
Generating Unit Tests from Formal Proofs

Christian Engel and Reiner Hähnle

Department of Computer Science and Engineering, Chalmers University of Technology
412 96 Göteborg, Sweden

engelc@ira.uka.de, reiner@chalmers.se

Abstract. We present a new automatic test generation method for JAVA CARD

based on attempts at formal verification of the implementation under test (IUT).
Self-contained unit tests in JUnit format are generated automatically. The advan-
tages of the approach are: (i) it exploits the full information available in the IUT
and in its formal model giving very good hybrid coverage; (ii) a non-trivial for-
mal model of the IUT is unnecessary; (iii) it is adaptable to the skills that users
may possess in formal methods.

Keywords: model-based testing, program verification, symbolic execution, test
coverage, theorem proving, unit testing, white-box testing.

1 Introduction

We present a new automatic test case generation (ATCG) method for object-oriented
software based on formal verification technology, accordingly called verification-based
test generation (VBT). It combines features from white and black box test generation
methods. VBT uses the full information contained in a formal specification and the
underlying implementation under test (IUT). The main advantages over model-based
test generation are: a detailed formal model of the IUT is not needed, in fact, test cases
can be generated even from trivial specifications; in addition, it is possible to generate
test cases that exhibit bugs contained only in the code and not in the specification. Such
errors cannot reliably be detected with model-based test generation. As test generation
is based on systematic attempts to verify the IUT against its specification, the resulting
test cases satisfy rather strong hybrid, i.e., model-based as well as code-based coverage
criteria.

Like other test generation approaches we concentrate on creating self-contained
unit test cases including fixtures and test oracles. The intended application domain are
safety- and security-critical JAVA and JAVA CARD programs running on small embed-
ded devices such as smart cards or mobile phones. Unit testing is an essential technique
for ensuring quality of industrial software. Writing unit tests by hand is labour intensive
and leaves significant uncertainties concerning the quality of the produced tests in terms
of achieved test coverage and of correctness of the test oracle relative to the specifica-
tion of the tested code. To remedy this situation, various ATCG approaches have been
suggested. The most common are specification- or model-based test generation (com-
monly referred to as black box techniques) [1,4,5,9,10,11] and white box approaches
[8,26,27,28] that are based on code-driven state exploration by symbolic execution. A

B. Meyer and Y. Gurevich (Eds.): TAP 2007, LNCS 4454, pp. 169–188, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

170 C. Engel and R. Hähnle

detailed comparison of our method to these and to other ATCG approaches is done in
Section 8.

Our own approach contains features from both white and black box techniques, but
adds a new ingredient: the starting point of the VBT process is a systematic attempt,
based on symbolic execution, to formally verify correctness of a given JAVA CARD pro-
gram p relative to a precondition pre and postcondition post. In our concrete setting we
use the KeY verification system [2] that provides appropriate (attempted) proofs based
on symbolic execution of the target program p, interleaved with first-order simplifica-
tion. It returns tree-shaped proof objects where the nodes can be interpreted as symbolic
execution states and the branches as symbolic execution paths through p. The presenta-
tion in this paper is based on the implementation in the KeY system, but in principle, it
would be possible to use any other JAVA verification system that works with symbolic
execution, for example, the KIV system [25].

The proof object on which test case generation is based does not need to constitute
a complete proof, for example, loops may have been approximated by executing them
symbolically a fixed number of times. This has the advantage that the proof construction
phase and, therefore, test generation is fully automatic. The information contained in
a proof is used to extract test data from the path conditions that characterize certain
symbolic execution paths (or all of them, depending on the desired test coverage). From
the postcondition post test oracles are generated.

A complete functional specification of the implementation under test p is not re-
quired, because test generation is based on symbolic execution of the code p, while
the specification pre, post is only needed to synthesize the test oracle. Meaningful test
cases are obtained already for trivial specifications. For example, the precondition pre
could just express that object references in p are non-null and the postcondition post is
merely true. For the generation of test oracles, somewhat more extensive specifications
are required, even though they can be far from complete (as will be shown below).

For specification our implementation supports the popular high-level Java Model-
ing Language (JML) [23] whose compatibility with JAVA syntax reduces the extent of
formal methods knowledge that JAVA developers need to come up with formal specifi-
cations. For example, it enables the programmer to write the postcondition as a JAVA

expression using query methods. In essence, the test oracle is then directly provided as
a JAVA method.

In summary, the main advantages of the VBT methodology are: (i) it is fully auto-
matic, but since coverage and quality of tests can be improved by more complete proofs
it is adaptable to the skill of users; (ii) test generation is possible already with a trivial
specification—again, since test oracles and relevance of generated test cases are im-
proved by fuller specifications, the method is adaptable to the skill of users; (iii) rather
strong hybrid code- and model-based coverage criteria are met; (iv) test generation and
verification happen in a uniform framework and tool; (v) the full JAVA CARD program-
ming language is covered.

In the next section we provide background on test coverage, JAVA CARD, formal
verification, program logics, and symbolic execution. In Sect. 3 we outline a basic
version of our method guided by an example. In Sect. 4 we extend it to code with
unbounded loops and recursion. We also discuss when various code-based coverage

Generating Unit Tests from Formal Proofs 171

criteria are reached. In Sect. 5 we present some measures that ensure high automa-
tion of our method and in Sect. 6 we show that the tests obtained from our approach
satisfy further coverage criteria [29]. In Sect. 7 we report on some experimental re-
sults, followed by related and future work in Section 8. Due to space limitations gen-
erated test cases and proofs of theorems cannot be reproduced here. On the web page
i12www.ira.uka.de/~engelc/testCases/ proofs of theorems as well as full speci-
fications of the examples in JML and generated test cases can be found.

2 Background

Test Coverage Criteria. To make the paper self-contained we define some standard
notions of test coverage [29]. Recall that in general an implementation under test (IUT)
has an infinite number of execution paths, but only a finite number of branches.

Definition 1. A formula ϕ is a path condition for an execution path p through the IUT
iff p is executed whenever ϕ holds before the execution of the IUT.

A feasible execution path is an execution path that has a satisfiable path condition. A
branch or statement in the IUT is called feasible if it is contained in at least one feasible
execution path. We say a branch (a path) is covered by a test case iff it is executed when
running the test case.

A test set for a given IUT satisfies the feasible branch (path) coverage criterion iff
each feasible branch (path) is covered by it.

JAVA CARD. The JAVA CARD programming language is a dialect of JAVA character-
ized by the absence of a number of language features (mainly floating point types, mul-
tiple threads, dynamic class loading) and the presence of others (persistent vs. transient
memory, atomic transactions). Most language features, however, are available in JAVA

CARD just like in JAVA. While JAVA CARD achieves unprecedented independence from
the hardware platform, one can state that the gap between the behaviour of programs
in desktop simulators and after actual deployment on the target hardware is a serious
concern for JAVA CARD software developers. In practice, all JAVA CARD developer
workspaces are equipped not only with emulators, but with various JAVA CARD hard-
ware platforms, and for good reasons: in principle, it is possible to test JAVA CARD

applications with the help of a simulator in a standard JAVA environment on a desk-
top. There are also emulators that mimic the behaviour of smart card hardware. The
simulated and the actual behaviour, however, differs considerably. This is due to am-
biguities [20] in the JAVA CARD language definition, but also because simulators and
emulators do not implement all JAVA CARD aspects or the implementation on the de-
vice is faulty. As a consequence, even if JAVA CARD code has been formally verified it
is essential to test it, because correct execution cannot be assumed.

Formal verification. Our approach to automatic test generation is based on a white box
analysis of the richest possible program model: the target source code together with a
formal programming language semantics. Such representations are realized in formal
software verification systems. In these systems a program logic (for example, Hoare

i12www.ira.uka.de/~engelc/testCases/

172 C. Engel and R. Hähnle

logic or dynamic logic—see below) allows to express properties of programs which
then can be formally proven from a set of logical inference rules that capture the ax-
iomatic semantics of the target language. State-of-the-art program verification systems
are able to prove security and correctness properties of industrial JAVA CARD software
[2,21,25]. The implementation described in this paper is based on the verification tool
KeY [2].

Dynamic Logic for JAVA CARD. In our method the target program and its specification
are both modeled in a version of a dynamic logic (DL) [18] calculus called JAVA DL [2].
Dynamic logic is a program logic that generalizes Hoare logic. It can be seen as a modal
logic with modalities 〈p〉ϕ and [p]ϕ for every program p with an arbitrary formula ϕ
in its scope (which in turn may contain modalities). JAVA DL formulas are interpreted
over first-order Kripke structures K = (S , ρ), where S is a set of first-order structures
including interpretations of the identifiers occurring in programs, and ρ is a function
that assigns to a program p its operational semantics as a transition relation ρ(p) ⊆
S × S : if p is a legal JAVA CARD program and started in state s ∈ S , then (s,s′) ∈ ρ(p)
iff p terminates normally (i.e., not abruptly) in final state s′. The formula 〈p〉ϕ holds
in s ∈ S iff p terminates normally and in the final state after termination ϕ holds. In
other words, p is totally correct with respect to postcondition ϕ. Dually, [p]ϕ expresses
partial correctness: if p terminates normally, then in the final state ϕ holds.

State Updates. In JAVA (as in other object-oriented programming languages), different
object type variables may refer to the same object. This phenomenon, called aliasing,
causes difficulties for the handling of assignments in a calculus for JAVA DL. For ex-
ample, whether or not the formula o1.f

.= 1 holds after (symbolic) execution of the
assignment o2.f = 2;, depends on whether o1 and o2 refer to the same object. There-
fore, JAVA assignments cannot be symbolically executed by syntactic substitution. In
the JAVA DL calculus another solution is used, based on the notion of (state) updates.

Definition 2. Atomic updates are of the form loc := val, where val is a logical term
without side effects and loc is either a program variable or a simple field access or
an array access. Updates may appear in front of any formula or term, where they are
surrounded by curly brackets for easy parsing. The semantics of {loc := val}ϕ is the
same as that of 〈loc=val;〉ϕ.

The idea with updates U is that during symbolic execution they represent the current
computation state in which a program formula U〈p〉ϕ is executed. They are continously
simplified during symbolic execution, but their application to modal formulas in their
scope is delayed until the program has been completely executed.

Sequent Calculus. As it is usual for program logics, the axiomatization of JAVA DL is
based on a sequent calculus. The central notion is that of a sequent, which is an expres-
sion of the form Γ ⇒ Δ, where Γ and Δ are finite sets of formulas. The sequent Γ ⇒ Δ
is valid, if and only if the conjunction of the formulas in Γ implies the disjunction of
the formulas in Δ in all states of any JAVA DL-Kripke structure. The rules of a se-
quent calculus are denoted with schematic reasoning patterns that characterize validity
of formulas occurring in the conclusion of a rule. Their general format is:

Generating Unit Tests from Formal Proofs 173

Γ1 ⇒ Δ1 · · · Γn ⇒ Δn

Γ ⇒ Δ

Soundness of the calculus requires that for each rule the validity of the sequents above
the line imply the validity of the sequent below the line. There is a sequent rule for each
top-level operator both for left and right sides of the sequent arrow. For example,

Γ ⇒ ϕ, Δ Γ ⇒ ψ, Δ
Γ ⇒ ϕ∧ψ, Δ AND-RIGHT

is a rule that characterizes conjunction on the right and is named accordingly. Here
ϕ and ψ (Γ and Δ) are schematic variables that can be instantiated with any (set of)
formula(s). Rules with an empty set of premisses are admissible. They are called axioms
and their premiss is labelled with ∗. A typical axiom has the conclusion Γ ⇒ t

.= t, Δ.
Rules are read bottom-up: the bottom sequent is the sequent on which the rule is

applied. The sequents on top are the results of the rule-application. Thus, when proving
validity of a formula ϕ the proof starts with the sequent ⇒ ϕ (the empty set of formulas
on the left is omitted). Partial proofs in a sequent calculus take the shape of trees whose
nodes are labelled with sequents. In complete proofs all leaves are labelled with ∗.

Symbolic Execution. The programs occurring in JAVA DL formulas are executable JAVA

code. Rules for program formulas operate on sequents of the form Γ ⇒ U〈πpω〉ϕ, Δ,
where U is an update containing the current state of symbolic execution and p is a sin-
gle JAVA statement called the first active statement. The prefix π consists of an arbitrary
number of opening braces, try-blocks and method frames (the stack trace), and ω is
the whole rest of the program. Each rule for a program formula specifies how to exe-
cute symbolically one particular JAVA expression or statement, possibly with additional
restrictions. Symbolic execution entails that locations have no concrete but symbolic
values and the effect of the execution of a statement is described by logical means with
symbolic values. When a loop or a recursive method call is encountered, it is in general
necessary to perform induction or supply a suitable invariant.

JAVA DL extends other variants of DL used for theoretical investigations or veri-
fication purposes, because it handles such phenomena as side effects, aliasing, object
types, exceptions, and finite integer types. Since deduction in the JAVA DL calculus is
based on symbolic program execution and simple program transformations, it is close
to a programmer’s understanding of JAVA.

In a symbolic setting, the code branch that the control flow takes after evaluation of a
conditional statement cannot always be determined as it depends on symbolic values. In
general, a case distinction has to be introduced in the proof. One may also view this as
symbolic execution branching into different execution paths. Each symbolic execution
path is governed by a branch condition that is syntactically added to the left side of
sequents during evaluation of conditional statements. Thus, the branching conditions
accumulate in the sequent during symbolic execution and the current path condition for
each execution path (including incomplete execution paths that have not yet terminated)
is always contained in the leaves of proof trees during any phase of symbolic evaluation.
This is illustrated in Fig. 1.

174 C. Engel and R. Hähnle

Example 1 (Rule for the if -statement). When an if statement is symbolically executed
a case distinction whether the guard is true or not has to be made. This is reflected by a
split in the proof tree.

Γ, c
.= T RUE ⇒ 〈π{p}ω〉ψ,Δ Γ, c

.= FALSE ⇒ 〈π ω〉ψ,Δ
Γ ⇒ 〈π if(c) {p};ω〉ψ,Δ IFTHENSPLIT

The conditional if(c) {p} is the first active statement in the modality, where c is a
boolean side-effect free expression. The updates before the program formulas are not
explicitly written. The left premiss represents the case that the expression c holds, thus
we find c

.= T RUE on the left side which becomes part of the path condition on the cor-
responding execution path. As c holds, the body of the if -statement is executed, there-
fore, the program formula 〈π if(c) {p};ω〉ψ is transformed into 〈π{p}ω〉ψ, where
symbolic execution continues. The right premiss represents the case that !c holds thus
we find c

.= FALSE on the left side of the sequent. In this case the body of the if state-
ment is not executed and we get the new program formula 〈π ω〉ψ.

3 Overview of Verification-Based Test Generation

Verification-based testing (VBT) is motivated by the insight that a formal analysis of
a specification and/or the corresponding code, as performed in a formal proof attempt,
yields enough information to produce test cases. In our view a full description of a
software system consists of both, implementation and specification. In order to detect
as many errors as possible, it is essential to analyse and compare two levels of modeling.

Several ideas from other test generation methods are as well found in VBT, for exam-
ple, to synthesize a test oracle from a formal specification (the postcondition) or to use
reasoning technologies such as deduction, constraint solving and symbolic execution to
achieve a high automation of the test generation process.

We walk through our test generation method guided by an example. It will demon-
strate the automatic creation of self-contained unit tests for an implementation under
test (IUT) containing only a finite number of feasible execution paths (the general case
is handled in Sect. 4). In this case we obtain a test set satisfying the rather strong feasi-
ble execution path coverage criterion (Def. 1). The reason for this can be found in the
soundness of the JAVA DL sequent calculus: if a certain path p with path condition ϕ
in a code fragment c would not figure in a complete proof then also a complete proof
for the invalid formula ϕ → 〈c〉 f alse could be constructed which would imply that the
calculus is unsound.

Example 2. Method conditionalSwap swaps the values of the field value of two objects
x and y of type NaturalNumberWrapper provided that x.value >= y.value. Its behaviour
is specified using JML [23] as shown below.

public class NaturalNumberWrapper{

private /*@spec_public@*/ int value;

//@ public invariant value > 0;

Generating Unit Tests from Formal Proofs 175

/*@ public normal_behavior
@ requires x!=null && y!=null;
@ ensures \old(x.value) >= \old(y.value) ?
@ (\old(x.value)==y.value && \old(y.value)==x.value) :
@ (\old(x.value)==x.value && \old(y.value)==y.value);
@*/

public static void conditionalSwap(NaturalNumberWrapper x,
NaturalNumberWrapper y){

if(x.value >= y.value){
swap(x, y);

}
}

public static void swap(NaturalNumberWrapper x,
NaturalNumberWrapper y){

y.value += x.value;
x.value = y.value - x.value;
y.value -= x.value;

}
}

Clearly, there are two feasible execution paths characterized by the path condition
x.value ≥ y.value, resp., by x.value < y.value that are induced by the guard of the
conditional occurring in conditionalSwap, see also Fig. 1.

Extraction of the IUT. KeY’s JML front end automatically translates [15] JML specifi-
cations to JAVA DL formulas that constitute a proof obligation (PO) for the KeY verifier.
For the method conditionalSwap and its JML specification the PO is

∀x′.∀y′.{x := x′, y := y′}((inv ∧ pre) → 〈conditionalSwap(x,y);〉Φ), (1)

where Φ is a first-order formula representing the post condition, inv is the formula
∀z.z.value > 0 representing the class invariant for class NaturalNumberWrapper and
pre := (x �= null ∧ y �= null) the precondition of conditionalSwap defined by the JML
specification. After quantifier elimination by skolemization and pushing in updates
(where S abbreviates {x := cx′ , x := cx′ }) we obtain:

S(inv ∧ pre) → S〈conditionalSwap(x,y);〉Φ. (2)

This formula is the root node in the partial proof tree depicted in Fig. 1 (the left part of
the implication is abbreviated with Γ). From this formula we extract the IUT

x = cx′ ; y = cy′ ; conditionalSwap (x,y);

and the postcondition Φ. Later we generate a test oracle from Φ. The node in the proof
tree used for extracting the IUT (2) is called code node.

Extraction of Path Conditions from the Proof Tree.

176 C. Engel and R. Hähnle

Fig. 1. Partial proof tree for the example in the text

Definition 3. A proof tree in which each branch is either closed or ends with a leaf that
contains no code fragments anymore (indicating termination of symbolic execution on
that branch) is called fully executed.

A fully executed proof tree for the PO (1) is constructed automatically by the KeY sys-
tem. It is partially shown in Fig. 1. Recall from Sect. 2 that branches in the proof tree
can be identified with execution paths through the IUT. Since each node contains a path
condition that leads to the current point of symbolic program execution, we are inter-
ested in exactly those nodes that contain an empty program (signifying termination of
symbolic execution). These nodes are the leaves of open branches in a fully executed
proof tree and referred to as data nodes from now on. They have the form

Γ ⇒ U〈〉Φ, Δ, (3)

where Γ and Δ are sets of first-order formulas and U is a sequence of updates repre-
senting the effect of the symbolic execution of the IUT on the branch of the proof tree
whose path condition is, therefore, given by:

�

γ∈Γ
γ ∧

�

δ∈Δ
¬δ. (4)

It is important to realize that closed branches where symbolic execution did not termi-
nate need not be considered, since those branches must have been closed because of an
unsatisfiable path condition and, therefore, cannot be reached. In Fig. 1, for example,
the node labelled “infeasible path” originates from the null pointer check performed

Generating Unit Tests from Formal Proofs 177

each time when an attribute on an object reference is accessed, here x
.= null. Symbolic

execution of this node leads to a new proof goal of the form

Γ, cx′
.= null ⇒ S ′〈π throw new NullPointerException();ω〉Φ. (5)

It represents the case that a null pointer exception is thrown. It can be closed immedi-
ately, because the formula cx′ !

.= null is contained in the precondition Γ (originating
from the requires clause of the JML contract). In the fully executed proof tree we find
the following data nodes:

cy′
.= cx′ , inv1 ⇒ U1〈〉Φ, pre1 (6)

cy′.value ≤ cx′.value, inv2 ⇒ U2〈〉Φ, pre2, cy′
.= cx′ (7)

cy′.value ≥ cx′.value+ 1, inv2 ⇒ U3〈〉Φ, pre2 (8)

Here, inv1 is {inv, cx′.value ≥ 1} and inv2 is {inv, cx′.value ≥ 1, cy′ .value ≥ 1}. They
are derived from the invariant of the JML specification. Formula pre1 stands for cx′

.=
null and pre2 for {cx′

.= null, cy′
.= null}. They stem from the precondition of the JML

method contract. In (4) we defined path conditions in such a way that, in addition to
branching conditions, they may contain constraints like pre{1,2} and inv{1,2} stemming
from formulas present in the code node. The formulas cy′.value ≥ cx′.value+ 1 and
cy′.value ≤ cx′.value are introduced by a case distinction performed when the if state-
ment occurring in conditionalSwap is symbolically executed (see Fig. 1). The formula
cy′

.= cx′ occurring in data node (6) on the left and in data node (7) on the right side are
introduced by another case distinction caused by an alias analysis when the assignments
in swap are symbolically executed. This case distinction is needed for distinguishing
whether x and y are referencing the same object. From the data nodes the path condi-
tions are obtained via (4).

Generation of Integer Test Data. For creating suitable test data for each execution path
we have to find first-order models of the corresponding path condition formulas. For
integer types concrete interpretations are currently found by applying Cogent [12] or
Simplify [14] to the formula �

γ∈Γ
γ →

�

δ∈Δ
δ,

i.e., the negation of the path condition (4). If the path condition is satisfiable and the
decision procedure manages to deliver a counter example for its negation the integer
type test data are derived from the returned counter example. While Simplify’s inte-
ger arithmetic is unbounded, Cogent, as a decision procedure for C expressions, uses
bounded 32-bit arithmetic. Thus for getting meaningful results one has to restrict the
arithmetic operations allowed in the specification to 32-bit Java int operations and the
permitted int literals to values expressible in 32-bit int arithmetic (i.e. discrete values
in the interval [−231,231 − 1]). This is possible in KeY.

In contrast to Cogent, Simplify does not necessarily return a concrete counter exam-
ple. In general the counter examples provided by Simplify have the form

�
π∈Π π, where

π is an atomic formula of the form p(t1,t2) with top level predicate p ∈ {<,≤,>,≥,
.=}.

If for each p(t1,t2) ∈ Π t1 represents a Java location and t2 an integer literal we have

178 C. Engel and R. Hähnle

found a concrete counter example. Otherwise, Simplify is applied recursively to the re-
fined formula ¬(t1

.= t2 ∧�π∈Π π), where t1 and t2 are chosen in such a way that one of
the following conditions holds:

• t1 ≤ t2 ∈ Π,
• t1 ≥ t2 ∈ Π,
• t3 < t2 ∈ Π with t1 := t3 + 1,
• t1 > t3 ∈ Π with t2 := t3 + 1 or
• t1 occurs in Π and t2 is an arbitrary integer literal iff no inequations occur in Π and

thus none of the previous conditions can be met.

The procedure is repeated until Simplify returns a concrete counter example. This rela-
tively naive approach is sufficient in practice, because path conditions are easily satisfi-
able for non-pathological programs.

Generation of Reference Type Test Data. As a first step the set R of all terms that
occur in the path condition and whose type is non-primitive is grouped into equivalence
classes R/∼ where a ∼ b iff

�
γ∈Γ γ ∧ �δ∈Δ ¬δ |= a

.= b (In JAVA DL a
.= b means

object identity). For each of these equivalence classes C test data are chosen to be either
(i) null iff null ∈ C or (ii) an object of type t where t is the minimal static type of the
terms t ∈ C if t is not an array type or (iii) an array of length n otherwise, where n is
the concrete value found for a term a.length with a ∈ C during the integer type test data
generation phase. If no such term a exists an arbitrary value n is chosen.

Test Oracle. The test oracle is generated by transforming the postcondition Φ of the
IUT into loops iterating over boolean JAVA expressions. Quantified subformulas are
only allowed to occur in Φ if they match one of the following patterns

∀x.(a ≺1 x ∧ x ≺2 b → Ψ) ∃x.(a ≺1 x ∧ x ≺2 b ∧ Ψ),

where x has an integer type and ≺1,≺2∈ {<,≤}. This restriction essentially confines
postconditions within the guarded fragment of first-order logic [19]. Guarded quantified
formulas can be evaluated by a loop iterating over the range given by the bounded guard
predicate a ≺1 x ∧ x ≺2 b. The postcondition of Example 2 is quantifier-free and can be
trivially turned into boolean JAVA expression.

Example 3 (Sort). The following approximate specification of a sorting algorithm has
a post condition containing quantified expressions obeying the above restrictions:

/*@ public normal_behavior
@ ensures a!=null ==>
@ (\forall int i; 0<=i && i<a.length-1; a[i]<=a[i+1])
@ &&
@ (\forall int i; 0<=i && i<a.length;
@ (\exists int j; 0<=j && j<a.length; \old(a[i])==a[j])
@);
@*/

public static void sort(int[] a) { ... }

Generating Unit Tests from Formal Proofs 179

From the first quantified JML subexpression

\forall int i; 0<=i && i<a.length-1; a[i]<=a[i+1]

the following JAVA oracle is computed:

boolean result = true;
for (int _i0 = (0); _i0 <= ((-2) + _old2_a.length); _i0++) {

result = result && TestBubbleSort0.subformula1(_i0,_old2_a,buffer);
}
buffer.append(...);
return result;

Here, TestBubbleSort0.subformula1 is a wrapper method for the oracle created from
the subexpression a[i]<=a[i+1] (a and i are renamed to _old2_a and _i0). It has para-
meters _i0, _old2_a needed to evaluate a[i]<=a[i+1] and the StringBuffer variable
buffer is used for logging results of the evaluation of subexpressions. This provides
valuable information when a test run fails.

In the case of the trivial postcondition true the test oracle always succeeds. In this case
the resulting unit tests can only fail if the execution hangs or throws an uncaught ex-
ception. Even in this case we obtain meaningful and important tests, because uncaught
exceptions are the cause of many serious errors.

Generation of Unit Tests. The generated tests are in JUnit (www.junit.org) format.
For every feasible execution path found a separate test method is created. In this way
erroneous execution paths can easily be identified after failed tests.

For the example above three test methods are created corresponding to the path con-
ditions of data nodes (6)–(8). Each test method contains a different test case for each
first-order model obtained from the path condition.

The test case generated from (6) reports a failure when executed. Analysis of the
reason why the postcondition is not satisfied exhibits a bug: whenever the arguments
x and y of swap point to the same object the result state is x.value

.= y.value
.= 0

irrespective of the initial value. The branching condition cy′
.= cx′ in (6) covers exactly

this case.
This kind of bug is not easy to discover with model-based test generation, because

the case distinction on whether the arguments are identical objects is an implementation
issue and does not occur in the specification naturally.

Modification of the Implementation under Test. In contrast to some other white box test
generation methods [27,28] the program logic JAVA DL is capable of handling symbolic
reference type values. In order to provide a fixture for reference type test data a modified
version of the IUT is included in the generated unit test. The modifications consist
of supplying default constructors and get and set methods for private and protected
fields so that the test fixture can create objects with the properties determined by the
found models of the path conditions. The new methods are uniquely named and do not
change the semantics of the IUT. This means in the case of the example that methods for
accessing and modifying the field value are added to the class NaturalNumberWrapper.
In general, also final modifiers are removed from final instance fields and from final
static fields that are not initialized with a compile time constant.

www.junit.org

180 C. Engel and R. Hähnle

4 Unbounded Number of Execution Paths and Test Coverage

An IUT containing loops or recursive method calls may give rise to an infinite number
of feasible execution paths if its specification imposes no upper bound on the number
of iterations of the loop or the recursion depth. In this case it is obviously not possible
to find a finite proof tree that covers every feasible execution path. We can see two
approaches to deal with this situation:

1. Unwind the loop (unfold the recursive method call) a fixed number of times. This
strategy creates only a partial proof. One uses only those execution paths on which
symbolic execution has terminated.

2. Replace non-linear constructs such as loops and method calls by suitable specifi-
cations, i.e., an invariant in the case of loops and a contract in the case of method
calls. This allows to obtain complete proof trees.

The first approach does not try to produce fully executed proofs. Proof attempts are
simply stopped after a given resource bound has been reached and the information ob-
tained so far is exploited. The second approach formally constructs a fully executed and
possibly even complete proof tree, but this proof tree either has gaps (where a contract
is used) or relies on an invariant supplied by the user. Which of the two approaches is
appropriate depends on the specific IUT and the targeted coverage as pointed out below.

4.1 Partial Proofs

To unwind a loop of the form while(b) {p}; means to syntactically replace it with

l1: if(b) { l2: p’; while(b) {p} };,

where p’ is obtained from p by replacing the occurring break and continue statements
in an appropriate way by local jumps to the fresh labels l1 and l2.

By unwinding we may successively explore the potentially unlimited number of ter-
minating execution paths that lead through the loop statement. Since every feasible
branch contained in the loop body is taken1 on some finite execution path we can obtain
branch coverage if we only unwind the loop often enough. In practice we can usually
not guarantee this except for the case that for every branch in the IUT a containing
feasible execution path has been found and thus every branch is feasible. However, this
can in general not be assumed since for realistic programs with array or attribute ac-
cesses branches containing raised NullPointer- or ArrayIndexOutOfBounds-exceptions
are usually infeasible if the program is correct, and there is no way to determine which
branches are feasible by means of unwinding alone.

The advantage of this approach is that it is highly automatic and requires no addi-
tional input such as loop invariants. It also yields high code coverage in most cases,
because it turns out that very often all feasible execution paths through the loop are
already feasible in the first iteration of the loop and, hence, can be discovered by un-
winding the loop merely once. Similar considerations as for unwinding of loops can be
made for the symbolic execution of method bodies of recursive method calls.

1 Otherwise the branch would not be feasible by definition. JAVA does not allow infinite loops,
so each branch must occur on at least one finite execution path.

Generating Unit Tests from Formal Proofs 181

4.2 Complete Proofs

By supplying suitable loop invariants it is possible to find complete proofs even for code
that contains unbounded loops. In this case one obtains branch coverage for the resulting
test cases provided that (i) every loop is symbolically executed under its invariant and
(ii) symbolic execution terminates on every branch of the proof tree.

In order to understand why this is the case, let us first look at the invariant rule.
We do not use the standard invariant rule, but one that has been optimized for usage
in imperative programming languages [3]. In the rule below I represents the invariant.
The point where the rule deviates from the usual invariant rules is the update set V . It
represents all locations that can possibly be changed in the loop body q, the so-called
modifier set, by assigning fresh constants to all critical locations. The first premiss states
as usual that the invariant holds in the current state U. In the standard rule the second
premiss (invariance property) must be shown for arbitrary states which often requires
to strengthen invariants. It turns out to be sound to show the invariance property in the
state UV which contains all locations from U that are not modified in the loop body.
This is exploited in the rule below. The guard b is free of side effects.

Γ ⇒ UI, Δ Γ, UV (I ∧ b) ⇒ UV [q] I, Δ Γ, UV (I ∧ ¬b) ⇒ UV [π ω]Φ, Δ
Γ ⇒ U[πwhile(b) {q}ω]Φ, Δ

We will argue that if we apply the loop invariant rule to every subgoal containing the
formula [πwhile(b) {q}ω]Φ (that is, in every partial execution path reaching the loop
statement while(b) {q}) we can achieve full feasible branch coverage of both q and of
πω, hence of the whole loop.

Let p be the symbolic execution path corresponding to the proof branch from the
root to node Γ ⇒ U[πwhile(b){q}ω]Φ, Δ with path condition ϕp obtained with (4).
The subgoal from the leftmost premiss in the invariant rule is irrelevant for finding
execution paths since no further symbolic execution takes place. Let inv be the second
subgoal obtained from the middle premiss. It is valid if the invariant is preserved by the
execution of the loop body. All code branches occurring in the body q that are occurring
on any feasible execution path, of which p is a prefix and whose path condition implies
ϕp are also feasible when the symbolic execution of q starts in the state defined by the
node inv and are thus contained in the proof subtree starting with inv. This is owed to
the soundness of the applied loop invariant rule [3]. If there were a feasible branch br in
q that is not explored by symbolic execution of q, then the loop invariant rule would not
be sound, because the invariant is possibly not preserved by some feasible execution
path through q that contains br. Thus the proof subtree starting with node inv covers all
branches in q that are feasible under the precondition ϕp. The subgoal post from the
rightmost premiss in the invariant rule represents the situation after the loop has been
executed and it contains the code πω. It can be argued in a similar way.

The usage of loop invariants in symbolic execution not only ensures branch cover-
age, but it is also more efficient than finite unwinding, because typically less code is
symbolically executed. Nevertheless, even a symbolic execution tree covering all fea-
sible branches is not always sufficient to generate tests that satisfy the feasible branch
coverage criterion. The problem are the fresh constants introduced in updates V of
the invariant rule representing the new values of the locations in the modifier set of

182 C. Engel and R. Hähnle

the loop. These constants might become part of branching conditions and, hence, path
conditions. If branching conditions containing these new constants cannot be expressed
with the help of terms whose values were already known in the prestate of the IUT,
that is with the help of terms occurring in the code node, it becomes impossible to tell
how such conditions evaluate during a run with the chosen test data and which of the
associated branches is therefore covered by the test case.

Example 4. To illustrate the effect of loop unwinding during exploration of execution
paths by symbolic execution we look at an implementation of the bubble sort algorithm
that was specified in Example 3.

1 p u b l i c s t a t i c void sort(i n t [] a) {
2 i f (a == n u l l) { re tu rn; }
3 boolean sorted = f a l s e ;
4 i n t help;
5 whi l e (!sorted) {
6 sorted = t rue ;
7 f o r (i n t i = 0; i < (a.length - 1); i++) {
8 i f (a[i] > a[i + 1]) {
9 help = a[i];

10 a[i] = a[i + 1];
11 a[i + 1] = help;
12 sorted = f a l s e ;
13 }}}}

We list the case distinctions that occur and the path conditions that are obtained during
the symbolic execution of this code. The evaluation of the conditional statement in line 2
leads to the first case distinction.

a
.= null: Symbolic execution terminates after the execution of the return statement

leading to path condition a
.= null.

a !
.= null: Symbolic execution continues in line 3 and a !

.= null is added to the left-
hand side of the sequent, i.e., to the current path condition. The next case distinc-
tion is encountered when the while loop is reached whose symbolic execution by
unwinding needs to distinguish whether sorted

.= T RUE holds.
sorted

.= T RUE: Since sorted has been initialized with false this branch leads to
an infeasible path condition and it can be closed immediately.

sorted
.= FALSE: Since sorted has the value false at this point of the program

execution this branch condition is equivalent to true and thus does not change
the current path condition (still being a !

.= null). When executing the first iter-
ation of the for loop, which is unwound in the same manner as the while loop, a
case distinction on the expression i < (a.length - 1) is made. Whether this
expression can be evaluated without raising an exception depends on whether
a

.= null holds.
a

.= null: The path condition is a !
.= null. This code branch is infeasible and

the corresponding branch in the proof tree closable.
a !

.= null: This branch condition is implied by the path condition. The eval-
uation of the guard 0 < (a.length - 1) terminates without raising an ex-
ception, but gives rise to a further case distinction:

Generating Unit Tests from Formal Proofs 183

0 ≥ (a.length − 1): The for loop is not executed. Since the guard of the
while loop does not hold in its next iteration, symbolic execution ter-
minates on this proof branch without introducing a new branch con-
dition. The path condition obtained is a !

.= null ∧ 0 ≥ (a.length − 1)
from which a !

.= null ∧ (0 .= a.length ∨1
.= a.length) can be derived,

because the length of an array cannot be negative (this knowledge is
provided by JAVA DL calculus rules).

0 < (a.length − 1): The path condition is now a !
.= null ∧ 1 < a.length.

The execution of the first iteration of the for loop starts which makes
a case distinction on the guard of the conditional in line 8 necessary.

The exploration of execution paths through the outer and inner loop can be continued
for arbitrarily many loop iterations depending on the desired coverage or the number
of desired test cases. Path conditions are continously simplified during this process, en-
abling us to avoid symbolic execution of infeasible paths by closing the corresponding
proof branch. This is all done fully automatically.

Approximating Method Calls. For the purpose of generating unit tests it is often not
desirable to take into account the implementation of all methods called in the IUT. Using
modifier sets (and the method’s postcondition) one can approximate symbolic execution
of a method call. The idea is the same as for invariants and the above arguments apply.
Of course, branch coverage is not obtained for the method body then.

5 Increasing Automation

Pruning of the Proof Tree. The subtrees below data nodes in proofs have no significance
for the creation of unit tests, because they contain no symbolic execution steps. Thus,
when the verification system is run with the purpose of test case generation, we prune
any proof steps below data nodes. This prevents proof trees from becoming closed, but
increases efficiency. The same applies to other nodes containing no code fragments such
as the subgoal from the leftmost premiss of the invariant rule.

Obviously, the pruned part of a proof tree might not have been closable. It is easy,
for example, to specify a too strong invariant that is preserved by the loop body, but
simply does not hold at the beginning of the loop. This is checked in the first premiss
of the invariant rule and if that part of the proof is not explored, then the application of
the invariant rule simply becomes unsound. For test case generation this means that we
might lose coverage of those branches that are feasible under the given precondition but
not under the assumed invariant. We found that in practice this happens rarely and it is
outweighed by the advantage of improved automation and speed. If branch coverage is
important, the user can enforce full exploration of trees.

Automatic Instantiation of Quantifiers. In order to prove subgoals that contain quan-
tified formulas it is in general necessary to provide suitable terms for instantiation of
quantifiers. Owing to the undecidability of first-order logic, it is not possible to restrict
these instances in a finite way. First-order quantifiers with variables ranging over the

184 C. Engel and R. Hähnle

integers are instantiated during proof search by external theorem provers such as Sim-
plify [14]. This leaves first-order quantifiers over object reference types. It would do
to ask the user to instantiate them interactively, but we found that the following brute
force method works well in practice: object type quantifiers occurring in open proof
goals are automatically instantiated with all symbolic object references that occurred so
far during symbolic execution of the IUT and that are known to be not null.

6 Additional Coverage Criteria

As pointed out in Section 4, complete proof trees satisfy the feasible path coverage
criterion if they are constructed by finite unwinding of all feasible execution paths and
neither loop invariant rules nor approximation of methods are used. This holds even for
incomplete proof trees constructed in this manner, where each open branch contains
a data node indicating complete symbolic evaluation of every feasible execution path.
In addition, such proof trees meet a variant of the multiple condition coverage (MCC)
criterion [29] of the precondition.

Definition 4 (Minimal Partial Interpretation). A partial interpretation is a mapping
s from first-order formulas that contain no unbound variables into {true, f alse,⊥} sat-
isfying s(a ∧b) = min(s(a),s(b)) and s(a ∨b) = max(s(a),s(b)) under the total order
f alse <⊥< true as well as s(¬ ⊥) =⊥.

Let Φ[a1, . . . ,an] be a first-order formula, where a1, . . . ,an are exactly those atomic
or quantified subformulas in Φ that contain no unbound variables. We call a partial
interpretation s minimal relatively to Φ[a1, . . . ,an] if the following conditions hold:

– s(Φ[a1, . . . ,an]) = true or s(Φ[a1, . . . ,an]) = f alse
– si(Φ[a1, . . . ,an]) =⊥ for all 1 ≤ i ≤ n such that s(ai) �=⊥, where

si(q) =
{

s(q), i f q �= ai

⊥, i f q = ai
.

The idea behind minimal partial interpretations is that they fix the interpretation of
just enough subformulas of Φ in order to determine its truth value. In order to cover all
possible interpretations of a first-order formula it is, therefore, sufficient to cover merely
those combinations of subformulas that are fixed by at least one of its minimal partial
interpretations. Since we base our variant of multiple condition coverage on minimal
partial interpretations (instead of complete interpretations) it results in less test cases
while still ensuring full logical coverage of a condition.

Definition 5 (MCC). Let Φ[a1, . . . ,an] be the precondition of the IUT in a proof tree T .
We say T meets the MCCp (MCCb) criterion iff it contains for every minimal interpre-
tation s such that s(Φ[a1, . . . ,an]) = true every execution path (branch) that is feasible
under the precondition

�

a: s(a)=true and a∈{a1,...,an}
a ∧

�

b: s(b)= f alse and b∈{a1,...,an}
¬b.

Generating Unit Tests from Formal Proofs 185

Theorem 1. Test cases generated from complete proofs satisfy the MCCb criterion im-
plying full feasible branch coverage. If, in addition, proofs have been constructed with-
out using loop invariant rules then test cases satisfy MCCp which implies full feasible
path coverage.

The proof is by a straightforward induction over the syntactic structure of the precondi-
tion of the IUT. It is contained in the long version of this paper.

As explained in Sect. 4.2, whether a test with the same coverage as the proof tree
actually can be constructed depends on the concrete form of invariants and contracts
which may introduce fresh constants from modifier sets in the path conditions.

7 Evaluation

In order to evaluate our approach we first injected a number of typical errors into some
standard algorithms: the median of three integers, the insert method of binary search
trees (BST), a shift-add multiplier, and bubblesort. In each case we were able to detect
the bugs with our automatically generated test cases. The specifications of insert and
sort were incomplete and would be easy to create for a non-expert. The results are
summarized in the table below (BC/PC = branch/path coverage obtained):

Method Specification Proof BC PC covered paths
conditionalSwap precise no yes yes 3
median precise yes yes yes 6
BST, insert lightweight no yes ∞ 65
Shift-add multiplier lightweight no yes no 16
Bubblesort, sort approximate no yes ∞ 42
dto., fixed length (4) approximate yes yes yes 24

We also briefly compared our results with two model-based test generation tools (un-
fortunately, no code-based test generation tools were made available): ESC/Java2 [11]
and UTJML [9]. None of the two tools is able to detect all bugs. This is not surprising,
because none of them satisfies code-based coverage criteria. ESC/Java2 produces occa-
sional spurious warnings and UTJML, which is in an early development stage, cannot
cope with more complex methods such as sort. Details on the comparison are in [16].

Finally, we started to evaluate our method with an industrial application. The smart
cart vendor association GlobalPlatform (www.globalplatform.org) provides a hard-
ware-, operating system-, and vendor-neutral card specification [17] for JAVA CARD

applications. An implementation for this specification is currently being made by IBM
Deutschland Entwicklung GmbH. In order to validate vendor-specific implementations
against a reference it is necessary to provide test cases with good code coverage. Based
on the card specification [17] we wrote a lightweight JML specification for a part of
the card life cycle management and used our tool to automatically create test cases for
the process method of the applet and for setAppletLifeCycle. The method calls to
the JAVA CARD API were approximated with a JML-based specification provided by
W. Mostowski at www.cs.ru.nl/~woj/software/software.html.

The methods do not contain loops or recursive calls, so we could achieve execution
path coverage (modulo JAVA CARD API calls). We produced several dozen test cases
which are able to detect a number of typical coding and specification errors.

www.globalplatform.org
www.cs.ru.nl/~woj/software/software.html

186 C. Engel and R. Hähnle

8 Conclusion, Related and Future Work

We presented a new method for automatic test case generation based on possibly in-
complete, but automated attempts at formal verification of the IUT. We are able to
generate self-contained unit tests in JUnit format. The implementation is based on the
verification system KeY [2] and supports the JAVA CARD programming language. The
approach exploits the full information available in the IUT and it is adaptable to the
formal methods skill of users. In particular, a detailed formal specification of the IUT
is not required. Depending on the completeness of the underlying proof attempts the
method guarantees strong hybrid coverage criteria.

Related Work. The most common ATCG methodolology is specification- or model-
based test generation [1,4,5,9,10,11]. Here, test cases are generated from a formal
specification or model of the IUT which itself is not required or taken into account.
Consistency of the test oracle with the specification is guaranteed. The drawback is that
the information contained in the IUT is not analysed, therefore, no code coverage guar-
antees can be given. Test cases such as the one that exhibited an implementation error
at the end of Section 3 are easy to miss in model-based approaches. Another problem
is that a detailed formal model of the underlying system is required in order to create
relevant test cases. Such models often do not exist or are too expensive to create.

More recently, white box ATCG approaches appeared [8,26,27,28] that are based on
code-driven state exploration by symbolic execution. Often, they support only a limited
subset of the target language features. Symbolic execution performed by the relatively
advanced system Symstra [28], for instance, does not yet feature symbolic values that
have a reference type. Closest among this family of ATCG approaches to ours regarding
scope and performance is [26] where, however, verification cannot be combined with
testing and the target language is restricted to CIL bytecode.

A different starting point is used in the systems TestEra and Korat [6,22], where
systematically all non-isomorhpic inputs up to a fixed bound are generated that pass a
feasibility filter based on method preconditions. A uniform framework for verification
and testing has been formalised in HOL/Isabelle for a toy target language in [7], but
the test generation process is not automatic. Independently of the present work, a very
similar method than ours has been developed [24] based on the Bogor verification tool.
This is very recent work and yet unpublished, so a detailed comparison has to wait.

Future Work. We obtained promising results on non-trivial programs but a more thor-
ough evaluation and comparison to other automatic test generation methods is required,
in particular, to model-based [1,10] and state exploration-based [27,28] approaches. We
also plan to generate comprehensive test cases for a GlobalPlatform reference imple-
mentation (Section 7) in collaboration with IBM and the GlobalPlatform Association.

The syntactic form of postconditions is currently restricted to first-order formulas
with finite guards in order to achieve full automation when computing test oracles. Us-
ing advanced first-order theorem proving technology, this can probably be generalized.

Incomplete proofs constructed by finite unwinding of unbounded loops to a fixed
bound are not guaranteed to satisfy feasible branch coverage, however, as stated in
Sect. 4.2, the obtained path conditions are easier to turn into test cases as in complete

Generating Unit Tests from Formal Proofs 187

proofs that involve loop invariants, due to the absence of fresh constants related to
modifier sets. It would be interesting to combine the information from both approaches.

As stated in Section 4.1, by sufficient finite unwinding it is always possible to obtain
feasible code branch coverage of the generated test data, because each feasible code
branch is executed after a finite number of execution steps. Even though it is not possible
to compute the number of unwinding steps uniformly for each program, one could
implement an incomplete check whether a given proof tree enjoys branch coverage by
relating the statements in feasible paths of the proof tree to code branches. As argued in
Section 4.1, branch coverage tends to happen early, so this would be a useful test.

In order to approximate execution path coverage, arguably a data-driven approach
to unwinding is more useful than the naive code-driven one we are currently using.
Data-driven unwinding has been realized in Kiasan [13], where it is called k-bounding.

Acknowledgments. We thank Klaus Peter Gungl from IBM Deutschland Entwicklung
GmbH for letting us have the source code of their GP Card Spec implementation.

References

1. Ambert, F., Bouquet, F., Chemin, S., Guenaud, S., Legeard, B., Peureux, F., Vacelet, N., Ut-
ting, M.: BZ-TT: A tool-set for test generation from Z and B using contraint logic program-
ming. In: Hierons, R., Jerron, T. (eds.) Formal Approaches to Testing of Software, FATES
2002 workshop of CONCUR’02, August 2002, pp. 105–120. INRIA Report (2002)

2. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Software: The
KeY Approach. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

3. Beckert, B., Schlager, S., Schmitt, P.H.: An improved rule for while loops in deductive pro-
gram verification. In: Lau, K.-K., Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp.
315–329. Springer, Heidelberg (2005)

4. Bouquet, F., Dadeau, F., Legeard, B., Utting, M.: JML-Testing-Tools: a Symbolic Animator
for JML Specifications using CLP. In: Halbwachs, N., Zuck, L. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 551–556. Springer, Heidelberg (2005)

5. Bourdonov, I.B., Kossatchev, A., Kuliamin, V.V., Petrenko, A.: UnitesK test suite archi-
tecture. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp. 77–88.
Springer, Heidelberg (2002)

6. Boyapati, C., Khurshid, S., Marinov, D.: Korat: Automated testing based on Java predicates.
In: Frankl, P.G. (ed.) Proc. ACM Intl. Symp. Software Testing and Analysis, July 2002.
Software Engineering Notes, vol. 27, 4, pp. 123–133. ACM Press, New York (2002)

7. Brucker, A.D., Wolff, B.: Interactive testing with HOL-TestGen. In: Grieskamp, W., Weise,
C. (eds.) FATES 2005. LNCS, vol. 3997, pp. 87–102. Springer, Heidelberg (2006)

8. Campbell, C., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N., Veanes, M.: Test-
ing concurrent object-oriented systems with Spec Explorer. In: Fitzgerald, J., Hayes, I.J.,
Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 542–547. Springer, Heidelberg (2005)

9. Cheon, Y., Kim, M., Perumandla, A.: A complete automation of unit testing for Java pro-
grams. In: Arabnia, H.R., Reza, H. (eds.) Proc. Intl. Conf. on Software Engineering Research
and Practice, Las Vegas, USA, vol. 1, pp. 290–295. CSREA Press (2005)

10. Cheon, Y., Leavens, G.T.: A simple and practical approach to unit testing: The JML and
JUnit way. In: Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 231–255. Springer,
Heidelberg (2002)

188 C. Engel and R. Hähnle

11. Cok, D.R., Kiniry, J.: ESC/Java2: Uniting ESC/Java and JML. In: Barthe, G., Burdy, L.,
Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS, vol. 3362, pp. 108–128.
Springer, Heidelberg (2005)

12. Cook, B., Kroening, D., Sharygina, N.: Cogent: Accurate theorem proving for program ver-
ification. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 296–300.
Springer, Heidelberg (2005)

13. Deng, X., Lee, J., Robby,: Bogor/Kiasan: a k-bounded symbolic execution for checking
strong heap properties of open systems. In: Proc. 21st IEEE/ASM Intl. Conference on Au-
tomated Software Engineering, Tokyo, Japan, pp. 157–166. IEEE Computer Society Press,
Los Alamitos (2006)

14. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. J.
ACM 52(3), 365–473 (2005)

15. Engel, C.: A Translation from JML to JavaDL. Studienarbeit, University of Karlsruhe (2005)
16. Engel, C.: Verification based test case generation. Master’s thesis, Department of Computer

Science, University of Karlsruhe (August 2006)
17. GlobalPlatform, Foster City, USA. GlobalPlatform Card Specification, version 2.2 edn.

(March 2006)
18. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
19. Hladik, J.: Implementation and optimization of a tableau algorithm for the guarded fragment.

In: Egly, U., Fermüller, C.G. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 145–
159. Springer, Heidelberg (2002)

20. Hubbers, E., Poll, E.: Transactions and non-atomic API calls in Java Card: specification
ambiguity and strange implementation behaviours. Dept. of Computer Science NIII-R0438,
Radboud University Nijmegen (2004)

21. Jacobs, B., Marché, C., Rauch, N.: Formal verification of a commercial smart card applet
with multiple tools. In: Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS,
vol. 3116, pp. 241–257. Springer, Heidelberg (2004)

22. Khurshid, S., Marinov, D.: TestEra: Specification-based testing of Java programs using SAT.
Automated Software Engineering 11(4), 403–434 (2004)

23. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P., Kiniry, J.,
Chalin, P.: JML Reference Manual, Draft revision 1.193 (May 2006)

24. Robby: Bogor/Kiasan: Combining symbolic execution, model checking, and theorem prov-
ing. Presentation at European Science Foundation Exploratory Workshop on Challenges in
Program Verification, University of Nijmegen (October 2006)

25. Stenzel, K.: Verification of Java Card Programs. PhD thesis, Fakultät für angewandte Infor-
matik, University of Augsburg (2005)

26. Tillmann, N., Schulte, W.: Parameterized unit tests. In: Wermelinger, M., Gall, H. (eds.)
Proc. 10th European Software Engineering Conference/13th ACM Intl. Symp. on Found. of
Software Engineering, Lisbon, Portugal, pp. 253–262. ACM Press, New York (2005)

27. Visser, W., Pasareanu, C.S., Khurshid, S.: Test input generation with Java PathFinder. In:
ISSTA ’04: Proceedings of the 2004 ACM SIGSOFT international symposium on Software
testing and analysis, pp. 97–107. ACM Press, New York, USA (2004)

28. Xie, T., Marinov, D., Schulte, W., Notkin, D.: Symstra: A framework for generating object-
oriented unit tests using symbolic execution. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS
2005. LNCS, vol. 3440, pp. 365–381. Springer, Heidelberg (2005)

29. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy. ACM Comput.
Surv. 29(4), 366–427 (1997)

	Generating Unit Tests from Formal Proofs
	Introduction
	Background
	Overview of Verification-Based Test Generation
	Unbounded Number of Execution Paths and Test Coverage
	Partial Proofs
	Complete Proofs

	Increasing Automation
	Additional Coverage Criteria
	Evaluation
	Conclusion, Related and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

