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Abstract. Increasing the productivity of simulation-based semiconductor design
verification is one of the urgent challenges identified in the International Technol-
ogy Roadmap for Semiconductors. The most difficult aspect is the generation of
stimulus for functional coverage closure. This paper introduces a new Coverage-
Directed test Generation (CDG) feedback loop which applies Inductive Logic
Programming (ILP) to selected tests and coverage data to induce rules that can be
used to automatically direct stimulus generation towards outstanding coverage.
The case study documented in this paper shows a significant reduction of simu-
lation time when ILP-based CDG is compared to random test generation. This is
an exciting and promising new application area for ILP.

1 Introduction

ILP has been used to support scientific discovery and knowledge synthesis in a wide
range of practical domains [19] such as protein structure prediction, mutagenicity pre-
diction and pharmacophore discovery. Even the very process of scientific hypothe-
sis generation and experimentation has been automated using ILP-based learning in
a closed loop environment [12]. The main advantage of ILP over propositional learning
is the expressive power resulting from a first-order representation. This allows learning
results to be represented in a declarative format which is comprehensible to domain
experts, without losing the ability to automatically process the learning results.

This paper aims to introduce the reader to a promising new application area for ILP,
namely simulation-based semiconductor design verification, and demonstrates the po-
tential that ILP has to offer in the context of functional coverage closure.

Verification of industrial designs still relies heavily on simulation; it can take up to
70% of the entire design effort [1]. Traditionally, design verification environments are
based on a testbench [3] which is the code used to generate a valid input sequence to
a design, called a test, drive this test into the design and then observe and check the
design’s response. Simulators are used to execute testbenches. The increasing complex-
ity of real-world semiconductor designs makes exhaustive simulation prohibitive; in
most cases the sun would burn out before even a fraction of the test cases can be sim-
ulated [20]. In reality, tight time-to-market constraints force verification engineers to
be selective with respect to the tests they run to gain confidence in the functional cor-
rectness of a design. The verification plan specifies the scenarios that must be verified
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before a design can be manufactured. It is the task of the verification engineers to create
tests that fully cover these scenarios, often within a very short timeframe.

Recent advances in simulation-based verification have established coverage-driven
verification methodologies which are essentially feedback loops that automate a large
part of the simulation-based verification process. A pseudo-random stimulus genera-
tor at the front-end generates valid input stimulus according to a set of parameters or
constraints, called directives, which bias test generation towards the scenarios of inter-
est to verification. At the back-end a coverage analysis tool collects and analyses the
coverage obtained from running these tests to check the effectiveness of the directives
and to identify coverage closure targets such as rarely covered events as well as cover-
age holes. Coverage results are used to help engineers focus the next round of stimulus
generation on these coverage targets.

Generating stimulus to increase functional coverage is a key challenge in simulation-
based verification. Closing a functional coverage model is by no means trivial in com-
plex industrial designs. For example, in state-of-the-art microprocessors, the subtle
effects of issuing multiple instructions, out-of-order execution and aggressive pipelin-
ing can make it very difficult if not impossible to see what sequence of instructions
to drive in order to reach a specific functional coverage scenario (coverage task). This
is particularly difficult when the signals involved in the specification of the functional
coverage task are related to micro-architectural features of the design.

In practice up to 90% of coverage tasks can be reached via biased pseudo-random
tests which are automatically generated based on a set of user-defined directives. How-
ever, even supplying the directives requires significant engineering skill and is often
only accomplished through many trial-and-error runs. At the end engineers resort to
writing directed tests by hand aiming to cover the missing cases. Consequently as much
as 90% of a verification team’s time and resources can be spent on closing the remain-
ing 10% coverage manually. Figure 1 shows the typical long flat-tailed curve when
plotting the coverage rate achieved by random simulation (y-axis) against the number
of simulation runs (x-axis). The data for this figure originates from our case study and is
representative for many industrial verification projects. It clearly shows that the number
of simulations necessary to obtain the last few coverage tasks is excessive in compari-
son to the number of simulations needed to get most of the coverage. This is one reason
why verification has become the dominant cost in the design process and many veri-
fication projects run over time and budget. Verification, if not done properly, can cost
a company its reputation and potentially put people at serious risk. If it takes too long
the product will miss its market window which results in loss or significant decrease of
the market share (and hence profits). The latest version of the International Technology
Roadmap for Semiconductors [1] calls for more automation in the process of functional
coverage closure to reach verification targets faster and with less engineering effort.

The most demanding aspect regarding full automation of the existing coverage-
driven feedback loops is the automatic generation of the directives for functional cov-
erage closure. Coverage-directed stimulus generation (CDG) techniques [18] aim to
achieve exactly this. Feedback-based CDG integrates machine learning into the feed-
back loop (which is depicted in Fig.2) in order to automatically generate new directives
that bias stimulus generation towards producing tests which target specific coverage



156 K. Eder, P. Flach, and H.-W. Hsueh

Fig. 1. Coverage progress for random simulation compared to ILP-based CDG

tasks. Machine learning techniques employed in this context include Bayesian net-
works, evolutionary techniques such as genetic algorithms and genetic programming
as well as Markov chains. The underlying assumption is that the learning mechanism
can identify, from existing tests and coverage, how best to bias stimulus generation
such that the resulting tests can reach outstanding coverage tasks. As a result, the curve
in Fig.1 should climb significantly faster than random simulation thus saving a large
number of simulation runs and hence verification effort.

In contrast to other machine learning applications where the measure of success is
achieving a very high accuracy of the learning output resulting in a large lift when
comparing system performance with and without learning, this application is slightly
different in that the number of examples to learn from is variable and depends on when
the learning is kicked off during simulation. ¿From a machine learning viewpoint, the
later in the simulation phase learning is started the more examples are available, hence
a higher accuracy can be expected. Conversely, the earlier learning is started the fewer
examples are available, resulting in a lower accuracy. From a verification viewpoint,
however, the earlier the curve starts to climb faster than random simulation the more
verification effort can be saved.1 These two conflicting interests need to be traded off
carefully with the verification interests dominating in this context. For example, the
lift achieved in our case study, although in machine learning terms not impressive, was
good enough to save a significant number of simulations as shown in the two steeper
curves in Fig.1.

This paper introduces a novel CDG technique based on an inductive machine learn-
ing method that discovers relational information from structured data. Inductive Logic
Programming (ILP) is applied to tests and their related coverage in order to induce

1 Finding the best starting point for learning is a challenging optimisation problem which re-
quires further research. A second experiment in which learning commenced after 400 simula-
tions produced curves that climbed much slower than the two steep ILP-based CDG curves in
Fig.1 (but still faster than random simulation).
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general rules which describe the characteristics of these tests. The resulting rules can be
used directly as directives, to obtain tests that are structurally similar to the examples
presented to the learning system. Coverage closure can be automated by applying rule
learning to clusters of a target coverage task and combining the resulting rules to obtain
directives for test generation. As the tests and associated coverage are supplied to the
ILP system in a declarative representation, the induced rules are also declarative and in
principle human readable. This gives engineers an insight into the knowledge discov-
ered by the ILP system and is also an excellent basis for automatic translation of these
rules into test generation directives.

A case study demonstrates the fundamental principles of ILP-based CDG in two
steps. The first step evaluates the consistency and reliability of the generated directives
for existing coverage in a rediscovery experiment. The second step documents the re-
sults of the application of a novel cluster-based coverage closure method.

This paper is organised as follows. Section 2 reviews coverage models and existing
CDG approaches. Section 3 introduces the fundamental principles of ILP-based direc-
tive generation. The experimental framework and results of our case study are presented
in Section 4. Further research and conclusions are discussed in Section 5.

2 Background

This section reviews coverage models and existing CDG approaches.

2.1 Coverage Models

To measure the coverage of simulation test suites, coverage models are generally clas-
sified into structural and functional. Structural coverage is focused on measuring which
parts of the design source code have been exercised during simulation at various lev-
els of detail ranging from statement down to expression coverage. Structural coverage
helps verification engineers to see which code parts have not been verified. It is inher-
ently weak, however, in determining whether the design is functionally correct.

The most tricky bugs to find often reside in functional corner cases of the design
which involve multi-cycle scenarios and high degrees of concurrency. To ensure these
are covered during verification, experienced engineers define functional coverage mod-
els based on the specification, the design and often also the implementation. This makes
functional coverage models inherently user-defined and application-specific [22]. De-
signing meaningful functional coverage models requires significant design knowledge,
experience and engineering skill.

One way of specifying a functional coverage model is outlined in [13]. Their models
contain a semantic description (story) detailing the purpose of the verification task,
the list of attributes mentioned in the story, the set of all possible values (domain) for
each attribute and a list of restrictions on the permitted combinations in the Cartesian
product, or cross-product, of the attribute domains. The overall size of the coverage
space associated with such a functional coverage model is the product of all domain
cardinalities. The elements in the cross-product of the attribute domains are referred
to as coverage tasks. Each coverage task can be represented as an n-tuple of values
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Fig. 2. CDG feedback loop

from the attribute domains, where n is the number of attributes in the coverage model.
The restrictions identify which coverage tasks are legal and hence need to be covered
during verification. Uncovered legal tasks are referred to as coverage holes. The process
of constructing tests to cover a hole is called coverage closure. In this paper we mean
cross-product based coverage models when referring to functional coverage.

2.2 Feedback-Based Coverage-Directed Test Generation

Coverage-Directed test Generation (CDG) is a technique that aims to automate the gen-
eration of simulation stimulus based on coverage information [18]. There are two main
approaches towards CDG: one is by construction using formal methods and the other is
based on feedback. The approach introduced here can be classified as a novel feedback-
based CDG technique with a CDG engine that embeds Inductive Logic Programming.

The feedback-based CDG framework [8] is shown in Fig.2. It is built around a state-
of-the-art testbench automation environment that contains a stimulus generator, a sim-
ulator and coverage analysis. Coverage targets are identified and the coverage analysis
results are then fed into the CDG engine together with existing tests and coverage data
to generate directives that bias the random stimulus generator towards achieving the
target coverage tasks. The CDG engine can be realized with different techniques.

Early approaches [21] focused mainly on genetic algorithms (GAs) that learn specific
test cases, such as sequences of assembly code instructions, directly. This required an
explicit encoding of the target instructions within the representation on which the GAs
worked. Results were application-specific and lacked generality. In [4] another GA for
automatic bias generation is presented. This approach generates biases for an industrial
instruction stream generator. Its main drawbacks are the architecture-specific encoding
of the representation on which the GA works. The approach has also been transferred
to a hierarchical test generation framework to target statement and path coverage [24].
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A more flexible Genetic Programming (GP) technique that generates machine code
test programs for design verification, called µGP, was developed in [6]. It directs test
generation towards maximising code coverage with the goal to generate a set of test
programs that achieves maximum statement coverage. The test sets generated with µGP
are smaller and yield higher statement coverage than randomly generated tests [7]. The
approach requires a syntactical description of the microprocessor’s assembly language
in the form of an instruction library. The internal representation on which the µGP core
works is generic and test programs can be generated for any given instruction library.
The main limitation is that the approach only targets structural, i.e. code-based, cover-
age models, rather than functional coverage models based on cross-products, which in
practice are far more difficult to close.

In [9,5] a coverage-directed test generation approach based on Bayesian networks is
presented. It models the relationship between the test directives and coverage tasks via
a Bayesian network, where general knowledge regarding the design’s operation taken
from a domain expert is encoded in the network structure. This approach targets cross-
product functional coverage models and has resulted in a significantly improved cover-
age rate achieved in a shorter time frame. An advantage of the approach is that it can
discover diverse directives that all target the same coverage task. However, the design
and training of an appropriate Bayesian network is required; this includes the iden-
tification of the network structure that models the joint probability distribution based
on the directives to the test generator, the coverage model, as well as expert domain
knowledge. In practice, very few if any verification engineers have these skills.

An approach based on Markov models that contain user-specified templates for in-
struction sequence generation has been developed in [23]. The Markov model’s para-
meters are adjusted to settings that stress certain activities of interest to verification
through an iterative design-activity directed feedback loop. A simple Markov model
was extended by introducing a cache and some dependency variables to propagate di-
rective dependencies further than one step. This approach approximates the correlation
of directive parameters over several instructions. However, it is weak in controlling the
actual distance of dependency.

In summary, although existing feedback-based CDG approaches achieve promising
results, they have shortcomings which have so far prevented them from being widely
used for functional coverage closure. The major limiting factors are the requirement
of specialised encodings or models on which the algorithms work, the need for non-
verification expertise to set up and maintain the environment, or the use of coverage
models other than functional coverage.

3 ILP-Based Coverage-Directed Stimulus Generation

The directive generation approach introduced here differs from existing feedback-based
CDG approaches by its use of inductive learning from examples, in particular Induc-
tive Logic Programming (ILP), in the CDG engine. ILP [14] is a declarative inductive
learning method. It requires a set of factual examples E and some relational background
knowledge B. ILP will find a single (or multiple) hypothesis H in terms of the relations
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given in B such that (ideally) every positive example in E is covered by H and no
negative example in E is covered. In this context B, E and H are represented as definite
logic programs [15]. The next section provides a more detailed introduction regarding
the application of ILP within a CDG framework.

3.1 Method to Learn Rules for Test Generation

To learn rules suitable for test generation, the examples E for ILP learning are the tests,
which are initially randomly generated, together with their respective coverage data.
Using a first-order logic concept description language each test can automatically be
translated into a relational representation of a sequence of instructions together with a
test identifier and the coverage data associated with this test by analogy with the encod-
ing of Michalski-style trains in [16]. The background knowledge B describes the general
structure of these tests and relationships between test components such as register use,
re-occurrence of registers, e.g. as destination or source, specific sequences of instruc-
tions, relative distance between dependencies, instruction classes etc. The learning task
is to find hypotheses H which represent general rules describing the characteristics of a
test to target a given coverage task. Provided there are enough instances to learn from,
at the end of the learning process the ILP system returns a set of rules containing at
least one rule for each coverage task presented to the system.

The learning task described above produces a set of rules which give rise to direc-
tives that can be used to generate tests structurally similar to the original examples.2

These tests achieve the same amount of coverage as was originally obtained, but with
increased accuracy, a smaller number of tests and hence far fewer simulation runs than
with biased-random generation alone. 3 In addition, the rules give insight into the struc-
ture of the existing test suite and can thus be used to analyse test diversity.

To construct tests that reach coverage holes the learning task needs to be changed to
find rules for coverage clusters which share a degree of similarity with the target cov-
erage hole. The underlying assumption here is that the directive to target the coverage
hole shares a degree of similarity with the directives used to approach similar coverage
tasks. Learning is most effective when the selected clusters have a high coverage rate.
Existing coverage data clustering techniques which can in principle be applied for ILP-
based coverage closure are discussed in [13]. The rules returned by the learning system
for each cluster are then combined to form a directive to target the coverage hole. This
technique can also be used to generate tests that increase the coverage rate of rarely
covered tasks via a different execution path compared to existing tests.

2 Note that the learning output is not, as in traditional machine learning applications, used for
the classification of tests into those which do or don’t reach a given coverage task, but instead
for the automatic construction of tests to target a given coverage task, which is achieved by
generating tests that satisfy the constraints imposed by the rules in the learning output.

3 From discussions with engineers we learned that this can already be valuable in practice, e.g.
for rediscovering directives when subtle changes to the design turn out to have a major effect
on the coverage of tests, often rendering existing test suites completely invalid. Because these
test suites have been generated with an iterative adjustment to the directives, and the history
has been lost, automatically rediscovering the directives would save engineering effort.



Towards Automating Simulation-Based Design Verification Using ILP 161

3.2 Integrating ILP into the CDG Framework

The entire CDG feedback loop with ILP-based learning is shown in Fig.3. Input to
the ILP system, such as tests and associated coverage as well as coverage targets, is
sourced directly from the data existing within the standard verification flow. In prac-
tice, the background knowledge can be provided in pre-defined application-class spe-
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Fig. 3. CDG feedback loop with ILP-based CDG engine

cific libraries. Alternatively, to make background knowledge acquisition more flexible
and user-friendly, a domain-specific template-based declarative input language could
be designed for verification engineers, which is automatically translated into the first-
order logic representation used for ILP-based learning. Defining the background knowl-
edge requires as much expertise as is necessary to efficiently use the features of a
state-of-the-art test generation environment such as [2].

The ILP system returns a set of rules for selected coverage tasks or clusters. The
final directive construction stage combines these rules to obtain directives that target
the coverage holes or rarely covered tasks selected for closure.

4 Preliminary Study

This section demonstrates the key aspects of the ILP-based CDG technique on an ex-
ample microprocessor Design Under Verification (DUV).

4.1 Experimental Setup

The DUV is a five-stage pipelined Superscalar DLX [11] with four independent execu-
tion units: Branch Resolve Unit (BRU), Arithmetic Logic Unit (ALU), Multiply Divide
Unit (MDU), and Load Store Unit (LSU). At the entrance of each execution unit, i.e.
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between the decode and the execution stage, is a buffer pipeline register, called Reser-
vation Station, which is used when the data for an instruction is not yet available to
enable the processor to fetch the next instruction. The processor uses a Reorder Buffer,
which is a ring buffer with five entries, to ensure in-order-termination of instructions.

The functional coverage model evaluates the utilisation of the reservation station of
the Superscalar DLX in conjunction with data dependencies between the instruction
waiting in the reservation station and the instruction in the reorder buffer that provides
the data. In particular this model monitors that the reservation station for each pipeline
unit is used by an instruction that is waiting for data on either one of its source registers,
and this data is provided by an instruction that occupies any one of the entries in the re-
order buffer. Hence the coverage model consists of the following three attributes which
are listed together with the set of all possible values for each attribute: Pipeline Unit
(PU) of the utilised reservation station which can take values from {alu, mdu, lsu, bru},
Source Register Location (SRL) which can be one of {rs1, rs2} and Reorder Buffer
Location (RBL) which can be from {0, 1, 2, 3, 4}. The full size of this coverage space
is 4 x 2 x 5 = 40 coverage tasks. However, constraints imposed by the instruction set
architecture and the implementation result in a reduction of the coverage space to the
20 legal coverage tasks shown in the first column of Table 1.

The ILP System used in this experiment is Progol [17]. Test programs together with
their coverage are translated by an automatic procedure into the logic programming lan-
guage Prolog on which Progol works. This translation is based on the three types task,
test and instr which define valid instances of identifiers denoting coverage tasks,
tests, i.e. instruction sequences, and instructions, as well as a fixed set of mnemonics
denoting opcodes and a set of register identifiers. The sequence of instructions is then
described using the following set of relations:

cover(task,test id).
has instruction(test id,instr id).
is followed by(instr id,instr id).
instr has opcode(instr id,mnemonic).
instr has rs1(instr id,reg).
instr has rs2(instr id,reg).
instr has rd(instr id,reg).

A translation of a test program fragment that contains three instructions and covers task
(alu,rs1,3) is given in Fig.4.

The background knowledge provides Progol with an important aid in the learning
process because Progol searches for hypotheses by generalising an example in terms of
the background relations. An example of such a relation is given below. The relation
same rd rs1 d1(I1,I2) specifies under which conditions the destination register of
an instruction I1 is being reused as first source register by the instruction I2 which
immediately, i.e. in distance d1, follows I1.

same rd rs1 d1(I1,I2) :-

is followed by(I1,I2),
instr has rd(I1,R),
instr has rs1(I2,R).

A set of 161 relations similar to the one above has been used as background knowledge
for the experiments.
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add  R4 R4 R1
lw   R5 R0 (1000)

mult R4 R2 R31
test_5

i3
i2
i1

has_instruction(test_5,i1).
has_instruction(test_5,i2).
has_instruction(test_5,i3).

is_followed_by(i1,i2).
is_followed_by(i2,i3).

instr_has_opcode(i1,mult).
instr_has_opcode(i2,add).
instr_has_opcode(i3,lw).

instr_has_rd(i1,r4).
instr_has_rd(i2,r4).
instr_has_rd(i3,r5).

instr_has_rs1(i1,r2).
instr_has_rs1(i2,r4).
instr_has_rs1(i3,r0).

instr_has_rs2(i1,r31).
instr_has_rs2(i2,r1).

cover(alu_rs1_3,test_5).

Fig. 4. Test program fragment and corresponding Prolog representation

Because Progol uses mode-directed inverse entailment to guide the process of gen-
eralisation from examples, a set of mode declarations needs to be provided for the re-
lations which are used in the learning process. The mode declarations constrain the
search, and essentially establish a structural template for the output rules. A total num-
ber of 156 mode declarations constrained the ILP search space in the two experiments
carried out. Representative examples are given below.

modeh: cover(#task,+test)
modeb: has instruction(+test,-instr)
modeb: has opcode(+instr,#opcode)
modeb: same rd rs1 d1(+instr,-instr)
modeb: same rd rs2 d1(+instr,-instr)

4.2 Rules for Existing Tests and Coverage

The first part of the experiment aims to show that, given a set of pseudo-randomly
generated tests together with their coverage, and under the assumption that there are
enough tests to learn from for each coverage task, it is possible to induce rules that
correctly characterise the features of tests to target the achieved coverage. Successful
completion of this experiment confirms the correctness of a fundamental principle of
ILP-based CDG. It also validates the actual ILP setup including the data encoding and
shows whether the background knowledge is fit for purpose. This initial step can be
compared to the rediscovery step described in [10].

The learning was started with the test data available after 500 simulation runs, when
the pseudo-randomly generated tests covered 15 of the 20 coverage tasks which equates
to an overall coverage rate of 75%. Only 57 out of the 500 randomly generated tests
were successful in adding to coverage. The number of successful tests for each coverage
task is given in the second column of Table 1. The total number of induced rules after
ILP learning is summed up in the third column.

To give the reader an example of the learning output, below is one rule which shows
the characteristics of tests that reached coverage task (alu,rs1,2).
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cover(alu rs1 2,Test ID) :-

has instruction(Test ID,I1),
has instruction(Test ID,I2),
instr has opcode(I2,alu),
same rd rs1 d1(I1,I2).

Note that due to the declarative nature of ILP, the above rule can easily be translated
into natural language: “The test must contain an instruction with an opcode of alu type,
and the destination register of the instruction preceding the alu type instruction is used
as the first source register by the alu type instruction.”

The rules obtained from ILP-learning were then used directly as directives for test
generation, i.e. the test generator was given the task to generate a sequence of instruc-
tions that satisfied the constraints contained in the rule body. To evaluate the accuracy
of the resulting tests, the average number of successful tests generated either pseudo-
randomly or on the basis of the ILP induced rules was compared. The fourth and fifth
column of Table 1 contain these numbers which are now termed the hit rate. For ex-
ample, the hit rate of the ILP-based directive for the coverage task (alu,rs1,0) given in
Table 1 is 15%, which means on average 15 out of 100 tests generated to satisfy the rule
body also covered the task in the rule head. In comparison, when the tests are generated
without specific constraints on average 14 out of 1000 tests reached that coverage task.
From the results we computed the lift4 which is shown in the last column of Table 1.

The results show a significant lift (of more than 8) for seven out of the twelve
coverage tasks for which rule learning was successful. No rules were generated for
(mdu,rs1,0), (mdu,rs1,2), and (mdu,rs1,3), because rule learning is a generalisation
process which only works well when there are two or more instances to learn from.
For the two coverage tasks (alu,rs2,2) and (mdu,rs1,4) tests generated from the direc-
tives obtained after rule learning perform worse. The tests used as examples for learning
these two cases show orthogonal aspects in that they represent completely different ap-
proaches to reach the same coverage task. For this reason the ILP system did not find
a rule that accurately generalised the given tests. The problems encountered can be re-
solved in practice by increasing the number of examples to learn from. In the majority
of cases, however, the results show that the ILP system has successfully generalised
the patterns in the existing tests and that test generation from the induced rules gives a
higher hit rate.

4.3 Rules for Conceptually New Tests

The second part of the experiment aims to generate directives that target the remaining
five coverage holes by learning from related coverage clusters. A simple syntax-based
clustering technique which is easily automated is projection [13]. Given a target tuple
(coverage task) in a coverage space, projection replaces one or more of the attribute
values in the target tuple by a wildcard. In this experiment two types of projection were
used. Single projection aggregates successful tests from one dimension of the coverage
task, leaving two values in the tuple, e.g. (alu,rs1,*). Similarly, double projection aggre-
gates tests from two dimensions, leaving only one value in each tuple, e.g. (alu,*,*).

4 The lift was computed as the ratio of the hit rate of tests generated based on the ILP induced
directives over the hit rate of tests generated pseudo-randomly.
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Table 1. Coverage and learning results after 500 simulation runs

Coverage Task Covered Number Random ILP
(PU,SRL,RBL) by Tests of Rules Hit Rate Hit Rate Lift

(alu,rs2,4) 2 2 0.4% 7% 17.5
(alu,rs2,1) 4 4 0.8% 13% 16.25
(alu,rs2,3) 4 3 0.8% 13% 16.25
(alu,rs1,1) 4 2 0.8% 12% 15.00
(alu,rs1,4) 7 5 1.4% 17% 12.14
(alu,rs1,0) 7 4 1.4% 15% 10.71
(alu,rs1,2) 8 4 1.6% 13% 8.13
(alu,rs2,0) 3 1 0.6% 1% 1.67
(alu,rs1,3) 8 5 1.6% 2% 1.25
(bru,rs1,2) 2 1 0.4% 0.4% 1
(mdu,rs1,4) 2 1 0.4% 0.1% 0.25
(alu,rs2,2) 3 2 0.6% 0.1% 0.17

(mdu,rs1,0) 1 - 0.2% - -
(mdu,rs1,2) 1 - 0.2% - -
(mdu,rs1,3) 1 - 0.2% - -
(mdu,rs1,1) 0 - 0% - -
(bru,rs1,0) 0 - 0% - -
(bru,rs1,1) 0 - 0% - -
(bru,rs1,3) 0 - 0% - -
(bru,rs1,4) 0 - 0% - -

Total 57 34 - - -

The learning was again started with the test data available after 500 simulation runs.
For each coverage hole a set of rules was collected from first applying single and then
double projection to the data before learning was performed. Test generation directives
were then constructed manually from these sets of rules by simply conjunctively com-
bining rule bodies and resolving conflicts via the introduction of disjunctions which are
interpreted as random choice during test generation. A remaining challenge is to fully
automate this process of directive construction.

The same method was applied to the five rarely covered tasks from the first part of
the experiment to see whether coverage could be increased. Table 2 shows the results
obtained after test generation from the so constructed directives for the five coverage
holes in the upper half and the five rarely covered tasks in the lower half.

It is encouraging to see that all hit rates have increased significantly for both the
coverage holes and the previously rarely covered tasks. Interestingly, in this experiment
double projection performs better than single projection for coverage hole closure. This
might indicate that, as more dimensions are projected out, more instances are supplied
to the ILP system to learn from, which in turn induces rules that give rise to directives
with higher accuracy. On the other hand single projection outperforms double projection
for the previously rarely covered tasks. This might indicate that when tests that reach
the target coverage tasks do exist, double projection introduces more noise into the rules
than single projection. Further research is needed to better understand these results.
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Table 2. Results for coverage holes (top half) and rarely covered tasks (bottom half)

Random Hit Rate after ILP Hit Rate ILP Hit Rate
Coverage 500 5000 with with

Task Random Random Single Double
(PU,SRL,RBL) Tests Tests Projection Lift Projection Lift

(mdu,rs1,1) - 0.32% 1.00% 3.13 4.13% 12.91
(bru,rs1,0) - 0.08% 1.00% 12.50 2.38% 29.75
(bru,rs1,1) - 0.18% 1.00% 5.56 3.63% 20.17
(bru,rs1,3) - 0.22% 4.00% 18.18 6.38% 29.00
(bru,rs1,4) - 0.06% 0.50% 8.33 1.86% 31.00

(alu,rs2,2) 0.60% 0.56% 10.00% 17.86 8.33% 14.88
(mdu,rs1,0) 0.20% 0.16% 2.00% 12.50 1.50% 9.38
(mdu,rs1,2) 0.20% 0.20% 9.00% 45.00 5.00% 25
(mdu,rs1,3) 0.20% 0.28% 1.67% 5.96 6.75% 24.1
(mdu,rs1,4) 0.40% 0.30% 2.00% 6.67 2.50% 8.33

Figure 1 from the Introduction section compares the coverage progress of this exper-
iment to random simulation. It shows that test generation from single and double pro-
jection methods reached full coverage in 367 and 108 simulations respectively (after
the initial 500 pseudo-randomly generated tests). In total, test generation from single
and double projection methods used 867 and 608 simulations to reach full coverage,
compared to 3914 simulations based on pseudo-random test generation alone. In this
case study, the ILP learning started from the 57 successful tests collected in the first 500
simulations (based on pseudo-randomly generated test). This was sufficient to reach full
coverage within a maximum of another 400 tests to simulate.

To open this interesting application up for the ILP community the 500 randomly gen-
erated tests used in the experiment and the resulting coverage have been made available
on http://www.cs.bris.ac.uk/˜eder/ILP_CDG/. This site also contains
further information on the encoding of these tests and the Progol setup including back-
ground knowledge and mode declarations.

To repeat the entire experiment the complete feedback loop is needed. It includes the
DUV as well as the test generator, the simulator and the coverage analysis component.
Except for the DUV, which we obtained using references in [11], these are commercial
products which require licenses which some of the EDA vendors offer via their higher
education programmes. More information on the setup of the feedback loop used here
can be obtained by contacting the authors.

5 Conclusions

This paper shows how ILP can be applied in the context of functional coverage closure
as part of the CDG engine in a standard CDG feedback loop. The strength and promise
of ILP-based CDG have been demonstrated in a two part experiment. In the first part
rules to be used as test generation directives have been induced from existing tests and
coverage. Test generation from these rules achieved a higher hit rate on their target
coverage tasks than was possible with random test generation. The second part of the
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experiment presents a coverage closure methodology, whereby learning is applied to
selected projections of a coverage hole and learning output is then combined to obtain
a directive that targets this coverage hole.

Clearly, the example case study is small and a larger industry-based trial will be
undertaken shortly on a realistic-sized processor. However, the results obtained provide
an interesting and encouraging starting point for further work to establish ILP-based
CDG alongside existing learning-based techniques.

Various aspects of the ILP-based CDG methodology would benefit from further re-
search. With a focus on learning, one research direction is to explore the use of cluster-
ing methods that are more sophisticated than purely syntactic projection for ILP-based
learning. It is anticipated that ILP techniques can be applied to identify semantically
meaningful coverage clusters. The development of a kernel-based method to define a
meaningful distance metric in this context is one of our next research goals. Another re-
search task is to establish a user-friendly background acquisition methodology for ILP-
based CDG. This is a key requirement for acceptance of this methodology in practice.
We also intend to experiment with ILP systems that use a more descriptive induction
approach compared to Progol, which in practice is mostly used for classification tasks.

In summary, this paper pioneers a methodology that makes CDG an exciting new ap-
plication area for ILP. Although there is more work to be done before ILP-based CDG
is mature enough to be integrated into practical verification environments, it is clear that
ILP-based CDG has important advantages compared to other learning based CDG tech-
niques. First, it seamlessly integrates into an existing verification flow without the need
for encodings or models that are outside the expertise of a professional verification en-
gineer; the learning input can be sourced from existing tests and coverage data directly
via automatic translation procedures. Second, due to the declarative representation of
data, ILP-based CDG requires intuitive input from the verification engineer at setup (for
the background knowledge) and no non-verification expertise is needed. Application-
specific libraries to cover the background knowledge (and the respective mode declara-
tions if Progol is used) can in principle be provided to reduce the engineering input even
further. Third, ILP-based CDG is fully automatic and can target user-defined functional
coverage models. In addition, the transparency of the resulting directive rules, which
are declarative and hence intuitively human readable, gives verification engineers an
insight into the knowledge gained. This is one of the key strengths of ILP compared to
other learning methods and gives ILP-based CDG a strong competitive edge.
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