non empty XML tags
are fully indexed. Using these profiles we may decide or not to index the attributes
associated to a given tag, to index only the content of the presentation tags or jump
tags [12], or to completely ignore some logical tags for a specific collection. The use
of indexing profiles may reduce significantly the volume of the requested disk space
for the index and improves the system performances both in indexing and retrieval
time.

We use the rules shown in Table 1. to index the Wikipedia collection. This
indexing profile was manually defined as we assumed that the jump and presentation
tags contained information that should not be retrieved out of their context. The
logical tags <name>, <title> and <caption> are of a particular importance for the
Wikipedia collection, as this will ensure that the <title> of a <section> will always be

190 E. Popovici, G. Ménier, and P.-F. Marteau

retrieved with the <section> itself, that the <name> of an <article> will be retrieved
with the whole <article>, and that the <caption> of a <figure> or <table> will be
retrieved only associated to the element to which they are referring to.

Table 1. Indexing rules for the Wikipedia collection

 Ignore tags Ignore tag attributes

Presentation tags emph2, emph3, emph4, sup table, tr, td, font

Jump tags collectionlink, unknownlink,
outsidelink, languagelink

Logical tags title, name,
image, caption

The Wikipedia collection is processed using an XML SAX parser and standard
methods for stop words removal and stemming. At indexing time, the most frequent
words are eliminated using a stop list. The XML elements containing no valid textual
content after stop words removal are not indexed. The index terms are stemmed using
the Porter algorithm [13]. The index model (Section 2.1) is implemented on top of the
Berkeley DB1 library using a combination of BTrees and Hashtables structures. The
inverted file index is constructed in parallel by using a Physical Document
Partitioning approach [14]. The total size of the index is about 86% of the initial
database size – i.e. 4GB.

3.2 Processing NEXI Requests

Processing CO requests. CO queries are INEX topics containing only textual search
terms (i.e. see the title part in Fig. 1). We compute the relevance score for all the
leaves elements of the XML tree containing at least one of the researched terms using
a variant of the TF-IDF ranking scheme (see eq. 2). In our approach we consider the
XML element containing a researched term as the basic and implicitly valid unit of
retrieval regardless of its size.

Processing CAS requests. For CAS topics, we have two cases: simple queries of the
form //A[B] – i.e. the request specifies only the target elements, and complex queries
of the form //A[B]//C[D] – i.e. the request specifies both target (i.e. //C[D]) and
support (i.e. //A[B]) elements.

Processing the Support and Target Elements. For simple type queries of the form
//A[B] like //template//*[about(.,architecture)] (see topic in Fig. 1), we rank the
textual content of the nodes using the same ranking scheme as for the CO requests.
The structural constraints from the requests are interpreted as structural hints [10]. We
compute the similarity between the structural constraints expressed in the request –
i.e. //template//* – and the XML paths of the candidate fragments using a modified
editing distance (see eq. 3) involving specific heuristics for attributes and attributes
values [1]. Finally we merge the content and structural match scores using a weighted
linear aggregation method (see eq. 5).

1 http://www.sleepycat.com/

 SIRIUS XML IR System at INEX 2006 191

Processing the Containment Conditions. To process complex queries of the form
//A[B]//C[D] (see the castitle part in Fig. 1) we compute the relevance for both the
support elements //A[B] and target elements //A//C[D]. Next, we select only the target
elements that have at least a relevant support element occurring in the same
document. The logic behind this is that if a relevant support element exists in a
document, its weight should be propagated using a max function to the root node of
the XML tree that is an ancestor – i.e. support element – for all the elements of the
tree. This applies inclusively to target elements.

The similarity computation for a complex request involves modifications of the
relevance associated with a result element. The relevance of a result element is
computed as the arithmetic average between the relevance of the target element and
the maximum relevance of its support elements.

Formally, let {(ei, vi)} the set of target results, {(ej, vj)} the set of support
elements, where ei is a an element of the result and vi ∈[0..1] its relevance weight. Let
eD a descendant of document D. The set of weighted results produced by the system is
{ (ei

D, v’i) } with v’i =(vi + Maxj (vj)) / 2 where ∃ ej
D ∈ { (ej, vj) }.

 Using this approach, the target elements without support elements are discarded
from the final answers, while the ones supported by highly relevant elements are
boosted in the final ranking. The final results are sorted by relevance values and the
top N results returned.

4 Experimental Results

We submitted a total of 20 runs to all of the four tasks of the ad-hoc retrieval track:
Thorough, Focused, All In Context and Best In Context [15]. In all the submitted runs
we used the same basic retrieval approach:

− To answer INEX 06 topics, we use automatic transformation of the title and
castitle part of the topics expressed in NEXI [10] to SIRIUS recursive query
language as described in [1].

CO runs
− The XML elements directly containing the research terms are considered as

independent and the only valid units of retrieval;
− IDF weighting for textual content of the leaf nodes containing the researched terms

(i.e. *IDF*, see eq. 2.);
− Strict and vague search for phrase matching. In the strict sequence matching runs

the researched terms must occur in sequence and belong to the same XML element.
This is not required for the vague phrase matching runs (i.e. *noSEQ*) that rank as
best results the XML elements containing all the researched terms without taking
into account their order of occurrence.

CAS runs (*cas*)
− The structural constraints on both the support elements (where to look) and on the

target elements (what to return) are interpreted vaguely, as structural hints. The
vague interpretation of the structural constraints is implemented using a modified

192 E. Popovici, G. Ménier, and P.-F. Marteau

editing distance (*EDs*) on the XML paths with conditions on attributes and
attributes values (see Section 2.2, eq. 2 and 3) .

− We use weighted linear aggregation for content and structure matching scores. (see
eq. 5) The runs (*W0_1*, *W0_5*) use different values for the β parameter to
emphasize the importance of the structural versus textual content matching (i.e.
β=0.1 biases the ranking towards the textual content while β=0.5 uses equal
weights for merging the structural and content matching relevance scores).

− We use boolean (*BOOL*) merging operators at document level.

4.1 Thorough Task

At the Thorough task, the system estimates the relevance of elements in the
collection. We submitted five runs identified by runId’s using combinations of the
abbreviations introduced above. We report in Fig. 2 and Table 2 the evaluation
curves for the ep/gr evaluation metric and the ranks obtained by all the submitted
runs. The results may contain overlapping elements (i.e. Overlap=off). Details of the
evaluation metrics can be found in [16].

Table 2. Task: Thorough, Metric:ep-gr, Quantization: gen, Overlap=off, R: rank/106 runs

 filtered assessments
RunId MAep R MAep R
IDF_BOOL_noSEQ 0.0158 42 0.0296 37
IDF_BOOL 0.0151 45 0.0287 42
casEDsW0_1_IDF_BOOL_noSEQ 0.0146 48 0.0274 43
casEDsW0_5_IDF_BOOL_noSEQ 0.0134 50 0.0253 45
casEDsW0_5_IDF_BOOL 0.0130 51 0.0242 48

We obtained average rankings for the Thorough task. This is not surprising as the
implementation of our approach is biased towards focused retrieval. A rather
surprising result is the fact that using the structural hints does not improve the quality
of the retrieved results. Rather the opposite. The best overall performance is obtained
by the run using only the textual content and no phrase constraints (IDF_BOOL_noSEQ)
with a MAep value of 0.0158 and respectively 0.0296 when evaluated against the
filtered assessments2.

4.2 Focused Task

The aim of the Focused retrieval strategy is to find the most exhaustive and specific
element in a path. In other words, the result list should not contain any overlapping
elements. For the Thorough task we considered the XML element containing a
researched term as the basic and implicitly valid unit of retrieval regardless of its size.
This approach “naturally” implements a focused strategy as it returns the most focused
elements containing the research terms. However, cases where nested/overlapping
XML elements could be returned as valid results may occur.

2 "element links" (i.e. collectionlink, wikipedialink, redirectlink, unknownlink, outsidelink and

weblink) in the assessments have been given an exhaustive value of ? (corresponding to "too
small" in INEX 2005 relevance definition).

 SIRIUS XML IR System at INEX 2006 193

Fig. 2. Task: Thorough, Metric:ep/gr , Quantization: gen, Overlap: off, Filtered assessments

We implemented a two steps post filtering process to remove the overlapping
elements from the results list [1]: i) we recalculate the relevance of the elements in
the answer list in order to reflect the relevance of their descendants elements (if any);
and ii) we select non overlapping elements from the list.

The weights are calculated in a bottom-up manner from the leafs to the highest non
overlapping nodes composing the answer by using two strategies:

− MAX - the max relevance value is propagated recursively to the highest non
overlapping elements; and

− AVG - the relevance of a node is computed as the arithmetic average of all its
descendant relevant nodes including its own relevance.

To select the non overlapping elements we compared the following strategies:

− HA - the highest ancestor from the answer list is selected;
− MR - the most relevant answer is selected recursively from the answer list as long

as it not overlaps with an already selected element – i.e. for equally relevant
overlapping elements we choose either the descendant (MRD) or the ancestor
(MRA).

We experimented with different settings for computing the elements relevance and
selecting the non overlapping answers for the Focused tasks within the framework of
the INEX 2005 campaign [1]. This year we selected only the MAX_MRD and
MAX_HA strategies for the focused task as they obtained the best results during the
INEX 2005 evaluation.

We report here the nxCG values @5, @10, @25 and @50 (see [16] for metric
descriptions) for all the submitted focused runs, along with their official ranks in the
INEX06 campaign. The runs are evaluated on both the original (see Tables 3 and 5)
and filtered assessments (see Tables 4, 6 and Fig. 3).

194 E. Popovici, G. Ménier, and P.-F. Marteau

Fig. 3. Task: Focused Metric:nxCG, Quantization: generalised, Filtered assessments, Overlap=
on (left) ; and Overlap=off (right)

Table 3. Task: Focused, Metric: nxCG, Quantization: generalised, Overlap=on, R: rank/85 runs

RunId nxCG@5 R nxCG@10 R nxCG@25 R nxCG@50 R
IDF_BOOL_noSEQ_MAX_MRD 0.2882 47 0.2759 24 0.2393 13 0.2095 6
IDF_BOOL_MAX_MRD 0.2889 45 0.2695 28 0.2391 14 0.2022 9
casEDsW0_5_IDF_BOOL_noSEQ_MAX_MRD 0.2335 66 0.2215 60 0.1965 35 0.1638 29
casEDsW0_5_IDF_BOOL_MAX_MRD 0.2338 65 0.2202 61 0.1933 40 0.1572 35
casEDsW0_1_IDF_BOOL_noSEQ_Foc_MAX_HA 0.2055 73 0.1996 65 0.1693 54 0.1436 46

Table 4. Task: Focused, Metric: nxCG, Quantization: generalised, Overlap=on, Filtered
assessments, R: rank/85 runs

RunId nxCG@5 R nxCG@10 R nxCG@25 R nxCG@50 R
IDF_BOOL_noSEQ_MAX_MRD 0.2832 48 0.2752 23 0.2475 9 0.2289 4
IDF_BOOL_MAX_MRD 0.2840 46 0.2679 28 0.2469 10 0.2211 7
casEDsW0_5_IDF_BOOL_noSEQ_MAX_MRD 0.2297 66 0.2218 59 0.2039 31 0.1782 23
casEDsW0_5_IDF_BOOL_MAX_MRD 0.2301 64 0.2196 61 0.2004 33 0.1709 32
casEDsW0_1_IDF_BOOL_noSEQ_Foc_MAX_HA 0.2043 73 0.2012 63 0.1757 47 0.1562 42

Table 5. Task: Focused, Metric: nxCG, Quantization: generalised, Overlap=off, R: rank/85
runs

RunId nxCG@5 R nxCG@10 R nxCG@25 R nxCG@50 R
IDF_BOOL_noSEQ_MAX_MRD 0.3227 38 0.3238 16 0.2807 12 0.2424 9
IDF_BOOL_MAX_MRD 0.3180 40 0.3093 21 0.2768 14 0.2339 12
casEDsW0_5_IDF_BOOL_noSEQ_MAX_MRD 0.2770 60 0.2829 36 0.2475 21 0.2071 20
casEDsW0_5_IDF_BOOL_MAX_MRD 0.2719 62 0.2735 41 0.2418 27 0.2002 21
casEDsW0_1_IDF_BOOL_noSEQ_Foc_MAX_HA 0.2073 73 0.2063 66 0.1779 59 0.1477 46

Table 6. Task: Focused, Metric: nxCG, Quantization: generalised, Overlap=off, Filtered
assessments, R: rank/85 runs

RunId nxCG@5 R nxCG@10 R nxCG@25 R nxCG@50 R
IDF_BOOL_noSEQ_MAX_MRD 0.3227 37 0.3238 14 0.2805 12 0.2440 9
IDF_BOOL_MAX_MRD 0.3180 39 0.3084 20 0.2766 14 0.2353 12
casEDsW0_5_IDF_BOOL_noSEQ_MAX_MRD 0.2770 59 0.2829 33 0.2477 18 0.2082 17
casEDsW0_5_IDF_BOOL_MAX_MRD 0.2719 61 0.2726 39 0.2416 23 0.2011 18
casEDsW0_1_IDF_BOOL_noSEQ_Foc_MAX_HA 0.2073 73 0.2063 64 0.1780 54 0.1483 43

 SIRIUS XML IR System at INEX 2006 195

The MAX_MRD method for overlap removal retrieves more focused elements and
seems to be more adequate for the focused task than its MAX_HA competitor. This
may be considered with care as the results are influenced with different degrees by the
structural matching process.

For the Focused task, the system is better ranked than on the Thorough task
regardless if it is evaluated with the overlap ‘on’ or ‘off’. SIRIUS has several results
in the best top ten runs using the nxCG@25 and nxCG@50 metrics (see Tables 3, 4, 5
and 6; top ten results are highlighted, best results are in bold characters).

By analyzing the overall comportment of nxCG curves of Fig. 3 we observe that
SIRIUS runs have a good recall. We also observe a slightly decrease in the system
retrieval performance for the first ranked results. This may be determined by the
indexing configuration settings (see Table 1). The indexing profile did not allowed for
a large number of small/possibly relevant focused elements (i.e. jump tags &
presentation tags) to be retrieved. This hypothesis is sustained by the slight increase in
the SIRIUS performance when evaluating the runs against the filtered assessments.
The differences are not major as the indexing profiles are not an exact match of the
rules used to obtain the filtered assessments. The indexing profile eliminated only a
part of the tags defined as “too small”. When evaluating the runs against the filtered
assessments the remaining element links (i.e. redirectlink, wikipedialink and weblink)
as well as the eliminated tags but that were considered relevant by the assessors
(emph2, emph3, title, name, and caption) [17] penalize the results. We observe that as
for the Thorough task, the runs involving structural conditions performed worse than
their content only pairs.

4.3 All in Context Task

For the INEX 2006 All In Context task, the systems have to find a set of elements that
corresponds well to (all) relevant information in each article. The relevant elements
must be clustered per article and ordered in their original document order when
returned to the user. The assumption is that users consider the article as the most
natural unit, and prefer an overview of relevance in their context.

For this task, we used as starting point the approach used for the Focused runs. We
clustered the non overlapping results by file and ranked them according to their
relevance inside each file. We set the article score equal to the most relevant element
occurring inside each file. The files are ranked by their relevance. We returned the top
N relevant results for each file, where N={5, 10} until reaching the INEX 2006 max
results limit per topic (i.e. 1500 results).

The official and additional SIRIUS evaluation results for this task are given in
Tables 7, 8, 9 and Fig. 4 (left) (top ten results are highlighted, best results are in bold
characters).

Table 7. Task: All In Context (Article level), Metric: hixeval-article, R: rank/62 runs

RunId F[5] R F[10] R F[25] R F[50] R MAP R
IDF_BOOL_MAX_MRD_10 0.1028 44 0.1150 40 0.1181 39 0.1055 33 0.0752 39
IDF_BOOL_noSEQ_MAX_MRD_10 0.1027 45 0.1132 41 0.1203 38 0.1079 32 0.0759 38
casEDsW0.5_IDF_BOOL_noSEQ_MAX_HA_5 0.0881 50 0.0871 53 0.0966 48 0.0864 45 0.0623 48
casEDsW0.5_IDF_BOOL_MAX_MRD_5 0.0867 52 0.0910 52 0.0956 49 0.0864 46 0.0613 49
casEDsW0.1_IDF_BOOL_noSEQ_AVG_HA_5 0.0373 57 0.0457 57 0.0549 57 0.0533 57 0.0299 58

196 E. Popovici, G. Ménier, and P.-F. Marteau

Table 8. Task: All In Context (Element level), Metric: hixeval-element, Overlap=off, R: rank/57
runs

hixeval-element-intersection hixeval-element-union RunId
F-avg R F-avg R

casEDsW0.1_IDF_BOOL_noSEQ_AVG_HA_5 0.4695 2 0.2845 24
casEDsW0.5_IDF_BOOL_noSEQ_MAX_HA_5 0.4677 3 0.3306 15
IDF_BOOL_noSEQ_MAX_MRD_10 0.4658 5 0.3492 8
IDF_BOOL_MAX_MRD_10 0.4650 6 0.3464 9
casEDsW0.5_IDF_BOOL_MAX_MRD_5 0.3948 32 0.2752 31

Table 9. Task: All In Context (combining Article and Element levels scores), Metric: generalized
Precision/Recall, R: rank/56 runs

RunId gP[5] R gP[10] R gP[25] R gP[50] R MAgP R
IDF_BOOL_MAX_MRD_10 0.2245 32 0.2164 24 0.1801 15 0.1386 13 0.1414 15
IDF_BOOL_noSEQ_MAX_MRD_10 0.2231 33 0.2117 25 0.1779 16 0.1417 11 0.1408 16
casEDsW0.5_IDF_BOOL_noSEQ_MAX_HA_5 0.1881 43 0.1654 41 0.1414 33 0.1141 29 0.1133 29
casEDsW0.5_IDF_BOOL_MAX_MRD_5 0.1642 45 0.1553 44 0.1325 35 0.1059 33 0.1021 34
casEDsW0.1_IDF_BOOL_noSEQ_AVG_HA_5 0.1586 47 0.1448 46 0.1245 40 0.0988 34 0.0868 38

Fig. 4. Task: All In Context (combining Article and Element levels scores), Metric: generalized
Precision/Recall (left) ; Task: Best In Context. Metric:EPRUM-BEP-Exh-BEPDistance,
A=0.01 (right).

SIRIUS obtained relatively good rankings for the All In Context task (see Table 9).
We may get an insight at the SIRIUS retrieval performance by analyzing All In
Context Task additional scores for the article-level (Table 7) and element-level
(Table 8). The element-level scores show that SIRIUS is able to detect and extract the
amount of retrievable relevant information within an article with very good results.
Unfortunately, SIRIUS retrieval performance highly degrades when evaluated at
article-level. A possible way to improve the retrieval performances of the system is to
rank the files using a global relevance value computed at article level.

 SIRIUS XML IR System at INEX 2006 197

4.4 Best in Context Task

For the Best In Context task we had to retrive a ranked list of articles. For each article,
we must return a single element, representing the best entry point for the article with
respect to the topic of request. For this task we used the same approach as for the All
In Context Task with N set to 1. The official results evaluated with BEP-D (see
Table 10) and EPRUM-BEP-Exh-BEPDistance [18] (see Table 11) were ranked
several times in the top ten positions out of 77 submitted runs (see Fig. 4 – right). The
top ten results are highlighted while the best obtained values are in bold characters.

Table 10. Task: Best In Context. Metric: BEPD, R: rank/77 runs.

RunId A=0.01 R A=0.1 R A=1 R A=10 R A=100 R
IDF_BOOL_noSEQ_AVG_MRD 0.1959 1 0.2568 2 0.3642 6 0.5596 6 0.7556 7
IDF_BOOL_MAX_HA 0.1722 2 0.2753 1 0.4095 1 0.5847 3 0.7542 8
casEDsW0.1_IDF_BOOL_noSEQ_MAX_HA 0.1394 16 0.2303 8 0.3580 7 0.5239 18 0.6853 27
casEDsW0.5_IDF_BOOL_noSEQ_MAX_HA 0.1346 17 0.2222 12 0.3447 12 0.5048 24 0.6631 36
casEDsW0.5_IDF_BOOL_MAX_HA 0.1322 19 0.2114 17 0.3222 23 0.4691 36 0.6170 45

Table 11. Task: Best In Context. Metric:EPRUM-BEP-Exh-BEPDistance, R: rank/77 runs.

RunId A=0.01 R A=0.1 R A=1 R A=10 R A=100 R
IDF_BOOL_noSEQ_AVG_MRD 0.0407 1 0.0579 8 0.0873 13 0.1489 16 0.2193 35
IDF_BOOL_MAX_HA 0.0304 4 0.0607 6 0.1069 7 0.1770 8 0.2536 14
casEDsW0.1_IDF_BOOL_noSEQ_MAX_HA 0.0233 24 0.0478 15 0.0881 12 0.1480 19 0.2180 36
casEDsW0.5_IDF_BOOL_noSEQ_MAX_HA 0.0218 31 0.0444 24 0.0812 20 0.1363 34 0.2031 42
casEDsW0.5_IDF_BOOL_MAX_HA 0.0214 34 0.0435 29 0.0785 23 0.1323 38 0.1969 44

The Best In Context task results confirmed that the runs using structural hints (*cas*)
are ranked lower than the ones using only the textual content. We have a single
content and structure run in the top ten results casEDsW0.1_IDF_BOOL_noSEQ_MAX_HA
for A=0.1 when evaluated with the BEPD metric (see Table 10.).

5 Conclusions

This year, at INEX 2006, we have pursuit the evaluation of the retrieval performances
of the SIRIUS XML IR system [2, 3] started last year within the INEX 2005
campaign [1]. SIRIUS retrieves relevant XML elements by approximate matching
both the content and the structure of the XML documents. A modified weighted
editing distance on XML paths is used to approximately match the documents
structure while the IDF of the researched terms are used to rank the textual content of
the retrieved elements. A number of extensions were brought to the system in order to
cope with the requirements of the Thorough, Focused, All In Context and Best In
Context tasks.

We have submitted and evaluated 20 valid runs in all the INEX 2006 ad-hoc tasks,
and showed the system ability to retrieve relevant non overlapping XML elements
within the Focused, All In Context and Best In Context tasks. SIRIUS obtained
average rankings for the Thorough task and top ten ranked results in the range of the
50 first retrieved answers for the Focused and All In Context task. For Best In

198 E. Popovici, G. Ménier, and P.-F. Marteau

Context task the results were quite encouraging as the system was ranked on the 1st
place out of 77 submissions for both BEPD and EPRUM metrics with A=0.013. (see
Tables 10, 11).

The runs using structural constraints were consequently outperformed by the runs
using content only conditions, while the runs using strict constraints for phrase
searching were outperformed by their relaxed variants.

Our experiments at INEX 2005 showed that taking into account the structural
constraints improved the retrieval performances of the system and jointly showed the
effectiveness of the proposed weighted editing distance on XML paths for this task.
This observation was not confirmed by any of the tasks evaluated at INEX 2006.
More experimental studies analyzing the use of structural hints within the XML IR
requests are necessary to better understand the reasons for this behaviour.

References

1. Popovici, E., Ménier, G., Marteau, P.-F.: SIRIUS: A Lightweight XML Indexing and
Approximate Search System at INEX 2005. In: Fuhr, N., Lalmas, M., Malik, S., Kazai, G.
(eds.) INEX 2005. LNCS, vol. 3977, pp. 321–335. Springer, Heidelberg (2006)

2. Ménier G., Marteau P.F.: Information retrieval in heterogeneous XML knowledge bases,
IPMU, July 1-5, 2002, Annecy, France (2002)

3. Ménier, G., Marteau, P.F.: PARTAGE: Software prototype for dynamic management of
documents and data. In: ICSSEA, 29 November-1 December, 2005, Paris, France (2005)

4. Clark, J., DeRose, S.: XML Path Language (XPath) Version 1.0, W3C Recommendation,
November 16 (1999) http://www.w3.org/TR/xpath.html

5. Carmel, D., Maarek, Y.S., Mandelbrod, M., Mass, Y., Soffer, A.: Searching XML
documents via XML fragments, SIGIR 2003, Toronto, Canada, pp. 151–158 (2003)

6. Amer-Yahia, S., Koudas, N., Marian, A., Srivastava, D., Toman, D.: Structure and Content
Scoring for XML, VLDB, Trondheim, Norway, pp. 361–372 (2005)

7. Salton, G., Buckeley, C.: Term-weighting approaches in automatic text retrieval.
Information Processing and Management 24, 513–523 (1988)

8. Levenshtein, A.: Binary Codes Capable of Correcting Deletions, Insertions and Reversals.
Sov.Phy. Dohl. 10, 707–710 (1966)

9. Mignet, L., Barbosa, D., Veltri, P.: The XML Web: A First Study, WWW 2003, May 20–
24, Budapest, Hungary (2003)

10. Trotman, A., Sigurbjörnsson, B.: Narrowed Extended XPath I (NEXI). In: Fuhr, N.,
Lalmas, M., Malik, S., Szlávik, Z. (eds.) INEX 2004. LNCS, vol. 3493, pp. 16–40.
Springer, Heidelberg (2005)

11. Wagner, R., Fisher, M.: The String-to-String Correction Problem. Journal of the
Association for Computing Machinery 12(1), 168–173 (1974)

12. Tannier, X., Girardot, J.-J., Mathieu, M.: Classifying XML Tags through Reading
Contexts. In: DocEng, Bristol, United Kingdom, pp. 143–145 (2005)

13. Porter, M.F.: An algorithm for suffix stripping, Program. Program 14(3), 130–137 (1980)

3 Note that high values of A (e.g. 10) does not discriminate whether the answer is near to or far

from the BEP. Whereas, low values of A (e.g. 0,1) favour runs that return elements very close
to a BEP.

 SIRIUS XML IR System at INEX 2006 199

14. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press. Addison-
Wesley, New York (1999)

15. Clarke C., Kamps J., Lalmas M.: INEX 2006 Retrieval Task and Result Submission
Specification. In: INEX 2006 Workshop Pre-Proceedings, Dagstuhl, Germany, December
18–20, 2006, pp. 381–388 (2006)

16. Kazai, G., Lalmas, M.: INEX 2005 Evaluation Metrics. In: Fuhr, N., Lalmas, M., Malik,
S., Kazai, G. (eds.) INEX 2005. LNCS, vol. 3977, pp. 16–29. Springer, Heidelberg (2006)

17. Kamps, J., Koolen, M., Sigurbjörnsson, B.: The University of Amsterdam at INEX 2006.
In: INEX 2006 Workshop Pre-Proceedings, Dagstuhl, Germany, December 18–20, 2006,
pp. 88–99 (2006)

18. Piwowarski, B., Dupret, G.: Evaluation in (XML) information retrieval: expected
precision-recall with user modelling (EPRUM). In: SIGIR 2006, pp. 260–267 (2006)

Structured Content-Only Information Retrieval

Using Term Proximity and Propagation of Title
Terms

Michel Beigbeder

École Nationale Supérieure des Mines de Saint-Étienne
michel.beigbeder@emse.fr

Abstract. Our experiments in the 2006 INEX ad’hoc track were based
on the use of the proximity of the query terms in the documents to rank
them. More precisely we define around each occurence of a query term
an influence function. For an occurence appearing in the text itself, this
influence function is linearly decreasing from 1 to 0 depending on the
distance to the occurence. When a query term happens to appear in
a title of a structured document its influence is uniformly 1 from the
beginning to the end of the (sub-)section. We use boolean queries and
these influence functions are combined according to the tree of a query
using fuzzy logic. The score of any part of a document is the summation
of the resulting influence function at the root of the query tree on the
range of this part. We present and comment the results.

1 Introduction

The needs for information retrieval are now quite well established and the tools
have a large acceptance from the users. Though quite every documents are cre-
ated with some structure in mind, the methods and tools are mainly dedicated
to flat documents as opposed to structured documents.

Moreover most of the methods used for information retrieval on flat texts
don’t even take into account the basic structure of text: its linearity. In fact they
are based on frequencies of terms (both in the documents and in the collection)
and on the document lengths. Though there were some attempts to use the
position of word occurences in the text with either explicit proximity operators
in the query language or ranking based on proximity of the query terms. These
attempts are reviewed in section 2.

Concerning the logical structure which is the structure commonly refered to
when speaking about structured documents, it is only quite recently that a
sufficiently widespread representation for it is available so that large corpora of
structured documents are available. So it is now possible to experiment in the
large some of the ideas developped for structured information retrieval in the
past and to design new methods.

We present in this paper an extension to structured documents retrieval of a
proximity based method originally dedicated to flat texts. Our model can easily

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 200–212, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Structured Content-Only Information Retrieval 201

compute a score for any segment of text, in particular for any section or the whole
document. First in section 3, we present the document model this method deals
with, and in section 4 the method itself. In section 5 we present the experiments
made within the INEX 2006 campaign.

2 Proximity Use in Flat Document Retrieval

The idea of using the proximity of the query keywords for retrieving flat docu-
ments was first implemented in boolean systems with a NEAR operator. This
operator itself was an extension of the ADJ operator. These two operators can
be used between keywords in a boolean query and its truth value is related to
the positions of the two connected keywords. The NEAR operator evaluates to
true if the two terms appear within k words of each other (k is one for the ADJ
operator).

The motivation for the ADJ (resp. NEAR) operator is to be able to describe
in the query the needs for phrases (resp. loose phrases). These operators still are
in use in tools used for searching in library catalogs. Though, from a technical
point of view, they suffer from two handicaps that slowed down their use in plain
text search engines. The first one is that they are closely linked to the boolean
retrieval model which does not allow to rank the retrieved documents. The second
one is that they do not fit well in the boolean query language model itself because
they can only connect keywords and cannot be consistently extended to connect
boolean sub-expressions.

More recent ideas for using keyword proximity were developped and they don’t
have these two limitations. Concerning the second one, the queries accepted by
the query language model are either bags of terms or classic boolean expressions
(only AND and OR operators). About the first one all the methods score the
documents with respect to the positions of the keywords occurences, taking into
account their proximity. We will now describe the basis of some of these methods

2.1 Interval Based Methods

For their participation to the TREC-4 campaign, both Clarke and al. [1] and
Hawking and al. [2] developped similar methods to rank text documents accord-
ing to the proximity of the query keywords. The ideas are to select some intervals
of text that contain all the keywords; to attribute a score to these intervals (the
shorter the interval, the greater the score) and to sum up all these scores to score
the document.

The two methods differ in the selected intervals: for Clarke and al. intervals
cannot be nested because only the shortest ones are selected. For Hawking and
al., for each occurence of any of the keywords, the shortest interval that contains
all the keywords is selected. So if there are two successive occurences of the same
keyword without any occurences of any other keyword in between, two nested
intervals are selected.

The two methods also differ in the interval scoring, Clarke and al. chose a
score that is roughly inversely proportional to the interval length and Hawking

202 M. Beigbeder

and al. chose a score roughly inversely proportional to the square root of the
interval length.

The idea of using intervals was then revisited by Rasolofo and al. [3]. They
chose to base their method on Okapi and they add an additional score to the
Okapi probability. This additional score is based on the intervals containing any
query terms pair: Each of the intervals shorter than a specified constant (6 in
their experiments) that contains occurences of two query terms contribute to
this additional score.

2.2 Fuzzy Influence Function Model

Beigbeder et al. [4] developped a retrieval model based on the fuzzy proximity of
the keywords. More precisely each occurence of a keyword has a fuzzy influence on
its neighbouring. This influence reaches its maximum value one at the keyword
occurence position and decreases with the distance to this position. The most
simple function that have this behaviour is a triangle function. Moreover there
is an easy way to define a control parameter in such a function: its width, the
length of the triangle basis. We will call k half of this length, it controls the
range of the influence of an occurence.

Given a term the influences of its occurences are combined with a maximum
operator. If the influence function is symmetrical, it consists in considering that
at a given position the influence is determined by the nearest occurence of the
term.

Their query language model is that of the classical boolean model with AND,
OR and NOT operators (neither NEAR nor ADJ). The influences of the query
terms are combined in the query tree according to the fuzzy logic interpretation
of the union and intersection operators

Let us consider an example with the document X X X X A X X X B X X X
X X where there is an occurence of the term A (resp. B) at position 5 (resp. 9)
and where X denotes any term different from the terms A and B. Figure 1 shows
the proximities to the terms A and B in this sample document (with k = 5) and
their combination with a minimum corresponding to the AND operator.

Finally the score of a document is the summation of the influence function
over all the positions in the text. It consists in evaluating the area under the
curve associated to the root of the query tree. With our example, this is the area
under the triangle of the curve A AND B.

This is this model that we extended to some kind of structured documents.

3 Our Model of Structured Documents

Our work is pragmatic with respect to the structure of documents. We want
to take into account the basic structure of many kinds of document models:
nested sectionning and titles. This is the basis for scientific articles and tech-
nical documents but also for many more informal documents. We ignore any
other structure, such as lists and emphasis for instance. As a particular case, we
consider that a document is the highest level in the sectionning hierarchy.

Structured Content-Only Information Retrieval 203

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

A

♦ ♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦ ♦ ♦ ♦ ♦

♦
B

+ + + +

+

+

+

+

+

+

+

+

+

+

+
A AND B

� � � �

�

�

�

�

�

� � � � �

�

Fig. 1. Proximities to the terms A and B and their combination for the query A AND
B: x-axis: position of words in the text, y-axis: fuzzy proximities

Another point is that sectionning and titles are tightly related so that in
the LATEX styles, only sectionning commands (\section, \subsection, . . .) are
available and the titles are given as parameters to these commands.

So the basis for our document model is the family of document which could
be coded in the LATEX styles with the sectionning commands only. Here is an
example:

\title{title 1} % highest level, level 0
% the document level and its title

bla bla % level 0 text
\section{title 2} % level 1 and its title
bla bla % level 1 text

\subsection{title 3} % level 2 and its title
bla bla % level 2 text

\section{title 4} % level 1 and its title
bla bla % level 1 text

This example can be coded in XML with:

<section><title>title 1</title>
bla bla
<section><title>title 2</title>
bla bla

<section><title>title 3</title>
bla bla
</section>

</section>

204 M. Beigbeder

<section><title>title 4</title>
bla bla
</section>

</section>

Formally the grammar of our document model is:

document = section
section = ’<section>’’<title>’ title text ’</title>’

section content
’</section>’

section content = (section text | section)*

4 Influence of Keywords Occurences

In the model presented in section 2.2, the influence of a term was only modelized
for linear text. With our model of structured document, we have to modelize the
influence of an occurence of a query term depending on the structural part in
which this occurence does appear. As our document model is very simple there
are only two cases: Occurences can appear in section text parts or title text
parts.

For a term occurence which appears in the section text parts, the basis is
the same as in linear text: A decreasing value of the distance to the occurence.
But we add another constraint, the influence is limited to the section text
part in which the occurence does appear.

Let us consider a document with the same text than the sample document
of section 2.2 but with some structural tags: <section> <title> X X X X A
</title> X X X B X X X X X </section>. The occurence of the term B is
in the section text part of the section. Figure 2 shows the limitation of the
triangle proximity to the term B in the document to the surrounding section.

For term occurences which appear in the title text parts their influence
is extended to the full content of the section and recursively the subsections
contained in the corresponding section content part.

Considering our sample structured document the occurence of the term A is
in the title text part of the section. Figure 2 shows the propagation of the
influence of the occurence of the term A that appears in the title to the whole
section.

Otherwise, like in the model presented in section 2.2, we use a boolean lan-
guage query model and we combine the influence functions with min and max
operators on the internal nodes of the boolean query tree. The basic score of a
section is the summation of the influence function at the root of the query tree.
We normalize this score by the maximum score reachable for this section. As the
maximum value of the influence function is one. The maximum score simply is
its length. Note that this maximum can actually be reached, for instance if all
the query terms appear in the title of a section.

Structured Content-Only Information Retrieval 205

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

A
♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
B

+ + + + + +

+

+

+

+

+

+

+

+

+

+
A AND B

� � � � � �

�

�

�

�

�

�

�

�

�

�

Fig. 2. Limitation of the influence of an occurence to the section text part in which
it appears (proximity to the term B); propagation of a title term (proximity to the
term A): x-axis: position in the text, y-axis: fuzzy proximities

5 Experiments and Implementation

5.1 Converting the Documents to Our Document Model

The documents of the Wikipedia collection used for the 2006 INEX campaign
are written in XML. But the structure of the documents is more complex than
that of our document model of section 3, as 1056 different tags are used.

The main part of the conversion consists in keeping the text and the section
and title tags with their corresponding closing tags. This can easily be done
with an xslt processor, but some non obvious choices have to be made about
the textual content, particularly concerning the spaces. Unfortunately, at the
syntactic level no right choice can be made because of an inconsistent use of
some tags. For instance, the document number 1341796 contains the following
highligth (the attributes of the collectionlink tags are removed):

This is a
<emph3>List of
<collectionlink ...>poison</collectionlink>ings</emph3>in
alphabetical order of victim. It also includes confirmed attempted
and fictional poisonings. Many of the people listed here committed
or attempted to commit
<collectionlink ...>suicide</collectionlink>by
poison;
others were poisoned by others.

206 M. Beigbeder

The question is to insert or not a space after the closing of the collectionlink
tag. If a space is inserted, the following text is generated (mistake is emphasized):

This is a List of poison ings in alphabetical order of victim. It also

includes confirmed attempted and fictional poisonings. Many of the people

listed here committed or attempted to commit suicide by poison; others

were poisoned by others.

which is correct for the second instance of the tag, but not for the first one. If
no space are inserted, the following text is generated:

This is a List of poisonings in alphabetical order of victim. It also

includes confirmed attempted and fictional poisonings. Many of the people

listed here committed or attempted to commit suicideby poison; others

were poisoned by others.

with the reverse correctness. Notice that a choice about spaces are to be made
for each tag, and in the above examples, the emph3 tags were replaced by spaces.

As no consistant choice could be made, we chose to insert space for each tag.

5.2 Indexation Tool and Index Structure

We used as a basis for the indexation the tool Lucy
1 in version 0.5.4. Though

it is an outdated version that is now replaced by different versions of zettair
2,

we had some experience with it as we extended it with an implementation of
the model presented in section 2.2. It is a good basis because it keeps within its
index the position of every occurence of every term, and its lexical analyzer can
recognize the syntax for any XML tags. At the indexation phase, we added the
code necessary to keep track of the position and the nesting of the section and
title tags. Remember that all other tags were removed in the previous step
when the documents were converted to our model.

5.3 Building the Queries

Queries could be automatically built with the conjunction of the terms that
appear in the title field of the topics. As our method is highly selective, there
would be very few results if any in the retrieved list of documents with such
queries. So either the basic conjunctive queries or the retrieval procedure have
to be relaxed in some way. Keeping these automatic conjunctive queries it is
possible to enlarge the result set by using a lemmatization both in the indexation
phase and in the query analysis. We didn’t try this solution but we chose to build
the queries manually.

With a basis of the conjunction of the terms found in the title field, sometimes,
some terms were removed, but more often, these terms were expanded with
disjunction of variations of the terms. These variations could simply be flexionnal
1 http://www.seg.rmit.edu.au/lucy/
2 http://www.seg.rmit.edu.au/zettair/

http://www.seg.rmit.edu.au/lucy/
http://www.seg.rmit.edu.au/zettair/

Structured Content-Only Information Retrieval 207

ones (plural vs. singular) or derivationnal ones (verb, noun, adjective) or even
semantic ones (synonyms or related concepts).

For instance, the title field of the topic number 289 is

emperor "Napoleon I" Polish

With a simple conjonction, the query could be (the ’&’ symbol is used for the
boolean AND operator):

emperor & Napoleon & I & Polish

But some relaxation of it can be derived, for instance:

emperor & Napoleon & Polish
Napoleon & Polish
Napoleon & (Polish | Poland)

By using the description, narrative and ontopic keywords fields, other queries
can be formulated, for instance:

Napoleon & (Polish | Poland | Laczynska | Malewski | Poniatowski)

We built two sets of queries, the short ones where we used only the title
keywords with very minor expansion, and the enhanced queries for which we
used terms from any field with expansions.

5.4 Runs

Given the queries and the value of the parameter k, our method is able to
compute the fuzzy proximities to the query terms for each leaf of the query tree
and to combine these influences up to the root of the tree. With our two query
sets we used two values of k, 50 and 200. As only three runs could be submitted,
we sent as official runs these combinations except the one with enhanced queries
and k = 50.

Then a score can be computed for any span in the document. We computed
scores for the whole documents and all its sections and subsections recursively.
This was our participation to the Thorough task.

For the Best In Context task we searched for the maximum of the influence
function at the root of the query tree and returned the section of highest level
which contained the position at which this maximum was reached.

Finaly for the Focused task, the different parts of the documents were sorted
with two keys: first, the score of the document to which it belongs; and then its
own score.

6 Results

Whatever the task, our best results were obtained with our set of enhanced
queries. With the set of short queries, our two sets of results with k = 50 and
k = 200 are very close one to each other and quite worse than with enhanced

208 M. Beigbeder

 0

 0.1

 0.2

 0.3

 0.4

 0.1 0.2 0.3 0.4 0.5

ef
fo

rt
-p

re
ci

si
on

gain-recall

Fig. 3. INEX 2006: Results’ Summary, Metric: ep-gr, Quantization: gen, Task: thor-
ough, Run: title Q Prox200NT02

queries. This shows that the expansion mechanism is mandatory. More experi-
ments should be done on the value of k to draw some conclusion. In the following
all the results are related to the set of enhanced queries.

Figure 3 shows our results summarized with the ep-gr metric for the set of
enhanced queries and k = 200. At the first level, the results are quite good but
there is a rapid decrease in quality and it is very near from zero after 0.1. The
same behaviour is seen in the results for the focused task either with overlap On
(Fig. 4) or Off (Fig. 5). Moreover these figures display the result measure at 5
documents. When looking further in the list of results, our method compare less
and less favourably to other methods. We develop some explanations about this
remark in the following.

Our queries are conjunctions of the terms that a (part of a) document has to
contain to have a non zero score. Moreover the occurences of the different terms
must be close one to each other. As a result this method is highly selective.
Table 1 displays the distribution of queries in regards to the length of the result
list built by our method. This highlights the fact that our list of results are quite
short. The length of the lists are longer as k increases — which is trivial — and
longer also with the enhanced queries as most of them relax the constraints on

Structured Content-Only Information Retrieval 209

 0

0.07

0.14

0.21

0.28

0.35

 0.1 0.2 0.3 0.4 0.5

Fig. 4. INEX 2006: Results’ Summary, Metric: nxCG[5], Quantization: gen, Task: fo-
cused, Overlap=On, Run: title Q Prox200NF02

the retrieved documents. Also it can be seen that the very large majority of our
result lists are much shorter than the limit of 1500 imposed by INEX.

It seems though that we obtain a quite good precision. Our summarized results
were also disavantaged because of our simplification of the structure. In the
thorough task we only returned elements tagged as sections and did not add
higher level elements when one section was retrieved.

Finally our propagation mechanism was disturbed by strange documents.
For instance document number 192509 contains many text in lists between the
<title> and </title> tags. This results with our structure simplification with
a very long title whose terms are propagated to the whole title and its associated
section. If it happens that all the query terms appear in this erroneous title the
section reach a maximal score of 1. Besides this “document bug”, it highlights
a drawback of our method.

7 Conclusion

We presented in this paper the ideas used for our participation to the INEX 2006
campaign in the ad’hoc retrieval task. Our method is based on the proximity of

210 M. Beigbeder

 0

 0.1

 0.2

 0.3

 0.4

 0.1 0.2 0.3 0.4 0.5

Fig. 5. INEX 2006: Results’ Summary, Metric: nxCG[5], Quantization: gen, Task: fo-
cused, Overlap=Off, Run: title Q Prox200NF02

Table 1. Distribution of queries as a function of their result list length

No result 1 to 10 10 to 100 100 to 1000 more than 1000
Thorough k=50 short 13 21 50 37 4
Thorough k=200 short 7 20 46 44 8
Thorough k=200 enhanced 7 53 55 10
Foc./Best k=50 short 13 40 48 22 2
Foc./Best k=200 short 7 30 60 26 2
Foc./Best k=200 enhanced 15 75 32 3

the keywords in the document and the propagation of the title words to the whole
associated section. We obtained quite good precision results. The summarization
done by the official measure was at our disadvantage because our result lists were
very short and because we simplified the structure so we did not return every kind
of elements. We also found that this method needs query expansion mechanism.
Further works are to be done to study the best setting for the parameter k which
controls the range of influence of a term in the text. Also some work has to be
done to improve the propagation mechanism of title words which is very crude
at the time.

Structured Content-Only Information Retrieval 211

References

1. Clarke, C.L.A., Cormack, G.V., Burkowski, F.J.: Shortest substring ranking (mul-
titext experiments for TREC-4). [5]

2. Hawking, D., Thistlewaite, P.: Proximity operators - so near and yet so far. [5]
3. Rasolofo, Y., Savoy, J.: Term proximity scoring for keyword-based retrieval sys-

tems. In: Sebastiani, F. (ed.) ECIR 2003. LNCS, vol. 2633, pp. 207–218. Springer,
Heidelberg (2003)

4. Beigbeder, M., Mercier, A.: An information retrieval model using the fuzzy proximity
degree of term occurences. In: Haddad, H., Liebrock, L.M., Omicini, A., Wainwright,
R.L. (eds.) SAC, pp. 1018–1022. ACM Press, New York (2005)

5. Harman, D.K. (ed.): In: Harman, D.K., (ed.) The Fourth Text REtrieval Conference
(TREC-4), Department of Commerce, National Institute of Standards and Technol-
ogy (1995)

Set of Enhanced Queries

289 Napoleon & (Polish | Poland)
290 genetic & (algorithm | algorithms) &
(history | algorithm | function | (data &
(structure | structures)) | implementation)
291 (Olympian | Olympie) & (god | goddess)
292 Italian & Flemish & painting & Renaissance
293 wifi & security & encryption
294 user & interface & (design | usability)
295 software & ((intellectual & property) |
(patent & license))
296 (Borussia & Dortmund)
297 cool & jazz & West & coast & (musician |
musicians)
298 ((George & Orwell) | (Eric & Arthur &
Blair))
299 software & development & process &
iterative
300 Airbus & A380 & (order | orders | ordered
| (air & (compagny | compagnies)))
301 (Vector & Space & Model) | (Latent &
Semantic & Indexing) | (salton & smart) |
(extended & Boolean & model)
302 (web & services & security)
303 fractal & (applications | application)
304 (allergy | allergies) & (treatment |
treatments)
305 revision & control & (system | systems)
306 (genre & (theory | classification))
| (structuralist & approach) | ((Plato |
Aristotle) & (form | forms))
307 (Islam | Islamic) & faith
308 wedding & (traditions | customs) & (day &
ceremony)
309 Ken & Doherty & (finals | final)
310 Novikov
311 global & warming
312 recessive & (gene | genes) & ((hereditary
& (disease | diseases)) | (genetic &
(disorder | disorders)))
313 kant & philosophy
314 ((food & additive) | (E & number)) &
(toxin | carcinogen)
315 (spider | spiders) & hunting & (insect |

insects)
316 gymnastics & sport & ((discipline |
disciplines) | (movement | movements))
317 (tourism | visit) & paris & ((museum |
museums) | (cathedral | cathedrals))
318 atlantic & ocean & islands & (slave |
slaves)
319 ((northern & lights) | (polar & lights) |
(aurora & borealis))
320 paris & (Gare & de & Lyon) & (Gare & du &
Nord)
321 Antoni & Gaudi & Barcelona
322 (castles | castle | kasteel) & netherlands
323 ikea & founder
324 composition & planet & rings
325 (Cirque & du & Soleil)
326 Scotland & tourism
327 (clone | clones | cloning) & ((United &
States & of & America) | USA)
328 NBA & European & basketball & player
329 (national & (clothing | dress)) &
(Scottish | Scotland)
330 (nobel & prize) & laureate & physics &
(dutch | Netherlands)
331 (tulips | tulip) & (figure | figures)
332 (NCAA & basketball & tournament) | (march
& madness)
333 (steve & wozniak) & (steve & jobs)
334 (Silk & Road) & China
335 acorn & (eat | eating)
336 (species & monotreme)
337 (security & (algorithms | algorithm))
338 high & blood & pressure & (effect |
effects)
339 (Toy & Story)
340 (Reinforcement & Learning) | (Q &
Learning)
341 microkernel & operating & (system |
systems)
342 (birthday & party) & (nick & cave)
343 Goodkind & (novel | novels)
344 XML & database
345 (Sex & Pistols) & Manchester

212 M. Beigbeder

346 unrealscript
347 (state & machine) & (Moore | Mealy)
348 drinking & water & germany
349 protocol & wireless & security
350 animal & flight
351 (Chinese | China) & wedding & (custom |
customs | tradition)
352 faster & than & light & travel
353 (in & place) & (sort | sorting) &
(algorithm | algorithms)
354 (novel | novels) & (adaptation |
adaptations) & (science & fiction & (film |
films))
355 (best & actress) & (academy & (awards |
award)) & winner
356 (natural & language & processing) &
(information & retrieval)
357 (babylonia | babylonian | assyriology) &
culture
358 (information & retrieval) & ((semantic &
indexing) | (ontologies | ontology))
359 (shortest & path) & (problem | algorithm
| algorithms)
360 solar & energy & (electricity | heating)
361 Europe & after & (second & world & war)
362 (effect | effects) & nuclear & power &
plant & accident
363 (Bob & Dylan) & (Eric & Clapton)
364 mushroom & (poisonous | poisoning)
365 Peru & international & investment
366 Fourier & transform & (applications |
application)
367 (true & story & films) & ((best &
director) | (movie & award))
368 Hymenoptera & Apocrita
369 Pillars & Hercules
370 sport & (offside | (off & side)) & (rule
| rules)
371 William & Buckley
372 voodoo & (rituals | ritual)
373 Australia & Echelon & spy & network
374 2004 & Tsunami & (aid | aids)
375 (states | countries) & (nuclear &
(proliferation | nonproliferation) & treaty)
| npt
376 ((diabetes & mellitus) | (type & 2 &
diabetes)) & (symptoms | symptom)
377 (malvasia & grape) & (vinification |
wine)
378 indoor & (sports | sport) & ball
379 embargo & Cuba
380 headache & fatigue & nausea & symptoms
381 ubiquitous & computing & (application |

applications)
382 Aphrodite
383 Lyon
384 (albert & einstein) & (politics |
political)
385 arnold & schwarzenegger & ((co &
(starring | star)) | cast | casting)
386 fencing & (weapon | weapons)
387 bridge & types
388 rhinoplasty
389 (cryptography | encryption) & key &
(algorithm | algorithms)
390 Insomnia & (cause | causes)
391 (rule | rules | play | playing) & cricket
392 Australian & aboriginals & stolen &
generation
393 wireless & (devices | device) & (Health &
Hazards)
394 global & warming & (effect | effects)
395 September & 11 & conspiracy & (theory |
theories)
396 2004 & Tsunami & Indian & Ocean &
Earthquake
397 SUSE & Linux
398 ringo & starr & (musicians | musician)
399 mobile & phone & UMTS & (country |
countries)
400 (violent) & revolution & (country |
countries)
401 (award | awards) & ((eddie & murphy) |
(jim & carrey) | (robin & williams))
402 (countries | country) & (europe |
european) & (capital | capitals)
403 color & television & analog & (standard |
standards)
404 (french | france) & (singer | singers)
405 The & Old & Man & and & the & Sea
406 architecture & (book | books)
407 (Football & World & Cup) & (Miracle & of
& Bern)
408 (electroconvulsive & therapy) & depression
409 (Hybrid & Vehicles) & ((fuel & (efficiency |
sources)) | types)
410 (Routers | Router | Switches | Switch) &
(computer & (network | networks))
411 (GSM & CDMA) & (standards | standard |
coverage | roaming | price | prices)
412 (NT | linux | windows) & (stability |
price | prices | security)
413 ((capital & cities) | (capitals)) &
Europe & (coordinates | population | latitude
| longitude)

Supervised and Semi-supervised Machine

Learning Ranking

Jean-Noël Vittaut and Patrick Gallinari

Laboratoire d’Informatique de Paris 6
104, avenue du Président-Kennedy, F-75016 Paris, France

{vittaut,gallinari}@poleia.lip6.fr

Abstract. We present a Semi-supervised Machine Learning based rank-
ing model which can automatically learn its parameters using a training
set of a few labeled and unlabeled examples composed of queries and
relevance judgments on a subset of the document elements. Our model
improves the performance of a baseline Information Retrieval system by
optimizing a ranking loss criterion and combining scores computed from
doxels and from their local structural context. We analyze the perfor-
mance of our supervised and semi-supervised algorithms on CO-Focussed
and CO-Thourough tasks using a baseline model which is an adaptation
of Okapi to Structured Information Retrieval.

1 Introduction

Different studies and developments have been recently carried out on ranking al-
gorithms in the machine learning community. In the field of textual documents,
they have been successfully used to combine features or preferences relations
in tasks such as meta search [2] [3] [8], passage classification, automatic sum-
marization [1] and recently for the combination of different sources of evidence
in Information Retrieval (IR) [5]. One of the challenges of this paradigm is to
reduce the complexity of the algorithms which is in the general case quadratic in
the number of examples. This is why most real data applications of ranking are
based on two-classes problems. Nevertheless, some linear methods has been pro-
posed [8] [1] and under some conditions, fast rates of convergence are achieved
with this class of methods [4].

Ranking algorithms work by combining features which characterize the data
elements to be ranked. In our case, these features will depend on the doxel itself
and on its structural context. Ranking algorithms will learn to combine these
different features in an optimal way according to a specific loss function using
a set of examples. It is hoped that ranking algorithms may help to improve the
performance of existing techniques.

The first ideas to combine labeled and unlabeled data come from the statis-
tician community at the end of the 70’s . Most of these methods use a mixture
of gaussian model and try to estimate its parameters by maximizing the joint
likelihood of labeled and unlabeled data [10]. There is in general a one to one
relation between classes and mixture components [9]. As it is usually impossible

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 213–222, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

214 J.-N. Vittaut and P. Gallinari

to perform this estimation directly, so they use a class of iterative algorithms
called EM for Expectation Maximization [6]. The semi-supervised paradigm has
also been used in IR [13]. It has showed its efficiency on a class of tasks where
there are only a few labeled examples available. This is the case in Structured
Information Retrieval (SIR) and more generally in Information Retrieval (IR):
there are very few labeled databases, and the labeling of relevant units for par-
ticular queries is time consuming. There is also tasks where only a few examples
are labeled like in relevance-feedback.

The paper is organized as follows, in section 2 we present the ranking model,
in section 3 we show how we adapted it to CO-Focussed and CO-Thorough
tasks. We also show how we learn using both labeled and unlabeled examples.
In section 4 we comment the results reached by our model and compare it to a
baseline Okapi method adapted for SIR.

2 Ranking Model

We present in this section a general model of ranking which can be adapted to
IR or SIR. The idea of the ranking algorithms proposed in the machine learning
community is to learn a total order on a set X , which allows to compare any
element pair in this set. Given this total order, we are able to order any subset
of X in a ranking list. For instance in IR, X can be the set of couples (document,
query), and the total order is the natural order on the document scores.

As for any machine learning technique, one needs a training set of labeled
examples in order to learn how to rank. This training set will consist in ordered
pairs of examples. This will provide a partial order on the elements of X . The
ranking algorithm will use this information to learn a total order on the elements
of X and after that will allow to rank new elements. For plain IR, the partial
ordering may be provided by human assessments on different documents for a
given query.

2.1 Notations

Let X be a set of elements with a partial order ≺ defined on it. This means that
some of the element pairs in X may be compared according to the ≺ relation.
For Structured Information retrieval X will be the set of couples (doxel, query)
for all doxels and queries in the document collection. This set is partially ordered
according to the existing relevance judgments for each query.

2.2 Ranking

Let f be a function from X to the set of real numbers. We can associate a total
order ≺T to f such that:

x ≺T x′ ⇔ f(x) < f(x′) . (1)

Clearly, learning the f function is the same as learning the total order. In the
following, we will extend the partial order ≺ to a total order ≺T , so we will use
the same notation for both relations.

Supervised and Semi-supervised Machine Learning Ranking 215

An element of X will be represented by a vector of real numbers:

x = (x1, x2, ..., xd).

In our case, the features will be local scores computed on different contextual
elements of a doxel. In the following, f will be a linear combination of x’s features:

fω(x) =
d∑

j=1

ωjxj (2)

where ω = (ω1, ω2, ..., ωd) are the parameters of the combination to be learned.

Ranking loss. fω is said to respect x ≺ x′ if fω(x) < fω(x′). In this case,
couple (x, x′) is said to be well ordered by fω. The ranking loss [8] measures how
much fω respects ≺.

By definition, the ranking loss measures the number of mis-ordered couples
in X 2:

R(X , ω) =
∑

(x,x′)∈X 2

x≺x′

χ(x, x′) (3)

where χ(x, x′) = 1 if fω(x) > fω(x′) and 0 otherwise.
Ranking aims at learning ω for minimizing (3).

Exponential loss. In practice, this expression is not very useful since χ is not
differentiable, ranking algorithms use to optimize another loss criterion called
the exponential loss:

Re(X , ω) =
∑

(x,x′)∈X 2

x≺x′

efω(x)−fω(x′). (4)

If is straightforward that R(X , ω) ≤ Re(X , ω). (4) is differentiable and convex,
and then can be minimized using standard optimization techniques. Minimizing
(4) will allow to minimize R(X , ω).

We can compute a gradient descent. The components of the gradient of Re

are:
∂Re

∂ωk
(X , ω) =

∑

(x,x′)∈X 2

x≺x′

(xk − x′
k)efω(x)−fω(x′). (5)

With no more hypothesis, the computation of (5) is in O(|X |2).

3 Application to CO Tasks

3.1 Definitions

Let’s denote D as the set of doxels for all the documents in the collection and Q
the set of CO queries. X = Q × D is the set of elements we want to order.

216 J.-N. Vittaut and P. Gallinari

We suppose that there exists a partial order ≺ on X = Q×D, this partial order
will reflect for some queries, the evidence we have about preferences between
doxels provided via manual assessments. Note that these relevance assessments
are only needed for a few queries and doxels in the collection. We consider here
the task which consists in producing a ranked list of doxels which answer the
query q ∈ Q. For that, we will train the ranking model to learn a total strict
order on X .

3.2 Combination of Preference Relations

We suppose each element x ∈ X can be ordered according to several preference
relations prefi. Let denote T the set of doxel types, which are defined according
to the DTD of the document collection: article, abstract, sections, paragraphs,
lists...

We used the following combination:

fω(x) =
∑

t∈T
1[node type(x)=t] · ω∅

t ·
(

1 +
∑

i

ωi
t · prefi(x)

)

where t is the node type of x and prefi is a preference relation among doxels
based on textual content. In our experiments, we used a SIR adapted Okapi
model [11] described in [12]. This adaptation consists in using doxels rather
than documents for computing the term frequencies, and using as normalization
factor for each doxel, the mean size of the doxels with the same node type. For
each doxel, this Okapi model was computed on its textual content, on its parent
textual content and also on the whole document containing it.

This combination take into account the information provided by the context
of the doxel and the structural information given by the node type of the doxel.

3.3 Reduction of Complexity

In this section, we use some properties of SIR in order to decrease the complexity
of the computation of (4) and (5).

Queries. Comparing elements from different queries has no sense. We can define
a partition X =

⋃

q∈Q
Xq, where

Xq = {x = (d, q′) ∈ X/q′ = q}

and we can rewrite (4):

Re(X , ω) =
∑

q∈Q

⎧
⎪⎪⎨

⎪⎪⎩

∑

(x,x′)∈Xq×Xq

x≺x′

efω(x)e−fω(x′)

⎫
⎪⎪⎬

⎪⎪⎭
. (6)

Supervised and Semi-supervised Machine Learning Ranking 217

Assessments. For each subset Xq, we suppose we have information indicating
preferences among doxels:

- an information of exhaustivity, which measures how much a doxel answers
the totality of an information need

- an information of specificity, which measures how much a doxel answers only
the information need

For doxels which are equally exhaustive or specific, there is no preference.
An assessment is a couple (exhaustivity, specificity). Let denote A the set of

assessments and A(x) the assessment of element x. We can define a partition
Xq =

⋃

a∈A
X a

q , where

X a
q = {x ∈ Xq/A(x) = a}.

We can rewrite (6):

Re(X , ω) =
∑

q∈Q

∑

a∈A

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎝
∑

x∈Xa
q

efω(x)

⎞

⎠

⎛

⎜⎜⎜⎝
∑

b∈A
X b

q≺Xa
q

∑

x∈X b
q

e−fω(x)

⎞

⎟⎟⎟⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
. (7)

where X b
q ≺ X a

q means that the assessments of the elements of X a
q are better

than those of X b
q .

The complexity for computing this expression is O(K · |Q| · |X |) whereas it is
O(|X |2) for (4) where K is the number of sets in the partition of X . The worst
case occurs when K = |X |.

3.4 Gradient Descent

Since (7) is convex, we can use a gradient descent technique to minimize it. The
components of the gradient has the following form:

∂Re

∂ωk
(X , ω) =

∑

q∈Q

∑

a∈A

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎝
∑

x∈Xa
q

xkefω(x)

⎞

⎠

⎛

⎜⎜⎜⎝
∑

b∈A
X b

q ≺Xa
q

∑

x∈X b
q

e−fω(x)

⎞

⎟⎟⎟⎠

+

⎛

⎝
∑

x∈Xa
q

efω(x)

⎞

⎠

⎛

⎜⎜⎜⎝
∑

b∈A
X b

q ≺Xa
q

∑

x∈X b
q

−xke−fω(x)

⎞

⎟⎟⎟⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (8)

The complexity for computing the gradient is the same (O(K · |Q| · |X |)) as
that of (7).

218 J.-N. Vittaut and P. Gallinari

3.5 Incorporation of Unlabeled Examples

We have described the Ranking model. We defines now the Semi-supervised
model which is an extension using unlabeled examples. The natural way to in-
corporate an unlabeled example y would be to compute all probabilities P (y ≺ x)
for x in X . But this method would be computationnaly costly because we could
not use property 7 to reduce the complexity since y is not in a particular X a

q .
A better method is to affect y to only one X a

q , using a certain probability of
belonging. We say that a example belongs to the group with which it has the
maximum probability of indifference:

P (y ∈ X a
q) = P ({y} ⊥ X a

q) =
∏

x∈Xa
q

P (y ⊥ x) =
∏

x∈Xa
q

P (y ≺ x)P (x ≺ y)

where P (y ⊥ x) is the probability that there is no preference between x and y.
If we use the exponential ranking loss, we will choose the group X a

q which
minimize the ranking loss:

exp(fω(y))
∑

x∈Xa
q

exp(−fω(x)) + exp(fω(−y))
∑

x∈Xa
q

exp(fω(x)).

Note this is not ordinal regression because there is some groups (Xq ’s) which
are each other indifferent and if we could know a priori if an unlabeled example
belongs to one of this group. Even if our model produce a total order on X ,
there is some comparisons without sense (for instance, we see in section 3.3 that
comparing search results from different queries is none sense).

We sum up the semi-supervised model in the following algorithm:

Algorithm 1

1. Minimize the ranking loss on labeled examples.
2. Repeat until convergence:

3. Affect each unlabeled example to a group X a
q

according to the minimum ranking loss:
exp(fω(y))

∑

x∈Xa
q

exp(−fω(x)) + exp(fω(−y))
∑

x∈Xa
q

exp(fω(x)).

4. Minimize the ranking loss on labeled and unlabeled examples.

4 Experiments

4.1 Learning Base

The Wikipedia collection [7] has been used with a small set of three queries.
Then we made 300 assessments for these three queries to be used as a learning
base. We collected these assessments using the following method :

1. the system is initialized with equal preferences
between node types and using only one
preference relation on doxels’ content

Supervised and Semi-supervised Machine Learning Ranking 219

2. Repeat several times:
3. compute the results
4. re-order 25 not assessed results
5. learn with the new partial order provided by user assessments

4.2 Filtering

In CO-Focussed task, overlapping doxels were not allowed. In order to suppress
all overlapping elements from the lists computed by the ranking algorithm, we
used a strategy which consists in removing all elements which are overlapping
with an element ranked higher in the list.

As for Okapi model, we used the same strategy exept that biggest doxels
like articles or bdy’s were not allowed in the final ranking list to reach better
performance.

4.3 Results

We comment here the results obtained with the nxCG official metric with gen-
eralized quantization which is more related to the ranking loss criterion and the
different levels of assessment we have used in our model.

CO-Focussed. We have plotted in figures 1 and 2 the evaluation of the lists
produced by the ranking algorithms and by the modified Okapi for CO-Focussed
task. We evaluate the model taking overlap into account (overlap on) or not
(overlap off). We can see that the ranking algorithms perform better than Okapi,
but semi-supervised model has not been able to increase the performance of the
ranking algorithm.

Table 1 and 2 show that the ranking models are always better than its baseline
Okapi model, and that is quite good to retrieve the most informative doxels in
the begining of the list comparing to other INEX participan approaches.

Table 1. Rank of Okapi and ranking models among all participant submissions using
nxCG metric with generalised quantization and overlap on for CO-Focussed task

@5 @10 @25 @50

Ranking 2 1 2 3
Ranking semi-supervised 14 12 12 8
Okapi 50 39 37 32

CO-Thorough. Figure 3 show the evaluation of the lists produced by the
ranking algorithm and modified Okapi where overlap was not removed. We can
see that the ranking algorithms performs clearly better than Okapi but the semi-
supervised model do not perform better than the supervised model.

Table 3 shows that the ranking models are always better than their baseline
Okapi model, and that is quite good to retrieve the most informative doxels in

220 J.-N. Vittaut and P. Gallinari

 0

 0.08

 0.16

 0.24

 0.32

 0.1 0.2 0.3 0.4 0.5

nX
C

G

rank%

ML-Ranking
Semi-supervised ML-Ranking

Okapi-BM25

Fig. 1. Performance of ranking and Okapi models for CO-Focussed task evaluated with
the cumulated gain based metric ncXG with overlap on

 0

 0.1

 0.2

 0.3

 0.4

 0.1 0.2 0.3 0.4 0.5

nX
C

G

rank%

ML-Ranking
Semi-supervised ML-Ranking

Okapi BM-25

Fig. 2. Performance of ranking and Okapi models for CO-Focussed task evaluated with
the cumulated gain based metric ncXG with overlap off

the begining of the list. This can be explained by the expression of the ranking
loss which highly penalize an irrelevant doxel when it is located in the begining
of the list.

For all experiments, the ranking algorithm has been able to increase the per-
formance of the baseline Okapi. Ranking methods thus appear as a promising

Supervised and Semi-supervised Machine Learning Ranking 221

Table 2. Rank of Okapi and ranking models among all participant submissions using
nxCG metric with generalised quantization and overlap off for CO-Focussed task

@5 @10 @25 @50

Ranking 1 1 4 8
Ranking semi-supervised 1 7 9 11
Okapi 49 39 40 33

 0

 0.1

 0.2

 0.3

 0.4

 0.1 0.2 0.3

ef
fo

rt
-p

re
ci

si
on

gain-recall

Semi-supervised ML-Ranking
ML-Ranking

Okapi BM-25

Fig. 3. Performance of ranking and Okapi models for CO-Thorough task evaluated
with the cumulated gain based metric ncXG

Table 3. Rank of Okapi and ranking models among all participant submissions using
nxCG metric for CO-Thorough task

rank score

Ranking 18 0.0281
Ranking semi-supervised 18 0.0281
Okapi 27 0.0186

direction for improving SIR search engine performance. It remains to perform
tests with additional features (for example the scores of additional IR systems).

5 Conclusion

We have described our ranking model for CO tasks which relies on a combination
of scores from the Okapi model and takes into account the document structure.
This score combination is learned from a training set by a ranking algorithm.

222 J.-N. Vittaut and P. Gallinari

For both tasks, the ranking algorithm has been able to increase by a large
amount the performance of the baseline Okapi with a very small set of labeled
examples. Ranking methods thus appear as a promising direction for improv-
ing SIR search engine performance. It remains to perform tests with additional
features (for example the scores of additional IR systems).

Eventually, there is also work in progress to make unlabeled data useful for
Ranking algorithms.

References

1. Amini, M.R., Usunier, N., Gallinari, P.: Automatic text summarization based on
word-clusters and ranking algorithms. In: ECIR pp. 142–156 (2005)

2. Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to order things. In: Jordan,
M.I., Kearns, M.J., Solla, S.A. (eds.) Advances in Neural Information Processing
Systems, vol. 10, The MIT Press, Cambridge, MA (1998)

3. Bartell, B.T., Cottrell, G.W., Belew, R.K.: Automatic combination of multiple
ranked retrieval systems. In: Research and Development in Information Retrieval,
pp. 173–181 (1994)

4. Clémençon, S., Lugosi, G., Vayatis, N.: Ranking and scoring using empirical risk
minimization. In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS (LNAI), vol. 3559,
pp. 1–15. Springer, Heidelberg (2005)

5. Craswell, N., Robertson, S., Zaragoza, H., Taylor, M.: Relevance weighting for
query independent evidence. In: SIGIR ’05. Proceedings of the 28th annual inter-
national ACM SIGIR conference, ACM Press, New York (2005)

6. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via
EM algorithm. Journal of the Royal Statistical Society B(39), 1–38 (1977)

7. Denoyer, L., Gallinari, P.: The Wikipedia XML Corpus SIGIR Forum (2006)
8. Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for

combining preferences. In: Proceedings of ICML-98, 15th International Conference
on Machine Learning (1998)

9. Miller, D., Uyar, H.: A Mixture of Experts classifier with learning based on both
labeled and unlabeled data. Advances in Neural Information Processing Systems 9,
571–577 (1996)

10. Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T.: Text Classification from La-
beled and Unlabeled Documents using EM. In: Proceedings of National Conference
on Artificial Intel-ligence (1998)

11. Robertson, S.E., Walker, S., Hancock-Beaulieu, M., Gull, A., Lau, M.: Okapi at
TREC. In: Text REtrieval Conference, pp. 21–30 (1992)

12. Vittaut, J.N., Piwowarski, B., Gallinari, P.: An algebra for structured queries in
bayesian networks. In: Advances in XML Information Retrieval. Third Workshop
of the INitiative for the Evaluation of XML Retrieval (2004)

13. Vittaut, J.N., Amini, M.R., Gallinari, P.: Learning Classification with Both Labeled
and Unlabeled Data. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002.
LNCS (LNAI), vol. 2430, Springer, Heidelberg (2002)

The University of Kaiserslautern

at INEX 2006

Philipp Dopichaj

dopichaj@informatik.uni-kl.de
University of Kaiserslautern, Gottlieb-Daimler-Str.

67663 Kaiserslautern, Germany

Abstract. Digital libraries offer convenient access to large volumes of
text, but finding the information that is relevant for a given information
need is hard. The workshops of the Initiative for the Evaluation of XML
retrieval (INEX) provide a forum for testing the effectiveness of retrieval
strategies. In this paper, we present the current version of our search en-
gine that was used for INEX 2006: Like at INEX 2005, our search engine
exploits structural patterns – in particular, automatic detection of titles
– in the retrieval results to find the appropriate results among overlap-
ping elements. This year, we examine how we can change this method to
work better with the Wikipedia collection, which is significantly larger
than the IEEE collection used in previous years. We show that our op-
timizations both retain the retrieval quality and reduce retrieval time
significantly.

1 Introduction

The Initiative for the Evaluation of XML Retrieval (INEX)1 provides a testbed
for comparing the effectiveness of content-based XML retrieval systems. The
University of Kaiserslautern participated in the INEX workshop for the second
time in 2006. Our retrieval approach is mostly unchanged from the approach
we used in 2005: It is based on standard vector-space retrieval on the elements,
enhanced with XML-specific additions (context patterns). This year, it was our
aim to answer two questions:

– Do context patterns work well without using fuzzy logic? (Last year, we
introduced the concept of context patterns and implemented them using
fuzzy logic.)

– Can we improve the speed of our system without compromising quality by
discarding a large fraction of the intermediate results? (The Wikipedia col-
lection used this year is roughly eight times the size of the IEEE collection
from last year.)

Context patterns address the choice of a suitable result granularity, one of the
central problems of element retrieval: Due to the tree structure of XML docu-
ments, retrieval results can overlap, so the search engine needs to decide which
1 see http://inex.is.informatik.uni-duisburg.de/

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 223–232, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://inex.is.informatik.uni-duisburg.de/

224 P. Dopichaj

of the overlapping results are more suitable for answering the query. Context
patterns are based on the observation that the structural properties of retrieval
results, like length and position, provide valuable hints about the importance of
the retrieved elements.

Our paper is structured as follows: We first present a brief description of
our baseline retrieval system in Section 2 and then proceed to explain context
patterns in Section 3. Section 4 describes changes related to the scalability of our
search engine. Finally, we discuss the performance of our baseline and enhanced
results as evaluated in the INEX workshop in Section 5.

2 Baseline Search Engine

The basic structure of our retrieval system has not changed since last year [2,4];
we repeat the description here for completeness. We use the Apache Lucene
information retrieval engine2 as the basis and add XML retrieval functionality.
Instead of storing only the complete articles from the document collection in
the index, we store each element’s textual contents as a (Lucene) document,
enriched with some metadata (most notably, the enclosing XML document and
the XPath within that document); see Fig. 1 for an example.

〈sec〉Hello, 〈b〉world!〈/b〉
How 〈i〉are〈/i〉 you?
〈/sec〉

XPath Indexed contents

/sec[1] Hello, world! How are you?
/sec[1]/b[1] world!
/sec[1]/i[1] are

Fig. 1. Source document and corresponding indexed documents as seen by Lucene

Directly searching this index using Lucene would lead to bad results – overlap
is not taken into account at all, and many elements on their own are useless
because they are too small –, so we need to postprocess the Lucene results.
We regard the results from different input documents as independent, so we
can postprocess the results from each document separately (even concurrently).
Overlapping results from the same document are arranged in a tree that mirrors
the structure of the original XML document; this enables us to examine the
relationships between the elements. Thus, retrieval is executed in the five steps
depicted in figure 2; the context patterns from section 3 are applied in step 3.

2.1 Deriving Non-thorough Results

We base our results for the Focused, All in Context, and Best in Context tasks
on our thorough results; this is simply another post-processing step added to the
end of step 3. The approaches are rather näıve:
2 see http://lucene.apache.org

http://lucene.apache.org

The University of Kaiserslautern at INEX 2006 225

Operation Output

1. Process query and send it to Lucene Raw retrieval results (fragments)
2. Rearrange retrieval results One result tree per document
3. Postprocess the result trees One result tree per document
4. Merge the results Flat list of results
5. Adjust scores of short elements Flat list of results

Fig. 2. The retrieval process

Focused: We repeatedly add the element with the highest score from the result
tree to the results and remove all its descendants and ancestors.

All in Context: We take our Focused results and group them by document;
the documents are then sorted according to the highest-scoring element in
each document.

Best in Context: We simply choose the element with the highest result.

The method for getting Focused results proved to be reasonably effective last
year, so we used it again. The “in Context” methods were last-minute additions
that do little more than ensure that the task requirements are fulfilled; we did
not expect them to be very successful.

2.2 Query Processing

The queries in the INEX topics are formulated in NEXI, an XML query lan-
guage derived from XPath with additional information retrieval functions [7].
For content-only (CO) queries, we support the full syntax of NEXI with the
following modifications to the interpretation of the Boolean operators:

– Query terms with the “-” qualifier are discarded (instead of asserting that
they do not occur in the retrieved elements).

– Query terms prefixed with “+” are assigned a higher weight (instead of as-
serting that they occur in the retrieved elements).

– The modifiers “and” and “or” are ignored.

For content-and-structure (CAS) queries, only the last tag name in paths is
used for searching (for example, given //article//fm//atl, we prefer all atl
elements, not only those contained in //article//fm). Furthermore, we consider
the structural parts of the query only as hints for the best elements to retrieve.

3 Context Patterns

The search engine we described in the previous section provides the basis for
the implementation of our XML retrieval engine. The postprocessing steps we
present in this section aim at making use of the structure of the documents to
improve retrieval quality [3].

226 P. Dopichaj

Although they are not viable retrieval results on their own, elements with
little text can still provide valuable retrieval hints: For example, the title of a
section is typically less than twenty words long and not helpful to the searcher,
but a well-chosen title gives a strong hint about the contents of the section.

One way to make use of this is to manually specify which elements types
are titles, but this would obviously depend on the schema and require manual
inspection of the schema. Fortunately, there are several telltale signs what the
role of a given element in a text is, without having to examine the tag name.

We can achieve this by looking at result contexts of the retrieved nodes. For
each non-leaf node, the result context consists of this node and its children, and
the following data is stored for each node:

– The retrieval score of the node,
– the length of the node’s text (in words), and
– the position of the node in the parent node.

This information can be visualized in two dimensions, one for the lengths and
positions of the text fragments and the other for the score. Figure 3 shows an
example XML fragment and how it can be visualized. The horizontal position of
the left-hand side of each rectangle denotes the starting position in the text of
the parent element, and its width corresponds to the length of the text it contains
(this implies that the parent element occupies the width of the diagram). The
parent element (in figure 3, the root element /sec[1]) is the reference for the
scale of the horizontal axis.

〈sec〉
Hello, 〈b〉world!〈/b〉
How 〈i〉are〈/i〉 you?
〈/sec〉

position

0 1 2 3 4 5

sc
or

e

0

0.2

0.4

0.6

0.8

1

/s
ec

[1
]

//b
[1

]

//i
[1

]

Fig. 3. XML text and corresponding context diagram. The horizontal axis denotes the
positions and lengths of the text fragments, and the vertical axis shows the score (in
this case random numbers).

When we examined context graphs of some trial retrieval results, we real-
ized that we could often determine what elements were section titles or inline
elements, without referring to the original XML documents. Based on this ob-
servation, we defined a set of context patterns for formalizing the recognition of
certain structures. A pattern looks like, “if the first child in the context is short
and the parent is long, the first child is a title” (see figure 4 for an example).

The University of Kaiserslautern at INEX 2006 227

This is too vague for Boolean logic, but fuzzy logic is perfectly suited to this
task. Fuzzy logic enables us to assign degrees of membership for the features,
instead of Boolean values [6]. For example, a fragment containing only one word
is definitely short, and a fragment containing 5,000 words is definitely not short,
but what about one containing 20 words? With fuzzy logic, we do not need to
make a firm decision, but we can say that this fragment is short to a degree of
(for example) 50%. Similarly, the Boolean operators like and, or, and not can
be expressed in terms of these degrees.

position

0 50 100 150 200 250 300

sc
or

e

0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 4. Example context graph for the title pattern. The short peak at the left is the
section title.

This year, in addition to evaluation the performance of patterns on the new
collection, we also wanted to evaluate whether using fuzzy logic really helps
and implemented a “crisp” version of the title pattern that simply regards all
elements shorter than 30 words as short.

Once we have detected the presence of a match in a title element, we need to
modify the scores of the involved elements. For a match in a title, an appropriate
action is to increase the parent’s score (because the match indicates that the
enclosing section is highly relevant) and decrease the first child’s score (because
the title itself contains too little information to be of any use).

Last year, we used several other patterns in addition to the title pattern, but
it turned out that only the title pattern had a positive effect on retrieval quality.
Because of this, our submitted runs only make use of the title pattern.

4 Coping with the Large Collection

The switch from the INEX 2005 to the INEX 2006 data set was a challenge;
the Wikipedia data collection [1] is roughly eight times as large as the IEEE
collection that was used in previous years (5.8 gigabytes for Wikipedia compared
to 742 megabytes for IEEE).

4.1 Keeping Metadata in Main Memory

Obviously, the search engine needs to have data about the precise location (doc-
ument, XPath) of a result in order to return it to the user. In addition to that,

228 P. Dopichaj

our context patterns also require data about the word-based length and position
of the fragment.

This data must be accessed as quickly as possible. Unfortunately, the size of
the Wikipedia collection prohibits the straightforward storage of this information
for each fragment indexed by ID in main memory, even in compressed form.
Storing this data on disk is not an option, either, because there may literally be
millions of intermediate results (step 2 from Figure 2), and even the best-case
assumption of one seek per result would be way too slow.

Therefore, we needed to devise a memory-effective way of storing the metadata
in main memory; we had to sacrifice direct access by fragment ID (now only the
metadata for a whole document can be read at once), but avoiding the cost of
disk access more than alleviates the additional cost of decompression.

The basic idea is to keep a compressed version of the original document struc-
ture with all text nodes replaced by the corresponding word count. For the
Wikipedia collection, this results in a metadata structure size of roughly 2% of
the size of the original XML files.

One simple space-saving method is normalization of tag names: The vocabu-
lary of tag names is limited, so the search engine assigns a unique number to each
one. The numbers assigned depends on the order the tag names are encountered
during indexing; it would save even more space to assign lower numbers to the
most frequent tags, but this would require two passes of parsing the document
collection. In any event, all tag names can be encoded in three or fewer bytes,
which is shorter than the mean length of theirs texts.

The structure of the original documents is mirroredusing a command–argument
structure; it would be wasteful to use a whole byte for each command, since there
are only three basic commands (start/end element, text), so the search engine uses
the condensed format as shown in Fig. 5. Each command is encoded in an 8-bit byte
which consists of one or more command bits, and any remaining bits are used as
value bits.

7 6 5 4 3 2 1 0 bit number

1 0 tag ID start element
1 1 text length end element (preceded by text)
0 text length short text
0 1 1 1 1 1 1 1 long text; followed by variable-length integer

Fig. 5. Basic structure of document digest commands

The following commands are necessary for our purposes:

– Start tag #n.
– End tag it.
– Text fragment of length n (measured in tokens).

The end tag needs no argument, always applies to the last unclosed tag, so we
can use the value bits of end tag commands for other purposes. In many cases,

The University of Kaiserslautern at INEX 2006 229

closing tags are preceded by text (in the Wikipedia collection, this is the case
for 70% of all closing tags), so we can use the unneeded six lower bits for storing
the length of this text.

For the length of long texts and tag IDs, we use a variable-length encoding
which enables us to store small numbers in a small number of bytes without
placing a fixed limit on the maximum number that can be stored.

For the start tag command, the value bits encode the start of the tag number
in variable-length encoding: If the tag ID is less than 64, bit 5 is set to 0, and
the tag ID is stored in the lower five bits; otherwise, bit 5 is set to 1, the tag ID
modulo 64 is stored in the lower five bits, and the tag ID divided by 64 is stored
in the following bytes in the regular variable-length integer encoding.

For the end tag command, the value bits contain the length of the text frag-
ment preceding the closing tag (if this text fragment is too long to be stored in
six bits, a text command is inserted before the end tag and the value bits of end
tag are set to zero).

Most text fragments are short, so it is reasonable to accept a small penalty
for longer texts in order to store short texts efficiently. Thus, for text lengths
less than 127 (111 11112), the text’s length is stored in the value bits of the
command byte, otherwise all value bits are set, and the text length is encoded in
the following variable-length integer. The other option would be to use a regular
variable-length encoding for the numbers (that is, use bit 6 as a marker bit), but
this would have increased the number of bytes used for texts that are between
64 and 126 tokens long.

Table 1. Space statistics for digests

Number of bytes needed for . . . Mean Median Encoded in one byte

. . . start tags 1.1735 1 83%

. . . text fragments* 1.0001 1 100 %

* counting text embedded in end tags as one byte.

4.2 Discarding Intermediate Results

Even with the metadata compression scheme, obtaining the metadata for the
results is still the most expensive operation in the retrieval process. The metadata
includes the XPath and content length of the elements, and due to the way the
data is stored, the system has to obtain the metadata for all elements in one go.

Many of the elements do not show up in the final results anyway (for INEX,
only the 1,500 highest-ranking elements should be submitted), so it should be
possible to simply discard the results from low-scoring documents after step 2 in
the retrieval process (Figure 2); the metadata is needed for step 3. The problem
is that “low-scoring documents” is not well-defined: There may be many ele-
ments from the same document with a variety of retrieval scores, so ranking the

230 P. Dopichaj

10.000000 〈sec〉
0.0000001 one text token
10.000001 〈b〉
11.000001 one text token, 〈/b〉
0.0000001 one text token
10.100000 〈i〉
0.0100001
11.000001 one text token, 〈/i〉
11.000001 one text token, 〈/sec〉

Tag ID Name

0 sec
1 b

65 i

Fig. 6. Example digest for the document from Fig. 1

documents is not too straightforward (and indeed a task of its own in INEX).
One could calculate the average retrieval score for all elements in a document
and use that for sorting the documents. This would, however, be counterproduc-
tive for the “thorough” and “focused” tasks – a highly relevant element could be
overshadowed by many elements with a much lower RSV and thus be discarded.
Because of this, we use the maximum retrieval score in a document for sorting,
and keep all fragments from the 5,000 best documents.

Originally, the results from the first retrieval step contain elements from 58,000
documents on average; after discarding the low-scoring documents, 5,600 docu-
ments remain (this number is higher than 5,000 because we also keep all doc-
uments with exactly the same score as the 5,000th document). The mean time
needed to process a topic drops from 13.7 seconds to 4.2 seconds, and as we will
see in the following section, retrieval quality is not compromised.

5 Evaluation and Discussion

One important aspect of INEX is the comparison of XML search engines. The
participating organizations submit runs consisting of up to 1,500 results for each
topic, and the pooled results are then manually evaluated for relevance. This
relevance information is used as input to several metrics [5] which provide a
numerical value denoting the quality of a run’s retrieval results.

Although the currently available results3 are incomplete, three tentative con-
clusions can be drawn at this point (see Table 2 and Fig. 7 for details):

– Compared to other participants’ results, our results are on a low level.
– Discarding intermediate results does not appear to affect retrieval quality

negatively; in fact, retrieval quality is in many cases slightly higher (though
not significantly so). Retrieval time is reduced significantly.

– Whether or not fuzzy logic improves the performance for context-pattern-
based runs remains unclear; for CO.Thorough and MAep, fuzzy logic is
slightly better, for CO.Focused, it is slightly worse.

3 see http://inex.is.informatik.uni-duisburg.de/2006/adhoc-protected/results.html

The University of Kaiserslautern at INEX 2006 231

Table 2. INEX 2006 results. CO.Thorough had 106 submissions, CO.Focused (with
overlap=on) had 85, some of them with overlaps.

CO.Thorough CO.Focused

Run MAep Rank nxCG@25 Rank

Fuzzy patterns 0.0336 31 0.1685 51
Crisp patterns 0.0291 41 0.1719 49
Crisp patterns (best 5,000 documents kept) 0.0293 40 0.1724 48

Although it is unreasonable to expect the same level of performance on a
different document collection and topic set, the differences to last year’s results
are too large to be ignored: At INEX 2005, our search engine consistently ranked
among the top five for cut-off points up to 50. It is unclear why the results are
so much worse this year; the characteristics of the Wikipedia collection are not
much different from that of the IEEE collection.

 0

 0.1

 0.2

 0.3

 0.4

 0.1 0.2 0.3 0.4 0.5

ef
fo

rt
-p

re
ci

si
on

gain-recall

INEX 2006: Results’ Summary
metric: ep-gr,quantization: gen

task: thorough

 0

 0.07

 0.14

 0.21

 0.28

 0.35

 0.1 0.2 0.3 0.4 0.5

nx
C

G

rank %

INEX 2006: Results’ Summary
metric: nxCG,quantization: gen

task: focused

Fig. 7. Metrics graphs. Our runs are drawn with thicker lines.

As expected, our näıve approaches to the “in context” tasks were not effective.
For All in Context, our best run is 35th of 56 submissions (mean average gener-
alized precision/recall), and roughly 35th to 40th out of 77 for Best in Context
for the various parameter values of the evaluation measure.

6 Summary

We have described how we adapted the retrieval system we used in 2005. The
most significant change concerns handling the larger document collection well

232 P. Dopichaj

(the old system did not scale). Our basic retrieval approach is mostly unchanged,
but the quality of the retrieval results has dropped considerably, which we cur-
rently cannot explain.

References

1. Denoyer, L., Gallinari, P.: Ludovic Denoyer and Patrick Gallinari. SIGIR Fo-
rum 40(1), 64–69 (2006)

2. Dopichaj, P.: The University of Kaiserslautern at INEX 2005. In: Fuhr, N., Lalmas,
M., Malik, S., Kazai, G. (eds.) INEX 2005. LNCS, vol. 3977, Springer, Heidelberg
(2006)

3. Philipp Dopichaj. Improving content-oriented XML retrieval by applying structural
patterns. In: ICEIS, – Proceedings of the Ninth International Conference on Enter-
prise Information Systems, 2007,To appear (2007)

4. Eger, B.: Entwurf und Implementierung einer XML-Volltext-Suchmaschine. Mas-
ter’s thesis, University of Kaiserslautern (2005)

5. Kazai, G., Lalmas, M.: Notes on what to measure in INEX. In: Proceedings of the
INEX 2005 Workshop on Element Retrieval Methodology (2005)

6. Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics, 2nd edn., chapter
13, pp. 367–388. Springer, Heidelberg (2004)

7. Trotman, A., Sigurbjörnsson, B.: Narrowed extended XPath I (NEXI). In: Fuhr,
N., Lalmas, M., Malik, S., Szlávik, Z. (eds.) INEX 2004. LNCS, vol. 3493, Springer,
Heidelberg (2005)

TopX – AdHoc Track and Feedback Task

Martin Theobald, Andreas Broschart, Ralf Schenkel, Silvana Solomon,
and Gerhard Weikum

Max-Planck-Institut für Informatik
Saarbrücken, Germany

{mtb,abrosch,schenkel,solomon,weikum}@mpi-inf.mpg.de
http://www.mpi-inf.mpg.de/departments/d5/

Abstract. This paper describes the setup and results of the Max-Planck-
Institut für Informatik’s contributions for the INEX 2006 AdHoc Track
and Feedback task. The runs were produced with the TopX system, which
is a top-k retrieval engine for text and XML data that uses a combination
of BM25-based content and structural scores.

1 System Overview

TopX [10,11] aims to bridge the fields of database systems (DB) and information
retrieval (IR). From a DB viewpoint, it provides an efficient algorithmic basis
for top-k query processing over multidimensional datasets, ranging from struc-
tured data such as product catalogs (e.g., bookstores, real estate, movies, etc.)
to unstructured text documents (with keywords or stemmed terms defining the
feature space) and semistructured XML data in between. From an IR viewpoint,
TopX provides ranked retrieval based on a relevance scoring function, with sup-
port for flexible combinations of mandatory and optional conditions as well as
text predicates such as phrases, negations, etc. TopX combines these two aspects
into a unified framework and software system, with emphasis on XML ranked
retrieval.

Figure 1 depicts the main components of the TopX system. It supports three
kinds of front-ends: as a servlet with an HTML end-user interface (that was
used for the topic development of INEX 2006), as a Web Service with a SOAP
interface (that was used by the Interactive track), and as a Java API (that was
used to generate our runs). TopX currently uses Oracle10g as a storage system,
but the JDBC interface would easily allow other relational backends, too.

The Indexer parses and analyzes the document collection and builds the in-
dex structures for efficient lookups of tags, content terms, phrases, structural
patterns, etc. An Ontology component manages optional ontologies with vari-
ous kinds of semantic relationships among concepts and statistical weighting of
relationship strengths; we used WordNet [2] for some of our runs.

At query run-time, the Core Query Processor decomposes queries and invokes
the top-k algorithms. It maintains intermediate top-k results and candidate items
in a priority queue, and it schedules accesses on the precomputed index lists in
a multi-threaded architecture. Several advanced components provide means for
run-time acceleration:

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 233–242, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

234 M. Theobald et al.

Large Corpus

Correlation Statistics

Large Corpus

Correlation StatisticsThesaurus with

Statistically

Quantified Concept

Similarities

Thesaurus with

Statistically

Quantified Concept

Similarities Index List Meta Data

(e.g., Histograms)

Index List Meta Data

(e.g., Histograms)

DBMS / Inverted Lists

Text & XML Schema

DBMS / Inverted Lists

Text & XML Schema

R
an

d
o
m

 A
ccess

Probabilistic

Index Access

Scheduling

Probabilistic

Index Access

Scheduling

Probabilistic

Candidate Pruning

& Garbage Collection

Probabilistic

Candidate Pruning

& Garbage Collection

Dynamic

Query Expansion

Dynamic

Query Expansion

Incremental Path

Evaluation for

Content & Structure

Incremental Path

Evaluation for

Content & Structure

Top-k
Queue

Top-k
Queue

Scan threads
Sorted Access

in descending

order of scores

Auxiliary

Predicate Probing

Auxiliary

Predicate Probing

Candidate

Cache

Candidate

Queue

TopX Core Query Processor
• Cost-Based Random Access Scheduling

• Expensive Predicate Probing

• Early Threshold Termination

TopX Core Query Processor
• Cost-Based Random Access Scheduling

• Expensive Predicate Probing

• Early Threshold Termination

P
re

co
m

p
u

ta
ti

o
n

T
im

e
Q

u
er

y
 P

rc
ce

ss
in

g
T

im
e

Frontends
• Web Service

• Web interface

• API

Frontends
• Web Service

• Web interface

• API

Indexer/CrawlerIndexer/Crawler

Fig. 1. TopX architecture

– The Probabilistic Candidate Pruning component [12] allows TopX to drop
candidates that are unlikely to qualify for the top-k results at an early stage,
with a controllable loss and probabilistic result guarantees.

– The Index Access Scheduler [1] provides a suite of scheduling strategies for
sorted and random accesses to index entries.

– The Incremental Path Evaluation uses additional cost models to decide when
to evaluate structural conditions like XML path conditions, based on spe-
cialized indexes for XML structure.

– The Dynamic Query Expansion component [9] maps the query keywords
and/or tags to concepts in the available ontology and incrementally generates
query expansion candidates.

2 Data Model and Scoring

We refer the reader to [11] for a thorough discussion of the scoring model. This
section shortly reviews important concepts.

2.1 Data Model

We consider a simplified XML data model, where idref/XLink/XPointer links are
disregarded. Thus every document forms a tree of nodes, each with a tag and
a related content. We treat attributes nodes as children of the corresponding
element node. The content of a node is either a text string or it is empty;

TopX – AdHoc Track and Feedback Task 235

typically (but not necessarily) non-leaf nodes have empty content. With each
node, we associate its full-content which is defined as the concatenation of the
text contents of all the node’s descendants in document order.

2.2 Content Scores

For content scores we make use of element-specific statistics that view the full-
content of each element as a bag of words:

1) the full-content term frequency, ftf(t, n), of term t in node n, which is the
number of occurrences of t in the full-content of n;

2) the tag frequency, NA, of tag A, which is the number of nodes with tag A in
the entire corpus;

3) the element frequency, efA(t), of term t with regard to tag A, which is the
number of nodes with tag A that contain t in their full-contents in the entire
corpus.

The score of an element e with tag A with respect to a content condition
of the form *[about(., t)] is then computed by the following BM25-inspired
formula:

score(e, *[about(., t)]) =
(k1 + 1) ftf(t, e)

K + ftf(t, n)
· log

(
NA − efA(t) + 0.5

efA(t) + 0.5

)
(1)

with K =

k1

(
(1 − b) + b

∑
s∈ full content of e ftf(s, e)

avg{
∑

s′ ftf(s′, e′) | e′ with tag A}

)

For a query content condition with multiple terms, the score of an element
satisfying the tag constraint is computed as the sum of the element’s content
scores for the corresponding content conditions, i.e.:

score(e, *[about(., t1 . . . tm)]) =
m∑

i=1

score(e, *[about(., ti)]) (2)

TopX provides the option to evaluate queries either in conjunctive mode or
in “andish” mode. In the first case, all terms (and, for content-and-structure
queries, all structural conditions) must be met by a result candidate, but still
different matches yield different scores. In the second case, a node is already
considered a match if it satisfies at least one content condition.

Orthogonally to this, TopX can be configured to return two different gran-
ularities as results: in document mode, TopX returns the best documents for a
query, whereas in element mode, the best target elements are returned, which
may include several elements from the same document.

236 M. Theobald et al.

2.3 Structural Scores

Given a query with structural and content conditions, we transitively expand all
structural query dependencies. For example, in the query //A//B//C[about(.,
t)] an element with tag C has to be a descendant of both A and B elements.
Branching path expressions can be expressed analogously. This process yields a
directed acyclic graph (DAG) with tag-term conditions as leaves, tag conditions
as inner nodes, and all transitively expanded descendant relations as edges.

Our structural scoring model essentially counts the number of navigational
(i.e., tag-only) conditions that are satisfied by a result candidate and assigns
a small and constant score mass c for every condition that is matched. This
structural score mass is combined with the content scores. In our setup we have
set c = 1, whereas content scores are normalized to [0, 1], i.e., we emphasize the
structural parts.

3 AdHoc Track Results

There were two major changes in this year’s AdHoc Track: The queries were run
against the Wikipedia collection instead of the old IEEE collection, and there was
only a single dimension of relevance (i.e., specificity) instead of both exhaustivity
and specifitiy. As a consequence of this, smaller elements should be favored over
larger elements (e.g., complete articles) at least for the Thorough subtask. Our
scoring functions do not take this into account as they are still tuned towards
the old bidimensional relevance (with exhaustivity and specificity).

For each subtask, we submitted at least the following four types of runs:

– CO {subtask} baseline: a CO run that considered the terms in the title of
a topic without phrases and negations, limiting tags of results to article,
section, and p.

– CO {subtask} exp: a CO run that considered terms as well as phrases and
negations (so-called expensive predicates), again limiting tags of results to
article, section, and p.

– CAS {subtask} baseline: a CAS run that considered the castitle of a topic
if it was available, and the title otherwise. The target tag was evaluated
strictly, whereas support conditions were optional; phrases and negations
were ignored.

– CAS {subtask} exp: a CAS run that additionally considered phrases and
negations.

3.1 Thorough Task

We submitted six runs to the Thorough task. In addition to our four standard
runs, we submitted

– TOPX CO Thorough all: a CO run that allowed all tags in the collection
instead of limiting the tags to article, section, and p

TopX – AdHoc Track and Feedback Task 237

– TOPX CAS Thorough ex incr: a CAS run that included expanding terms us-
ing WordNet

Table 1 shows the results for our runs. It turns out that all CO runs outperform
the CAS runs that suffer from the strict evaluation of the target tag. Among
the CO runs, the run that allows all result tags is best; this is not surprising
as the other runs exclude many relevant results that have the ‘wrong’ tag. We
see a slight advantage for runs that include phrases and negations, and a slight
disadvantage for the run that expanded terms with WordNet. Overall, the per-
formance of TopX is good (with a peak rank of 20), taking into account the
limited amount of tuning that we did. Being a top-k engine, we expect that
TopX would, like last year, perform even better for early cutoff points; however,
they were unfortunately not measured this year.

Table 1. Results for the Thorough Task

run rank MAep
TOPX CO Thorough all 20 0.0253

TOPX CO Thorough ex 26 0.0190

TOPX CO Thorough baseline 32 0.0178

TOPX CAS Thorough ex 61 0.0103

TOPX CAS Thorough baseline 62 0.0101

TOPX CAS Thorough ex incr 75 0.0081

3.2 Focused Task

Our runs for the focused task were produced by postprocessing our AdHoc runs
to remove any overlap. For each such AdHoc run, we kept an element e if there
was no other element e′ from the same document in the run that had a higher
score than e and had a path that overlapped with e’s path. This simple, syntactic
postprocessing yielded good results (shown in Table 2). Especially for the early
cutoff points, TopX performed extremely well with peak ranks 3 and 4. Interest-
ingly, the CO run that considered phrases and negation did slightly better than
its counterpart without expensive predicates.

3.3 BestInContext Task

To produce the runs for the BestInContext task, we ran TopX in document
mode. This yielded a list of documents ordered by the highest score of any
element within the document, together with a list of elements and their scores
for each document. To compute the best entry point for a document, we simply
selected the element with highest score from each document and ordered them
by score. The results (Tables 3 and 4) show that this gave good results, with a
peak rank of 1.

238 M. Theobald et al.

Table 2. Results for the Focused Task with the nxCG metric at different cutoffs (ranks
are in parentheses), with overlap=on

run nxCG[5] nxCG[10] nxCG[25] nxCG[50]
TOPX CO Focused ex 0.3769 (3) 0.3154 (4) 0.2431 (10) 0.1916 (14)

TOPX CO Focused baseline 0.3723 (4) 0.3051 (10) 0.2432 (9) 0.1913 (15)

TOPX CAS Focused baseline 0.3397 (16) 0.2792 (21) 0.2017 (31) 0.1524 (39)

TOPX CAS Focused ex 0.3339 (20) 0.2790 (22) 0.1985 (33) 0.1501 (41)

TOPX CAS Focused ex incr 0.2909 (40) 0.2341 (50) 0.1640 (59) 0.1232 (59)

Table 3. Results for the BestInContext Task with the BEPD metric (ranks are in
parentheses)

run A=0.1 A=1 A=10 A=100
TOPX-CO-BestInContext-baseline 0.1280 (22) 0.2237 (11) 0.3685 (5) 0.5715 (5)

TOPX-CO-BestInContext-exp 0.1189 (28) 0.2074 (20) 0.3451 (11) 0.5384 (11)

TOPX-CAS-BestInContext-baseline 0.0718 (54) 0.1361 (53) 0.2272 (53) 0.3780 (53)

TOPX-CAS-BestInContext-exp 0.0653 (57) 0.1254 (56) 0.2131 (57) 0.3594 (54)

Table 4. Results for the BestInContext Task with the EPRUM-BEP-Exh-BEPDistance
metric (ranks are in parentheses)

run A=0.1 A=1 A=10 A=100
TOPX-CO-BestInContext-exp 0.0260 (13) 0.0604 (7) 0.1241 (3) 0.2081 (1)

TOPX-CO-BestInContext-baseline 0.0258 (17) 0.0607 (5) 0.1231 (4) 0.2050 (3)

TOPX-CAS-BestInContext-exp 0.0163 (42) 0.0394 (38) 0.0764 (26) 0.1422 (29)

TOPX-CAS-BestInContext-baseline 0.0160 (44) 0.0388 (40) 0.0748 (33) 0.1380 (32)

4 Structural Query Expansion

Our feedback framework aims at generating a content-and-structure query from a
keyword query, exploiting relevance feedback provided by a user for some results
of the keyword query. This section gives a very brief summary of our approach;
for a more detailed and formal description, see [8].

We consider the following classes of candidates for query expansion from an
element with known relevance:

– all terms of the element’s content (C candidates),
– all tag-term pairs of descendants of the element in its document (D candi-

dates),
– all tag-term pairs of ancestors of the element in its document (A candidates),

and
– all tag-term pairs of descendants of ancestors of the element in its document,

together with the ancestor’s tag (AD candidates).

TopX – AdHoc Track and Feedback Task 239

To weight the different candidates c, we apply an extension of the well-known
Robertson-Sparck-Jones weight [5] to element-level retrieval in XML, applying
it to elements instead of documents:

wRSJ (c) = log
rc + 0.5

R − rc + 0.5
+ log

E − efc − R + rc + 0.5
efc − rc + 0.5

Here, for a candidate c, rc denotes the number of relevant elements which
contain the candidate c in their candidate set, R denotes the number of rele-
vant elements, E the number of elements in the collection, and efc the element
frequency of the candidate.

To select the candidates to expand the query, we use the Robertson Selection
Values (RSV) proposed by Robertson [4]. For a candidate c, its RSV has the
form RSV (c) = wRSJ (c) · (p − q), where p = rc/R is the estimated probability
of the candidate occurring in a relevant element’s candidate set and q is the
probability that it occurs in a nonrelevant element’s set. We ignore candidates
that occur only within the documents of elements with known relevance as they
have no potential to generate more relevant results outside these documents,
and we ignore candidates that contain a query term. We choose the top b of the
remaining candidates for query expansion (b is a configurable parameter).

Using these top-b candidates, we generate a content-and-structure query from
the original keyword query, where each additional constraint is weighted with the
normalized RSJ weight of its corresponding candidate (see [8]). The expansion
itself is actually rather straightforward; the generated query has the following
general structure:

//ancestor-tag[A+AD constraints]//*[keywords+C+D constraints]

As an example, if the original query was ”XML” and we selected

– the A candidate //ancestor::article[about(., IR)],
– the AD candidate //ancestor::article[about(.//bib, index)],
– the D candidate //descendant:p[about(., index)], and
– the C candidate about(., database),

the expanded query (omitting the weights) would be

//article[about(., IR) and about(.//bib, index)]//*[about(., XML)
and about (., database) and about(.//p, index)].

5 Feedback Task Results

INEX 2006 introduced a new relevance measure, specificity, that replaced the two
dimensions of relevance, exhaustivity and specificity, used before. This happened
mainly for two reasons: First, to make assessments easier, and second, because
correlation analyses had shown that comparing systems in the AdHoc track

240 M. Theobald et al.

yields a result when using specificity only that is sufficiently similar to the result
with specificity and exhaustivity.

However, this new measure does not reflect the relevance of an element from
a user’s point of view. It is unlikely that a user would greatly appreciate seeing a
single collectionlink element or, even worse, an isolated xlink:href attribute
in a result list. It is therefore questionable if specificity alone can be used for
automated feedback.

5.1 Evaluation of Feedback Runs

We discussed different evaluation modes in our paper at last INEX [7]. There is
still no common agreement on one mode that should give the ‘best’ results. We
shortly review the modes here and introduce a new mode, resColl-path.

– Simply comparing the results of the baseline run with the results generated
from feedback (we denote this as plain) is commonly considered as illegal, as
feedback includes the advantage of knowing some relevant results and hence
can yield a better performance.

– With rank freezing, the rank of results with known relevance is frozen, thus
assessing only the effect of reranking the results with unknown relevance.
We label this approach freezeTop as usually the top-k results are used for
feedback and hence frozen. This has been the standard evaluation mode for
the INEX relevance feedback task.

– With the residual collection technique, all XML elements with known rele-
vance must be removed from the collection before evaluation of the results
with feedback takes place. Depending on which elements are considered as
having known relevance, a variety of different evaluation techniques results:

• resColl-result: only the elements for which feedback is given are removed
from the collection,

• resColl-desc: the elements for which feedback is given and all their de-
scendants are removed from the collection,

• resColl-anc: the elements for which feedback is given and all their ances-
tors are removed from the collection,

• resColl-doc: for each element for which feedback is given, the whole doc-
ument is removed from the collection, and

• resColl-path: for each element for which feedback is given, the element
itself, its ancestors and its descendants are removed from the collection.

The most natural evaluation mode is resColl-path, as it removes all elements
for which the feedback algorithm has some knowledge about their potential rel-
evance. We evaluate our approach with all seven evaluation techniques in the
following section and try to find out if there are any differences.

5.2 Official Results

Due to time constraints, we submitted only a single official run where we used
only content-based feedback from the top-20 elements of our baseline run

TopX – AdHoc Track and Feedback Task 241

TOPX CO Thorough all. In the official evaluation, this setting performed well,
with an absolute improvement of 0.0064 in MAep over the baseline run for the
Generalised quantisation, which corresponds to a relative improvement of about
25%. Both the t-test and the Wilcoxon signed-rank test show that the improve-
ment is significant (with p ≈ 0).

5.3 Additional Results

Besides our official run that used only content-based feedback, we tried dif-
ferent combinations of candidate classes. We measured only MAP and preci-
sion at different cutoffs. Due to time constraints, we consider only the first 49
topics that have assessments (topics 289-339, excluding topics 299 and 307),
runs with 100 elements, and feedback for the top-20 results of our baseline run
TOPX CO Thorough all with the Generalised quantization. Our experiments use
the top-10 candidates for feedback. We tested the significance of our results with
the t-test and the Wilcoxon signed-rank test [6].

Table 5. MAP values for different configurations and different evaluation modes. Runs
shown in bold are significantly better than the baseline under the WSR test (p < 0.01),
runs shown in italics are significantly better than the baseline under the t-test (p <
0.01).

evaluation baseline C D C+D A AD A+AD

plain 0.0188 0.0364 0.0328 0.0344 0.0187 0.0164 0.0228
freezeTop 0.0188 0.0284 0.0248 0.0256 0.0189 0.0181 0.0216
resColl-result 0.0108 0.0264 0.0212 0.0218 0.0106 0.0106 0.0171
resColl-anc 0.0101 0.0246 0.0194 0.0201 0.0102 0.0102 0.0169
resColl-desc 0.0049 0.0087 0.0078 0.0081 0.0048 0.0045 0.0056

resColl-doc 0.0041 0.0077 0.0067 0.0072 0.0040 0.0038 0.0048

resColl-path 0.0046 0.0085 0.0072 0.0079 0.0044 0.0043 0.0056

Table 5 shows the results for our additional runs. Unlike our results from
last year with the IEEE collection, content-only feedback outperformed all other
combinations, and A and AD candidates alone often could not improve result
quality significantly. At this time, we do not have a well-founded explanation for
this behaviour. However, there are some major differences of the new Wikipedia
collection to the old IEEE collection:

– Wikipedia documents do not have a clear structure with front and back
matter. For the old IEEE collection, especially A and AD candidates could
exploit things like authors of a document, authors of a cited document, or
journal names.

– The unidimensional relevance measure penalizes large elements towards the
root of a document. This is a natural disadvantage for using D candidates
that tend to add results near the root element.

242 M. Theobald et al.

– Our old experiments used only the Strict quantization where the best ele-
ments typically were sections or paragraphs. With the new relevance measure
and quantization, the best elements and attributes are small (like
collectionlink or xlink:href) which do not contribute many candidates
to the candidate pool.

Our future work in this area will focus on using other measures of relevance like
the one proposed for HiXEval [3]. This may additionally pave the way for feed-
back that exploits the granularity of results (e.g., to derive tags for a keyword-
only query). We will additionally examine how to choose a threshold for the
element frequency of candidates that are considered, and which other candidate
classes could be used.

References

1. Bast, H., Majumdar, D., Theobald, M., Schenkel, R., Weikum, G.: IO-Top-k: Index-
optimized top-k query processing. In: Proceedings of the 32nd International Con-
ference on Very Large Data Bases (VLDB 2006), pp. 475–486 (2006)

2. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cam-
bridge (1998)

3. Pehcevski, J., Thom, J.A.: HiXEval: Highlighting XML retrieval evaluation. In:
Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.) INEX 2005. LNCS, vol. 3977, pp.
43–57. Springer, Heidelberg (2006)

4. Robertson, S.E.: On term selection for query expansion. J. Doc. 46, 359–364 (1990)
5. Robertson, S.E., Sparck-Jones, K.: Relevance weighting of search terms. J. Am.

Soc. Inform. Sci. 27, 129–146 (1976)
6. Savoy, J.: Statistical inference in retrieval effectiveness evaluation. Inform. Process.

Manag. 33(4), 495–512 (1997)
7. Schenkel, R., Theobald, M.: Relevance feedback for structural query expansion. In:

Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.) INEX 2005. LNCS, vol. 3977, pp.
344–357. Springer, Heidelberg (2006)

8. Schenkel, R., Theobald, M.: Structural feedback for keyword-based XML retrieval.
In: Proceedings of the 28th European Conference on IR Research (ECIR 2006),
pp. 326–337 (2006)

9. Theobald, M., Schenkel, R., Weikum, G.: Efficient and self-tuning incremental
query expansion for top-k query processing. In: Proceedings of the 28th Annual
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pp. 242–249 (2005)

10. Theobald, M., Schenkel, R., Weikum, G.: An efficient and versatile query engine for
TopX search. In: Proceedings of the 31st International Conference on Very Large
Data Bases (VLDB 2005), pp. 625–636 (2005)

11. Theobald, M., Schenkel, R., Weikum, G.: TopX & XXL INEX 2005. In: Fuhr, N.,
Lalmas, M., Malik, S., Kazai, G. (eds.) INEX 2005. LNCS, vol. 3977, pp. 282–295.
Springer, Heidelberg (2006)

12. Theobald, M., Weikum, G., Schenkel, R.: Top-k query evaluation with probabilistic
guarantees. In: Proceedings of the 30th International Conference on Very Large
Data Bases (VLDB 2004), pp. 648–659 (2004)

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 243–252, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Tuning and Evolving Retrieval Engine by Training on
Previous INEX Testbeds

Gilles Hubert

IRIT/SIG-EVI, 118 route de Narbonne, F-31062 Toulouse cedex 9
hubert@irit.fr

Abstract. This paper describes the retrieval approach proposed by the SIG/EVI
group of the IRIT research centre at INEX’2006. This XML approach is based
on direct contribution of the components constituting an information need. This
paper focuses on the impact of changes between INEX’2005 and INEX’2006
notably the corpus change. This paper describes the search engine configura-
tions and evolutions resulting from training on previous INEX testbeds and
used to participate to INEX’2006. It presents also the results of the official ex-
periments carried out at INEX’2006 and additional results.

1 Introduction

Since the beginning of the INEX initiative, various XML retrieval systems and vari-
ous evolutions of these systems were proposed. XML retrieval needs to take into
account both content and structural aspects. XML retrieval systems can be separated
into information retrieval systems based on probabilistic models [8][11][12][15],
information retrieval systems based on vector space models [2][4][6][9] and systems
based on databases [3][10].

A framework such as INEX is useful to try to estimate a global effectiveness of a
system and to determine the contexts adapted to a system. Among the systems that
participated to INEX previous years and that obtained globally good results there are
approaches based on vector space models such as [4][9], probabilistic methods such
as [11][15] and database systems such as [10] depending on task and quantisation.
In this paper, we present an IR method based on a vector space model. However, this
approach is based on direct contribution of each component of the query and particu-
larly on the presence of each term constituting the query. The method meets other
proposals such as [4][13] in some principles but differs from heuristics, score aggre-
gation principle or XML structure management. Different parameters are intended to
provide configuration possibilities to adapt the method notably according to task and
quantisation.

In the remainder of this paper, Section 2 summarizes the objectives of this year
participation to the INEX’2006 round. Then, a presentation of the guiding principles
on which relies the retrieval method is done in Section 3. Section 4 details the submit-
ted runs and the official and additional results. Section 5 concludes this paper.

244 G. Hubert

2 Participation Objectives

Participating to INEX this year had multiple objectives:

- On the one hand the interest was to estimate the influence of changes intro-
duced in the INEX 2006 framework regarding corpus and tasks. The new
Wikipedia corpus has features different from the past IEEE corpus notably
regarding corpus size, document contents and document structures. Further-
more, a new task has been defined i.e. Best in Context. In addition, runs us-
ing queries on content only and runs using queries on content and structure
were merged for evaluation. This new processing offers a mean to evaluate
whether treating structural hints in our method improves results or not,

- On the other hand, the interest was to study the behaviour of different con-
figurations of our method resulting from learning on previous INEX testbeds.
These configurations intend to be suited to the different tasks and quantisa-
tions defined in INEX.

3 Method Principles

The IR method described in this paper is based on a vector space model. Document
and query representations are comparable to vectors. However, the correspondence
between documents and query is not estimated using a “usual” similarity measure.
The method is based on a generic scoring function that can be adapted to different
retrieval contexts. The current definition of the scoring function results from work on
automatic document categorization [1] and work on XML retrieval at previous INEX
rounds [6][7][14]. The scoring function is based on direct contribution of each query
term appearing in an XML element. The contribution can be modulated according to
other components of the query such as structural constraints. A principle of score
aggregation completes the method with regard to the hierarchical structure of XML
documents.

The scoring function is defined as a combination of three values. It can be globally
defined as follows:

),(),(),(),(EQhQtgEtfEQScore i
i

i ⋅⎟
⎠

⎞
⎜
⎝

⎛ ⋅= ∑

Where

Q is the query

ti is a term representing the query Q

E is an XML element

),(Etf i This factor estimates the importance of the term ti in
the XML element E.

),(Etg i This factor estimates the importance of the term ti in
the query representation Q.

 Tuning and Evolving Retrieval Engine by Training on Previous INEX Testbeds 245

),(EQh This factor estimates the global presence of the
query Q in the XML element E.

On the one hand, the function is defined as an addition of contributions of the con-
cepts constituting a query. This principle allows giving relevance to elements dealing
about either only one concept or several concepts. The addition tends to promote
elements containing several concepts. However, depending on the different chosen
functions an element dealing strongly about one concept can be estimated higher than
an element dealing lightly about many concepts. On the other hand, the function esti-
mates globally the relevance of an element according to a query.

The function f that estimates the importance of a term in an XML element is based
on the number of occurrences of the term in the element moderated by the number of
XML elements of the corpus containing the term. Using this latter factor, the function
increases the contributions of terms appearing in few XML elements of the corpus.
This principle is similar to the tf.idf principle. A coefficient related to structural con-
straints on content term intends to increase or reduce term contributions according to
constraint matching.

The function g that estimates the importance of a term in the query representation
is based on the frequency of the term in the topic. The frequency is moderated by the
total number of occurrences of terms in the query. A coefficient related to term pre-
fixes intends to increase or reduce term contributions according to sign ‘+’ and ‘-’
associated to terms in the query.

The function h that estimates the global presence of a query in an XML element is
based on the proportion of terms common to the query and the element with respect to
the number of distinct query terms. A function power is used to clearly distinguish the
elements containing a lot of terms describing the query from the elements containing
few terms of the query.
So, the scoring function is defined as follows:

)
)(

),(
(

)(

),(),(

)(

),(),(
),(QNbT

EQNbT

ii

i i

ii
t QOcc

QtOccQtprf

tNbE

EtOccEtcc
EQScore ϕ⋅

⋅
⋅

⋅
=

where

ti is a term representing the query Q

E is an XML element

),(Etcc i Coefficient defined for the matching of constraint on con-
tent (associated to the term ti) by the element E.

),(EtOcc i Number of occurrences of the term ti in the element E.

)(itNbE Number of elements containing the term ti

246 G. Hubert

),(Qtprf i Coefficient defined for the prefix associated to the term ti in
the query Q.

),(QtOcc i Number of occurrences of the term ti in the query Q.

)(QOcc Total of occurrences of all the terms representing Q.

ϕ Query presence coefficient, positive real

NbT(Q,E) Number of terms of the query Q and that appear in the XML
element E.

NbT(Q) Number of distinct terms of the query Q.

The coefficients cc(ti,E) and prf(ti,Q) can be defined by functions. At the moment,

these coefficients are defined as follows:

cc(ti,E) if E does not match the structural constraint defined on ti
then cc(ti,E)=0.5
else cc(ti,E)=1.0

prf(ti,Q) if prefix is ‘+’
then prf(ti,Q)=5.0
else if prefix is ‘-‘
 then prf(ti,Q)=-5.0
 else prf(ti,Q)=1.0

This solution allows attaching variable importance to structural constraints on con-

tent and prefixes. These definitions are resulting from experiments carried out on
INEX’2003 and INEX’2004 testbeds.

The hierarchical structure of XML is taken into account through score aggregation.
The hypothesis on which is based our method is that an element containing a compo-
nent selected as relevant is also relevant and more if it has several relevant compo-
nents. So, in our approach the score of an element is defined as the sum of its score
computed according to its textual content (if it exists) and the scores of its descendant
components that have a textual content (if they exist). The score of a component can
be modulated (for example, according to the distance between the component and the
ascendant) when aggregating in the ascendant depending on the applied strategy. At
the moment, the aggregation is defined as follows:

∑ ⋅+=
l

lt
EEd

EEd

ta EQScoreEQScoreEQScore lr

l

),(),(),(),(

),(

α

where

α (real) is the score aggregation coefficient

E, El and Er are XML elements

 Tuning and Evolving Retrieval Engine by Training on Previous INEX Testbeds 247

El is a descendant component of the E structural hierarchy (document)
such as El has textual content

Er is the root element of the structural hierarchy (document) of which E
is a descendant component

d(X,Y) is the distance between an element X and its descendant ele-
ment Y (for example in the path /article/bdy/sec/p[2], d(bdy, p[2]) = 2).

The coefficient α allows varying the influence of scores of descendant components

in the aggregated score of an XML element. Leaf components have no descendant
thus for such components:),(),(ETScoreETScore ta = .

Two types of structural constraints can be used to define INEX topics:

- constraints on content (e.g. about(.//p,'+XML +"information retrieval"),

- constraints on the granularity of target elements (e.g //article[….]).

As seen above, structural constraints on content are taken into account adding a

coefficient cc(ti,E) in the scoring function Scoret.
Structural constraints on the granularity of target elements are handled adding a

coefficient that modifies the aggregated score Scorea (equal to Scoret for leaf nodes).
The general principle is that if the XML element does not verify the constraint on
target granularity associated to the query, the score computed is reduced. The aggre-
gated score including granularity coefficient is therefore defined as follows:

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅+⋅= ∑

l
lt

EEd

EEd

ta EQScoreEQScoreEQgcEQScore lr

l

),(),(),(),(),(

),(

α

where 3

),(EQgc Coefficient defined for the matching of constraint on target
(associated to the query Q) by the element E.

At the moment, this coefficient is defined as follows:

if E does not match the structural constraint defined on Q
then gc(Q,E)=0.5
else gc(Q,E)=1.0

This definition results from experiments carried out on INEX’2003 and
INEX’2004 testbeds.

This solution allows attaching variable importance to structural constraints on re-

sult granularity. When gc(Q,E)=0.0 for elements that do not match the structural con-
straints, the structural constraints on result are strictly taken into account. When
gc(Q,E)=1.0 the structural constraints on result are not taken into account.

The scoring function is completed by the notion of coverage. Coverage is a thresh-
old corresponding to the percentage minimum of query terms that have to appear in

248 G. Hubert

an element to select it. It aims at ensure that only documents in which the query is
represented enough will be selected for this topic. Coverage is combined to the scor-
ing function as follows:

If CT
QNbT

EQNbT <
)(

),(Then),(EQScore a = 0.0

Where

CT Coverage threshold, real positive, 0.0≤CT≤1.0

),(EQNbT Number of terms common to the query Q and the element E

)(QNbT Number of distinct terms describing the query Q

Coverage is currently combined to Scorea. Otherwise, it can be applied to Scoret
and then it has consequences on aggregated scores.

An additional process can be done to eliminate overlapping elements in the result.
This process consists in filtering the result and keeping according to a defined strategy
only one element when two overlapping elements are encountered. A strategy is for
example to keep the element with the highest score.

4 Experiments

At least two runs based on our XML retrieval method were submitted to INEX 2006 for
each subtask one using the title part of queries and the other using the castitle part.
Depending on the subtask, an additional run using either title or castitle was submitted.

4.1 Experiment Setup

Resulting from experiments and learning when participating to INEX’2003 and
INEX’2004, all submitted runs shared the same values for the prefix coefficient
prf(ti,Q) and the coverage threshold CT (cf section 3). The coverage threshold was
fixed to 0.35 (i.e. more than a third of terms describing the topic must appear in the
text to keep the XML component). The values of prefix coefficient applied were fixed
to +5.0 for the prefix ‘+’, -5.0 for the prefix ‘-‘ and 1.0 for not prefixed terms.

For all the subtasks, CAS runs (i.e. having a label containing ‘CAS’) used the cas-
title part of each topic definition to define queries instead of the title part used for
other runs. The coefficients taking into account structural constraints were fixed to 0.5
(i.e. the contribution of a query term is divided by 2 when the element does not meet
the structural constraint) for all the subtasks. Structural constraints were handled so as
vague conditions.

Furthermore, depending on the subtask we studied three combinations of score ag-
gregation coefficient α and query presence coefficient ϕ (cf section 3) resulting from
learning and experiments on INEX’2005 testbeds. The following combinations were
tested:

 Tuning and Evolving Retrieval Engine by Training on Previous INEX Testbeds 249

- runs with labels containing ‘CH01x1’ used α=0.1 and ϕ=1. This combination
obtained good results on INEX’2005 testbeds for the subtask Thorough and
the quantisation strict. This combination includes weak score aggregation
and does not consider global query presence.

- runs with labels containing ‘CH06x50’ used α=0.6 and ϕ=50. This combina-
tion obtained good results on INEX’2005 testbeds for the subtask Thorough
and the quantisation generalised. This combination includes rather important
score aggregation and considers moderately global query presence.

- runs with labels containing ‘CH0x3000’ used α=0.0 and ϕ=3000. This com-
bination obtained good results on INEX’2005 testbeds for the subtask Fo-
cused notably for strict quantisation. This combination does not include score
aggregation and considers strongly global query presence.

4.2 Official and Additional Results

The official results corresponding to different configurations of our method tested for
the different are detailed in the following tables. Additional results are included for
the Thorough task in Table 1.

Table 1. Results for the subtask Thorough

Task Thorough

Metric: ep/gr Quantisation: generalised, overlap=off
 Official results Additional results

Run V2006Cg35CH01x1tho V2006CASCH01x1tho Cg35CH06x50 Cg35CH05x1000

 Maep Rank Maep Rank Maep Rank Maep Rank

 0.0147 47/106 0.0161 40/106 0.0232 (23) 0.0259 (20)

A first observation is that official results are slightly over average. The configura-
tion results from experiments on strict quantisation with INEX’2005 testbeds and
gave weaker results for generalised quantisation. Without official results for strict
quantisation final conclusions cannot be established. The INEX’2006 official results
tend to show same behaviours of configurations for generalised quantisation. The
additional results notably for the run labelled Cg35CH06x50, which gave good results on
INEX’2005 testbed for the same task and quantisation, lead to better evaluations with
INEX’2006 data.

Another observation is that structural conditions seem to improve the results since
the run using castitle parts of queries obtain higher average precision than the run
with same configuration using titles of queries.

A first observation is that results are average. The results have the same behaviour
as with INEX’2005 testbeds for the same task and quantisation. Another observation
is that treating only elements with textual content without including score aggregation
leads to better results. To return leaf nodes seems to be better for the Focused task
than to return intermediate nodes.

250 G. Hubert

Table 2. Results for the subtask Focused

Task Focused

Metric: nxCG Quantisation: generalised

Run V2006CH0x3000foc V2006CASCH0x3000foc V2006CH06x50foc

overlap=on precision rank precision rank precision rank

nxCG@5 0.2899 43/85 0.2848 53/85 0.2630 61/85

nxCG@10 0.2472 42/85 0.2435 46/85 0.2198 62/85

nxCG@25 0.1905 43/85 0.1843 48/85 0.1759 52/85

nxCG@50 0.1558 36/85 0.1472 42/85 0.1471 43/85

overlap=off precision rank precision rank precision rank

nxCG@5 0.3151 41/85 0.3118 43/85 0.2666 63/85

nxCG@10 0.2841 35/85 0.2742 40/85 0.2270 62/85

nxCG@25 0.2255 34/85 0.2167 39/85 0.1826 54/85

nxCG@50 0.1801 28/85 0.1742 31/85 0.1466 47/85

Another observation is that structural conditions do not improve results which can

be explained by the fact that only a restricted set of XML elements are treated when
score aggregation is not used. Having results for strict quantisation could lead to fur-
ther conclusions notably with regard to the run V2006CH0x3000foc whose configuration
gave good results with the INEX’2005 data.

Table 3. Results for the subtask BestInContext

Task BestInContext

Metric: BEP-D

Run V2006CH01xp1bic V2006CH06xp50bic V2006CASCH06xp50bic

 BEPD rank BEPD rank BEPD rank

At 0.01 0.1175 30/77 0.1088 35/77 0.0015 75/77

At 0.1 0.1826 30/77 0.1702 38/77 0.0039 75/77

At 1.0 0.2958 30/77 0.2907 34/77 0.0079 75/77

At 10.0 0.4729 34/77 0.4832 30/77 0.0122 75/77

At 100.0 0.6430 39/77 0.6711 30/77 0.0185 75/77

A first observation is that configuring our method with weak score aggregation and
with no query presence factor or configuring our method with score aggregation and
with query presence factor seems to lead to close evaluations. Further investigations
at the query level have to be carried out to compare the results of these two runs to
determine the proportion of common ranked elements and eventually to consider a
possible fusion strategy.

A second observation is related to the weak results given using the castitle part of
the queries (i.e. run V2006CASCH06xp50bic). Introducing structural hints seems to move

 Tuning and Evolving Retrieval Engine by Training on Previous INEX Testbeds 251

Table 4. Results for the subtask AllInContext

Task AllInContext

Metric: generalized Precision/Recall

Run V2006CH01x1ric V2006CH06x50ric V2006CASCH06x50ric

 MAgp rank MAgp rank MAgp rank

 0.0441 50/56 0.0835 39/56 0.0887 37/56

away the selected elements from the relevant ones. A too high value fixed for the
coefficients associated to structural treatment could be a reason.

The results for this subtask are weaker than for the other subtasks. Additional
evaluations with respect to article level and element level seem to indicate that the
difficulty seems to exist in the element retrieval rather than in the article retrieval.
Further analysis has to be carried out to find explanations and to consider evolutions
of our method.

5 Conclusions

Different changes have been introduced between the previous INEX’2005 round and
the current INEX’2006 round. The changes occurred at different levels:

− The Wikipedia corpus has replaced the IEEE corpus introducing differences
on corpus size, document contents and document structures,

− A new task called ‘Best in Context’ has been defined that asks systems to re-
turn one best entry per relevant article,

− There is no separate CAS task. Runs using topic ‘titles’ and runs using topic
‘castitles’ have been merged for evaluation. Furthermore, it was possible to
make runs using other topic parts that title part or castitle part.

Participating to INEX this year had multiple objectives such as evaluating the impact of
framework changes on our method effectiveness and to study the behaviour of different
configurations of our method resulting from learning on previous INEX testbeds.

The results lead to mixed conclusions. The behaviour of the different configura-
tions of our method using INEX’2006 data is similar to the behaviour of the same
configurations when learning on INEX’2005 data. However, additional results show
that other configurations of our method lead to better results on INEX’2006 data. A
wider range of domains included in the INEX’2006 could explain this difference.
Furthermore, the results show that a unique configuration of our method does not fit
all the subtasks defined. A given configuration seems to be more adapted to a given
subtask. This leads to consider a future study to determine how to configure our
method to suit a given subtask. A first study [5] has been carried out on INEX’2005
data notably for the Thorough task. This study aims to identify how to configure our
method according to different quantisations.

252 G. Hubert

References

[1] Augé, J., Englmeier, K., Hubert, G., Mothe, J.: Classification automatique de textes basée
sur des hiérarchies de concepts. Veille Stratégique Scientifique & Technologique
(VSST’2001), Barcelona, 2001, pp. 291–300 (2001)

[2] Crouch, C.J., Khanna, S., Potnis, P., Doddapaneni, N.: The Dynamic Retrieval of XML
ElementsAn Approach to Structured Retrieval Based on the Extended Vector Model. In:
Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.) INEX 2005. LNCS, vol. 3977, pp. 268–
281. Springer, Heidelberg (2006)

[3] Fuhr, N., Großjohann, K.: XIRQL: An XML query language based on information re-
trieval concepts. ACM Transactions on Information Systems (TOIS) 22(2), 313–356
(2004)

[4] Geva, S.: GPX – Gardens Point XML IR at INEX 2005. In: Fuhr, N., Lalmas, M., Malik,
S., Kazai, G. (eds.) INEX 2005. LNCS, vol. 3977, pp. 240–253. Springer, Heidelberg
(2006)

[5] Hubert, G., Mothe, J., Englmeier, K.: Tuning Search Engine to Fit XML Retrieval Sce-
nario. 3rd International Conference on WEB Information Systems and Technologies
(WEBIST 2007), Barcelona, pp. 228–233 (2007)

[6] Hubert, G.: XML Retrieval Based on Direct Contribution of Query Components. In:
Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.) INEX 2005. LNCS, vol. 3977, pp. 172–
186. Springer, Heidelberg (2006)

[7] Hubert, G.: A voting method for XML retrieval. In: Fuhr, N., Lalmas, M., Malik, S.,
Szlávik, Z. (eds.) INEX 2004. LNCS, vol. 3493, pp. 183–196. Springer, Heidelberg
(2005)

[8] Larson, R.R.: Probabilistic Retrieval, Component Fusion and Blind Feedback for XML
Retrieval. In: Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.) INEX 2005. LNCS,
vol. 3977, pp. 225–239. Springer, Heidelberg (2006)

[9] Mass, Y., Mandelbrod, M.: Using the INEX Environment as a Test Bed for Various User
Models for XML Retrieval. In: Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.) INEX
2005. LNCS, vol. 3977, pp. 187–195. Springer, Heidelberg (2006)

[10] Mihajlović, V., Ramírez, G., Westerveld, T., Hiemstra, D., Blok, H.E., de Vries, A.P.:
TIJAH Scratches INEX 2005: Vague Element Selection, Image Search, Overlap, and
Relevance Feedback. In: Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.) INEX 2005.
LNCS, vol. 3977, pp. 72–87. Springer, Heidelberg (2006)

[11] Ogilvie, P., Callan, J.: Parameter Estimation for a Simple Hierarchical Generative Model
for XML Retrieval. In: Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.) INEX 2005.
LNCS, vol. 3977, pp. 211–224. Springer, Heidelberg (2006)

[12] Sigurbjörnsson, B., Kamps, J., de Rijke, M.: The Effect of Structured Queries and Selec-
tive Indexing on XML Retrieval. In: Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.)
INEX 2005. LNCS, vol. 3977, pp. 104–118. Springer, Heidelberg (2006)

[13] Sauvagnat, K., Hlaoua, L., Boughanem, M.: XFIRM at INEX 2005: Ad-Hoc and Rele-
vance Feedback Tracks. In: Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.) INEX 2005.
LNCS, vol. 3977, pp. 88–103. Springer, Heidelberg (2006)

[14] Sauvagnat, K., Hubert, G., Boughanem, M., Mothe, J., IRIT,: at INEX, 2nd INitiative for
the Evaluation of XML Retrieval, Dagstuhl, 2003, pp. 142–148 (2003)

[15] Vittaut, J.-N., Piwowarski, B., Gallinari, P.: An Algebra for Structured Queries
in Bayesian Networks. In: Fuhr, N., Lalmas, M., Malik, S., Szlávik, Z. (eds.) INEX 2004.
LNCS, vol. 3493, pp. 100–112. Springer, Heidelberg (2005)

Using Language Models and the

HITS Algorithm for XML Retrieval�

Benny Kimelfeld, Eitan Kovacs, Yehoshua Sagiv, and Dan Yahav

The Selim and Rachel Benin School of Engineering and Computer Science
The Hebrew University of Jerusalem

Edmond J. Safra Campus, Jerusalem 91904, Israel
{bennyk,koveitan,sagiv,dyahav}@cs.huji.ac.il

Abstract. Our submission to the INEX 2006 Ad-hoc retrieval track
is described. We study how to utilize the Wikipedia structure (XML
documents with hyperlinks) by combining XML and Web retrieval. In
particular, we experiment with different combinations of language models
and the HITS algorithm. An important feature of our techniques is a
filtering phase that identifies the relevant part of the corpus, prior to
the processing of the actual XML elements. We analyze the effect of the
above techniques based on the results of our runs in INEX 2006.

1 Introduction

The Ad-hoc track of INEX 2006 consists of four tasks, namely, Thorough, Fo-
cused, All-in-Context and Best-in-Context. This paper describes our participa-
tion in this track. In particular, we describe the different methods and techniques
we used and the results of our runs.

In all of the Ad-hoc tasks, the goal is to appropriately estimate the relevance of
elements in XML documents. One may consider this goal as being equivalent to
estimating whole documents by considering each element as a stand-alone source.
We, however, take a different approach: First, we apply some preliminary ranking
to the documents and filter out those with low relevancy. We then rank each of
the elements of the documents in the remaining corpus. Our estimation, hence,
consists of two main components: a document filter and an element ranker.
Furthermore, each of these components is itself associated with some method
of estimation. Our runs and experimentations consist of several combinations of
filters and rankers. In addition, the configuration of each run contains parameter
settings and some additional techniques that we describe later in this section.

In our runs, we used two methods of estimation for both document filter-
ing and element ranking. The first method is a linear interpolation of language
models [1], namely, the corpus, document and element (in the case of element
ranking). The graph nature of the Wikipedia collection, which contains hyper-
links between documents and elements (in the form of XPointers and XLinks),
led us to believe that combining methods of XML and Web retrieval could be
� This research was supported by The Israel Science Foundation (Grant 893/05).

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 253–260, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

254 B. Kimelfeld et al.

a promising approach. Thus, the second method is based on applying the HITS
algorithm [2] and is combined with the language-model approach.

We used additional, simple techniques that were highly useful when testing
our methods on the results of the Ad-hoc track of INEX 2005. One example is
length cutoff [3], that is, elimination of very short elements from the results.
Another example is the elimination of elements that have relatively high rank,
yet contain none of the query term (such cases can occur due to smoothing [4]
and the application of HITS).

We obtained several insights on our methods from the results of the Ad-hoc
track of INEX 2006. First, our methods generally provide a good estimation of
relevancy. In the Thorough and Focused tasks, most of our runs were among
the best. In the other two tasks, some of our runs were among the top 10.
Second, better results were obtained when using HITS for filtering rather than
for element ranking. Finally, the results did not show that either one of the two
filtering methods (i.e., language models and HITS) was consistently better than
the other one.

2 Document Filters and Element Rankers

The approach that we take for estimating relevancy of XML elements entails
two main steps. The first step is to identify a relevant subset of the documents
in the corpus, while the second is to rank each of the elements of the documents
found in the first step. More particularly, each of our submissions to the Ad-hoc
track is produced by the following two components:

1. The document filter chooses a set of documents that are relevant to the given
query. We call this set the filtered corpus.

2. The element ranker ranks each of the elements in the documents of the
filtered corpus.

Note that this two-step approach is efficient since, typically, it allows us to ignore
a huge number of XML elements.

To implement each of the above two components, we used two different ranking
methods. Thus, a specific estimation technique in our setting is essentially a
combination of two ranking methods: one for filtering out irrelevant documents
and the other for ranking elements.

3 Document Filters

The document filters basically apply a preliminary ranking to the documents and
choose the top N , where N is a predefined parameter. In all our submissions to
the Ad-hoc track, we used N = 500. Next, we describe each of the two filters
we used.

Using Language Models and the HITS Algorithm for XML Retrieval 255

3.1 Language Model

The first filter, denoted by FLM , is based on statistical language modeling [1]
combined with smoothing techniques [4]. More particularly, for a query q, filter-
ing consists of the following three steps.

1. Estimate the likelihood of generating q in each document’s language model.
This results in a value P (q|D) for each document D.

2. Count the number of terms of q appearing in each document D. Denote this
number by |q ∩ D|.

3. Choose the top N documents, when sorted lexicographically, first by |q ∩ ·|
and then by P (q|·).

The estimation of P (q|D) is the standard document-language model [1],
smoothed by the corpus model [4]:

P (q|D) =
n∏

i=1

λP (ti|D) + (1 − λ)P (ti|C).

In this formula, q is a list of terms t1, . . . , tn and C denotes the corpus. The
smoothing parameter λ was set to 0.9 in all our submissions. We estimate the
probability P (q|X) of generating an individual term ti in the language model of
X (which is either D or C) as

P (ti|X) =
tf(ti, X)∑
t∈X tf(t, X)

,

where tf(t, X) is the total number of occurrences of t in X .

Utilizing Structural Hints. Our CO+S runs take the query structure (for-
mulated in NEXI [5]) into account in the following simple way. We transform
a query q into two different CO queries: The target query, qtgd, consists of the
terms that appear in the target element of q. The supporting query, qsup, con-
sists of the rest of the terms, i.e., all the terms that appear in q, except for those
appearing in the target element. In the second filtering step described above, the
evaluation of P (q|D) is replaced with a linear interpolation of the probabilities
associated with the two queries qtgd and qsup, that is,

P (q|D) = αP (qtgd|D) + (1 − α)P (qsup|D).

Here, P (qtgd|D) and P (qsup|D) are evaluated regularly. In our submissions, we
used α = 0.9.

3.2 HITS

The second filter, denoted by FHITS , is based on an analysis of the links (given
as either XPointers or XLinks) among the Wikipedia documents using the HITS

256 B. Kimelfeld et al.

algorithm [2].1 In particular, the result of this filter consists of the top-N docu-
ments w.r.t. the score obtained by applying HITS.

To describe the application of HITS, we essentially need to define the graph
over which HITS is applied. So, consider a query q. The nodes of the graph
are the documents in the set S that is constructed by the following three-step
process:

1. Construct the set Sq of all documents D, such that a link to D contains one
or more terms of q.

2. Apply the filter FLM to sq and let Sf
q be the set of the top-5 documents of

Sq.
3. S includes all the documents of Sf

q , every document that points to a docu-
ment of Sf

q , and every document that is pointed to by a document of Sf
q .

In the graph, there is an edge from document D1 to document D2 if D1 contains a
hyperlink to D2 (i.e., either an XLink to D2 or an XPointer to an element of D2).

4 Element Rankers

The element rankers are applied to the elements of the documents in the filtered
corpus in order to obtain the final rank. Again, we use two element rankers. The
first ranker, RLM , is based on statistical language modeling. The second ranker,
RHITS , combines the first ranker with the rank that the document containing
the element obtains when applying HITS.

We first describe the ranker RLM in detail. This ranker uses the element
model, smoothed by both the document and corpus models. More formally, given
a query q and an element E, we define

RLM (E) =
n∏

i=1

λ1P (ti|E) + λ2P (ti|D) + λ3P (ti|C) (1)

where

– D and C are the document that contains E and the corpus, respectively;
– t1, . . . , tn are the terms of q; and
– λ1, λ2, λ3 are nonnegative smoothing parameters with a total sum of 1.

In our submissions to the Ad-hoc track, λ1 = 0.8 and λ2 = λ3 = 0.1.
The ranker RHITS is used when the filter is FHITS . Recall that when FHITS

is used, the HITS algorithm assigns a rank to each document D in the filtered
corpus. Let that rank be denoted as HITS (D). Then, RHITS simply multiplies
the rank of RLM by HITS (D), i.e.,

RHITS (E) = RLM (E) · HITS (D),

where D is the document that contains E.
The rankers have some additional features that are described next.

1 We used the JUNG library [6] in order to apply HITS.

Using Language Models and the HITS Algorithm for XML Retrieval 257

Table 1. Results in the Thorough task (106 submissions)

runID method co/s MAep rnk
18 08 02 FLM/RLM co 0.0709 1
18 11 06 FLM/RLM cos 0.0708 2
15 11 38 FHITS/RLM cos 0.0696 4
14 11 03 FHITS/RLM co 0.0692 5
16 03 32 FHITS/RHITS cos 0.0664 6
13 09 11 FHITS/RHITS co 0.0646 8

– CO+S. In the case of CO+S, the probability estimation (1) uses only the
terms in the target of the query (i.e., qtgd).

– Length cutoff. We filter out elements that are too short. That is, we pre-
defined a cutoff value c and ignored all the elements shorter than c.

– Quoted expressions. In Equation (1), we consider each quoted expression
as a single term. So, for example, the query “ ‘West coast’ musician” consists
of two terms: t1 =“West coast” and t2 =“musician.” So, to evaluate the term
frequency (in either the corpus or the document) of a term ti, we counted the
number of consecutive appearances of the keywords of ti (but not necessarily
in the original order). Furthermore, to evaluate P (ti|E), we used a more
flexible measure, namely, we allowed the keywords of ti to be sufficiently
“close” to each other (i.e., reside in a small interval).

5 Submissions and Results

In this section, we describe the runs submitted to the INEX 2006 Ad-hoc track.
In each task, several combinations of filters, rankers and parameters were used.
When needed, additional processing was performed so that each submission fits
the specific requirements of its task.

5.1 Thorough Task

The Thorough task does not require elimination of element overlap. The evalu-
ation results of our runs in this task, using the filtered assessments , are shown

Table 2. Results in Focused task, with overlap on (85 submissions)

nxCG[5] nxCG[10] nxCG[25] nxCG[50]
runID method co/s Score rnk Score rnk Score rnk Score rnk
15 12 28 FHITS/RLM co 0.3659 5 0.3275 3 0.2678 5 0.2257 5
16 08 52 FHITS/RLM cos 0.3460 9 0.3103 7 0.2663 6 0.2250 6
16 12 44 FHITS/RHITS cos 0.3244 25 0.2891 15 0.2449 11 0.2077 12
18 09 38 FLM/RLM co 0.3547 6 0.3247 4 0.2810 1 0.2450 2
18 12 32 FLM/RLM cos 0.3366 15 0.3103 6 0.2736 2 0.2474 1

258 B. Kimelfeld et al.

Table 3. Results in Focused task, with overlap off (85 submissions)

nxCG[5] nxCG[10] nxCG[25] nxCG[50]
runID method co/s Score rnk Score rnk Score rnk Score rnk
15 12 28 FHITS/RLM co 0.4066 4 0.3827 2 0.3312 1 0.2770 2
16 08 52 FHITS/RLM cos 0.3890 6 0.3697 4 0.3302 2 0.2816 1
16 12 44 FHITS/RHITS cos 0.3999 5 0.3626 8 0.3152 5 0.2660 3
18 09 38 FLM/RLM co 0.3878 7 0.3670 5 0.3163 4 0.2620 5
18 12 32 FLM/RLM cos 0.3684 12 0.3506 9 0.3081 7 0.2639 4

in Table 1. Later, we consider the results using the non-filtered assessments. For
each run, the table specifies the run identifier (runID), the filter-ranker combi-
nation (method), whether the run is CO or CO+S (co/s) and the rank of the
result (rnk), i.e., its position among the submissions of all the participants in
this task. For example, the first line describes Run 18 08 02 with the following
properties. The filter is FLM , the ranker is RLM and the query was considered
as content-only (co). The MAep score of this run is 0.0709 and it is the best
run in the Thorough task. Our runs on this task use the same parameters. In
particular, the length cutoff is 20.

Table 1 shows that, in general, our submissions provide a good tradeoff of
effort vs. recall-gain (compared to the other submissions). Furthermore, under
this yardstick, the use of HITS does not improve our runs, that is, it is best to
use the language-model approach for both filtering and ranking.

The ranks of the results of our runs among those using the non-filtered as-
sessments are very similar to those described above (using the filtered assess-
ments). A remarkable difference is the following. In the non-filtered results,
Run 15 11 38 (forth in the filtered assessments) jumped to the first place, push-
ing Runs 18 03 02 and 18 11 06 to the second and third places, respectively.

5.2 Focused Task

In the Focused task, overlapping elements were eliminated as follows. For each
document D in the filtered corpus, we listed all the elements of D in descending

Table 4. Results in BestInContext task, Metric BEPD (77 submissions)

A=0.01 At A=0.1 At A=1.0 At A=10.0 At A=100.0
runID method co/s Score rnk Score rnk Score rnk Score rnk Score rnk

19 08 40 FLM/RLM cos 0.1604 8 0.2329 7 0.3502 8 0.5437 8 0.7451 10
20 12 09 FLM/RLM cos 0.1441 15 0.2166 16 0.3365 18 0.5348 15 0.7430 11
19 03 22 FLM/RLM co 0.1610 6 0.2334 6 0.3493 9 0.5404 9 0.7374 13
19 06 40 FLM/RLM co 0.1469 11 0.2190 15 0.3374 17 0.5327 16 0.7357 17
17 11 09 FHITS/RHITS co 0.1127 33 0.1644 40 0.2474 48 0.3946 48 0.5548 50
17 09 18 FHITS/RHITS cos 0.1097 34 0.1619 41 0.2458 49 0.3886 49 0.5448 53

Using Language Models and the HITS Algorithm for XML Retrieval 259

Table 5. Results in BestInContext task, Metric EPRUM-BEP-Exh-BEPDistance (77
submissions)

A=0.01 At A=0.1 At A=1.0 At A=10.0 At A=100.0
runID method co/s Score rnk Score rnk Score rnk Score rnk Score rnk

20 12 09 FLM/RLM cos 0.0251 21 0.0428 31 0.0752 30 0.1421 30 0.2320 25
19 08 40 FLM/RLM cos 0.0292 7 0.0486 13 0.0809 21 0.1460 22 0.2325 23
19 03 22 FLM/RLM co 0.0286 9 0.0477 16 0.0801 22 0.1481 18 0.2372 18
19 06 40 FLM/RLM co 0.0258 19 0.0433 30 0.0758 29 0.1460 22 0.2367 19
17 11 09 FHITS/RHITS co 0.0239 22 0.0423 32 0.0741 37 0.1469 21 0.2515 16
17 09 18 FHITS/RHITS cos 0.0258 16 0.0441 26 0.0768 25 0.1489 15 0.2528 15

rank. We then traversed the list (in the order of descending rank) and removed
every element that overlapped with any previous element.

Tables 2 and 3 show the results in the Focused task, with overlap on and
off, respectively. These results correspond to the filtered assessments. (We later
consider the non-filtered ones). All the runs use the same parameters (the length
cutoff is 20). Note that the specified ranks (denoted rnk in the tables) are the
effective ranks of our runs, i.e., with the invalid submissions excluded.

Consider Table 2, with overlap on. In all the runs, we used RLM for element
ranking. The first run (using FHITS as a filter) yields the best scores among
our runs for nxCG[5] and nxCG[10]. However, for nxCG[25] and nxCG[50], the
fourth and fifth runs (that use the filter FLM) are better and, in fact, the best
among all submissions. A different behavior is exposed in Table 3 (overlap off).
There, the first run is superior to the others under all the nxCG metrics, except
for nxCG[50] where it is second (and the second run is the best).

In the non-filtered assessments, our runs got almost identical ranks, except
for a few minor differences. The most significant difference is that Run 18 12 32,
ranked 6 in the overlap-on task under the metric nxCG[10], is only ranked 9 in
the corresponding list of non-filtered results.

5.3 Best-in-Context and All-in-Context Tasks

In the Best-in-Context task, the element with the highest score was chosen for
each document. The results in this task, under the metrics BEPD and EPRUM-
BEP-Exh-BEPDistance, are shown in Tables 4 and 5, respectively. The length
cutoff was 30 in runs 19 06 40 and 20 12 09. In the other runs, it was 20.

In the All-in-Context task, overlap was eliminated similarly to the Focused
task. Table 6 shows the results in the All-In-Context task. The length cutoff was
10 in runs 19 01 56 and 18 11 02; in the other runs, it was 20.

Compared to other submissions, our methods obtained better results in the
first two tasks than in the third and fourth. Note, however, that in the Best-in-
Context task, Run 19 08 40 (Table 4) was among the top 10 under the BEPD
metric for all values of A. Furthermore, in the All-in-Context task, the first four
runs of Table 6 are always among the top 13 and they are significantly better
than the fifth and sixth.

260 B. Kimelfeld et al.

Table 6. Results in AllInContext task (56 submissions)

MAgP gP[5] gP[10] gP[25] gP[50]
runID method co/s Score rnk Score rnk Score rnk Score rnk Score rnk
18 11 02 FLM/RLM co 0.1601 7 0.3176 13 0.2585 13 0.1956 9 0.1446 8
18 09 30 FLM/RLM co 0.1599 8 0.3198 12 0.2603 11 0.1957 8 0.1440 9
19 12 30 FLM/RLM cos 0.1584 9 0.3303 7 0.2631 9 0.1927 11 0.1411 12
19 01 56 FLM/RLM cos 0.1584 10 0.3262 10 0.2600 12 0.1927 10 0.1418 10
17 03 42 FHITS/RHITS cos 0.0353 52 0.0925 52 0.0788 52 0.0625 52 0.0441 53
17 02 23 FHITS/RHITS co 0.0348 53 0.0886 53 0.0781 53 0.0610 53 0.0445 52

6 Conclusion

In our participation in the INEX 2006 Ad-hoc retrieval track, we mainly stud-
ied two retrieval techniques. The first is a preliminary filtering of the corpus in
order to obtain the documents from which the actual elements are considered.
The second is the use of HITS for either filtering of documents or ranking of el-
ements. The results of our submissions show that preliminary filtering improves
the quality of retrieval, since our runs were among the best in the Thorough and
Focused tasks. Furthermore, the use of HITS is useful for appropriately iden-
tifying the few top elements. In comparison, language models generally yielded
better results in identifying large collections of relevant elements. In future work,
we plan to further study the integration of the techniques presented in this paper
in order to achieve the best of both worlds. In particular, we will study the use
of PageRank [7], instead of HITS, for link analysis.

References

1. Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval.
In: SIGIR, pp. 275–281. ACM Press, New York (1998)

2. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. In: SODA, pp.
668–677. ACM Press, New York (1998)

3. Kamps, J., de Rijke, M., Sigurbjörnsson, B.: Length normalization in XML retrieval.
In: SIGIR, pp. 80–87. ACM Press, New York (2004)

4. Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied to
ad hoc information retrieval. In: SIGIR, New York, NY, USA, pp. 334–342. ACM
Press, New York (2001)

5. Trotman, A., Sigurbjörnsson, B.: Narrowed extended XPath I (NEXI). In: Fuhr, N.,
Lalmas, M., Malik, S., Szlávik, Z. (eds.) INEX 2004. LNCS, vol. 3493, pp. 16–40.
Springer, Heidelberg (2005)

6. The JUNG Framework Development Team: JUNG java universal network/graph
framework (2006) http://jung.sourceforge.net

7. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine.
Computer Networks 30(1-7), 107–117 (1998)

http://jung.sourceforge.net

Using Topic Shifts in XML Retrieval at

INEX 2006

Elham Ashoori and Mounia Lalmas

Queen Mary, University of London
London, E1 4NS, UK

{elham,mounia}@dcs.qmul.ac.uk

Abstract. This paper describes the retrieval approaches used by Queen
Mary, University of London in the INEX 2006 ad hoc track. In our partic-
ipation, we mainly investigate element-specific smoothing method within
the language modelling framework. We adjust the amount of smoothing
required for each XML element depending on its number of topic shifts
to provide a focused access to XML elements in the Wikipedia collection.
We also investigate whether using non-uniform priors is beneficial for the
ad hoc tasks.

1 Introduction

In this paper we describe the Queen Mary, University of London’s participation
in the INEX 2006 ad hoc track.

Content-oriented XML retrieval systems aim at supporting more precise ac-
cess to XML repositories by retrieving XML document components (the so-called
XML elements) instead of whole documents in response to users’ queries. There-
fore, in principle, XML elements of any granularity (for example a paragraph
or the section enclosing it) are potential answers to a query, as long as they
are relevant. However, the child element (paragraph) may be more focused on
the topic than its parent element (the section), which may contain additional
irrelevant content. In this case, the child element is a better element to retrieve
than its parent element, because not only it is relevant to the query, but it is
also specific to the query.

To score XML elements according to how exhaustive and specific they are to
a given query, various sources of evidence have been exploited. These include the
content, the logical structure represented by the XML mark-up and the length
of XML elements (e.g., [6,7,5]). In this work, we consider a different source of
evidence, the number of topic shifts in an XML element. Our motivation stems
from the definition of a relevant element at the appropriate level of granularity
in INEX, which is expressed in terms of the “quantity” of topics discussed within
each element. We therefore propose to use the number of topic shifts in an XML
element, to express the “quantity” of topics discussed in an element as a means
to capture specificity. Next, to compare this new feature to element length, we
follow the spirit of [5], and incorporate this feature within a language modeling

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 261–270, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

262 E. Ashoori and M. Lalmas

framework, and examine its effects on the Wikipedia collection, compared to
element length, to estimate prior probability of relevance in XML retrieval. Our
previous work on IEEE collection showed that for retrieving highly specific and
highly exhaustive elements, using topic shifts as prior is useful in the framework
of language modeling [2].

For our experiments, we have implemented retrieval approaches for ranking
XML elements based on a statistical language modelling approach [4]. Language
modelling approaches have shown satisfactory results in content-oriented XML
retrieval (e.g. [5,8]). This approach allows us to combine “non-content” features
of elements (or documents) (e.g. length, topic shifts) with the scoring mecha-
nism. We incorporate this new source of evidence, the number of topic shifts,
as prior probability of relevance in the framework of language modeling. We
also incorporate the number of topic shifts in the smoothing process within this
framework as a means to capture specificity.

For the Thorough task, we experiment with two different ways of smoothing,
element-specific smoothing and fixed smoothing approaches within the language
modeling framework. We also compare topic shifts to element length, by incorpo-
rating each of them as prior probability of relevance and examining their effects
on the retrieval effectiveness. For the Focused task, we apply a post-filtering al-
gorithm to remove overlapping elements from our Thorough runs. We investigate
whether using element-specific smoothing is beneficial for the Focused task. We
also examine the usefulness of non-uniform priors for the Focused task. For the
All In Context task, we took our runs for the Focused task, reordered the first
1,500 elements in the list such that results from the same article are clustered
together. For the Best In Context task, we investigate whether retrieving the
most focused element in a relevant article as the best entry point is a useful
approach.

The paper is organised as follows. In section 2, we define topic shifts and how
we calculate it. Section 3 and 4 describe the methodology and the experimental
setting used in our investigation. The experiments and results are discussed in
Section 6. Section 7 concludes the paper.

2 Topic Shifts

In this section, we describe how we measure the number of topic shifts of the
elements forming an XML document. For this purpose, both the logical struc-
ture and a semantic decomposition of the XML document are needed. Whereas
the logical structure of XML documents is readily available through their XML
markup, their semantic decomposition needs to be extracted. To achieve that,
we apply a topic segmentation algorithm based on lexical cohesion, TextTil-
ing1 [3], which has been successfully used in several IR applications. The under-
lying assumption of topic segmentation algorithms based on lexical cohesion, is
that a change in vocabulary signifies that a topic shift occurs. This results in
topic shifts being detected by examining the lexical similarity of adjacent text
1 http://elib.cs.berkeley.edu/src/texttiles/

Using Topic Shifts in XML Retrieval at INEX 2006 263

segments. TextTiling is a linear segmentation algorithm that considers the dis-
course unit to correspond to a paragraph and therefore subdivides the text into
multi-paragraph segments.

The semantic decomposition of an XML document is used as a basis to cal-
culate the number of topic shifts in each XML element forming that document.
We consider that a topic shift occurs (i) when one segment ends and another
segment starts, or (ii) when the starting (ending) point of an XML element
coincides with the starting (ending) point of a semantic segment.

The number of topic shifts in an XML element e in document is defined as:

score(e) := actual topic shifts(e) + 1 (1)

where actual topic shifts(e) are the actual occurrences of topic shifts in ele-
ment e of the document. We are adding 1 to avoid zero values. For simplicity,
when we refer to the number of topic shifts, we shall be referring to score(e).

With the above definition, the larger the number of topic shifts – i.e. the larger
the score(e) – the more topics are discussed in the element, i.e the content of
element is less focused with respect to the overall topic discussed in the element.

3 Retrieval Framework

For our experiments, we have implemented retrieval approaches for ranking XML
elements based on a statistical language modelling approach [4]. We rank ele-
ments based on the likelihood for a query q = (t1, t2, ..., tn) to be generated from
an element e as:

P (e|q) ∝ P (e) ∗ P (t1, .., tn|e) (2)

where

P (t1, .., tn|e) =
n∏

i=1

(λeP (ti|e) + (1 − λe)P (ti|C)) (3)

and

– ti is a query term in q,
– P (e) is the prior probability of relevance for element e,
– P (ti|e) = tf(ti,e)�

t tf(t,e) is the probability of generating the query term ti from
element e,

– tf(t, e) is the number of occurrences of term t in element e,
– P (ti|C) = ef(ti)�

t ef(t) is the probability of query term ti in the collection,
– ef(t) is the total number of XML elements in which term t occurs, and
– λe (weight on the element language model) is a weighting parameter between

[0,1] which is used in smoothing the element model with the collection model.

264 E. Ashoori and M. Lalmas

We experiment with two ways of smoothing. First, we set λe to 0.1 for all
elements, referred as fixed smoothing. This value is close to the traditional setting
for document retrieval (λ=0.15), which has shown satisfactory results [4].

Secondly, to accommodate for the specificity dimension, we propose to set λe,
the amount of smoothing, to be proportional to the number of topic shifts in the
element, referred as element-specific smoothing. The idea of incorporating topic
shifts in this manner originates from the fact that if the number of topic shifts
in an element is low and an element is relevant, then it is likely to contain less
non-relevant information compared to the case where a high number of topic
shifts exists (For a complete argument see [1]). We define the element-specific
smoothing parameter, λe, to be inversely proportional to the number of topic
shifts in element e:

λe =
λ

score(e)
(4)

where λ is a constant parameter between [0,1]. We set λ to 0.1 in the experiments
where we use the element-smoothing approach.

We experiment with two different prior probabilities of relevance P (e). First,
following the work of Kamps etal in [5], we define the prior probability of
relevance to be proportional to the length of an element. We refer to it as
length prior:

P (e) =
∑

t tf(t, e)∑
e

∑
t tf(t, e)

(5)

Second, we define the prior probability to be proportional to the number of
topic shifts in an element. We refer to it as topic shifts prior:

P (e) =
score(e)∑
e score(e)

(6)

We also compare these two approaches with a baseline using a uniform prior.
The uniform prior gives all elements an equal prior probability of being relevant.

4 Retrieval Setting

For calculating the number of topic shifts in each XML element, our first step is
to decompose the Wikipedia XML documents into semantic segments through
the application of TextTiling. We consider the discourse units in TextTiling to
correspond to paragraph XML elements. We considered paragraph elements to
be the lowest possible level of granularity of a retrieval unit. For the remainder of
the paper, when we refer to the XML elements considered in our investigation, we
will mean the subset consisting of paragraph elements and of elements containing
at least one paragraph element as a descendant element.

Accordingly, the generated semantic segments can only correspond to para-
graph elements and to their ancestors. As TextTiling requires a text-only version

Using Topic Shifts in XML Retrieval at INEX 2006 265

of a document, each XML document has all its tags removed and is decomposed
by applying the algorithm to sequences of paragraphs. We set the TextTiling
parameters to W = 10 and K = 6. As a heuristic W ∗ K is equal to the average
paragraph length (in terms of the number of terms) [3].

After the application of TextTiling in the above data sets, we compute the
number of topic shifts in elements.

In this work, only the title field of the CO queries is used. No stemming is
applied. Elements with size smaller than 20 has been removed when indexing the
Wikipedia collection. When we refer to the size or the length of an element, we
mean the number of terms after removing stopwords. For each of the retrieval
approaches, the top 1,500 ranked elements are returned as answers for each of
the CO topics.

5 Evaluation

For all tasks, we use the official metrics of INEX 2006. Since we only index and
retrieve elements in the paragraph level or above, using the filtered assessment
set will not change the relative order of our approaches considerably. Therefore
we only reports the results using the full assessment set. In addition we report
results for the Focused task using the strict quantization function. The strict
quantization function is used to evaluate XML retrieval methods with respect
to their capability of retrieving highly specific elements (s=1).

6 Experiments

6.1 Thorough Task

For the Thorough task we experiment with two different ways of smoothing,
element-specific smoothing and fixed smoothing approaches (λ = 0.1 for all ele-
ments) in the framework of language modeling. We also consider both length and
the number of topic-shifts as prior in addition to the uniform prior probability
of relevance. Therefore, we consider six retrieval approaches in our experiments.
Table 1 shows the details of our retrieval approaches where those runs submitted
to INEX 2006 are marked with ∗.

Table 1. Thorough Retrieval Approaches

Approach Prior Smoothing

Lm T uniform fixed
Lm ToicShiftsPrior T* topic shifts fixed
Lm LengthPrior T* length fixed

Lm TermWeighted T uniform element-specific
Lm ToicShiftsPrior TermWeighted T* topic shifts element-specific
Lm LengthPrior TermWeighted T length element-specific

266 E. Ashoori and M. Lalmas

Table 2. Thorough retrieval task: Evaluation based on Mean Average effort preci-
sion (MAep), using generalized quantization function

Approach MAep

Lm T 0.0179
Lm ToicShiftsPrior T* 0.0185
Lm LengthPrior T* 0.0181

Lm TermWeighted T 0.0144
Lm ToicShiftsPrior TermWeighted T* 0.0163
Lm LengthPrior TermWeighted T 0.0168

Table 2 presents, the evaluation results for Mean Average effort precision
(MAep) for the six retrieval approaches. Focusing on either fixed smoothing ap-
proaches or approaches using element-specific smoothing, we observe that, using
either the length prior or the topic shifts prior leads to slightly improvements of
performance.

Focussing on the approaches employing non-uniform priors, we observe that
they perform comparably, but none of them considerably improves the retrieval
effectiveness compared to uniform prior, when evaluated with MAep.

When comparing the results for the approaches using fixed smoothing and
element-specific smoothing, we see that fixed smoothing approaches are more
effective in terms of MAep when evaluated under the generalized case.

6.2 Focused Task

The INEX 2006 Focused task asks systems to find the most focused elements
that satisfy an information need, without returning “overlapping” elements. We
experiment with the same approaches as we discussed for the Thorough task,
and remove Overlap by applying a post-filtering on the retrieved ranked list.
We select the highest scored element from each of the paths. In case of two
overlapping elements with the same relevance score, the child element is selected.
Therefore, we consider six retrieval approaches in our experiments. Table 3 shows
the details of our retrieval approaches where those runs submitted to INEX 2006
are marked with ∗.

Table 3. Focused Retrieval Approaches

Approach Prior Smoothing

Lm F uniform fixed
Lm ToicShiftsPrior F* topic shifts fixed
Lm LengthPrior F* length fixed

Lm TermWeighted F uniform element-specific
Lm ToicShiftsPrior TermWeighted F* topic shifts element-specific
Lm LengthPrior TermWeighted F length element-specific

Using Topic Shifts in XML Retrieval at INEX 2006 267

Table 4. Focused retrieval task: MAep and normalised eXtended Cumulated Gain
(nxCG) at different cut-off

Approach nxCG@5 nxCG@10 nxCG@25 nxCG@50 MAep

General

Lm F 0.3477 0.3075 0.2368 0.1818 0.0392
Lm TopicShiftsPrior F* 0.3429 0.2953 0.2223 0.1649 0.0365
Lm LengthPrior F 0.3386 0.2751 0.2038 0.1559 0.035

Lm TermWeighted F 0.3532 0.2983 0.2282 0.1704 0.0369
Lm TopicShiftsPrior TermWeighted F* 0.3455 0.2965 0.2351 0.1774 0.0382
Lm LengthPrior TermWeighted F* 0.3525 0.2957 0.2276 0.1708 0.0381

Strict

Lm F 0.2937 0.2578 0.1929 0.1447 0.025
Lm TopicShiftsPrior F* 0.2721 0.2225 0.1627 0.1188 0.0193
Lm LengthPrior F 0.2342 0.182 0.131 0.101 0.016

Lm TermWeighted F 0.3117 0.2614 0.1965 0.1444 0.0262
Lm TopicShiftsPrior TermWeighted F* 0.3009 0.256 0.1993 0.1475 0.0261
Lm LengthPrior TermWeighted F* 0.3045 0.2487 0.1872 0.1377 0.0245

The evaluation results with respect to the MAep and nxCG at four different
early cut-off points (5, 10, 25, 50) are shown in Table 4. For both evaluations,
both strict and generalised quantization functions are used.

Under the generalized case, with all early precision measures apart from
nxCG@5 using uniform prior and fixed smoothing approaches is the most effec-
tive approach.

Under the strict case, when comparing the results for the approaches using
fixed smoothing and element-specific smoothing, we see that element-specific
smoothing approaches, the bottom three runs, are more effective at early preci-
sion. This observation indicates the potential use of element-specific smoothing
for retrieving highly specific elements at the early ranks.

The results also suggest that using non-uniform prior is not beneficial for the
Focused task.

6.3 All in Context

For the All In Context task, we took our runs for the Focused task, reordered
the first 1,500 elements in the list such that results from the same article are
clustered together. We aim at examining the capability of our approaches in
locating the relevant content within the relevant articles. Table 5 shows the
details of our retrieval approaches where those runs submitted to INEX 2006
are marked with ∗.

The evaluation results with respect to Mean Average Generalized Precision
(MAgP) and Generalized Precision (gP) at four different early cutoff point (5,
10, 25, 50) are shown in Table 6. Under all the official metrics of INEX 2006
for this task, using length prior and fixed smoothing provides the most effective
approach in locating the relevant content within the relevant article. Using length

268 E. Ashoori and M. Lalmas

prior leads to considerable improvement over the uniform prior for gP@5. For
the other measures used for this task, using both length and topic shifts prior
leads to slight improvements of performance compared to the uniform prior.

Table 5. All In Context Retrieval Approaches

Approach Prior Smoothing

Lm F Clustered R uniform fixed
Lm TopicShiftsPrior F Clustered R* topic shifts fixed
Lm LengthPrior F Clustered R length fixed

Lm TermWeighted F Clustered R uniform element-specific
Lm TopicShiftsPrior TermWeighted F Clustered R* topic shifts element-specific
Lm LengthPrior TermWeighted F Clustered R* length element-specific

Table 6. All In Context retrieval task Mean Average Generalized Precision (MAgP)

and Generalized Precision at early ranks (gP) different cut-off

Approach gP@5 gP@10 gP@25 gP@50 MAgP
Lm F Clustered R 0.2572 0.2308 0.1760 0.1259 0.1147
Lm TopicShiftsPrior F Clustered R* 0.2593 0.2318 0.1759 0.1262 0.1179
Lm LengthPrior F Clustered R 0.2833 0.2386 0.1766 0.1278 0.1232
Lm TermWeighted F Clustered R 0.2489 0.2221 0.1637 0.1128 0.1028
Lm TopicShiftsPrior TermWeighted F Clustered R* 0.2582 0.2270 0.1692 0.1193 0.1084
Lm LengthPrior TermWeighted F Clustered R* 0.2595 0.2254 0.1702 0.1188 0.1105

6.4 Best in Context

The INEX 2006 Best In Context task asks systems to find the XML elements
that corresponds to the best entry points to read articles. For the Best In Context
task, we examine whether the most focused element in a relevant document is a
good choice for the best entry point in a relevant article. For this task we took
our official runs for the Focused task, and return for each article, the element
with the maximum score as the best entry point. Table 7 shows the details of
our official retrieval approaches. The last run marked with Δ is slightly different
from Lm TopicShiftsPrior TermWeighted F B; such that in overlap-removal phase,
in case of two overlapping elements with the same relevance score, the parent
element is selected.

Table 7. Best in Context Retrieval Approaches

Approach Prior Smoothing

Lm TopicShiftsPrior F B* topic shifts fixed
Lm TopicShiftsPrior TermWeighted F B* topic shifts element-specific
Lm TopicShiftsPrior TermWeighted Foarent B*Δ topic shifts element-specific

We report the INEX 2006 official results using the EPRUM-BEP-Exh-BEPDistance

and BEPD metrics at five different values for A (0.01, 0.1, 1, 10, 100) as shown

Using Topic Shifts in XML Retrieval at INEX 2006 269

in table 8. Low values of A (e.g. 0,1) favour runs that return elements very close
to a best entry point.

Comparing the results of our runs, using fixed smoothing is the most effec-
tive runs for both metrics and for all values of A except at A = 0.01 where
the approach based on element-specific smoothing outperformed. When evalu-
ating these runs with EPRUM-BEP-Exh-BEPDistance at A = 0.01 (low value), our
runs ranked very high among all participants. This shows that element-specific
smoothing is useful at returning the elements very close to a best entry point in
relevant articles.

Table 8. Best In Context task: EPRUM-BEP-Exh-BEPDistance and BEPD metrics

Approach A=0.01 A=0.1 A=1 A=10 A=100

EPRUM-BEP-Exh-BEPDistance

Lm TopicShiftsPrior F B 0.0314 0.0468 0.0735 0.1284 0.2024
Lm TopicShiftsPrior TermWeighted F B 0.0325 0.0410 0.0610 0.1134 0.1855
Lm TopicShiftsPrior TermWeighted Fparent B 0.0300 0.0393 0.0607 0.1134 0.1855

BEPD

Lm TopicShiftsPrior F B 0.1129 0.1611 0.2536 0.4092 0.5760
Lm TopicShiftsPrior TermWeighted F B 0.1259 0.1591 0.2315 0.3815 0.5490
Lm TopicShiftsPrior TermWeighted Fparent B 0.1201 0.1587 0.2344 0.3836 0.5494

7 Discussion and Summary

This paper describes the retrieval approaches used by Queen Mary, University
of London in the INEX 2006 ad hoc track. We participated in all four ad hoc
track tasks. In this work, we experimented with two different ways of smoothing,
fixed smoothing and element-specific smoothing approaches within the language
modeling framework. We also investigated whether using non-uniform priors is
beneficial for the ad hoc tasks in the Wikipedia collection. Our main findings
are the following:

– Our results suggest that the the fixed smoothing approach is useful in several
cases: (i) for the Thorough task, in terms of MAep and under the generalized
quantization function, (ii) for the Focused task, for all early precision mea-
sures apart from nxCG@5 and under the generalized quantization function,
(iii) for the All In Context task, in locating the relevant content within the
relevant article with all the measures used for this task, (iv) for the Best In
Context task, at finding the best entry point in the relevant elements for the
values of A > 0.01 (we are looking for the elements very close to a best entry
point when A = 0.01).

– For the element-specific smoothing, we used the number of topic shifts in
the smoothing process. The idea of incorporating topic shifts in the element-
specific smoothing approach originated from the fact that if the number of
topic shifts in an element is low and an element is relevant, then it is likely to

270 E. Ashoori and M. Lalmas

contain less non-relevant information compared to the case with high number
of topic shifts. Therefore, in this way of smoothing, in fact, we reward the
presence of a query term in an element with a lower number of topic shifts (a
more specific element). This means that we are capturing specificity with the
number of topic shifts. Our results suggest that element-specific approach is
useful in the following cases: (i) for the Focused task, in finding the highly
specific elements at the early ranks, (ii) for the Best In Context, in finding
the elements very close to a best entry point in relevant documents, i.e., for
A = 0.01. These results indicate that the number of topic shifts is a useful
evidence, as it seems to capture the specificity dimension of relevance.

– Finally, we observed that in general, using non-uniform prior is slightly ben-
eficial for the Thorough and All In Context tasks, but not beneficial for the
Focused task.

References

1. Ashoori, E., Lalmas, M.: Using topic shifts for focussed access to XML repositories.
In: Advances in Information Retrieval: Proceedings of the 29th European Conference
on IR Research (ECIR) (April 2007)

2. Ashoori, E., Lalmas, M., Tsikrika, T.: Examining Topic Shifts in Content-Oriented
XML Retrieval, submitted (2006)

3. Hearst, M.A.: Multi-paragraph segmentation of expository text. In: Proceedings of
the 32nd annual meeting on Association for Computational Linguistics, pp. 9–16
(1994)

4. Hiemstra, D.: Using Language Models for Information Retrieval. Phd thesis, Uni-
versity of Twente (2001)

5. Kamps, J., de Rijke, M., Sigurbjörnsson, B.: The importance of length normalization
for XML retrieval. Information Retrieval 8(4), 631–654 (2005)

6. Mass, Y., Mandelbrod, M.: Using the inex environment as a test bed for various
user models for XML retrieval. In: Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.)
INEX 2005. LNCS, vol. 3977, pp. 187–195. Springer, Heidelberg (2006)

7. Ogilvie, P., Callan, J.: Hierarchical language models for XML component retrieval.
In: Fuhr, N., Lalmas, M., Malik, S., Szlávik, Z. (eds.) INEX 2004. LNCS, vol. 3493,
pp. 224–237. Springer, Heidelberg (2005)

8. Ramirez, G., Westerveld, T., de Vries, A.P.: Using structural relationships for fo-
cused XML retrieval. In: Larsen, H.L., Pasi, G., Ortiz-Arroyo, D., Andreasen, T.,
Christiansen, H. (eds.) FQAS 2006. LNCS (LNAI), vol. 4027, pp. 147–158. Springer,
Heidelberg (2006)

XSee: Structure Xposed

Roelof van Zwol1 and Wouter Weerkamp2,�

1 Yahoo! Research, C/ Ocata 1, 08003 Barcelona, Spain
roelof@yahoo-inc.com

2 University of Amsterdam, ISLA, Kruislaan 403, 1098 SJ Amsterdam,
The Netherlands

weerkamp@science.uva.nl

Abstract. XML retrieval is a discipline of information retrieval that
focuses on the retrieval of specific document fragments that answer a user
information need, while exploiting the structural information available
in a document. The contribution of this article is twofold. It presents
the effective and scalable retrieval model of the XSee search engine for
XML documents, and shows that the model is stable over the different
collections used for INEX. Furthermore, we discuss how the effectiveness
of the retrieval model can be enhanced using different reranking methods
based on the structural characteristics.

1 Introduction

The Initiative for the Evaluation of XML retrieval (INEX) is a yearly event that
provides an international forum for the evaluation of XML retrieval strategies.
These strategies aim to harness the enriched source of syntactic and semantic
information that XML markup provides. Current work in XML IR focuses on
exploiting the available structural information in documents to implement a
more focused retrieval strategy and to return document components, the so-
called XML elements - instead of complete documents - in response to a user
query [3]. This article discusses the approach conducted by Utrecht University
in their third year of participation.

Each year we choose a specific angle of interest for our research, besides our
general objective to develop innovative retrieval strategies for XML retrieval.
This year’s contribution focuses specifically on the exploitation of the structural
characteristics of the XML collections, to improve the performance on thorough
and focused retrieval tasks.

The contribution in this article is therefore twofold. First we will present the
underlying retrieval model that is used by our XML Search engine, nicknamed
XSee. The retrieval model for XSee is derived from the GPX [2] and the B3-
SDR model [6], and is developed to provide a scalable solution for the rapidly
growing XML collections that are available, while maintaining a good retrieval
performance.
� The research described in this article was caried out at Utrecht University. In the

meantime both authors have moved forward to a new position elsewhere.

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 271–283, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

272 R. van Zwol and W. Weerkamp

Second, we discuss how reranking methods can be deployed to achieve a sig-
nificant increase in retrieval performance, based on the analysis of the document
structure present in both the IEEE and Wikipedia XML collections. Comparison
of the characteristics of the XML collection, with the full and ideal recall base
provides insight into the type of elements that should be retrieved as the result
of a particular task. We will discuss four of the reranking methods that we have
deployed, based on the characteristics of the retrieved elements: path depth of
the element, number of textual terms (node size) contained in the element, num-
ber of descendant nodes for an element, and the element being a leaf node. The
reranking methods can be used both on the Thorough and Focused task. In this
article we will present a summary of our findings; more detailed information can
be found in [7]. We will present a straightforward procedure for overlap removal
that is used to construct a focused run, and we present a so called de-reranking
of the result list, which can be applied to construct a focused run that obeys the
original ranking of elements.

Based on the official results for the Thorough task we discuss the optimal
configuration of the XSee retrieval model, and discuss its stability on different
document collections. Evaluating the effectiveness of the reranking methods is a
complex task, due to the number of variables involved. We will present the effect
of the reranking methods on both the Thorough and Focused task, and compare
the outcome with the baseline run for each task.

Organisation

In the remainder of the article, we will first present the XSee retrieval model for
content-only queries in Section 2. In Section 3 we discuss structural aspects of the
IEEE and Wikipedia collections, and describe the four reranking methods that
we have deployed to improve the effectiveness of the retrieval performance. In
Section 4 we present the results on the Thorough task, compare the performance
of the model on both the IEEE, and Wikipedia collection, and discuss the results
for the reranking methods. The results of the Focused task are presented in
Section 5, where we discuss the configuration for the baseline run, and the effect
of the reranking methods on the Focused task. Finally, we will come to our
conclusions and present future work in Section 6.

2 XSee, the XML Search Engine

The XSee XML search engine is primarily build for participation in INEX 2006.
In this section, a brief overview of the internals of the XSee system is given to
provide more insight into the particulars of an XML retrieval system in gen-
eral, but also as a reference for the explanation of the results of the experiment
described below.

2.1 XSee Data Structure

The XSee system uses the regular pre-processing steps to clean and standard-
ize the data: lexical cleaning, stopword removal, stemming (optional), and term

XSee: Structure Xposed 273

Table 1. XSee data structure

TermIndex(term, stemmed term, start, end, term frequency)
TermLeaveFrequency(node id, position)
Node(id, parent, name, document, path, depth)

internationalization (optional). The XSee data structure is based on the tradi-
tional inverted file approach used for many IR tasks. Table 1 shows the under-
lying structure used by the retrieval strategy that is explained hereafter.

A term index is constructed to contain a list of unique terms appearing in
the document collection, with their stemmed variant and the frequency of term
appearances throughout the document collection. A start- and end position is
stored for each term that refer to a slice of the TermLeaveFrequency table. This
table contains tuples with a reference to an XML node and the position of the
term within that node. The third table contains node information, like a pointer
to the parent node, the node name, the document and path combination, that
uniquely identifies a node, and the depth of the node in the XML tree.

2.2 XSee Retrieval Model

In this section we will shortly introduce the retrieval strategy used by XSee. It
is derived from the GPX [2] and B3-SDR models [6] that have been developed
and evaluated within INEX. The XSee system is custom built for participation
in INEX 2006. The objective was to derive a model that was comparable in
retrieval performance to the GPX model, but also to have a scalable approach
in terms of system performance. In the next section we will discuss the main
differences with the GPX model by the hand of an example.

At indexing time, a termweight for a term q and a node n is calculated using:

termweight(n, q) =

{
tfn,q

TFq
, if is leaf(n),

tfn,q

TFq
+
∑

c∈children(n) Dnode · termweight(c, q)
(1)

For a leaf node, the weight of a term is determined using the term frequency of
that term within the node divided by the number of times the term occurs in
the document collection. If the node is not a leaf, the termweight also depends
(recursively) on the termweight of its children. The influence of a term occuring
in one of its children is reduced via the node decay Dnode. Typical values for
Dnode are in the range [0.09..0.49], as is heuristically determined.

At query time, the relevance score of a node for a given query Q is calculated
as:

rsv(n, Q) = F
|{q|q∈Q ∧q∈terms(n)}|−1
t ·

∑

q∈Q

termweight(n, q) (2)

For each query term q in the query, it is determined whether this term is con-
tained in the node. The sum over the corresponding termweights is taken and
multiplied by the termfactor Ft to the power of the number of unique query terms

274 R. van Zwol and W. Weerkamp

Example A Example B

Fig. 1. XML tree of Example A and B

occuring in node n. This assures that nodes containing all the query terms will
be pushed to the top of the ranking.

Additional features of the retrieval model include phrase-detection, detection
of exclusionary terms, the ‘too small’ result filter1, and CAS-based extensions
for efficient use of structural clues.

2.3 Behavior of the XSee vs. GPX Retrieval Model

The main difference of the XSee model compared to the GPX model is that
the relevance of a node in the XSee model is more directly influenced by the
number of distinct query terms that are contained by that node. In the GPX
model, the relevance of the leaf nodes is determined first, and based on those
scores the relevance of the ascending nodes has to be determined iteratively by
traversal of the tree to the root node. Although this gives good results in retrieval
performance, computing a ranking is rather expensive. Instead of computing
the relevance scores from the leaves to the root, the XSee model determines at
indexing time the contribution of each term to a node. That way only the result
for Equation 1 needs to be calculated at query time.

To illustrate the effect of this modification, we use the two examples of
Figure 1, and the derived ranking for a fictive query [x y] of Table 2. The Figure
shows an XML tree with 8 nodes, and the occurrance of the query terms [x y]
in the tree for examples A and B. To configure the GPX model [2] three pa-
rameters need to be defined: a single node decay, a multiple node decay, and a
term factor, which are set to 0.5, 0.75, and 5 respectively. The XSee model needs
two parameters to be set: a node decay (nd=0.4), and a term factor (Ft = 5)
respectively. For both examples we assume the following term weights: x = 0.6,
and y = 0.4.

The data under Example A of Table 2 shows the results for this example
XML tree. For each node, its position in the ranking and the computed relevance
1 Initially there was no notion of ‘too small’ elements in INEX 2006 due to the assess-

ment method used and this filter was therefore not used.

XSee: Structure Xposed 275

score is given on the XSee and GPX model. It shows that the weight of those
nodes that combine new query terms (nodes B and F) have a higher position
in the ranking for the XSee model than for the GPX model. Furthermore, the
XSee model lowers the position of those nodes that have no direct descendants
containing relevant information.

This last aspect can also be observed in the ranking of Example B, where
positions of nodes A,B, and C have been swapped. If a node contains all the
requested information, the two models behave similarly, as is the case for nodes
F, and G on the XSee model.

3 Exploiting XML Structure

In this section we will first examine the structure of the XML collections at
hand, after which we introduce a number of reranking methods that exploit
certain structural aspects of the XML document.

3.1 Characteristics of IEEE and Wikipedia Collections

A starting point for using the document structure to improve on retrieval per-
formance would be to have some statistics available on both the IEEE and the
Wikipedia collection. In Table 3 the collection properties are given for both col-
lections. In addition we present the characteristics of the full and ideal recall
base.

Based on the properties given for both collections, it can be easily seen that
on average a document of the Wikipedia collection has fewer nodes (x5), with a
smaller path depth (-1), a higher ratio of leaf nodes (x2), and an almost equal
node size.

More differences can be observed when inspecting the full and ideal recall
bases for both collections. Besides being based on different collections, one also
has to take into account that the assessment procedure has changed, which will
also have its impact on the characteristics of the recall bases. Nonetheless, our
primary interest is investigating the structural aspects of the data, to derive
effective methods for exploiting the document structure.

Table 2. Relevance scores for Example A and B

Example A Example B

Node XSee GPX XSee GPX

A 3 - 2.6 1 - 1.53 4 - 1.31 3 - 2.07
B 1 - 5.5 2 - 1.4 3 - 2 5 - 0.8
C 4 - 1.75 7 - 0.51 5 - 1.28 4 - 1.79
D 8 - 0.4 8 - 0.4 7 - 0.6 7 - 0.6
E 7 - 0.6 6 - 0.6 8 - 0.4 8 - 0.4
F 2 - 2.8 3 - 1.28 2 - 3.2 2 - 4.48
G 5 - 0.8 4 - 0.8 1 - 5 1 - 5
H 7 - 0.6 6 - 0.6 7 - 0.6 7 - 0.6

276 R. van Zwol and W. Weerkamp

Table 3. characteristics of collection vs. full and ideal recall base

property IEEE (2005) Wikipedia (2006)

collection full recall ideal recall collection full recall ideal recall

nodes / doc. 430.9 31.6 2.53 79.7 39.5 5.77
desc. / node 4.68 41.42 22.16 3.86 18.21 5.41

leaf nodes / nodes 0.319 0.428 0.641 0.68 0.34 0.60
path depth 5.68 3.68 4.05 4.86 5.07 3.74

node size 30.1 308.7 218.7 32.9 147.37 64.21

Comparing the full recall base against the IEEE collection reveals that if a doc-
ument is relevant, only a small fragment is highlighted, while on the Wikipedia
collection this portion is much larger. Interesting to see though is that the total
number of nodes being highlighted remains the same.

When inspecting the average path depth we see some more unexpected be-
haviour. For the full recall base on the Wikipedia collection the depth increases,
while going from full recall base to ideal recall base it decreases again. The be-
haviour on the IEEE collection shows the opposite effect. We expect that the
main cause is to be found in the fact that for INEX 2005 there was a notion
of so called ’too small’ nodes, which is not considered an issue in INEX 2006.
The ratio of leaf nodes in a document going from full recall base to ideal re-
call base increases in both collections. The ratio does show a difference between
both collections when comparing the collection and full recall base; on the IEEE
collection the ratio first increases, while on the Wikipedia collection it decreases.

Given these huge differences in structure of the XML collections, and compo-
sition and structure of the recall bases, it is interesting to compare the perfor-
mance of the retrieval model on the different collections, and the impact of the
reranking methods.

3.2 Reranking Methods

Based on the characteristics of the IEEE collection of INEX 2005 and the cor-
responding recall bases, we have defined a number of reranking methods, which
aim at using the structure of a document. In theory, these reranking methods
can be applied for both the Thorough and Focused tasks as a post-processing
step.

The idea of using structural characteristics to increase ranking performance
has been applied before; In [4] a ranking schema PTF is used in which assumed
relevant elements are first ordered by decreasing path depth, before looking at
(distinct) query term frequency. In [5] the assumption is made that smaller nodes
are more important and these are therefore pushed up in the ranking. Neither of
the two articles though presents evidence on which these assumptions could be
justified, nor do they explore the influence of using different structural charac-
teristics. In the previous section we already showed the differences in character-
istics between collections and recall-bases, on which we can justify the reranking

XSee: Structure Xposed 277

methods described below. Comparing the performances of the various rerank-
ing methods also allows us to get insight in the influence of available structural
information.

Rerank on node size. Given a run R and a result element r ∈ R with relevance
score rsvr and node sizer, the rerank method produces a run R′ that computes
a new relevance score rsvr′ for each element r′ ∈ R′ using the formula: rsvr′ =

rsvr

node sizer
. The effect of this method is that elements with a smaller node size,

will be pushed higher in the ranking.

Rerank on leafs. In this case the leaf property leaf noder of an element r is
used to compute a new ranking using the formula: rsvr′ = rsvr · leaf noder.
With leaf noder = 1, if the node is a leaf node, e.g. one of its children is a text
node, or leaf noder = 0.5 otherwise.

Rerank on descendants. The descendant rerank uses the number of descen-
dant nodes descendantsr as a measure for recalculating the relevance score of a
node r using: rsvr′ = rsvr

descendantsr+1 . The objective is to retrieve smaller nodes
higher in the ranking.

Rerank on path depth. Elements that are positioned deeper in the XML tree,
or in other words have a larger path depth, are preferred over less deep positioned
elements in a Focused run. The path depth path depthr of an element r is used
to compose a new ranking, where elements with longer paths will be ranked
higher, using the formula: rsvr′ = path depthr · rsvr .

4 Thorough Task

In this section the results for the Thorough task are presented. We will start with
discussing the basic configuration of the retrieval model and the official runs for
the Thorough tasks. At the end of this section we present improvements over
the baseline that are obtained by applying the reranking methods discussed in
the previous section.

4.1 Thorough Runs - Basic

The configuration of the official runs submitted for the Thorough task is based on
their performance on the INEX 2005 data. It assumes that the configuration of
retrieval models should be stable for different collections. In Table 4 the overall
results for the official runs are presented. It shows that the configuration of
the best three runs on the IEEE collection, gives a similar performance on the
Wikipedia collection. In Figure 2.a the performance of the official runs is plotted
using effort precision vs gain recall. It reveals that there is room for improvement
at the lower gain recall levels, e.g. the top of the ranking.

To gain more insight into the effect of different node decay vs. term factor
parameters, we have measured the performance of the retrieval model on the

278 R. van Zwol and W. Weerkamp

Table 4. Overall performance of the official runs on the Thorough task

nd : .39Ft : 4 nd : .29Ft : 3 nd : .49Ft : 5

MAep on IEEE 0.0767 0.0757 0.0708

MAep on Wikipedia 0.0302 0.0294 0.0290
Ranked 14 15 16

(a) Official runs (b) Baseline vs. best reranked runs

Fig. 2. Thorough runs: Effort precision vs. Gain recall

Thorough task on a range of node decays (0.09 - 0.49) and term factors (1 - 10),
which results in the matrix of Table 5. It shows that optimal performance of the
retrieval model is obtained, when using a node decay of 0.39, in combination
with a term factor of 4. The highlighted cells around this configuration show
how performance on the MAep is clustered around this optimal configuration of
the basic retrieval model.

The results show that the performance of the basic retrieval model is stable,
e.g. the same configuration leads to the best performance for the two collections,
which is a desirable effect.

4.2 Thorough Runs - Using Structure

Besides evaluating the new retrieval model, we also wanted to investigate how
to effectively use the structural characteristics of the document. Based on the
four reranking methods of Section 3, we have post-processed the set of Thorough
runs to see how we can benefit from the available of structure. Table 6 compares
the performance of our baseline run [nd : .39, Ft : 4] against the best performing
reranked versions. In the table, we present the results of the best performing
runs on both the MAep and nxCG@5 measures. When optimizing for MAep,

XSee: Structure Xposed 279

Table 5. Performance of Thorough runs on MAep

Node decay
0.09 0.19 0.29 0.39 0.49

T
er

m
fa

ct
or

1 0.0146 0.0167 0.0184 0.0198 0.0208
2 0.0210 0.0249 0.0273 0.0283 0.0286
3 0.0237 0.0273 0.0294 0.0299 0.0292
4 0.0249 0.0282 0.0299 0.0302 0.0294
5 0.0255 0.0290 0.0301 0.0301 0.0290
6 0.0257 0.0290 0.0301 0.0301 0.0289

10 0.0265 0.0293 0.0299 0.0292 0.0281

we see that a reranking based on the size of the node is most effective, and
results in a 6% improvement over the baseline when using the configuration
[nd : .49, Ft : 5, size]. While an increase in performance of 8.3% on nxCG@5 is
obtained for the configuration [nd : .49, Ft : 5, desc], where reranking is based
on the number of descendants.

Table 6. Effect of rerank based on structure

Run MAep nxCG@5 nxCG@10 nxCG@25 nxCG@50
nd : .39, Ft : 4 0.302 0.355 0.320 0.268 0.233

nd : .49, Ft : 5, size 0.0322 0.3338 0.3106 0.2831 0.2560
nd : .49, Ft : 4, size 0.0313 0.3206 0.3033 0.2798 0.2550
nd : .39, Ft : 5, size 0.0305 0.3324 0.3125 0.2829 0.2538
nd : .29, Ft : 4, leaf 0.0288 0.3767 0.3407 0.2824 0.2440
nd : .49, Ft : 5, desc 0.0230 0.3843 0.3695 0.2992 0.2426
nd : .39, Ft : 5, desc 0.0211 0.3797 0.3615 0.2979 0.2375

Color coding: Best run Top 3 Top 10 Top20 Other

Figure 2.b shows the performance of the reranked runs against the baseline
run. It shows that reranking runs based on size give better results on the effort
precision, although it shows no specific improvement on the lower gain recall
levels. Nonetheless, we can conclude that reranking based on size has a positive
effect on the MAep, while reranking based on descendants is a useful tool to
improve on the nxCG@5 measures.

5 Focused Task

Goal of the Focused task is to return relevant elements regarding a query without
elements overlapping each other. In Section 3 various methods of exploiting
XML structure of documents are explained and we used these methods for the
Focused task.

280 R. van Zwol and W. Weerkamp

Overlap removal. After applying one of the reranking methods to the Thor-
ough input run, overlap must be removed. We use a very straightforward method
for this in which we go over the results per topic ordered by decreasing relevance
score. Only elements that do not overlap with a previous selected element are
selected for the Focused run.

Rerank vs. De-rerank. Evaluation of the reranking strategies on the IEEE
collection shows that performances on MAep can be improved, but the baseline
runs outperform the reranked runs on the nxCG measures, especially on low
cut-off levels. A logical explanation for this symptom is that by reranking the
input run, an element that was less relevant (element a) could be ranked above
a more relevant element (element b) due to its characteristics. When both el-
ements are preserved after the removal of overlap a is suddenly more relevant
than b. So although reranking makes it possible to select elements with the right
characteristics, it does not improve ranking. To eliminate this error we propose a
de-reranking strategy; de-reranking cancels the reranking after removal of over-
lap by returning the remaining elements to their original order.

5.1 Focused Runs - Submissions

Based on evaluation results of various configurations on the INEX 2005 collection
and assessments, three configurations are selected to be submitted as official runs
for INEX 2006. These runs differ from each other on node decay, term factor
and (de–)reranking strategy. The performance results of the official runs are
summarized in Table 7.

Table 7. Performance results for the official Focused runs

characteristic nd : .19, Ft : 5 nd : .04, Ft : 3 nd : .04, Ft : 2
size rerank leaf rerank desc. dererank

nxCG@5 0.2907 0.3090 0.2641
nxCG@10 0.2687 0.2840 0.2368
nxCG@25 0.2342 0.2227 0.1856
nxCG@50 0.2001 0.1910 0.1531

MAep 0.0541 0.0509 0.0304

On the nxCG measure with low cut-off levels we see that the run with leaf
reranking [nd : .04, Ft : 3] performs best, but compared to other INEX partici-
pants results are modest (position 20–30). At higher cut-off levels and on MAep
the run with size reranking [nd : .19, Ft : 5] performs best, and is ranked 11–16
on nxCG. The descendants de-reranked run [nd : .04, Ft : 2] cannot compete
with other runs, even though it was the best performing run (on MAep) on the
IEEE collection.

Figure 3.a shows the performance of the official runs and the baseline run
on nxCG to rank%. Especially on higher rank% the two official runs and the
baseline run perform good, but on lower rank% there is room for improvement.

XSee: Structure Xposed 281

5.2 Focused Runs - Wikipedia Evaluation

The differences between the IEEE and Wikipedia collections identified in Sec-
tion 3 indicate that other configurations might perform better on the Wikipedia
collection than the best performing configurations on the IEEE collection. To ex-
amine whether this is true, we evaluated a large number of baseline Focused runs
for the Wikipedia collection. Table 8 shows the top configurations on nxCG@5
and MAep without (de-)reranking strategies applied.

Table 8. Performance results for baseline Focused runs

Run nxCG@5 nxCG@10 nxCG@25 nxCG@50 MAep
nd : .04, Ft : 3 0.3099 0.2699 0.2062 0.1772 0.0494
nd : .04, Ft : 4 0.3324 0.2760 0.2104 0.1766 0.0486
nd : .04, Ft : 6 0.3311 0.2703 0.2100 0.1734 0.0476
nd : .04, Ft : 10 0.3396 0.2706 0.2047 0.1656 0.0462
nd : .04, Ft : 4 0.3324 0.2760 0.2104 0.1766 0.0486
nd : .04, Ft : 5 0.3320 0.2730 0.2029 0.1709 0.0472

Color coding: Best run Top 3 Top 10 Top 20 Other

From these results we can conclude that for a Focused run without
(de–)reranking strategies a small node decay [nd : .04] is preferred; this smaller
node decay makes sure smaller elements are awarded a relatively higher rele-
vance score. The term factor should be between 3 and 5 to get the best results.
Comparing the results of the official runs to the results of the baseline runs
also shows that using structure in reranking the runs has a positive influence on
MAep.

(a) Official runs (b) Baseline vs. best reranked runs

Fig. 3. Focused runs: nxCG vs. rank%

282 R. van Zwol and W. Weerkamp

For each of the node decays [nd : .04 nd : .09 nd : .19] we selected the best
configuration [Ft : 4 Ft : 4 Ft : 3] to apply the (de–)reranking strategies. The
results of the best adjusted Focused runs on nxCG@5 and MAep compared to
the best baseline run [nd : .04, Ft : 4] are shown in Table 9.

Table 9. Performance results for (de-)reranked Focused runs

Run nxCG@5 nxCG@10 nxCG@25 nxCG@50 MAep
nd : .04, Ft : 4, baseline 0.3324 0.2760 0.2104 0.1766 0.0486

nd : .09, Ft : 4, rerank size 0.2808 0.2408 0.2105 0.1864 0.0563
nd : .04, Ft : 4, rerank size 0.2762 0.2375 0.2111 0.1875 0.0556
nd : .19, Ft : 3, rerank size 0.2522 0.2269 0.2064 0.1811 0.0547
nd : .09, Ft : 4, rerank depth 0.3288 0.2695 0.2063 0.1676 0.0486
nd : .04, Ft : 4, rerank depth 0.3260 0.2751 0.2093 0.1756 0.0497
nd : .04, Ft : 4, dererank size 0.3236 0.2724 0.2071 0.1747 0.0479

Color coding: Best run Top 3 Top 6 Top 12 Other

The size reranking strategy shows excellent results on MAep, with a maximum
performance increase of 15.8% compared to the [nd : .04, Ft : 4] baseline run.
The results also show that the best Focused baseline configuration [nd : .04] is
not necessariliy the best configuration for the (de–)reranking input.

In Figure 3.b the performances of the baseline run and the best (de–)reranked
runs (on MAep) are compared on nxCG to rank%. Just as could be seen in
Figure 3.a performances of the various runs at higher rank% levels are good,
but at lower levels the performances are less good. We can also see that the
reranked runs perform less good on these lower levels than the baseline run and
the submitted runs.

6 Conclusions

In this article we have presented a novel model for XML retrieval that is used
by the XSee system. It is derived from the GPX system, and aims to provide a
scalable approach to XML retrieval, while maintaining good retrieval properties.
The model has shown to be stable under changing collection characteristics for
the Thorough task.

From the special focus on exploiting structural characteristics of XML
document collections, we have learned that reranking based on node size is
a useful feature to enhance the retrieval performance in terms of MAep in a
post-processing process. However, the reranking methods are less successful in
improving the top of the ranking given the results for the nxCG@{5,10} mea-
sures. Improvement can however be found on the nxCG family of measures when
inspecting the higher recall levels.

XSee: Structure Xposed 283

References

1. Fuhr, N., Lalmas, M., Malik, S., Kazai, G.: Advances in XML Information Retrieval
and Evaluation. In: Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.) INEX 2005.
LNCS, vol. 3977, Springer, Heidelberg (2006)

2. Geva, S.: Gpx - gardens point xml information retrieval at inex 2004. In: Fuhr, N.,
Lalmas, M., Malik, S., Szlávik, Z. (eds.) INEX 2004. LNCS, vol. 3493, pp. 211–223.
Springer, Heidelberg (2005)

3. Gövert, N., Kazai, G.: Overview of the initiative for the evaluation of xml retrieval
(inex) 2002. In: Fuhr, N., Gövert, N., Kazai, G., Lalmas, M. (eds.) INEX Workshop,
pp. 1–17 (2002)

4. Pehcevski, J., Thom, J.A., Tahaghoghi, S.M.M.: Rmit university at inex 2005: Ad
hoc track. In: Fuhr, et al, [1], pp. 306–320 (2005)

5. Sauvagnat, K., Hlaoua, L., Boughanem, M.: Xfirm at inex 2005: Ad-hoc and rele-
vance feedback tracks. In: Fuhr, et al, [1], pp. 88–103 (2005)

6. van Zwol, R.: B3-sdr and effective use of structural hints. In: Fuhr, et al. [1], pp.
146–160

7. Weerkamp, W.: Optimising structured document retrieval using focused and relevant
in context strategies. Master’s thesis, Utrecht University, the Netherlands (2006)

Shallow Parsing of INEX Queries

Häıfa Zargayouna, Victor Rosas, and Sylvie Salotti

LIPN, Université Paris 13 - CNRS UMR 7030,
99 av. J.B. Clément, 93440 Villetaneuse, France

haifa.zargayouna@lipn.univ-paris13.fr
firstname.lastname@lipn.univ-paris13.fr

Abstract. This article presents the contribution of the LIPN : Labo-
ratoire d’Informatique de Paris Nord (France) to the NLQ2NEXI (Nat-
ural Language Queries to NEXI) task (part of the Natural Language
Processing (NLP) track) of the Initiative for Evaluation of XML Re-
trieval (INEX 2006). It discusses the use of shallow parsing methods to
analyse natural language queries.

1 Introduction

XML Information Retrieval (XML-IR) systems combine features from traditional
IR and from database retrieval. Their aim is to find relevant parts of informa-
tion according to explicit documents structure and content semantics. XML-IR
interests both IR and database communities which propose formal languages to
help users express their needs according to content and structure. Unfortunately,
these languages are complex and difficult to use even by experienced users. The
need to know the documents structure is also an obstacle to their use. Research
on Natural Language Interfaces for the retrieval of XML documents has become
increasingly acute as more and more casual users access a wide range of docu-
ment collections. Our aim is to translate Natural Language Queries (NLQ) into
a formal query language (i.e NEXI).

Automatically understanding natural language is still an open research prob-
lem. The translation of natural language queries into a database query language
has been addressed by [1], [2], [3]. Natural language interfaces for an XML data-
base are proposed by [4], [5]. The goal of these interfaces is the same as for IR:
mapping the intent into a specific database schema. But the extracted informa-
tions are different such as grouping and nesting, variable binding, etc.

Natural language interfaces for an XML retrieval are proposed by [6] and [7].
We aim to evaluate the contribution of existant robust NLP (Natural Language
Processing) tools to extract the main query parts: content and structure, enriched
by additional informations such as boolean operators. This analysis produces an
annotated NLQ which can then be formalized in any formal language.

The remainder of this paper is organized as follows. First, we introduce the
INEX campaign context. Next, we present the motivations for this research.
We overview our propositions in section 4. Section 5 to 8 detail the proposed
components. We comment our results and conclude with a discussion of future
work.

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 284–293, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Shallow Parsing of INEX Queries 285

2 INEX Context

In the 2006 campaign, the topic types are all merged into one type: Content
Only + Structure (CO+S). The CO+S topics consist of topics where structure
hints can be specified (but they are not mandatory) to help retrieval systems to
perform a better search.

We participate to the NLQ2NEXI which is a task that requires the translation
of a natural language query, provided in the descriptive part of a Co+S topic,
into a formal NEXI query. Two parts of the CO+S topics are of interest (see an
example in figure 1):

– <castitle>: in which Content And Structure (CAS) queries are given
– <description>: from which formal queries are derived.

The proposed systems have to analyse automatically the descriptive part in order
to generate automatically castitle part.

Fig. 1. An extract of the topic 301

The castitle part contains the query formalised in NEXI [8]. A NEXI query
has the following form:

//s1[c1]// . . . //sk−1[ck−1]//sk[ck]

It is applied to a sequence of XML elements and returns elements of type sk

about ck which are descendants of elements of type sk−1 about ck−1, . . . , which
are elements of type s1 about c1.

Predicates c1, . . . , ck−1, ck are built from textual or numerical predicates
connected by disjunctive or conjunctive connectors. A textual predicate has the
following form:

about(relative location path, string litteral)

and a numerical predicate has the following form:

286 H. Zargayouna, V. Rosas, and S. Salotti

relative location path connector string litteral

We studied the descriptive part of the submitted topics in 2006. The queries
are very diverse but we can make these distinctions between different types of
queries:

– Question Answering type : This type of queries requires more precise re-
sponses to users’ queries than Information Retrieval. There is no structural
hint to help the system generating a formal (structured) query: for example
the query 380 (How should I prepare acorns for eating?). This type of queries
is hard to analyse to find a relevant structure in the context of the actual
INEX corpora. As structural elements are essentially logical and typograph-
ical. Nevertheless, we can envision in a ”semantically” structured corpora to
infer that the answer can be retrieved in Recipe element for example.

– Queries containing no structure: This type of queries is asked by a user who
does not know (or does not want to use) the actual structure of the XML
documents: for example the query 320 (I’m looking for ways of transport from
Gare de Lyon station to Gare du Nord in Paris). The query is therefore a
Content Only (CO) Query.

– Queries containing structure: The user expresses constraints on structural
elements that she looks for or want to be returned.

Table 1 presents statistics1 about the percentage per type of queries in the topics
proposed by participants. Only approximately 25% of the topics precise struc-

Table 1. Query types statistics

Q/A queries CO queries COS queries

14 → 11% 80 → 64% 31 → 25%

tural constraints, this is -in our opinion- due to the fact that there is no clearly
identified structure. The efforts made to extract all possible paths show that the
structure is quite complex, the elements names are sometimes not understand-
able. We discuss this point in section 5. We test our approach on all query types,
even if intuitively it has to be more efficient for COS queries.

3 Motivations

The problem with formal XML Information Retrieval query languages is that
they are difficult to use and require an intimate knowledge of documents struc-
ture from users. Formulate the user need is then limited by these two aspects.

1 This is an approximate repartition analysis, we can consider that ”what” questions
can refer to the definition structure or, on the contrary, that queries containing ”I
want articles” do not provide structure hints.

Shallow Parsing of INEX Queries 287

We submitted two runs in 2006 campaign: manual and automatic. We discov-
ered that our manual formulation of NEXI queries varies from submitted queries
by participants (we call them reference queries). Only 7,2% of the NEXI refer-
ence queries are equivalent to NEXI manual queries. In our opinion the main
differences are caused by the implicit knowledge of retrieval system capacities.
For example people do not differentiate or/and operators (for content) as the
majority of retrieval systems relax these constraints. The difference in structural
elements is also important (see table 2), this can be due to the complexity of the
collection schema (see section 5).

Table 2. Differences between humain query formulation. Difference degree 1 means
difference in boolean operators use, 2: difference in content terms, 3: difference in
structure used, 4: difference in boolean, content and structure.

Difference degree 1 2 3 4

Percentage 33,6% 38,4% 64,8% 11,2%

We propose a shallow parsing method that does not go in disambiguation
processes or anaphora recognition. The offered services by the NLP interface are
influenced by the formal language expressiveness. There is no need, for example,
to extract boolean operators if the formal language does not allow to express such
constraints. We propose a method that extract the main parts of COS queries
(content, structure and operators). Our aim is to test the validity of a lexical
approach combined with a ”light” semantic matching (for structure extraction).

4 Propositions Overview

Our approach is subdivided in two phases (see figure 2):

1. NLQ Analysis: This phase consists in extracting the content, structure and
boolean operators of the query. The extracted segments are annotated in
XML format and can be translated to any XML query langage.

2. Query Generation: This phase consists in taking into account the language
expressiveness and syntax requirements to generate a well-formed query.
This module generates NEXI queries and can be adapted to generate formal
queries in other languages such as XOR [9], XQuery [10], etc.

The analysis phase is based on a part-of-speech (POS) tagging. It is composed
by the following components:

– Extracting the structure: This component focuses on chunks of the NLQ
that could allow us to identify structural elements. We associate these NLQ
chunks to the relevant structuring elements using an external resource: tax-
onomy of Wikipedia structuring elements2.

2 For instance, build manually.

288 H. Zargayouna, V. Rosas, and S. Salotti

Fig. 2. Two main modules

– Extracting the content: This component identifies and extracts the chunks
that will form the content terms of the formal query. Those chunks are the
information requested by the user which might be retrieved in the documents.

– Extracting the operators: This part of the analysis identifies and extracts
chunks of the NLQ that are associated with boolean operators. The boolean
operators can be associated to content and/or structure.

To carry out the cited steps of the NLQ analysis we use NooJ. NooJ is a
linguistic development environment that includes large-coverage dictionaries and
grammars, and parses corpora. It includes tools to create and maintain large-
coverage lexical resources, as well as morphological and syntactic grammars.
Dictionaries and grammars are applied to texts in order to locate morphological,
lexical and syntactic patterns and tag simple and compound words [11].

Context free Grammar rules are defined in order to extract the main segments
(structure, content and boolean operators). More specific rules are applied to
each segment. We detail each part in the following sections.

5 Recognizing Structure Expression

INEX 2006 uses a new collection based on the English Wikipedia collection [12].
The collection contains 1241 different tag names. In this context, it is difficult
to envision that user could have a precise idea of the structure. The lack of an
annotated DTD to know tags semantics leads to the large number of CO query.
The COS queries use the most common elements (article, section,paragraph,
figure, etc.)

In order to overcome the problem of structure complexity, we define a tax-
onomy3 that abstracts the global schema of the collection. The concepts are
related to possible paths in the collection. For example the concept section is re-
lated to article/body/section/, article/body/indentation1/sub/sub/sub/section/,

3 A taxonomy is the classification, or categorization, of objects. It is composed of
concept related by hierarchical relations (is-a, part-of).

Shallow Parsing of INEX Queries 289

Fig. 3. Extraction of Content, structure and boolean operators with NooJ

article/body/noinclude/section/, etc. Possible paths are quite complex, without
semantics we are unable to choose one. One possible solution is to associate
the concept to the disjunction of all possible paths. We choose to compute an
abstract path which summarizes the possible paths (i.e. an abstract path that
contains common elements). The concept section, for example, is related to the
path article//section. Concepts are also lexicalized (see figure 4) which is helpful
to find different occurrences (structural hints) of the concept in the NLQ (for
example the concept chapter can be lexicalized by chapter, chapters, chapitre,
etc.). The use of lexicalized taxonomy is particularly interesting in heterogeneous
collections or multilingual ones.

The identified structure segment is annotated by an XML element:
<Structure value=”path”> structural chunks </Structure> or
<ResultStruct value=”path”> structural chunks </ResultStruct> if the result
structure is specified.

For example the query 306 Seek articles about genre theory,classification and
other structuralist approaches. In particular I would like sections regarding Plato
and Aristotle’s ideas of form. is annotated by:

<Structure value=”//article”> articles </Structure> ...
<ResultStruct value=”//article//section”> In particular sections </ResultStruct>

We ignore chunks before structural hints because generally they contains in-
troductory phrases (e.g: Find, Seek, Locate, Retrieve, I want, I would like, etc.).
In case where no structural hints are found (the case of CO queries), the query
is annotated with the root element. Many NL queries contain as structural hints
the terms information or passage, this is a generic structural hint which means
that the retrieval system has to identify the relevant element to return. This
minimal unit of information depends on documents structure, we make the hy-
pothesis that for INEX collection, this unit can be //article//(section|p).

290 H. Zargayouna, V. Rosas, and S. Salotti

Fig. 4. The use of taxonomy : an intermediary abstraction between structural hints
and elements

6 Identifying Content Terms

We have defined a set of rules that describes the grammatical construction of
terms expressing users content requirements. The following syntactic rules iden-
tify ”content” terms:

Term− > number+

Term− > adjective∗noun+number∗

Term− > (noun|adjective|prefix)+(dash)(noun|verb|adjectif)+
Term− > ”character+”

Where| is a disjunction connector, X∗ means that X is optional and X+ means
that there is at least one occurrence of X.

The minimal expression of content terms is a noun (common or proper noun) or
a number. We prefer complex terms to simple ones, for example we choose Vector
Space Model instead of Vector or Vector Space. Figure 5 summarizes these rules
with a content graph expressed in the NooJ platform. The content graph can be
considered like a content term model. The sequence of words which instantiate
this model are extracted and annotated as <Content value=”selected chunk”>.

7 Extracting Boolean Operators

Some NLQ chunks and punctuation marks express users constraints on content or
structure. In this part of the analysis we identify and extract boolean operators
chunks and punctuation marks from the NLQ. The NLQs boolean operators
chunks and punctuation marks considered in the analysis are:

Shallow Parsing of INEX Queries 291

Fig. 5. ”Content” Graph

– or: expressed by ”or”, ”such as”, ”,” if follows ”such as” . . .
– and: expressed by ”and”, ”also like”, ,”also need” . . .
– not: expressed by ”not”, ”nor” . . .

We annotate the chunks by <Operator value=”operator-type”>.
The binary operators (or, and) are applied to the (right and left) nearest seg-

ment (structure or content). The operator not is applied to the nearest right
segment.

For example, the query 292:
I want figures containing Renaissance paintings of Flemish or Italian artists,
but not French or German ones.

is annotated by:

<Content1 value=”Flemish”>Flemish</Content1>
<Operator value=”or”>or</Operator>
<Content2 value=”Italian artists”>
<Operator value=”not”> not </Operator>
<Content1 value=”French”> French </Content1>
<Operator value=”or”>or</Operator>
<Content2 value=”German ones”>

8 Constructing NEXI Queries

The analysis phase produces the NL query annotated in XML. The generation
phase consists in translating the XML representation into a formal query with
respect to expressiveness and syntactic constraints of the chosen language.

292 H. Zargayouna, V. Rosas, and S. Salotti

We use the annotations value to generate the equivalent form:

– The structure annotation value is reproduced. We process some factoriza-
tion when needed. For example if there is two extracted paths //A//B and
//A//B//C, we generate //A//B[about(., . . .) . . . about(.//C, . . .)]. Fac-
torization is computed by finding shared ancestors between elements in the
specified paths.

– The content annotation value is translated in the about clause, ”” are added
to complex terms.

– Boolean operators are applied to content and structure with the adequate
syntax . For example | for the structure (if there is no need to factorize)
and OR for the content. We applied ”associativity and commutativity” to
operators. For example the query C and A or B is translated to about(.,
C A) OR about(., C B). The negation is applied only to content with the
minus operator. For example ”not C” is translated to about(., -C).

9 Runs and Results

We submitted two runs in 2006 campaign: the first run corresponds to man-
ually generated NEXI queries, the second run corresponds to the automated
translation.

Our objective is to compare the results obtained by the same search engine
(namely GPX [13]) when using original participant formal NEXI expressions
(the baseline), manually generated queries and automatically generated ones.

The runs was submitted to GPX and produces 24 pooled results according to
the search engine (i.e. a run for each task: Thorough, Focused, All In Context,
Best In Context, etc.).

The baseline almost always outperforms the other runs. This may be due to
the fact that in some cases, it is more suitable to specify vague structure (i.e.
//article//) than a very specific one. For example, four of our proposed queries
had no results.

Our system is better ranked on Focused and Best In Context task than on
Thorough task. Our manual run always outperforms the automatic one. Un-
fortunately, we could not interpret in detail our results. We need to analyse the
overall behavior of our method and its efficiency for the different types of queries
(QA, CO and COS). More experimental studies are necessary.

10 Conclusion and Future Work

Formulating NEXI queries to express their information needs is a difficult task
for casual users.

Indeed we can imagine how difficult it could be for a doctor to write a NEXI
query. But we can also imagine how useful it could be for this doctor, looking for
diabetes diagnosis information for example, to be able to extract only this specific
information from medical XML documents. But formulating NEXI queries is not

Shallow Parsing of INEX Queries 293

only a difficult task for casual users. Indeed, there is always syntactically correct
queries that do not meet the descriptive part4.

We proposed a shallow parsing method to extract main components of NL
queries. Considerable efforts need to be done to digest the vast number of ele-
ments introduced in this year’s INEX DTD, in order to identify correctly the
structural hints and to make sense of their implications for future adaptations of
our system. We are actually adapting our propositions to a specialized corpora
in the medical domain. We believe that ”Semantically” tagged documents enable
more fine-grained translations.

References

1. Androutsopoulos, I., Ritchie, G.D., Thanisch, P.: Natural language interfaces to
databases - an introduction. Natural Language Engineering 1(1), 29–81 (1995)

2. Hulgeri, A., Bhalotia, G., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword
search in databases. In: IEEE Data Engineering Bulletin. pp. 22–32 (2001)

3. Popescu, A., Etzioni, O., Kautz, H.: Towards a theory of natural language interfaces
to databases. In: Proceedings of the conference on Intelligent User Interfaces. pp.
149–157 (2003)

4. Cohen, S., Mamou, J., Kanza, Y., Sagiv, Y.: XSEarch: A semantic search engine
for XML. In: VLDB. pp. 45–56 (2003)

5. Li, Y., Yang, H., Jagadish, H.: Constructing a generic natural language interface for
an XML database. In: International Conference on Extending Database Technology
EDBT, LNCS 3896. pp. 737–754 (2006)

6. Tannier, X.: From natural language to NEXI, an interface for INEX 2005 queries.
In: Advances in XML Information Retrieval: Fourth Workshop of the INitiative for
the Evaluation of XML Retrieval. pp. 373–387 (2005)

7. Woodley, A., Geva, S.: NLPX at INEX 2005. In: Advances in XML Information
Retrieval: Fourth Workshop of the INitiative for the Evaluation of XML Retrieval.
pp. 358–372 (2005)

8. O’Keefe, R.A., Trotman, A.: The simplest query language that could possibly work.
In: Proceedings of the second Workshop of the INitiative for the Evaluation of XML
retrieval. pp. 167–174 (2003)

9. Geva, S., Hassler, M., Tannier, X.: XOR - XML Oriented Retrieval Language. In:
Proceedings of SIGIR 2006, XML Element Retrieval Methodology Workshop. pp.
5–12 (2006)

10. Boag, S., Chamberlin, D., Fernández, M., Florescu, D., Robie, J., Siméon, J.:
XQuery 1.0: An XML query language. W3C Working Draft (2005)

11. Silberztein, M.: NooJ: a linguistic annotation system for corpus processing. In:
Proceedings of HLT/EMNLP 2005 Interactive Demonstration. pp. 10–11 (2005)

12. Denoyer, L., Gallinari, P.: The Wikipedia XML Corpus. SIGIR Forum (2006)
13. Geva, S.: GPX - Gardens Point XML IR at INEX 2005. In: Advances in XML

Information Retrieval: Fourth Workshop of the INitiative for the Evaluation of
XML Retrieval. pp. 240–253 (2006)

4 For example, in the NEXI query //article[about(., ”immanuel kant” AND ”moral
philosophy”)]//section[about(., ”categorical imperative”)], the AND operator in the
about clause will not be interpreted as a boolean operator but as a string.

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 294–301, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Using Rich Document Representation in XML
Information Retrieval

Fahimeh Raja1, Mostafa Keikha1, Masued Rahgozar1, and Farhad Oroumchian2

1 Database Research Group, Control and Intelligent Processing center of Excellence, faculty of
ECE, School of Engineering, University of Tehran, Tehran, Iran

{f.raja,m.keikha}@ece.ut.ac.ir
rahgozar@ut.ac.ir

2 The College of IT, University of Wollongong in Dubai
FarhadO@uowdubai.ac.ae

Abstract. In this paper we present a method of document representation called
Rich Document Representation (RDR) to build XML retrieval engines with
high specificity. RDR is a form of document representation that utilizes single
words, phrases, logical terms and logical statements for representing
documents. The Vector Space model is used to compute index terms weight and
similarity between each element and query. This system has participated in
INEX 2006 and tested with the Content Only queries of the given collection.
The results have been very weak but a failure analysis has revealed that it has
been caused by an error in document processing which has produced
inconsistent IDs and caused a mismatch between the IDs assigned to document
elements such as single terms, phrases and logical terms. However similar
experiment on INEX2004 collection yielded very good precision on high
specificity task with s3e123 quantization.

Keywords: Rich Document Representation, XML Information Retrieval.

1 Introduction

The widespread use of Extensible Markup Language (XML) has brought up a number
of challenges for Information Retrieval (IR) systems. In contrast to traditional IR,
XML information retrieval exploits the logical structure of documents and is
concerned not only with finding relevant documents but with finding the most
appropriate unit in the document that satisfies users’ information need [1] [2].

In this paper we present an NLP approach for representing XML text in XML
information retrieval. In this method we use Rich Document Representation (RDR) to
represent documents by their single words, phrases, logical terms and logical
statements.

The most popular document representation in IR is called single terms where
stemmed single words are used as a representation of a document [3]. A more
sophisticated representation is based on single terms and phrases. These phrases could
be formed statistically or linguistically. The usefulness of using phrases and their

 Using Rich Document Representation in XML Information Retrieval 295

contribution largely depends on the type of the system and weighting scheme used
[4]. Adding phrases to a single term representation in vector space system with a good
weighting such as Lnu.ltu will only add 3-5% [5] to precision. However, in a system
with weaker weighting the contribution of the phrases could be as much as 10% [5].

However there is more information in the text that could be used as a document
representation. Since text is written purposefully for a specific reason, it is full of
clues to help clarify its meaning. There are many studies into identifying and
representing these relationships. The number of reported relationships varies from 10
to 120 based on the context and system [6], [7]. However in this paper we are using a
few relationships that could be used for representing documents. The main advantage
of these relationships is that they could be converted into logical forms similar in
syntax to multi-valued logic of Michalski [8].

This representation is the main document representation of a system called PLIR
(Plausible Information Retrieval). PLIR assumes that retrieval is an inference as
pointed out by Prof. Van Rijsbergen [9]. However, unlike Van Rijsbergen work which
has only a single inference, PLIR uses many inferences of the theory of Human
Plausible Reasoning and offers calculations for the certainty of the inferences. PLIR
outperforms a typical vector space model [10]. Previously, it was proven that RDR is
better representation for clustering than single words in the second stage of a two
stage retrieval system [11].

The rest of the paper is organized as follows: Section 2 will introduce RDR as our
method of representing document text. In Section 3 we will describe our experiments
and weighting scheme used in this study. Section 4 is about our results in INEX 2006.
This section gives a brief description of the cause of our poor results in this
competition. Finally Section 5 concludes the article.

2 What Is RDR?

Rich Document Representation (RDR) is a method of representing documents by
logical forms with the syntax of multi-valued logic. These logical forms could be any
of the following:

1. Concepts (single stemmed words and phrases)
2. Logical terms: logical terms are in the form of A(B) where A is the descriptor and

B is the argument. Logical forms are similar to predicates in Predicate logic. A
logical term can have a descriptor and one or more arguments.

3. Logical statements: logical statements are in the form of A(B)= {C} Where A is
the descriptor and B is the argument and C is the referent. For example Flower
(England) = {Daffodil} which basically means Daffodils are flowers of England.

Multi-valued logic allows logical statements to have multiple referents or refer to
an infinite set. However in the context of IR, there is no infinite document or sentence
therefore it is not possible for logical statements to reference an infinite set. Also, in
order to make matching of concepts easier, logical statements have been restricted to
have only a single referent. Statements that could translate to Logical statements with
multiple referents are written as multiple logical statements with the same descriptor
and argument and a single referent.

296 F. Raja et al.

PLIR uses RDR as the main document representation. PLIR uses all the statements
representing the documents in the collection to build a single knowledge base that
describes a possible world which includes the documents. In such a space, statements
of different documents could complement each other and/or provide more
information. In that space, PLIR uses reasoning in order to guess the relevancy of
documents to queries. PLIR’s strength comes from representing document content as
logical statements and relating them together through ISA or other types of
relationships and reasoning with these statements and relationships. ISA is an
important relationship which represents Type-of or Kind-of relationships and creates
hierarchies in the knowledge base that can be used by inferences. For example Excel
is a Type_of spreadsheet so if a user needs information about spreadsheets he/she
would be interested in Excel which is a type of spreadsheet. Another feature of PLIR
is a local weighting called Dominance which is not dependent on Inverse Document
Frequency. Dominance weights the strength of relationships between the concepts
and/or between documents and concepts. Its formulation does not require document
frequency therefore its calculation is independent of the size of collection or number
of documents that have any particular concept. In processing large collections this
would be advantageous because it means at any stage of the processing documents all
the documents processed so far have their complete weight and can be added to the
collection and index and used in retrieval. All these relationships and logical
statements are extracted automatically from the text. In a normal vector space model,
there is no reasoning and ISA relations are not useful, so the only use of RDR would
be providing a deeper representation for the text. RDR has been used in documents
clustering as well. It has been tested with several clustering methods and different
similarity measures and it has outperformed single word and phrase representations
consistently [11]. This paper explores RDR’s application in retrieving more specific
XML elements.

RDR representation is extracted automatically from the text. The process of
producing these logical forms is as follows:

1. Tag the text: The text has to be tagged by a Part of Speech (POS) tagger.
2. Rule based or Clue based extraction: in this process the output of the POS tagger

is scanned for clues. These clues signify the existence of the relations in the text.
For example a proposition such as ‘of’ or ‘in’, may signify a relationship between
two noun phrases that it connects.

Table 1 shows a few sentence fragments and their equivalent logical forms.

Table 1. A few sentence fragments and their equivalent in logical forms

Sentence fragment Representation in multi-
valued logic and PLIR

Type

Resonances for glutamine Resonance(glutamine) Logical Term
Syngeneic tumour of BALB Syngeneic _tumour(BALB) Logical Term
Linux as an operating system for
PCs

Operting_system(PC)
={Linux}

Logical Statement

Kish, which is an island in
Persian Gulf

Island (Persian_Gulf)
={Kish}

ISA (island, Kish)

Logical Statement

 Using Rich Document Representation in XML Information Retrieval 297

Several different tools have been developed and used for processing text and
extracting relationships so far, some of them are written in Perl, some others in
Java. The most general tool so far is a general purpose NLP package written in
Java. We are in the process of completing it in order to cover all aspects of relation
extraction and generating representation. After that we can make it available for
public use.

3 Experiments

In our implemented system, first we index all the elements of a document by its single
terms, phrases and logical terms and statements. In this system, a query consisting of
a sentence fragment can be treated as a regular text. Therefore it can be scanned for
extracting its logical terms. For example, in the query “algorithm for index
compression” a logical term will be detected and represented as “algorithm(index_
compression)”. Therefore, first we scan the query and extract single terms, phrases
and logical terms and then we find all the references in the collection for the
followings:

1. All the single words such as “algorithm” in the query.
2. All the phrases such as “index_compression” in the query.
3. All the logical terms such as “algorithm(index_compression)” that are in query.

This is a case of direct retrieval where the document is indexed by the term. This
action is similar to the regular keyword matching by the search engines except that
search engine do not index logical terms.

Any kind of weighting can be used for weighting these logical terms and
statements. The best way is to treat them as phrases and weight them accordingly.
However, PLIR uses Dominance scheme for weighting them. In this work we use
"tf.idf" in our weighting model. We apply the following formula for weighting each
index term of queries:

)(*)(*),(*),(qnftidfqttermFreqqtw α= (1)

Where:

α
3

2= , for terms with "_" before them in the query

3

4= , for terms with "+" before them in the query

 1= , otherwise

(2)

)
)(

ln()(
tn

N
tidf =

(3)

298 F. Raja et al.

lenq
qnf

1
)(=

(4)

termFreq(t,q): frequency of occurrence of term t within the query q
idf(t): inverse document frequency of term t
N: number of documents in the collection
n(t): number of documents in the collection that contain term t
nf(q): normalization factor of query
lenq: query length which is equal to number of terms in the query

It should be mentioned that the parameter "nf" is computed separately for single
terms, phrases, and logical terms and statements; i.e. "lenq" is calculated three times
as follows:

• number of single terms in the query
• number of phrases in the query
• number of logical terms and statements in the query

For weighting index terms of document elements we use:

)(*)(*)(*),(),(etchildEffecenftidfettfetw = (5)

Where:

))((log(1(

)),(log(1(
),(

etermFreqavg

ettermFreq
ettf

+
+=

(6)

)
)(

ln()(
tn

N
tidf =

(7)

)(

1
)(

elen
enf =

(8)

eofsublementsof#

 t with terme of sublements of#
),(=ettchildEffec

(9)

termFreq(t,e): frequency of occurrence of term t within the element e
avg(termFreq(e)): average term frequency in element e
idf(t): inverse document frequency of term t
N: number of documents in the collection
n(t): number of documents in the collection containing term t
nf(e): normalization factor of element e
len(e): element length which is equal to number of terms in the element
childEffect(t,e): effect of occurrence of term t within subelements of element e

in the weight of element e.

 Using Rich Document Representation in XML Information Retrieval 299

As the case for queries, the parameter "nf" for document elements is calculated
separately for single terms, phrases and logical terms and statements.

After weighting index terms of queries and document elements, we made three
separate vectors from the weights of single terms, phrases, logical terms and
statements for each query and element in the given collection. For example, the
corresponding vectors for the query "a_b(c)" are:

)),(),,(),,((_ qcwqbwqawV TermsSingle =

)),_((qbawVPhrases =

))),(_((_ qcbawV TermsLogical =

Once vectors have been computed for the query and for each element, using a

weighting scheme like those described above, the next step is to compute a numeric
“similarity” between the query and each element. The elements can then be ranked
according to how similar they are to the query.

The usual similarity measure employed in document vector space is the “inner
product” between the query vector and a given document vector [12]. We use this
measure to compute the similarity between the query vectors (for single terms,
phrases, logical terms and statements) and an element vectors. Finally, we add these
three relevance values to get the total relevance value for each element and rank the
elements based on this relevance value.

4 Results

Our implemented system has participated in INEX 2006 [13]. Our results are very
weak but in a failure analysis it was discovered that we have made mistake in
preprocessing of the collection.

In the preprocessing phase of our experiments we assumed that the content of the
XML documents is placed only in paragraphs. Therefore, if we have text in elements
other than paragraphs, we created a child for it, called "VirtualParagraph (VP)", and
assign an ID to it. This assumption and preprocessing has led to mismatch between
IDs assigned to elements for single terms, phrases, logical terms and statements. For
example, consider the following element:

<section>

 a_b

</section>

For the text "a_b" in this element, we will add a child (VP) for both single terms
and phrases, while we will not have this element for logical terms and statements,
because the element does not contain any logical term and statement. Therefore there
would be mismatch between the counters that assign IDs to single words and phrases
and those of the logical terms. This was a pure programming bug and avoidable but
nevertheless had a disastrous effect on the performance of the system. A major
problem we faced in this round of the INEX was the size of the collection. The

300 F. Raja et al.

collection size for INEX2006 is much larger than previous years and it exceeds the
processing power of the shared server that was allocated to this research for a limited
time. Therefore we spent a lot of time on trying to optimize the programs in order to
be able to process the entire collection. The size of collection also contributed to late
detection of the error in preprocessing the collection.

We resolved the problem in our system and tried to process the collection correctly
and get the results on the INEX 2006 collection. However after INEX, the server
assigned to this project was allocated to another research project and we were not able
to finish the document processing phase.

In another set of experiments we used INEX 2004 test collection with the correct
pre-processing and because of the smaller size of the collection we were able to finish
the processing and get results. The results show that RDR yields in better precision
with the quantization in which the specificity is more important, especially s3e321
quantization; that is RDR improves specificity of the elements returned to the user
which is one of the goals of XML information retrieval. This is consistent with other
tests and reported results by others too. In all previous reported experiments, PLIR
and RDR have produced high precision but low recall systems. RDR is a precision
oriented instrument and is not suitable for recall oriented tasks. RDR was average or
below average on recall oriented measures on INEX2004 data. Figure 1 depicts the
performance of the RDR representation in CO tasks with s3e123 and so quantizations.

Fig. 1. The result of the RDR representation on INEX2004 collection on CO task

5 Conclusion

In this paper we presented an NLP/Logical approach that uses a rich set of features to
represent text. These features are single terms, phrases, logical terms and logical
statements. Logical terms and statements are extracted from the text by using
linguistic clues. The simplest clue is the proposition. This representation is called
RDR (Rich Document Representation).

We have experimented with INEX2004 test collection; the results indicate that the
use of richer features such as logical terms or statements for XML information
retrieval tends to produce more focused retrieval. Therefore it is a suitable document
representation when users need only a few more specific references and are more
interested in precision than recall.

 Using Rich Document Representation in XML Information Retrieval 301

However, when we conducted our experiments using INEX 2006 test collection (a
much larger collection than INEX 2004 test collection), the performance of our runs
has been very poor due to preprocessing/indexing errors. However because of the
larger size of the INEX2006 collection and limited processing resources available to
this project at the time we were not able to finish re-processing of the INEX2006
collection and improve our results.

In the light of the insight we gained, we are sure it is possible to improve this
approach and to gain more respectful results. In future, we are going to conduct more
tests on different domains and collections and to improve on document representation
by using automatic relevance feedback and machine learning methods. We are hoping
to improve our information extraction method and produce better and more reliable
logical statements which will result in even higher precision.

References

1. Oroumchian, F., Karimzadegan, M., Habibi, J.: XML Information Retrieval by Means of
Plausible Inferences. In: RASC 2004, 5th International Conference on Recent Advances in
Soft Computing, RASC, Nottingham, United Kingdom pp. 542–547 (2004)

2. Fuhr, N., Gövert, N., Kazai, G., Lalmas, M.: INEX: INitiative for the Evaluation of XML
retrieval. In: Baeza-Yates, R., Fuhr, N., Maarek, Y. S. (eds.) Proceedings of the SIGIR
2002 Workshop on XML and Information Retrieval (2002)

3. Salton, G., Allan, J., Buckley, C.: Approaches to passage retrieval in full text information
systems. In: Proceedings of the 16th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval pp. 49–58 (1993)

4. Fox, E.A.: Lexical relations: enhancing effectiveness of information retrieval systems.
SIGIR Newsletter 15(3), 5–36 (1981)

5. Singhal, A., Buckley, C., Mitra, M.: Pivoted document length normalization. In:
Proceedings of the 19th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval pp. 21–29 (1996)

6. Evens, M., Vandendrope, J., Wang, Y.-C.: Lexical Relations in Information Retrieval,
Human and Machines. In: Proceedings of the 4th Delware Symposium on Language
Studies, Albex Norwood N.J (1985)

7. Cohen, P.R., Kjeldsen, R.: Information retrieval by constrained spreading activation in
semantic networks. 23, pp. 255–268. Pergamon Press, Inc, Tarrytown, NY, USA (1987)

8. Collins, A., Michalski, R.: The Logic of Plausible reasoning A Core Theory. Cognitive
Science 13, 1–49 (1989)

9. VAN RIJSBERGEN, C. J.: Logics for Information Retrieval, AL4T 88, Rome (March 1988)
10. Oroumchian, F., Oddy, R.N.: An application of plausible reasoning to information

retrieval. In: Proceedings of the 19th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, Zurich, Switzerland, pp.18-22
(August 1996)

11. Oroumchian, F., Jalali, A.: Rich document representation for document clustering. RIAO
2004 Conference. In: Proceedings Coupling approaches, coupling media and coupling
languages for information retrieval, Le Centre de Hautes Etudes Internationalies
d’Informatique Documenataire - C.I.D., France pp. 1–9 (2004)

12. Greengrass, E.: Information Retrieval: A Survey. DOD Technical Report TR-R52-008-001
(2000)

13. accessed 11th of February 2007 http://inex.is.informatik.uni-duisburg.de/2006/

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 302–311, 2007.
© Springer-Verlag Berlin Heidelberg 2007

NLPX at INEX 2006

Alan Woodley and Shlomo Geva

School of Software Engineering and Data Communications, Faculty of Information
Technology, Queensland University of Technology
GPO Box 2434, Brisbane, Queensland, Australia

ap.woodley@student.qut.edu, s.geva@qut.edu.au

Abstract. XML information retrieval (XML-IR) systems aim to better fulfil us-
ers’ information needs than traditional IR systems by returning results lower
than the document level. In order to use XML-IR systems users must encapsu-
late their structural and content information needs in a structured query. His-
torically, these structured queries have been formatted using formal languages
such as NEXI. Unfortunately, formal query languages are very complex and too
difficult to be used by experienced - let alone casual - users and are too closely
bound to the underlying physical structure of the collection. INEX’s NLP task
investigates the potential of using natural language to specify structured queries.
QUT has participated in the NLP task with our system NLPX since its incep-
tion. Here, we discuss the changes we’ve made to NLPX since last year, includ-
ing our efforts to port NLPX to Wikipedia. Second, we present the results from
the 2006 INEX track where NLPX was the best performing participant in the
Thorough and Focused tasks.

1 Introduction

Information retrieval (IR) systems respond to users’ queries with a ranked list of rele-
vant results. In traditional IR systems these results are whole documents, but since
XML documents separate content and structure XML-IR systems are able to return
highly specific results that are lower than the document level. But, if users are going
to take advantage of this capability in an operational (and possibly even in a labora-
tory setting) then they require an interface that is powerful enough to express their
content and structural requirements, yet user-friendly enough that they can express
their requirements intuitively.

Historically, XML-IR systems have used two types of interfaces: keyword based
and formal query language based. Keyword based systems are user-friendly, but are
unable to express the structural needs of the user. In comparison, formal query lan-
guage-based interfaces are able to express users’ structural needs (as well as their
content needs) but are impractical for operational use since they too difficult to use —
especially for casual users [7,14] — and are bound to the physical structure of the
document. The purpose of INEX’s natural language processing (NLP) track is to
investigate a third interface option that encapsulates users’ content and structural
needs intuitively, in a natural language query (NLQ). Participants in the NLP track

 NLPX at INEX 2006 303

develop systems that translate natural languages queries to formal language queries
(NEXI). The translated queries are executed on a single backend retrieval system
(GPX) and their retrieval performance is compared amongst them themselves and
with a baseline system consisting of manually constructed NEXI queries. The NLP
task uses the same topics, documents and relevance assessments as the Ad-hoc task to
enable comparison between participants in the NLP tracks as well as with participants
in the Ad-hoc track (although, NLP participants process the topics’ description ele-
ments rather than their title elements).

QUT has participated in the NLP task since its inception with its natural language
interface NLPX. Here, we discuss the changes made to NLPX since last year and
discuss its performance at this year’s INEX. The changes subsume two parts. First,
we outline the special connotations and templates added to NLPX that allow it to
process a greater range of structured NLQs. Second, we discuss the process of porting
NLPX from the IEEE collection to the Wikipedia collection. We also present the
results from this the 2006 NLP track where NLPX was the best performing participant
in the Thorough and Focused tasks.

2 Motivation

We have already outlined the motivations for an XML-IR natural language interface
in our previous work [12,13]; however, for completeness we include them here. The
motivations stem from weakness with current XML-IR interfaces.

The reason that keywords are unsuitable for XML-IR is that they can only contain
users’ content information need and not their structural information need. It has long
been assumed that a user’s information need will be better fulfilled if they specify
their structural need, that is, the location within the document that contains their de-
sired content. However, recent research has shown that this assumption may not be
correct when considered over a number of queries and retrieval algorithms [9]. How-
ever, it is unclear if this outcome is because the specification of structural require-
ments does not assist retrieval at all or for other reasons (such as users not being able
to correctly specify structural requirements, lack of meaningful structure within
INEX”s previous IEEE document collection or an inability for existing XML-IR sys-
tems to handle structural requirements).

While formal languages are able to fully capture users’ structural requirements,
they too have problems. First, formal query languages are too difficult for both expert
and casual users to correctly express their structural and content information needs.
The difficulty that experts have in using formal languages has been recorded in
INEX’s use of XPath and NEXI at the 2003 and 2004 Workshops were 63% and 12%
of proposed queries were either syntactically or semantically incorrect [7]. Therefore,
if experts in the field of structured information retrieval are unable to correctly use
complex query languages, one cannot expect a casual user to do so. This theory was
verified by researchers in INEX’s interactive track [14] who observed the difficulty
that casual users had in formatting formal queries. However, we feel that users would
be able to intuitively express their information need in a natural language.

304 A. Woodley and S. Geva

A second problem with formal query languages is that they are too tightly bound to
the physical structure of documents; and therefore, users require an intimate
knowledge of the documents’ composition in order to fully express their structural
requirements. So, in order for users to retrieve information from abstracts, bodies or
bibliographies, they will need to know the actual names of those tags in a collection
(for instance: abs, bdy, and bib). While this information may be obtained from a docu-
ment’s DTD or Schema there are situations where the proprietor of the collection does
not wish users to have access to those files. Or, in the case of a heterogeneous collec-
tion, a single tag can have multiple names (for example: abstract could be named abs,
a, or abstract). This is a problem identified by participants in the INEX 2004 hetero-
genous track who have proposed the use of metatags to map between collections [6]
and extensions to NEXI [10] to handle multiple tag names. Naturally, neither of these
solutions are trivial, which is why INEX has multiple tracks (heterogenous and docu-
ment mining) devoted to investigating this problem. In contrast, structural require-
ments in NLQs are inherently expressed at a higher conceptual level, allowing the
underlying document’s structure to be completely hidden from users, although NEXI
could also be extended to handle conceptual tag names.

3 Previous Work by Authors

This paper expands on the previous work of the authors [12,13]. We submitted our
system, NLPX, to INEX’s the 2004 and 2005 Natural Language Processing track where
it has performed strongly. INEX’s NLP track used the same topics and assessments as
its Ad-hoc track; however, participating systems used a natural language query as input,
rather than a formal language (NEXI) query. Examples of both query types are ex-
pressed in Figure 1. Note that the query actually contains two information requests, first,
for sections about compression, and second, for articles about information retrieval.
However, the user only wants to receive results matching the first request. We refer to
the former as returned requests/results and the latter as support requests/results.

Fig. 1. A NEXI and Natural Language Query

As with last year, the goal of the 2006 NLP participants was to produce a natural
language interface that translated NLQs to into NEXI queries. The translated queries
were executed by a single backend system (GPX) and the retrieval performance of
translated queries was recorded as if it were a standard Ad-hoc system. Participants in
the NLP track compare their retrieval performance amongst each other as well as a
baseline system that uses manually formed NEXI expressions (that is the original title
tags) as input. NLPX’s translation process involves four steps that derived syntactic

NEXI: //article[about(.,‘information retrieval’)] //sec[about(./, compression)]

NLQ: Find sections of articles about image and text compression in articles
about efficient information retrieval

 NLPX at INEX 2006 305

and semantic information from the natural language query (NLQ). We refer to these
four steps as the NLPX framework and outline them below:

1. First, NLPX tags words in the NLQ as either a special connotation or by their

part of speech. Special connotations are words of implied semantic significance.
Words corresponding to special connotations can either be hard-coded into the
system and matched to query words by a dictionary lookup or tagged using a
modified Brill Tagger that also considers a word’s context when tagging. Non-
connotations are tagged by their part of speech (such as noun, verb, conjunction)
via a Brill Tagger [2].

2. Second, words are grouped together into phrases using a process called Chunk-
ing [1]. The reason that NLPX recognises Chunks is to reduce ambiguity and to
facilitate further content analysis at a later stage. There are three main types of
chunks NLPX recognises: Instructions (for example “I want to retrieve”), Struc-
tures (for example “sections of articles”) and Content (for example “informa-
tion retrieval”).

3. Third, NLPX matches the tagged NLQs to query templates. The templates were
derived from the inspection of previous INEX queries. Since the NLQs occurred
in shallow context they required only a few templates, significantly less than if
one wished to capture natural language as a whole. Each template corresponded
to an information request. Each request had three attributes: Content, a list of
terms/phrases expressing content requirements, Structure, a logical XPath ex-
pression expressing structural requirements, and an Instruction, “R” for return
requests, and “S” otherwise.

4. Finally, the requests are merged together and output in NEXI format. Return
requests are output in the form A[about(.,C)] where A is the request’s structural
attribute and C is the request’s content attribute. When all return requests are
processed, support requests were inserted. The insert position was located by
comparing the structural attributes of return and support requests and by finding
their longest shared descendant. The output of support requests had the form
D[about(E,F)] where D is the longest matching string, E is the remainder of the
support’s structural attribute and F is the support’s content attribute. Note, that
while NLPX outputs NEXI queries this step has been modulated so that NLPX
could be extended to include any number of formal query languages.

4 Improvements

As usual, we have made several improvements to NLPX since last year’s participa-
tion. However, the number of improvements was less than in previous years that may
indicate the research is reaching a plateau. The major change this year was porting
NLPX to the new Wikipedia collection. Fortunately, this was not an extraneous task
since the only change that was required was in the third step. Other changes made this
year was the addition of strengtheners, that is content words signalled by the user as
being of high importance, and a constraint added by the system to ensure that support
requests are not placed in the last about clause even if they have the same return type
as return requests (as defined by NEXI standards).

306 A. Woodley and S. Geva

5 System Backend

Once the NLQ was tagged, chunked and matched to templates it was transformed into
a NEXI query using the existing NLPX system. This is a two stage process. First we
expanded the content of the query, by deriving phrases based on its lexical properties,
such as noun phrases that include adjectives and participles. Then we formatted a
NEXI query based upon its instruction, structure and content values. We passed the
NEXI query to our existing GPX system for processing as if it were a standard Ad-
hoc query. To produce its results list GPX collects leaf elements from its index and
dynamically creates their ancestors. GPX’s ranking scheme rewards leaf elements
with specific rather than common terms, and elements that contain phrases. It also
rewards ancestors with multiple relevant children rather than a single relevant child. A
more comprehensive description of GPX can be found in our accompanying paper as
well as earlier work [5].

6 Results

Here we present the performance results from NLPX. The results are split into two
parts. The first part discusses how well NLPX was able to translate natural language
queries to NEXI. The second part presents the retrieval performance of the translated
queries in comparison with the original NEXI queries.

6.1 Translation Performance

The description elements of the 125 INEX Ad-hoc topics were translated in NEXI
format by NLPX. These translations were then manually compared with each topic’s
description and castitle elements to test their accuracy. Furthermore, a comparison
was made between each castitle and description elements themselves, to test how
faithfully the topic’s originator was able to express their information need in natural
and formal language. The results of these comparisons are presented in Table 1.

Table 1. Comparison between translation, description and castitle

 Description Castitle

Translation 0.704 0.352

Description 0.408

The overall accuracy rate between the translation and descriptions was high (70.4

per cent), however the similarity between the translations and the original castitles
was much lower (35.2 percent). This is largely because the similarity between the
descriptions and castitles were also low (40.8 percent) Examples of successful trans-
lations were seen in INEX topics 292 and 311 as shown in Figures 2 and 3.

 NLPX at INEX 2006 307

Fig. 2. INEX Topic 292

Fig. 3. INEX Topic 311

Fig. 4. INEX Topic 310

Fig. 5. INEX Topic 358

However, other times NLPX was unsuccessful in translating the description. Ex-
amples of this occurred in INEX topics 310 and 358, shown in Figures 4 and 5. For
Topic 310 NLPX was unable to determine that a second information requestregarding
sections was made by the user, while for Topic 358 NLPX was unable to recognise
the term “information” as content-bearing rather than as a structural request.

Description: Find sections about global warming cause and effects.
Translation: //article//section[about(.,"global warming cause" global warming cause
"global cause" "warming cause" effects)]
Title: //section[about(., global warming cause and effects)]

Description: I want figures containing Renaissance paintings of Flemish or Italian artists,
but not French or German ones
Translation: //article//section//(figure|caption)[about(.,"Renaissance paintings" Renais-
sance paintings Flemish "Italian artists" Italian artists "-German -ones" -German -ones)]
Title: //article//figure[about(., Renaissance painting Italian Flemish -French -German)]

Description: Find articles about Novikov self-consistency principle that contain a section
about time travel.
Translation: //article[about(.,"Novikov self consistency principle" "Novikov self-
consistency principle" "self consistency" self consistency Novikov self-consistency prin-
ciple "Novikov principle") OR about(.,"time travel" time travel)]
Title: //article[about(., Novikov self-consistency principle) and about(.//section, time
travel)]

Description: Retrieve sections of articles about the use of ontologies in information re-
trieval such as semantic indexing.
Translation: //article[about(.//*,retrieval "semantic indexing" semantic index-
ing)]//section[about(.,ontologies)]
Title: //article//section[about(.,ontologies information retrieval semantic indexing)]

308 A. Woodley and S. Geva

Furthermore, a lot of times the castitle (59.2) and description did not match, par-
ticularly in terms of structural requests. This is worrying since the castitle and
description should be faithful representations of the user’s information need. For
instance, in INEX Topic 402, shown in Figure 6, the description asks for information
about capitals of European counties, presumably this means that the structural con-
straints are arbitrary and therefore a wildcard element (//*) should be specified as the
NEXI path (essentially turning the topic into a Content Only query). However, the
title specially specifies articles as the NEXI path. Another example occurs in INEX
topic 400, shown in Figure 7, where the description specifically requests documents
but the title specifies for sections in the NEXI path. Therefore, in these types of in-
stances it would be impossible for the translated query to match both the description
and title.

Fig 6. INEX Topic 402

Fig 7. INEX Topic 400

6.2 Retrieval Performance

As with previous years the translated queries from NLPX and the other NLP partici-
pants were executed by a single backend system GPX. This allowed for the same
analysis of the NLP participants retrieval performance as is seen in traditional infor-
mation retrieval. An additional “baseline” consisting of the original castile queries
was also executed by GPX, allowing for a comparison to be made between automatic
and manually created NEXI statements. Furthermore, since the same INEX topics and
relevance assessments are used by the NLP and Ad-hoc tracks cross-track compari-
sons are valid. At the time of publication results for the Thorough, Focussed and Best-
In-Context tasks were available. This section begins with a detailed analysis of
NLPX’s performance in the Thorough task before presenting an outline of NLPX’s
performance across all tasks. Also, note that the set of relevance judgements used to
evaluate these systems included all relevant elements, including those removed form
later relevance assessments for being too small (mainly link elements).

Description: Find information on capitals of European countries.
Translation: //article//*[about(.,capitals "European countries" European countries)]
Title: //article[about(.,country european)]//section[about(.,capital)]

Description: Find documents about countries that had non-violent revolutions
Translation: //article[about(.,countries "non violent revolutions" "non-violent revolu-
tions" "non violent" non violent non-violent revolutions)]
Title: //article[about(., country revolutions)]//section[about(., "non violent")]

 NLPX at INEX 2006 309

Table 2. MAep Results of the 2006 INEX Thorough Task

Translation Root Orientated Leaf Orientated

Baseline (NEXI) 0.0323 0.0284

NLPX06 0.0298 0.0251

NLPX05 0.0279 0.0229

Robert Gordon 0.0235 0.0171

Robert Gordon 2 0.0224 0.0159
Exoles des Mines de Saint-Erienne 0.0235 0.0205

Exoles des Mines de Saint-Erienne XOR 0.0231 0.0197

 0

 0.07

 0.14

 0.21

 0.28

 0.35

 0 0.2 0.4 0.6 0.8 1

ef
fo

rt
-p

re
ci

si
on

gain-recall

INEX 2006: Results’ Summary
metric: ep-gr,quantization: gen

task: thorough

NEXI MAep 0.0323
NLPX06 MAep 0.0298

Fig. 8. INEX 2006 NLP Through ep-gr graph

310 A. Woodley and S. Geva

As with previous years, the aim of INEX’s Thorough task was to retrieve as many
relevant information items as possible, regardless of how many “overlapping” items
were returned. The metric used to evaluate the Thorough task is Mean Average effort-
precision (MAep), analogous to traditional mean average precision. NLPX produced
two translations for each of the tasks: one produced by the current implementation of
NLPX (NLPX06) and one produced by a previous implementation of NLPX
(NLPX05). GPX produced two submissions for each of the translations , one that one
that favoured leaf elements and one that favoured root elements. The MAep results of
each of the submissions are presented in Table 2. The results show that NLPX per-
formed very strongly, outperforming alternative NLP approaches. Furthermore, it
performed comparable to the Baseline achieving a ratio of around 0.8. This is high-
lighted in the effort-precision gain-recall graph presented in Figure 8 where the NLPX
and Baseline submissions produce similar plots.

Similar results were achieved by NLPX across all the tasks. Table 3 shows the re-
trieval performance of the best performing NLPX, Baseline and Ad-hoc submission
for the Thorough, Focussed and Best-in-Context tasks. The table contains both the
retrieval score (using the appropriate metric) and the pseudo-rank of the submission if
it was submitted to the Ad-hoc track. Once again, NLPX performs strongly in the
Thorough task, and while its rank is affected severely in the other two tasks, its ratio
to the Baseline remains fairly consistent. It must be noticed however, that these results
are derived from the original INEX pools that rewarded link elements very highly.
However, GPX removed all links from each of the submissions (including all NLP
participants). Hence, different scores would be recorded if the second INEX pool was
used that scored link elements as too small to be relevant. In this scenario, the re-
trieval scores and pseudo-ranks of the Baseline and NLPX submission would proba-
bly increase, however the ratio between the scores should not be greatly affected.

Table 3. Retrieval performance across all tasks

Task Thorough Focussed Focussed
Best-In-
Context

Best-In-
Context

Metric Maep
Overlap On
nxCG[50]

Overlap Off
nxCG[50]

BEPD At
A=100.0

EPRUM
At A=100.0

Best
NLPX 0.0298 (15) 0.139 (47) 0.1989 (21) 0.6551 (37) 0.1974 (44)
NEXI
Baseline 0.033 (10) 0.173 (20) 0.2405 (10) 0.6895 (26) 0.2243 (33)
Best
Adhoc 0.0384 (1) 0.2265 (1) 0.2802 (1) 0.7983 (1) 0.3146 (1)

7 Conclusion

This paper presented the results of NLPX’s participation in INEX 2006. This is the
third year that NLPX has participated in INEX’s NLP task, each year improving its
performance. This year it was able to correctly translate a majority of topics from
natural language to formal language. It outperformed the alternative NLP approaches

 NLPX at INEX 2006 311

and was comparable to a baseline formal language system. These results validate the
potential of natural language queries as alternative to formal language queries in the
domain of XML retrieval.

References

1. Abney, S.: Parsing by Chunks. In: Principle-Based Parsing, Kluwer Academic Publishers,
Boston, MA (1991)

2. Brill, E.: A Simple Rule-Based Part of Speech Tagger. In: Proceedings of the Third Con-
ference on Applied Computational Linguistics (ACL), Trento, Italy pp. 152–155 (1992)

3. Clark J., DeRose, S.: XML Path Language XPath Version 1.0. W3C Recommendation,
The World Wide Web Consortium (November 1999) available at http://www.w3.org/
TR/xpath.

4. Fox, C.: Lexical Analysis and Stoplists. In: Frankes, W.B., Baeza-Yates, R. (eds.) Infor-
mation Retrieval: Data Structures and Algorithms. 7, pp. 102–130. Prentice-Hall, Upper
Saddle River (1992)

5. Geva, S.: GPX - Gardens Point XML Information Retrieval INEX 2004. In: Fuhr, N.,
Lalmas, M., Malik, S., Szlávik, Z. (eds.) INEX 2004. LNCS, vol. 3493, pp. 221–222.
Springer, Heidelberg (2005)

6. Larson, R.: XML Element Retrieval and Heterogenous Retrieval. In Pursuit of the Impos-
sible? In: Proceedings of INEX 2005 Workshop on Element Retrieval Methodology, Glas-
gow, Scotland pp. 38-41 (2005)

7. O’Keefe, R., Trotman, A.: The Simplest Query Language That Could Possibly Work, In:
Fuhr N., Malik, S. (eds.) INEX 2003 Workshop Proceedings. Dagstuhl, Germany pp. 167–
174 (2003)

8. Ramshaw, L., Marcus, M.: Text Chunking Using Transformation-Based Learning, In: Pro-
ceedings of the Third Workshop on Very Large Corpora pp. 82-94 (1995)

9. Trotman, A., Lamas, M.: Why structural hints in queries do not help XML-retrieval, In:
Efthimiadis E. N., Dumais S. T., Hawking, D., Järvelin, K. (eds.) SIGIR 2006: Proceed-
ings of the 29th Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, Seattle, Washington, USA, August 6-11, pp. 711–712
(2006)

10. Trotman, A., Sigurbjörnsson, B.: NEXI: Now and Next, In: Fuhr, N. In: Fuhr, N., Lalmas,
M., Malik, S., Szlávik, Z. (eds.) INEX 2004. LNCS, vol. 3493, pp. 410–423. Springer,
Heidelberg (2005)

11. Woodley, A., Geva, S.: NLPX: An XML-IR System with a Natural Language Interface,
In: Bruza, P., Moffat, A., Turpin, A (eds.) Proceedings of the Australasian Document
Computing Symposium, Melbourne, Australia pp. 71–74 (2004)

12. Woodley, A., Geva, S.: NLPX at INEX 2004, In: Fuhr, N., Lalmas, M., Malik, S., Szlávik,
Z. (eds.) INEX 2004. LNCS, vol. 3493, pp. 393–406. Springer, Heidelberg (2005)

13. Woodley, A., Geva, S.: NLPX at INEX 2005, In: Fuhr, N., Lalmas, M., Malik, S., Kazai,
G. (eds.) INEX 2005. LNCS, vol. 3977, pp. 358–372. Springer, Heidelberg (2006)

14. van Zowl, R., Bass, J., van Oostendorp, H., Wiering, F.: Query Formulation for XML Re-
trieval with Bricks. In: Fuhr, N., Lamas, M., Trotman, A. (eds.) In Proceedings of INEX
2005 Workshop on Element Retrieval Methodology, Glasgow, Scotland pp. 75-83 (2005)

The Heterogeneous Collection Track

at INEX 2006

Ingo Frommholz1 and Ray Larson2

1 University of Duisburg-Essen
Duisburg, Germany

ingo.frommholz@uni-due.de
2 University of California

Berkeley, California 94720-4600
ray@sims.berkeley.edu

Abstract. While the primary INEX test collection is based on a sin-
gle DTD, it is realistic to assume that most XML collections consist of
documents from different sources. This leads to a heterogeneity of syn-
tax, semantics and document genre. In order to cope with the challenges
posed by such a diverse environment, the heterogeneous track was of-
fered at INEX 2006. Within this track, we set up a collection consisting
of several different and diverse collections. We defined retrieval tasks and
identified a set of topics. These are the foundations for future run sub-
missions, relevance assessments and proper evaluation of the proposed
methods dealing with a heterogeneous collection.

1 Introduction

The primary INEX test collection has been based on a single DTD. In practi-
cal environments, such a restriction will hold in rare cases only. Instead, most
XML collections will consist of documents from different sources, and thus with
different DTDs or Schemas. In addition, distributed systems (federations or peer-
to-peer systems), where each node manages a different type of collection, will
need to be searched and the results combined. If there is a semantic diversity
between the collections, not every collection will be suitable to satisfy the user’s
information need. On the other hand, querying each collection separately is ex-
pensive in terms of communication costs and result post-processing, therefore it
has been suggested in the distributed IR literature that preselection of appropri-
ate collections should be performed. Given these conditions and requirements,
heterogeneous collections pose a number of challenges for XML retrieval, which
is the primary motivation for including a heterogeneous track in INEX 2006.

2 Research Questions

Dealing with a set of heterogeneous collections that are syntactically and seman-
tically diverse poses a number of challenges. Among these are:

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 312–317, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

The Heterogeneous Collection Track at INEX 2006 313

– For content-oriented queries, most current approaches use the DTD or
Schema for defining elements that would form reasonable answers. In het-
erogeneous collections, DTD-independent methods need to be developed.

– For content-and-structure queries, there is the added problem of mapping
structural conditions from one DTD or Schema onto other (possibly un-
known) DTDs and Schemas. Methods from federated databases could be
applied here, where schema mappings between the different DTDs are de-
fined manually. However, for a larger number of DTDs, automatic methods
must be developed, e.g. based on ontologies. One goal of an INEX track on
heterogeneous collections is to set up such a test collection, and investigate
the new challenges posed by its structural diversity.

– Both content-only and content-and-structure approaches should be able to
preselect suitable collections. This way, retrieval costs can be minimised by
neglecting collections which would probably not yield valuable answers but
are expensive to query in terms of time, communication costs, and process-
ing.

The Heterogeneous track aims to answer, among others, the following research
questions:

– For content-oriented queries, what methods are possible for determining
which elements contain reasonable answers? Are pure statistical methods
appropriate, or are ontology-based approaches also helpful?

– For content-and-structure queries, what methods can be used to map struc-
tural criteria onto other DTDs? Should mappings focus on element names
only, or also deal with element content or semantics?

– For all types of queries, how can suitable collections be preselected in order
to improve retrieval efficiency and without corrupting retrieval effectiveness?

– What are appropriate evaluation criteria for heterogeneous collections?

In order to cope with above questions, we need collections which are both
heterogeneous syntactically (based on different DTDs) and semantically (deal-
ing with different topics, in this case from computer science research to IT busi-
ness to non-IT related issues). As in the previous years, the main focus of effort
for the track was on the construction of an appropriate testbed, consisting of
different single collections, and on appropriate tools for evaluation of heteroge-
neous retrieval. The testbed provides a basis for the exploration of the research
questions outlined above.

3 Testbed Creation

In order to create a testbed for heterogeneous retrieval, we had to find suit-
able collections first. Subsequently, corresponding topics had to be found and
relevance assessments to be performed.

314 I. Frommholz and R. Larson

3.1 Collection Creation

We reused several subcollections offered in the last years’ and the current INEX
runs. Most of the collections from previous years of the Heterogeneous track were
restructured so that each document was a separate file embedded within a new
directory structure, in order to be able to use the normal INEX evaluation tools.
Additionally, we downloaded and prepared new collections like ZDNet News (IT
related articles and discussion) and IDEAlliance. A specific DTD was defined
for every subcollection, if not already given, ensuring syntactic heterogeneity.
Table 1 shows some statistics about the subcollections.

Table 1. Components of the heterogeneous collection. Element counts estimated for
large collections.

Collection Size SubColl. Documents Elements Mean Elements
per Document

Berkeley 52M 12800 1182062 92.3
bibdb Duisburg 14M 3465 36652 10.6
CompuScience 993M 250986 6803978 27.1
DBLP 2.0G 501102 4509918 9.0
hcibib 107M 26390 282112 10.7
IEEE (2.2) 764M 16820 11394362 677.4
IDEAlliance 58M eml 156 66591 426.9

xml1 301 45559 151.4
xml2 264 58367 221.1
xmle 193 32901 170.5
xtech 71 14183 199.8

Lonely Planet 16M 462 203270 440.0
qmulcsdbpub 8.8M 2024 23435 11.6
Wikipedia 4.9G 659385 1193488685 1810.0
ZDNet 339M Articles 4704 242753 51.6

Comments 91590 1433429 15.7

Totals 9.25G 1570713 1219818257 776.6

The subcollections serve different domains, ranging from computer science
(e.g. bibdb Duisburg, IEEE, DBLP) through technology news (ZDNet) to travel
advice (Lonely Planet) and general purpose information (Wikipedia). We find
several document genres like metadata records, fulltexts of scientific papers, ar-
ticles and web sites as well as textual annotations which form discussion threads.
The bottom line is that we have subcollections which differ with respect to their
syntax (DTD), semantic (domains served) and document genre.

3.2 Topic Creation

The topic creation phase resulted in 61 topics. Among these are selected topics of
the adhoc track as well as 36 new topics created especially for the heterogeneous

The Heterogeneous Collection Track at INEX 2006 315

track. In order to develop the latter topics we used the Chesire II1 system.
Converting the subcollections into a unified internal representation turned out
to be a very time-consuming task as new collections had to be incorporated.

Appendix A shows the topic DTD used. Besides keywords and titles, also
content-and-structure titles (<castitle> in our DTD) were given for most topics
in order to make them suitable for the CAS tasks. Content-and-structure titles
do not only contain keywords, but also a NEXI [1] path expression for the desired
structural elements. For instance, the castitle expression

//article[about(.,user interface)]//section[about(.,design)]

requests sections about design in articles about user interfaces. Whenever given,
the scope of a topic provides a hint about the collection used to identify the
topic (which in fact does not necessarily mean that a topic is not relevant for
other subcollections as well).

4 Tasks and Run Submissions

The following tasks were proposed for this year’s heterogeneous track:

Adhoc CO Task. Here, content-oriented queries are implied. The systems re-
turn a ranked list of documents from all collections.

CAS Task 1. The system should return only elements specified in <castitle>.
CAS Task 2. The system should basically return the elements specified in

<castitle> , but also similar elements. As an example, <doctitle> in ZD-
Net and <title> in other collections are most probably equivalent. The
<description> in ZDNet, which is the description grabbed from RSS feeds,
is similar, but not equivalent, to the <about> tag elsewhere. A possible sce-
nario for both CAS tasks would be a system which likes to present the user
only the title and a representative summary of the content so that she could
decide if a document is relevant or not without higher cognitive overload (the
need for reading the whole article). The system should thus return only the
title and the summary of relevant documents, but might base the relevance
decision on, e.g., the whole document fulltext.

Resource Selection. The goal here is to select the most relevant resources
(i.e., collections) for a given topic. The system should return a ranked list of
collections for this task. The scenario is that a system should identify relevant
collections beforehand and query them, instead of querying all resources
(which might be expensive when it comes to communication or access costs).

For run submissions we defined a DTD which can viewed in Appendix B. This
DTD covers rankings of elements as well as rankings of subcollections. Note that
this DTD allows those submitting runs to specify the collections actually used
in resolving the topics. Thus it permits users to submit runs for only a subset of
the collections, and in principle such runs could be scored without counting the
ignored collections.
1 http://cheshire.berkeley.edu/

http://cheshire.berkeley.edu/

316 I. Frommholz and R. Larson

5 Pooling and Assessment

Having set up the heterogeneous collection with tasks and topics, next steps
include the actual submission of runs. The once submitted runs are the basis for
a pooling procedure to extract the set of relevant elements for each query and
task. This step can also provide us with with new insights whether the pooling
procedure can be applied to a heterogeneous scenario or if there is the need for
suitable adaptations.

We plan to use the XRai system for relevance assessments based on the pooled
elements. Part of the motivation in the restructuring of the collections so that
each record or document was a separate file was to be able to use XRai.

6 Conclusion and Outlook

In this year’s heterogeneous track, we managed to set up a collection whose
subcollections have heterogeneous syntax, semantics and document genres. We
also set up a number of test topics for evaluation. We have, therefore, laid the
foundations for a new heterogeneous track which may now concentrate on sub-
mitting runs, creating a pooled result set and providing relevance assessments,
and these in turn will be used to evaluate the submitted runs.

Acknowledgement

Special thanks go to Miro Lehtonen for providing us with the IDEAlliance col-
lection, and to Saadia Malik and Benjamin Piwowarski for technical support.

Reference

1. Trotman, A., Sigurbjornsson, B.: Narrowed extended XPath I (NEXI). In:
Fuhr, N., Lalmas, M., Malik, S., Szlavik, Z. (eds.) Advances in XML Informa-
tion Retrieval: Third International Workshop of the Initiative for the Evalua-
tion of XML Retrieval, INEX 2004, Dagstuhl Castle, Germany, December 6-8,
2004, Revised Selected Papers, vol. 3493. Springer-Verlag GmbH, (May 2005)
http://www.springeronline.com/3-540-26166-4

A Topic DTD

<?xml version="1.0" encoding="UTF-8"?>
<!ENTITY lt "&#60;">
<!ENTITY gt ">">
<!ENTITY amp "&#38;">

<!ELEMENT inex_het_topic
(title,castitle?,description,narrative,ontopic_keywords,scope?)>

http://www.springeronline.com/3-540-26166-4

The Heterogeneous Collection Track at INEX 2006 317

<!ATTLIST inex_het_topic
topic_id CDATA #REQUIRED

>

<!ELEMENT title (#PCDATA)>
<!ELEMENT castitle (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT narrative (#PCDATA)>
<!ELEMENT ontopic_keywords (#PCDATA)>
<!ELEMENT scope (collection+) >
<!ELEMENT collection (#PCDATA) >

B Run Submission DTD

<!ENTITY % collection-ids "berkeley | bibdbpub | compuscience | dblp | hcibib |
qmulcsdbpub | ieee | zdnetart | zdnetcom | wikipedia |
lp | idea_eml | idea_xml1 | idea_xml2 | idea_xmle |
idea_xtech">

<!ELEMENT inex-het-submission (topic-fields, description, collections, topic+)>
<!ATTLIST inex-het-submission

participant-id CDATA #REQUIRED
run-id CDATA #REQUIRED
task (CO | CAS1 | CAS2 | RS) #REQUIRED
query (automatic | manual) #REQUIRED

>
<!ELEMENT topic-fields EMPTY>
<!ATTLIST topic-fields

title (yes|no) #REQUIRED
castitle (yes|no) #REQUIRED
description (yes|no) #REQUIRED
narrative (yes|no) #REQUIRED
ontopic_keywords (yes|no) #REQUIRED

>
<!ELEMENT description (#PCDATA)>
<!ELEMENT topic (result*|collections)>
<!ATTLIST topic topic-id CDATA #REQUIRED >
<!ELEMENT collections (collection*)>
<!ELEMENT collection (rank?, rsv?)>
<!ATTLIST collection collectionid (%collection-ids;) #REQUIRED>
<!ELEMENT result (file, path, rank?, rsv?)>
<!ATTLIST result collectionid (%collection-ids;) #IMPLIED>
<!ELEMENT file (#PCDATA)>
<!ELEMENT path (#PCDATA)>
<!ELEMENT rank (#PCDATA)>
<!ELEMENT rsv (#PCDATA)>

Probabilistic Retrieval Approaches for Thorough

and Heterogeneous XML Retrieval

Ray R. Larson

School of Information
University of California, Berkeley

Berkeley, California, USA, 94720-4600
ray@ischool.berkeley.edu

Abstract. For this year’s INEX UC Berkeley focused on the Hetero-
geneous track, and submitted only two runs for the Adhoc tasks, a
“thorough” run and a “BestInContext” run. For these runs we used the
TREC2 probabilistic model with blind feedback. The Thorough run was
ranked 21st out of the 106 runs submitted for the Thorough task. The
majority of our effort for INEX was on the Heterogeneous (Het) track
where we submitted three collection ranking runs and two content-only
runs. As the only group to actually submit runs for the Het track, we
are guaranteed both the highest, and lowest, effectiveness scores for each
task. However, because it was deemed pointless to conduct the actual
relevance assessments on the submissions of a single system, we do not
know the exact values of these results.

1 Introduction

In this paper we will first discuss the algorithms and fusion operators used in
our official INEX 2006 Adhoc and Heterogenous (Het) track runs. Then we will
look at how these algorithms and operators were used in the various submissions
for these tracks, and finally we will examine the results, at least for the Adhoc
thorough task and discuss possible problems in implementation, and directions
for future research.

2 The Retrieval Algorithms and Fusion Operators

This section describes the probabilistic retrieval algorithms used for both the
Adhoc and Het track in INEX this year. These are the same algorithms that we
have used in previous years for INEX, and also include the addition of a blind
relevance feedback method used in combination with the TREC2 algorithm. In
addition we will discuss the methods used to combine the results of searches of
different XML components in the collections. The algorithms and combination
methods are implemented as part of the Cheshire II XML/SGML search en-
gine [15,14,12] which also supports a number of other algorithms for distributed
search and operators for merging result lists from ranked or Boolean sub-queries.

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 318–330, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Probabilistic Retrieval Approaches 319

2.1 TREC2 Logistic Regression Algorithm

Once again the principle algorithm used for our INEX runs is based on the Logis-
tic Regression (LR) algorithm originally developed at Berkeley by Cooper, et al.
[8]. The version that we used for Adhoc tasks was the Cheshire II implementa-
tion of the “TREC2” [6,5] that provided good Thorough retrieval performance
in the INEX 2005 evaluation [15]. As originally formulated, the LR model of
probabilistic IR attempts to estimate the probability of relevance for each docu-
ment based on a set of statistics about a document collection and a set of queries
in combination with a set of weighting coefficients for those statistics. The sta-
tistics to be used and the values of the coefficients are obtained from regression
analysis of a sample of a collection (or similar test collection) for some set of
queries where relevance and non-relevance has been determined. More formally,
given a particular query and a particular document in a collection P (R | Q, D)
is calculated and the documents or components are presented to the user ranked
in order of decreasing values of that probability. To avoid invalid probability
values, the usual calculation of P (R | Q, D) uses the “log odds” of relevance
given a set of S statistics derived from the query and database, such that:

log O(R|C, Q) = log
p(R|C, Q)

1 − p(R|C, Q)
= log

p(R|C, Q)
p(R|C, Q)

(1)

= b0 + b1 ∗ 1√
|Qc| + 1

|Qc|∑

i=1

qtfi

ql + 35
(2)

+ b2 ∗ 1√
|Qc| + 1

|Qc|∑

i=1

log
tfi

cl + 80
(3)

− b3 ∗ 1√
|Qc| + 1

|Qc|∑

i=1

log
ctfi

Nt
(4)

+ b4 ∗ |Qc| (5)

where C denotes a document component and Q a query, R is a relevance variable,
and

p(R|C, Q) is the probability that document component C is relevant to query
Q,

p(R|C, Q) the probability that document component C is not relevant to query
Q, (which is 1.0 - p(R|C, Q))

|Qc| is the number of matching terms between a document component and a
query,

qtfi is the within-query frequency of the ith matching term,
tfi is the within-document frequency of the ith matching term,
ctfi is the occurrence frequency in a collection of the ith matching term (i.e.,

the number of time the term occurs in the entire collection, for a given
component type),

320 R.R. Larson

ql is query length (i.e., number of terms in a query). This is simply |Q|, the
number of terms in a query, for non-feedback situations but takes on otther
values for feedback,

cl is component length (i.e., number of terms in a component), and
Nt is collection length (i.e., number of terms in a test collection).
bi are the coefficients obtained though the regression analysis.

Assuming that stopwords are removed during index creation, then ql, cl, and
Nt are the query length, document length, and collection length, respectively. If
the query terms are re-weighted (in feedback, for example), then qtfi is no longer
the original term frequency, but the new weight, and ql is the sum of the new
weight values for the query terms. Note that, unlike the document and collection
lengths, query length is the “optimized” relative frequency without first taking
the log over the matching terms.

The coefficients were determined by fitting the logistic regression model speci-
fied in log O(R|C, Q) to TREC training data using a statistical software package.
The coefficients, bk, used for our official runs are the same as those described
by Chen[3]. These were: b0 = −3.51, b1 = 37.4, b2 = 0.330, b3 = 0.1937 and
b4 = 0.0929. Further details on the TREC2 version of the Logistic Regression
algorithm may be found in Cooper et al. [6].

2.2 Blind Relevance Feedback

It is well known that blind (also called pseudo) relevance feedback can substan-
tially improve retrieval effectiveness in tasks such as TREC and CLEF. (See
for example the papers of the groups who participated in the Ad Hoc tasks in
TREC-7 (Voorhees and Harman 1998)[18] and TREC-8 (Voorhees and Harman
1999)[19].)

Blind relevance feedback is typically performed in two stages. First, an initial
search using the original queries is performed, after which a number of terms are
selected from the top-ranked documents (which are presumed to be relevant).
The selected terms are weighted and then merged with the initial query to for-
mulate a new query. Finally the reweighted and expanded query is run against
the same collection to produce a final ranked list of documents. It was a simple
extension to adapt these document-level algorithms to document components
for INEX.

The TREC2 algorithm has been combined with a blind feedback method
developed by Aitao Chen for cross-language retrieval in CLEF. Chen[4] presents
a technique for incorporating blind relevance feedback into the logistic regression-
based document ranking framework. Several factors are important in using blind
relevance feedback. These are: determining the number of top ranked documents
that will be presumed relevant and from which new terms will be extracted, how
to rank the selected terms and determining the number of terms that should be
selected, how to assign weights to the selected terms. Many techniques have been
used for deciding the number of terms to be selected, the number of top-ranked
documents from which to extract terms, and ranking the terms. Harman [11]
provides a survey of relevance feedback techniques that have been used.

Probabilistic Retrieval Approaches 321

Lacking comparable data from previous years, we adopted some rather ar-
bitrary parameters for these options for INEX 2006. We used top 10 ranked
components from the initial search of each component type, and enhanced and
reweighted the query terms using term relevance weights derived from well-
known Robertson and Sparck Jones[17] relevance weights, as described by Chen
and Gey[5]. The top 10 terms that occurred in the (presumed) relevant top 10
documents, that were not already in the query were added for the feedback
search.

2.3 TREC3 Logistic Regression Algorithm

In addition to the TREC2 algorithm described above, we also used the TREC3
algorithm in some of our Het track runs. This algorithm has been used repeatedly
in our INEX work, and described many times, but we include it below for ease
of comparison. The full equation describing the “TREC3” LR algorithm used in
these experiments is:

log O(R | Q, C) =

b0 +

⎛

⎝b1 ·

⎛

⎝ 1
|Qc|

|Qc|∑

j=1

log qtfj

⎞

⎠

⎞

⎠

+
(
b2 ·
√

|Q|
)

+

⎛

⎝b3 ·

⎛

⎝ 1
|Qc|

|Qc|∑

j=1

log tfj

⎞

⎠

⎞

⎠ (6)

+
(
b4 ·

√
cl
)

+

⎛

⎝b5 ·

⎛

⎝ 1
|Qc|

|Qc|∑

j=1

log
N − ntj

ntj

⎞

⎠

⎞

⎠

+ (b6 · log |Qd|)

Where:

Q is a query containing terms T ,
|Q| is the total number of terms in Q,
|Qc| is the number of terms in Q that also occur in the document component,
tfj is the frequency of the jth term in a specific document component,
qtfj is the frequency of the jth term in Q,
ntj is the number of components (of a given type) containing the jth term,
cl is the document component length measured in bytes.
N is the number of components of a given type in the collection.
bi are the coefficients obtained though the regression analysis.

This equation, used in estimating the probability of relevance for some of the
Het runs in this research, is essentially the same as that used in [7]. The bi coef-
ficients in the original version of this algorithm were estimated using relevance

322 R.R. Larson

judgements and statistics from the TREC/TIPSTER test collection. In INEX
2005 we did not use the original or “Base” version, but instead used a version
where the coeffients for each of the major document components were estimated
separately and combined through component fusion. This year, lacking relevance
data from Wikipedia for training, we used the base version again. The coeffi-
cients for the Base version were b0 = −3.70, b1 = 1.269, b2 = −0.310, b3 = 0.679,
b4 = −0.0674, b5 = 0.223 and b6 = 2.01.

2.4 CORI Collection Ranking Algorithm

The resource selection task in the Heterogeneous track is basically the same as
the collection selection task in distributed IR. For this task we drew on our pre-
viously experiments with distributed search and collection ranking [12,13], where
we used the above “TREC3” algorithm for collection selection and compared it
with other reported distributed search results.

The collection selection task attempts to discover which distributed databases
are likely to be the best places for the user to begin a search. This problem,
distributed information retrieval, has been an area of active research interest for
many years. Distributed IR presents three central research problems:

1. How to select appropriate databases or collections for search from a large
number of distributed databases;

2. How to perform parallel or sequential distributed search over the selected
databases, possibly using different query structures or search formulations,
in a networked environment where not all resources are always available; and

3. How to merge results from the different search engines and collections, with
differing record contents and structures (sometimes referred to as the collec-
tion fusion problem).

Each of these research problems presents a number of challenges that must
be addressed to provide effective and efficient solutions to the overall problem
of distributed information retrieval. Some of the best known work in this area
has been Gravano, et al’s work on GlOSS [10,9] and Callan, et al’s [2,20,1]
application of inference networks to distributed IR. One of the best performing
collection selection algorithms developed by Callan was the “CORI” algorithm.
This algorithm was adapted for the Cheshire II system, and used for some of
our Resource Selection runs for the Het track this year. The CORI algorithm
defines a belief value for each query term using a form of tfidf ranking for each
term and collection:

T =
df

df + 50 + 150 · cw/cw
(7)

I =
log(|DB|+0.5

cf)

log(|DB| + 1.0)
(8)

p(rk|dbi) = 0.4 + 0.6 · T · I (9)

Probabilistic Retrieval Approaches 323

Where:

df is the number of documents containing terms rk,
cf is the number of databases or collections containing rk,
|DB| is the number of databases or collections being ranked,
cw is the number of terms in database or collection dbi,
cw is the average cw of the collections being ranked, and
p(rk|dbi) is the belief value in collection dbi due to observing term rk

These belief values are summed over all of the query terms to provide the
collection ranking value.

2.5 Result Combination Operators

As we have also reported previously, the Cheshire II system used in this evalu-
ation provides a number of operators to combine the intermediate results of a
search from different components or indexes. With these operators we have avail-
able an entire spectrum of combination methods ranging from strict Boolean
operations to fuzzy Boolean and normalized score combinations for probabilis-
tic and Boolean results. These operators are the means available for performing
fusion operations between the results for different retrieval algorithms and the
search results from different different components of a document. For Heterge-
neous search we used a variant of the combination operators, where MINMAX
normalization across the probability of relevance for each entry in results from
each sub-collection was calculated and the final result ranking was based on
these normalized scores.

In addition, for the Adhoc Thorough runs we used a merge/reweighting op-
erator based on the “Pivot” method described by Mass and Mandelbrod[16] to
combine the results for each type of document component considered. In our
case the new probability of relevance for a component is a weighted combination
of the initial estimate probability of relevance for the component and the prob-
ability of relevance for the entire article for the same query terms. Formally this
is:

P (R | Q, Cnew) = (X ∗ P (R | Q, Ccomp)) + ((1 − X) ∗ P (R | Q, Cart)) (10)

Where X is a pivot value between 0 and 1, and P (R | Q, Cnew), P (R | Q, Ccomp)
and P (R | Q, Cart) are the new weight, the original component weight, and
article weight for a given query. Although we found that a pivot value of 0.54
was most effective for INEX04 data and measures, we adopted the “neutral”
pivot value of 0.5 for all of our 2006 adhoc runs, given the uncertainties of how
this approach would fare with the new database.

3 Database and Indexing Issues

Use of the Wikipedia, without a pre-defined DTD or XML Schema led to a
very difficult indexing process, primarily due to the requirement that the data

324 R.R. Larson

in Cheshire II databases must correspond to a DTD or Schema. To avoid having
to reject and remove thousands of records that did not correspond to a basic
DTD (made available to us by other INEX participants) we ran indexing until
some new undefined tag or attribute was encountered, and then updated the dtd
and restarted indexing from the beginning. This meant that literally hundreds
of indexing runs needed to be performed in order to come up with a database
that corresponded to the manually elaborated DTD.

The final result resulted in a large number of nonsensical tags and attributes
being encoded into the DTD. For example, in the final DTD constructed the
tag “wikipedialink” has over 2000 defined attributes (apparently due to a pars-
ing error in the original conversion that converted each word of entire sen-
tences into attributes of the tag). In addition, hundreds of tags were used only
once in the collection including tags such as “contin.c evalcontinuousatt 28” and
“akademie”, “pokemon”, and “zrubek”.

3.1 Indexing the INEX 2006 Database

All indexing in the Cheshire II system is controlled by an XML/SGML Config-
uration file which describes the database to be created. This configuration file
is subsequently used in search processing to control the mapping of search com-
mand index names (or Z39.50 numeric attributes representing particular types of
bibliographic data) to the physical index files used and also to associated compo-
nent indexes with particular components and documents. This configuration file
also includes the index-specific definitions for the Logistic Regression coefficients
(when not defined, these default to the “Base” coefficients mentioned above).

Table 1 lists the document-level (/article) indexes created for the INEX data-
base and the document elements from which the contents of those indexes were
extracted.

As noted above the Cheshire system permits parts of the document subtree to
be treated as separate documents with their own separate indexes. Tables 2 & 3
describe the XML components created for INEX and the component-level indexes
that were created for them.

Table 2 shows the components and the path used to define them. The first,
COMPONENT SECTION, component consists of each identified section in all of
the documents, permitting each individual section of a article to be retrieved sep-
arately. Similarly, each of the COMPONENT PARAS and COMPONENT FIG
components, respectively, treat each paragraph (with all of the alternative para-
graph elements shown in Table 2), and figure (<figure> ... </figure>) as indi-
vidual documents that can be retrieved separately from the entire document.

Table 3 describes the XML component indexes created for the components
described in Table 2. These indexes make individual sections(COMPONENT
SECTION) of the INEX documents retrievable by their titles, or by any terms
occurring in the section. These are also proximity indexes, so phrase searching is
supported within the indexes. Individual paragraphs (COMPONENT PARAS)
are searchable by any of the terms in the paragraph, also with proximity search-
ing. Individual figures (COMPONENT FIG) are indexed by their captions.

Probabilistic Retrieval Approaches 325

Table 1. Wikipedia Article-Level Indexes for INEX 2006

Name Description Contents Vector?

docno doc ID number //name@id No

title Article Title //name No

topic Entire Article //article no

topicshort Selected Content //fm/tig/atl Yes
//abs
//kwd
//st

xtnames Template names //template@name no

figure Figures //figure No

table Tables //table No

caption Image Captions //caption Yes

alltitles All Titles //title Yes

links Link Anchors //collectionlink No
//weblink
//wikipedialink

Table 2. Wikipedia Components for INEX 2006

Name Description Contents

COMPONENT SECTION Sections //section

COMPONENT PARAS Paragraphs //p | //blockquote | //indentation1|
//indentation2|//indentation3

COMPONENT FIG Figures //figure

Few of these indexes and components were used during Berkeley’s simple
runs of the 2006 INEX Adhoc topics. The two official submitted Adhoc runs
and scripts used in INEX are described in the next section.

3.2 Heterogeneous Indexing

The Heterogeneous track data includes 15 additional collections and subcollec-
tions beyond Wikipedia. The collections are described in Table 4. The Wikipedia
collection is the largest, and for the Heterogeneous track we used the same in-
dexes as for the the Adhoc track.

For the rest of the collections we created indexes that accessed similar el-
ements in each individual collection. These typically included indexes for the
classes of elements listed in Table 5. Naturally each of these classes of elements
had differing structures and names in the different collections. For example,
“title” elements in the Berkeley collection mapped to the XML structures
“//USMARC/VarFlds/VarDFlds/Fld24*/a|b|n|p|f|l” (where “*” is a wildcard
matching anything up to the end of the tag name and “|” indicating a union of

326 R.R. Larson

Table 3. Wikipedia Component Indexes for INEX 2006†Includes all subelements of
section or paragraph elements

Component
or Index Name Description Contents Vector?

COMPONENT SECTION

sec title Section Title //section/title Yes

sec words Section Words *† Yes

COMPONENT PARAS

para words Paragraph Words *† Yes

COMPONENT FIG

fig caption Figure Caption //figure/caption No

subordinate tag names), while in the IEEE collection they mapped to
“//fm/tig/atl” and in the CompuScience collection simply to “//title”.‘

Indexes were created for each of the mapped sets of elements shown in Table
5, and during search the common class names were used to specify the desired
set of elements across the different collections.

4 INEX 2006 Official Adhoc and Heterogeneous Runs

4.1 Adhoc Runs

Berkeley submitted a total of 2 retrieval runs for the INEX 2006 adhoc tasks,
one for the Thorough task and one for the BestInContext task.

The primary task that we focused on was the CO.Thorough task. For these
tasks some automatic expansion of items in the XPath to the root of the docu-
ment was used. The submitted run used the TREC2 algorithm on the full articles
and figure components, and TREC2 with Blind Feedback for the section compo-
nents and paragraph components. Weights for each of the retrieved component
elements were adjusted using the pivot method described above against the score
for the article obtained using the same query terms. The average EP/GR score
for the Berkeley BASE T2FB run was 0.0252, which was ranked 21 out of the
106 submissions reported on the official results pages.

BestInContext Runs. We also submitted a single run for the BestInContext
task. This run (BASE T2FB BC) was prepared by keeping only the single high-
est ranked element for each of the top-ranked 1500 documents from the Thorough
resultset (using the full Thorough resultset, including all results). This run ob-
tained ranked in the middle range of the officially reported results (depending
on the particular measure)

4.2 Heterogeneous Runs

Three runs were submitted for the Resource Selection task, and 2 for the Content-
Only task. The Resource selection runs used the TREC2, TREC3, and CORI

Probabilistic Retrieval Approaches 327

Table 4. Components of the heterogeneous collection. Element counts estimated for
large collections.

Collection Size SubColl. Documents Elements Mean Elements
per Document

Berkeley 52M 12800 1182062 92.3
bibdb Duisburg 14M 3465 36652 10.6
CompuScience 993M 250986 6803978 27.1
DBLP 2.0G 501102 4509918 9.0
hcibib 107M 26390 282112 10.7
IEEE (2.2) 764M 16820 11394362 677.4
IDEAlliance 58M eml 156 66591 426.9

xml1 301 45559 151.4
xml2 264 58367 221.1
xmle 193 32901 170.5
xtech 71 14183 199.8

Lonely Planet 16M 462 203270 440.0
qmulcsdbpub 8.8M 2024 23435 11.6
Wikipedia 4.9G 659385 1193488685 1810.0
ZDNet 339M Articles 4704 242753 51.6

Comments 91590 1433429 15.7

Totals 9.25G 1570713 1219818257 776.6

algorithms, respectively, with no blind feedback. The two Content-Only runs
used the TREC2 and TREC3 algorithms, also with no blind feedback.

Our Resource Selection runs used the same techniques described in our ear-
lier work on distributed IR[12,13]. The first step in this process is creating
“document-like” collection representatives for each collection. This is done by
“harvesting” the collection representatives using some features of the Z39.50 In-
formation Retrieval protocol. The harvested collection representatives are then
used for the subsequent retrieval and ranking of those collections. The collec-
tion representatives created are XML structures containing all of the terms from
the indexes for each of the index type shown in the tables above, along with
the collection frequency for each term. Because our indexes are based on the
XML structure of the documents in the collection, the segments in the collection
representatives also reflect that structure. During indexing of the collection rep-
resentatives the frequency information included is used as if it were the within-
document term frequency and incorporated into the collection representative
indexes.

During retrieval the ranking algorithms describe above were used to rank
the collection representatives as if they were normal documents, and that rank
reported in the results.

The Content-Only runs used data fusion methods to merge the result sets of
separate searches of each collection for a given element type. Because both of the
Content-Only runs used probabilistic methods for each search, the fusion method
used was to simply normalize the scores to the same basic range (using MINMAX
normalization) and then simply merge all result sets based on this normalized

328 R.R. Larson

Table 5. Document Indexes for all Heterogeneous collections for INEX 2006

Name Description Vector?

docno doc ID number No

pauthor Author(s) No

title Article Title No

topic Entire Article no

date Date or Year no

journal Journal title No

kwd Keywords or Subjects No

Abstract Abstracts Yes

alltitles All Titles Yes

score. A better approach would probably be to first use the collection ranking
method and give differing weights to items from particular collections. But for
this initial work, we decided to use only the simplest approach, and elaborate
later once we had result data to help tune the merging method.

Since Berkeley was the only group to submit Het track runs, it was decided
not to go to the effort of evaluation with such a limited pool, so we do not have
any figures on the actual or relative performance of these different techniques
for the Heterogeneous track.

5 Conclusions and Future Directions

Our participation in INEX this year was severely constrained by other competing
IR work and conference committee work for a number of other conferences. In
addition, due to the irregularities of the Wikipedia data we ended up spending
much more time than expected in creating a valid DTD that could be used in
indexing. In addition a lot of time was spent setting up collections and indexing
the Heterogeneous collections. This left little time to actually test and evaluate
different run stategies and to adapt previous work to the new collections.

However, in setting up to submit runs, and actually running full query sets for
the Heterogeneous track, we were able to find that using “concept mapping” for
each of the collections and using distributed search methods allowed us to resolve
and obtain results for each collection (although we will not know the actual
effectiveness of the approach until we have a complete evaluation). As noted
above, this approach used a set of “element classes” as the the search elements
in place of the actual structural elements for searching. Thus, a “title” search was
mapped to the appropriate structural element in each collection. Obviously, there
are limits to this approach. If, for example, appropriate structural elements for
searches are not known at the point of database creation and indexing, then they
are not made accessible. Another issue is whether collections should be weighted
differently in calculation of the merged ranked results list. As suggested above,
it would be possible to the collection-selection ranking to give priority to the
collections estimated to be most likely to contain relevant items.

Probabilistic Retrieval Approaches 329

We hope to be able to try some of these other methods, and additional new
techniques for INEX 2007.

References

1. Callan, J.: Distributed information retrieval. In: Croft, W.B. (ed.) Advances in
Information Retrieval: Recent research from the Center for Intelligent Information
Retrieval. chapter 5, pp. 127–150. Kluwer, Boston (2000)

2. Callan, J.P., Lu, Z., Croft, W.B.: Searching Distributed Collections with Infer-
ence Networks. In: Fox, E.A., Ingwersen, P., Fidel, R. (eds.) Proceedings of the
18th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, Seattle, Washington, pp. 21–28. ACM Press, New York
(1995)

3. Chen, A.: Multilingual information retrieval using english and chinese queries.
In: Peters, C., Braschler, M., Gonzalo, J., Kluck, M. (eds.) CLEF 2001. LNCS,
vol. 2406, pp. 44–58. Springer, Heidelberg (2002)

4. Chen, A.: Cross-Language Retrieval Experiments at CLEF 2002. In: Peters, C.,
Braschler, M., Gonzalo, J. (eds.) CLEF 2002. LNCS, vol. 2785, pp. 28–48. Springer,
Heidelberg (2003)

5. Chen, A., Gey, F.C: Multilingual information retrieval using machine translation,
relevance feedback and decompounding. Information Retrieval 7, 149–182 (2004)

6. Cooper, W.S., Chen, A., Gey, F.C.: Full Text Retrieval based on Probabilistic
Equations with Coefficients fitted by Logistic Regression. In: Text REtrieval Con-
ference (TREC-2), pp. 57–66 (1994)

7. Cooper, W.S., Gey, F.C., Chen, A.: Full text retrieval based on a probabilistic
equation with coefficients fitted by logistic regression. In: Harman, D. K. (ed.) The
Second Text Retrieval Conference (TREC-2) (NIST Special Publication 500–215),
Gaithersburg, MD, National Institute of Standards and Technology pp. 57–66,
(1994)

8. Cooper, W.S., Gey, F.C., Dabney, D.P.: Probabilistic retrieval based on staged
logistic regression. In: 15th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, Copenhagen, Denmark, pp. 21–
24. ACM, New York (June 21-24, 1992)

9. Gravano, L., Garćıa-Molina, H.: Generalizing GlOSS to vector-space databases and
broker hierarchies. In: International Conference on Very Large Databases, VLDB,
pp. 78–89 (1995)

10. Gravano, L., Garćıa-Molina, H., Tomasic, A.: GlOSS: text-source discovery over
the Internet. ACM Transactions on Database Systems 24(2), 229–264 (1999)

11. Harman, D.: Relevance feedback and other query modification techniques. In:
Frakes, W., Baeza-Yates, R. (eds.) Information Retrieval: Data Structures & Al-
gorithms, pp. 241–263. Prentice-Hall, Englewood Cliffs (1992)

12. Larson, R.R.: A logistic regression approach to distributed IR. In: SIGIR 2002:
Proceedings of the 25th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, August 11-15, 2002, Tampere, Finland,
pp. 399–400. ACM, New York (2002)

13. Larson, R.R.: Distributed IR for digital libraries. In: Koch, T., Sølvberg, I.T. (eds.)
ECDL 2003. LNCS, vol. 2769, pp. 487–498. Springer, Heidelberg (2003)

14. Larson, R.R.: A fusion approach to XML structured document retrieval. Informa-
tion Retrieval 8, 601–629 (2005)

330 R.R. Larson

15. Larson, R.R.: Probabilistic retrieval, component fusion and blind feedback for XML
retrieval. In: INEX 2005. LNCS, vol. 3977, pp. 225–239. Springer, Heidelberg (2006)

16. Mass, Y., Mandelbrod, M.: Component ranking and automatic query refinement
for xml retrieval. Advances in XML Information Retrieval. In: Third International
Workshop of the Initiative for the Evaluation of XML Retrieval, INEX2004, pp.
73–84. Springer, Heidelberg (2005)

17. Robertson, S. E., Jones, K.S.: Relevance weighting of search terms. Journal of the
American Society for Information Science, pp. 129–146, (May– June 1976)

18. Voorhees, E., Harman, D. (eds.): In: The Seventh Text Retrieval Conference
(TREC-7). NIST (1998)

19. Voorhees, E., Harman, D. (eds.): In: The Eighth Text Retrieval Conference (TREC-
8). NIST (1999)

20. Xu, J., Callan, J.: Effective retrieval with distributed collections. In: Proceedings
of the 21st International ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 112–120 (1998)

The INEX 2006 Multimedia Track

Thijs Westerveld1 and Roelof van Zwol2

1 CWI, Amsterdam, The Netherlands
2 Yahoo! Research, Barcelona, Spain

Abstract. The multimedia track focuses on using the structure of the
document to extract, relate, and combine the relevance of different mul-
timedia fragments. This paper presents a brief overview of the track, it’s
collection tasks and goals. We also report the results and the approaches
of the participating groups.

1 Introduction

Structured document retrieval allows for the retrieval of document fragments,
i.e. XML elements, containing relevant information. The main INEX Ad Hoc
task focuses on text-based XML element retrieval. Although text is dominantly
present in most XML document collections, other types of media can also be
found in those collections. Existing research on multimedia information retrieval
has already shown that it is far from trivial to determine the combined rele-
vance of a document that contains several multimedia objects. The objective
of the INEX multimedia track is to exploit the XML structure that provides a
logical level at which multimedia objects are connected, to improve the retrieval
performance of an XML-driven multimedia information retrieval system.

The multimedia track will continue to provide an evaluation platform for the
retrieval of multimedia document fragments. In addition, we want to create a
discussion forum where the participating groups can exchange their ideas on
different aspects of the multimedia XML retrieval task. Ideas raised here, may
provide input for this task descriptions for this year and/or the coming years.

The remainder of this paper is organised as follows. First we introduce the
main parts of the test collection: documents, topics, tasks and assessments (Sec-
tions 2–5). Section 6 summarises the main results and the approaches taken by
the different participants. The paper ends with conclusions and an outlook on
next year’s track in Section 7.

2 Wikipedia Collection and Other Resources

2.1 Wikipedia

In 2006, the main INEX tracks use a corpus based on the English part of
Wikipedia, the free content encyclopedia (http://en.wikipedia.org). Wiki-
text pages have been converted to XML [1] making a structured collection of

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 331–344, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://en.wikipedia.org

332 T. Westerveld and R. van Zwol

659,388 XML pages. This collection is also the basis for the multimedia track.
Statistics about the collection and its multimedia nature are listed in Table 1.
Each of the images on Wikipedia comes with a small metadata document, usu-

Table 1. Wikipedia collection statistics

Total number of XML documents 659,388
Total number of images 344,642
Number of unique images 246,730
Average number of images per document 0.52
Average depth of XML structure 6.72
Average number of XML nodes per document 161.35

ally containing a brief caption or description of the image, the Wikipedia user
who uploaded the image, and the copyright information. For the images in the
Wikipedia collection, these metadata documents are downloaded and converted
to XML. Figure 1 shows an example of such a metadata document. Some docu-
ments had to be removed because of copyright issues or parsing problems, leaving
us with a collection of 171,900 images with metadata.

Fig. 1. Example Wikipedia image metadata document as in the MMimages collection

Both the main Wikipedia collection and the Wikipedia images + metadata
collection are used in the INEX 2006 multimedia track. The first in the Ad
Hoc XML retrieval task of finding relevant XML fragments given a multimedia

The INEX 2006 Multimedia Track 333

information need, the second in a pure image retrieval task: Find images (with
metadata) given an information need.

2.2 Additional Sources of Information

In 2006 the two Wikipedia based collections are the main search collections.
The returned elements should come from these collections. A number of addi-
tional sources of information is provided to help participants get to the relevant
information in these collections.

Image classification scores: For each image the classification scores for 101
different concepts are provided by UvA [4]. The concepts are shown in Fig-
ure 2. The UvA classifier is trained on manually annotated TRECVID video
data and the concepts are picked for the broadcast news domain. It is un-
clear how well these concept classifiers will perform on the broad collection
of Wikipedia images, but we believe it may be a useful source of information.

Image features: A set of 22D feature vectors, one for each image, is available
that has been used to derive the image classification scores [7]. Participants
can use these feature vectors to build a custom CBIR-system, without having
to pre-process the image collection.

CBIR system: An on-line service to get a ranked list of similar images given
a query image (from the collection) is provided by RMIT [3].

3 Topics

The topics used in the INEX MM track are descriptions of (structured) multi-
media information needs. Structural and multimedia hints are expressed in the
NEXI query language[6].

For the INEX 2005 multimedia track, NEXI has been extended to incorporate
visual hints. If a user wants to indicate that results should have images similar
to a given example image, this can be indicated in an about clause with the
keyword src:. For example to find images of cityscapes similar to the image with
identifier 789744, one could type

//image[about(.,cityscape) and about(.,src:789744)]

To keep things manageable, only example images from within the MM collection
are allowed.

In 2006, we use the same visual similarity syntax. A second type of visual
hints is introduced; it is directly related to the concept classifications that are
provided as an additional source of information. If a user thinks the results
should be of a given concept, this can be indicated with an about clause with
the keyword concept:. For example, to search for cityscapes one could decide to
use the concept building:

//image[about(.,cityscape) and about(.,concept:building)]

334 T. Westerveld and R. van Zwol

Fig. 2. The 101 concepts for which classification scores are available. This image is
taken from [4]

Terms following the keyword concept: are obviously restricted to the 101 concepts
for which classification results are provided (cf. Figure 2).

It is important to realise that all structural, textual and visual filters in the
query should be interpreted loosely. It is up to the retrieval systems how to use,
combine or ignore this information. The relevance of a fragment does not directly
depend on these elements, but is decided by manual assessments.

3.1 Topic Format and Development

The INEX MM track topics are Content Only + Structure (CO+S) topics, like
in the INEX Ad Hoc track. While in the field of multimedia the term content
often refers to visual content, in INEX it means textual or semantic content of a
document part. The term content-only is used within INEX for topics or queries
that use no structural hints. CO+S topics are topics that do include structural
hints. As explained above, in the multimedia track topics can also contain visual
constraints.

The 2006 CO+S topics consist of the following parts.

<title> The topic <title> simulates a user who does not know (or does not
want to use) the actual structure of the XML documents in a query and who
does not have (or want to use) example images or other visual constraints.
The query expressed in the topic <title> is therefore a Content Only (CO)

The INEX 2006 Multimedia Track 335

query. This profile is likely to fit most users searching XML digital libraries.
It is the standard web search type of keyword search.

<castitle> A NEXI expression with structural and/or visual hints.
<description> A brief, matter of fact, description of the information need. Like

a natural language description one might give to a librarian
<narrative> A clear and precise description of the information need. The nar-

rative unambiguously determines whether or not a given element fulfils the
given need. It is the only true and accurate interpretation of a user’s needs.
Precise recording of the narrative is important for scientific repeatability -
there must exist, somewhere, a definitive description of what is and is not
relevant to the user. To aid this, the <narrative> should explain not only
what information is being sought, but also the context and motivation of
the information need, i.e., why the information is being sought and what
work-task it might help to solve.

<ontopic keywords> Terms that are expected in relevant elements. These terms
are recorded since they may be highlighted in the assessment interface for
easier and more efficient assessing.

<offtopic keywords> Terms that are expected in non-relevant elements. Again,
for highlighting during assessments.

In the 2005 pilot of the INEX multimedia track, topics came without a
<title> field. This way, participants were encouraged to use the structural hints
in the <castitle>. This year, the use of structural information is still encour-
aged, but we want to be able to compare structural approaches to baselines
that use only <title> queries. Also 2005 topics lacked the ontopic and offtopic
keywords fields.

3.2 Topic Development

The topics in the multimedia track are developed by the participants. Each
participating group has to create 6 multimedia topics. Topic creators first create
a one to two sentence description of the information they are seeking. Then, in an
exploration phase, they obtain an estimate of the amount of relevant information
in the collection. For this, they can use any retrieval system, including their own
system or the TopX system [5] provided through the INEX organisation. The
topic creator then assesses the top 25 results and abandons the search if fewer
than two or more than 20 relevant fragments are found. If between 2 and 20
fragments are found to be relevant, the topic creator should have a good idea of
what query terms should be used, and the <title> is formulated. Using this title
a new search is performed and the top 100 elements are assessed. Having judged
these 100 documents, topic creators should have a clear idea of what makes a
fragment relevant or not. Based on that, they could then first write the narrative
and then the other parts of the topic. After each created topic, participants are
asked to fill a questionnaire that gathers information about the users familiarity
with the topic, the expected number of relevant fragments in the collection, the
expected size of relevant fragments and the realism of the topic.

336 T. Westerveld and R. van Zwol

The submitted topics are analysed by the INEX organisers who check for
duplicates and inconsistencies before distributing the full set of topics among
the participants.

Only five groups submitted topics. Table 2 shows the distribution over tasks
as well as some statistics on the topics.

Table 2. Statistics of INEX 2006 MM topics

MMfrag MMimg Total
Number of topics 9 13 21
Avg. num. terms in <title> 2.7 2.4 2.6
Number of topics with src: 1 6 7
Number of topics with concept: 0 2 2

4 Tasks

The multimedia track knows two tasks, the first is –like in 2005– to retrieve
relevant document fragments based on an information need with a structured
multimedia character. A structured document retrieval approach should be able
to combine the information in different media types into a single meaningful
ranking that is presented to the user. This task is continued in INEX 2006 as
the MMfragments task. A second task is started in 2006, MMimages, a pure
image (with metadata) retrieval task. Both tasks are detailed below.

MM Fragments: Find relevant XML fragments given an multimedia infor-
mation need. This task is in essence comparable to the retrieval of XML
elements, as defined in the Ad Hoc track. The main differences with the
INEX Ad Hoc track are that all topics in this track ask for multimedia frag-
ments (i.e., fragments containing more than text only) and that the topics
may contain visual constraints (see Section 3). The main difference with the
2005 task is that structural and visual constraints are not required and in-
terpreted loosely if present. The core collection for this task is the Wikipedia
main XML collection.

MM Images: Find relevant images given an information need. Here the type of
the target element is defined (an image), so basically this is image retrieval,
rather than element retrieval. Still, the structure of (supporting) documents
could be exploited to get to the relevant images. The core collection for this
task is the Wikipedia image collection.

All track resources (see Section 2) can be used for both tasks, but the track en-
courages participating groups to also submit a baseline run that uses no sources
of information except for the target collection. This way, we hope to learn how
the various sources of information contribute to the retrieval results. Further-
more, we require each group to submit a run that is based on only the <title>
field of the topic description. All other submissions may use any combination of
the <title>, <castitle> and <description> fields. The fields used need to be
reported.

The INEX 2006 Multimedia Track 337

5 Assessments

Since XML retrieval requires assessments at a sub-document level, a simple bi-
nary judgement at the document level is not sufficient. Still, for ease of assess-
ment, retrieved fragments are grouped by document. Once all participants have
submitted their runs, the top N fragments for each topic are pooled and grouped
by document. To keep assessment loads within reasonable bounds, we used pools
with a depth of 500 fragments. The documents are alphabetised so that the asses-
sors do not know how many runs retrieved fragments from a certain document or
at what rank(s) the fragments were found. Assessors than look at the documents
in the pool and highlight the relevant parts of each document. The assessment
system stores the relevance or non-relevance of the underlying XML elements.

In 2005, <castitle>s were enforced to be interpreted strictly. Thus, if some-
one asked for section elements, paragraphs could never be relevant. In 2006 this
requirement is dropped; the relevance of a fragment is determined by the assessor
and should be solely based on the <narrative>.

The MMimages task is a document retrieval tasks. A document, i.e., an image
with its metadata, is either relevant or not. For this task we adopted TREC style
document pooling of the documents and binary assessments at the document
level.

5.1 Pool Quality and Assessor Agreement

We managed to have a few topics in the MMimages task assessed by multiple
assessors. In addition, these new assessors looked at pools of a greater depth than
the original assessments: 1500 instead of 500 documents per topic. This allows
us to study inter-assessor agreement as well as the quality of the pool. For six
topics we had a second person assessing the relevance of the documents. The
assessment procedure was the same as for the primary assessor and the second
assessor had no access to the original assessments.

Agreement between the assessors was extremely high, measured only on the
pools of depth 500 that were seen by both assessors, we get 95% agreement on
average. For most topics this was much higher, for one topic (topic 2: images of
castles) the agreement is considerably lower, apparently the second assessor was
less strict in the definition of a castle. Table 3 shows the details.

Starting from the relevance assessments we have for the top 500 and top 1500
pools, we artificially constructed the judgements we would have had by pooling
the top 10, 20 50, 100, 200, 500, 1000 and 1500 (Note that the top 1000 and
top 1500 pools are only available for six out of 10 topics). Figure 3 shows the
mean average precision scores for all submissions for the various pool depths.
The relative ordering does not seem to change much for the pool depths above
100, below some instability is visible. This is even more apparent if we look at
the correlation between the system orderings based on the various judgement
sets (Figure 4). The correlation between the adapted pool based rankings and
the official system ranking are above 0.90 for pool depths of 50 and up, and
above 0.95 for pool depths over 100.

338 T. Westerveld and R. van Zwol

Table 3. Assessor agreement: general agreement, agreement on relevant and agreement
on non-relevant documents

topic agree agreeREL agreeNONREL

1 0.94 0.77 0.97
2 0.77 0.56 0.84
8 0.99 0.73 1.00
9 1.00 0.89 1.00
10 0.98 0.88 0.99
13 1.00 0.88 1.00

average 0.95 0.78 0.97

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 2 4 6 8 10 12 14 16

M
A

P

submissions ordered by decreasing offical map

10
20
50

100
200

official: 500
1000
1500

Fig. 3. Mean average precision after evaluating using assessments based on various
pool depths

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600

K
en

da
ll’

s
τ

pool depth

Fig. 4. Kendall’s τ between assessments based on various pooldepth and the original
assessments based on the top 500 pooled documents

The INEX 2006 Multimedia Track 339

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 2 4 6 8 10 12 14 16

M
A

P

submissions ordered by decreasing official MAP

original
submission removed

group removed

Fig. 5. The effect of pool contribution on mean average precision

Finally, we tested the usefulness of the MMimages test collection for future
use. There exists a potential bias against approaches that were not able to con-
tribute to the pool. Especially with the low number of submissions, this risk is
high. To test the effect of this we re-evaluated each submission after removing
the documents uniquely contributed to the pool by this submission. Since sub-
missions from the same group are often based on highly similar approaches, we
repeated the experiment with removing the documents uniquely contributed by
the group. Figure 5 shows for each submission the original mean average pre-
cision scores as well as the scores based on these modified sets of assessments.
Again, the ordering of the runs is hardly affected by whether groups did or did
not contribute to the pool. The correlation between the original system ranking
and the rankings based on the assessments with submission or group removed is
0.98 and 0.95 respectively.

6 Results and Approaches

Only four participants submitted runs for the Multimedia track: CWI together
with the University of Twente (CWI/UT), IRIT (IRIT), RMIT University
(RMIT), Queensland University of Technology in Australia (QUTAU). Tables 4
and 5 give an overview of the topics fields and resources used by the runs. Most
runs used either <title> or <castitle> in their runs, but RMIT experimented
with runs using <title>, <castitle> and <description>. The wikipedia col-
lections are mainly used for the tasks for which they are the target collection
only, but CWI/UT experimented with using both wikipedia and wikipedia IMG
on the MMfragments task. The visual resources provided are used mostly in
the MMimages task, although RMIT used their GIFT tool also on some MM-
fragments runs. QUTAU is the only group that used the concepts and features
provided by UvA; they used them for MMimages runs.

340 T. Westerveld and R. van Zwol

Table 4. Topic fields used by the submitted runs

field
#MMfragments
runs using it

#MMimages
runs using it

title 10 14
castitle 7 7
description 2 3
narrative 0 0

Table 5. Resources used by the submitted runs

resource
#MMfragments
runs using it

#MMimages
runs using it

wikipedia 15 0
wikipedia IMG 3 16
UvAfeatures 0 3
UvAconcepts 0 1
RMIT GIFT 2 10

Below the results are presented for the submitted runs, followed by a short
description of the approaches of the participants.

6.1 Results

MMfragments. Table 6 shows mean average precision scores for all submitted
MMfragments runs, Figure 6 shows the ep/gr graphs. Judging from the fields
and resources used as well as from the run descriptions, it appears that the top
performing runs do not use any multimedia processing. These runs are based on
<title> only queries and did not use any resources other than the wikipedia
collection itself.

MMimages. In the MMimages task some topics contain image examples from
the test collection. To not give an unfair advantage to systems that use the image
examples, retrieving the example images should not be rewarded. Therefore, we
re-interpreted these queries as ”Find other images about X like this one”. We
removed the example images from the assessment files and from the submissions
and based the evaluations on that.

Figures 7 shows the interpolated recall precision graphs for the submitted
runs for the MMimages task, Table 7 shows the mean average precision scores.
Also for MMimages, the top performing runs do not use any image analysis or
visual processing. They are simple text based baselines.

6.2 Participants

Below we briefly discuss the appproaches taken by the groups participating in
the multimedia track at INEX 2006.

The INEX 2006 Multimedia Track 341

Table 6. Mean Average effort precision (MAep) for submitted MMfragments runs

group run MAep

QUTAU MMfragmentstitlePSname 0.1592
QUTAU MMfragmentstitlePS 0.1564
QUTAU MMfragmentstitle 0.1544
QUTAU MMfragmentstitlename 0.1536
QUTAU MMfragmentsCAStitle 0.1168
QUTAU MMfragmentscastitlePS 0.1147
RMIT zet-GIFT-MMF-Mix-10 0.0656
IRIT xfirm.MMfragments.co.06.09 0.0155
IRIT xfirm.MMfragments.cos.09.dict2 0.0108
IRIT xfirm.MMfragments.cos.09.dict 0.0101
RMIT zet-GIFT-MMF-Title-10 0.0093
IRIT xfirm.MMfragments.co.06.1 0.0086
UTWENTE frag art title 0.0030
UTWENTE frag star casterms 0.0009
UTWENTE frag star casterms srcmeta 0.0009

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

In
te

rp
ol

at
ed

 E
ffo

rt
 P

re
ci

si
on

Gain Recall

Metric: ep-gr Overlap: off Quantisation: gen
Topic: ALL

RMIT zet-GIFT-MMF-Mix-10
RMIT zet-GIFT-MMF-Title-10

IRIT xfirm-MMfragments-cos-09-dict
IRIT xfirm-MMfragments-co-06-09

IRIT xfirm-MMfragments-cos-09-dict2
IRIT xfirm-MMfragments-co-06-1

QUTAU MMfragmentstitlePS
QUTAU MMfragmentstitlePSname

QUTAU MMfragmentscastitlePS
QUTAU MMfragmentstitle

QUTAU MMfragmentstitlename
QUTAU MMfragmentsCAStitle
UTWENTE frag-star-casterms

UTWENTE frag-star-casterms-srcmeta
UTWENTE frag-art-title

Fig. 6. MMfragments: Effort-precision/gain-recall (ep/gr), overlap not penalised

CWI/UTWENTE. For the MMfragments task CWI/UTWENTE limited
their system to return only fragments that contain at least one image that
was part of the multimedia collection. They did not use any further multime-
dia processing and experimented with traditional text based approaches. They
extended the wikipedia collection with the metadata from the wikipedia IMG
collection; for each of the images in the collection, they included the text from
the corresponding image in the wikipedia IMG collection inside the <image> tag.
For the MMimages task, CWI/UTWENTE experimented with different textual
query variants, including adding the metadata from example images to the text
query.

342 T. Westerveld and R. van Zwol

Table 7. Mean average precision (MAP) for submitted MMimages runs

group run MAP

UTWENTE frag article title 0.3835
UTWENTE img cas noMM 0.3681
QUTAU Uva Castitle Fusion 0.3430
QUTAU HOT CasTitle 06 0.3327
RMIT zet-GIFT-MMI-Title-05 0.3104
RMIT zet-GIFT-MMI-Title-10 0.3098
QUTAU HOT Title Fusion 0.2686
RMIT zet-GIFT-MMI-Mix-05 0.2645
RMIT zet-GIFT-MMI-Mix-10 0.2611
QUTAU Uva Title 0.2364
IRIT CASMETHOD 0.2270
RMIT zet-GIFT-MMI-Title-00 0.2184
IRIT ImagesMethodV2 0.2159
IRIT ImagesMethod1.1 0.2122
RMIT zet-GIFT-MMI-Mix-00 0.2074
IRIT COMethod 0.1140

IRIT. IRIT participated in both the MMfragments and MMimages tasks of the
INEX 2006 MM track. For MMfragments topics, the XFIRM ”Content Only”
and ”Contend And Structure” methods intended for adhoc retrieval are used
to process queries. For MMimages topics, a new method using 4 sources of
evidence (descendants nodes, brothers nodes, ancestors nodes and image name)
is proposed to evaluate images relevance. This method is compared with the
XFIRM CO and COS methods. Results show that better results are obtained
by the XFIRM CO and COS methods. This can be explained by the structure of
the MMimages collection, where only ascendant nodes can be used to evaluate
image nodes relevance. Future work includes the processing of queries by example
and the addition of other sources of evidence (like images classification scores
and image features vectors) to evaluate image nodes relevance.

QUTAU. In QUTAU’s research, a text and an image-based search engines are
used concurrently and the results are obtained by fusing two or more independent
result sets. Therefore, the primary contribution is to answer the challenging
question on how to fuse multiple results to form an optimal query results for
users. This involves the fusion of the XML document retrieval results of multiple
search algorithms on the same collection. Queries consist of both text (keywords)
and/or example images. Two document retrieval algorithms are used: a text-
based retrieval using a TF-IDF variant, and an image-based retrieval using image
feature similarity.

RMIT. For the MMimages task, RMIT used the Zettair search engine1 for
XML retrieval and combined these text based results with content based image
1 http://www.seg.rmit.edu.au/zettair/

http://www.seg.rmit.edu.au/zettair/

The INEX 2006 Multimedia Track 343

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Interpolated Recall at

Interpolated Recall Precision Averages

IRIT-CASMETHOD
IRIT-COMethod

IRIT-ImagesMethod1.1
IRIT-ImagesMethodV2

QUTAU-HOTCasTitle06
QUTAU-HOTTitleFusion

QUTAU-UvaCastitleFusion
QUTAU-UvaTitle

RMIT-zet-GIFT-MMI-Mix-00
RMIT-zet-GIFT-MMI-Mix-05
RMIT-zet-GIFT-MMI-Mix-10

RMIT-zet-GIFT-MMI-Title-00
RMIT-zet-GIFT-MMI-Title-05
RMIT-zet-GIFT-MMI-Title-10

UTWENTE-fragarticletitle
UTWENTE-imgcasnoMM

Fig. 7. MMimages: Interpolated Recall Precision Averages

retrieval based on GIFT. The results of the two systems are fused using a simple
linear interpolation. An equally weighted combination of the two systems is
compared to either alone. They report slighly higher scores for the combined
run over the text only run.

For MMimages, RMIT did not apply any image analysis. For this task, two
text only runs were submitted. One <title> only run, and a run using <title>,
<castitle> and <description>. The latter gave a better performance.

RSLIS. RSLIS did not submit any official runs for the track, but they did help
with additional assessments, and plan to use the tracks data for future studies.
Their main idea is to apply Ingwersen’s principle of polyrepresentation[2] to im-
age retrieval. The hypothesis in polyrepresentation is that overlaps between the
results of the most different representations are most relevant. RSLIS regards
content based and text based retrieval as the most different types, since content
based retrieval only takes low level features into account, while text based re-
trieval has the potential of capturing high level semantic information. Their aim
is find out, which specific combinations of representations give the best perfor-
mance. They will use results retrieved by GIFT for content based retrieval and
topX NEXI queries, pointing to specific parts of the documents for retrieving a
number of different text based results.

7 Conclusions and Outlook

The INEX 2006 multimedia track, used new collections this year, based on
wikipedia data. The main collections are the XML-ised wikipedia data (with
images) as in the Ad Hoc track and XML versions of the metadata documents
that wikipedia holds for each of these images. In addition we provided the par-
ticipants with a set of resources that were either starting points for or results

344 T. Westerveld and R. van Zwol

of visual processing. The total set of data provided creates a nice collection of
related resources.

The number of participants in the multimedia track was disappointing with
only four groups submitting runs. This makes it hard to draw general conclusions
from the results. What we could see so far is that the top runs in both tasks,
MMfragments and MMimages, did not make use of any of the provided visual
resources. More detailed analyses of the results and the participants’ system
descriptions is needed to see if groups managed to improve over a textual baseline
using visual indicatiors of relevance. Also, a topic by topic analysis could shine
some light. Perhaps these techniques did contribute for only a limited number
of topics and hurt for others.

Despite the low number of participants the quality of the MMimages test
collection is good. Assessor agreement on this collection is high and system
comparison are hardly affected by pool depth or by whether they did or did not
contribute to the pool. This makes the MMimages collection with the topics and
judgements a useful and reusable test collection for image search.

For next year’s multimedia track, we hope to draw more participants, from
inside as well as outside INEX. The set of related collections and resources, makes
this track an interesting playing ground, both for groups with a background in
databases or information retrieval, and for groups with a deeper understanding
of computer vision or image analysis.

References

1. Denoyer, L., Gallinari, P.: The Wikipedia XML Corpus. SIGIR Forum (2006)
2. Ingewersen, P., Järvelin, K.: The Turn, Integration of Information Seeking and Re-

trieval in Context, chapter 5, pp. 206–214. Springer, Heidelberg (2005)
3. R. U. S. of Computer Science and I. Technology. Wikipedia CBIR system for the

multimedia track. http://www.cs.rmit.edu.au/
4. Snoek, C., Worring, M., van Gemert, J.C., Geusebroek, J.-M., Smeulders, A.W.M.:

The challenge problem for automated detection of 101 semantic concepts in multi-
media. In: MULTIMEDIA ’06: Proceedings of the 14th annual ACM international
conference on Multimedia, pp. 421–430. ACM Press, New York (2006)

5. Theobald, M., Schenkel, R., Weikum, G.: An efficient and versatile query engine for
topx search. In: VLDB ’05: In: Proceedings of the 31st international conference on
Very large data bases, pp. 625–636. VLDB Endowment (2005)

6. Trotman, A., Sigurbjörnsson, B.: Narrowed extended xpath I (NEXI. In: Fuhr, N.,
Lalmas, M., Malik, S., Szlavik, Z. (eds.) INEX 2004, vol. 3493, Springer, Heidelberg
(2004) http://www.springeronline.com/ 3-540- 26166-4.

7. van Gemert, J.C., Geusebroek, J.-M., Veenman, C.J., Snoek, C.G., Smeulders,
A.W.: Robust scene categorization by learning image statistics in context. In:
CVPRW ’06: Proceedings of the 2006 Conference on Computer Vision and Pattern
Recognition Workshop, Washington, DC, USA, p. 105. IEEE Computer Society, Los
Alamitos (2006)

http://www.cs.rmit.edu.au/
http://www.springeronline.com/

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 345–357, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Fusing Visual and Textual Retrieval Techniques to
Effectively Search Large Collections of Wikipedia Images

C. Lau, D. Tjondronegoro, J. Zhang, S. Geva, and Y. Liu

Faculty of Information Technology, Queensland University of Technology,
2 George Street, GPO Box 2434, Brisbane, QLD 4001 Australia

{andy.lau,dian,jinglan.zhang,s.geva}@qut.edu.au,
y53.liu@student.qut.edu.au

Abstract. This paper presents an experimental study that examines the per-
formance of various combination techniques for content-based image retrieval
using a fusion of visual and textual search results. The evaluation is comprehen-
sively benchmarked using more than 160,000 samples from INEX-MM2006
images dataset and the corresponding XML documents. For visual search, we
have successfully combined Hough transform, Object’s color histogram, and
Texture (H.O.T). For comparison purposes, we used the provided UvA features.
Based on the evaluation, our submissions show that Uva+Text combination per-
forms most effectively, but it is closely followed by our H.O.T- (visual only)
feature. Moreover, H.O.T+Text performance is still better than UvA (visual)
only. These findings show that the combination of effective text and visual
search results can improve the overall performance of CBIR in Wikipedia col-
lections which contain a heterogeneous (i.e. wide) range of genres and topics.

1 Introduction

Recently there has been a renewed spurt of the research activity in multimedia infor-
mation retrieval [1-3]. This can be partly due to the rapid proliferation of the Internet.
The current World Wide Web increasingly uses structured XML documents that con-
tain not only the text information, but also other media information such as images,
videos, and speech. Images have been playing an important role in human life as one
of the most important information resources. The amount of images on the Web is
increasing exponentially due to the advent of various digital devices such as digital
cameras and scanners. Nowadays the problem is not finding information, but how to
find useful information efficiently and effectively. Image retrieval techniques have
attracted intensive interests from both the industry and the research communities.

Currently there are two paradigms in image retrieval: text-based and content-based.
Text-based image retrieval techniques perform retrieval using keywords. Most of the
state-of-the-art systems, such as Google and Yahoo!, belong to this paradigm. Al-
though text description is closer to the concepts in human mind, they rely heavily on
manual annotation of images for keyword matching, which is tedious and costly. In
addition, it is hard to define a unified set of keywords to be used for annotation. Al-
though the concept of using game players to help label images on the web via an
online game is very interesting [4], the final effect of this approach to effectively label

346 C. Lau et al.

images still needs to be verified due to Internet abuse [24]. Content-based image re-
trieval turns to visual features for searching similar images, which alleviates the bur-
den of manually labelling images. However, due to the well-known semantic gap
between low-level visual features and the corresponding high-level concepts, visual
features are generally not sufficient for searching similar images [5].

In order to mitigate this semantic gap, multi-modal image retrieval, which uses
both text and content-based searching, is attracting uprising interests [6]. It has been
proved that better retrieval results will be achieved by appropriately fusing different
modal information [7]. In most cases, especially on the Web, images do not exist
separately. Instead, there is much relevant information surrounding these images.
Combing different modality, e.g. images and textual information, would improve the
retrieval accuracy; fusion of the image and the text will also make the query more
flexible for users. A user could search the image database by the image and/or the
text. Although combining the image with the text together has been studied just re-
cently, there are still some open issues needing further study, such as how to combine
the content and text-based image retrieval results together.

The main goal of this research is to develop and evaluate algorithms for structured
document retrieval systems using comprehensive database of XML documents con-
taining text and image information. The document collection used is provided by the
INEX 2006 organizing committee. The corpus contains 166,559 images in formats
such as PNG, JPG and GIF. This complex selection of images depicting both natural
and man-made objects (such as landscape, people, animals, buildings, and logos)
comes in different sizes as well as different color depths. This project aims at creating
a Content Based Image Retrieval (CBIR) system which can deal with a large set of
heterogeneous images and will work together with an existing text-based search en-
gine in order to elevate the quality of the final retrieval results.

In this research, a text and an image-based search engine are used concurrently and
the results are obtained by fusing two or more independent result sets. Therefore, the
primary contribution is to answer the challenging question of how to fuse multiple
results to form optimal query results for users. This involves the fusion of the XML
document retrieval results of multiple search algorithms on the same collection. Que-
ries consist of both text (keywords) and/or example images. Two document retrieval
algorithms are used: a text-based retrieval using a TF-IDF variant, and an image-
based retrieval using image feature similarity.

2 Related Work

This section summarizes some previous work in image feature extraction and multi-
modal image retrieval.

Image Feature Extraction
Compared with text-based image retrieval which takes advantage of keywords or
metadata such as captions, authors, and textual descriptions, content-based image re-
trieval is more complicated and has to extract the appropriate visual features first [5].

Color is one of the most widely used visual features. The choice of a color space is of
great importance to the proper color-based image retrieval. HSV and YCbCr are two
commonly used color spaces which can better model the human color perception [8].

 Fusing Visual and Textual Retrieval Techniques 347

The histogram, which describes the distribution of colors in an image, is a traditional
representation of the “color” feature. It is usually high dimensional and contains more
global information of the image.

Texture is another important feature which represents some important aspects of
many real-world images, such as bricks, coins, trees, etc. Texture has characteristics
such as periodicity and scale, and could be represented in terms of direction, coarse-
ness, contrast, etc. In this sense, texture features contain the high-level semantics for
image retrieval [5, 8]. Texture features could be divided into two categories: the struc-
tural texture and the statistical texture. The structural method represents the texture by
identifying structural primitives and their location rules, which consists of morpho-
logical operator and adjacency graph. The statistical approach, which is one of the
earliest methods to classify textures, describes texture by the spatial distribution of
image density.

Hough transform is a kind of feature extraction method which can identify objects
with a particular shape in an image. It includes two kinds of transform methods: the
classical transform and the generalized transform. The classical Hough transform is
usually used to detect the regular curves such as lines, circles, ellipses, etc. The gen-
eralized transform is applicable for the detection of positions of arbitrary shapes
which cannot be described by using the simple features.

We will use color histogram, statistical texture, and generalized Hough transform
in our experiment.

Fusing Image and Text Retrieval
One challenge for image retrieval is to find a simple but effective way to form a
query. Most content-based image retrieval systems support query-by-example in
which users should provide visual example of the contents they seek. In this case
images are searched on the basis of matching of content features such as color, shape,
and texture. Therefore, this method is more intuitive, and an appropriate key-image is
dispensable to start a query. However, this query method has two drawbacks. Firstly,
a user may not find such an appropriate image which can represent the use’s query
need completely in some cases. Secondly, the representation of the image is not as
flexible as the textual description, and most users have been used to adopting key-
words to start their query and describe their needs.

Text-based image retrieval can address these problems, which is based on the as-
sumption that the textual description can express the semantics of images [9]. It al-
lows users to search images by specifying their own query in terms of a limited vo-
cabulary of semantic concepts. But synonymy and polysemy are two large existing
problems in information retrieval [10]. Many words have more than one distinct
meaning. Users in different contexts may express the same needs by using different
terms. In addition, there are many ways to describe the same object. In different con-
texts or when used by different people, the same terms can be taken differently. The
prevalence of synonymy and polysemy tends to degrade precision and recall perform-
ance of the system.

It is believed by many researchers that combining the keyword-based approach and
the content-based approach together can benefit from the strengths of both paradigms,
and these two paradigms can supplement each other. R. Zhang et al. [6] in their paper
show that multi-modal image retrieval is a promising way to improve image retrieval
and enhance users’ querying modalities. There are several ways for multi-modal

348 C. Lau et al.

fusion, such as linear combination, min-max aggregation, and voting production com-
bination [7]. These methods can be classified into two categories: fusion at feature
level and fusion at output level. It has proven that the fusion on output level outper-
forms the fusion on feature level in most cases [7].

E. Chang et al. [11] suggest that the user can start a query by a few keywords, and
after a few relevant images are returned, the image features with their annotation can
be used to perform a multi-modal query refinement. J.L. Martinez-Fernandez et al.
presents similar ideas [12]. They refine the text-based search results with the addition
of content-based image retrieval. Based on their successful previous work on organiz-
ing images according to the visual similarity for image retrieval, D. Cai et al. [13] use
low-level features to cluster images into semantic clusters obtained by the textual
features. R. Basancon et al. [14] presents the opposite idea. They first search the can-
didate images using content-based methods, and then use the textual description of
these candidate images as query keywords to search again.

However, regardless of whether the text-based results are refined using content-
based methods or vice versa, it is still insufficient to improve the performance of
image retrieval. The reason is that owing to the intrinsic drawbacks of text- and con-
tent-based approaches, it is hard to confirm which method could achieve better results
in terms of a specific query. It is our hypothesis that the late combination would as-
sure better searching results. D. Tjondronegoro et al. [15]indicate, by a series of ex-
periments, that the results of content-based retrieval with the help of text-based re-
trieval is much better than any individual text-based or image-based retrieval. During
the work in the INEX 2005, they designed two search engines: an XML document
search engine using both structural and content information and a content-based im-
age search engine. When a query is submitted, these two engines work respectively at
the same time, and then the retrieval results are merged together by treating the visual
features as the text terms. The question of how to fuse content-based retrieval with
text-based retrieval, however, still needs further consideration. There are no common
agreements on the fusion approaches.

3 System Architecture

The framework of the prototype system is shown Figure 1. Users interact with a
Graphical User Interface (GUI) to write queries and browse results. The GUI merges
results from an integrated document searching that fuses image-text results. The data-
base stores images and the XML documents which display (i.e. provide links) them.
Three (3) image related tables are used in the database: Images, Features, and Ad-
hocXML (as shown in Figure 2). The Images table stores the information about the
images, including the image ID (e.g. 22625), its original filename (e.g. DVD-
RW_Spindle.jpg), the collection set and the subfolder name. The Features table stores
the image feature extracted using the feature extractor. The AdhocXML table stores
the Adhoc XML filename and the absolute XPath of where the related image appears
in the document. This allows the system to back-track the original XML document
which uses the image and also allows it to fuse the image and text search results. The
selected image features for this experiment include color histograms
(RGB/HSV/YCbCr), textures, detectable lines (Hough transformation), and the UvA

 Fusing Visual and Textual Retrieval Techniques 349

features provided by INEX2006 organizing committee (developed by a research
group in University of Van Amsterdam). The UvA feature uses Natural Image Statis-
tics, Color invariant edge detection and regional descriptors to represent an image.
These features of every image are stored in the database for CBIR. All image features
are represented by vectors. Different distance measures such as the correlation coeffi-
cient, Euclidean distance, and Manhattan distance have been implemented and can be
chosen from the Graphical User Interface. The Euclidean distance between two vec-
tors is used for the final submission. All individual distances are normalized to the
range of [0, 1].

Fig. 1. System Architecture

Fig. 2. Database Entity-Relationship

Graphical User Interface (GUI)
Using the GUI, users can choose which features to be combined and adjust the
weights of each individual feature, as well as the metrics of distance calculation. The
GUI also provides a preview picture box and the information of the image.

Memory Management
Due to the large amount of data and high dimensionality of the image feature, a data
access technique is required to avoid system resources overload (while calculations

350 C. Lau et al.

are performed in the memory). The system is designed to perform calculation in se-
quential order. Each time a block of 100 image features is read and stored in the
memory buffer, only the normalized distance (from the query image) is kept in the
buffer, while the rest are overwritten. This method is found to be efficient and reliable
(i.e. no buffer overflow) during our experiments.

4 Using Visual Retrieval Techniques

The image features used in this project are color histogram, texture and detectable
lines (Hough transform).

Color Histogram
Color histogram has been widely used in CBIR to represent the global image color
attribute. For our experiment, we compared the use of RGB, HSV, and YCbCr color
spaces. RGB color histogram is invariant with translation and viewing-axis rotation,
and varies only slowly with the angle of view. Therefore, it is particularly suited for
recognizing an object of unknown position and rotation within a scene. Moreover,
translation of an RGB image into the illumination invariant rg-chromaticity space
allows the histogram to operate well in varying light levels [16]. HSV Histogram is
one of the most commonly used by people (especially artist) to select color. It is a
cylindrical coordinate system where the angle defines hue, the radius defines satura-
tion, and the vertical axis defines color of an image. As compared to RGB, which is
an additive model, HSV encapsulates information about each color in a more under-
standable and recognizable manner to humans who perceive color via its color name,
vibrancy and darkness/brightness. Similarity distance between HSV color space often
performs better than RGB (e.g. [17]). The YCbCr color histogram represents the lu-
minance level using a single component, Y, and other color information is stored
individually using Cb and Cr. This feature is frequently used in skin color detection
projects (e.g. [18]) as values extracted from Cb and Cr can effectively represent skin
color of most human races. Figure 3 illustrates that these various color spaces will
return different results for the same query, thus we aim to compare the effectiveness
of each color representation for different topics.

Fig. 3. Sample Results from Retrieval using Various Color Histogram (From top to bottom:
RGB, HSBV, YCbCr Results)

 Fusing Visual and Textual Retrieval Techniques 351

Object Histogram
A pre-processing of object extraction is performed on every image and hence only the
histogram of the extracted segments is calculated. This technique is useful when per-
forming queries with standout and dominant object(s). The algorithm described in
[19] can efficiently extract building and human apart from the background. The object
extraction accuracy generally increases when the color of the background is much
different from the object itself. Several researches, including our previous work [15,
20], shows that object extraction can be used to enhance the image retrieval system
performance. Figure 4 shows an example of object-extraction result on an airplane
image which has a distinctive object features.

Hough Transform
Hough transform is widely used in digital image processing to detect arbitrary shapes
and identify lines (e.g. [21]). For the Wikipedia images dataset, we expect that this
method can effectively distinguish some topics such as buildings, coins and some
arbitrary shapes since they have unique lines strength characteristics. Figure 5 shows
the use of Hough transform to detect coin shapes.

Fig. 4. Object extraction algorithm

Fig. 5. Hough Transform detect Coin Shapes

Texture
Texture can often represent the visual properties of an image which are unable to
represent by color intensity alone. For example, while sea and sky are both blue, but
their texture features are different In this project we used a 6D texture-vector which
comprises of the intensity, contrast, smoothness, skewness, uniformity and random-
ness, using a method which has been described in our previous work [19]. We expect
that texture feature is likely to perform well in locating images with distinctive and
strong unique patterns.

352 C. Lau et al.

UvA Features
This feature uses Natural Image Statistics, Color invariant edge detection and regional
descriptors to represent an image. The paper [22] presents a 120D features using dif-
ferent texture parameters. In our project, we will compare UvA features with our
features set.

Similarity Measurement Metrics
We implemented and compared the performance of the following similarity meas-
urement metrics: Euclidean [23], Manhattan [23], Chebyshev, Bray Curtis and Cor-
relation. Euclidean distance is commonly used in most of the image retrieval system
and Correlation is able to indicate the strength and direction of 2 vectors to show how
closely one image correlate to another. To represent the greatest of their differences
along any coordinate dimension, the Chebyshev distance of any two points is defined
as:

2 1 2 1max(,)D x x y y= − −

Whereas, Bray Curtis distance is defined as:

1

1

()

n

ik jk
k
n

ik jk
k

x x
D

x x

=

=

−
=

+

∑

∑

5 Using Text Retrieval Techniques

The system that we have used for XML text based retrieval is the GPX search engine
[23]. The system is described in detail in this proceedings collection under the title
“GPX - Gardens Point XML IR at INEX 2006”. The MM Fragments task was applied
without any changes to the system. For the MM Images task we had to index the new
collection but no other work or modifications were required. The system ignored
search by image source. All clauses such as about (.,src:988336) were simply ignored
by the system. It was left to the image retrieval system to take account of example
images and fuse the CBIR results with the text retrieval results, as outlined in the next
section.

6 Combining Visual and Textual Search Results

The fusion of search results is performed in twofold: 1) combination of image fea-
tures, and 2) fusion of text-based search and image-based search results. To combine
multiple image features, a weighted sum is performed on the individual distances
calculated using different features. This is based on the hypothesis that the combina-
tion of more evidence will increase the reliability of the similarity calculation.

To combine the results of text-based and image-based search engines, we use the
result of the text search as the base, while the image search result is used to boost the
confidence. Our text-image fusion algorithm relies on a hypothesis that if a document

 Fusing Visual and Textual Retrieval Techniques 353

appears in both text and image based search results, then the final ranking of the
document should be pushed to the top. This hypothesis has not been thoroughly
proven as our experiment shows that sometimes the individual search results (either
image-based or text-based) can still be better than the combined. More details will be
discussed in Section 7 (Evaluation).

7 Evaluation

Our system’s prototype is designed using VB.Net language in Microsoft .NET 2.0.
The database used is Microsoft Access. The image feature extraction is performed
using MATLAB with Image Processing Toolbox. The image collection used is pro-
vided by INEX 2006 (http://inex.is.informatik.uni-duisburg.de/2006/). The corpus
contains 166,559 images of different format such as PNG, JPG and GIF. All of the
images come in different size, different color depth and present various type of con-
tent from landscape, buildings, people, and buildings. Table 1 summarizes the topics
of INEX 2006 MM tasks. For each task, we will re-interpret the queries as “Find
other images about X like this one".

Table 1. INEX 2006 Image Retrieval Topics

Topic ID Topic Title
1 Sunset sky
2 Historic castle
3 Barcelona
4 Bactrian Coins
5 Masjid (Mosque) Malaysia
6 Da Vinci’s Color Paintings
7 Mountain for hiking
8 Images of bees with flowers
9 Golden gate bridge

10 Stringed musical instruments
11 Frank Lloyd Wright Buildings
12 Rodin “Burghers of Calais”
13 Official logos of parties in Sweden

We experimented with various combinations of features and found that the combi-
nation of Hough transform (H), the Object color histogram (O) and the Texture (T)
with equal weighting performs best (among other combinations).

To illustrate the benefits/weaknesses of using text- or image- results only, or using
the fusion of text-image results, Figure 6 and 7 shows the text-only search results and
fused search results of Topic 9, respectively. For this case, our system is able to refine
the text search by bringing forward the 2 visually similar images with lower ranking.

To illustrate the benefits of our H.O.T, Figure 8 and 9 shows the results for Topic 4
using visual features only and fusion of text-image, respectively. In this case, visual

354 C. Lau et al.

features effectively locate images with similar color, shapes and texture. However,
with the fusion of the text and image, the results are actually affected by the Bactrian
camel which is irrelevant.

After evaluating various similarity metrics, we found that the results of applying
different similarity measurement metrics are similar and we decided to use Euclidean
distance as it is one of the most commonly used similarity measurements,

Fig. 6. Text Results of Topic 9

Fig. 7. Fused (i.e Text-Image) Search Results of Topic 9 (This shows that fusion of text and
image search results is better than text search alone)

Fig. 8. H.O.T image-based search result for Topic 4

Figure 10 depicts the official evaluation result from INEX 2006 for QUT submis-
sions (QUT’s performance is highlighted- while the non-highlighted are from other
participants). Based on the interpolated precision-recall performance, the best tech-
nique is UvA+Text results. However, the H.O.T (visual only) feature performed at a
similar quality, and in fact is better than UvA (visual) alone. This shows that for

 Fusing Visual and Textual Retrieval Techniques 355

Fig. 9. Fused search results of Topic 4 (This shows that H.O.T feature performs better when it
is used without merging with text results)

certain image retrieval task, a combination of simpler low-level features can be suffi-
cient to produce a decent result. However, visual features cannot fully represent the
semantics for an image, which is why text search needs to be exploited to improve the
accuracy of search results. Moreover, XML documents which use images usually
provide useful contextual information which sometimes can be close to users’ search
intention.

Furthermore, it is worth noting that detectable lines and shape description are ef-
fective to search images with distinctive objects such as cars, airplanes, coins, and
buildings.

Fig. 10. Graph of Interpolated recall precision averages

356 C. Lau et al.

8 Conclusions and Future Work

The experiment result shows that once the text-based image searching results are
refined using content-based image searching results, the final combined result is gen-
erally better than the individual text or image-based searching results.

The semantic relation between keywords has not been investigated, and remains a
subject of future investigation as it is one of the main reasons incurring low precision
in image retrieval. Ontology contains concepts and their relations, therefore introduc-
ing ontology into multi-modal image retrieval will not only help better analyze the
text, but are also useful for keyword matching. In this sense, text-based retrieval will
become concept-based retrieval. We hypothesize that the fusion of concept and con-
tent will achieve much better results than the fusion of text and content.

In addition, fast access of the image database needs to be studied as it is very large
and image features are usually high dimensional (from 100 to 1000) and slow down
content-based matching.

References

[1] Lew, M.S., Sebe, N., Djeraba, C., Jain, R.: Content-based multimedia information re-
trieval: state of the art and challenges, ACM Transactions on Multimedia Computing.
Communications and Applications 2, 1–19 (2006)

[2] Kherfi, M.L., Ziou, D., Bernardi, A.: Image retrieval from the World Wide Web: Issues,
techniques and systems. ACM Computing Surveys 36, 35–67 (2004)

[3] Smeulders, A., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image re-
trieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine
Intelligence 22, 1349–1380 (2000)

[4] von Ahn, L., Dabbish, L.: Labeling images with a computer game. In: Proceedings of the
2004 conference on Human factors in computing systems, pp. 319–326 (2004)

[5] Liu, Y., Zhang, D., Lu, G., Ma, W.-Y.: A survey of content-based image retrieval with
high-level semantics. Pattern Recognition 40, 262–282 (2007)

[6] Zhang, R., Zhang, Z.M., Li, M., Ma, W.-Y., Zhang, H.-J.: A probabilistic semantic model
for image annotation and multi-modal image retrieval. Multimedia Systems 12, 27–33
(2006)

[7] Tong, H., He, J., Li, M., Zhang, C.: Graph based multi-modality learning. In: presented at
Proceedings of the 13th annual ACM international conference on Multimedia, Hilton,
Singapore (2005)

[8] Gevers, T., Smeulders, A.W.M.: Content-based image retrieval: an overview, in Emerg-
ing Topics in Computer Vision, Gerard Mediomi, S. B. k. (ed.) USA: IMSC, pp. 333–384
(2004)

[9] Gong, Z., Liu, Q., Zhang, J.: Web image retrieval refinement by visual contents. In: pre-
sented at The 7th International Conference on Web-Age Information Management
(WAIM), Hong Kong, China (2006)

[10] Zhao, R., Grosky, W.: Narrowing the Semantic Gap - Improved Text-Based Web Docu-
ment Retrieval Using Visual Features. IEEE TRANSACTIONS ON MULTIMEDIA 4,
189–200 (2002)

 Fusing Visual and Textual Retrieval Techniques 357

[11] Chang, E., Goh, K., Sychay, G., Wu, G.: CBSA: Content-based soft annotation for mul-
timodal image retrieval using Bayes Point Machines. IEEE Transactions on Circuits and
Systems for Video Technology, 13, 26–38 (2003)

[12] Martinez-Fernandez, J.V.R.J.L., Garcia-Serrano, A.M., Gonzalez-Cristobal, J.C.: Com-
bining textual and visual features for image retrieval. In: Accessing Multilingual Informa-
tion Repositories, vol. 4022, pp. 680–691. Springer, Heidelberg (2006)

[13] Deng Cai, X.H., Li, Z., Ma, W. -Y., Wen, J. -R.: Hierarchical clustering of WWW Image
search results using visual, textual and link Information. In: presented at the 12th annual
ACM international conference on Multimedia, New York, NY, USA (2004)

[14] Besancon, P.H.R., Moellic, P.-A., Fluhr, C.: Cross-media feedback strategies: merging
text and image information to improve image retrieval, in Multilingual Information Ac-
cess for Text, Speech and Images, vol. 3491, pp. 709–717. Springer, Heidelberg (2005)

[15] Tjondronegoro, J. D. Z., Gu, J., Nguyen, A., Geva, S.: Integrating Text Retrieval and Im-
age Retrieval in XML Document Searching, presented at INEX 2005 (2006)

[16] Tapus, A., Vasudevan, S., Siegwart, R.: Towards a Multilevel Cognitive Probabilistic
Representation of Space, In: Proceedings of SPIE (2005)

[17] Ma, W.-Y., Zhang, H.J.: Benchmarking of image features for content-based retrieval,
Signals, Systems & Computers, 1998. Conference Record of the Thirty-Second Asilomar
Conference 1, 253–257 (1998)

[18] Chai, D., bouzerdoum, A.: A Bayesian approach to skin color classification in YCbCr
colorspace, presented at TENCON, Kuala Lumpur, Malaysia (2000)

[19] Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital Image processing using MATLAB.
Upper Saddle River, N. J. :: Pearson Prentice Hall, (c2004)

[20] Kam, A.H., Ng, T.T., Kingsbury, N.G., Fitzgerald, W.J.: Content based image retrieval
through object extraction andquerying, Content-based Access of Image and Video Librar-
ies, 2000. In: Proceedings. IEEE Workshop, pp. 91–95 (2000)

[21] Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pic-
tures. Commun. ACM 15, 11–15 (1972)

[22] Gemert, J. C. v., Geusebroek, J.-M., Veenman, C. J., Snoek, C. G. M., Smeulders, A. W.
M.: Robust scene categorization by learning image statistics in context. In: presented at
CVPR Workshop on Semantic Learning Applications in Multimedia, New York, USA,
(2006)

[23] Zhang, D., Lu, G.: Evaluation of similarity measurement for image retrieval, presented at
Neural Networks and Signal Processing (2003)

[24] Google Image Labeler, Accessed: (March 17, 2007)
http://en.wikipedia.org/wiki/Google_ Image_Labeler

Social Media Retrieval Using Image Features and
Structured Text

D.N.F. Awang Iskandar, Jovan Pehcevski, James A. Thom, and S.M.M. Tahaghoghi

School of Computer Science and Information Technology, RMIT University
Melbourne, Australia

{dayang,jovanp,jat,saied}@cs.rmit.edu.au

Abstract. Use of XML offers a structured approach for representing information
while maintaining separation of form and content. XML information retrieval is
different from standard text retrieval in two aspects: the XML structure may be of
interest as part of the query; and the information does not have to be text. In this
paper, we describe an investigation of approaches to retrieve text and images from
a large collection of XML documents, performed in the course of our participa-
tion in the INEX 2006 Ad Hoc and Multimedia tracks. We evaluate three infor-
mation retrieval similarity measures: Pivoted Cosine, Okapi BM25 and Dirichlet.
We show that on the INEX 2006 Ad Hoc queries Okapi BM25 is the most ef-
fective among the three similarity measures used for retrieving text only, while
Dirichlet is more suitable when retrieving heterogeneous (text and image) data.

Keywords: Content-based image retrieval, text-based information retrieval, so-
cial media, linear combination of evidence.

1 Introduction

A structured document could contain text, images, audios and videos. Retrieving the
desired information from an eXtensible Markup Language (XML) document involves
retrieval of XML elements. This is not a trivial task as it may involve retrieving text and
other multimedia elements.

The INitiative for the Evaluation of XML Retrieval (INEX) provides a platform
for participants to evaluate the effectiveness of their XML retrieval techniques using
uniform scoring procedures, and a forum to compare results. Of the nine tracks at
INEX 2006, this paper presents the RMIT university group’s participation in two tracks:
the Ad Hoc track, where we investigate the effects of using different information re-
trieval (IR) similarity measures; and the Multimedia (MM) track, where we combine
retrieval techniques based on text and image similarity.

There are four XML retrieval tasks within the INEX 2006 Ad Hoc track: Thorough,
Focused, All In Context (AIC) and Best In Context (BIC). Using three IR similarity
measures — Pivoted Cosine, Okapi BM25, and Dirichlet — in this paper we focus
on the results obtained under Thorough and AIC tasks. Since the system we used is a
full-text IR system which only does retrieval at document level, we only expected it to
perform well on article retrieval in the AIC task.

The objective of the INEX 2006 MM track is to exploit the XML structure that pro-
vides a logical level at which multimedia objects are connected and to improve the

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 358–372, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Social Media Retrieval Using Image Features and Structured Text 359

retrieval performance of an XML-driven multimedia information retrieval system.1 Ex-
isting research on multimedia information retrieval from XML document collections is
shown to be challenging [3,12,13]. For the Multimedia Images (MMImages) and Multi-
media Fragments (MMFragments) tasks of the INEX 2006 MM track, we explore and
analyse methods for combining evidence from content-based image retrieval (CBIR)
with full-text IR. We describe a fusion system that combines evidence and ranks the
query results based on text and image similarity. The fusion system consists of two sub-
systems: the GNU Image Finding Tool (GIFT), and the full-text IR system (Zettair). A
technique for linear combination of evidence is used to merge the relevance scores from
the two subsystems.

The retrieval strategy has been evaluated using Wikipedia, a social media collection
that is an online encyclopedia. Social media describes the online tools and platforms
that people use to share opinions, insights, experiences, and perspectives with each
other. Social media can take many different forms, including text, images, audio, and
video. Popular social mediums include blogs, message boards, podcasts, wikis, and
vlogs.2

The remainder of this paper is organised as follows. Section 2 describes the text
retrieval approach used for the Ad Hoc and MM tracks followed by the performance
results obtained on the Thorough and AIC tasks of the Ad Hoc track. In Section 3 we
present the INEX 2006 multimedia topics and their corresponding relevance judge-
ments. In Section 4 we describe our approach to retrieve XML articles and the asso-
ciated images based on the multimedia topics used in the MM track. In Section 5 we
present results obtained from our experiments on the two tasks of the INEX 2006 MM
track. We conclude in Section 6 with a discussion of our findings and outline directions
for future work.

2 Full-Text Information Retrieval

In this section, we describe the three similarity measures implemented in Zettair, and
show performance results on the Thorough and AIC tasks of the INEX 2006 Ad Hoc
track.

2.1 The Zettair Search Engine

Zettair is a compact and fast text search engine developed by the Search Engine Group
at RMIT University.3 Zettair supports on-the-fly indexing and retrieval of large tex-
tual document collections. To process the queries for the INEX 2006 Ad Hoc and MM
tracks, we first obtained the document content by extracting the plain document text
(and by completely removing all the XML tags). We then indexed these documents us-
ing fast and efficient inverted index structure as implemented in many modern search
engines [14]. A similarity measure is used to rank documents by likely relevance to the
query; in this work, we report on experiments using three different similarity measures

1 INEX 2006 Multimedia Track Guidelines.
2 http://en.wikipedia.org/wiki/Wiki
3 http://www.seg.rmit.edu.au/zettair

http://en.wikipedia.org/wiki/Wiki
http://www.seg.rmit.edu.au/zettair

360 D.N.F. Awang Iskandar et al.

implemented in Zettair, which respectively follow the three major models to informa-
tion retrieval: the vector-space model, the probabilistic model, and the language model.

2.2 Similarity Measures

The similarity of a document to a query, denoted as Sq,d , indicates how closely the
content of the document matches the query.

To calculate the query-document similarity, statistical information about the distri-
bution of the query terms (within both the document and the collection as a whole) is
often necessary. These term statistics are subsequently utilised by the similarity mea-
sure. Following the notation and definitions of Zobel and Moffat [16], we define the
basic term statistics as:

– q, a query;
– t, a query term;
– d, a document;
– ND , the number of all the documents in the collection;
– For each term t:

• fd,t , the frequency of t in the document d;
• NDt , the number of documents containing the term t; and
• fq,t , the frequency of t in query q.

– For each document d:
• fd = |d|, the document length approximation.

– For the query q:
• fq = |q|, the query length.

We also denote the following sets:

– D , the set of all the documents in the collection;
– Dt , the set of documents containing term t;
– Td , the set of distinct terms in the document d;
– Tq, the set of distinct terms in the query, and Tq,d = Tq ∩Td .

Vector-Space Model. In this model, both the document and the query are represen-
tations of n-dimensional vectors, where n is the number of distinct terms observed in
the document collection. The best-known technique for computing similarity under the
vector-space model is the cosine measure, where the similarity between a document and
the query is computed as the cosine of the angle between their vectors.

Zettair uses pivoted cosine document length normalisation [8] to compute the query-
document similarity under the vector-space model:

Sq,d =
1

WD ×Wq
× ∑

t∈Tq,d

(
1 + loge fd,t

)
× loge

(
1 +

ND

NDt

)
(1)

In Equation (1), WD =
(
(1.0 − s)+ s× Wd

WAL

)
represents the pivoted document length

normalisation, and Wq is the query length representation. The parameter s represents the
slope, whereas Wd and WAL represent the document length (usually taken as fd) and the
average document length (over all documents in D), respectively. We use the standard
value of 0.2 for the slope, which is shown to work well in traditional IR experiments [8].

Social Media Retrieval Using Image Features and Structured Text 361

Probabilistic Model. In IR, the probabilistic models are based on the principle that
documents should be ranked by decreasing probability of their relevance to the ex-
pressed information need. Zettair uses the Okapi BM25 probabilistic model developed
by Sparck Jones et al. [10]:

Sq,d = ∑
t∈Tq,d

wt ×
(k1 + 1) fd,t

K + fd,t
× (k3 + 1) fq,t

k3 + fq,t
(2)

where wt = loge

(
ND −NDt +0.5

NDt +0.5

)
is a representation of inverse document frequency, K =

k1 ×
[
(1 − b)+ b·Wd

WAL

]
, and k1, b and k3 are constants, in the range 1.2 to 1.5 (we use

1.2), 0.6 to 0.75 (we use 0.75), and 1 000 000 (effectively infinite), respectively. The
chosen values for k1, b and k3 are shown to work well with the TREC Collection ex-
periments [10]. Wd and WAL represent the document length and the average document
length.

Language Model. Language models are probability distributions that aim to capture
the statistical regularities of natural language use. Language modelling in IR involves
estimating the likelihood that both the document and the query could have been gener-
ated by the same language model. Zettair uses a query likelihood approach with Dirich-
let smoothing [15]:

Sq,d = fq × logλd + ∑
t∈Tq,d

log

(
ND × fd,t

μ × NDt

+ 1

)
(3)

where μ is a smoothing parameter, while λd is calculated as: λd = μ/(μ + fd). We use
the value of 2 000 for μ as according to Zhai and Lafferty [15] it is the optimal value
used in most IR experiments.

2.3 Performance Results

We now compare the performance of the three similarity measures implemented in
Zettair for the Thorough and AIC tasks of the INEX 2006 Ad Hoc track.4 We used the
information in the title element of the topic as the query for Zettair.

The official measures of retrieval effectiveness for the INEX 2006 Thorough task are
ep/gr and MAep of the XCG metrics family [4]. The ep/gr graphs provide a detailed
view of the run’s performance at various gain-recall levels. The MAep measure provides
a single-valued score for the overall run performance. This evaluation measure was also
used for the MMFragments task evaluation of the INEX 2006 MM track. The measures
make use of the Specificity relevance dimension, which is measured automatically on a
continuous scale with values in the interval [0, 1]. A relevance value of 1 represents a
fully specific component (that contains only relevant information), whereas a relevance
value of 0 represents a non-relevant component (that contains no relevant information).

4 Similar relative performance differences between the three similarity measures were also ob-
served on the Focused task of the INEX 2006 Ad Hoc track.

362 D.N.F. Awang Iskandar et al.

0.01 0.02 0.03 0.04

Gain Recall

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

In
te

rp
ol

at
ed

 E
ff

or
t P

re
ci

si
on

Okapi BM25
Dirichlet
Pivoted Cosine

Similarity Measure MAeP
Okapi BM25 0.0058
Dirichlet 0.0052
Pivoted Cosine 0.0047

Fig. 1. Retrieval performance of the three similarity measures implemented in Zettair on the Thor-
ough task of the INEX 2006 Ad hoc track

Values of Specificity were derived on the basis of the ratio of relevant to both relevant
and non-relevant text, as highlighted by the assessor.

Figure 1 shows the performance results obtained for the three similarity measures us-
ing both the MAep scores and the ep/gr graphs. We observe that Okapi BM25 produced
the best MAep score among the three similarity measures, substantially outperforming
the other two similarity measures. This performance difference is especially reflected on
the ep/gp graphs. Of the other two measures, Dirichlet seems to perform better than the
Pivoted Cosine measure. Interestingly, the ep/gp graphs generated on the article-level
Fetch and Browse retrieval task of the INEX 2005 Ad hoc track show similar relative
performance differences between the three similarity measures, even though a different
XML document collection (IEEE instead of Wikipedia) was used as part of the eval-
uation testbed [6]. However, the Pivoted Cosine similarity measure outperformed the
other two measures on the element-level Fetch and Browse retrieval task of the INEX
2005 Ad Hoc track. Compared to runs submitted by other participants in the INEX
2006 Thorough task, all three measures performed relatively poor as our system only
returned whole articles (our run using the Okapi BM25 measure was ranked as 82 out
of 106 submitted runs).

Table 1 shows that, when using the official evaluation measures for the INEX 2006
AIC task, Okapi BM25 again outperforms the other two similarity measures. With the
MAgP measure, our run using the Okapi BM25 measure was ranked as fourth out of 56

Social Media Retrieval Using Image Features and Structured Text 363

Table 1. Retrieval performance of the three similarity measures implemented in Zettair on the
AIC task of the INEX 2006 Ad hoc track

Similarity Measure MAgP gP[5] gP[10] gP[25] gP[50]
Okapi BM25 0.1751 0.3766 0.3049 0.2220 0.1566
Dirichlet 0.1655 0.3266 0.2559 0.1844 0.1372
Pivoted Cosine 0.1489 0.3236 0.2611 0.1830 0.1301

submitted runs in the INEX 2006 AIC task. With the measures at rank cutoffs, this run
was consistently ranked among the top five best performing runs in the INEX 2006 AIC
task.

In the next section we describe our research activities carried out for the INEX 2006
MM track. We start with a description of the INEX 2006 MM tasks, along with their
associated topics and their corresponding relevance judgements.

3 Multimedia Tasks, Topics and Relevance Judgements

The INEX 2006 MM topics were organised differently compared to the INEX 2005
MM topics. The INEX 2005 MM topics were only based on the MMFragments task,
whereas the MMImages task was additionally introduced in the INEX 2006 MM track.

Since there are two tasks, the Wikipedia collection has been divided into two sub-
collections: Wikipedia Ad Hoc XML collection (Wikipedia), which contains XML
documents as well as images; and Wikipedia image collection (Wikipedia IMG), which
contains 170 000 royalty free images. The MMFragments task utilises the Wikipedia
collection and the Wikipedia IMG is used for the MMImages task.

3.1 Multimedia Images Task

In the MMImages task, the participants were required to find relevant images in the
articles based on the topic query. Hence, this task is basically using image retrieval
techniques. Even though the target element is an image, the XML structure in the doc-
uments could be exploited to get to the relevant images. An example of an MMImages
topic is depicted in Figure 2.

Each XML document in the Wikipedia IMG collection contains an image. There-
fore, the MMImages task essentially represents a document retrieval task, as the only
results allowed were full documents (articles) from the XML image collection. The path
of each of the resulting answers for this task were in the form of /article[1], so no
document fragments are retrieved.

3.2 Multimedia Fragments Task

The objective of the MMFragments task is to find relevant XML fragments given an
multimedia information need. Figure 3 illustrates a MMFragments topic. The target
elements are ranked in relevance order and element overlapping is permitted.

364 D.N.F. Awang Iskandar et al.

Fig. 2. Example of a MMImages query with image ID 60248, a bee and a flower (original in
colour)

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE inex_topic SYSTEM "topic.dtd">
<inex_mm_topic topic_id="16" ct_no="12" task="MMFragments">
<title>Kiwi shoe polish</title>
<castitle>
//article[about(.//history,kiwi shoe polish)]//image[about(., kiwi)]
</castitle>
<description>
Find images related to the Kiwi shoe polish product.
</description>
<narrative>Kiwi is the brand name of a shoe polish, first made in Australia
in 1906 and as of 2005 sold in almost 180 countries. Owned by the Sara Lee
Corporation since 1984, it is the dominant shoe polish in some countries,
including the United Kingdom and the United States, where it has about
two-thirds of the market. Find images related to the Kiwi shoe polish
product. We are not interested in the kiwi fruit.</narrative>
</inex_mm_topic>

Fig. 3. Example of a MMFragments query

Social Media Retrieval Using Image Features and Structured Text 365

Fig. 4. Conceptual representation of the system (original in colour)

4 Our Approach

In this section, we describe our approach adopted for the INEX 2006 MM track. We
used two systems and fused the results from these systems to obtain the results for the
multimedia queries. The overall structure of the system is depicted in Figure 4. Since the
XML document structure serves as a semantic backbone for retrieval of the multimedia
fragments, we use Zettair to retrieve the relevant articles. The GNU Image Finding Tool
(GIFT),5 a content-based image retrieval system, is used to retrieve the results based on
the visual features of the images.

For INEX 2006 MM track, we adopted similar approach as the one we used in the
INEX 2005 MM track [3]. The only difference is that we now use Zettair instead of
the hybrid XML retrieval approach. With Zettair, our officially submitted runs used
the Pivoted Cosine similarity measure as it performed best among the three similarity
measures in the INEX 2005 Ad Hoc track (using the IEEE document collection) [6].
However, we also performed additional runs to examine the effect of using Okapi BM25
and Dirichlet in the two INEX 2006 MM tasks.

4.1 Content-Based Image Retrieval

The GNU Image Finding Tool was used to retrieve relevant images. The image features
from the Wikipedia IMG collection were extracted and indexed using an inverted file
data structure.

Two main image features (colour and texture) were extracted during the indexing
process. GIFT uses the HSV (Hue-Saturation-Value) colour space for local and global
colour features [11]. For extracting the image texture, a bank of circularly symmetric
Gabor filters is used. GIFT evaluates and calculates the query image and the target

5 http://www.gnu.org/software/gift

http://www.gnu.org/software/gift

366 D.N.F. Awang Iskandar et al.

image feature similarity based on the data from the inverted file. The results of a query
are presented to the user in the form of a ranked list.

For the multimedia topics, we used the image references listed in the source (src)
element of the multimedia CAS query as the query image to GIFT. We used the default
Classical IDF algorithm and set the search pruning option to 100%. This allows us
to perform a complete feature evaluation for the query image, even though the query
processing time is longer. For each query, we retrieved and ranked all the images in
the Wikipedia IMG collection. Referring to the multimedia topic presented earlier, the
query image of Figure 2 is provided to GIFT.

4.2 Fusing and Ranking the Image and Text Retrieval

To fuse the two retrieval status value (RSV) lists into a single ranked result list R for
the multimedia queries, we use a simple linear combination of evidence [1] that is also
a form of polyrepresentation [5]:

R =

{
α ·SI +(1 − α) ·ST if the query contains image;

ST otherwise.

Here, α is a weighting parameter (determines the weight of GIFT versus Zettair re-
trieval), SI represents the image RSV obtained from GIFT, and ST is the RSV of the
same image obtained from the Zettair.

To investigate the effect of giving certain biases to a system, we vary the α values
between 0 to 1. When the value of α is set to 1, only the RSVs from GIFT are used.
On the other hand, only the Zettair’s RSVs are used when the value of α is set to 0. If
there was no image in the query then only the Zettair’s RSVs are used, irrespective of
the value of α .

For the INEX 2006 MM track official runs, we submitted six runs with the α value
set to 0.0, 0.5 and 1.0. We then conducted additional runs with the α values ranging
between 0.0 to 0.5 to further investigate which α value produces the best retrieval per-
formance. The fusion RSVs of the image and structured text retrieval are then ranked
in a descending order of similarity.

5 Experiments and Results

The experiment for the runs was conducted by varying the α values and investigating
the retrieval effectiveness of the three similarity measures in Zettair. For each multi-
media task, our runs were categorised into two types depending on which INEX 2006
multimedia topic elements were automatically translated as an input query to Zettair:

1. Title runs, which utilise the content of the title element; and
2. Extended runs, which utilise the content of the title, castitle, and descrip-

tion elements from each multimedia query.

Social Media Retrieval Using Image Features and Structured Text 367

5.1 Evaluation Metrics

The TREC evaluation metric was adopted to evaluate the MMImages task and the eval-
uation is based on the standard precision and recall retrieval performance measures:

– Mean Average Precision (MAP): The mean of the average precisions calculated for
each topic. Average precision represents the average of the precisions calculated at
each natural recall level.

– bpref: It computes a preference relation of whether judged relevant documents are
retrieved ahead of judged irrelevant documents. Thus, it is based on the relative
ranks of judged documents only.

– Average interpolated precision at 11 standard recall levels (0%-100%).

For the MMFragments task, the EvalJ evaluation software 6 was utilised. We used
EvalJ with the following parameters: metrics (ep-gr), overlap (off), quantisation (gen),
topic (ALL). The following evaluation measures were used:

– The effort-precision/gain-recall (ep/gr) graphs, which provide a detailed view of
the run’s performance at various gain-recall levels.

– Non-interpolated mean average effort-precision (MAep), which provides a single-
valued score for the overall run performance. MAep is calculated as the average of
effort-precision values measured at natural gain-recall levels.

5.2 Multimedia Images Task

For the MMImages task we conducted seven Title runs and three Extended runs using
each of the IR similarity measures. We varied the α values between 0.0 and 1.0. As the
results of the Title runs were promising, we applied a finer variation for the α values
between the interval 0.0 and 0.5 (with the step of 0.1) to investigate the best α value for
each similarity measure.

In Table 2, we observe that using the title element as the query produces better
MAP and bpref performances compared to using the extended query for the MMImages
task. Among the similarity measures, Dirichlet performed best, and this can be seen in
Figure 5 that depicts the interpolated recall/precision averages for all the best runs for
each similarity measure.

In the Title runs, having the α values between 0.1 and 0.4 yielded the best MAP
and bpref performance. Using the text retrieval system alone produces better retrieval
performance compared to using only the content-based image retrieval system; however
the best performance is found when combining evidence and weighting the text retrieval
as more important than the content based image retrieval. Comparing the performances
between INEX 2005 and INEX 2006 MM track, we observed a similar trend in the α
values, where the best α values were in the same range.

Overall, using Dirichlet as the similarity measure produces the best retrieval perfor-
mance compared to Pivoted Cosine and Okapi BM25 for the MMImages task. We also
found that the Extended runs performed worse in most cases when compared to the
Title runs.

6 http://evalj.sourceforge.net

http://evalj.sourceforge.net

368 D.N.F. Awang Iskandar et al.

Table 2. Retrieval performance for the MMImages task: mean average precision (MAP) and bpref.
Italic values – best performance runs using the various α values for each similarity measure Bold
values – best overall performance among all runs.

Similarity Measure α value MAP bpref

Title runs

Pivoted Cosine 0.0 0.3054 0.2861
0.1 0.3153 0.2957
0.2 0.3153 0.2957
0.3 0.3152 0.2957
0.4 0.3150 0.2956
0.5 0.3071 0.2880
1.0 0.2149 0.2033

Okapi BM25 0.0 0.2679 0.2605
0.1 0.2686 0.2622
0.2 0.2700 0.2643
0.3 0.2674 0.2599
0.4 0.2660 0.2572
0.5 0.2664 0.2592
1.0 0.1909 0.1814

Dirichlet 0.0 0.3130 0.2973
0.1 0.3175 0.3014
0.2 0.3175 0.3014
0.3 0.3203 0.3034
0.4 0.3203 0.3034
0.5 0.3202 0.3032
1.0 0.2158 0.2080

Extended runs

Pivoted Cosine 0.0 0.2608 0.2307
0.5 0.2642 0.2366
1.0 0.2071 0.1926

Okapi BM25 0.0 0.2674 0.2369
0.5 0.2674 0.2464
1.0 0.2087 0.2002

Dirichlet 0.0 0.2988 0.2787
0.5 0.3094 0.2805
1.0 0.2147 0.1987

5.3 Multimedia Fragments Task

For the MMFragments task, we conducted six runs using the Pivoted Cosine, Okapi
BM25 and Dirichlet similarity measures. We used the default value of α = 0.0 for all
the runs (since for this task we only used the text retrieval system).

We observe an opposite behaviour for the Title and Extended runs for this task. As
reflected from the ep/gr graphs in Figure 6, the Extended runs performed better than
the Title runs. This shows that the presence of the title, castitle and description
from the query improves the retrieval performance when compared to only using the

Social Media Retrieval Using Image Features and Structured Text 369

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

Pivoted Cosine (alpha = 0.2)
Okapi BM25 (alpha = 0.2)
Dirichlet (alpha = 0.3)

Fig. 5. Interpolated precision averages at eleven standard recall levels for the Title runs of the
MMImages task

title element of the MM queries in the MMFragments task. This result also reflects the
nature of the task, where XML fragments need to be returned as the retrieved answers.

When comparing the retrieval performance of the three IR similarity measures, we
observe that Dirichlet once again outperformed Pivoted Cosine and Okapi BM25. This
can also be seen in Figure 6 and from the overall MAep scores presented in Table 3.

To investigate whether combining evidence from the CBIR system improves the re-
trieval performance for this task, we conducted several preliminary runs that fuse the
RSVs from the CBIR system and Zettair. This resulted in a minor performance improve-
ment. However, without better fragment retrieval system, we cannot conclude whether
combining text and image RSVs will improve retrieval performance for the MMFrag-
ments task.

6 Conclusions and Future Work

In this paper we have reported on our participation in the Ad Hoc and MM tracks
of INEX 2006. We utilised a full-text information retrieval system for both tracks to
retrieve the XML documents and combined this with a content-based image retrieval
system for the MM track.

For the Ad Hoc track, Okapi BM25 similarity measure produced the best retrieval
performance for the Thorough and AIC tasks.

For the two XML multimedia retrieval tasks, we officially submitted six runs using
the Pivoted Cosine similarity measure. We also conducted additional runs to investigate
the effectiveness of the Okapi BM25 and Dirichlet similarity measures. The runs for
the MMImages task reflect the various relative weights of 0.0 to 1.0 for the α values.
We found that Dirichlet was the best similarity measure for the MMImages task, and
that α values between 0.1 and 0.4 produced the best retrieval performance. For the

370 D.N.F. Awang Iskandar et al.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Gain Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

In
te

rp
ol

at
ed

 E
ff

or
t P

re
ci

si
on

Pivoted-Cosine-Extended
Pivoted-Cosine-Title

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Gain Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

In
te

rp
ol

at
ed

 E
ff

or
t P

re
ci

si
on

Okapi-Extended
Okapi-Title

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Gain Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

In
te

rp
ol

at
ed

 E
ff

or
t P

re
ci

si
on

Dirichlet-Extended
Dirichlet-Title

Fig. 6. Interpolated effort-precision averages at standard gain-recall levels for the Title and Ex-
tended runs of the MMFragments task, using Pivoted Cosine (top), Okapi BM25 (middle), and
Dirichlet (bottom) similarity measures in Zettair

Social Media Retrieval Using Image Features and Structured Text 371

Table 3. Retrieval performance of the Extended runs on the MMFragments task

Similarity Measure MAep
Pivoted Cosine 0.0655
Okapi BM25 0.0586
Dirichlet 0.0663

MMFragments task, the official runs were only based on the text retrieval system. We
executed four additional runs using Okapi BM25 and Dirichlet similarity measures.
As for the MMImages task, Dirichlet was also found to be the best among the three
similarity measures used in the MMFragments task.

We have used the linear combination of evidence to merge the RSVs from two re-
trieval subsystems for retrieving multimedia information. We conclude that a text re-
trieval system benefits by using some evidence from a CBIR system. More specifically,
giving more weight to text retrieval system RSVs in the fusion function yields better
performance than when the two subsystems are used on their own.

This work can be extended in two ways. First, to cater for the MMFragments task
more effectively, the hybrid XML retrieval approach [7] can be used as the content-
oriented XML retrieval system. Second, it would also be interesting to fuse the RSVs
from CBIR and text systems with the 101 image concepts such as those provided by the
University of Amsterdam [9].

Acknowledgments. This research was undertaken using facilities supported by the
Australian Research Council, an RMIT VRII grant, and a scholarship provided by the
Malaysian Ministry of Higher Education.

References

1. Aslandogan, Y.A., Yu, C.T.: Evaluating strategies and systems for content-based indexing
of person images on the web. In: MULTIMEDIA 2000: Proceedings of the Eighth ACM
International Conference on Multimedia, pp. 313–321. ACM Press, New York, USA (2000)

2. Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.): Advances in XML Information Retrieval
and Evaluation, In: 4th International Workshop of the Initiative for the Evaluation of XML
Retrieval, INEX 2005, Dagstuhl Castle, Germany, November 28–30, 2005, Revised Selected
Papers, vol. 3977 of Lecture Notes in Computer Science. Springer (2006)

3. Awang Iskandar, D. N. F., Pehcevski, J., Thom J. A., Tahaghoghi, S. M. M.: Combining
image and structured text retrieval. In Fuhr et al.: [2] pp. 525–539.

4. Kazai, G., Lalmas, M.: INEX 2005 evaluation measures. In: Fuhr et al.: [2] pp. 16–29.
5. Larsen, B., Ingwersen, P., Kekäläinen, J.: The polyrepresentation continuum in IR. In: IIiX:

Proceedings of the 1st international conference on Information interaction in context, pp.
88–96. ACM Press, New York (2006)

6. Pehcevski, J., Thom, J.A., Tahaghoghi, S.M.M.: RMIT University at INEX: Ad Hoc Track.
In: Fuhr. et al.: [2] pp. 306–320 (2005)

7. Pehcevski, J., Thom, J.A., Vercoustre, A-M.: Hybrid XML retrieval: Combining information
retrieval and a native XML database. Information Retrieval 8(4), 571–600 (2005)

372 D.N.F. Awang Iskandar et al.

8. Singhal, A., Buckley, C., Mitra, M.: Pivoted document length normalization. In: Proceedings
of the ACM-SIGIR International Conference on Research and Development in Information
Retrieval, Zurich, Switzerland, pp. 21–29. ACM Press, New York (1996)

9. Snoek, C.G.M., Worring, M., Gemert, J.C.V., Geusebroek, J., Smeulders, A.W.M.: The chal-
lenge problem for automated detection of 101 semantic concepts in multimedia. In: MULTI-
MEDIA ’06: Proceedings of the 14th annual ACM international conference on Multimedia,
pp. 421–430. ACM Press, New York, USA (2006)

10. SparckJones, K., Walker, S., Robertson, S.E.: A probabilistic model of information retrieval:
Development and comparative experiments. Parts 1 and 2. Information Processing and Man-
agement 36(6), 779–840 (2000)

11. Squire, D.M., Müller, W., Müller, H., Pun, T.: Content-based query of image databases: In-
spirations from text retrieval. Pattern Recognition Letters 21(13–14), 1193–1198 (special
edition for SCIA’99) (2000)

12. Tjondronegoro, D., Zhang, J., Gu, J., Nguyen, A., Geva, S.: Integrating text retrieval and
image retrieval in XML document searching. In: Fuhr. et al.: [2], pp. 511–524

13. van, R., Zwol.: Multimedia strategies for b3 -sdr, based on principal component analysis. In
Fuhr, et al.: [2], pp. 540–553

14. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes: Compressing and Indexing Docu-
ments and Images, 2nd edn. Morgan Kaufmann Publishers, San Francisco (1999)

15. Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied to infor-
mation retrieval. ACM Transactions on Information Systems 22(2), 179–214 (2004)

16. Zobel, J., Moffat, A.: Exploring the similarity space. ACM SIGIR Forum 32(1), 18–34 (1998)

XFIRM at INEX 2006.

Ad-Hoc, Relevance Feedback and MultiMedia
Tracks

Lobna Hlaoua, Mouna Torjmen, Karen Pinel-Sauvagnat,
and Mohand Boughanem

SIG-RFI, IRIT, Toulouse, France

Abstract. This paper describes experiments carried out with the
XFIRM system in the INEX 2006 framework. The XFIRM system uses
a relevance propagation method to answer CO and CO+S queries. Runs
were submitted to the ad-hoc, relevance feedback and multimedia tracks.

1 Introduction

In this paper, we decribe the IRIT/SIG-RFI participation in the INEX 2006
ad-hoc, relevance feedback and multimedia tracks. Our participation is based on
the XFIRM system [10], which uses a relevance propagation method.

In the ad-hoc track (section 2), we propose to evaluate the algorithms pro-
posed part years [10] on a new collection (the Wikipedia collection) and on new
searching tasks (Best in Context and All in Context tasks). We also compare re-
sults obtained using structural hints of queries with results obtained with simple
keywords terms.

For the relevance feedback track and for our second participation to the track
(section 3), we propose to apply a Content-Oriented approach inspired from the
probabilistic theory and to improve the Structure-Oriented approach presented
in [10].

At last, for our first participation to the multimedia track (section 4), we
describe a context-based approach for multimedia retrieval. This approach uses
the text surrounding images and structure of documents to judge the relevance
of images or XML components.

2 Ad-Hoc Track

The aim of our participation to the ad-hoc track is to evaluate on the wikipedia
collection [2] the algorithms we proposed at INEX 2005 [10]. Results presented
here are mainly official results and further experiments need to be done to con-
firm results obtained with this preliminary work.

2.1 The XFIRM Model

The model is based on a relevance propagation method. During query process-
ing, relevance scores are first computed at leaf nodes level. Then, inner nodes

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 373–386, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

374 L. Hlaoua et al.

relevance is evaluated by doing a propagation of leaf nodes scores through the
document tree. An ordered list of subtrees is then returned to the user.

Processing of Content-Only queries. Let q = t1, . . . , tn be a content-only
query. Relevance values are computed using the similarity function RSV (q, ln).

RSV (q, ln) =
n∑

i=1

wq
i ∗wln

i , where wq
i = tf q

i and wln
i = tf ln

i ∗idfi∗iefi (1)

Where wq
i and wln

i are the weights of term i in query q and leaf node ln re-
spectively. tf q

i and tf ln
i are the frequency of i in q and ln respectively, idfi =

log(|D|/(|di| + 1)) + 1, with |D| the total number of documents in the collec-
tion, and |di| the number of documents containing i, and iefi is the inverse
element frequency of term i, i.e. log(|N |/|nfi| + 1) + 1, where |nfi| is the num-
ber of leaf nodes containing i and |N | is the total number of leaf nodes in the
collection.

Each node in the document tree is then assigned a relevance score which is
function of the relevance scores of the leaf nodes it contains and of the relevance
value of the whole document.

rn = ρ ∗ |Lr
n|.

∑

lnk∈Ln

αdist(n,lnk)−1 ∗ RSV (q, lnk) + (1 − ρ) ∗ rroot (2)

dist(n, lnk) is the distance between node n and leaf node lnk in the document
tree, i.e. the number of arcs that are necessary to join n and lnk, and α ∈]0..1]
allows to adapt the importance of the dist parameter. |Lr

n| is the number of leaf
nodes being descendant of n and having a non-zero relevance value (according
to equation 1). ρ ∈]0..1], inspired from work presented in [6], allows the intro-
duction of document relevance in inner nodes relevance evaluation, and rroot

is the relevance score of the root element, i.e. the relevance score of the whole
document, evaluated with equation 2 with ρ = 1.

Processing of CO+S queries. The evaluation of a CO+S query is carried
out with the following steps:

1. INEX (NEXI) queries are translated into XFIRM queries
2. XFIRM queries are decomposed into sub-queries SQ and elementary sub-

queries ESQ, which are of the form: ESQ = tg[q], where tg is a tag name,
i.e. a structure constraint, and q = t1, ..., tn is a content constraint composed
of simple keywords terms.

3. Relevance values are then evaluated between leaf nodes and the content
conditions of elementary sub-queries

4. Relevance values are propagated in the document tree to answer to the
structure conditions of elementary sub-queries

XFIRM at INEX 2006 375

5. Sub-queries are processed using the results of elementary sub-queries
6. Original queries are evaluated by doing an upwards and downwards propa-

gation of the relevance weights

Step 3 is processed thanks to formula 1. In step 4, the relevance value rn of
a node n to an elementary subquery ESQ = tg[q] is computed according the
following formula:

rn =
{∑

lnk∈Ln
αdist(n,lnk)−1 ∗ RSV (q, lnk) if n ∈ construct(tg)

0 otherwise
(3)

where the construct(tg) function allows the creation of set composed of nodes
having tg as tag name, and RSV (q, lnk) is evaluated during step 2 with formula
1. The construct(tg) function uses a Dictionary Index, which provides for a given
tag tg the tags that are considered as equivalent. This index is built manually.

More details about CO and CO+S queries processing can be found in [10].

2.2 Runs and Results

For all retrieval strategies, runs were submitted using content-only conditions of
topics (CO runs) and content and structure conditions (CO+S runs). Results
are presented with the official metrics.

Thorough task. For the Thorough task, all nodes having a non-zero relevance
value are returned by the XFIRM system. Results are described in Table 1.

Table 1. Thorough task. Generalised quantisation function with filtered assessments.
Official runs are in bold.

Queries Parameters nxCG[5] nxCG[10] nxCG[25] nxCG[50] ep/gr
MAP

CO α = 0.6, ρ = 1, eq. 2 0.2161 0.1822 0.1470 0.1235 0.01831
CO α = 0.6, ρ = 0.9, eq. 2 0.2167 0.1885 0.1581 0.1526 0.0241
CO α = 0.1, ρ = 1, eq. 2 0.228 0.2002 0.1703 0.1367 0.0230
CO α = 0.1, ρ = 0.9, eq. 2 0.2289 0.2005 0.1763 0.1447 0.0266
CO α = 0.2, ρ = 1, eq. 2 0.2318 0.2117 0.1766 0.1458 0.02352
CO α = 0.2, ρ = 0.9, eq. 2 0.2413 0.2178 0.1857 0.1555 0.02779
CO+S α = 0.9, eq. 3 0.0089

2.3 Focussed Task

In order to reduce/remove nodes overlap, for each relevant path, we keep the
most relevant node in the path. The results set is then parsed again, to eliminate
any possible overlap among ideal components. Results are described in Table 2.

376 L. Hlaoua et al.

Table 2. Focussed task. Generalised quantisation function with filtered assessments.
All runs are official.

Queries Parameters nxCG[5] nxCG[10] nxCG[25] nxCG[50]

CO α = 0.6, ρ = 1, eq. 2 0.1333 0.1104 0.0853 0.0656
CO+S α = 0.9, eq. 3 0.1839 0.1456 0.1015 0.0879
CO+S α = 0.8, eq. 3 0.1820 0.147 0.1088 0.0906

2.4 All in Context Task

We use two different retrieval strategies:

1. Relevance values are computed for each node of the collection according to
the focussed stategy and nodes are then ranked by article (we rank first the
top ranked node according to equation 2 and then all the nodes having a
non-zero relevance value belonging to the same document, and so on)

2. Nodes are first ranked by the relevance of the document they belong to
(according the the Mercure system [1]), and then by their own relevance
(according to equation 2 used in a focussed strategy).

Official results are described in Table 3, and additional results at element level
are provided in Table 4.

Table 3. All in Context task. Generalised quantisation function. All runs are official.

Queries Parameters MAgP gP[5] gP[10] gP[25] gP[50]

CO α = 0.6, ρ = 1, eq. 2,
2nd strategy

0.0683 0.2136 0.1810 0.1359 0.0950

CO α = 0.1, eq. 3, 1st strat-
egy

0.0388 0.1159 0.1042 0.0804 0.0633

Table 4. All in Context task. Element level. All runs are official.

Queries Parameters F-avg INTERSECTION F-avg UNION

CO α = 0.6, ρ = 1, eq. 2, 2nd
strategy

0.5050 0.1632

CO α = 0.1, eq. 3, 1st strategy 0.4066 0.1723
CO+S α = 0.9, eq. 3, 2nd strategy 0.4473 0.1632

Best in Context task. For the Best in Context task, nodes relevance is first
computed in the same way than for the thorough strategy. We then only keep
the most relevant node per article. Official results are described in table 5.

XFIRM at INEX 2006 377

Table 5. Best in Context task. All runs are official.

Queries Parameters BEPD
A=0.01

BEPD
A=0.1

BEPD
A=1

BEPD
A=10

BEPD
A=100

CO α = 0.6, ρ = 1, eq. 2 0.1082 0.1685 0.2505 0.3586 0.4466
CO α = 0.9, eq. 3 0.0723 0.1215 0.2037 0.3441 0.5086

Queries Parameters EPRUM
A=0.01

EPRUM
A=0.1

EPRUM
A=1

EPRUM
A=10

EPRUM
A=100

CO α = 0.6, ρ = 1, eq. 2 0.0120 0.0269 0.0518 0.0843 0.1230
CO α = 0.9, eq. 3 0.0091 0.0177 0.0340 0.0661 0.1202

Discussion. For all strategies, further experimentations are needed, in order to
see whether conclusions drawn with the IEEE collection and past metrics are
validated or not. However, we can already say by analysing additional results of
the Thorough strategy that:

– document relevance seems to be important when evaluating nodes relevance,
– and very specific nodes are preferred by users,

this validates past years results.
The use of structural constraints in queries do not improve results, this con-

tradicts results found in [9]. This can be explained by the small equivalencies
dictionary used for tags: it should be extended before drawing conclusions.
Results obtained with the Focussed strategy and Best In Context tasks are not
as good as expected and parameters tuning need to be done.

At last, although our system was ranked first at element level, we were disap-
pointed with the results obtained using the official metrics for the All In Context
task. We need to further investigate this matter.

3 Relevance Feedback Track

In our previous works, we proposed two main approaches for relevance feedback:

– a content-oriented approach, which expands the query by adding keywords
terms,

– a structure-oriented approach, which expands the query by adding structural
conditions.

For the 2006 RF track, we applied a Content-Oriented approach inspired from
the probabilistic theory and to improve our Structure-Oriented approach already
presented in [10].

3.1 Content-Oriented Relevance Feedback

Probabilistic method
Simple term extraction (without query terms re-weighting) using the Rocchio’s
algorithm [7] has already been explored and did not show any improvement [10].

378 L. Hlaoua et al.

The main question is still how to extract and to weight the best terms that will
be added to the query. Our approach in this paper is inspired from another very
known way to do RF, the probabilistic model [3].

Let us consider Er as a set of relevant elements; we define the probability of
term expressiveness by P (ti/Er). We estimate this probability according to a
simplified version of the Robertson’s formula [3]:

P (ti/Er) = re/Re (4)

where re is the number of elements in Er containing term ti and Re(= ||Er||) is
the number of relevant elements.

The new query is finally composed of terms ranked in the top k according to
the above formula, that are added to the original query terms.

If original query terms appear in the top k, we do not add them again.

Re-weighting keywords using the probabilistic method
In previous work, we considered term relevance as a binary measure (relevant/not
relevant). No preference between terms could be expressed and the user need was
not really refined. Therefore, we propose here to add weights to query terms,
that represent their degree of importance. Weight values vary in]0,1]. We use
the scores calculated according to the probabilistic method described above. The
higher weight is assigned to original query terms (weight=1).

For example, let Q = t1, ..., tn be the initial query. If we choose to add 3
relevant terms to the initial query, the new query will be:
Q’=(t1, 1), ..., (tn, 1), (to, wo), (tp, wp), (tr , wr) where to, tp and tr are the added
terms and wo, wp and wr their associated weights.

3.2 Combined Approach: Content-and-Structure RF

In the combined approach, both structural constraints and keywords terms
are added to the initial query, i.e. we combine the content-oriented and the
structure-oriented approaches. The principle of the structure-oriented approach
is reminded in the following paragraph.

Structure-oriented approach
Our hypothesis in the structure-oriented approach is that for a given query, the
user may only be interested to some types of elements (like for example section,
article, images,...). Our approach consists in refining the initial query by adding
some structures, extracted from the set of judged elements that could contain
the information needed by the user. The idea behind structure-oriented RF is
therefore to find for each query the appropriate generic structures, called here
the generative structures, shared by the greatest amount of relevant elements.
The generative structures are extracted as follows. Let:
- ei be an element ∈ Er; ei is characterized by a path pi and a score wi initialized
to 1 at the beginning of the algorithm. pi is only composed of tag names, like
the following example: /article/bdy/sec.
- CS be a set of Common Structures, obtained as algorithm output.

XFIRM at INEX 2006 379

For each (ei, ej) ∈ Er × Er, i = j, we apply the SCA algorithm, which allows
the identification of the smallest common ancestor of ei and ej . The path of this
smallest common ancestor is then added to the set of common structures CS.
The SCA algorithm is processed for each pair of Er elements, and is described
below.

SCA(ei,ej) return boolean
Begin
if pi.f irst=pj.f irst then

if pi.last=pj.last then
if ∃ep(pp, wp) ∈ CS/pp = pi then

wp ← wp + wj

return true
else CS ← ej(pj , wj + wi)

return true
else

if head(pj) = null then
p′j ← head(pj)
w′

j ← wj/2
SCA (ei(pi, wi), e′j(pj , wj))

else SCA(ej , ei)
return false
End

p.last and p.first are respectively the last and the first tag of the path p and
head(p) is a function allowing to reduce the path p, by removing the last tag of
the path. For example, head(/article/bdy/section)=/article/bdy.

In our approach, we are only interested in element tags and we choose to only
compare the p.last tags of paths (even if elements having the same p.last can
have different paths). When no result is added in the CS set by the SCA(ei, ej)
algorithm, we try to run SCA(ej , ei). In order to express the new (CO+S) query,
we then extract the k top ranked structures according to their score wi in the
CS set. The selected structures are then used in their simple form (i.e. the last
tag).

Let Q1 = t1, t2, ...tn be a query composed of n keywords (CO query) and S1,
S2 be two generative structures of the set of Common Structures CS. The new
query derived from Q1 using our structure-oriented relevance feedback method
will be: Q1′ = S1[t1, t2, ...tn] OR S2[t1, t2, ...tn].

Combined approach
As explained before, the combined approach consists in adding both content and
structure constraints to the initial query. The new query (that will be a CO+S
query), is thus composed of the most appropriate generic structures and of the k
best terms according to formula 4. Terms are added to the original query terms
with their associated weights.

380 L. Hlaoua et al.

Example
Let Q1 = t1, t2, ..., tn be a query composed of n keywords (CO query) and S1
and S2 be two generative structures extracted from the set of Common Struc-
tures. The new query derived from Q1 using our combined Relevance Feedback
method will be (we choose to add for example 2 generative structures and 2
relevant terms to, and tp): Q1′ = S1[(t1, 1), ..., (tn, 1), (to, wo), (tp, wp)] OR S2
[(t1, 1), ..., (tn, 1), (to, wo), (tp, wp)]

3.3 Runs

CO.thorough task
For official runs and according to previous experiments, we use

– the Content-Oriented RF approach by adding 3 or 10 relevant terms to the
initial query, respectively named in Table 6 by CO-C3 and CO-C10.

– the combined approach with 3 expressive terms and 3 generative structures
selected according to the SCA algorithm, and named by CO-C3S3 in Table6.

The top 20 elements of each query is used to select relevant terms / relevant
structures. We use the base run of CO queries obtained with XFIRM using
α = 0.6 and ρ = 1.

We present in the following table the Absolute Improvement (AI) and the
Relative Improvements (RI) according the MAep metric. In Relevance Feedback
track, all evaluations are preliminary; official evaluations are not yet available.

Table 6. Impact of Content and Combines-Oriented RF in CO queries

CO-C3 CO-C10 CO-C3S3

AI(MAep) -0.00645 -0.00653 -0.00332

RI-(MAep) -64.67% -65.48 % -33.34%

We notice in Table 6 that there is no improvement (negative values of RI).
When comparing the columns we can see that the number of added expressive
terms does not have a significant impact (CO-C3 and CO-C10). This can be
explained by the fact that the suitable number of terms to be added depends on
the query length [8].

Non-standard methods to select elements used to choose relevant terms and
relevant structures are also tested. We propose to evaluate the impact of the
number of judged elements used to extend queries, by using elements in the top
10 and top 40 designated respectively in Table 7 by CO-J10 and CO-J40. We
also propose to consider a fixed number of relevant elements to extend queries
(4 strictly relevant elements are used in this paper) designated by CO-R4. We
use the base run of CO queries using α = 0.6 ρ = 0.9. We apply the Content-
Oriented RF with adding 3 expressive terms. According to the Table 7, we do not
see any improvement for all runs. However, we still think that it is important
to choose appropriate strategies of Relevance Feedback. Indeed, we obtained

XFIRM at INEX 2006 381

Table 7. Impact of RF strategies in CO queries

CO-J10 CO-J40 CO-R4

AI(MAep) -0.0087 -0.00734 -0.00722

RI-(MAep) -0.5363% -48.74% -47.98%

contradictory results in previous experiments, where a fixed number of relevant
elements improved the effectiveness of the Retrieval system [5]. For example, on
the INEX 2005 collection, the Relative Improvement for the MAep strict metric
was about 25%, whereas no improvement can be observed with the traditional
strategy.

CO+S thorough task
For this task we evaluated the content-oriented RF using 3 and 5 terms and the
combined approach using 3 expressive terms and 1 generative structure respec-
tively designated by COS-C3, COS-C5 and COS-C3S in Table 8. We used the
base run of CO+S queries with α = 0.9 In this task, we notice that the two ap-

Table 8. Impact of Content and Combines-Oriented RF in CO+S queries

COS-C3 COS-C5 COS-C3S

AI(MAep) 0.0008 0.00118 0.00205

RI-(MAep) 18.27% 24.42% 42.36%

proaches of Relevance feedback are efficient and the improvement is about 48%
when we apply the Combined approach. Moreover, we notice that the addition
of 5 terms is more efficient than the addition of 3 terms to initial query.

4 Multimedia Track

Two types of topics are explored in the INEX Multimedia Track: MMFragments
and MMImages.

A MMFragments topic is a request which objective is to find relevant XML
fragments given a multimedia information need. Here, the topic asks for multi-
media fragments,i.e fragments composed of text and /or images.

A MMImages topic is a request which objective is to find relevant images
given an information need. Here, the type of the target element is defined as an
’image’. This is basically image retrieval, rather than XML element retrieval.

Some topics use image as query: the user indicates by this way that results
should have images similar to the given example.

In Image Retrieval, there are two main approaches [11] : (1) Context Based
Image Retrieval and (2) Content Based Image Retrieval:

1. The context of an image is all information about the image issued from other
sources than the image itself. At the moment, only the textual information
is used as context. The main problem of this approach is that documents can

382 L. Hlaoua et al.

use different words to describe the same image or can use the same words to
describe different concepts.

2. Content Based Image Retrieval (CBIR) systems use low-level image features
to return images similar to an image used as example. The main problem
of this approach is that visual similarity does not correspond to semantic
similarity (for example a CBIR system can return a picture of blue sky
when the example image is a blue car).

The work presented in this paper belongs to the first approach.

4.1 Runs

MMImages topics processing (MMI method): Our method uses the text
surrounding images and structure of document to judge the relevance of images.
A first step is to search relevant nodes according to the XFIRM Content Only
method. Then, we only use documents having a score > 0 and we reduce our
retrieval domain to both relevant nodes and images nodes belonging to relevant
documents. For each image, we use the closest nodes to judge its relevance. The
used nodes are: the descendant nodes, the ancestor nodes and the brother nodes
(Figure 1).

image node

relevant node

Fig. 1. Use of ancestor, brother and descendant nodes to evaluate images relevance

An image score corresponding to each of the preceding sources of evidence is
computed:

– W im
d is the image score computed using descendant nodes,

– W im
b is the image score computed using brother nodes,

– W im
a is the image score computed using ancestor nodes,

The total image score is then expressed as follows:

Wim = p1.W
im
d + p2.W

im
b + p3.W

im
a (5)

where p1, p2 and p3 are parameters used to emphasize some weights types and
p1 + p2 + p3 = 1.

XFIRM at INEX 2006 383

With this method, all the images of the relevant documents are evaluated and
will have a score > 0. Indeed, they will inherit at least of the root node score
W im

a . We detail the evaluation of each score in the following paragraphs.
To evaluate the score of an image using its descendant nodes, we use the score

of each relevant descendant node obtained by the XFIRM-CO method (Wrdi),
the number of relevant descendant nodes according to the XFIRM model (|d|)
and the number of non-relevant descendant nodes (|d|).

W im
d = f(Wrdi, |d|, |d|) (6)

If the number of relevant descendant nodes is greater than the number of non-
relevant descendant nodes then they will have more importance in the score
evaluation. Using this intuition, we apply the following formula in our experi-
ments.

W im
d = (

|d| + 1
|d| + 1

) ∗
|d|∑

i=1

Wrdi (7)

To evaluate the score of an image using its brother nodes, we use the score
of each relevant brother node obtained by the XFIRM-CO method (Wrbi), the
distance between the image node and each brother node (dist(im, bi)): the larger
the distance of the brother node from the image node is, the less it contributes
to the image relevance. Finally, we use the number of relevant brother nodes |b|
and the number of non-relevant brother nodes |b|

W im
b = f(Wrbi, dist(im, bi), |b|, |b|) (8)

Figure 2 shows how distances between an image node and its brother nodes
are calculated:

dist=1 dist=1

dist=2 dist=2

dist=3

image

Fig. 2. distance between image node and brother nodes

The formula used in experiments presented here is :

W im
b = (

|b| + 1
|b| + 1

) ∗ (
|b|∑

i=1

Wrbi

dist(im, bi)
) (9)

To evaluate the score of an image using its ancestor nodes, we add the scores
of relevant ancestor nodes obtained with the XFIRM-CO method (Wrai).

384 L. Hlaoua et al.

The XFIRM-CO method uses the distance between the relevant node and its
ancestors to evaluate the ancestors scores of an element: the larger the distance of
a node from its ancestor is, the less it contributes to the relevance of its ancestor.
Our method also uses the distance dist(im, ai) between the image node and its
ancestors: the larger the distance from an ancestor node is, the less it contributes
to the relevance of the image node. We used the following formula:

W im
a =

|a|∑

i=1

log(Wrai + 1)
dist(im, ai) + 1

(10)

where |a| is the number of relevant ancestor nodes according to the XFIRM
model.

MMFragments topics processing (MMF method): For MMFragments
topics, we adapted the XFIRM CO+S method: we decomposed the query into
sub-queries (figure 3). For each sub-query, if its element is different from ”image”,
we applied the XFIRM COS method and if the subquery element is ”image”,
we applied the MMI method. Then, we propagated scores of sub-queries to the
target element using the XFIRM CO+S method.

article [France] // section [French culture] // te: image[Paris]

Sub-query1 Sub-query2 Sub-query3

Fig. 3. Query decomposition in sub-queries

4.2 Results

MMFragments task results are based on 9 topics, whereas MMImages task results
are based on 13 topics.

MMImages task results. Two metrics are used to evaluate MMImages topics:
MAP (Mean Average Precision) and BPREF (Binary PREFerence). Results are
presented in table 9:

We used 4 methods: XFIRM CO method, XFIRM CO+S method, MMI
method and MMF method. Grayed boxes are results of our official runs. Best
MAP is 0.2254 using XFIRM COS method with parameters α=0.9 and ”image”
as query target element.

Results for the MAP metric with the XFIRM CO+S method are better than
results with the MMI method. This can be explained by the structure of the
images collection (Figure4). The MMI method is based on the place of textual
information in the structure (ascendants, descendants, brothers), whereas in the
MMImages collection, images do not have decendant nodes and the ancestor
nodes scores are only calculated with brother nodes. All the textual content of
the document is thus in the brother nodes.

Best BPREF is 0.2225 using MMF method with parameter α=0.6, p1 = 0p2 =
1p3 = 0 and ”image” as target element.

XFIRM at INEX 2006 385

Table 9. MMImages task results

Method α ρ p1 p2 p3 MAP BPREF

CO 0.6 1 - - - 0.1140 0.1394
CO+S 0.9 - - - - 0.2254 0.2060
MMI 0.6 1 0.33 0.33 0.33 0.2122 0.2065
MMI 0.6 0.9 0.33 0.33 0.33 0.2159 0.2078
MMF 0.6 - 0.33 0.33 0.33 0.2114 0.2221
MMF 0.6 - 0 1 0 0.2142 0.2225
MMI 0.6 0.9 0 0 1 0.2112 0.2078

article

image text

Fig. 4. MMImages collection structure

MMFragments task results. Table 10 shows results of the MMFragments
task. They are based on the Mean Average Precision (MAP) metric. We tested
Multimedia methods and XFIRM methods where no specification of images is
done.

Table 10. MMFragments task results

Method α ρ dict p1 p2 p3 MAP

CO 0.6 1 2 - - - 0.008599
CO 0.6 0.9 2 - - - 0.015488
CO+S 0.9 - 1 - - - 0.010142
CO+S 0.9 - 2 - - - 0.01079
MMF 0.5 2 0.33 0.33 0.33 0.01596
MMI 0.1 0.9 2 0.33 0.33 0.33 0.01765
MMI 0.1 0.9 2 1 0 0 0.000124
MMI 0.1 0.9 2 0 1 0 0.0084
MMI 0.1 0.9 2 0 0 1 0.01575

Grayed boxes are results of our official runs. Runs using the CO+S query
processing model of the XFIRM system use two different dictionary indexes:
dict1 contains simple tag equivalencies (for example, image and figure are con-
sidered as equivalent tags), whereas dict2 contains very extended equivalencies
between tags.

The best MAP is obtained with the MMI method, where the target element
is always an image node. We tested some values of the 3 parameters: p1, p2etp3.
We can observe that using only descendant nodes gives worst results whereas
using only ancestor nodes gives good results. All document context seems thus

386 L. Hlaoua et al.

to contribute to the image relevance. This can be explained by the wealth of
other nodes information belonging to the document that are likely to share the
same subject as images.
In future work, we plan to:

– differentiate methods used to assign weights to image fragments and text
fragments.

– process queries by example by using text surrounding images used as exam-
ples

– add additional sources of information to process queries of the MMImages
task: Images classification scores, Images features vectors and a CBIR sys-
tem,...

References

1. Boughanem, M., Dkaki, T., Mothe, J., Soule-Dupuy, C.: Mercure at TREC-7. In:
Proceedings of TREC-7 (1998)

2. Denoyer, L., Gallinari, P.: The Wikipedia XML Corpus. SIGIR Forum (2006)
3. Robertson, S.E., Sparck-Jones, J.: Relevance weighting of search terms. Journal of

the American Society for Information Science, pp. 129–146 (1976)
4. Fuhr, N., Lalmas, M., Malik, S., Kazai, G.: In: INEX 2005 workshop proceedings

(2005)
5. Hlaoua, L., Pinel-Sauvagnat, K., Boughanem, M.: Relevance feedback for xml re-

trieval: using structure and content to expand queries. In: Proceedings of RCIS
2007, Ouarzazate, MOROCCO, to appear, (April 2007)

6. Mass, Y., Mandelbrod, M.: Experimenting various user models for XML retrieval.
In: [4] (2005)

7. Rocchio, J.: Relevance feedback in information retrieval. Prentice Hall Inc, Engle-
wood Cliffs, NJ (1971)

8. Ruthven, I., Lalmas, M.: Selective relevance feedback using term characteristics.
CoLIS 3. In: Proceedings of the Third International Conference on Conceptions of
Library and Information Science (1999)

9. Sauvagnat, K., Boughanem, M., Chrisment, C.: Why using structural hints in XML
retrieval? In: Flexible Query Answering (FQAS) 2006, Milano, Italia. Advances in
Artificial Intelligence, 7–10 (June 2006)

10. Sauvagnat, K., Hlaoua, L., Boughanem, M.: Xfirm at inex 2005: ad-hoc and rele-
vance feedback track. In: INEX 2005 Workshop proceedings, pp. 88–103 (2005)

11. Thijs, W.: Image retrieval: Content versus context. In: RIAO, pp. 276–284 (2000)

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 387–399, 2007.
© Springer-Verlag Berlin Heidelberg 2007

The Interactive Track at INEX 2006

Saadia Malik1, Anastasios Tombros2, and Birger Larsen3

1 University Duisburg-Essen, Germany
2 Queen Mary University of London, UK

3 Royal School of Library and Information Science, Denmark
saadia.malik@uni-due.de, tassos@dcs.qmul.ac.uk, blar@db.dk

Abstract. In this paper we describe the planned setup of the INEX 2006
interactive track. As the track has been delayed and data collection has not been
completed before the INEX 2006 workshop, the track will continue into 2007.
Special emphasis is put on comparing XML element retrieval with passage
retrieval, and on investigating differences between multiple dimensions of the
search tasks.

1 Introduction

The overall motivation for the interactive track at INEX is twofold. First, to
investigate the behaviour of users when interacting with components of XML
documents, and secondly to investigate and develop approaches for XML retrieval
which are effective in user-based environments. The format of the track is deliberately
of an exploratory nature, and has relatively broad aims rather than addressing very
specific research questions. Element retrieval is still in its infancy and many basic
questions remain unanswered.

As with the main ad hoc track, a major change this year is the move from the
corpus of IEEE CS journal articles to the Wikipedia XML corpus of encyclopaedia
articles [1]. As the Wikipedia corpus is different in a number of ways, we have chosen
to repeat some of the conditions studied in previous years in order to investigate if the
results achieved there will also apply to the new collection. In addition, we put more
emphasis on the search tasks and also on investigating the differences and similarities
between element retrieval and passage retrieval (as recommended at the SIGIR 2006
Workshop on XML Element Retrieval Methodology1). Finally, we have attempted to
ease the burden of experimenters and searchers by an online experimental control
system that handles administration and collection of electronic questionnaires,
selection of tasks and logins to the search system, etc.

As in previous years, minimum participation in the track does not require a large
amount of work, as a baseline system is provided by the track organisers. The bulk of
the time needed will be spent on running the experiments, approximately 1.5 hours

1 See http://www.cs.otago.ac.nz/sigirmw/ for the proceedings and presentation slides, and in

particular the paper by Trotman & Geva.

388 S. Malik, A. Tombros, and B. Larsen

per searcher. Due to, among other things, a complex system setup, the track has been
delayed and data collection was not completed before the INEX 2006 workshop. The
track will therefore continue into 2007.

1.1 Interactive Track Tasks

This year we offer 2 different tasks in the track for participating groups. A minimum
number of searchers must be recruited for one of these, but is up to each group to
decide which task they wish to participate in, or whether they will take part in both
tasks. The two tasks are described in the following sections.

2 Task A – Element Versus Passage Retrieval

In this task, each searcher works with four search tasks in the Wikipedia collection.
Two system versions will be tested: one based on Passage retrieval and one based on
Element retrieval. The recruiting of minimum 8 searchers is required for participation
in Task A.

2.1 Document Corpus

The document corpus used in Task A is the 4.6 GB corpus of encyclopaedia articles
extracted from Wikipedia [1]. The corpus consists of more than 650,000 articles
formatted in XML.

2.2 Search System

The system to be used in Task A is a Java-based retrieval system built within the
Daffodil framework [2] and is provided by the track organisers. The search system
interface is similar to the one used by the track in 2005 in Task A. Two system
versions are tested: one based on a Passage retrieval backend2 and one on an Element
retrieval backend3. Both versions have similar search interfaces - the main difference
between them lies in the returned retrieval entities: The passage retrieval backend
returns non-overlapping passages derived by splitting the documents linearly. The
element retrieval system returns elements of varying granularity based on the
hierarchical document structure. In both versions, the passages/elements are grouped
by document in the result list and up to three high ranking passages/elements are
shown per document (see Fig. 1 for an example of the result list in the element
version of the system). The system attempts to indicate the parts of the documents that
may be useful for the searcher in several ways. In the result list, selected parts are
listed under each document and small icons indicate the degree of potential

2 The Passage retrieval backend runs on CSIRO’s Panoptic™/Funnelback™ platform. See

http://www.csiro.au/csiro/content/standard/pps6f,,.html for more information.
3 The Element retrieval backend runs on Max Planck Institute for Informatics’ TopX platform.

See [6] for more information.

 The Interactive Track at INEX 2006 389

Fig. 1. Selected task, query box and result list from the INEX2006 interactive track system.
(Modified version of the Daffodil Digital Library system [2]).

usefulness. The same icons are used in the overview of the document when viewing
the full text. Finally, these parts are highlighted in the text of the documents – a green
background colour indicates a stronger belief in the usefulness than a yellow.

When a searcher chooses to examine a document, both systems show the entire full
text of the document with background highlighting for highly ranked passages/elements
(see Fig 2). In addition to this, the element version shows a Table of Contents drawn
from the XML formatting, and the passage system an overview of the retrieved
passages. This also allows highlighting the currently viewed part of the document. Other
parts of the document can easily be viewed by clicking a different part in the overview.
Any part of the document which has already been viewed is indicated with a small
eye icon ().

2.3 Relevance Assessments

It is an important aspect of the study to collect the searcher’s assessments of the
relevance of the information presented by the system. We have chosen to use a
relevance scale based on work by Pehcevski et al. [5] and on suggestions put forward
by Gheorghe Muresan from Rutgers University, USA (and also used in Task C of last

A friend has set you up for a blind date. The
only thing you know about your date is, that
(he/she) is from Manchester, and all you know
about the city is that it is famous for its football
team.

You wish to find out more about Manchester
in order to have something to talk to your date
about, for instance the exact location, size of the
city, primary employment and a little history on
“Man United”, in case he/she is a football fan.

390 S. Malik, A. Tombros, and B. Larsen

Fig. 2. Detail view of a document from the INEX2006 interactive track system. (Modified
version of the Daffodil Digital Library system [2]).

year’s interactive track). This scale, and its visualisation in the T-shape, balance the
need for information on the granularity of retrieved elements, allows degrees of
relevance and is fairly simple and easy to visualise.

Searchers are asked to select an assessment score for each viewed piece of
information that reflects the usefulness of the seen information in solving the task.
Five different scores are available at the top left-hand side of the screen shown as
icons:

The scores express two aspects, or dimensions, in relation to solving the task:

1. How much relevant information does the part of the document contain?It may be
highly relevant, partially relevant or not relevant.

2. How much context is needed to understand the element?It may just right, too large
or too small.

This is combined into the five scores illustrated as:

 The Interactive Track at INEX 2006 391

Fig. 3. INEX2006 interactive track relevance assessment scale based on Pehcevski and Thom [5]

In the interactive track, the intention is that each viewed element should be assessed
with regard to its relevance to the topic by the searcher. This will, however, not be
enforced by the system as we believe that it may be regarded as intrusive by the
searchers [4]. Note that in contrast to the assessments made for the ad hoc track, there
is no requirement for searchers to view each retrieved element as independent from
other components viewed. Experiences from user studies clearly show that users learn
from what they see during a search session. To impose a requirement for searchers to
discard this knowledge creates an artificial situation and will restrain the searchers
from interacting with the retrieved elements in a natural way.

2.4 Logging

Logs of the search sessions are saved to a database for greater flexibility and stability
[3]. The log data comprises one session for each task the searcher carries out. For
each session, the log registers the events in the session, both the actions performed by
the searcher and the responses from the system. A log viewer is available to
participants and can be a useful tool for the experimenter to monitor the progress of
the searching from another computer and to spot potential problems in the
experiment.

2.5 Search Tasks

For the 2006 interactive track we have chosen to put more emphasis on investigating
the effect of different search task types [7,8]. Thanks to the work of Elaine Toms
(Dalhousie University, Canada), Luanne Freund (University of Toronto, Canada) and
Heather L. O’Brien (Dalhousie University, Canada) we have a multi-faceted set of
twelve tasks this year with three task types (Decision making, Fact finding and

Relevant, but too broad,
contains relevant infor-
mation, but also a substantial
amount of other information

Relevant answer,
contains highly relevant
information, and is just right
in size to be understandable

Relevant, but too narrow,
contains relevant information,
but needs more context to be
understood

Partial answer,
has enough context to
be understandable, but
contains only partially
relevant information

Not relevant,
Does not contain any information
that is useful in solving the task

392 S. Malik, A. Tombros, and B. Larsen

Information gathering) further split into two structural kinds (Hierarchical and
Parallel). See Appendix A for the tasks and more information about them.

The twelve tasks are split into four categories allowing the searchers a choice
between two tasks, and at the same time ensuring that each searcher will perform at
least one of each type and structure. This allows the topic to be more “relevant” and
interesting to the searcher. Because of the encyclopaedic nature of Wikipedia with
most topics concentrated in a few documents, we have chosen to allow fairly short
time to solve each task and instead have each searcher tackle more tasks. A maximum
time limit of 15 minutes will apply. Sessions can finish before this if searchers feel
they have completed the task.

2.6 Experimental Control System

We use an online experimental control system in an attempt to ease the burden of
experimenters and searchers. The control system handles administration and
collection of electronic questionnaires, selection of tasks, login to the search system
etc. The experimenter thus needs only to log in once per searcher.

2.7 Experimental Matrix

A minimum of 8 searchers from each participating group need to be recruited. Each
searcher will search on one simulated work task from each category (chosen by the
searcher). The order in which task categories are performed by searchers over the two
system versions will be permuted in order to neutralise learning effects. This means
that one complete round of the experiment requires 8 searchers.
For information, the basic experimental matrix looks as follows:

 S1 S1 S2 S2
Rotation 1 C1 C2 C3 C4
Rotation 2 C2 C1 C4 C3
Rotation 3 C3 C4 C1 C2
Rotation 4 C4 C3 C2 C1

 S2 S2 S1 S1
Rotation 5 C8 C7 C6 C5
Rotation 6 C7 C8 C5 C6
Rotation 7 C6 C5 C8 C7
Rotation 8 C5 C6 C7 C8

Where:

Element (S1) vs. Passage (S2) systems
C1 to C8 are categories of three tasks each.

The tasks are distributed in categories as follows (see Appendix A for the tasks

themselves):

 The Interactive Track at INEX 2006 393

 Category Tasks Category Tasks
C1 1,2,3 C5 2,3,4
C2 5,6,7 C6 6,7,8
C3 9,10,11 C7 10,11,12
C4 4,8,12 C8 1,5,9

These rotations are related to the searcher logins and the control system handles their
administration.

2.8 Experimental Procedure

The experimental procedure for each searcher is outlined below.

1. Experimenter briefs the searcher, and explains format of study. The searcher
reads and signs the Consent Form

2. The experimenter logs the searchers into the control system. Tutorial of the
system is given with a training task given by the system, and the experimenter
hands out and explains the System features document

3. Any questions answered by the experimenter
4. The control system administers the Before-experiment Questionnaire
5. Task descriptions for the first category administered, and a task selected
6. Before-each-task questionnaire administered
7. Task begins by clicking the link to the system. Max. duration 15 minutes, with

reminder by the system.
8. After-each-task questionnaire administered
9. Steps 5-8 repeated for the three other tasks

10. Post questionnaire administered.

The role of the experimenter is to remain in the background and be ready to help out
in case of problems with the system, and to oversee that the study is carried out
smoothly. The system training, the work on the tasks and completion of
questionnaires should be performed in one, continuous session in an undisturbed
environment.

A Consent Form gives information to the searchers about the experiment and their
role in it. Basic information about system information and how to assess elements for
relevance are given in the System features document.

3 Task B - Own Element Retrieval System or Own Interface

This task allows groups to test either:

I. Their own fully working element retrieval system, or
II. Interfaces for element retrieval using the TopX element retrieval as a backend.

For both I and II some work is needed from the participating group. The track
organisers can provide, e.g, the search tasks, questionnaires, the experimental matrix
etc. from Task A. It would also be possible to use Daffodil as a baseline with either

394 S. Malik, A. Tombros, and B. Larsen

the Element or Passage retrieval versions. For groups that do not have a fully
functioning element retrieval system, option II allows to concentrate on building an
element retrieval interface and use the TopX engine as a backend. A simple API is
available for TopX that can accept queries and return a set of ranked elements. A
large variety of element retrieval interface features could be built on top of this. This
allows a large range of issues related to element retrieval be investigated depending
on the goals of any individual groups. Groups that participate in Task B do not have
to recruit searchers for Task A.

The scope in Task B is therefore different, with much larger degree of freedom for
participating groups. The experimental procedure from Task A may be altered and
modified to fit the requirements of the local groups and the issues they want to
explore. In addition, there is no requirement that logs and other data must be
submitted to the organisers as in Task A.

4 Concluding Remarks

In the INEX2006 interactive track we put special emphasis on comparing XML
element retrieval with passage retrieval, and on investigating differences between
multiple dimensions of the search tasks. In addition, a major change is the move from
the corpus of IEEE CS journal articles to the Wikipedia XML corpus of
encyclopaedia articles. As the track has been delayed and data collection was not
completed before the INEX 2006 workshop, the track will continue into 2007. At the
time of writing 10 groups are active in the track (See appendix B) which will result in
data being collected from at least 80 searchers.

Acknowledgments

We wish to express our sincere thanks to Elaine Toms (Dalhousie University,
Canada), Luanne Freund (University of Toronto, Canada) and Heather L. O’Brien
(Dalhousie University, Canada) for their hard and imaginative work on the search
tasks, to the team at Max Planck Institute (Germany) for access to the TopX XML
element retrieval engine, Martin Theobald, Ralf Schenkel and Gerhard Weikum, as
well as the team at CSIRO (Australia) for access to the Panoptic™/Funnelback™
passage retrieval engine: Alexander Krumpholz, Peter Bailey, George Ferizis, Ross
Wilkinson and Dave Hawking. We would also like to thank Gheorghe Muresan from
Rutgers University, USA for the inventive idea of placing Pehcevski and Thom’s
relevance categories into the user-friendly T-shape.

References

1. Denoyer, L., Gallinari, P.: The Wikipedia XML corpus. SIGIR Forum 40(1), 64–69 (2006)
2. Fuhr, N., Klas, C.P., Schaefer, A., Mutschke, P.: Daffodil: An integrated desktop for

supporting high-level search activities in federated digital libraries. In: Proceedings of the
6th European Conference on Research and Advanced Technology for Digital Libraries
(ECDL), pp. 597–612 (2002)

 The Interactive Track at INEX 2006 395

3. Klas, C.P., Albrechtsen, H., Fuhr, N., Hansen, P., Kapidakis, S., Kovács, L., Kriewel, S.,
Micsik, A., Papatheodorou, C., Tsakonas, G., Jacob, J.: A logging scheme for comparative
digital library evaluation. In: Proceedingss of the 10th European Conference on Research
and Advanced Technology for Digital Libraries (ECDL), pp. 267–278 (2006)

4. Larsen, B., Tombros, A., Malik, S.: Obtrusiveness and relevance assessment in interactive
XML IR experiments. In: Trotman, A., Lalmas, M. and Fuhr, N. (eds.) Proceedings of the
INEX 2005 Workshop on Element Retrieval Methodology, held at the University of
Glasgow. Dunedin (New Zealand): Department of Computer Science, University of Otago,
pp. 39–42 (2005)

5. Pehcevski, J.: Relevance in XML Retrieval: The User Perspective. In: Trotman, A. Geva, S.
(eds.) Proceedings of the SIGIR, Workshop on XML Element Retrieval Methodology: Held
in Seattle, Washington, USA, 10 August 2006. Dunedin (New Zealand): Department of
Computer Science, University of Otago, pp. 35–42 visited 15-3-2007 (2006),
http://www.cs.otago.ac.nz/sigirmw/

6. Theobald, M., Schenkel, R., Weikum, G.: An efficient and versatile query engine for TopX
search. In: Proceedings of the 31st International Conference on Very Large Data Bases
(VLDB), pp. 625–636 (2005)

7. Toms, E.G., Freund, L., Kopak, R., Bartlett, J.C.: The effect of task domain on search. In:
Proceedings of the 2003 Conference of the Centre for Advanced Studies on Collaborative
Research, pp. 303–312 (2003)

8. Toms, E.G., Freund, L., Jordan, C., Mackenzie, T., Toze, S., O’Brien, H.: Evaluating Tasks
by Type and Form. In: INEX2006 Workshop Proceedings (This volume) (2007)

Appendix A – Search Tasks

In this year’s track, 12 search tasks that are to be performed with the Wikipedia
dataset. The tasks are loosely based on INEX 2006 topics. They are, however,
modified versions of INEX topics to ensure that they:

− are not limited in computer science topics only
− are not of limited regional interest
− are not too simple or too complex (i.e. require more than a simple page in order to

be answered, or do not have too many relevant elements)

The twelve tasks are split into three different types:
− Fact finding, where the objective is to find "specific accurate or correct

information or physical things that can be grouped into classes or categories for
easy reference.”.

− Information gathering, where the objective is to collect miscellaneous
information about a topic

− Decision making, where the objective is to select a course of action from among
multiple alternatives

The tasks are also split into two categories, depending on the “structure” of the search
task:
− Parallel, where the search uses multiple concepts that exist on the same level in a

conceptual hierarchy; this is a breadth search (and in a traditional Boolean likely
was a series of OR relationships)

396 S. Malik, A. Tombros, and B. Larsen

− Hierarchical, where the search uses a single concept for which multiple attributes
or characteristics are sought; this is a depth search, that is a single topic explored
more widely

Each task also has an associated domain, which is the broad subject area to which a
topic belongs.

Based on these classifications, we can represent the tasks for the track in the
following matrix:

ID Task Domain Type Structure
1 Your community is contemplating building

a bridge across a span of water measuring
1000 M in order to ease traffic congestion.
There will be a presentation this evening
about the type of bridge proposed for the
project. To date, many types of bridges have
been discussed: "folding bridge,"
"suspension bridge," "retractable bridge,"
and "bascule bridge". In order to be well
informed when you attend the meeting, you
need information on what type of bridge
would best suit the community’s needs,
bearing in mind that the solution must
accommodate vehicles and be sturdy
enough to withstand a body of water that
can be rough and frozen over with ice in
winter.

Engineering
Decision
Making

Hierarchica
l

2 Your friends who have an interest in art
have been debating the French
Impressionism exhibit at a local art gallery.
One claims that Renoir is the best
impressionist ever, while the other argues
for another. You decide to do some research
first so you can enter the debate. You
consider Degas, Monet and Renoir to
construct an argument for the one that best
represents the spirit of the impressionist
movement. Who will you choose and why?

Art
Decision
Making

Hierarchica
l

3 As a tourist in Paris, you have time to make
a single day-trip outside the city to see one
of the attractions in the region. Your friend
would prefer to stay in Paris, but you are
trying to decide between visiting the
cathedral in Chartres or the palace in
Versailles, since you have heard that both
are spectacular. What information will you
use to make an informed decision and
convince your friend to join you? You
should consider the history and architecture,
the distance and different options for
travelling there.

Travel
Decision
Making

Parallel

 The Interactive Track at INEX 2006 397

4 As a member of a local environmental

group who is starting a campaign to
save a large local nature reserve, you
want to find some information about
the impact of removing the trees
(logging) for the local pulp and paper
industry and mining the coal that lies
beneath it. Your group has had a
major discussion about whether
logging or mining is more
ecologically devastating. To add to
the debate, you do your own research
to determine which side you will
support.

Environment
Decision
Making

Parallel

5 A friend has just sent an email from
an Internet café in the southern USA
where she is on a hiking trip. She tells
you that she has just stepped into an
anthill of small red ants and has a
large number of painful bites on her
leg. She wants to know what species
of ants they are likely to be, how
dangerous they are and what she can
do about the bites. What will you tell
her?

Natural
science-
Health

Fact
Finding

Hierarchical

6 You enjoy eating mushrooms,
especially chanterelles, and a friend
who is an amateur mushroom picker
indicates that he has found a good
source, and invites you along. He
warns you that chanterelles can be
confused with a deadly species for
which there is no known antidote.
You decide that you must know what
you are looking for before you going
mushroom picking. What species was
he referring to? How can you tell the
difference?

Food
Fact
Finding

Hierarchical

7 As a history buff, you have heard of
the quiet revolution, the peaceful
revolution and the velvet revolution.
For a skill-testing question to win an
iPod you have been asked how they
differ from the April 19th revolution.

History
Fact
Finding

Parallel

398 S. Malik, A. Tombros, and B. Larsen

8 In one of your previous Web experiences,
you came across a long list of castles that
covered the globe. At the time, you noted
that some are called castles, while others
are called fortresses, and Canada
unexpectedly has castles while Denmark
has also fortresses! So now you wonder:
what is the difference between a fortress
and a castle? So you check the Web for a
clarification, and to find a good example of
a castle and fortress in Canada and
Denmark.

History-
Travel

Fact
Finding

Parallel

9 A close friend is planning to buy a car for
the first time, but is worried about fuel
costs and the impact on the environment.
The friend has asked for help in learning
about options for vehicles that are more
fuel efficient and environmentally friendly.
What types of different types of engines,
manufacturers and models of cars might be
of interest to your friend? What would be
the benefits of using such vehicles?

Cars
Info
gathering

Hierarchical

10 You recently heard about the book "Fast
Food Nation," and it has really influenced
the way you think about your diet. You
note in particular the amount and types of
food additives contained in the things that
you eat every day. Now you want to
understand which food additives pose a
risk to your physical health, and are likely
to be listed on grocery store labels.

Food
Info
gathering

Hierarchical

11 Friends are planning to build a new house
and have heard that using solar energy
panels for heating can save a lot of
money. Since they do not know anything
about home heating and the issues
involved, they have asked for your help.
You are uncertain as well, and do some
research to identify some issues that need
to be considered in deciding between more
conventional methods of home heating and
solar panels.

Home
heating

Info
gathering

Parallel

 The Interactive Track at INEX 2006 399

12 You just joined the citizen’s advisory
committee for the city of St. John’s,
Newfoundland. With the increase in
fuel costs, the city council is
contemplating supplementing its power
with alternative energy. Tidal power
and wind power are being discussed
among your fellow committee
members. As you want to be fully
informed when you attend the next
meeting, you research the pros and
cons of each type.

Energy
Info
gathering

Parallel

Appendix B – Participating Groups

Research Group Task
City University London, England Task A
Dalhousie University, Canada Task B
Kyungpook National University, Korea Task A
Oslo University College, Norway Task A
Queen Mary University of London, England Task A
Robert Gordon University, Scotland Task A
Royal School of LIS, Denmark Task A, Task B
Rutgers University, USA Task A, Task B
University of Duisburg-Essen, Germany Task A
University of Otago, New Zealand / Microsoft Research
Cambridge, England / RMIT University, Australia

Task A

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 400–412, 2007.
© Springer-Verlag Berlin Heidelberg 2007

XML-IR Users and Use Cases

Andrew Trotman1, Nils Pharo2, and Miro Lehtonen3

1 Department of Computer Science, University of Otago, Dunedin, New Zealand
andrew@cs.otago.ac.nz

2 Faculty of Journalism, Library and Information Science, Oslo University College, Norway
nils.pharo@jbi.hio.no

3 Department of Computer Science, University of Helsinki, Finland
miro.lehtonen@cs.helsinki.fi

Abstract. We examine the INEX ad hoc search tasks and ask if (or not) it is
possible to identify any existing commercial use of the task. In each of the
tasks: thorough, focused, relevant in context, and best in context, such uses are
found. Commercial use of CO and CAS queries are also found. Finally we
present abstract use cases of each ad hoc task. Our finding is that XML-IR, or
at least parallels in other semi-structured formats, is in use and has been for
many years.

1 Introduction

Many of the teething troubles in setting up realistic XML-IR experiments have been
blamed on the lack of user grounding. Trotman [19] suggests that the standard
methodology for XML-IR experiments should be based on examining user behavior
and that it is essential to identify such a group of users. Unfortunately, he stops there
and does not identify a single user.

At INEX 2006 Trotman and Pharo ran a thought experiment called the Use Case
Studies Track [22]. They asked participants to hypothesize users of XML-IR and to
imagine how such users would interact with an information system. They assumed
such users did not exist and would not exist for several years.

Almost immediately Dopichaj [7] identified the use of XML-IR in book search and
separately Lehtonen [13] identified commercial systems dating back to several years
before the first INEX workshop. In the words of Lehtonen “Rather than trying to find
the users, we are tempted to ask an even more interesting question: How did we lose
sight of the users of XML retrieval?”.

In this contribution we examine the existing INEX ad hoc tasks and demonstrate
that for each track there is already a commercial use – they are already grounded in a
user base. We take those search engines identified in the studies of Dopichaj and of
Lehtonen, and connect the methodology of INEX. We then present hypothetical use
cases for each INEX task,

Ironically, just as Dopichaj and Lehtonen were demonstrating the long-term prior
existence of XML-IR users, Trotman was suggesting that users might prefer passages
to elements [20] and emphasizing the importance of Passage Retrieval. We do not

 XML-IR Users and Use Cases 401

believe that the method of identifying the semantic unit is of material value in the case
studies herein – that is, we do not believe the user is concerned with whether they are
presented with a series of paragraphs or an element.

2 INEX Ad Hoc Tasks

INEX initially identified only one ad hoc task, the thorough task. Subsequent rounds
added the focused task, then the fetch & browse task (which became the relevant in
context task). Finally the best in context task was added in 2006. The best in context
task (also known as the best entry point (BEP) task) was one of the tasks studied in
the Focus experiments [12] prior to the first INEX, and the task for which it could be
easiest for the established search engines to adopt on the web.

2.1 Thorough Retrieval

The purpose of the thorough task is to identify all relevant elements in the document
collection and to rank those relative to each other. That is, regardless of nesting, and
regardless of the document in which the element has been identified, the task is to
rank all elements with respect to topical relevance.

At the beginning of INEX 2006 there was no absolute certainty of the credibility of
the task to a user community. It is clearly stated that “there are no display-related
assumptions nor user-related assumptions underlying the task” [5]. However, as soon
as these assumptions are made, the task may reduce to finding BEPs or to focused
retrieval.

The task continues because it is considered important by some participants as a
benchmark for improvements [20]. It is the only task that has been held at every
INEX. It is also considered by some to be a system oriented approach to XML
element ranking: from the thorough set of relevant elements, a set of disjoint elements
(for focused retrieval) could be chosen, or a set of good entry points into a document
could be identified.

2.2 Focused Retrieval

An endeavor to create a more user-centered task resulted in a task in which
overlapping elements were forbidden from occurring in the result list. Evidence from
the INEX Interactive track supported the view that users did not want to see the same
text repeated in their results lists [18]. Adding the exclusion of overlap from the
results list added a new problem to the search strategy, the identification of the just
right sized element to return to the user.

At INEX 2006, and for the focused task, a hypothetical user of an XML-IR system
was described. This user views the results list top-down, they prefer smaller elements to
larger ones, and they are mostly concerned with elements ranked highly in the results
list [5], they also do not want to see the same information returned multiple times.

402 A. Trotman, N. Pharo, and M. Lehtonen

The focused task has been criticized for being context-free [16] – that is, the user is
presented with the results of their search but cannot evaluate the authority of the
information because no context is given1. As an example, a section of an academic
paper might fulfill the user’s information need, but without knowing who wrote the
paper (and were it was published) the user cannot be certain of the accuracy of the
content. The context is important, and is needed.

2.3 Relevant in Context (Fetch & Browse)

In the fetch & browse task the search engine must first identify relevant documents
and rank these relative to each other and with respect to topical relevance. Within this
ranking, those relevant elements within the document are identified. The subtle
difference between relevant in context and fetch & browse is that the former is
focused whereas the latter is thorough.

At INEX 2006 a real user was imagined. This user considers the document to be
the natural unit of retrieval, but wants the relevant elements within the document
identified for quick perusal and browsing [5] – perhaps by subtle highlighting.

2.4 Best in Context

Considering how an information system using the relevant in context strategy might
be implemented leads to the final task. The user performs a search, chooses a result
from the results lists, and expects to be taken to the relevant passage within the
chosen document. Again, at INEX 2006 a real user was theorized [5].

This task was previously investigated in the Focus experiments [12]. There they
asked assessors to identify the best entry points from which a reader should start
reading in order to satisfy their information need.

2.5 Theoretical Tasks

Since the first INEX workshop tremendous effort has been made to identify a realistic
task for XML-IR, and it is hard to argue such a task has been found. We believe that
relevant in context would be of enormous interest if a web search engine provider
chose to implement similar technology for HTML on their cached results. Best in
context might be easily implemented in a search engine that considered anchors inside
a web page as well as whole web pages. Alternatively, if and when semantically and
structurally stronger XML-languages are widely adopted in place of HTML, such
technology would be valuable. Although XHTML is based on XML rather than
SGML, the web still is based on quite a weak markup language, and sadly search
engines do not identify relevant parts of documents.

This leaves a gap. INEX has identified four tasks; three are believed to be user
driven. But, are these tasks purely theoretical or are there any users?

1 The counter argument is that focused retrieval is about finding elements and not about

displaying elements, and as such there is no context from which to be free.

 XML-IR Users and Use Cases 403

3 INEX Ad Hoc Queries

It is poignant to ask how a user might phrase their query before even being presented
with their search results – this is a question that has also received much attention (see,
for example, van Zwol [25]). We believe it is likely to remain a topic of debate as
different users are likely to want to interact with an XML search engine in different
ways. A database administrator might prefer SQL to interact with a given database
whose users prefer a point and click interface. Similarly, an administrator of an XML
information system might prefer XPath [4] while a user of said system might prefer a
keyword interface.

 INEX identifies two types of queries, those that contain Content And Structural
hints (CAS queries) and those that contain Content Only (CO queries) words. The
former are specified in the INEX language NEXI [23], and the latter are simple
keyword lists.

Several other methods of specifying queries were tested at INEX (see Trotman [24]
for details), but it is the loose semantics and the simplicity that make NEXI an
appealing language for XML-IR.

3.1 Content Only Then Content and Structure

Again at INEX we see a hypothetical user. This user does not know (or might not
want to use) the structure of the documents in the collection. This user issues a query
containing only keywords and is returned a set of elements (ordered according to the
task).

Just as a user of a web search engine might refine their query by adding keywords,
the hypothetical user adds not keywords but structural constraints to refine their
query. Of course, they might choose to include the constraints from the beginning if
they suspected it would help.

3.2 Other Models

Van Zwol examined a graphical user interface for choosing structural constraints for CAS
queries [25]. In his interface the user selects structures from lists and is able to specify
keywords to be constrained to those structures. These graphical queries are easily
converted to CAS queries in the NEXI language. Baeza-Yates [1] used block-like
graphical language to represent the nesting of structures. Query by fragment, the
specification of XML fragments containing keywords was examined by Carmel et al. [3].

3.2 Theoretical Queries

Comparative studies of the methods of asking the queries are hard to do in an
environment in which there are no known users. What can be done, however, is to
examine the requirements of the query language. It should optionally allow the user
to specify structure, it should optionally allow the user to specify keywords, and it
should optionally allow the user to specify the granularity (or target elements) of the
search result that is, the following kinds of queries:

404 A. Trotman, N. Pharo, and M. Lehtonen

1. Keywords only (no structural constraints or target elements specified)
2. Keywords limited to structures (no target elements specified)
3. Keywords limited to structures with target elements specified
4. Structural constraints and target elements (no keywords)
5. Structural constraints (no keywords or target elements)
6. Target elements (no keywords or structural constraints)

The last three of which (typically) require no interpretation of the user’s information
need and are so outside the realm of the INEX ad hoc task. The term keyword refers
to single keywords as well as phrases of several words or any other string-valued
search condition.

User interfaces for queries need to be limited to text-only interfaces. In the
preceding section graphical query languages and list-box query interfaces were
discussed. Such interfaces do not alter the kinds of queries that can be asked, only
how they are asked. We believe there is room for investigation of novel query
interfaces for XML, a field in its infancy.

3.4 Result Granularity

Two models for specifying result granularity exist within INEX, either it is specified
explicitly (or vaguely in a CAS query) or it is left to the search engine to determine
(in a CO query or a CAS query targeting //*). Previous justification of the vague
interpretation has been based on the user not knowing the DTD, or alternatively not
having an expectation of the best size of a result to answer their questions.

The best size of a result may be dictated not only by the user but also by equipment
used to render the information. Some web sites provide different interfaces
depending on the surfing device being used. Yahoo, for example, provides an
interface for mobile phones as well as desktop computers. The search engine could
take advantage of the user context as part of the search process. In the case of XML-
IR the search engine could interrogate the user’s display characteristics and
specifically target elements that are of a granularity to fit the device. In the case of a
desktop computer this might be a section of a book whereas on a palmtop it might be
several consecutive paragraphs, but on a mobile phone only a single paragraph.

4 Existing Search Models

In this section some search engines already identified as being (or hypothesized as
being) XML-IR are examined. In some cases it is not possible to state with any
certainty that XML is used as they are proprietary and vendors are not at liberty to
disclose this information.

4.1 Version Control (Thorough)

To find an example of thorough retrieval it is necessary to find a collection of
documents in which both the whole document and the document elements are atomic.
That is, the document must be a loosely coupled collection of elements. [16]. Two
such genre have been identified: books (discussed below); and version control.

 XML-IR Users and Use Cases 405

A version control system such as RCS allows the user to manage individual source
code files and also to manage whole software development projects. In some systems
the user is able to search through the comments associated with a file, with a directory
of files, or with a project.

In the Microsoft version control system SourceSafe, for example, the user can add
comments to (label) a file, or a directory. Any comments associated with the
directory also apply to any subdirectories and files of that directory. A directory label
will be seen when a file’s comments are examined. These comments could be (but
are likely not) stored in an XML file in which the structure of the XML matches the
structure of the file system.

A user searching these comments expects the version control system to identify
each and every relevant comment, regardless of where in the structure that comment
occurs. If a comment is given to a file, and to a directory then it is reasonable to
expect it to occur multiple times in the results list. If the comment applies to a
directory then the user expects to see the comment in a results list only once. In other
words, the search engine should be thorough. In a version control system the context
is implicit (the given archive) and so it is not needed.

4.2 News Summarization (Focused)

The awkwardness in finding an application of focused retrieval is that the context is
not presented. As with thorough retrieval, if the context is implicit or otherwise
already known, then context is not needed. The credibility of news stories published
by BBC news, for example, can be taken for granted. The BBC news reader need not
concern themselves with the authorship as the editor has already ensured the
credibility of the content.

Not needing to know the greater context of a document does not mean elements are
meaningful outside the context of the body text. To find an application of this aspect
of focused retrieval it is necessary to look beyond the user, and at an information
system as a whole. Such a system would present the user with information and not
documents. News summarization is one example.

The Columbia Newsblaster summarizes news pages from multiple sources, often in
HTML. To do this it must extract the text of the document from the decoration.
Evans et al. [8] describe the elaborate mechanism that is used to do so. Focused
retrieval could be used to separate the relevant text from the decoration.

Multi-document text summarizers such as MultiGen [15] are used by Newsblaster
to summarize a collection of documents on a single topic. Focused retrieval could be
used to identify parts of documents for summarization. Such an approach might
result in an increase of summarization performance as there could be an associated
reduction in non-relevant material being summarized.

4.3 Question Answering (Focused)

Question Answering has been examined at TREC, CLEF and NTCIR, but not yet at
INEX. In this case the search engine must identify a very short (certainly less than a
paragraph) snippet from a document that answers a user question – a focused retrieval

406 A. Trotman, N. Pharo, and M. Lehtonen

strategy. Although it is unusual to see sentence and entity level markup in a
document, applications that insert them do exist (for example, POS taggers).

4.4 Book Search (Relevant in Context or Fetch & Browse)

Dopichaj [7] identifies book search as a commercial (and in-use) application of XML
retrieval. Specifically he identifies Books24x7 and Safari as successful Internet sites
that rely on this (or very similar) technology. His examples could not have been
further from expectation; they use a thorough retrieval strategy.

Books24x7 provides an interface in which books are first ranked by topical
relevance, and then within that, parts of books are ranked. Dopichaj provides an
example where (within a single book) both a chapter and a section of that chapter are
listed. This interface is relevant in context but results are thorough; it is the Fetch &
Browse strategy. It is not clear why Fetch & Browse was dropped from INEX, but
perhaps it should be reinstated.

The granularity of search on Books24x7 is not known. It is possible that only three
levels of the document tree are searchable: book, chapter, and section. Some INEX
participants [21] take the view that many of the common elements (such as
typographically marked elements or section headings) seen in the document tree are
of no material value for retrieval and should not even be indexed. Others [14] take
the view that the best elements for retrieval can be pre-determined and so only index a
small subset of the elements in a document. Of the latter group, some [14] build a
separate index for each element type and merge after searching each.

When examining the table-of-contents of a single book on Books24x7, chapters of
that book which are relevant to the user’s needs are marked as being so. By
extension, if the relevance of each chapter (and section of each chapter) were also
indicated then the table of contents would be a heat map of relevance across the
document.

We believe that the document heat map is an important grounding for XML-IR. At
each point in the document a relevance score is computed and this is displayed either
alongside the document or with a table-of-contents like overview of the document.
The heat map is a thorough paradigm. A given document has a certain heat and then
within that each section and each subsection of that has a given heat. For evaluation
purposes it is convenient to order these elements first by document then by topical
relevance within document.

4.5 Extending Web Search (Best in Context)

Lehtonen [13] makes the point that the user does not need to be aware of the fact that
XML is used in the underlying system for it to be XML retrieval. He provides
examples of web interfaces to XML collections. It is reasonable to ask what other
aspects of the web could be likened to XML retrieval, or more to the point what
aspects of XML retrieval are already in use on the web. The best in context task is
one example.

It is not uncommon to see a web page with many internal links. Particularly in
long documents (for example academic papers) a table-of-contents with links to entry
points in that document is the norm. The web rendering of papers by BioMedCentral

 XML-IR Users and Use Cases 407

[2] for example, includes this kind of table-of-contents which they refer to as an
outline. In some cases these links are inserted automatically by software that converts
XML to HTML.

It is also not uncommon for web search engines such as Google [9] to present the
user with a list of results that includes one sentence query-biased summaries (or
snippets) of the identified documents. This is done so that the user can see, in
context, where the search terms lie within the document.

It is, however, uncommon for information systems to provide both behaviors. It is
not possible for a web search engine to instruct the web browser to load a given page
and locate an arbitrary snippet at the top of the window – such behavior does not exist
in the browser. But, given a set of entry points into the document (each marked as an
HTML anchor) it is entirely possible for the search engine to instruct the browser to
load the page and to locate the last entry point before the snippet.

In this example the entry points are chosen by the author of the web page and
inserted manually. But this does not make it a reasonable criticism of the analogy.
There are essentially no true structures in an HTML document and the best an author
can do is to create these with anchors (cascading style sheets (CSS), div and span
elements, and XHTML aside). Of course, if the authors were using XML then they
would have structures available to use, but just as with the HTML example, they
would manually have to choose to insert the structures (and the same is true with
CSS). There seems to be no getting around the issue that entry points are manually
chosen in both HTML and XML.

5 Existing Query Models

One is tempted to suggest that identifying any single implementation of XPath in a
commercial product is sufficient evidence of its user base but it is of more value to
identify mass use of the searching paradigms.

5.1 Keyword Only

Examples of keyword only interfaces abound the Internet (for example Google) and
before this they abounded CD-ROMs.

5.2 Keywords Limited to Structures

Close inspection of the search interface provided by Google reveals that searches can
be restricted to specific meta-data fields. This behavior is in use by search engines
that utilize this search engine to search only their site. A query can, for example be
restricted to the University of Otago web site by adding the search term
“site:otago.ac.nz”, requiring that the meta-data for the web page contain a structure
called site and that that structure contain the expression otago.ac.nz.

Structured information systems such as PubMed [17] also provide similar
behavior, in this case a user can restrict their search terms to occurring in a multitude
of different structures including the title, the keywords, or even the abstract of a
document.

408 A. Trotman, N. Pharo, and M. Lehtonen

5.3 Keywords Limited to Structures with Target Elements Specified

Although now defunct, BioMedNet once used an SGML [11] search engine that relied
on fully normalized reference concrete syntax (it was essentially an XML search
engine). The site provided a number of services including job listings, a store for
biology supplies, magazines, academic journals, and abstracts from Medline.

The user interface to the search engine provided the user with the ability to search
only the journal collection, only a single journal, only the jobs, only the store, or
everything. Of course, the user also supplied keywords and could limit these to any
structure seen in any of the SGML elements. This behavior is directly analogous to
the user supplying the target elements and provided keywords optionally limited to
structures (even though not implemented in this way).

5.4 Search Forms

Many search engines provide a so-called advanced interface in which the user
specifies their information need by selecting from list boxes. Lehtonen [13] provides
examples of such interfaces in which keywords are not needed, as well as ones in
which they are.

One can easily lose sight of a goal when it lies directly under one’s own nose. The
bibliographic citation manager used by the authors of this contribution (EndNote)
provides search functionality in which the user chooses fields from a list box and
enters keywords to be limited to those fields.

6 XML-IR Use Cases

Formal use-cases are used to document the interaction of a user and an information
system. Such use cases are often written in an environment in which the system does
not yet exist, or in which the system is being modified (and consequently does not
fully exist). They are design documents.

XML-IR is already in use, but this need not detract from the benefits of writing use
cases. For one, a description of how it is being used could lead to insights as to how it
might be used.

Cockburn [6] examines effective and ineffective use cases and provides a set of
reminders. Reminder 6 is to “Get the Goal Level Right”. By this he is reminding us
not to get bogged down in the detail of how exactly something happens, but rather to
describe that it does. The exact details can sometimes be filled in with another use
case while at other times it is obvious. How the user enters their query in a web
search engine is less important than that they must do so.

Much of the fine detail of the interaction between the user and the information
system is identical for the different XML retrieval tasks identified at INEX. The user
sits at a computer, enters a query, and is presented with results. Because these details
are the same each time, and essentially the same is seen in web search, it is
unnecessary to include or repeat them – the level is wrong.

Cockburn [6] also examines several different formats for presenting use cases.
These range from the fully dressed format that is highly formal with numbered steps

 XML-IR Users and Use Cases 409

to a drawn diagram format to a casual format that is paragrammatic. It is important
to choose the appropriate style for both clarity and to avoid ambiguity.

The use cases included herein are in the casual format. They serve not to dictate
the design of a system but rather are illustrative of the user’s needs, and why an
XML-IR system of a particular kind is needed. As the interaction of the user and the
search engine is obvious and ubiquitous, the use cases reduce to a description of the
user’s need and why a particular strategy satisfies their needs.

6.1 The Thorough Use Case

The user needs maintenance information to maintain some modular engineering
equipment, but cannot be certain of the exact modules until in the field. Such is the
case when a modular system evolves over time but old and new pieces remain
interchangeable. The product has an electronic set of service manuals that are
constructed hierarchically with the details of different versions of the same module
compiled into the same XML document.

The user believes it is possible to identify the component in the field from the
service manuals, but to do so needs exhaustive details on each variant of a given
components. The service manual is designed to extract the appropriate XML elements
to form a coherent page regardless of the variant of that component.

 The user consults the collection, which provides a ranked list of information
elements for all variants of the component. These are chosen to best fit the rendering
capacity of a handheld computer.

 The user browses and selects from the result list the document fragments that
match the modular component in the field.

The user identifies the version of the component.
The information system constructs the service pages for the component.
Sure of a valid identification and having the service manual page the user services

the part and is finished.

6.2 The Focused Use Case

The user has been asked to present a report summarizing the many different views of
a given debated topic. They are, consequently, interested in reading opinions without
being interested in whose opinion it is. Such might be the case if a secondary school
pupil were asked to present a report on the different views of the effects of global
warming.

The user believes it is necessary to obtain the information from multiple sources
and from many different collections.

They consult such a meta-search engine which provides a ranked list of
information elements from multiple sources.

 The user browses and selects from the result list and views accompanied
information.

Uninterested in the source of the information, as it is opinion they are seeking, they
take notes from relevant information elements.

The user combines the notes from the multiple sources into a coherent report.
Sure of having covered the multitude of opinions, the user is finished.

410 A. Trotman, N. Pharo, and M. Lehtonen

6.3 The Relevant in Context (and Fetch & Browse) Use Case

The user needs factual information to solve a dispute. Such was the original reason
for the collection of facts now readily available as the Guinness World Records [10]
(but previously under different names).

The user believes it is possible to obtain the information from a single source in a
community built collection of facts (such as Wikipedia, or Guinness).

They consult such a collection which provides a ranked list of information
elements.

 The user browses and selects from the result list and views accompanied
information.

Knowing the facts are under dispute, the user chooses to verify the credibility of
the information. The information system provides two methods for doing this:

Either the user consults a discussion list associated with the information, and uses
their personal experience and judgment in following the postings

Or the user consults the context of the information and uses their personal
experience to judge the reliability of the source and therefore the credibility of the
information.

Sure of the facts and the credibility of the source, the user is finished.

6.4 The Best in Context Use Case

The user is writing an academic paper and recalls some facts they wish to cite, but is
unable to recall the source. The user is a regular and frequent user of an online
academic digital library which houses many of the journals they frequently read.
Such was the case for the authors of this paper during preparation.

The user is looking for a single source of the information from a reputable source
(such as a journal on ScienceDirect).

They consult such a collection which provides a ranked list of information
elements. As the information units are long (typically 8-30 printed pages), the result
list includes query biased summaries (snippets).

The user browses and selects from the result list.
The information system presents the user with an article, pre-scrolled to the right

location so that the snippet is on-screen in context, for the user to read.
The user discovers that their understanding of the details is not sufficiently detailed

and chooses to read more of the context.
As the information unit is on-screen, the user scrolls and reads at their leisure to

ensure they sufficiently understand the details.
Sure of their facts, and with a citation to them, the user is finished.

7 Conclusions

There are currently four ad hoc tasks at INEX: thorough, focused, relevant in context,
and best in context. For each of these tasks it is reasonable to ask if it is a purely
academic task being studied for academic reasons, or if such systems exist and
therefore might be improved by research in XML-IR.

 XML-IR Users and Use Cases 411

For thorough retrieval, internet book search as well as version control are identified
as existing uses of the technology. For focused an application is news summarization.
The relevant in context task is already in use in internet book search, and an
application of best in context is suggested. Use cases for each of these four tasks are
presented.

Accepting that it is reasonable to rank these tasks on credibility, we suggest the
relevant in context task is most credible (as it has been show to exist), followed by
best in context, and then focused, then thorough.

XML-IR users certainly exist. We believe the use cases are reasonable, and we
hope that future research in XML-IR will consider the existing users as well as the
hypothetical users for whom some of the INEX tasks were targeted.

References

[1] Baeza-Yates, R., Navarro, G., Vegas, J.: A model and a visual query language for
structured text. In: Proceedings of the String Processing and Information Retrieval: A
South American Symposium, pp. 7–13 (1998)

[2] BioMedCentral, Biomedcentral. (November 2006) Available: http://biomedcentral.com
[3] Carmel, D., Maarek, Y.S., Mandelbrod, M., Mass, Y., Soffer, A.: Searching XML

documents via XML fragments. In: Proceedings of the 26th ACM SIGIR Conference on
Information Retrieval, pp. 151–8 (2003)

[4] Clark, J., DeRose, S.: XML path language (XPath) 1.0, W3C recommendation. The
World Wide Web Consortium. Available (1999), http://www.w3.org/TR/ xpath

[5] Clarke, C., Kamps, J., Lalmas, M.: INEX 2006 retrieval task and result submission
specification. In: Proceedings of the INEX 2006 Workshop to appear (2006)

[6] Cockburn, A.: Writing effective use cases, 1st edn. Addison-Wesley, London, UK (2000)
[7] Dopichaj, P.: Element retrieval in digital libraries: Reality check. In: Proceedings of the

SIGIR 2006 Workshop on XML Element Retrieval Methodology pp. 1–4 (2006)
[8] Evans, D., Klavans, J.L., McKeown, K.R.: Columbia newsblaster: Multilingual news

summarization on the web. In: Proceedings of the Human Language Technology
Conference of the North American Chapter of the Association for Computational
Linguistics(HLT-NAACL-2004) (2004)

[9] Google. Google. (November 21, 2006) Available: http://google.com
[10] Guinness: Guinness book of records. 22nd edn. Guinness Superlatives Ltd, London

(1975)
[11] ISO8879: 1986. Information processing - text and office systems - standard generalised

markup language (SGML) (1986)
[12] Kazai, G., Ashoori, E.: What does shakespeare have to do with INEX. In: Proceedings of

the SIGIR 2006 Workshop on XML Element Retrieval Methodology, pp. 20–27 (2006)
[13] Lehtonen, M.: Designing user studies for XML retrieval. In: Proceedings of the SIGIR

2006 Workshop on XML Element Retrieval Methodology, pp. 28–34 (2006)
[14] Mass, Y., Mandelbrod, M.: Component ranking and automatic query refinement for XML

retrieval. In: Proceedings of the INEX 2004 Workshop, pp. 73–84 (2004)
[15] McKeown, K.R., Barzilay, R., Evans, D., Hatzivassiloglou, V., Kan, M.-Y., Schiffman,

B., Teufel, S.: Columbia multi-document summarization: Approach and evaluation. In:
Proceedings of the Document Understanding Workshop (DUC 2001) (2001)

[16] O’Keefe, R.A.: If INEX is the answer, what is the question. In: Proceedings of the INEX
2004 Workshop, pp. 54–59 (2004)

412 A. Trotman, N. Pharo, and M. Lehtonen

[17] PubMed, Pubmed. (November 21, 2006) Available: http://ncbi.nlm.nih.gov
[18] Tombros, A., Larsen, B., Malik, S.: The interactive track at INEX 2004. In: Proceedings

of the INEX 2004 Workshop, pp. 410–423 (2004)
[19] Trotman, A.: Wanted: Element retrieval users. In: Proceedings of the INEX 2005

Workshop on Element Retrieval Methodology, Second Edition, pp. 63–69 (2005)
[20] Trotman, A., Geva, S.: Passage retrieval and other XML-retrieval tasks. In: Proceedings

of the SIGIR 2006 Workshop on XML Element Retrieval Methodology, pp. 43–50
(2006)

[21] Trotman, A., O’Keefe, R.A.: Identifying and ranking relevant document elements. In:
Proceedings of the 2nd workshop of the initiative for the evaluation of XML retrieval
(INEX) (2003)

[22] Trotman, A., Pharo, N.: User case studies track. INEX. (November 13, 2006) Available:
http://inex.is.informatik.uni-duisburg.de/2006/usercase.html

[23] Trotman, A., Sigurbjörnsson, B.: Narrowed Extended XPath I (NEXI). In: Proceedings of
the INEX 2004 Workshop, pp. 16–40 (2004)

[24] Trotman, A., Sigurbjörnsson, B.: NEXI, now and next. In: Proceedings of the INEX 2004
Workshop, pp. 41–53 (2004)

[25] van Zwol, R., Baas, J., van Oostendorp, H., Wiering, F.: Query formulation for XML
retrieval with bricks. In: Proceedings of the INEX 2005 Workshop on Element Retrieval
Methodology, Second Edition, pp. 80–88 (2005)

A Taxonomy for XML Retrieval Use Cases

Miro Lehtonen1, Nils Pharo2, and Andrew Trotman3

1 Department of Computer Science, University of Helsinki, Finland
Miro.Lehtonen@cs.Helsinki.Fi

2 Faculty of Journalism, Library and Information Science, Oslo University College,
Norway

nils.pharo@jbi.hio.no
3 Department of Computer Science, University of Otago, Dunedin, New Zealand

andrew@cs.otago.ac.nz

Abstract. Despite the active research on XML retrieval, it is a great
challenge to determine the contexts where the methods can be applied
and where the proven results hold. Therefore, having a common taxon-
omy for the use cases of XML retrieval is useful when presenting the
scope of the research. The taxonomy also helps us design more focused
user studies that have an increased validity. In the current state, the
taxonomy covers most common uses of applying Information Retrieval
to XML documents. We are delighted to see how some of the use cases
match the tasks of the INEX participants.

1 Introduction

Research on XML IR methodology often lacks a clearly defined scope. Some
researchers claim that their methods are general and applicable to arbitrary
XML documents while others are accused of fine-tuning their methods to a single
document collection. Despite the often supportive evidence presented with the
results, these claims have no common theoretical grounding. Thus, we cannot
describe how general each method is or whether a method is fine-tuned to a
single collection, document type, document genre, or something else. The original
contribution of this paper is the first proposal for a common taxonomy for the
use cases of XML Retrieval. The taxonomy should help us see which aspects of
XML retrieval are addressed and which use cases are potentionally involved in
each research effort. Knowing those, it is quite straightforward to describe how
methods generalise and how they are fine-tuned.

There are several approaches to creating a hierarchical classification for the use
cases, depending on which features or facets we consider important. Therefore,
we need to analyse the properties and characteristics of various use cases in order
to find the right level of description. The factors that distinguish use cases from
each other include the following:

XML. A continuum from marked-up text including articles, books, web pages
to structured data extracted from a database. The element names shift from

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 413–422, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

414 M. Lehtonen, N. Pharo, and A. Trotman

presentation-specific names towards metadata-like content descriptors as we
move marked-up text towards the other end of the continuum.

Content type. Books and other monographies, chapters, articles, web pages,
messages, document fragments and other incomplete documents.

Size. A continuum from very small to very big. There is often interdepency
between the content type and document size. The size usually makes a dif-
ference when presented to the user. Some documents are too big, whereas
others may be too small, and the system has to work accordingly.

Queries. Content-Only (CO), Content-And-Structure (CAS). Depending on
the kind of XML, the document structure can be present in the queries
as structural hints or requirements. Allowing XML structure in the queries
usually requires user interfaces that support such querying.

Information need. Answer to a question (QA), topic description, topic or
value–based inventory of the document collection.

Presentation of search results. Links to standalone documents optionally
with relevant passages, best entry points, aggregated or assembled docu-
ments, heatmaps.

A similar effort was put forth by Andrei Broder who presented a taxonomy
of web search [1]. He classified web queries into three classes according to their
intent: navigational, informational, or transactional. While this classification of
web searches is closely related to the user’s task, the use cases of XML retrieval
are tightly coupled with what kind of searching is possible, given certain XML
documents. The contrast between the two classifications has a clear explanation:
Anything can be searched on the web, whereas XML retrieval only concerns
searching the contents of XML documents. For example, finding the URI of an
XML document is not considered XML retrieval.

2 Hierarchical Classification for Use Cases

One of the most important characteristics of XML is its ability to describe
content with metadata which is a part of the markup. The tags around words,
phrases, paragraphs, and even whole documents, define the interpretation of the
enclosed content — only the interpreters vary. The purpose of the XML markup
is the deciding factor at the top level of the hierarchy, so that in Class A, XML
is computer-interpreted for display, in Class B, XML is human-readable, and in
Class C, XML is interpreted and further processed by computer.

A Layout-Oriented Document Types

XML documents of this nature are often conversions from other formats. In the
past it has been common for academic publishers to use automated programs to
generate the XML from typesetting files, whereas the legacy documents of enter-
prises are conversions from word processor formats or even HTML [2]. However,
XML in both cases is the archival format: the XML “variant” of the document
is definitive and all other formats are derivative.

A Taxonomy for XML Retrieval Use Cases 415

XML: Most tag names describe either 1) the presentation of the content, e.g., <i>
for italics, for boldface, or 2) document structure, e.g., <p> for paragraph,
<sec> for section. Differences between document types (DTDs, XML Schemas)
are not a great challenge for IR applications where finding the relevant content
comes first and publishing it comes later.

Queries: Keywords, keyphrases (Content-Only, CO). Including structural hints
in the queries is not meaningful as far as element names are concerned. Layout
and structure-related element names do not represent any information need as
they are not related to the topic of any CO query.

Presentation of search results: The document order of the original documents is
usually significant, so that the content of a single document or fragment cannot
be reordered.

The size of the document is the second most distinctive feature in the class
of layout-oriented documents as it directly affects the presentation of the search
results as well as the overall system tasks. So far, we have identified three sub-
categories in Class A: Book search (A.1), Article search (A.2), and Fragment
search (A.3).

A.1 Book Search

One of the advantages of using XML-IR for book search (also for article search in
A.2) is that the documents are long and XML-IR can locate relevant fragments
for the user — reducing the load on the user. Although book search has not been
explored by INEX researchers in the past, there might be a new track for book
search at INEX 2007.

Example document types:

– Docbook1.

Presentation of search results: Links (with summaries) to relevant sections and
subsections or best entry points.

Example documents:

– Relevant chapters or sections of the book as standalone documents,
– Links (with summaries) to the full-text of whole books where the relevant

content is highlighted.

User tasks: Learning and reading about a topic until information need is satis-
fied.

System tasks: Identifying relevant passages and best entry points.

1 http://www.docbook.org/

416 M. Lehtonen, N. Pharo, and A. Trotman

A.2 Article Search

The strength of XML shows in the ways the queries can be refined. For example,
the set of matching articles can be limited to those that were published during
a given time period, or those that were written by certain authors. Conditions
can be set on any metadata included in the documents. Article search was on
the agenda of the INEX initiatives 2002–2005.

Example documents:

– Web pages,
– IEEE journals in XML format (part of the INEX test suite 2002-2005).

Presentation of search results: Links (with summaries) to the full-text of whole
articles. Optionally, the relevant content is highlighted.

User tasks: Learning and reading about a topic until information need is satis-
fied.

System tasks: Identifying relevant articles, relevant passages, and best entry
points.

A.3 Fragment Search

Having to search document fragments instead of whole documents is often the
natural consequence of adopting an XML-based publishing environment. For
example, the Franklin content management system of IBM decomposes infor-
mation into reusable XML fragments [3]. Corresponding systems have become
mainstream for enterprises. What is common to these environments is that the
source documents are typically too small or too dependent on other documents
(incomplete) to be published on their own. Whether the search application as-
sembles the retrieved fragments into coherent answers is case-dependent.

Considering the number of operational systems, fragment search is one of the
most common use cases of XML Retrieval. It is thus unfortunate that no INEX
track has yet been devoted to it. Future prospects do not look any brighter as
the realistic and often proprietary document collections are beyond reach.

Example documents:

– Single-sourced documentation [4].

Presentation of search results: Customised according to fragment size, content,
and final publication format.

User tasks: Finding all relevant fragments to be included in a publication, e.g.
technical document, or to be used as background material.

A Taxonomy for XML Retrieval Use Cases 417

System tasks: Identifying relevant fragments and combining them into whole
documents.

B Content-Oriented Document Types

Adding metadata to documentation and making the documents self-contained
were some of the major incentives for developing the XML standard. Those goals
are fulfilled in content-oriented XML documents.

XML: The majority of the non-optional tag names describe the text content of
the corresponding elements, e.g., <action>, <reason>, <recommendation>. Dif-
ferences between document types (DTDs, XML Schemas) have a direct impact on
the query evaluation which may require manual mappings between incompatible
structures. Automatic and ontology-based methods are also worth considering.

Queries: Keywords,keyphrases,keyvalues,andstructure(Content-And-Structure,
CAS). Without structural hints in the query, the results may be highly ambiguous,
because the interpretation of the content is dependent on the XML names.

Presentation of search results: The relevant results are rarely presented in the
original order even when they come from the same document. For each relevant
answer, the content is ordered by rules or templates. Each XML document, in
turn, may hold more content than what would ever be published as a single
publication.

The second most distinctive feature of content-oriented document types is the
level where the content is described. If the content-oriented element names are
mostly at the level of paragraphs and sections, for example, <instructions>
or <weatherforecast>, we may apply methods for semantic search [5] to the
documents (B.1). If the content is mostly described at the inline-level, the typical
element names include <city>, <person>, and <code>. The most appropriate
style of search is then for entities (B.2). If all the element names describe the
content, we are ready for data retrieval (B.3).

B.1 Semantic Search

Semantic search is much like article search (A.2) to the user. The biggest differ-
ence between semantic search and article search is that the XML documents for
the former contain semantic markup which the search application is aware of.

Example documents:

– Documentation with descriptive element names (metadata) and full-text
content,

– The Guideline Elements Model (GEM) [6].

418 M. Lehtonen, N. Pharo, and A. Trotman

Presentation of search results:

– The relevant parts of the original documents reformatted according to the
query.

– Standalone XML fragments including the relevant content which is extracted
from the source document.

User tasks: Finding topic descriptions, learning and reading about the topic.

System tasks: Identifying relevant elements, vague matching of content and
structural search conditions, organising the matches into whole documents.

B.2 Entity Search

Full-text content where certain entities are marked up is a typical environment
for entity search.

Example documents:

– Annotated documents

Presentation of search results: Standalone fragments, possibly formatted.

User tasks: Question asking.

System tasks: Question Answering: Identifying relevant elements, duplicate de-
tection, vague matching of data (target elements, element and attribute names)
and structural search conditions on them.

B.3 Data Retrieval

Thanks to its interoperability, XML is the appropriate interchange format, for
example between two different (relational) database formats. Consequently, most
databases provide an XML view of the data that is equivalent to the native
representation format and available for querying.

Example documents:

– XML databases, relational data for XML.

Presentation of search results: Template-driven formatting.

User tasks: Database publishing, template-driven document assembly.

System tasks: Identifying relevant elements.

A Taxonomy for XML Retrieval Use Cases 419

C Process-Oriented Document Types

Although the process-oriented XML documents are searched more often than
any other types of XML documents, they are not paid much attention in the
IR-related literature. Operational search applications have been available online
for several years, though. The systems typically index and retrieve only XML
documents, however, they have been sadly neglected by the XML Retrieval com-
munity. What is typical of searching process-oriented documents is that the query
is matched against one part of the XML document (metadata), whereas other
parts are expected as answers (data).

The applications that process the XML of Class C are highly aware of the
XML markup of the documents. Good search applications are likely to follow
the practice which is discouraging to the development of more general methods.

XML: Most of the tag names describe the technical interpretation of the content.
Common tag names include <sequence>, <input>, <operation>, and <port>.
Search applications typically specialise in a single set of tag names (a single
document type), which shows in fine-tuned methods and tailored user interfaces.

Queries: Keywords, keyphrases, and structural constraints with domain-specific
interpretation.

Presentation of search results: The relevant answers are listed as links pointing
to the actual answers. Some answers such as Web services (C.3) are naturally
viewed in a web browser, whereas others may need separate applications. For
example, newsfeeds (C.2) are opened with a feed reader.

C.1 Multimedia Search

As XML has also become a format for multimedia, it is natural to query and
search such XML documents. However, the XML representation of multimedia
is often the source format, whereas systems are more accustomed to querying
the derivative formats such as jpg and pdf. Whether search applications will
actually specialise in querying the XML of the multimedia documents is thus
uncertain.

Example document types:

– SVG2, SMIL3.
– Other documents that may contain multimedia.

User tasks: Finding multimedia.

System tasks: Ranking multimedia by metadata descriptions, possibly interpret
the XML structures, as well.
2 http://www.w3.org/Graphics/SVG/
3 http://www.w3.org/AudioVideo/

420 M. Lehtonen, N. Pharo, and A. Trotman

C.2 Feed Search

Information filtering has long been and IR application [7], but it was not until
XML came around that searching newsfeeds (including blogs) online had a real
user demand. The first operational implementations of XML feed search date
back to 2003 when Feedster launched their online system4.

Example document types:

– RSS5, OPML6.

User tasks: Finding relevant postings.

System tasks: Indexing and querying streaming XML, monitoring and filtering
XML feeds.

C.3 Web Services Search

Finding the most relevant web services has become an application area of XML
Retrieval, thanks to the XML-based Web Services Description Language (WSDL)
[8]. Woogle7 [9] is a decent implementation of a such a search.

Example document types:

– WSDL.

User tasks: Finding good web services that are compatible with their demand.

System tasks: Matching keywords with both service descriptions and operations,
as well as input and output parameters. Compositions of operations with similar
functionality to the search operations may also be returned.

C.4 Message Search

When XML is sent in an XML envelope, it becomes an XML message. Sys-
tems that send and receive such messages also store them for archival purposes.
Searching the archived XML messages is a potential application area of XML
Retrieval.

Example document types:

– SOAP [10].
– Other transactional documents.

4 http://www.feedster.com/
5 http://web.resource.org/rss/1.0/
6 http://www.opml.org/spec
7 http://www.cs.washington.edu/woogle

A Taxonomy for XML Retrieval Use Cases 421

User tasks: Finding relevant messages.

System tasks: Matching strings and values with the relevant parts of the message,
indexing messages.

3 Conclusion

Creating the hierarchical classification for the use cases of XML retrieval is only
a first step in developing the taxonomy. The next step is to describe each class in
more detail, e.g., by identifying the challenges and opportunities of each class.
Although the descriptions are still incomplete, we can learn a few key points
from them:

– Both the user tasks and system tasks are different for each use case, which
implies that no system can have a single search interface for all the use cases.

– Only few use cases are included in the INEX-related research, possible be-
cause of some diversity in the interpretation of “XML Retrieval”.

The two-level classification described in this paper is the result of at least
one round-table meeting, some email correspondence, literature review, a few
interviews with two graduate students who independently develop systems for
XML retrieval, and a few interviews with commercial representatives of the XML
server industry. This work is on-going and the authors appreciate any feedback
and contributions that advance this work.

References

1. Broder, A.: A taxonomy of web search. SIGIR Forum 36, 3–10 (2002)
2. Chidlovskii, B., Fuselier, J.: Supervised learning for the legacy document conver-

sion. In: DocEng ’04: Proceedings of the 2004 ACM symposium on Document
engineering, pp. 220–228. ACM Press, New York, USA (2004)

3. Weitzman, L., Dean, S.E., Meliksetian, D., Gupta, K., Zhou, N., Wu, J.: Trans-
forming the content management process at ibm.com. In: CHI ’02: Case studies of
the CHI2002/AIGA Experience Design FORUM, pp. 1–15. ACM Press, New York,
USA (2002)

4. Clark, D.: Rhetoric of present single-sourcing methodologies. In: SIGDOC ’02: Pro-
ceedings of the 20th annual international conference on Computer documentation,
pp. 20–25. ACM Press, New York, USA (2002)

5. Chu-Carroll, J., Prager, J., Czuba, K., Ferrucci, D., Duboue, P.: Semantic search
via XML fragments: a high-precision approach to IR. In: SIGIR ’06: Proceedings
of the 29th annual international ACM SIGIR conference on Research and develop-
ment in information retrieval, pp. 445–452. ACM Press, New York, USA (2006)

6. ASTM International: E2210-02 Standard Specification for Guideline Elements
Model (GEM)-Document Model for Clinical Practice Guidelines (2003)

7. Belkin, N.J., Croft, W.B.: Information filtering and information retrieval: two sides
of the same coin? Commun. ACM 35, 29–38 (1992)

422 M. Lehtonen, N. Pharo, and A. Trotman

8. W3C: Web Services Description Language (WSDL) Version 2.0, W3C Candidate
Recommendation (March 27, 2006) Latest version available at
http://www.w3.org/TR/wsdl20

9. Dong, X., Halevy, A.Y., Madhavan, J., Nemes, E., Zhang, J.: Similarity search for
web services. In: VLDB ’04: Proceedings of the 30th International Conference on
Very Large Data Bases, pp. 372–383 (2004)

10. W3C:SOAPVersion1.2Part 0:Primer (SecondEdition),W3CProposedEditedRec-
ommendation (December 19, 2006) Lates version available at http://www.w3.org/
TR/soap12-part0/

http://www.w3.org/TR/wsdl20
http://www.w3.org/TR/soap12-part0/
http://www.w3.org/TR/soap12-part0/

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 423–431, 2007.
© Springer-Verlag Berlin Heidelberg 2007

What XML-IR Users May Want

Alan Woodley1, Shlomo Geva1, and Sylvia L. Edwards2

1 School of Software Engineering and Data Communication
2School of Information Systems Faculty of Information Technology,

 Queensland University of Technology
GPO Box 2434, Brisbane, Queensland, Australia

ap.woodley@student.qut.edu, s.geva@qut.edu.au

Abstract. It is assumed that by focusing retrieval on a granularity lower than
documents XML-IR systems will better satisfy users’ information need than
traditional IR systems. Participants in INEX’s Ad-hoc track develop XML-IR
systems based upon this assumption, using an evaluation methodology in the
tradition of Cranfield. However, since the inception of INEX, debate has raged
on how applicable some of the Ad-hoc tasks are to real users. The purpose of
the User-Case Studies track is to explore the application of XML-IR systems
from the users’ perspective. This paper outlines QUT’s involvement in this
track. For our involvement we conducted a user experiment using an XML-IR
system (GPX) and three interfaces: a standard keyword interface, a natural lan-
guage interface (NLPX) and a query-by-template interface (Bricks). Following
the experiment we interviewed the users about their experience and asked them
- in comparison with a traditional XML-IR system - what type of tasks would
they use an XML-IR system for, what extra information they would need to in-
teract with an XML-IR system and how would they want to see XML-IR results
presented. It is hoped that the outcomes of this study will bring us closer to un-
derstanding what users want from XML-IR systems.

1 Introduction

XML-IR systems differ from traditional IR systems by returning results to the user at
the sub-document (that is element) level. The assumption is that XML-IR systems
will be able to better fulfil users’ information needs since they only return the relevant
parts of documents to users, rather than whole documents that will undoubtedly con-
tain both relevant and irrelevant material. Most of the INEX tracks and tasks have
been developed based upon this assumption, each which a slightly different user
model in mind. Participating INEX systems are evaluated in the Cranefield tradition
involving sets of: source documents, end-user queries (topics), relevance judgements
and metrics. Despite the progress made by INEX participants, debate has raised as to
how applicable some of the tracks and task really are to potential end-users of XML-
IR systems [3]. The aim of the User-Case Studies track is to examine this question
and to investigate situations where XML-IR is suitable for end-users.

This paper details QUT’s participation in the User-Case Studies track. Our partici-
pation stems from previous work in the Ad-hoc and NLP tracks. In previous years we

424 A. Woodley, S. Geva, and S. L. Edwards

have developed a laboratory XML-IR system [1] and natural language interface [4]
for participation in both of those tracks. This year, for the first time we were able to
test our systems in a user experiment. Following the experiment we interviewed some
of the participants asking them two sets of questions. The first set of questions focus-
sed on their experiences using the natural language interface and an alternative tem-
plate-by-query interface to formulate structured queries. The second set of the ques-
tions were more general, asking them how they felt about XML-IR overall and if
there were situations where XML-IR would be more beneficial than traditional IR.
The answers to the second set of questions form the basis of this paper.

The rest of this paper is organised as follows. It begins with a description of the
user experiment. Then it discusses the interviews with the participants following the
experiment. Finally, it outlines how, based upon the information gathered from the
interviews, ways that INEX can facilitated user-centred XML-IR tasks.

2 The Experiment

The experiment simulated the task of users interacting with an academic retrieval
system. Sixteen participants took part in the experiment. The participants acted as
academic researchers, for example: post-graduate research students, corporate re-
searchers or academics. The participants searched the INEX IEEE collection, a set of
academic IEEE journal articles from 1995 to 2002. The journals had a broad range of
focus, ranging from general journals such as Computing to specific journals such as
Neutral Networks.

The participants were post-graduate information technology students who were un-
initiated in the domain of XML-IR. While this may not a representative sample of
possible XML-IR users, it was necessary to have such participants since understand-
ing the technical nature of the information needs and source collection is beyond
casual users. Also since the participants were uninitiated in the domain of XML-IR, it
is valid for us for us to extrapolate the results of this experiment into the wider area of
XML-IR. The participants were given six information needs that simulated those of a
real user. The information needs contained both a detailed explanation of the informa-
tion sought and a condition of relevance that described the motivation behind the
information need. The information needs were sampled from the narrative elements of
INEX Topics 253 – 284.

The system used in the experiment was separated into two parts: the front-end in-
terfaces and the backend retrieval system. Two different interfaces were used: NLPX,
that accepted queries written in natural language (English) [4], and Bricks, a query by
template interface that allowed users to enter queries via a graphical user interface [5].
Examples of the input screen used for both interfaces appear in Figures 1 and 2. These
examples capture the type of queries entered by the participants. The same backend
search engine, GPX, was used for both interfaces. For each result retrieved by GPX,
users were presented with the option of selecting to view the entire document or just
the element. Since GPX only accepted formal language queries, both interfaces trans-
lated their user input into NEXI before submitting them to GPX. Below we describe
NLPX, Bricks and GPX in more detail.

 What XML-IR Users May Want 425

2.1 Interface A – NLPX

NLPX accepts natural language queries (NLQs) and produces formal queries written
in the NEXI language. The NLPX translation process involves four steps. First,
NLPX tags words either as special connotations (for instance structures) or by their
part of speech. Second, NLPX divides sentences into atomic, non overlapping seg-
ments (called chunks) and then classifies them into grammatical classes. Third, NLPX
matches the tagged NLQs to query templates that were derived from the inspection of
previous INEX queries. Finally, NLPX outputs the query in NEXI format. Batch
testing of a single backend search engine that used both natural language queries
parsed through NLPX and formal NEXI queries has shown comparable results [4].
This is the first time that NLPX has been tested in a usability experiment.

2.2 Interface B – Bricks

Bricks is a query-by-template interface that allows users to input structured queries
via a graphical user interface (GUI). Users enter their content needs via text boxes and
their structural needs via drop-down boxes. To aid users, structural needs are indi-
cated via conceptual rather than physical names, for example “a section” rather than
sec. Bricks allows users to develop queries in several steps (”blocks”) starting with
their desired unit of retrieval and then by adding any additional information needs.
Blocks are also added as the user traverses the hierarchy of the documents. Upon
completion of input, the data in the Bricks GUI is translated to formal NEXI expres-
sion, however, due to the constraints of the GUI, users are unable to enter malformed
expressions. Usability testing has shown that users find Bricks superior to keyword
only and NEXI interfaces [5].

Fig. 1. The NLPX search interface

2.3 Backend Retrieval System – GPX

The backend retrieval system for this experiment was Gardens Point X (GPX) [1].
GPX was chosen since it has performed strongly at the annual INEX conference since
2002 - consistently among the top three systems. GPX stores the information about
each leaf element in the collection as an inverted list. Upon retrieval, GPX matches
query terms to all leaf elements that contain the term and then dynamically creates
their ancestors. Elements are ranked according to their predicted relevance in GPX’s
ranking scheme. GPX rewards leaf elements that contain phrases and specific, rather
than common, terms. It also rewards ancestors with multiple relevant children, rather
than a single relevant child. For this experiment, the results list was filtered so that

426 A. Woodley, S. Geva, and S. L. Edwards

 “overlapping elements” (that is, elements whose ancestors or descendants appear
higher ranked on the results list) were removed before been being presented to users.
This decision was made because users have been known to react negatively to over-
lapping elements [2].

Fig. 2. The Bricks search interface

3 Interviews

After the experiment 12 out of the 16 participants were interviewed. Some of the
questions asked were specifically about the experiment, in particular their experience
using the query formulation interfaces. A discussion on these questions is outside the
scope of this paper. However, another set of questions were about their thoughts on
the area of XML information retrieval as a whole in comparison traditional informa-
tion retrieval. These questions, and some of their responses are presented here.

The main difference between XML-IR systems and traditional IR systems is that
XML-IR systems returns elements rather than documents. We assume that since
elements are more specific than documents that they will be more useful to users.
However, this assertion has only been very limitedly tested with users, mainly in the
context of INEX’s interactive track. Here we ask our participants in which situation
would element-retrieval be more useful than document retrieval.

The first observation was that element retrieval would be more useful than docu-
ment retrieval in situations where there was a lot of, largely irrelevant, information in
the source documents. Or alternatively, situations where the user was searching for
very precise or specific information. This is summarised in the responses made by
participants 8,1 and 12 shown in Figures 3 – 5.

 What XML-IR Users May Want 427

Fig. 3. Participant 8’s response regarding XML-IR uses

Fig. 4. Participant 12’s response regarding XML-IR uses

Fig. 5. Participant 1’s response regarding XML-IR uses

Fig. 6. Participant 11’s response regarding complex queries

Others felt that the use of structure enabled them to write very detailed queries,
particular those that may be about more than one topic. These types of queries are
common in the CAS tasks, where a query may specify to a retrieve a particular about
a topic, but also wishes the document to contain information about another topic. This
opinion was expressed by participant 11.

Participant 12: “So any thing that is not free from, anything that has these logi-
cal sections would be beneficial. Specifically if you’re just looking for, to just
focus your search results on these specific categories, which obviously you can’t
do in an unstructured manner.”

Participant 8: “Technical forum, and you want to find a solution, and sometimes
has hundred of pages, and each page has hundred of discussion, in that one it
might help, just look at one of them and might help you to find the one you need.”

Participant 1: “You get much more precise searches by using markup. And all
the information is all in the one place in the document, or rather gotten easily
from the document, which can't be done with free text. If you take free text with
no mark up and then you take text with all the author details, abstracts, bibliog-
raphy all marked up you're going to be able to find stuff a lot quicker on the
marked up one than the free text one. So XML would be a great improvement on
free text.”

Participant 11: “So yeah, I could say I wanted to particularly search for these
keywords in the abstract of the paper or been able to express that kind of thing.
Or saying that I needed a paper that was generally about a certain topic, but then
I wanted a section in that paper that was about a particular kind of subtopic so I
didn’t end up with these other papers that were about the right kind of general
topic but not about the specific subtopic that I wanted.”

428 A. Woodley, S. Geva, and S. L. Edwards

An observation made by some participants was that the users of XML-IR system
would need to know the structure of the document that they were searching, and pos-
sibly be domain experts. This was a point raised by participants 1 and 5.

Fig. 7. Participant 1’s response regarding document knowledge

Fig. 8. Participant 5’s response regarding document knowledge

Fig. 9. Participant 2’s response regarding highlighting

Fig. 10. Participant 6’s response regarding document knowledge

Participant 6: “I mean its [element retrieval is] ok , as long as you can retrieve
the actual whole document when you get the section back, if you could retrieve
the whole document and see where it fits in that would be fine, and if you could
retrieve the whole document and then see the section that you pulled up, that
would be fine as well. But as long as you could see both the document and sec-
tion that would be fine... so the whole document presentation with the section
highlighted would work for me.”

Participant 5: Its probably true that you need a bit of experience with the do-
main or at least in research to know where you have to look for a particular re-
search type document. Similarly if your looking for a publicity or news type
article you might want to have some idea how they're structured, and that’s obvi-
ously a bit of domain knowledge that you need to have, but once you've got it, it
makes a lot to sense to use it because if I want the title to have something in it
that I'm searching for then its good to be able to query that way.

Participant 1: “I'm guessing that every time you open up a new document,
there's different ways of representing the structure, so I think that would make it
quite difficult to use on a daily basis. If you were using the same file structure
then Bricks would be great, but if you were using different structures or DTD
then it would be really difficult to figure out how to use it.”

Participant 2: “Why not just group those different components together so that
the user can have a choice. I see this document, and this document has 3 or 5
components relevant to the information need. And the other document has 2 parts
[related to the] information needs.”

 What XML-IR Users May Want 429

Another point made by some participants was that element retrieval could be used
in conjunction with document retrieval. Specifically, when documents are retrieved
their most relevant elements could be highlighted. This opinion was expressed by
participants 2 and 6 shown in Figures 9 and 10.

The next section discusses how the outcomes of these interviews can be used to
developed more user-orientated tasks at INEX.

4 Discussion

The results of the user experiment and interviews are of great value for the INEX
community. Particularly pleasing was that the participants found merit in the use of
XML-IR systems to fulfil their information need. The challenge for INEX participants
and organisers is to use the information derived from these types of experiments to
help focus our research efforts. An immediate way that we can put this into practise is
by re-examining the tasks we preform each year, particularly in the Ad-hoc track, to
see how well they correspond to tasks that users want. As a reference the following
tasks are currently performed by INEX participants:

1. Thorough Retrieval: the aim of the thorough retrieval task is to retrieve

all relevant elements matching an information request.
2. Focussed Retrieval: the aim of the focussed retrieval task is to retrieve

the most relevant elements along an XPath matching an information re-
quest.

3. All in Context: the aim of the all in context retrieval task is to first, re-
trieve the most relevant documents matching an information request and
second, to highlight all relevant information within those documents.

4. Best in Context: the aim of the best in context retrieval task is to first re-
trieve the most relevant documents matching an information request and
second, to find the best entry point for those documents.

In this experiment results were returned as a single ranked list of relevant elements.

Overlapping elements were removed, and therefore, the presentation is analogous to
the output of systems in focussed retrieval task. Users were, at least initially, con-
fused by the presentation of results as a single list of ranked elements. However, this
is not too surprising since the users’ experience with retrieval systems has been solely
with document retrieval systems, and hence the idea of receiving back elements
would have appeared “unnatural” to some. Users seemed to find the retrieval of ele-
ments with little or no context particular confusing. It is important to note that over-
lapping elements were removed from the presentation since previous experiments
have shown that users react adversely to them [2]. If they were included in this ex-
periment then the user reaction may have been even more negative. At first, this
seems alarming for proponents of the Thorough and Focussed tasks since these tasks
are based on returning lists of elements. However, even if the tasks are not suitable for
end-users they might still be worthwhile perusing since they could be used a precursor
for other XML-IR tasks, such as Best in Context or All in Context, or other informa-
tion seeking tasks, such as question and answering.

430 A. Woodley, S. Geva, and S. L. Edwards

During the post-experiment interviews it was discovered that users reacted posi-
tively to the idea of highlighting relevant elements within a document. This is a posi-
tive sign for INEX since it correlates well to the All in Context task. The users felt
that highlighting passages would be beneficial to deciding if the document they are
browsing is relevant. It would also help them when browsing large documents, par-
ticularly for documents that contain a lot of irrelevant information. This presents an
interesting opportunity for INEX since it opens the possibility of having a document
retrieval task at further workshops. This would allow participants to examine if the if
techniques specifically designed for XML-IR are able to find more relevant docu-
ments (not elements) or even documents that are more relevant than traditional IR
techniques. This task could be run in conjunction with one of the other document
evaluation forums such as TREC or CLEF.

Expanding on this issue users also commented that they liked the idea of a best
“entry point” into documents. Again, this is pleasing for INEX since it directly corre-
lates to the Best in Context task. Some users also commented that they would like to
see the elements within the documents ranked according to relevance. This presents
the opportunity to extend the All in Context task to measure the retrieved elements
within each document as a ranked rather than unordered list.

We have already discussed how XML-IR could help users when they wish determine if
their document is relevant. However, there are other information seeking tasks where XML-
IR could be useful. One such task is when a single user query has multiple information
requests. Often, in this scenario the user wish to retrieve a particular item for instance sec-
tions about information retrieval inside of articles that will have a second information item
such as paragraphs about compression even if they don’t wish to retrieve items matching
the second request. This type of “complex” information request would be encapsulated in the
NEXI expression //article[about(//p,compression)]//sec[about(.,information retrieval)]
and is typical of one of the more complex CAS queries. This is a validation that this type of
query is suitable for users, particularly when accessing documents that are about multiple
topics, and that INEX should continue to use these types of queries in the future

A final comment made by interviews was the XML-IR system enabled them to
find more specific results than traditional IR systems. INEX could capitalise on this
situation in several ways. First, it strengthens the motivation for INEX’s named entity
task, since information need for that task is very specific, and inherently requires
some sort of sub-document retrieval. Another interesting area of research that the
INEX community would be to examine how users’ information needs change as they
interact with the retrieval system. One could assume that their information needs
would start vague and then become more specific as they interact with the system.
And as their needs become more specific one could assume that an XML-IR system
would become more useful than a traditional IR system. Some of the INEX tracks,
particularly the interactive track, could examine if this is true.

5 Conclusion

This paper outlined QUT’s involvement in this years User-Case Studies track. Our
participation stems from our work in two of the other INEX tracks, namely, the
Ad-hoc and NLP tracks. This paper detailed an experimentation we performed, and

 What XML-IR Users May Want 431

user interviews following the experiment. It then discussed, using information derived
from the interviews, ways in which the INEX community can focuses on user-centred
research.

Acknowledgements

The authors would like to acknowledge Utrecht University especially Jeroen Bass and
Roelof van Zwol for the development of and permission to use Bricks, as well as the
anonymous participants of the experiments, in particular those participants who were
interviewed following the experiment. Without their contribution this work could not
been conducted.

References

1. Geva, S.: GPX - Gardens Point XML Information Retrieval INEX 2004. In: Fuhr, N., Lal-
mas, M., Malik, S., Szlávik, Z. (eds.) INEX 2004. LNCS, vol. 3493, pp. 221–222. Springer,
Heidelberg (2005)

2. Pehcevski, J., Thom, J.A., Tahaghoghi, S.M.M., Vercoustre, A-M.: Hybrid XML Retrieval
Revisited, In: Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.) INEX 2005. LNCS,
vol. 3977, pp. 153–167. Springer, Heidelberg (2006)

3. Trotman, A.: Wanted: Element Retrieval Users. In: Proceedings of the INEX 2005 Work-
shop on Element Retrieval Methodology, Glasgow, Scotland, pp. 58–64 (July 30, 2005)

4. Woodley, A., Geva, S.: NLPX at INEX 2005. In: Fuhr, N., Lalmas, M., Malik, S., Kazai, G.
(eds.) INEX 2005. LNCS, vol. 3977, pp. 358–372. Springer, Heidelberg (2005)

5. van Zowl, R., Bass, J., van Oostendorp, H., Wiering, F.: Query Formulation for XML Re-
trieval with Bricks. In: Fuhr, N., Lamas, M., Trotman, A. (eds.) In: Proceedings of INEX
2005 workshop on Element Retrieval Methodology, Glasgow, Scotland, pp. 75–83 (July 30,
2005)

Report on the XML Mining Track at INEX 2005

and INEX 2006

Categorization and Clustering of XML Documents

Ludovic Denoyer1, Patrick Gallinari1, and Anne-Marie Vercoustre2

1 LIP6 - University of Paris 6
firstname.lastname@lip6.fr

2 INRIA Rocquencourt
anne-marie.vercoustre@inria.fr

Abstract. This article is a report concerning the two years of the XML
Mining track at INEX (2005 and 2006). We focus here on the classi-
fication and clustering of XML documents. We detail these two tasks
and the corpus used for this challenge and then present a summary of
the different methods proposed by the participants. We last compare the
results obtained during the two years of the track.

1 Introduction

The XML Document Mining track1 was launched for exploring two main ideas:
first identifying key problems for mining semi-structured documents and new
challenges of this emerging field and second studying and assessing the potential
of machine learning techniques for dealing with generic Machine Learning (ML)
tasks in the structured domain i.e. classification and clustering of semi structured
documents.

This track has run for two editions: 2005 and 2006, and the present report
summarizes the work done during these two years 2. The track has been sup-
ported through INEX by the DELOS Network of excellence on Digital Libraries
and by the PASCAL Network of excellence on Machine Learning.

Among the many open problems for handling structured data, we have focused
in this track on two generic ML tasks: classification and clustering. The goal of
the track was therefore to explore algorithmic, theoretical and practical issues
regarding the classification and clustering of XML Documents. Note that one new
task - Structure mapping3 - has been proposed in the 2006 edition of the track
but since only two submissions was made for this more complex task ([1],[2]),
we will only discuss here the results obtained for classification and clustering.
In the following, we first describe the mining problems addressed at INEX in
1 http://xmlmining.lip6.fr
2 the challenge will continue one year more in 2007.
3 Structure Mapping was defined as learning from examples how to map documents

in one or several formats onto a predefined mediated schema.

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 432–443, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Report on the XML Mining Track at INEX 2005 and INEX 2006 433

section 2, we then describe in section 3 the instances of the mining tasks at INEX
2005 and 2006. Finally in section 4.1 we summarize the different contributions
of participants.

2 Categorization, Clustering of XML Documents

Dealing with XML document collections is a particularly challenging task for
ML and IR. XML documents are defined by their logical structure and their
content (hence the name semi-structured data). Both types of information should
be addressed in order to effectively mine XML documents. Compared to other
domains, where the structured data consists only of the ”structure” part with
no content this is much more complex and this had been addressed only for very
specific problems in the ML community. Note that most existing ML methods
can only deal with only one type of information (either structure or content).
Structure document information is described through a labelled tree where labels
do correspond to XML tags which may or may not carry semantic information.
In the used document collections, content information is composed of text and
images, but only the textual part was considered in the mining track of INEX.
The textual content is usually contextually dependent of the logical structure
(e.g. section content vs header or bibliography information). It should be stressed
that XML documents usually come in large collections and that scalability is a
fundamental issue for mining semi-structured data.

When dealing with semi-structured documents, according to the application
context and on the prior information available on the collection, it may be rele-
vant to consider the structure information alone or to consider both structure and
content information. Two types of tasks were then defined corresponding to these
two conditions: ”Structure Only” (SO) and ”Structure and Content” (SC).

Dealing with structure alone measures the ability to recover or classify struc-
tural classes corresponding to different document sources. The structure + con-
tent tasks are more challenging and encompass many different generic tasks in the
document domain. In order to define more precisely the classification and clus-
tering problems, let us consider the two following dimensions: structure (S) and
thematic content (T). The former dimension characterizes the document struc-
ture generation and the latter its content class. Figure 1 illustrates a partition
of a document collection composed of different thematic areas and structures.
The goal of classification and clustering will be to identify different classes or
groups of documents corresponding for example to different information sources
(each source or ”class” corresponds to a color on Figure 1). Classification will
aim at discriminating between the different sources, clustering will try to recover
some hidden source information. In this example, each source may be consid-
ered as a mixture of one or more themes and structures in different proportions.
The different sources may overlap in different proportions leading to tasks with
different complexity.

434 L. Denoyer, P. Gallinari, and A.-M. Vercoustre

For a classification problem for example, the models will have to classify spe-
cific mixtures of content and structure information components corresponding
to each source.

Fig. 1. The structural and thematic dimensions do respectively correspond to columns
and rows in the figure. All documents in column S1 for example have structure S1 -
or follow schema S1 - while all documents in row T1 have thematic T1. The different
information sources are identified by colors. In this example, there are 9 distinct sources,
each identified by a given color, among a maximum of 25 potential sources. Each source
is defined here as a mixture of several structure and themes, for example, on the left
bottom, documents share thematic content T5 and may have structure S1, S2 or S3.

Depending on the application in mind, one may distinguish different generic
problems like:

– identify common structures across different content types or themes (struc-
ture oriented classification and clustering) - this is illustrated in Figure 2
where each class corresponds to a specific structure and deals with all the
collection themes. The theme may appear in different proportions for each
class

– identify different content types across structures (content oriented classifica-
tion and clustering). Classes would then correspond to the horizontal lines
in the figure.

– identify homogeneous classes for both structure and content information
(mixed clustering and classification) - this corresponds to Figure 1 and is
the more general task. It may come in many different variants.

From this enumeration, it should be clear that many different classification and
clustering problems may occur in real situations and structural and content
information will play different roles for these two generic tasks.

3 Tasks and Evaluation

We will now describe the different corpora and tasks proposed during the two
years of the XML Document Mining track. During the first year of the track

Report on the XML Mining Track at INEX 2005 and INEX 2006 435

Fig. 2. Each source corresponds to a specific structure (5 sources here - corresponding
to columns) - the different thematic (rows) will appear in different proportions in each
source

both the structure only (SO) classification/clustering tasks and structure and
content (SC) tasks where considered, while the second year was more focused
on the structure and content tasks.

3.1 Corpora

The different tasks proposed during the XML Mining Track were evaluated on
three different XML corpora whose characteristics are provided in Table 1. The
movie corpus is an artificial corpus based on the IMDB4 Corpus while IEEE
and Wikipedia are real world document corpora. In some cases the classes or
clusters correspond to a natural partition of the corpus, while in other cases,
several classes were generated artificially from an homogeneous corpus as detailed
below. Three corpora have been used for the track:

1. The movie corpus is composed of about 9,500 XML documents that describe
movies.

2. The IEEE corpus is composed of 12,000 scientific articles from IEEE journals
in XML format. This has been the reference corpus for INEX from year 2002
to 2005 [3].

3. The XML Wikipedia corpus is composed of 150,000 english documents from
Wikipedia, formatted in XML. This corpus is a subpart of the official corpus
for INEX 2006 where each document belongs to exactly one category. A
complete description of this corpus is available in [4] under the name of
classification corpus.

3.2 Structure Only Task

Structure Only tasks correspond to classification or clustering using the struc-
tural description of XML documents alone, i.e. the XML ordered labelled tree
4 http://www.imdb.org

436 L. Denoyer, P. Gallinari, and A.-M. Vercoustre

Table 1. Description of the different corpora used. Corpora were splitted using 50%
of the documents for training and 50% for testing.

Corpus Nb Docs Nb node labels USed for SO Used for SC

Movie 9,463 ≈ 190 YES NO

IEEE 12,108 ≈ 150 YES YES

Wikipedia ≈ 150,000 ≈ 10,000 YES YES

providing the relations between the document elements. The input space in this
case corresponds to the tag alphabet, and to the relations between these tags.
Note that the tag space is of limited size here, much less than the size of the
dictionary for CS tasks, but can be quite high (up to 10 000 different tag names
for Wikipedia).

Dealing with structure alone measures the ability to identify information
sources in the context of XML data - e.g different Web servers, XML data-
bases, Note that in many other domains (e.g. biology) data also come as
ordered labelled trees so that investigating classification and clustering methods
for such trees is a generic problem, with many applications outside the field of
XML documents.

For the structure only task, we have proposed a set of five different classifica-
tion/clustering subtasks. Four are based on the movie corpus, one on the IEEE
corpus. For each subtask, the goal is to recover by classification or by clustering
the different classes, i.e. the different structural sources in the corpus.

– Movie N SO task: This task is based on the m-db-s-N 5 corpora that are
composed of XML documents describing movies expressed in eleven differ-
ent schemas. These schemas were defined by hand and the documents from
the corpus were mapped onto each schema using XSLT scripts. Number N
quantifies the difficulty of the task: the higher N is, the more overlap there
is among the 11 classes. We have defined 4 tasks identified by N = 0 to 3.

– IEEE SO task: This task consists in identifying two different families of
structures coming from a same source. The INEX SO corpus used here
corpus corresponds to the reference INEX IEEE corpus [3] where content
information has been removed. Documents in this corpus come from two
structural sources Transactions on ... journals and other IEEE journals. The
two sources are composed of documents following the same DTD but with
different writing rules. The goal here is to recover this class information.

3.3 Structure and Content Tasks

In these tasks, the goal is to identify categories defined corresponding to struc-
tural and thematic characteristics. Classes or clusters are then to be identified
using both the structure and the content of the XML documents. We have used
two different corpora here for defining two different tasks:
5 http://xmlmining.lip6.fr

Report on the XML Mining Track at INEX 2005 and INEX 2006 437

– IEEE SC: This task amounts at identifying 18 categories of the IEEE corpus
that correspond to the 18 different IEEE journals present in the collection.
These categories are both structural and thematic. As said before, there are
two broad structural sources in this corpus (Transaction journals and other
journals), while the same thematic can be covered in two different journals.

– Wikipedia SC: This task proposes to identify 60 categories in a corpus of
about 150,000 XML documents that comes from the wikipedia XML corpus.
In this corpus each document belongs to exactly one category and each
category corresponds to a portal of wikipedia - see [4] for more informations.
This collection allows us to evaluate the capacity of the different models to
deal with large scale XML corpora. Note that the categories information
that appear in the wiki document have been removed from the XML files.

3.4 Evaluation Measures

Different measures have been used during the first year of the track and the
second year. In all experiments, each document belongs to exactly one category
or one cluster (see part 3.1).

Precision, Recall and F1 measure for classification. In the field of clas-
sification, for a given category, recall is the ratio of the number of correctly
classified documents in the category to the total number of documents from this
category. precision is the ratio of the number of correctly classified retrieved
in the category to the total number of documents assigned to this category. F1

measure reflects both the precision and the recall (see Table 2).

Precision =
C

C + F
, Recall =

C

C + M
, F1 =

2 ∗ Precision ∗ Recall

P recision + Recall
(1)

Table 2. Precision, Recall and F1. C is the number of correctly classifed documents,
F is the number of falsely classified documents, M is the number of documents that
are not correctly classified

Note that the recall, precision and F1 presented in the result part are the
mean of the recall, precision and F1 over all the categories.

Purity for clustering. For clustering, we can also define a precision and a
recall (also called purity) for each of the clusters. These measures are computed
as expressed in the previous section considering that a cluster is assigned to
the category that corresponds to the majority of its documents. Note that these
measures are only informative but do not really allow us to compare the quality
of two methods. Moreover, these measures completely depend on the number of
clusters found by the different models. The only way to really know if a clustering
has a good quality is to look at the details of the clusters found. Note that the
track allowed participants to freely choose the number of clusters - but the real
number of clusters was known for each corpus.

438 L. Denoyer, P. Gallinari, and A.-M. Vercoustre

4 Models and Results

4.1 Models Submitted

We present here the nine different methods used for clustering and classification
of XML documents using structure only or structure and content information.
Figure 3 shows a typology of the different works submitted to the track and the
models used. We present here a small summary of the different methods.

Fig. 3. The typology of the different methods proposed during the XML Mining track.
This figures shows the different articles submitted to the track and the tasks concerned
by the different models. We also present here the different ideas underlying each article.
Vector based models are models that first transform XML documents to a vector
(or a set of attributes-values) and then use classical vectorial models for clustering or
classification. Similarity based models define a similarity measure over XML doc-
uments - or XML clusters - and then use this measure for clustering or classification.
Neural network based models are models based on Self Organizing Map or Recur-
sive Neural Networks. Frequent Trees models concern models that use the extension
of frequent item sets to XML trees.

Vercoustre et al. - Clustering - 2005. The method presented [5] models each
XML tree by a set of elements that basically correspond to the different sub-
paths of the XML tree. Each of these elements is characterized using different
criterions: the length of the path considered, the root node label, the number of
nodes in the path, etc. The models then projects each document into a vectorial
space where each feature of the space corresponds to one of the possible element
i.e each document is transformed into the frequential vector of its elements. The
clustering problem is then considered as a classical vectorial clustering prob-
lem. This model is used for structure only clustering but can be used also with
structure and content if the author model the sub-path with some content in-
formation. The model is evaluated on the Movie SO and IEEE SO clustering
tasks.

Report on the XML Mining Track at INEX 2005 and INEX 2006 439

Garboni et al. - Classification - 2005. This model [6] was developped for the
classification of structure only XML documents. It proposes a similarity measure
between an XML document and an XML cluster. Each XML document is trans-
formed into a sequence of its node labels. Then, each cluster is transformed into a
set of sequences that are extracted from the set of all the sequences of the cluster
using a classical sequential pattern extraction measure. The similarity measure
between an XML document and a cluster of documents is thus computed as the
longest common subsequence between the sequence of the document and the se-
quences that characterize the cluster. The model has been tested on the Movie
SO classification task.

Candilier et al. - Classification and Clustering - 2005. [7] proposed to
transform each XML tree into a set of attributes-values. The attributes-values
sets are built using different relations between the nodes of the input tree (parent-
child relations, next-sibling relations, set of distinct paths,...). Classification and
clustering of these attributes-values sets are then made using the Subspace clus-
tering algorithm (SSC) and the C5 classification algorithm. The experiments
are made on both the Movie SO and IEEE SO corpora.

Hagenbuchner et al. - Clustering - 2005 and 2006. The two papers [8]
and [9] propose a method for the clustering of Structure only and Structure
and Content XML documents. The method is based on an extension of Self
Organizing Map (SOM) to SOM-SD (SOM for Structured Data) and Contextual
SOM-SD that can take into account complex structures like labelled trees. This
method was used on the Movie SO, IEEE SO and IEEE SC corpus.

Doucet et al. - Clustering - 2006. The article by Doucet et al. [10] intro-
duces a method that transforms an XML document to a vector and then uses a
K-means algorithm for the clustering. The transformation that projects a doc-
ument to a vector takes into account both the structure and the content. The
paper also proposes to integrate a textitude measure to the document description
process that basically measures the ratio between the weight of the structural
information and the weight of the content information. This method is used on
the IEEE SC, IEEE SO, Wikipedia SC and Wikipedia SO corpora.

De Knijf - Categorization - 2006. The model proposed in [11] makes clas-
sification of XML document using Frequent attributes Trees. The algorithm is
composed of 4 steps:

1. Each class is characterized by a set of Frequent Attributes Trees discovered
using the FAT-miner algorithm

2. Emerging trees are selected for each category
3. Each document is then transformed into a vector where each component

indicates if a particular emerging tree appear into the document
4. Last, a classical classification algorithm is used on these vectors (Binary

decision tree)

This model is used on the Wikipedia SC corpus.

440 L. Denoyer, P. Gallinari, and A.-M. Vercoustre

Nayak et al. - Clustering - 2005 and 2006. The papers by Nayak6 et al. ([12]
and [13]) defines a similarity measure between an XML document and a cluster
of XML documents. This similarity called CPSim (for Common Path Similarity)
is computed during a matching step and is based on different criterions that take
into account:

– the number of common nodes between the document and the documents of
the cluster considered,

– the number of common nodes paths,
– the order of the nodes of the XML document,
– ...

This measure is then used by an incremental clustering algorithm called PCXSS.
This model is applied on the IEEE SO and Wikipedia SO corpora.

Xing et al. - Categorization - 2006. In this paper ([14]), the auhors pro-
poses to use both a tree edit distance and a Minimum Description Length crite-
rion (MDL) for the classification of content and structure XML documents. The
method models each class with a normalized regular hedge grammar (NRHG).
This grammar is extracted from a set of document using the MDL principle. The
distance between a document and a category is then computed by a tree edit
distance between the XML tree and the grammar computed for the category.
The model is tested on the IEEE SC corpus.

Yong et al. - Categorization and Clustering - 2006. This article [15] pro-
poses to categorize XML documents using Graph Neural Networks (GNN). A
GNN is an extension of the formalism of Recurrent Neural Network designed for
graphs and trees. The intuitive idea behind GNN is that nodes in a graph repre-
sent objects or concepts and edges represent their relationships. A state vector is
attached to each node which collects a representation of the object represented
by the node, where the state is naturally specified using the information con-
tained in the neighborhood of a node. The model is used for the IEEE SO and
IEEE SC classification tasks.

4.2 Results

We present below the results obtained by the participants for the classification
in Tables 3 and 4, and clustering in Tables 5 and 6. The different results are only
indicative of the task difficulty and/ or of the potential of a method for a given
task. The track was not designed as a benchmark for comparing finely different
approaches and methods, but rather as a forum for investigating classification
and clustering on structured documents. Participants were free to use any pre-
processing for the data and to participate to any task. More results are provided
in the full papers of each participant.
6 the two papers of 2005 and 2006 do not use exactly the same algorithm but are

based on the same idea

Report on the XML Mining Track at INEX 2005 and INEX 2006 441

Table 3. Classification results using a recall measure during INEX 2005

Table 4. Classification results using a F1 measure during INEX 2006

Method Movie S (0 to 3) IEEE S Wikipedia S IEEE SC Wikipedia SC

Yong et al. - , - , - , - 48% - 72 % -

Xing et al. - , - , - , - - - 60% -

De Knijf - , - , - , - - 47% - -

Table 5. Clustering results using a purity measure during INEX 2005

Table 6. Clustering results using a purity measure during INEX 2005

These results show some tendencies. Classification on the Movie S (N) datasets,
each composed of 11 classes appears quite easy for all the values of parameter N .
As said before, in order to create these corpora, artificial classes were generated
from a Movie description dataset. The classes have different structures with dif-
ferent degrees of overlapping. Candilier et al. [7] also obtained excellent results
for the classification of IEEE document structures into two classes. The content
and structure classification task is more complex since the number of classes here
is more important (18). For clustering, here too, some participants were able to
recover the hidden classes in the Movie S (N) corpora sometimes with a high
accuracy. The structure of the IEEE collections (transactions and non transac-
tions) was also recovered up to 70 % by Vercoustre et al. [5]. For all the other
tasks, performance was rather poor. Real sources like IEEE or Wikipedia collec-
tions are more challenging to mine than artificially built collections like Movie S.
Note that in the literature, a majority of the experiments for evaluating struc-
tured data clustering methods have been performed on artificial data created

442 L. Denoyer, P. Gallinari, and A.-M. Vercoustre

via random tree generators. It is clear from the above experiments that they are
not representative of real situations. The SO and SC tasks were investigated as
separate tasks, and the respective influence of structure and content cannot be
inferred from these results for the SC tasks. This should be investigated in the
future.

5 Conclusion

We have presented here the different models and results obtained during the
two years of XML Document Mining Track at INEX for both the classifica-
tion and clustering tasks. The performances obtained show that the structure
only task seems quite easy and simple models work very well on this task.
This is why we have focused during the second year to the structure and con-
tent tasks. Concerning the SC tasks, the results obtained can certainly be im-
proved with more sophisticated models. The structure and content tasks on
both the IEEE and the Wikipedia corpus will continue next year during
INEX 2007.

For INEX 2007, we will also propose the XML Mining track and we will
focus on classification/clustering of content+structure XML documents on both
the IEEE corpus and the Wikipedia Corpus. The experience of these two years
of XML Mining track showed us that we have to define a more strict context
and evaluation measures in order to really compare the different methods, and
try to encourage participants to submit categorization results that are easier to
analyze. For the next year, we will first preprocess all the data - it will allow
participant to concentrate on the models - and propose a set of results obtained
by classical flat categorization/clustering models in order to have some baseline
models as comparison.

Acknowledgments

We are grateful to Remi Gilleron (INRIA, University of Lille), Marc Tom-
masi (INRIA, University of Lille), Marie Christine Rousset (LIG, Grenoble) and
Nathalie Pernelle (LRI, Orsay) for their help on the definition of the different
tasks and the construction of the different corpora. We would like to thank all
the participants for their efforts and hard work.

References

1. Maes, F., Denoyer, L., Gallinari, P.: XML structure mapping application to the
pascal INEX 2006 XML document mining track. In: Workshop of the INitiative
for the Evaluation of XML Retrieval (2006)

2. Gilleron, R., Jousse, F., Tellier, I., Tommasi, M.: XML document transformation
with conditional random fields. In: INEX 2006 (2007)

Report on the XML Mining Track at INEX 2005 and INEX 2006 443

3. Fuhr, N., Gövert, N., Kazai, G., Lalmas, M., (eds.): Proceedings of the First
Workshop of the INitiative for the Evaluation of XML Retrieval (INEX), Schloss
Dagstuhl, Germany, December 9-11, 2002. In: Fuhr, N., Gövert, N., Kazai, G.,
Lalmas, M., (eds.) Workshop of the INitiative for the Evaluation of XML Retrieval
(2002)

4. Denoyer, L., Gallinari, P.: The Wikipedia XML Corpus. SIGIR Forum (2006)
5. Vercoustre, A.M., Fegas, M., Gul, S., Lechevallier, Y.: A flexible structured-based

representation for XML document mining. In: Workshop of the INitiative for the
Evaluation of XML Retrieval, pp. 443–457 (2005)

6. Garboni, C., Masseglia, F., Trousse, B.: Sequential pattern mining for structure-
based XML document classification. In: Workshop of the INitiative for the Evalu-
ation of XML Retrieval, pp. 458–468 (2005)

7. Candillier, L., Tellier, I., Torre, F.: Transforming XML trees for efficient classifi-
cation and clustering. In: Workshop of the INitiative for the Evaluation of XML
Retrieval, pp. 469–480 (2005)

8. Hagenbuchner, M., Sperduti, A., Tsoi, A.C., Trentini, F., Scarselli, F., Gori, M.:
Clustering XML documents using self-organizing maps for structures. In: Workshop
of the INitiative for the Evaluation of XML Retrieval, pp. 481–496 (2005)

9. Kc, M., Hagenbuchner, M., Tsoi, A., Scarselli, F., Gori, M., Sperduti, A.: XML doc-
ument mining using contextual self-organizing maps for structures. In: Workshop
of the INitiative for the Evaluation of XML Retrieval (2006)

10. Doucet, A., Lehtonen, M.: Unsupervised classification of text-centric XML docu-
ment collections. In: Workshop of the INitiative for the Evaluation of XML Re-
trieval (2006)

11. Knijf, J.D.: Fat-cat: Frequent attributes tree based classification. In: Workshop of
the INitiative for the Evaluation of XML Retrieval (2006)

12. Tran, T., Nayak, R., Raymond, K.: Clustering XML documents by structural sim-
ilarity with pcxss. In: Workshop of the INitiative for the Evaluation of XML Re-
trieval (2006)

13. Nayak, R., Xu, S.: XML documents clustering by structures. In: Workshop of the
INitiative for the Evaluation of XML Retrieval, pp. 432–442 (2005)

14. Xing, G., Xia, Z.: Classifying XML documents based on structure/content similar-
ity. In: Workshop of the INitiative for the Evaluation of XML Retrieval (2006)

15. Yong, S.L., Hagenbuchner, M., Tsoi, A., Scarselli, F., Gori, M.: XML document
mining using graph neural network. In: Workshop of the INitiative for the Evalu-
ation of XML Retrieval (2006)

Classifying XML Documents Based on

Structure/Content Similarity

Guangming Xing1, Jinhua Guo2, and Zhonghang Xia1

1 Department of Computer Science, Western Kentucky University,
Bowling Green, KY 42104

guangming.xing@wku.edu, zhonghang.xia@wku.edu
2 Computer and Information Science Department,

University of Michigan - Dearborn,
Dearborn, MI 48128
jinhua@umich.edu

Abstract. In this paper, we present a framework for classifying XML
documents based on structure/content similarity between XML docu-
ments. Firstly, an algorithm is proposed for computing the edit distance
between an ordered labeled tree and a regular hedge grammar. The new
edit distance gives a more precise measure for structural similarity than
existing distance metrics in the literature. Secondly, we study schema ex-
traction from XML documents, and an effective solution based on mini-
mum length description (MLD) principle is given. Our schema extraction
method allows trade off between schema simplicity and precision based
on the user’s specification. Thirdly, classification of XML documents is
discussed. Representation of XML documents based on the structures
and contents is also studied. The efficacy and efficiency of our method-
ology have been tested using the data sets from XML Mining Challenge.

1 Motivation and Literature Review

The widely use of XML in different business applications results in large vol-
ume of heterogeneous data: XML documents conforming to different schemata.
An XML document is defined by markup tags from a Document Type Defini-
tion (DTD), forming a tree structure. Classifying XML documents based on the
tree structure and the content is an important problem and is crucial for XML
document storage and retrieval [12,13].

Various methods [11,4] have been proposed and implemented for XML doc-
ument classification, and most of them use tree edit distance as a measure of
similarity. Tree edit distance [10,6] is defined as the cost of the sequence of edit
operations to transform one tree to another. It offers a very precise measure for
document similarity between two documents. However, tree edit distance is not
a good measure for structural similarity, as edit distance between two documents
can be large (one large document and one small document) while they have very
similar structure (conform to the same schema). To overcome this problem, vari-
ous methods have been proposed. For example, Jagadish [11] proposed a method

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 444–457, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Classifying XML Documents Based on Structure/Content Similarity 445

using graft and prune to improve the efficiency of computing edit distance and
accuracy of classification. More recently, Dalamagas [4] studied XML document
classification/clustering using tree summaries and top-down tree edit distance.
Both methods offer very high classification/clustering accuracy when the set
of documents conforms to the DTDs whose length of the repeat patterns is 1.
However, the performance of these two methods get significantly degraded when
the underlying DTDs have more complicated patterns. Although the tree sum-
mary method significantly reduces the time complexity for computing the tree
edit distance, the structures of the trees may not be preserved by the structural
summaries. For example, consider the example in Fig. 1: the two trees on the
left side have different structures, but they share the same structural summary
based on the methods in [4].

tree summary

a b c a b c a b c a a a b b c c c

entry entry entry

a b c

Fig. 1. Trees of Different Structure with the Same Structural Summary

As the structure of an XML document is defined by a schema, it is ideal
to study the distance between XML documents and schemata and use it as a
similarity measure for document classification.

The remainder of this paper is organized as follows. Tree representation of
an XML document, normalized regular hedge grammar(NRHG), tree edit op-
erations, and the algorithm to compute the edit distance between a tree and
an NRHG is presented in Section 2. The algorithm to find a schema that can
generate a set of XML documents is covered in Section 3. Section 4 discusses the
representation of the content information in an XML document, and the combi-
nation with the structure information. Section 5 covers the use of the edit dis-
tance between an XML document and a schema in classifying XML documents.
The implementation and experimental studies are presented and discussed in
section 6, and the conclusion remarks are given in section 7.

2 XML Documents, Schemata and Edit Distances

An XML document can be represented as a node labeled ordered tree. Ordered
means the order among the siblings is significant, while labeled means that each
node in the tree is labeled with a symbol from a predefined alphabet.
Document Type Definition (DTD). has been widely used to specify the schemata
of XML documents. An XML document conforms to a DTD if it can be generated
by the DTD. A DTD can also be viewed as a tree, with the edges labeled with
the cardinality of the elements. But a DTD may be recursive, some nodes may
lead to an infinite path (it is a DAG instead of a tree in this case). Therefore,

446 G. Xing, J. Guo, and Z. Xia

instead of working on a DTD directly, we convert it to a normalized regular
hedge grammar (NRHG) [2], which can defined as follows:

Definition 1. A NRHG is a 5-tuple (Σ, VT , VF , P, s), where:

1. Σ is a finite set of terminals,
2. VT is a finite set of tree variables,
3. VF is a finite set of forest variables,
4. P is a set of production rules, each of which takes one of the four forms:

(a) vt → x, where vt is a tree variable in VT , and x is a terminal in Σ.
(b) vt → a〈vf 〉, where vt is a tree variable in VT , a is a terminal in Σ and

vf is a forest variable in VF .
(c) vf → vt, where vf is a forest variable and vt is a tree variable.
(d) vf → vtv

′

f , where vf and v
′

f are forest variables and vt is a tree variable.
5. s ∈ VT is the starting symbol, which defines the tree pattern that can be

generated by this grammar.

In the above definition, the terminals are used to label the nodes (both leaf and
internal) in a tree; the tree variables are grammar symbols to generate trees;
and the forest variables are used to generate forests (a sequence of trees which
corresponds to a string of tree variables). Rule (a) is used to generate a tree with
a single node, rule (b) is used to put a new node as a new root of the forest that
is generated by forest variable, rule (c) is the base case to generate a tree for
a forest, and rule (d) is used to concatenate a tree with a forest to form a new
forest.

An ordered labeled tree is said to conform to an NRHG if it can be generated
by the grammar. When a tree doesn’t conform to an NRHG, it can be trans-
formed by a sequence of edit operations such that the result tree conforms to
the NRHG. In this paper, we use the same types editing operations for ordered
labeled forests as described in [6]: (1) insert as a leaf, (2) delete a leaf, and (3)
replace. A cost is assigned to each of these operations. The edit distance be-
tween a tree and an NRHG is the minimum cost of a sequence of edit operations
transforming the tree to conform to the grammar.

2.1 The Edit Distance Between an XML Document and a Schema

In this section, we present the recursion to calculate the distance between an
ordered labeled tree and an NRHG using top down edit distance [2]. It should
be noted that other distances between XML documents and schemata may be
used in place of this algorithm.

Notations:
To identify the nodes in a tree, the nodes are numbered based on post-order

traversal. Given a tree T , and an integer i:

– t[i] represents the node of T whose post-order is i;
– t[i] refers to the label of the node t[i] when there is no confusion;
– T [i] represents the sub-tree rooted at node t[i];

Classifying XML Documents Based on Structure/Content Similarity 447

– F [i] represents the sub-forest obtained by deleting t[i] from the tree T [i];
– p(i) refers to the order of the parent node of t[i];
– n(i) refers to the order of the right sibling of t[i];
– Fs[i] denotes the suffix-forest obtained by deleting the left sibling(s) of t[i]

from F [p(i)].

δ(Tt, Ts): is the minimum cost to transform Ts to Tt;
δ(Ft, Fs): is the minimum cost to transform the source forest Fs to the target

forest Ft;
For vt ∈ VT in an NRHG, and a tree t, define:

C[vt, T [i]] = min{δ(t, T [i]) : vt →∗ t}.

Similarly, for vf ∈ VF in an NRHG, and a forest f , define:

C[vf , F [i]] = min{δ(f, F [i]) : vf →∗ f}.

C[vt, T [i]] is the minimum cost to transform T [i] such that it can be generated
by vt, and C[vf , Fs[i]] is the minimum cost to transform Fs[i] such that it can be
generated by vf . C[vt, T [i]] and C[vf , Fs[i]] can be computed using the following
recursions.

Theorem 1. For each vt ∈ VT , and each sub-tree T [i]:

C[vt, T [i]] = min

⎧
⎨

⎩

vt → x δ(x, T [i]) (1)
vt → a〈vf 〉 δ(λ, T [i]) + C[vt, λ] (2)
vt → a〈vf 〉 C[vf , F [i]] + δ(a, t[i]) (3)

⎫
⎬

⎭
and for each vf ∈ VF and sub-forest Fs[i] = T [i]Fs[n(i)]:

C[vf , Fs[i]] = min

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

vf → vt C[vt, T [i]] + δ(λ, Fs[n(i)]) (4)
vf → vt δ(λ, T [i]) + C[vf , Fs[n(i)]] (5)
vf → vtv

′

f C[vt, T [i]] + C[v
′

f , Fs[n(i)]] (6)
vf → vtv

′

f δ(λ, T [i]) + C[vf , Fs[n(i)]] (7)
vf → vtv

′

f C[vt, λ] + C[v
′

f , Fs[i]] (8)
vf → v

′

f C[v
′

f , Fs[i]] (9)

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

The correctness of the above theorem can be found in [2].
The above algorithm can be implemented using straight forward dynamic

programming except that C[vf , Fs[i]] may depend on itself based on rule (7)
and (8). This precludes direct use of dynamic programming. We may use the
same modification given in [9] to circumvent this problem.

Firstly, the other three cases that lead to smaller cases of the problem can be
computed by the following formula:

known[vf , Fs[i]] = min

⎧
⎨

⎩

vf → vt C[vt, T [i]] + δ(λ, Fs[n(i)]) (4)
δ(λ, T [i]) + C[vf , Fs[n(i)]] (5)

vf → vtv
′

f C[vt, T [i]] + C[v
′

f , Fs[n(i)]] (6)

⎫
⎬

⎭

Secondly, we can use the following procedure to compute the edit distance
between each grammar variable and sub-tree.

448 G. Xing, J. Guo, and Z. Xia

1: procedure ComputeMatrix(G, F)
2: Input: NRHG G and F that is post-order traversed
3: Output: C[n..F [1.. | T |]] matrix
4. // Ct[|VT |][n]: cost matrix holds C[vt, T [i]]
5. // Cf [|VF |][n]: cost matrix holds C[vf , Fs[i]]
6. for i = 1 to |VT | do
7. for j = 1 to n do
8. Ct[i, j] = ∞
9. for i = 1 to |VF | do
10. for j = 1 to n do
11. Ct[i, j] = ∞
12.for1 s = 0 to n do
13. for2 all tree T [i] of size s do
14. for3 all vt ∈ VT do
15. calculate C[vt, T [i]]
16. for2 all forest Fs[i] of size s do
17. for3 all vf ∈ VF do
18. C[vf , Fs[i]] = known[vf , Fs[i]]
19. H ← heap of C[vf , Fs[i]]
20. while not H.empty()
21. C[vf ,Fs[i]] ← H.extract min
22. for each v

′

f → vtvf

23. C[v
′

f , Fs[i]] ← min {C[v
′

f , Fs[i]], δ(vt, λ) +C[v
′

f , Fs[i]]}
24. H.decrease(C[v

′

f , Fs[i]])
25. endFor
26. endWhile

For a tree with n nodes and a grammar with p rules, there are O(n × p)
C[vt, T [i]] to compute, and it takes constant time to compute each C[vt, T [i]].
Similarly, there are O(n×p) C[vf , Fs[i]] to compute. For each Fs[i], it takes p log p
time to compute C[vf , Fs[i]] for all the forest variables. So the above procedure
can be completed in O(n×p log p) time. In most applications, p tends to be much
smaller than the number of nodes in a documents. Theoretical analysis shows
that our method is more efficient than computing the edit distance between two
trees, which will be verified by experimental studies in Section 6.

3 Schema Extraction from XML Documents

Most classification/clustering methods for structured documents rely on pair-
wise distances. In order to use the edit distance defined above for document
classification/clustering, the first task is to extract the underlying schema from
the XML documents. The problem can be formulated as: Given a collection of
XML documents {d1, d2, ..., dn}, find a schema s, such that d1, d2, ..., dn are
document instances that can be generated by schema s.

Classifying XML Documents Based on Structure/Content Similarity 449

As the definition of an element in a schema is independent of the definitions of
other elements, and only restricts the sequence of subelements (the attributes are
omitted in this paper) nested within the element. Therefore, the schema extrac-
tion can be simplified as inferring a regular expression R (right linear grammar
or nondeterministic finite automata) from a collection of input sequences I with
the following restrictions:

– R is concise, i.e., the inferred expression is simple and small in size;
– R is general enough to accept sequences that are similar to those in I;
– R is precise enough to exclude sequences not similar to those in I.

Inferring regular expressions from a set of strings has been studied in [15,14].
One novel contribution in Xtract is the introduction of Minimum Length De-
scription (MLD) to rank candidate expressions. In general, the MLD principle
states that the best grammar (schema) to infer from a set of data is the one that
minimizes the sum of:

1. The length of the grammar Lg, and
2. The length of the data Ld when encoded with the grammar.

In our system, we use a similar approach as introduced in Xtract: Candidate
regular expressions are extracted based on the analysis of the repeat patterns
appearing in the input sequences. The candidate regular expressions are then
ranked using MLD principle. We have made the following improvements over
Xtract:

1. The frequencies of the children sequences are considered in our system and
the system may intentionally pick some victims that are not covered by the
inferred regular expressions. The victims are those sequences that appears
very infrequently. This feature helps to minimize the negative effects of noise
data in classification/clustering.

2. In our system, the relative weight between the definition and description can
be dynamically adjusted, which can be used to tune the performance of our
system. The overall goal in our system is to minimize L = λLg + Ld. The λ
can be used to adjust the precision and generalness of the result.

3. Instead of using a regular expression to determine the cost of encoding, we
use the cost of nondeterministic finite automata (NFA) simulation as the cost
of encoding. This eliminates the necessity for enumerate multiple sequence
partitions to compute the minimum cost for encoding.

It is difficult to represent the encoding of a string with a regular expression.
So instead of working on regular expressions, we consider NFA constructed by
Thompson’s [5] method.

For example, given {abcab, abdab, abcabab, abcababab, abdabababab} as the set
of input sequences, we may have ab(c|d)(ab)∗ or (ab|c|d)∗ as candidate regular
expressions after analyzing the repeat patterns. The corresponding Thompson
NFAs can be constructed as illustrated in Fig. 2.

450 G. Xing, J. Guo, and Z. Xia

Fig. 2. NFAs for ab(c|d)(ab)∗ and (ab|c|d)∗

The NFA can be represented by encoding the states and its transitions. So

Lg = (S + T) logS,

where S is the number of states and T is the number of transitions.
To compute Ld, we use the cost of NFA simulation as the cost of string encod-

ing. Intuitively, the number of states in each state vector denotes the number of
choices for each step, which should be encoded. For example, the state vectors
in NFA simulation for NFA1 and NFA2 on string abcabab can be illustrated by
Table 1.

Table 1. Transition Vectors for NFA1 and NFA2

Step 1 2 3 4 5 6 7 8 9 10 11 12 cost for NFA1 1 2 3 4 5 6 7 8 9 10 11 cost for NFA2

1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 0 0 1 6

2 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1

3 0 0 1 1 0 1 0 0 0 0 0 0 3 0 1 1 0 1 0 0 1 0 1 1 7

4 0 0 0 0 1 0 0 1 1 0 0 1 4 0 1 1 0 0 1 0 1 1 0 1 7

5 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1

6 0 0 0 0 0 0 0 0 1 0 1 1 3 0 1 1 0 1 1 0 1 0 1 1 7

7 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1

8 0 0 0 0 0 0 0 0 1 0 1 1 3 0 1 1 0 1 1 0 1 0 1 1 7

It is obvious that ab(c|d)(ab)∗ is a better choice as the description cost Ld

using NFA1 is much smaller than that of the second one.
The complexity of the above algorithm is O(cn2), where n is the length of the

string for inference, and c is the numbers of the strings. Although the algorithm
is quadratic w.r.t. the length of input string, it is highly efficient when the length
of the string is short. With heuristic tree size reduction in our implementation,
the running time is linear w.r.t. the size of the document for most applications.

4 Measuring the Content Similarity

To measure the similarity of the text contents of the XML documents, we use the
standard techniques for text categorization. The vector space model (VSM) is a

Classifying XML Documents Based on Structure/Content Similarity 451

standard representation approach in document classification. In VSM, a docu-
ment is represented by the words (terms) it contains. The full set of documents,
denoted by D, is referred to as the corpus and the full set of terms, denoted
by T , occurring in the corpus as the dictionary. There are three phases in the
VSM: document indexing, term weighting, and similarity evaluation. Document
indexing usually counts frequencies of terms and removes some high frequency
terms, such as ’a’,’the’, etc. Term weighting procedure measures the contribution
of each term to the document and calculates the weight wj . A document di is
represented as a vector di = (w1, w2, . . . , w|T |), where 0 ≤ wj ≤ 1 is the weight
of the jth term contributing to document di, and |T | is the number of terms in
T . Although many words have been removed from T in document classification,
the dimensionality of the term space is still very large. Based on the observation
that some terms are semantically equivalent, Latent Semantic Indexing (LSI)
has been successfully introduced in dimensionality reduction by mapping query
and documents into a ’latent’ semantic space. In LSI, semantically related terms
are mapped onto the same dimensions, and non-related terms onto different di-
mensions. More specifically, by using Singular Value Decomposition (SVD), a
term-by-document matrix A|T |×|D| is decomposed as

A|T |×|D| = U|T |×rΛV T
r×|D|

where r is the rank of A and Λ is a diagonal matrix.
In similarity evaluation when a query q is given, we treat it as a document

and project it into the LSI space with the transformation as follows.

q̂ = Λ−1UT
r×|T |q|T |.

After the transformation, the similarity between query q and document di can
be evaluated in the LSI space.

After the structural and content distances have been computed, the distance
vectors can be concatenated for representing an XML document. The relative
significance between the structure and content can be adjusted by changing the
relative weight of the distance vectors.

5 Document Classification

In this section, we will first show how to classify XML documents based on their
structures using the edit distance between XML documents and schemas, and
then combine the structure and the content information for classifications.

The design of the classification system can be illustrated by Figure 3. When
content information is used in classification, the system can take some minor
changes as explained in step 2 in the following paragraph.

According to our approach, there are three steps to get a classifier.

– The first step is representative selection and schema extraction. Schema ex-
traction has been covered in detail in Section 3. The representatives of a
group are chosen to minimize the intraclass distance.

452 G. Xing, J. Guo, and Z. Xia

Classifier

2 n<d , d , , d >

1
2

n
<

d
, d

, , d
>

XML doc

D
istance

C
om

putation

Training

DataSet

for class 2 for class nfor class 1

Class 1 Class 3Class 2

distance vectors

............................

schema schema schema

Classifier Training

1

Fig. 3. System Architecture for Document Classification Based on Structure (Content)

– The second step is to compute the distance between the documents and
the schemas (one from each class). Suppose there are n classes of objects
in the training set, one unified schema is generated for each class. For each
document, a distance vector 〈d1, d2,, dn〉, which represents the distance
between each document and the “center” points of the class, is computed and
fed into a learning machine to train a classifier. When the content information
is needed, a separate vector is computed using the method presented in
Section 4. The vector for the structure and content can be concatenated and
used for representing an XML document.

– The third step is the classifier training. Various software packages have been
implemented for data classification. Once each document is represented by
a distance vector, feeding the distance vector and training the classifier is
straightforward for most software systems. An SVM classifier is trained using
the Weka [16] software package in our studies.

To classify a document, the distance vector consists of the distances between
the document and the schema from each class is computed. The classifier gives
the label of the document based on the distance vector.

6 Implementation and Experimental Results

We have fully implemented the algorithms described in the above sections, and
developed a prototype system for document classification. The system is a java-
based software system with the following functionalities:

– Extract a schema from a collection of XML documents. The schema can be
represented in DTD or NRHG.

– Generate content summaries for a collection of XML documents.
– Compute pairwise distance between XML documents and schemata.

Classifying XML Documents Based on Structure/Content Similarity 453

– Compute pairwise distance between XML documents using structural sum-
maries.

– Train an SVM classifier and classification using SVM.

Based on the implementation, we have tested the classification system on
various datasets to show:

1. The distance between an XML document and a schema is a effective simi-
larity measure for XML documents.

2. The feasibility of XML document classification based on this new distance
metric.

The following three datasets are used in our experiments:

– The first dataset is from Sigmod collection: a collection of documents that
conform to either one of OrdinaryIssuePage.dtd, IndexTermsPage.dtd or
ProceedingsPage.dtd.

– The second dataset is from data generated by using three DTDs book-
store1.dtd, bookstore2.dtd and bookstore3.dtd from [4] which are very close
to each other.

– The third dataset is the MovieDB dataset from XML Mining Challenge
[12,13], which is a collection of documents that have very similar structure
and some noise information.

To evaluate the time efficiency, we compared our method with the classifi-
cation method using edit distance between trees, and the classification method
using edit distance between structural summaries. The time for structural sum-
mary method includes time the for computing the tree summaries, and the time
needed for edit distance between tree summaries. The time for our method in-
cludes the time for tree size reduction, schema extraction, and the time needed
for computing the edit distance between the tree and the schema. Fig. 4 shows
the time performance on a pair of documents of variable sizes from MovieDB
dataset.

From Fig. 4, we know that the original tree distance method is the slowest
one, and our method is slower than the structural summary method, but the
difference is not significant compared with the original method.

The classification quality is evaluated by following the same procedure as
described in [4]. The number of true positive, false positive, false negative for
each group, and overall Precision P are used to compare different methods.

For a collection of documents that are clustered into n groups, C1, ...Ci, ...Cn

with corresponding DTDs D1, ...Di, ...Dn, let:

– ai be true positive for cluster Ci, which is the number of documents in Ci

that are indeed a member in Di;
– bi be false positive for cluster Ci, which is the number of documents in Ci

that are not a member in Di;
– ci be false negative for cluster Ci, which is the number of documents not in

Ci although they should be a member in Di.

454 G. Xing, J. Guo, and Z. Xia

 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

Running Time (ms)
original

structural summaries
NRHG

Num Of Nodes T1 Num Of Nodes T2

Running Time (ms)

Fig. 4. Time performance for original, structural summaries, NRHG

We have:

P :=
Σiai

Σiai + Σibi
.

The classification result for the Sigmod, Bookstore, and MovieDB data set based
on the structure is presented in Tables 2, 3, and 4.

Table 2. Clustering Results: Sigmod Data

w/o summaries w summaries tree grammar
Cluster No

a b c a b c a b c

1 19 1 1 20 0 0 20 0 0

2 19 1 1 20 0 0 20 0 0

3 20 0 0 20 0 0 20 0 0

P 96.7% 100% 100%

Notice that in our algorithm, the values of P reach an excellent level (better
than 95%) for the MovieDB data when only the structure information is used
for classification. The structural summary method can produce very good results
when the length of the repeat pattern is 1, but the accuracy becomes significantly
degraded (to 71.6%) when the repeat patterns are more complicated.

We have also evaluated the feasibility of classifying Web documents using the
combination of the structure and content information. The inex data set was
used in our experiments for this task. The classification result for the inex data
set based on the structure and the content is presented in Table 5.

Classifying XML Documents Based on Structure/Content Similarity 455

Table 3. Clustering Results: Bookstore Data

w/o summaries w summaries tree grammar
Cluster No

a b c a b c a b c

1 12 15 8 20 8 0 20 2 0

2 5 8 15 12 0 8 18 0 2

3 20 0 0 20 0 0 20 0 0

P 61.7% 86.7% 96.7%

Table 4. Classification Result: MovieDB Data Based on Structure

w/o summaries w summaries tree grammar
Cluster No

a b c a b c a b c

1 8 12 12 14 4 6 20 3 0

2 7 14 13 15 7 5 20 0 3

3 10 9 10 14 6 6 20 0 0

P 41.6% 71.6% 95%

Table 5. Classification Result: Inex Data Based on Structure and Content

Group 1 10 11 12 13 14 15 16 17 18 2 3 4 5 6 7 8 9 Precision

1 85 0 1 2 1 0 0 0 0 1 0 1 0 0 2 1 0 2 0.88

10 6 113 2 16 0 1 0 1 0 1 39 35 4 5 8 4 0 5 0.47

11 3 10 81 6 2 1 2 0 0 0 4 52 16 11 34 18 3 10 0.32

12 13 24 7 272 1 0 0 0 0 1 24 85 15 4 17 4 3 16 0.55

13 1 0 1 0 284 46 1 6 8 7 1 0 0 0 1 2 0 0 0.79

14 0 0 0 0 82 242 2 7 3 18 0 0 0 0 0 0 0 0 0.68

15 0 0 0 0 1 5 64 3 8 0 1 0 0 0 0 0 0 0 0.78

16 0 0 1 0 32 16 10 200 34 21 1 0 0 0 0 0 0 1 0.63

17 0 0 0 0 13 4 7 10 372 9 0 0 0 0 0 0 0 1 0.89

18 2 0 2 3 91 73 26 60 48 235 5 8 2 2 3 1 3 0 0.41

2 1 23 1 8 0 1 1 0 1 0 134 15 9 3 5 2 0 2 0.65

3 1 15 7 37 1 0 0 0 0 1 14 475 22 6 13 9 1 13 0.77

4 17 26 26 27 5 3 4 2 6 8 64 39 158 19 22 12 3 21 0.34

5 3 3 1 9 2 2 1 2 0 0 11 23 1 164 2 1 1 21 0.66

6 12 7 37 35 0 2 1 0 2 2 10 74 37 10 210 23 3 22 0.43

7 3 3 15 9 0 0 0 0 0 0 0 11 4 2 12 181 4 7 0.72

8 3 1 2 15 0 0 0 0 0 0 19 59 11 13 6 3 112 8 0.44

9 6 10 8 21 1 0 1 0 0 1 18 86 7 34 16 5 0 155 0.42

Recall .54 .48 .42 .59 .55 .61 .53 .69 .77 .77 .39 .49 .55 .60 .60 .68 .84 .54

7 Conclusions

In this paper, we have studied the problem of computing the edit distance be-
tween an XML document and a schema. Three edit operations were considered
for manipulating an XML tree: insert a node as a leaf, delete a leaf node and

456 G. Xing, J. Guo, and Z. Xia

replace, and each operation is of constant cost. We gave a novel solution to this
problem by studying how an ordered labeled tree could be transformed such that
it conforms to a NRHG with minimum cost (edit distance).

Based on the definition of the edit distance between an XML document and
a schema, we presented an approach for classification of XML documents using
structural distance. Although it is more complicated than the methods presented
in [11] and [4], it can classify documents having more complicated structure with
much higher accuracy. Both classifying based on the structure, and a combina-
tion of structure and content are studied in our project. Experimental studies
have shown the effectiveness of our methods.

We have identified the following challenges that we like to continue to inves-
tigate in the future:

1. The selection of the documents for schema extraction: The schema to rep-
resent a group of documents depends on not only the schema extraction
method, but also the documents selected for schema extraction. How to se-
lect documents that can capture the structural properties of each class is a
challenging task.

2. The handling of classes with limited documents: When the number of docu-
ments of a class is very small, the extracted schema tends to be less accurate,
which may contribute to the false negatives in the classification. To make
the problem even worse the extracted schema may have smaller distances
with documents in other classes, and introduces false positives.

3. Large number of classes: Our system performs very well (for two class clas-
sification, it is nearly 100%), however, the performance of the system sig-
nificantly degrades when the number of classes becomes large (for example
60). The efficiency of the system also becomes significantly degraded when
the number of classes becomes large as the feature vector for the structure
of a document is linearly increasing.

4. Structure and content combination: How to balance the representation of
the textual content and structure information of the document if both types
of information are used for classification purpose. The presentation of XML
documents in this paper is based on the tree structure and the textual con-
tent, however, the combination is a simple concatenation which may omit
important semantic information. An improved combination may improve the
precision of classification results.

5. Edit distance: The distance between an XML document and a schema used
in this paper is very restrictive, which may not be very precise for some
applications. We plan to study the distance with less restrictive edit opera-
tions (for example the constrained edit operations as presented in [7]) while
computing remains efficient.

References

1. Suzuki, N.: Finding an Optimum Edit Script between an XML Document and a
DTD. In: Proceedings of ACM Symposium on Applied Computing, Santa Fe, NM
pp. 647 - 653 (March 2005)

Classifying XML Documents Based on Structure/Content Similarity 457

2. Xing, G.: Fast Approximate Matching Between XML Documents and Schemata.
In: Zhou, X., Li, J., Shen, H.T., Kitsuregawa, M., Zhang, Y. (eds.) APWeb 2006.
LNCS, vol. 3841, pp. 425–436. Springer, Heidelberg (2006)

3. Canfield, R., Xing, G.: Approximate XML Document Matching (Poster). In: Pro-
ceedings of ACM Symposium on Applied Computing, Santa Fe, NM (March 2005)

4. Dalamagas, T., Cheng, T., Winkel, K.-J., Sellis, T.K.: A methodology for clustering
XML documents by structure. Information Systems 31(3), 187–228 (2006)

5. Thompson, K.: Regular Expression Search Algorithm. Communications of
ACM 11(6), 419–422 (1968)

6. Shasha, D., Zhang, K.: Approximate Tree Pattern Matching. In: Apostolico, A.,
Galil, Z. (eds.) Chapter 14 Pattern Matching Algorithms, Oxford University Press,
Oxford (1997)

7. Zhang, K.: Algorithms for the constrained editing distance between ordered labeled
trees and related problems. Pattern Recognition 28(3), 463–474 (1995)

8. Murata, M.: Hedge Automata: A Formal Model for XML Schemata,
http://www.xml.gr.jp/relax/hedge nice.html

9. Myers, G.: Approximately Matching Context Free Languages. Information Process-
ing Letters 54(2), 85–92 (1995)

10. Chen, W.: New Algorithm for Ordered Tree-to-Tree Correction Problem. J. of
Algorithm 40, 135–158 (2001)

11. Nierman, A., Jagadish, H.V.: Evaluating structural similarity in XML documents,
WebDB 2002, Madison, Wisconsin (June 2002)

12. XML Document Mining Challenge http://xmlmining.lip6.fr/
13. Denoyer, L., Gallinari, P.: Report on the XML Mining Track at INEX 2005 and

INEX 2006. In: Proceedings of INEX (2006)
14. Chidlovskii, B.: Schema Extraction from XML Data: A Grammatical Inference

Approach, KRDB’01 Workshop, Rome, Italy, (September 15, 2001)
15. Garofalakis, M.N., Gionis, A., Rastogi, R., Seshadri, S., Shim, K.: Xtract: A Sys-

tem for Extracting Document Type Descriptors from XML Documents, SIGMOD
Conference 2000, Dallas, Texas, USA pp. 165-176 (May 16-18, 2000)

16. WEKA Project, http://www.cs.waikato.ac.nz/ml/weka/
17. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput-

ing Surveys 34(1), 1–47 (2002)
18. Karypis, G.: CLUTO A clustering toolkit Technical Report 02017, University of

Minnesota, Department of Computer Science, Minneapolis, MN 55455 (August
2002)

http://www.xml.gr.jp/relax/hedge_nice.html
http://xmlmining.lip6.fr/
http://www.cs.waikato.ac.nz/ml/weka/

Document Mining Using Graph Neural Network

S.L. Yong1, M. Hagenbuchner1, A.C. Tsoi2, F. Scarselli3, and M. Gori3

1 University of Wollongong, Wollongong, Australia
{sly56,markus}@uow.edu.au

2 Monash University, Melbourne, Australia
act@hkbu.edu.hk

3 University of Siena, Siena, Italy
{franco,marco}@dii.unisi.it

Abstract. The Graph Neural Network is a relatively new machine learn-
ing method capable of encoding data as well as relationships between
data elements. This paper applies the Graph Neural Network for the
first time to a given learning task at an international competition on
the classification of semi-structured documents. Within this setting, the
Graph Neural Network is trained to encode and process a relatively large
set of XML formatted documents. It will be shown that the performance
using the Graph Neural Network approach significantly outperforms the
results submitted by the best competitor.

1 Introduction

Neural networks are popular machine learning methods that can be trained on a
set of examples. Multilayer perceptron networks [4] in particular, and networks
based on such architectures, are well studied methods and are the most popularly
applied in practice. Such networks are trained in a supervised fashion: for every
(input) sample, a desired (output) target is given. Networks are generally trained
iteratively by adjusting internal network parameters such that for a given input
pattern the desired output pattern is achieved, or equivalently the difference
between the output of the network and the desired output is minimised. The
greatest advantage of such a method is in its ability to generalize over previously
unseen data. This means that a neural network, once trained, can produce a
suitable response to an input that was not part of the set of training samples
and for which there is no known desired value. The network will be able to
provide a desired output value to this input. In addition, neural networks have
good noise immunity, in the sense that they can provide suitable response even
though the input samples are contaminated with noise. As a consequence, neural
networks are popularly applied to tasks involving noisy samples.

Let us take the task of image recognition as an example. No two photographs
of the same object are ever identical. This is due to the analogue nature of
traditional cameras (or probabilistic nature of digital cameras), and due to the
fact that environmental conditions such as lighting conditions and object aging
are constantly changing. A human observer would have no difficulty in assessing

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 458–472, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Document Mining Using Graph Neural Network 459

objects depicted in photographs that can differ vastly in size, pose or quality.
Many computer methods on the other hand cannot handle this vast variation
in size, pose or quality. Most methods involve the hard-coding of information or
rules to produce acceptable object recognition abilities. Such systems are likely
to fail if anything unaccounted should occur. For example, if hard coded data or
rules do not account for the possibility of an object to fly, then such applications
may be unable to identify an apple as it is being thrown into the air. Neural
networks on the other hand are a generic method that can learn from possibly
noisy samples and produce a desired output. As such, a neural network would be
able to recognize an apple as an apple regardless of its surroundings or physical
condition.

Traditionally, neural networks are trained on constant-length vectorial inputs.
One extension, called Recurrent Neural Networks [6], allows the method to be
used in characterizing continuous time signals. Such networks are trained on
constant sized, shifting sub-sections of a signal through a feedback loop which
provides information from the processing of a previous sub-section as an ad-
ditional input to the network. These ideas were extended further through the
introduction of Recursive Neural Networks [3] which are capable of processing
directed acyclic graphs by individually processing the (labelled) nodes of a graph
rather than the graph as a whole. This is achieved through the notion of states
in the network, which is analogous to the same concept in physics, characterizes
the activation of a node, and by providing the states of neighboring nodes as an
additional network inputs. The recursive nature of the training algorithm ensures
that the states of any node in the graph is propagated through the entire graph,
and thus, the graph as a whole is encoded by such a method. This method of
processing graph structured data is different to those used in traditional meth-
ods in which any graph structured data, e.g. acyclic tree, is first “squashed” to
become a vector, before feeding it to e.g. a multilayer perceptron for processing.
By retaining the graph structured data as long as required, it is argued that the
information encoded in the topological nature of the graph is retained [9].

A recent development produced the Graph Neural Network (GNN) [8] which
can process much more general types of graphs. This has been a breakthrough
development since it has become possible for the first time to process general
types of graphs without first “squashing” the graph structured data into a vec-
torial form.

Numerous examples of graph structured information can be found in the real
world. Any object is a structural composition of basic elements where the el-
ements can be scaled down as far as a molecular level – which by itself is a
structured object. Even the most basic type of information can be encoded as
a structure by simply representing such information by a graph consisting of a
single node. In practice, most information can be represented appropriately as
a set of vectors. However, there are numerous instances for which a vectorial
representation is insufficient. For example, the World Wide Web is a large graph
with web pages serving as nodes, and hyperlinks as edges. It would not be useful

460 S.L. Yong et al.

to represent the Web in vectorial form as most of the information encoded in
the topological nature of the Web would be lost in the process.

The intuitive idea underlining GNNs is that nodes in a graph represent ob-
jects or concepts and edges represent their relationships. To each node n a vector
xn ∈ IRs, called state, can be attached which collects a representation of the ob-
ject denoted by n. xn is naturally specified using the information contained in
the neighborhood of n. More precisely, let hw be a feed-forward neural network,
called transition network, that expresses the dependence of a node on its neigh-
borhood and is parametrized by a set of parameters w. The states xn are defined
as the solution of the following system of equations:

xn =
∑

u∈ne[n]

hw(ln, xu, lu), n ∈ N , (1)

where N is the set of nodes of the graph and ne[n] is the set of neighbors of
n. The existence of a solution is ensured by appropriately constraining the net-
work parameters and the solution is computed by Jacobi algorithm for nonlinear
systems [8]. For each node n, an output on ∈ IR is also defined which depends
on the state xn and label ln. The dependence is described by a parameterized
output network gw

on = gw(xn, ln), n ∈ N . (2)

Thus, Eqs. (1) and (2) define a method to produce an output on for each
node, i.e. a parameterized function ϕw(G, n) = on which takes in input a graph
G, one of its nodes n and predict a property of the object represented by n. The
corresponding machine learning problem consists of adapting the parameters w
such that ϕw approximates the data in the learning data set L = {(ni, ti)| 1 ≤
i ≤ q}, where each pair (ni, ti) denotes a node ni and the corresponding desired
output ti. In practice, the learning problem is implemented by the minimization
of a quadratic error function [8]

Jw =
q∑

i=1

(ti − ϕw(G, ni))2 . (3)

This paper applies the GNN to the task of classifying XML formatted docu-
ments to investigate its suitability. The task is of particular interest due to the
increasing popularity of XML formatted information. Vast repositories of elec-
tronic documents are being represented using this structured meta language and
hence the mining of information from such an environment is becoming increas-
ingly important. Machine learning methods are known to generalize well over
unseen data and that they are insensitive to noise. This renders such methods
particularly useful for many data mining tasks. GNN is the only supervised ma-
chine learning method for data which is represented by general types of graphs.
For the first time is a supervised machine learning method that is capable of
encoding graphs applied to this kind of learning problem.

It will be shown that the GNN method requires little or no pre-processing
of such semi-structured data, that it can perform well, and that it is suited for

Document Mining Using Graph Neural Network 461

mining large databases due to its generalization abilities. Furthermore, it will be
demonstrated that the performances obtained by processing either the document
in a structure only mode, or in the structure and content mode that the results
are vastly superior to those presented by the competitor at INEX to date.

This paper is structured as follows: an overview of the learning task is given
in Section 2. A detailed description of the experimental framework, and findings
are presented in Section 3. Some conclusions are drawn in Section 4.

2 The Learning Problem

The Initiative for the Evaluation of XML Retrieval (INEX) [2] runs an annual
international competition on XML document mining, classification, and cate-
gorization. For the most recent round in 2006, a training dataset is provided
which contains published papers in computer science, in the areas of hardware,
graphics, artificial intelligence, etc. It contains papers from transactional and
non-transactional journals. The training dataset consists of a total of 6,053 XML
documents which are divided into 18 different classes. These 18 classes are shown
in Table 1.

Table 1. XML document classes in the training dataset. The associated numbers are
the class IDs.

Computer Graphics Hardware Artificial Internet Parallel
Intelligence

Transactional tc(13),ts(18) tg(15) tp(17),tk(16) td(14)

Non an(1),co(3),
cg(2) dt(5),mi(9) ex(6),mu(10) ic(7) pd(11)

Transactional cs(4),it(8),so(12)

Information on which XML document belongs to which class (the target la-
bels) is provided for the training dataset. The distribution of the training data
is shown in Figure 1. It can be observed that the largest class is “co” (3) with
a total of 963 documents and the smallest class is “tg” (15) with a total of 105
documents. In this training dataset, it is important to note that there are two
major difficulties:

1. The dataset is unbalanced1 for the number of documents in each class; and
2. The dataset is unbalanced between “Transaction” and “Non-Transaction”

types of articles.

There are two classification tasks specified in this competition:

Structure only: Classification of documents by considering the XML structure
only. Any textual content (other than the XML tags) is ignored.

1 By “unbalanced” we mean that there are uneven distributions of training data.

462 S.L. Yong et al.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

 800

 850

 900

 950

 1000

tstptktgtdtcsopdmumiiticexdtcscocgan

N
um

be
r

of
 D

oc
um

en
ts

Class

Fig. 1. Distribution of INEX XML documents in their respective class

Structure and content: Classification of XML documents using both struc-
ture and content.

For the classification using structure only task, it is noted that there are a
total of 165 different XML tags which may or may not occur in all the XML
documents. A test dataset was made available towards the end of the XML
clustering competition. The test data were unlabeled. Performances on the test
dataset were computed by using a script as provided by the organizers of the
clustering competition2. This situation is analogous to the real world situation
where machine learning methods are only trained on the training dataset and
deployed on the real data which has not been used to train the models.

For both tasks, the performance is measured using Macro and Micro-F1. F-
measure[5] is the weighted harmonic mean of precision and recall defined as:

F =
{

0 if αR + (1 − α)P = 0
PR

αR+(1−α)P else (4)

where P is the precision, R is the recall, α is a balancing factor, and F, R, P ∈
[0; 1]. In the standard F1 (or simply refer to as F-measure), α is set to 1

2 where
P and R is weighted equally. Macro-F1 is the averaged F1 value over all classes
while Micro-F1 is the average of F1 weighted according to class dimensions. The
task is to maximise F .
2 The script can be obtained from http://xmlmining.lip6.fr/Results

Document Mining Using Graph Neural Network 463

3 Experiments

3.1 Initial Experiments

Test data were not available until shorty before the conclusion of the XML
clustering competition. As a consequence, the initial approaches addressed in
this Section evaluate network performances on the training data. Performance
evaluations on test data will be given in Section 3.2. Thus, initially we resorted to
splitting the available data (the original training data set) into three sub-sets3:

Training Set: 80% of the original training data set is selected to be used for
training purposes.

Validation Set: 10% of the original training data set is selected to serve as
a validation data set. Validation data are used to test the network during
training but are not used to train the network. The network is trained to
perform optimally on the validation dataset.

Test Set: The remaining 10% are used as test data in which the data is not
used in the training of the models, and the outputs are assumed to be un-
knowns, mimicking the real life situation in which no output information is
not available on test data sets.

Experiments were conducted by applying the multilayer perceptron (MLP)
which processes data without considering the topological features, and by ap-
plying the GNN to the graph structured representation of the same dataset. The
MLP results will form a base upon which the results obtained from GNN can be
compared. Unless stated otherwise, the neural models trained were non-linear
models using the linear output function x = f(x) in the output layer. All other
neurons used the sigmoidal hyperbolic tangent transfer function. Two hidden lay-
ers with 10 neurons in each layer were used. In addition, for the GNN, we used
5 state neurons between the transition network and output network.

Processing without topological features: As a baseline performance mea-
sure, a standard MLP is used. This is to validate if the inclusion of structural
information into the machine learning method produces a noticeable advantage.
When using the MLP, the structured input data needs to be “squashed” into
a corresponding vector. This is performed as illustrated in Figure 2. Thus, the
training dataset consists of 6, 053 vectors of dimension 165, each of which is asso-
ciated with an 18 dimensional binary target vector. Iterating the MLP training
algorithm for 1, 000 iterations required 30 minutes of CPU time on a 3GHz Intel
3 There are other ways of dividing up the training dataset for training purpose, e.g.

N-fold cross validation method. In this case, the training dataset is randomly divided
into the training dataset, and N validation datasets. The algorithm is trained using
the training dataset, evaluated on randomly selected (N-1) validation sets and then
tested on the remaining validation set. The result is the average over all the exper-
iments, and the model which provides the best result will be selected. We decided
not to use the N-fold cross validation method as it will take too much time due to
the complexity of the tasks. This will become clear later in this section.

464 S.L. Yong et al.

Class 1 Document
<article>
 <bdy>
 <sec>
 <ip1></ip1>
 <p></p>
 <p></p>
 <p></p>
 <ip2></ip2>
 <p><it></it></p>
 <p></p>
 </sec>
 </bdy>
</article> [

⋮
1
⋮
0
⋮
5
⋮
1
⋮

]
<article> occurrence
is 1 at index 12

<sec> occurrence
is 1 at index 129

<p> occurrence
is 5 at index 110

<ilrj> occurrence
is 0 at index 62

Input Vector [1
1
⋮
⋮

1
]

Target Vector
Document belongs
to Class 1

Fig. 2. Conversion of an XML document to a MLP input and target. Each input pat-
tern is a vector p = [p1, ..., P165], where element ei equals the number of the occurrences
of the i-th XML tag in the document.

based CPU. The performance of the trained MLP on the test dataset is as shown
in Table 2. It can be observed that the performance meassured P and R can
vary greatly across the various classes and tend to produce better results for the
larger classes.

Table 2. MLP training results

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

R 0.06 0.11 0.10 0.13 0.22 0.28 0.02 0.04 0.14 0.30 0.17 0.14 0.62 0.41 0.33 0.43 0.16 0.56

P 0.03 0.07 0.03 0.08 0.12 0.11 0.01 0.01 0.09 0.08 0.12 0.07 0.34 0.29 0.31 0.39 0.09 0.27

Macro F1: 0.17, Micro F1: 0.12

To counter possible issues that may have arisen from the unbalanced distrib-
ution of pattern classes, we then trained the MLP by balancing the training set.
This was achieved by increasing the samples from the small classes by creating
copies of randomly chosen data from the same class. Copies were added until
each of the classes was of the same size as the largest class. The result of train-
ing the MLP on this dataset is shown in Table 3. It can be observed that the
performance increased slightly. The F1 values serve as a benchmark on which to
compare alternative approaches.

Processing data by including topological features: Graph Neural Network
is a neural network architecture which can process graph structures without pre-
processing. However for real world tasks, in general, training GNN without pre-
processing is not feasible due to the limitation of computer hardware memory
and processing speed.

Document Mining Using Graph Neural Network 465

Table 3. Balanced MLP training results

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

R 0.08 0.12 0.12 0.15 0.23 0.28 0.04 0.05 0.15 0.35 0.19 0.16 0.62 0.41 0.35 0.43 0.18 0.56

P 0.05 0.09 0.05 0.09 0.12 0.11 0.02 0.02 0.010 0.09 0.12 0.09 0.34 0.29 0.31 0.39 0.10 0.28

Macro F1: 0.18, Micro F1: 0.12

Without pre-processing, the resulting graphs have a maximum size of 14, 047
nodes. The GNN requires each graph to be mapped to a fixed size matrix4. In
addition, since GNN represents each node by a recurrent neural network, the
memory requirements also depend on the state dimension and on the number
of internal nodes in the transition network, which is an important contribution
to memory usage. Thus, it is found that without pre-processing, for 6,053 XML
documents, it will require storage for a total of 14, 047 × 6, 053 = 85, 026, 491
nodes. Since GNN has to store several data structures for each node, it is not
feasible to process such large data sets with current hardware capabilities, some
pre-processing is necessary to reduce the size of the data.

To find a good pre-processing technique, it is important to first understand
how GNN is deployed for the XML learning task. In the XML learning task, an
XML file is translated into a graph as shown in by an example as depicted in Fig-
ure 3. In Figure 3 it can be observed that for each XML tag that is encapsulated
by another tag this produces one child node in the graph. Since in XML it is
not possible to have overlapping tags such as <it><p></it></p>, the resulting
graph is a tree where links can be directed so as to indicate the parent/child
relationship between the nodes, or be undirected if no such relationship is to be
assumed.

GNN estimates the target state of a particular node depending on its neigh-
bour nodes iteratively. Referring to Figure 3, for example, the state of the node
<sec> depends on the nodes: <bdy>, <ip1>, <p> and <ip2>. However, if we
observe more carefully in Figure 3, the shaded node <p> differs from other <p>
nodes since it has an extra node <it> as its neighbour. Due to the extra neigh-
bour, the shaded <p> node should have a state different from the unshaded
<p> nodes. In Figure 3, we note further that there are four <p> nodes in the
same configuration. These can be grouped together to become one <p> node.
The shaded <p> node is a separate one from the unshaded <p> nodes. Thus,
in order to decrease the dimension of the training set we consolidate repeated
sub-structures. The result is that the graph depicted in Figure 3 is reduced to a
graph as shown in Figure 4.

With the pre-processing method, the graph size is reduced to a maximum of
78 nodes per XML document. Each node is then given a unique numeric label ac-
cording to the XML tag (as shown in Figure 5) to differentiate from other nodes.
Ideally these node labels should be multi-dimensional (i.e. 165 dimension in the

4 This is a limitation with the current software implementation. No such limitation is
imposed by the underlying theory of GNN.

466 S.L. Yong et al.

article

<article>
 <bdy>
 <sec>
 <ip1></ip1>
 <p></p>
 <p></p>
 <p></p>
 <ip2></ip2>
 <p><it></it></p>
 <p></p>
 </sec>
 </bdy>
</article>

bdy

sec

ip1 p p p ip2 p

it

p

Fig. 3. Conversion of an XML document to a corresponding graph structure

article

bdy

sec

ip1 p ip2 p

it

Fig. 4. The reduced XML Graph

12

17

129

65 110 66 110

70

Fig. 5. XML graph with node labels

INEX XML since there are 165 different tags) to maximize the Euclidean dis-
tance. For the experiments we use a one hot label representation l = [l1, . . . , l165],
where li = 1 if the node contains the i-th XML tag and li = 0, otherwise. How-
ever, a 165 dimension label is also not practical in this experiment, instead only
a 1-dimensional node label is used.

Graph Neural Network: Classification Using Structure Only. As a first
approach, we trained one GNN for each of the 18 document classes by creating
a training set which has a positive target value for patterns that belong to the
particular class, and a negative target value for all other patterns. The result is
18 GNNs where each of the GNN has been trained to recognize one class only. In
order to produce an overall classification of the test data, we also experimented
on a number of ways as follows:

1. The GNN that produced the largest (positive) value at the root node deter-
mines the class to which the document should be assigned5;

5 The root node is the root of the XML tree. It is possible for the GNN to compute
an output at every node. However, this approach should not be necessary when
processing tree structured data.

Document Mining Using Graph Neural Network 467

2. Training a MLP to process the output of all 18 GNNs on the root node. Here,
the MLP receives an 18-dimensional input (the output of the GNNs) and
is trained to produce as output the class membership of the input pattern.
Once trained, the GNN-MLP dual system produces the classification of a
test data.

3. For each of the 18 GNNs, combine the output created for all (78) document
nodes then take the highest output to determine the class of a document;
this is akin to the idea of a winner take all approach to processing the
classification outcome; and

4. Combine the scores of all (78) document nodes and process the output
through an MLP similarly to approach 2.

Table 4. The results for unbalanced training of GNN’s

Approach Micro F1 Macro F1

Highest Output of Root Node 0.13 0.09

MLP Output of Root Node 0.15 0.12

Highest Output of all Nodes 0.04 0.02

MLP Output of all Nodes 0.11 0.05

The results are as shown in Table 4. Upon closer investigation of these results,
it is found that most of the documents are classified as class “co”. Referring to
Figure 1, we observe that the class “co” is the largest class and its size is about
166% of the second largest class “tp” and 894% of the smallest class “tg”. This
raises the suspicion that the highly unbalanced nature of the training dataset
causes the low performance of the learning task.

Even with such a low performance, the results shown in Table 4 gives some
useful insight about using a GNN model:

1. Performance improves with using an MLP output. This can be explained
by the fact that the outputs of the GNN may have different magnitudes as
classes with more documents tend to have a larger output magnitude. These
magnitudes can be normalized to a common scale by using a MLP.

2. Classification based on root node performs better. This observation can be
explained as follows: the GNN architecture estimates the state of a node by
integrating the contributions of its neighborhood nodes. As the GNN learns
the structure of a graph interactively, eventually the root node will have a
consolidated state which allows it to separate the graph as a whole from
other graphs. Using the outputs of other nodes to classify a graph can add
noise. This is so because there are many similar substructures in the graphs
and they may belong to different classes.

With more understanding on this learning task using GNN, the experiments
are repeated with a balanced training dataset. This is achieved by weighting
the training data with respect to the frequency of occurrence in the training

468 S.L. Yong et al.

set. Then the weights are normalized such that the total sum of all weights is
equal to 1. For example, class “an” has 160 documents and class “mi” has 320
documents, the weights of each document in class “an” would be double those
of the documents in class “mi”. Balancing the dataset produced much better
results as shown in Table 5. The results confirm that an unbalanced distribution
of training patterns can have a significant negative impact on the performance
of a machine learning method.

Table 5. The results for GNN Classification based on root node with a balanced
training dataset

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

R 0.44 0.68 0.28 0.40 0.46 0.51 0.47 0.55 0.77 0.43 0.39 0.33 0.48 0.45 0.50 0.42 0.59 0.68

P 0.79 0.32 0.55 0.66 0.24 0.57 0.34 0.62 0.62 0.33 0.37 0.21 0.45 0.70 0.57 0.68 0.54 0.80

Macro F1: 0.48, Micro F1: 0.34

For the INEX XML Classification using structure only results, it is observed
that GNN is capable of performing better than the baseline MLP method. This
is an indication that the inclusion of structural information can help to improve
the overall performance of a machine learning method.

It is important to understand that using GNN, the number of network pa-
rameters are generally greater than that of a standard MLP. For the baseline
MLP training, a network with 2 hidden-layer each containing 50 neurons is de-
ployed. For the GNN, 2 neurons are used for each of the 2 hidden-layer of the
transition network. The transition network featured furthermore 2 states nodes
which also produce the output, and 2 neurons are used in the 2 hidden-layer of
the output network. Due to architectural differences between MLP and GNN, a
fair comparison between the two methods is difficult. However, in practice, the
experiments in GNN typically finished within 12 hours on a 3GHz Intel machine
with 2GB RAM. Thus, the GNN requires considerable more time for training
when compared to that of the MLP.

During the training of GNN, it was noted that the overfitting of GNN does
not appear to occur, and that convergence to a stable mean square error value
occured at about 1, 000 to 1, 500 training epochs. Since GNN does not appear
to overfit in this learning problem, there appears to be no particular need for a
validation dataset. Thus, in Section 3.2, the experiments are performed using all
of the data in the original training dataset.

3.2 Further Experiments

Having identified a suitable approach to the training task, in the following we
report experimental results which are based on utilizing 100% of the original
training dataset for training purposes, and include test results based on the test
dataset as provided by INEX 2006. In the following, all experiments are based
on a balanced training dataset obtained using the procedures indicated in the
previous section.

Document Mining Using Graph Neural Network 469

Better Understanding of INEX XML Document Structures: The results
in Section 3.1 show that using structure only for classifying the INEX XML
documents is not really practical. When the test dataset was released, some more
experiments are performed to test the performance of GNN on the classification
of either a document is in the class of “Transaction” or in the class of “Non-
Transaction”. It is found that the results are of no significant differences (see
Table 6). This means that in the INEX XML dataset, there is not much structural
differences between “Transaction” and “Non-Transaction” documents.

Table 6. The results for GNN Classification on “Transaction” and “Non-Transaction”
classes of documents

Transaction Non-Transaction Precision

Transaction 2341 1623 0.59

Non-Transaction 657 1433 0.69

Recall 0.78 0.47

GNN, Classification Using Structure and Content: A method is needed
to compute a numerical representation of the text contained in a document. As
a first approach, we extracted the textual content from each document in the
training set, applied the Porter stemming algorithm[7] to obtain a numerical
vector representing the text, then trained a näıve Bayes classifier[1] on these
data. The Porter stemmer algorithm implements a preprocessing procedure that
reduced the words of the documents to their radices. After such a preprocessing,
a bag of word representation was used to encode the documents, i.e. a document
was a vector d = [d1, d2, . . .], where di = 1 if the document contains the i-th word
of the dictionary and di = 0, otherwise. The näıve Bayes classifier produced an
18-dimensional binary vector indicating the class membership of the document
(which is computed based on the document’s textual content only). Thus, to
generate the labels for each node in a graph, we applied the following procedure
for each document in the dataset:

Step 1: remove the XML tags;
Step 2: remove the stop words;
Step 3: perform Porter stemming algorithm[7] on the content of the documents;
Step 4: näıve Bayes classifier is trained on the training set;
Step 5: the XML documents are classified into 1 of the 18 classes and an 18

dimensional binary node labels is concatenated to the original node
label (which represent XML tag) to form a 19 dimensional node label.
The concatenation affects all nodes of the same graph.

For example, the root node of the graph shown in Fig. 5 would now have a node
label of <12 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0> (assuming that the näıve Bayes
classifier output is class 1) instead of just <12> as was shown in Fig. 6.

Näıve Bayes classifiers are fast to train, and hence, are a suitable method for
pre-processing and labeling purposes. This paper considers two flavours of the

470 S.L. Yong et al.

Fig. 6. Graph of XML Document with multi-dimensional node labels

Table 7. Näıve Bayes on document content of test data only

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

R 0.29 0.42 0.72 0.21 0.88 0.27 0.41 0.07 0.49 0.39 0.06 0.76 0.88 0.55 0.26 0.54 0.87 0.27

P 0.96 0.87 0.38 0.88 0.77 0.94 0.89 0.90 0.79 0.81 1.00 0.63 0.36 0.58 0.91 0.82 0.67 0.88

Macro F1: 0.50, Micro F1: 0.53

Bayes classifier: the simple Bayes classifier, and the Bayes classifier using max-
imum entropy. The latter is computationally more demanding but can produce
enhanced results.

The Bayes classifiers classify the documents based on content only. The result
of the simple Bayes classifier on the test set is illustrated in Table 7. It can be
observed that the classifier produces a performance which is somewhat better
when compared to the results obtained on structure only approaches.

The result of a GNN trained on the data labeled by this classifier is illustrated
in Table 8. It can be observed that the performance of classification using this
method is significantly increased. This may indicate that the incorporation of
structural information into the learning task does indeed provide an input which
allows for significantly improved results. The results on the test dataset show
that this method achieved Micro F1 of 0.721440 and Macro F1 of 0.713969,
which is the best result obtained in the INEX XML classification competition6.
The best result submitted by any competitor was: Micro F1=0.59, Macro F1
0.58.

A confirmation of the results and observations made so far is found through
the application of the Bayes classifier using maximum entropy. The performance
of this advanced classifier is illustrated in Table 9. It is observed that the ad-
vanced classifier performs virtually at the same level as the GNN when trained
on data that were labeled by the simple classifier. We then labeled the nodes

6 Only one other party submitted results for the INEX 2006 classification competition
despite of 41 registered participants. This confirmed our impression that the training
task was very challenging.

Document Mining Using Graph Neural Network 471

Table 8. Test results for GNN Classification using both structure and content

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

R 0.94 0.75 0.69 0.54 0.70 0.76 0.64 0.17 0.53 0.48 0.34 0.81 0.82 0.82 0.83 0.90 0.96 0.81

P 0.80 0.76 0.49 0.89 0.83 0.82 0.68 0.92 0.70 0.81 0.79 0.69 0.83 0.77 0.88 0.87 0.89 0.78

Macro F1: 0.72, Micro F1: 0.71

in the training set by the response of the advanced classifier, and re-trained the
GNN accordingly. The results are shown in Table 10. It is observed that the in-
corporation of structural information has again helped to significantly improve
the classification of the GNN.

Table 9. Näıve Bayes using maximum entropy on document content of test data only

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

R 0.94 0.75 0.69 0.54 0.70 0.76 0.64 0.17 0.55 0.48 0.34 0.81 0.82 0.82 0.83 0.90 0.96 0.81

P 0.80 0.77 0.49 0.89 0.83 0.82 0.68 0.92 0.70 0.81 0.79 0.69 0.83 0.77 0.88 0.87 0.89 0.78

Macro F1: 0.72, Micro F1: 0.72

Table 10. GNN trained on labels produced by the Näıve Bayes Maximum Entropy
classifier

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

R 0.90 0.79 0.83 0.67 0.87 0.74 0.59 0.56 0.60 0.48 0.40 0.82 0.82 0.77 0.64 0.82 0.99 0.74

P 0.98 0.76 0.55 0.84 0.86 0.84 0.80 0.94 0.84 0.80 0.88 0.75 0.81 0.76 0.95 0.90 0.89 0.87

Macro F1: 0.76, Micro F1: 0.76

4 Conclusions

This paper demonstrated for the first time that a supervised machine learning
method capable of processing structured data is a suitable approach for classify-
ing possibly large sets of XML formatted documents. While the training phase
may seem time consuming, the application of a trained network to test data is
very fast. The classification of all test pattern completed in a matter of minutes.

It was furthermore shown that the combination of both structure and content
can help to improve the classification performance significantly. This seems to
indicate that the XML structure alone may not be a feature that allows for an
effective differentiation of the 18 pattern classes.

The encoding of document content into the training and test datasets can
be improved. Instead of utilizing the entire textual content of a document and
the attachment of identical labels to all nodes in a graph, it would be better to
consider only the text that is encapsulated by the individual XML tags. This
would allow for a distinct labeling of the nodes in a graph and should provide
an improved separation of the pattern classes. This approach is not covered in
this paper and is left as a future task.

472 S.L. Yong et al.

Acknowledgments

The work presented in this paper received financial support from the Australian
Research Council in form of a Linkage International Grant and a Discovery
Project grant.

References

1. Crnkovic-Dodig, L., Elkan, P.: Classifier showdown http://blog.peltarion.com/-
2006/07/10/classifier-showdown/

2. Denoyer, L., Gallinari, P.: Report on the xml mining track at inex 2005 and inex
2006. In: proceedings of INEX 2006 (2006)

3. Frasconi, P., Francesconi, E., Gori, M., Marinai, S., Sheng, J., Soda, G., A., S.:
Logo recognition by recursive neural networks. In: Kasturi, R., Tombre, L.K. (eds.)
Second International Workshop on Graphics Recognition, GREC‘97, pp. 104–117.
Springer, Heidelberg (1997)

4. Haykin, S.: Neural Networks, A Comprehensive Foundation. Macmillan College Pub-
lishing Company, Inc. 866 Third Avenue, New York, New York 10022 (1994)

5. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Process-
ing. The MIT Press, Cambridge, Massachusetts (1999)

6. Pineda, F.J.: Generalization of back-propagation to recurrent neural networks. Phys-
ical Review Letters 59(19), 2229–2232 (1987)

7. Porter, M.F.: An algorithm for suffix stripping, pp. 313–316. Morgan Kaufmann
Publishers, San Francisco (1997)

8. Scarselli, F., Yong, S., Gori, M., Hagenbuchner, M., Tsoi, A., Maggini, M.: Graph
neural networks for ranking web pages. In: Web Intelligence Conference, pp. 666–672
(2005)

9. Sperduti, A., Starita, A.: Supervised neural networks for the classification of struc-
tures. IEEE Transactions on Neural Networks 8(3), 714–735 (1997)

http://blog.peltarion.com/- 2006/07/10/classifier-showdown/
http://blog.peltarion.com/- 2006/07/10/classifier-showdown/

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 473–484, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Evaluating the Performance of XML Document
Clustering by Structure Only

Tien Tran and Richi Nayak

Faculty of Information Technology, Queensland University of Technology
Brisbane, Australia

t4.tran@qut.edu.au, r.nayak@qut.edu.au

Abstract. This paper reports the results and experiments performed on the
INEX 2006 Document Mining Challenge Corpus with the PCXSS clustering
method. The PCXSS method is a progressive clustering method that computes
the similarity between a new XML document and existing clusters by
considering the structures within documents. We conducted the clustering task
on the INEX and Wikipedia data sets.

Keywords: Clustering, XML document mining, Structural mining, INEX,
XML, Structural similarity.

1 Introduction

With the emergence of XML standard, XML documents are widely accepted by many
industries such as business, education, entertainment and government [2]. With the
continuous growth of XML data, many issues concerning with the management of
large XML data sources have also arisen. For efficient data management and
retrieval, a possible solution is to group XML documents based on their structure and
content. The clustering of XML documents facilitates a number of applications such
as improved information retrieval, document classification analysis, structure
summary, improved query processing [1, 8] and so on.

The clustering process categorizes the XML data based on a similarity measure
without the prior knowledge on the taxonomy [4]. Clustering techniques have
frequently been used to group similar database objects and text data. However,
clustering of XML documents is more challenging because a XML document has a
hierarchical structure and there exist relationships between element objects at various
levels.

We propose to use the PCXSS algorithm [7] that is developed to deal with the
heterogeneous XML schemas to cluster the INEX 2006 Document Mining Challenge
Corpuses [3]. The PCXSS (Progressively Clustering XML by Structural Similarity)
algorithm employs a global criterion function CPSim (common path coefficient) that
measures the similarity between an XML document and existing clusters of XML
documents, instead of computing the pair-wise similarity between two data objects.
The PCXSS, originally developed for the purpose of clustering of heterogeneous
XML schemas, has been modified and applied to cluster the INEX 2006 XML
documents by considering only the structure of XML documents.

474 T. Tran and R. Nayak

Our philosophy is based on the common usage of XML that is, XML is mainly
used for representing the text data in the structured format. Based on this, we assume
that a clustering algorithm should group the documents that share a similar structure.
For example, documents from the publication domain would have different structure
from the documents from the movie domain. Our initial work has shown that the
structure of the documents plays a prominent role in grouping the similar XML
documents [6]. The semantic difference in tag names can be avoided during the
clustering process. In these experiments, we also have not included the instances. The
inclusion of instances (the contents within the tag) incurs an additional computing
cost. We would like to test the hypothesis such as how important is the structure of
the XML documents when categories of documents are mainly based on theme such
as the INEX 2006 Document Mining Challenge Corpuses.

The next section gives an overview of the PCXSS methodology. Interested readers
can read [7] for a more detailed discussion on this methodology. Phases of the PCXSS
method are then described further in Sections 3 and 4. Section 5 reports the results,
experiments and data analysis performed on INEX and Wikipedia data sets. The
paper is then concluded and further work is outlined in Section 6.

2 The PCXSS Method: Overview

Fig. 1 illustrates a high level view of the PCXSS method. The pre-processing phase
decomposes every XML document into the structured path information called node
paths. Each path contains the node properties from the root node to the leaf node. The
first stage of the clustering phase i.e., ‘structure matching,’ measures the structural
similarity between node paths of a XML document and other objects (the existing
clusters). This stage determines the similarity between two objects according to the
nodes they share common in their paths. The output of the structure matching stage is
the common path coefficients (CPSim) between the document and all existing
clusters. The second stage of the clustering phase groups the XML document into an
existing cluster with which it has the maximum CPSim or assigns it to a new cluster.

A number of modifications have been made to the PCXSS method in order to
experiment with the INEX 2006 corpus. Firstly, the pre-processing phase extracts the
structure of every XML documents into X_Paths where only the name of the element
is considered. Other information such as data type and constraints are ignored.
Secondly, the structure matching of the clustering phase measures the structural
similarity between X_Paths of a document and of clusters considering only the exact
match between element names. We do not consider the various semantic and
syntactic meanings that an element name can have during the structure matching. We
have shown elsewhere that semantics of an element name (such as person vs. people)
in XML documents do not make any significant contribution when determining
similarity between two XML documents [6].

3 PCXSS Phase 1: Pre-processing

All documents in the INEX collection or in the Wikipedia collection conform to only
one DTD schema. As a result, we do not perform the pre-processing of element

 Evaluating the Performance of XML Document Clustering by Structure Only 475

Fig. 1. The PCXSS Methodology

names while inferring the structure of the documents. Only a simple pre-processing
step has been applied on the XML documents. An XML document is first parsed and
modelled as the labelled tree (Fig. 2). The attribute of an element is modelled exactly
the same way as its child elements. The tree is then decomposed into X_Paths to
represent the structure of the XML document.

An X_Path is formally defined as an ordered sequence of tags from a root to a leaf
node which includes hierarchical structure. An XML document consists of many
X_Path sequences and the order of X_Paths is ignored because each X_Path is
considered as an individual item in the XML document structure. Moreover,
duplicated X_Paths in a document structure are eliminated. After the pre-processing
of XML documents, documents are represented as a collection of distinct X_Paths.

4 PCXSS Phase 2: Clustering

The clustering phase consists of two stages: structure matching and clustering. At
structure matching stage, the similarity between a XML document and existing
clusters is measured. The output of this stage is a similarity value called CPSim
(Common Path Similarity) between an XML document and a cluster. CPSim is then
used in the clustering stage to group the XML document into an existing cluster with
which it has the maximum CPSim, or assigns it to a new cluster if (1) the clustering
number has not yet exceeded and (2) CPSim does not exceed the clustering threshold.

4.1 Structure Matching Stage

Each node in a node path of a document is matched with the node in a node path of
the clusters, and then aggregated to form the node path (or structure) similarity.

4.1.1 Node Matching
The node matching process measures the similarity between the nodes in node paths
by considering the name similarity only. While clustering XML schemas, PCXSS also
includes the data type similarity (Tsim) and constraints similarity (Csim). As the
INEX 2006 documents follow the same schema, neither semantic nor syntactic
similarity computation is needed on the element name matching. Additionally, the
exact matching process on element names saves a significant computation effort.
Consequently, node matching depends on the exact match of the node names. For
example, the last node at level 2 in Fig 2 is ‘bdy’. Consider another tree that contains

476 T. Tran and R. Nayak

a node named as ‘body’. If we compare these two trees, these two nodes will not be
considered similar; however, they are syntactically similar. In a similar fashion, a
node named as ‘person’ in one tree and a node named as ‘people’ in another tree will
not be considered similar, although, they are semantically similar. The NodeSim
value between element names is equal to 1 if they have an identical name else it is
assigned with a 0.

Fig. 2. An XML Document (article) & its Tree Representation

4.1.2 Structure Similarity
The frequency of common nodes appearing in two XML structures is not sufficient to
measure the similarity of XML data. XML is different from other web documents
such as HTML or text because it contains the hierarchical structure and relationships
between elements. The order of where the element resides in the structure is
important in determining the structural similarity between the XML document and
existing clusters.

The structural similarity between two XML documents is measured by first finding
the common nodes between two paths and then finding the common paths between
two trees. The structure matching process in PCXSS is advanced by starting at leaf
node between two paths to detect more similar elements within structures.

Common nodes finding. The degree of similarity between two node paths, defined as
path similarity coefficient (Psim), is measured by considering the common nodes
coefficient (CNC) between two paths. The CNC is the sum of NodeSim of the nodes
between two paths P1 and P2 as shown in Fig. 3. Psim of paths, P1 and P2 is the
maximum similarity of the two CNC functions (P1 to P2 and P2 to P1) with respect to
the maximum number of node in both paths, P1 and P2, defined as:

),(

),(),,((
),(

21

1221
21 PPMax

PPCNCPPCNCMax
PPPsim =

 (1)

 Evaluating the Performance of XML Document Clustering by Structure Only 477

Function:),(21 PPCNC

Sim:= 0; for each in
1P∈

 while j not end of
2P length

 if (NodeSim(in ,
jn)) ==1

 Sim += NodeSim(
in ,

jn)

 j--
 break from ‘while’ loop

 else
 j--
 end if
 end while
end for
return Sim

Fig. 3. The CNC function

Fig. 4 shows an example of traversing through the CNC function.
Consider two paths: Path1 (1/2/3/4/5/6) and Path2 (1/2/4/5/6). Path1 contains 6

element names that are showed as numbers for convenience. The following steps are
iterated when calculating the CNC function:

1. Start at the leaf element of both paths (j=5, i=4). If the NodeSim coefficient of

the leaf elements equals to 1 (a match) then increase Sim by NodeSim coefficient
and go to step 2 else go to step 3.

2. Move both paths to the next level (j--, i--) and start element matching at this
level. If the NodeSim coefficient of these elements equals to 1 (a match) then
increase Sim by NodeSim coefficient and repeat step 2 else move to step 3.

3. Move only Path 1 to the next level (j--) then start element matching in the
original level of Path 2 (i) to the new element of Path 1.

Fig. 4. Example of CNC Matching

478 T. Tran and R. Nayak

The CNC function is not transitional. It means that CNC(P1, P2) is not equal to
CNC(P2,P1). This is due to the fact that if the leaf element from P1 can not be found in
P2 then no further matching is required. However, in some cases, one path may be a
sub-path of the other. If P2 is a sub-path of P1, and if the leaf element can not be
found in P2 then the CNC(P1, P2) returns 0. However CNC(P2, P1) will return a value
according to the matching. As a consequence, both CNC(P1, P2) and CNC(P2,P1) are
computed and the maximum of the two is used to measure the degree of similarity
between the two paths.

The Psim value is monitored by a path similarity threshold. The threshold
determines whether the two node paths are similar. If the Psim of two node paths
exceeds the path similarity threshold then it is used to determine the structural
similarity between the trees and existing clusters.

Common paths finding. PCXSS measures common paths (1) between two trees and
(2) between a tree and a cluster.

Tree to Tree Matching: The tree to tree matching is the matching between a new tree
and a cluster that contains only one tree. This is defined as:

),(

)),(max(

),(
21

1

||

1
21

1 2

TPathTPathMax

PPPsim

TreeTreeCPSim

TPath

i

TPath

j

ji∑ ∫
= ==

(2)

CPSim is the common path similarity between two XML trees. The CPSim of trees,
Tree1 and Tree2 is the sum of the best path similar coefficient (Psim) of paths, Pi and
Pj with respect to the maximum number of paths, |TPath1| and |TPath2| of trees, Tree1

and Tree2, respectively. The clustering process in PCXSS works on the assumption
that only one path from Tree1 matches with one path in Tree2. Thus, it only selects
the maximum Psim between each pair of paths of Tree1 and Tree2.

Tree to Cluster Matching: The tree to cluster matching is the matching between a new
tree and the common paths in a cluster. The common paths are the similar paths that
are shared among the trees within the cluster (normally a cluster must contain at least
2 or more trees in the cluster to have the common paths or else the tree to tree
matching is required). Initially, the common paths are derived in the tree to tree
matching. Then every time a new tree is assigned to the cluster, the similar paths are
added to the cluster if paths are not already in the cluster. The tree to cluster
matching is defined as:

|)(|

)),(max(

),(

||

1

||

1

TPathMax

PPPsim

ClusterTreeCPSim

TPath

i

CPath

j

ji∑ ∫
= ==

(3)

Similar to the tree to tree matching, CPSim between a tree and a cluster is the sum of
the best Psim of paths, Pi and Pj w. r. t. the number of paths, |TPath| in the Tree.

 Evaluating the Performance of XML Document Clustering by Structure Only 479

4.2 Clustering Stage

PCXSS is an incremental clustering method. It first starts off with no cluster. When
a new tree comes in, it is assigned to a new cluster. When a next tree comes in,
CPSim is computed between the tree and the existing cluster. If CPSim exceeds the
clustering threshold and the cluster has the largest CPSim with the tree then the tree is
assigned to that cluster else it is assigned to a new cluster. The node paths of the tree
that are used to compute the CPSim are then added to the cluster. The node paths in
the cluster are referred to as common paths. The common paths in the cluster are then
used to measure the CPSim between the cluster and new trees. Since the common
paths (instead of all the node paths of the trees held within a cluster) are used to
compute CPSim with new trees, the computation time reduces significantly. In
addition, the cluster contains only the distinct common paths (duplicate paths are
removed from the cluster).

5 Experiment and Discussion

Test data. The data used in the experiments are the INEX corpus and Wikipedia
corpus from the INEX XML Mining Challenge 2006. Table 1 shows the properties of
the experimental corpus.

 Table 1. Test Data Sets

Test Data No. of Classes No.of XML documents Size
(MB)

INEX 18 6054 259
Wikipedia 60 75047 530

Evaluation methods. For the INEX XML Mining Challenge 2006, the clustering
solutions are measured using the f1-measures: micro-average f1 and macro-average
f1. These measures are used to evaluate multi-labeled classification (more than 2
labels). To understand how micro-average f1 and macro-average f1 are measured, it
is necessary to revisit the precision, recall and f1-measure. For example, for binary
classification, the precision (p), recall (r) and f1-measure are defined below, where A
stands for the number of positive samples which are predicted as positive, B stands
for the number of false negative samples which are predicted as positive, and C stands
for the number of false positive samples which are predicted as negative

BAAp += / CAAr += / rpprf += /21

In a multi-label classification, summing up A, B and C values from all binary
classifications respectively and then these values are used to calculate f1 value is
called micro-average f1 measure. The macro-average f1 is derived from averaging
the f1 values from all binary classifications. Refer to paper [5] for more information
on f1 measure for multi-label classification. Micro and macro f1 measures are

480 T. Tran and R. Nayak

applied directly on multi-label classification solutions for evaluation. However, to
measure the clustering solutions, the clustering solutions are first converted to
classification solutions before calculating the micro and macro f1 measures.

Experiments and Results. We submitted 3 results for the INEX test data and 1 result
for the Wikipedia test data to the INEX XML Document Mining track 2006. The
varied submissions were made due to the results obtained by setting different
thresholds during experiments. The results of the clustering solutions performed by
PCXSS are shown in Table 2.

 Table 2. Results from INEX XML Mining Track 2006

Clustering Threshold Categories
Discovery

Micro F1 Macro
F1

0.5 (INEX) 7 0.072944 0.039460
0.7 (INEX) 6 0.088004 0.044307
0.8 (INEX) 7 0.088824 0.044641
0.3 (Wikipedia) 20 0.120460 0.037375

The F1 measure of the clustering solutions obtained with PCXSS on the INEX and
Wikipedia test data are low. We examined the results and our experimental setups to
find out why the clustering solutions have low performance. Firstly, we used the
different thresholds to see whether does the threshold value is a reason for poor
performances. The results do not seem to improve much by varying the threshold
values.

Secondly, we eliminate attributes of an element to see whether it can improve the
clustering solutions. The results in Table 3 show that the removals of the attributes of
the elements somewhat improve the clustering results using the same thresholds.
However, the results are not yet satisfactory. The reason for the improvement may be
that the attributes contained by the Wikipedia and INEX corpuses do not play an
importance in understanding the structure of the XML document itself.

 Table 3. Clustering Solution without the Attributes

Clustering Threshold Categories
Discovery

Micro F1 Macro F1

0.5 (INEX) 7 0.149186 0.090254
0.7 (INEX) 10 0.150553 0.096187
0.8 (INEX) 10 0.150553 0.096187

The clustering solution using a clustering threshold of 0.8 in table 2 is further
analysed. This clustering solution has discovered 7 out of 18 true categories. Table 4
below shows the mapping between 18 clusters that have been generated by PCXSS
and the true categories.

 Evaluating the Performance of XML Document Clustering by Structure Only 481

Table 4. Mapping of 18 Clusters Discovered by PCXSS to its True Category

18 Clusters Discover by PCXSS True Category
11 11
10 3
13 17
12 13
15 3
14 3
17 5
16 3
18 14
1 3
3 13
2 3
5 3
4 3
7 3
6 12
9 3
8 5

It shows that the documents in category 3 are widely spread out over the 18 clusters
that have been discovered by PCXSS. This can happen due to many reasons. Firstly
the XML documents from same category (in this case 3) are not grouped together into
one cluster by PCXSS due to the differences in structure and size. The PCXSS
algorithm mainly derives the solution based on structure similarity. Moreover, the
contents within tags play a significant role in measuring the similarity between
documents of the INEX corpus in which documents conform to only one schema. We
have ignored the contents within tags in our experiments.

To achieve some success, we tried another modification to the clustering
algorithm. The principle is to increase the time performance while maintaining the
accuracy. Since the accuracy obtained is not very high, we decided to measure the
similarity between a XML document with the first tree in the cluster without using
common paths. We only consider the first tree that formed the cluster instead of
comparing with all the common paths (of all trees) that are included in the cluster.
The results of the INEX corpus are shown in Table 5.

The clustering solutions achieve somewhat better results than those in Table 3. It
shows that the clustering on common paths on these kinds of data may not be
sufficient enough without including the contents within tags.

PCXSS with the Iteration Phase. The XML documents are grouped according to
CPSim between an XML document and existing trees. We do not include further
iterations to refine the clustering process. Due to the absence of iteration phase, the
clustering process highly depends upon the order of the data set and the clustering
threshold. Consider this scenario: the clustering threshold is firmly set as 0.8 in the

482 T. Tran and R. Nayak

 Table 5. Results from the Modification of the Clustering Alogrithm in PCXSS

Clustering
Threshold

Categories
Discovery

Micro F1 Macro F1

0.8 (INEX) 9 0.179525 0.115392
0.9 (INEX) 9 0.174740 0.118604
0.3 (INEX) 6 0.103753 0.051152
0.4 (INEX) 7 0.126618 0.086362
0.4 (Wikipedia) 18 0.121828 0.050716
0.7 (Wikipedia) 10 0.125178 0.033793
0.6 (Wikipedia) 13 0.126537 0.034368

experiment. CPsim between two documents from the same domain is measured as
0.75 while processing. These documents are not considered to be grouped together
according to this predefined threshold.

With the current PCXSS clustering process when the desired number of cluster is
reached, for the remaining data set, PCXSS will not use the predefined threshold but
will find the best similarity from the existing cluster that this remaining data set can
be grouped into. This in turn creates a problem at the start when two documents
belong to the same group are split into two different clusters. Due to this problem, the
experiment is then extended the PCXSS clustering process by including the iteration
phase.

The iteration works as follows: after the PCXSS clustering process ends (with the
clustering number greater than the predefined one), the iteration phase starts by going
through all the existing clusters and merging clusters together if their similarity is
greater than the clustering threshold until the desired number of cluster is reached. At
the end of the iteration phase if the number of existing clusters is still greater than the
desired number of cluster, the iteration phase starts again and the clustering threshold
will be decremented by 0.1 until the number of desired cluster is reached.
Decrementing the clustering threshold can help to identify two clusters that contain
documents from the same domain but have the similarity values lower than the rigid
predefined clustering threshold. These two clusters can be merged together.

The experiment uses 0.7 for the clustering threshold and runs the PCXSS with the
iteration phase on INEX 6054 test data. The micro and macro F1 of the clustering
solution are 0.095 and 0.057 respectively, which are lower than PCXSS with no
iteration phase shown in Table 2. We can argue here that the iteration phase proposed
in this experiment is not suitable. The reasons are twofold: (1) XML documents from
different categories contain many overlapping tags and (2) XML documents from the
same category greatly vary in size. For example, XML documents from the ‘an’
category have an XML document that is 1KB and another document is 276KB in
document size, where there is a big gap difference in both tags and content. These
two documents surely can never be grouped together if XML documents from
different categories have many overlapping tags and content.

During the testing and analysis of the INEX data set, it has been ascertained that
even if PCXSS is extended by including contents in the clustering process, the
clustering solution will not be that much better if no training or learning is done on

 Evaluating the Performance of XML Document Clustering by Structure Only 483

the INEX data set because two documents from the same category may contain
different content and keywords (where semantic learning of the content or keywords
may require). Thus, the INEX test data is more suitable for the classification task
rather than for the clustering task.

Based on all the experiments above, it can be ascertained that measuring the
structure similarity in the documents derived from the same schema do not show any
advantage. The usual methods of matrix computations considering only the contents
of documents such as vector space or neural networks may have been more
appropriate here. The structure overlapping in the documents of the corpus due to
deriving from the same schema and the large variations in the sizes and structures of
documents from the same category also downplay the PCXSS clustering process.

6 Conclusions and Future Work

This paper presented the experience of applying the PCXSS clustering method
considering only the structure of the XML document to cluster the data of the INEX
2006 document mining challenge. Our aim was to explore whether the structure of the
XML documents overplay the instances (contents within tags) of the documents for
the clustering task. The experiments show that the structure matching employed by
PCXSS alone can not be applied well on the INEX documents especially when the
XML documents conform to only one schema. Furthermore, INEX documents are
data-centric based where the structure of the document plays a small role in
determining the similarity between INEX documents.

The development of the PCXSS clustering algorithm originally meant to cluster the
heterogeneous schemas. Use of PCXSS on the XML documents may need a number
of extensions such as the learning of instance and data type for a more efficient
clustering solution.

For future work, PCXSS will be extended to include the learning of content and to
develop a more suitable iteration phase for the clustering process so that it is not
highly depended on the predefined threshold. The effect of the size and of the order of
the XML documents will also be thoroughly investigated in PCXSS. The PCXSS
method will be appropriately modified to reduce those effects.

References

1. Boukottaya, A., Vanoirbeek, C.: Schema matching for transforming structured documents.
In: 2005 ACM symposium on Document engineering. Bristol, United Kingdom (November
02-04, 2005)

2. Bray, T., et al.: Extensible Markup Language (XML) 1.0 (Third Edition) W3C Recommen-
dation (2004)

3. Denoyer, L., Gallinari, P.: Report on the XML Mining Track at INEX 2005 and INEX
2006. In: INEX 2006 (2006)

4. Han, J., Kamber, M.: Data Mining. In: Concepts and Techiques, Morgan Kaufmann, Seattle,
Washington, USA (2001)

5. Luo, X., Zincir-Heywood, N.: Evaluation of two systems on multi-class multi-label
document classification. In: ISMIS05, New York, USA (2005)

484 T. Tran and R. Nayak

6. Nayak, R.: Investigating Semantic Measures in XML Clustering. In: The 2006 IEEE/ACM
International Conference on Web Intelligence. Hong Kong (December 2006)

7. Nayak, R., Tran, T.: A Progressive Clustering Algorithm to Group the XML Data by
Structural and Semantic Similarity. To be published in International Journal of Pattern
Recognition and Artifical Intelligence (Data of Acceptance: 9th October 2006)

8. Nayak, R., Witt, R., Tonev, A.: Data Mining and XML documents. In: The 2002
International Workshop on the Web and Database (WebDB 2002) (June 24-27, 2002)

FAT-CAT: Frequent Attributes Tree Based

Classification

Jeroen De Knijf

Universiteit Utrecht, Department of Information and Computing Sciences
PO Box 80.089, 3508 TB Utrecht

The Netherlands
jknijf@cs.uu.nl

Abstract. The natural representation of XML data is to use the un-
derlying tree structure of the data. When analyzing these trees we are
ensured that no structural information is lost. These tree structures can
be efficiently analyzed due to the existence of frequent pattern mining
algorithms that works directly on tree structured data. In this work we
describe a classification method for XML data based on frequent at-
tribute trees. From these frequent patterns we select so called emerging
patterns, and use these as binary features in a decision tree algorithm.
The experimental results show that combining emerging attribute tree
patterns with standard classification methods, is a promising combina-
tion to tackle the classification of XML documents.

1 Introduction

In recent years there has been a growing interest from the knowledge discovery
and data mining community in analyzing and mining XML data. The main rea-
sons for this are the growing amount of semi-structured data and the widespread
adoption and use of XML as the standard for semi-structured data. Frequent tree
mining is a data mining technique that is able to exploit the information on the
structure of the data present in XML-databases. Frequent tree mining is an in-
stance of frequent pattern mining, specialized on tree structured data. Some well
known algorithms are described in [2,13,14]. Briefly, given a set of tree data, the
problem is to find all subtrees that satisfy the minimum support constraint, that
is, all subtrees that occur in at least n% of the data records.

Classification is a major theme in data mining; the goal of classification is to
predict the class of objects based on their attributes. Within the frequent pattern
mining paradigm different classification approaches have been developed. In the
work of Li et. al [11] classification is based on association rules i.e., it computes
frequently occurring items associated with a class label. A drawback of this
approach when applied to XML data is that the structure of XML data is lost.
Frequent pattern based classification techniques that are suited for structured
data are described in the work of Zaki and Aggarwal [15], Geamsakul et al. [9]
and Bringmann and Zimmermann [5]. The first method computes frequent trees,
orders these based upon some rule strength measures, and uses a decision list

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 485–496, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

486 J. De Knijf

B

A

B

D B

A

D

T1

a1 a3 a5

a2 a3 a5

a2 a4

a1 a2

d1

a2 a3

a1

Fig. 1. T1 is an induced subtree of the rooted ordered attribute tree d1

approach to build a classifier. The other two methods compute interesting tree
or graph patterns and use these as binary features in a standard classification
method such as decision trees [12].

A drawback of the current frequent pattern based classification algorithms is
that the existence of attributes associated with structured data is ignored, and
hence potentially useful information is neglected. In previous work [10] we have
described FAT-miner an efficient algorithm to mine tree structured data where
attributes play an important role in the mining process. In this work we describe
FAT-CAT; a classification method for XML data, based on frequent attribute
trees. We applied this classification method to the Wikipedia [7] classification
dataset, and discuss the results. Furthermore, these results are compared with
those of a frequent pattern approach, that ignores the attributes of the dataset.

2 The Mining Algorithm

In this section we provide the basic concepts and notation used in this paper
and describe the mining algorithm.

2.1 Preliminaries

A labeled rooted ordered attribute tree T = {V, E, ≤, L, v0, M} is an acyclic
directed connected graph which contains a set of nodes V , and an edge set E.
The labeling function L is defined as L : V → Σ, i.e., L assigns labels from
alphabet Σ to nodes in V . The special node v0 is called the root of the tree. If
(u, v) ∈ E then u is the parent of v and v is a child of u. For a node v, any node u
on the path from the root node to v is called an ancestor of v. If u is an ancestor
of v then v is called a descendant of u. Furthermore there is a binary relation ‘≤’
⊂ V 2 that represents an ordering among siblings. The size of a tree is defined
as the number of nodes it contains; we refer to a tree of size k as a k-tree. The
set of attributes is denoted by : A = {a1, . . . , an}, where each attribute takes its

FAT-CAT: Frequent Attributes Tree Based Classification 487

value from a finite domain. We further assume that there is an ordering among
the attributes; i.e., aj ≺ ak. To each node v in V , a non-empty subset of A is
assigned; we call this set the attributes of v. More formally: M : V → P(A)\{∅}.

Given two labeled rooted attribute trees T1 and T2 we call T2 an induced
subtree of T1 and T1 an induced supertree of T2, denoted by T2 � T1, if there
exists an injective matching function Φ of VT2 into VT1 satisfying the following
conditions for any v, v1, v2 ∈ VT2 :

1. Φ preserves the labels: LT2(v) = LT1(Φ(v)).
2. Φ preserves the order among the siblings: if v1 ≤T2 v2 then Φ(v1) ≤T1 Φ(v2).
3. Φ preserves the parent-child relation: (v1, v2) ∈ ET2 iff (Φ(v1), Φ(v2)) ∈ ET1 .
4. Φ preserves the attributes: ∀v ∈ VT2 : M(v) ⊆ M(Φ(v)).

In figure 1 an example data tree (d1) is shown together with one of it’s
subtrees. Let D = {d1, . . . , dm} denote a database where each record di ∈ D, is
a labeled rooted ordered attribute tree. Let C = {c1, . . . , ck} be the k classes in
the data. With Dci we denote the set of records in the database that has class
label ci, likewise with Dci

the set of records in the database is denoted that has
a class label different form ci. For a given labeled rooted ordered attribute tree
T , we say T occurs in a transaction di if T is a subtree of di. Let σdi(T) = 1
if T � di and 0 otherwise. The support of a tree T in the database D is then
defined as ψ(T) =

∑
d∈D σd(T), that is the number of records in which T occurs

one or more times. Likewise, the support within a class ci of a tree T is defined
as ψ(T |ci) =

∑
d∈Dci

σd(T), that is the number of records with class label ci

in which T occurs one or more times. T is called frequent within the class ci

if ψ(T |ci)/|Dci | is greater than or equal to a user defined minimum support
(minsup) value.

In general, the goal of frequent tree mining algorithms is to find all frequently
occurring subtrees in a database. In the current setting, we are interested in all
frequently occurring subtrees within the classes. Besides the frequency within
a class constraint, an additional requirement is that a pattern is an emerging
pattern for its class, i.e. patterns that occur often in one class and rarely in any
other class. These patterns can have very discriminating properties, which is
useful for classification. The parameters used for minimal support and whether
a patterns is an emerging pattern will be discussed in section 3. The naive
method to compute the desired patterns is to compute all subtrees, and select
from these previously computed patterns the ones that are frequent. However,
this is unfeasible from a computational point of view; the number of subtrees of
a tree T is exponential in the size of T . To compute all the frequent patterns,
the anti-monotonicity property of the support function ψ is used: Ti � Tj ⇒
ψ(Ti) ≥ ψ(Tj). With this observation infrequent patterns can be pruned, which
reduces the search space drastically.

2.2 FAT-Miner

The main idea for the attribute tree mining algorithm is to split the mining
process in a global mining stage and a local one. Loosely speaking the global

488 J. De Knijf

⊥

A a1

a2 a4

A

B

a1

a4

a1

a2

A

A a1
a1

B

a1 a2

A

B a1 DD a2 a3

A A

B B

B B

B

B DDD a2 a2 a2

a1 a1 a1

a1 a1 a1 a1 a2 a3

a1

a2

D

B

B

A

Fig. 2. Part of the enumeration tree for patterns on the tree d1 (shown in figure 1)

mining part consist of a slightly modified rooted tree mining algorithm as de-
scribed in the work of Asai et. al [2]: Enumeration of all frequent subtrees is
accomplished by using the rightmost extension technique, that is, a (k − 1)-tree
is expanded to a k-tree by adding a new node only to a node on the rightmost
branch of the (k − 1)-tree. The local mining must be performed for every node
of the subtrees. It boils down to the computation of frequent attribute sets from
all the attributes to which the node of the subtree is mapped in the database.
In this setting, the local mining algorithm is slightly different from existing fre-
quent itemset mining algorithm [1,3]. This difference is mainly due the fact that
the node labels can occur multiple times in a tree. The local and global mining
methods have to be combined: the idea is that whenever a candidate tree T (of
size k) is generated, the local mining algorithm determines the first frequent
attribute set of vk, say A1. If there is none, then T must be pruned. Otherwise
all supertrees of T are computed, where the attribute set of vk equals A1. When
there are no more frequent extensions of T left, the next frequent itemset of vk

is computed and this frequent pattern is then further extended. For both the
global and local mining a depth-first search through the enumeration lattice is
used. In figure 2, this principle is illustrated: the partial enumeration tree of d1

is shown.
In figure 3 the pseudo code for the local mining algorithm is given. In the

function LocMine in case of a non-empty attribute set X , we represent with ak

the attribute which comes last in the ordering of the attributes in X . Recall
that we earlier defined that the set of attributes has as element with the highest
order an. First, for every possible extension of X with a higher ordered attribute
than ak, the frequency is determined. If one of these extensions is frequent,

FAT-CAT: Frequent Attributes Tree Based Classification 489

Function LocMine (X, OCL)
if X = ∅

then
l ← 1

else
l ← k + 1

do
while l ≤ n

if support(X ∪ al) ≥ minsup
then

(X ← X ∪ {al})
return(X,ComputeOcc(X, OCL))

else
l ← l + 1

Y ← X
if X = ∅

then
X ← X \ {ak}
l ← k + 1

while Y = ∅

return (∅, ∅)

Function ComputeOcc(X, OCL)
out ← ∅

for each di ∈ OCL

for each Φj
di

∈ di

if X ⊆ M(Φj
di

(vk+1))

then
out ← out ∪ Φj

di

return out

Fig. 3. The local mining algorithm

Algorithm FAT-miner(database D)
out ← ∅

C1 ← candidate one patterns
for each T ∈ C1

out ← out∪ Expand-Trees(T, D)
return out

Function Expand-Trees(T, D)
out ← ∅

do
(Aset, Nocc) ← LocMine(M(T), occ(T, D))
if |Nocc| ≥ minsup
then

M(vk+1) ← Aset
occ(T, D) ← Nocc
out ← out ∪ T
Ck+1 ← candidates generated from T
for each ck+1 ∈ Ck+1

out ← out∪ Expand-Trees (ck+1)
while |Nocc| ≥ minsup

return out

Fig. 4. The global mining algorithm

the function ComputeOcc is called. This function determines all mappings in a
list (occurrence list), for which the rightmost node of the mapping covers the
frequent extension. If none of the previous extensions is frequent, ak is removed
from X and X is again extended with attributes.

In the global mining algorithm, as described in figure 4, candidate trees are
generated by adding a node on the rightmost path of the tree. For each candidate

490 J. De Knijf

one-pattern the function Expand-Trees is called. This function first calls the local
mining function, which determines the next frequent attribute set. If there is one,
this attribute set is assigned to the right-most node of the current tree, and the
result is added to the solution. Then the occurrence list is updated and this tree,
with the updated occurrence list, is further extended. Otherwise the current tree
is pruned.

3 XML Document Classification with FAT-CAT

The global procedure for the classification of XML documents is as follows:

1. Compute the frequent patterns for the different classes on the training set.
2. Select from these frequent patterns the emerging patterns.
3. The emerging patterns are used to learn the classification model on the

training set.
4. Evaluate the classification model on the test set.

To compute the frequent patterns we still have to determine the minimum
support value. This, must be done very precisely: when it is set too high, only
patterns that are already ‘common knowledge’ will be found. On the other hand,
if it is set too low we have to examine a massive number of patterns if they are
useful for the classification task. When dealing with multiple classes in frequent
pattern mining, the question arises whether a single support value is sufficient
for all different parts of the database. Given two parts Dci and Dcj , it may
be the case that the structural similarity in one part is much higher then the
structural similarity in the other part. Hence, in the part with the higher struc-
tural similarity a higher support value is preferred. Therefore we have chosen
to use k different minimum support values; one for each class label. To deter-
mine an appropriate minimum support value for each class, we started with a
high support value, and lowered it gradually until a sufficient number of high
quality patterns was produced. As sufficient criterion we used that there were at
least ten different frequent patterns T of which each has the following property:
ψ(T |ci)/ψ(T) ≥ 0.6, i.e. the probability of a particular class given pattern T
must be greater then or equal to 0.6. This property is also known as the con-
fidence of the rule T → class. When this procedure for finding proper support
values was applied to the training set, for 53 out of 60 class labels we founded
a sufficient number of high quality frequent patterns; these 53 classes together
contained roughly about 99% of all XML documents in the dataset.

Having settled the support values for all classes, we still need to select ‘in-
teresting’ patterns. Since the overall goal is to classify XML documents, we are
more specifically interested in patterns that describe local properties of particu-
lar groups in the data. Notice that not all computed frequent patterns have this
property. These interesting patterns are often called discriminative or emerging
patterns [8], and are defined as patterns whose support increases significantly
from one class to another. For emerging patterns to be significant, different
measures are used. One measure of interest is by what factor observing a

FAT-CAT: Frequent Attributes Tree Based Classification 491

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

Classes

of

 D
oc

um
en

ts

Fig. 5. Distribution of the XML documents over the different classes, classes are sorted
according to the number of documents they contain

pattern changes the class probability, compared to the class prior probability,
i.e., P (class|T)/P (class) also known as the lift of the rule T → class. Another
commonly used measure is the confidence of the rule T → class. However, this
measure is too tight for the purpose of multi-class classification. This is mainly
because the patterns produced would jointly only cover a relatively small part
of the records. In this work we used the lift measure. As a result the emerging
patterns on the training set covered 99% of the records in the test set; compared
with only 51% coverage when the confidence measure was used.

In order to learn a classification model, the next step is to construct binary
features for every XML document. Each feature indicates the presence or absence
of an emerging pattern in a record. We used decision trees [12] to learn a clas-
sification model, more specifically the implementation provided by Borgelt [4].
This implementation uses a top down divide and conquer technique to build
the decision tree. At each node in the decision tree, a number of attributes is
selected—in a greedy manner—that best discriminates between the classes. As
a selection criterion, information gain was used. Additionally, after construction
of the decision tree we used confidence level pruning to reduce over fitting. The
parameter used with confidence level pruning was set to 50%.

4 Experimental Results

Besides the evaluation of the classification model on XML documents, we also
experimentally investigate whether the inclusions of attribute values improves

492 J. De Knijf

the performance of the classifier. For this purpose, we trained two classifiers
following the procedure described earlier: one where we used the tree structure
and the attributes associated to the nodes of the tree, and a second one where
only the tree structure was used. These classifiers were trained and evaluated on
the Wikipedia XML dataset [7] as provided for the document mining [6] track at
INEX 2006. The collection consists of a training set and a test set, which both
contain 75, 047 XML documents with 60 different class labels. The distribution
of the classes over the test set is shown in figure 5. The classifiers were trained
on a random sample of approximately one third of the original training set.
A sample was taken such that the mining algorithms used were able to run
this dataset on a desktop computer with 500MB of main memory. Besides the
memory constraint, the running time for the tree mining algorithms already took
quite some time (about a week).

The sample used consisted of 25, 127 trees and 8, 310 distinct node labels; of
these nodes 389 contained attributes. To model XML data as attribute trees,
a dummy attribute was assigned to each node in the database that had no at-
tributes. The average number of nodes in the trees equals 85, with each attribute
counted as a single node, the average size of the trees was 128.

ATR NOATR

Micro-average F1 0.479802 0.338321
Macro-average F1 0.527043 0.338920

Fig. 6. Micro-average F1 and Macro-average F1 classification results on the test set

4.1 Results

The document mining track evaluation measures are precision, recall, micro-
average F1 and macro-average F1. Macro-average F1 gives equal weight to each
class, while micro-average F1 is a per document measure, so it is heavy influ-
enced by larger classes. Furthermore, the F1 measure is the harmonic mean
of precision and recall: 2×Precision×Recall

Precision+Recall . We use ATR as abbreviation of the
classifier in which we used the tree structure and the attributes associated to
nodes, likewise NOATR is the classifier in which we only used the tree struc-
ture. The ATR classifier was constructed with the usage of 4, 762 distinct binary
features of which 1966 were used in the resulting decision tree. Likewise for the
NOATR classifier, these numbers were respectively 5, 267 and 2, 595. The macro
and micro-average F1 scores on the test set are shown in figure 6. As expected
the scores for the ATR classifier are substantially higher then the scores for
NOATR. A closer investigation of the patterns used for the ATR classifier, re-
vealed that the main advantage of including attribute values is that these values
often describe the document to which a link points. For example in figure 7
and figure 8 example emerging patterns are shown. However, due to the very
common structural properties of these patterns, only the attribute values in-
sures that these are emerging patterns. In the example shown in figure 7, the

FAT-CAT: Frequent Attributes Tree Based Classification 493

attribute value points to a Wikipedia page listing all record labels. In the second
example shown in figure 8, the attribute value points to a picture that was the
US Navy Jack for some time. Clearly, both values are good indicators of their
classes (“Portal:Music/Categories” and “Portal:War/Categories”).

Fig. 7. An emerging pattern found on the training set (for clarity displayed with text).
This pattern describes class 1474144 (“Portal:Music/Categories”) and has a support
of 402 in its class and 0 for all other classes.

Fig. 8. An emerging pattern found on the training set. This pattern, describing class
2879927 (“Portal:War/Categories”) has a support of 48 in its class and 0 for all other
classes.

In figure 9 and figure 10 the F1 measure per class are plotted, for the ATR
and the NOATR classifier respectively. In both cases the classes were sorted
according to the number of documents they contain. When comparing the per-
formance of the classifiers per class, it is noteworthy that the best performance
is achieved by classes of moderate size; for the classes that contained very few
documents (the smallest six classes) both the classifiers were not able to retrieve
any document at all. Furthermore, it is interesting to note the large different in
performance between different classes, for example: the ATR classifier for class
148035 (“Portal:Art/Categories”) achieved an F1 score of 0.2853 while, for class
2257163 (“Portal:Pornography/Categories”) an F1 score of 0.9345 was achieved.
In order to accomplish a higher performance for the first class, we experimented
with lowering the support value for the class. Unfortunately, the additional pat-
terns did not result in better performance. This suggests, that in the current
framework, using only the structure of XML documents is insufficient for classi-
fication for all used classes.

Looking at the difference in F1 score per class for ATR and NOATR clas-
sifier(shown in figure 11), the ATR classifier substantially outer performs the
NOATR classifier for almost every class. However, in two classes the score for
the ATR classifier was lower than the score for the NOATR classifier. Hence, for

494 J. De Knijf

0 10 20 30 40 50 60

Classes

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F
1

(A
T

R
)

Fig. 9. The F1 score per class, for the experiments where we used the attributes of the
data

0 10 20 30 40 50 60

Classes

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F
1

(N
O

A
T

R
)

Fig. 10. The F1 score per class, for the experiments where the attributes of the data
were left out

some classes the inclusion of attributes has a negative influence on the classifica-
tion performance. A closer investigation of the emerging patterns for this class
is needed to give a possible explanation.

FAT-CAT: Frequent Attributes Tree Based Classification 495

0 10 20 30 40 50 60

Classes

-1
.0

-0
.8

-0
.6

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F
1

(A
T

R
)

-
F

1
(N

O
A

T
R

)

Fig. 11. The difference between the F1 score per class for the ATR classifier and the
NOATR classifier. A positive value, corresponds to a higher F1 score for the ATR
classifier compared with the NOATR classifier and vice versa.

5 Conclusion

In this work we presented FAT-CAT; an XML classification approach based on
frequent attribute trees, and compared these with a frequent tree approach. We
have shown that the inclusion of attributes generally greatly improves the perfor-
mance of the classifier. Furthermore, we analyzed the added value of including
attributes into the classification process and describe weaknesses of the used
approach.

Further research includes the combination of the current classification ap-
proach with more context oriented classification techniques, such as text mining.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc.
20th Int. Conf. Very Large Data Bases, VLDB, pp. 487–499 (1994)

2. Asai, T., Abe, K., Kawasoe, S., Arimura, H., Sakamoto, H., Arikawa, S.: Efficient
substructure discovery from large semi-structured data. In: SIAM Symposium on
Discrete Algorithms (2002)

3. Bayardo, R.: Efficiently mining long patterns from databases. In: Laura, A. T.,
Haas, M. (eds.) SIGMOD 1998, Proceedings ACM SIGMOD International Confer-
ence on Management of Data, pp. 85–93 (1998)

4. Borgelt, C.: A decision tree plug-in for dataengine. In: Proc. 6th European Congress
on Intelligent Techniques and Soft Computing (1998)

496 J. De Knijf

5. Bringmann, B., Zimmermann, A.: Tree2 - decision trees for tree structured data.
In: European Conference on Principles and Practice of Knowledge Discovery in
Databases, pp. 46–58, (2005)

6. Denoyer, L., Gallinari, P.: Report on the xml mining track at inex 2005 and inex
2006. In: proceedings of INEX (2006)

7. Denoyer, L., Gallinari, P.: The Wikipedia XML Corpus. SIGIR Forum (2006)
8. Dong, G., Li, J.: Efficient mining of emerging patterns: Discovering trends and

differences. In: ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 43–52 (1999)

9. Geamsakul, W., Yoshida, T., Ohara, K., Motoda, H., Yokoi, H., Takabayashi, K.:
Constructing a decision tree for graph-structured data and its applications. Fun-
damenta Informaticae. 66(1-2), 131–160 (2005)

10. De Knijf, J.: FAT-miner: Mining frequent attribute trees. In: SAC ’07: Proceedings
of the 2007 ACM symposium on Applied computing to appear (2007)

11. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining.
In: ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 80–86 (1998)

12. Ross, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco
(1993)

13. Wang, K., Liu, H.: Discovering structural association of semistructured data.
Knowledge and Data. Engineering 12(2), 353–371 (2000)

14. Zaki, M.J.: Efficiently mining frequent trees in a forest. In: ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pp. 71–80 (2002)

15. Zaki, M.J., Aggarwal, C.C.: Xrules: an effective structural classifier for XML data.
In: Getoor, L., Senator, T. E., Domingos, P., Faloutsos, C. (eds.) ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 316–325
(2003)

Unsupervised Classification of Text-Centric

XML Document Collections

Antoine Doucet1,2 and Miro Lehtonen2

1 IRISA-INRIA
Campus de Beaulieu

F-35042 Rennes Cedex
France

antoine.doucet@irisa.fr
2 Department of Computer Science

P.O.Box 68 (Gustaf Hällströmin katu 2b)
FI–00014 University of Helsinki

Finland
miro.lehtonen@cs.helsinki.fi

Abstract. This paper addresses the problem of the unsupervised clas-
sification of text-centric XML documents. In the context of the INEX
mining track 2006, we present methods to exploit the inherent structural
information of XML documents in the document clustering process. Us-
ing the k-means algorithm, we have experimented with a couple of feature
sets, to discover that a promising direction is to use structural informa-
tion as a preliminary means to detect and put aside structural outliers.
The improvement of the semantic-wise quality of clustering is signifi-
cantly higher through this approach than through a combination of the
structural and textual feature sets.

The paper also discusses the problem of the evaluation of XML clus-
tering. Currently, in the INEX mining track, XML clustering techniques
are evaluated against semantic categories. We believe there is a mismatch
between the task (to exploit the document structure) and the evaluation,
which disregards structural aspects. An illustration of this fact is that,
over all the clustering track submissions, our text-based runs obtained
the 1st rank (Wikipedia collection, out of 7) and 2nd rank (IEEE collec-
tion, out of 13).

1 Introduction

Document clustering has been applied to information retrieval for long. Most of
this work followed the cluster hypothesis, which states that relevant documents
tend to be highly similar to each other, and, subsequently, they tend to belong to
the same clusters [1]. Clustering was then applied as pseudo-relevance feedback
in order to retrieve documents that were not good direct matches to the query,
but that were very similar to the best results [2]. Documents have to be clustered
before querying, so as to form document taxonomies.

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 497–509, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

498 A. Doucet and M. Lehtonen

The quantity of data organized with an XML structure grows drastically.
While XML document collections have essentially been data-centric, there are
now more and more text-centric document collections. The necessity for tools
to manage these collections has grown correspondingly. Clustering is one way to
automatically organize very large collections into smaller homogeneous subsets.

In this paper, we explore a number of ways to exploit the structural informa-
tion of XML documents so as to improve the quality of unsupervised document
classification. We experiment with a number of techniques that were developed
at a time when no performance evaluation framework was available. The tech-
niques are built on top of the vector space model, which was enhanced with
different types of textual and structural features. We propose to combine them
at once or or in a 2-step approach, first using the structural features, and then
the textual ones.

We present the corresponding results in the context of the INEX 2006 docu-
ment mining track. We extend our contribution with the integration of a measure
of the “textitude” of a structured document.

Because we require no document markup description (such as a document
type definition — DTD), our techniques are particularly suited for experiments
with several different collections, such as the ones used in the mining track 2006:
the IEEE journals collection and the Wikipedia collection.

The evaluation of clustering consists of comparing automatic unsupervised
classification instances to a given “gold-standard”. Finding such an ideal classi-
fication is very difficult, as there may be many ways to split a document collection
that are equally valid and arguable. However, we believe that the gold-standards
used in the evaluation of the INEX mining track are heavily oriented towards
the textual content of the document, and far less towards their structural con-
tent. Therefore, it came as no surprise that our best results were obtained by
using textual features exclusively. The paper discusses this issue and elaborates
on why the results should be analyzed carefully.

Section 2 covers related work. Our experimental setting and the methods to
be evaluated are presented in Section 3. The performance of these techniques in
the context of the INEX mining track 2006 are presented in Section 4, where
we also discuss a number of issues and difficulties that are to be encountered
when evaluating XML clustering. We draw conclusions and present the future
directions of our work in Section 5.

2 Related Work

Until recently, most of the research on structured document processing was fo-
cused on data-centric XML (see for example [3] and [4]). One early motivation
for XML document clustering was to gather documents that were structurally
similar, so as to generate a common DTD for them. Nierman and Jagadish no-
tably proposed a tree-edit distance as a structural similarity measure of XML
documents [5].

Unsupervised Classification of Text-Centric XML Document Collections 499

The birth of the INEX mining track in 2005 [6] provided an experimental
framework very much needed for the case of text-centric document collections [7].
This triggered research at the crossroads of information retrieval, machine learn-
ing and XML databases.

There are currently two main approaches to text-centric XML document
clustering. One of them is to build models naturally close to the XML tree
structure, such as neural networks [8], including self-organizing maps [9]. The
other approach relies on a transformation of the document structure into a
flat vector space representation, before applying well-known clustering tech-
niques [7,10,11,12]. Previous work has proposed to use element labels as the
structural features, and to combine them into word term features in a common
tfidf framework [7]. Candilier et al. [12] proposed more advanced structural
features, such as parent-child or next-sibling relations. Vercoustre et al. [11] pro-
posed to represent an XML tree by its different sub-paths, with features such as
the path length, or the number of nodes it contains. An open problem for such
techniques is to find a good way to combine the structural and textual features.

3 Procedure of the Experiments

The document model we used was the vector space model. In other words, we
represented documents by N -dimensional vectors, where N is the number of
document features in the collection.

Using this document model and the k-means algorithm, we performed our
clustering experiments with various feature sets in one and two steps. We will
now describe the clustering algorithm and then present the different ways we
used it.

3.1 Clustering Technique

We chose to use the k-means algorithm for our experiments. K-means is a com-
monly used partitional clustering technique, where k is the number of desired
clusters, either given as input, or determined in the loop. In the experiments,
for simplicity and to allow easier comparison, we set k to be equal to the desired
number of classes. The algorithm relies on a initial partition of the collection
that is repeatedly readjusted, until a stable solution is found.

In these experiments, we mainly decided to use k-means because of its linear
time complexity and the simplicity of its algorithm.

Given k desired clusters, k-means techniques provide a one-level partitioning
of the dataset in linear time (O(n) or O(n(log n)) where n stands for the number
of documents[13]). The base algorithm presented in Figure 1 takes the number
of desired clusters as input.

3.2 Run Descriptions

As our aim is to take into account both the semantics of the text and its struc-
tural markup, we naturally build two corresponding feature sets. Therefore, we

500 A. Doucet and M. Lehtonen

1. Initialization:
– k points are chosen as initial centroids
– Assign each point to the closest centroid

2. Iterate:
– Compute the centroid of each cluster
– Assign each point to the closest centroid

3. Stop condition:
– As soon as the centroids are stable

Fig. 1. Base k-means algorithm

need to use two baseline runs: one relies on a text-only representation, and the
other on a structure-only representation.

– Text features only: These features are the result of a typical (unstruc-
tured) text representation. We removed the stop words, and then stemmed
the remaining words using the Porter algorithm. The dimensions of the vec-
tor space are the remaining single word terms, in a canonical form.

– Tag features only: This representation uses the XML element labels as
the dimensions of the vector space (stopwords are not removed and labels
are not stemmed).

The rest of our runs are tentative ways to combine the information of un-
structured text to that of the structural indicators. A simple way to do so is to
combine the text and tag features into a single vector space. In other words, this
approach consists in merging the bag of words and the bag of tag names. We
name this representation “text+tags”. This näıve approach serves as a baseline
combination of textual and structural data. Note that we prevent the confusion
between word features and tag features (the “art” element name should not be
confused with the word “art”).

We will now present two more advanced techniques. The first one was orig-
inally presented in 2002, at a time when no formal evaluation framework ex-
isted for XML mining experiments. We decided to revisit it in the framework
of the INEX mining track. The second technique is new, it introduces a struc-
tural indicator in the context of the unsupervised classification process: the T/E
measure [14].

The 2-step approach. Previous experiments suggested that a 2-step approach,
“tags → text” (read “tags then text”), permits to obtain better results, by
putting aside structural outliers before running the textual (semantic) classifica-
tion [7]. The algorithm is described in Figure 2. To use tag features exclusively
is very noisy when most of the XML elements have a purely stylistic role, as is
the case in the IEEE collection. The technique presented here permits to ben-
efit from the structural information of documents, with the internal similarity
threshold as a safe-guard. Only the most cohesive tag-based clusters will be kept,
while the rest of the clustering process is achieved based on text content.

Unsupervised Classification of Text-Centric XML Document Collections 501

a Input :
– A document collection
– n, the final number of desired clusters
– σ, the internal similarity threshold

b Step one, tag-based clustering :
– Based on tag-features only, perform k-means with k = n
– Keep the m clusters with an internal similarity higher than σ

c Step two, text-based clustering :
– Based on text-features only, perform k-means with k = n − m

d Finally :
– The m tags-based clusters and the (n − m) text-based clusters are combined

to form the final n-clustering

Fig. 2. The 2-step approach: tags then text

In practice, this algorithm is as fast as a text-based n-clustering (often faster).
This is due to the fact that tag-based clustering is very efficient thanks to a
representation with a very small number of features.

Integrating a new structural indicator: The T/E measure. The T/E
measure is a structural indicator of the proportion of “mixed content” in an
XML fragment. In previous research, it has given us the Full-Text Likelihood of
an XML element, based on which, the element could be excluded from a full-text
index [14]. Although the values of the T/E measure are in the continuous range
from 0 to ∞, the interpretation has come with a projection into a binary value
space, where values greater than 1.0 provide evidence of full-text content. When
treated as a feature for clustering XML documents, the projection is unnecessary.
Therefore, the whole value space of the T/E measure is available. The T/E
measure is a quite reliable indicator when the XML fragment is relatively small,
e.g. a paragraph of text or a small section. As the size or the heterogeneity of
the fragment increases, a single T/E value starts to shift from being an exact
indicator towards being an approximation.

Integrating the T/E measure into the vector space model. We integrate
the T/E measure as an additional dimension of the vector space. Because our
weighting scheme is based on inverted document frequency, the inclusion of the
T/E value for every document would have a null effect. Therefore, we only gave
a non-null value to the T/E dimension if the T/E measure was greater than 1.

4 Evaluation

In this section, we will define the experimental settings. We will first describe the
document collections and the evaluation measures, and then present our results
in details.

502 A. Doucet and M. Lehtonen

4.1 Collection Description

The INEX mining track 2006 provides two separate XML document collec-
tions. The first one is a collection of scientific journal articles from the IEEE
Computer Society1. The second one is a collection of English documents from
Wikipedia [15]. Each collection further includes a set of categories C. Every doc-
ument is assigned to a subset of categories of C that describe it best. The goal
of the clustering task is to automatically produce a categorization that matches
these (ideal) assignments as closely as possible.

A specificity in the INEX mining track 2006 is that there is exactly one cate-
gory corresponding to every document. In other words, each collection is parti-
tioned into category-wise subcollections.

Let us now describe the two collections in further details.

IEEE. The IEEE collection has long been known as the “INEX collection”,
because it was the only collection in use in the main INEX track from the first
INEX initiative in 2002 until 2006. It contains approximately 12, 000 articles
published in 18 different IEEE journals. They are mainly marked up with hier-
archical and stylistic elements. The hierarchical markup typically indicates the
beginning and end of sections, subsections and paragraphs, and possibly their
titles, as well as figures and bibliographical references. Stylistic elements, for
instance, are used to mark bolded text or mathematical formulas.

The categories that were used to partition the collection are the journals in
which a document was originally published. Hence, every document is assigned
to exactly one category.

As we pointed out earlier [7], we believe that these categories are not fully
satisfying, as the fact that a paper was published in a given journal does not
necessarily mean that it is entirely irrelevant to every other journal. Among
other things, such a strict interpretation means we should assume that a pa-
per published in “Transactions on Computers” cannot possibly have anything
in common with a paper published in “Transactions on Parallel&Distributed
Systems”.

Moreover, the IEEE collection contains documents of different types. The
most common document type is scientific articles, but the collection also contains
calls for papers, book reviews, keyword indices, etc. Regardless of their nature,
documents published in the same journal are assigned to the same category. An
intuitive issue with this “ideal” categorization is that any clustering assigning
documents by their nature will be penalized in the evaluation process.

Wikipedia. The Wikipedia collection is new to INEX 2006. It contains 150, 094
English documents from Wikipedia. The collection used in the mining track
is a subset of the “main” Wikipedia collection as described by Denoyer and
Gallinari [15]. The main collection contains 659, 388 documents and covers a
hierarchy of 113, 483 categories. It contains about 5, 000 different tags, with an

1 http://www.computer.org/

Unsupervised Classification of Text-Centric XML Document Collections 503

average number of 161 XML nodes per document and an average element depth
of 6.72.

The subset of the Wikipedia collection used in the INEX mining track con-
sists of the 150, 094 documents to which only one semantic category corresponds.
These categories were extracted from the Wikipedia portals, which include 72
semantic categories (the 113, 483 categories mentioned earlier come from a dif-
ferent source, check [15] for details). After the removal of documents to which
more than 1 category was attached, only 60 non-empty classes remained. This
partition is used as the evaluation gold-standard.

Naturally, we may express similar concerns as the ones we expressed earlier
about the IEEE collection. The assumption that a document should belong to
one and only one category does not seem right when we are handling text.
To use a partition as our ideal classification implies the assumption that no
two categories have anything in common. This can hardly be right when those
categories are based on semantics.

4.2 Evaluation Measures

As we mentioned earlier, the evaluation of the clustering track relies on the com-
parison of a given run to an ideal classification. The theoretical gold standards
for each collection were described in the previous subsection. We shall now in-
troduce the metrics of this comparison. In the INEX mining track, two official
measures were used to compare an ideal classification and an experimental run:
the micro- and macro-average F1 measures. We define these measures below.

Recall and precision. For a given category, we define the positives (respec-
tively, negatives) as the set of documents assigned to that category (respectively,
not assigned to that category).

When we compare a submission to the ideal classification, we define the true
positives (TP) as the positives that were assigned to the right category. The
false positives (FP) are the documents that were wrongly assigned to that cate-
gory. Similarly, the true negatives (TN) were duly assigned to another category,
while the false negatives (FN) should have been assigned to the category being
considered.

Precision and recall are defined as follows:

Precision =
TP

TP + FN
, Recall =

TP

TP + TN
.

F1-measure. Precision and recall complement each other. For instance, it is
easy to obtain very high scores with one, at the expense of the other. To get
perfect recall, one can simply assign every document to every category. In a
symmetrical fashion, one may obtain high precision by limiting the number of
answers. Hence, we rather utilize a measure that combines precision and recall,
such as the F1-measure, defined as the harmonic average of recall and precision:

F1 =
2 × Precision × Recall

Precision + Recall
.

504 A. Doucet and M. Lehtonen

Micro- and macro-average. To obtain a single measure for the evaluation of
a classification, the F1 measure needs to be averaged over all the classes. There
are two ways to do this. Macro-average F1 is the non-weighted average of the F1
measure over all the classes, while micro-average F1 is weighted by the number
of documents in each corresponding class. Clearly, the latter is more strongly
influenced by larger classes.

4.3 Experimental Results

We submitted the runs previously described to the INEX mining track 2006.
The document features were weighted with inverted document frequency, and
the Cluto software2 was used to perform the k-means clusterings.

All the submissions, ours and those of other participants, returned the same
number of categories as in the ideal classifications: 18 for the IEEE collection
and 60 for the Wikipedia collection.

Our results are summarized in Table 1 for the IEEE collection and in Table 2
for the Wikipedia collection. The notation “Tags→Text, 0.8” means that we
used the “tags then text” approach, and kept the tag-based clusters with an
internal similarity higher than 0.8.

Table 1. INEX - IEEE Collection

Features Micro F1 Macro F1 Overall rank (out of 13)

Text .348789 .290407 3rd

Tags .132453 .081541 7th

Text+Tags .253369 .203533 5th

Tags→Text, 0.8 .270350 .222365 4th

Text + T/E .348828 .290379 2nd

4.4 Result Analysis

Overall observations. Looking at the results of our submissions, we can make
a number of observations. An obvious disappointment is the fact that the ex-
clusive use of text features beats all the other alternatives by far. Even worse,
when we look at “text”, “tags”, “text+tags” and “text+T/E”, it seems like the
performance decreases as the number of structural features increases.

On the positive side, we could confirm that tag-based clustering is very fast,
and that using the “tags then text” approach performs just as fast as using text
features only.

Another positive result is that “tags then text” outperforms “text+tags”.
This result is especially satisfying because both approaches use exactly the same
features. Consequently, we get confirmation that the ‘tags then text” technique
is a better way to integrate structural features into the clustering process.

2 CLUTO, http://www-users.cs.umn.edu/\simkarypis/cluto/

http://www-users.cs.umn.edu/$sim $karypis/cluto/

Unsupervised Classification of Text-Centric XML Document Collections 505

Table 2. INEX - Wikipedia Collection

Features Micro F1 Macro F1 Overall rank (out of 7)

Text .444455 .210621 1st

Tags .221829 .072834 6th

Text+Tags .372376 .128239 5th

Tags→Text, 0.8 .406129 .155034 4th

Tags→Text, 0.9 .413439 .159473 3rd

Text + T/E .427438 .183567 2nd

The explanation is fairly simple. The structural clustering can detect and put
aside what we may call “structural outliers”. Typically, in the IEEE collection,
they are tables of contents and keyword indices of journal issues as well as calls
for papers. In the Wikipedia collection, the outliers include lists (lists of counties
by area, list of English cricket clubs, etc.). However, to count on a small number
of element names as unique document descriptors is obviously risky. This is why
we ensure that only the most cohesive tag-based clusters are kept, by using a
high internal similarity threshold.

Comparison with other participants. In the INEX mining track, a total
of 7 clustering runs were submitted for the Wikipedia collection and 13 for the
IEEE collection.

On the Wikipedia collection. As shown in table 2, our 6 Wikipedia submissions
rank at the first 6 places of the INEX clustering track 2006. Only one other team
submitted a run for the Wikipedia collection. This is mostly due to scalability
issues. Several approaches are indeed based on XML tree operations, which are
computationally complex and may become intractable with a shift from 12, 017
documents (IEEE) to 150, 094 (Wikipedia), combined with the fact that the
structure of the Wikipedia documents is much deeper and much more unpre-
dictable (from 163 distinct elements to 7, 208). Another reason that might have
discouraged potential participants is the lack of a DTD. This is, however, a very
common feature of real-life collections.

One strong point in our approach is that it does not use anything but the
documents themselves. From a computational point of view, clustering is the
costliest operation with a linear time complexity of O(n) or O(n log n).

Hence we had no problems shifting from one collection to the other and we do
not expect difficulties in applying this work to new collections, whatever their
structure and size is, since our techniques scala well.

On the IEEE collection. Two other teams submitted clustering runs for the IEEE
collection. The overall ranking of our runs is given in table 1. The best-performing
method is based on contextual self-organizing maps [9]. Its performance is fairly
close to our own best, with a micro-average F1 of 0.365079 and a macro-average
of 0.326469. The technique proves to be efficient. However, its complexity makes

506 A. Doucet and M. Lehtonen

it hardly scalable (the supervised learning actually needs to be restricted to a
subpart of the IEEE document trees: the content of the ”fm” element).

Conclusion. We should be quite happy to see our runs in the top ranks for both
collections. However, the fact that our best run is always the one that actually
ignores the structural information is rather worrisome. We believe that this is
not necessarily due to a weak state of the art of the systems presented in the
INEX clustering task, but for a big part to a semantic bias of the evaluation
system.

4.5 Discussion on Evaluation

Evaluation of clustering. There are two ways to evaluate clustering experi-
ments. The first one is to use internal quality measures, such as entropy, purity,
or cohesiveness. For instance, the cohesiveness of a cluster is the average similar-
ity between each two documents in the cluster. The problem of these measures
is that the computation of document similarities is strongly dependent on the
document model. Internal quality measures are useful to compare clustering tech-
niques based upon the same document model, but they are meaningless in most
other cases. In particular, they cannot help as we wish to compare techniques
based on the same algorithm but different feature sets.

In such situations, we must rely on external quality measures, such as recall,
precision, or F1-measure. The latter were the official evaluation metrics for the
clustering task of the INEX mining track in 2006.

Gold-standard. External measures are meant to compare every submitted
clustering to a “gold-standard” classification. The more similar a run is to that
standard, the better. Defining such a gold-standard is a great challenge.

Indeed, we are not convinced that the gold-standard classifications that were
used for the evaluation of the INEX mining track are optimal. The consequence of
this is very important, because to improve a system’s performance with respect to
the F1-measure means to produce a classification closer to the gold-standard. If
the gold-standard is weak, improving the performance of a system might actually
require that a number of reasonable assumptions be compromised.

What is a good clustering? The main issue with the current “gold” classi-
fications is the use of disjoint clusters. This is an excessive simplification when
we are dealing with text and thematic classes, as is the case currently.

In fact, having to deal with thematic classes can also be seen as a problem. Since
the motivation of XML clustering is to take structural information into account,
we should also consider categories that are not solely based on semantics.

An empirical analysis of our clusters show that the technique “tags then text”
manages to put aside outliers, such as tables of contents or call for papers in
the IEEE collection. Our technique stores these into clusters of their own and
performs text-based clustering with the remaining documents. We do believe
that this is a good result for most uses of the document collection. Thinking of

Unsupervised Classification of Text-Centric XML Document Collections 507

information retrieval, it is likely that a user performing a search on a scientific
journal is looking for articles (or fragments thereof) rather than keyword indices
or calls for papers. However, with respect to the current evaluation metrics, the
effectiveness of a system taking this fact into account is weakened, because the
gold-standards were built the opposite way: each call for papers belongs to the
journal in which it was published. Hence, they are spread out uniformly in the
ideal classification, while we actually built a system that puts all of them in the
same category.

The problem is that if the gold-standards were solely based on the document
structure, separating calls for papers, tables of contents and regular articles, one
would as well be able to argue that it does not make sense to have to categorize
the call for papers for a data mining conference is in a different class from that of
a data mining article. The key issue is there. Given a document collection, there
are numerous “perfect” ways to classify the contents. The classification needs to
be related to a certain need, but it may still be totally inappropriate in other
situations.

This leads us to the conclusion that the intended use of XML document
clustering needs to play a larger role in its evaluation, and hence a prior question
needs to be answered: why do we do it? If the goal of XML clustering is to
build a semantic-based disjoint taxonomy, then the current gold-standards are
suitable. In order to detect DTDs automatically, we would need a structure-
oriented gold standard. For information retrieval, we might use the per topic
relevance judgements as the classes, or perform indirect evaluation through the
ad hoc XML IR runs.

5 Conclusion - Future Work

Our conclusive remarks and suggestions concern two topics, our XML clustering
approach and the general problem of the evaluation of XML clustering. Actually,
the evaluation of supervised classification is also related, even though the learning
phase can help compensate for the issues aforementioned.

We have introduced the experiments with our XML clustering techniques in
the context of the INEX 2006 mining track. The generality and scalability of our
approach was underlined by the fact that we made no difference in the way we
handled two radically different document collections, whereas many participants
have been discouraged by the size and depth of the Wikipedia document col-
lection (perhaps also by the lack of a DTD). One weakness of our techniques is
their flat use of the structural information. We created a “bag of structure” and
implemented advanced ways to use it as a complement of the “bag of words”,
but we ignored the tree structure of the elements and did not either connect the
words to their path in the XML tree. This is left for future work.

For both collections, we had the satisfaction to see our runs in the top ranks.
Looking at the top 5 runs for the two collections, the only one that is not ours
occupies the 1st rank for the IEEE collection. The “tags then text” approach
was demonstrated to be more efficient at combining semantics and structure,

508 A. Doucet and M. Lehtonen

than a baseline merger of the features, in spite of a tendency to contradict some
of the arguable implications of the current evaluation system. Hence, in a more
appropriate evaluation setting, we expect to observe the same phenomenon with
an even greater margin. Evidently, this remains to be verified.

A source of concern should be the fact that our best performing runs were the
ones that actually ignored the structural information. However, we feel that this
only reflects the bias of the evaluation system. Indeed, micro- and macro-average
F1 are measuring the closeness of a run to a theoretically ideal classification.
However, the current “ideal” classifications in use are disjoint and thematic.
Since there is no evidence that the classifications we use as gold-standards are
related to the structure of the documents, it is natural that the best performing
approaches are the ones that simply ignore that structure.

An important point is that several classifications of the same collection may
be perfect, depending on the context. We hence plead for placing the applications
of XML clustering in the center of the evaluation process. This may be done by
creating an ideal classification for every corresponding application, and/or by
evaluating XML clustering indirectly, by measuring how much we can benefit
from it in another task. In 2006, an INEX “user case studies track” was created.
Perhaps a comparable reflection is now needed in the XML mining track.

References

1. Jardine, N., van Rijsbergen, C.: The use of hierarchic clustering in information
retrieval. Information Storage and Retrieval 7, 217–240 (1971)

2. Tombros, A.: The effectiveness of hierarchic query-based clustering of documents
for information retrieval. PhD thesis, University of Glasgow (2002)

3. Guillaume, D., Murtaugh, F.: Clustering of XML Documents. Computer Physics
Communications 127, 215–227 (2000)

4. Yi, J., Sundaresan, N.: A classifier for semi-structured documents. In: Proceedings
of the sixth ACM SIGKDD international conference on Knowledge discovery and
data mining, Boston, Massachusetts, pp. 340–344 (2000)

5. Nierman, A., Jagadish, H.: Evaluating Structural Similarity in XML. In: Fifth
International Workshop on the Web and Databases (WebDB 2002), Madison, Wis-
consin (2002)

6. Denoyer, L., Gallinari, P.: Report on the xml mining track at inex 2005 and inex
(2006). [16]

7. Doucet, A., Ahonen-Myka, H.: Naive clustering of a large xml document collection.
In: Proceedings of the First Workshop of the Initiative for the Evaluation of XML
Retrieval (INEX), Schloss Dagsuhl, Germany, pp. 81–87 (2002)

8. Yong, S.L., Hagenbuchner, M., Tsoi, A., Scarselli, F., Gori, M.: Xml document
mining using graph neural network. In: Fuhr, N., Lalmas, M., Malik, S., Kazai, G.
(eds.) INEX LNCS, vol. 3977, Springer, Heidelberg (2006)

9. Kc, M., Hagenbuchner, M., Tsoi, A.C., Scarselli, F., Gori, M., Sperduti, A.: Xml
document mining using contextual self-organizing maps for structures. [16]

10. Despeyroux, T., Lechevallier, Y., Trousse, B., Vercoustre, A.M.: Experiments in
clustering homogeneous xml documents to validate an existing typology. In: Pro-
ceedings of the 5th International Conference on Knowledge Management (I-Know),
Vienna, Austria, Journal of Universal Computer Science (2005)

Unsupervised Classification of Text-Centric XML Document Collections 509

11. Vercoustre, A.M., FEGAS,: M., Lechevallier, Y., Despeyroux, T.: Classification
de documents xml à partir d’une représentation linéaire des arbres de ces docu-
ments. In: Actes des 6èmes journées Extraction et Gestion des Connaissances (EGC
2006), Revue des Nouvelles Technologies de l’Information (RNTI-E-6), Lille, France
(2006)

12. Candillier, L., Tellier, I., Torre, F.: Transforming xml trees for efficient classification
and clustering. In: INEX 2005 Workshop on Mining XML documents (2005)

13. Willett, P.: Recent trends in hierarchic document clustering: a critical review. In
Information Processing and Management 24, 577–597 (1988)

14. Lehtonen, M.: Preparing Heterogeneous XML for Full-Text Search. ACM Trans-
actions on Information Systems 24, 1–21 (2006)

15. Denoyer, L., Gallinari, P.: The Wikipedia XML Corpus. SIGIR Forum (2006)
16. Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.): Advances in XML Information

Retrieval and Evaluation, 5th International Workshop of the Initiative for the
Evaluation of XML Retrieval, INEX 2006, Dagstuhl Castle, Germany, December
18-20 2006, Revised Selected Papers. In: Fuhr, N., Lalmas, M., Malik, S., Kazai,
G. (eds.) INEX. Lecture Notes in Computer Science, Springer (2007)

XML Document Mining Using Contextual
Self-organizing Maps for Structures

M. Kc1, M. Hagenbuchner1, A.C. Tsoi2, F. Scarselli4, A. Sperduti3, and M. Gori4

1 University of Wollongong, Wollongong, Australia
{wmc01,markus}@uow.edu.au

2 Monash University, Melbourne, Australia
act@hkbu.edu.hk

3 University of Padova, Padova, Italy
sperduti@math.unipd.it
4 University of Siena, Siena, Italy

{franco,marco}@dii.unisi.it

Abstract. XML is becoming increasingly popular as a language for represent-
ing many types of electronic documents. The consequence of the strict structural
document description via XML is that a relatively new task in mining documents
based on structural and/or content information has emerged. In this paper we in-
vestigate (1) the suitability of new unsupervised machine learning methods for
the clustering task of XML documents, and (2) the importance of contextual in-
formation for the same task. These tasks are part of an international competition
on XML clustering and categorization (INEX 2006). It will be shown that the
proposed approaches provide a suitable tool for the clustering of structured data
as they yield the best results in the international INEX 2006 competition on clus-
tering of XML data.

1 Introduction

The eXtensible Meta Language (XML) is a tool for describing many types of electronic
documents. XML is related to HTML (hypertext marked up language) but is much more
flexible and strict in its definition and specifications. As such, XML is increasingly
utilized to represent a wide range of electronic documents ranging from e-books, Web
pages, to multi-media contents. This is due to the fact that XML provides a flexible
document format which allows cross-platform compatibility. Thus, documents created
as a result of, say, a UNIX application can be viewed or edited by any other systems,
e.g. a Window system, with an XML capable application. Data mining on such types of
documents become increasingly important as a consequence. The striking feature that
makes data mining on XML documents so interesting is that XML provides a strict
structural document description and hence XML document mining can be considered
predominantly a structure mining task.

XML provides meta-tags which encapsulate content. These meta-tags can be nested
and define the property of the content. As a simple example, the following line of XML
code:<A>HelloWorldgives a document which has the string “Hello
World” as its content where the word “World” shares the property <A> of the word

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 510–524, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

XML Document Mining Using Contextual Self-organizing Maps for Structures 511

“Hello” but also is being assigned the property . For example, “Hello” may be
in italic font, while “World” may be in italic and bold font. It is not possible to have
overlapping XML tags such as <A>. The consequence is that XML
provides a tree-like decomposition of a document’s content. In other words, any XML
document can be represented by a tree-like graph structure.

Recent developments in machine learning produced neural network models which
are capable of encoding graph structured information. This paper is concerned with
the specific task of clustering XML documents. To the best of our knowledge, there
is only one known neural network model that is capable of clustering structured in-
formation in an unsupervised fashion. The neural network model is known as the Self-
Organizing Map for Structured Data (SOM-SD) [3] and its extension: Contextual SOM-
SD (CSOM-SD) [5] which can deal with contextual information on graph structured
data. These methods are recent advances of the popular Self-Organizing Map (SOM)
model introduced by T.Kohonen some 20 years ago [7].

In 2005 it was shown for the first time that a SOM-SD based model can produce ex-
ceptional good performances on XML classification tasks by winning the international
competition INEX 2005 by having the best overall performance compared with the per-
formance of other approaches [6]. This paper applies the SOM-SD and CSOM-SD ap-
proaches to a new and relatively large XML clustering task: to investigate the suitability
of such machine learning methods, a task that has never before been performed in this
manner. This paper will also answer the question of whether the contextual processing
of information can lead to improvements in this XML mining task. This question can
be answered by comparing the SOM-SD which processes information in a strict causal
manner with results from applying the CSOM-SD which processes the same data in a
contextual fashion.

The structure of this paper is as follows: Section 2 provides a brief introduction
to unsupervised machine learning approach and describes the basic idea of SOM. A
detailed description of the SOM-SD method is provided in Section 3, and its CSOM-
SD extension is given in Section 4. A specific description of the learning task, the
approach, and experimental results are given in Section 5. Some conclusions are drawn
in Section 6.

2 Machine Learning and Self-organizing Maps

The term machine learning (ML) refers to computer models which are capable of learn-
ing from examples. Artificial Neural Networks (ANNs), for example, is one branch of
machine learning where the task is to develop a model which is inspired by the ability
of a (human) brain to learn by modifying the connection strengths among the biological
neurons to represent the information contained in the inputs (stimuli). Such an approach
has the obvious advantage of not requiring a system to hard-code the information and
thus is much more flexible. However, ML is generally known to be an inexact science in
that the answer of a ML method can only be approximately correct. In practice, this ap-
proximation is extensively exploited as it allows to obtain a system that remains stable
in a noisy (learning and application) environment. For example, ML methods are popu-
larly applied in human-machine interfaces such as speech recognition systems. No two

512 M. Kc et al.

Fig. 1. The architecture of a simple Self-Organizing Map

voice signals are ever produced exactly identical due to the analogue nature of sound.
Thus, a voice recognition system needs to be able to recognise ever differing signals in
a possibly noisy environment.

A ML method is trained on a set of input samples together with associated desired
outputs. An iterative training approach is commonly applied with the aim to adjust
internal system parameters such that for a given input the desired output is produced (as
closely as possible). Such learning methods are generally asymptotically convergent
which means that the desired output can never be reached accurately in finite time.
However, most ML methods, especially Artificial Neural Network (ANN) methods, are
proven to be able to approximate any input-output relationship to an arbitrary precision
provided some not too restrictive but generic conditions are satisfied, which makes ML
methods work very well in practice.

This paper is concerned with one particular branch of ANNs known as unsupervised
neural networks. Unsupervised neural network methods are trained on input data for
which target information is not available. The general application of such methods is
to cluster data such that data which share certain properties are grouped together. The
most famous and most widely used of the unsupervised neural network methods is the
Self-Organizing Map (SOM) and its many variants developed originally in [7].

The basic idea of SOM is simple. The SOM defines a mapping from high n-dimensi-
onal input data space onto a regular lower q-dimensional array (often two-dimensional
array) called a display map. The intersection of the two dimensional grid in the display
map is represented by an entity called a neuron. Every neuron i of the display map
is associated with an n-dimensional codebook vector mT

i = (mi1, . . . , min)T , where
the superscript T denotes the transpose of a vector, and mij ∈ R. The neurons on
the map are connected to adjacent neurons by a neighborhood relation, which defines
the topology, or the structure, of the map. The most common topologies in use are
rectangular and hexagonal [7]. Adjacent neurons belong to the neighborhood Ni of the
neuron i. Neurons belonging to Ni are updated according to a neighborhood function

XML Document Mining Using Contextual Self-organizing Maps for Structures 513

f(·) such as a Gaussian-bell or a Mexican-hat function [7]. Typically, the topology
and the number of neurons remain fixed from the beginning of the training process. The
number of neurons determines the granularity of the mapping, which has an effect on the
accuracy and generalization capability of the SOM [7]. Figure 1 shows the architecture
of a two-dimensional SOM of size 8 × 4 = 32. Each hexagon represents a neuron, and
since each neuron has six neighbors, the topology of this map is hexagonal. Not shown
in Figure 1 is that each of these neurons is associated with an n-dimensional codebook
vector.

The vector mi are updated by a training process. During the training phase, the SOM
forms an elastic cover that is shaped by input data. The training algorithm controls the
cover so that it strives to approximate the density of the underlying data. The reference
vectors in the codebook drift to areas where the density of the input data is high. Even-
tually, only few codebook vectors lie in areas where the input data is sparse. The result
is that the input data is clustered. The training algorithm for the weights associated with
each neuron in the q-dimensional lattice (q = 2 in our case) can be trained using a two
step process as follows:

Step 1. Competitive step. One training sample u ∈ Rn is randomly drawn from the
input data set and its similarity to the codebook vectors is computed:

r = arg min
i

‖u − mi‖ (1)

where ‖.‖ is the Euclidean distance.

Step 2. Cooperative step. After the best matching codebook mr has been found, all
codebook vectors are updated. The winning vector mr itself as well as its topological
neighbours are moved closer to the input vector u in the input space. The magnitude of
this adjustment is governed by a learning rate α and by a neighborhood function f(Δir),
where Δir is the topological distance between mr and mi. As the learning proceeds
and new input vectors are given to the map, the learning rate gradually decreases to zero
according to a specified function. Along with the learning rate, the neighborhood radius
decreases as well 1. The updating algorithm is given by:

Δmi = α(t)f(Δir)(mi − u) (2)

where α is a learning coefficient, f(·) is a neighborhood function which controls the
amount the weights of the neighbouring neurons is updated. The neighborhood function
f(·) can take the form of a Gaussian function:

f(Δir) = exp
(

−‖li − lr‖2

2σ(t)2

)
(3)

where σ is the neighborhood radius, and lr is the location of the winning neuron, and
li is the location of the i-the neuron in the lattice. Other neighborhood functions are
possible.

1 Generally, the neighborhood radius in SOMs never decreases to zero. Otherwise, if the neigh-
borhood size becomes zero, the algorithm has no longer topological ordering properties ([7],
page 111).

514 M. Kc et al.

Steps 1 and 2 together constitute a single training step and they are repeated until the
training process ends. There are a number of ways in which the training can terminate.
One way is to fix the number of iteration steps. In this case, the number of training
steps must be fixed prior to training the SOM because the rate of convergence in the
neighborhood function and the learning rate are calculated based on this information.

The SOM, and in fact most conventional ML methods, require data to be available
in vectorial form. This includes recurrent neural network methods which can process
continuous signals by processing shifting fixed sized sub-sections of a continuous sig-
nal one at the time. A recent extension [3] produced Self-Organizing Maps which can
process graph structured data without requiring the pre-processing of such data. This
will be addressed in the following section.

3 Self-organizing Maps for Structures

Work on SOM methods capable of mapping structures was inspired by developments
in supervised neural networks for graphs [2]. The basic idea behind these approaches is
to process individual nodes of a graph rather than the graph as a whole, and to provide a
mechanism to incorporate structural dependencies between the nodes. This is achieved
by adding a set of states which stores information about the activations of the network
when processing a given node, and to use the states associated with neighboring nodes
as an additional inputs when processing the current node. The recursive application of
this approach ensures that information about the encoding of any node in a graph is
passed on to any other node in the graph as long as there is a path connecting these
nodes. In other words, the idea allows to encode a graph as a whole by processing
individual nodes one at a time.

When applied to SOM, the idea allows the processing of labelled directed acyclic
graphs (labelled tree structures) [3] by producing the network input xv for every node
v in a graph through the concatenation of the label uv and states ych[v] so that xv =
[uv,ych[v]]. The ych[v] are simply the mappings (the coordinates) of the children of v.

Training a SOM-SD is performed in a similar manner to the classical approach [7].
The difference is that for computing the similarity in Equation (1), the measure needs to
be weighed so as to account for the hybrid data in the vector xv . Also, some components
(the states) of the input vector need to be updated at every training step. The resulting
training algorithm is as follows:

Step 1. A node v is chosen from the data set. When choosing a node special care has
to be taken that the children of that node have already been processed. Hence, at the
beginning the terminal (sink) nodes of a graph are processed first, the root (source) node
is considered last. Then, vector xv is presented to the network. The winning neuron r
is obtained by finding the most similar codebook entry mr as follows:

r = arg min
i

‖(xv − mi)Λ‖ (4)

where Λ is a n × n dimensional diagonal matrix. Its diagonal elements λ11 · · · λpp are
set to μ1, all remaining diagonal elements are set to μ2. The constant μ1 influences the
contribution of the data label component to the Euclidean distance, and μ2 controls the
influence of the states (the node’s children coordinates) to the Euclidean distance.

XML Document Mining Using Contextual Self-organizing Maps for Structures 515

Step 2. After the best matching neuron has been found, the winning codebook vector
and its neighbours are updated as in Equation (2).

Step 3. The coordinates of the winning neuron are passed on to the parent node which
in turn updates its vector ych accordingly. This step neglects the potential changes in
the state of the descendants due to the weight change in step 2. This approximation does
not appear to cause any problems in practice [3].

Cycles of Steps 1 to 3 are executed repeatedly until a given number of training itera-
tions is performed, or when the mapping precision has reached a given threshold.

The optimal choice of the values μ1 and μ2 depends on the dimension of the data
label l, the magnitude of its elements, the dimension of the coordinate vector c, and
the magnitude of its elements. The Euclidean distance in Equation (4) is computed as
follows:

d =

√√√√μ1

p∑

i=1

(ui − mi)2 + μ2

2o∑

j=1

(ychj − mn+j)2 (5)

where o is the number of children whose states are fed into the node v. This value
changes with each node according to the connectivity of the node v. The factor 2 is
due to the fact that each child node will have two coordinates. Hence, it becomes clear
that the sole purpose of μ1 and μ2 is to balance the influence of the two terms in the
behaviour of the learning algorithm. Ideally, the influence of the data label and the
coordinate vector on the final result is equal. This can be computed by statistically
analysing the training dataset [3].

It can be observed that the SOM-SD processes data in a strict causal manner from
the terminal nodes towards the root node. Processing in the reverse direction, i.e. from
the root node towards the terminal nodes is also possible but rarely applied. It is not
possible to process nodes in both directions or in a random order since otherwise in
Step 2 it is possible that not all states of all of a particular selected node’s neighbors are
available. An extension which circumvents this problem is described in the following
section.

4 Contextual Self-organizing Maps for Structures

The SOM-SD processes nodes in an inverse topological order (i.e. from the terminal
nodes towards the root node) which is required to guarantee that the states of all depen-
dencies are available at any time during network training. This limits the ability of the
SOM-SD to discriminate certain sub-structures. For example, the mapping of a graph
with a single node A would be exactly the same for a node A that occurs as a leaf in
another graph with many nodes. This is because no information about parent nodes can
be included when computing a mapping and hence, any identical sub-structure would
be mapped onto the same location independent of the contextual arrangement in which
such a sub-structure occurs.

In order to capture differing contextual arrangement of nodes in a graph it is neces-
sary to allow the inclusion of information about the mappings of its parent nodes as well
as the mapping of child nodes at any time during training. A solution to this problem

516 M. Kc et al.

would bring a far reaching advantage: it would become possible to process undirected
or cyclic graphs, a much more general class of graphs than tree structures.

A first solution was proposed in [4]. In [4] it is observed that while the mapping
of parent nodes is not available at a time instant t that it is available by retrieving the
mappings at time t − 1. Given the asymptotic nature of the training algorithm it can be
assumed that mappings do not change significantly between two iterations2, and hence,
the utilization of mappings from a previous iteration in order to fill the states that are
not available at a current time should be a valid approximation.

An advancement of this idea removed two obstacles: (1) the initialization problem
(i.e. at time t = 0 there is no mapping from time t − 1 available), and (2) the need to
memorize the mappings of the time instant t−1 by recursively computing a stable point
in the state space [5]. The method proposed in [5] allows to process nodes in a random
order thus removing the necessity of having an acyclic directed graph, and removes
the need to sort the nodes in a particular order before processing can commence. The
proposed mechanism to compute the states of all parents and children of a randomly
selected node is by computing a stable point in the mapping of nodes as follows:

A Select a node from the dataset. Generate a k dimensional vector. Initialize the first
p elements with the data label that is attached to this node. Initialize all the states of
offsprings ych[v], and all the states of parents ypa[v] with zero since these states are
as yet unknown. Initialize all remaining elements with (−1, −1) (corresponding to
missing parents or missing children.)

B Find the best matching codebook entry.

Steps A and B are executed for each node in the training set. This computes every
node’s state as far as it is possible at this stage. A stable point is computed by recur-
sively executing the following steps: (a) select a node from the dataset; (b) generate
a k-dimensional vector with the first p elements initialized with the data label that is
attached to this node, initialize ych[v] with the states of this node’s offsprings (which is
available from the previous iteration), the ypa[v] with the states of this node’s parents
(which are available from the previous iteration), and all other elements with (−1, −1)
as before. Once every node in the training set has been considered, this is called “one
iteration”. The algorithm iterates until the number of changes of node states during an
iteration do not decrease further. With this mechanism in place, it becomes possible to
train a CSOM-SD as follows:

Step 1. Compute the stable point.

Step 2. Train the SOM-SD on every node in the training set as usual ensuring that the
vector components ych[v] and ypa[v] are updated by using the states from the previous
iteration, and ensuring that the components l, ych[v], and ypa[v] are weighted so as to
balance their influence on the Euclidean distance measure similar to that described in
Section 3.
Step 2 is iterated at least Nd times, where Nd is the number of training iterations.

Note that this approach, given a sufficiently large map, ensures that identical sub-
structures which are part of different graph structures are mapped to different locations.

2 This is particularly the case during the final stages of the learning procedure.

XML Document Mining Using Contextual Self-organizing Maps for Structures 517

It can be assumed that a map properly trained will map vertices to the same or nearby
location only if the underlying graph structure is similar. Note also that the complexity
of the training algorithm increases linearly with the size of the training set, the size of
the network, and the maximum number of iterations. Hence, the approach provides a
mechanism which may be capable of finding similar graphs (inexact graph matching)
in linear time.

Note also that the stable fixed point is computed only once. One may consider the
possibility of computing the stable fixed point every time the network parameters are
adjusted (i.e. after processing a node). However, this would increase the computational
complexity to a quadratic one, and may lead to a moving target problem.

It was shown in [5] that the CSOM-SD algorithm is stable in practical applications
and it was found in a number of experiments that the CSOM-SD is consistently less
sensitive to initial network conditions and training parameters when compared to SOM-
SD. There is as yet no explanation of such behaviours.

5 Experiments

The Initiative for the Evaluation of XML Retrieval (INEX) [1] organized an interna-
tional competition on XML clustering and categorization in 2006. This paper addresses
the clustering challenge. The clustering task for the INEX dataset consists of two com-
ponents: clustering using only the structural information, and clustering using both the
structure and textual content. Processes addressed in this Section include dataset analy-
sis, data pre-processing, training using structural information only, training using both
structural and textual information, and comparisons of results with other approaches.
The software which was developed for the experiments on the SOM-SD and CSOM-
SD is available from http://www.artificial-neural.net.

5.1 Data Analysis

The INEX dataset includes XML formatted documents, each from one of 18 different
journals, covering both transactional and non-transactional journals and across vari-
ous topics in computer science. However, there are up to five journals that belong to
the same structural (transactional or non-transactional) and semantic (topics) grouping,
therefore distinct differences cannot be expected from documents of several journals.
Furthermore, the journals are unbalanced in the number of documents they contain in
the training dataset, therefore, this learning task is high in complexity, yet contains fea-
tures that are commonly found in real-world problems.

The documents used in the training process is the training portion of the dataset,
which consists of 6,053 documents, and the number of XML tags in each document
ranges widely, from 9 to 7,024, with a total of 3,966,123 tags. To represent the structure
of a document, a tree could be used where each node in the tree represents the occur-
rence and location of XML tags. This will result in large trees where the maximum
depth is 19 and the maximum out-degree is 1,023. Another observation of the INEX
dataset is that there are a total of 165 unique tags, and some tags occur with a high
frequency in a number of documents, but not all tags occur in all documents.

518 M. Kc et al.

The documents used in the testing process is the testing portion of the dataset, which
consists of 6,054 documents, and the proportion of documents in each journal is com-
parable to the training data, to ensure that the rules learned from training can be applied
to the test data and that a similar level of performance can be expected.

5.2 Data Pre-processing

As described in the data analysis, the training data has a total of almost 4 million nodes
and a maximum out-degree of 1,023. The XML documents are represented by trees.
Nodes denote XML tags and the arc between a parent and a child represents the en-
capsulation of a tag in another tag. Given a learning method which processes each
node individually, and requires the inclusion of the states of all offsprings, it is found
that such data could result in very long training durations. In particular, the input di-
mension grows twice as fast as the (maximum) number of children at any node in a
graph. The dimension of codebook vectors grow at the same rate. Since these vectors
are multiplied as in Eq.5, the computational complexity grows quadratic with the num-
ber of children. Note that the computational complexity grows linear with the number of
nodes in the graphs, and hence, any optimization in the representation of graphs should
address the outdegree. While in general the learning method does not necessarily re-
quire pre-processing steps, some pre-processing is applied in order to improve the turn
around time for the experiments. Four pre-processing approaches were considered and
are compared.

1. Consolidating repetitive sub-structures: This was suggested by an approach taken
at the INEX-2005 challenge [6], which consolidates repetitive sub-structures. How-
ever, due to the large variation of structures and tag positions in the set of INEX-
2006 documents, this approach did not significantly decrease the expected training
times. Another drawback of this approach is that repeating sub-structures may be
a significant feature, and compressing that feature could impact the clustering per-
formance.

2. Constructing tag-based connectivity graph: Construct a connectivity graph based
on the unique tags in each document instead of using a tree to represent the docu-
ment structure. In the connectivity graph, each unique tag is represented by a node,
so multiple occurrences of the same tags are merged. Also, care was taken to un-
fold the cyclic portions of the connectivity graph using the depth-first links visited
method.

3. Extracting header segment of documents: Segment documents by using only the
structure of a chosen segment. The document is first segmented by the nodes in the
first level of the structure tree. This identified the substructures: FNO, DOI, FM,
BDY and BM, where FNO and DOI do not contain any XML tags, and BM does
not occur in all documents, so that leaves us with FM and BDY. The substructure
where the maximum out-degree occurred was in the BDY segment, so we decided
to take the FM segment, which is small enough to train without any processing of
its structure.

4. Developing a basic framework: This approach considered the use of a simplistic
framework. While the training duration using the structure of document headers

XML Document Mining Using Contextual Self-organizing Maps for Structures 519

may be reasonable for structure only clustering, it will be far too long for cluster-
ing based on structure and textual information, where the challenge of effectively
encoding high dimensional textual information into the structure needs to be ad-
dressed. As a result, a framework is developed where only the key tags of docu-
ments are included to minimize and control the number of nodes per document.
The key tags refer to significant structural elements of each document such as Title,
Abstract, Body, and Conclusions. Thus, the result is a reduction of the structural
representation of each document to at most four nodes. This is explained in some
more detail in Section 5.4.

5.3 Training Using Structural Information

For the clustering using only structural information, the documents went through the
header structure extraction process (the third approach in Section 5.2). This approach
has the least structural modification, therefore is expected to closely resemble the orig-
inal document structure.

A common problem with Self-Organizing Maps is that training parameters need to be
determined using a trial and error approach. This paper proposes a more sophisticated
approach by statistically analysing the properties of the dataset which helps to make
a reasonable assumption about the underling difficulty of the learning problem. Then
training parameters which should be most suitable for this given task are set. Absolutely
no information about target values or class memberships are used during this task, and
hence, the approach remains unsupervised.

The SOM provides a discrete mapping space. The size of the map needs to be deter-
mined prior to a training session. In order to obtain an indication of suitable network
sizes, it is recommended to consider the analysis of the training set. It is found that the
set which will be used for the experiments consists of 108, 523 nodes. Each node is the
root of a sub-structure. Thus, there are 108, 523 sub-structures in the dataset, 2, 275 of
these sub-structures are unique, while 48, 620 of the nodes are found in a unique contex-
tual arrangement within the graphs. Since, each pattern is represented by a codebook,
the number of codebooks should be large enough to represent every different feature of
any pattern. In fact, usually the number of codebooks is selected approximately equal
to the number of different sub-structures in SOMSD and unique graph-node pairs in
CSOM-SD. In other words, the statistical analysis of the dataset suggests that a SOMSD
would require at least 2, 275 codebook vectors in order to provide the means to differ-
entiate the mappings of the unique features in the input dataset. It furthermore tells us
that a CSOM-SD would require at least 48, 620 codebooks. Hence, it is observed that
the CSOM-SD should be able to differentiate the mappings much more effectively than
when compared to the SOM-SD.

For first experiments we utilized maps which consisted of 8, 800 codebook vectors.
Training was conducted using both SOM-SD and CSOM-SD. The training parameters
used are as shown in Table 1.

The initial training used a map size based on the number of unique substructures in
the document structure tree. However, the map size that provides a good performance
within allowable time is slightly larger than their initial map size which in this case is
8,800.

520 M. Kc et al.

Table 1. The training parameters used for the structure only learning task

Clustering Map Learning Iteration Radius μ1 μ2 μ3 Training
method size rate time
SOM-SD 8800 0.7 150 15 0.05 0.95 0 16 hours
CSOM-SD 8800 0.7 100 15 0.005 0.095 0.9 16 hours

The use of appropriate parameters for training is essential for achieving good clus-
tering performance. Usually, the best training parameters are identified through a trial-
and-error process. It was observed that an initial learning rate of 0.7 and a large number
of iterations is best for most training runs. However, the balance between high number
of iterations and long training duration is a challenging task.

Another observation is that although previous clustering experience indicated that
best performance can be obtained when the radius is a half of the length of the train-
ing map’s side, which was not the case for this clustering task. For the structures used
in clustering the INEX dataset, the radius that delivers best clustering performance re-
mains small regardless of the map dimension. This could be due to the fact that nearby
clusters are somewhat independent of each other and should be handled differently;
therefore updating an extended radius causes the performance to decline.

The most influential parameter is perhaps the use of an appropriate weight value for
the node label (μ1), as it also determines the weight of the children nodes (μ2) in the
structure. The selection of appropriate weight for the node label is dependent on the
importance of the node label in the structure used.

The parameters used for SOM-SD were taken as the starting point for CSOM-SD
training and the map size is approximately the same as the number of unique nodes.
Then, adjustments were made based on the observations of SOM-SD and CSOM-SD in
the work from the previous challenge, which indicated the following:

– The number of training iterations for CSOM-SD does not need to be as high as that
used for SOM-SD.

– The map size for CSOM-SD should be much larger than the map size provided for
SOM-SD.

The difference between the number of unique substructures and unique nodes indi-
cated that for this particular structure, a CSOM-SD experiment that will require a map
size that is about 15 times larger than that used for the SOM-SD. However, due to the
time constraint, the CSOM-SD experiments conducted used only a map size as large as
8,800.

Similar to SOM-SD, the appropriate weight values are important for good CSOM-
SD clustering performance. The difference in performance with various weight values
on parent nodes (μ3) is quite significant. In an example where all parameters remain
constant and only the weights were adjusted, an increase of weight on parent node from
0.5 to 0.9 increased the micro F1 clustering result by 2%.

Performance measures will be given by F1. Macro and micro statistics are also com-
puted. Macro averaging is calculated for each cluster and then averaged while micro av-
eraging is computed over all neurons and then averaged. F1 is defined as 2PR

P+R where

XML Document Mining Using Contextual Self-organizing Maps for Structures 521

Table 2. Training parameters used for the clustering of both structural and textual information

Clustering Map Learning Iteration Radius μ1 μ2 μ3 Training
method size rate time

SOM-SD using
1-D textual label

40000 0.7 120 20 0.002 0.95 – 1.5 hours

SOM-SD using
3-D textual label

40000 0.7 120 20 0.001 0.999 – 10 hours

CSOM-SD using
1-D textual label

90000 0.7 100 10 0.003 0.332 0.665 20 hours

P is the precision and R is the recall. F1 can be computed if target information is
available for the training and test dataset by computing R and P as follows:

Recall: Assuming that for each XML document dj the target information
yj ∈ {t1, . . . , tq} is given. Since each XML document is represented by a tree,
and since both the SOM-SD and CSOM-SD consolidate the representation of a
tree in the root node, we will focus our attention just on the root of the tree. With
rj we will refer to the input vector for SOM-SD or CSOM-SD representing the
root of the XML document dj . Then the index is computed as follows: the mapping
of every node in the dataset is computed; then for every neuron i the set win(i)
of root nodes for which it was a winner is computed. Let wint(i) = {rj |rj ∈
win(i) and yj = t}, the value Ri = maxt

|wint(i)|
|win(i)| is computed for neurons with

|win(i)| > 0 and we obtain R = 1
W

∑
i,|win(i)|>0 Ri, where W =

∑
i,|win(i)|>0 1

is the total number of neurons which were activated at least once by a root node.
Precision: P =

∑
i,|win(i)|>0

Ri·|win(i)|
W .

5.4 Training Using Structure and Textual Information

For the task of clustering using structure and textual information, the input data is very
different to the data for structure only clustering. The documents went through a simple
framework filtering process (approach 4 in Section 5.2). This approach uses a maximum
of 4 nodes to represent the document structure, so that a high dimension of textual
information can be added without requiring excessive training time.

The clustering training was conducted using both SOM-SD and CSOM-SD. The
training parameters used are as shown in Table 2.

As Table 2 shows, the simplicity of the framework allows various textual information
to be added to the structure. The 1-dimensional textual label simply uses the number of
unique keywords in the various segments of the document, whereas the 3-dimensional
textual label contains information about the 3 keywords with the highest frequency in
each document segment. Here, the keywords are dictionary words, where the dictionary
lists all words found in the training set but has common words such as “the”, “is”, “a”,
“in”, etc. removed.

522 M. Kc et al.

Table 3. Test results for structure only clustering; a comparison

Micro F1 Macro F1 Team Method used
0.38 0.34 Our team SOM-SD
0.37 0.33 Our team CSOM-SD
0.27 0.22 Doucet and Lehtonen K-means, Tags Text
0.18 0.12 Tran, Nayak, Raymond PCXSS with clustering threshold 0.8
0.17 0.12 Tran, Nayak, Raymond PCXSS with clustering threshold 0.9
0.13 0.08 Doucet and Lehtonen K-means, Tags only
0.13 0.09 Tran, Nayak, Raymond PCXSS with clustering threshold 0.4
0.10 0.05 Tran, Nayak, Raymond PCXSS with clustering threshold 0.3

The initial SOM-SD training used a map size based on the number of unique sub-
structures in the document structure tree which was quite small. However, since the
training time is not long, the map size was increased to spread out overlapping nodes
on the map and obtain better clustering results.

Similar to structure only clustering, the provision of appropriate training parameters
is important, so the best combination of learning rate, number of training iterations and
map updating radius have been attempted for each input data.

Again, the most influential parameter is the use of an appropriate weight value for the
node label (μ1), as it also determines the weight of children nodes (μ2) in the structure.
The selection of appropriate weight for the node label is dependent on the importance
of the node label in the structure used. For this task, the existence and types of children
nodes in this simple framework is quite important, therefore the weight on the node
label (μ1) should remain low.

The difference between the unique nodes and the unique sub-structures for this
framework is approximately 4 times larger, so the map size for CSOM-SD is expected
to be 4 times larger than its SOM-SD counterpart. Although the performance obtained
through the CSOM-SD is expected to be better than SOM-SD, however, the long train-
ing time and the resulting accuracy is a trade-off.

5.5 Comparisons

The test results for structure only clustering are given in Table 3, ordered by micro F1
in descending order. The test results for structure and textual clustering are shown in
Table 4. The approaches taken by the other teams were as follows: (1)Team Doucet and
Lehtonen from IRISA-INRIA, France, and from the University of Helsinky, repectively
use K-means with different features (see Tables). They adopt a two step procedure, first
they cluster according to a set of features, then according to another. The feature TE
is “a structural indicator of the proportion of mixed content in an XML fragment”. (2)
Team Tran, Nayak, Raymond from the Queensland University of Technology, Australia
use a method called Progressively Clustering XML by Structural Similarity (PCXSS).
The approach is an iterative method which uses a measure of the distance between a
pair of trees which roughly counts the number of common paths from the root to the
leaves. A cluster center is represented by a set of common paths. Clusters are built while

XML Document Mining Using Contextual Self-organizing Maps for Structures 523

Table 4. Test results when clustering using XML structure and document content

Micro F1 Macro F1 Team Method used
0.35 0.29 Doucet and Lehtonen K-means, text + TE
0.35 0.29 Doucet and Lehtonen K-means, text only
0.25 0.20 Doucet and Lehtonen K-means, text and tags
0.13 0.09 Our team CSOM-SD with 1-D textual label
0.13 0.08 Our team SOM-SD with 3-D textual label
0.11 0.07 Our team SOM-SD with 1-D textual label
0.09 0.04 Tran, Nayak, Raymond PCXSS with clustering threshold 0.8
0.09 0.04 Tran, Nayak, Raymond PCXSS with clustering threshold 0.7
0.07 0.04 Tran, Nayak, Raymond PCXSS with clustering threshold 0.5

reading the input trees. At each step of this procedure the input tree is either inserted
into the closest cluster or into a new cluster, if the minimum distance to the existing
clusters is over a given threshold.

As the tables show, our team obtained the best performance in the structure only
clustering. In fact, the performances obtained by using XML structure only also out-
performed all the other teams involved in the structure and content clustering task (see
Table 4). Although the CSOM-SD method does not appear to perform as well as the
SOM-SD method, but bearing in mind that the map size provided for CSOM-SD is the
same as the size used for SOM-SD, the CSOM-SD result may easily be improved.

Our performance in the structure and content could not achieve the similar standard,
and we attribute this poor performance to the use of a significantly simplified structure
which allowed the addition of textual information. However, the addition of textual infor-
mation did not seem to add too much value to the clustering performance. This is perhaps
due to the dramatic reduction of dimensionality for the textual information, which was
carried out in order to keep the turn around time of the experiments reasonable.

6 Conclusions

SOMs have traditionally been useful for many data mining tasks due to the linear na-
ture of the learning algorithm, their generalization ability, and due to their insensitivity
to noise. With SOM-SD, this property is maintained with the exception of a quadratic
dependence on the connectivity of nodes in a graph. The computational complexity
grows quadratic with the outdegree a node in the dataset. In this paper it was shown that
through the removal of redundancies in the data set it is possible to reduce the outde-
gree significantly, and hence, rendering SOM-SD practical for the given task. Thus, it
was shown that the SOM-SD can be a suitable tool for the clustering of relatively large
sets of documents. While in general it is not necessary to pre-process the data when us-
ing this method, we found that pre-processing can help to substantially reduce training
times. It is noted, however, that the network, once trained, can respond very quickly to
large sets of test patterns.

524 M. Kc et al.

We have furthermore demonstrated that XML structure is causal. This means that a
contextual processing of such data is unlikely to bring any advantages, and thus, ma-
chine learning methods can be optimized by learning the structure in one direction only.

This paper addressed the inclusion of textual information into the clustering task.
The results obtained were considerably worse than when learning XML structure only.
We attribute this to an oversimplification of the training data through an aggressive pre-
processing step which was engaged to achieve results in a timely fashion. It remains to
be demonstrated how the SOM-SD method can perform when supplied with a richer set
of structural and textual information.

It is recognized that the out-degree can be an issue for certain learning tasks. For
example, when processing the graph depicted by the World Wide Web, the outdegree
can be very large and the removal of redundancies can be a difficult task. A project with
addresses this issue is under way. The general idea is to alter the processing technique.
Instead of utilizing the state of each offspring as a network input, the state space of the
(finite) network is used. Such an approach keeps the input dimension constant.

Acknowledgments

The work presented in this paper received financial support from the Australian Re-
search Council in form of a Linkage International Grant and a Discovery Project grant.

References

1. Denoyer, L., Gallinari, P.: Report on the xml mining track at inex 2005 and inex 2006. In:
Proceedings of INEX (2006)

2. Frasconi, P., Gori, M., Maggini, M., Martinelli, E., Soda, G.: Inductive inference of tree au-
tomata by recursive neural networks. In: Proceedings of the Fifth Congress of the Italian As-
sociation for Artificial Intelligence, Rome, Italy, pp. 425–432. Springer, Heidelberg (1997)

3. Hagenbuchner, M., Sperduti, A., Tsoi, A.: A self-organizing map for adaptive processing of
structured data. IEEE Transactions on Neural Networks 14(3), 491–505 (May 2003)

4. Hagenbuchner, M., Sperduti, A., Tsoi, A.: Contextual processing of graphs using self-
organizing maps. In: European symposium on Artificial Neural Networks, Poster track,
Bruges, Belgium (April 27-29, 2005)

5. Hagenbuchner, M., Sperduti, A., Tsoi, A.: Contextual self-organizing maps for structured do-
mains. In: Workshop on Relational Machine Learning (2005)

6. Hagenbuchner, M., Sperduti, A., Tsoi, A., Trentini, F., Scarselli, F., Gori, M.: Clustering xml
documents using self-organizing maps for structures. In: Fuhr, N., (eds.) LNCS, vol. 3977, pp.
481–496. Springer, Heidelberg (2006)

7. Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences, vol. 30.
Springer, Heidelberg (1995)

XML Document Transformation with

Conditional Random Fields

Rémi Gilleron, Florent Jousse, Isabelle Tellier, and Marc Tommasi

INRIA Futurs and Lille University, LIFL, Mostrare Project
first.last@univ-lille3.fr, jousse@grappa.univ-lille3.fr

Abstract. We address the problem of structure mapping that arises
in xml data exchange or xml document transformation. Our approach
relies on xml annotation with semantic labels that describe local tree
editions. We propose xml Conditional Random Fields (xcrfs), a frame-
work for building conditional models for labeling xml documents. We
equip xcrfs with efficient algorithms for inference and parameter esti-
mation. We provide theoretical arguments and practical experiments that
illustrate their expressivity and efficiency. Experiments on the Structure
Mapping movie datasets of the inex xml Document Mining Challenge
yield very good results.

1 Introduction

Semi-structured documents in xml are omnipresent in today’s computer science
applications, since xml has become the standard format for data exchange. The
essence of xml documents is their tree structure. Machine learning tasks dealing
with xml structures should account for this fact. This is why tree labeling has
become one of the most basic tasks in the xml context. It arises in information
extraction from structured documents on the Web. The basic idea is to label
nodes that are selected for some role positively and all others negatively. An-
other application is learning-based schema matching [1], where xml data for a
source schema are labeled w.r.t. a target schema. In this case, matches are to
be elaborated into mappings to enable xml data translation. In this paper, we
consider the problem of xml document transformation which is ubiquitous in
xml document engineering. For the inex structure mapping task, the problem
is to learn to transform layout-oriented html documents into content-oriented
xml documents. The transformation task can be modeled by a labeling task, by
assigning an operational semantic (local deletion, local inversion, etc.) to every
element of the labeling alphabet. Thus we reduce the problem of learning to
transform in the problem of learning to label.

The labeling task can be described as follows: given an observable x, the
problem consists in finding the most likely labeling y, of the same dimension.
Solutions to this problem based on graphical generative models try to evalu-
ate from the labeled examples the joint probability distribution p(y,x). As we
are only interested in labeling, we prefer to use conditional models that model

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 525–539, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

526 R. Gilleron et al.

the conditional distribution p(y|x) directly. Thus, for learning to label trees,
we propose to extend on Conditional Random Fields (crfs) introduced in [2].
Until now, crfs have mainly been applied to sequence labeling tasks occurring
in computational linguistic applications such as part-of-speech tagging, shallow
parsing, but also to information extraction [3,4,5,6,7]. For an overview, see [8].

In this paper, we develop xcrfs, a new instance of crfs that properly ac-
counts for the inherent tree structure of xml documents. As a matter of fact, in
an xml document, every node has an unlimited number of ordered children, and
a possibly unbounded number of unordered attributes. Independence conditions
in crfs are governed by an undirected graph over random variables for label-
ings. The undirected graph for xcrfs is defined by: for ordered (parts of the)
trees, the maximal cliques of the graph are all triangles consisting of a node and
two adjacent children; for unordered (parts of the) trees, the maximal cliques
are edges consisting of a node and one child. With such an undirected graph,
in xcrfs, p(y|x) can be decomposed into a product of potential functions, each
applying on a one-node clique, or an edge clique or a triangular clique. And
these potential functions are themselves defined thanks to feature functions and
parameters.

A contribution of this paper is to adapt the technical apparatus associated
with crfs to this new kind of dependence relationships. We define efficient algo-
rithms for the inference problem and the parameter estimation problem in xcrfs.
Because of the unranked property of xml trees, algorithms for xcrfs implement
two recursions: a vertical recursion following the child ordering and an horizontal
recursion following the sibling ordering using both forward-backward variables
and inside-outside variables.

We have implemented xcrfs in a freely available system that allows to (learn
to) label xml documents. In the experiments section, we evaluate our model on
the Movie datasets from the Structure Mapping task of the inex xml Document
Mining challenge. This task consists in transforming layout-oriented html doc-
uments into data-oriented xml documents. To perform this task, we model such
a transformation by a labeling of the html documents. We evaluate both the
quality of the labeling of the html documents and the complete transformation.
Results show that xcrfs perform very well on this task.

Related work
The idea to define crfs for tree structured data has shown up recently. Basi-
cally, works differ in the graphical structure of crfs. In [9], output variables
are independent. Other approaches such as [10,11] define the graphical structure
on rules of context-free or categorial grammars. [12] have considered discrimina-
tive context-free grammars, trying to combine the advantages of non-generative
approaches (such as crfs) and the readability of generative ones. All these ap-
proaches apply to ordered ranked rather than unranked trees. As far as we know,
their graphical models are limited to edges, not accounting for father-child-next-
sibling triangles as in xcrfs.

xml data translation takes place in the domain of semantic integration. An
overview can be found in [1]. For schema mapping, it has been shown [13]

XML Document Transformation with Conditional Random Fields 527

that xcrfs can be compared with lsd [14]. But, applications of crfs to more
complex tasks and a comparison with recent systems for schema matching re-
main to be done. For information extraction, systems [15,16,17,18,19,20] deal
with semi-structured input, mainly html data, but, to the best of our knowl-
edge, structured output have not been considered so far by machine learning
techniques.

For xml document transformation, Chidlovskii and Fuselier [21] address the
problem of semantic annotation of html documents according to a target xml

schema. They use a two-step procedure: terminals (leaves of the output doc-
ument) are predicted by a maximum entropy classifier, then the most likely
output tree is generated using probabilistic parsing for probabilistic context-free
grammars. They suppose that leaves are in the same order in the input and the
output document. The complexity of probabilistic parsing is cubic in the num-
ber of leaves, and therefore the system is not appropriate for large xml trees.
Gallinari et al have considered generative stochastic models in [22]. Such models
need to model input documents and to perform the decoding of input documents
according to the learned model. The complexity of the decoding procedure could
be prohibitive for large xml documents.

2 Conditional Random Fields for xml Trees

2.1 Conditional Random Fields

We refer to [8] for a complete introduction to crfs. A crf is a conditional
distribution with an associated graphical structure. Let X and Y be two random
fields, let G be an undirected graph over Y. Let C be the set of all cliques of G.
The conditional probability distribution is of the form:

p(y|x) =
1

Z(x)

∏

c∈C
ψc(yc,x)

where ψc is the potential function for the clique c and Z(x) is a normalization
factor. Each potential function has the form:

ψc(yc,x) = exp
(∑

k

λkfk(yc,x, c)
)

for some real-valued parameter vector Λ = {λk}, and for some set of real-valued
feature functions {fk}. This form ensures that the family of distributions para-
meterized by Λ is an exponential family. The feature function values only depend
on yc, i.e. the assignments of the random variables in the clique c, and the whole
observable x.

The two main problems that arise for crfs are:

Inference: given a new observable x, find the most likely labeling ŷ for x, i.e.
compute ŷ = arg maxy p(y|x).

528 R. Gilleron et al.

Training: given a sample set S of pairs {(x(i),y(i))}, learn the best real-valued
parameter vector Λ according to some criteria. In this paper, the criterion
for training is the maximum conditional penalized log-likelihood.

Linear chain crfs
Y1 · · · Yt−1 Yt Yt+1 · · · YTIn first-order linear chain crfs, the maximal

cliques of the graph are pairs of consecutive
nodes as depicted on the right. Thus, there are feature functions over node
labels called node features, and feature functions over pairs of labels called edge
features. For ease of notation, node features and edge features are merged and
fk denotes the kth feature. The conditional probability can be written as:

p(y|x) =
1

Z(x)
exp

(T∑

t=1

∑

k

λkfk(yt−1, yt,x, t)
)

(2.1)

In first-order linear chain crfs, the inference task can be performed efficiently
and exactly by the standard dynamic-programming Viterbi algorithm. For train-
ing linear chain crfs, the problem is, given an input sample S, to learn the
parameter vector Λ which maximizes the log-likelihood. The parameter vector
can be learnt using traditional log-likelihood maximization methods. Since the
optimal parameters cannot be found analytically, gradient ascent techniques are
used. [23] has experimentally shown that the most effective technique in the
case of linear-chain crfs is the limited memory BFGS algorithm (L-BFGS) [24].
Both the function Z(x) in the likelihood and the marginal distributions in the
gradient can be computed by forward-backward techniques.

2.2 XCRFs: Conditional Random Fields for xml Trees

xml documents are represented by their dom tree. We only consider element
nodes, attribute nodes and text nodes of the dom representation. Other types
of nodes1 are not concerned by labeling tasks. Attribute nodes are unordered,
while element nodes and text nodes are ordered. We identify a node by a position
which is an integer sequence n and we denote by xn the symbol in a tree x in
position n. The k ordered children of a node in position n are identified by
positions n.1 to n.k. As a running example, consider the two xml trees x (on
the top) and y (on the bottom) in Figure 1. The set of nodes for both trees
is {ε, 1, 1.1, 1.2, 2, 2.1, 2.2, 2.3, 2.4}, ε being the root. The symbol in position 2.1
in x is td; in its labeling y, the label in position 2.1 is name. {2.1, 2.2, 2.3, 2.4}
is the set of children of 2. Ordered children (2.1, 2.2 and 2.3) are listed before
unordered children (2.4).

With every set of nodes, we associate a random field X of observable variables
Xn and a random field Y of output variables Yn where n is a position. The
realizations of Xn will be the symbols of the input trees, and the realizations
of Yn will be the labels of their labelings. In the following, we freely identify
realizations of these random fields with ordered unranked trees.
1 comments, processing instructions...

XML Document Transformation with Conditional Random Fields 529

table

tr

td td

tr

td td td @class

Yε

Y1

Y1.1 Y1.2

Y2

Y2.1 Y2.2 Y2.3 Y2.4

account

client

name address

product

name price number id

Fig. 1. An ordered unranked tree, its graph and its labeling

For their ordered parts, the structure of xml trees is governed by the next-
sibling and the child orderings. We translate this structural property into xcrfs
defining maximal cliques of the undirected graph over an ordered unranked tree
y to be triangles (Yn, Yn.i, Yn.(i+1)), for i < o, where o is the number of or-
dered children of n. For unordered parts of xml trees, the graph only includes
pairs (Yn, Yn.i) because the next-sibling ordering is meaningless. In Fig. 1, we
show the graph for our running example. Feature functions are thus defined over
nodes (node features), pairs of nodes (edge features) and triples of nodes (tri-
angle features). Triangle feature functions have the form: fk

(
yn, yn.i, yn.(i+1),x,

(n, n.i, n.(i + 1))
)
. Their arguments are the labels assigned to the node n and to

two of its consecutive children n.i and n.(i+1), the whole observable x, and the
identifier of the clique in the tree (n, n.i, n.(i + 1)). In fact, a triangular clique
(n, n.i, n.(i + 1)) can be shortly identified by n.i. We denote by C the set of
cliques in the dependency graph. Every feature function fk is associated with a
real-valued parameter λk, defining the vector Λ = {λk}. It is worth pointing out
that our model uses the same set of feature functions with the same parameters
for every clique in the graph.

The introduction of triangle features is the main difference between linear
chain crfs and xcrfs. Training and inference algorithms need to be adapted
because these triangle features bring both a horizontal and a vertical recursion in
the graph structure. Therefore for ease of notation, we only consider such triangle
features in the formal definition of the algorithms. The conditional probability
distribution for an xcrf can be written as:

p(y|x) =
1

Z(x)

∏

n.i∈C
ψn.i(yn, yn.i, yn.(i+1),x) (2.2)

where

ψn.i(yn, yn.i, yn.(i+1),x) = exp
(∑

k

λkfk(yn, yn.i, yn.(i+1),x, n.i)
)

(2.3)

530 R. Gilleron et al.

and
Z(x) =

∑

y

(∏

n.i∈C
ψn.i(yn, yn.i, yn.(i+1),x)

)
(2.4)

2.3 Algorithms for XCRFs

Inference Algorithm for Z(x). The normalization factor Z(x) must be com-
puted to compute the normalized conditional probability p(y|x) and to com-
pute the likelihood in training crfs. In xcrfs, Z(x) is defined in Eq. (2.4)
as a sum over all possible labelings. It can be efficiently computed using dy-
namic programming. To do so, for every node n and every label y ∈ Y, we
define the inside variable βn(y) as the sum of the unnormalized probabili-
ties over all the possible labelings of the subtree rooted in node n in which
n is labeled with y. The recursive definition of βn(y) is 1 if n is a leaf, and

βn(y) =
∑

(y1,...,ym)∈Ym

(∏m
i=1 βn.i(yi)ψn.i(y, yi, yi+1,x)

)
if n has m children.

Clearly, the sum over all possible label assignments for the children of n again
leads to a combinatorial explosion. Therefore we also use a dynamic program-
ming technique for the horizontal recursion. For every node n with m children,
for every k ≤ m, and for every pair of labels (y, y′) ∈ Y2, we define the back-
ward variable β′

n,k(y, y′) as the sum of the the unnormalized probabilities over
all labelings of the subtree rooted in the node n whose k − 1 first subtrees
are deleted and where n is labeled with y and n.k with y′. If k = m we have
β′

n,k(y, y′) = βn.m(y′) , and otherwise

β′
n,k(y, y′) = βn.k(y′)

∑

y′′∈Y

(
ψn.k(y, y′, y′′,x)β′

n,k+1(y, y′′)
)

Therefore, βn(y) =
∑

y,y1∈Y×Y
β′

n,1(y, y1)

Thus, Z(x) =
∑

y∈Y βε(y) can be computed in O(N × M3) where N is the
number of nodes of x and M is the number of labels in Y.

Inference for XCRFs. When computing Z(x), the aim was to compute the
sum of the unnormalized conditional probabilities for all labelings. Here, we
want to compute the most likely labeling. The Viterbi recursion is obtained
by replacing the sum function by the max function in the inside and backward
recursions of the computation of Z(x). Finding the most likely labeling ŷ then
consists in the memorization of the Viterbi path associated with the maximum
unnormalized conditional probability.

Training XCRFs. Training an xcrf means learning its parameter vector Λ.
We are given iid training data S of pairs of the form (observable tree, labeled
tree). Parameter estimation is typically performed by penalized maximum like-
lihood. The conditional log-likelihood, defined as LΛ =

∑
(x,y)∈S log p(y|x; Λ),

is used. This function is concave and the global optimum is the vector of para-
meters with which the first derivative is null. However, finding analytically this

XML Document Transformation with Conditional Random Fields 531

derivative with respect to all the model parameters is impossible. A gradient
ascent (L-BFGS), which requires the calculation of the partial derivatives of LΛ

for each parameter, is therefore used. Replacing p(y|x; Λ) by its definition (c.f.
equation (2.2)), LΛ becomes:

LΛ =
∑

(x,y)∈S

∑

n.i∈C

∑

k

λkfk(yn, yn.i, yn.(i+1),x, n.i) −
∑

(x,y)∈S

log Z(x) . (2.5)

Thus partial derivatives can be written as:

∂LΛ

∂λk
=

∑

(x,y)∈S

∑

n.i∈C
fk(yn, yn.i, yn.(i+1),x, n.i)−

∑

(x,y)∈S

∑

n.i∈C

∑

y1,y2,y3

P (y1, y2, y3)fk(y1, y2, y3,x, n.i)

where P (y1, y2, y3) = p(Yn = y1, Yn.i = y2, Yn.i+1 = y3|x; Λ). The computation
of the first term is relatively straightforward. On the opposite, calculating the
second one, i.e. the marginal probability for a given clique, is more difficult since
it requires to sum over all possible labelings outside the clique. To make these
computations tractable, we introduce a dynamic programming algorithm using
both forward-backward variables and inside-outside variables.

For every node n and every label y, the outside variable αn(y) is the sum of
all the unnormalized probabilities over all the possible labelings of the context
of the subtree rooted at the node n, in which n is labeled with y ∈ Y. We have
αn(y) = 1 if n is the root and αn(y) =

∑
y′∈Y αn′(y′)βn′(y′)

βn(y) if n = n′.i.
The forward variable α′

n,k(y, y′) is introduced for horizontal recursion. It is
defined as the sum of the unnormalized probabilities over all labelings of the
subtree rooted in the node n whose (m − k + 1) last subtrees are deleted and
where n is labeled with y and n.k with y′. We have α′

n,k(y, y′) = 1 when k = 1,
otherwise

α′
n,k(y, y′) =

∑

y′′∈Y

(
βn.(k−1)(y′′)ψn.k−1(y, y′′, y′,x)α′

n,k−1(y, y′′)
)

Then, the marginals can be computed by:

P (y1, y2, y3) =
1

Z(x)
αn(y1)ψn.i(y1, y2, y3,x)

α′
n,n.i(y1, y2)βni(y2)β′

n,n.(i+1)(y1, y3) (2.6)

Complexity Issues and Discussion. We have shown that Z(x) can be com-
puted in O(N ×M3) where N is the number of nodes of x and M is the number
of labels in Y. This result can be extended to the computation of the marginal

532 R. Gilleron et al.

probabilities in the gradient. This leads to an overall complexity for training in
O(N × M3 × G) where N is the total number of nodes of the trees in the input
sample S, M is the number of labels in Y, and G is the number of gradient steps.
For linear chain crfs only a factor M2 occurs.

We have presented the inference algorithms for xcrfs as extensions of the
algorithms for linear chain crfs. An alternative approach would be to consider
xcrfs as a particular case of general crfs. Indeed, the treewidth of undirected
graphs for xcrfs is 2. For every graph associated with an xcrf, a junction tree
can be computed in linear time. Then the belief propagation algorithm can be
applied [25,7]. The inference algorithms for xcrfs, given in the previous section,
can be considered as inference algorithms for general crfs using the knowledge
of the tree-shaped graphical structures associated with xcrfs.

3 Experiments with the XCRF System

3.1 The XCRF System

The xcrf model is implemented by a freely available JAVA library 2. For train-
ing, parameters are estimated by maximizing the penalized log-likelihood. The
L-BFGS gradient ascent package from the “RISO Project”3 is used. The sys-
tem allows to label element, attribute and text nodes of xml trees. An xcrf

is specified by an xml file. Feature functions are 0-1 valued functions defined
by xpath expressions. There are node features, edge features, attribute features
(edge features for unordered children), and triangle features. An example of tri-
angle feature is given in Fig. 2.

<Feature name="f_title" weight="7.46" xsi:type="TriangleFeature">
<Y value="0" />
<Yi value="title" />
<Yj value="year" />
<TestX value="parent::*/name() = ’tr’"/>
<TestX value="name() = ’td’"/>
<TestX value="name(following-sibling::*[1])=’td’"/>
</Feature>

Fig. 2. XML definition of a feature function of weight 7.46 defined by
ftitle(yn, yn.i, yn.(i+1),x, n.i) = 1 if yn = ⊥, yn.i =’title’, yn.(i+1) =’year’, xn =’tr,
xn.i =’td’, xn.(i+1) =’td’

3.2 Feature Generation

In the following experiments, the set of feature functions we used were auto-
matically generated from a set of labeled documents, typically the learning set.
2 http://treecrf.gforge.inria.fr/
3 http://riso.sourceforge.net/

http://treecrf.gforge.inria.fr/
http://riso.sourceforge.net/

XML Document Transformation with Conditional Random Fields 533

Table 1. Structure Attributes computed during the preprocessing

Attribute Description

nbChildren number of children of the node
depth depth of the node

childPos node is the ith child of its father

Table 2. Text Attributes computed during the preprocessing

Attribute Description

containsComma text contains a comma
containsColon text contains a colon

containsSemiColon text contains a semi-colon
containsAmpersand text contains an ampersand

containsArobas text contains an arobas
isUpperCase text is in upper case

firstUpperCase first letter is in upper case
onlyDigits text is made of digits
oneDigit text is a single digit

containsDigits text contains digits
rowHeader text value of the row

header in a table (html only)
columnHeader text value of the column

header in a table (html only)

There are essentially two kinds of generic feature functions: structure features
and attribute features.

Before the automatic generation of the feature functions, a first step consists
in preprocessing additional attributes. These attributes are purely informative.
Therefore, during the experiments, the xcrfs do not consider them as regular
nodes and do not attempt to label them. These preprocessed attributes give
additional information on the structure of the trees and basic information on the
content of the text nodes. Tables 1 and 2 show the different kind of information
given by these preprocessed attributes.

The first kind of automatically generated feature functions are structure fea-
tures. These feature functions are node features, edge features and triangle fea-
tures testing solely the node symbols (nodes can be element, attribute or text
nodes) and labels. Let 1p be 1 if and only if predicate p is true. If the tree in
Figure 3 is part of the learning set, the following features are generated:

– Node features testing the label of node n its the node symbol,
e.g. 1(yn=title)(xn=td)

– Node features similar to the previous one, but testing if the node symbol is
different from the one in the learning set, e.g. 1(yn=title)(xn �=td)

– Edge features testing the labels of a node n and one of its children i and the
node symbols, e.g. 1(yn=⊥)(yi=title)(xn=tr)(xi=td)

534 R. Gilleron et al.

table

tr

td td

⊥
⊥

title year

Fig. 3. Feature generation example

– Triangle features on the same principle as the edge features above, but testing
on two consecutive children i and j of node n:
1(yn=⊥)(yi=title)(yj=year)(xn=tr)(xi=td)(xj=td)

The second kind of feature functions that are generated are attribute features.
These feature functions are based on attribute values. The attributes used to
generate these features are both the ones originally in the corpus, for instance
the class attribute of a div element in html, or attributes resulting from the
preprocessing performed earlier. With all these attributes, for each node in the
tree we generate feature functions testing the label assigned to this node and one
or two attributes of the node itself, its father, grandfather, great-grandfather,
previous sibling and next sibling. For instance, on the example in Figure 3, the
following feature functions are generated:

1(yn=title)(father(xn)@nbChildren=2)(xn@childPos=1)

1(yn=title)(x@ndepth=2)

With such a generation procedure, we get feature functions that are mostly
domain independent. However, they prove to be a very relevant set of feature
functions when dealing with well-structured xml documents.

3.3 Experiments on the Structure Mapping Task

This second experiment is on a bigger scale. It was conducted as part of the Struc-
ture Mapping task of the xml Document Mining Challenge [26]. The Structure
Mapping task consists in transforming layout-oriented html documents into
content-oriented xml documents. The dataset is made of html descriptions of
movies taken from the website allmovie4 and their xml counterpart taken from
the IMDB repository5. Each document gives thorough information about a single
movie such as the title, the director, the cast and crew, related movies, etc. Since
the dtd of the output xml documents was not given as part of the challenge,
we used the algorithm given in [27] to build it. The dtd contains 63 elements,
among which 39 contain textual information.

There are two tasks with two different input html datasets, called html1
and html2. Both html datasets describe the same movies, but the documents in
html1 contain only the html table describing the movie, whereas the documents
in html2 also contain useless information. Documents from the html1 dataset are
4 http://www.allmovie.com/
5 http://www.imdb.com

http://www.allmovie.com/
http://www.imdb.com

XML Document Transformation with Conditional Random Fields 535

therefore subtrees of the documents in the html2 dataset. This makes the task a
bit harder for html2. The average number of nodes in a document is 470 in the
html1 dataset, and 530 in the html2 dataset.

Method. We chose to model a transformation from an html document into an
xml document by a labeling of the input html document.

In the html documents, a text node can contain several distinct information,
which will appear in different text nodes in the output xml document. For
instance, the release date, the movie format and the movie length are all located
in the same text node of the html document. Therefore, as a preprocessing step,
text nodes are tokenized in several nodes.

The labels used in the labeling task are: the names of the 39 elements of
the output dtd which contain textual information, e.g. director, synopsis;
the labels indicating that a node is part of a set of consecutive nodes cor-
responding to a single element of the output dtd,e.g. director continued,
synopsis continued; the label ⊥ for useless nodes. This leads to a total num-
ber of 79 labels. However, only 66 of them are useful, since some information
are never split over several text nodes in the html documents (e.g. the year of
release, the duration, etc.).

A very simplified example of a labeled html tree is given in Figure 4. The xml

output documents are then computed using a simple post-processing function
which takes a labeled html document and the output dtd as parameters.

table

tr

td

b

The Big Sleep

tr

td

Director:

td

H. Hawks

⊥
⊥
⊥

title

The Big Sleep

⊥
⊥

Director:

director

H. Hawks

Fig. 4. a (simplified) HTML input tree (left) and its labeling (right) for the Structure
Mapping task of the XML Mining challenge

We assume that the text nodes appear in the same order in the input html

document and in its output xml counterpart, which is the case in this Structure
Mapping task. With this assumption, one can easily build the learning set of
labeled html documents from the original learning set of (html, xml) pairs of
documents. Indeed, automatically finding the labeling of the html document
corresponding to the transformation is straightforward. One only has to parse
both the html and the xml documents at the same time and label the text
leaves of the html document which occur in the xml document.

For the testing phase of our experiments, the assumption we made also gives
us the ability to easily transform an html document into an xml document.
Indeed, we first have to label the html document using xcrfs. Then, from this
labeled document, and knowing the dtd of the output xml document and the

536 R. Gilleron et al.

fact that the text leaves will appear in the same order, we can build this output
using a very simple xslt stylesheet or an easily writable script.

An xcrf is defined with more than 7000 feature functions over the set of 66
labels. It should label html trees of average size 950 nodes (after tokenization).
A naive application should fail for complexity reasons: 7000×950×663 ≈ 2.1012.
Therefore, we had to use a technique called “sequential partition composition”
of xcrfs to perform this task.

This technique consists in breaking the complexity factor M3, where M is
the number of possible labels in the xcrf, by combining several xcrfs where
M is considerably smaller than the original one. Let Y be the original set of
labels. First, we need to build a partition Y1, . . . , Yk of Y. The choice of this
partition is guided by the dtd of the output xml documents. For instance, all
the information about an award (name, location and year) are in a single part,
whereas the title of the movie is alone, since it is not directly related to any
other information. With this policy, we obtained a partition of k = 30 subsets
of labels containing from 2 to 6 labels.

Then, we define k xcrfs over the k parts of the partition. To label a document,
these k xcrfs are applied sequentially, following the order on the subsets of
labels. At step i, the xcrf labels the html document with the labels in Yi.
Since the xcrfs are applied sequentially, labeling at step i can use the labelings
performed at the previous steps j, where j < i. Previous labeling are encoded in
the html document. This allows for long distance dependencies between these
labels. Once the html documents have been labeled by the k xcrfs, for some
nodes, two or more labels might have been predicted by different xcrfs. In this
case, a choice needs to be made. We decided to choose the label with the higher
marginal probability.

The training of the k xcrfs is also performed sequentially. When training the
ith xcrf, the learning set is composed of the html documents enriched with
the labels of the previous subsets of labels Yj , where j < i.

Using this method, the xcrfs were trained on a learning set of 692 labeled
documents. We evaluated them on a testing set of 693 documents. We first
evaluate the quality of the labeling performed by the xcrf. Then, we evaluate
the performance of our method on the overall html to xml transformation task.

Evaluation of the xcrf for the labeling task. To evaluate the quality of the
labeling performed by the xcrfs, we measure precision, recall and F1-measure
for all the 66 labels in the task. In Table 3, we only show the micro-average
of these results. Since these results might be biased by the great proportion of

Table 3. Evaluation of the labeling on the Structure Mapping task

Dataset Average method Rec. Prec. F1

html1 Micro 93.00 94.11 93.55
Micro (without ⊥) 94.96 77.09 85.10

html2 Micro 92.41 93.10 92.76
Micro (without ⊥) 94.10 69.95 80.24

XML Document Transformation with Conditional Random Fields 537

nodes labeled with ⊥, i.e. nodes which are not used in the final transformation,
we also give the micro-average without this insignificant label.

First, it is worth noticing that the micro-averaged results over all the labels
are very good on both versions of the dataset. Both the recall and the precision
are above 92%, which proves the quality of the labeling. When averaging over
all the labels except ⊥ (i.e. only on the significant labels), two behaviours occur.
On the one hand, the recall increases, meaning that most of the significant
information in the html documents are correctly identified. On the other hand,
there is a drop in precision. The explanation is that some useless information
sometimes occur in the html documents in a structural context very similar
to that of significant information and the xcrfs can not make the difference
between them. This drop is slightly more important with the html2 dataset.
This is not a surprise since this dataset contains more useless information than
html1. This drop could be avoided by using feature functions which uses longer
distance dependencies on the observation.

Evaluation of the html to xml transformation. Now, we evaluate the
overall quality of the complete transformation from the html documents to
their xml counterpart. This transformation is performed in two steps: first, the
html documents are labeled with xcrfs; then a simple transformation using
the output dtd and the labeled html documents produces the predicted xml

documents. The evaluation is therefore a comparison between the predicted xml

documents and the correct ones. To compare them, we compute the F1-measure
according to two different criteria:

– Paths: for each text node in the predicted xml document, we build a couple
made of the text content and the path to the text node. These couples are
compared to those in the correct xml document.

– Subtrees: for each node in the xml document, we consider its subtrees, and
the subtrees are compared to those in the correct xml document.

The main difference between these two criteria is that the first one does not
take into account the order in which the text leaves appear. Overall, the second
criteria is more precise and gives a better idea of the accuracy of the predicted
xml documents.

Table 4 shows the average F1-measure over all the documents in the test
dataset for the four criteria. First, we notice that, as when we evaluated the
labeling, results show that our system performs very well on the html1 dataset.
The results are very similar with both criteria. This is partly due to the text
nodes appearing in the same order in both the html and the xml documents.

Table 4. Evaluation of the transformation on the Structure Mapping Task

Dataset F1 on paths F1 on subtrees

html1 91.81 89.76

html2 79.60 71.79

538 R. Gilleron et al.

Moreover, since the construction of the xml documents is guided by the output
dtd, our system always predicts xml documents conform to the dtd. Therefore,
it is very unlikely that an undesired node is inserted. This explains the stability
between the two measures.

With the html2 dataset, results are a bit lower, which is consistent with the
results we observed when evaluating the labeling. Still, the F1-measure on the
paths of the xml documents is good and close to 80. The drop of the F1-measure
on the subtrees can be explained by the nature of the html2 dataset. Indeed,
with this dataset, the xcrf sometimes failed to identify useless information.
Therefore, these information are in the predicted xml documents. This results
in several subtrees being incorrect, and a drop of the F1-measure, although the
correct information are present in the predicted xml documents.

4 Conclusion and Future Work

We have introduced xcrf that are conditional models for labeling xml trees.
We tackle the problem of structure mapping presented in this inex challenge as
a labeling problem for xml data. Experimental results show that xcrfs perform
very well and confirm that xcrfs are well suited for such applications.

Our main line of future research involves extending our system to handle more
sophisticated applications. Datasets we used in the challenge assume that docu-
ment order is preserved during the transformation. To overcome this limitation, it
can be necessary to extend the set of allowed editions operations. Another point
is to integrate the transformation step in the xcrf training phase for a better pa-
rameter estimation. Other improvements include the combination of linear chain
crfs and xcrfs, and the introduction of ontologies, NLP outcomes, and domain
knowledge to take advantage of both the structure and content of xml documents.

References

1. Doan, A., Halevy, A.Y.: Semantic integration research in the database community:
A brief survey. AI magazine 26(1), 83–94 (2005)

2. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data. In: Proceedings of ICML
2001, pp. 282–289 (2001)

3. Sha, F., Pereira, F.: Shallow parsing with conditional random fields. In: Proceedings
of HLT-NAACL, pp. 213–220 (2003)

4. McCallum, A., Li, W.: Early results for named entity recognition with conditional
random fields. In: Proceedings of CoNLL’2003 (2003)

5. Pinto, D., McCallum, A., Wei, X., Croft, W.B.: Table extraction using conditional
random fields. In: Proceedings of the 26th Annual International ACM SIGIR Con-
ference, pp. 235–242 (2003)

6. Sarawagi, S., Cohen, W.W.: Semi-markov conditional random fields for information
extraction. In: Proceedings of NIPS, pp. 1185–1192 (2004)

7. Sutton, C., Rohanimanesh, K., McCallum, A.: Dynamic conditional random fields:
Factorized probabilistic models for labeling and segmenting sequence data. In:
Proceedings of ICML 2004, pp. 783–790 (2004)

XML Document Transformation with Conditional Random Fields 539

8. Sutton, C., McCallum, A.: An Introduction to Conditional Random Fields for
Relational Learning. In: Introduction to Statistical Relational Learning. Lise getoor
and ben taskar edn, MIT Press, Cambridge, MA (2006)

9. Riezler, S., King, T., Kaplan, R., Crouch, R., Maxwell, J., Johnson, M.: Pars-
ing the wall street journal using a lexical-functional grammar and discriminative
estimation techniques. In: Proceedings of ACL 2002, pp. 271–278 (2002)

10. Clark, S., Curran, J.R.: Parsing the WSJ using CCG and log-linear models. In:
Proceedings of ACL 2004, pp. 103–110 (2004)

11. Sutton, C.: Conditional probabilistic context-free grammars. Master’s thesis, Uni-
versity of Massachusetts (2004)

12. Viola, P., Narasimhan, M.: Learning to extract information from semistructured
text using a discriminative context free grammar. In: Proceedings of the ACM
SIGIR, pp. 330–337 (2005)

13. Jousse, F., Gilleron, R., Tellier, I., Tommasi, M.: Conditional random fields for
XML trees. In: ECML Workshop on Mining and Learning in Graphs (2006)

14. Doan, A., Domingos, P., Halevy, A.: Reconciling schemas of disparate data sources:
A machine-learning approach. In: Proceedings of the ACM SIGMOD Conference,
pp. 509–520 (2001)

15. Carme, J., Gilleron, R., Lemay, A., Niehren, J.: Interactive learning of node select-
ing tree transducers. Machine Learning 66(1), 33–67 (2007)

16. Cohen, W., Hurst, M., Jensen, L.: A Flexible Learning System for Wrapping Ta-
bles and Lists in HTML Documents. In: Web Document Analysis: Challenges and
Opportunities, World Scientific, Singapore (2003)

17. Hsu, C.N., Dung, M.T.: Generating finite-state transducers for semi-structured
data extraction from the web. Information Systems 23(8), 521–538 (1998)

18. Kushmerick, N.: Wrapper Induction for Information Extraction. PhD thesis, Uni-
versity of Washington (1997)

19. Muslea, I., Minton, S., Knoblock, C.: Active learning with strong and weak views:
a case study on wrapper induction. In: IJCAI 2003, pp. 415–420 (2003)

20. Raeymaekers, S., Bruynooghe, M., Van den Bussche, J.: Learning (k,l)-contextual
tree languages for information extraction. In: Proceedings of ECML 2005. Lecture
Notes in Artificial Intelligence, vol. 3720, Springer, Heidelberg (2005)

21. Chidlovskii, B., Fuselier, J.: A probabilistic learning method for xml annotation of
documents. In: Proceedings of IJCAI 2005 (2005)

22. Gallinari, P., Wisniewski, G., Denoyer, L., Maes, F.: Stochastic models for docu-
ment restructuration. In: Proceedings of ECML Workshop On Relational Machine
Learning (2005)

23. Wallach, H.: Efficient training of conditional random fields. Master’s thesis, Uni-
versity of Edinburgh (2002)

24. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound
constrained optimization. SIAM Journal on Computing 16(5), 1190–1208 (1995)

25. Taskar, B., Abbeel, P., Koller, D.: Discriminative probabilistic models for relational
data. In: Eighteenth Conference on Uncertainty in Artificial Intelligence (UAI02),
pp. 485–492 (2002)

26. Denoyer, L., Gallinari, P.: Report on the XML mining track at INEX 2005 and
INEX 2006. In: Proceedings of INEX 2006. LNCS, Springer, Heidelberg (2006)

27. Bex, G.J., Neven, F., Schwentick, T., Tuyls, K.: Inference of concise DTDs from
XML data. In: Proceedings of 32nd Conference on Very Large databases - VLDB,
pp. 115–126 (2006)

XML Structure Mapping

Application to the PASCAL/INEX 2006 XML Document
Mining Track�

Francis Maes, Ludovic Denoyer, and Patrick Gallinari

LIP6 - University of Paris 6
firstname.lastname@lip6.fr

Abstract. We address the problem of learning to map automatically flat
and semi-structured documents onto a mediated target XML schema.
We propose a machine learning approach where the mapping between
input and target documents is learned from examples. Complex trans-
formations can be learned using only pairs of input and corresponding
target documents. From a machine learning point of view, the structure
mapping task raises important complexity challenges. Hence we propose
an original model which scales well to real world applications. We pro-
vide learning and inference procedures with low complexity. The model
sequentially builds the target XML document by processing the input
document node per node. We demonstrate the efficiency of our model on
two structure mapping tasks. Up to our knowledge, there are no other
model yet able to solve these tasks.

1 Introduction

Semantically rich data like textual or multimedia documents tend to be en-
coded using semi-structured formats. Content elements are organized according
to some structure that reflects logical, syntactic or semantic relations between
these elements. For instance, XML and, to a lesser extent, HTML allow us to
identify elements in a document (like its title or links to other documents) and
to describe relations between those elements (e.g. we can identify the author of a
specific part of the text). Additional information such as metadata, annotations,
etc., is often added to the content description leading to richer descriptions.

The question of heterogeneity is central for semi-structured data: documents
often come in many different formats and from heterogeneous sources. Web data
sources for example use a large variety of models and syntaxes. Although XML
has emerged as a standard for encoding semi-structured sources, the syntax and
semantic of XML documents following different DTDs or schemas will be differ-
ent. For managing or accessing an XML collection built from several sources, a
correspondence between the different document formats has to be established.
� This work was supported in part by the IST Programme of the European Commu-

nity, under the PASCAL Network of Excellence, IST-2002-506778. This publication
only reflects the authors’ views.

N. Fuhr, M. Lalmas, and A. Trotman (Eds.): INEX 2006, LNCS 4518, pp. 540–551, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

XML Structure Mapping 541

Note that in the case of XML collections, the schemas themselves may be known
or unknown depending on the source. For HTML data, each site will develop its
own presentation and rendering format. Thus even in the case of HTML where
the syntax is homogeneous across documents, there is a large variety of formats.
Extracting information from different HTML web sites also requires to specify
some type of mapping between the specific Web sites formats and the predefined
format required by an application.

Designing structure mappings, in order to define correspondences between the
different schemas or formats of different sources is thus a key problem to develop
applications exploiting and accessing semi-structured sources. This problem has
been addressed for some times by the database and to a lesser extent by the
document communities for different conversion tasks and settings. Anyway, the
real world solution is to perform a manual correspondence between heterogeneous
schemas or towards a mediated schema via structured document transformation
languages, like XSLT. Given the multiplicity and the rapid growth of information
sources, manually specifying the correspondence between sources is clearly a
bottleneck to the process of document integration and reuse. Automating the
design of these transformations has rapidly become a challenge.

This work was realized in the context of the PASCAL/INEX XML Document
Mining Challenge1. This challenge proposes, as an extension to XML categoriza-
tion and clustering, a track concerning the Structure mapping task. The goal of
this task is to learn to transform HTML/flat document to an XML mediated
schema as described previously.

We propose here to learn the transformation from examples. The learning
system relies on a training set provided by the user. Each training example is
made of an input document and the corresponding target document. The system
will directly learn the transformation from these examples. Input documents may
come with heterogeneous structures or simply with no structure at all. The man-
ual specification of document mappings is replaced here with the development
of a training set of transformed documents. This allows to consider problems
where the input schema is not explicitly given or cases where this schema is too
general so that no explicit mapping can be defined (this is the case for many
HTML conversion applications). Besides, the proposed method only requires to
provide a set of transformed documents and this task will be much easier than
the manual development of a transformation script.

The structure mapping task we are solving is described in section 2. Our
solution is detailed in part 3 and experiments performed on two different real
world tasks are presented and discussed in section 4.

2 Structure Mapping Task

2.1 Description

The structure mapping task addresses the problem of learning document trans-
formations given a set of examples. The task is seen as a supervised learning
1 http://xmlmining.lip6.fr

542 F. Maes, L. Denoyer, and P. Gallinari

problem where inputs and outputs are semi-structured documents. Input doc-
uments may come from different sources and may take different formats like
flat text, wikitext, HTML or different XML schemas. Output documents are
expressed in XML. Given the set of learning examples, the aim is to learn an
inference procedure able to convert any input document of the same family.

The structure mapping task encompasses a large variety of real applications
like:

– Semantic Web: conversion from raw HTML to semantically enriched XML.
Example sources include forums, blogs, wiki-based sites, domain specific sites
(music, movies, houses, ...).

– Wrapping of Web pages: conversion from the relevant information in web-
pages to XML.

– Legacy Document conversion: conversion from flat text, loosely structured
text, or any other layout oriented format (e.g. PDF) to XML.

Fig. 1. Example of XML heterogeneity. The same movie description extracted from
three sources: two HTML styles and one XML general movie schema.

Figure 1 illustrates an example of XML to XML conversion. As can be seen
in this simple example the structure mapping task involves many different kind
of elementary transformations, e.g. relabelling, node creation and suppression,
node displacement. These actions can have global consistency constraints, e.g.
conserving textual content order or being valid with respect to a DTD.

2.2 Formalization

Structure mapping consists in transforming din ∈ Din into an XML document
d∗out ∈ Dout where Din is the set of possible input documents and Dout is the

XML Structure Mapping 543

set of possible output documents. For example, Din is the set of all documents
that are valid given a specific XML schema. As training data, an user provides
a set of pair

{
(di

in, di∗
out)

}
i∈[1,N]

where N is the number of examples, din is an
input document in Di

in and di∗
out is the corresponding output document in Dout.

A structure mapping model is a function fθ : Din → Dout that maps input
documents into target documents. Such a model is parameterized by θ which
is vector of real parameters. The quality of a structure mapping can be mea-
sured with a user supplied loss-function. This function is a dissimilarity measure
between output documents : Δ : Dout × Dout → [0, 1]. Good models will pro-
duce low loss. Learning is done by finding the parameters θ that minimize the
empirical risk on the training set:

θ∗ = argmin
θ

1
N

N∑

i=1

Δ(fθ(di
in), di∗

out) (1)

Structure mapping models have to deal with two major difficulties. First,
they have to support a large variety of transformations. The family fθ must
thus be expressive enough to express them. The other difficulty is related to the
size of Dout which is exponential in the length of documents. A such problem
makes full exploration of the output space intractable. The usual solution for this
type of problem is to use dynamic programming techniques in order to efficiently
explore the space of possible solutions. For the document transformation problem
addressed here, the complexity of the inference step is so high that even dynamic
programming does not lead to scalable solutions [1].

3 Proposed Model

Because of the exponential number of valid output documents that can corre-
spond to a given input document, the simple strategy, which consists in generat-
ing all possible output to select the best one, is unrealistic. One way to break the
complexity of the task, is to decompose it into simpler sub-problems. This can
be achieved by the incremental structure mapping (ISM) algorithm we propose.

First, we describe the ISM process in the case of a simple HTML to XML
structure mapping example. We then detail our general structure mapping in-
ference algorithm. Finally, we present the learning algorithm that allows to find
the parameters θ which minimize the empirical risk on the training set.

3.1 Incremental Structure Mapping

ISM rely on the idea that the structure mapping can be realized by considering
successively each leaf of the input document and working out its position in the
output document. The process is decomposed into successive elementary steps.
Each of these steps do two things: reading/analysing a part of the input docu-
ment and adding corresponding nodes in the current output document. Figure 2

544 F. Maes, L. Denoyer, and P. Gallinari

Fig. 2. 1)We initialize the process with the empty output tree (denoted ε). 2) First step:
we focus on the first input leaf (with content “Example”). We enumerate building-step
candidates. For each of this candidates there is an associated score. In this example the
best building-step has score 1 and consists in adding “Example” as the output Document
Title. 3) End of first step: the content “Example” has been added in the current output
document. 4) Second step: we focus on the second input leaf, consider building-step can-
didates, where the best one is to add “Francis Maes” as the Document Author. 5) At
the beginning of the third step, the Author has been added in the partial output tree. 6)
Final state of the ISM process (after 5 steps) the current output tree is completed and
can be returned to the user. We see in the final output tree that the Section nodes have
been inserted between the two already existing nodes Title and Author.

XML Structure Mapping 545

Algorithm 1. Structure Mapping Inference
din ∈ Din: the input document
φ : Lin × Bout → �p: the representation function
θ : �p: the learned parameters

1: dout ← ε
2: for all input leaf ni ∈ din do
3: candidates ← computeOutputCandidatePaths(din,dout)

�
SKIP

4: outputpath ← argmaxc∈candidates < φ(ni, c), θ >
5: if outputpath = SKIP then
6: continue (with next input leaf)
7: else
8: dout ← addNodeInOutputTree(din, outputpath, dout)
9: end if

10: end for
return dout

gives an illustrative example where an HTML document is being converted into
XML.

We initialize the process with the empty output tree denoted ε. After initial-
ization we iterate ISM steps, one for each input leaf. Thus an ISM step starts
with selecting a new input leaf. Given this input leaf and the current output
tree, we compute a set of building-step candidates. Each of these candidates is
a particular way to insert the current input leaf content into the current par-
tial output tree. It defines both new node labels and new node positions in the
existing tree. Each building-step candidate has also an associated score. This
score quantifies the immediate interest of executing a particular building-step.
The model then chooses the best scoring building-step candidate, execute it and
starts with the next ISM step.

The key idea with ISM is that instead of considering all valid output docu-
ments we consider only the valid building-steps at each step of the process. This
way, the complexity of structure mapping only depends on the number of ISM
steps and on the average number of candidates per step.

3.2 Inference Algorithm

The behavior of ISM is directly related to the scoring function of building-step
candidates. This scores are only available for training document pairs. In the
general case, these scores will be estimated using a linear predictor. Learning
the ISM model from document pair examples is reduced to learning the ISM
score predictor. Learning is described below, see 3.3. For the moment, let us
consider that the model has been learned. Algorithm 1. shows the general ISM
inference procedure.

The ISM inference algorithm has three parameters: the input document din ∈
Din and two parameters which defines the score predictor. In order to predict
such a score, we first describe a (input leaf ∈ Lin, building-step candidate ∈

546 F. Maes, L. Denoyer, and P. Gallinari

Bout) pair using the φ function. This function produces a feature vector in �p.
Examples of such features are given in table 1. We produce features by combining
state features with action features. To describe a (state,action) pair, we make the
cross product between all state events and all action events. This way, φ produces
sparse joint (state,action) representations where the number of distinct features
p ranges usually from 103 to 106.

Table 1. Some examples of features which jointly describe a (input node, building-
step) pair using the φ function. These features are usually binary (valued in {0, 1}) but
general real valued features are also possible (e.g. the percentage of upper case words).
The features are generated in a data-driven way: a feature is considered only once it
is observed in the learning data. Depending on the corpora, the features vectors have
from 103 to 106 distinct components.

Description Value

We are processing the first input node and
the building-step has labels DOCUMENT TITLE. 1

The input node has label IT and
the building-step has labels DOCUMENT AUTHOR. 1

The current input leaf has 3 parents and
the building-step inserts the node between a TITLE and a SECTION. 0

The last word of the current input node is “footnote” and
the building-step is SKIP. 1

The last word of the input node is punctuation symbol and
the building-step has labels DOCUMENT SECTION TEXT. 0

... ...

Given a description in �p, the score is estimated by a dot product between
the description vector and the parameters vector (θ ∈ �p). The dot product
between two vectors is denoted < ., . >.

ISM inference is performed by iterating over input leaves. For each of this
nodes, we first enumerate the set of building-step candidates (line 3). In order
to include the possibility to skip some input leaves we also consider the SKIP
building-step. SKIPing a node means that this node will not be included in
the output tree. In line 4, we estimate the scores of all candidates using our
linear predictor. The best estimated building-step candidate is chosen. If the
best building-step is SKIP we can continue with the next input leaf (line 6).
In any other case, the building-step is executed with the addNodeInOutputTree
function (line 8). This produces a new partial output tree dout. Once all input
leaves have been processed, the ISM is fulfilled and we return the current output
tree dout to the user.

3.3 Learning Algorithm

The ISM learning procedure is described in algorithm 2.. It aims at finding the
parameters θ that leads to a good structure mapping inference procedure.

XML Structure Mapping 547

Algorithm 2. Structure Mapping Learning
S =

�
(di

in, di∗
out)

�
i∈[1,N]: Training Set

φ : Lin × Bout → �p: the representation function

1: θ ← 0
2: repeat
3: din, d∗

out ← pickTrainingPair(S)
4: dout ← structureMappingInference(din, φ, θ)
5: loss ← Δ(dout, d

∗
out)

6: for all ni ∈ din do
7: θ ← applyGradientCorrection(θ, ni, loss)
8: end for
9: until convergence of θ

return θ

The algorithm has two parameters: the training set S of document pairs and
the representation function φ described in previous section. The algorithm re-
turns the learned parameters θ that can be used in inference.

ISM learning is done by iteratively evaluating and improving the parameter
vector θ. In each iteration, we pick randomly a new training document pair (line
3). We then evaluate the current parameters θ by calling the inference procedure
(line 4) and computing the resulting loss (line 5). We can now improve the
parameters θ by applying a little correction for each ISM step that was performed
during inference (line 6-8).

The details of the learning procedure are omitted here for the sake of clar-
ity. However algorithms 1. and 2. relies on established machine learning tech-
niques. Briefly, the ISM procedure can be modelled as a Markov Decision Process
(MDP) [2]. MDPs provides a mathematical framework for modelling sequential
decision-making problems. They are used in a variety of areas, including robot-
ics, automated control, economics and in manufacturing. The fields of Reinforce-
ment Learning [3] and Approximate Dynamic Programming [4] provides several
learning algorithms for solving MDPs. Our learning procedure can be seen as a
particular case of the Sarsa(0) algorithm. We differ the interested reader to [5]
for more details.

4 Experiments

4.1 Tasks and Corpora

We present here experiments performed in the context of the INEX Structure
Mapping Challenge. The challenge focuses on two corpora. The first is the INEX
IEEE corpus which is composed of 12017 scientific articles in XML format. Each
document comes from a journal (18 different journals). The documents are given
in two versions: a flat segmented version and the XML version. The structure
mapping task aims at recovering the XML structure using only the text segments
as input. The segments are given in the exact order. The second corpora is

548 F. Maes, L. Denoyer, and P. Gallinari

made of more than 13000 movie descriptions available in three versions: two
different XHTML versions and one mediated XML version. This corresponds to
a scenario where two different websites have to be mapped onto a predefined
mediated schema. The transformation includes node suppression and some node
displacements.

In order to compare our model, we also made experiments on the Shakespeare
corpora2. As in [6], we have randomly selected 60 Shakespearean scenes from the
collection. These scenes have an average length of 85 leaf nodes and 20 internal
nodes over 7 distinct tags. As a baseline, we implemented the model of [6] which
is based on probabilistic context free grammars and maximum entropy classifiers.
Due to its complexity (roughly cubic in the number of input leafs wheras ours
is linear) this model cannot be applied to the others corpora.

Each corpus is split in two parts: 50% for training and 50% for testing. The
table 2 summarizes the properties of our corpora.

Table 2. Description of the corpora used in our experiments. From left to right: the
name of the corpus, the task, the number of documents, the mean number of internal
nodes per document, the mean number of leaves per document, the number of disctinct
tags.

Corpus Tasks Corpus size Internal Nodes Leaves Labels

INEX IEEE Flat → XML 12,017 docs ≈ 200 ≈ 500 139
Movie 1 XHTML → XML 13,045 docs ≈ 78 ≈ 31 16
Movie 2 XHTML → XML 13,038 docs ≈ 49 ≈ 40 19

Shakespeare Flat → XML 60 docs ≈ 20 ≈ 85 7

4.2 Loss Function and Evaluation Measures

In order to evaluate the quality of structure mapping we have used two measures:
Fcontent and Fstructure. The first measure reflects the quality of document leaves
labelling. The second measure reflects the quality of the internal tree structure.
Both measure are the mean of a F1 score computed for all (predicted document,
correct document) pairs. For Fcontent we compute the F1 score between leaves
labels. This first measure is similar to the Word Error Ratio used in natural
language. Fstructure is based on the F1 score between all subtrees. This F1 score
between two trees is computed in the following way:

1. Build the set of all subtrees of the two trees. There is one sub-tree per node
of the document

2. Compute recall and precision on the subtrees. Two subtrees are identical iff
they have the same label, the same text (for leaves), and the same children
trees (for internal nodes).

3. Compute the F1 score: F1 = 2∗Recall∗Precision
Recall+Precision .

2 http://metalab.unc.edu/bosak/xml/eg/shaks200.zip

XML Structure Mapping 549

This corresponds to a common measure in the natural language parsing field
(under the name of F1 parsing score). Note that this measure decreases quickly
with only a few errors. For example if there is only one labelling error in a leaf,
the Fstructure measure typically equals to ≈ 80%.

4.3 Results

The loss-function Δ(dout, d
∗
out) used for training the model is based on the

Fstructure measure:

Δ(dout, d
∗
out) = 1 − Fstructure(dout, d

∗
out)

Figure 4.3 shows the results obtained for the different experiments. All Fcontent

scores are greater than 75 % while the more difficult Fstructure is still greater
than ≈ 60 %. These scores have to be contrasted with the intrinsic difficulty of
the structure mapping tasks. For example for INEX, the only hints for predicted
between more than hundred labels come from the textual content of the input
document.

Corpus Method Fcontent Fstructure Learning time Testing time

INEX IEEE ISM 75.8 % 67.5 % ≈ 2 days ≈ 2 s / doc
Movie 1 ISM 80.3 % 65.8 % ≈ 17 min ≈ 0.08 s / doc
Movie 2 ISM 75.4 % 57.0 % ≈ 19 min ≈ 0.07 s / doc

Shakespeare ISM 89.4 % 84.4 % ≈ 20 min ≈ 0.02 s / doc
Shakespeare PCFG+ME 98.7 % 97.9 % ≈ 2 min ≈ 1 min / doc

Fig. 3. Structure mapping results on the tree corpora. Two measure are used: Fcontent

and Fstructure. Approximate learning and testing time are indicated - the experiments
were performed on a standard 3.2Ghz Computer.

These results also show how fast ISM is at testing time. Most documents are
processed in less than one second. This mean that ISM could be used with large
scale corpora containing thousands or millions documents.

The Shakespeare database shows a comparison between ISM and our baseline
called PCFG+ME (see part 4.1). ISM scores are less good than the baseline
scores. A first explanation for this phenomenon is that PCFG+ME does a global
optimization using Dynamic Programming. This has to be contrasted with ISM
which performs a greedy search of the output tree. We also suspect ISM to
suffer from over-fitting since there are few documents and many distinct features
(see 1).

On the other side, ISM is approximatively thousand times faster in inference
than the baseline. Moreover, due to its complexity the baseline cannot be ap-
plied to our real world corpora. We believe that in the context of heterogeneous
information retrieval, fast inference time is much more important than perfect
structure mapping.

550 F. Maes, L. Denoyer, and P. Gallinari

5 Related Work

Several approaches to automating document transformation have been explored
ranging from syntactic methods based on grammar transformations or tree trans-
ducers to statistical techniques. A majority of them only consider the structural
document information and do not exploit content nodes. Even this structural
information is used in a limited way and most methods exploit only a few struc-
tural relationships. Many of them heavily rely on task specific heuristics. Current
approaches to document transformation are usually limited to one transforma-
tion task or to one type of data. Besides, most proposed techniques do not scale
to large collections.

In the database community automatic or semi-automatic data integration —
known as schema matching — has been a major concern for many years. A
recent taxonomy and review of these approaches can be found in [7]. [8] de-
scribes one of the most complete approach which can handle ontologies, SQL
and XML data. The matching task is formulated as a supervised multi-label
classification problem. While many ideas of the database community can be
helpful, their corpora are completely different from the textual corpora used in
the IR community: all documents — even XML ones — keep an attribute-value
structure like for relational database and are thus much smaller and more reg-
ular than for textual documents; textual data hardly appears in those corpora.
With database corpora, finding the label of a piece of information is enough to
build the corresponding tree because each element usually appears once in the
tree structure. Document structure mapping, also shares similarities with the
information extraction task, which aims at automatically extracting instances of
specified classes and/or relations from raw text and more recently from HTML
pages. Recent works in this field [9] have also highlighted the need to consider
structure information and relations between extracted fields.

The structure mapping model proposed here is related to other Machine
Learning models of the literature. Different authors ([10], [11]) have proposed
to use natural language formalisms like probabilistic context free grammars
(PCFG) to describe the internal structure of documents. Early experiments [1]
showed that the complexity of tree building algorithms is so high that they can-
not be used on large corpora like INEX. The work closest to ours is [6]. They
address the HTML to XML document conversion problem. They make use of
PCFGs for parsing text segment sequences and of a maximum entropy classifier
for assigning tags to segments.

6 Conclusion

We have described a general model for mapping heterogeneous document repre-
sentations onto a target structured format. This model learns the transformation
from examples of input and target document pairs. It is based on a new formula-
tion of the structure mapping problem based on Deterministic Markov Decision
Processes. This formulation allows us to deal with a large variety of tasks rang-
ing from the automatic construction of a target structure from flat documents

XML Structure Mapping 551

to the mapping of XML collections onto a target schema. The model operates
fast and scales well with large collections. We have shown its efficiency on two
real world large scale tasks.

References

1. Denoyer, L., Wisniewski, G., Gallinari, P.: Document structure matching for het-
erogeneous corpora. In: SIGIR 2004. Workshop, Sheffield (2004)

2. Howard, R.A.: Dynamic Programming and Markov Processes. Technology Press-
Wiley, Cambridge, Massachusetts (1960)

3. Sutton, R., Barto, A.: Reinforcement learning: an introduction. MIT Press, Cam-
bridge (1998)

4. Si, J., Barto, A.G., P.W.B., II, D.W. : Handbook of Learning and Approximate
Dynamic Programming. Wiley&Sons, INC., Publications, New York (2004)

5. Sutton, R.S.: Generalization in reinforcement learning: Successful examples using
sparse coarse coding. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.)
Advances in Neural Information Processing Systems, vol. 8, pp. 1038–1044. The
MIT Press, Cambridge, MA (1996)

6. Chidlovskii, B., Fuselier, J.: A probabilistic learning method for xml annotation of
documents. In: IJCAI, pp. 1016–1021 (2005)

7. Doan, A., Halevy, A.Y.: Semantic integration research in the database community:
A brief survey. AI Magazine, Special Issue on Semantic Integration (2005)

8. Doan, A., Domingos, P., Halevy, A.: Learning to match the schemas of data sources:
A multistrategy approach. Maching Learning 50(3), 279–301 (2003)

9. Califf, M.E., Mooney, R.J.: Bottom-up relational learning of pattern matching rules
for information extraction. J. Mach. Learn. Res. 4, 177–210 (2003)

10. Young-Lai, M., Tompa, F.W.: Stochastic grammatical inference of text database
structure. Mach. Learn. 40(2), 111–137 (2000)

11. Chidlovskii, B., Fuselier, J.: Supervised learning for the legacy document conver-
sion. In: DocEng ’04, pp. 220–228. ACM Press, New York (2004)

Author Index

Ali, M.S. 89
Ashoori, Elham 261
Awang Iskandar, D.N.F. 358

Bakshi, Vishal 82
Beigbeder, Michel 200
Boughanem, Mohand 373, 387
Broschart, Andreas 233

Caracciolo, Caterina 178
Carpineto, Claudio 178
Clark, Malcolm 64
Consens, Mariano 89
Crouch, Carolyn J. 82
Crouch, Donald B. 82

de Campos, Luis M. 165
De Knijf, Jeroen 485
de Vries, Arjen P. 104
Denoyer, Ludovic 12, 432, 540
Dopichaj, Philipp 223
Doucet, Antoine 115, 497

Edwards, Sylvia L. 423

Fernández-Luna, Juan M. 165
Frommholz, Ingo 312
Fuhr, Norbert 1

Gallinari, Patrick 12, 213, 432, 540
Ganapathibhotla, Murthy 82
Géry, Mathias 160
Geva, Shlomo 137, 302, 345, 423
Gilleron, Rémi 525
Gori, M. 458, 510
Gu, Xin 89
Guo, Jinhua 444

Hagenbuchner, M. 458, 510
Harper, David 64
Hawking, David 73
Hiemstra, Djoerd 104
Hlaoua, Lobna 373, 387
Huang, Fang 64
Hubert, Gilles 243
Huete, Juan F. 165

Jousse, Florent 525

Kamps, Jaap 20, 121
Kanza, Yaron 89
Kazai, Gabriella 20, 35
Kc, M. 510
Keikha, Mostafa 294
Kimelfeld, Benny 253
Koolen, Marijn 121
Kovacs, Eitan 253
Krumpholz, Alexander 73

Lalmas, Mounia 1, 20, 261
Larsen, Birger 387
Larson, Ray R. 312, 318
Lau, C. 345
Lehtonen, Miro 115, 400, 413, 497
Liu, Y. 345
Lu, Wei 57

Macfarlane, Andrew 57
Maes, Francis 540
Malik, Saadia 1, 387
Marteau, Pierre-François 185
Mass, Yosi 151
Ménier, Gildas 185
Mihajlović, Vojkan 104

Nayak, Richi 473

Oroumchian, Farhad 294

Pehcevski, Jovan 20, 358
Pharo, Nils 400, 413
Pinel-Sauvagnat, Karen 373, 387
Piwowarski, Benjamin 20
Popovici, Eugen 185

Rahgozar, Masued 294
Raja, Fahimeh 294
Ramı́rez, Georgina 104
Rizzolo, Flavio 89
Robertson, Stephen 20, 57
Rode, Henning 104
Romano, Giovanni 178
Romero, Alfonso E. 165
Rosas, Victor 284, 294

554 Author Index

Sagiv, Yehoshua 253
Salotti, Sylvie 284, 294
Scarselli, F. 458, 510
Schenkel, Ralf 233
Sigurbjörnsson, Börkur 121
Solomon, Silvana 233
Sperduti, A. 510
Stasiu, Raquel 89

Tahaghoghi, S.M.M. 358
Tanioka, Hiroki 45
Tellier, Isabelle 525
Theobald, Martin 233
Thom, James A. 358
Tjondronegoro, D. 345
Tombros, Anastasios 387
Tommasi, Marc 525
Torjmen, Mouna 373, 387
Tran, Tien 473
Trotman, Andrew 1, 400, 413
Tsoi, A.C. 458, 510

van Os, Roel 104

van Zwol, Roelof 271, 331

Vercoustre, Anne-Marie 432
Vittaut, Jean-Noël 213

Watt, Stuart 64
Weerkamp, Wouter 271

Weikum, Gerhard 233
Westerveld, Thijs 104, 331

Woodley, Alan 302, 423

Xia, Zhonghang 444

Xing, Guangming 444

Yahav, Dan 253
Yong, S.L. 458

Zargayouna, Häıfa 284, 294
Zhang, J. 345

	Title Page
	Preface
	Organization
	Table of Contents
	Overview of INEX 2006
	Introduction
	Participating Organizations
	The Test Collection
	Documents

	Retrieval Tasks
	Thorough Task
	Focused Task
	Relevant in Context Task
	Best in Context Task

	Submissions
	Assessments
	INEX 2006 Tracks
	References

	The Wikipedia XML Corpus
	Introduction
	Description of the Corpus
	Main Collections
	Categories

	INEX 2006 Collections
	Adhoc Collection
	XML Mining Track Collection

	Conclusion

	INEX 2006 Evaluation Measures
	Introduction
	AdHocRetrievalTasks
	Relevance Assessments
	Evaluation of the Thorough Task
	Assumptions
	Evaluation Measures
	Results Reported at INEX 2006

	Evaluation of the Focused Task
	Assumptions
	Evaluation Measures
	Results Reported at INEX 2006

	Evaluation of the Relevant in Context Task
	Assumptions
	Evaluation Measures
	Results Reported at INEX 2006

	Evaluation of the Best in Context Task
	Assumptions
	Evaluation Measures
	Results Reported at INEX 2006

	Discussions
	Too Small Elements
	Ideal Recall-Base

	References

	Choosing an Ideal Recall-Base for the Evaluation of the Focused Task: Sensitivity Analysis of the XCG Evaluation Measures
	Introduction
	Relevance Assessments
	Construction of an Ideal Recall-Base
	Experiments
	References

	A Method of Preferential Unification of Plural RetrievedElements for XML Retrieval Task
	Introduction
	System Description
	Indexing
	RetrievalModel

	Experimental Results
	Thorough Task
	Focused Task
	All in Context Task
	Best in Context Task
	Time and Size

	Conclusions
	References

	CISR at INEX 2006
	Introduction
	BM25 Model
	Description of the Experiments
	Best in Context Task
	Thorough Task
	Focused Task
	Relevant in Context Task

	Evaluation
	Conclusion
	References

	Compact Representations in XML Retrieval
	Introduction
	Compact Representation of an XML Element
	Vector Space Model
	Language Model
	Probability of the Query
	Element Priors

	INEX Experiments
	Index
	Query Processing
	Runs and Results

	Conclusions and Future Work
	References

	CSIRO’s Participation in INEX 2006
	Introduction
	Approaches to INEX Ad-Hoc Tasks
	Architecture
	Defining Metadata Classes
	Splitting Documents
	Transforming NEXI Topics
	Running INEX Topics
	Post-processing Results

	Results
	Failure/Success Analysis

	Conclusions
	References

	Dynamic Element Retrieval in a Semi-structured Collection
	Introduction
	Background
	System Description
	Dynamic Element Retrieval
	Dynamic Query Weighting
	What About \n?

	Problems Posed by Semi-structured Data
	Conclusions
	References

	Efficient, Effective and Flexible XML Retrieval Using Summaries
	Introduction
	Retrieval Queries
	Structural Summaries
	NEXI Evaluation Using Summaries

	Exhaustive Retrieval Algorithm
	Data Structures
	The Exhaustive Algorithm
	Relevance Posting Lists

	Experimental Results
	Conclusion
	References

	Evaluating Structured Information Retrieval and Multimedia Retrieval Using PF/Tijah
	Introduction
	The PF/Tijah System
	AdHocTrack
	Approach
	Element vs. Article Retrieval
	Context Weighting
	Entrypoint Tasks

	Multimedia Track
	Augmenting the Collection with Image Metadata
	Filtering Results
	Experiments

	Conclusion
	References

	EXTIRP: Baseline Retrieval from Wikipedia
	Introduction
	Background
	Selective Indexing
	Results
	Conclusion
	References

	Filtering and Clustering XML Retrieval Results
	Introduction
	Wikipedia Collection
	XML Retrieval System
	Indexing
	Retrieval

	Topics and Judgments
	Experiments for the Thorough Task
	Results

	Experiments for the Focused Task
	Results

	Experiments for the All in Context Task
	Results

	Experiments for the Best in Context Task
	Results

	Mixture Model Runs
	Discussion and Conclusions
	References

	GPX - Gardens Point XML IR at INEX 2006
	Introduction
	The GPX Search Engine
	Inverted List Representation
	The GPX Ranking Scheme

	Experimental Results
	Thorough Retrieval
	Focused Retrieval
	Best in Context
	All in Context
	Empirical Evaluation of GPX Scoring

	Conclusions
	References

	IBM HRL at INEX 06
	Introduction
	Component Ranking Algorithm
	Exploiting <collectionlink> and Anchor Text
	Runs and Results
	Discussion and Summary
	References

	Indexing “Reading Paths” for a Structured Information Retrieval at INEX 2006
	Introduction
	Web Structure and IR
	Information Propagation
	INEX Wikipedia Collection
	VSM Atomic Indexation
	Information Propagation: Reading Paths for IR

	Preliminary Results
	Conclusion and Future Work
	References

	Influence Diagrams and Structured Retrieval: Garnata Implementing the SID and CID Models at INEX’06
	Introduction
	Introduction to Influence Diagrams
	The SID and CID Models
	The Underlying Bayesian Network
	Constructing the Influence Diagram
	Inference and Decision Making

	Garnata: An Information Retrieval System for Structured Documents
	Experimental Setting for INEX’06. Analysis of the Results
	Parameter Setting and Official Runs
	Analysis of the Results

	Conclusions and Future Works
	References

	Information Theoretic Retrieval with Structured Queries and Documents
	Introduction
	Information-Theoretic Retrieval
	Structured Information-Theoretic Retrieval
	Experiments at INEX 2006
	Conclusions
	References

	SIRIUS XML IR System at INEX 2006: Approximate Matching of Structure and Textual Content
	Introduction
	SIRIUS XML IR System
	Indexing Scheme
	Searching Scheme

	SIRIUS Approach for the INEX 2006 Ad-Hoc Task
	Indexing the Wikipedia Collection
	Processing NEXI Requests

	Experimental Results
	Thorough Task
	Focused Task
	All in Context Task
	Best in Context Task

	Conclusions
	References

	Structured Content-Only Information Retrieval Using Term Proximity and Propagation of Title Terms
	Introduction
	Proximity Use in Flat Document Retrieval
	Interval Based Methods
	Fuzzy Influence Function Model

	Our Model of Structured Documents
	Influence of Keywords Occurences
	Experiments and Implementation
	Converting the Documents to Our Document Model
	Indexation Tool and Index Structure
	Building the Queries
	Runs

	Results
	Conclusion
	References
	Set of Enhanced Queries

	Supervised and Semi-supervised Machine Learning Ranking
	Introduction
	Ranking Model
	Notations
	Ranking

	Application to CO Tasks
	Definitions
	Combination of Preference Relations
	Reduction of Complexity
	Gradient Descent
	Incorporation of Unlabeled Examples

	Experiments
	Learning Base
	Filtering
	Results

	Conclusion
	References

	The University of Kaiserslautern at INEX 2006
	Introduction
	Baseline Search Engine
	Deriving Non-thorough Results
	Query Processing

	Context Patterns
	Coping with the Large Collection
	Keeping Metadata in Main Memory
	Discarding Intermediate Results

	Evaluation and Discussion
	Summary
	References

	TopX – AdHoc Track and Feedback Task
	SystemOverview
	Data Model and Scoring
	Data Model
	Content Scores
	Structural Scores

	AdHoc Track Results
	Thorough Task
	Focused Task
	BestInContext Task

	Structural Query Expansion
	Feedback Task Results
	Evaluation of Feedback Runs
	Official Results
	Additional Results

	References

	Tuning and Evolving Retrieval Engine by Training on Previous INEX Testbeds
	Introduction
	Participation Objectives
	Method Principles
	Experiments
	Experiment Setup
	Official and Additional Results

	Conclusions
	References

	Using Language Models and the HITS Algorithm for XML Retrieval
	Introduction
	Document Filters and Element Rankers
	Document Filters
	Language Model
	HITS

	ElementRankers
	Submissions and Results
	Thorough Task
	Focused Task
	Best-in-Context and All-in-Context Tasks

	Conclusion
	References

	Using Topic Shifts in XML Retrieval at INEX 2006
	Introduction
	Topic Shifts
	Retrieval Framework
	Retrieval Setting
	Evaluation
	Experiments
	Thorough Task
	Focused Task
	All in Context
	Best in Context

	Discussion and Summary
	References

	XSee: Structure Xposed
	Introduction
	\XSee, the \XML Search Engine
	XSee Data Structure
	XSee Retrieval Model

	Exploiting XML Structure
	Characteristics of IEEE and Wikipedia Collections
	Reranking Methods

	Thorough Task
	Thorough Runs - Basic
	Thorough Runs - Using Structure

	FocusedTask
	Focused Runs - Submissions
	Focused Runs - Wikipedia Evaluation

	Conclusions
	References

	Shallow Parsing of INEX Queries
	Introduction
	INEXContext
	Motivations
	Propositions Overview
	Recognizing Structure Expression
	Identifying Content Terms
	Extracting Boolean Operators
	Constructing NEXI Queries
	Runs and Results
	Conclusion and Future Work
	References

	Using Rich Document Representation in XML Information Retrieval
	Introduction
	What Is RDR?
	Experiments
	Results
	Conclusion
	References

	NLPX at INEX 2006
	Introduction
	Motivation
	Previous Work by Authors
	Improvements
	System Backend
	Results
	Translation Performance
	Retrieval Performance

	Conclusion
	References

	The Heterogeneous Collection Track at INEX 2006
	Introduction
	Research Questions
	Testbed Creation
	Collection Creation
	Topic Creation

	Tasks and Run Submissions
	Pooling and Assessment
	Conclusion and Outlook
	Reference

	Probabilistic Retrieval Approaches for Thorough and Heterogeneous XML Retrieval
	Introduction
	The Retrieval Algorithms and Fusion Operators
	TREC2 Logistic Regression Algorithm
	Blind Relevance Feedback
	TREC3 Logistic Regression Algorithm
	CORI Collection Ranking Algorithm
	Result Combination Operators

	Database and Indexing Issues
	Indexing the INEX 2006 Database
	Heterogeneous Indexing

	INEX 2006 Official Adhoc and Heterogeneous Runs
	Adhoc Runs
	Heterogeneous Runs

	Conclusions and Future Directions
	References

	The INEX 2006 Multimedia Track
	Introduction
	Wikipedia Collection and Other Resources
	Wikipedia
	Additional Sources of Information

	Topics
	Topic Format and Development
	Topic Development

	Tasks
	Assessments
	Pool Quality and Assessor Agreement

	Results and Approaches
	Results
	Participants

	Conclusions and Outlook
	References

	Fusing Visual and Textual Retrieval Techniques to Effectively Search Large Collections of Wikipedia Images
	Introduction
	Related Work
	System Architecture
	Using Visual Retrieval Techniques
	Using Text Retrieval Techniques
	Combining Visual and Textual Search Results
	Evaluation
	Conclusions and Future Work
	References

	Social Media Retrieval Using Image Features and Structured Text
	Introduction
	Full-Text Information Retrieval
	The Zettair Search Engine
	Similarity Measures
	Performance Results

	Multimedia Tasks, Topics and Relevance Judgements
	Multimedia Images Task
	Multimedia Fragments Task

	Our Approach
	Content-Based Image Retrieval
	Fusing and Ranking the Image and Text Retrieval

	Experiments and Results
	EvaluationMetrics
	Multimedia Images Task
	Multimedia Fragments Task

	Conclusions and Future Work
	References

	XFIRM at INEX 2006. Ad-Hoc, Relevance Feedback and MultiMedia Tracks
	Introduction
	Ad-HocTrack
	The XFIRM Model
	Runs and Results
	Focussed Task
	All in Context Task

	Relevance Feedback Track
	Content-Oriented Relevance Feedback
	Combined Approach: Content-and-Structure RF
	Runs

	Multimedia Track
	Runs
	Results

	References

	The Interactive Track at INEX 2006
	Introduction
	Interactive Track Tasks

	Task A – Element Versus Passage Retrieval
	Document Corpus
	Search System
	Relevance Assessments
	Logging
	Search Tasks
	Experimental Control System
	Experimental Matrix
	Experimental Procedure

	Task B - Own Element Retrieval System or Own Interface
	Concluding Remarks
	References

	XML-IR Users and Use Cases
	Introduction
	INEX \Ad Hoc Tasks
	Thorough Retrieval
	Focused Retrieval
	Relevant in Context (Fetch & Browse)
	Best in Context
	Theoretical Tasks

	INEX \Ad Hoc Queries
	Content Only Then Content and Structure
	Other Models
	Theoretical Queries
	Result Granularity

	Existing Search Models
	Version Control (Thorough)
	News Summarization (Focused)
	Question Answering (Focused)
	Book Search (Relevant in Context or Fetch & Browse)
	Extending Web Search (Best in Context)

	Existing Query Models
	Keyword Only
	Keywords Limited to Structures
	Keywords Limited to Structures with Target Elements Specified
	Search Forms

	XML-IR Use Cases
	The Thorough Use Case
	The Focused Use Case
	The Relevant in Context (and Fetch & Browse) Use Case
	The Best in Context Use Case

	Conclusions
	References

	A Taxonomy for XML Retrieval Use Cases
	Introduction
	Hierarchical Classification for Use Cases
	Conclusion
	References

	What XML-IR Users May Want
	Introduction
	The Experiment
	Interface A – NLPX
	Interface B – Bricks
	Backend Retrieval System – GPX

	Interviews
	Discussion
	Conclusion
	References

	Report on the XML Mining Track at INEX 2005 and INEX 2006 Categorization and Clustering of XML Documents
	Introduction
	Categorization, Clustering of XML Documents
	Tasks and Evaluation
	Corpora
	Structure Only Task
	Structure and Content Tasks
	Evaluation Measures

	ModelsandResults
	Models Submitted
	Results

	Conclusion
	References

	Classifying XML Documents Based on Structure/Content Similarity
	Motivation and Literature Review
	XML Documents, Schemata and Edit Distances
	The Edit Distance Between an XML Document and a Schema

	Schema Extraction from XML Documents
	Measuring the Content Similarity
	Document Classification
	Implementation and Experimental Results
	Conclusions
	References

	Document Mining Using Graph Neural Network
	Introduction
	The Learning Problem
	Experiments
	Initial Experiments
	Further Experiments

	Conclusions
	References

	Evaluating the Performance of XML Document Clustering by Structure Only
	Introduction
	The PCXSS Method: Overview
	PCXSS Phase 1: Pre-processing
	PCXSS Phase 2: Clustering
	Structure Matching Stage
	Clustering Stage

	Experiment and Discussion
	Conclusions and Future Work
	References

	FAT-CAT: Frequent Attributes Tree Based Classification
	Introduction
	The Mining Algorithm
	Preliminaries
	FAT-Miner

	XML Document Classification with FAT-CAT
	Experimental Results
	Results

	Conclusion
	References

	Unsupervised Classification of Text-Centric XML Document Collections
	Introduction
	Related Work
	Procedure of the Experiments
	Clustering Technique
	Run Descriptions

	Evaluation
	Collection Description
	Evaluation Measures
	Experimental Results
	Result Analysis
	Discussion on Evaluation

	Conclusion - Future Work
	References

	XML Document Mining Using Contextual Self-organizing Maps for Structures
	Introduction
	Machine Learning and Self-organizing Maps
	Self-organizing Maps for Structures
	Contextual Self-organizing Maps for Structures
	Experiments
	Data Analysis
	Data Pre-processing
	Training Using Structural Information
	Training Using Structure and Textual Information
	Comparisons
	Conclusions
	References

	XML Document Transformation with Conditional Random Fields
	Introduction
	Conditional Random Fields for xml Trees
	Conditional Random Fields
	XCRFs: Conditional Random Fields for xml Trees
	Algorithms for XCRFs

	Experiments with the XCRF System
	The XCRF System
	Feature Generation
	Experiments on the Structure Mapping Task

	Conclusion and Future Work
	References

	XML Structure Mapping Application to the PASCAL/INEX 2006 XML Document Mining Track
	Introduction
	Structure Mapping Task
	Description
	Formalization

	ProposedModel
	Incremental Structure Mapping
	Inference Algorithm
	Learning Algorithm

	Experiments
	Tasks and Corpora
	Loss Function and Evaluation Measures
	Results

	Related Work
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

