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Abstract. We propose an approach to test whether an abstract speci-
fication is refined or not by a more concrete one. The specifications are
input / output symbolic transition systems (IOSTS). The refinement re-
lation requires that all traces of the abstract system are also traces of the
concrete system, up to some signature inclusion. Our work takes inspira-
tion from the conformance testing area. Symbolic execution techniques
allow us to select traces of the abstract system and to submit them on
the concrete specification. Each trace execution leads to a verdict Fail,
Pass or Warning. The verdict Pass is provided with a formula which
has to be verified by the values only manipulated at the level of the
concrete specification in order to ensure the refinement relation. The
verdict Warning reports that the concrete specification has not been
sufficiently explored to give a reliable verdict. This is thus a partial ver-
ification process, related to the quality of the set of selected traces and
of the exploration of the concrete specification. Our approach has been
implemented and is demonstrated on a simple example.

Keywords: refinement, conformance testing, symbolic execution,
symbolic transition system.

1 Introduction

Formal specifications serve as references for the rigorous definition of correct im-
plementations. Implementation correctness is usually based on some hypotheses
stating that implementations can be modelled as a formal model. For example,
specifications can be used to generate test cases in order to verify whether an
implementation conforms or not to its specification. However, it is widely recog-
nised that it is often difficult to write the right formal specifications in adequacy
to the informal requirements given by the users. To overcome this difficulty, re-
finement techniques are often advocated to help the designers to incrementally
design a detailed specification. Implementation design choices (non-determinism
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elimination, data types concretisation) are progressively introduced in specifica-
tions such that the specification design becomes a general stepwise refinement
process from the more abstract specification to the more concrete specification
[24]. Then, the executable implementation may be simply derived, by hand-
writing code or by automatic code generation techniques. Intuitively, a concrete
specification Sp2 refines another abstract one Sp1 if it has the same behaviours,
up to some formal refinement relation. According to the considered underlying
formalism, the refinement process is more or less equipped with verification tech-
niques and tools. For example, model-oriented frameworks like the B method [2]
or property-oriented frameworks like algebraic specifications [13] are provided
with a theory of specification refinement, mainly based on proof-based verifica-
tion : proof obligations are associated to each refinement step. For formalisms
based on transition systems (labelled transition systems, input/output transition
systems, Petri Net, etc), the refinement relation is generally expressed using some
relations of simulation or notions of trace containment (see for example [3,23]).
In this paper, we focus on specifications described with symbolic transitions sys-
tems (STS). They are finite state transition automata including first-order data
used both to characterise internal states and to guard transitions by means of
first-order conditions. They provide us with an appropriate level of abstraction
and are useful to avoid the classical state explosion problem. We find these sym-
bolic models under different names STG [14], STS [5,6] or IOSTS [16,10,11]. We
use IOSTS formalism defined in [12,20] that is very similar to the systems used
in [16,10]. The aim of the paper is to verify a refinement step following the rea-
soning of conformance testing. Thus, the key idea is to extract from the abstract
specification Sp1 some representative behaviours, or test cases, and then to sub-
mit them to the concrete specification Sp2 in order to get a verdict. Symbolic
execution techniques will be used not only to select test cases from Sp1 as in
[12] but also to execute test cases on Sp2. Indeed, unlike conformance testing for
which verdicts come from the execution of the system under test with test cases
as input data, refinement testing requires to be able to analyse Sp2 with respect
to the abstract requirements. Symbolic execution techniques precisely allow us
to explore Sp2 according to the selected abstract behavior given as a trace. The
verdict depends on the satisfiability of the associated path condition computed
on Sp2. Related works (e.g. [15]) on verification of STS mainly concern symbolic
bisimulation relations. They involve an algebra of regions over the data type
part provided with operations supposed to be decidable. Unlike such works, we
take into account the fact that generally, Sp2 has often a larger interface than
Sp1, and thus, the signature of Sp2 may strictly contain the one of Sp1. Thus,
refinement verification precisely requires to automatically compute data emitted
and received at the concrete level ensuring the abstract requirements. Symbolic
execution provided with some constraint solving mechanisms allows us to per-
form such computations on Sp2. Moreover, from a practical point of view, our
testing-based approach allows us to more easily debug the concrete specifica-
tion Sp2 when a verdict Fail is emitted. Indeed, the corresponding unsatisfiable
path condition gives some clues to modify Sp2 in order to ensure the refinement
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relation with Sp1. Testing and refinement have already been linked in previous
works. Most of them [9,22] study the relationship between abstract tests se-
lected from an abstract specification and concrete tests which are submitted to
the implementation under test (IUT). Generally, the IUT interface is such that
an abstract action (or function) of the specification may be decomposed into el-
ementary actions making explicit how the abstract action is concretely achieved
by the IUT. We are not interested in this problem but we rather focus on the
testing-based method for the partial verification of a refinement step between
two specifications.

The paper is structured as follows. In Section 2 we present IOSTS, their
syntax and semantics. The refinement relation is introduced in Section 3. A
theorem relates the refinement relation with all symbolic executions of a concrete
specification with respect to all traces of the abstract specification. This result
will found our method given in Section 4 which aims at testing whether a concrete
specification verifies or not an abstract one. Our approach is illustrated by an
example and some details on algorithms and implementations are given. Finally,
Section 5 contains concluding remarks.

2 Input Output Symbolic Transition Systems

Reactive systems are open systems interacting with their environment. Such
systems can be modeled by using Input/Output Symbolic Transition Systems
(IOSTS). Communications consist of sending or receiving messages represented
by first-order terms through communication channels. IOSTS specify dynamic
aspects of reactive systems by describing possible evolutions of system states.
This is done by modifying values associated to some variables, called attribute
variables, in order to denote system state modifications. Each elementary mod-
ification is given by a transition labelled by a communication action (sending
or receipt of messages, or an internal action), guards expressed with first-order
properties, and assignments of attribute variables.

2.1 Data Types

Let us first introduce the data part of the IOSTS formalism. Data types are
specified with a many-sorted first-order equational logic.

Syntax. A data type signature is a couple Ω = (S, Op) where S is a set of
type names, Op is a set of operation names, each one provided with a profile
s1 · · · sn−1 → sn (for i ≤ n, si ∈ S). Let V =

⋃

s∈S

Vs be a set of typed variable

names. The set of Ω-terms with variables in V is denoted TΩ(V ) =
⋃

s∈S

TΩ(V )s

and is inductively defined as usual over Op and V . TΩ(∅), simply denoted TΩ, is
the set of all ground terms that have no occurrences of variables. A Ω-substitution
is a function σ : V → TΩ(V ) preserving types. In the following, we denote by
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TΩ(V )V the set of all Ω-substitutions of the variables V . Any substitution σ may
be canonically extended to terms (and will be also noted σ). The set SenΩ(V ) of
all typed equational Ω-formulae contains the constant symbols �, ⊥ (denoting
the usual truth values truth and false) and all formulae built using the equality
predicates t = t′ for t, t′ ∈ TΩ(V )s, and the usual connectives ¬, ∨, ∧, ⇒.

Semantics. A Ω-model is a family M = {Ms}s∈S with, for each f : s1 · · · sn →
s ∈ Op, a function fM : Ms1 × · · · × Msn → Ms. We define Ω-interpretations as
applications ν from V to M preserving types, extended to terms in TΩ(V ). A
model M satisfies a formula ϕ, denoted by M |= ϕ, iff, for all interpretations ν,
M |=ν ϕ, where M |=ν t = t′ is defined by ν(t) = ν(t′), and where the constant
symbols � and ⊥ and the connectives are handled as usual. MV is the set of all
Ω-interpretations from V to M . Given a model M and a formula ϕ, ϕ is said
satisfiable in M , if there exists an interpretation ν s.t. M |=ν ϕ.

In the sequel, we suppose that data types of all IOSTS correspond to an arbi-
trary common data signature Ω = (S, Op) and are interpreted in a fixed model
M . So, the data type signature Ω will be left implicit in the sequel. Moreover,
elements of M will be called concrete data and denoted by ground terms in TΩ.
The examples illustrating our approach will be built on data types issued from
Presburger arithmetics and from some enumerated types. So, concrete data will
be natural numbers or boolean values provided with some usual operations as
addition, comparison operators, etc. Moreover, expressions such as ≤ (5, x) = �
will be simply denoted 5 ≤ x.

2.2 Syntax

Definition 1 (IOSTS-signature). An IOSTS-signature Σ is a couple (A, C)
where A =

⋃

s∈S

As is a set of variable names, called attribute variables, over the

signature Ω and where C is a set of communication channel names.
Let Σ1 = (A1, C1) and Σ2 = (A2, C2) two IOSTS-signatures. Σ1 is said to

be included in Σ2, denoted by Σ1 ⊆ Σ2, iff C1 ⊆ C2.

For a given IOSTS-signature Σ = (A, C), the set C of communication channels
represents the interface of the corresponding IOSTS while the set A of attribute
variables is used to characterize the different states of the IOSTS, and thus are
internal information of the IOSTS. It explains why signatures are only compared
with respect to their respective sets of communication channels. In the sequel,
signature inclusions will be denoted1 as ρ : Σ1 ⊆ Σ2 or simply ρ.

Example 1. Let us introduce a IOSTS-signature Σ1 = (A1, C1) to specify a
drink machine:

• A1 = {coin, m, price, B} where the coin variable will denote the value of the
coin introduced by the user, m the value of the available amount to be spent,
price the price of the beverages, B the selected beverage.
1 Clearly, signatures and signature inclusions constitute a category.
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• C1 = {introduce, select, screen, refund, serve, take cup} where introduce
allows the user to introduce coins, select denotes the button used to select a
beverage, screen the place where some messages are displayed, refund the way
to give back money in excess, serve the fact that the cup is filled with the
beverage and lastly, take cup the fact that the user is taking off his beverage.

An IOSTS communicates through communication actions consisting in receipts
(inputs) and emissions (outputs) of values through channels.

Definition 2 (Actions). The set of communication actions, denoted ActΣ =
Input(Σ) ∪ Output(Σ) where:
Input(Σ) = {(c, ?, y) | c ∈ C, y ∈ A} Output(Σ) = {(c, !, t) | c ∈ C, t ∈ TΣ(A)}

In the sequel we will note c?y for (c, ?, x) and c!t for (c, !, t). Actions are in-
teractions with the environment: c?x represents a receipt of a value from its
environment which will be assigned to the attribute variable x. c!t represents
the emission of the value t through the channel c. Interactions with no exchange
of values (i.e. pure signals) on a channel c are conventionally modelled by c!�
or c?x� with x� a variable reserved for that purpose, and simply written resp.
as c! or c? in the sequel.

Definition 3 (Observable traces). An observable trace r over Σ is a finite se-
quence of observations belonging to ObsΣ = (C×{?, !}×M). We note ObsTr(Σ)
the set of observable traces2 over Σ.

Let us consider the signature inclusion ρ : Σ1 ⊆ Σ2. Given an observable
trace r over Σ2, the projection of r on Σ1, denoted r|ρ, or simply r|Σ1 , is the
observable trace over Σ1 obtained by removing from r observations not belonging
to ObsΣ1 : thus, if r is decomposed as “e r′ ” with e an observation of ObsΣ2 and
r′ the ending trace, then r|ρ = e r′|ρ if e belongs to ObsΣ1 , else r′|ρ.

Observable traces represent observations which can be done on a IOSTS: they
give which values are exchanged, as emissions or receipts, with the environment,
and according to which order. Projections of traces on a subsignature allow us
to restrict the signature to be considered as exported, and thus as observable.

Definition 4 (IOSTS). An IOSTS over a signature Σ = (A, C) is a 4-tuple
(Q, q0, T rans, ι) where Q is a set of state names, q0 ∈ Q is the initial state,
Trans ⊆ Q×ActΣ ×SenΩ(A)×TΩ(A)A ×Q and ι is a substitution associating
to each attribute of A a term in3 TΩ(V ∪ A). A transition tr = (q, act, ϕ, ρ, q′)
of Trans is composed of a source state q denoted by source(tr), an action act
denoted by act(tr), a guard ϕ, a substitution of variables ρ and a target state q′

denoted by target(tr). For each state q ∈ Q, there is a finite number of transitions
of source state q.

An IOSTS over the signature Σ is said to be initialized if for every attribute
variable v in A, ι(v) is a ground term of TΩ.
2 In the sequel, for an observable trace r, we will denote r[n] the nth element of the

trace when it exists.
3 V is any set of variables disjoint with the set A.
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Using initialized IOSTS allows to precisely specify initial values of the attribute
variables in order to restrict the set of admissible initial states. On the contrary,
non initialized IOSTS admit several (or maybe all) initial conditions for the
attribute variables : in this case, the first communications are often used to
restrict the set of acceptable states which are reachable from the initial states.

Example 2. We present an IOSTS, denoted Sp1, in Figure 1. It represents an
abstract coffee machine over Σ1. That machine accepts coins as input from
the environment (introduce?coin). After inserting coins, there is two possibili-
ties, either the machine is out of order (screen!′′out of order′′) then, the user
is refunded (refund!m), or the user selects the drink (select?B). Here, there
is again three possibilities: there is no cups (screen!”no cups”) and the user
is refunded, or there is no enough money, then the machine asks more coins
(screen!(price − m)) with price the price of the drink and m the total amount
that has been already introduced by the user), or the machine serves the drink
(serve!B). Lastly, if the amount introduced is more than the price of the drink,
the user receives the difference back.

a0

m := m + coin
introduce?coin

screen!
”no cups”refund!m

select?B
[m < price]
screen! screen!

”out of order” refund!m

a1

a2

a3

(price − m)

[m ≥ price]

a′

2

a′

1

serve!B

[m > price]
refund!(m − price)

[m = price]

take cup!

take cup!

m := 0

m := 0

m := 0

m := 0

Fig. 1. Specification Sp1

2.3 Semantics

Definition 5 (Runs of a transition). Let tr = (q, act, ϕ, ρ, q′) ∈ Trans. The
set Run(tr) ⊆ MA × ObsΣ × MA of runs of tr is s.t. (νi, actM , νf ) ∈ Run(tr)
iff:

– if act is of the form c!t then M |=νi ϕ, νf = νi ◦ ρ and actM = c!νi(t),
– if act is of the form c?y then M |=νi ϕ, there exists νa such that νa(z) = νi(z)

for all z �= y, νf = νa ◦ ρ and actM = c?νa(y).
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For a run r = (νi, actM , νf ), we denote source(r), obs(r) and target(r) respec-
tively νi, actM and νf .

Definition 6 (Finite Paths of an IOSTS). Let G = (Q, q0, T rans, ι) be an
IOSTS over Σ. The set of finite paths in G, denoted FP (G) contains all finite
sequences tr1 . . . trn of transitions in Trans s.t. source(tr1) = q0 and for all
i < n, target(tri) = source(tri+1).

The runs of a finite path tr1 . . . trn in FP (G) are sequences r1 . . . rn such that
for all i ≤ n, ri is a run of tri, there exists an Ω-interpretation ν1 such that
source(r1) = ν1 ◦ ι and for all i < n, target(ri) = source(ri+1). The set of
observable traces of a finite path p = tr1 . . . trn, denoted ObsTr(p) is the set of
finite observation sequences obs(r1) . . . obs(rn) for any run r1 · · · rn of p.

Definition 7. Let G be an IOSTS over Σ. The semantics of G is ObsTr(G) =⋃

p∈FP (G)

ObsTr(p).

Let ρ : Σ1 ⊆ Σ2 be an inclusion signature and G an IOSTS over Σ2. The
semantics of G with respect to ρ is ObsTr|ρ(G) = {r|ρ | r ∈ ObsTr(G)}.

3 Refinement

3.1 Definition

The refinement relation between IOSTS allows the specifier to relate an IOSTS
specification Sp1 defined over a signature Σ1 to a more concrete one, Sp2, in a
formal way. Intuitively, Sp2 should not only include all behaviors of the abstract
specification Sp1, but also may incorporate some specific behaviors that the
specifier could not have anticipated at the abstract level. In particular, Sp2 may
involve some concrete actions, emissions or receipts on some new channels, that
are not previously known at the abstract level. Such a point of view is similar to
the refinement relation given in [8] in the framework of interface automata: the
set of legal inputs of the concrete specification (or implementation) may strictly
contain the one of the abstract specification. In our setting, we require that all
the behaviors of Sp1 are preserved by SP2. Obviously, all the behaviors of Sp1
are given by its semantics: they simply correspond to the set of observable traces
of Sp1. Thus, to refine Sp1, a specification Sp2 should be defined over a signature
Σ2 including Σ1, and should preserve the semantics of Sp1 in the sense that the
semantics of Sp2 w.r.t. Σ1 contain the one of Sp1.

Definition 8 (Refinement). Let ρ : Σ1 ⊆ Σ2 be a signature inclusion. Let
Sp1 and Sp2 be two IOSTS over Σ1 and Σ2 respectively. Sp2 is a refinement of
Sp1, denoted by Sp1

ρ� Sp2 iff

ObsTr(Sp1) ⊆ ObsTr|ρ(Sp2)
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In the sequel, in the context of a refinement relation Sp1
ρ� Sp2, the elements of

ActΣ2 (resp. ObsΣ2) expressed on a channel in4 C2\C1 are said to be concrete
actions (resp. observations).

3.2 Our Approach for Refinement Testing

As presented in the Introduction, we propose to check if a specification refines
another one by following a testing approach. The underlying principle is quite
simple. First, we extract an observable trace θ from Sp1 and then we execute it
on Sp2. During the execution, we check if Sp2 accepts all observations specified
by θ. However, since Sp2 may involve concrete actions, we have to take them
into account during the execution of θ. The difficulty is to manipulate interme-
diate concrete actions of Sp2 in a generic way so that we can avoid evaluating
concrete actions too early. Indeed, this could limit the execution of θ on Sp2,
or even worse, could forbid its execution though it would be possible with other
values. Indeed, blindly choosing some arbitrary values for these intermediate con-
crete actions can clearly eliminate some possibilities of executing θ on Sp2 since
these particular values can unnecessarily constraint the next execution steps. A
convenient way to handle this problem is to use, as inputs, some symbols in-
stead of values to represent any of them. The symbolic execution technique [7]
is well adapted to perform this. Such a point of view has already been applied
for parameterized unit tests [21]: symbolic execution and constraint solving are
advocated to instantiate parameter data according to some unit coverage issues.

3.3 Symbolic Execution

In previous papers [20,12], we have shown that symbolic execution [7] is a pow-
erful technique in order to explore the semantics of IOSTS models. As stated
in those papers a symbolic execution path can be considered as an intensional
definition for many concrete executions (or runs): a symbolic execution intro-
duces new fresh variables, also called symbolic inputs, and is characterized by
its so-called path condition which defines the possible interpretation of the terms
involved in the execution path. Obviously, interpretations of all execution paths
preserve the IOSTS semantics.

Such symbolic execution paths may be systematically built, or at least with
respect to any given arbitrary path length. We can also look for building only
symbolic execution paths satisfying some constraint. In particular, we are inter-
ested by defining symbolic execution paths matching some particular patterns
given as observable traces. As previously explained, for refinement testing, sym-
bolic execution will be exercised on the concrete specification with traces selected
from the abstract specification. We will say that such a symbolic execution is
constrained by an observable trace. As usual, the main idea is to replace con-
crete input values and initialization values of attribute variables by symbols and
to execute transitions. Substitutions are executed in a natural way. At a given
4 Given E and F two sets, E\F denotes the set {x ∈ E | x �∈ F}.
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step of the execution, encountered guards induce an accessibility constraint on
the last constructed state. This constraint is stored in this state as its so-called
path condition. In the sequel we assume that symbols used as inputs are fresh
variables chosen in a set F =

⋃

s∈S

Fs disjoint from the set of attribute variables A.

We first give the intermediate definition of symbolic extended state which is a
structure allowing to store information about a symbolic behaviour: the IOSTS
current location (target state of the last transition of the symbolic behaviour),
the path condition, the symbolic values associated to attribute variables and a
mark given as a natural number.

Definition 9 (Symbolic extended state). A symbolic extended state over
F for an IOSTS G = (Q, q0, T rans) is a quadruple η = (q, π, σ, n) where q ∈ Q,
π ∈ SenΩ(F ) is called a path condition, σ ∈ TΩ(F )A and n is a natural number.
η = (q, π, σ, n) is said to be satisfiable if π is satisfiable5. One notes S (resp. Ssat)
the set of all the (resp. satisfiable) symbolic extended states over F .

The natural number associated to each symbolic state will serve us to mark
them with respect to some external information. In particular, we will use them
to synchronise the reading of an abstract observable trace θ over Σ1 given as
a parameter of the symbolic execution of an IOSTS Sp2 defined over Σ2 with
Σ1 ⊆ Σ2. Constraining the symbolic execution of Sp2 by θ consists in developing
all the symbolic executions compatible with θ. For that, all the states will be
labelled by a natural number less or equal than k, the length of the trace θ:
if a symbolic extended state η is labelled by n, it will simply mean that the
n first observations of θ have already been recognized before reaching η and
that all other transitions of the corresponding symbolic path concern concrete
actions.

Definition 10 (Symbolic execution of an IOSTS constrained by an
observable trace). Let Σ1 ⊆ Σ2 an inclusion signature. We assume that
Σ1 = (A1, C1) and Σ2 = (A2, C2). Let G = (Q, q0, T rans, ι) an IOSTS over
Σ2. Let us note ΣF = (F, C2). Let θ ∈ ObsTr(Σ1) an observable trace of length
k. The full symbolic execution of G constrained by θ is a triple (S, init, R)
with init = (q0, true, σ0, 0) where σ0 is an injective substitution in FA and
R ⊆ S × Act(ΣF ) × S such that for any two transitions in R respectively of
the form (ηi, c?x, ηf ) and (η′i, d?y, η′f ), the variables x and y are distinct and
∀a ∈ A, σ0(a) �= x. For any η ∈ S of the form (q, π, σ, n), for all tr ∈ Trans of
the form (q, act, ϕ, ρ, q′), then there exists a symbolic transition st = (η, sa, η′)
in R iff one of the following conditions detailed below is satisfied:

– if act = c!t and c /∈ Σ1 then sa = c!σ(t) and η′ = (q′, π ∧ σ(ϕ), σ ◦ ρ, n),
– if act = c?x with x in A2 and c /∈ Σ1 then sa = c?z with z in F , and

η′ = (q′, π ∧ σ(ϕ), σ ◦ (x �→ z) ◦ ρ, n),

5 Let us recall that here, π is satisfiable if and only if there exists ν ∈ MF such that
M |=ν π since variables of π are by construction in F .
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– if act = c!t and c ∈ Σ1 and θ[n] = c!u then6 sa = c!tu and η′ = (q′, π ∧
σ(ϕ) ∧ (t = tu), σ ◦ ρ), n + 1).

– if act = c?x with x in A2 and c ∈ Σ1 and θ[n] = c?u, then sa = c?tu and
η′ = (q′, π ∧ σ(ϕ), σ ◦ (x �→ tu) ◦ ρ, n + 1),

The symbolic execution of G over F is the triple SE(G) = (Ssat, init, Rsat)
where Rsat is the restriction of R to Ssat ×Act(ΣF )×Ssat. It is said consistent if
there exits at least a symbolic state of the form (q, π, σ, k). Such states are called
terminal.

Let us point out that in the above construction, for the case act = c!t (resp. c?x)
with c ∈ Σ1, if θ[n] can be written as d!u with d �= c or d′?u (resp. d?y with
d �= c or d′!t), then no transition is built. It means that when a non compatible
observation is encountered, the observable trace θ over Σ1 cannot be pursued
beyond its nth observation.

As previously indicated, the integer constituting the fourth parameter of a
symbolic state is used to synchronise observable actions deduced from the sym-
bolic execution with the ones involved in the observable trace θ constraining the
execution. From state (q, π, σ, n − 1), if a transition uses the channel involved
in the nth element of the trace, we require the compatibility by reinforcing the
path condition at the next state. Consequently, if there exists a consistent sym-
bolic state η with the number k, this means that θ as been totally matched over
a symbolic execution path from the initial state to η. In particular, the sym-
bolic execution only involving concrete actions allows us to retrieve the usual
symbolic execution as given in [12], all symbolic states being marked with the
natural number 0. Since the natural numbers associated to the symbolic states
have been introduced for technical reasons, in the sequel, they are left implicit
in the examples. Now we can state the main theorem:

Theorem 1. Let us consider Sp2 an IOSTS over Σ2 and Sp1 an IOSTS over
Σ1 with Σ1 ⊆ Σ2. Sp1

ρ� Sp2 ⇐⇒ ∀ θ ∈ ObsTr(Sp1) the symbolic execution of
Sp2 constrained by θ is consistent.

Example 3. Figure 2 illustrates a part of the symbolic execution of the abstract
drink machine Sp1 presented in Figure 1 constrained with the empty path.

4 Refinement Verification by Testing

4.1 Our Approach

Just as for conformance testing our approach consists in executing some observ-
able traces extracted from a specification, Sp1 on an entity which is supposed
to be a realization of this specification. Here the entity under test is also a spec-
ification, Sp2, called the concrete specification. The execution will be naturally
performed by means of the symbolic execution constrained by an observable
6 For a value u of M , tu denotes a ground term of TΩ of value u.
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introduce?coin1

select?B1
screen!”out of order”

refund!m0 + coin1

take cup!

serve!B1
screen!”no cups”

refund!m0 + coin1

init : (a0, true, σ0)

η1 : (a0, true, σ1)

η2 : (a1, true, σ1)

η4 : (a′2, true, σ2)

η5 : (a0, π1, σ4)

η6 : (a2, π1, σ2)

η7 : (a0, π2, σ4)

η8 : (a1, true, σ1)

η9 : (a′1, true, σ3)

π0 = (m0 + coin1 < price0)

π1 = (m0 + coin1 ≥ price0)

π2 = (m0 + coin1 = price0)

π3 = (m0 + coin1 ≤ price0)

η3 : (a2, π0, σ2)

η11 : (a0, π3, σ4)

refund!m0 + coin1 − price0

η10 : (a3, π3, σ2)

take cup!

screen!price0 − (m0 + coin1)

σ0 = m → m0, coin → coin0, B → B0, price → price0

σ3 = m → 0, coin → coin1, B → B0, price → price0

σ4 = m → 0, coin → coin1, B → B1, price → price0

σ1 = m → m0 + coin1, coin → coin1, B → B0, price → price0

σ2 = m → m0 + coin1, coin → coin1, B → B1, price → price0

Fig. 2. Symbolic execution of Sp1

trace. Our approach could be then qualified as half-symbolic. One could ask:
why not being full symbolic, since Definition 10 could be slightly modified to
deal with a full symbolic trace? The main reason for this choice is that in-
dustrial users are more familiar with explicit state approaches7. Moreover, by
choosing to only take observable traces from Sp1, we ensure that the computed
path conditions are expressed on variables of Sp2 instead of mixing variables
of both specifications in the formula. Such mixed formulas would be difficult to
analyse.

Now let us notice that Sp2 may contain loops, involving only concrete actions:
the unfolding of those loops during execution may lead to produce paths of an
huge size, maybe of an infinite size. To ensure that the computation terminates,
we need to define a bound to limit the unfolding of those loops. We decide to
allow at most N(N ∈ N

∗) consecutive occurrences of concrete actions in any path
of the symbolic execution tree. Consequently three verdicts, Warning, Fail, and
Pass, are necessary to represent the possible conclusions of the execution of a
trace θ of Sp1. The verdict Warning occurs when the execution ends before
reaching any terminal state, the bound N has been reached in some paths and
all the other states are (implicitly) maximal8. In this case we do not know if
θ belongs or not to Sp2. Perhaps with a larger bound we could have found it.
The verdict Fail occurs when the execution ends before reaching any terminal
state and when all paths are maximal. This means that we are sure that the
7 “explicit state” means here that variables are instantiated by values.
8 A path is said to be maximal when any extension has a non satisfiable path condition.
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refinement relation is not satisfied since θ does not belong to Sp2. The verdict
Pass occurs when at least a terminal state has been reached. This means that
the trace under test belongs to Sp2 up to the inclusion ρ.

Our algorithm can be described informally as follows. It admits three inputs:
an observable trace θ derived from Sp1, the concrete specification Sp2 and the
bound N . It is a bread-first algorithm which instantiates Definition 10. To take
into account the bound N , a parameter, called the distance, denoted by d, is
added in the definition of a symbolic extended state. We also add a label l ∈
{stop, go, wrg, rch} (wrg is for warning and rch for reached). So a symbolic
extended state is now of the form (q, π, σ, n, d, l) with d = 0, l = go in the
initial state. In an execution step, we consider all states whose label is go. We
execute all their outgoing transitions. For a state such that no transition can
be executed (because all targets would have an un-satisfiable path condition)
its label becomes stop. Now a target state obtained by execution satisfies those
requirements: if its incoming transition carries an abstract action, its distance
parameter is set to 0; if it is a concrete action, the distance is the distance of the
source state plus one; if this distance is N then its label is wrg; if n = length(θ)
then its label is rch. The algorithm stops when the set of states labelled by go
is empty. If there is at least a state labelled rch the verdict is Pass. If leaves
of the execution tree are all labelled by stop the verdict is Fail. If those leaves
are all labelled by wrg, or some by wrg or and others by stop then the verdict
is Warning. The corresponding path conditions are collected to help the tester
to analyse the situation: under which conditions on the concrete variables Sp2
refines Sp1 ? Is there a loop in Sp2 to justify the Warning verdict ?

Example 4. We illustrate the process described above with the following
example. Figure 3 represents a concrete coffee machine on Σ2 where Σ2 =
(A2, C2) with A2 ={coin, m, price, B, G, ok} and C2 ={introduce, select, screen,
refund, serve, take cup, error, agent put cups}.

In this drink machine, the attribute variable G represents the number of
goblets available in the machine. When a drink is served, one withdraws 1 to
the value of the variable G. When G becomes equal to 0, the machine can no
more serve a drink and the attribute variable ok is put at false to mean that
the machine is out of order (screen!”out of order”). An agent of maintenance
can put goblets in the machine (agent puts cups?NewG), or repair the machine.
Then he puts the variable ok at true (to mean that the machine is ready again).
The number NewG of introduced goblets is added to the variable G.

Let us choose an arbitrary observable trace, denoted t1, from Sp1 given in
Figure 1), defined on Σ1 ⊆ Σ2, introduced in Example 1. The selected obser-
vable trace t1 is the following: introduce?20 select?coffee screen!”no cups”
refund!20 introduce?20 select?coffee serve!coffee take cup!

Figure 4 gives the symbolic execution of Sp2 constrained by t1. For lack of
space, this tree is still partial and does not contain the whole branches : cut
branches are represented by dotted transitions.

The first state is init. The first observation introduce?20 of t1 is matching
with a symbolic transition of Sp2 issued from init, annotated with the symbolic
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q0

select?B

q′
1

error!”out of order”

agent put cups?NewG

m := m + coin
introduce?coin

G := G + NewG

refund!m

q1

G := NewG

q2

[(G > 0) ∧ (m ≥ price)]
serve!B

[m = price]

[m > price]

q3

q6

q5

q4

take cup!

take cup!

agent put cups?NewG

ok := true

ok := true

[ok = true]

m := m + coin
introduce?coin

refund!m

ok := false
screen!”no cups”
[G = 0]

m := 0

m := 0

m := 0

m := 0

refund!(m− price)

screen!(price − m)
[m < price]

[ok = false]
screen!
”out of order”

G := G − 1

Fig. 3. Concrete specification Sp2

action introduce?coin. The matching with the observable trace is required by
considering the transition of action introduce?20 and adding the constraint m =
m0 + 20 in the path condition of the target state η1. From init, there is also
a transition (dotted in Figure 4) labelled by agent put cups?NewG because
the action is in Σ2 and not in Σ1. Indeed, this represents a hidden concrete
action, not observable at the abstract level. The tree construction is pursued
and we can recognize two traces including the observable trace t1, and possibly
adding some intermediate concrete actions (as agent put cup?NewG1 in the
right-hand side trace). We can remark that the symbolic state η5 gives rise two
transitions stemming from η5, respectively with the actions introduce?20 and
agent put cups?NewG1. Both branches should be considered in order to search
for symbolic states labelled by 8, the length of t1, meaning that the last action of
t1 has been recognized. For the right-hand side trace, the state η12 is labelled by
8, and the associated path condition π4 gives some sufficient conditions (on the
initial values of the attribute variables, denoted by symbolic variables indexed
by 0, and on intermediate interaction variables used for hidden concrete actions,
here NewG1 for example) under which Sp2 may refine Sp1. When applying our
algorithm, two cases are thus possible depending on whether the chosen bound
N is less or equal to 2 or is strictly greater than 2.

– In the first case, the exploration is stopped before encountering the second
introduce?20 action of t1. Indeed, there are two consecutive non observable
actions error!′′outoforder′′ and agent puts cup?NewG1 preceding the next
required observable action introduce?20. Since the exploration is unfortu-
nately stopped too early, we only get a Warning verdict.

– On the contrary, in the second case (N is strictly greater than 2), we can
observe the second introduce?20 action of the trace t1 and pursue the reading
of the observable trace in Sp2 until the last state η12 is reached. So, when
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introduce?20

select?coffee

screen!”no cups”

refund!20

introduce?20

select?coffee

serve!coffee

take cup!

t1

1

2

3

4

5

6

7

8

σ0 = m → m0, coin → coin0, B → B0, price → price0, ok → ok0, G → G0, NewG → NewG0

σ1 = m → m0 + 20, coin → 20, B → B0, price → price0, ok → ok0, G → G0, NewG → NewG0

σ2 = m → m0 + 20, coin → 20, B → coffee, price → price0, ok → ok0, G → G0, NewG → NewG0

σ4 = m → 0, coin → 20, B → coffee, price → price0, ok → false, G → G0 − 1, NewG → NewG0

σ3 = m → m0 + 20, coin → 20, B → coffee, price → price0, ok → false, G → G0 − 1, NewG → NewG0

σ5 = m → 0 + 20, coin → 20, B → coffee, price → price0, ok → false, G → G0 − 1, NewG → NewG0

σ6 = m → 0, coin → 20, B → coffee, price → price0, ok → true, G → NewG1, NewG → NewG1

π0 = (ok0 = true)

π1 = (ok0 = true) ∧ (G0 = 0)

π2 = (ok0 = true) ∧ (G0 = 0) ∧ (ok0 = true)

π3 = (ok0 = true) ∧ (G0 = 0) ∧ (ok0 = true) ∧ (G0 + NewG1 > 0) ∧ (20 ≥ price0)

π4 = (ok0 = true) ∧ (G0 = 0) ∧ (ok0 = true) ∧ (G0 + NewG1 > 0) ∧ (20 ≥ price0) ∧ (20 = price0)

σ7 = m → 0 + 20, coin → 20, B → coffee, price → price0, ok → true, G → NewG1, NewG → NewG1

σ8 = m → 0 + 20, coin → 20, B → coffee, price → price0, ok → true, G → NewG1 − 1, NewG → NewG1

σ9 = m → 0, coin → 20, B → coffee, price → price0, ok → true, G → NewG1 − 1, NewG → NewG1

select?coffee

introduce?20

screen!”no cups”

refund!20

error!”out of order”

η4 : (q5, π1, σ4, 4)

select?coffee

serve!coffee

take cup!

introduce?20

η12 : (q0, π4, σ9, 8)

η1 : (q0, true, σ1, 1)

η2 : (q1, π0, σ2, 2)

η3 : (q4, π1, σ3, 3)

η5 : (q6, π1, σ4, 4)

η7 : (q0, π1, σ6, 4)

η9 : (q0, π1, σ7, 5)

η10 : (q1, π2, σ7, 6)

η11 : (q2, π3, σ8, 7)

init : (q0, true, σ0, 0)

agent puts cup?NewG1

select?coffee

η6 : (q0, π1, σ5, 5)

introduce?20

Fig. 4. Symbolic execution of Sp2 constrained by the observable trace t1

the bound is strictly greater than 2, for the observable trace t1 selected from
Sp1, we get a Pass verdict for Sp2 since the path condition π4 associated to
the symbolic state η12 is satisfiable.

Example 5. Let us suppose that t2 = introduce?20 select?coffee take cup!
would be a second observable trace of Sp1. In fact, t2 is not an observable
trace of Sp1 as one may verify it on Figure 1. Let us introduce in Figure 5 the
(partial) symbolic execution of Sp2 constrained by t2.

The two first actions of t2 are recognized since the symbolic state η2 is la-
belled by the natural number 2. When building the following symbolic states,
there are three possible transitions given by Sp2 respectively with the actions
screen!(price − m), screen!”no cups” and serve!B, but there is no take cup!
action like in the trace t2. All the three actions are observable since they are ex-
pressed on the signature Σ1. But they are not compatible with the next action
of t2 to be recognized. Thus, the symbolic execution of Sp2 constrained by t2
reveals that t2 is not an observable trace of Sp2, up to the inclusion morphism
Σ1 ⊆ Σ2. So, we get a Fail verdict. Finally, provided that t2 would be really
an observable trace of Sp1, such a scenario would mean that Sp2 does not refine
Sp1.
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π0 = (ok0 = true)

σ0 = m → m0, coin → coin0, B → B0, price → price0, ok → ok0, G → G0, NewG → NewG0

σ1 = m → m0 + 20, coin → 20, B → B0, price → price0, ok → ok0, G → G0, NewG → NewG0

σ2 = m → m0 + 20, coin → 20, B → coffee, price → price0, ok → ok0, G → G0, NewG → NewG0

η1 : (q0, true, σ1, 1)

select?coffee

init : (q0, true, σ0, 0)

introduce?20introduce?20

select?coffee

t2
η2 : (q0, π0, σ2, 2)

take cup!

Fig. 5. Symbolic execution of Sp2 constrained by t2

4.2 Trace Selection and Implementation Issues

In order to test whether Sp2 refines Sp1, the first step is to select some observable
traces from Sp1 to be symbolically executed on Sp2. Algorithms implementing
some classical coverage criteria [25] can be applied to extract traces from Sp1.
Here we propose, like in [17,7], to select among symbolic execution paths. The
idea is to compute a finite sub-tree of the symbolic execution of Sp1 (without
being constrained by a given trace). Afterwards, a constraint solver is used at
each leaf of this sub-tree to extract an observable trace from the symbolic path
ended by the considered leaf. All these observable traces will be executed on
Sp2. The question is how to define this finite sub-tree. In a previous paper [12],
we have proposed the so-called k-inclusion criterion. The idea is to perform a
symbolic execution such that each path carries k.n symbolic transitions9. Clearly,
this definition depends on a deepness parameter k.n. k is a non null integer
arbitrarily chosen by the user while n is the result of a calculus. It is the length
of the longest path of a symbolic execution reduced by the inclusion criterion
which, as explained in [12,20], eliminates redundancy in the symbolic execution
tree.

The work presented here has been implemented as an extension of the AGAT-
HA tool set [18,20] which as been designed to perform symbolic execution of
IOSTS. Presburger arithmetics [19] constitutes the data part of IOSTS treated
by AGATHA. The Omega Library [1] has been chosen to handle this data part
and is used for two purposes.

5 Conclusion

In this paper, we propose a testing based approach to check whether a con-
crete specification is a legitimate refinement of an abstract specification. Our
approach is based on a combination of concrete and symbolic execution of the
specifications. These specifications are described using a first order automata
based formalism, namely IOSTS. Our method is strongly inspired from the well-
known framework of conformance testing based on the use of test purposes for
test case selection. Like conformance testing, some behaviours (observable traces)
are selected from the abstract specification Sp1 by solving a path constraint over
9 When a path carries less actions, this is because it cannot be extended with non-

consistent states.
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every execution path of a bounded length from Sp1. For each observable selected
trace θ, the concrete specification Sp2 is symbolically executed in a way that is
constrained by the observable trace θ. This symbolic execution is parameterized
by a bound given by the user which controls the number of loop unrollings in
Sp2. It allows us to get a verdict about the refinement relation. Either a counter
example is found (verdict Fail), a proof is found (verdict Pass) or the result re-
mains inconclusive because only a bounded number of loop unrollings has been
considered (verdict Warning). Contrarily to conformance testing techniques,
the execution of selected behaviours is not a black box procedure but a white
box procedure based on static analysis of the specification to be tested. The
involved static analysis is based on symbolic execution techniques associated to
a constraints solver. This white box approach brings the advantage that there
is no more the inconclusive verdict related to non-determinism of reactive sys-
tems, even if for some cases, the algorithmic limitations do not allow us to fully
conclude about the verdict. Moreover, some path conditions are associated to
the verdict Pass, given information about the appropriate initialisations of the
attribute variables of the concrete specification, and about intermediate inter-
action variables used at the concrete level, and not observable at the abstract
level. Such kind of information allows us either to debug a concrete specification
detected as not refining the abstract specification or to analyse design choices
made by the specifier, for example for reverse-engineering purposes.

In this paper, we perform a blinded exploration of the concrete specification
Sp2 with respect to an observable trace extracted from the abstract specification
Sp1. The given of a bound allows us to arbitrarily stop the exploration between
two consecutive observable actions of the trace. Obviously, by making some static
analysis of Sp2, we could get some additional indications on how to appropriately
compute a bound of exploration or on how to adapt our algorithm in order to do
without a bound. In particular, following the approach developed for Bounded
Model Checking in [4], we could try to detect the presence of loops in Sp2 in
order to compute verdicts in the same way bounded model checking is performed.
Indeed, the verification process for bounded model checking can terminate when
considering finite paths including loops and existential properties. As we look
for the existence of a path in Sp2 with respect to an abstract property (the
observable trace), it would be interesting to study if such a finite technique can
be transposed in our context in the goal of having less Warning verdicts.
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