

Lecture Notes in Computer Science 4454
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Yuri Gurevich Bertrand Meyer (Eds.)

Tests and Proofs

First International Conference, TAP 2007
Zurich, Switzerland, February 12-13, 2007
Revised Papers

13

Volume Editors

Yuri Gurevich
Microsoft Research
Redmond, WA 98052, USA
E-mail: gurevich@microsoft.com

Bertrand Meyer
ETH Zurich
8092 Zurich, Switzerland
E-mail: Bertrand.Meyer@inf.ethz.ch

Library of Congress Control Number: 2007931908

CR Subject Classification (1998): D.2.4-5, F.3, D.4, C.4, K.4.4, C.2

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-73769-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-73769-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12095476 06/3180 5 4 3 2 1 0

Preface

To prove the correctness of a program is to demonstrate, through impeccable
mathematical techniques, that it has no bugs. To test a program is to run it with the
expectation of discovering bugs.

These two paths to software reliability seem to diverge from the very start: if you
have proved your program correct, it is fruitless to comb it for bugs; and if you are
testing it, that surely must be a sign that you have given up on any hope to prove its
correctness.

Accordingly, proofs and tests have, since the onset of software engineering
research, been pursued by distinct communities using different kinds of techniques
and tools. Dijkstra’s famous pronouncement that tests can only show the presence of
errors — in retrospect, perhaps one of the best advertisements one can imagine for
testing, as if “only” finding bugs were not already a momentous achievement! —
didn’t help make testing popular with provers, or proofs attractive to testers.

And yet the development of both approaches leads to the discovery of common
issues and to the realization that each may need the other. The emergence of model
checking was one of the first signs that apparent contradiction may yield to
complementarity; in the past few years an increasing number of research efforts have
encountered the need for combining proofs and tests, dropping earlier dogmatic views
of incompatibility and taking instead the best of what each of these software
engineering domains has to offer.

TAP — Tests And Proofs — results from an effort to present and discuss some of
the most interesting of today’s research projects at the convergence of proofs and
tests. The first event of its kind, TAP 2007 was held at ETH Zurich on February,
12–13 2007. The conference demonstrated that this is indeed a vibrant topic with
exciting developments and the potential for much further growth and cross-
fertilization between the ideas pursued by many groups.

We hope that you will agree that TAP 2007 advanced the understanding of two
equally promising approaches to software quality, and that you will find in the results,
collected in this volume, a source of insight inspiration, and new challenges.

The success of TAP was the result of contributions by many people. We are
particularly grateful to the authors who submitted excellent papers; to the keynote
speakers, Yuri Gurevich, Jonathan Ostroff and Yannis Smaragdakis; to the Program
Committee members and outside referees who made it possible to conduct an
effective process leading to a selection of high-quality papers.

The conference was sponsored by IFIP; we are particularly grateful to the support
of IFIP Working Group WG2.3 on Programming Methodology (through its
Chairperson, Pamela Zave, and all the other members who supported the idea of IFIP
sponsorship) as well as TC2 (the Technical Committee on Programming, especially
its Chair Robert Meersman and its then secretary Judith Bishop). ETH Zurich
provided excellent facilities and impeccable organization.

The financial support of Microsoft Research was particularly useful and is
gratefully acknowledged.

VI Preface

The organization, including the preparation of these proceedings, was made
possible by the work of the Organizing Committee: Ilinca Ciupa, Manuel Oriol,
Andreas Leitner, Claudia Günthart, and Lisa Liu without whom the conference could
not have taken place.

Yuri Gurevich

Bertrand Meyer

Organization

Committees

Conference Chair
Bertrand Meyer, ETH Zurich, Switzerland and Eiffel Software, California, USA

Program Chair
Yuri Gurevich, Microsoft Research, USA

Program Committee
Chandrasekhar Boyapati, University of Michigan, USA
Ed Clarke, Carnegie Mellon University, USA
Michael Ernst, MIT CSAIL, USA
Kokichi Futatsugi, JAIST, Japan
Tom Henzinger, EPFL, Switzerland
Daniel Kroening, ETH Zurich, Switzerland
Gary T. Leavens, Iowa State University, USA
Bertrand Meyer, ETH Zurich, Switzerland
Peter Müller, ETH Zurich, Switzerland
Huaikou Miao, Shanghai University, China
Jeff Offutt, George Mason University, USA
Jonathan Ostroff, York University, Canada
Benjamin Pierce, University of Pennsylvania, USA
Wolfram Schulte, Microsoft Research, USA
Yannis Smaragdakis, University of Oregon, USA
Tao Xie, North Carolina State University, USA
T.H. Tse, University of Hong Kong, China

External Referees
Gerard Basler
Nicolas Blanc
Arindam Chakrabarti
Yuri Chebiriak
Adam Darvas
Weiqiang Kong
Masaki Nakamura
Martin Nordio
Kazuhiro Ogata
Joseph Ruskiewicz
Faraz Torshizi
Jianwen Xiang

VIII Organization

Organizing Committee
Lisa (Ling) Liu, ETH Zurich, Switzerland
Ilinca Ciupa, ETH Zurich, Switzerland
Andreas Leitner, ETH Zurich, Switzerland
Claudia Günthart, ETH Zurich, Switzerland
Manuel Oriol, ETH Zurich, Switzerland

Sponsors

ETH Zurich
IFIP
Microsoft Research

Table of Contents

Combining Static and Dynamic Reasoning for Bug Detection 1
Yannis Smaragdakis and Christoph Csallner

Testable Requirements and Specifications . 17
Jonathan S. Ostroff and Faraz Ahmadi Torshizi

Proving Programs Incorrect Using a Sequent Calculus for Java Dynamic
Logic . 41

Philipp Rümmer and Muhammad Ali Shah

Testing and Verifying Invariant Based Programs in the SOCOS
Environment . 61

Ralph-Johan Back, Johannes Eriksson, and Magnus Myreen

Testing and Proving Distributed Algorithms in Constructive Type
Theory . 79

Qiao Haiyan

Automatic Testing from Formal Specifications . 95
Manoranjan Satpathy, Michael Butler, Michael Leuschel, and
S. Ramesh

Using Contracts and Boolean Queries to Improve the Quality of
Automatic Test Generation . 114

Lisa (Ling) Liu, Bertrand Meyer, and Bernd Schoeller

Symbolic Execution Techniques for Refinement Testing 131
Pascale Le Gall, Nicolas Rapin, and Assia Touil

Test-Sequence Generation with Hol-TestGen with an Application to
Firewall Testing . 149

Achim D. Brucker and Burkhart Wolff

Generating Unit Tests from Formal Proofs . 169
Christian Engel and Reiner Hähnle

Using Model Checking to Generate Fault Detecting Tests 189
Angelo Gargantini

White-Box Testing by Combining Deduction-Based Specification
Extraction and Black-Box Testing . 207

Bernhard Beckert and Christoph Gladisch

Author Index . 217

Combining Static and Dynamic Reasoning for

Bug Detection

Yannis Smaragdakis1 and Christoph Csallner2

1 Department of Computer Science
University of Oregon, Eugene, OR 97403-1202, USA

yannis@cs.uoregon.edu
2 College of Computing

Georgia Institute of Technology, Atlanta, GA 30332, USA
csallner@gatech.edu

Abstract. Many static and dynamic analyses have been developed to
improve program quality. Several of them are well known and widely used
in practice. It is not entirely clear, however, how to put these analyses
together to achieve their combined benefits. This paper reports on our
experiences with building a sequence of increasingly more powerful com-
binations of static and dynamic analyses for bug finding in the tools
JCrasher, Check ’n’ Crash, and DSD-Crasher. We contrast the power
and accuracy of the tools using the same example program as input to
all three.

At the same time, the paper discusses the philosophy behind all three
tools. Specifically, we argue that trying to detect program errors (rather
than to certify programs for correctness) is well integrated in the devel-
opment process and a promising approach for both static and dynamic
analyses. The emphasis on finding program errors influences many as-
pects of analysis tools, including the criteria used to evaluate them and
the vocabulary of discourse.

1 Introduction

Programming is hard. As an intellectual task, it attempts to approximate real-
world entities and conditions as abstract concepts. Since computers are unfor-
giving interpreters of our specifications, and since in software we can build up
complexity with no physical boundaries, it is easy to end up with artifacts that
are very hard to comprehend and reason about. Even moderate size programs
routinely surpass in detail and rigor the most complex laws, constitutions, and
agreements in the “real world”. Not only can individual program modules be
complex, but the interactions among modules can be hardly known. Most pro-
grammers work with only a partial understanding of the parts of the program
that their own code interacts with. Faced with this complexity, programmers
need all the help they can get. In industrial practice, testing has become signif-
icantly more intense and structured in the past decade. Additionally, numerous
static analyses attempt to automatically certify properties of a program, or de-
tect errors in it.

B. Meyer and Y. Gurevich (Eds.): TAP 2007, LNCS 4454, pp. 1–16, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 Y. Smaragdakis and C. Csallner

In the past few years, we have introduced three program analysis tools for
finding program defects (bugs) in Java applications. JCrasher [3] is a simple,
mostly dynamic analysis that generates JUnit test cases. Despite its simplicity it
can find bugs that would require complex static analysis efforts. Check ’n’ Crash
[4] uses JCrasher as a post-processing step to the powerful static analysis tool
ESC/Java. As a result, Check ’n’ Crash is more precise than ESC/Java alone
and generates better targeted test cases than JCrasher alone. DSD-Crasher [5]
adds a reverse engineering step to Check ’n’ Crash to rediscover the program’s
intended behavior. This enables DSD-Crasher to suppress false positives with
respect to the program’s informal specification. This property is more useful for
bug-finding than for proving correctness, as we argue later.

In this paper, we report on our experience with these tools and present their
comparative merits through a simple example. At the same time, we discuss
in detail our philosophy in building them. All three tools are explicitly geared
towards finding program errors and not towards certifying program correctness.
Viewed differently, program analyses (regardless of the artificial static/dynamic
distinction) can never accurately classify with full confidence all programs as
either correct or incorrect. Our claim is that analyses that choose to be confident
in their incorrectness classification (sound for incorrectness) are gaining ground
over analyses that choose to be confident in their correctness classification (sound
for correctness). We discuss this point next in more detail.

2 Bug Finding Musings

There are several dichotomies in program analysis. Clearly, analyses are often
classified as static or dynamic. Additionally, analyses are often classified as sound
or complete, or as over- and under-approximate. We next present some thoughts
on these distinctions as well as the terminology they introduce.

2.1 Static and Dynamic Analysis

At first glance it may seem simple to classify an analysis as static or dynamic.
The definition in the popular Wikipedia archive claims that:

Static code analysis is the analysis of computer software that is per-
formed without actually executing programs built from that software
(analysis performed on executing programs is known as dynamic analy-
sis).

This definition is not quite satisfying, however. Program execution only differs
from program reasoning at the level of accuracy. This distinction is fairly artifi-
cial. First, there are languages where reasoning and execution are often thought
of in the same terms (e.g., static analyses of Prolog programs often include steps
such as “execute the program in a universe that only includes these values”).
Second, even in imperative languages, it is often hard to distinguish between
a virtual machine that executes the program and tools that reason about it

Combining Static and Dynamic Reasoning for Bug Detection 3

at some level of abstraction (e.g., model checking tools, or symbolic execution
analyses). Finally, it is hard to classify analyses that execute a program with
known inputs. Known inputs are by definition “static”, in standard terminology,
and these analyses give information about the program without executing it un-
der “real” conditions. Yet at the same time, since the program is executed, it is
tempting to call such analyses “dynamic”.

We believe that there is a continuum of analyses and the static vs. dynamic
classification is not always easy to make. Our working definition is as follows:

An analysis is “dynamic” if it emphasizes control-flow accuracy over
data-flow richness/generality, and “static” if it emphasizes data-flow
richness/generality over control-flow accuracy.

There is always a trade-off between these trends. The undecidability of most
useful program properties entails that one cannot make statements about infi-
nitely many inputs without sacrificing some control-flow accuracy.

Although the definition is approximate, we believe that it serves a useful
purpose. It reflects the intuitive understanding of the two kinds of analyses,
while emphasizing that the distinction is arbitrary. A more useful way to classify
analyses is in terms of what they claim not how they maintain the information
that leads to their claims.

2.2 Soundness for Incorrectness

Analyses can be classified with respect to the set of properties they can establish
with confidence. In mathematical logic, reasoning systems are often classified as
sound and complete. A sound system is one that proves only true sentences,
whereas a complete system proves all true sentences. In other words, an analysis
is sound iff provable(p) ⇒ true(p) and complete iff true(p) ⇒ provable(p).
Writing the definitions in terms of what the analysis claims, we can say:

Definition 1 (Sound). claimtrue(p)⇒ true(p).

Definition 2 (Complete). true(p)⇒ claimtrue(p).

When we analyze programs we use these terms in a qualified way. For instance, a
type system (the quintessential “sound” static analysis) only proves correctness
with respect to certain errors.

In our work, we like to view program analyses as a way to prove programs
incorrect—i.e., to find bugs, as opposed to certifying the absence of bugs. If
we escape from the view of program analysis as a “proof of correctness” and
we also allow the concept of a “proof of incorrectness”, our terminology can
be adjusted. Useful program analyses give an answer for all programs (even if
the analysis does not terminate, the programmer needs to interpret the non-
termination-within-time-bounds in some way). In this setting, an analysis is
sound for showing program correctness iff it is complete for showing program
incorrectness. Similarly, an analysis is sound for showing program incorrectness
iff it is complete for showing program correctness.

These properties are easily seen from the definitions. We have:

4 Y. Smaragdakis and C. Csallner

Lemma 1. Complete for program correctness ≡ Sound for program incorrect-
ness.

Proof. Complete for program correctness
≡ correct(p) ⇒ claimcor(p)
≡ ¬incorrect(p) ⇒ ¬claimincor(p)
≡ claimincor(p)⇒ incorrect(p)
≡ Sound for program incorrectness

Lemma 2. Complete for program incorrectness ≡ Sound for program correct-
ness.

Proof. Complete for program incorrectness
≡ incorrect(p) ⇒ claimincor(p)
≡ ¬correct(p) ⇒ ¬claimcor(p)
≡ claimcor(p) ⇒ correct(p)
≡ Sound for program correctness

In the above, we considered the complementary use of the analysis, such that it
claims incorrectness whenever the original analysis would not claim correctness.
Note that the notion of “claim” is external to the analysis. An analysis either
passes or does not pass programs, and “claim” is a matter of interpretation.
Nevertheless, the point is that the same base analysis can be used to either
soundly show correctness or completely show incorrectness, depending on how
the claim is interpreted.

The interesting outcome of the above reasoning is that we can abolish the
notion of “completeness” from our vocabulary. We believe that this is a useful
thing to do for program analysis. Even experts are often hard pressed to name
examples of “complete” analyses and the term rarely appears in the program
analysis literature (in contrast to mathematical logic). Instead, we can equiva-
lently refer to analyses that are “sound for correctness” and analyses that are
“sound for incorrectness”. An analysis does not have to be either, but it certainly
cannot be both for interesting correctness properties.

Other researchers have settled on different conventions for classifying analyses,
but we think our terminology is preferable. For instance, Jackson and Rinard call
a static analysis “sound” when it is sound for correctness, yet call a dynamic
analysis “sound” when it is sound for incorrectness [12]. This is problematic,
since, as we argued, static and dynamic analyses form a continuum. Furthermore,
the terminology implicitly assumes that static analyses always attempt to prove
correctness. Yet, there are static analyses whose purpose is to detect defects (e.g.,
FindBugs by Hovemeyer and Pugh [11]). Another pair of terms used often are
“over-” and “under-approximate”. These also require qualification (e.g., “over-
approximate for incorrectness” means the analysis errs on the safe side, i.e., is
sound for correctness) and are often confusing.

Combining Static and Dynamic Reasoning for Bug Detection 5

2.3 Why Prove a Program Incorrect?

Ensuring that a program is correct is the Holy Grail of program construction.
Therefore analyses that are sound for correctness have been popular, even if
limited. For instance, a static type system guarantees the absence of certain kinds
of bugs, such as attempting to perform an operation not defined for our data.
Nevertheless, for all interesting properties, soundness for correctness implies that
the analysis has to be pessimistic and reject perfectly valid programs. For some
kinds of analyses this cost is acceptable. For others, it is not—for instance, no
mainstream programming language includes sound static checking to ensure the
lack of division-by-zero errors, exactly because of the expected high rejection
rate of correct programs.

Instead, it is perfectly valid to try to be sound for incorrectness. That is,
we may want to show that a program fails with full confidence. This is fairly
expected for dynamic analysis tools, but it is worth noting that even static
analyses have recently adopted this model. For instance, Lindahl and Sagonas’s
success typings [14] are an analogue of type systems but with the opposite trade-
offs. Whereas a type system is sound for correctness and, hence, pessimistic, a
success typing is sound for incorrectness and, thus, optimistic. If a success typing
cannot detect a type clash, the program might work and is permitted. If the
system does report a problem, then the problem is guaranteed to be real. This is
a good approach for languages with a tradition of dynamic typing, where users
will likely complain if a static type system limits expressiveness in the name of
preventing unsafety.

Yet the most important motivation for analyses that are sound for incorrect-
ness springs from the way analyses are used in practice. For the author of a
piece of code, a sound-for-correctness analysis may make sense: if the analysis is
too conservative, then the programmer probably knows how to rewrite the code
to expose its correctness to the analysis. Beyond this stage of the development
process, however, conservativeness stops being an asset and becomes a liability.
A tester cannot distinguish between a false warning and a true bug. Reporting a
non-bug to the programmer is highly counter-productive if it happens with any
regularity. Given the ever-increasing separation of the roles of programmer and
tester in industrial practice, high confidence in detecting errors is paramount.

This need can also be seen in the experience of authors of program analyses
and other researchers. Several modern static analysis tools [10, 8, 11] attempt
to find program defects. In their assessment of the applicability of ESC/Java,
Flanagan et al. write [10]:

“[T]he tool has not reached the desired level of cost effectiveness. In
particular, users complain about an annotation burden that is perceived
to be heavy, and about excessive warnings about non-bugs, particularly
on unannotated or partially-annotated programs.”

The same conclusion is supported by the findings of other researchers. Notably,
Rutar et al. [19] examine ESC/Java2, among other analysis tools, and conclude

6 Y. Smaragdakis and C. Csallner

that it can produce many spurious warnings when used without context infor-
mation (method annotations). For five testees with a total of some 170 thousand
non commented source statements, ESC warns of a possible null dereference
over nine thousand times. Rutar et al., thus, conclude that “there are too many
warnings to be easily useful by themselves.”

To summarize, it is most promising to use analyses that are sound for correct-
ness at an early stage of development (e.g., static type system). Nevertheless, for
analyses performed off-line, possibly by third parties, it is more important to be
trying to find errors with high confidence or even certainty. This is the goal of
our analysis tools. We attempt to increase the soundness of existing analyses by
combining them in a way that reduces the false error reports. Just like analyses
that are sound for correctness, we cannot claim full correctness, yet we can claim
that our tools are sound for incorrectness with respect to specific kinds of errors.
Such soundness-for-incorrectness topics are analyzed in the next section.

3 Soundness of Automatic Bug Finding Tools

In practice, there are two levels of soundness for automatic bug finding tools. The
lower level is being sound with respect to the execution semantics. This means
that a bug report corresponds to a possible execution of a program module,
although the input that caused this execution may not be one that would arise
in normal program runs. We call this language-level soundness because it can
be decided by checking the language specification alone. Many bug finding tools
concern themselves only with this soundness level and several of them do not
achieve it. A stronger form of soundness consists of also being sound with respect
to the intended usage of the program. We call this user-level soundness, as it
means that a bug report will be relevant to a real user of the program. This is
an important distinction because developers have to prioritize their energy on
the cases that matter most to their users. From their perspective, a language-
level sound but user-level unsound bug report may be as annoying as one that
is unsound at the language level.

We next examine these concepts in the context of the ESC/Java tool. Analysis
with ESC/Java is an important step for our tools, and we can contrast them well
by looking at what need they fill over the base ESC/Java bug finding ability.

3.1 Background: ESC/Java

The Extended Static Checker for Java (ESC/Java) [10] is a compile-time pro-
gram checker that detects potential invariant violations. ESC/Java compiles the
Java source code under test to a set of predicate logic formulae [10]. ESC/Java
checks each method m in isolation, expressing as logic formulae the properties of
the class to which the method belongs, as well as Java semantics. Each method
call or invocation of a primitive Java operation in m’s body is translated to a
check of the called entity’s precondition followed by assuming the entity’s post-
condition. ESC/Java recognizes invariants stated in the Java Modeling Language

Combining Static and Dynamic Reasoning for Bug Detection 7

(JML) [13]. (We consider the ESC/Java2 system [2]—an evolved version of the
original ESC/Java, which supports JML specifications and recent versions of the
Java language.) In addition to the explicitly stated invariants, ESC/Java knows
the implicit pre- and postconditions of primitive Java operations—for example,
array access, pointer dereference, class cast, or division. Violating these implicit
preconditions means accessing an array out-of-bounds, dereferencing null point-
ers, mis-casting an object, dividing by zero, etc. ESC/Java uses the Simplify
theorem prover [7] to derive error conditions for a method. We use ESC/Java
to derive abstract conditions under which the execution of a method under test
may terminate abnormally. Abnormal termination means that the method would
throw a runtime exception because it violated the precondition of a primitive
Java operation. In many cases this will lead to a program crash as few Java
programs catch and recover from unexpected runtime exceptions.

Like many other static analysis based bug finding systems, ESC/Java is
language-level unsound (and therefore also user-level unsound): it can produce
spurious error reports because of inaccurate modeling of the Java semantics.
ESC/Java is also unsound for correctness: it may miss some errors—for exam-
ple, because ESC/Java ignores all iterations of a loop beyond a fixed limit.

3.2 Language-Level Soundness: Program Execution Semantics

Language-level soundness is the lower bar for automatic analysis tools. An analy-
sis that is unsound with respect to execution semantics may flag execution paths
that can never occur, under any inputs or circumstances. ESC/Java uses such
an analysis. In the absence of pre-conditions and post-conditions describing the
assumptions and effects of called methods, ESC/Java analyzes each method
in isolation without taking the semantics of other methods into account. For
instance, in the following example, ESC/Java will report potential errors for
get0() < 0 and get0() > 0, although neither of these conditions can be true.

public int get0() {return 0;}

public int meth() {
int[] a = new int[1];
return a[get0()];

}

In Section 4.1 we describe how our tool Check ’n’ Crash eliminates language-
level unsoundness from ESC/Java warnings by compiling them to test cases. This
enables us to confirm ESC/Java warnings by concrete program execution and
suppress warnings we could not confirm. Check ’n’ Crash could never generate
a test case that confirms the above warning about method meth and would
therefore never report such an language-level unsound case to the user.

3.3 User-Level Soundness: Informal Specifications

A user-level sound analysis has to satisfy not only language semantics but also
user-level specifications. Thus, user-level soundness is generally impossible to

8 Y. Smaragdakis and C. Csallner

achieve for automated tools since user-level specifications are mostly informal.
Common forms of user-level specifications are code comments, emails, or web
pages describing the program. Often these informal specifications only exist in
the developers’ minds. It is clear that user-level soundness implies language-level
soundness, since the users care only about bugs that can occur in real program
executions. So the user-level sound bug reports are a subset of the language-level
sound bug reports.

ESC/Java may produce spurious error reports that do not correspond to ac-
tual program usage. For instance, a method forPositiveInt(int i) under test
may be throwing an exception if passed a negative number as an argument. Even
if ESC/Java manages to produce a language-level sound warning about this ex-
ception it cannot tell if this case will ever occur in practice. A negative number
may never be passed as input to the method in the course of execution of the
program, under any user input and circumstances. That is, an implicit precondi-
tion that the programmer has been careful to respect makes the language-level
sound warning unsound at the user-level.

In Section 4.2 we describe how our tool DSD-Crasher tries to eliminate user-
level unsoundness from ESC/Java warnings by inferring the preconditions of
intended program behavior from actual program executions. This allows us to
exclude cases that are not of interest to the user. In the above example we might
be able to infer a precondition of i > 0 for method forPositiveInt(int i),
which would allow ESC/Java to suppress the user-level unsound warning.

4 Turning ESC/Java into a Sound Tool for Automatic
Bug Finding

Our two tools attempt to address the two levels of unsoundness exhibited by
many static analysis tools like ESC/Java. Check ’n’ Crash is a static-dynamic
(SD) tool, which post-processes ESC/Java’s output with a dynamic step. DSD-
Crasher is a dynamic-static-dynamic (DSD) tool that adds a dynamic step at
the beginning, feeding the results of this first dynamic step to the static-dynamic
Check ’n’ Crash.

4.1 Check ’n’ Crash: Making ESC/Java Language-Level Sound

Check ’n’ Crash [4] addresses the problem of ESC/Java language-level unsound-
ness. Figure 1 illustrates the key idea. Check ’n’ Crash takes error conditions that
ESC/Java infers from the testee, derives variable assignments that satisfy the
error condition (using a constraint solver), and compiles them into concrete test
cases that are executed with our JCrasher testing tool [3], to determine whether
an error truly exists. Compared to ESC/Java alone, Check ’n’ Crash’s combi-
nation of ESC/Java with JCrasher eliminates language-level unsound warnings
and improves the ease of comprehension of error reports through concrete Java
counterexamples.

Combining Static and Dynamic Reasoning for Bug Detection 9

Static
Search
for bug:
i>5

Run test to
confirm:
i=6

Dynamic

i>5 i 6

New Test:
{m(6);}

New result:
m crash

Testee:
m(int i)

Fig. 1. Check ’n’ Crash uses ESC/Java to statically check the testee for potential
bugs. It then compiles ESC/Java’s bug warnings to concrete test cases to eliminate
those warnings that are unsound at the language level.

Check ’n’ Crash takes as inputs the names of the Java files under test. It
invokes ESC/Java, which derives error conditions. Check ’n’ Crash takes each
error condition as a constraint system over a method m’s parameters, the object
state on which m is executed, and other state of the environment. Check ’n’ Crash
extends ESC/Java by parsing and solving this constraint system. A solution is
a set of variable assignments that satisfy the constraint system. Reference [4]
discusses in detail how we process constraints over integers, arrays, and refer-
ence types in general. Once the variable assignments that cause the error are
computed, Check ’n’ Crash uses JCrasher to compile some of these assignments
to JUnit [1] test cases. The test cases are then executed under JUnit. If the
execution does not cause an exception, then the variable assignment was a false
positive: no error actually exists. If the execution does result in the error pre-
dicted by ESC/Java, an error report is generated by Check ’n’ Crash.

4.2 DSD-Crasher: Improving ESC/Java’s User-Level Soundness

DSD-Crasher [5] attempts to address the user-level unsoundness of ESC/Java
and Check ’n’ Crash. This requires recognizing “normal” program inputs. Such
informal specifications cannot generally be derived, therefore our approach is
necessarily heuristic. DSD-Crasher employs the Daikon tool [9] to infer likely
program invariants from an existing test suite. The results of Daikon are ex-
ported as JML annotations [13] that are used to guide Check ’n’ Crash. Figure
2 illustrates the processing steps of the tool.

Daikon [9] tracks a testee’s variables during execution and generalizes their
observed behavior to invariants—preconditions, postconditions, and class invari-
ants. Daikon instruments a testee, executes it (for example, on an existing test
suite or during production use), and analyzes the produced execution traces. At
each method entry and exit, Daikon instantiates some three dozen invariant tem-
plates, including unary, binary, and ternary relations over scalars, and relations
over arrays (relations include linear equations, orderings, implication, and dis-
junction) [9, 17]. For each invariant template, Daikon tries several combinations
of method parameters, method results, and object state. For example, it might

10 Y. Smaragdakis and C. Csallner

Static
Search Run test to Run test to

Dynamic Dynamic

Existing tests:
m(1); m(2);

for bug:
i>5

confirm:
i=6

New Test:
{m(6);}

New result:
m crash

Annotated testee:
pre: i>0

infer spec:
i>0

Testee:
m(int i)

Fig. 2. DSD-Crasher adds a dynamic analysis step at the front to infer the in-
tended program behavior from existing test cases. It feeds inferred invariants to
Check ’n’ Crash by annotating the testee. This enables DSD-Crasher to suppress bug
warnings that are unsound at the user level.

propose that some method m never returns null. It later ignores those invariants
that are refuted by an execution trace—for example, it might process a situation
where m returned null and it will therefore ignore the above invariant. So Daikon
summarizes the behavior observed in the execution traces as invariants and gen-
eralizes it by proposing that the invariants might hold in all other executions
as well. Daikon can annotate the testee’s source code with the inferred invari-
ants as JML preconditions, postconditions, and class invariants. Daikon-inferred
invariants are not trivially amenable to automatic processing, requiring some
filtering and manipulation (e.g., for internal consistency according to the JML
behavioral subtyping rules, see [6]).

In DSD-Crasher we chose to ignore Daikon-inferred invariants as requirements
and only use them as assumptions. That is, we deliberately avoid searching for
cases in which the method under test violates some Daikon-inferred precondition
of another method it calls. (This would be against the spirit of the tool, as it
would increase its user-level unsoundness, by producing extra error reports for
violations of preconditions that were only heuristically derived.) Instead, we use
Daikon-inferred invariants as assumptions. This restricts the number of legal
program executions.

5 A Small Case Study

We next discuss in detail a small case study and present examples that illustrate
the capabilities of each of our tools. Our test subject is Groovy, an open source
scripting language that compiles to Java bytecode.

Combining Static and Dynamic Reasoning for Bug Detection 11

5.1 Setting

We used the Groovy 1.0 beta 1 version. Table 1 gives an overview of Groovy’s
main application classes and the subset used in our experiments. Its main appli-
cation sources contain some eleven thousand non-commented source statements
(NCSS) in 182 top-level classes and interfaces. We excluded any testees that led
to processing problems in our tools. These were mainly low-level Groovy AST
classes. The biggest processing problem was the Daikon component of DSD-
Crasher running out of heap space. (We were using Daikon version 4.1.6, which
is not the latest version.) The resulting set of testees consisted of 113 top-level
types with a total of some five thousand NCSS. These declare a total of 952
methods and constructors, of which our testing tools analyze 757. (We analyze
all public non-abstract methods declared by the testees as well as public con-
structors declared by non-abstract testees.) We used 603 of the unit test cases
that came with the tested Groovy version. (The source code of the application
and the unit tests are available from http://groovy.codehaus.org/ .) All experi-
ments were conducted on a 2 GHz AMD Athlon 64 X2 dual core 3800+ with 4
GB of RAM, of which 1.5 GB were available for each experiment.

We believe that Groovy is a very representative test application for our kind of
analysis: it is a medium-size, third party application. Importantly, its test suite
was developed completely independently of our evaluation by the application
developers, for regression testing and not for the purpose of yielding good Daikon
invariants.

Table 1. Groovy testees

Total Analyzed

Top-level classes 171 105
Top-level interfaces 11 8
Non-commented source statements (NCSS) 11k 5k
Public non-abstract methods and constructors 1240 757
Other methods and constructors 441 195

5.2 Baseline: JCrasher

We include JCrasher in the experiment in order to provide a baseline with a
dynamic tool. This serves to highlight the advantages of sophisticated static
analyses. JCrasher picks its test cases at random, without analyzing the bodies
of the methods under test. It examines the type information of a set of Java
classes and constructs code fragments that will create instances of different types
to test the behavior of public methods under random data. For instance, to test
a method, JCrasher will attempt to create sample objects of the receiver type
and of each of the argument types. JCrasher begins with a set of types for which
it knows how to create instances—e.g., primitive types or types with public no-
argument constructors. This set is expanded by finding constructors and methods

12 Y. Smaragdakis and C. Csallner

that accept as arguments only types that JCrasher knows how to create, and
the process continues until the space is exhaustively explored up to a certain
invocation depth. Once the size of the space is known, test cases are selected at
random, up to a user-defined number.

JCrasher attempts to detect bugs by causing the program under test to
“crash”, i.e., to throw an undeclared runtime exception indicating an illegal class
cast, division by zero, or an illegal array expression. The output of JCrasher is a
set of test cases for JUnit (a popular Java unit testing tool) [1]. We only include
those JCrasher reports where a method under test throws such an exception di-
rectly (by performing an illegal Java language operation such as an illegal class
cast).

Table 2 shows the total runtime, which includes the steps of compiling the
testee classes (three seconds), generating test cases (about 20 seconds), com-
piling these test cases (about 40 seconds), and running them with our JUnit
extensions (about 30 seconds). We let JCrasher generate test cases that ran-
domly combine methods and constructors up to a depth of two. We also limited
JCrasher to generate 100 thousand test cases per run. JCrasher picked these
test cases from some 7 ∗ 108 available cases. (This is not an unusually large
number: on the entire Groovy testee, JCrasher has 4 ∗ 1012 test cases to pick
from.) In three out of five runs JCrasher got lucky and reported an array index
out of bounds exception in the last statement of the following parser look-ahead
method org.codehaus.groovy.syntax.lexer.AbstractCharStream.la(int)
when passed -1.

public char la(int k) throws IOException {
if (k > buf.length)

throw new LookAheadExhaustionException(k);
int pos = this.cur + k - 1;
pos %= buf.length;
if (pos == this.limit) {

this.buf[pos] = nextChar();
++this.limit;
this.limit %= buf.length;

}
return this.buf[pos];

}

Clearly this report is language-level sound (like all JCrasher reports), as we
observed an actual runtime exception. On the other hand it is likely that this
report is not user-level sound since look-ahead functions are usually meant to be
called with a non-negative value.

5.3 Check ’n’ Crash

For this and the DSD-Crasher experiment we used ESC/Java2 version 2.08a, set
the Simplify timeout to one minute, limited ESC/Java to generate ten warnings
per method under test, and configured ESC/Java to only search for potential

Combining Static and Dynamic Reasoning for Bug Detection 13

Table 2. Experience with running different automatic bug finding tools on Groovy.
ESC/Java warnings may be language-level unsound. Each report generated by
JCrasher, Check ’n’ Crash, and DSD-Crasher is backed by an actual test case exe-
cution and therefore guaranteed language-level sound.

Runtime ESC/Java Generated Reports confirmed
[min:s] warnings test cases by test cases

JCrasher 1:40 n/a 100,000 0.6
Check ’n’ Crash 2:17 51 439 7.0
DSD-Crasher 10:31 47 434 4.0

runtime exceptions in public methods and constructors, stemming from ille-
gal class cast, array creation and access, and division by zero. Table 2 shows
that ESC/Java produced 51 reports. By manual inspection we classified 14 as
language-level unsound and 32 as language-level sound (we hand-wrote eight test
cases to convince ourselves of non-trivial sound cases.) We could not classify the
remaining five warnings within three minutes each due to their complex control
flow. The latter cases are the most frustrating to inspect since several minutes
of investigation might only prove that the bug finding tool produced a spurious
report. Of the 32 language-level sound warnings Check ’n’ Crash could confirm
seven. The remaining 24 warnings would require to generate more sophisticated
test cases than currently implemented by Check ’n’ Crash, supporting method
call sequences and generating custom sub-classes that produce bug inducing be-
havior not found in existing sub-classes.

To our surprise ESC/Java did not produce a warning that would correspond
to the runtime exception discovered by JCrasher. Instead it warned about a
potential division by zero in the earlier statement pos %= buf.length. This
warning is language-level unsound, though, since buf.length is never zero. buf
is a private field, all constructors set it to an array of length five, and there are no
other assignments to this field. This case is representative of the language-level
unsound ESC/Java warnings we observed: a few methods access a private field
or local variable and all of these accesses maintain a simple invariant. ESC/Java
misses the invariant since it analyzes each method in isolation. When comment-
ing out this line, ESC/Java’s analysis reaches the final statement of the method
and generates a warning corresponding to JCrasher’s finding and Check ’n’ Crash
confirms this warning as language-level sound.

5.4 DSD-Crasher

For the 603 Groovy test cases Daikon gathers some 600 MB of execution traces,
which it distills to 3.6 MB of compressed invariants. Of the total runtime, Daikon
took 88 seconds to monitor the existing test suite, 204 seconds to infer invariants
from the execution traces, and 130 seconds to annotate the testee sources with
the derived invariants. The Check ’n’ Crash component of DSD-Crasher used
the remaining time.

14 Y. Smaragdakis and C. Csallner

In our working example, Daikon derived several preconditions and class invari-
ants, including k >= 1 and this.cur >= 0, for the look-ahead method described
above. This supports our initial estimate that JCrasher and Check ’n’ Crash
reported a user-level unsound warning about passing a negative value to this
method. The remainder of this example requires a modified version of Daikon
since the method under test implements an interface method. Daikon can pro-
duce a contradictory invariant in this case—see [6] for a detailed discussion of
dealing correctly with JML behavioral subtyping. For this example we manually
added a precondition of false to the interface method declaration. When we
again comment out the line pos %= buf.length; (but re-using the previously
derived invariants, including k >= 1 and this.cur >= 0) ESC/Java reaches the
offending statement but uses the derived precondition to rule out the case. Thus,
ESC/Java no longer produces the user-level unsound warning and DSD-Crasher
does not produce a corresponding report.

6 Related Work

There is clearly an enormous amount of work in the general areas of test case
generation and program analysis. We discuss representative recent work below.

There are important surveys that concur with our estimate that an important
problem is not just reporting potential errors, but minimizing false positives
so that inspection by humans is feasible. Rutar et al. [19] evaluate five tools
for finding bugs in Java programs, including ESC/Java 2, FindBugs [11], and
JLint. The number of reports differs widely between the tools. For example,
ESC reported over 500 times more possible null dereferences than FindBugs, 20
times more than JLint, and six times more array bounds violations than JLint.
Overall, Rutar et al. conclude: “The main difficulty in using the tools is simply
the quantity of output.”

AutoTest by Meyer et al. is a closely related automatic bug finding tool [16].
It targets the Eiffel programming language, which supports invariants at the
language level in the form of contracts [15]. AutoTest generates random test
cases like JCrasher, but uses more sophisticated test selection heuristics and
makes sure that generated test cases satisfy given testee invariants. It can also
use the given invariants as its test oracle. Our tools do not assume existing
invariants since, unlike Eiffel programmers, Java programmers usually do not
annotate their code with formal specifications.

The commercial tool Jtest [18] has an automatic white-box testing mode that
generates test cases. Jtest generates chains of values, constructors, and methods
in an effort to cause runtime exceptions, just like our approach. The maximal
supported depth of chaining seems to be three, though. Since there is little
technical documentation, it is not clear to us how Jtest deals with issues of
representing and managing the parameter-space, classifying exceptions as errors
or invalid tests, etc. Jtest does, however, seem to have a test planning approach,
employing static analysis to identify what kinds of test inputs are likely to cause
problems.

Combining Static and Dynamic Reasoning for Bug Detection 15

Xie and Notkin [20] present an iterative process for augmenting an existing
test suite with complementary test cases. They use Daikon to infer a specification
of the testee when executed on a given test suite. Each iteration consists of a
static and a dynamic analysis, using Jtest and Daikon. In the static phase, Jtest
generates more test cases, based on the existing specification. In the dynamic
phase, Daikon analyzes the execution of these additional test cases to select those
which violate the existing specification—this represents previously uncovered
behavior. For the following round the extended specification is used. Thus, the
Xie and Notkin approach is also a DSD hybrid, but Jtest’s static analysis is
rather limited (and certainly provided as a black box, allowing no meaningful
interaction with the rest of the tool). Therefore this approach is more useful
for a less directed augmentation of an existing test suite aiming at high testee
coverage—as opposed to our more directed search for fault-revealing test cases.

7 Conclusions

We discussed our thoughts on combinations of static and dynamic reasoning for
bug detection, and presented our experience with our tools, JCrasher, Check ’n’
Crash, and DSD-Crasher. We argued that static and dynamic analyses form a
continuum and that a ”sound for correctness”/”sound for incorrectness” termi-
nology is more illuminating than other conventions in the area. We believe that
tools that are sound for incorrectness (i.e., complete for correctness) will gain
ground in the future, in the entire range of static and dynamic analyses.

Our DSD-Crasher, Check ’n’ Crash, and JCrasher implementations are avail-
able in source and binary form at http://code.google.com/p/check-n-crash/
and http://code.google.com/p/jcrasher/

Acknowledgments

We thank Tao Xie who offered extensive comments and contributed to early dis-
cussions about the generation of test cases from Daikon invariants. We gratefully
acknowledge support by the NSF under grant CCR-0238289.

References

[1] Beck, K., Gamma, E.: Test infected: Programmers love writing tests. Java Re-
port 3(7), 37–50 (1998)

[2] Cok, D.R., Kiniry, J.R.: ESC/Java2: Uniting ESC/Java and JML: Progress and
issues in building and using ESC/Java2. Technical Report NIII-R0413, Nijmegen
Institute for Computing and Information Science (May 2004)

[3] Csallner, C., Smaragdakis, Y.: JCrasher: An automatic robustness tester for Java.
Software—Practice & Experience 34(11), 1025–1050 (2004)

[4] Csallner, C., Smaragdakis, Y.: Check ’n’ Crash: Combining static checking and
testing. In: ICSE 2005, pp. 422–431. ACM, New York (2005)

16 Y. Smaragdakis and C. Csallner

[5] Csallner, C., Smaragdakis, Y.: DSD-Crasher: A hybrid analysis tool for bug find-
ing. In: Proc. ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA), pp. 245–254. ACM Press, New York (2006)

[6] Csallner, C., Smaragdakis, Y.: Dynamically discovering likely interface invariants.
In: ICSE. Proc. 28th International Conference on Software Engineering, Emerging
Results Track, pp. 861–864. ACM Press, New York (2006)

[7] Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program check-
ing. Technical Report HPL-2003-148, Hewlett-Packard Systems Research Center
(July 2003)

[8] Engler, D., Musuvathi, M.: Static analysis versus software model checking for
bug finding. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
191–210. Springer, Heidelberg (2004)

[9] Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering
likely program invariants to support program evolution. IEEE Transactions on
Software Engineering 27(2), 99–123 (2001)

[10] Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Ex-
tended static checking for Java. In: Proc. ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), pp. 234–245. ACM Press,
New York (2002)

[11] Hovemeyer, D., Pugh, W.: Finding bugs is easy. In: Companion to the 19th ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA), pp. 132–136. ACM Press, New York (2004)

[12] Jackson, D., Rinard, M.: Software analysis: A roadmap. In: Proc. Conference on
The Future of Software Engineering, pp. 133–145. ACM Press, New York (2000)

[13] Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral
interface specification language for Java. Technical Report TR98-06y, Department
of Computer Science, Iowa State University (June 1998)

[14] Lindahl, T., Sagonas, K.: Practical type inference based on success typings. In:
PPDP. Proc. 8th ACM SIGPLAN Symposium on Principles and Practice of
Declarative Programming, pp. 167–178. ACM Press, New York (2006)

[15] Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice Hall PTR,
Englewood Cliffs (1997)

[16] Meyer, B., Ciupa, I., Leitner, A., Liu, L.: Automatic testing of object-oriented
software. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack,
H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, Springer, Heidelberg, 2007
(to appear)

[17] Nimmer, J.W., Ernst, M.D.: Invariant inference for static checking: An empiri-
cal evaluation. In: Proc. 10th ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE), pp. 11–20. ACM Press, New York
(2002)

[18] Parasoft Inc.: Jtest. October 2002 (accessed March 2007),
http://www.parasoft.com/

[19] Rutar, N., Almazan, C.B., Foster, J.S.: A comparison of bug finding tools for
Java. In: ISSRE. Proc. 15th International Symposium on Software Reliability
Engineering, pp. 245–256. IEEE Computer Society Press, Los Alamitos (2004)

[20] Xie, T., Notkin, D.: Tool-assisted unit test selection based on operational viola-
tions. In: ASE. Proc. 18th IEEE International Conference on Automated Software
Engineering, pp. 40–48. IEEE Computer Society Press, Los Alamitos (2003)

http://www.parasoft.com/

Testable Requirements and Specifications

Jonathan S. Ostroff and Faraz Ahmadi Torshizi

Department of Computer Science and Engineering, York University,
4700 Keele St.,Toronto, ON M3J 1P3, Canada

{jonathan,faraz}@cse.yorku.ca

Abstract. A design specification is the artifact intermediate between
implemented code and the customer requirements. In this paper we argue
that customer requirements and design specifications should be testable
and testable early in the design cycle leading to early detection of re-
quirement and specification errors. The core idea behind early testable
requirements is that the problem is described before we search for a so-
lution that can be tested against the problem description. We also want
the problem description to drive the design. We provide a method for
describing early testable requirements and specifications and a support
tool called ESpec. ESpec allows for the description of testable require-
ments via Fit tables as well as testable design specifications via con-
tracts written in Eiffel using mathematical models following the single
model principle. The tool can mechanically check the requirements and
specifications.

1 Introduction

Informal surveys such as those done by the Standish Group [5] show that a mi-
nority of software development finish on time and within budget. Many projects
fail entirely and have to be abandoned. In their recipe for success the Standish
group recommends that shareholders develop the ability to clearly articulate re-
quirements and translate these requirements between the business people (the
customers) and the technical people (software developers).

The software developer faces many difficulties in writing and communicating
requirements. As one IT specialist wrote [2]:

I was once in a meeting in which a team had to review a business specifi-
cation for an application enhancement. The meeting had been scheduled
for one hour. It lasted for three painful hours, because the team was
stumbling over each paragraph: Verbosity, ambiguity and an avalanche
of bullets conspired to hide the meaning of those phrases. ...

UML might be king in academic circles, but English is still the pre-
ferred and most-used tool in the field when it comes to communication
between business users and developers. I have recently heard a tool ven-
dor trying to score points for his product based on the fact that the
product uses plain English, not UML, in order to capture requirements.

B. Meyer and Y. Gurevich (Eds.): TAP 2007, LNCS 4454, pp. 17–40, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

18 J.S. Ostroff and F.A. Torshizi

The computer
and its software

The world outside
The computer

The
solution
is here

The
problem
is here

Connections between
the world and the

computer

ICU
Patient

Analog
Device

Monitor
Machine

Heart
Beat

Sound
pulse

Register
Value

Fig. 1. The Computer (the Machine) and the World Outside the Computer (Problem
Domain)

In this paper we use the words “requirements” and “specifications” in the
sense of Jackson [7]. A design specification is the artifact intermediate between
implemented code and the customer requirements. We argue that customer re-
quirements and design specifications should be testable and testable early in the
design cycle leading to early detection of requirement and specification errors.
We provide a method for describing early testable requirements and specifi-
cations and a support tool called ESpec. ESpec allows for the description of
testable requirements via Fit tables adapted from [8] for Eiffel. Testable design
specifications are described via contracts written in Eiffel using mathematical
models following the single model principle. The tool can mechanically check the
requirements and specifications.

2 Requirements and Specifications

Consider the diagram in Fig. 1 illustrating the problem of measuring vital signs
such as the heartbeat of a patient in an ICU taken from [7]. There are four
different descriptions of the patient monitoring system.

P – Problem Domain: A patient’s heart can beat from 0 to 170 beats per
second (predetermined by human physiology).

R – Requirement: Monitor the patient’s heart beat and sound an alarm if it
is outside of the range from 60 to 100 beats per minute.

Testable Requirements and Specifications 19

P
ro

bl
em

 D
om

ai
n

So
lu

tio
n

Sp
ac

e

D
es

ig
n

(U
I &

 O
bj

ec
t m

od
el

)
P

ro
gr

am
m

in
g

Te
st

in
g

Testable
Requirements (Fit)

Testable
Specifications
(Contracts and
Scenario Tests)

Time

Fig. 2. The role of Early Testable Requirements and Specifications in the design cycle

S – Specification: Alarm-Register := False when the Sound-Pulse-Register is
outside the range hexadecimal 3C to hexadecimal 64.

C – Computer Code: The machine code that implements specification S.

The central requirement R is to monitor the heartbeat – not the sound pulses
or the register values in the machine (i.e. the implemented computer code). The
requirements are the effects in the problem domain that your customer wants
the machine to guarantee. The requirements are all about the phenomena of
the problem domain (not the machine). The predicate P described the fixed
constraints emerging from the problem domain.

The specification S refers to phenomena shared by the problem domain and
the machine. S specifies a design solution that we hope satisfies requirements R.
Finally, C is a description of the computer code needed to implement the de-
sign specification S. As mentioned earlier, the design specification is the artifact
intermediate between implemented code and the customer requirements.

Our core idea behind early testable requirements and specification is as fol-
lows. Requirements should be testable as early as possible so that the problem
is stated before we search for a solution. We also want the problem to drive
the design. We provide a method for describing early testable requirements and
specifications and a support tool called ESpec.

ESpec allows for the description of testable requirements via Fit tables adapted
from [8] for Eiffel. Testable design specifications are described via contracts writ-
ten in Eiffel using mathematical models following the single model principle. The
tool can mechanically check the requirements and specifications.

20 J.S. Ostroff and F.A. Torshizi

Our method and tool does not require a rational software development process
as described earlier. The developer may follow agile [1] or big design up front
methodologies. Our method does provide a framework for describing testable
requirements that can be written as early as possible in the design cycle as
shown in Fig. 2.

A rational software development might proceed as follows:

– Elicit and document the Requirements R of the customer in terms of the
phenomena in the problem domain. Constraints of the problem domain are
described by P .

– From the Requirements, derive a Specification S for the software code that
must be developed.

– From the Specification, derive a machine C (the code).

We may describe the development process as follows [10]:

1. Specification correctness: P ∧ S→ R
2. Implementation correctness: C → S
3. System correctness: From (1) and (2) conclude that: P ∧ C → R

The first equation (specification correctness) asserts that we are developing
the right product, i.e. the one desired by the customer as described by R. The
second equation (implementation correctness) asserts that the product is being
developed correctly, i.e. the implemented code satisfies the design specification.

The third formula (system correctness) is a consequence of formulas (1) and
(2). It asserts that the code working in a problem domain P satisfies the customer
requirements.

3 Fit Tables as Testable Requirements

How do we make requirements testable? In this section we show how Fit tables
may be used to make requirements testable early in the design cycle. We use a
small application as a running example in this section and the sequel.

3.1 Informal Requirements for a Chat Application

Suppose our customer is a company that needs a specialized chat application
allowing employees to communicate with each other. Chat rooms can be devel-
oped for technical support or discussions on various administrative issues. Some
of the informal requirements include:

[R1] A chat server has an Administrator and a public room called the Lobby.
[R2] A user may connect to the chat server initially landing in the Lobby.
[R3] A user may add or remove public or private rooms thus becoming the

owner of that room.

Testable Requirements and Specifications 21

[R4] An owner may permit or reject other users from accessing rooms.
[R5] A user may enter or exit rooms as allowed by the owner of the room.
[R6] After entering an allowed room, a user may read and post messages in the

room.

The requirements are expressed in terms of the phenomena of the problem
domain such as chat rooms like the Lobby, users such as the Administrator and
owner relationships between users and rooms. Phenomena of the solution domain
such as linked lists of users or binary search routines for finding users in the lists
should not be part of the requirements.

3.2 A Fit Table to Test the First Requirement

How do we convert the informal requirements into testable requirements? We can
make the first requirement testable with the simple Fit table shown in Table 1.

As described in [8], there are three basic tables types: Column, Action and
Row. A testable requirements document may contain informal text interleaved
with an arbitrary number of Row, Column and Action tables.

For requirement R1 we use an Action table. An Action table checks that a
sequence of actions performed on an application works as expected. In the sequel
we will also see examples of Row tables. Software developers may also use the
Fit framework to specify their own table types.

In the first row of Action table 1 the Customer provides an arbitrary title such
as: “R1: Chat Server Setup”. In the first column of the table we can see keywords
(start, check, enter and press) which denote the type of action performed by
each row.

The keyword start is used to initiate the chat server. Usually there is only
one start per Action table. Thus the second row of the table starts the business
logic for the chat server. The next Action table in the same document will use
the current chat server unless there is another start in that table (which would
re-initialize the server business logic).

The keyword used in the third row is check. It checks that a property (desig-
nated by the descriptive text in the second column) satisfies some value (specified
by the text in the third column). The action in the third row thus states that
“Is server running?” must have the value “True”.

Properties of the business logic are specified in the second column of the
Action table. The customer may use any descriptive string (say Str) to denote a
property (say Prop) in the second column. Once Str is specified then it always
denotes the same property Prop throughout this table and any other Action
table. Values in the third column of the Action table are interpreted by the Fit
framework as booleans, integers, reals, characters, strings and arrays of the basic
types. In Action table 1, “True” is a boolean, “1” is an integer, and “Admin” is
a string. As far as the customer is concerned, a value is just a descriptive string.

Consider the check for the property “Is [user] in [room]?” in row 9 of Action
table 1. We could have used the descriptive string “Is Admin in Lobby?” for the
property. However, that limits this description to the specific property involving

22 J.S. Ostroff and F.A. Torshizi

Table 1. Chat Action table for requirement R1

the specific individuals Admin and Lobby. We would prefer to check for the
more generic property that some arbitrary user is in a given room. We use the
keyword enter to associate a value with a parameter of the property (like an
argument of a query). Thus at row 6, the customer associates the value “Admin”
with the parameter “[user]”. The customer could have chosen “some user” rather
than “[user]” in the second column or some other descriptive string. We use the
convention of surrounding the parameter with square brackets so that it stands
out as a parameter of the property, e.g. in the property “Is [user] in [room]?”
at line 9 the parameters are “[user]” and “[room]” entered at lines 6 and 7
respectively.

The keyword press is not used in Table 1 but it will be used in the sequel. This
keyword denotes an action (like pressing a button) that effects some change in the
business logic. The keyword press may be used together with enter to denote
a parameterized action, e.g. we may use press together with the parameterized
action “[user] adds [room]” as in Action table in Fig. 13. This means that user
“Bob” adds the room “Technical Support” to the chat application, and “Bob”
is now the owner of the room.

How does the developer satisfy the requirements specified in the Action table?
The developer will need to write two kinds of classes: Fixture classes and classes
of the business logic (see Fig. 3). Fixture code acts as a glue code or bridge
between the customer-provided requirements and the business logic. The ESpec

Testable Requirements and Specifications 23

Requirements

Fixture code Business logic

Fig. 3. Relationship between Fit tables, Fixture classes and Business logic

tool provides fixture libraries that allow the developer to easily develop such fix-
ture classes. Fit framework can then use the developer written fixture classes to
parse the requirements document, extract the Row Column and Action tables,
interpret the tables and invoke the relevant business logic and then reflect the
results of running the business logic back to the tables in the requirements docu-
ment. The rows that succeed are coloured green and those that fail are coloured
red.

For example, to run Table 1, the developer writes an Action Fixture class
CHAT ACTION that binds developer defined routines (in the business logic) to
the properties in the table. These routines call the appropriate features of the
business logic. ESpec takes care of the rest of the processing as explained in
more detail in [14].

3.3 Implementation Correctness

Fit tables make the requirements testable. However, at this point, if we run
the Fit table in the requirements document it will fail. For example, the checks
associated with the value cells in Table 1 will display as red indicating that the
requirement is not yet satisfied. As yet there is no implementation code and
so we expect failure. Our goal is now to specify a design that will satisfy the
requirements (i.e. cause each test row in the table to pass).

24 J.S. Ostroff and F.A. Torshizi

Fig. 4. Scenario Test to start a server, connect users, create a room and set the room
permissions

How does the developer specify implementation code that will satisfy the
requirements? It is unlikely that the code can be developed all at once. The
requirements are described at a relatively high level in terms of the phenomena
of the problem domain. Code will have to be developed in small chunks to
build up the functionality needed to provide a solution. This functionality is the
design which is intermediate between the code and the requirements. The Fit
table requirements were expressed in terms of the phenomena of the problem
domain. The design will be specified in terms of the phenomena of the machine
(solution space), i.e. we must specify the relevant classes and features that will
solve the problem posed by the requirements.

How do we specify testable designs? We will use a combination of Contracts
and Scenario Tests to specify the design. In this section we illustrate Scenario

Testable Requirements and Specifications 25

Fig. 5. Design of the chat application as a BON class diagram

Tests and in the next section we will use Contracts. This should not be taken as
a description of a step-by-step software development methodology. In the actual
development, developers may use any combination of coding, Scenario Tests,
contracts and other development techniques in whatever order they choose. Our
contribution is to provide a method and tool for specifying designs as early as
possible in the design cycle and mechanically testing implementations against
the design specification.

Consider the Scenario Test in Fig. 4 expressed in the unit testing framework
developed for Eiffel [11]. A Scenario Test is written the same way as a unit test
but instead of testing only one unit of functionality, it tests the collaboration
between various elements in the business logic. The Scenario Test in Fig. 4 spec-
ifies a collaboration between classes CHAT SERVER, CHAT ROOM, and CHAT USER.
The test specifies specific features in CHAT SERVER such as:

– users: LIST[CHAT USER]
– rooms: LIST[CHAT ROOM]
– add room (a user: CHAT USER)

If all the classes and features in the Scenario Test are added, the project will
compile and the design illustrated in the BON class diagram in Fig. 5 is generated
automatically. The class diagram presents the design so far (classes and feature
signatures, but not yet code in the bodies of the features).

The ESpec quality workbench will run all the Scenario Tests and show which
ones fail with a red bar. The Scenario Test will fail if (a) the collaboration
between the various elements fails to satisfy the specified checks or to produce

26 J.S. Ostroff and F.A. Torshizi

Table 2. Result of running Table 1 with implementation or contract errors in the
business logic. Light grey indicates tests that succeed (green) and dark grey tests that
fail (red).

R1: Chat Server Setup
start Chat Server
check Is server running? True
check Number of server rooms 1
check Number of server users 1
enter [user] Admin
enter [room] Lobby

check Is [user] connected?
True Expected

False Actual

check Is [user] in [room]?

True
Postcondition violated.

CHAT_SERVER get_user @10 server_has_it:
<00000000018BC810> Postcondition violated. Fail

CHAT_SERVER get_user @3
<00000000018BC810> Routine failure. Fail

check [room]'s owner Admin

the anticipated results, or (b) the contracts fail while executing the tests. At this
point we have not specified any contracts so failures will be of type (a).

Scenario Tests (as in Fig. 4) thus do two things for us: (1) They specify the
design, in a (2) mechanically testable manner. Contracts will likewise specify
aspects of the design. With runtime assertion checking turned on the implemen-
tations are also checked against the contracts.

There is thus a synergy between the contracts and Scenario Tests. They both
specify aspects of the design and both are mechanically checkable. Contracts
act as test amplifiers, i.e. when we execute the tests, all contracts will also be
executed and tested.

3.4 Specification Correctness

Scenario Tests helped us to specify aspects of the design in an automatically
testable format. When these tests run successfully, we obtain a certain amount of
confidence that the implementation satisfies the specification. However, there is
yet no guarantee that the specified design satisfies the requirements as described
in the Fit tables. We may be designing the product right – yet, we still do not
know if we have the right product!

How do we test that our specified design satisfies the requirements? We do
this by hooking up the Fit tables to our business logic for the chat application
and running the Fit table tests. If we run Action table 1 with an incorrect
implementation or design, we get error results of the kind shown in Table 2.

Two types of errors are shown in Table 2. The first error (row 8 shown in dark
gray) indicates that the routine to check if a user is connected is not doing what

Testable Requirements and Specifications 27

Table 3. Result of running Table 1 after fixing the business logic. All tests succeed
(light grey = green).

R1: Chat Server Setup
start Chat Server
check Is server running? True
check Number of server rooms 1
check Number of server users 1
enter [user] Admin
enter [room] Lobby
check Is [user] connected? True
check Is [user] in [room]? True
check [room]'s owner Admin

was expected (the value “True” was expected but the actual value returned by
the business logic was “False”). We refer to these as category 1 errors. Category
1 errors usually indicate that the design was not specified correctly. The imple-
mented code was correct in a sense that it did not trigger any contract violations
or Scenario Test errors yet it failed to satisfy the customer requirements. The
design specification (via Scenario Tests and contracts) is either incomplete or
even incorrect.

The second error (row 9 shown in gray) indicates a postcondition failure in the
business logic (in CHAT SERVER.get user). We refer to these type of errors as
category 2 errors. Category 2 errors usually indicate an implementation problem
in the business logic (i.e., the implementation failed to satisfy its contracts).

We will discuss the differences between these types of errors in the sequel. The
result of running Action table 1 (after all fixes) is shown in Table 3. All the cells in
the table are shown in light gray (green) indicating that all the Fit tests succeed.

4 Writing Complete Modular Contracts

In the previous section we used Test Scenarios to write testable specifications.
In this section we explore the use of contracts for writing testable specifications.

Design by Contract (DbC) is a well-know method for specifying the obliga-
tions and benefits of the client of a module (class) and its supplier. Languages
such as Eiffel, ESC/Java [4] and Spec# [3] follow the single model principle [12],
i.e. specifications (contracts) and implementation details are both an integral
part of the program text itself thus also allowing the implementation to be me-
chanically checked against the specification. The features of a class are described
by expressive preconditions, postconditions and class invariants and these con-
tracts can be tested at runtime by checking that the feature implementations
satisfy the contracts.

However, the contracting facilities of these languages do not yet allow for com-
plete contracts. We illustrate this lack and describe the use of an implemented
mathematical modelling library (ML) for Eiffel that facilitates fully descriptive

28 J.S. Ostroff and F.A. Torshizi

Fig. 6. Incomplete contract for routine connect

contracts following the single model principle so that the full contracts are part
of the program text.

Consider the contract for the routine connect in class CHAT SERVER in Fig. 6.
This feature allows a user u to connect to the server. A new user is not initially
connected. In the precondition of routine connect we would like to specify that
a new user u is not yet connected, i.e. is not yet in our list of users. In the
postcondition, we would like to specify that the new user u is now added to the
existing users of the Lobby.

How do we specify these contracts? One possibility is to use the private imple-
mentation data structures users and rooms which are linked lists of chat rooms
and chat users (respectively) to write the contracts. This is not ideal because the
implementation is low level and might change. We would like the specification of
the feature to be independent of low level implementation details. In addition,
not all classes are effective. Some classes are deferred (abstract) and thus there
is no available implementation.

So the question is: how do we specify complete contracts without depending
upon implementation detail?

Testable Requirements and Specifications 29

CHAT_SERVER

make
ensure location_model admin § lobby

 ownership_model lobby § admin
admin.server = Current

location_model: ML_MAP[CHAT_USER, CHAT_ROOM]
ensure Result i: INTEGER | 0 i users.count users[i] users[i].room

Invariant
user_count = #location_model
room_count = #owner_model
1 user_count users.count
1 room_count rooms.count
admin /= Void and lobby /= Void

connect (u: CHAT_USER)
require u /= Void

u ´ location_model.domain and # location_model < Max_users
ensure location_model old location_model u § lobby

 ownership_model old ownership_model

MODEL

add_room (r: CHAT_ROOM; u: CHAT_USER)
require r Void and u Void

r ´ ownership_model.domain
u location_model.domain and r.owner = u

ensure ownership_model old ownership_model r u
 location_model old location_model

has_user (a_name: STRING): BOOLEAN
require

 a_name /= Void and not a_name.is_empty
ensure

 Result (u location_model.domain (u.user_name a_name))

has_room (a_name: STRING): BOOLEAN
require

 a_name /= Void and not a_name.is_empty
ensure

 Result (r ownership_model.domain (r.name a_name))

room_count: INTEGER
ensure

 Result ownership_model

user_count: INTEGER
ensure

 Result # location_model

ownership_model: ML_MAP[CHAT_ROOM, CHAT_USER]
ensure Result i: INTEGER | 0 i rooms.count rooms[i] rooms[i].owner

CHAT_ROOM

CHAT_USER

make (a_name: STRING; a_user: CHAT_USER)
require a_name /= Void and a_user /= Void
ensure owner = a_user and name a_name

 occupant_model

name: STRING
occupants: LIST[CHAT_USER]

MODEL

occupant_model: ML_SET[CHAT_USER]
ensure Result i: INTEGER | 0 i

occupants.count occupants[i]

make (a_name: STRING)
require a_name /= Void
ensure current_room = Void and

chat_server = Void and
 user_name.is_equal (a_name) and
 owned_model = old owned_model

user_name: STRING
room: CHAT_ROOM
server: CHAT_SERVER
owned: LIST[CHAT_ROOM]

MODEL
owned_model: ML_SET[CHAT_ROOM]

ensure Result i: INTEGER | 0 i
owned.count owned[i]

owner: CHAT_USER

get_user (a_name: STRING): CHAT_USER
require a_name /= Void and not a_name.is_empty

 has_user (a_name)
ensure

 (Result.user_name a_name) and Result location_model.domain

get_room (a_name: STRING): CHAT_ROOM
require a_name /= Void and not a_name.is_empty

 has_room (a_name)
ensure

 (Result.name a_name) and Result ownership_model.domain

FEATURES

rooms: LIST[...]

users: LIST[…]

room owner

server

rooms: LIST [CHAT_ROOM]
users: LIST [CHAT_USER]

admin: CHAT_USER

lobby: CHAT_ROOM

Symbols legend:
 equals by definition

map
yields
pair
model equality (set, bag, list, map)

= reference equality
is a member of

 object equality
size of

Fig. 7. System Specifications in BON notation

30 J.S. Ostroff and F.A. Torshizi

4.1 The Need for Mathematical Models

In order to fully specify the contracts of feature connect the chat application
must remember:

1. All the users that are already connected (so that a check can be made that
the same user does not connect twice).

2. All the users in the Lobby (so that the list of users of the Lobby can be
updated when the new user is connected).

We may use a mathematical model describe the above state of affairs. The
location model is a function from CHAT USER to CHAT ROOM as shown in Fig. 8.

Fig. 8. Location model – mapping from users to rooms

In the location model each user is associated with a room. The location model
may be described using the mathematical map class ML MAP in the ESpec model
library (these classes all have the prefix ML) as shown in Fig. 9. The ML classes
are immutable. Thus they have no commands that can change their state, only
queries that may return new maps constructed from the old maps as in mathe-
matics. These classes are thus mathematically expressive but not efficient. This
is not a problem as models are used solely in contracts and contract checking
can be turned off in final deliveries.

In Fig. 9, the location model is specified as

location model: ML MAP[CHAT USER,CHAT ROOM]

The precondition of routine connect is u �∈ location model .domain which asserts
that the user u is not already connected (i.e. the user is not in the domain of
the map). The postcondition is

location model ∼= (old location model) � (u
→ lobby) (1)

which asserts that after execution of connect, the location model is extended
by (symbol �) the pair u
→ lobby, i.e. the location map in the poststate is the
same as it was in the prestate but with the addition that user u is connected
and in the Lobby. The symbol ∼= is the model equality symbol. Two maps are
model equal provided they have the same elements in their respective domains
and map the same elements in the domain to the associated elements in their
respective ranges.

Testable Requirements and Specifications 31

Fig. 9. Complete contracts for routine connect using a mathematical model

The BON [13] mathematical notation as in (1) is often convenient to use.
The equivalent Eiffel notation has been designed so as to be as close to the
mathematical notation as possible. As shown in Fig. 9(b) the Eiffel equivalent
of (1) is

location model |=| old location model ˆ [u, lobby]

The ML library has mathematical maps, sets, bags and sequences and the
normal operators of set theory and predicate logic have been implemented [9].
For example, the postcondition of query has user in Fig. 12 is specified as

Result =̂ ∃ u ∈ location model .domain • (u.user name ∼ a name) (2)

The symbol ∼ denotes object equality. The postcondition thus asserts that the
query holds when there exists some connected user whose name (as a string) has
the same characters as the query argument a user.

32 J.S. Ostroff and F.A. Torshizi

An implementor of class CHAT SERVER may provide any private implementa-
tion code that satisfies the contracts. For example, the implementor may use
two linked lists (users and rooms) for the implementation. However, all the
contracts are specified in terms of the model. Thus the implementor must link
the implementation to the model by providing an abstraction function [6] that
maps (or “lifts”) the implementation detail to the model as shown in Fig. 12.
For example for the location model, the abstraction function is

Result =̂ 〈〈i : INT | 0 ≤ i < users .count • users [i]
→ users [i].room〉〉 (3)

The angle brackets 〈〈· · ·〉〉 is used for map comprehension (similar to set compre-
hension). Thus (3) asserts that the location model is a map consisting of pairs
users [i]
→ users [i].room where users [i] is the item (i.e. the user) at index i in
the linked list users .

In addition to the location model, we will also need an ownership model which
is a map from rooms to users (owners) as shown in Fig. 11. For example, when a
user adds a new room it is the ownership model that changes while the location
model remains the same (e.g. see routine add room in Fig. 7). The domain of the
ownership model is the set of all rooms in the chat application. The contracts
(expressed in terms of the model) for the chat application are shown in more
detail in Fig. 7.

Fig. 10. Location model (mapping
from users to rooms)

Fig. 11. Ownership model (mapping
from rooms to users)

5 Contract Violations in Fit Tables

Section 3.3 used Scenario Tests to specify the design. Fit tables were able to
catch specification errors (as category 1 errors in which the expected value dis-
agreed with the actual values) in the design (category 1 errors may also reflect
implementation errors).

Section 4 used contracts to specify the design. The advantage of contracts (as
opposed to Scenario Tests for a particular execution) is that contracts specify
the complete behaviour of modules (classes). In ESpec, contract violations are
reflected back into the Fit tables (these are category 2 errors). This is useful
because a contract error in the Fit table indicates that the specification of the
design is correct, but the implementation does not satisfy the specified design
solution. The contract violation in the Fit table provides precise details as to
which feature fails which makes it easier to fix the problem.

Testable Requirements and Specifications 33

CHAT_SERVER

location_model: ML_MAP[CHAT_USER, CHAT_ROOM]
ensure Result i: INTEGER | 0 i users.count users[i] users[i].room

Invariant

user_count = #location_model and room_count = #owner_model
admin /= Void and lobby /= Void

connect (u: CHAT_USER)
require u /= Void and u ´ location_model.domain
ensure location_model old location_model u § lobby

 ownership_model old ownership_model

MODEL

has_user (a_name: STRING): BOOLEAN
require a_name /= Void and not a_name.is_empty
ensure Result u location_model.domain (u.user_name a_name)

ownership_model: ML_MAP[CHAT_ROOM, CHAT_USER]
ensure Result i: INTEGER| 0 i rooms.count rooms[i] rooms[i].owner

PRIVATE
rooms: LIST [CHAT_ROOM]; users: LIST [CHAT_USER]

admin: CHAT_USER;
lobby: CHAT_ROOM;

Fig. 12. BON specification of the chat server

We illustrate the use of contract violations in Fit tables with some new Fit
tables in our requirement document as shown in Fig. 13 and Fig. 14. These tables
convert requirements R2, R3, and R4 into a mechanically testable format.

We use an Action table to specify a sequence of actions such as adding users,
rooms and permissions. We then use a Row table to query and check that the
underlying database of users, rooms and permissions are as expected.

Row tables allow for powerful descriptions that collections of elements (e.g. in
lists, sets, bags and maps) are present as expected. For example, suppose only
“Bob” and “Anna” have been allowed to access the room “Technical Support”.
A single row in a Row table can check that these users alone are in the permitted
list by simple enumeration.

Fig. 13 has an Action table and a Row table. The Action table starts a chat
server, and adds users, rooms and permissions as shown. Consider the Row table
in Fig. 13. The customer specifies the header of the first column in the table as
“Room name”. This means that the customer will be querying a collection of
entities of type room considered as phenomena in the problem space.

It is of course up to the developer to connect the Row table to the business
logic via a Row fixture. In our case, the developer uses the fixture to link the

34 J.S. Ostroff and F.A. Torshizi

Fig. 13. Testing requirements R2 – R4

Row table to rooms in the business logic which is a linked list of CHAT ROOM. The
linked list and class CHAT ROOM are of course phenomena in the machine.

Each row in the Row table describes the properties of a room in the collection.
In the Row table of Fig. 13 the first row deals with room “Lobby” and the second
row deals with room “Technical Support”. These are the only two rows because
the customer has not created any other rooms. Suppose there are other rooms
but they are not expected in the table. Then execution of the Row table would
yield an error stating that there are surplus rooms in the business logic that

Testable Requirements and Specifications 35

Fig. 14. Moving a user from one room to another

were not expected in the requirements. Thus Row tables represent exhaustive
descriptions of the collection.

The other column headings of the Row table in Fig. 13 describe properties
that each room must satisfy. The second column, for example, specifies who is
the owner of the room, the third column describes who are the occupants of
the room, the fourth column asserts whether the room is public (anybody may
enter), and the last column checks the permitted list. If the room is public then
the permitted list contains only the owner of the room.

Fig. 14 is a continuation of the requirement document described in Fig. 13, i.e. it
refers to the samechat server initializedandactedupon inFig. 13.Subsequent to the
actions of Fig. 13, our customer uses the Action table in Fig. 14 to specify that user
Anna moves from the Lobby to Technical Support. As shown in the Row table, our
customerexpectsthatuserAnna istransferredfromtheLobbytoTechnicalSupport.

Do the Fit tests pass given the design developed in previous sections of this
paper? If we execute the Fit requirement tests described in Fig. 13 and Fig. 14
we obtain the results shown in Fig. 15 and Fig. 16.

Both tables in Fig. 15 succeed whereas the Row table in Fig 16 fails with a
category 1 error indicating that Anna is in two locations at the same time (in
the Lobby and Technical Support). According to the Row table, after moving
from one room to another, the customer’s expectation is that Anna is solely in
Technical Support and not in the Lobby anymore.

An investigations of the code shows an implementation error in the body of
routine CHAT SERVER.enter room. The developer simply forgot to remove the
user from the original room while adding this user to the new room thus causing
the user to be in two locations at the same time. This category 1 error in the
Fit table is an indication of an incomplete specification as the error should have
been caught by a contract violation (a category 2 error).

The fix for this problem is to convert a category 1 error into a category 2
contract error. Consider the specification of routine enter room in Fig. 17. The
postcondition is:

36 J.S. Ostroff and F.A. Torshizi

R2, R3 and R4: Scenario
start Chat Server
enter [user] Anna
press Connect [user]
enter [user] Bob
press Connect [user]
enter [user] Tod
press Connect [user]
enter [user] Bob
enter [room] Technical Support
press [user] adds [room]
press [user] makes [room] private
enter [user list] Anna
press [user] allows [user list] in [room]
check Total number of users 4
check Total number of rooms 2

R2, R3 and R4: Scenario Query
Room name Owner Occupants Is public? Permitted list
Lobby Admin Admin,Anna,Bob,Tod True Admin
Technical Support Bob Empty False Bob,Anna

Fig. 15. Success: Result of executing tables in Fig. 13

location model ∼= (old location model)⊕ (u
→ get room(r))

where ⊕ is the symbol for map override. The postcondition asserts that the loca-
tion model in the poststate is the same as in the prestate except that the room
associated with user u is now changed to get room(r) where query get room
returns the chat room object associated with string r (this is a search routine).
The ownership model is left unchanged by the routine enter room.

The postcondition is correct but incomplete (as the error was category 1 and
not category 2). As shown in Fig. 7, class CHAT ROOM has an occupant model
(ML SET[CHAT USER]) that keeps track of the occupants of each room. There
is no assertion that ensures that the models of CHAT SERVER and CHAT ROOM
are consistent with each other. The consistency assertions are best written as
invariants in class CHAT SERVER as shown in Fig. 17.

The invariant disjoint users asserts that any two rooms are pairwise dis-
joint, i.e. a user may be in at most one room at a time. The second invariant
coverage asserts that the domain of the location model (i.e. all chat users)
consists of the union of the occupant model sets, i.e. all users specified in the
location model must be occupants of some room.

Fig. 18 shows how the invariants are written using the ML Eiffel library. The
invariant disjoint users is captured by enumerating through the list of all
rooms collecting, pairwise, intersections of the room occupants and then checking

Testable Requirements and Specifications 37

R2, R3 and R4: Scenario
enter [user] Anna
enter [room] Technical Support
press move [user] to [room]

R2, R3 and R4: Scenario Query
Room name Owner Occupants Is

public?
Permitted
list

Lobby Admin Admin,Bob,Tod Expected

[Admin, Anna, Bob, Tod]
Actual

True Admin

Technical
Support

Bob Anna False Bob,Anna

Fig. 16. Failure: Result of executing tables in Fig 14

Fig. 17. BON specification of the invariant for the CHAT SERVER

that the resulting set is empty. Queries forall rooms and empty intersection
are agent routines that are used for this purpose (see lines 6–19 in Fig. 18). The
* infix operator is used for the intersection of two sets. The coverage property
is implemented using the multi union recursive agent. This agent collects the
union of all users in all rooms using the occupant model of each room and then

38 J.S. Ostroff and F.A. Torshizi

Fig. 18. Implementing the invariant using ML

Table 4. Specification violations are reflected to the Fit table

R2, R3 and R4: Scenario
enter [user] Anna
enter [room] Technical Support
press move [user] to [room] Class invariant violated.

CHAT_SERVER enter_room @7 pairwise_disjoint:
Class invariant violated. Fail

CHAT_SERVER enter_room @11
Routine failure. Fail

returns a set composed of all those users. The |++ infix operator is used for the
union of two sets.

The Fit table now reports an invariant error in class CHAT SERVER (i.e. a cate-
gory 2 error) thus indicating an implementation problem in routine enter room
in class CHAT SERVER. This contract error is reported in the Fit table 4.

As shown in Fig. 19 a category 1 error (expected vs. actual discrepancy) may
indicate that the specification is either incomplete or even incorrect. A complete

Testable Requirements and Specifications 39

Fit Table Violations
Specification Correctness P ∧ S → R Actual vs. Expected (cat. 1)
Implementation Correctness C → S Contract Violation (cat. 2)
System Correctness P ∧ C → R

Fig. 19. Interpreting Fit table violations

Fig. 20. The Espec software quality workbench

specification (via contracts) would have been flagged with a contract error in
the Fit table. In the absence of a contractual specification error that pinpoints
the faulty routine, there may either be an implementation error or specification
error. By fixing the contracts we can pinpoint the precise routine that is not
implemented correctly.

6 ESpec Tool

Fig. 20 shows the ESpec tool1 in action. The tool allows the user to write testable
customer requirements and design specifications that can be checked mechani-
cally. ESpec provides feedback to the developer for Fit table requirement tests,
Scenario Tests and unit tests as shown in the figure under a unified green bar
1 www.cse.yorku.ca/∼sel/espec

40 J.S. Ostroff and F.A. Torshizi

(i.e. if all the various tests run correctly then a green bar is displayed). The
tool also allows formal verification of implementations with respect to contracts
using a theorem prover as described in [9].

References

1. Ambler, S.: Agile Model Driven Development is Good Enough. IEEE Soft-
ware 20(5), 71–73 (2003)

2. Andronache, T.: The english language as an effective it tool. Computerworld, 18
(February 2007)

3. Barnett, M., DeLine, R., Jacobs, B., Fhndrich, M., Rustan, K., Leino, M., Schulte,
W., Venter, H.: The Spec# Programming System: Challenges and Directions. Po-
sition paper at VSTTE (2005)

4. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond Assertions: Advanced
Specification and Verification with JML and ESC/Java2. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111,
Springer, Heidelberg (2006)

5. Standish Group. Project management: The criteria for success. Software Magazine
(February 2001)

6. Hoare, C.A.R.: Proof of correctness of data representations. Acta Inf. 1, 271–281
(1972)

7. Jackson, M.: Problem frames: analyzing and structuring software development
problems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2001)

8. Mugridge, R., Cunningham, W.: Fit for Developing Software: Framework for Inte-
grated Tests. Prentice-Hall, Englewood Cliffs (2005)

9. Ostroff, J., Wang, C.-W., Kerfoot, E., Torshizi, F.A.: Automated model-based veri-
fication of object oriented code. In: Verified Theories: Theories, Tools, Experiments
(VSTTE Workshop, Floc 2006). Microsoft Research MSR-TR-2006-117 (2006)

10. Ostroff, J.S., Paige, R.F.: The Logic of Software Design. Proc. IEE - Soft-
ware 147(3), 72–80 (2000)

11. Ostroff, J.S., Paige, R.F., Makalsky, D., Brooke, P.J.: E-tester: a contract-aware and
agent-based unit testing framework for eiffel. Journal of Object Technology 4(7)
(September-October 2005)

12. Paige, R., Ostroff, J.S.: The Single Model Principle. Journal of Object Oriented
Technology 1(5) (2002)

13. Paige, R.F., Ostroff, J.S.: Developing BON as an Industrial-Strength Formal
Method (Developing BON as an Industrial-Strength Formal Method). In: Wing,
J.M., Woodcock, J.C.P., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, Springer,
Heidelberg (1999)

14. Torshizi, F.A., Ostroff, J.S.: ESpec – a Tool for Agile Development via Early
Testable Specifications. Technical Report CS-2006-04, York University, Toronto
(2006)

Proving Programs Incorrect Using a

Sequent Calculus for Java Dynamic Logic

Philipp Rümmer1 and Muhammad Ali Shah2

1 Department of Computer Science and Engineering,
Chalmers University of Technology and Göteborg University

philipp@cs.chalmers.se
2 Avanza Solutions ME, Dubai - 113116, United Arab Emirates

muhammad.ali@avanzasolutions.com

Abstract. Program verification is concerned with proving that a pro-
gram is correct and adheres to a given specification. Testing a program,
in contrast, means to search for a witness that the program is incorrect.
In the present paper, we use a program logic for Java to prove the in-
correctness of programs. We show that this approach, carried out in a
sequent calculus for dynamic logic, creates a connection between calculi
and proof procedures for program verification and test data generation
procedures. Starting with a program logic enables to find more general
and more complicated counterexamples for the correctness of programs.

Keywords: Disproving, Program logics, Program verification, Testing.

1 Introduction

Testing and program verification are techniques to ensure that programs behave
correctly. The two approaches start with complementary assumptions: when we
try to verify correctness, we implicitly expect that a program is correct and want
to confirm this by conducting a proof. Testing, in contrast, expects incorrectness
and searches for a witness (or counterexample for correctness):

“Find program inputs for which something bad happens.”

In the present paper, we want to reformulate this endeavour and instead write
it as an existentially quantified statement:

“There are program inputs for which something bad happens.” (1)

Written like this, it becomes apparent that we can see testing as a proof proce-
dure that attempts to eliminate the quantifier in statements of form (1). When
considering functional properties, many program logics that are used for veri-
fication are general enough to formalise (1), which entails that calculi for such
program logics can in fact be identified as testing procedures.

The present paper discusses how the statement (1), talking about a Java
program and a formal specification of safety-properties, can be formalised in

B. Meyer and Y. Gurevich (Eds.): TAP 2007, LNCS 4454, pp. 41–60, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

philipp@cs.chalmers.se
muhammad.ali@avanzasolutions.com

42 P. Rümmer and M.A. Shah

dynamic logic for Java [1,2]. Through the usage of algebraic datatypes, this
formalisation can be carried out without leaving first-order dynamic logic. Sub-
sequently, we use a sequent calculus for automatic reasoning about the resulting
formulae. The component of the calculus that is most essential in this setting
is quantifier elimination. Depending on the way in which existential quanti-
fiers are eliminated—by substituting ground terms, or by using metavariable
techniques—we either obtain proof procedures that much resemble automated
white-box test generation methods, or we arrive at procedures that can find more
general and more complicated solutions (program inputs) of (1), but that are
less efficient for “obvious” bugs. We believe that this viewpoint to incorrectness
proofs can both lead to a better understanding of testing and to more powerful
methods for showing that programs are incorrect.

Organisation of the Paper. Sect. 2 introduces dynamic logic for Java and de-
scribes how (1) can be formalised. In Sect. 3, we show how different versions of
a sequent calculus for dynamic logic can be used to reason about (1). Sect. 4
discusses how solutions of (1) can be represented. Sect. 5 provides further de-
tails about incorrectness proofs using the incremental closure approach. Sect. 6
discusses related work, and Sect. 7 gives future work and concludes the paper.

Running Example: Erroneous List Implementation. The Java program shown in
Fig. 1 is used as example in the whole paper. It is interesting for our purposes
because it operates on a heap datastructure and contains unbounded loops,
although it is not difficult to spot the bug in the method delete.

2 Formalisation of the Problem in Dynamic Logic

In the scope of this paper, the only “bad things” that we want to detect are
violated post-conditions of programs. Arbitrary broken safety-properties (like
assertions) can be reduced to this problem, whereas the violation of liveness-
properties (like looping programs) falls in a different class and the techniques
presented here are not directly applicable. This section describes how the state-
ment that we want to prove can be formulated in dynamic logic:

There is a pre-state—possibly subject to pre-conditions—such that the
program at hand violates given post-conditions. (2)

Dynamic Logic. First-order dynamic logic (DL) [1] is a multi-modal extension of
first-order predicate logic in which modal operators are labelled with programs.
There are primarily two kinds of modal operators that are dual to each other: a
diamond formula 〈α〉φ expresses that φ holds in at least one final state of pro-
gram α. Box formulae can be regarded as abbreviations [α] φ ≡ ¬〈α〉 ¬φ as usual.
The DL formulae that probably appear most often have the form φ→ 〈α〉ψ and
state, for a deterministic program α, the total correctness of α concerning a
precondition φ and a postcondition ψ. In this paper, we will only use dynamic
logic for Java [2] (JavaDL) and assume that α is a list of Java statements.

Proving Programs Incorrect Using a Java Dynamic Logic 43

������ ����� IntList {
�	�
��� ListNode head;
������
�� add (��� n) { ... }

/*@
@ ������ �	��������
�	

@ ����	�� !contains(n);
@*/

������
�� delete(��� n) {
ListNode cur = head, prev = head;
����� (cur != ����) {
�� (cur.val == n) prev.next = cur.next;
���� prev = cur;
cur = cur.next;

}
}

������ /*@ ��	� @*/ ����� contains(��� n) {
ListNode temp = head;
����� (temp != ����) {
�� (temp.val == n) 	���	� �	��;
temp = temp.next;

}
	���	� �����;

}
}

����� ListNode {
������ ��� val;
������ ListNode next;

}

IntList

+add(n:int)

+delete(n:int)

+contains(n:int)

ListNode

+val: int

head0..1

next0..1

Fig. 1. The running example, a simple implementation of singly-linked lists, annotated
with JML [3] constraints. We concentrate on the method delete for removing all
elements with a certain value, which contains bugs.

Updates. JavaDL features a notation for updating functions in a substitution-
like style [4], which is primarily useful because it allows for a simple and natural
memory representation during symbolic execution. For our purposes, updates can
be seen as a simplistic programming language and are defined by the grammar:

Upd ::= skip || f(s1, . . . , sn) := t || Upd |Upd || if φ {Upd} || for x {Upd}

in which s1, . . . , sn, t range over terms, f over function symbols, φ over formulae
and x over variables. The update constructors denote effect-less updates, assign-
ments, parallel composition, guarded updates and quantified updates. Updates u
can be attached to terms and formulae (like in {u} t) for changing the state in
which the expression is supposed to be evaluated:

Expression with update: Equivalent update-free expr.:
{a := g(3)} f(a) f(g(3))
{x := y | y := x + 1} (x < y) y < x + 1
{a := 3 | for x {f(x) := 2 · x + 1}} f(f(a)) 15

44 P. Rümmer and M.A. Shah

As illustrated here, it is always possible to apply updates to terms and formu-
lae like a substitution, unless a formula contains further modal operators. In
the latter case, the application has to be delayed until the modal operator is
eliminated.

2.1 Heap Representation in Dynamic Logic for Java

Reasoning in JavaDL always takes place in the context of a system of Java
classes, which is supposed to be free of compile-time errors. From this context,
a vocabulary of sorts and function symbols is derived that represents variables
and the heap of the program in question [2].

Most importantly, in JavaDL objects of classes are identified with natural
numbers. For each class C, a sort with the same name and a (injective) function
C.get : nat → C are introduced. C.get(i) is the ith object of class C (i is the in-
dex or “address”). For distinct classes C and D, C.get(i) and D.get(j) are never
the same object. Each sort C representing a class also contains a distinguished
individual denoted by null , which is used to represent undefined references. At-
tributes of type T of a class C are modelled by functions C → T . Instead of the
infix notation attr(o), we mostly write o.attr for attribute accesses.

C can be seen as a reservoir containing both those objects that are already
created and those that can possibly be created later by a program: JavaDL uses
a constant-domain semantics in which modal operators never change the do-
mains of existing individuals. In order to distinguish existing and non-existing
objects, for each class C also a constant C.nextToCreate : nat is declared that
denotes the lowest index of a non-created object. All objects C.get(i) with
i < C.nextToCreate are created, all others are not.

For the program in Fig. 1, the vocabulary is as follows:

Sorts: Functions:
IntList ,ListNode, IntList .get : nat → IntList
int ,nat , . . . ListNode.get : nat → ListNode

IntList .nextToCreate : nat
ListNode.nextToCreate : nat
head : IntList → ListNode
next : ListNode → ListNode
val : ListNode → int

2.2 Formalising the Violation of Post-conditions

We go back to (2). It is almost straightforward to formalise the part of (2) that
comes after the existential quantifier “there is a pre-state”:

¬
(

pre-conditions → 〈 statements 〉 post-conditions
)

(3)

Formula (3) is true if and only if the pre-conditions hold, the program fragment
does not terminate, or terminates and the post-conditions do not hold in the
final state.

Proving Programs Incorrect Using a Java Dynamic Logic 45

Property (2) does not mention termination, which could be interpreted in
different ways. If in (3) the box operator [α] φ was used instead of a diamond,
we would also specify that the program has to terminate for the inputs that we
search for. JavaDL does, however, not distinguish between non-termination due
to looping and abrupt termination due to exceptions (partial correctness model).
Because we, most likely, will consider abrupt termination as a violation of the
post-conditions, the diamond operator appears more appropriate.

2.3 Quantification over Program States

In order to continue formalising (2), it is necessary to close the statement (3)
existentially and to add quantifiers that express “there is a pre-state”:

∃ pre-state. {pre-state}¬
(

pre-conditions → 〈 statements 〉 post-conditions
)

(4)

Because state quantification is not directly possible in JavaDL, we use an up-
date {pre-state} to define the state in which (3) is to be evaluated. For a Java
program, the pre-state covers (i) variables that turn up in a program, and (ii) the
heap that the program operates on. Following Sect. 2.1, at a first glance this turns
out to be a second-order problem, because the heap is modelled by functions like
head , next , etc.1 A second glance reveals, fortunately, that a proper Java program
and proper pre- and post-conditions2 will only look at the values C.get(i).attr of
attributes for i < C.nextToCreate: the state of non-existing objects is irrelevant.
Quantification of C.nextToCreate and the finite prefix

C.get(0).attr , C.get(1).attr , . . . , C.get(C.nextToCreate − 1).attr

can naturally be realised through quantification over algebraic datatypes like
lists. Note, that the number of quantified locations is finite, but unbounded.

Attributes of Primitive Types. The simplest case is an attribute attr of a prim-
itive Java type. If attr has type int , the quantification can be performed as
follows:

∃ attrV : intList . {for x : nat {C.get(x).attr := attrV ↓x}} . . .

Apart from the actual quantifier, an update is used for copying the contents of
the list variable attrV to the attribute. The expression also contains an operator
for accessing lists [a0, . . . , an], which we define by

[a0, . . . , an]↓ i :=

{

ai for i ≤ n

0 otherwise
(i : nat)

The fact that the operator returns a default value (0, but any other value would
work equally well) for accesses outside of the list bounds simplifies the overall
treatment and basically renders the length of lists irrelevant. Instead of lists, one
could also talk about functions with finite support.
1 JavaDL does not provide higher-order quantification.
2 In the whole paper, we assume that pre- and post-conditions only talk about the

program state, and only about created objects.

46 P. Rümmer and M.A. Shah

Attributes of Reference Types. The quantification is a bit more involved for at-
tributes attr of type D, where D is a reference type like a class: (i) attributes
can be undefined, i.e., have value null , (ii) attributes of created objects must
not point to non-created objects, and (iii) attributes of type D can also point
to objects of type D′, provided that D′ is a subtype of D. We capture these re-
quirements by overloading the function D.get . Assuming that D0 (= D), . . . , Dk

is an arbitrary, but fixed enumeration of D’s subtypes, we define:

D.get(s, i) :=

{

Ds.get(i) for i < Ds.nextToCreate, s ≤ k

null otherwise
(s, i : nat)

Apart from the object index i, we also pass D.get(s, i) the index s of the re-
quested subtype of D. The result of D.get(s, i) is either a created object (if i
and s are within their bounds Ds.nextToCreate and k) or null . With this defin-
ition, the quantification part for a reference attribute boils down to

∃ aS , aV : natList . {for x : nat {C.get(x).attr := D.get(aS ↓x, aV ↓x)}} . . .

In case of a class D that does not have proper subclasses, the list aS can of
course be left out (and the first argument of D.get can be set to 0).

Example. We show the formalisation of (2) for the method delete in the pro-
gram of Fig. 1. Apart from the values of the attributes head , next and val , which
are treated as discussed above, one also has to quantify over the number of
created objects (IntList .nextToCreate and ListNode.nextToCreate), over the re-
ceiver o of the method invocation and over the argument n. o is assumed to
be either an arbitrary created object or null (IntList .get(0, oV)). The pre- and
post-conditions correspond to the JML specification: initially, o is not null , and
delete in fact removes the elements with value n.

∃ kIL, kLN , oV : nat . ∃nV : int . ∃ headV ,nextV : natList . ∃ valV : intList .
{IntList .nextToCreate := kIL | ListNode.nextToCreate := kLN }
{for x : nat {IntList .get(x).head := ListNode.get(0, headV ↓x)} |
for x : nat {ListNode.get(x).next := ListNode.get(0,nextV ↓x)} |
for x : nat {ListNode.get(x).val := valV ↓x} |
o := IntList .get(0, oV) | n := nV }
¬
(

o �= null → 〈 o.delete(n) 〉 〈 b = o.contains(n) 〉 b = FALSE
)

(5)

3 Constructing Proofs for Program Incorrectness

A Gentzen-style sequent calculus for JavaDL is introduced in [2], which has been
implemented in the KeY system and is used by us as test-bed. Fig. 2 shows a small
selection of the rules. Relevant for us are the following groups of rules: (i) rules
for a sequent calculus for first-order predicate logic with metavariables (the first
5 rules of Fig. 2), (ii) rules that implement symbolic execution [5] for Java (the

Proving Programs Incorrect Using a Java Dynamic Logic 47

Γ � φ, Δ Γ � ψ, Δ

Γ � φ ∧ ψ, Δ
∧r

Γ, φ,ψ � Δ

Γ, φ ∧ ψ � Δ
∧l

Γ, φ � Δ

Γ � ¬φ, Δ
¬r

Γ � φ[x/f(X1, . . . , Xn)], Δ

Γ � ∀x.φ, Δ
∀r

(X1, . . . , Xn all
metavariables in φ)

Γ � φ[x/X], ∃x.φ,Δ

Γ � ∃x.φ, Δ
∃r

(X a fresh
metavariable)

Γ, {u} {r := l} 〈. . .〉 φ � Δ

Γ, {u} 〈r = l; . . .〉φ � Δ
assign-l

(r, l side-effect-free)

Γ, {u} 〈α1; . . .〉 φ, {u} b � Δ
Γ, {u} 〈α2; . . .〉 φ � {u} b, Δ

Γ, {u} 〈if (b) α1 else α2 . . .〉 φ � Δ
if-l

(b side-effect-free)

Γ, {u} 〈if (b) {α; while (b) α} . . .〉 φ � Δ

Γ, {u} 〈while (b) α . . .〉φ � Δ
while-l

Fig. 2. Examples of (simplified) sequent calculus rules for JavaDL. In the last three
rules, the update u can also be empty (skip) and disappear. Γ and Δ denote arbitrary
sets of formulae (side-formulae).

last three rules of Fig. 2), and (iii) rewriting rules for applying and simplifying
updates (not shown here, see [4]). The rule assign-l turns a Java assignment
into an update, which subsequently can be merged with the former preceding
update u and simplified. In if-l, a case analysis for an if-statement is performed
by splitting on the branch predicate b evaluated in the current program state u.
Both rules require that expressions with side-effects are simplified first. Finally,
the rule while-l unwinds a loop once.

The fact that the calculus directly integrates symbolic execution—and covers
all important features of Java like dynamic object creation and exceptions—
is most central for us. When symbolically executing a program, the proof tree
resembles the symbolic execution tree of the program [5] and reflects the (feasible)
paths through the program. Branch predicates that describe, in terms of the pre-
state, when a certain path is taken are accumulated as formulae in a sequent.
JavaDL introduces such predicates for conditional statements and for statements
that might raise exceptions. A simple example is the following proof:

....
p + 1 ≤ 0, p ≥ 0 �

{p := p + 1} 〈〉 p ≤ 0, p ≥ 0 �
〈p = p + 1; 〉 p ≤ 0, p ≥ 0 � assign-l

....
−p ≤ 0 � p ≥ 0

{p := −p} 〈〉 p ≤ 0 � p ≥ 0
〈p = −p; 〉 p ≤ 0 � p ≥ 0

〈if (p ≥ 0) p = p + 1; else p = −p; 〉 p ≤ 0 � if-l

Symbolic execution and update application can usually be automated easily—in
contrast to reasoning in first-order logic—because in each proof situation only
few rules are applicable, and because the application order does not matter.

48 P. Rümmer and M.A. Shah

This section discusses how the sequent calculus can be used to prove formu-
lae (4). The first and essential task is always to eliminate the existential quan-
tifiers, i.e., to provide the programs inputs, which can be concrete or symbolic.
Assuming that pre- and post-conditions only talk about the program state, it
is sufficient to apply ∃r once (and not multiple times) for each quantifier in
∃ pre-state, because the validity of (4) only depends on the program fragment
and the pre- and post-conditions, not on the values of other symbols.

We focus on and propose two methods for constructing proofs: the usage of
metavariables and depth-first search (Sect. 3.2) and the usage of metavariables
and backtracking-free search with constraints (Sect. 3.3, Sect. 5). In our experi-
ments, we have concentrated on the latter method, because the implementation
KeY follows this paradigm. As a comparison, Sect. 3.1 shortly discusses how
a ground calculus would handle (4), which resembles common test generation
techniques.

3.1 Construction of Proofs Using a Ground Proof Procedure

The simplest approach is ground reasoning, i.e., to not use metavariables. There-
fore, a ground version of ∃r can be used: (t is an arbitrary term)

Γ � φ[x/t], ∃x.φ, Δ

Γ � ∃x.φ, Δ
∃rg

Equivalently, also the normal rule ∃r can be applied, immediately followed by
a substitution step that replaces the introduced metavariable X with a concrete
term t. For (4), the usage of rule ∃rg encompasses that a concrete pre-state has
to be chosen up-front that satisfies the pre-condition and makes the program
violate its post-condition. If we consider (5), for instance, we see that a proof
can be conducted with the following instantiations:

kIL kLN oV nV headV nextV valV
1 1 0 5 [0] [7] [5]

(6)

The instantiations express that the classes IntList and ListNode have one cre-
ated object each (kIL, kLN), that the object IntList .get(0) receives the method
invocation (oV) with argument 5 (nV), that IntList .get(0).head points to the
object ListNode.get(0) (headV), that ListNode.get(0).next is null (nextV , be-
cause of 7 ≥ kLN), i.e., that the receiving list has only one element, and that
ListNode.get(0).val is 5 (valV).

A ground proof of a formula (4) is the most specific description of an erroneous
situation that is possible. For debugging purposes, this is both an advantage
and a disadvantage: (i) it is possible to concretely follow a program execution
that leads to a failure, but (ii) the description does not distinguish between
those inputs (or input features) that are relevant for causing a failure and those
that are irrelevant. The disadvantage can partly be undone by looking at more
than one ground proof, and by searching for proofs with “minimal” input data
(e.g., [6]). Technically, the main advantage of a ground proof is that program

Proving Programs Incorrect Using a Java Dynamic Logic 49

∗
[P
→ 2]

P + 1 > 3, P ≥ 0 �
{p := P + 1} 〈〉 p > 3, p ≥ 0 �

{p := P} 〈p = p + 1; 〉 p > 3, P ≥ 0 �

∗
[P
→ 2]

{p := P} 〈p = −p; 〉 p > 3 � P ≥ 0

{p := P} 〈if (p ≥ 0) p = p + 1; else p = −p; 〉 p > 3 �
if-l

� ¬{p := P} 〈if (p ≥ 0) p = p + 1; else p = −p; 〉 p > 3, . . .
¬r

� ∃ pV : int . {p := pV } ¬〈if (p ≥ 0) p = p + 1; else p = −p; 〉 p > 3
∃r

Fig. 3. Proof that a program violates its post-condition p > 3. The initial (quantified)
formula is derived as described in Sect. 2. The application of updates is not explicitly
shown in the proof.

execution (and checking pre- and post-conditions) is most efficient for a concrete
pre-state. The difficulty, of course, is to find the right pre-state, which is subject
of techniques for automated test data generation. Common approaches are the
generation of random pre-states (e.g., [6]), or the usage of backtracking, symbolic
execution and constraint techniques in order to optimise coverage criteria and
to reach the erroneous parts of a program (see, e.g., [7]).

3.2 Construction of Proofs Using Metavariables and Backtracking

The most common technique for efficient automated proof search in tableau or se-
quent calculi are rigid metavariables (also called free variables) and backtracking
(depth-first search), for an overview see [8]. The rules shown in Fig. 2, together
with a global substitution rule that allows to substitute terms for metavariables
in a proof tree, implement a corresponding sequent calculus. Because, in par-
ticular, the substitution rule is destructive and a wrong decision can hinder the
subsequent proof construction, proof procedures usually carry out a depth-first
search with iterative deepening and backtrack when earlier rule applications
appear misleading.

The search space of a proof procedure can be seen as an and/or search tree:
(i) And-nodes occur when the proof branches, for instance when applying ∧r,
because each of the new proof goals has to be closed at some point. (ii) Or-nodes
occur when a decision has to be drawn about which rule to apply next, or about
a substitution that should be applied to a proof; in general, only one of the
possible steps can be taken.

Metavariables and backtracking can be used to prove formulae like (4). The
central difference to the ground approach is that metavariables can be introduced
as place-holders for the pre-state, which can later be refined and made concrete
by applying substitutions. A simple example is shown in Fig. 3, where the ini-
tial value of the variable p is represented by a metavariable P . After symbolic
execution of the program, it becomes apparent that the post-condition p > 3
can be violated in the left branch by substituting 2 for P . The right branch can
then be closed immediately, because this path of the program is not executed

50 P. Rümmer and M.A. Shah

for P = 2: the branch predicate P ≥ 0 allows to close the branch. Generally, the
composition of the substitutions that are applied to the proof can be seen as a
description of the pre-state that is searched for. A major difference to the ground
case is that a substitution also can describe classes of pre-states, because it is
not necessary that concrete terms are substituted for all metavariables.

Branch Predicates. Strictly speaking, the proof branching that is caused by the
rule if-l (or by similar rules for symbolic execution) falls into the “and-node”
category: all paths through the program have to be treated in the proof. The
situation differs, however, from the branches introduced by ∧r, because if-l

performs a cut (a case distinction) on the branch predicate {u} b. As the program
is executed with symbolic inputs (metavariables), it is possible to turn {u} b into
true or false (possibly into both, as one pleases), by applying substitutions and
choosing the pre-state appropriately. Coercing {u} b in this way will immediately
close one of the two branches.

There are, consequently, two principal ways to close (each of) the proof
branches after executing a conditional statement: (i) the program execution can
be continued until termination, and the pre-state can be chosen so that the post-
condition is violated, or (ii) one of the two branches can be closed by making
the branch predicate true or false , which means that the program execution is
simply forced not to take the represented path. Both cases can be seen in Fig. 3,
in which the same substitution P
→ 2 leads to a violation of the post-condition
in the left branch and turns the branch predicate in the right branch into true.

Proof Strategy. The proof construction consists of three parts: (i) pre-conditions
have to be proven, (ii) the program has to be executed symbolically in order
to find violations of the post-conditions, and (iii) it has to be ensured that the
program execution takes the right path by closing the remaining proof branches
with the help of branch predicates. These steps can be performed in different
orders, or also interleaved. Furthermore, it can in all phases be necessary to
backtrack, for instance when a violation of the post-conditions was found but
the pre-state does not satisfy the pre-condition, or if the path leading to the
failure is not feasible.

Example. Formula (5) can be proven by choosing the following values, which
could be found using metavariables and backtracking:

kIL kLN oV nV headV nextV valV
1 1 0 NV [0, . . .] [7, . . .] [NV , . . .]

(7)

Comparing this solution to (6), the main difference is that no concrete value
has to be chosen for nV . It suffices to state that the value of nV coincides with
the first element of the list valV : when calling delete, the actual parameter
coincides with the first element of the receiving linked list. Likewise, the parts
of the pre-state that are described by lists do not have to be determined com-
pletely: the tail of lists can be left unspecified by applying substitutions like
VALV
→ cons(NV ,VALtail) (which is written as [NV , . . .] in the table). Sect. 4
discusses how the representation of solutions can further be generalised.

Proving Programs Incorrect Using a Java Dynamic Logic 51

3.3 Construction of Proofs Using Incremental Closure

There are alternatives to proof search based on backtracking: one idea is to work
with metavariables, but to delay the actual application of substitutions to the
proof tree until a substitution has been found that closes all branches. The idea
is described in [9] and worked out in detail in [10]. While backtracking-free proof
search is, in principle, also possible when immediately applying substitutions,
removing this destructive operation vastly simplifies proving without backtrack-
ing. Because KeY implements this technique, it is used in our experiments.

The approach of [10] works by explicitly enumerating and collecting, for
each of proof goals, the substitutions that would allow to close the branch.
Substitutions are represented as constraints, which are conjunctions of unifi-
cation conditions t1 ≡ t2. A generalisation is discussed in Sect. 4. For the ex-
ample in Fig. 3, the “solutions” of the left branch could be enumerated as
[P ≡ 2], [P ≡ 1], [P ≡ 0], [P ≡ −1], . . . , and the solutions of the right branch
as [P ≡ 0], [P ≡ 1], [P ≡ 2], . . . In this case, we would observe that, for in-
stance, the substitution represented by [P ≡ 0] closes the whole proof. Gener-
ally, the conjunction of the constraints for the different branches describes the
substitution that allows to close a proof (provided that it is consistent).

When proving formulae (4) using metavariables, a substitution (i.e., pre-state)
has to be found that simultaneously satisfies the pre-conditions, violates the
post-conditions in one (or multiple) proof branches and invalidates the branch
predicates of all remaining proof branches. The constraint approach searches for
such a substitution by enumerating the solutions of all three in a fair manner.
In our experiments, we also used breadth-first exploration of the execution tree
of programs, which simply corresponds to a fair selection of proof branches and
formulae that rules are applied to. For formula (5), the method could find the
same solution (7) as the backtracking approach of Sect. 3.2.

Advantages. Compared to backtracking, the main benefits of the constraint ap-
proach are that duplicated rule applications (due to removed parts of the proof
tree that might have to be re-constructed) are avoided, and that it is possible
to search for different solutions in parallel. Because large parts of the proofs in
question—the parts that involve symbolic execution—can be constructed algo-
rithmically and do not require search, the first point is particularly significant
here. The second point holds because the proof search does never commit to
one particular (partial) solution by applying a substitution. Constraints also
naturally lead to more powerful representations of classes of pre-states (Sect. 4).

Disadvantages. Destructively applying substitutions has the effect of propagating
decisions that are made in one proof branch to the whole proof. While this is
obviously a bad strategy for wrong decisions, it is by far more efficient to verify
a substitution that leads to a solution (by applying it to the whole proof and by
closing the remaining proof branches) than to hope that the remaining branches
can independently come up with a compatible constraint. In Fig. 3, after applying
the substitution [P
→ 2] that is found in the left branch, the only work left in
the right branch is to identify the inequation 2 ≥ 0 as valid. Finding a common

52 P. Rümmer and M.A. Shah

solution of P + 1 �> 3 and P ≥ 0 by enumerating partial solutions, in contrast,
is more naive and less efficient. One aspect of this problem is that unification
constraints are not a suitable representation of solutions when arithmetic is
involved (Sect. 4).

3.4 A Hybrid Approach: Backtracking and Incremental Closure

Backtracking and non-destructive search using constraints do not exclude each
other. The constraint approach can be seen as a more fine-grained method for
generating substitution candidates: while the pure backtracking approach always
looks at a single goal when deriving substitutions, constraints allow to compare
the solutions that have been found for multiple goals. The number of goals that
can simultaneously be closed by one substitution, for instance, can be considered
as a measure for how reasonable the substitution is. Once a good substitution
candidate has been identified, it can also be applied to the proof destructively and
the proof search can continue focussing on this solution candidate. Because the
substitution could, nevertheless, be misleading, backtracking might be necessary
at a later point. Such hybrid proof strategies have not yet been developed or
tested, to the best of our knowledge.

4 Representation of Solutions: Constraint Languages

In Sect. 3.2 and 3.3, classes of pre-states are represented as substitutions or uni-
fication constraints. These representations are well-suited for pure first-order
problems [10], but they are not very appropriate for integers (or natural num-
bers) that are common in Java: (i) Syntactic unification does not treat inter-
preted functions like +, − or literals in special way. This rules out too many
constraints, for instance [X + 1 ≡ 2], as inconsistent. (ii) Unification conditions
t1 ≡ t2 cannot describe simple classes of solutions that occur frequently, for in-
stance classes that can be described by linear conditions like X ≥ 0.3

The constraint approach of Sect. 3.3 is not restricted to unification constraints:
we can see constraints in a more semantic way and essentially use any sub-
language of predicate logic (also in the presence of theories like arithmetic) that
is closed under the connective ∧ as constraint language. For practical purposes,
validity should be decidable in the language, although this is not strictly neces-
sary. The language that we started using in our experiments is a combination of
unification conditions (seen as equations) and linear arithmetic:

C ::= C ∧ C || tint = tint || tint �= tint || tint < tint || tint ≤ tint || toth = toth

in which tint ranges over terms of type int and toth over terms of other types.
The constraints are given the normal model-theoretic semantics of first-order
formulae (see, for instance, [9]):
3 Depending on the representation of integers or natural numbers, certain inequa-

tions like X ≥ 1 ⇔ X ≡ succ(X ′) might be expressible, but this concept is rather
restricted.

Proving Programs Incorrect Using a Java Dynamic Logic 53

Definition 1. A constraint C is called consistent if for each arithmetic struc-
ture (interpreting the symbols +, −, �=, <, ≤ and literals as is common over the
integers, and all other function symbols arbitrarily), there is an assignment of
values to metavariables such that C is evaluated to tt.

Example 1. Of the following constraints, C1, C2 and C3 are consistent, while
the others are not. C4 is inconsistent because the ranges of f and g could be
disjoint, C5 because f could be the identity, and C6 because 5 could be outside
of the range of the function ·↓ ·. Our constraint language does not know about
lists, so that ·↓ · is just an arbitrary function symbol in this regard.

C1 := X = 5 ∧ 2 = Y + 1 C2 := h(A, 2) = h(h(c, Y), Y + 1)
C3 := c < X ∧ d ≤ X C4 := f(X) = g(Y)
C5 := X < f(X) C6 := (ATTR↓O) = 5

We are in the process of working out details of this language—so far, we do
not know whether consistency of constraints is decidable. Using a prototypical
implementation of the constraints in KeY (as part of the constraint approach of
Sect. 3.3), it is possible to find the following solution of (5) automatically:

kIL kLN oV nV headV nextV valV
KIL KLN 0 NV [0, . . .] [E, . . .] [NV , . . .]

KIL > 0 ∧
KLN > 0 ∧
E ≥ KLN

Compared to (7), this description of pre-states is more general and no longer con-
tains the precise number of involved objects of IntList and ListNode. It is enough
if at least one object of each class is created (KIL > 0, KLN > 0). Further, the so-
lution states that IntList .get(0) receives the invocation of delete with arbitrary
argument NV , that IntList .get(0).head points to the object ListNode.get(0), that
the attribute ListNode.get(0).next is null (E ≥ KLN), i.e., the receiving list has
only one element, and that the value of this element coincides with NV .

5 Reasoning About Lists and Arithmetic

The next pages give more (implementation) details and treat some further as-
pects of the backtracking-free method from Sect. 3.3. As incremental closure
works by enumerating the closing constraints of all proof branches, the central
issue is to design suitable goal-local rules that produce such constraints, and
to develop an application strategy that defines which rule should be applied at
which point in a proof. The solutions shown here are tailored to the constraint
language of the previous section.

5.1 Rules for the Theory of Lists

For proof obligations of the form (4), the closing constraints of a goal mostly
describe the values of metavariables X1, X2, . . . over lists—the lists that in
Sect. 2.3 are used to represent program states—and usually have the form:

54 P. Rümmer and M.A. Shah

X1 = cons(X1
1 , cons(X2

1 , . . .)) ∧ X2 = cons(X1
2 , cons(X2

2 , . . .)) ∧ · · ·
∧ C(X1

1 , X2
1 , . . . , X1

2 , X2
2 , . . .)

Such constraints consist of a first part that determines to which depth the
lists X1, X2, . . . have been “expanded,” and of a part C(X1

1 , X2
1 , . . . , X1

2 , X2
2 , . . .)

(which is again a constraint, e.g. in the language from Sect. 4) that describes the
values of list elements. As each of the list elements X1

1 , X2
1 , . . . belongs to one

object of a class (following Sect. 2.3), this intuitively means that a constraint
always represents one fixed arrangement of objects in the heap. One constraint
in the language from Sect. 4 cannot represent multiple isomorphic heaps (like
heaps that only differ in the order of objects), because the constraints are not
evaluated modulo the theory of lists. As it is explained in Example 1, a con-
straint like (ATTR ↓O) = 5, telling that the value of an instance attribute is 5
for the object with index O, is inconsistent and has to be written in a more
concrete form like ATTR = cons(ATTR1, T) ∧O = 0 ∧ ATTR1 = 5.

The expansion of lists is handled by a single rule that introduces fresh metavari-
ables H , T for the head and the tail of a list. We use the constrained formula ap-
proach from [10] to remember this decomposition of a list L into two parts. A
constrained formula is a pair φ� C consisting of a formula φ and a constraint C.
The semantics of a formula φ� C that occurs in the antecedent of a sequent is
(roughly) the same as of the implication C → φ, and in the succedent the seman-
tics is C ∧ φ: intuitively, the presence of φ can only be assumed if the constraint C
holds. C has to be kept and propagated to all formulae that are derived from
φ� C during the course of a proof. If φ � C is used to close a proof branch, the
closing constraint that is created has to be conjoined with C.

The rule for expanding lists is essentially a case distinction on whether the
head (i = 0) or a later element (i > 0) of a list is accessed. An attached constraint
[L = cons(H, T)] expresses that the name H is introduced for the head of the list
and T for its tail. In practice, the rule is only applied if an expression L↓ i occurs
in the sequent Γ � Δ, where L is a metavariable. As described in Sect. 2.3, the
length of lists is irrelevant, so that the case L = nil does not have to be taken
into account:

Γ, (i = 0 ∧ (L↓0) = H)� [L = cons(H, T)] � Δ
Γ, (i > 0 ∧ (L↓ i) = (T ↓(i− 1))) � [L = cons(H, T)] � Δ

Γ � Δ
expand-list

(H, T fresh metavariables)

Fig. 4 shows an example how expand-list is used to enumerate the solutions of
the formula L↓X > 3.

By repeated application of expand-list, all list access expressions L↓ i in
a sequent can be replaced with scalar metavariables, which subsequently can
be handled with other rules for first-order logic and arithmetic. The fact that
different goals are created for all possible heap arrangements (because expand-

list splits on the value of the list index i) obviously leads to a combinatorial

Proving Programs Incorrect Using a Java Dynamic Logic 55

∗
[H > 3 ∧ C]

X = 0 � C, L↓0 = H � C, H ≤ 3 � C � ≤l

X = 0 � C, L↓0 = H � C � H > 3 � C

X = 0 � C, L↓0 = H � C � L↓X > 3

(X = 0 ∧ L↓0 = H) � C � L↓X > 3

D

D

∗
[X < 1 ∧ C]

X ≥ 1 � C, L↓X = T ↓(X − 1) � C � L↓X > 3
≥l

X > 0 � C, L↓X = T ↓(X − 1) � C � L↓X > 3

(X > 0 ∧ L↓X = T ↓(X − 1)) � C � L↓X > 3

� L↓X > 3
expand-list

Fig. 4. Example for a proof involving lists and metavariables L, T : intList , H : int ,
X : nat . We write C as abbreviation for the constraint [L = cons(H,T)]. The first so-
lution (shown here) that is produced by the proof is [L = cons(H,T) ∧ X < 1 ∧ H > 3]
and stems from the formulas X ≥ 1 � C and H ≤ 3 � C in the two branches. When
applying further rules to the proof—instead of closing it—and expanding the list more
than once, further solutions like [L = cons(H, cons(H ′, T ′)) ∧ X = 1 ∧ H ′ > 3] can be
generated. Concerning the handling of inequations in the proof, see Sect. 5.3.

explosion, however, when the number of considered objects is increased. This is
not yet relevant for programs like the one in Fig. 1. Generally, two possibilities
to handle this issue (which we have not investigated yet) are (i) to work with a
constraint language that directly supports the theory of lists, or to (ii) use the
approach suggested in Sect. 3.4 to focus on one particular heap arrangement,
ignoring isomorphic heaps. In this manner, it is, for instance, possible to simulate
the lazy-initialisation approach from [11].

5.2 Fairness Conditions

As the different branches (and formulae) of a proof are expanded completely in-
dependently when using incremental closure, it is important to choose a fairness
strategy that ensures an even distribution of rule applications. When proving
program incorrectness, there are two primary parameters that describe how far
a problem has been explored: (i) how often loops have been unwound on a branch
(the number of applications of the rule while-l from Fig. 2), and the (ii) the
depth to which lists have been expanded (the size of the heap under considera-
tion, or the number of applications of the rule expand-list from the previous
section).

In the KeY prover, automatic reasoning is controlled by strategies, which are
basically cost computation functions that assign each possible rule application
in a proof an integer number as cost. The rule application that has been given

56 P. Rümmer and M.A. Shah

the least cost (for thewhole proof) is carried out first. In this setting, we achieve
fairness in the following way:

– Applications of while-l are given the cost cw = αw · kw + ow, where kw is
the number of applications of while-l that have already been performed on
a proof branch, and αw > 0, ow are constants. This means that the cost for
unwinding a loop a further time grows linearly with the number of earlier
loop unwindings.

– Applications of expand-list are given the cost ce = αe · ke + oe, where ke

is the sum of the depths to which each of the list metavariables has been
expanded on a proof branch. This sum can be computed by considering the
constraints C that are attached to formulae φ � C in a sequent that contain
list access expressions L↓ i: one can simply count the occurrences of cons in
the terms that have to be substituted for the original list metavariables when
solving the constraint C.4

Good values for the constants αw, αe are in principle problem-dependent, but
in our experience it is meaningful to choose αe (a lot) bigger than αw. When
proving the formula (5), yielding the constraint shown in Sect. 4, we had chosen
αw = 50, ow = 200, αe = 2500, oe = −2000.

A slightly different approach is to choose a fixed upper bound either for the
number of loop unwindings or for the heap size, and to let only the other para-
meter grow unboundedly within one proof attempt. If the proof attempt fails,
the bound can be increased and a new proof is started. In the experiments so
far, we have not found any advantages of starting multiple proof attempts over
the method described first, however.

5.3 Arithmetic Handling in KeY

The heap representation that is introduced in Sect. 2.3 heavily uses arithmetic
(both natural and integer numbers). After the elimination of programs using
symbolic execution, of updates and of list expressions, the construction of solu-
tions or closing constraints essentially boils down to handling arithmetic formu-
lae. Although KeY is in principle able to use the theorem prover Simplify [12]
as a back-end for discharging goals that no longer contain modal operators and
programs, this does not provide any support when reasoning with metavariables
(Simplify does not use metavariables). In this section, we shortly describe the
native support for arithmetic that we, thus, have added to KeY.

Linear Arithmetic. Equations and inequations over linear polynomials is the most
common and most important fragment of integer arithmetic. We use Fourier-
Motzkin variable elimination to handle such formulae—inspired by the Omega
test [13], which is an extension of Fourier-Motzkin. Although Fourier-Motzkin

4 The actual computation of ce is more complicated, because smaller costs are chosen
when applying expand-list for terms L↓ i in which i is a concrete literal, or when
the rule has already been applied for the same list L earlier.

Proving Programs Incorrect Using a Java Dynamic Logic 57

does not yield a complete procedure over the integers, in contrast to the Omega
test, we have so far not encountered the need to create a full implementation of
the Omega test.

As a pre-processing step, the equations and inequations of a sequent are al-
ways moved to the antecedent and are transformed into inequations c · x ≤ s
or c · x ≥ s, where c is a positive number and s is a term. Further, in order to
ensure termination, we assume the existence of a well-ordering on the set of vari-
ables of a problem and require that x is strictly bigger than all variables in s.
Fourier-Motzkin variable elimination can then be realised by the following rule:

Γ, c · x ≥ s, d · x ≤ t, d · s ≤ c · t � Δ

Γ, c · x ≥ s, d · x ≤ t � Δ
transitivity

(c > 0, d > 0)

Apart from the rule for eliminating variables from inequations, we also have
to provide rules for generating closing constraints (using the constraint language
from Sect. 4):

[s = t]
Γ � s = t, Δ

=r

[s �= t]
Γ, s = t � Δ

=l

[s > t]
Γ, s ≤ t � Δ

≤l

[s < t]
Γ, s ≥ t � Δ

≥l

Non-Linear Arithmetic. In order to handle multiplication, division- and modulo-
operations that frequently occur in programs, we have also added some support
for non-linear integer arithmetic to KeY. Our approach is similar to that of the
ACL2 theorem prover [14] and is based on the following rule (together with the
rules for handling linear arithmetic):

Γ, s ≤ s′, t ≤ t′, 0 ≤ (s′ − s) · (t′ − t) � Δ

Γ, s ≤ s′, t ≤ t′ � Δ
mult-inequations

Often, it is also necessary to perform a systematic case analysis. The rule mult-

inequations alone is, for instance, not sufficient to prove simple formulae like
x · x ≥ 0. Case distinctions can be introduced with the following rules:

Γ, x < 0 � Δ
Γ, x = 0 � Δ
Γ, x > 0 � Δ

Γ � Δ
sign-cases

Γ, s < t � Δ
Γ, s = t � Δ

Γ, s ≤ t � Δ
strengthen

We can now prove x · x ≥ 0 by first splitting on the sign of x. The rules sign-

cases and strengthen are in principle sufficient to find solutions for arbitrary
solvable polynomial equations and inequations. Combined with the rules =r,
=l, ≤l, ≥l from above, this guarantees that the calculus can always produce
solutions and closing constraints for satisfiable sequents that (only) contain such
formulae.

6 Related Work

Proof strategies based on metavariables and backtracking are related to common
approaches to test data generation with symbolic execution, see, e.g., [5,7]. Con-
ceiving the approach as proving provides a semantics, but also opens up for new

58 P. Rümmer and M.A. Shah

optimisations like backtracking-free proof search. Likewise, linear arithmetic is
frequently used to handle branch predicates in symbolic execution, e.g. [15]. This
is related to Sect. 4, although constraints are in the present paper not only used
for branch predicates, but also for the actual pre- and post-conditions.

As discussed in Sect. 3.1, there is a close relation between ground proof pro-
cedures and test data generation using actual program execution. Constructing
proofs using metavariables can be seen as exhaustive testing, because the be-
haviour of a program is examined (simultaneously) for all possible inputs. When
using the fairness approach of limiting the size of the initial heap that is described
in Sect. 5.2, the method is related to bounded exhaustive testing, because only
program inputs up to a certain size are considered.

A technique that can be used both for proving programs correct and incor-
rect is abstraction-refinement model checking (e.g., [16,17,18]). Here, the typical
setup is to abstract from precise data flow and to prove an abstract version of
a program correct. If this attempt fails, usually symbolic execution is used to
extract a precise witness for program incorrectness or to increase the precision
of the employed abstraction. Apart from abstraction, a difference to the method
presented here is the strong correlation between paths in a program (reacha-
bility) and counterexamples in model checking. In contrast, our approach can
potentially produce classes of pre-states that cover multiple execution paths.

Related to this approach is the general idea of extracting information from
failing verification attempts, which can be found in many places. ESC/Java2
[19] and Boogie [20] are verification systems for object-oriented languages that
use the prover Simplify [12] as back-end. Simplify is able to derive counterexam-
ples from failed proof attempts, which are subsequently used to create warnings
about possible erroneous behaviour of a program for certain concrete situations.
Another example is [21], where counterexamples are created from unclosed se-
quent calculus proofs. Making use of failing proof attempts has the advantage of
reusing work towards verification that has already been performed, which makes
it particularly attractive for interactive verification systems. At the same time, it
is difficult to obtain completeness results and to guarantee that proofs explicitly
“fail,” or that counterexamples can be extracted. In this sense, our approach is
more systematic.

7 Conclusions and Future Work

The development of the proposed method and of its prototypical implementation
has been driven by working with (small) examples [22], but we cannot claim to
have a sufficient number of benchmarks and comparisons to other approaches
yet. It is motivating, however, that our method can handle erroneous programs
like in Fig. 1 (and similar programs operating on lists) automatically, which we
found to be beyond the capabilities of commercial test data generation tools
like JTest [23,22]. This supports the expectation that the usage of a theorem
prover for finding bugs (i) is most reasonable for “hard” bugs that are only
revealed when running a program with a non-trivial pre-state, and (ii) has the

Proving Programs Incorrect Using a Java Dynamic Logic 59

further main advantage of deriving more general (classes of) counterexamples
than testing methods. The method is probably most useful when combined with
other techniques, for instance with test generation approaches that can find
“obvious” bugs more efficiently.

For the time being, we consider it as most important to better understand
the constraint language of Sect. 4 for representing solutions, and, in particular,
to investigate the decidability of consistency. Because of the extensive use of
lists in Sect. 2.3, it would also be attractive to have constraints that directly
support the theory of lists. As explained in Sect. 5.1, such constraints would
introduce a notion of heap isomorphism, which is a topic that we also plan to
address. Further, we want to investigate the combination of backtracking and
incremental closure (as sketched in Sect. 3.4). A planned topic that conceptually
goes beyond the method of the present paper are proofs about the termination
behaviour of programs.

Acknowledgements

We want to thank Wolfgang Ahrendt for many discussions that eventually led to
this paper, and Tobias Nipkow for comments on an older version of the paper.
Thanks are also due to the anonymous referees for helpful comments and hints.

References

1. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
2. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-

ware: The KeY Approach. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

3. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C.: JML Reference Manual
(August 2002)

4. Rümmer, P.: Sequential, parallel, and quantified updates of first-order structures.
In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp.
422–436. Springer, Heidelberg (2006)

5. King, J.C.: Symbolic execution and program testing. Communications of the
ACM 19(7), 385–394 (1976)

6. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. ACM SIGPLAN Notices 35(9), 268–279 (2000)

7. Edvardsson, J.: A survey on automatic test data generation. In: ECSEL. Proceed-
ings of the Second Conference on Computer Science and Engineering in Linkping,
pp. 21–28 (October 1999)

8. Hähnle, R.: Tableaux and related methods. In: Robinson, A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, vol. 1, pp. 101–178. Elsevier Science B.V,
Amsterdam (2001)

9. Fitting, M.C.: First-Order Logic and Automated Theorem Proving, 2nd edn.
Springer, New York (1996)

10. Giese, M.: Incremental closure of free variable tableaux. In: Goré, R.P., Leitsch, A.,
Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 545–560. Springer,
Heidelberg (2001)

60 P. Rümmer and M.A. Shah

11. Khurshid, S., Pasareanu, C.S., Visser, W.: Generalized symbolic execution for
model checking and testing. In: Garavel, H., Hatcliff, J. (eds.) ETAPS 2003 and
TACAS 2003. LNCS, vol. 2619, pp. 553–568. Springer, Heidelberg (2003)

12. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking.
J. ACM 52(3), 365–473 (2005)

13. Pugh, W.: The omega test: a fast and practical integer programming algorithm for
dependence analysis. In: Supercomputing ’91. Proceedings of the 1991 ACM/IEEE
conference on Supercomputing, pp. 4–13. ACM Press, New York, USA (1991)

14. Kaufmann, M., Moore, J.S.: An industrial strength theorem prover for a logic based
on common lisp. IEEE Trans. Softw. Eng. 23(4), 203–213 (1997)

15. Gupta, N., Mathur, A.P., Soffa, M.L.: Automated test data generation using an
iterative relaxation method. In: SIGSOFT ’98/FSE-6. Proceedings of the 6th ACM
SIGSOFT international symposium on Foundations of software engineering, pp.
231–244. ACM Press, New York (1998)

16. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NUSMV: A new symbolic
model checker. International Journal on Software Tools for Technology Trans-
fer 2(4), 410–425 (2000)

17. Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model checking programs.
Automated Software Engineering 10(2), 203–232 (2003)

18. Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate
abstraction of C programs. In: Proceedings PLDI, pp. 203–213 (2001)

19. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended Static Checking for Java. In: Proceedings PLDI, pp. 234–245 (2002)

20. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: an
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

21. Reif, W., Schellhorn, G., Thums, A.: Flaw detection in formal specifications. In:
Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083,
pp. 642–657. Springer, Heidelberg (2001)

22. Shah, M.A.: Generating counterexamples for Java dynamic logic. Master’s thesis
(November 2005)

23. Parasoft: JTest (2006),
www.parasoft.com/jsp/products/home.jsp?product=Jtest

www.parasoft.com/jsp/products/home.jsp?product=Jtest

Testing and Verifying Invariant Based Programs
in the SOCOS Environment

Ralph-Johan Back1, Johannes Eriksson1, and Magnus Myreen2

1 Åbo Akademi University, Department of Information Technologies
Turku, FI-20520, Finland

{backrj,joheriks}@abo.fi
2 University of Cambridge, Computer Laboratory

Cambridge CB3 0FD, UK
magnus.myreen@cl.cam.ac.uk

Abstract. SOCOS is a prototype tool for constructing programs and
reasoning about their correctness. It supports the invariant based pro-
gramming methodology by providing a diagrammatic environment for
specification, implementation, verification and execution of procedural
programs. Invariants and contracts (pre- and postconditions) are eval-
uated at runtime, following the Design by Contract paradigm. Further-
more, SOCOS generates correctness conditions for static verification
based on the weakest precondition semantics of statements. To ver-
ify the program the user can attempt to automatically discharge these
conditions using the Simplify theorem prover; conditions which were
not automatically discharged can be proved interactively in the PVS
theorem prover.

Keywords: Invariant based programming, static program verification,
verification conditions, state charts.

1 Introduction

This paper presents tool support for an approach to program construction, which
we refer to as invariant based programming [1,2]. This approach differs from most
conventional programming paradigms in that it lifts specifications and invariants
to the role of first-class citizens. The programmer starts by formulating the spec-
ifications and the internal loop invariants before writing the program code itself.
Expressing the invariants first has two main advantages: firstly, they are imme-
diately available for evaluation during execution to identify invalid assumptions
about the program state. Secondly, if strong enough, invariants can be used to
prove the correctness of the program. To mechanize the second step, we have
previously developed a static checker [3], which generates verification conditions
for invariant based programs and sends them to an external theorem prover. In
this paper we continue on the topic by presenting the SOCOS tool, an effort to
extend this checker into a fully diagrammatic programming environment.

The syntax of SOCOS programs is highly visual and based on a precise di-
agrammatic syntax. We use invariant diagrams [1], a graphical notation for

B. Meyer and Y. Gurevich (Eds.): TAP 2007, LNCS 4454, pp. 61–78, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

62 R.-J. Back, J. Eriksson, and M. Myreen

describing imperative programs, to model procedures. The notation is intuitive
and shares similarities with both Venn diagrams and state charts—invariants
are described as nested sets and statements as transitions between sets. As a
means for constructing programs, the notation differs from most programming
languages in that invariants, rather than control flow blocks, serve as the primary
organizing structure.

SOCOS has been developed in the Gaudi Software Factory [4], our experimen-
tal software factory for producing research software. The tool is being developed
in parallel with the theory for incremental software construction with refinement
diagrams [5], and the project has undergone a number of shifts in focus to ac-
commodate the ongoing research. By using an agile development process [6] we
have been able to keep the software up to date with the changing requirements.

1.1 Related Work

Invariant based programming originates in Dijkstra’s ideas of constructing the
program and its proof hand in hand [7]. Invariant based programming (Reynolds
[8], Back [9,2] and van Emden [10]) takes this approach one step further, so that
program invariants are determined before the program code or even the control
structures to be used have been determined.

There exists a number of methods and tools for formal program verification,
some with a long standing tradition. Verification techniques typically include a
combined specification and programming language, supported by software tools
for verification condition generation and proof assistance. For the construction
of realistic software systems, a method for reasoning on higher levels of ab-
straction becomes crucial; some approaches, such as the B Method [11], support
correct refinement of abstract specifications into executable implementations.
This method has had success in safety-critical and industrial applications and
shows the applicability of formal methods to software systems of realistic scales.

Equipping software components with specifications (contracts) and assertions
is the central idea of Design by Contract [12]. This method is either supported
by add-on tools or integrated into the language. Most tools supporting Design
by Contract do not, however, provide static correctness checking.

A host of tools have been developed for Java and the JML specification
language, for both runtime and static correctness checking [13]. In particular,
ESC/Java2 [14] enables programmers to catch common errors by sending verifi-
cation conditions to an automatic theorem prover. However, it is fully automatic
and thus not powerful enough for full formal verification. The LOOP tool [15],
on the other hand, translates JML-annotated Java programs into a set of PVS
theories, which can be proved interactively using the PVS proof assistant. An-
other tool called JACK, the Java Applet Correctness Kit [16], allows the use of
both automatic and interactive provers from an Eclipse front end.

1.2 Contribution

Many tools for verifying programs work by implementing a weakest precondition
calculus for an existing language. Due to complex language semantics,theproof

Testing and Verifying Invariant Based Programs 63

obligations generated for invariant-enriched existing languages often become
quite elaborate. This can make it difficult to know which part of the code a con-
dition was generated from, and to see the relationship between code and proof
obligation. Rather than adding specifications and invariants to an existing lan-
guage, we start with a simpler notation for programs and their proofs, invariant
diagrams with nested invariants. Our belief is that an intuitive notation where
the proof conditions are easily seen from the program description decreases the
mental gap between programming and verification. Since the notation requires
the programmer to carefully describe the intermediate situations (invariants),
invariant based programs provide as a side effect automatic documentation of
the design decisions made when constructing the program, and are thus easier
to inspect than ordinary programs.

We describe here a tool to support invariant based programming, the SOCOS
environment, which supports the construction, testing, verification and visualiza-
tion of invariant based programs by providing an integrated editor, debugger and
theorem prover interface. An invariant based program is developed in SOCOS
in an incremental manner, so that we continually check that each increment pre-
serves the correctness of the program built thus far. Both testing and verification
techniques are used to check the correctness of program extensions. In the early
phases of development, exercising the behavior of the program with test cases
is an efficient way to detect invariant violations. To achieve higher assurance,
the programmer can perform automated static correctness analysis to prove that
some part of each invariant holds for all input. Total correctness is achieved by
proving that remaining parts of the invariants hold, using an interactive proof
assistant. Our preliminary experience indicates that the tool is quite useful for
constructing small programs and reasoning about them. It removes the tedium
of checking trivial verification conditions, it automates the run-time checking
of contracts and invariants, and it provides an intuitive visual feedback when
something goes wrong.

The remainder of this paper is structured as follows. In Section 2 we describe
the diagrammatic notations used to implement SOCOS programs and give an
overview of the SOCOS invariant diagram editor. In Section 3 we describe how
programs are compiled, executed and debugged. In Section 4 we discuss the
formal semantics of SOCOS programs and the generation of proof conditions.
Section 5 provides a use case of SOCOS as we demonstrate the implementation
of a simple sorting program. Section 6 concludes with some general observations
and a summary of on-going research.

2 Invariant Diagrams

Invariant based programs are constructed using a new diagrammatic program-
ming notation, nested invariant diagrams [1], where specifications and invariants
provide the main organizing structure. To illustrate the notation we will con-
sider as an example a naive summation program which calculates the sum of
the integers 0..n using simple iteration, accumulating the result in the program
variable sum. An invariant diagram describing this program is given in Figure 1.

64 R.-J. Back, J. Eriksson, and M. Myreen

Fig. 1. Summation program

Rounded boxes in the diagram are called situations. A situation represents
the set of program states that satisfy a given predicate. One or more boolean
expressions, all of which should hold, may be written inside the box. Further-
more, nested situations inherit the predicates of enclosing situations. Inside the
largest box in Figure 1, variables n and sum are of type integer and n is greater
than or equal to 0. Due to nesting this is also true in the middle-sized box, and
additionally the variable k is an integer between 0 and n, and the variable sum
has the value 0 + 1 + 2 + ... + k. In the most deeply nested situation, all these
predicates hold and in addition k = n.

A transition is a sequence of arrows that start in one situation and end in the
same or another situation. Each arrow can be labeled with:

1. A guard [g], where g is a Boolean expression - g is assumed when the tran-
sition is triggered.

2. A program statement S - S is executed when the transition is triggered. S
can be a sequence of statements, but loop constructs are not allowed.

To simplify the presentation and logic of transitions, we can add intermediate
choice points (forks) to branch the transition. However, joins and cycles between
choice points are not allowed. The transitions described by the tree are all the
paths in the tree, from the start situation to some end situation. A choice point
in the tree can be seen as a conditional branching statement.

It should be noted that the nesting semantics of invariant diagrams that apply
to situations do not apply to transitions. The program state is not required to
satisfy any situation while executing a transition, even if the arrow itself is drawn
inside a situation box.

In general, any situation that does not have an incoming transition is consid-
ered an initial situation. Conversely, we will consider a situation without outgo-
ing transitions a terminal situation.

To prove the correctness of a program described by an invariant diagram,
we need to prove consistency and completeness of the transitions, and that the

Testing and Verifying Invariant Based Programs 65

program cannot start an infinite loop. A transition from situation I1 to situation
I2 using program statement S is consistent if and only if I1 ⇒ wp.S.I2 where
wp is Dijkstra’s weakest-precondition predicate transformer [17]. The program
is complete if there is at least one enabled transition in each state, with the ex-
ception of terminal situations. We show that a program terminates by providing
a variant, a function which is bounded from below and which is decreased by
every cycle in the diagram. In the summation example the variant is indicated
in the upper right corner of the situation box.

The notion of correctness for invariant diagrams is further discussed in Section4
where we consider formal verification of SOCOS programs. For a more general
treatment of invariant diagrams and invariant based programming we refer to [1].

2.1 Invariant Diagrams in SOCOS

Figure 1 shows an example of a purely conceptual invariant diagram. SOCOS
diagrams, which we will use in this paper, are annotated with some additional
elements. Some restrictions have also been introduced to simplify the implemen-
tation. Figure 2 shows the equivalent summation program implemented as a
SOCOS procedure.

Fig. 2. Summation program, SOCOS syntax

Compared to the conceptual notation, the main differences are:

– The outer situation is a procedure box, which represents a procedure decla-
ration with a procedure name, parameters and local variables.

– Each situation is labeled with a descriptive name, such as LOOP for a re-
curring situation. The name is used as a general situation identifier in error
reports and generated proof conditions.

– To prove termination sufficient for one transition in a cycle to strictly decrease
the variant. Such transitions are selected by the user and rendered in the
diagram as thicker arrows. This is further discussed in Section 4.

66 R.-J. Back, J. Eriksson, and M. Myreen

– We provide an initial and a terminal situation representing the entry and
exit point of the procedure, respectively. These situations constitute the
contract of the procedure. The precondition situation is called PRE and is
additionally marked with a thick outline, while the postcondition is called
POST and marked with a double outline. Note that in the example POST is
not nested within LOOP, but instead part of the invariant is repeated. Since
the contract constitutes an external interface to other procedures, it may
only talk about the formal parameters and not, e.g., the local variable k.

– Local variables have procedural scope and it is presently not possible to
introduce new variables in nested situations.

– SOCOS supports declaration of global predicates and functions. In this case
we assume that natsum has been defined to give the sum from 0 up to its
argument, e.g. based on a recursive definition or using the direct formula
k(k+1)

2 .

The procedure is the basic unit of decomposition in SOCOS. A procedure con-
sists of two parts: an externally visible interface, and a hidden implementation.
The interface can further be divided into a signature and a contract. A signature
is a list of formal input and output parameters that describes the name, type
and qualifier of each parameter. Five primitive types (natural numbers, inte-
gers, Booleans, characters, strings) along with one composite type (array) are
presently supported; the four available parameter qualifiers are listed in Table 1.
The contract defines the obligations and benefits of the procedure as a pre- and
postcondition pair. Recursive procedures are supported. As in the case of cyclic
transitions, all procedures in a recursion cycle must provide a common variant
as part of their interfaces.

The implementation defines the structure of the internal computation that
establishes the contract. It consists of a transition diagram from the precondition
to the postcondition. Each transition can be labeled with a statement according
to the syntax:

S::= magic | abort |
x1,...,xm:=v1,...,vm |
S0;S1 |
[b] | {b} |
P (a1,...,an)

Here magic is the miraculous statement, which satisfies every postcondition.
abort represents the aborting program, which never terminates. The assignment
statement assigns a list of values v1, ..., vm to a list of variables x1, ..., xm. The;
operator represents sequential composition of two statements S0 and S1. An
assume statement [b] means that we can assume the predicate b at that point in
the transition, while an assert statement {b} tells us that we have to show that
b holds at that point in the transition. A procedure call P (a1,...,an) stands for a
call to procedure P with the actual parameters a1,...,an. The type of an actual
parameter ai depends on how the parameter type is qualified: for unqualified and
const parameters, an expression is accepted. For result and valres parameters, the

Testing and Verifying Invariant Based Programs 67

Table 1. Parameter qualifiers

Qualifier Role Keyword Description
Value In - Can be read and updated by the

implementation, but updates are not
reflected back to the caller

Constant In const Can only be read by the implementation
Value-result In, out valres Can be read as well as updated by the

implementation. Updates are not reflected
back to caller until the procedure returns

Result Out result Like value-result, but may not occur in
preconditions

actual must be a simple variable. The formal weakest precondition semantics of
these statements are the standard ones [18].

2.2 Diagram Editor

Programs are constructed in the SOCOS invariant diagram editor. A program is
represented by a collection of procedure diagrams. A screen shot of the diagram
editor is shown in Figure 3. The highlighted tab below the main toolbar indicates
that an invariant diagram is currently being edited. On the left is an outline
editor for browsing model elements, and the bottom pane holds property editors
and various communication windows.

The SOCOS diagram editor is implemented on top of another project devel-
oped in the Gaudi software factory, the Coral modeling framework [19]. Coral
is a metamodel-independent toolkit which can easily be extended to custom
graphical notations.

3 Run-Time Checking of Invariant Diagrams

3.1 Compilation

An invariant diagram is executed by compiling it into a Python program which is
executed by the standard Python interpreter. We use a simple approach for code
generation; the generated program is effectively a goto-program. Each situation
is represented by a method. The body of a situation’s method executes the
transition statements and returns a reference to the next method to be executed
as well as an updated environment (a mapping from variable names to values).
The main loop of the program is simply:

while s:
s,env = s(env)

where s is the currently executing situation and env is the environment.

68 R.-J. Back, J. Eriksson, and M. Myreen

Fig. 3. Invariant diagram editor of SOCOS

If run-time checking is enabled, invariants and assertions are evaluated during
execution of a situation’s method. For situations that are part of a cycle, the
variant is compared to its lower bound, as well as to its value in the previous
cycle to ensure that it is decreasing. If any of these checks evaluate to false, an
exception is raised. While SOCOS automatically evaluates only a pre-defined
subset of all expressible invariants (namely arithmetic expressions and Boolean
expressions containing only bounded quantifiers), it is possible to extend the
dynamic evaluation capabilities for special cases by adding a side-effect free
Python script to perform the evaluation.

3.2 Translating Conditions to Python

SOCOS uses a set of translation rules to produce an executable Python program.
In order to make the compilation easily extensible we provide the user with the
capability to define new translations. The translation of a mathematical expres-
sion is done through simple rewrite rules. The user may define new translation
rules. Here are a few of the predefined translation rules:

rule Py00[group=python] python(�) ≡ True.
rule Py03[group=python] python(a ∧ b) ≡ python(a) and python(b).
rule Py13[group=python] python(m + n) ≡ python(m) + python(n).

All translation rules are similar in shape. They push a translation function
(python above) through the expression to be translated. The translation of an

Testing and Verifying Invariant Based Programs 69

expression e is performed by repeatedly applying the rewrite rules to the expres-
sion python(e) until the function symbol python does not occur in the resulting
expression. Compilation succeeds if all expressions of the program are translated
successfully.

3.3 Debugging

SOCOS provides a graphical debugger for tracking the execution of invariant dia-
grams. A program can be run continuously or stepped through transition by tran-
sition. During execution the current program state, consisting of the procedure
call stack, the values of allocated variables and the current situation, can be in-
spected. It is possible to set breakpoints to halt the execution in specific situations.

Program execution is visualized by highlighting diagram elements in the ed-
itor. Active procedures, i.e. procedures on the call stack, as well as the current
situation and the currently executing transition are highlighted. The values of
local variables in each stack frame are displayed in a call stack view. Invariants
are evaluated at run-time and are highlighted in red, green or gray depending
on the result: for invariants that evaluate to true the highlight color is green, for
invariants that evaluate to false it is red, and if SOCOS is unable to evaluate
the invariant it is gray. The program execution is halted whenever an invariant
evaluates to false.

4 Proving Correctness of Invariant Diagrams

The SOCOS environment supports interactive and non-interactive verification
of program diagrams. It generates the verification conditions and sends them
to proof tools. At the time of writing two proof tools are supported: Simplify
[20] and PVS [21]. Simplify is a validity checker that suffices to automatically
discharge simple verification conditions such as conditions on array bounds. PVS
is an interactive proof environment in which the remaining conditions can be
proved interactively.

4.1 Verification Condition Generation

SOCOS generates verification conditions using MathEdit [3]. Three types of
verification conditions are generated: consistency, completeness and termination
conditions. All of these use the weakest precondition semantics as their basis
[17]. The consistency conditions ensure that the invariants are preserved; com-
pleteness conditions that the program is live; and termination conditions that
the program does not diverge.

Consistency

A program is consistent whenever each transition is consistent. A tran-
sition from I1 to I2 realized by program statement S is consistent iff

I1 ⇒ wp.S.I2

70 R.-J. Back, J. Eriksson, and M. Myreen

Completeness

A program is complete whenever each non-terminal situation is complete.
A situation I is complete iff

I ⇒ wp.S∗.false

where S∗ is the statement that we get from the transition tree from I
when each branching with branches [b1]; S1, . . . , [bk]; Sk is treated as an
if b→1S1 [] . . . [] b →kSk fi statement and each leaf statement is replaced
with magic 1,2.

Termination

A program does not diverge if the program graph can be divided into
subgraphs, such that the transitions in between the subgraphs constitute
an acyclic graph and each subgraph is terminating. A subgraph of the
program diagram is terminating if (i) it is acyclic or (ii) has a bounded
variant that decreases on each cycle within that subgraph.3

The cycles considered in case (ii) can consist of any number of tran-
sitions that do not increase the subgraph’s variant (v below)

I1 ∧ (v0 = v) ⇒ wp.S.(0 ≤ v ≤ v0) (1)
as long as each cycle contains one transition (indicated by the user) that
strictly decreases the subgraph’s variant:

I1 ∧ (v0 = v)⇒ wp.S.(0 ≤ v < v0) . (2)
The termination conditions are generated for the transitions that make
up cycles in the program graph.4

The interested reader is referred to [1] for a more detailed presentation of the
notion of correctness of invariant diagrams.
1 A single guard statement [b]; S1 without an alternative branch has also to be written

as an if . . . fi statement, if b → S1 fi.
2 We disregard the statements at the leaves by replacing them with miracles. A simple

example may be useful here:

The completeness condition for I in this case is:
I ⇒ wp.(if g1 → (S; if h1 → magic []h2 → magic fi) [] g2 → magic fi). false,
which is equivalent to: I ⇒ (g1 ⇒ wp.S.(h1 ∨ h2)) ∧ (g1 ∨ g2)

3 SOCOS will automatically divide the program graph into the smallest possible sub-
graphs that constitute an acyclic graph and then require that the situations within
the subgraph are annotated with identical variants.

4 Termination and consistency conditions are actually merged together so as to avoid
duplication of proof efforts. Their structure allows them to be merged: I1 ∧ (v0 =
v) ⇒ wp.S.(I2 ∧ (0 ≤ v < v0)) and similarly for the case v ≤ v0.

Testing and Verifying Invariant Based Programs 71

4.2 Interaction with External Tools

SOCOS communicates through MathEdit with external proofs tools. Interfaces
to PVS and Simplify are currently implemented in MathEdit. The interface
to Simplify is from the users point of view non-interactive. Behind the scenes
MathEdit runs an interactive session with Simplify. MathEdit sets up the log-
ical context and then checks the validity of each verification in turn, splitting
the verification conditions to pinpoint problematic cases. For a more detailed
description of the interaction with Simplify see [3].

Interaction with PVS is made simple. By clicking a button in SOCOS,
MathEdit produces a theory file containing the verification conditions and starts
PVS which opens the generated theory file. A non-interactive mode for using
PVS is also supplied. In the non-interactive mode PVS is run in batch mode
behind the scenes. PVS applies a modified version of the grind tactic to all ver-
ification conditions and reports success or failure for each verification condition.
The output is shown to the user of SOCOS.

4.3 Translation of Verification Conditions

The verification conditions are translated using rewrite rules similar to those
used for compilation into Python code. The user may define new translation
rules for translation into PVS and Simplify.

The verification conditions sent to Simplify and PVS differ in more than just
syntax. PVS has a stronger input language, which among other things supports
partial functions well. Simplify’s input language is untyped, which means that
some expressions require side conditions to ensure that they are well defined,
for example k div m requires the side condition m �= 0. We cannot guarantee
that the generated side conditions are strong enough for user defined operands.
Hence we recommend that Simplify is used for spotting bugs early in the design
and PVS is used for formal verification of the final components.

Please note that care must be taken while writing new translation rules for
the verification conditions. Mistakes in the translation rules can jeopardize the
validity of the correctness proof.

5 Example: Sorting

In this section we demonstrate how a procedure specification, consisting of a pro-
cedure interface and given pre- and postconditions, is implemented in SOCOS.
We choose a simple sorting algorithm as our case study. The focus is mainly on
the tool and how invariant based programming is supported in practice—for a
more detailed treatment of the methodology itself, we refer to [1].

5.1 Specification

We start by introducing a procedure specification consisting of a signature and
a contract. A standard sorting specification is shown in Figure 4. The procedure

72 R.-J. Back, J. Eriksson, and M. Myreen

accepts one parameter, an integer array a with N elements. Indexes are 0-based;
the first element is at position 0 and the last element is at position N − 1.
The valres keyword indicates that a is a value-result parameter. The array a is
updated by the sorting routine, but should remain a permutation of the original
array, so the postcondition relates the old and new values of a by the permutation
predicate. We use the convention of appending 0 to a parameter name to refer to
the original value of the parameter. The sorted predicate says that each element
is less than or equal to its successor in the array.

Fig. 4. A specification of a sorting procedure

A SOCOS integer array is modeled as a function from the interval [0, N) to Int,
where N is the size of the array. N is assumed to be a positive natural number.
Access to an array element at index i is defined as function application: a[i] = a.i.
We then define the predicates sorted and permutation as follows:

sorted(a, n) =̂ (∀i : Int • 0 < i ∧ i < n ⇒ a[i− 1] ≤ a[i])
permutation(a, b) =̂ (∃f • bijective.f ∧ a = b ◦ f)

Some invariants are guaranteed by the system and thus implicit. The precondi-
tion as given above is empty, however, during verification condition generation
the additional assumption a = a0 is added automatically. Furthermore, arrays
are assumed to be non-empty and have an implicit type invariant that allows us
to assume N > 0 in every situation in Sort.

5.2 Implementation

Given the above specification, the next task is to provide an executable program
which transforms any state in PRE to a state in POST. For brevity we implement
a simple sorting algorithm, selection sort, which performs in-place sorting in
O(n2) time. Selection sort works by partitioning an array into two portions, one
sorted followed by one unsorted. Each iteration of the main loop exchanges the
smallest element from the unsorted portion with the element immediately after
the already sorted portion, thus extending the sorted portion by one. The loop
terminates when no elements are left in the unsorted portion.

Testing and Verifying Invariant Based Programs 73

Fig. 5. Selection sort

The implementation SelectionSort can be seen in Figure 5; the two helper
procedures, Min and Swap, are given in Figure 6. Min finds the smallest element
in the subarray a[s..N) and returns its index, while Swap exchanges the two
elements at indexes m and n in the array a.

5.3 Testing the Implementation

We can gain an understanding of how selection sort works by implementing a
simple test case and examining the transitions between program states by single-
stepping through the call to SelectionSort in the SOCOS debugger. Figure 7
shows such a debugging session.

The current situation is highlighted with a blue outline. The LOOP situation
has been marked as a breakpoint (indicated by a red dot in the upper left
corner). This causes the execution flow to temporarily halt at this point, and
the current program state is shown in the pane to the right. Both the original
value of the array prior to the call, a0, and the partially sorted array, a, are
shown. Furthermore, invariants are evaluated and color-coded. In the absence of
a breakpoint, execution also halts whenever an invariant evaluates to false.

SOCOS can translate simple invariants automatically to Python based on
built-in rules. However, permutation is not automatically translatable, but we
can add a Python function to check whether the array xs is a permutation of
the array ys:

def permutation(xs, ys):
xs,ys = list(xs),list(ys)
xs.sort()
ys.sort()
return xs==ys

74 R.-J. Back, J. Eriksson, and M. Myreen

Swap

valres a: Int[N]
const m, n: Int

POSTPRE

a[m] = a0[n]
a[n] = a0[m]
a0[0..N) = a[0..N) except m, n
permutation(a0,a)

0 m < N 0 n < N
[]

a := a[m a[n]][n a[m]]

Fig. 6. Utility procedures Min and Swap

In addition to the code snippet we also need to provide a rewrite rule to
make SOCOS generate a call to this function whenever it encounters permutation
during evaluation of an invariant.

5.4 Verifying the Implementation

While dynamic checking of invariants is valuable in that it catches many common
programming errors, its usefulness is highly dependent on good test cases. Since
we have put much effort into writing down the invariants, we can go one step
further and attempt formal verification. In this mode, SOCOS generates veri-
fication conditions for consistency, completeness and termination as described
in the previous section. The automatic correctness checking command, Verify �
Check Correctness (Simplify), employs Simplify to attempt automatic discharg-
ing of verification conditions. If we run this command on the example, SOCOS
will tell us that Simplify was able to discharge 99.7 percent of the conditions

Testing and Verifying Invariant Based Programs 75

Fig. 7. Stepping through a test case of selection sort

Verification initiated for SelectionSort, Swap and Min.
99.7% of the verifications were proved automatically.
Condition: POST (Swap)
Assumptions:

0 < N
0 ≤ m
m < N
0 ≤ n
n < N
a0 = a

Imply:
permutation(a0, a[m
→ a[n]][n
→ a[m]])

Fig. 8. Remaining condition for Swap

(Figure 8). While all conditions for SelectionSort and Max are discharged, prob-
lems occur due to the use of permutation in Swap.

SOCOS has pinpointed a specific verification condition that we need to check.
However, since permutation is a higher-order property, we can not give a de-
finition of permutation that Simplify can use. In this situation we have two
options—firstly, we can get rid of the error temporarily by adding an assumption:
in the case of Swap we would add the assumption statement [permutation(a, a0)]
directly after the assignment statement in the transition from PRE to POST if
we believe that a[m
→ a[n]][n
→ a[m]] is indeed a permutation of a. This could
correspond to simple “belief”. During initial development of a procedure it is a
useful way of postponing proofs until the final structure of invariants has been
established. SOCOS will always warn that an assumption is being used.

76 R.-J. Back, J. Eriksson, and M. Myreen

Secondly, we can start proving the remaining conditions interactively in PVS.
Which prover to be used (PVS or Simplify) can be selected on the level of single
transitions, with Simplify being the default. In this case the PVS language is
expressive enough to allow us to provide a higher-order definition of permutation:

index: type = {i:nat|i<N}
permutation(a:index, b:index): bool =

exists(f:(bijective[index,index])): a = b o f

This definition is actually part of the SOCOS background theory which is auto-
matically loaded when PVS verification is initiated.5 In addition the background
theory includes useful, already proved lemmas about arrays and permutations
to facilitate new proofs. Given the PVS definition of permutation it is easy to
prove the remaining Swap condition interactively; however, to conserve space we
have not included the actual PVS proofs here.

6 Conclusion and Future Work

We have here presented SOCOS, a tool for constructing and verifying invariant
based programs. In the early phases of development simple errors are found by
testing. At later stages the programmer can prove, using formal reasoning, that
the program is error-free. All but the most trivial programs generate a large
number of lemmas to be proved. SOCOS translates these lemmas into the PVS
and Simplify input languages. Most of the generated lemmas are rather trivial
and automatically discharged by Simplify or the PVS grind tactic. For more
difficult lemmas, the proofs can be completed interactively in PVS.

The SOCOS system is currently in early stages and the framework is still being
worked on. Most importantly, the issues of applicability and scalability require
more attention We have so far limited our focus to programming “in the small”,
which is indeed the main target for invariant based programming. However,
to make SOCOS suitable for systems of realistic scales, support for classes and
other software decomposition mechanisms becomes critical. As a first step we are
currently adding support for object-orientation in SOCOS. Introducing objects
makes the verification problem significantly harder; the challenge here is to equip
a formalism for classes and objects with an intuitive diagrammatic notation, and
provide means for reasoning in terms of these diagrams. Refinement diagrams
[5], a diagrammatic representation of lattice theory, will provide the basis for the
SOCOS class notation.

Another issue of key importance is performance; SOCOS is currently rather
slow—generating and checking (with Simplify) the proof conditions of the ex-
ample in Section 5 takes several seconds on a modern PC.6 Replaying PVS
5 It should be pointed out that in this example a (much simpler) background theory

is also sent to Simplify; part of this theory is that permutation is reflexive—this
property explains how Simplify was able to prove the transition between PRE and
LOOP in SelectionSort.

6 2.8 GHz Intel Pentium 4 with 1 GB of random access memory.

Testing and Verifying Invariant Based Programs 77

proofs is even slower. This limits the use of SOCOS to simple programs. While
our implementation is in some cases sub-optimal, it is inevitable that automated
verification of correctness conditions is computationally taxing. We are currently
working on background checking to alleviate this problem—instead of requiring a
separate verification cycle, the proof checker runs continuously in the background
and discharges conditions as they are generated while the user is entering the
program, much like how many programming environments semantically analyze
programs as the user is typing.

We are carrying out a number of case studies in invariant based programming.
These case studies are conducted on two different levels: firstly, we are build-
ing a larger example of higher complexity with many interacting components;
secondly, we are teaching invariant based programming to a group of undergrad-
uate students, using SOCOS as the programming tool. The objective of the first
experiment is to evaluate the feasibility of the method for constructing larger
programs. In the second experiment, we explore the educational merits of in-
variant based programming—it is our belief that the direct connection to logic,
together with the use of diagrams and visualization, will make it a useful method
for teaching the use of formal methods in programming.

SOCOS currently supports basic program proof management, but does not
provide adequate facilities for managing program proofs in a way that accom-
modates continuous change. PVS proofs must be managed by hand by the user,
and if a procedure is changed, however slightly, all proofs must be replayed. It
would be desirable if the tool kept track of dependencies between program ele-
ments, and in the event of a change, only replayed proofs of possibly invalidated
transitions. A nice feature of interactive provers like PVS is that advanced proof
strategies work on the high-level structure of a formula. So, in the case of slight
changes, chances are good that an existing proof is reusable.

Finally, there is a need for a way to make incremental software extensions and
reason about their correctness. Stepwise Feature Introduction [22], a sound lay-
ered extension mechanism based on superposition refinement, is intended to be the
main method by which a SOCOS program is extended with new functionality.

References

1. Back, R.J.: Invariant based programming. In: Donatelli, S., Thiagarajan, P.S. (eds.)
ICATPN 2006. LNCS, vol. 4024, pp. 1–18. Springer, Heidelberg (2006)

2. Back, R.J.: Invariant based programs and their correctness. In: Biermann, W.,
Guiho, G., Kodratoff, Y. (eds.) Automatic Program Construction Techniques, pp.
223–242. MacMillan Publishing Company, NYC (1983)

3. Back, R.J., Myreen, M.: Tool support for invariant based programming. In: The
12th Asia-Pacific Software Engineering Conference, Taipei, Taiwan (December
2005)

4. Back, R.J., Milovanov, L., Porres, I.: Software development and experimentation
in an academic environment: The Gaudi experience. In: Bomarius, F., Komi-Sirviö,
S. (eds.) PROFES 2005. LNCS, vol. 3547, Springer, Heidelberg (2005)

5. Back, R.J.: Incremental software construction with refinement diagrams. In: Broy
Gunbauer, H., Hoare (eds.) Engineering Theories of Software Intensive Systems.

78 R.-J. Back, J. Eriksson, and M. Myreen

NATO Science Series II: Mathematics, Physics and Chemistry, pp. 3–46. Springer,
Marktoberdorf, Germany (2005)

6. Back, R.J., Milovanov, L., Porres, I., Preoteasa, V.: XP as a framework for prac-
tical software engineering experiments. In: Wells, D., Williams, L. (eds.) Extreme
Programming and Agile Methods - XP/Agile Universe 2002. LNCS, vol. 2418,
Springer, Heidelberg (2002)

7. Dijkstra, E.W.: A constructive approach to the problem of program correctness.
BIT 8, 174–186 (1968)

8. Reynolds, J.C.: Programming with transition diagrams. In: Gries, D. (ed.) Pro-
gramming Methodology, Springer, Berlin (1978)

9. Back, R.J.: Program construction by situation analysis. Research Report 6, Com-
puting Centre, University of Helsinki, Helsinki, Finland (1978)

10. van Emden, M.H.: Programming with verification conditions. In: IEEE Trans-
actions on Software Engineering, vol. SE–5, IEEE Computer Society Press, Los
Alamitos (1979)

11. Abrial, J.R., Lee, M.K.O., Neilson, D.S., Scharbach, P.N., Sorensen, I.H.: The B-
method (software development). In: Prehn, S., Toetenel, W.J. (eds.) VDM 1991.
LNCS, vol. 552, pp. 398–405. Springer, Heidelberg, Germany (1991)

12. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall, Engle-
wood Cliffs (1997)

13. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Leino, K.R.M.,
Poll, E.: An overview of JML tools and applications. International Journal on
Software Tools for Technology Transfer (STTT) 7(3), 212–232 (2005)

14. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Ex-
tended static checking for Java. In: PLDI ’02. Proceedings of the ACM SIGPLAN
2002 Conference on Programming language design and implementation, pp. 234–
245. ACM Press, New York, USA (2002)

15. van den Berg, J., Jacobs, B.: The LOOP compiler for Java and JML. In: Mar-
garia, T., Yi, W. (eds.) ETAPS 2001 and TACAS 2001. LNCS, vol. 2031, p. 299+.
Springer, Heidelberg (2001)

16. Burdy, L., Requet, A., Lanet, J.L.: Java applet correctness: A developer-oriented
approach. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805,
pp. 422–439. Springer, Heidelberg (2003)

17. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs
(1976)

18. Back, R.J., von Wright, J.: Refinement Calculus: A Systematic Introduction (Grad-
uate Texts in Computer Science). Springer, Heidelberg (1998)

19. Alanen, M., Porres, I.: The Coral Modelling Framework. In: Koskimies, K., Kuz-
niarz, L., Lilius, J., Porres, I. (eds.) NWUML’2004. Proceedings of the 2nd Nordic
Workshop on the Unified Modeling Language, Turku Centre for Computer Science,
July 2004, vol. 35, General Publications (2004)

20. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking.
J. ACM 52(3), 365–473 (2005)

21. Owre, S., Rajan, S., Rushby, J.M., Shankar, N., Srivas, M.K.: PVS: Combining
specification, proof checking, and model checking. In: Alur, R., Henzinger, T.A.
(eds.) CAV 1996. LNCS, vol. 1102, pp. 411–414. Springer, Heidelberg (1996)

22. Back, R.J.: Software construction by stepwise feature introduction. In: Bert, D.,
Bowen, J.P., Henson, M.C., Robinson, K. (eds.) B 2002 and ZB 2002. LNCS,
vol. 2272, pp. 162–183. Springer, Heidelberg (2002)

Testing and Proving Distributed Algorithms in

Constructive Type Theory

Qiao Haiyan�

Department of Computer Science
Sun Yat-Sen University

Guangzhou 510275, China
qiaohy@mail.sysu.edu.cn

Abstract. We report our experiences to verify distributed algorithms in
constructive type theory by testing and proving. Properties can be tested
to eliminate bugs before proving, thus saving expensive proof effort. Both
deadlock property and liveness property are proven after testing. The
verified algorithm can be executed in Cayenne, a functional programming
language with dependent types.

1 Introduction

We all know examples of sound looking manual proofs which turned out to be
wrong when the proof becomes long and delicate. Thus proving the correctness
of algorithms formally has become a practice because machine proofs cannot
contain subtle arguments and cannot neglect details which may contain errors.
Proving correctness of distributed algorithms can be more difficult because the
inherent complexity of the problems [15]. Proof assistants based on various the-
ories can be used to reason about algorithms. However, proving properties of
algorithms can be time consuming. Furthermore, errors in the implementation
of an algorithm or its specification may be found in later stage of proving, and
proving has to be started over from scratch after correction. Absence of coun-
terexamples also makes debugging difficult.

Testing before proving can find counter examples which make debugging eas-
ier. Eliminating possible errors in implementation and specification save proving
effort. Testing and proving are complementary. Proving can decompose a goal
into subgoals which then can be tested and proved. When f is defined in terms
of component functions f1, f2, · · ·, proving is used to decompose the property P
of the function f into sub-properties Pi of components fi and to show why Pi’s
are sufficient for P . Testing each fi with respect to Pi increases confidence in
test code coverage and locates potential bugs more precisely.

In this article we show how the dining philosophers problem can be modelled
quite naturally in Agda/Alfa, a proof assistant based on constructive type the-
ory [19]. Both the deadlock property and liveness property can be proven after
� This research is supported by the National Natural Science Foundation of China

under Grant No.60673050.

B. Meyer and Y. Gurevich (Eds.): TAP 2007, LNCS 4454, pp. 79–94, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

80 Q. Haiyan

testing. Furthermore, the verified algorithm is a program in Cayenne [1], and it
can be compiled and executed, and therefore provides a demonstration of the
protocol.

The article is organized in the following way: Section 2 is a brief introduction
to the proof assistant Agda/Alfa, Section 3 describes how testing and proving
can be done in Agda/Alfa, Section 4 introduces the dining philosophers problem,
Section 5 gives the first version of the protocol using trace semantics and shows
how some properties can be tested before proving, Section 6 gives another version
of the protocol using graph semantics, and shows how the problem is modelled
in Agda/Alfa, and how the correctness properties are proven, and finally in
Section 7 we conclude the article.

2 The Proof Assistant Agda/Alfa

This section briefly describes the proof assistant Agda/Alfa. The reader familiar
with Agda/Alfa can skip it.

Constructive type theory [19] is a theory about logic and computation. It
is based on the idea ”specifications as types” and ”proofs (or programs) as
objects”. It can be seen as a programming language and specification language
as well. As a specification language we can describe problems and properties,
and as a programming language we can write programs or proofs. Agda [6] is an
implementation of such a theory, and Alfa [16] is a window interface for Agda.
We quote from the Alfa home page [16]:

Alfa is a successor of the proof editor ALF, i.e., an editor for di-
rect manipulation of proof objects in a logical framework based on Per
Martin-Löf’s Type Theory. It allows you to, interactively and incremen-
tally, define theories (axioms and inference rules), formulate theorems
and construct proofs of the theorems. All steps in the proof construction
are immediately checked by the system and no erroneous proofs can be
constructed.

That “no erroneous proofs can be constructed” only means that a completed
proof is indeed correct. It does not help you to avoid blind alleys.

The syntax of Agda/Alfa has been strongly influenced by the syntax of Haskell
and also of Cayenne [1], a functional programming language with dependent
types. In addition to the function types a -> b available in ordinary functional
languages, there are dependent function types written (x :: a) -> b, where
the type b may depend on x :: a.

Agda/Alfa also has dependent record types (signatures) written

sig {x1 :: a1; x2 :: a2; ...; xn :: an}

where a2 may depend on x1 :: a1 and an may depend on x1 :: a1, x2 :: a2,
etc. Elements of signatures are called structures written

struct{x1 = e1; x2 = e2; ...; xn = en}

Testing and Proving Distributed Algorithms 81

Signatures are much like iterated Σ-types Σx1 :: a1.Σx2 :: a2. ... an.
and structures are much like iterated tuples (e1, (e2, ..., en)) inhabiting
them.

Furthermore, Agda/Alfa has a type Set of sets in Martin-Löf’s sense. Such
sets are built up from basic inductive data structures, using dependent function
types and signature types. A basic example is the set of natural numbers. Its
definition in Agda/Alfa is

data Nat = Zero | Succ (n :: Nat)

More generally, constructors for sets may have dependent types, see for ex-
ample the definition of finite sets in Section 7.

Remark. The reader is warned that the dependent type theory code given here
is not accepted verbatim by the Agda/Alfa system, although it is very close to
it. To get more readable notation and avoiding having to discuss some of the
special choices of Agda/Alfa we borrow some notations from Haskell, such as
writing [a] for the set of lists of elements in a. In particular, we use Haskell-
style overloading although this feature is not present in Agda/Alfa.

Predicates on a set D are propositional functions with the type D -> Set by
the identification of propositions as sets. Decidable predicates have the type
D -> Bool. To convert from decidable to general predicates we use the function

T :: Bool -> Set
T True = Truth
T False = Falsity

where Truth = Unit is the type with one element and represents the trivially
true proposition, and Falsity is the empty set representing the false proposition.

For a more complete account of the logical framework underlying Agda/Alfa
including record types see the paper about structured type theory [8] and for the
inductive definitions available in type theory, see Dybjer [10] and Dybjer and
Setzer [13,14].

3 Testing and Proving in Constructive Type Theory

Testing and proving in constructive type theory is explored in [12]. The general
points about how testing and proving help each other are:

[a] The essence of creative user interaction is the introduction of lemmas. This
is often a speculative process. If a user fails to prove a conjecture or its
hypotheses, she must backtrack and try another formulation. Testing be-
fore proving is a quick and effective way to discard wrong or inapplicable
conjectures.

[b] Analysis of failed tests gives useful information for proving. We call a coun-
terexample to a conjecture spurious if it lies outside the intended domain of
application of the conjecture. Having those at hand, the user can formulate

82 Q. Haiyan

a sharper lemma that excludes them. Genuine counterexamples on the other
hand helps locating bugs in programs or in the formalisation of intended
properties.

[c] A given goal may not be (efficiently) testable. When interaction with the
proof assistant produces testable subgoals, it is guaranteed that testing all
of them is at least as good as testing the original goal; we know that no
unintended logical gaps are introduced.

[d] Interactive proving increases confidence in the coverage and rationality of
testing. Suppose a program consists of various components and branches,
and it passes a top-level test for a property. When we try to prove the
goal, the proof assistant typically helps us derive appropriate subgoals for
the different components or branches. Testing these subgoals individually
reduces the risk of missed test cases in the top-level testing.

The basic idea of Testing is borrowed from QuickCheck [5], an automatic random
testing tool for Haskell. To test whether a boolean property

p[x1, ..., xn] :: Bool

is True for random instances of the variables x1 :: D1, ..., xn :: Dn. (The
notation p[x1,...,xn] means that the expression p may contain occurrences of
the free variables x1,...,xn. The reader is warned not to confuse this notation
with Haskell’s list notation!)

For example, if we wish to test that

reverse (reverse xs) == xs

for arbitrary integer lists xs, we write a property definition

prop_RevRev xs = reverse (reverse xs) == xs
where types = xs :: [Int]

Then we call QuickCheck

Main> quickCheck prop_RevRev
OK, passed 100 tests.

QuickCheck here uses a library test data generator for integer lists. It is also
possible for the user to define her own test data generator.

More generally, QuickCheck can test conditional properties written

p[x1,...,xn] ==> q[x1,...,xn]

where p[x1,...,xn], q[x1,...,xn] :: Bool. QuickCheck performs a
sequence of tests as follows (at least conceptually):

1. A random instance r1 :: D1, ..., rn :: Dn is generated.
2. p[r1, ..., rn] is computed. If it is False, the test is discarded and a new

random instance is generated. If on the other hand it is True, then

Testing and Proving Distributed Algorithms 83

3. q[r1, ..., rn] is computed. If it is False, QuickCheck stops and reports
the counterexample. If it is True the test was successful and a new test is
performed.

QuickCheck repeats this procedure 100 times, by default. Only tests which are
not discarded at step 2 are counted.

Another example of a QuickCheckable property is the following correctness
property of a search algorithm binSearch for binary search trees. The property
states that the algorithm correctly implements membership in binary search
trees:

isBST lb ub t ==> binSearch t key == member t key

Here t is a binary tree of type BT, the type of binary trees with integers in the
nodes; in Haskell:

data BT = Empty | Branch Int BT BT

isBST lb ub t holds if t is a binary search tree with elements strictly between
lb and ub, (see Appendix A for the definitions in Haskell).

Before we can use QuickCheck we need a suitable test data generator. A
generator for BT could be used, but is inappropriate. The reason is that most
randomly generated binary trees will not be binary search trees, so most of them
will be discarded. Furthermore, the probability of generating a binary search
tree decreases with the size of the tree, so most of the generated trees would
be small. Thus the reliability of the testing would be low. A better test case
generator generates binary search trees only.

For more information about QuickCheck, see Claessen and Hughes [5] and
the homepage http://www.cs.chalmers.se/~rjmh/QuickCheck/. Much of the
discussion about QuickCheck, both about pragmatics and concerning possible
extensions seems relevant to our context.

We have extended Agda/Alfa with a testing tool similar to QuickCheck, a tool
for random testing of Haskell programs. However, our tool can express a wider
range of properties and is integrated with the interactive reasoning capabilities
of Agda/Alfa.

Our testing tool can test properties of the following form:

(x1 :: D1) -> ... -> (xn :: Dn[x1, ..., x(n-1)]) ->
T (p1[x1, ..., xn]) -> ... -> T (pm[x1, ..., xn]) ->
T (q[x1, ..., xn])

Under the identification of ’propositions as types’, this reads

∀x1 ∈ D1. · · · ∀xn ∈ Dn[x1, · · · , xn−1].

p1[x1, · · · , xn] =⇒ · · · =⇒ pm[x1, · · · , xn] =⇒
q[x1, · · · , xn]

This is essentially the form of properties that QuickCheck can test, except that
in dependent type theory the data domains Di can be dependent types.

84 Q. Haiyan

The user chooses an option “test” in one of the menus provided by Alfa. The
plug-in calls a test data generator and randomly generates a number of cases for
which it checks the property.

Consider again the correctness property of binary search. It is the following
Agda/Alfa type (using Nat rather than Int for simplicity):

(lb, ub, key :: Nat) -> (t :: BT) -> T (isBST lb ub t) ->
T (binSearch t key == member t key)

If testing fails, a counterexample is returned. For example, if we remove the
condition T (isBST lb ub t), then the property above is not true any more,
and the plug-in will report a counterexample.

4 The Dining Philosophers Problem

The dining philosophers problem is a classical multi-process synchronisation
problem. Five (or some other number) philosophers spend their whole lives think-
ing and eating. The philosophers sit at a round table. In the centre of the table
is a bowl of rice, and the table is laid with five chopsticks between philosophers.
When a philosopher thinks, he does not interact with his colleagues. From time
to time, a philosopher gets hungry and tries to pick up the two chopsticks that
are closest to him. A philosopher may pick up only one chopstick at a time.
When he obtains his two chopsticks at the same time, he eats without releasing
his chopsticks. When he is finished eating, he puts both his chopsticks down and
starts thinking again.

A solution to the Dining Philosophers’ Problem is an algorithm which each
philosopher follows and ensures that the hungry philosophers will eventually eat.
A solution must be

– deadlock free: if at any time there is a hungry philosopher then eventually
some philosophers will eat, and

– lockout free: every hungry philosopher eventually gets to eat.

5 Dining Philosophers, the Version Using Trace
Semantics

In this section we formalise the protocol using trace semantics [7], then show
how some properties can be tested and then proved.

5.1 The Protocol

Suppose that we have a set of philosophers P. There is a relation
s :: P -> P -> Bool meaning if two philosophers are neighbors.

There are three possible events for every philosopher, which are modelled by
the following set:

data Ev = G (a::P) | E (a::P) | L (a::P)

Testing and Proving Distributed Algorithms 85

whose meaning is G a: a goes to the table, E a: a starts eating, and L a: a
leaves the table.

The protocol is defined via some observation functions on the traces of the
system, which are lists of events:

Evt = List Ev

We have the following observation functions:

eat :: Evt -> P -> Bool
eat [] p = False
eat (G a : xs) p = eat xs p
eat (E a : xs) p = eat xs p || a == p
eat (L a : xs) p = eat xs p && a /= p

where eat evt p represents that p is eating.

table :: Evt -> P -> Bool
table [] p = False
table (G a : xs) p = table xs p || a == p
table (E a : xs) p = table xs p
table (L a : xs) p = table xs p && a /= p

where table evt p represents that p is at the table.
R s evt a b represents that both a and b are hungry but b has priority over a:

R :: (s :: P -> P -> Bool) -> Evt -> P -> P -> Bool
R s [] a b = False
R s (G a’ : xs) a b = R s xs a b || (a’ == a && table xs b && s a’ b)
R s (E a’ : xs) a b = R s xs a b
R s (L a’ : xs) a b = R s xs a b && a’ /= b

A possible trace is also called a state of the system. The possible traces we are
interested in are called valid, and are defined recursively:

val :: (s :: P -> P -> Bool) -> Evt -> Bool
val s [] = True
val s (e : es) = val s es && pos s es e

where pos s xs x means that the event e is possible in the state es:

pos :: (s :: P -> P -> Bool) -> Evt -> Ev -> Bool
pos s es (G a) = not (table es a)
pos s es (E a) = table es a && fa (\h -> not (R s es a h))
pos s es (L a) = eat es a

where fa is supposed to be a forall function on P:

fa :: (P -> Bool) -> Bool

86 Q. Haiyan

5.2 Testing and Proving Safety Properties of the Protocol

We will prove the following safety properties of the system:

1. No neighbors are eating simultaneously;
2. No deadlock, i.e. the relation R s es is acyclic for any valid trace es

Let us first look at the first property, which takes the following form

(s :: P -> P -> Bool) -> (evt :: Evt) -> T(val evt) -> (x,y :: P)
-> T(s x y) -> T(not(eat evt x && eat evt y))

To make this property testable, P must be a concrete finite set because of the
function fa. We will take F5 (the set with five elements) as P:

data F5 = r0 | r1 | r2 | r3 | r4

To use the testing tool, we will need to write some generators for those para-
meter types, i.e. F5, Evt and F5 -> F5 -> Bool. The generator for F5 has the
following type:

genF5 :: Rand -> F5

where Rand is the type of random seeds which is implemented as the set of trees
with random natural numbers for simplicity.

data Rand = Leaf Nat | Node Nat Rand Rand

A possible generator is

genF5 :: Rand -> F5
genF5 (Leaf n) = fre5 n
genF5 (Node n l r) = fre5 n

where fre5 n takes the ith element ri if mod n 5 == i.
Similarly, we can write a generator for Evt:

genEvt :: Rand -> Evt
genEvt (Leaf n) = Nil
genEvt (Node n l r) = (genEv l) : genEvt r

where genEv is a generator for Ev.
A possible generator for genPPB is

genPPB :: Rand -> F5 -> F5 -> Bool
genPPB r a b = genBool r

We now can invoke the testing tool. It will generate test cases and check if
the property holds.

Testing showed that there was a counterexample, that is when x == y. This
is of course not a counter example. So we add the condition x /= y, and refor-
mulate the property as follows:

Testing and Proving Distributed Algorithms 87

(s :: F5 -> F5 -> Bool)-> (evt :: Evt)-> T(val s evt)
-> (x,y :: F5) -> T (s x y && not (x == y))
-> T(not(eat evt x && eat evt y))

Now the property passed the test.
The acyclic property has the following form

(s :: P -> P -> Bool) -> (evt :: Evt) -> T(val s evt)
-> T (acyclic s evt)

where

acyclic (s :: P -> P -> Bool)(evt :: Evt) :: Bool =
fa (\(x :: P) -> not(R s evt x x))

This property passed the test.
Having tested the properties, we can now try to prove the properties by in-

duction on evt. The proofs are short in these cases.
The liveness property is formulated as follows

(a :: P) -> (evt :: Evt) -> T(val s evt) -> T(table evt a)
-> Sigma Evt (\(h :: Evt) -> T(extend evt h && eat h a))

where extend evt h means that evt is an initial of h.
The property cannot be tested directly. However, we can test the following

property:

(a :: P) -> (evt :: Evt) -> T(val s evt) -> T(table evt a)
-> (h :: Evt) -> T(extend evt h) -> T(not(eat h a))

Any counterexample to this property gives a solution to the liveness property.
We may also want to check that if some philosopher is eating, then he must

be at the table.

(s :: P -> P -> Bool)-> (evt :: Evt) -> T(val s evt)
-> (x :: P) -> T (eat evt x) -> T(table evt x)

This property passed the test and the proof is done by induction on evt.

6 Modelling the Protocol Using Graph Semantics

6.1 Precedence Graphs

We will describe our problem by using a graph model of conflict [4]. A distributed
system is represented by an undirected graph G with a one-to-one correspon-
dence between vertices in G and processes in the system. An edge (u, v) is in G
if and only if there may be a conflict between vertices u and v. We assume that
there is some mechanism that, in every state of the system, ascribes a prece-
dence ordering to every pair of potentially conflicting processes so that one of

88 Q. Haiyan

the processes in the pair has precedence over the other. If there is a conflict
between a pair of processes, the process with the lower precedence must yield to
the process with greater precedence in finite time.

We represent precedences between pairs of potentially conflicting processes
by directed edges: an edge in G is directed from the process with less precedence
toward the process with greater precedence. We call G a precedence graph.

A directed graph is a pair (A, R), where A is the set of nodes and R is a
relation on A. When the set of nodes is clear, we will simply say a graph is a
relation on the set of nodes.

We will assume the following on the graph (A, R):

1. there is a decidable equality on A, i.e. for any two nodes we can decide if
they are the same node;

2. there is a reversing operation on relations on A;
3. the relation R is well-founded, i.e. there is no infinite descending chains.

Under these assumptions, we define a distributed algorithm on directed graphs:
for any node u, if it is a sink, then reverses all the edges which are incident to
u, otherwise do nothing.

We will use R
′

to denote the resulting relation after the above operation on
R, and R(m) to the result after iterating the operation m times.

We will prove the following:

1. If R is well-founded, then it is acyclic, i.e. there is no path from a node to itself.
2. If R is acyclic, then R′ is also acyclic, thus any R(m) is also acyclic for any

m (safety property).
3. If R is well-founded, then for any node u, there exists a natural number m

such that u is a sink in R(m)(liveness property).

Thus, deadlock and liveness properties are proved.

6.2 Modelling the Problem in Agda/Alfa

We will think of a relation on A as a function from elements of A to subsets
of A, the set of elements of A to which it is related. We use List A to model
subsets of A. So a relation on A has the following type:

R :: A -> List A

where R u is interpreted as a multi-set, consisting of the successors of u.
The membership relation a ∈ S is easily defined:

isIn :: A -> List A -> Bool
isIn a s =

case s of
(Nil) -> False
(Cons x xs) -> eq a x || isIn a xs

IsIn (a :: A)(s :: List A) :: Set = T (isIn a s)

Testing and Proving Distributed Algorithms 89

where eq :: A -> A -> Bool is the decidable equality on A. We will also use
Nxt R a b to denote (a, b) ∈ R.

A node u is a sink in R if R u is the empty list:

sink (R :: Rel A)(a :: A) :: Bool = null A (R a)

If u is a sink in R, then by reversing all the edges incident to u the resulting
graph R1 is such a relation: R1u will be R−1u, otherwise R1v is Rv−{u}, which
is the set deleting u from Rv.

The distributed algorithm to perform ’reversing all sinks’ is the following
function:

revSinks :: Rel A -> Rel A
revSinks R =

if (List A) (sink R h) (rev R h) (deleSinks (R h) R)

where rev R will be R−1, the operation to reverse all edges, and deleSinks
perform the operation to delete all sinks from any R h:

deleSinks :: List A -> Rel A -> List A
deleSinks h R =

case h of
(Nil) -> Nil;
(Cons x xs) -> let ys :: List A = deleSinks xs R

in if (List A) (sink R x) ys (Cons x ys)

6.3 Proving the Safety Property

We can prove the following facts:

1. if b is a sink in R, then (a, b) �∈ R
′
for any a ∈ A;

2. if (b, a) ∈ R and a is not a sink in R, then (b, a) ∈ R
′
;

3. if (b, a) �∈ R and a is not a sink in R, then (b, a) �∈ R
′

These properties are formulated as follows:

(R :: Rel A) -> (b :: A) -> (q :: Sink R b) ->
(a :: A) -> Not (IsIn b (revSinks R a))

(R :: Rel A) -> (a, b :: A) -> (p :: IsIn a (R b))
-> (q :: Not (Sink R a)) -> IsIn a (revSinks R b)

(R :: Rel A) -> (a, b :: A) -> (p :: Not(Sink R a))
-> (q :: Not(IsIn b (R a)))
-> Not(IsIn b ((revSinks R) a))

These properties have the testable form and can be tested for some concrete
A before proving.

To prove that acyclic is an invariant of the operation (′) we introduce the
notion of pathes:

90 Q. Haiyan

data Path (R :: A -> List A)(a, b :: A) =
Pedge (h :: Nxt R a b)

| Parc (c :: A) (h :: Nxt R a c)(h’ :: Path R c b)

and the notion of acyclic:

Acyclic (R :: Rel A) :: Set = (a :: A) -> Not (Path R a a)

Then the invariant is proved by the fact that if there is a ring in R
′
, then it

is already in R because no edge was reversed on the ring as no node was a sink
on the ring.

(R :: Rel A) -> (p :: Acyclic R) -> Acyclic (revSinks R)

and hence

(R :: Rel A) -> (p :: Acyclic R)
-> (m :: Nat) -> Acyclic (rept_revSinks R m)

6.4 Proving the Liveness Property

To prove that every node will become a sink, we will use the assumption that R
is well-founded and use well-founded induction. Intuitively, if for all (a, b) ∈ R,
b becomes a sink in R(mb), then a will becomes a sink in R(m) if a is not a sink
in any R(i) for any i < m, where m = max{mb}.

The function max is defined on subsets in the following way:

max :: (l :: List A) -> (f :: (a :: A) -> (p :: IsIn a l) -> Nat) -> Nat
max l f = max’ (map2 l f)

where max′ takes a set of naturals and returns the maximum and map2 maps a
function on a subset of A, on which the function is defined to natural numbers,
to a set of natural numbers:

map2:: (l :: List A) -> (f :: (a :: A) -> IsIn a l -> Nat)-> List Nat

We need to prove that the function max really returns the maximum in the
set:

(l :: List A) -> (f :: (a :: A) -> (p :: IsIn a l) -> Nat)
-> (a :: A) ->(q :: IsIn a l) -> LessOrEq (f a q) (max l f)

Notice that a function with a proof argument is involved in the definition of
max, we will need to prove that proof argument is irrelevant during the compu-
tation of the maximum by the following properties:

(l :: List A) -> (f :: (a :: A) -> (p :: IsIn a l)-> Nat)
-> (a :: A) -> (p, q :: IsIn a l) -> T(eqNat (f a p)(f a q))

(xs :: List A) -> (f :: (a :: A) -> (p :: IsIn a xs) -> Nat)

Testing and Proving Distributed Algorithms 91

-> (g :: (a :: A) -> (p :: IsIn a xs) -> Nat)
-> (r :: (a :: A) -> (p :: IsIn a xs)
-> (q :: IsIn a xs) -> T(eqNat (f a p)(g a q)))
-> T(eqNat (max xs f)(max xs g))

We use the fact that if u is not a sink in any R(i) (0 ≤ i ≤ m), then R(i+1) ⊆
R(i) (0 ≤ i ≤ m).

(R :: Rel A) -> (p :: WF R) -> (a :: A)
-> Sigma Nat (\(h :: Nat) -> T(empty (rept_revSinks R h a)))

This property cannot be tested directly because there is an existential quan-
tifier . However, we could test the following negation, and a counter example for
the negation gives a solution to the property above:

(R :: Rel A) -> (p :: WF R) -> (a :: A)
-> (h :: Nat) -> T(not(empty (rept_revSinks R h a)))

provided we can write generators for dependent types WF R, which defines the
well-foundedness for relations. In this case, however, generating a proof that R
is well-founded is not that easy.

We have assumed there is a reversing operation on relations R−1, which will
require that the set A must be finite for the reversing operation constructed.
Then well-foundedness will be equivalent to acyclicity of relations on finite sets.

We have chosen our representation of relations to make sinks and sources
more explicit, and after every run of the algorithm a sink becomes a source and
the algorithm is distributed. The price we pay for the representation is that we
have an expensive reversing operation R−1.

We can run the verified Agda/Alfa program in Cayenne, a programming lan-
guage with dependent types.

For example, for n = 5, the relation is defined as:

R5 :: (Fin n5) -> List (Fin n5);
R5 = \ (h :: Fin n5) -> case h of {

(One) -> r52: Nil;
(Next h1) -> case h1 of {

(One) -> r53: Nil;
(Next h2) -> case h2 of {

(One) -> Nil;
(Next h3) -> case h3 of {

(One) -> r53 : Nil;
(Next h4) -> One : r54: Nil; }}}};

or

R5: 1->2; 2->3; 3->[]; 4->3; 5->1,4

meaning that the five elements are 1, 2, 3, 4, 5, and 1 is related to 2, and 3
is related to nothing (a sink), and so on.

Running revSinks on R5 repeatedly, we get

92 Q. Haiyan

1->2; 2-> []; 3->2, 4; 4-> []; 5->1, 4
1-> []; 2->1, 3; 3-> []; 4->3, 5; 5->1
1->2, 5; 2-> []; 3->2, 4; 4-> 5; 5-> []
1-> []; 2->1, 3; 3->4; 4-> []; 5->1, 4
1->2, 5; 2->3; 3-> []; 4->3, 5; 5-> []
1->2; 2-> []; 3->2, 4; 4-> []; 5->1, 4

After the first round, for example, nodes 2 and 4 become sinks.
We have used lists to represent graphs. Alternatively, we could use matrixes

to represent graphs. Then reversing a sink will be done by switching the corre-
sponding line and column.

swap_rc ::(r :: Matrix) -> (i:: A) -> Matrix
swap_rc r i =

\(h::A) -> \(h’::A)
-> if Bool ((eqA h i)|| (eqA h’ i)) (r h’ h) (r h h’)

where

Matrix :: Set = A -> A -> Bool

and the function if has the type of the two branches as its first argument:

if :: (a::Set) -> Bool -> a -> a -> a

The algorithm will be

revSinks :: Matrix -> Matrix
revSinks h = \(h’::Fi n) -> \(h0::Fi n) ->

if Bool (notsink h h’ && notsink h h0) (h h’ h0) (h h0 h’)

In this representation, we have a cheap reversing operation R−1, but it is not
so clear a sink becomes a source after the operation.

7 Related Work and Future Work

We have shown how a distributed protocol can be modelled using both trace
semantics and graph semantics quite naturally in constructive type theory, and
both safety properties and liveness property can be tested and proven. Testing
before proving can eliminate errors and thus prevent doing unsuccessful proofs.
Safety properties can be tested directly and liveness property can be tested by
testing a negation property. Verified code can be executed and gives a demon-
stration of the protocol.

Considerable work has been done on verification of distributed systems by
using general proof checkers e.g. Coq, HOL, Isabelle, Lego etc. and other frame-
work, here we mention a few [3,15,21]. Our work should be compared to those
using testing and proving. Combining testing and proving for Haskell program
verification is part of the objective of the Cover project at Chalmers University

Testing and Proving Distributed Algorithms 93

of Technology [9], which aims at combining verification methods including test-
ing, model checking automatic theorem and interactive theorem proving. The
idea of combining proving and testing is also part of the Programatica project
currently under development at Oregon Graduate Centre [20]. Some early work
on combining proving and testing was done by Hayashi, who used testing to
debug lemmas while doing proofs in his PX-system [17]. Hayashi is currently
pursuing the idea of testing proofs and theorems in his foundationally oriented
project on “proof animation” [18]. Dybjer, Qiao and Takeyama [12] explored
using testing and proving for algorithm verification in type theory. Testing and
proving is also used in Isabelle/HOL [2].

It will be interesting to look at more case studies to see how often and how
much we can test in the process of distributed program verification. Future
work would also include generators for dependent types that appear in this
context [11]. We have only used generators for simple types in this article. In
general, we will need generators for dependent types. For example, F5 could be
defined as a simple type, as we did in this article. We could also define a family
of types (or a dependent type), for which F5 is an instance.

Fin (m::Nat) :: Set
= case m of {

(Zero) -> Empty;
(Succ m’) -> data One | Next (Fin m’);}

In this case, we could define a generator for Fin n for any n which is not
Zero. However, generators for dependent types turn out to be more difficult in
general. It will also be interesting to see if generators for some simple types and
dependent types can be generated themselves.

References

1. Augustsson, L.: Cayenne: a language with dependent types. In: Berman, M.,
Berman, S. (eds.) Proceedings of the third ACM SIGPLAN International Con-
ference on Functional Programming (ICFP-98). ACM SIGPLAN Notices, vol. 34,
1, pp. 239–250. ACM Press, New York (1998)

2. Berghofer, S., Nipkow, T.: Random testing in Isabelle/HOL. In: Cuellar, J., Liu, Z.
(eds.) Software Engineering and Formal Methods (SEFM 2004), IEEE Computer
Society Press, Los Alamitos (2004)

3. Chou, C.-T.: Mechanical verification of distributed algorithms in higher-order logic.
In: Melham, T.F., Camilleri, J. (eds.) Higher Order Logic Theorem Proving and
Its Applications. LNCS, vol. 859, pp. 158–176. Springer, Heidelberg (1994)

4. Chandy, K.M., Misra, J.: The drinking philosopher’s problem. ACM Transactions
on Programming Languages and Systems 6(4), 632–646 (1984)

5. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: Proceedings of the ACM SIGPLAN International Conference
on Functional Programming (ICFP-00), NY, september 18–21, 2000. ACM Sigplan
Notices, vol. 35.9, pp. 268–279. ACM Press, New York (2000)

6. Coquand, C.: The Agda homepage, http://www.cs.chalmers.se/~catarina/agda

http://www.cs.chalmers.se/~catarina/agda

94 Q. Haiyan

7. Coquand, T.: Inductive definitions and type theory: an introduction,
http://www-sop.inria.fr/certilab/types-sum-school02/Lnotes/

8. Coquand, T., Pollack, R., Takeyama, M.: A logical framework with dependently
typed records. In: Hofmann, M.O. (ed.) TLCA 2003. LNCS, vol. 2701, pp. 105–119.
Springer, Heidelberg (2003)

9. Cover - combining verification methods in software development,
http://www.coverproject.org/

10. Dybjer, P.: Inductive families. Formal Aspects of Computing 6(4), 440–465 (1994)
11. Dybjer, P., Haiyan, Q., Takeyama, M.: Random generators for dependent types.

In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 341–355. Springer,
Heidelberg (2005)

12. Dybjer, P., Haiyan, Q., Takeyama, M.: Combining testing and proving in depen-
dent type theory. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758,
Springer, Heidelberg (2003)

13. Dybjer, P., Setzer, A.: A finite axiomatization of inductive and inductive-recursive
definitions. In: Girard, J.-Y. (ed.) TLCA 1999. LNCS, vol. 1581, pp. 129–146.
Springer, Heidelberg (1999)

14. Dybjer, P., Setzer, A.: Indexed induction-recursion. In: Kahle, R., Schroeder-
Heister, P., Stärk, R.F. (eds.) PTCS 2001. LNCS, vol. 2183, Springer, Heidelberg
(2001)

15. Groote, J.F., Monin, F., van de Pol, J.: Checking verifications of protocols and
distributed systems by computer. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR
1998. LNCS, vol. 1466, pp. 629–655. Springer, Heidelberg (1998)

16. Hallgren, T.: The Alfa homepage, http://www.cs.chalmers.se/~hallgren/Alfa
17. Hayashi, S., Nakano, H.: PX, a Computational Logic. MIT Press, Cambridge (1988)
18. Hayashi, S., Sumitomo, R., Shii, K.-i.: Towards animation of proofs - testing proofs

by examples. Theoretical Computer Science 272, 177–195 (2002)
19. Nordström, B., Petersson, K., Smith, J.M.: Programming in Martin-Löf type the-

ory: an introduction. Oxford University Press, Oxford (1990)
20. Programatica: Integrating programming, properties, and validation,

http://www.cse.ogi.edu/PacSoft/projects/programatica/
21. Vaandrager, F.W.: Verification of a distributed summation algorithm. In: Apt, K.R.,

Schrijver, A., Temme, N.M. (eds.) From Universal Morphisms to Megabytes – a
Baayen Space Odyssey, Amsterdam, pp. 593–608. CWI (1994)

http://www-sop.inria.fr/certilab/types-sum-school02/Lnotes/
http://www.coverproject.org/
http://www.cs.chalmers.se/~hallgren/Alfa
http://www.cse.ogi.edu/PacSoft/projects/programatica/

Automatic Testing from Formal Specifications�

Manoranjan Satpathy1,��, Michael Butler2, Michael Leuschel3, and S. Ramesh4

1 Department of Information Technologies, Abo Akademi University
Joukahaisenkatu 3-5, FIN-20520 Turku, Finland

2 School of Electronic and Computer Science, University of Southampton
Highfield, Southampton, SO17 1BJ, UK

3 Institute of Informatik, Heinrich-Heine Universitat Duesseldorf
Universitatsstr. 1, D-40225 Duesseldorf

4 General Motors India Science Lab
International Tech Park, Whitefield Road, Bangalore – 560066

mannu.satpathy@abo.fi, mjb@ecs.soton.ac.uk,
leuschel@cs.uni-duesseldorf.de, s.ramesh@gm.com

Abstract. In this article, we consider model oriented formal specifica-
tion languages. We generate test cases by performing symbolic execution
over a model, and from the test cases obtain a Java program. This Java
program acts as a test driver and when it is run in conjunction with the
implementation then testing is performed in an automatic manner. Our
approach makes the testing cycle fully automatic. The main contribution
of our work is that we perform automatic testing even when the models
are non-deterministic.

Keywords: Model Based Testing, B-Method, Non-determinism.

1 Introduction

Software models are usually built to reduce the complexity of the development
process and to ensure software quality. A model is usually a specification of the
system which is developed from the requirements early in the development cycle
[5]. In this paper, we consider model oriented formal specification languages like
Z [22], VDM [12] , B [1] and ASM [9]. By model oriented we mean that system
behaviour is described using an explicit model of the system state along with
operations on the state.

A formal model can be subjected to symbolic execution to obtain a cover-
age graph in which nodes represent instantiated states and edges are labeled
with operation applications. One can then select a finite set of finite behaviours
from the coverage graph and test if the implementation is consistent with these
behaviours. This approach is often termed as model based testing [6]. Model
based testing though is an incomplete activity; the selected behaviours could be

� Work done within the EU research project Rodin, IST 511599.
�� Currently at the General Motors India Science Lab (ISL), Bangalore; part of this

work was done when the author was visiting GM ISL during Summar’05.

B. Meyer and Y. Gurevich (Eds.): TAP 2007, LNCS 4454, pp. 95–113, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

96 M. Satpathy et al.

A

Root

Fig. 1. Non-determinism Scenario

enriched to capture interesting aspects of the system and hence the success of
their testing would give us confidence about the correctness of the system.

In this paper, we discuss automatic testing of an implementation or the sys-
tem under test (SUT) written in accordance with a formal model in B [1]. Our
method first generates a set of test cases from the model, and then from the
test cases a test driver. The test driver is essentially a program in the target
language. If this driver is plugged into the implementation, then testing can be
performed automatically. It invokes all of the test cases generated from the model
and reports about their success or failure. Our method does not require the im-
plementation source to be available, and the entire testing cycle is automatic.
The main contribution of our work is that our approach can perform automatic
testing even if there is non-determinism in the model or in the implementation.

The basic idea behind the handling of non-determinism can be seen from
Figure 1. Assume the solid lines in the figure show the full state space of a model
in which branchings may be due to non-determinism. A correct implementation
of this model must follow one of the paths in the figure, and for testing, we must
know which path the SUT has taken. In our strategy, we maintain a generic
representation of the possible paths that a model can take. Whenever the SUT
makes a choice corresponding to a non-determinism in the model, we require
that it makes this choice visible, and then this choice must satisfy a set of
constraints which means that the implementation is not deviating from the model
behaviour. Furthermore, the test driver uses the implementation choices to align
the implementation trace with the appropriate trace of the model. Once this
correspondence is established, additional properties could be checked with ease.

The organization of the paper is as follows. In Section 2, we discuss related
work. Section 3 introduces the B notation with examples. In Section 4, we con-
sider our approach to handle deterministic models, and in Section 5, we consider
non-deterministic models. Section 6 discusses the implementation issues along

Automatic Testing from Formal Specifications 97

with the current status of our implementation. In Section 7, we make an analysis
of our method, and finally, Section 8 concludes the paper.

2 Related Work

A testing criterion is a set of requirements on test data which reflects a notion of
adequacy on the testing of a system [19]. A test adequacy criterion determines
whether sufficient testing has already been done, and in addition, it provides
measurements to obtain the degree of adequacy obtained after testing stops
[25]. A test oracle is a mechanism to determine correctness of test executions. A
test driver is a tool which activates a system, provides test inputs and report test
results [18]. Representation mapping is a mapping which maps the abstract name
space of the model with the concrete name space of the SUT [7]. In this context,
there are two kinds of mappings: control and data [19]. Control mappings are
between control points in the implementation and locations in the specification;
these are the points where the specification and the implementation states are to
be matched. Data mappings are transformations between data structures in the
implementation and those in the specification. A test sequence is called preset if
the input sequence is fixed prior to the start of testing; it is called adaptive if at
each step the choice of the next input symbol depends on the previous outputs
[23]. The adaptive test cases are in the form of decision trees; the tester supplies
an input and depending on the output, a branch is selected.

The work by Dick and Faivre [4] is a major contribution to the use of formal
methods in software testing. A VDM [12] specification has state variables and
an invariant (Inv) to restrict the variables. An operation, say OP, is specified by
a pre-condition (OPpre) and a post-condition (OPpost). The expression OPpre∧
OPpost∧ Inv is converted into its Disjunctive Normal Form (DNF); each disjunct,
unless a contradiction itself, represents an input sub-domain of OP. Next, as
many operation instances are created as the number of valid disjuncts in the
DNF. An attempt is then made to create a FSA (Finite State Automaton) in
which each node represents a possible machine state and an edge represents an
application of an operation instance. A set of test cases is then generated by
traversing the FSA, each test case being a sequence of operation instances. The
authors discuss only the mechanism of the partitioning algorithm.

BZ-Testing Tool (BZ-TT) [2,3,14] generates functional test cases from B as
well as Z specifications. BZ-TT assumes all sets in the B machine are finite
enumerated sets. Each B operation is transformed to its normal form [1]. An
operation is then partitioned into a set of operation instances; each partition
usually corresponds to exactly one control path within the operation. The con-
junction of all predicates in a control flow path and the postcondition is termed
an effect predicate (EP). The free state variables in each EP are assigned to their
maximum and minimum values – say, in terms of size – to obtain a set of bound-
ary goals. Boundary input values are obtained by giving maximum and minimum
values to the input variables in the EP. A Constraint Logic Programming (CLP)
Solver tries to find a path through symbolic execution from the initial state to

98 M. Satpathy et al.

a boundary state, a state satisfying a given boundary goal. And then relevant
operation instances are applied at the boundary state by giving them boundary
input values. The results of the query operations become the oracle information.
BZ-TT assumes that the B operations are deterministic. The authors point out
that automatic verdict assignment is difficult because of non-determinism, and
representation mappings [14,15].

Satpathy et al. [21] discuss the prototype of a tool called ProTest which per-
forms testing of an implementation in relation to its B model. The tool performs
partition analysis using a technique similar to that of Dick and Faivre. A finite
coverage graph is created from a symbolic execution of the B model by a model
checking tool called ProB [16]. Some paths starting from the initial state are
taken as test cases. The ProTest tool can run Java programs. So the B model
and its Java implementation are run simultaneously by the tool, and in relation
to a test case, similar states are matched to assign a verdict.

Finite state machines have been used to model systems like sequential circuits,
communication protocols and some types of programs such as lexical analysis
and pattern matching [13]. Though the implementation of such systems is usu-
ally deterministic, some of the state parameters may be unspecified during the
specification stage. In such cases, non-deterministic finite state machines (NDF-
SMs) are used for modeling. Sometimes the code for the implementation (SUT)
is not available and the problem then is to find if the SUT conforms to its finite
state model; i.e. we need to show whether every i/o sequence that is possible in
the SUT is also present in the specification. Solutions to this conformance test-
ing problem when the specification is a NDFSM have been addressed by many
authors including Hierons [10,11], Zhang and Cheung [24] and Nachmanson et al
[17]. However, the models which we discuss in this paper are in general infinite
state machines.

3 The B-Method and Examples

The B-method is a theory and methodology for formal development of com-
puter systems [1]. The basic unit of specification in B is called a B machine.
Larger specifications can be obtained by composing B machines in a hierarchical
manner. An individual B machine consists of a set of variables, an invariant to
restrict the variables, and a set of operations to modify the state. An operation
has a precondition, and an operation invocation is defined only if the precondi-
tion holds. The initialization action and an operation body are written as atomic
actions coded in a language called the generalized substitution language [1]. The
language allows specification of deterministic and non-deterministic assignments
and operations. An operation invocation transforms a machine state to a new
state. The behaviour of a B machine can be described in terms of a sequence of
operation invocations in which the first operation call originates from the initial
state of the machine.

We consider two B machines. The B machine TAgency1.mch is deterministic
(Table 1). It has two users (u1 and u2) and two rooms (r1 and r2). The model can

Automatic Testing from Formal Specifications 99

Table 1. A Deterministic B machine

Machine TAgency1
SETS USER = {u1, u2}; SESSION= {s1}; ROOM= {r1, r2}
VARIABLES

sess, booking
INVARIANT

sess ∈ SESSION +→USER /* +→ means partial function */
∧ booking ∈ROOM +→USER

INITIALISATION
sess := ∅ || booking := ∅

OPERATIONS
login(u) = PRE u ∈ USER ∧ sess = ∅ THEN sess(s1) := u

END;
alloc(s)= PRE s ∈SESSION ∧sess �= ∅ ∧ dom(booking) �= {r1, r2} THEN

IF r1 ∈ dom(booking) THEN
booking(r2) := sess(s)

ELSE booking(r1) := sess(s) END
END;

logout(s) = PRE s ∈SESSION∧sess �= ∅ THEN sess := ∅ END
END

only handle a single session s1. sess and booking are the two variables, and the
INVARIANT tells that both are partial functions. Both variables are initialized
to empty. There are three operations in all. The login() operation assigns the
single session to a user. Then alloc(ss) allocates a room in relation to the session
ss, but preference is given to r1. The logout() operation terminates the session.

Appendix-A shows a skeleton of TAgency2.mch; it is a more complex version
of TAgency1 and it involves non-determinism. The system can handle a num-
ber of parallel sessions given by the deferred set SESSION. A user can log into
the system through the call login() to get an available session which is non-
deterministically selected. He can then request to book or unbook a room (oper-
ations book() and unbook()), and makes (or receives) payment through a card
(enterCard()). Next, the user can get a response from response book() (or
response unbook()). Room allocation data is stored in the function booking.
A user can book multiple rooms. The machine has five non-deterministic opera-
tions: login(), enterCard(), retryCard(), response book() and response unbook().
For the second and the third operations, when the card is entered or retried, a
non-deterministic choice out of {valid, wrong} is made. For the response book(),
any room out of the set of available rooms may be allocated. And in case of re-
sponse unbook(), any room out of the allocated rooms to the current user is
cancelled.

4 The Method I: Deterministic Models

We assume flat B machines without any hierarchy and Java is the language of
implementation. We now outline our method in the following steps.

100 M. Satpathy et al.

Creation of Probe Operations: For each operation in the machine, a set
of probe operations are manually created from the domain knowledge and the
operation meaning. The probes will be used in matching similar specification
and implementation states. For the operation alloc(s), some possible queries
to become its probe operations are:

– Which user made the allocation request? (probe operation alloc P1())
– How many rooms got allocated so far? (probe operation alloc P2())

These two probe operations can be encoded in B as follows:
uu ← alloc P1(s) = PRE s ∈ SESSION THEN uu := sess(s) END
count ← alloc P2 = BEGIN count := card(booking) END

Signature Generation: The SUT in Java must have a similar signature as the
specification; i.e., the SUT will have the same operation names as those in the
specification but their parameters would be similar in the following sense:

– If a model parameter type is either numeric or boolean it becomes int and
boolean in the implementation respectively.

– For any other model parameter of type PP , we treat it as an object of a
class PP in the implementation.

For instance, the login() will have the signature ’void login(USER uu)’. We
also create signatures of the probe operations; for instance, alloc P1() will be
of ’USER alloc P1(SESSION s)’. The SUT also implements SESSION, USER
and ROOM as Java classes. It is expected that the developer while writing the
SUT preserves the signatures of the B operations and their probes.

Generation of Operation Instances: We perform a DNF based analysis over
the operation preconditions in order to obtain operation instances. However, op-
eration preconditions in B are relatively simpler; therefore, in order to obtain
interesting partitions, we add tautologies through conjunction to the precondi-
tion as per the following rules.

– If an operation has an IF like ’IF C THEN S1 ELSE S2’, then add the tau-
tology (C ∨ ¬C) to the precondition through conjunction. For ’IF C THEN
(IF C1 THEN S1 ELSE S2) ELSE S2’, we add (C ∧ (C1 ∨ ¬C1)) ∨ ¬C

– If the operation has a SELECT with branch conditions C1, . . . , Ck then add
to the precondition: C1 ∨ C2 ∨ . . . Ck ∨ (¬(C1 ∨ C2 ∨ . . . Ck))

– If set S occurs in the operation, then add to the precondition: S = ∅ ∨ S �= ∅
(similar tautologies can also be added for other data constructs.)

Obtain the DNF of the modified precondition. The non-contradictory disjuncts
are used for creating operation instances. Some instances of alloc() are shown
below. From now onwards, by operations we will mean operation instances.

alloc1(s): s ∈ SESSION ∧ sess �= ∅ ∧ booking = ∅
alloc2(s): s ∈ SESSION ∧ sess �= ∅ ∧ booking �= ∅ ∧ dom(booking) �= {r1, r2}

∧ booking(r1) = sess(s)
alloc3(s): s ∈ SESSION ∧ sess �= ∅ ∧ booking �= ∅ ∧ dom(booking) �= {r1, r2}

∧ booking(r1) �= sess(s)

Automatic Testing from Formal Specifications 101

It is easy to see that for each control paths in an operation, we have an operation
instance. This means that if are able to generate test cases for each of the
operation instances, then the branches within the original operations are also
covered.

Creation of a Coverage graph: Our testing criterion is to test each operation
at least once; therefore, we try to generate a finite coverage graph so that each
operation instance appears at least once. However, we may not be able to cover all
operations because: (a) an operation may be infeasible, (b) a certain initialisation
may prevent an operation from appearing or (c) an operation may not appear
within the finite dimension of the graph. We now outline our construction process
in the following steps. Figure 2 shows a coverage graph for TAgency1.mch. The
probe calls and their results are shown within the dotted regions.

– Step 1: Create an initial node (the root) in which the variables of the B
machine get the assignments of the INITIALISATION clause.

– Step 2: Take any node in the graph called source where all the state vari-
ables are already available as ground terms. If the precondition of a non-
probe operation holds at source, apply this operation to obtain the target
state. Create a new node for target state only if an identical state does not
already exist. Label the edge (source,target) with the operation call.

– Step 3: For each probe operation pop() of OP(), make a call to it at the
target state to obtain the result res. Attach to the edge just created the pair
(pop(), res). If enough coverage has not been done then jump to Step 2.

Note that our method can be tuned to many other testing criteria; the graph
creation process needs to be changed accordingly.

Generation of Test Sequences: We traverse the coverage graph to generate
starting from the initial state a set of paths (or operation sequences) so that
each operation is covered. We do not present such an algorithm here; one such
algorithm has been given in [21]. It is important that while obtaining a test
sequence, we do not go around a loop. And further, the problem being NP-
complete [8], we only get a sub-optimal solution. In Figure 2, the path shown by
the dashed lines is a test sequence.

Generation of a test driver: The test driver generator takes a set of test
cases and generate a code fragment in Java. This code when executed in a
testing context will infer whether the SUT has passed the test cases. At present
we consider code for a single test case; multiple test cases can be executed by
assuming an initialize() operation to take control back to the initial state. When
a new test case is executed after re-initialization, the operation parameters are
freshly created; therefore, they are not in conflict with the parameters of the
previous runs. By testing context, we mean the following:

– If MM.mch is the B machine, then the SUT defines a class with name MM and
creates an object of the same class, say mmo. It is expected that class MM
has all operations of the machine as methods with similar signatures.

102 M. Satpathy et al.

booking = {}

booking = {}

sess = {(s1,u1)}

sess = {(s1,u1)}

booking = {(r1,u1)}

sess = {(s1,u1)}

booking = {(r1,u1),(r2,u1)}

booking = {}

sess = {(s1,u2)}

INITIAL STATE

(alloc_P1(s1), u1)

(alloc_P1(s1), u1)

(login_P1(),u1)
(login_P1(),u2)

booking = {(r1,u2)}

sess = {(s1,u2)}

(alloc_P1(s1), u2)

login(u1) login(u2)

sess = {}

alloc2(s1)

alloc1(s1)

alloc1(s1)

(alloc_P2(), 1)

(alloc_P2(), 2)

(alloc_P2(), 1)

Fig. 2. A coverage graph for TAgency1.mch; dotted path shows one test case

 .

N1

N C [N] :

 .

C [N1]

assert(res_k == r_k);

assert(res_1 == r_1);

res = mmo.OP(p1,..,pk);

res_1 = mmo.OP_P1(..);

res_k = mmo.OP_Pk(..);

res <−− OP(p1,..,pk)

(OP_P1(..), r_1)
.
.
.

(OP_Pk(..), r_k) Probe calls and
their results

(a) (b)

Fig. 3. Code generation from a test case

– In any test case, if an operation has a parameter pp as an element of set PP,
then SUT must have the object pp of class PP.

Refer to Figure 3(a). (N, N ′) is an edge in the test sequence with ′res ←
OP (..)′ as the operation call. This edge has also k probe calls along with their
results. The corresponding code in Java has been shown in Figure 3(b). C[N]
stand for the code generated at node N . First a call to mmo.OP(...) is made.
Then we obtain the results of the probe operations from the SUT which are

Automatic Testing from Formal Specifications 103

compared with the results of the same operations stored in the test case; this
comparison is performed by Java assertions. In (b), res 1,..., res k are the
temporary variables to receive the probe results.

Table 2. Code for the test case in Figure 2

USER login t1, alloc t1; int alloc t2;

TA1.login(u1); login t1= TA1.login P1();

assert(login t1==u1);

TA1.alloc(s1); alloc t1= TA1.alloc P1(s1);

assert(alloc t1==u1);

alloc t2 = TA1.alloc P2(s1);

assert(alloc t2== 1);

TA1.alloc(s1); alloc t1= TA1.alloc P1(s1);

assert(alloc t1==u1);

alloc t2 = TA1.alloc P2(s1);

assert(alloc t2== 2);

Table 2 shows the code fragment in relation to the test case shown in Figure 2.
The testing context provides object TA1 of class TAgency1, objects u1 and u2 of
class USER, objects r1 and r2 of class ROOM, and object s1 of class SESSION.
With these, the code in Table 2 if runs without any assertion violation it would
mean that the SUT has passed the test case. Note that the generation of the
code in Table 2 can easily be automated. It is to be further noted that the testing
context must be provided by the implementor because it involves some design
decisions like defining the constructors of various classes.

5 The Method II: Non-deterministic Models

The first three steps – generation of probe operations, signature file and the
operation instances – of the method outlined in the last section, remain identi-
cal for non-deterministic B models. In addition, the process of attaching probe
operation calls and their results to an edge in the coverage graph also remains
the same. We will discuss the remaining steps here.

Table 3. Making internal choices observable: SELECT statement

OP(..)= . . . br ← OP(..)= . . .
SELECT C1 THEN S1 SELECT C1 THEN S1 || br := 1
.
WHEN Ck THEN Sk END WHEN Ck THEN Sk || br := k END

There are two primary categories of non-determinism in B [1]: unbounded
choice through the ANY statement and bounded choice through the SELECT
statement, both having the following syntax respectively.

104 M. Satpathy et al.

ANY x1, . . . , xk WHERE SELECT C1 THEN S1

P (x1, . . . , xk) . . .
THEN S END WHEN Ck THEN Sk END

The ANY statement makes k non-deterministic choices satisfying the predi-
cate P (x1, . . . , xk) which are used to perform the substitution S. For a non-
deterministic SELECT, the branching conditions C1, . . . Ck do overlap; and then
one valid branch is selected in a non-deterministic way. In addition to SELECT
and ANY, B supports non-deterministic assignments in initializations with the
syntax x :∈ S meaning that x is given any element of S. However, this statement
can always be converted to: ANY y WHERE y ∈ S THEN x := y END.

5.1 Pre-processing of the B Model

We make the internal choice – within an ANY statement or the branch selection
in SELECT – visible by making the associated B operations more observable.
This we do by introducing additional result parameters. Refer to the enterCard()
in Appendix-A. We have added a result parameter to observe the internal choice
made by the ANY statement. Similarly, we have also added a result parameter
to login() to make its non-deterministic choice visible. We also make the branch
choice that a non-deterministic SELECT makes observable by introducing an
additional result parameter (refer to Table 3). We term the constraint under
which a choice is made as choice predicate. For ANY, it is the constraint within
the WHERE clause. For SELECT, we define it to be br ∈ {1, .., k}, where br is
the output variable introduced to capture which branch the SUT would select
(refer to Table 3), and k is the number of branches.

5.2 Coverage Graph for a Non-deterministic Model

Our convention is that whenever we make a call to a non-deterministic operation
then we select a fresh variable in place of the choice and restrict it by the choice
predicate. We will refer to this fresh variable as a choice variable. A choice
variable once created can be used as a parameter in subsequent invocations as
long as it satisfies the typing rules.

A node in the coverage graph is a tuple < V ect, AC, AssP >, where V ect
is the state vector to store the bindings of expressions to state variables; these
expressions may contain choice variables as sub-terms. AC is the set of accu-
mulated constraints which essentially restricts the choice variables occurring in
the expressions in V ect. AssP is an assertion which results from an application
of a non-deterministic operation. For a node N , we refer to its fields by the dot
notation such as N.V ect, N.AC etc.

Figure 4 shows an edge in the coverage graph, where < V ect, AC, AssP >
constitute the source node. Let application of call OP(X) at the source would
give us the target node < V ect′, AC′, AssP ′ >. The edge between the source
and the target is labeled with < P, y ← OP (X) >. The derivation process is as
follows:

Automatic Testing from Formal Specifications 105

Vect

AC

AssP

Vect’

AC’

AssP’

< P, y <−− OP(X) >
Probe calls
 and
their results

Fig. 4. Application of a non-deterministic operation

– P is a predicate to check that OP(X) is applicable at < V ect, AC, AssP >. If
pre(OP (X)) is the precondition of OP(X) then P is an expression over the
choice variables occurring in V ect and is equivalent to AC ∧ pre(OP (X)) or
its boolean simplification. We call it the Precondition Satisfaction Predicate
(or PSP) which being false would mean that OP(X) is not applicable.

– If OP() is a non-deterministic operation, y stands for the choice variable
selected in place of the internal non-deterministic choice. If cc is the internal
choice in OP(), and cpred is the choice predicate, then AssP ′ is the reduced
form of the constraint cpred[y/cc]; i.e., the substitution of y in place of the
free occurrences of cc in cpred.

– V ect′ is the reduced form of V ect[body(OP (X))] where body(OP (X)) is the
substitution in relation to OP (X).

– AC′ is the accumulated constraint of the target node and is equivalent to the
reduced form of (AC ∧ P ∧ AssP ′). Note that AC′ always includes AssP ′.
We maintain AssP ′ separately to be referred to by the test case generator.

For the initial node, AC is initialized to the constraints made out of the set
declarations and the constraints. Figure 5 shows a part of the coverage graph for
the B machine TAgency2. The node marked ’1’ is the initial node. Its AC field is
initialized to AC0 as given in the figure. The V ect field here corresponds to the
INITIALIZATION clause of the machine. AssP is given the trivial value of true.
In node 2, ZS1 represents the non-deterministically selected session identifier.
Now consider the call of responseBook1(ZS1) at node 3. Observe how the choice
variable ZS1 has been used as a parameter. Now consider the application of the
following operation instance at node 3:

rstatus ← responseBook1(sid) =
PRE sid ∈ SESSION ∧ sid ∈ dom(session)∧

s req(sid) = book ∧ s state(sid) = s4∧
s card(sid) = valid ∧ dom(booking) ⊂ (ROOM − nullR)

106 M. Satpathy et al.

THEN
ANY rr WHERE rr∈ (ROOM − null R)− dom(booking)
THEN booking(rr) := sess(sid) || rstatus := rr END || . . .

END

The predicate AC3 ∧ pre(responseBook1(ZS1)) reduces to ZC1 = valid to
become the PSP of the current call. If ZR1 is the choice variable due to ANY, then
(rr ∈ (ROOM−nullR)−dom(booking)) [ZR1/rr] reduces to ZR1 ∈ (ROOM−
nullR) to becomes the AssP of the target node. Substitution of the operation
body over the Vector of the source node, gives us the new Vector. Finally, AC3
augmented with the PSP and the AssP becomes the AC of the target node.

5.3 Test Cases from Non-deterministic Models

As in the case of deterministic models, the coverage graph could be traversed to
generate a set of linear test cases. We will term those as basic test cases; they
will be combined to form adaptive test cases. If we treat a basic test case as a
test case proper, then consider the case when SUT control encounters an edge
with a non-trivial PSP and it does not hold. For example, in Figure 5, if edge
(ZC1 = valid, ZC1 ← responseBook(ZS1)) occurs in a basic test case, then
ZC1 = valid could be false, and then there is no point in following this edge any
further. In the worst case scenario, we may not be able to test any of the basic
test cases into completion. Adaptive test cases are introduced precisely for this
purpose. An adaptive test case in the coverage graph is a subgraph in the form
of a tree with the following properties:

– Its root is same as the root of the coverage graph.
– The paths from the root to the leaves are mutually exclusive in that at any

non-leaf node, the PSPs of its outgoing edges are mutually contradictory. In
this way we would be able to test all the paths of the test case by a single
threaded test driver.

From this definition, it should be clear that given a set of basic test cases as paths
in the coverage graph, we can carve out a set of adaptive test cases. One such
algorithm is given in [20]. Refer to Figure 5. In this tree all paths from the root
to leaves can be seen as basic test cases. Only the node marked 3 has outgoing
edges with non-trivial PSPs. The PSPs of the two outgoing edges of this node
are ZC1 = valid and ZC1 = wrong, and hence mutually contradictory; so, the
whole tree in the figure produces the single adaptive test case.

5.4 Test Driver Generation

Since the elements of an enumerated set is available in the model, the test driver
can have control over its range. If there is a need to check the range of ROOM, it
can be done explicitly. But the range of a deferred set like SESSION, cannot be
checked. When the operation login() is called from SUT the system depending
on availability may or may not be able to allocate a session for the user to

Automatic Testing from Formal Specifications 107

booking = {}; sstate={}

(ZC1=valid, ZR1 <−−responseBook_1(ZS1))

 ZR1 : ROOM − {null_R}

1

sess={(ZS1,u1)};scard={(ZS1,ZC1)}
sreq={((ZS1,book)};sstate={(ZS1,s5)}

booking={(ZR1, u1)}

AC5=AC3&ZC1=valid&ZR1:ROOM−{null_R}

2

4

(true, ZC3 <−−enterCard_1(ZS1))

(true, again_1(ZS1))

 true

AC6 = AC5

booking={(ZR1, u1)}

sreq={((ZS1,null)};sstate={(ZS1,s1)}

sess={(ZS1,u1)};scard={(ZS1,null)}

(true, bookRoom_1(ZS1))

 true

AC7 = AC6

booking={(ZR1, u1)}
sreq={((ZS1,book)};sstate={(ZS1,s2)}

sess={(ZS1,u1)};scard={(ZS1,null)}sess = {}; scard = {}
sreq = {};

AC0

 true

(true, ZS1 <−− login_1(u1))**

sess={(ZS1,u1)};scard={(ZS1,null)}
sreq={((ZS1,null)};sstate={(ZS1,s1)}

booking={}

AC1 = AC0 & ZS1 : SESS

ZS1 : SESS

(true, bookRoom_1(ZS1))

sess={(ZS1,u1)};scard={(ZS1,null)}
sreq={((ZS1,book)};sstate={(ZS1,s2)}

booking={}

AC2 = AC1

true

(ZC1=wrong, ZC2 <−−retryCard_1(ZS1))

sess={(ZS1,u1)};scard={(ZS1,ZC2)}
sreq={((ZS1,book)};sstate={(ZS1,s2)}
booking={}

AC4=AC3&ZC1=wrong&ZC2:{valid,wrong}

 ZC2 :{valid, wrong}

(true, ZC1 <−−enterCard_1(ZS1))

sess={(ZS1,u1)};scard={(ZS1,ZC1)}

sreq={((ZS1,book)};sstate={(ZS1,s4)}

booking={}

AC3 = AC2 & ZC1 :{valid, wrong}

 ZC1 :{valid, wrong}

3

sess={(ZS1,u1)};scard={(ZS1,ZC3)}
sreq={((ZS1,book)};sstate={(ZS1,s4)}

booking={(ZR1, u1)}

AC8 = AC7 & ZC3 :{valid, wrong}

 ZC3 :{valid, wrong}

 REQ = {book,unbook,null_Q} &AC0 =(USER={u1,u2} &
 SSTATES={s1,s2,s3,s4,s5} &

 CARD={valid,wrong,null_C} & ROOM = {r1,r2, null_R})

Fig. 5. Part of the coverage graph for TAgency2.mch

work with. When it allocates a session there is no need to check the model
predicate ZS1 ∈ SESSION because it would be trivially satisfied by the type
checking rule of Java. But if a null object reference is returned then from the
view point of testing there is no need to check the subsequent operation calls. In
summary, when an element of a deferred set is obtained it must be checked for
non-nullness. To signify that in the coverage graph of Figure 5, we have marked
the edge joining nodes 1 and 2 with ’**’.

B predicates to Java Assertions: While generating a coverage graph, we ob-
tain predicates which involves choice variables. Let us call these graph predicates.
They are different from model predicates, the predicates occurring in a B model.
We require a Set Constraint Solver (SCS) to translate any graph predicate into
Java assertions. The development of such a SCS in general is a challenging task.
In this paper we consider a simple SCS and so we put restrictions on model
predicates which in turn restrict the graph predicates. If x is an internal choice

108 M. Satpathy et al.

Table 4. Schema Rules for reducing some B terms

term Reduced Terms condition
NULL null null object reference

dom(R) {s1, . . . , sk} R = {(s1, t1), . . . , (sk, tk)}
ran(R) {t1, . . . , tk} R = {(s1, t1), . . . , (sk, tk)}
R−1 {(t1, s1) . . . , (tk, sk)} R = {(s1, t1), . . . , (sk, tk)}
F (si) ti F = {(s1, t1), . . . , (sk, tk)}; F is a function

— like cc in enterCard() or rr in response book() — the syntactic constraint on
model predicates is that, it can be of the form: x ∈ S ∧ P , where S is either a
deferred set or an enumerated set or a basic set (Bool or Int), and P includes
finite number of (state) variables and constants. For instance, in login(), the
model predicate sid ∈ SESSION ∧ sid /∈ dom(sess) is of this form.

SCS performs two main tasks: (a) to evaluate a graph predicate — involv-
ing choice variables, sets, relation, function etc. — to obtain PSPs; this can be
done by extending Constraint Logic Programming (CLP) to sets, relations and
functions; and (b) to reduce the PSPs and the AssPs into Java assertions.

Table 4 shows the reduction rules for some terms in graph predicates. Table 5
shows the rules to reduce some graph predicates to Java assertions by a translation
function γ. Note that each si or ti stands for a term occurring in graph predicates.
We assume that the reduction of terms can be performed by syntactic checking
only. For instance, the reduction of {(ZS1, u1), (ZS2, u2)}(ZS2) can be done by
syntax checking, whereas that of {(ZS1, u1), (ZS2, u2)}(ZS8) given that ZS8 ∈
{ZS1, ZS2} can not be performed by syntactic checking alone. Though the latter
terms can be reduced to Java by defining more and more rules, we do not consider
them here.

Table 5. Schema rules for transforming some B predicates

predicates to Java condition
γ[TRUE] true boolean constant in Java

γ[FALSE] false boolean constant in Java

γ[(s1, t1) = (s2, t2)] (s1 == t1)&& (s2 == t2)

γ[X ∈ S] (X == s1) || . . . || (X == sk) S = {s1, . . . , sk}
γ[X ∈ S] !(X == null) S is a deferred set

γ[X ∈ T1 ∪ T2] γ[(X ∈ T1)] || γ[(X ∈ T2)]

γ[X ∈ T1 ∩ T2] γ[X ∈ T1] && γ[X ∈ T2]

γ[A ⊆ B] γ[s1 ∈ B] && . . . &&γ[sk ∈ B] A = {s1, . . . , sk}
γ[∀x ∈ S.P (x)] γ[P (s1)]&& . . . && γ[P (sk)] S = {s1, . . . , sk}
γ[∃x ∈ S.P (x)] γ[P (s1)] || . . . || γ[P (sk)] S = {s1, . . . , sk}

Test Driver Generation Algorithm: The test driver generation algorithm for
adaptive test cases is trivial. An adaptive test case is in the form of a tree. A junc-
tion nodes gets transformed to an if-elseif-else statement, and the PSPs of

Automatic Testing from Formal Specifications 109

the branches become the if (or elseif) conditions. In addition, there has to be
an else clause because the set of the PSPs may not be exhaustive. If during test-
ing, SUT control enters this else branch, this would mean that we cannot carry
out testing any further; appropriate message can be given to the tester in this case.
A detailed discussion on this situation has been given in [20]. Leaving aside the
PSPs, in relation to a branch in the test case, we encounter a sequence of operation
applications which may have assertions (AssPs) and they become Java assertions
in the code. We show this by generating code for the single adaptive test case of
Figure 5; the code has been shown below. Observe how the branching in the code
corresponds to the branching in the adaptive test case. We do not show the testing
context here since it remains the same as earlier.

SESSION ZS1; ROOM ZR1; CARD ZC1,ZC2;
USER temp u; int temp c;
ZS1 = TA2.login(u1); assert(ZS1 ! = null);
TA2.bookRoom(ZS1); ZC1 = TA2.enterCard(ZS1);
assert(ZC1 == valid || ZC1 == wrong);
if (ZC1 == wrong) { // PSP of 1st branch holds

ZC2=TA2.retryCard(ZS1);
assert(ZC5 == valid || ZC5 == wrong);

} else if (ZC1 == valid) { // PSP of next branch holds
ZR1=TA2.responseRoom(ZS1);
assert(ZR1 == u1 || ZR1 == u2 || ZR1 == u3);
temp u = TA2.whichUser(ZS1); assert(temp u == u1);
temp c = TA2.numOfRoomsBooked(); assert(temp c == 1);

} else {
Sys.out.println("SUT control deviated; testing stops");

}

6 Implementation

ProB is a model checking and animation tool for B machines [16]. ProB includes
a fully automatic animator written in SICStus prolog. An extension of ProB will
be our implementation platform. As of now, we have implemented testing of a
SUT written in accordance with a deterministic B model. We have made the
following steps automatic so far.

– Given a B operation with its precondition enriched with tautologies (refer
to Section 4) we generate a set of operation instances.

– Given a B model, we generate a Java signature template for all B operations.
– After restricting the sets to be finite, the current tool automatically creates

a coverage graph (we do not yet support deferred sets).
– We traverse the coverage graph to generate a set of preset test cases; this is

because we consider deterministic models only.
– Given a set of test cases, we generate a test driver which, when aug-

mented with the testing context, performs automatic testing of a Java
implementation.

110 M. Satpathy et al.

Now the development of a SCS to handle a subset of B predicates is under
progress. This will enable us in handling non-deterministic models.

7 Discussion

– Making the whole testing cycle automatic in presence of non-determinism
is an important contribution of our work. It is often the case that non-
determinism in B is gradually refined out in the B refinement process, but
our strategy does not assume the implementation to be deterministic. In case
the implementation is non-deterministic, our method would work without
any change. Existing testing tools like BZ-TT [2] avoid the issues related to
non-determinism.

– The tester (or the specifier) has to write a set of probe operations for each
B operation. In this paper, we have kept this step outside of the scope of
our testing cycle. However, we believe writing a set of probe operation from
the domain knowledge and the intention of the operation is too ad-hoc an
approach. Probe operations can be generated automatically from the model
in a systematic manner. One possibility is to define abstract functions map-
ping the concrete states of the Java program to the abstraction level in the
B machine. This issue requires further research.

– Our method can create a coverage graph in presence of deferred sets.
– The problem of obtaining a PSP out of a set of B constraints requires to solve

a set of set constraints; this being a variant of the satisfiability problem is NP-
complete [8]. Good specification practices recommend to write smaller and
simpler operations. In this case, we expect the problem size would remain
small and then a CLP solver can be used to do the job. This issue needs
further investigation.

– For the development of a SCS, we took a simple subset of the B predicates.
However, this is a useful subset since we have examined a number of examples
and seen that this subset is sufficient. The examples include B models for
a larger version of the travel agency example, the router component of a
Network-on-Chip system and a component of a TV teletext system. The
problem of implementing a robust SCS will require further research.

8 Conclusion

We have discussed how a test driver in the form of a Java program can be
mechanically generated from a B model, possibly non-deterministic, to perform
automatic testing. The constraints arising out of non-deterministic choices and
oracle information matching become Java assertions in the test driver which if
runs without any assertion violation would mean that the implementation has
passed the test cases. Our approach can generate the test driver much before the
implementation; however, it assumed that the implementation should adhere to
the Java signature template obtained from the model. We have made compar-
isons of our research with existing work, the important contributions being the
handling of non-determinism.

Automatic Testing from Formal Specifications 111

Acknowledgement. We would like to thank Linas Laibinis for going through
an earlier version of this work and offering many a useful suggestion. The com-
ments of the anonymous reviewers also helped us in improving the quality of
this paper.

References

1. Abrial, J.-R.: The B–Book: Assigning Programs to Meanings. Cambridge Univer-
sity Press, Cambridge (1996)

2. Bernard, E., Legeard, B., Luck, X., Peureux, F.: Generation of test sequences
from formal specifications: GSM 11-11 standard case study. Software Practice and
Experience 34(10), 915–948 (2004)

3. Colin, S., Legeard, B., Peureux, F.: Preamble computation in automated test case
generation using constraint logic programming. Software Testing Verification and
Reliability, John Wiley 14, 213–235 (2004)

4. Dick, J., Faivre, A.: Automating the Generation and Sequencing of Test Cases from
Model-based Specifications. In: Larsen, P.G., Woodcock, J.C.P. (eds.) FME 1993.
LNCS, vol. 670, pp. 268–284. Springer, Heidelberg (1993)

5. Dalal, S.R., Jain, A., Karunanithi, N., Leaton, J.M., Lott, C.M., Patton, G.C.,
Horowitz, B.M.: Model Based Testing in Practice. In: Proc. of ICSE ’99 (1999)

6. El-Far, I.K., Whittaker, J.A.: Model Based Software Testing. In: Marciniak, J.J.
(ed.) Encyclopedia on Software Engineering, John Wiley, Chichester (2001)

7. Gannon, J.D., Hamlet, R.G., Mills, H.D.: Theory of modules. IEEE Transactions
on Software Engineering 13(7), 820–829 (1987)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman and
Company, New York (1979)

9. Gurevich, Y.: Sequential Abstract-State Machines Capture Sequential Programs.
ACM Transaction on Computational Logic 1(1), 77–111 (2000)

10. Hierons, R.M.: Testing from a Non-deterministic Finite State Machine using Adap-
tive State Counting. IEEE Transactions on Computers 53(10), 1330–1342 (2004)

11. Hierons, R.M.: Applying Adaptive Test Cases to Non-deterministic Implementa-
tions. Information Processing Letters 98(2006), 56–60 (2006)

12. Jones, C.B.: Systematic Software Development using VDM, 2nd edn. Prentice-Hall,
Englewood Cliffs (1990)

13. Lee, D., Yannakakis, M.: Principles and Methods of Testing Finite State Machines:
A survey. Proc. of the IEEE 80(8), 1090–1123 (1996)

14. Legeard, B., Peureux, F., Utting, M.: Automatic Boundary Testing from Z and B.
In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp. 21–40.
Springer, Heidelberg (2002)

15. Legeard, B., Peureux, F., Utting, M.: Controlling test case explosion in test gener-
ation from B formal models. In: Software Testing, Verification and Reliability, pp.
81–103. John Wiley, Chichester (2004)

16. Leuschel, M., Butler, M.: ProB: A Model Checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

17. Nachmanson, L., Veanes, M., Schulte, W., Tillmann, N., Grieskamp, W.: Optimal
Strategies for Testing Nondeterministic Systems. In: ACM ISSTA’04, Boston, ACM
Press, New York (July 2004)

18. Panzl, D.J.: Automatic Software Test Drivers. IEEE Computer 11(4) (1978)

112 M. Satpathy et al.

19. Richardson, D.J., Leif Aha, A., O’Malley, T.O.: Specification-based Test Oracles
for Reactive Systems. In: Proc. of the 14th ICSE, Melbourne, pp. 105–118 (1992)

20. Satpathy, M., Butler, M., Ramesh, S., Leuschel, M.: Automatic Testing of Formal
Specifications, Technical Report 792, Abo Akademi University, Turku, Finland
(2006), available at: http://www.tucs.fi/publications

21. Satpathy, M., Leuschel, M., Butler, M.: ProTest: An Automatic Test Environment
for B Specifications. Electronic Notes on TCS (ENTCS), vol. 111, pp. 113–136
(2005)

22. Spivey, J.M.: Understanding Z. Cambridge University Press, Cambridge (1988)
23. Yannakakis, M., Lee, D.: Testing Finite State Machines: Fault Detection. Journal

of Computer and System Sciences 50, 209–277 (1995)
24. Zhang, F., Cheung, T.: Optimal Transfer Trees and Distinguishing Trees for Test-

ing Observable Nondeterministic Finite State Machines. IEEE Transactions on
Software Engineering 29(1), 1–14 (2003)

25. Zhu, H., Hall, P.A.V., May, J.H.R.: Software Unit Test Coverage and Adequacy.
ACM Computing Surveys 29(4), 366–427 (1997)

Appendix–A

MACHINE TAgency2
SETS SESSION; /* A deferred set */

USER = {u1, u2}; REQ={book, unbook, null r};
SSTATES= {s1, s2, s3, s4, s5};
CARD = {valid, wrong, null C}; ROOM = {r1, r2, null R}

VARIABLES sess, scard, sstate, sreq, booking /* all partial functions */
INVARIANT sess ∈ SESSION +→ USER ∧ scard ∈ SESSION +→ CARD∧

sstate ∈ SESSION +→ SSTATES ∧ sreq ∈ SESSION +→ REQ∧
booking ∈ (ROOMS − {null R}) +→ USER ∧ . . .

INITIALISATION sess, scard, sstate, sreq, booking := ∅, ∅, ∅, ∅, ∅
OPERATIONS

id ←− login(uu) = PRE uu ∈ USER THEN
ANY sid WHERE sid ∈ SESSION ∧ sid /∈ dom(sess) THEN

sess(sid) := uu || s card(sid) := null C ||
s state(sid) := s1 || s req(sid) := null r
|| id := sid

END END;
bookRoom(sid) = PRE sid ∈ SESSION ∧ sid ∈ dom(sess)∧

s state(sid) = s1 ∧ s req(sid) = nullr
THEN s state(sid) := s2 || s req(sid) := book
END;

unbookRoom(sid) = . . .
cstatus ←− enterCard(sid) = PRE sid ∈ SESSION ∧ sid ∈ dom(sess)∧

s state(sid) ∈ {s2, s3}
THEN s state(sid) := s4 ||

ANY cc WHERE cc ∈ {valid, wrong}
THEN s card(sid) := cc || cstatus := cc

END END;

http://www.tucs.fi/publications

Automatic Testing from Formal Specifications 113

cstatus ←− retryCard(sid) = PRE sid ∈ SESSION ∧ sid ∈ dom(sess)∧
s state(sid) = s4 ∧ s card(sid) = wrong

THEN ANY cc WHERE cc ∈ {valid, wrong}
THEN s card(sid) := cc || cstatus := cc

END END;
rstatus ←− response book(sid) =

PRE sid ∈ SESSION ∧ sid ∈ dom(sess) ∧ s req(sid) = book ∧
s state(sid) = s4 ∧ s card(sid) = valid

THEN s state(sid) := s5 ||
IF dom(booking) ⊂ (ROOM − {null R}) THEN

ANY rr WHERE rr ∈ (ROOM − {null R})− dom(booking)
THEN booking(rr) := sess(sid) || rstatus := rr END

ELSE rstatus := null R
END

END;
rstatus ←− response unbook(sid) = . . .
again(sid) = . . .
logout(sid) = . . .

END

B. Meyer and Y. Gurevich (Eds.): TAP 2007, LNCS 4454, pp. 114 – 130, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Using Contracts and Boolean Queries to Improve the
Quality of Automatic Test Generation

Lisa (Ling) Liu, Bertrand Meyer, and Bernd Schoeller

Chair of Software Engineering,
ETH Zurich, Switzerland

{ling.liu,Bertrand.Meyer,bernd.schoeller}@inf.ethz.ch

Abstract. Since test cases cannot be exhaustive, any effective test case
generation strategy must identify the execution states most likely to uncover
bugs. The key issue is to define criteria for selecting such interesting states.

If the units being tested are classes in object-oriented programming, it seems
attractive to rely on the boolean queries present in each class, which indeed
define criteria on the states of the corresponding objects, and — in contract-
equipped O-O software — figure prominently in preconditions, postconditions
and invariants. As these queries are part of the class specification and hence
relevant to its clients, one may conjecture that the resulting partition of the state
space is also relevant for tests.

We explore this conjecture by examining whether relying on the boolean
queries of a class to extract abstract states improves the results of black-box
testing. The approach uses constraint-solving and proof techniques to generate
objects that satisfy the class invariants, then performs testing by relying on
postconditions as test oracles. The resulting strategy, in our experiments on
library classes used in production software, finds significantly more bugs than
random testing.

1 Overview

Unlike other approaches to improving program quality, in particular proofs, program
testing focuses not on guaranteeing the absence of bugs but on uncovering bugs. This is
by itself a very interesting goal since any bug removed is a significant improvement to a
program.

The effectiveness of a testing strategy is, as a result, defined by how likely it is to
uncover bugs. We present a testing strategy for classes — object-oriented program
units — that takes advantage of two of their distinctive properties: the presence of
boolean queries as part of the interface of a class, and in some programming
formalisms, the use of contracts to specify abstract properties of classes.

The topic of this paper is, as a consequence, simple. We state a conjecture: that
using contracts and queries will improve the effectiveness of testing strategies. Then
we assess the validity of that conjecture by applying contract- and query-based testing
through our automatic test environment, AutoTest [5], and measuring whether this
improves AutoTest’s effectiveness in finding bugs.

A characteristic of our testing work is that (rather than artificial examples, although
one will be used to illustrate the concepts) it applies testing strategies and in particular the

 Using Contracts and Boolean Queries to Improve the Quality 115

AutoTest tool to actual production software, in particular the EiffelBase library of
fundamental data structures and algorithms, used daily in mission-critical production
environments. Testing for us is then not just an academic pursuit but also a very practical
attempt to find bugs in actual software. Along with the concepts we propose, the main
concrete result of the study reported here is that it has enabled us to find and correct real
bugs in software components that are in actual use, and hence provide a tangible benefit
to the users of those components.

1.1 Correctness and Contracts

The correctness of a program element is not an absolute property but is always defined
with respect to a certain specification. In the “Design by Contract” approach [18], the
specification is present in the text of classes (the program units of object-oriented
programming) in the form of invariants for classes, and preconditions and postconditions
for routines1. Ascertaining the correctness of a class in languages that natively support
such mechanisms —Eiffel [19] or Spec# [1] —, or in contract add-ons to Java (such as
JML [13, 14], iContract [12]) or UML (Object Constraint Language [23, 8]), means
ascertaining that the implementations are consistent with the contracts: specifically, that
every creation procedure (constructor) yields an object satisfying the invariant of its
class, and that every exported routine, started in a state satisfying the invariant and the
precondition, terminates in a state satisfying the invariant and the postcondition.

Using testing we cannot prove such correctness for any realistic program, but we can
uncover correctness violations — bugs — by finding inputs that will cause routine
executions to violate an invariant or postcondition.

1.2 Testing and Program States

Because the set of possible program execution states is inexhaustible, any practical
testing strategy must identify a subset of interesting states, where “interest” is defined
— in the negative mindset that characterizes the work of the tester, whose reward is to
prove software incorrect — as likelihood to uncover bugs. Usually this is achieved
through a partitioning approach which, using appropriate criteria, divides the state
space into disjoint parts, then picks one state (or a few) from each such part, with the
expectation that each selected state is somehow representative of that part.

A common approach for such partitioning is to use white-box tests, based on an
analysis of the implementation’s control flow, such as “path coverage” and “branch
coverage”. This has two disadvantages. First, the tester needs access to the
implementation, which may be an unrealistic requirement in the presence of
information hiding. Second, the approach requires possibly complex computation to
exercise specific branches or paths.

1.3 Query-Based Testing

The approach described here relies instead on a black-box testing strategy, based on
contracts. Specifically:

1 “Routines” are called “methods” in Java and C++. This paper uses Eiffel terminology and

notation.

116 L. Liu, B. Meyer, and B. Schoeller

• Instead of relying on the implementation of a class, it uses its contracts and its
boolean queries to partition the state space.

• The partitioning is aided by an insight into the structure of good contracts, the
Boolean Query Conjecture, defined below.

• Techniques from boolean constraint solving and program proving help reduce the
resulting state space further.

• Then we develop a test strategy - boolean query coverage to achieve complete
test coverage based on the outcomes of this reasoning.

The main contributions of this paper are the following:

1. New application of Design by Contract techniques to improve the testing

process.
2. A new method for partitioning program state, applied here to testing but (we

think) with potential applications elsewhere, for example in model checking.
3. The experimental validation of that method on concrete examples.
4. New techniques for improving test coverage.
5. The integration of constraint-solving and program-proving techniques in a

testing framework.
6. A technique for taking advantage of test results to improve not only test

coverage but also class designs (through stronger invariants).
7. Concretely, as noted, the detection through an automatic procedure (and

subsequent correction), in actual production libraries, of real bugs, until
now unsuspected and not found by any previous technique, manual or
automatic.

Section 2 presents the notion of boolean query and introduces the conjecture behind
this work’s approach to testing, as well as the method for assessing the conjecture.
Section 3 explains the overall strategy based on contracts, the notion of abstract state
space, constraint satisfaction techniques, proof techniques, and the AutoTest
framework. Section 4 describes the experimental study applying this strategy to a set
of actual classes, and analyzes the result. Section 5 discusses related work, and
section 6 discusses future work.

2 The Role of Boolean Queries

The central issue of test case generation is, as noted above, to maximize the likelihood
of uncovering bugs. If we are testing object-oriented software we should take
advantage of the distinctive structure of O-O programs.

2.1 Classes and Object States

A class is often an implementation of an abstract data type, providing all the
operations, or “features”, on a certain type of run-time objects. These features are of
two kinds [18]:

 Using Contracts and Boolean Queries to Improve the Quality 117

• Commands. modify the corresponding object: withdraw money (for a class
representing bank accounts), open (for a class representing files), increase indent
(for a class representing paragraphs in a text).

• Queries. return information about an object: current balance, number of
characters, margin size.

Both commands and queries can be exercised on a particular object through a “feature
call” written, in most object-oriented languages, through dot notation, as in

 my_account.withdraw (500)

 b := my_account.balance

2.2 Argumentless Boolean Queries

Among queries, boolean queries are of particular interest, especially boolean queries
without arguments. Examination of object-oriented libraries such as EiffelBase [17]
and others indicates that 90% classes are equipped argumentless boolean queries.
Examples include:

• In a bank account class, is_overdraft.

• In a paragraph class, is_justified.
• In data structure classes, is_empty and (if the representation has limited capacity)

is_full.
• In a list class where lists have cursors indicating a current position of interest,

is_before, is_after, off, is_first.

The recommended Eiffel convention, whose very existence reflects the ubiquity and
importance of such queries, is to give them names starting with is_.

Such argumentless queries are generally part of the official interface of the
corresponding classes. They intuitively seem, for a well-designed class, to reflect
fundamental, qualitative properties of the state. For example a list may, or not, be
empty; and it may, or not, have twenty-five elements. While the corresponding classes
will typically have a query is_empty they will not, in general, offer
has_twenty_five_elements. This is because the designer of the class intuitively thought
of the second property (if he considered it at all) to reflect a circumstantial possibility
for the state of a list, but understood the distinction between empty and non-empty
lists as a critical division of the set of possible list states.

Observation of well-written O-O software reinforces this intuition about the
importance of argumentless queries, both externally (as part of the interface of
classes) and internally (as part of their implementation):

• Externally, boolean queries often serve as preconditions and appear in invariants.
For example, the precondition of a routine to remove an item from a list is not
is_empty; and the invariant will include properties such as is_before implies off.

• Internally, the implementation of a routine to add an item to a list will proceed
differently depending on whether the list is initially empty or not and (in an
implementation based on an array but dynamically resizable) whether the current
implementation is full or not.

118 L. Liu, B. Meyer, and B. Schoeller

All this suggests that the distinction may also be useful when it comes to dividing
the state space for purposes of testing the software.

In particular, it follows from the last comment — about features being internally
relevant to the implementation — that argumentless boolean queries may be our best
bet when we are doing black-box testing and trying to guess the kind of properties
actually used in decision branches of the implementation. A query such as is_empty
is, in the end, nothing else than a predicate — a boolean expression — as used by the
control structure of programs to select between branches of conditional expressions
and to decide whether to terminate loops. Since testing strategies must partition the
state space into representative categories, they use such predicates for the partitioning;
for example white-box testing relies on predicates used in tests, such as c in if c then
a else b end, to generate a test with c true to exercise a and one with c false to
exercise b. If our intuition is correct that boolean queries reflect qualitatively
important properties of the object state, then it may be useful to use them, rather than
arbitrary predicates, to partition the state space. This possibility is particularly
attractive in black-box testing, where we don’t have access to the internal structure of
the code, and cannot, as a result, directly know which boolean expressions, such as c
above, actually appear in tests governing the control structure. In light of the above
observations, argumentless queries are our best bet.

2.3 The Conjecture

The preceding observations lead to the conjecture behind the present work:

Boolean Query Conjecture: The argumentless boolean queries of a well-
written class yield a partition of the corresponding object state space that
helps the effectiveness of testing strategies.

“Well-written” is a subjective term, but we will assume the following:

• The class indeed includes boolean queries reflecting important abstract properties
of the corresponding objects.

• Routines are equipped with contracts, in particular preconditions. Our main
experimentation target is the EiffelBase libraries [17], which indeed is equipped
with contracts.

• The contracting style is on the “demanding” side [18]: routines try to limit their
functionality to the required minimum by enforcing reasonableness conditions on
their clients.

2.4 Assessing the Conjecture

The Boolean Query Conjecture is of a heuristic nature and, as such, not amenable to a
formal proof. To assess its validity, we simply:

• Extend an existing tool for automatic test generation, AutoTest, to take advantage
of partitioning based on argumentless boolean queries.

 Using Contracts and Boolean Queries to Improve the Quality 119

• Compare the effectiveness of the resulting testing strategy — how many buggy
routines it finds, and the quality of its routine coverage — with the effectiveness
of the original AutoTest using a random strategy for black-box testing.

3 Using Contracts and Proof Techniques

3.1 Basic Definitions

In the rest of this discussion the term query will be used as a shorthand for “exported
argumentless boolean query”, since these are the only kinds of queries of interest for
the discussion. The following definitions will be useful.

Boolean abstraction function: A boolean abstraction function is a vector <q1, q2,
…, qn> of queries.

Abstract object state: An abstract object state is the vector <v1, v2, …, vn>
containing the result of evaluating the queries of a boolean abstraction function
<q1, q2, …, qn> in a concrete state s of a particular object, with vi = qi (s) for all i ∈
1..n.

If a class has n queries, the number of abstract object states for an instance of the class
is 2n. Note that usually only a subset of these possible abstract states makes sense,
since a useful state should satisfy the class invariant.

As a simple example of these concepts, consider the following Eiffel class, adapted
from actual (generic) stack classes in EiffelBase:

Listing 1. Class INT_STACK

 feature -- Modifier
pop is

-- Pop top integer from stack .
require

not_empty : not is_empty
do

...
ensure

popped : count = old count - 1
end

push (n: INTEGER) is
-- Push `n' on top of stack .

require
not_full : not is_full

do
...

ensure
pushed : top = n
count_increased : count = old count +1

end
 feature {NONE} -- Implementation

s: FIXED _LIST [INTEGER]
 invariant
 is _empty : is_empty = count = 0
 is _full: is_full = count = capacity

count_small_enough : count <= capacity
 count _big_enough : count >= 0

capacity_big_enough : capacity > 0
 not _empty_full: is_empty => not is_full

s_not_void: s /= Void
 end

class
INT_STACK

 create
make

 feature -- Initialization
make (n: INTEGER) is

-- Create empty stack .
require

n > 0
do

...
ensure

empty : count =0
capacity_set: capacity = n

end
 feature -- Queries

capacity : INTEGER
count: INTEGER
top: INTEGER is

-- Top item of stack
require

not_empty: not is_empty
do

...
end

is_empty : BOOLEAN is
--

do
Result := count = 0

end

is_full : BOOLEAN is
--

do
Result := count = capacity

end

The features “is_empty” and “is_full” are queries. The vector <is_empty, is_full>
makes up the boolean abstraction function for the class. The set of abstract object
states is {<0, 0>, <0, 1>, <1, 0>, <1, 1>}) (using 0 for False and 1 for True).

120 L. Liu, B. Meyer, and B. Schoeller

Such an abstract state space will usually be too large to be practically tractable.
With a language supporting the inclusion of class invariants, and classes that take
advantage of this mechanism, we can reduce that size significantly by excluding states
that do not satisfy the invariant. For example a stack cannot (with capacity> 0, as
also ensured by the invariant) be both empty and full, so we can remove <1, 1> from
the above state space. The following definition generalizes this observation:

Reachable abstract object state. An abstract object state is reachable if it
satisfies the class invariant.

3.2 Query-Based Testing

The general strategy for query-based testing, represented by figure 1, will involve the
following elements, detailed in subsequent sections:

• Find the exported argumentless boolean queries.
• (Section 3.3 below.) Use a boolean constraint solver (SICStus) to generate all

possible abstract object states that satisfy the clauses of the class invariant
involving only these queries — ignoring any invariant clauses involving other
features of the class, such as the integer attributes count and capacity in the above
example, since this is beyond the reach of a boolean constraint solver.

• (3.4) Use a theorem prover (Simplify) to prune abstract object states that do not
satisfy the invariant (including the previously ignored clauses, such as those
involving count and capacity in the example.

Boolean Query
Extraction

Class Under Testing

Boolean
Constraint Solver

(SICStus)

Theorem Prover
(Simplify) AutoTest

Cover all reachable
abstract object states ?

Cannot cover in any way ?

Strengthen
Contracts

Object State Predicates

Class invariants

Reachable abstract
object states

Covered
States Yes

No

No

Yes

Updated ClassAcquire Abstract States

Abstract Object
State Machine

Cover Abstract States

Fig. 1. Overview of class testing procedure

• (3.5) Use a forward testing approach (part of the AutoTest tool), attempt to cover

all the resulting abstract object states. In this process, any routine execution that
violates a contract element uncovers a bug and hence marks a success of the
strategy.

• (3.6) All the previous steps are automatic. After they have been run, it is
useful to perform a manual inspection to determine how many of the abstract
object states have been covered. For each state that has not been covered, you

 Using Contracts and Boolean Queries to Improve the Quality 121

should inspect the specification to determine whether each uncovered state
makes sense or not. If not, this may lead, if you have access to the original
class or may make suggestions to its developers, to strengthening its invariant.
On the other hand if you find out that the state is logically meaningful, you
may have to adapt the testing strategy, adding manual tests if necessary, to
extend coverage.

3.3 Generating Abstract State Through Boolean Constraint Solving

Acquiring all reachable abstract object states requires the support of a boolean
constraint solver and theorem prover. As noted above, the first step is to collect all the
exported, argumentless boolean queries from the class interface; this can be done in
several ways (parsing of the class of just its official interface documentation,
reflection, or data from the IDE). The next step is to strip down the class invariant to
those clauses that only involve these queries, temporarily dropping any other clauses,
for example those involving count or capacity.

This allows feeding the resulting simplified invariant into a boolean constraint
solver. We have chosen the SCIStus solver [24] for that purpose. The result is to
obtain all possible abstract object states; in the simple example above, after feeding
SICStus variant clause “is_empty => not is_full”, we would get { <0, 1>, <1, 0>, <0,
0>}. Note that <1, 1> is not a member of that set since the constraint solver takes
advantage of the invariant clause not is_empty or not is_full to remove it as
inconsistent.

For an actual class, FIXED_LIST, the number of applicable queries is 9, resulting
in an abstract state space with 512 elements. Contraint solving reduces this number
considerably, to 224.

3.4 Pruning the State Space Through Theorem Proving

The resulting abstract state space may still includes states that do not make sense.
This is not the case in the simple INT_STACK example, since the three states that
survive the previous step are all reachable, but often happens in larger cases; for
example, in the FIXED_LIST class of EiffelBase, boolean constraint solving does not
eliminate a state in which “not before and not after and off” holds.

To prune the state space from such spurious cases violating the invariant, the
strategy next applies theorem proving. The theorem prover reintroduces the invariant
clauses ignored by the previous step to reduce the state of the state space. The proof
tool we use is Simplify [6]. Simplify accepts a sequence of first order formulas as
input, and attempts to prove each one. Simplify does not implement a decision
procedure for its inputs: it can sometimes fail to prove a valid formula. But it is
conservative in that it never claims that an invalid formula is valid. As a result, the
invariant clauses are encoded as facts and definitions in Simplify; the acquired
abstract states are encoded as formulas. Then Simplify is used to prove the negation
of each formula is valid. If Simplify can prove it, the corresponding abstract state is
unreachable and can be removed from the abstract state sets that should be covered by
the testing procedure. For the INT_STACK example, the facts, definitions and
formulas fed to Simplify are as follows:

122 L. Liu, B. Meyer, and B. Schoeller

facts:

(BG_PUSH (>= count 0))
(BG_PUSH (<= count capacity))
(BG_PUSH (> capacity 0))

definitions:

(DEFPRED (is_empty) (EQ count 0))
(DEFPRED (is_full) (EQ count capacity))

formulas:

 1. (NOT (AND (NOT (is_empty)) (NOT (is_full))))
 2. (NOT (AND (NOT (is_empty)) (is_full)))
 3. (NOT (AND (is_empty) (NOT (is_full))))

These three formulas cannot be proved valid by Simplify, hence they may be
reachable and should be covered by the test cases.

Adding this step is quite effective: for example, in the FIXED_LIST case, it
reduces the state space from 224 elements to 64.

3.5 Forward Testing

The previous steps give us a set of abstract states that can be used as a criterion for
test coverage according to the following definition:

Boolean query coverage. A set of tests for a class satisfies boolean query
coverage if and only if the execution of these tests can cover all the
reachable abstract object states for that class.

This sets the stage for the testing effort: try to achieve boolean query coverage by
covering as many as possible of the abstract object states determined through
application of the preceding techniques.

For the testing effort we rely on AutoTest [5], a testing tool that uses contracts to
perform automatic test generation and bug detection. AutoTest uses a forward testing
[16] process.

The forward testing process attempts to explore all abstract object states. The
process first creates some objects via different creation procedures and acquires a set
of abstract object states of these objects. Starting from these initially acquired abstract
object states, it executes all exported routines in these abstract object states to explore
more abstract states. It repeats this step until it either finds no new abstract object
states or reaches a predefined threshold (of number of calls, or testing time). Listing 2
describes the procedure more precisely.

To formalize this process it is useful to rely on the following notion (adapted from [15]):

Object state machine. Consider a class C; let EC be its set of exported commands
and S be the set of corresponding object states. The object state machine for C is
defined by the subset I ⊆ S of initial object states (as produced by creation
procedures) and the transition function t: S×EC → S describing the effect of C’s
commands.

 Using Contracts and Boolean Queries to Improve the Quality 123

Listing 2. Forward Testing

forward_testing (threshold : INTEGER) : ABSTRACT_STATE_SET is
local

S, T : ABSTRACT_STATE_SET
a, b: ABSTRACT_STATE
length : INTEGER
r : ROUTINE
R: ROUNTINE_SET
i: INTEGER

do
T := Initial abstract object states
S := { }
length := 0
R := All exported routines
from
until

T = { } or length > threshold
loop

a := T.remove_one_state
S := S + a
length := length + 1
from

i := 1
until

i > R.count
loop

r := R.get(i)
execute r in a to get abstract object state b
if b not in S and b not in T then

T := T + b
i := i + 1

end
end
Result := S

end

We can talk of abstract or concrete object state machines, based on this definition, by
choosing S to be the set of abstract or concrete states.

The class testing procedure records all exercised abstract object states and
transitions. This means that developers can examine the result of a test campaign to
determine if the class under testing exhibits unexpected behavior, or to assess the
completeness of a test suite.

For INT_STACK, the extracted abstract object state machine is as follows.

Queries: Command set EC:
1. is_empty pop, push
2. is_full
 Transition function t:
Set of states S: <1, 0> push <0, 0>
 {<1, 0>, <0, 0> , <0, 1>} <0, 0> pop <1, 0>
 <0, 0> push <0, 1>
Initial states I: <0, 1> pop <0, 0>
 <1, 0> <0, 0> pop <0, 0>
 <0, 0> push <0, 0>

Applying AutoTest’s forward testing to class INT_STACK will cover all reachable
abstract object states. This may seem to be because of the simple nature of this
academic example, but in fact a very encouraging result of our experiments is that
AutoTest’s automated strategy yields a very high initial coverage, 80% or higher, of
the abstract object state space for all the actual (production) library classes we have
tried. As described in the next section, we then perform a manual inspection of the
results to examine uncovered states, and improve the invariants as a result of this
inspection; in all of our experiments so far this has enabled us in the end to reach
100% boolean query coverage.

124 L. Liu, B. Meyer, and B. Schoeller

3.6 Inspecting the Specification

At the end of the process it is useful to inspect the results, in particular to examine
boolean query coverage. If an abstract state has not been covered, possible actions are:

• Add manual tests that will exercise the corresponding states. (AutoTest has the

possibility of including manual tests along the automatically generated ones.)
• If it appears that the states are not possible, reinforce the class invariants to

exclude them.

As noted earlier, our experiments so far have yielded excellent coverage of the
abstract state. But as an example of the second case, we found that in class
FIXED_LIST 32 states, out of the 64 remaining from previous reductions of the
abstract state space, seemed unreachable because a particular property relative to the
query extendible seems to be missing. Adding the corresponding invariant clause
achieves total coverage.

4 Experimental Setup and Study Results

4.1 Choice of Library

To examine the Boolean Query Conjecture with the above strategy, we performed a
number of tests of classes from the EiffelBase library. EiffelBase is particularly
interesting in several respects:

• It is not an academic example but a production library, used — in its successive

incarnations since its first version almost twenty years ago — in numerous
applications, in particular, currently, in large, mission-critical systems handling
billions of dollars of investments or large-scale missile simulations.

• In spite of this background it still has bugs.
• These bugs arise only in remote, uncommon cases, and are only found through

systematic testing by AutoTest, which has taken EiffelBase as one of its
primary experimental targets. Obviously, all EiffelBase bugs found so far by
AutoTest, including the ones uncovered by present study, have now been
corrected.

• EiffelBase is a showcase of object-oriented techniques and in particular makes
extensive use of contracts.

4.2 Choice of Target Classes

For the present study, we used INT_STACK, our toy example (for reference purposes),
and four important classes of the EiffelBase library: LINKED_LIST, BINARY_TREE ,
ARRAYED_SET and FIXED_LIST.

The size of these classes, in terms of number of routines (and ignoring attributes) is
as follows:

 Using Contracts and Boolean Queries to Improve the Quality 125

• LINKED_LIST: 89 routines.
• BINARY_TREE: 93 routines.
• ARRAYED_SET: 70 routines.
• FIXED_LIST: 82 routines.

Of these, 27 come from the top-level class ANY, which is the one of the ancestors of
the classes given. (All Eiffel classes inherit from ANY). AutoTest tests all routines,
whether defined in the class itself or inherited. Indeed, as the classes given are pretty
deep in the inheritance hierarchy, many of their routines are inherited.

4.3 The Testing Environment

The AutoTest tool, the centerpiece of our testing work and responsible for the forward
testing step (3.5), is a testing environment which takes care of both test case
generation and test oracles. Test cases are generated by systematically calling all the
routines of the selected classes and any classes on which they rely; test oracles (the
mechanisms to determine whether a test is successful) are entirely provided by routine
postconditions and invariants. More precisely:

• A precondition violation for a routine directly called by AutoTest indicates that

the test is not interesting; AutoTest minimizes such occurrences through
constraint solving and proof techniques as used in this article.

• If a routine gets executed (its precondition was satisfied), any violation of the class
invariant, the routine’s postcondition, or the precondition of another routine that it
calls indicates a buggy routine to be added to the output of the AutoTest run.

In the last case, AutoTest performs a minimization step that finds, if possible, a
shorter sequence leading to the same incorrect result; this enables using the shorter
sequence, and hence maximizing efficiency, for debugging, and for later regression
testing.

AutoTest has a sophisticated testing architecture making it possible to perform a
large number of such automatic routine executions, recovering if any of them fails,
and presenting the test results in convenient HTML format. When detecting a bug —
a sequence of execution that leads to a violation of a postcondition or other contract
element.

Although primarily an automatic testing tool, AutoTest is also a general testing
environment supporting the addition of manually selected test cases, and automating
the testing process, in particular regression testing. AutoTest is being more closely
integrated with the EiffelStudio environment so that in the future, for example, users
will have the choice, when an execution fails, of having the faulty call sequence
automatically integrated, after minimization, in the regression test suite.

4.4 Study Results

We applied AutoTest to the result of performing the constraint solving and theorem
proving steps described above on the selected classes. We also applied plain

126 L. Liu, B. Meyer, and B. Schoeller

Table 1. Comparison of boolean query testing with random testing

Routine
coverage

Buggy routines Tested Class Boolean
queries

Testin
time

(mins.)

LOC

BQT RT BQT RT
INT_STACK 2 2 444 100% 100% 1 0

LINKED_LIST 14 20 1909 97% 87% 3 2
BINARY_TREE 20 14 1507 97% 91% 10 6

ARRAYED_SET 11 9 2565 100% 96% 3 1
FIXED_LIST 9 45 1856 99% 94% 5 5

AutoTest, not taking advantage of these steps, to the same class, and compared the
results for number of routines that contain bugs and routine coverage (the number of
routines exercised). The following table shows the results.

Where LOC denotes “lines of code”, BQT denotes “boolean query testing” and RT
denotes “random testing”. Boolean query testing denotes the testing procedure that
satisfies boolean query coverage.

4.5 Evaluation

The number of classes to which we have applied the strategy is still too small to
warrant statistically significant conclusions, but the number of buggy routines found
and the high routine cover show the worth of boolean query testing. The high routine
coverage of boolean query testing show that it is effective in constructing interesting
target object states. For example, for the LINKED_LIST class, the routines item, last,
replace that are covered by boolean query testing but not random testing require target
object states “not off”, “not is_empty” and “writable” separately. The higher buggy
routines discovered by boolean query testing also provide an evidence for its
effectiveness in computing interesting object states. For example, in class
ARRATED_SET, the buggy routine that is discovered by boolean query testing not
random testing require an target object state “not off unless after”. To get this object
state a routine call sequence <make (n), put (o), forth> should be execute, where n >0,
o is any object that is not Void.

Since we are studying production-grade software; any buggy routine identified is a
major result. In this respect the techniques described here have already proved their
worth by enabling us to detect and correct heretofore unsuspected bugs, and hence
improve the reliability of real software systems.

5 Related Work

The following work is relevant to the discussion of the testing strategy presented in
this paper.

5.1 Construction of Abstract States

Queries and boolean predicates have been used to generalize concrete states [2, 26, 27].
Xie et al. gave a black-box abstraction method that uses public observers that return

 Using Contracts and Boolean Queries to Improve the Quality 127

non-void values to generalize concrete object state machine into observable object
state machine and infer this abstract machine through unit testing [26]. This approach
cannot bound concrete object states to a finite abstract object states, as a result, cannot
achieve abstract state coverage in testing. Ball et al. presented a white-box boolean
predicate abstraction approach that uses all predicates appearing in program to
generalize concrete program states into a set of abstract program states, and gave the
upper bound and lower bound of these abstract states. This approach cannot infer all
abstract states of a program that satisfy its specification since it is a white-box
method. Therefore, it cannot statically decide the exact bound of satisfiable abstract
states. Yorsh et al. make use of the boolean predicate abstraction approach to find a
proof for a program rather than detecting real errors.

Our object state abstraction approach is a black-box method and uses contracts and
proof techniques to infer all abstract object states that satisfy class contracts. This
abstraction process is independent of testing and can be done statically. Moreover, it
also provides a way to inspect class contracts. Because our abstraction approach maps
concrete object states to finite reachable abstract states, we can direct our class testing
procedure to completely explore these states.

5.2 Black-Box Test Coverage Criteria

Category-Partition (CP) [22] is a common black-box test strategy. Each category
defines a major property of the parameter or condition of a function/routine and
partitioned into a series of distinct choices. A set of choices from all the categories is
combined into a test frame, where each category contributes with, at most, one choice.
These test frames are templates used to derive test cases. To apply CP, we need to
consider the approach to combining choices. There are three combing approaches: all
combination, base choice and each choice, where all combination derives all
combinations of choices as test frame. Hence all combination partitions the whole
input domain and is the most expensive and effective combining approach. boolean
query coverage is essentially a Category-Partition strategy used for generating object
states. This strategy takes every boolean query as a category and defines all possible
combinations among the values of these boolean queries. Therefore, it partitions the
whole object sate space and is a most effective CP strategy for generating object
states.

Because of the easiness of automation, random testing [7, 9, 10] is practically
widely adopted black-box test strategy. The studies in [7, 9] show that random testing
could be more cost-effective than partition testing (assuming that its cost is lower than
that of partition testing) with respect to the probability of detecting at least one failure.
Comparing to random testing, boolean query coverage can also be implemented
automatically and detects more object state related bugs.

5.3 Test Case Generation and Automatic Testing

To cover all reachable abstract object state space, we mainly use the forward testing
and complement this process with random testing and manual testing. All of these
testing strategies have been implemented in Eiffel automatic unit testing tool
AutoTest.

128 L. Liu, B. Meyer, and B. Schoeller

Automatic class testing is more practical when class specification are embedded
into the program as formal or semi-formal contracts. TestEra[20] is a contract-based
software test tool targeting Java source code and specification written in Alloy [11]
(a structural modeling language based on first-order logic). Due to the impedance
mismatch between the specification and the implementation language the testing
process is not fully automatic and there is a higher barrier for the developer to provide
the specification since he has to learn a new language. This automatic testing tool
does not adopt object state abstraction approach, while uses model checking
technique to generate the test inputs that satisfy a function’s precondition.

The Korat tool [3] uses a function’s precondition on its input to automatically
generate all (nonisomorphic) test cases up to a given small size. Korat constructs test
cases by setting the field values directly not by invoking routines as done in our
forward testing strategy.

Another tool, Check’n’Crash [4], does not use specifications but uses an external
static verifier (ESC/Java2) to calculate a precondition to describe the conditions that
might result in a failure. It then uses a constraint solver to generate instances that
satisfy this precondition. Since their approach assumes no specifications, they use a
heuristic to filter expected failures from unexpected ones.

AutoTest [5] implements fully automatic class testing based on contracts. Without
intervention from a user, AutoTest generates tests, executes tests and verifies test
results. This testing tool is configurable. Testers can configure the testing strategies
(random, forward and manual), then AutoTest can execute these selected testing
strategies automatically.

Our testing procedure includes two fully automatic testing processes. The first is
using forward testing to explore most abstract object states. If there are some abstract
object states that cannot be covered then tester complement some test cases encoded
in manual test case form and execute AutoTest to cover all abstract object states and
construct abstract object state machine. The second is an automatic test oracle that
uses contracts embedded in the class under test.

6 Future Work

The results presented here are particularly promising but require further work, in
particular:

• Application to many more example classes. Potentially we should process all
EiffelBase classes.

• Application to software that is more representative of user programs: EiffelBase
is a general-purpose library, but we must also apply the approach to typical
commercial software in various application areas.

• Closer evaluation of the results, in particular with respect to the time needed to
find bugs (for the whole strategy, including testing but also the preparatory stages
of constraint solving and proof), not just the number of bugs eventually found.

• Integration of the techniques, to the extent that will appear justified, in the
AutoTest framework, so that it can take advantage of the best combination of
various software reliability techniques, from constraint solving and model
checking to proofs as well as tests.

 Using Contracts and Boolean Queries to Improve the Quality 129

Acknowledgements

We thank Joseph N. Ruskiewicz for his help with Simplify and constructive
comments. We also thank Stephanie Balzer, Andreas Leitner, Ilinca Ciupa and
Manuel Oriol for their feedback and many invaluable technical discussions. We also
thank Eric Bezault for providing Gobo Eiffel which served us as a great platform to
build our tools on.

References

[1] Barnettl, M., Rustan, K., Leinol, M., Schultel, W.: The Spec# programming system: An
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, Springer, Heidelberg (2005)

[2] Ball, T.: A theory of predicate-complete test coverage and generation. In: 3rd Interna
tional Symposium on Formal Methods for Components and Objects, pp. 1–22 (2004)

[3] Boyapati, C., Khurshid, S., Marinov, D.: Korat: Automated testing based on Java
predicates. In: ISSTA’02. Proceedings of the ACM SIGSOFT International Symposium
on Software Testing and Analysis, pp. 123–133. ACM Press, New York (2002)

[4] Csallner, C., Smaragdakis, Y.: Check ’n’ crash: combining static checking and testing. In:
Inverardi, P., Jazayeri, M. (eds.) ICSE 2005. LNCS, vol. 4309, pp. 422–431. Springer,
Heidelberg (2006)

[5] Ciupa, I., Leitner, A.: Automatic testing based on design by contract. In: Proceedings of
Net.ObjectDays 2005 (6th Annual International Conference on Object-Oriented and
Internet-based Technologies, Concepts and Applications for a Networked World), pp.
545–557 (2005)

[6] Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program checking.
Technical Report HPL-2003-148, HP Labs (2003), http:// research.compaq.com/ SRC/
esc/Simplify.html

[7] Duran, J., Ntafos, S.: An evaluation of random testing. IEEE Transactions on Software
Engineering SE-10, 438–444 (1984)

[8] Hamie, A.: Towards verifying Java realization of OCL-constrained design models using
JML. In: Proceedings of 6th IASTED International Conference on Software Engineering
and Applications, ACTA Press, MIT, Cambridge, MA, USA (2002)

[9] Hamlet, D., Taylor, R.: Partition testing does not inspire confidence. IEEE Transactions
on Software Engineering 16(12), 1402–1411 (1990)

[10] Hamlet, R.: Random testing. In: Marciniak, J. (ed.) Encyclopedia of Software
Engineering, pp. 970–978. Wiley, Chichester (1994)

[11] Jackson, D.: Alloy: Alightweight object modeling notation. ACM Trans. Soft. Eng.
Methodology 11(2), 256–290 (2002)

[12] Kramer, R.: iContract - the Java ™ design by contract ™ tool. In: Proceedings of Object-
Oriented Language and Systems, pp. 295-307. IEEE Computer Society, Washington, DC,
USA (1998)

[13] Leavens, G.T., Baker, A.L.: Enhancing the pre- and postcondition technique for more
expressive specifications. In: World Congress on Formal Methods, pp. 1087–1106 (1999)

[14] Leavens, G.T., Cheon, Y., Clifton, C., Ruby, C., Cok, D.R.: How the design of jml
accommodates both runtime assertion checking and formal verification. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2002. LNCS, vol. 2852, pp.
262–284. Springer, Heidelberg (2003)

130 L. Liu, B. Meyer, and B. Schoeller

[15] Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines - A
survey. In: Proc. The IEEE, pp. 1090–1123. IEEE Computer Society Press, Los Alamitos
(1996)

[16] Liu, L., Leitner, A., Offutt, J.: Using contracts to automate forward class testing. Journal
of System and Software (submitted)

[17] Meyer, B.: Reusable Software: The Base Object-Oriented Libraries. Prentice Hall,
Englewood Cliffs (1994)

[18] Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall, Englewood
Cliffs (1997)

[19] Meyer, B.: Eiffel: The Language, Prentice Hall, 1991, revised edn. in progress at (2006),
http://se.ethz.ch/ meyer/ongoing/etl/

[20] Marinov, D., Khurshid, S.: TestEra: A novel framework for automated testing of Java
programs. In: ASE. Proc. 16th IEEE International Conference on Automated Software
Engineering, pp. 22–34. IEEE Computer Society Press, Los Alamitos (2001)

[21] Nimmer, J.W., Ernst, M.D.: Invariant inference for static checking: An empirical
evaluation, in: FSE 2002. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365,
pp. 11–20. Springer, Heidelberg (2002)

[22] Ostrand, T.J., Balcer, M.J.: The Category-Partition method for specifying and generating
functional test. Comm. ACM 31(6), 676–686 (1988)

[23] Richtersl, M., Gogolla, M.: On formalizing the UML object constraint language OCL. In:
Ling, T.-W., Ram, S., Lee, M.L. (eds.) Conceptual Modeling – ER ’98. LNCS, vol. 1507,
Springer, Heidelberg, Singapore (1998)

[24] SICStus Prolog User’s Manual, http://www.sics.se/sicstus/docs/latest/pdf/sicstus.pdf
[25] Whaley, J., Martin, M.C., Lam, M.S.: Automatic extraction of object-oriented component

interface. In: ISSTA 2002, pp. 218–228 (2002)
[26] Xie, T., Notkin, D.: Automatic extraction of object-oriented observer abstractions from

unit-test executions. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS,
vol. 3308, pp. 290–305. Springer, Heidelberg (2004)

[27] Yorsh, G., Ball, T., Sagiv, M.: Testing, abstraction, theorem proving: better together! In:
ISSTA 2006, pp. 145-156 (2006)

Symbolic Execution Techniques for Refinement

Testing�

Pascale Le Gall1, Nicolas Rapin2, and Assia Touil1

1 Université d’Évry, IBISC - FRE CNRS 2873,
523 pl. des Terrasses F-91000 Évry

{pascale.legall,assia.touil}@ibisc.univ-evry.fr
2 CEA/LIST Saclay

F-91191 Gif sur Yvette
{nicolas.rapin}@cea.fr

Abstract. We propose an approach to test whether an abstract speci-
fication is refined or not by a more concrete one. The specifications are
input / output symbolic transition systems (IOSTS). The refinement re-
lation requires that all traces of the abstract system are also traces of the
concrete system, up to some signature inclusion. Our work takes inspira-
tion from the conformance testing area. Symbolic execution techniques
allow us to select traces of the abstract system and to submit them on
the concrete specification. Each trace execution leads to a verdict Fail,
Pass or Warning. The verdict Pass is provided with a formula which
has to be verified by the values only manipulated at the level of the
concrete specification in order to ensure the refinement relation. The
verdict Warning reports that the concrete specification has not been
sufficiently explored to give a reliable verdict. This is thus a partial ver-
ification process, related to the quality of the set of selected traces and
of the exploration of the concrete specification. Our approach has been
implemented and is demonstrated on a simple example.

Keywords: refinement, conformance testing, symbolic execution,
symbolic transition system.

1 Introduction

Formal specifications serve as references for the rigorous definition of correct im-
plementations. Implementation correctness is usually based on some hypotheses
stating that implementations can be modelled as a formal model. For example,
specifications can be used to generate test cases in order to verify whether an
implementation conforms or not to its specification. However, it is widely recog-
nised that it is often difficult to write the right formal specifications in adequacy
to the informal requirements given by the users. To overcome this difficulty, re-
finement techniques are often advocated to help the designers to incrementally
design a detailed specification. Implementation design choices (non-determinism

� This work was partially supported by the RNRT French project STACS.

B. Meyer and Y. Gurevich (Eds.): TAP 2007, LNCS 4454, pp. 131–148, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

132 P. Le Gall, N. Rapin, and A. Touil

elimination, data types concretisation) are progressively introduced in specifica-
tions such that the specification design becomes a general stepwise refinement
process from the more abstract specification to the more concrete specification
[24]. Then, the executable implementation may be simply derived, by hand-
writing code or by automatic code generation techniques. Intuitively, a concrete
specification Sp2 refines another abstract one Sp1 if it has the same behaviours,
up to some formal refinement relation. According to the considered underlying
formalism, the refinement process is more or less equipped with verification tech-
niques and tools. For example, model-oriented frameworks like the B method [2]
or property-oriented frameworks like algebraic specifications [13] are provided
with a theory of specification refinement, mainly based on proof-based verifica-
tion : proof obligations are associated to each refinement step. For formalisms
based on transition systems (labelled transition systems, input/output transition
systems, Petri Net, etc), the refinement relation is generally expressed using some
relations of simulation or notions of trace containment (see for example [3,23]).
In this paper, we focus on specifications described with symbolic transitions sys-
tems (STS). They are finite state transition automata including first-order data
used both to characterise internal states and to guard transitions by means of
first-order conditions. They provide us with an appropriate level of abstraction
and are useful to avoid the classical state explosion problem. We find these sym-
bolic models under different names STG [14], STS [5,6] or IOSTS [16,10,11]. We
use IOSTS formalism defined in [12,20] that is very similar to the systems used
in [16,10]. The aim of the paper is to verify a refinement step following the rea-
soning of conformance testing. Thus, the key idea is to extract from the abstract
specification Sp1 some representative behaviours, or test cases, and then to sub-
mit them to the concrete specification Sp2 in order to get a verdict. Symbolic
execution techniques will be used not only to select test cases from Sp1 as in
[12] but also to execute test cases on Sp2. Indeed, unlike conformance testing for
which verdicts come from the execution of the system under test with test cases
as input data, refinement testing requires to be able to analyse Sp2 with respect
to the abstract requirements. Symbolic execution techniques precisely allow us
to explore Sp2 according to the selected abstract behavior given as a trace. The
verdict depends on the satisfiability of the associated path condition computed
on Sp2. Related works (e.g. [15]) on verification of STS mainly concern symbolic
bisimulation relations. They involve an algebra of regions over the data type
part provided with operations supposed to be decidable. Unlike such works, we
take into account the fact that generally, Sp2 has often a larger interface than
Sp1, and thus, the signature of Sp2 may strictly contain the one of Sp1. Thus,
refinement verification precisely requires to automatically compute data emitted
and received at the concrete level ensuring the abstract requirements. Symbolic
execution provided with some constraint solving mechanisms allows us to per-
form such computations on Sp2. Moreover, from a practical point of view, our
testing-based approach allows us to more easily debug the concrete specifica-
tion Sp2 when a verdict Fail is emitted. Indeed, the corresponding unsatisfiable
path condition gives some clues to modify Sp2 in order to ensure the refinement

Symbolic Execution Techniques for Refinement Testing 133

relation with Sp1. Testing and refinement have already been linked in previous
works. Most of them [9,22] study the relationship between abstract tests se-
lected from an abstract specification and concrete tests which are submitted to
the implementation under test (IUT). Generally, the IUT interface is such that
an abstract action (or function) of the specification may be decomposed into el-
ementary actions making explicit how the abstract action is concretely achieved
by the IUT. We are not interested in this problem but we rather focus on the
testing-based method for the partial verification of a refinement step between
two specifications.

The paper is structured as follows. In Section 2 we present IOSTS, their
syntax and semantics. The refinement relation is introduced in Section 3. A
theorem relates the refinement relation with all symbolic executions of a concrete
specification with respect to all traces of the abstract specification. This result
will found our method given in Section 4 which aims at testing whether a concrete
specification verifies or not an abstract one. Our approach is illustrated by an
example and some details on algorithms and implementations are given. Finally,
Section 5 contains concluding remarks.

2 Input Output Symbolic Transition Systems

Reactive systems are open systems interacting with their environment. Such
systems can be modeled by using Input/Output Symbolic Transition Systems
(IOSTS). Communications consist of sending or receiving messages represented
by first-order terms through communication channels. IOSTS specify dynamic
aspects of reactive systems by describing possible evolutions of system states.
This is done by modifying values associated to some variables, called attribute
variables, in order to denote system state modifications. Each elementary mod-
ification is given by a transition labelled by a communication action (sending
or receipt of messages, or an internal action), guards expressed with first-order
properties, and assignments of attribute variables.

2.1 Data Types

Let us first introduce the data part of the IOSTS formalism. Data types are
specified with a many-sorted first-order equational logic.

Syntax. A data type signature is a couple Ω = (S, Op) where S is a set of
type names, Op is a set of operation names, each one provided with a profile
s1 · · · sn−1 → sn (for i ≤ n, si ∈ S). Let V =

⋃

s∈S

Vs be a set of typed variable

names. The set of Ω-terms with variables in V is denoted TΩ(V) =
⋃

s∈S

TΩ(V)s

and is inductively defined as usual over Op and V . TΩ(∅), simply denoted TΩ, is
the set of all ground terms that have no occurrences of variables. A Ω-substitution
is a function σ : V → TΩ(V) preserving types. In the following, we denote by

134 P. Le Gall, N. Rapin, and A. Touil

TΩ(V)V the set of all Ω-substitutions of the variables V . Any substitution σ may
be canonically extended to terms (and will be also noted σ). The set SenΩ(V) of
all typed equational Ω-formulae contains the constant symbols �, ⊥ (denoting
the usual truth values truth and false) and all formulae built using the equality
predicates t = t′ for t, t′ ∈ TΩ(V)s, and the usual connectives ¬,∨,∧,⇒.

Semantics. A Ω-model is a family M = {Ms}s∈S with, for each f : s1 · · · sn →
s ∈ Op, a function fM : Ms1 × · · · ×Msn →Ms. We define Ω-interpretations as
applications ν from V to M preserving types, extended to terms in TΩ(V). A
model M satisfies a formula ϕ, denoted by M |= ϕ, iff, for all interpretations ν,
M |=ν ϕ, where M |=ν t = t′ is defined by ν(t) = ν(t′), and where the constant
symbols � and ⊥ and the connectives are handled as usual. MV is the set of all
Ω-interpretations from V to M . Given a model M and a formula ϕ, ϕ is said
satisfiable in M , if there exists an interpretation ν s.t. M |=ν ϕ.

In the sequel, we suppose that data types of all IOSTS correspond to an arbi-
trary common data signature Ω = (S, Op) and are interpreted in a fixed model
M . So, the data type signature Ω will be left implicit in the sequel. Moreover,
elements of M will be called concrete data and denoted by ground terms in TΩ.
The examples illustrating our approach will be built on data types issued from
Presburger arithmetics and from some enumerated types. So, concrete data will
be natural numbers or boolean values provided with some usual operations as
addition, comparison operators, etc. Moreover, expressions such as ≤ (5, x) = �
will be simply denoted 5 ≤ x.

2.2 Syntax

Definition 1 (IOSTS-signature). An IOSTS-signature Σ is a couple (A, C)
where A =

⋃

s∈S

As is a set of variable names, called attribute variables, over the

signature Ω and where C is a set of communication channel names.
Let Σ1 = (A1, C1) and Σ2 = (A2, C2) two IOSTS-signatures. Σ1 is said to

be included in Σ2, denoted by Σ1 ⊆ Σ2, iff C1 ⊆ C2.

For a given IOSTS-signature Σ = (A, C), the set C of communication channels
represents the interface of the corresponding IOSTS while the set A of attribute
variables is used to characterize the different states of the IOSTS, and thus are
internal information of the IOSTS. It explains why signatures are only compared
with respect to their respective sets of communication channels. In the sequel,
signature inclusions will be denoted1 as ρ : Σ1 ⊆ Σ2 or simply ρ.

Example 1. Let us introduce a IOSTS-signature Σ1 = (A1, C1) to specify a
drink machine:

• A1 = {coin, m, price, B} where the coin variable will denote the value of the
coin introduced by the user, m the value of the available amount to be spent,
price the price of the beverages, B the selected beverage.
1 Clearly, signatures and signature inclusions constitute a category.

Symbolic Execution Techniques for Refinement Testing 135

• C1 = {introduce, select, screen, refund, serve, take cup} where introduce
allows the user to introduce coins, select denotes the button used to select a
beverage, screen the place where some messages are displayed, refund the way
to give back money in excess, serve the fact that the cup is filled with the
beverage and lastly, take cup the fact that the user is taking off his beverage.

An IOSTS communicates through communication actions consisting in receipts
(inputs) and emissions (outputs) of values through channels.

Definition 2 (Actions). The set of communication actions, denoted ActΣ =
Input(Σ) ∪ Output(Σ) where:
Input(Σ) = {(c, ?, y) | c ∈ C, y ∈ A} Output(Σ) = {(c, !, t) | c ∈ C, t ∈ TΣ(A)}

In the sequel we will note c?y for (c, ?, x) and c!t for (c, !, t). Actions are in-
teractions with the environment: c?x represents a receipt of a value from its
environment which will be assigned to the attribute variable x. c!t represents
the emission of the value t through the channel c. Interactions with no exchange
of values (i.e. pure signals) on a channel c are conventionally modelled by c!�
or c?x� with x� a variable reserved for that purpose, and simply written resp.
as c! or c? in the sequel.

Definition 3 (Observable traces). An observable trace r over Σ is a finite se-
quence of observations belonging to ObsΣ = (C×{?, !}×M). We note ObsTr(Σ)
the set of observable traces2 over Σ.

Let us consider the signature inclusion ρ : Σ1 ⊆ Σ2. Given an observable
trace r over Σ2, the projection of r on Σ1, denoted r|ρ, or simply r|Σ1 , is the
observable trace over Σ1 obtained by removing from r observations not belonging
to ObsΣ1 : thus, if r is decomposed as “e r′ ” with e an observation of ObsΣ2 and
r′ the ending trace, then r|ρ = e r′|ρ if e belongs to ObsΣ1 , else r′|ρ.

Observable traces represent observations which can be done on a IOSTS: they
give which values are exchanged, as emissions or receipts, with the environment,
and according to which order. Projections of traces on a subsignature allow us
to restrict the signature to be considered as exported, and thus as observable.

Definition 4 (IOSTS). An IOSTS over a signature Σ = (A, C) is a 4-tuple
(Q, q0, T rans, ι) where Q is a set of state names, q0 ∈ Q is the initial state,
Trans ⊆ Q×ActΣ ×SenΩ(A)×TΩ(A)A×Q and ι is a substitution associating
to each attribute of A a term in3 TΩ(V ∪ A). A transition tr = (q, act, ϕ, ρ, q′)
of Trans is composed of a source state q denoted by source(tr), an action act
denoted by act(tr), a guard ϕ, a substitution of variables ρ and a target state q′

denoted by target(tr). For each state q ∈ Q, there is a finite number of transitions
of source state q.

An IOSTS over the signature Σ is said to be initialized if for every attribute
variable v in A, ι(v) is a ground term of TΩ.
2 In the sequel, for an observable trace r, we will denote r[n] the nth element of the

trace when it exists.
3 V is any set of variables disjoint with the set A.

136 P. Le Gall, N. Rapin, and A. Touil

Using initialized IOSTS allows to precisely specify initial values of the attribute
variables in order to restrict the set of admissible initial states. On the contrary,
non initialized IOSTS admit several (or maybe all) initial conditions for the
attribute variables : in this case, the first communications are often used to
restrict the set of acceptable states which are reachable from the initial states.

Example 2. We present an IOSTS, denoted Sp1, in Figure 1. It represents an
abstract coffee machine over Σ1. That machine accepts coins as input from
the environment (introduce?coin). After inserting coins, there is two possibili-
ties, either the machine is out of order (screen!′′out of order′′) then, the user
is refunded (refund!m), or the user selects the drink (select?B). Here, there
is again three possibilities: there is no cups (screen!”no cups”) and the user
is refunded, or there is no enough money, then the machine asks more coins
(screen!(price−m)) with price the price of the drink and m the total amount
that has been already introduced by the user), or the machine serves the drink
(serve!B). Lastly, if the amount introduced is more than the price of the drink,
the user receives the difference back.

a0

m := m + coin
introduce?coin

screen!
”no cups”refund!m

select?B
[m < price]
screen! screen!

”out of order” refund!m

a1

a2

a3

(price − m)

[m ≥ price]

a′

2

a′

1

serve!B

[m > price]
refund!(m − price)

[m = price]

take cup!

take cup!

m := 0

m := 0

m := 0

m := 0

Fig. 1. Specification Sp1

2.3 Semantics

Definition 5 (Runs of a transition). Let tr = (q, act, ϕ, ρ, q′) ∈ Trans. The
set Run(tr) ⊆ MA × ObsΣ ×MA of runs of tr is s.t. (νi, actM , νf) ∈ Run(tr)
iff:

– if act is of the form c!t then M |=νi ϕ, νf = νi ◦ ρ and actM = c!νi(t),
– if act is of the form c?y then M |=νi ϕ, there exists νa such that νa(z) = νi(z)

for all z �= y, νf = νa ◦ ρ and actM = c?νa(y).

Symbolic Execution Techniques for Refinement Testing 137

For a run r = (νi, actM , νf), we denote source(r), obs(r) and target(r) respec-
tively νi, actM and νf .

Definition 6 (Finite Paths of an IOSTS). Let G = (Q, q0, T rans, ι) be an
IOSTS over Σ. The set of finite paths in G, denoted FP (G) contains all finite
sequences tr1 . . . trn of transitions in Trans s.t. source(tr1) = q0 and for all
i < n, target(tri) = source(tri+1).

The runs of a finite path tr1 . . . trn in FP (G) are sequences r1 . . . rn such that
for all i ≤ n, ri is a run of tri, there exists an Ω-interpretation ν1 such that
source(r1) = ν1 ◦ ι and for all i < n, target(ri) = source(ri+1). The set of
observable traces of a finite path p = tr1 . . . trn, denoted ObsTr(p) is the set of
finite observation sequences obs(r1) . . . obs(rn) for any run r1 · · · rn of p.

Definition 7. Let G be an IOSTS over Σ. The semantics of G is ObsTr(G) =
⋃

p∈FP (G)

ObsTr(p).

Let ρ : Σ1 ⊆ Σ2 be an inclusion signature and G an IOSTS over Σ2. The
semantics of G with respect to ρ is ObsTr|ρ(G) = {r|ρ | r ∈ ObsTr(G)}.

3 Refinement

3.1 Definition

The refinement relation between IOSTS allows the specifier to relate an IOSTS
specification Sp1 defined over a signature Σ1 to a more concrete one, Sp2, in a
formal way. Intuitively, Sp2 should not only include all behaviors of the abstract
specification Sp1, but also may incorporate some specific behaviors that the
specifier could not have anticipated at the abstract level. In particular, Sp2 may
involve some concrete actions, emissions or receipts on some new channels, that
are not previously known at the abstract level. Such a point of view is similar to
the refinement relation given in [8] in the framework of interface automata: the
set of legal inputs of the concrete specification (or implementation) may strictly
contain the one of the abstract specification. In our setting, we require that all
the behaviors of Sp1 are preserved by SP2. Obviously, all the behaviors of Sp1

are given by its semantics: they simply correspond to the set of observable traces
of Sp1. Thus, to refine Sp1, a specification Sp2 should be defined over a signature
Σ2 including Σ1, and should preserve the semantics of Sp1 in the sense that the
semantics of Sp2 w.r.t. Σ1 contain the one of Sp1.

Definition 8 (Refinement). Let ρ : Σ1 ⊆ Σ2 be a signature inclusion. Let
Sp1 and Sp2 be two IOSTS over Σ1 and Σ2 respectively. Sp2 is a refinement of
Sp1, denoted by Sp1

ρ� Sp2 iff

ObsTr(Sp1) ⊆ ObsTr|ρ(Sp2)

138 P. Le Gall, N. Rapin, and A. Touil

In the sequel, in the context of a refinement relation Sp1
ρ� Sp2, the elements of

ActΣ2 (resp. ObsΣ2) expressed on a channel in4 C2\C1 are said to be concrete
actions (resp. observations).

3.2 Our Approach for Refinement Testing

As presented in the Introduction, we propose to check if a specification refines
another one by following a testing approach. The underlying principle is quite
simple. First, we extract an observable trace θ from Sp1 and then we execute it
on Sp2. During the execution, we check if Sp2 accepts all observations specified
by θ. However, since Sp2 may involve concrete actions, we have to take them
into account during the execution of θ. The difficulty is to manipulate interme-
diate concrete actions of Sp2 in a generic way so that we can avoid evaluating
concrete actions too early. Indeed, this could limit the execution of θ on Sp2,
or even worse, could forbid its execution though it would be possible with other
values. Indeed, blindly choosing some arbitrary values for these intermediate con-
crete actions can clearly eliminate some possibilities of executing θ on Sp2 since
these particular values can unnecessarily constraint the next execution steps. A
convenient way to handle this problem is to use, as inputs, some symbols in-
stead of values to represent any of them. The symbolic execution technique [7]
is well adapted to perform this. Such a point of view has already been applied
for parameterized unit tests [21]: symbolic execution and constraint solving are
advocated to instantiate parameter data according to some unit coverage issues.

3.3 Symbolic Execution

In previous papers [20,12], we have shown that symbolic execution [7] is a pow-
erful technique in order to explore the semantics of IOSTS models. As stated
in those papers a symbolic execution path can be considered as an intensional
definition for many concrete executions (or runs): a symbolic execution intro-
duces new fresh variables, also called symbolic inputs, and is characterized by
its so-called path condition which defines the possible interpretation of the terms
involved in the execution path. Obviously, interpretations of all execution paths
preserve the IOSTS semantics.

Such symbolic execution paths may be systematically built, or at least with
respect to any given arbitrary path length. We can also look for building only
symbolic execution paths satisfying some constraint. In particular, we are inter-
ested by defining symbolic execution paths matching some particular patterns
given as observable traces. As previously explained, for refinement testing, sym-
bolic execution will be exercised on the concrete specification with traces selected
from the abstract specification. We will say that such a symbolic execution is
constrained by an observable trace. As usual, the main idea is to replace con-
crete input values and initialization values of attribute variables by symbols and
to execute transitions. Substitutions are executed in a natural way. At a given
4 Given E and F two sets, E\F denotes the set {x ∈ E | x �∈ F}.

Symbolic Execution Techniques for Refinement Testing 139

step of the execution, encountered guards induce an accessibility constraint on
the last constructed state. This constraint is stored in this state as its so-called
path condition. In the sequel we assume that symbols used as inputs are fresh
variables chosen in a set F =

⋃

s∈S

Fs disjoint from the set of attribute variables A.

We first give the intermediate definition of symbolic extended state which is a
structure allowing to store information about a symbolic behaviour: the IOSTS
current location (target state of the last transition of the symbolic behaviour),
the path condition, the symbolic values associated to attribute variables and a
mark given as a natural number.

Definition 9 (Symbolic extended state). A symbolic extended state over
F for an IOSTS G = (Q, q0, T rans) is a quadruple η = (q, π, σ, n) where q ∈ Q,
π ∈ SenΩ(F) is called a path condition, σ ∈ TΩ(F)A and n is a natural number.
η = (q, π, σ, n) is said to be satisfiable if π is satisfiable5. One notes S (resp. Ssat)
the set of all the (resp. satisfiable) symbolic extended states over F .

The natural number associated to each symbolic state will serve us to mark
them with respect to some external information. In particular, we will use them
to synchronise the reading of an abstract observable trace θ over Σ1 given as
a parameter of the symbolic execution of an IOSTS Sp2 defined over Σ2 with
Σ1 ⊆ Σ2. Constraining the symbolic execution of Sp2 by θ consists in developing
all the symbolic executions compatible with θ. For that, all the states will be
labelled by a natural number less or equal than k, the length of the trace θ:
if a symbolic extended state η is labelled by n, it will simply mean that the
n first observations of θ have already been recognized before reaching η and
that all other transitions of the corresponding symbolic path concern concrete
actions.

Definition 10 (Symbolic execution of an IOSTS constrained by an
observable trace). Let Σ1 ⊆ Σ2 an inclusion signature. We assume that
Σ1 = (A1, C1) and Σ2 = (A2, C2). Let G = (Q, q0, T rans, ι) an IOSTS over
Σ2. Let us note ΣF = (F, C2). Let θ ∈ ObsTr(Σ1) an observable trace of length
k. The full symbolic execution of G constrained by θ is a triple (S, init, R)
with init = (q0, true, σ0, 0) where σ0 is an injective substitution in FA and
R ⊆ S × Act(ΣF) × S such that for any two transitions in R respectively of
the form (ηi, c?x, ηf) and (η′i, d?y, η′f), the variables x and y are distinct and
∀a ∈ A, σ0(a) �= x. For any η ∈ S of the form (q, π, σ, n), for all tr ∈ Trans of
the form (q, act, ϕ, ρ, q′), then there exists a symbolic transition st = (η, sa, η′)
in R iff one of the following conditions detailed below is satisfied:

– if act = c!t and c /∈ Σ1 then sa = c!σ(t) and η′ = (q′, π ∧ σ(ϕ), σ ◦ ρ, n),
– if act = c?x with x in A2 and c /∈ Σ1 then sa = c?z with z in F , and

η′ = (q′, π ∧ σ(ϕ), σ ◦ (x
→ z) ◦ ρ, n),

5 Let us recall that here, π is satisfiable if and only if there exists ν ∈ MF such that
M |=ν π since variables of π are by construction in F .

140 P. Le Gall, N. Rapin, and A. Touil

– if act = c!t and c ∈ Σ1 and θ[n] = c!u then6 sa = c!tu and η′ = (q′, π ∧
σ(ϕ) ∧ (t = tu), σ ◦ ρ), n + 1).

– if act = c?x with x in A2 and c ∈ Σ1 and θ[n] = c?u, then sa = c?tu and
η′ = (q′, π ∧ σ(ϕ), σ ◦ (x
→ tu) ◦ ρ, n + 1),

The symbolic execution of G over F is the triple SE(G) = (Ssat, init, Rsat)
where Rsat is the restriction of R to Ssat×Act(ΣF)×Ssat. It is said consistent if
there exits at least a symbolic state of the form (q, π, σ, k). Such states are called
terminal.

Let us point out that in the above construction, for the case act = c!t (resp. c?x)
with c ∈ Σ1, if θ[n] can be written as d!u with d �= c or d′?u (resp. d?y with
d �= c or d′!t), then no transition is built. It means that when a non compatible
observation is encountered, the observable trace θ over Σ1 cannot be pursued
beyond its nth observation.

As previously indicated, the integer constituting the fourth parameter of a
symbolic state is used to synchronise observable actions deduced from the sym-
bolic execution with the ones involved in the observable trace θ constraining the
execution. From state (q, π, σ, n − 1), if a transition uses the channel involved
in the nth element of the trace, we require the compatibility by reinforcing the
path condition at the next state. Consequently, if there exists a consistent sym-
bolic state η with the number k, this means that θ as been totally matched over
a symbolic execution path from the initial state to η. In particular, the sym-
bolic execution only involving concrete actions allows us to retrieve the usual
symbolic execution as given in [12], all symbolic states being marked with the
natural number 0. Since the natural numbers associated to the symbolic states
have been introduced for technical reasons, in the sequel, they are left implicit
in the examples. Now we can state the main theorem:

Theorem 1. Let us consider Sp2 an IOSTS over Σ2 and Sp1 an IOSTS over
Σ1 with Σ1 ⊆ Σ2. Sp1

ρ� Sp2 ⇐⇒ ∀ θ ∈ ObsTr(Sp1) the symbolic execution of
Sp2 constrained by θ is consistent.

Example 3. Figure 2 illustrates a part of the symbolic execution of the abstract
drink machine Sp1 presented in Figure 1 constrained with the empty path.

4 Refinement Verification by Testing

4.1 Our Approach

Just as for conformance testing our approach consists in executing some observ-
able traces extracted from a specification, Sp1 on an entity which is supposed
to be a realization of this specification. Here the entity under test is also a spec-
ification, Sp2, called the concrete specification. The execution will be naturally
performed by means of the symbolic execution constrained by an observable
6 For a value u of M , tu denotes a ground term of TΩ of value u.

Symbolic Execution Techniques for Refinement Testing 141

introduce?coin1

select?B1
screen!”out of order”

refund!m0 + coin1

take cup!

serve!B1
screen!”no cups”

refund!m0 + coin1

init : (a0, true, σ0)

η1 : (a0, true, σ1)

η2 : (a1, true, σ1)

η4 : (a′2, true, σ2)

η5 : (a0, π1, σ4)

η6 : (a2, π1, σ2)

η7 : (a0, π2, σ4)

η8 : (a1, true, σ1)

η9 : (a′1, true, σ3)

π0 = (m0 + coin1 < price0)

π1 = (m0 + coin1 ≥ price0)

π2 = (m0 + coin1 = price0)

π3 = (m0 + coin1 ≤ price0)

η3 : (a2, π0, σ2)

η11 : (a0, π3, σ4)

refund!m0 + coin1 − price0

η10 : (a3, π3, σ2)

take cup!

screen!price0 − (m0 + coin1)

σ0 = m → m0, coin → coin0, B → B0, price → price0

σ3 = m → 0, coin → coin1, B → B0, price → price0

σ4 = m → 0, coin → coin1, B → B1, price → price0

σ1 = m → m0 + coin1, coin → coin1, B → B0, price → price0

σ2 = m → m0 + coin1, coin → coin1, B → B1, price → price0

Fig. 2. Symbolic execution of Sp1

trace. Our approach could be then qualified as half-symbolic. One could ask:
why not being full symbolic, since Definition 10 could be slightly modified to
deal with a full symbolic trace? The main reason for this choice is that in-
dustrial users are more familiar with explicit state approaches7. Moreover, by
choosing to only take observable traces from Sp1, we ensure that the computed
path conditions are expressed on variables of Sp2 instead of mixing variables
of both specifications in the formula. Such mixed formulas would be difficult to
analyse.

Now let us notice that Sp2 may contain loops, involving only concrete actions:
the unfolding of those loops during execution may lead to produce paths of an
huge size, maybe of an infinite size. To ensure that the computation terminates,
we need to define a bound to limit the unfolding of those loops. We decide to
allow at most N(N ∈ N

∗) consecutive occurrences of concrete actions in any path
of the symbolic execution tree. Consequently three verdicts, Warning, Fail, and
Pass, are necessary to represent the possible conclusions of the execution of a
trace θ of Sp1. The verdict Warning occurs when the execution ends before
reaching any terminal state, the bound N has been reached in some paths and
all the other states are (implicitly) maximal8. In this case we do not know if
θ belongs or not to Sp2. Perhaps with a larger bound we could have found it.
The verdict Fail occurs when the execution ends before reaching any terminal
state and when all paths are maximal. This means that we are sure that the
7 “explicit state” means here that variables are instantiated by values.
8 A path is said to be maximal when any extension has a non satisfiable path condition.

142 P. Le Gall, N. Rapin, and A. Touil

refinement relation is not satisfied since θ does not belong to Sp2. The verdict
Pass occurs when at least a terminal state has been reached. This means that
the trace under test belongs to Sp2 up to the inclusion ρ.

Our algorithm can be described informally as follows. It admits three inputs:
an observable trace θ derived from Sp1, the concrete specification Sp2 and the
bound N . It is a bread-first algorithm which instantiates Definition 10. To take
into account the bound N , a parameter, called the distance, denoted by d, is
added in the definition of a symbolic extended state. We also add a label l ∈
{stop, go, wrg, rch} (wrg is for warning and rch for reached). So a symbolic
extended state is now of the form (q, π, σ, n, d, l) with d = 0, l = go in the
initial state. In an execution step, we consider all states whose label is go. We
execute all their outgoing transitions. For a state such that no transition can
be executed (because all targets would have an un-satisfiable path condition)
its label becomes stop. Now a target state obtained by execution satisfies those
requirements: if its incoming transition carries an abstract action, its distance
parameter is set to 0; if it is a concrete action, the distance is the distance of the
source state plus one; if this distance is N then its label is wrg; if n = length(θ)
then its label is rch. The algorithm stops when the set of states labelled by go
is empty. If there is at least a state labelled rch the verdict is Pass. If leaves
of the execution tree are all labelled by stop the verdict is Fail. If those leaves
are all labelled by wrg, or some by wrg or and others by stop then the verdict
is Warning. The corresponding path conditions are collected to help the tester
to analyse the situation: under which conditions on the concrete variables Sp2

refines Sp1 ? Is there a loop in Sp2 to justify the Warning verdict ?

Example 4. We illustrate the process described above with the following
example. Figure 3 represents a concrete coffee machine on Σ2 where Σ2 =
(A2, C2) with A2 ={coin, m, price, B, G, ok} and C2 ={introduce, select, screen,
refund, serve, take cup, error, agent put cups}.

In this drink machine, the attribute variable G represents the number of
goblets available in the machine. When a drink is served, one withdraws 1 to
the value of the variable G. When G becomes equal to 0, the machine can no
more serve a drink and the attribute variable ok is put at false to mean that
the machine is out of order (screen!”out of order”). An agent of maintenance
can put goblets in the machine (agent puts cups?NewG), or repair the machine.
Then he puts the variable ok at true (to mean that the machine is ready again).
The number NewG of introduced goblets is added to the variable G.

Let us choose an arbitrary observable trace, denoted t1, from Sp1 given in
Figure 1), defined on Σ1 ⊆ Σ2, introduced in Example 1. The selected obser-
vable trace t1 is the following: introduce?20 select?coffee screen!”no cups”
refund!20 introduce?20 select?coffee serve!coffee take cup!

Figure 4 gives the symbolic execution of Sp2 constrained by t1. For lack of
space, this tree is still partial and does not contain the whole branches : cut
branches are represented by dotted transitions.

The first state is init. The first observation introduce?20 of t1 is matching
with a symbolic transition of Sp2 issued from init, annotated with the symbolic

Symbolic Execution Techniques for Refinement Testing 143

q0

select?B

q′
1

error!”out of order”

agent put cups?NewG

m := m + coin
introduce?coin

G := G + NewG

refund!m

q1

G := NewG

q2

[(G > 0) ∧ (m ≥ price)]
serve!B

[m = price]

[m > price]

q3

q6

q5

q4

take cup!

take cup!

agent put cups?NewG

ok := true

ok := true

[ok = true]

m := m + coin
introduce?coin

refund!m

ok := false
screen!”no cups”
[G = 0]

m := 0

m := 0

m := 0

m := 0

refund!(m− price)

screen!(price − m)
[m < price]

[ok = false]
screen!
”out of order”

G := G − 1

Fig. 3. Concrete specification Sp2

action introduce?coin. The matching with the observable trace is required by
considering the transition of action introduce?20 and adding the constraint m =
m0 + 20 in the path condition of the target state η1. From init, there is also
a transition (dotted in Figure 4) labelled by agent put cups?NewG because
the action is in Σ2 and not in Σ1. Indeed, this represents a hidden concrete
action, not observable at the abstract level. The tree construction is pursued
and we can recognize two traces including the observable trace t1, and possibly
adding some intermediate concrete actions (as agent put cup?NewG1 in the
right-hand side trace). We can remark that the symbolic state η5 gives rise two
transitions stemming from η5, respectively with the actions introduce?20 and
agent put cups?NewG1. Both branches should be considered in order to search
for symbolic states labelled by 8, the length of t1, meaning that the last action of
t1 has been recognized. For the right-hand side trace, the state η12 is labelled by
8, and the associated path condition π4 gives some sufficient conditions (on the
initial values of the attribute variables, denoted by symbolic variables indexed
by 0, and on intermediate interaction variables used for hidden concrete actions,
here NewG1 for example) under which Sp2 may refine Sp1. When applying our
algorithm, two cases are thus possible depending on whether the chosen bound
N is less or equal to 2 or is strictly greater than 2.

– In the first case, the exploration is stopped before encountering the second
introduce?20 action of t1. Indeed, there are two consecutive non observable
actions error!′′outoforder′′ and agent puts cup?NewG1 preceding the next
required observable action introduce?20. Since the exploration is unfortu-
nately stopped too early, we only get a Warning verdict.

– On the contrary, in the second case (N is strictly greater than 2), we can
observe the second introduce?20 action of the trace t1 and pursue the reading
of the observable trace in Sp2 until the last state η12 is reached. So, when

144 P. Le Gall, N. Rapin, and A. Touil

introduce?20

select?coffee

screen!”no cups”

refund!20

introduce?20

select?coffee

serve!coffee

take cup!

t1

1

2

3

4

5

6

7

8

σ0 = m → m0, coin → coin0, B → B0, price → price0, ok → ok0, G → G0, NewG → NewG0

σ1 = m → m0 + 20, coin → 20, B → B0, price → price0, ok → ok0, G → G0, NewG → NewG0

σ2 = m → m0 + 20, coin → 20, B → coffee, price → price0, ok → ok0, G → G0, NewG → NewG0

σ4 = m → 0, coin → 20, B → coffee, price → price0, ok → false, G → G0 − 1, NewG → NewG0

σ3 = m → m0 + 20, coin → 20, B → coffee, price → price0, ok → false, G → G0 − 1, NewG → NewG0

σ5 = m → 0 + 20, coin → 20, B → coffee, price → price0, ok → false, G → G0 − 1, NewG → NewG0

σ6 = m → 0, coin → 20, B → coffee, price → price0, ok → true, G → NewG1, NewG → NewG1

π0 = (ok0 = true)

π1 = (ok0 = true) ∧ (G0 = 0)

π2 = (ok0 = true) ∧ (G0 = 0) ∧ (ok0 = true)

π3 = (ok0 = true) ∧ (G0 = 0) ∧ (ok0 = true) ∧ (G0 + NewG1 > 0) ∧ (20 ≥ price0)

π4 = (ok0 = true) ∧ (G0 = 0) ∧ (ok0 = true) ∧ (G0 + NewG1 > 0) ∧ (20 ≥ price0) ∧ (20 = price0)

σ7 = m → 0 + 20, coin → 20, B → coffee, price → price0, ok → true, G → NewG1, NewG → NewG1

σ8 = m → 0 + 20, coin → 20, B → coffee, price → price0, ok → true, G → NewG1 − 1, NewG → NewG1

σ9 = m → 0, coin → 20, B → coffee, price → price0, ok → true, G → NewG1 − 1, NewG → NewG1

select?coffee

introduce?20

screen!”no cups”

refund!20

error!”out of order”

η4 : (q5, π1, σ4, 4)

select?coffee

serve!coffee

take cup!

introduce?20

η12 : (q0, π4, σ9, 8)

η1 : (q0, true, σ1, 1)

η2 : (q1, π0, σ2, 2)

η3 : (q4, π1, σ3, 3)

η5 : (q6, π1, σ4, 4)

η7 : (q0, π1, σ6, 4)

η9 : (q0, π1, σ7, 5)

η10 : (q1, π2, σ7, 6)

η11 : (q2, π3, σ8, 7)

init : (q0, true, σ0, 0)

agent puts cup?NewG1

select?coffee

η6 : (q0, π1, σ5, 5)

introduce?20

Fig. 4. Symbolic execution of Sp2 constrained by the observable trace t1

the bound is strictly greater than 2, for the observable trace t1 selected from
Sp1, we get a Pass verdict for Sp2 since the path condition π4 associated to
the symbolic state η12 is satisfiable.

Example 5. Let us suppose that t2 = introduce?20 select?coffee take cup!
would be a second observable trace of Sp1. In fact, t2 is not an observable
trace of Sp1 as one may verify it on Figure 1. Let us introduce in Figure 5 the
(partial) symbolic execution of Sp2 constrained by t2.

The two first actions of t2 are recognized since the symbolic state η2 is la-
belled by the natural number 2. When building the following symbolic states,
there are three possible transitions given by Sp2 respectively with the actions
screen!(price − m), screen!”no cups” and serve!B, but there is no take cup!
action like in the trace t2. All the three actions are observable since they are ex-
pressed on the signature Σ1. But they are not compatible with the next action
of t2 to be recognized. Thus, the symbolic execution of Sp2 constrained by t2
reveals that t2 is not an observable trace of Sp2, up to the inclusion morphism
Σ1 ⊆ Σ2. So, we get a Fail verdict. Finally, provided that t2 would be really
an observable trace of Sp1, such a scenario would mean that Sp2 does not refine
Sp1.

Symbolic Execution Techniques for Refinement Testing 145

π0 = (ok0 = true)

σ0 = m → m0, coin → coin0, B → B0, price → price0, ok → ok0, G → G0, NewG → NewG0

σ1 = m → m0 + 20, coin → 20, B → B0, price → price0, ok → ok0, G → G0, NewG → NewG0

σ2 = m → m0 + 20, coin → 20, B → coffee, price → price0, ok → ok0, G → G0, NewG → NewG0

η1 : (q0, true, σ1, 1)

select?coffee

init : (q0, true, σ0, 0)

introduce?20introduce?20

select?coffee

t2
η2 : (q0, π0, σ2, 2)

take cup!

Fig. 5. Symbolic execution of Sp2 constrained by t2

4.2 Trace Selection and Implementation Issues

In order to test whether Sp2 refines Sp1, the first step is to select some observable
traces from Sp1 to be symbolically executed on Sp2. Algorithms implementing
some classical coverage criteria [25] can be applied to extract traces from Sp1.
Here we propose, like in [17,7], to select among symbolic execution paths. The
idea is to compute a finite sub-tree of the symbolic execution of Sp1 (without
being constrained by a given trace). Afterwards, a constraint solver is used at
each leaf of this sub-tree to extract an observable trace from the symbolic path
ended by the considered leaf. All these observable traces will be executed on
Sp2. The question is how to define this finite sub-tree. In a previous paper [12],
we have proposed the so-called k-inclusion criterion. The idea is to perform a
symbolic execution such that each path carries k.n symbolic transitions9. Clearly,
this definition depends on a deepness parameter k.n. k is a non null integer
arbitrarily chosen by the user while n is the result of a calculus. It is the length
of the longest path of a symbolic execution reduced by the inclusion criterion
which, as explained in [12,20], eliminates redundancy in the symbolic execution
tree.

The work presented here has been implemented as an extension of the AGAT-
HA tool set [18,20] which as been designed to perform symbolic execution of
IOSTS. Presburger arithmetics [19] constitutes the data part of IOSTS treated
by AGATHA. The Omega Library [1] has been chosen to handle this data part
and is used for two purposes.

5 Conclusion

In this paper, we propose a testing based approach to check whether a con-
crete specification is a legitimate refinement of an abstract specification. Our
approach is based on a combination of concrete and symbolic execution of the
specifications. These specifications are described using a first order automata
based formalism, namely IOSTS. Our method is strongly inspired from the well-
known framework of conformance testing based on the use of test purposes for
test case selection. Like conformance testing, some behaviours (observable traces)
are selected from the abstract specification Sp1 by solving a path constraint over
9 When a path carries less actions, this is because it cannot be extended with non-

consistent states.

146 P. Le Gall, N. Rapin, and A. Touil

every execution path of a bounded length from Sp1. For each observable selected
trace θ, the concrete specification Sp2 is symbolically executed in a way that is
constrained by the observable trace θ. This symbolic execution is parameterized
by a bound given by the user which controls the number of loop unrollings in
Sp2. It allows us to get a verdict about the refinement relation. Either a counter
example is found (verdict Fail), a proof is found (verdict Pass) or the result re-
mains inconclusive because only a bounded number of loop unrollings has been
considered (verdict Warning). Contrarily to conformance testing techniques,
the execution of selected behaviours is not a black box procedure but a white
box procedure based on static analysis of the specification to be tested. The
involved static analysis is based on symbolic execution techniques associated to
a constraints solver. This white box approach brings the advantage that there
is no more the inconclusive verdict related to non-determinism of reactive sys-
tems, even if for some cases, the algorithmic limitations do not allow us to fully
conclude about the verdict. Moreover, some path conditions are associated to
the verdict Pass, given information about the appropriate initialisations of the
attribute variables of the concrete specification, and about intermediate inter-
action variables used at the concrete level, and not observable at the abstract
level. Such kind of information allows us either to debug a concrete specification
detected as not refining the abstract specification or to analyse design choices
made by the specifier, for example for reverse-engineering purposes.

In this paper, we perform a blinded exploration of the concrete specification
Sp2 with respect to an observable trace extracted from the abstract specification
Sp1. The given of a bound allows us to arbitrarily stop the exploration between
two consecutive observable actions of the trace. Obviously, by making some static
analysis of Sp2, we could get some additional indications on how to appropriately
compute a bound of exploration or on how to adapt our algorithm in order to do
without a bound. In particular, following the approach developed for Bounded
Model Checking in [4], we could try to detect the presence of loops in Sp2 in
order to compute verdicts in the same way bounded model checking is performed.
Indeed, the verification process for bounded model checking can terminate when
considering finite paths including loops and existential properties. As we look
for the existence of a path in Sp2 with respect to an abstract property (the
observable trace), it would be interesting to study if such a finite technique can
be transposed in our context in the goal of having less Warning verdicts.

References

1. Omega 1.2. The Omega Project: Algorithms and Frameworks for Analyzing and
Transforming Scientific Programs (1994)

2. Abrial, J.-R.: The B book - Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

3. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating refinement
relations. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 163–178. Springer, Heidelberg (1998)

Symbolic Execution Techniques for Refinement Testing 147

4. Biere, A., Cimatti, A., Clarke, E., Strichman, O., Zhu, Y.: Bounded model checking.
In: Highly Dependable Software, vol. 58 of Advances in Computers (2003)

5. Calder, M., Maharaj, S., Shankland, C.: An adequate logic for full lotos. In:
Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 384–395. Springer,
Heidelberg (2001)

6. Choppy, C., Poizat, P., Royer, J.-C.: A global semantics for views. In: Rus, T. (ed.)
AMAST 2000. LNCS, vol. 1816, pp. 165–180. Springer, Heidelberg (2000)

7. Clarke, L.-A.: A system to generate test data and symbolically execute programs.
IEEE Transactions on software engineering 2(3), 215–222 (1976)

8. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC/FSE-9. Proceedings
of the 8th European software engineering conference held jointly with 9th ACM
SIGSOFT international symposium on Foundations of software engineering, pp.
109–120. ACM Press, New York, USA (2001)

9. Derrick, J., Boiten, E.A.: Testing refinements by refining tests. In: Bowen, J.P.,
Fett, A., Hinchey, M.G. (eds.) ZUM 1998. LNCS, vol. 1493, pp. 265–283. Springer,
Heidelberg (1998)

10. Frantzen, L., Tretmans, J., Willemse, T.A.C.: Test generation based on symbolic
specifications. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395,
pp. 1–15. Springer, Heidelberg (2005)

11. Frantzen, L., Tretmans, J., Willemse, T.A.C.: A symbolic framework for model-
based testing. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) Formal Ap-
proaches to Software Testing and Runtime Verification. LNCS, vol. 4262, Springer,
Heidelberg (2006)

12. Gaston, C., Le Gall, P., Rapin, N., Touil, A.: Symbolic execution techniques for
test purpose definition. In: Uyar, M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom
2006. LNCS, vol. 3964, Springer, Heidelberg (2006)

13. Gaudel, M.-C., Bernot, G.: The role of formal specifications. In: Astesiano, E.,
Kreowski, H.-J., Krieg-Brckner, B. (eds.) Algebraic Foundations of Systems Spec-
ification, IFIP State-of-the-Art Report, pp. 1–12. Springer, Heidelberg (1999)

14. Hennessy, M., Lin, H.: Symbolic bisimulations. In: MFPS ’92. Selected papers of
the meeting on Mathematical foundations of programming semantics, Amsterdam,
The Netherlands, pp. 353–389. Elsevier Science Publishers B.V., Amsterdam (1995)

15. Henzinger, T.A., Majumbar, R., Raskin, J.-F.: A classification of symbolic transi-
tion systems. ACM Transactions on Computational Logic V, 1–31 (2006)

16. Jeannet, B., Jéron, T., Rusu, V., Zinovieva, E.: Symbolic test selection based on
approximate analysis. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, Springer, Heidelberg (2005)

17. King, J.-C.: A new approach to program testing. In: Proceedings of the inter-
national conference on Reliable software, Los Angeles, California, vol. 21-23, pp.
228–233 (April 1975)

18. Lugato, D., Rapin, N., Gallois, J.-P.: Verification and tests generation for SDL
industrial specifications with the AGATHA toolset. In: Petterson, P., Yovine, S.
(eds.) Proceedings of the Workshop on Real-Time Tools affiliated to CONCUR01.
Department of Information Technology UPPSALA UNIVERSITY Box 337, August
2001, Sweden, vol. SE-751 05 (2001)

19. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetic.
Comptes rendus du premier Congres des Math. des Pays Slaves 395, 92–101 (1929)

20. Rapin, N., Gaston, C., Lapitre, A., Gallois, J.-P.: Behavioural unfolding of formal
specifications based on communicating automata. In: Proceedings of first Workshop
on Automated technology for verification and analysis, Taiwan (2003)

148 P. Le Gall, N. Rapin, and A. Touil

21. Tillman, N., Schulte, W.: Parameterized unit tests. In: 10th European Software
Engineering Conference, pp. 253–262. ACM Press, New York (2005)

22. van der Bijl, M., Rensink, A., Tretmans, J.: Action refinement in conformance test-
ing. In: Khendek, F., Dssouli, R. (eds.) TestCom 2005. LNCS, vol. 3502, Springer,
Heidelberg (2005)

23. van Glabbeek, R.J., Goltz, U.: Refinement of actions and equivalence notions for
concurrent systems. Acta Informatica 37(4/5), 229–327 (2001)

24. Wirth, N.: Program development by stepwise refinement. Commun. ACM 14(4),
221–227 (1971)

25. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy. ACM
Comput. Surv. 29(4), 366–427 (1997)

Test-Sequence Generation with Hol-TestGen
with an Application to Firewall Testing

Achim D. Brucker and Burkhart Wolff

Information Security, ETH Zurich, ETH Zentrum, CH-8092 Zürich, Switzerland
{brucker,bwolff}@inf.ethz.ch

Abstract. HOL-TestGen is a specification and test case generation
environment extending the interactive theorem prover Isabelle/HOL. Its
method is two-staged: first, the original formula is partitioned into test
cases by transformation into a normal form called test theorem. Second,
the test cases are analyzed for ground instances (the test data) satisfying
the constraints of the test cases. Particular emphasis is put on the control
of explicit test hypotheses which can be proven over concrete programs.

Although originally designed for black-box unit-tests, HOL-TestGen’s
underlying logic and deduction engine is powerful enough to be used in
test-sequence generation, too.

Wedevelop the theory for test-sequence generationwith HOL-TestGen
and describe its use in a substantial case-study in the field of computer se-
curity, namely the black-box test of configured firewalls.

Keywords: symbolic test case generations, test sequence generation,
black box testing, theorem proving, Isabelle/HOL, computer security.

1 Introduction

Today, essentially two software validation techniques are used: software verifi-
cation and software testing. As far as symbolic verification methods and model-
based testing techniques are concerned, the interest among researchers in the
mutual fertilization of these fields is growing.

From the verification perspective, testing offers:
– experiences on test-adequacy criteria [12], which can be viewed as new ab-

straction techniques reducing infinite models to finite and checkable ones,
– new approaches to generate counter-examples, and
– new application scenarios for verification, since black-box testing can be

used as a systematic experimentation method for reverse engineering speci-
fications for legacy systems.

From the testing perspective, symbolic verification offers:
– ways to cope with the state space explosions inherent to test case generation

techniques, and
– ways to log the implicit testing hypothesis underlying a test and to make

them explicit.

B. Meyer and Y. Gurevich (Eds.): TAP 2007, LNCS 4454, pp. 149–168, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.brucker.ch/
http://www.infsec.ethz.ch/people/bwolff/

150 A.D. Brucker and B. Wolff

The HOL-TestGen system [5, 4, 3] is designed to explore and exploit these
complementary assets. Built on top of a widely-used interactive theorem prover,
it provides automatic procedures for test case generation and test-data selection
as well as interactive means to perform logical massages of the intermediate
results by derived rules. The core of HOL-TestGen is a test case generation
procedure that decomposes a test specification (TS), i. e., test-property over a
program under test, into a semantically equivalent test theorem of the form:

�TC1; . . . ; TCn; THYP H1; . . . ; THYP Hm� =⇒ TS

where the TCi are the test cases and THYP is a constant (semantically defined
as identity) used to mark the explicit test hypotheses Hj that are underlying this
test. Thus, a test theorem has the following meaning:

If the program under test passes the tests with a witness for all TCi

successfully, and if it satisfies all test hypothesis, it is correct with
respect to TS.

In this sense, the test theorem bridges the gap between test and verification.
Testing can be viewed as systematic weakening of specifications.

HOL-TestGen has been applied to unit-tests; for example, [5] discusses tests
of insert and delete operations for library implementations of red-black trees. In
this paper, however, we show that the procedure can also be used for sequence
testing of locally non-deterministic reactive systems as well: instead of using an
automaton, we build a test-specification based on its input traces. We apply this
technique to a substantial case study in the field of computer security, namely
the black-box test of a configured network firewall. As firewalls are part of today’s
IT security infrastructure, testing their correct behavior is a rewarding task and,
and as we will see, a challenging application for specification based testing.

This paper consists of two parts: In part one, we introduce HOL-TestGen, its
explicit test hypothesis generation and its potential for sequence test generation
conceptually. In part two, we outline the firewall problem domain, present formal
test plans based on these concepts for a concrete configuration, and evaluate
them by some empirical data.

2 Foundations

2.1 Isabelle

Isabelle [10] is a generic theorem prover. New object logics can be introduced
by specifying their syntax and natural deduction inference rules. Among other
logics, Isabelle supports first-order logic, Zermelo-Fraenkel set theory and HOL,
which we choose as framework for HOL-TestGen.

While Isabelle/HOL is usually coined as “proof assistant,” we use it as sym-
bolic computation environment. Implementations on Isabelle/HOL can re-use
existing powerful deduction mechanisms such as higher-order resolution and

Test-Sequence Generation with Hol-TestGen 151

rewriting, and the overall environment provides a large collection of compo-
nents ranging from documentation generators and code-generators to (generic)
decision procedures for datatypes and Presburger Arithmetic.

Isabelle can easily be controlled by a programming interface on its implemen-
tation level in SML in a logically safe way, as well as in the Isar level, i. e., a
tactic proof language in which interactive and automated proofs can be mixed
arbitrarily. Documents in the Isar format, enriched by the commands provided
by HOL-TestGen, can be processed incrementally within Proof General (see
section 3) as well as in batch mode. These documents can be seen as formal and
technically checked test plan of a program under test.

Isabelle processes rules and theorems of the form A1 =⇒ . . . =⇒ An =⇒
An+1, also denoted as �A1; . . . ; An� =⇒ An+1. They can be understood as a rule
of the form “from assumptions A1 to An, infer conclusion An+1.” Further, Isabelle
provides a built-in meta-quantifier:

∧

x1, . . . , xm. �A1; . . . ; An� =⇒ An+1 for
representing “fresh free variables not occurring elsewhere” thus avoiding the usual
provisos on logical rules. In particular, the presentation of sub-goals uses this
format. We will refer to assumptions Ai also as constraints in this paper.

2.2 Higher-Order Logic

Higher-order logic (HOL) [6, 2] is a classical logic with equality enriched by total
polymorphic1 higher-order functions. It is more expressive than first-order logic,
since e. g., induction schemes can be expressed inside the logic. Pragmatically,
HOL can be viewed as a combination of a typed functional programming language
like SML or Haskell extended by logical quantifiers. Thus, it often allows a very
natural way of specification.

Isabelle/HOL provides also a large collection of theories like sets, lists, mul-
tisets, orderings, and various arithmetic theories. Furthermore, it provides the
means for defining data types and recursive function definitions over them in a
style similar to a functional programming language.

3 The HOL-TestGen System: An Overview

HOL-TestGen is an interactive (semi-automated) test tool for specification
based tests. Its theory and implementation has been described elsewhere [5, 3];
here, we briefly review main concepts and outline the standard workflow. The
latter is divided into four phases: writing the test specification TS, generation
of test cases TC along with a test theorem for TS, generation of test data TD,
i. e., constraint-free instances of TC, and the test execution (result verification)
phase involving runs of the “real code” of the program under test. (See Figure 1
for the overall workflow.) Once a test theory is completed, documents can be
generated that represent a formal test plan. The test plan containing test theory,
test specifications, configurations of the test data and test script generation
commands, possibly extended by proofs for rules that support the overall process,
1 To be more specific: parametric polymorphism.

152 A.D. Brucker and B. Wolff

program under test

test harness

test script

(Test Result)
Test Trace

test data

test cases

test specification HOL-TestGen

Isabelle/HOL

SML-systemtest executable

Fig. 1. Overview of the Standard Workflow of HOL-TestGen

is written in an extension of the Isar language [11]. It can be processed in batch
mode, but also using the Proof General interface interactively, see Figure 2. This
interface allows for interactively stepping through a test theory in the upper sub-
window while the sub-window below shows the corresponding system state. This
may be a proof state in a test theorem development, a list of generated test data
or a list of test hypothesis. After test data generation, HOL-TestGen produces

Fig. 2. A HOL-TestGen Session Using Proof General

a test script driving the test using the provided test harness. The test script
together with the test harness stimulate the code for the program under test
built into the test executable. Executing the test executable runs the test and
yields a test trace showing errors in the implementation (see lower window in
Figure 2).

Test-Sequence Generation with Hol-TestGen 153

4 Test Case Generation with Explicit Test-Hypothesis

In this section, we describe the test case generation procedure of HOL-TestGen.
It is driven by an exhaustive backward-application of the tableaux calculus
presented in section A combined with certain normal-form computations elim-
inating certain forms of redundancy. Interleaved with this partitioning process
(similar to the DNF of Dick and Faivre [7]), test hypothesis rules are generated
on the fly and applied to certain subgoals in a backward manner. In the fol-
lowing, we only present two well-known kinds of test hypothesis. Following the
terminology of Gaudel [9], these are called uniformity and regularity hypothesis.

4.1 Inserting Uniformity Hypothesis

Uniformity hypothesis have the form:

THYP(∃x1 . . . xn. P x1, . . . , xn → ∀x1 . . . xn. P x1 . . . xn)

where THYP is a constant defined as the identity; this constant is used as marker
to protect this type of formulae from other decomposition steps in the generation
procedure. Semantically, this kind of hypothesis expresses that whenever there
is a successful test for a test case, it is assumed that the program will behave
correctly for all data of this test case.

The derived rule in natural deduction format expressing this kind of test
theorem transformation reads as follows:

P ?x1 . . .?xn THYP(∃x1 . . . xn. P x1 . . . xn → ∀x1 . . . xn. P x1 . . . xn)

∀x1 . . . xn. P x1 . . . xn

where the ?xi are just meta variables, i. e., place-holders for arbitrary terms. This
rule can also be applied for arbitrary formulae just containing free variables since
universal quantifiers may be introduced for them aforehand.

Tactically, these hypothesis were introduced at the end of the test case gen-
eration process, i. e., when all other rules can no longer be applied. Using a
uniformity hypothesis for each (non-THYP) clause allows for the replacement
of free variables by meta-variables which can be instantiated by ground terms
during the test data selection phase later. This transformation is logically sound.
For example, for a test specification if x ≤ 0 then ioprg x else ioprg −x, the
test case generation produces for the program ioprg under test the test theorem:

test : if 0 ≤ x then ioprg x else ioprg − x

1. 0 ≤?x =⇒ ioprg ?x
2. THYP((∃x.0 ≤ x→ ioprg x) → (∀x.0 ≤ x → ioprg x))
3. ?y < 0 =⇒ ioprg −?y
4. THYP((∃x. x < 0 → ioprg − x) → (∀x. x < 0 → ioprg − x))

The test-data selection phase will easily generate the instances of the test cases
ioprg 3 and ioprg (−(−4)) (satisfying the constraints) to be used in a black-box

154 A.D. Brucker and B. Wolff

test. If we have the implementation of ioprg in our hands, we could also verify
the test-hypothesis; provided that execution paths in the concrete program cor-
respond to test classes, we gain knowledge from the test for the verification.

4.2 Inserting Regularity Hypothesis

In the following, we address the problem of test case generation for quantifiers
(or, equivalently: free variables) ranging over recursive datatypes such as lists or
trees. As an introductory example, we consider the membership predicate of an
element in a list defined by the following recursive rules:

x mem [] = false
x mem (y#ys) = if y = x then true else x mem ys (1)

which occurs as “precondition” in the example test specification:

x mem S → ioprg x S

For testing recursive data structures, Gaudels [9] suggested the introduction of
a regularity hypothesis as one possible form of a test hypothesis:

[|x| < k]··
P x

P x

This rule formalizes the hypothesis: assuming that a predicate P is true for all
data x whose size (denoted by |x|) is less than a given depth k, P is always
true. The original rule can be viewed as a meta-notation: In a rule for a concrete
datatype, the premises |x| < k can be expanded to several premises enumerating
constructor terms.

Instead of this unsound rule, HOL-TestGen derives on-the-fly a special data-
type exhaustion theorem; its form depends on k and the structure of the datatype
of x. For the user-defined value k = 3 and for the type α list, we have:
[

x = []
]

··
P (x)

∧

a.

[

x = [a]
]

··
P (x)

∧

a b.

[

x = [a, b]
]

··
P (x) THYP

(

3 ≤ |x| → P (x)
)

P (x)

The equalities introduced by this rule lead together with the simplification rules
shown in Equation 1 of the predicate mem to the following result of the test case
generation (we omit the uniformity hypothesis insertion here):

test : x mem S → ioprg x S

1. ioprg x [x]

2.
∧

b. ioprg x [x, b]

3.
∧

a. a �= x =⇒ ioprg x [a, x]

4. THYP(3 ≤ |S| → x mem S → ioprg x S)

Test-Sequence Generation with Hol-TestGen 155

and, again, it is an easy game for a random-based test-data-selection method to
provide constraint free instances of the test cases.

4.3 Principles of Test-Sequence-Generation in HOL-TestGen

Considering the previous subsection more closely, one easily recognizes that
it also holds the key for the principles of test sequence generation in HOL-
TestGen: since a finite automaton can be converted into (mutual) recursive
acceptance predicate accept on input lists, this scheme of a test specification
can also be used for specifying the test of a transition function ioprg :: α⇒ σ ⇒
σ option under test, which takes some input of type α and some state of type σ
and can produce a successor state (the α option type contains the constructors
Some a and None). Together with the recursively defined Mfold-combinator:

Mfold [] σ ioprg = Some σ

Mfold (in#H) σ ioprg =

{

Mfold H σ′ ioprg if ioprg(in, σ) = Someσ′,
None otherwise.

it is now possible to lift an individual (partial) function ioprg to be run in a
complete sequence by using the following scheme of a test specification:

accept S → P (Mfold S σ0 ioprg)

where σ0 is the initial state. After HOL-TestGen synthesized a trace S and
suitable input for variables occurring in P , a test driver running the test se-
quence can be generated. Note that the function ioprg can in particular log the
complete run of a system and make the test verdict depending on this log, i. e.,
the complete history of inputs and outputs in the real system trace.

4.4 An Infra-structure for Reactive Sequence Test

This concept is also powerful enough to cover situations where the program
under test produces output that changes the input of later runs of ioprg , i. e., in
situations where the test-driver and the external program under test represent
a communicating system.

In the following, we describe a special instance of the overall scheme dis-
cussed in subsection 4.3. As fundamental modeling assumption of this instance,
we require that the test-driver can be built upon an “i/o stepping function”
ioprg :: ι ⇒ σ′ ⇒ (o × σ′) option. This function takes an input of type ι, an in-
ternal state of type σ′ only managed by itself, and returns the observable output
of type o plus the result state of one step of the system under test. We allow
ioprg to fail, depending on the concrete realization inside the test harness. This
could represent timeouts or other forms of misbehavior of the system under test.
Further, we assume a function: post :: σ × σ′ ⇒ ι ⇒ o ⇒ bool that, depending
on the observer state, the ioprg state, the (concrete) input and the (concrete)
output decides that the behavior of ioprg conforms to the specification in this

156 A.D. Brucker and B. Wolff

step. We assume ioprg to be a function in the mathematical sense, so identical
runs with the same inputs will produce the same outputs; which outputs were
chosen is unimportant as long as post remains satisfied. The choice of the output
and the successor state is non-deterministic in this sense, and even the stimula-
tion sequence automaton may be non-deterministic. We call these assumptions
on non-determinism occurring in the system under test local non-determinism,
in contrast to deep non-determism occurring in testing theories such as [8] and
at least partially in their test system implementation.

The key element for the instantiation of the scheme of subsection 4.3 lies in
the generic definition of an adapter function that builds a stepping function
from this i/o stepping function. As a suitable abstraction over a history log, we
integrate into this adapter an environment of type σ that keeps track of values
exchanged at runtime of a test which were bound to symbolic variables occurring
in abstract traces. The latter were gained from standard protocols by replacing
values which were only known at runtime; thus, we will be able to tackle with a
quite common class of reactive systems.

As a prerequisite, we need the two functions rebind :: σ ⇒ o⇒ σ and subst ::
σ ⇒ ι ⇒ ι. The former extracts from a concrete output a new binding for
corresponding variables occurring in abstract output; the latter replaces variables
occurring in abstract input to the corresponding values exchanged in the previous
system run. Wiring everything together, we get the following definition:

observer rebind subst post ioprg in (σ, σ′) ≡ let in ′ = subst σ in in

case ioprg ioprg ′ σ′ of None ⇒ None

| Some(out , σ′′′)⇒ letσ′′ = rebind σ out in
if post(σ′′, σ′′′) in ′ out
then Some(σ′′, σ′′′) else None

The adapter function observer essentially runs ioprg on its state and on the in
resulting from subst ; the resulting out leads to an update of the observer state.
Occurring errors were propagated. The function observer is fully executable and
is compiled to a part of the test driver.

4.5 An Example

As an example of a reactive system, we assume a client/server situation where
the client sends a server a communication request and specifies a “port-range” X
(for simplicity, just an upper bound). The server non-deterministically chooses
a port Y which is within the specified range. The client sends a sequence of data
(abstracted away in our example to just one constant Data) on the port allocated
by the server. The communication is terminated by the client with a stop event.
Figure 3 shows the abstract protocol (containing variables and constraints over
them) and its sub-protocol containing just the input stimulation sequence.

Test-Sequence Generation with Hol-TestGen 157

port?X[Y<=X]

C A

F

A C FA
req?X stop

send?D!Y

req?X

ack

send?D!Y

ack
stop

D

B

Fig. 3. An abstract protocol automaton and the resulting stimulation sequence au-
tomaton

In the following, we describe the necessary infra-structure of our model in
HOL-TestGen. We define the explicit variables occurring in this protocol:

vars = X | Y

and specify the combined type of abstract and concrete input and output events:

InEvent = req chan | reqAvars | senddata chan | sendAdata vars | stop
OutEvent = port chan | portAvars | ack

The definition of subst is now straight-forward:

subst env (req n) = reqn
subst env (reqA v) = req(lookup env v)
subst env (send d n) = sendd n
subst env (sendA d v) = sendd(lookup env v)
subst env stop = stop

as well as defining rebind

rebind env(portn) = env(Y
→ n)
rebind env ack = env

and the definition of the post-condition:

post′ (env , x, req n, portm) = (n ≤ m)
post′ (env , x, send z n, ack) = true
post′ (env , x, stop, ack) = true
post′ (env , x, y, z) = false

post :: (vars ⇀ int)× unit ⇒ InEvent⇒ OutEvent⇒ bool
post x y z ≡ post′(fstx, snd x, y, z)

Here, α ⇀ β denotes partial functions and is just a synonym for α ⇒ β option.
The predicate post checks the constraint that the server must return a port

within a previously communicated range. The abstract inputs like sendAData X
will be converted to concrete input sendData 23 if 23 has been communicated

158 A.D. Brucker and B. Wolff

previously by the server under test; the explicit variable management is done
once-and-for-all in the observer adapter.

The automaton for the set of stimulation traces results from a direct transla-
tion of the diagram above:

stimTrace′ (A, (reqA X)#S) = stimTrace′(C, S)
stimTrace′ (C, (sendA d Y)#S) = stimTrace′(C, S)
stimTrace′ (C, [stop]) = true
stimTrace′ (x, y) = false

stimTrace :: InEvent⇒ listbool
stimTrace s ≡ stimTrace′(A, s)

Finally, we state the test specification for a reactive sequence test. Note that
its pattern is an instance of the sequence test (see subsection 4.3) which is again
an instance of the pattern post x→ post x (ioprg x) in subsection 4.2:

stimTrace trace −→
success(Mfold trace((X
→ init), ())(observer rebind subst post ioprog))

where success :: α option ⇒ bool is an auxiliary function that yields true for
values of the form Some E. Applying our test case generation and test data
generation procedures takes only a few seconds, including the generation of the
test script containing the abstract input sequences plus the test program run
over them; this test program also contains the compiled versions of observer,
subst, rebind, etc.

For the test depth k = 4 of the test case-generation procedure we already reach
path coverage in the stimulation protocol automaton and therefore implicitly on
the protocol automaton shown in Figure 3.

5 Case-Study: Testing Firewall Configurations

Inmany institutions, anunrestricted connection of the internal network to he Inter-
net is classified as a security risk. Firewalls as means to restrict network traffic are
therefore widely used in todays IT infrastructures. As security infrastructure cru-
cially dependon them, testing their correct behavior is an important and rewarding
task. As we will see, it is also an interesting application for specification based test-
ing. The complete specification is part of the HOL-TestGen distribution [1].

If we have the implementation of ioprg in our hands, we could also verify that
it represents an automaton; the minimal path length covering all vertexes in this
automaton gives a bound for k.

5.1 A Bluffers Guide to Firewalls

In a computer network, e. g., based on TCP/IP, a message from A to B is en-
capsulated in one or more packets which contains the content of the message

Test-Sequence Generation with Hol-TestGen 159

and routing information. The routing information of a packet mainly contains
its source address (where does the packet come from), its destination address
(where should the packet go to) and the protocol (e. g., http, smtp) used on top
of transport layer (e. g., TCP/IP).

In its simplest form, a firewall is just a stateless packet filter which just filters
(i. e., rejects or accepts it) traffic from one network to another based on the des-
tination address, source address and the protocol, the policy used. The policy is
the specification (or configuration) of the firewall which describes which packets
should be denied and which should be rejected. In some cases, stateless filtering
is not enough, some application protocols, like ftp or most of the protocols used
for Internet telephony such as Voice over IP (VoIP) have an internal state of
which the firewall must be aware of. For example, some connections are only
allowed within a specific state of the protocol.

Internet (extern)

DMZ

Intranet (intern)

Fig. 4. A simple firewalling scenario

Figure 4 illustrates a simple and common setup of a firewall, separating three
networks: the external (potentially dangerous) Internet, the internal network
that has to be protected (intranet) and a network that is somewhat in-between,
the demilitarized zone (DMZ). The DMZ is usually used for servers (e. g., the
Web server and the Mail server) that should be accessible both from the outside
(Internet) and the internal network (Intranet) and thus underlie, a more relaxed
policy than the intranet. An example for a simple firewall policy is shown in
Table 1 in an informal way. Such a policy uses a first-fit pattern matching strat-
egy, i.e., the first match overrides later ones. For example, a packet from the
Internet to the intranet is rejected (it only matches the last line of the table)

Table 1. A simple Firewall Policy

source destination protocol action

DMZ Intranet any deny
Intranet Webserver http accept
Internet Webserver https accept
Intranet Mailserver smtp accept
Intranet Mailserver imap accept
Intranet Mailserver imaps accept

any any any deny

160 A.D. Brucker and B. Wolff

whereas a http-packet from the Intranet to the Web server is accepted (second
line of the table. The lines of such a table are also called rules; together, they
build the policy of a firewall.

In the remainder of this section, we will briefly introduce a formal HOL model
of networks and policies; it will turn out that these concepts can be used uni-
formly both for stateless packet filters and statefull application level firewalls.
This model forms the basis for several test case generation scenarios that validate
a firewall implementation against its specified policy.

5.2 A Formal Firewall Model

Packets and Networks. As a prerequisite, we need a formal models of proto-
cols, packets and nets. We model protocols as an abstract data types, e. g., the
most common ones are declared by:

protocol := ftp | http | https | voip | smtp | imap | imaps | unknown .

As we do not want to depend on a specific representation of addresses and
package content, we introduce the abstract types α src and α dest for the source
and destination address and β content for the content. Moreover, we introduce
an unique identifier id for each packet. Thus, the type of a package defined
straight-forward as:

(α, β)packet := id× protocol×α src×α dest×β content

Further, we define projectors, e. g., getId, getSrc, for accessing the different com-
ponents of packet directly.

As a next step, we model networks, or just nets, and parts thereof (subnets).
To be as abstract as possible at this stage, we model nets as an axiomatic type
class [10]. For the purpose of this paper, it suffices to know that a net is a set of
sets of addresses, i. e.,

α subnet = (α :: net) set set

where (α :: net) requires that the types we use to instantiate α are members of
the type class net. This definition allows us to model firewall policies that restrict
the traffic between sub-networks and also between single hosts (addresses). For
checking, if a given address is part of a subnet, we define the following operator:

a � S ≡ ∃s ∈ S. (a ∈ s) with type α adr⇒ α subnet⇒ bool.

The Firewall Policy. From an abstract point of view, a policy is a partial
mapping of packets to decisions, e. g., deny or accept. The datatype:

α out := r acceptα | deny

for decisions allows for modeling the modifications of return packages; Thus, our
model can capture address-translation techniques (network address translation

Test-Sequence Generation with Hol-TestGen 161

(NAT)) realized by some firewalls as well.2 The type of a policy follows directly
from this:

(α, β)policy := (α, β)packet ⇀ ((α, β)packet) out

where α ⇀ β denotes the partial mapping (i. e., type synonyms to α ⇒ β option;
cf. subsection 4.2). In our model, rules and policies have the same type, i. e., we
can introduce a type synonym:

(α, β)policy := (α, β) rule

for rules. Moreover, the override operator for partial mappings (_++_) allows
for nicely combining several rules to a policy. For example, r2 ++ r1 combines
the rules r1 and r2 where r1 overrides (has higher precedence) r2. We can define
several generic rules combinators at this abstract level (without concrete format
of addresses) that substantially simplify the formalization of a concrete policies.
For example, the usual two “catch-all” rules for accepting or denying all traffic
were expressed as:

allowAll p ≡ Some(accept p) with type (α, β) rule, and
denyAll p ≡ Some(deny) with type (α, β) rule.

Many other combinators for restricting traffic based on its source, destination or
protocol can already be defined on this abstraction level. A rule restriction all
packets coming from subnet s can be defined as

allowAllFrom s ≡ Some allowAll �{
p|(getSrc p)�s

}

with type (α :: net) subnet ⇒ (α, β) rule, and where _ �_ is the restriction
operator on partial mappings.

IPv4. At this point, we make the packet address format more concrete. We
specify the underlying transport protocol, e. g., IPv4 or IPv6. For our example,
we use tcp combined with ip version 4. In this setting, an address consists out
of an unique 32 bit number, represented as four-tuple and a port:

ipv4Ip := int× int× int× int
port := int
ipv4 := ipv4Ip× port

Based on these definitions, we can define further combinators (rules) that are
specific to tcp/ip addresses, i. e., they can accept or reject packages based on an
ip address and a port.
2 However, in reality, a firewall policy can describe more fine-grained how packets are

denied, e. g., some packages could be silently discarded (this is often called drop) or
the packet could be rejected, causing an error message is send to the origin.

162 A.D. Brucker and B. Wolff

5.3 Testing Stateless Firewalls

Our abstract firewall model, presented in the last section, allows for the direct
formalization of the informal policy given in Table 1. First we have to define the
subnets of type ipv4 subnet, based on their ip address ranges, e. g.:

intranet ≡
{

{

(

(a, b, c, d), p
)

∣

∣

∣ (a = 192) ∧ (b = 168)
}

}

webserver ≡
{

{

(

(a, b, c, d), p
)

∣

∣

∣ (a = 172) ∧ (b = 16) ∧ (c = 70) ∧ (d = 4)
}

}

Grouping the rules of our informal policy with the same source and same
destination, define:

DmzIntranet ≡ denyAllFromTo dmz intranet
toWebserver ≡ allowProtFromTo http intranet webserver
toMailserver ≡ allowProtFromTo smtp intranet mailserver

++ allowProtTo imap mailserver
++ allowProtTo imaps mailserver

The test specification for the stateless firewall case is now within reach: we just
state that the firewall under test (fut) has the same filtering function behavior
as our given combined policy:

fut(x) = (denyAll ++DmzIntranet++ toWebserver++ toMailserver)(x)

Applying our test case generation and test data generation procedures results,
after 72 hours running time on a modest equipped workstation, in 828 test cases,
among them:

fut(9, smtp, ((6, 2, 8, 5), 0), ((7, 3, 8, 1), 1), content) = Some deny
fut(8, http, ((6, 6, 10, 3), 6), ((4, 7, 5, 9), 1), content) = Some deny

fut(2, imaps, ((6, 2, 10, 7), 9), ((172, 16, 70, 5), 3), content)
= Some(accept(2, imaps, ((6, 2, 10, 7), 9), ((172, 16, 70, 5), 3), content))

fut(6, imaps, ((9, 7, 9, 10), 9), ((172, 16, 70, 5), 0), content)
= Some(accept(6, imaps, ((9, 7, 9, 10), 9), ((172, 16, 70, 5), 0), content))

Overall, testing stateless packet filters is quite similar to classical unit testing of
stateless software. The test-data selection is trivial in this example.

5.4 Testing Statefull Firewalls

The well-known file-transfer protocol file transfer protocol (ftp) is based on a
dynamic negotiation of a port number which is then used as channel to com-
municate the file content between the sender and the receiver. Thus, a stateless

Test-Sequence Generation with Hol-TestGen 163

firewall can only provide a very limited form of network protection if ftp is in-
volved, whereas a statefull firewall that observes the inner state of the ftp session
can open the negotiated port dynamically. Testing statefull firewalls, where the
filter functions change over time, requires test-sequence generation.

A Statefull Firewall Model. First we model the internal state of a statefull
firewall as a tuple of a store and the current policy (that can change during a
transition):

(α, β, γ) FwState = α× (β, γ) Policy

One possibility is, to model the store as the list of accepted packages:

(β, γ)history = (β, γ)packet list

A transition from state to state is a mapping from the packet that fired the
transition, the current state to the new state:

(α, β, γ) FwStateTrans = (β, γ)packet×(α, β, γ) FwState ⇀ (α, β, γ) FwState

Moreover, for combining state transitions, we define two combinators: orelse
takes the first defined transitions

f orelse g ≡
{

Some y if f x = Some y,
None otherwise,

and repeat repeats as long as the transitions is defined:

f repeat g ≡
{

Some z if f x = Some y and f y = Some z

None otherwise.

Modeling the file transfer protocol (ftp). During an ftp session, the server
(normally located in the Internet) opens a data connection to the client (e. g., lo-
cated in the intranet) using a port that is negotiated: Figure 5 shows an abstract
trace of an ftp session: the client initializes the session by sending a init message
to the server, the client answers with a port request containing a dynamic port

init

portRequest port

data

close

Server Client

Fig. 5. A sample trace of an file transfer protocol (ftp) run

164 A.D. Brucker and B. Wolff

for the data connection and then the server sends the data to the client using this
dynamic port. Eventually, the client will close the connection and the firewall
has to close the data port. We model the communication as follows:

ftpMsg = init | portRequest port | data | close | other

Further, we will use the id part of a package to distinguish several ftp-sessions. We
model state transitions of the ftp protocol as recursive predicates. First we define
a generic state transition for messages that do not change the policy and special
transition for the portRequest (that opens the data port) and close (that closes
the data port). As an example, we present the simple generic transition (see [1]
for the remaining details) that is defined recursively based on the definitions:

ftpStf((a, ftp, c, d, e), (in , policy)) ≡ if accept(a, ftp, c, d, e)policy
then Some((a, ftp, c, d, e)#in , policy)
else Some(in , policy)

ftpStf(x, (in , policy)) ≡ None

The state machine modeling ftp can be defined using the orelse combinator for
combining the singe transitions:

ftpSt ≡ ftpStportRequest orelse ftpStclose orelse ftpStf

Using the repeat combinator, we can easily model arbitrary runs of the protocol.

Testing ftp. We have to clarify the test purpose first: for example, one could
aim for testing one or more correct protocol runs (with or without interleavings),
or for illegal protocol runs. Here, we show a test for single, legal protocol runs.
We define a recursive acceptance predicate isFtp testing for legal ftp traces. We
assume a simple test scenario with a initial policy only allowing ftp sessions
(initiated using port 21, the control port of the ftp protocol) from the intranet
to the Internet:

ftpPolicy ≡ allowAll++ allowProtFromToPort ftp intranet internet 21

The accept-predicate for traces in the sense of subsection 4.3 is defined on the
basis of the ftp protocol machine together with some additional constraints:

accept(t) = t ∈ {x | isFtp c s i x}
∧ isInIntranet c ∧ isInInternet s ∧ getPorts = 21

using predicates (isInIntranet and isInInternet) for checking if an address is
within a specific subnet. The key stone of our test section is the test specification:

accept(t) → fut t = Mfold (rev t) ([], ftpPolicy) ftpSt

which is an instance of the test specification scheme discussed in subsection 4.3.
Using our test method, we receive four test cases which each represent different
ftp traces. The test case generation took about 5 minutes. For space reasons,
we omit the quite involved code of the generated test script here; the interested
reader is referred to [1]).

Test-Sequence Generation with Hol-TestGen 165

6 Conclusion

It comes perhaps as a surprise that conceptually—viewed from a strict datatype
centric angle and using a powerful logic—sequence testing is just a special case of
unit testing. Instead of one input to be send to the system under test to receive
one output, a list of input is generated to receive a list of outputs; the rest is
the usual monadic trickery to represent i/o in a functional setting and the use
of abstract test traces instead of concrete ones.

One might question the practical relevance of this observation since the length
of the considered sequences is fairly small in the firewall study (k = 4 in our ftp
example, and k = 8 in experiments with VoIP protocols, where the slow-down
was already considerable). However, the example in subsection 4.5 can easily be
blown up to protocol-lengths of 100; test case generation including test script
generation still takes less than a minute (see HOL-TestGen example suite). It
is therefore the combination between richness of data-structures, the branching-
factor in the automaton, and the length of the protocol, which may represent a
fundamental barrier to our approach, not the length alone. So far, we do not see
that this is different from any other tool-supported test case generation approach.

The combination of theorem proving and test data generation is a fruitful
one, in particular to control the state-space explosion which is in our case an
explosion of test cases for testing the filter-function of firewalls. Using theorem
proving techniques for simplifying firewall policies can reduce dramatically both,
the overall time for generating test cases as well as the number of generated test
data. For example, within HOL-TestGen, we can formally prove the following
equality which formalizes the fact, that a global allow-all rule will override a
direct predecessor with the more specific allow rule:

(allowAll++ allowAllFromTo x y) = allowAll

Thus, proving equalities and using them for the “logical massage” of policies in
test-specifications will eliminate redundant test cases by computing a semanti-
cally equivalent, but “simpler” policy with respect to time and space consump-
tion.

Our integrated approach to unit and sequence testing also paves the way for
combined scenarios: it is straight-forward to formulate test specifications that
“guide” a statefull firewall in a specific state and to compute test cases that test
the specific filter-function in this state.

Finally, there is the possibility to verify test-hypothesis generated through-
out the test theorem generation phase. In our view, a specification-based test is
clearly an approximation to verification. A test has the advantage to be poten-
tially based on more abstract data than the concrete program. Once generated,
test data can be used for fast checks that a (complex, black-box) program con-
forms to the test specification. Such fast checks can be of crucial importance
in a software development process, e. g., when checking in a new version of a
program into the version management system of a development project. In later
stages, a full review and even a verification of the test hypothesis might be in

166 A.D. Brucker and B. Wolff

order; depending on the degree of abstraction of the test specification with re-
spect to the concrete program, the test cases can help to structure and simplify
this code-verification task.

Acknowledgment

We thank Lukas Brügger for valuable discussions on the subject of firewall testing
and the work he did during his semester thesis.

References

[1] The HOL-TestGen Website, http://www.brucker.ch/projects/hol-testgen/
[2] Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To

Truth Through Proof. Academic Press, Orlando (May 1986)
[3] Brucker, A.D., Wolff, B.: HOL-TestGen 1.0.0 user guide. Technical Report 482,

ETH Zürich (April 2005)
[4] Brucker, A.D., Wolff, B.: Interactive testing using HOL-TestGen. In: Grieskamp,

W., Weise, C. (eds.) FATES 2005. LNCS, vol. 3997, pp. 87–102. Springer, Heidel-
berg (2006)

[5] Brucker, A.D., Wolff, B.: Symbolic test case generation for primitive recursive
functions. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp.
16–32. Springer, Heidelberg (2005)

[6] Church, A.: A formulation of the simple theory of types. Journal of Symbolic
Logic 5, 56–68 (1940)

[7] Dick, J., Faivre, A.: Automating the generation and sequencing of test cases from
model-based specications. In: Larsen, P.G., Woodcock, J.C.P. (eds.) FME 1993.
LNCS, vol. 670, pp. 268–284. Springer, Heidelberg (1993)

[8] Frantzen, L., Tretmans, J., Willemse, T.A.C.: A symbolic framework for model-
based testing. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) Formal Ap-
proaches to Software Testing and Runtime Verification. LNCS, vol. 4262, Springer,
Heidelberg (2006)

[9] Gaudel, M.-C.: Testing can be formal, too. In: Mosses, P.D., Schwartzbach, M.I.,
Nielsen, M. (eds.) CAAP 1995, FASE 1995, and TAPSOFT 1995. LNCS, vol. 915,
pp. 82–96. Springer, Heidelberg (1995)

[10] Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002)

[11] Wenzel, M.M.: Isabelle/Isar — a versatile environment for human-readable formal
proof documents. PhD thesis, TU München, München (February 2002)

[12] Zhu, H., Hall, P.A., May, J.H.R.: Software unit test coverage and adequacy. ACM
Computing Surveys 29(4), 366–427 (1997)

http://www.brucker.ch/projects/hol-testgen/

Test-Sequence Generation with Hol-TestGen 167

A Tableaux Calculus for HOL

Table 2. The Standard Tableaux Calculus for HOL

P ?x

∃x. P x

�
x. P x

∀x. P x

(a) Quantifier Introduction Rules

t = t true

P Q

P ∧ Q

[¬Q]
··
P

P ∨ Q

[P]
··
Q

P → Q

[P]
··

false

¬P

[P]
··
Q

[Q]
··
P

P = Q

(b) Safe Introduction Rules

∀x. P x

[P ?x]
··
R

R

∀x. P x

[∀x. P x, P ?x]
··
R

R

(c) Unsafe Elimination Rules

false

P

P ∧ Q

[P, Q]
··
R

R

P ∨ Q

[P]
··
R

[Q]
··
R

R

P → Q

[¬P]
··
R

[Q]
··
R

R

∃x. P x
�

x.

[P x]
··
Q

Q

P = Q

[P, Q]
··
R

[¬P, ¬Q]
··
R

R

(d) Safe Elimination Rules

if P then A else B = (P → A) ∧ (¬P → B)

(e) Rewrites

168 A.D. Brucker and B. Wolff

B A Sample Derivation

In the following, we show, how the test case generation procedure inside HOL-
TestGen synthesizes input data by a fully automatic symbolic constraint solu-
tion process. We pick the example of subsection 4.2:

x mem S → ioprg x S

Since S is the only free variable of list type, the procedure picks it, derives a
datatype exhaustion theorem (as shown in subsection 4.2) on the fly and applies
it. The following proof-state is the result:

1. S = [] =⇒ x mem S → ioprg x S

2.
∧

a. S = [a] =⇒ x mem S → ioprg x S

3.
∧

a b. S = [a, b] =⇒ x mem S → ioprg x S

4. THYP(3 ≤ |S| → x mem S → ioprg x S)

Variable propagation, simplification with the rules of (1) in subsection 4.2 and
the implication introduction rule from 3b yield the following state:

1. false =⇒ ioprg x []

2.
∧

a. if a = x then true else false =⇒ ioprg x [a]

3.
∧

a b. if a = x then true else if b = x then true else false

=⇒ ioprg x [a, b]
4. THYP(3 ≤ |S| → x mem S → ioprg x S)

Thus, the constraints for the first test case are not satisfiable anymore and it
can be erased. In the sequel, we apply the simplification of the conditional of 3e
and the safe elimination rule for conjunction 3c.

1.
∧

a. ioprg x [x]

2.
∧

a b. �a = x→ true; a �= x → (x = b → true ∧ x �= b → false)�

=⇒ ioprg x [a, b]
3. THYP(3 ≤ |S| → x mem S → ioprg x S)

Now, the safe elimination rule for implication in 3c effectively produces a se-
ries of case splits; variable propagation and elimination of contradictory clauses
simplify the proof state again. Thus, cascades of conditionals were eliminated.

Finally, the elimination of superfluous quantifiers result in the proof state
shown in subsection 4.2.

Generating Unit Tests from Formal Proofs

Christian Engel and Reiner Hähnle

Department of Computer Science and Engineering, Chalmers University of Technology
412 96 Göteborg, Sweden

engelc@ira.uka.de, reiner@chalmers.se

Abstract. We present a new automatic test generation method for JAVA CARD

based on attempts at formal verification of the implementation under test (IUT).
Self-contained unit tests in JUnit format are generated automatically. The advan-
tages of the approach are: (i) it exploits the full information available in the IUT
and in its formal model giving very good hybrid coverage; (ii) a non-trivial for-
mal model of the IUT is unnecessary; (iii) it is adaptable to the skills that users
may possess in formal methods.

Keywords: model-based testing, program verification, symbolic execution, test
coverage, theorem proving, unit testing, white-box testing.

1 Introduction

We present a new automatic test case generation (ATCG) method for object-oriented
software based on formal verification technology, accordingly called verification-based
test generation (VBT). It combines features from white and black box test generation
methods. VBT uses the full information contained in a formal specification and the
underlying implementation under test (IUT). The main advantages over model-based
test generation are: a detailed formal model of the IUT is not needed, in fact, test cases
can be generated even from trivial specifications; in addition, it is possible to generate
test cases that exhibit bugs contained only in the code and not in the specification. Such
errors cannot reliably be detected with model-based test generation. As test generation
is based on systematic attempts to verify the IUT against its specification, the resulting
test cases satisfy rather strong hybrid, i.e., model-based as well as code-based coverage
criteria.

Like other test generation approaches we concentrate on creating self-contained
unit test cases including fixtures and test oracles. The intended application domain are
safety- and security-critical JAVA and JAVA CARD programs running on small embed-
ded devices such as smart cards or mobile phones. Unit testing is an essential technique
for ensuring quality of industrial software. Writing unit tests by hand is labour intensive
and leaves significant uncertainties concerning the quality of the produced tests in terms
of achieved test coverage and of correctness of the test oracle relative to the specifica-
tion of the tested code. To remedy this situation, various ATCG approaches have been
suggested. The most common are specification- or model-based test generation (com-
monly referred to as black box techniques) [1,4,5,9,10,11] and white box approaches
[8,26,27,28] that are based on code-driven state exploration by symbolic execution. A

B. Meyer and Y. Gurevich (Eds.): TAP 2007, LNCS 4454, pp. 169–188, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

170 C. Engel and R. Hähnle

detailed comparison of our method to these and to other ATCG approaches is done in
Section 8.

Our own approach contains features from both white and black box techniques, but
adds a new ingredient: the starting point of the VBT process is a systematic attempt,
based on symbolic execution, to formally verify correctness of a given JAVA CARD pro-
gram p relative to a precondition pre and postcondition post. In our concrete setting we
use the KeY verification system [2] that provides appropriate (attempted) proofs based
on symbolic execution of the target program p, interleaved with first-order simplifica-
tion. It returns tree-shaped proof objects where the nodes can be interpreted as symbolic
execution states and the branches as symbolic execution paths through p. The presenta-
tion in this paper is based on the implementation in the KeY system, but in principle, it
would be possible to use any other JAVA verification system that works with symbolic
execution, for example, the KIV system [25].

The proof object on which test case generation is based does not need to constitute
a complete proof, for example, loops may have been approximated by executing them
symbolically a fixed number of times. This has the advantage that the proof construction
phase and, therefore, test generation is fully automatic. The information contained in
a proof is used to extract test data from the path conditions that characterize certain
symbolic execution paths (or all of them, depending on the desired test coverage). From
the postcondition post test oracles are generated.

A complete functional specification of the implementation under test p is not re-
quired, because test generation is based on symbolic execution of the code p, while
the specification pre, post is only needed to synthesize the test oracle. Meaningful test
cases are obtained already for trivial specifications. For example, the precondition pre
could just express that object references in p are non-null and the postcondition post is
merely true. For the generation of test oracles, somewhat more extensive specifications
are required, even though they can be far from complete (as will be shown below).

For specification our implementation supports the popular high-level Java Model-
ing Language (JML) [23] whose compatibility with JAVA syntax reduces the extent of
formal methods knowledge that JAVA developers need to come up with formal specifi-
cations. For example, it enables the programmer to write the postcondition as a JAVA

expression using query methods. In essence, the test oracle is then directly provided as
a JAVA method.

In summary, the main advantages of the VBT methodology are: (i) it is fully auto-
matic, but since coverage and quality of tests can be improved by more complete proofs
it is adaptable to the skill of users; (ii) test generation is possible already with a trivial
specification—again, since test oracles and relevance of generated test cases are im-
proved by fuller specifications, the method is adaptable to the skill of users; (iii) rather
strong hybrid code- and model-based coverage criteria are met; (iv) test generation and
verification happen in a uniform framework and tool; (v) the full JAVA CARD program-
ming language is covered.

In the next section we provide background on test coverage, JAVA CARD, formal
verification, program logics, and symbolic execution. In Sect. 3 we outline a basic
version of our method guided by an example. In Sect. 4 we extend it to code with
unbounded loops and recursion. We also discuss when various code-based coverage

Generating Unit Tests from Formal Proofs 171

criteria are reached. In Sect. 5 we present some measures that ensure high automa-
tion of our method and in Sect. 6 we show that the tests obtained from our approach
satisfy further coverage criteria [29]. In Sect. 7 we report on some experimental re-
sults, followed by related and future work in Section 8. Due to space limitations gen-
erated test cases and proofs of theorems cannot be reproduced here. On the web page
i12www.ira.uka.de/~engelc/testCases/ proofs of theorems as well as full speci-
fications of the examples in JML and generated test cases can be found.

2 Background

Test Coverage Criteria. To make the paper self-contained we define some standard
notions of test coverage [29]. Recall that in general an implementation under test (IUT)
has an infinite number of execution paths, but only a finite number of branches.

Definition 1. A formula ϕ is a path condition for an execution path p through the IUT
iff p is executed whenever ϕ holds before the execution of the IUT.

A feasible execution path is an execution path that has a satisfiable path condition. A
branch or statement in the IUT is called feasible if it is contained in at least one feasible
execution path. We say a branch (a path) is covered by a test case iff it is executed when
running the test case.

A test set for a given IUT satisfies the feasible branch (path) coverage criterion iff
each feasible branch (path) is covered by it.

JAVA CARD. The JAVA CARD programming language is a dialect of JAVA character-
ized by the absence of a number of language features (mainly floating point types, mul-
tiple threads, dynamic class loading) and the presence of others (persistent vs. transient
memory, atomic transactions). Most language features, however, are available in JAVA

CARD just like in JAVA. While JAVA CARD achieves unprecedented independence from
the hardware platform, one can state that the gap between the behaviour of programs
in desktop simulators and after actual deployment on the target hardware is a serious
concern for JAVA CARD software developers. In practice, all JAVA CARD developer
workspaces are equipped not only with emulators, but with various JAVA CARD hard-
ware platforms, and for good reasons: in principle, it is possible to test JAVA CARD

applications with the help of a simulator in a standard JAVA environment on a desk-
top. There are also emulators that mimic the behaviour of smart card hardware. The
simulated and the actual behaviour, however, differs considerably. This is due to am-
biguities [20] in the JAVA CARD language definition, but also because simulators and
emulators do not implement all JAVA CARD aspects or the implementation on the de-
vice is faulty. As a consequence, even if JAVA CARD code has been formally verified it
is essential to test it, because correct execution cannot be assumed.

Formal verification. Our approach to automatic test generation is based on a white box
analysis of the richest possible program model: the target source code together with a
formal programming language semantics. Such representations are realized in formal
software verification systems. In these systems a program logic (for example, Hoare

i12www.ira.uka.de/~engelc/testCases/

172 C. Engel and R. Hähnle

logic or dynamic logic—see below) allows to express properties of programs which
then can be formally proven from a set of logical inference rules that capture the ax-
iomatic semantics of the target language. State-of-the-art program verification systems
are able to prove security and correctness properties of industrial JAVA CARD software
[2,21,25]. The implementation described in this paper is based on the verification tool
KeY [2].

Dynamic Logic for JAVA CARD. In our method the target program and its specification
are both modeled in a version of a dynamic logic (DL) [18] calculus called JAVA DL [2].
Dynamic logic is a program logic that generalizes Hoare logic. It can be seen as a modal
logic with modalities 〈p〉ϕ and [p]ϕ for every program p with an arbitrary formula ϕ
in its scope (which in turn may contain modalities). JAVA DL formulas are interpreted
over first-order Kripke structures K = (S , ρ), where S is a set of first-order structures
including interpretations of the identifiers occurring in programs, and ρ is a function
that assigns to a program p its operational semantics as a transition relation ρ(p) ⊆
S ×S : if p is a legal JAVA CARD program and started in state s ∈ S , then (s,s′) ∈ ρ(p)
iff p terminates normally (i.e., not abruptly) in final state s′. The formula 〈p〉ϕ holds
in s ∈ S iff p terminates normally and in the final state after termination ϕ holds. In
other words, p is totally correct with respect to postcondition ϕ. Dually, [p]ϕ expresses
partial correctness: if p terminates normally, then in the final state ϕ holds.

State Updates. In JAVA (as in other object-oriented programming languages), different
object type variables may refer to the same object. This phenomenon, called aliasing,
causes difficulties for the handling of assignments in a calculus for JAVA DL. For ex-
ample, whether or not the formula o1.f

.= 1 holds after (symbolic) execution of the
assignment o2.f = 2;, depends on whether o1 and o2 refer to the same object. There-
fore, JAVA assignments cannot be symbolically executed by syntactic substitution. In
the JAVA DL calculus another solution is used, based on the notion of (state) updates.

Definition 2. Atomic updates are of the form loc := val, where val is a logical term
without side effects and loc is either a program variable or a simple field access or
an array access. Updates may appear in front of any formula or term, where they are
surrounded by curly brackets for easy parsing. The semantics of {loc := val}ϕ is the
same as that of 〈loc=val;〉ϕ.

The idea with updates U is that during symbolic execution they represent the current
computation state in which a program formula U〈p〉ϕ is executed. They are continously
simplified during symbolic execution, but their application to modal formulas in their
scope is delayed until the program has been completely executed.

Sequent Calculus. As it is usual for program logics, the axiomatization of JAVA DL is
based on a sequent calculus. The central notion is that of a sequent, which is an expres-
sion of the form Γ⇒ Δ, where Γ and Δ are finite sets of formulas. The sequent Γ⇒ Δ
is valid, if and only if the conjunction of the formulas in Γ implies the disjunction of
the formulas in Δ in all states of any JAVA DL-Kripke structure. The rules of a se-
quent calculus are denoted with schematic reasoning patterns that characterize validity
of formulas occurring in the conclusion of a rule. Their general format is:

Generating Unit Tests from Formal Proofs 173

Γ1 ⇒ Δ1 · · · Γn ⇒ Δn

Γ⇒ Δ

Soundness of the calculus requires that for each rule the validity of the sequents above
the line imply the validity of the sequent below the line. There is a sequent rule for each
top-level operator both for left and right sides of the sequent arrow. For example,

Γ ⇒ ϕ, Δ Γ ⇒ ψ, Δ
Γ ⇒ ϕ∧ψ, Δ AND-RIGHT

is a rule that characterizes conjunction on the right and is named accordingly. Here
ϕ and ψ (Γ and Δ) are schematic variables that can be instantiated with any (set of)
formula(s). Rules with an empty set of premisses are admissible. They are called axioms
and their premiss is labelled with ∗. A typical axiom has the conclusion Γ ⇒ t

.= t, Δ.
Rules are read bottom-up: the bottom sequent is the sequent on which the rule is

applied. The sequents on top are the results of the rule-application. Thus, when proving
validity of a formula ϕ the proof starts with the sequent⇒ ϕ (the empty set of formulas
on the left is omitted). Partial proofs in a sequent calculus take the shape of trees whose
nodes are labelled with sequents. In complete proofs all leaves are labelled with ∗.

Symbolic Execution. The programs occurring in JAVA DL formulas are executable JAVA

code. Rules for program formulas operate on sequents of the form Γ ⇒ U〈πpω〉ϕ, Δ,
where U is an update containing the current state of symbolic execution and p is a sin-
gle JAVA statement called the first active statement. The prefix π consists of an arbitrary
number of opening braces, try-blocks and method frames (the stack trace), and ω is
the whole rest of the program. Each rule for a program formula specifies how to exe-
cute symbolically one particular JAVA expression or statement, possibly with additional
restrictions. Symbolic execution entails that locations have no concrete but symbolic
values and the effect of the execution of a statement is described by logical means with
symbolic values. When a loop or a recursive method call is encountered, it is in general
necessary to perform induction or supply a suitable invariant.

JAVA DL extends other variants of DL used for theoretical investigations or veri-
fication purposes, because it handles such phenomena as side effects, aliasing, object
types, exceptions, and finite integer types. Since deduction in the JAVA DL calculus is
based on symbolic program execution and simple program transformations, it is close
to a programmer’s understanding of JAVA.

In a symbolic setting, the code branch that the control flow takes after evaluation of a
conditional statement cannot always be determined as it depends on symbolic values. In
general, a case distinction has to be introduced in the proof. One may also view this as
symbolic execution branching into different execution paths. Each symbolic execution
path is governed by a branch condition that is syntactically added to the left side of
sequents during evaluation of conditional statements. Thus, the branching conditions
accumulate in the sequent during symbolic execution and the current path condition for
each execution path (including incomplete execution paths that have not yet terminated)
is always contained in the leaves of proof trees during any phase of symbolic evaluation.
This is illustrated in Fig. 1.

174 C. Engel and R. Hähnle

Example 1 (Rule for the if -statement). When an if statement is symbolically executed
a case distinction whether the guard is true or not has to be made. This is reflected by a
split in the proof tree.

Γ, c
.= T RUE ⇒ 〈π{p}ω〉ψ,Δ Γ, c

.= FALSE ⇒ 〈π ω〉ψ,Δ
Γ⇒ 〈π if(c) {p};ω〉ψ,Δ IFTHENSPLIT

The conditional if(c) {p} is the first active statement in the modality, where c is a
boolean side-effect free expression. The updates before the program formulas are not
explicitly written. The left premiss represents the case that the expression c holds, thus
we find c

.= T RUE on the left side which becomes part of the path condition on the cor-
responding execution path. As c holds, the body of the if -statement is executed, there-
fore, the program formula 〈π if(c) {p};ω〉ψ is transformed into 〈π{p}ω〉ψ, where
symbolic execution continues. The right premiss represents the case that !c holds thus
we find c

.= FALSE on the left side of the sequent. In this case the body of the if state-
ment is not executed and we get the new program formula 〈π ω〉ψ.

3 Overview of Verification-Based Test Generation

Verification-based testing (VBT) is motivated by the insight that a formal analysis of
a specification and/or the corresponding code, as performed in a formal proof attempt,
yields enough information to produce test cases. In our view a full description of a
software system consists of both, implementation and specification. In order to detect
as many errors as possible, it is essential to analyse and compare two levels of modeling.

Several ideas from other test generation methods are as well found in VBT, for exam-
ple, to synthesize a test oracle from a formal specification (the postcondition) or to use
reasoning technologies such as deduction, constraint solving and symbolic execution to
achieve a high automation of the test generation process.

We walk through our test generation method guided by an example. It will demon-
strate the automatic creation of self-contained unit tests for an implementation under
test (IUT) containing only a finite number of feasible execution paths (the general case
is handled in Sect. 4). In this case we obtain a test set satisfying the rather strong feasi-
ble execution path coverage criterion (Def. 1). The reason for this can be found in the
soundness of the JAVA DL sequent calculus: if a certain path p with path condition ϕ
in a code fragment c would not figure in a complete proof then also a complete proof
for the invalid formula ϕ→ 〈c〉 f alse could be constructed which would imply that the
calculus is unsound.

Example 2. Method conditionalSwap swaps the values of the field value of two objects
x and y of type NaturalNumberWrapper provided that x.value >= y.value. Its behaviour
is specified using JML [23] as shown below.

public class NaturalNumberWrapper{

private /*@spec_public@*/ int value;

//@ public invariant value > 0;

Generating Unit Tests from Formal Proofs 175

/*@ public normal_behavior
@ requires x!=null && y!=null;
@ ensures \old(x.value) >= \old(y.value) ?
@ (\old(x.value)==y.value && \old(y.value)==x.value) :
@ (\old(x.value)==x.value && \old(y.value)==y.value);
@*/

public static void conditionalSwap(NaturalNumberWrapper x,
NaturalNumberWrapper y){

if(x.value >= y.value){
swap(x, y);

}
}

public static void swap(NaturalNumberWrapper x,
NaturalNumberWrapper y){

y.value += x.value;
x.value = y.value - x.value;
y.value -= x.value;

}
}

Clearly, there are two feasible execution paths characterized by the path condition
x.value ≥ y.value, resp., by x.value < y.value that are induced by the guard of the
conditional occurring in conditionalSwap, see also Fig. 1.

Extraction of the IUT. KeY’s JML front end automatically translates [15] JML specifi-
cations to JAVA DL formulas that constitute a proof obligation (PO) for the KeY verifier.
For the method conditionalSwap and its JML specification the PO is

∀x′.∀y′.{x := x′, y := y′}((inv∧ pre)→ 〈conditionalSwap(x,y);〉Φ), (1)

where Φ is a first-order formula representing the post condition, inv is the formula
∀z.z.value > 0 representing the class invariant for class NaturalNumberWrapper and
pre := (x �= null∧ y �= null) the precondition of conditionalSwap defined by the JML
specification. After quantifier elimination by skolemization and pushing in updates
(where S abbreviates {x := cx′ , x := cx′ }) we obtain:

S(inv∧ pre)→ S〈conditionalSwap(x,y);〉Φ. (2)

This formula is the root node in the partial proof tree depicted in Fig. 1 (the left part of
the implication is abbreviated with Γ). From this formula we extract the IUT

x = cx′ ; y = cy′ ; conditionalSwap (x,y);

and the postcondition Φ. Later we generate a test oracle from Φ. The node in the proof
tree used for extracting the IUT (2) is called code node.

Extraction of Path Conditions from the Proof Tree.

176 C. Engel and R. Hähnle

Fig. 1. Partial proof tree for the example in the text

Definition 3. A proof tree in which each branch is either closed or ends with a leaf that
contains no code fragments anymore (indicating termination of symbolic execution on
that branch) is called fully executed.

A fully executed proof tree for the PO (1) is constructed automatically by the KeY sys-
tem. It is partially shown in Fig. 1. Recall from Sect. 2 that branches in the proof tree
can be identified with execution paths through the IUT. Since each node contains a path
condition that leads to the current point of symbolic program execution, we are inter-
ested in exactly those nodes that contain an empty program (signifying termination of
symbolic execution). These nodes are the leaves of open branches in a fully executed
proof tree and referred to as data nodes from now on. They have the form

Γ ⇒ U〈〉Φ, Δ, (3)

where Γ and Δ are sets of first-order formulas and U is a sequence of updates repre-
senting the effect of the symbolic execution of the IUT on the branch of the proof tree
whose path condition is, therefore, given by:

�

γ∈Γ
γ ∧
�

δ∈Δ
¬δ. (4)

It is important to realize that closed branches where symbolic execution did not termi-
nate need not be considered, since those branches must have been closed because of an
unsatisfiable path condition and, therefore, cannot be reached. In Fig. 1, for example,
the node labelled “infeasible path” originates from the null pointer check performed

Generating Unit Tests from Formal Proofs 177

each time when an attribute on an object reference is accessed, here x
.= null. Symbolic

execution of this node leads to a new proof goal of the form

Γ, cx′
.= null ⇒ S ′〈π throw new NullPointerException();ω〉Φ. (5)

It represents the case that a null pointer exception is thrown. It can be closed immedi-
ately, because the formula cx′ !

.= null is contained in the precondition Γ (originating
from the requires clause of the JML contract). In the fully executed proof tree we find
the following data nodes:

cy′
.= cx′ , inv1 ⇒ U1〈〉Φ, pre1 (6)

cy′.value≤ cx′.value, inv2 ⇒ U2〈〉Φ, pre2, cy′
.= cx′ (7)

cy′.value≥ cx′.value+ 1, inv2 ⇒ U3〈〉Φ, pre2 (8)

Here, inv1 is {inv, cx′.value ≥ 1} and inv2 is {inv, cx′.value ≥ 1, cy′ .value≥ 1}. They
are derived from the invariant of the JML specification. Formula pre1 stands for cx′

.=
null and pre2 for {cx′

.= null, cy′
.= null}. They stem from the precondition of the JML

method contract. In (4) we defined path conditions in such a way that, in addition to
branching conditions, they may contain constraints like pre{1,2} and inv{1,2} stemming
from formulas present in the code node. The formulas cy′.value ≥ cx′.value+ 1 and
cy′.value≤ cx′.value are introduced by a case distinction performed when the if state-
ment occurring in conditionalSwap is symbolically executed (see Fig. 1). The formula
cy′

.= cx′ occurring in data node (6) on the left and in data node (7) on the right side are
introduced by another case distinction caused by an alias analysis when the assignments
in swap are symbolically executed. This case distinction is needed for distinguishing
whether x and y are referencing the same object. From the data nodes the path condi-
tions are obtained via (4).

Generation of Integer Test Data. For creating suitable test data for each execution path
we have to find first-order models of the corresponding path condition formulas. For
integer types concrete interpretations are currently found by applying Cogent [12] or
Simplify [14] to the formula �

γ∈Γ
γ →

�

δ∈Δ
δ,

i.e., the negation of the path condition (4). If the path condition is satisfiable and the
decision procedure manages to deliver a counter example for its negation the integer
type test data are derived from the returned counter example. While Simplify’s inte-
ger arithmetic is unbounded, Cogent, as a decision procedure for C expressions, uses
bounded 32-bit arithmetic. Thus for getting meaningful results one has to restrict the
arithmetic operations allowed in the specification to 32-bit Java int operations and the
permitted int literals to values expressible in 32-bit int arithmetic (i.e. discrete values
in the interval [−231,231−1]). This is possible in KeY.

In contrast to Cogent, Simplify does not necessarily return a concrete counter exam-
ple. In general the counter examples provided by Simplify have the form

�
π∈Π π, where

π is an atomic formula of the form p(t1,t2) with top level predicate p∈ {<,≤,>,≥,
.=}.

If for each p(t1,t2) ∈ Π t1 represents a Java location and t2 an integer literal we have

178 C. Engel and R. Hähnle

found a concrete counter example. Otherwise, Simplify is applied recursively to the re-
fined formula ¬(t1

.= t2∧
�

π∈Π π), where t1 and t2 are chosen in such a way that one of
the following conditions holds:

• t1 ≤ t2 ∈Π,
• t1 ≥ t2 ∈Π,
• t3 < t2 ∈Π with t1 := t3 + 1,
• t1 > t3 ∈Π with t2 := t3 + 1 or
• t1 occurs in Π and t2 is an arbitrary integer literal iff no inequations occur in Π and

thus none of the previous conditions can be met.

The procedure is repeated until Simplify returns a concrete counter example. This rela-
tively naive approach is sufficient in practice, because path conditions are easily satisfi-
able for non-pathological programs.

Generation of Reference Type Test Data. As a first step the set R of all terms that
occur in the path condition and whose type is non-primitive is grouped into equivalence
classes R/∼ where a ∼ b iff

�
γ∈Γ γ ∧ �δ∈Δ¬δ |= a

.= b (In JAVA DL a
.= b means

object identity). For each of these equivalence classes C test data are chosen to be either
(i) null iff null ∈ C or (ii) an object of type t where t is the minimal static type of the
terms t ∈ C if t is not an array type or (iii) an array of length n otherwise, where n is
the concrete value found for a term a.length with a ∈C during the integer type test data
generation phase. If no such term a exists an arbitrary value n is chosen.

Test Oracle. The test oracle is generated by transforming the postcondition Φ of the
IUT into loops iterating over boolean JAVA expressions. Quantified subformulas are
only allowed to occur in Φ if they match one of the following patterns

∀x.(a ≺1 x ∧ x≺2 b → Ψ) ∃x.(a ≺1 x ∧ x≺2 b ∧ Ψ),

where x has an integer type and ≺1,≺2∈ {<,≤}. This restriction essentially confines
postconditions within the guarded fragment of first-order logic [19]. Guarded quantified
formulas can be evaluated by a loop iterating over the range given by the bounded guard
predicate a≺1 x ∧ x≺2 b. The postcondition of Example 2 is quantifier-free and can be
trivially turned into boolean JAVA expression.

Example 3 (Sort). The following approximate specification of a sorting algorithm has
a post condition containing quantified expressions obeying the above restrictions:

/*@ public normal_behavior
@ ensures a!=null ==>
@ (\forall int i; 0<=i && i<a.length-1; a[i]<=a[i+1])
@ &&
@ (\forall int i; 0<=i && i<a.length;
@ (\exists int j; 0<=j && j<a.length; \old(a[i])==a[j])
@);
@*/

public static void sort(int[] a) { ... }

Generating Unit Tests from Formal Proofs 179

From the first quantified JML subexpression

\forall int i; 0<=i && i<a.length-1; a[i]<=a[i+1]

the following JAVA oracle is computed:

boolean result = true;
for (int _i0 = (0); _i0 <= ((-2) + _old2_a.length); _i0++) {

result = result && TestBubbleSort0.subformula1(_i0,_old2_a,buffer);
}
buffer.append(...);
return result;

Here, TestBubbleSort0.subformula1 is a wrapper method for the oracle created from
the subexpression a[i]<=a[i+1] (a and i are renamed to _old2_a and _i0). It has para-
meters _i0, _old2_a needed to evaluate a[i]<=a[i+1] and the StringBuffer variable
buffer is used for logging results of the evaluation of subexpressions. This provides
valuable information when a test run fails.

In the case of the trivial postcondition true the test oracle always succeeds. In this case
the resulting unit tests can only fail if the execution hangs or throws an uncaught ex-
ception. Even in this case we obtain meaningful and important tests, because uncaught
exceptions are the cause of many serious errors.

Generation of Unit Tests. The generated tests are in JUnit (www.junit.org) format.
For every feasible execution path found a separate test method is created. In this way
erroneous execution paths can easily be identified after failed tests.

For the example above three test methods are created corresponding to the path con-
ditions of data nodes (6)–(8). Each test method contains a different test case for each
first-order model obtained from the path condition.

The test case generated from (6) reports a failure when executed. Analysis of the
reason why the postcondition is not satisfied exhibits a bug: whenever the arguments
x and y of swap point to the same object the result state is x.value

.= y.value
.= 0

irrespective of the initial value. The branching condition cy′
.= cx′ in (6) covers exactly

this case.
This kind of bug is not easy to discover with model-based test generation, because

the case distinction on whether the arguments are identical objects is an implementation
issue and does not occur in the specification naturally.

Modification of the Implementation under Test. In contrast to some other white box test
generation methods [27,28] the program logic JAVA DL is capable of handling symbolic
reference type values. In order to provide a fixture for reference type test data a modified
version of the IUT is included in the generated unit test. The modifications consist
of supplying default constructors and get and set methods for private and protected
fields so that the test fixture can create objects with the properties determined by the
found models of the path conditions. The new methods are uniquely named and do not
change the semantics of the IUT. This means in the case of the example that methods for
accessing and modifying the field value are added to the class NaturalNumberWrapper.
In general, also final modifiers are removed from final instance fields and from final
static fields that are not initialized with a compile time constant.

www.junit.org

180 C. Engel and R. Hähnle

4 Unbounded Number of Execution Paths and Test Coverage

An IUT containing loops or recursive method calls may give rise to an infinite number
of feasible execution paths if its specification imposes no upper bound on the number
of iterations of the loop or the recursion depth. In this case it is obviously not possible
to find a finite proof tree that covers every feasible execution path. We can see two
approaches to deal with this situation:

1. Unwind the loop (unfold the recursive method call) a fixed number of times. This
strategy creates only a partial proof. One uses only those execution paths on which
symbolic execution has terminated.

2. Replace non-linear constructs such as loops and method calls by suitable specifi-
cations, i.e., an invariant in the case of loops and a contract in the case of method
calls. This allows to obtain complete proof trees.

The first approach does not try to produce fully executed proofs. Proof attempts are
simply stopped after a given resource bound has been reached and the information ob-
tained so far is exploited. The second approach formally constructs a fully executed and
possibly even complete proof tree, but this proof tree either has gaps (where a contract
is used) or relies on an invariant supplied by the user. Which of the two approaches is
appropriate depends on the specific IUT and the targeted coverage as pointed out below.

4.1 Partial Proofs

To unwind a loop of the form while(b) {p}; means to syntactically replace it with

l1: if(b) { l2: p’; while(b) {p} };,

where p’ is obtained from p by replacing the occurring break and continue statements
in an appropriate way by local jumps to the fresh labels l1 and l2.

By unwinding we may successively explore the potentially unlimited number of ter-
minating execution paths that lead through the loop statement. Since every feasible
branch contained in the loop body is taken1 on some finite execution path we can obtain
branch coverage if we only unwind the loop often enough. In practice we can usually
not guarantee this except for the case that for every branch in the IUT a containing
feasible execution path has been found and thus every branch is feasible. However, this
can in general not be assumed since for realistic programs with array or attribute ac-
cesses branches containing raised NullPointer- or ArrayIndexOutOfBounds-exceptions
are usually infeasible if the program is correct, and there is no way to determine which
branches are feasible by means of unwinding alone.

The advantage of this approach is that it is highly automatic and requires no addi-
tional input such as loop invariants. It also yields high code coverage in most cases,
because it turns out that very often all feasible execution paths through the loop are
already feasible in the first iteration of the loop and, hence, can be discovered by un-
winding the loop merely once. Similar considerations as for unwinding of loops can be
made for the symbolic execution of method bodies of recursive method calls.

1 Otherwise the branch would not be feasible by definition. JAVA does not allow infinite loops,
so each branch must occur on at least one finite execution path.

Generating Unit Tests from Formal Proofs 181

4.2 Complete Proofs

By supplying suitable loop invariants it is possible to find complete proofs even for code
that contains unbounded loops. In this case one obtains branch coverage for the resulting
test cases provided that (i) every loop is symbolically executed under its invariant and
(ii) symbolic execution terminates on every branch of the proof tree.

In order to understand why this is the case, let us first look at the invariant rule.
We do not use the standard invariant rule, but one that has been optimized for usage
in imperative programming languages [3]. In the rule below I represents the invariant.
The point where the rule deviates from the usual invariant rules is the update set V . It
represents all locations that can possibly be changed in the loop body q, the so-called
modifier set, by assigning fresh constants to all critical locations. The first premiss states
as usual that the invariant holds in the current state U. In the standard rule the second
premiss (invariance property) must be shown for arbitrary states which often requires
to strengthen invariants. It turns out to be sound to show the invariance property in the
state UV which contains all locations from U that are not modified in the loop body.
This is exploited in the rule below. The guard b is free of side effects.

Γ ⇒ UI, Δ Γ, UV (I ∧ b) ⇒ UV [q] I, Δ Γ, UV (I ∧ ¬b) ⇒ UV [π ω]Φ, Δ
Γ ⇒ U[πwhile(b) {q}ω]Φ, Δ

We will argue that if we apply the loop invariant rule to every subgoal containing the
formula [πwhile(b) {q}ω]Φ (that is, in every partial execution path reaching the loop
statement while(b) {q}) we can achieve full feasible branch coverage of both q and of
πω, hence of the whole loop.

Let p be the symbolic execution path corresponding to the proof branch from the
root to node Γ ⇒ U[πwhile(b){q}ω]Φ, Δ with path condition ϕp obtained with (4).
The subgoal from the leftmost premiss in the invariant rule is irrelevant for finding
execution paths since no further symbolic execution takes place. Let inv be the second
subgoal obtained from the middle premiss. It is valid if the invariant is preserved by the
execution of the loop body. All code branches occurring in the body q that are occurring
on any feasible execution path, of which p is a prefix and whose path condition implies
ϕp are also feasible when the symbolic execution of q starts in the state defined by the
node inv and are thus contained in the proof subtree starting with inv. This is owed to
the soundness of the applied loop invariant rule [3]. If there were a feasible branch br in
q that is not explored by symbolic execution of q, then the loop invariant rule would not
be sound, because the invariant is possibly not preserved by some feasible execution
path through q that contains br. Thus the proof subtree starting with node inv covers all
branches in q that are feasible under the precondition ϕp. The subgoal post from the
rightmost premiss in the invariant rule represents the situation after the loop has been
executed and it contains the code πω. It can be argued in a similar way.

The usage of loop invariants in symbolic execution not only ensures branch cover-
age, but it is also more efficient than finite unwinding, because typically less code is
symbolically executed. Nevertheless, even a symbolic execution tree covering all fea-
sible branches is not always sufficient to generate tests that satisfy the feasible branch
coverage criterion. The problem are the fresh constants introduced in updates V of
the invariant rule representing the new values of the locations in the modifier set of

182 C. Engel and R. Hähnle

the loop. These constants might become part of branching conditions and, hence, path
conditions. If branching conditions containing these new constants cannot be expressed
with the help of terms whose values were already known in the prestate of the IUT,
that is with the help of terms occurring in the code node, it becomes impossible to tell
how such conditions evaluate during a run with the chosen test data and which of the
associated branches is therefore covered by the test case.

Example 4. To illustrate the effect of loop unwinding during exploration of execution
paths by symbolic execution we look at an implementation of the bubble sort algorithm
that was specified in Example 3.

1 p u b l i c s t a t i c void sort(i n t [] a) {
2 i f (a == n u l l) { re tu rn; }
3 boolean sorted = f a l s e ;
4 i n t help;
5 whi l e (!sorted) {
6 sorted = t rue ;
7 f o r (i n t i = 0; i < (a.length - 1); i++) {
8 i f (a[i] > a[i + 1]) {
9 help = a[i];

10 a[i] = a[i + 1];
11 a[i + 1] = help;
12 sorted = f a l s e ;
13 }}}}

We list the case distinctions that occur and the path conditions that are obtained during
the symbolic execution of this code. The evaluation of the conditional statement in line 2
leads to the first case distinction.

a
.= null: Symbolic execution terminates after the execution of the return statement

leading to path condition a
.= null.

a !
.= null: Symbolic execution continues in line 3 and a !

.= null is added to the left-
hand side of the sequent, i.e., to the current path condition. The next case distinc-
tion is encountered when the while loop is reached whose symbolic execution by
unwinding needs to distinguish whether sorted

.= T RUE holds.
sorted

.= T RUE: Since sorted has been initialized with false this branch leads to
an infeasible path condition and it can be closed immediately.

sorted
.= FALSE: Since sorted has the value false at this point of the program

execution this branch condition is equivalent to true and thus does not change
the current path condition (still being a !

.= null). When executing the first iter-
ation of the for loop, which is unwound in the same manner as the while loop, a
case distinction on the expression i < (a.length - 1) is made. Whether this
expression can be evaluated without raising an exception depends on whether
a

.= null holds.
a

.= null: The path condition is a !
.= null. This code branch is infeasible and

the corresponding branch in the proof tree closable.
a !

.= null: This branch condition is implied by the path condition. The eval-
uation of the guard 0 < (a.length - 1) terminates without raising an ex-
ception, but gives rise to a further case distinction:

Generating Unit Tests from Formal Proofs 183

0≥ (a.length−1): The for loop is not executed. Since the guard of the
while loop does not hold in its next iteration, symbolic execution ter-
minates on this proof branch without introducing a new branch con-
dition. The path condition obtained is a !

.= null ∧ 0 ≥ (a.length− 1)
from which a !

.= null∧ (0 .= a.length∨1
.= a.length) can be derived,

because the length of an array cannot be negative (this knowledge is
provided by JAVA DL calculus rules).

0 < (a.length−1): The path condition is now a !
.= null ∧ 1 < a.length.

The execution of the first iteration of the for loop starts which makes
a case distinction on the guard of the conditional in line 8 necessary.

The exploration of execution paths through the outer and inner loop can be continued
for arbitrarily many loop iterations depending on the desired coverage or the number
of desired test cases. Path conditions are continously simplified during this process, en-
abling us to avoid symbolic execution of infeasible paths by closing the corresponding
proof branch. This is all done fully automatically.

Approximating Method Calls. For the purpose of generating unit tests it is often not
desirable to take into account the implementation of all methods called in the IUT. Using
modifier sets (and the method’s postcondition) one can approximate symbolic execution
of a method call. The idea is the same as for invariants and the above arguments apply.
Of course, branch coverage is not obtained for the method body then.

5 Increasing Automation

Pruning of the Proof Tree. The subtrees below data nodes in proofs have no significance
for the creation of unit tests, because they contain no symbolic execution steps. Thus,
when the verification system is run with the purpose of test case generation, we prune
any proof steps below data nodes. This prevents proof trees from becoming closed, but
increases efficiency. The same applies to other nodes containing no code fragments such
as the subgoal from the leftmost premiss of the invariant rule.

Obviously, the pruned part of a proof tree might not have been closable. It is easy,
for example, to specify a too strong invariant that is preserved by the loop body, but
simply does not hold at the beginning of the loop. This is checked in the first premiss
of the invariant rule and if that part of the proof is not explored, then the application of
the invariant rule simply becomes unsound. For test case generation this means that we
might lose coverage of those branches that are feasible under the given precondition but
not under the assumed invariant. We found that in practice this happens rarely and it is
outweighed by the advantage of improved automation and speed. If branch coverage is
important, the user can enforce full exploration of trees.

Automatic Instantiation of Quantifiers. In order to prove subgoals that contain quan-
tified formulas it is in general necessary to provide suitable terms for instantiation of
quantifiers. Owing to the undecidability of first-order logic, it is not possible to restrict
these instances in a finite way. First-order quantifiers with variables ranging over the

184 C. Engel and R. Hähnle

integers are instantiated during proof search by external theorem provers such as Sim-
plify [14]. This leaves first-order quantifiers over object reference types. It would do
to ask the user to instantiate them interactively, but we found that the following brute
force method works well in practice: object type quantifiers occurring in open proof
goals are automatically instantiated with all symbolic object references that occurred so
far during symbolic execution of the IUT and that are known to be not null.

6 Additional Coverage Criteria

As pointed out in Section 4, complete proof trees satisfy the feasible path coverage
criterion if they are constructed by finite unwinding of all feasible execution paths and
neither loop invariant rules nor approximation of methods are used. This holds even for
incomplete proof trees constructed in this manner, where each open branch contains
a data node indicating complete symbolic evaluation of every feasible execution path.
In addition, such proof trees meet a variant of the multiple condition coverage (MCC)
criterion [29] of the precondition.

Definition 4 (Minimal Partial Interpretation). A partial interpretation is a mapping
s from first-order formulas that contain no unbound variables into {true, f alse,⊥} sat-
isfying s(a∧b) = min(s(a),s(b)) and s(a∨b) = max(s(a),s(b)) under the total order
f alse <⊥< true as well as s(¬ ⊥) =⊥.

Let Φ[a1, . . . ,an] be a first-order formula, where a1, . . . ,an are exactly those atomic
or quantified subformulas in Φ that contain no unbound variables. We call a partial
interpretation s minimal relatively to Φ[a1, . . . ,an] if the following conditions hold:

– s(Φ[a1, . . . ,an]) = true or s(Φ[a1, . . . ,an]) = f alse
– si(Φ[a1, . . . ,an]) =⊥ for all 1≤ i≤ n such that s(ai) �=⊥, where

si(q) =
{

s(q), i f q �= ai

⊥, i f q = ai
.

The idea behind minimal partial interpretations is that they fix the interpretation of
just enough subformulas of Φ in order to determine its truth value. In order to cover all
possible interpretations of a first-order formula it is, therefore, sufficient to cover merely
those combinations of subformulas that are fixed by at least one of its minimal partial
interpretations. Since we base our variant of multiple condition coverage on minimal
partial interpretations (instead of complete interpretations) it results in less test cases
while still ensuring full logical coverage of a condition.

Definition 5 (MCC). Let Φ[a1, . . . ,an] be the precondition of the IUT in a proof tree T .
We say T meets the MCCp (MCCb) criterion iff it contains for every minimal interpre-
tation s such that s(Φ[a1, . . . ,an]) = true every execution path (branch) that is feasible
under the precondition

�

a: s(a)=true and a∈{a1,...,an}
a ∧

�

b: s(b)= f alse and b∈{a1,...,an}
¬b.

Generating Unit Tests from Formal Proofs 185

Theorem 1. Test cases generated from complete proofs satisfy the MCCb criterion im-
plying full feasible branch coverage. If, in addition, proofs have been constructed with-
out using loop invariant rules then test cases satisfy MCCp which implies full feasible
path coverage.

The proof is by a straightforward induction over the syntactic structure of the precondi-
tion of the IUT. It is contained in the long version of this paper.

As explained in Sect. 4.2, whether a test with the same coverage as the proof tree
actually can be constructed depends on the concrete form of invariants and contracts
which may introduce fresh constants from modifier sets in the path conditions.

7 Evaluation

In order to evaluate our approach we first injected a number of typical errors into some
standard algorithms: the median of three integers, the insert method of binary search
trees (BST), a shift-add multiplier, and bubblesort. In each case we were able to detect
the bugs with our automatically generated test cases. The specifications of insert and
sort were incomplete and would be easy to create for a non-expert. The results are
summarized in the table below (BC/PC = branch/path coverage obtained):

Method Specification Proof BC PC covered paths
conditionalSwap precise no yes yes 3
median precise yes yes yes 6
BST, insert lightweight no yes ∞ 65
Shift-add multiplier lightweight no yes no 16
Bubblesort, sort approximate no yes ∞ 42
dto., fixed length (4) approximate yes yes yes 24

We also briefly compared our results with two model-based test generation tools (un-
fortunately, no code-based test generation tools were made available): ESC/Java2 [11]
and UTJML [9]. None of the two tools is able to detect all bugs. This is not surprising,
because none of them satisfies code-based coverage criteria. ESC/Java2 produces occa-
sional spurious warnings and UTJML, which is in an early development stage, cannot
cope with more complex methods such as sort. Details on the comparison are in [16].

Finally, we started to evaluate our method with an industrial application. The smart
cart vendor association GlobalPlatform (www.globalplatform.org) provides a hard-
ware-, operating system-, and vendor-neutral card specification [17] for JAVA CARD

applications. An implementation for this specification is currently being made by IBM
Deutschland Entwicklung GmbH. In order to validate vendor-specific implementations
against a reference it is necessary to provide test cases with good code coverage. Based
on the card specification [17] we wrote a lightweight JML specification for a part of
the card life cycle management and used our tool to automatically create test cases for
the process method of the applet and for setAppletLifeCycle. The method calls to
the JAVA CARD API were approximated with a JML-based specification provided by
W. Mostowski at www.cs.ru.nl/~woj/software/software.html.

The methods do not contain loops or recursive calls, so we could achieve execution
path coverage (modulo JAVA CARD API calls). We produced several dozen test cases
which are able to detect a number of typical coding and specification errors.

www.globalplatform.org
www.cs.ru.nl/~woj/software/software.html

186 C. Engel and R. Hähnle

8 Conclusion, Related and Future Work

We presented a new method for automatic test case generation based on possibly in-
complete, but automated attempts at formal verification of the IUT. We are able to
generate self-contained unit tests in JUnit format. The implementation is based on the
verification system KeY [2] and supports the JAVA CARD programming language. The
approach exploits the full information available in the IUT and it is adaptable to the
formal methods skill of users. In particular, a detailed formal specification of the IUT
is not required. Depending on the completeness of the underlying proof attempts the
method guarantees strong hybrid coverage criteria.

Related Work. The most common ATCG methodolology is specification- or model-
based test generation [1,4,5,9,10,11]. Here, test cases are generated from a formal
specification or model of the IUT which itself is not required or taken into account.
Consistency of the test oracle with the specification is guaranteed. The drawback is that
the information contained in the IUT is not analysed, therefore, no code coverage guar-
antees can be given. Test cases such as the one that exhibited an implementation error
at the end of Section 3 are easy to miss in model-based approaches. Another problem
is that a detailed formal model of the underlying system is required in order to create
relevant test cases. Such models often do not exist or are too expensive to create.

More recently, white box ATCG approaches appeared [8,26,27,28] that are based on
code-driven state exploration by symbolic execution. Often, they support only a limited
subset of the target language features. Symbolic execution performed by the relatively
advanced system Symstra [28], for instance, does not yet feature symbolic values that
have a reference type. Closest among this family of ATCG approaches to ours regarding
scope and performance is [26] where, however, verification cannot be combined with
testing and the target language is restricted to CIL bytecode.

A different starting point is used in the systems TestEra and Korat [6,22], where
systematically all non-isomorhpic inputs up to a fixed bound are generated that pass a
feasibility filter based on method preconditions. A uniform framework for verification
and testing has been formalised in HOL/Isabelle for a toy target language in [7], but
the test generation process is not automatic. Independently of the present work, a very
similar method than ours has been developed [24] based on the Bogor verification tool.
This is very recent work and yet unpublished, so a detailed comparison has to wait.

Future Work. We obtained promising results on non-trivial programs but a more thor-
ough evaluation and comparison to other automatic test generation methods is required,
in particular, to model-based [1,10] and state exploration-based [27,28] approaches. We
also plan to generate comprehensive test cases for a GlobalPlatform reference imple-
mentation (Section 7) in collaboration with IBM and the GlobalPlatform Association.

The syntactic form of postconditions is currently restricted to first-order formulas
with finite guards in order to achieve full automation when computing test oracles. Us-
ing advanced first-order theorem proving technology, this can probably be generalized.

Incomplete proofs constructed by finite unwinding of unbounded loops to a fixed
bound are not guaranteed to satisfy feasible branch coverage, however, as stated in
Sect. 4.2, the obtained path conditions are easier to turn into test cases as in complete

Generating Unit Tests from Formal Proofs 187

proofs that involve loop invariants, due to the absence of fresh constants related to
modifier sets. It would be interesting to combine the information from both approaches.

As stated in Section 4.1, by sufficient finite unwinding it is always possible to obtain
feasible code branch coverage of the generated test data, because each feasible code
branch is executed after a finite number of execution steps. Even though it is not possible
to compute the number of unwinding steps uniformly for each program, one could
implement an incomplete check whether a given proof tree enjoys branch coverage by
relating the statements in feasible paths of the proof tree to code branches. As argued in
Section 4.1, branch coverage tends to happen early, so this would be a useful test.

In order to approximate execution path coverage, arguably a data-driven approach
to unwinding is more useful than the naive code-driven one we are currently using.
Data-driven unwinding has been realized in Kiasan [13], where it is called k-bounding.

Acknowledgments. We thank Klaus Peter Gungl from IBM Deutschland Entwicklung
GmbH for letting us have the source code of their GP Card Spec implementation.

References

1. Ambert, F., Bouquet, F., Chemin, S., Guenaud, S., Legeard, B., Peureux, F., Vacelet, N., Ut-
ting, M.: BZ-TT: A tool-set for test generation from Z and B using contraint logic program-
ming. In: Hierons, R., Jerron, T. (eds.) Formal Approaches to Testing of Software, FATES
2002 workshop of CONCUR’02, August 2002, pp. 105–120. INRIA Report (2002)

2. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Software: The
KeY Approach. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

3. Beckert, B., Schlager, S., Schmitt, P.H.: An improved rule for while loops in deductive pro-
gram verification. In: Lau, K.-K., Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp.
315–329. Springer, Heidelberg (2005)

4. Bouquet, F., Dadeau, F., Legeard, B., Utting, M.: JML-Testing-Tools: a Symbolic Animator
for JML Specifications using CLP. In: Halbwachs, N., Zuck, L. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 551–556. Springer, Heidelberg (2005)

5. Bourdonov, I.B., Kossatchev, A., Kuliamin, V.V., Petrenko, A.: UnitesK test suite archi-
tecture. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp. 77–88.
Springer, Heidelberg (2002)

6. Boyapati, C., Khurshid, S., Marinov, D.: Korat: Automated testing based on Java predicates.
In: Frankl, P.G. (ed.) Proc. ACM Intl. Symp. Software Testing and Analysis, July 2002.
Software Engineering Notes, vol. 27, 4, pp. 123–133. ACM Press, New York (2002)

7. Brucker, A.D., Wolff, B.: Interactive testing with HOL-TestGen. In: Grieskamp, W., Weise,
C. (eds.) FATES 2005. LNCS, vol. 3997, pp. 87–102. Springer, Heidelberg (2006)

8. Campbell, C., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N., Veanes, M.: Test-
ing concurrent object-oriented systems with Spec Explorer. In: Fitzgerald, J., Hayes, I.J.,
Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 542–547. Springer, Heidelberg (2005)

9. Cheon, Y., Kim, M., Perumandla, A.: A complete automation of unit testing for Java pro-
grams. In: Arabnia, H.R., Reza, H. (eds.) Proc. Intl. Conf. on Software Engineering Research
and Practice, Las Vegas, USA, vol. 1, pp. 290–295. CSREA Press (2005)

10. Cheon, Y., Leavens, G.T.: A simple and practical approach to unit testing: The JML and
JUnit way. In: Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 231–255. Springer,
Heidelberg (2002)

188 C. Engel and R. Hähnle

11. Cok, D.R., Kiniry, J.: ESC/Java2: Uniting ESC/Java and JML. In: Barthe, G., Burdy, L.,
Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS, vol. 3362, pp. 108–128.
Springer, Heidelberg (2005)

12. Cook, B., Kroening, D., Sharygina, N.: Cogent: Accurate theorem proving for program ver-
ification. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 296–300.
Springer, Heidelberg (2005)

13. Deng, X., Lee, J., Robby,: Bogor/Kiasan: a k-bounded symbolic execution for checking
strong heap properties of open systems. In: Proc. 21st IEEE/ASM Intl. Conference on Au-
tomated Software Engineering, Tokyo, Japan, pp. 157–166. IEEE Computer Society Press,
Los Alamitos (2006)

14. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. J.
ACM 52(3), 365–473 (2005)

15. Engel, C.: A Translation from JML to JavaDL. Studienarbeit, University of Karlsruhe (2005)
16. Engel, C.: Verification based test case generation. Master’s thesis, Department of Computer

Science, University of Karlsruhe (August 2006)
17. GlobalPlatform, Foster City, USA. GlobalPlatform Card Specification, version 2.2 edn.

(March 2006)
18. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
19. Hladik, J.: Implementation and optimization of a tableau algorithm for the guarded fragment.

In: Egly, U., Fermüller, C.G. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 145–
159. Springer, Heidelberg (2002)

20. Hubbers, E., Poll, E.: Transactions and non-atomic API calls in Java Card: specification
ambiguity and strange implementation behaviours. Dept. of Computer Science NIII-R0438,
Radboud University Nijmegen (2004)

21. Jacobs, B., Marché, C., Rauch, N.: Formal verification of a commercial smart card applet
with multiple tools. In: Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS,
vol. 3116, pp. 241–257. Springer, Heidelberg (2004)

22. Khurshid, S., Marinov, D.: TestEra: Specification-based testing of Java programs using SAT.
Automated Software Engineering 11(4), 403–434 (2004)

23. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P., Kiniry, J.,
Chalin, P.: JML Reference Manual, Draft revision 1.193 (May 2006)

24. Robby: Bogor/Kiasan: Combining symbolic execution, model checking, and theorem prov-
ing. Presentation at European Science Foundation Exploratory Workshop on Challenges in
Program Verification, University of Nijmegen (October 2006)

25. Stenzel, K.: Verification of Java Card Programs. PhD thesis, Fakultät für angewandte Infor-
matik, University of Augsburg (2005)

26. Tillmann, N., Schulte, W.: Parameterized unit tests. In: Wermelinger, M., Gall, H. (eds.)
Proc. 10th European Software Engineering Conference/13th ACM Intl. Symp. on Found. of
Software Engineering, Lisbon, Portugal, pp. 253–262. ACM Press, New York (2005)

27. Visser, W., Pasareanu, C.S., Khurshid, S.: Test input generation with Java PathFinder. In:
ISSTA ’04: Proceedings of the 2004 ACM SIGSOFT international symposium on Software
testing and analysis, pp. 97–107. ACM Press, New York, USA (2004)

28. Xie, T., Marinov, D., Schulte, W., Notkin, D.: Symstra: A framework for generating object-
oriented unit tests using symbolic execution. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS
2005. LNCS, vol. 3440, pp. 365–381. Springer, Heidelberg (2005)

29. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy. ACM Comput.
Surv. 29(4), 366–427 (1997)

Using Model Checking to Generate
Fault Detecting Tests

Angelo Gargantini

Department of Management and Information Technology
Università di Bergamo

angelo.gargantini@unibg.it

Abstract. We present a technique which generates from Abstract State
Machines specifications a set of test sequences capable to uncover specific
fault classes. The notion of test goal is introduced as a state predicate
denoting the detection condition for a particular fault. Tests are gener-
ated by forcing a model checker to produce counter examples which cover
the test goals. We introduce a technique for the evaluation of the fault
detection capability of a test set. We report some experimental results
which validate the method, compare the fault adequacy criteria with
some classical structural coverage criteria and show an empirical cross
coverage among faults.

Keywords: model based testing, fault based testing, Abstract State
Machines, test.

1 Introduction

Specification-based testing aims to reduce the cost of testing and to increase
the reliability of safety critical systems. One benefit of a formal method is that
the high-quality specification it produces can play a valuable role in software
testing. For example, the specification may be used to automatically construct a
suite of test sequences. These test sequences can then be used to automatically
check the implementation software for faults. However, specification-based test-
ing is not widely adopted [35], while white box or program based testing is well
known and used in practice: many tools support it and software developers and
testers are familiar with it. In the wake of the success of program based testing,
specification-based testing criteria that mimic the coverage criteria for programs
have been proposed. They are generally called structural criteria because they
analyse the structure of the specification and require the coverage of particular
elements (like states, rules, conditions, and so on). Examples are the Modified
Condition Decision Coverage (MCDC), one of the most powerful criteria used in
practice, applied to Abstract State Machines [19] or the coverage of properties
and assertions for a program given by using the Assertion Definition Language
(ADL) as proposed by [10].

Since the aim of software testing is to demonstrate the existence of errors, select-
ing tests that can reveal faults is of paramount importance. The fault detection
capability of structural criteria is not definitely assessed though. Recent works

B. Meyer and Y. Gurevich (Eds.): TAP 2007, LNCS 4454, pp. 189–206, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

190 A. Gargantini

hypothesize some classes of faults and analyze the fault detection capability of
most used criteria with respect to these classes of faults. The analysis can be for-
mal [29,31,32,34] and/or empirical [39]. The main result is that many coverage
criteria cannot assure the detection of several fault classes. For instance, MCDC
is unable to detect faults due to missing brackets in boolean expressions. Stronger
coverage criteria have been introduced (as in [29]) with the aim to detect more
faults, but still the relationship between coverage criteria and faults is not well
established and it is infeasible to evaluate the effectiveness of a test criterion in
general [23]. For example, it can be shown “that the fact that criterion C1 sub-
sumes criterion C2 does not guarantee that C1 is better at detecting faults [17]”.

Other papers define testing criteria focusing on certain classes of faults, which
model commonly committed mistakes. For instance, Weyuker et al. [39] introduce
the meaningful impact strategies for boolean expressions to target specifically
the variable negation fault that occurs when a boolean variable is erroneously
substituted by its negation. Chen and Lau develop three more powerful testing
strategies capable to detect several fault classes [11]. These criteria specify also
the algorithms (with some possible non determinism) which can be used for test
generation. Within this framework, assessing the fault detection capability of a
criterion with respect to other criteria is important, since one should choose one
criterion and generate the tests from it in accordance with the expected faults,
although experimental data show that resulting tests are generally effective for
detecting faults in other classes. The introduction of a new fault class would
require the definition of new criteria capable to detect it or the investigation
(formal or empirical) of the capability of existing criteria to detect it.

In this paper we introduce a novel approach which specifically aims at detect-
ing faults in an implementation given its specification. Specifications are Abstract
State Machines which are explained briefly in Section 2. We assume (as [14]) that
implementations contain only relatively simple faults (competent programmer hy-
pothesis) of the kinds introduced in Section 3 and that a test set which detects all
simple faults will detect more complex faults (fault coupling effect). Our approach
could appear similar to the mutation analysis [8], but it does not require any mu-
tation at all. Instead, we introduce in Section 4 the detection condition for a fault
and define adequacy criteria in terms of these detection conditions. In Section 5 we
present a method which uses the detection conditions to generate and to evaluate
fault detecting tests. This method is based on the counter example generation of
the model checker SPIN [24]. Our approach makes the introduction of a new fault
class, the generation of tests detecting these faults, and the evaluation of other
tests easy to realize. In Section 6 we discuss experimental results, some of which
were unexpected. Related work is presented in Section 7.

2 Preliminaries

2.1 Abstract State Machines

Even if the Abstract State Machines (ASM) method comes with a rigorous sci-
entific foundation [9], the practitioner needs no special training to use the ASM

Using Model Checking to Generate Fault Detecting Tests 191

method since Abstract State Machines are a simple extension of Finite State
Machines, obtained by replacing unstructured “internal” control states by states
comprising arbitrarily complex data, and can be understood correctly as pseudo-
code or Virtual Machines working over abstract data structures. A complete in-
troduction on the ASM method can be found in [9], together with a presentation
of the great variety of its successful application in different fields as: definition
of industrial standards for programming and modelling languages, design and
re-engineering of industrial control systems, modelling e-commerce and web ser-
vices, design and analysis of protocols, architectural design, language design,
verification of compilation schemes and compiler back-ends, etc. ASM theory is
the basis of several languages and tools including the Abstract State Machine
Language by Microsoft [6] and the AsmGofer [37].

An ASM state models a machine state, i.e. the collection of elements and ob-
jects the machine “knows”, and the functions and predicates it uses to manipulate
them. Mathematically, a state is defined as an algebraic structure, where data
come as abstract objects, i.e. as elements of sets (also called domains or uni-
verses, one for each category of data) which are equipped with basic operations
(partial functions) and predicates (attributes or relations).

In this paper we consider only single agent basic ASMs, whose behavior is
specified by a finite sets of so-called transition rules of the form

R = if ϕ then updates (1)
which model the actions performed by the machine to manipulate elements of
its domains and which result in a new state. The guard ϕ under which a rule
is applied is an arbitrary predicate logic formula without free variables, whose
interpretation evaluates to true or false. updates is a finite set of assignments of
the form f(t1, t2, . . . , tn) := t, whose execution is to be understood as changing
(or defining, if there was none) in parallel the value of the occurring functions
f at the indicated arguments t1, t2, . . . , tn to the indicated value t. A update is
not trivial if the value of f(t1, t2, . . . , tn) had a value different from the value of
t before the update.

A more general schema is the conditional rule of the form:

if ϕ then par R1,..,Rn endpar else par Q1,..,Qn endpar endif (2)

The meaning is: if ϕ is true then execute R1,. . ., Rn in parallel, otherwise execute
Q1 . . ., Qn. If Q1,. . ., Qn are omitted (since they are optional), from a semantic
view it is assumed that the else part is equal to skip, which is the empty rule
whose meaning is: do nothing.

2.2 Test Sequence

Adapting to ASMs some definitions common in literature for state transition
systems [3,33], we define a test sequence or test as follows.

Definition 1. A test sequence or test for an ASM M is a finite sequence
of states (i) whose first element belongs to a set of initial states, (ii) each state
follows the previous one by applying the transition rules of M.

192 A. Gargantini

A test sequence ends with a state, which might be not final, where the test goal
is achieved. Informally, a test sequence is a partial ASM run and represents an
expected system behavior.

Definition 1 assumes the use of ASM specification as test oracle, since states
supply expected values of outputs. The importance of test oracles is well known,
since the generation of the sole inputs (often called test data) does rise the
problem of how to evaluate the correctness of the observed system behavior.

We define a collection of test sequences as follows.

Definition 2. A test set or test suite is a finite set of test sequences.

Given a predicate P over an ASM state we say that a test sequence t covers P ,
if t contains a state such that P is true in that state.

2.3 Structural Coverage Criteria for ASMs

We summarize the following coverage criteria, originally presented in [19]. They
are compared in Section 3 with the new fault based coverage criteria.

Basic rule (BR). coverage requires that for every guard (decision) there exists
a test which covers the case when the decision is taken (the guard is evaluated
true at least in one state belonging to a test sequence) and when the decision
is not taken (the guard is evaluated false).

MCDC. requires the classical modified condition decision coverage in the mask-
ing form [12] to every guard in the ASM.

Complete rule (CR). coverage requires that for every rule, its guard is eval-
uated true at least once and at least one update in the rules is not trivial.

Update. coverage (UC) requires that for every update (in every rule) there
exist a test sequence in which the update is applied and is not trivial.

BR and MCDC can be classified as (model-based) control oriented coverage
criteria [40] as they consider only the control flow of the model, while CR and
UC can be classified as data flow coverage criteria, since they consider the value
of variable before its assignment to a possibly new value (this kind of an update
can be considered a new definition). Note that MCDC implies BR and UC
implies CR.

3 Fault Classes

While test coverage criteria like the CR and UC, presented in Section 2.3, aim to
detect faults in updates, in this paper we focus only on faults which may occur in
the guards of the ASM specification under test. Note that a fault in a implemen-
tation is a cause that results in a failure [27], which is an erroneous evaluation of a
guard in the implementation in our approach. We consider only faults originated
by typical programmer mistakes like use of incorrect control predicates, missing
conditions, and the incorrect use or order of boolean and relational operators in

Using Model Checking to Generate Fault Detecting Tests 193

rule guards. These types of mistakes result in faults that regard the conditions
and their operators, where with condition we intend atomic boolean expressions
which cannot be further decomposed in simpler boolean expressions. A condi-
tion can be a boolean variable, like overridden, or a relational expression like
pressure > TooLow. We exclude faults inside conditions except the incorrect
use of relational operators (for instance the use of > instead of <). We follow
the notation proposed in [32]: a literal1 is an occurrence of a condition inside a
guard (note that a condition or a boolean variable may occur several times in the
same guard). While many papers [31,38,32] assume that the boolean expressions
are given in disjunctive normal form (DNF), we remove such restriction (as in
[34]). We study the following fault classes:

– Operand faults (i.e. regarding the literals or sub expressions):

LNF. Literal negation fault An occurrence of a condition (i.e. one literals) is
replaced by its negation. For example, from a ∧ b ∧ (a ∨ b) we obtain the
following four faulty expressions: ¬a∧b∧(a∨b), a∧¬b∧(a∨b), a∧b∧(¬a∨b),
and a ∧ b ∧ (a ∨ ¬b)

ENF. Expression negation fault It consists of replacing a sub expression (but
not a condition or literal) with its negation. For example, from a∧b∧(a∨b)2

we obtain the following three faulty expressions: ¬(a∧ b∧ (a∨ b)), ¬(a∧ b)∧
(a ∨ b), and a ∧ b ∧ ¬(a ∨ b)

MLF. Missing literal fault It causes the absence of one literal or condition in
the formula. If the same condition occurs several times in the formula, we
introduce several faults and not just one. For example, from a ∧ b ∧ (a ∨ b),
we obtain the following four faulty expressions: b∧(a∨b), a∧(a∨b), a∧b∧b,
and a ∧ b ∧ a.

ST0/1. Stuck at 0/at 1 fault This is a classical hardware fault, which consists
in replacing an input with 0 or with 1. In our case, it causes a replacement
of a literal by false (ST0) or true (ST1). For example, from a∧b∧ (a∨b), we
obtain for the ST0 the following four faulty expressions: false ∧ b ∧ (a ∨ b),
a ∧ false ∧ (a ∨ b), a ∧ b ∧ (false ∨ b), and a ∧ b ∧ (a ∨ false). ST0U1 denotes
the union of ST0 and ST1, i.e. the replacement of a literal by false and true.

– Boolean Operator faults:

ASF. Associative Shift fault This fault is due to the misunderstanding about
operator evaluation priorities and missing brackets. For example from a ∧
b ∧ (a ∨ b) we would obtain by deleting the brackets (a ∧ b ∧ a) ∨ b.

ORF. Operator Reference fault ′∧′ is replaced by ′∨′ and vice-versa. a∧b∧(a∨b)
would be implemented as a∧ b∨ (a∨ b), (a∨ b)∧ (a∨ b), and a∧ b∧ (a∧ b).

1 A literal is sometimes called clause as in [34], a condition is often called variable
especially in papers dealing with boolean specifications [32,31,38].

2 We assume that logical binary operators are left associative, hence a ∧ b ∧ (a ∨ b)
must be read as (a ∧ b) ∧ (a ∨ b).

194 A. Gargantini

ST1ORF

ROF

ASF
ST0

MLF

ST0U1
LNF ENF

Fig. 1. Boolean fault hierarchy

Furthermore we add the following fault class, which introduces faults in relational
expressions with pattern E op F , where E and F are either arithmetic expressions
or expressions of enumerative type and op is one of <, ≤, =, >, ≥, and �=.

ROF. Relational Operator Fault Replace a relational operator by any other
relational operator (note that replacing an operator with its opposite is equal
to LNF). If the expression is an enumeration, then replace only = with �=
and vice-versa (we allow only “equals” and “differs” comparison between two
enumerative values). For example, from x ≤ c one would obtain the following
faulty expressions: x > c , x ≥ c, x = c, x �= c, and x < c.

We have chosen LNF, ENF, MLF, ASF, and ORF because they are the most
studied faults in the literature [31,38,32]. ST0/1 faults are commonly considered
a realistic model of manufacturing faults in hardware circuit testing. ROF is
introduced and studied in [34] (called Relational Operator Reference Fault) and
models a typical software fault. Faults of omission (modeled by the MLF class)
are known to be very common, constituting approximately half of the bug reports
posted on Usenet [31]. In a recent realistic case, Dupuy and Leveson examined
an attitude control software for the HETE-2 (High Energy Transient Explorer)
scientific satellite and uncovered an important operator reference fault (ORF)
which replaced an AND operator by an OR [15].

The hierarchy among fault classes for boolean expressions have been inten-
sively studied. For instance, empirical work [39] showed that tests generated to
detect variable negation fault (our LNF) always detected expression negation
faults. Kuhn proposed a rigorous approach to formally prove the existence of
a hierarchy among faults in boolean specifications given in normal form [31].
The initial hierarchy proposed by Kuhn was first enriched by [38] and then by
[32]. Okun et alt. [34] developed a novel analytic technique to find the hierar-
chy among faults of arbitrary boolean expressions, not just those in disjunctive
normal form. According to the results presented in the literature, the hierar-
chy among the fault classes used in this paper is presented in Figure 1, where
C1 → C2 means that every test suite able to detect C1 detects C2 as well. In
this case, we say that C1 is stronger than C2.

Note that a pair of fault classes C1 and C2 is proved to be independent in
the hierarchy when there exists a test suite which guarantees to detect faults of
C1 but not those of C2 and vice-versa. In our case, ORF, ROF, and ASF are
independent of each other and with all the other fault classes, and MLF, ST0,
and ST1 are independent of each other. This fact has practical consequences:

Using Model Checking to Generate Fault Detecting Tests 195

since a test set T1 which detects a fault C1 does not guarantee to detect C2

and vice-versa, one should generate a test suite for C1 and a test suite for C2.
Therefore, one should generate a test suite for every independent fault class.
However, T1 may detect C2 as well for the particular specification under test
and the generation for C2 may be skipped. To assess the actual fault detection
capability of a test suite, we introduce in Section 5.1 a method to evaluate tests
with respect to possible faults in the specification under test and regardless of
the way such tests have been generated.

4 Discovering Faults

The erroneous implementation of a boolean expression ϕ as ϕ′ can be discovered
only when the expression ϕ ⊕ ϕ′, called detection condition, evaluates to true,
where ⊕ denotes the logical exclusive or operator. Indeed, ϕ ⊕ ϕ′ is true only
if ϕ′ evaluates to a different value than the correct predicate ϕ. The detection
condition is also called boolean difference or derivative [1].

Consider a simple rule R of an ASM specification M:
R = if ϕ then updates

Let M′ be the faulty implementation of M. Assume that the guard ϕ of R in
M is erroneously implemented as ϕ′ in M′ due to the fault F, and that rule
updates are not all trivial. F can be detected during testing only if there exists
a test sequence t containing a state s in which ϕ ⊕ ϕ′ is evaluated to true, i.e.
ϕ and ϕ′ have different values in s for M and M′. In this case, when we apply
t, the rule R fires in M and performs its updates but it does not fire in M′ or
vice-versa. The predicate ϕ ⊕ ϕ′ is the detection condition of F and it is called
test predicate or test goal. For example, if the guard x ≤ c in the specification is
implemented as x < c, then the test goal is x ≤ c⊕ x < c which is equivalent to
x = c. Only a test sequence containing a state s in which x = c can uncover the
fault.

Let ϕ be a guard and C be a fault class. We denote with FC(ϕ) the set of
all the possible faulty implementations of ϕ according to the fault class C (as
explained in Section 3). The test predicates to discover the fault C in ϕ are the
expressions ϕ⊕ϕ′ with ϕ′ in FC(ϕ). For example, if the guard is a∧ b and C is
the MLF, then FMLF (a ∧ b) = {a, b} and the test predicates are the following
two expressions: (a∧ b)⊕ a (which is a∧ ¬b) and (a ∧ b)⊕ b (which is ¬a ∧ b).

In case of a nested rule of kind (2), test predicates must include the guards of
outer rules. Let ϕ be the guard of an inner rule R and g1, . . . , gn be the guards of
the outer rules or their negation (in case of else) such that if g1 ∧ . . .∧ gn holds,
then R is executed (and its updates fired if ϕ is true). We call g1, . . . , gn outer
guards of R. The test predicates to discover the fault C in ϕ are the expressions
g1 ∧ . . . ∧ gn ∧ (ϕ⊕ ϕ′) with ϕ′ in FC(ϕ).

Definition 3. Test Predicates. Let R be a rule in an ASM M, ϕ be its guard,
g1, . . . , gn be the outer guards of R, and C be a fault class. The set ΓC(R) of test
predicates is given by the expressions g1 ∧ . . . ∧ gn ∧ (ϕ⊕ ϕ′) with ϕ′ in FC(ϕ).

196 A. Gargantini

A test suite is adequate to test the guard ϕ of a rule R with respect to a fault
class C if it covers every test predicate generated for R and C:

Definition 4. Fault Detecting Adequacy Criteria. A test suite T is ade-
quate with respect to the fault class C and the ASM M, if for every rule R of M
and for every test predicate tp in ΓC(R) there exists a state s in a test sequence
of T such that the test predicate tp evaluates to true in s.

5 Generation of Tests

To automatically generate the test sequences which cover a set of test predicates,
we exploit the capability of the model checker Spin [24] to produce counter exam-
ples.Model checkers have been successfully applied to formal verification of proper-
ties, normally given in temporal logic, for systems modeled by means of automata.
They automatically perform the proof of a desired property p by analyzing every
possible system behavior, checking that p is true, and producing a counter exam-
ple in case the property p does not hold in the model. The counter example is a
possible system behavior that shows a case where the property p is falsified.

Fig. 2. An ATGT screen-shot

The method presented in this section has been implemented in a prototype
tool ATGT3 - a screen-shot is reported in Fig. 2 - and consists in the following
steps as illustrated in Figure 3.
3 Available at http://cs.unibg.it/gargantini/projects/atgt/

Using Model Checking to Generate Fault Detecting Tests 197

coverage info

Test Predicate Generator
test predicates test suite

Coverage Evaluator

C

trap property

Test Suite Generator

Spin

Fault
Class

counter example

ASM Specification

M 4

1

2

3

5

Fig. 3. Steps in the proposed generation method

– First, denoted by©1 , a Test Predicate Generator computes the test predicate
set ΓC = {tpi} for the desired fault classes C introduced in Section 3 and for
all the rule guards in the ASM specification under test given in the syntax
of the AsmGofer [37].

– Second ©2 , the Test Suite Generator selects a test predicate tpi, either ran-
domly or according to the user request, and computes the trap property
stating that tpi is never true, i.e. p = never(tpi) which is translated in
PROMELA, the language of Spin, as the statement assert(!tp_i). The
trap property p is not a desired property of the system; on the contrary, we
look for a system behavior which falsifies p, i.e. where tpi becomes true. This
method has been introduced in [18,20].

– Third ©3 , the model checker is used to find the test sequence, by encoding
the ASM specification in PROMELA, following the algorithms described in
[20] and trying to prove the trap property p. If the model checker finds that
p is false, i.e. a state where the tpi is true, it stops and prints as counter
example the state sequence leading to that state (plus the updates generated
by the last update). This sequence represents the test that covers tpi.

– Fourth ©4 , the Coverage Evaluator reads the counter example to produce
the actual test sequence and to evaluate its coverage as explained in the
following section against all the test predicates generated in the first step
and provides the coverage information back to the Test Suite Generator.

– The process is iterated starting from the second step for each test predicate
that has not been already covered. In the end, ©5 , a complete test suite is
generated, except for the cases where the model checker fails to find a counter
example as explained in Section 5.2.

5.1 Evaluating the Fault Coverage

A test sequence that is generated to cover a particular test predicate likely
covers also many other test predicates, i.e. it contains a state where other test
predicates are true and it can, therefore, discover other faults as well. Finding
which predicates are covered can reduce the time and the resources to obtain a
complete test suite - because we can decide to skip the generation of tests for

198 A. Gargantini

test predicates already covered - and it can reduce the size of the test suite -
because we could decide to discard a test if the test predicates that it covers are
covered also by other tests -.

To evaluate the coverage for a test, we give an unique identification (ID) to
each test predicate and we add in the PROMELA file an instruction which prints
a particular message if the test predicate is covered. For example, we introduce
for the test predicate (a∧b)⊕a with identification tc_ID the following statement:

printf("_Covered: tc_ID %d \n",((a || b) ^ a));

This instruction will print the ID for the test predicate followed by 1 or 0
whether the test predicate has been covered or not. The printf instruction is
actually computed only during the last phase (©4) and it does not complicate
the model nor introduces new state variables since it is ignored during phase ©3 .

The proposed method for test evaluation can be used to evaluate any test
sequence, regardless the way it has been generated. As we show in Section 6, we
use this technique to get valuable insights over the fault detection capability of
the structural coverage criteria presented in Section 2.3.

5.2 Undetectable Faults

When the model checker terminates, one of the following three situations occurs.
The best case occurs when the model checker stops finding that the trap property
is false, and, therefore, the counter example that covers the test predicate is
generated.

The second case happens when the model checker checks every possible be-
havior without finding any state where the trap property is false, and, there-
fore, it actually proves the trap property never(tpi). A test predicate, in our
case, has always the pattern A ∧ ϕ ⊕ ϕ′ (where A is a conjunction of outer
guards), and never(A ∧ ϕ ⊕ ϕ′) is equivalent to always(A → ¬(ϕ ⊕ ϕ′)), i.e.
always(A→ (ϕ↔ ϕ′)). Therefore, SPIN proves that when A holds, ϕ is always
equivalent to its mutation ϕ′ and that the fault does not introduce an actual
change in the behavior of the system. In this case we say that such a fault is
undetectable and we can safely ignore tpi and simply warn the user that its
model is insensitive in that rule guard to that fault.

In the third case, the model checker terminates because it finishes the max-
imum time or memory allocated for the search (set by the user or decided by
model checker itself) but without completing the state space search and with-
out finding a violation of the trap property, and, therefore, without producing
any counter example (generally because of the state explosion problem). In this
case, we do not know if either the trap property is true (i.e., the fault cannot be
discovered) but too difficult to prove, or it is false but a counter example is too
hard to find (i.e. the fault could be discovered if an appropriate test sequence
could be found). When this case happens, our method simply warns the tester
that the test predicate has not been covered, but it might be feasible.

Model Checking Limits. Model checking applies only to finite models. Therefore,
our method works for ASM specifications having variables and functions with

Using Model Checking to Generate Fault Detecting Tests 199

finite domains. The problem of abstracting models with finite domains from
models with infinite domains such that some behaviors are preserved, is under
investigation. Moreover, since model checkers perform an exhaustive state space
(possibly symbolic) exploration, they fail when the state space becomes too big
and intractable. This problem is known as state explosion problem and represents
the major limitation in using model checkers. Note, however, that we use the
model checker not as a prover of properties we expect to be true, but to find
counter examples for trap properties we expect to be false. Therefore, our method
does generally require a limited search in the state space and not an exhaustive
state exploration. However, undetectable faults require a complete state search.

Model Checking Benefits. Besides its limits, model checking offers several bene-
fits. For instance, SPIN adopts sophisticated techniques to compute and explore
the state space, and to find property violations. It represents a state and the
state space in a very efficient way using state enumeration, hashing techniques,
and state compression methods. Moreover, SPIN explores the state space using
practical heuristics and other techniques like partial order reduction methods
and on-the-fly state exploration based on a nested depth first search. For these
reasons, we have preferred existing model checkers instead of developing our
own tools and algorithms for state space exploration. Moreover, the complete
automaticity of model checkers allows to compute test sequences from ASM
specifications without any human interaction.

6 Experiments

We report the result of applying our method to two case studies, the Cruise Con-
trol (CC) specification [32,5] and a simple model for a Safety Injection System
(SIS) of a nuclear plant [13,19,18]. The CC has one monitored (i.e. modified only
by the environment) enumerative variable, 4 monitored boolean variables and one
controlled (i.e. modified only by the system) variable. It has 9 rules with rather
complex boolean expressions as guards, which admit numerous boolean opera-
tor faults. The SIS includes three monitored variables (one integer in the interval
[0,2000] and two switches), two internal variables (a boolean and an enumerative)
and an output (boolean). It has 7 transition rules with guards which contain sev-
eral relational operators and hence admit numerous ROFs. The number of test
predicates is shown in Table 1. Note that 20 test predicates in the CC for the
ROF were proved unfeasible by the model checker, which completed the search
without finding any violation of the trap property, therefore actually proving that
the faults are undetectable as explained in the second case of Section 5.2.

6.1 Generation of Tests

We have applied three strategies for test generation. In strategy 1 and 2 we use
the breath first search (BFS) algorithm of Spin, which normally requires more
time and memory than the default nested depth first search (nDFS) algorithm,
but it guarantees that the shortest counter example is found. In strategy 3 we use

200 A. Gargantini

Table 1. Test Predicates and Tests for SIS and CC

#tp ENF LNF MLF ASF ORF ST0 ST1 ROF /unfeasible
for SIS 9 16 16 1 9 23 24 32 0
for CC 24 33 33 3 24 54 54 33 20

Table 2. Runs for test generation

strategy #runs time (sec) #test #states
1 - BFS, weak to strong 59 116 22 635
2 - BFS, strong to weak 59 102 22 637
3 - DFS, strong to weak 42 258 8 11760

the nDFS which is faster but finds long counter examples. Furthermore, in the
first strategy we start from weaker fault classes and then we increase the fault
detection capability of the tests by choosing stronger faults, while in the second
and third strategy we start from strong coverage classes. Results are shown in
Table 2, in which we report the number of runs, the total time required4, the
number of tests (some tests are discarded because they cover only test predicates
covered by other test sequences in the test suite), and the total number of states
in the test sequences.

Although several papers [31,32,28] suggest that hierarchical information about
fault classes can be useful during test generation and that starting the test
generation from the strongest coverage would require less time and fewer test
cases than starting from the weakest coverage, we found no evidence of this fact.
Indeed, strategy 2 (strong to weak) performed as well as strategy 1 (weak to
strong). This result can be explained by considering that our method is iterative
(it produces a test sequence at a time) and that we perform test evaluation
at the end of every cycle. If the criterion S is stronger than the criterion W ,
any test set TS adequate according to S includes any set of test TW adequate
according to W . The test generation starting from S produces a test suite TS ,
whose evaluation stops the test generation because TS covers W as well. The
test generation starting from W initially produces TW which still requires the
generation of TS − TW and not of the complete TS . In both cases the number of
test cases is the same (except for some non determinism in the generation and
in the optimization of the test suites). However, our examples are too small to
draw the definitive conclusion that hierarchical information about fault classes
are useless during test generation.

Another unexpected result was that the test generation with the DFS algorithm
performed worse than the others, although the DFS proved to be more efficient
per visited state than the others: it explored around 11760 states (18 times more
then the others) but it took only about twice as much time. By analyzing the runs,
we found that the sole model checker execution (step ©3 in Fig. 3) actually took

4 We have used a PC with an AMD Athlon 3400+ and 1 GB of RAM.

Using Model Checking to Generate Fault Detecting Tests 201

Table 3. Structural vs fault coverage (in %)

BR MCDC CR UC
ENF 66 41 0 26
LNF 91 67 50 63
MLF 94 82 50 74
ASF 59 20 0 11
ORF 78 52 0 42
ST0 100 76 100 84
ST1 94 73 50 68

ST0U1 100 84 100 84
ROF 78 53 50 42

#tp E
N

F

L
N

F

M
L
F

A
S
F

O
R

F

S
T

0

S
T

1

R
O

F

BR 32 100 96 63 0 88 90 79 58
MCDC 98 100 100 100 75 100 100 100 65

CR 2 27 29 20 0 27 19 24 37
UC 19 100 96 67 25 88 91 81 58

↑(b) Fault detection capability of structural coverage

←(a) Structural coverage of fault criteria

less time than the same step in other strategies, but the other steps which analyze
the results to evaluate the coverage took much more time, since the DFS produces
very long counter examples. We believe that strategy 3 may perform better than
the others for complex specifications, since in complex cases the model checker ex-
ecution is the most critical step in the proposed test generation method. Moreover,
strategy 3 is useful when one prefers very few test cases (for example if resetting
the system is expensive) and because long test sequences may discover more faults
(like extra states) [33,22].

6.2 Comparison with Structural Coverage Criteria

We have compared our new fault based adequacy criteria and the structural cri-
teria presented in Section 2.3. Tests for structural criteria are generated following
the technique introduced in [19,20]. Table 3 (a) reports the structural coverage
of tests generated to cover faults. The ST0U1 has covered most structural parts
in our specification, but not all. No fault based test set has been able to achieve
the complete MCDC and Update Rule Coverage. Table 3 (b) reports the fault
detection capability of tests generated by using the structural criteria. MCDC
performed better then the others, but no structural coverage has been able to
achieve the ASF and ROF criteria. These data suggest that fault based criteria
and structural criteria are complementary to each other.

6.3 Cross Coverage Among Fault Classes

We have also analyzed the cross coverage among the fault based criteria and re-
sults are reported in Table 4, which must be read as follows. The tests generated
for a fault class in a row (cross) covers also the shown percentage of the test
predicates for other fault classes displayed in the columns. Besides the confirma-
tion of the theory (continuous arrows in the figure of Table 4), we have found
some empirical relationships among fault classes (dotted arrows in the figure).
For instance, ROF covered all the ENFs, ORF covered all the ENFs, and LNF
covered all ORFs. MLF seems stronger than ST1 and ST0 individually, and ROF

202 A. Gargantini

Table 4. Cross Coverage (%)

LNF

ROF

96%
ORF

97%

ASF

ST1 ST0
95% 94%

MLF

ST0U1

ENF100%

100%

100%

seems stronger than LNF and ORF. Although this empirical extended hierar-
chy may not hold in general, we believe that for most boolean expressions these
relationships are likely to be true. This information may be useful in practice
if one has a test suite that targets a specific fault and want to approximately
judge the test suite’s fault detection capability. We found that ASF is really
complementary with respect all other criteria.

7 Related Work

Many papers tackle the problem of tests generation or selection. The subject of
using model checkers for test generation starting from models has been studied
for many years. For a (not so recent) survey see [2]. In [16] the authors used Spin
to generate test sequences for a protocol augmented by a test predicate, called
test purpose, written by the designer by hand. Classical control oriented tests
generation is presented for SCR in [18] and for ASMs in [19]. Several recent
papers apply the same concepts to UML state diagrams [30], to StateCharts
[26], and to Stateflow [21] specifications. [36] presents state coverage, decision
coverage and MCDC (not masked) for specifications written in RSML−e. They
all share the same approach. They introduce some control oriented coverage,
derive the test predicate from decision points in the model and then use the
model checker to obtain the test sequences.

A first attempt to introduce data flow oriented coverage criteria can be found
in [19] where the rule update criterion (presented in Section 2.3) covers the
real update of a variable. A novel approach is presented in [25], which shows
how the classical data flow coverage criteria can be translated in terms of the
Computation Tree Logic (CTL).

The combined use of model checking and mutation testing is presented in
[3,8]. Their approach, that we could classify as fault oriented [40], is very similar
to ours, but the technique is completely different. Differently from us, they do
not use test predicates derived from the specifications by using the boolean dif-
ference. Instead, they directly apply mutation techniques to models. The original
specification, written for the model checker SMV, is initially augmented by many

Using Model Checking to Generate Fault Detecting Tests 203

temporal logic properties (constraints) that represent the correct behavior. In the
extraction of these properties (also called expounding) there are several “subtle
issues that require attention [4]” and may reduce the fault detection capability of
the tests. Afterwards, the specification or the constraints are repeatedly modified
applying mutation operators (more general than our fault classes), that introduce
faults in the models or in the constraints. Counter examples are automatically
generated by SMV either (approach 1) trying to prove the original properties in
faulty models to obtain wrong behaviors that implementations must not exhibit
or (approach 2) proving mutated properties for the correct model to obtain tests
sequences that discover particular faults (or kill mutants).

We can compare their approach 2 with ours as follows. In the extraction of
constraints, they build a set of safety properties which are always true in the
original model. Given a safety property always(P), they look for a counter
example by trying to prove always(P ′) where P ′ is a possible mutation of P . If
a counter example is found, they have found a state where the mutated property
is false, i.e. ¬P ′. They actually find a state where P is true (safety property)
while P ′ is false, i.e. P ∧ ¬P ′, which is a particular case of P ⊕ P ′, the boolean
difference of P . Our approach does not require the extraction of safety properties,
since test conditions are defined as boolean differences over guards, which are
not always true.

Ammann et alt. tackle also the problem of evaluation of test sequences against
specification-based coverage criteria [4]. They show how the model checker SMV
can be used to evaluate a test sequence with respect to the capability to discover
(or kill) mutations of the original specification. The test sequence (regardless
the way it has been generated) is transformed in a SMV model to run together
with the mutated specification. This requires a run for every test and every
mutation, rising the problem how to reduce (winnow) the number of mutations
really necessary to evaluate the coverage of a test. Tests which kill a subset of
mutations of other tests, can be discarded. In our approach, we can evaluate
the capability of a test sequence to detect all faults in one run by using test
conditions. Furthermore we are able not only to discard duplicated test cases,
but also to avoid the generation of tests for test predicates already covered.

Model checkers can be used to generate tests in program based testing too:
the model checker BLAST is used in [7] to generate test suites and to detect
dead code in C programs.

8 Conclusions and Future Work

Although we have shown how to generate tests to detect several fault classes, we
plan to introduce other fault classes, possibly involving not only boolean expres-
sions but also integers (like off-by 1 fault or at the boundaries faults). Moreover,
while this paper focuses on faults in the rule guards, we plan to define other
fault classes involving the rule updates. Our method has been applied to the
generation and evaluation of tests for several case studies, but more experiments
with real specifications are needed to assess its real applicability. Abstract State

204 A. Gargantini

Machines are chosen as formal method, but our approach can be easily adapted
to any formalism based on guarded state transitions. We have discovered that
the hierarchy among faults is useless in the prioritization during test genera-
tion, but further experiments and theoretical research is needed to definitely
prove that.

References

1. Akers, S.B.: On a theory of boolean functions. Journal Society Industrial Applied
Mathematics 7(4), 487–498 (1959)

2. Ammann, P., Black, P.E., Ding, W.: Model checkers in software testing. Technical
Report NIST-IR 6777, National Institute of Standards and Technology (2002)

3. Ammann, P., Black, P.E., Majurski, W.: Using model checking to generate tests
from specifications. In: ICFEM’98. 2nd IEEE International Conference on Formal
Engineering Methods, Brisbane, Australia, December 1998, p. 46. IEEE Computer
Society Press, Los Alamitos (1998)

4. Ammann, P.E., Black, P.E.: A specification-based coverage metric to evaluate test
sets. International Journal of Reliability, Quality and Safety Engineering 8(4), 275–
300 (2001)

5. Atlee, J.M., Buckley, M.A.: A logic-model semantics for SCR software require-
ments. In: ISSTA ’96. Proceedings of the 1996 ACM SIGSOFT international sym-
posium on Software testing and analysis, pp. 280–292. ACM Press, New York, USA
(1996)

6. Barnett, M., Schulte, W.: The ABCs of specification: AsmL, behavior, and com-
ponents. Informatica 25(4), 517–526 (2001)

7. Beyer, D., Chlipala, A.J., Henzinger, T., Jhala, R., Majumdar, R.: Generating tests
from counterexamples. In: Proc. International Conference on Software Engineering
(ICSE), Edinburgh, May 2004, pp. 326–335. IEEE CS Press, Los Alamitos (2004)

8. Black, P.E., Okun, V., Yesha, Y.: Mutation of model checker specifications for
test generation and evaluation. In: Wong, W.E. (ed.) Mutation Testing for the
New Century, proc. of Mutation 2000, October 2000, pp. 14–20. Kluwer Academic
Publishers, Dordrecht (2000)

9. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

10. Chang, J., Richardson, D.J.: Structural specification-based testing: Automated
support and experimental evaluation. In: Nierstrasz, O., Lemoine, M. (eds.) Soft-
ware Engineering - ESEC/FSE ’99. LNCS, vol. 1687, pp. 285–302. Springer, Hei-
delberg (1999)

11. Chen, T.Y., Lau, M.F.: Test case selection strategies based on boolean specifica-
tions. Softw. Test., Verif. Reliab. 11(3), 165–180 (2001)

12. Chilenski, J., Richey, L.A.: Definition for a masking form of modified condition
decision coverage (mcdc). Technical report, Boeing, Seattle WA (1997)

13. Courtois, P.-J., Parnas, D.L.: Documentation for safety critical software. In: Proc.
15th Int’l Conf. on Softw. Eng. (ICSE ’93), Baltimore, MD, pp. 315–323 (1993)

14. DeMillo, R.A., Guindi, D.S., King, K.N., McCracken, W.M., Offutt, A.J.: An ex-
tended overview of the Mothra software testing environment. In: Proceedings of
the Second Workshop on Testing, Analysis, and Verification, pp. 142–151. IEEE
Computer Society Press, Los Alamitos (1988)

Using Model Checking to Generate Fault Detecting Tests 205

15. Dupuy, A., Leveson, N.: An empirical evaluation of the mc/dc coverage criterion
on the hete-2 satellite software. In: The 19th Digital Avionics Systems Conferences.
Proceedings DASC (2000)

16. Engels, A., Feijs, L., Mauw, S.: Test generation for intelligent networks using model
checking. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217, pp. 384–398.
Springer, Heidelberg (1997)

17. Frankl, P.G., Weyuker, E.J.: A formal analysis of the fault-detecting ability of
testing methods. IEEE Transactions on Software Engineering 19(3), 202–213 (1993)

18. Gargantini, A., Heitmeyer, C.: Using model checking to generate tests from require-
ments specifications. In: Nierstrasz, O., Lemoine, M. (eds.) Software Engineering -
ESEC/FSE ’99. LNCS, vol. 1687, pp. 6–10. Springer, Heidelberg (1999)

19. Gargantini, A., Riccobene, E.: ASM-based testing: Coverage criteria and automatic
test sequence generation. Journal of Universal Computer Science 7(11), 1050–1067
(2001)

20. Gargantini, A., Riccobene, E., Rinzivillo, S.: Using Spin to generate tests from
ASM specifications. In: Börger, E., Gargantini, A., Riccobene, E. (eds.) ASM 2003.
LNCS, vol. 2589, pp. 263–277. Springer, Heidelberg (2003)

21. Hamon, G., de Moura, L.M., Rushby, J.M.: Generating efficient test sets with a
model checker. In: SEFM 2004. 2nd International Conference on Software Engi-
neering and Formal Methods, Beijing, China, September 28-30, 2004, pp. 261–270
(2004)

22. Heimdahl, M.P., George, D.: Test-suite reduction for model based tests: Effects
on test quality and implications for testing. In: Automated Software Engineering,
Linz, Austria (September 2004)

23. Hierons, R.M.: Comparing test sets and criteria in the presence of test hypotheses
and fault domains. ACM Trans. Softw. Eng. Methodol. 11(4), 427–448 (2002)

24. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engi-
neering 23(5), 279–295 (1997)

25. Hong, H.S., Cha, S.D., Lee, I., Sokolsky, O., Ural, H.: Data flow testing as model
checking. In: ICSE’03, Portland, Oregon, (May 3-10, 2003)

26. Hong, H.S., Lee, I., Sokolsky, O., Cha, S.D.: Automatic test generation from stat-
echarts using model checking. In: Proceedings of FATES’01, Workshop on Formal
Approaches to Testing of Software, August 2001. BRICS Notes Series, vol. NS-01-4,
pp. 15–30 (2001)

27. IEEE: IEEE Standard Glossary of Software Engineering Terminology. Institute of
Electrical and Electronics Engineers, 610.12

28. Kapoor, K., Bowen, J.P.: Ordering mutants to minimise test effort in mutation
testing. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp.
195–209. Springer, Heidelberg (2005)

29. Kapoor, K., Bowen, J.P.: A formal analysis of MCDC and RCDC test criteria.
Softw. Test. Verif. Reliab. 15(1), 21–40 (2005)

30. Kim, Y.G., Hong, H.S., Cho, S.M., Bae, D.H., Cha, S.D.: Test cases generation
from UML state diagrams. IEE Proceedings - Software 146(4), 187–192 (1999)

31. Kuhn, D.R.: Fault classes and error detection capability of specification-based test-
ing. ACM Transactions on Software Engineering and Methodology 8(4), 411–424
(1999)

32. Lau, M.F., Yu, Y.-T.: An extended fault class hierarchy for specification-based
testing. ACM Trans. Softw. Eng. Methodol. 14(3), 247–276 (2005)

33. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines -
A survey (Published as Proceedings of The IEEE 84(8)). In: Proceedings of The

206 A. Gargantini

IEEE, August 1996, pp. 1090–1123. IEEE Computer Society Press, Los Alamitos
(1996)

34. Okun, V., Black, P.E., Yesha, Y.: Comparison of fault classes in specification-based
testing. Information and Software Technology 46, 525–533 (2004)

35. Pretschner, A.: Model-based testing in practice. In: Fitzgerald, J.A., Hayes, I.J.,
Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 537–541. Springer, Heidelberg
(2005)

36. Rayadurgam, S., Heimdahl, M.P.: Generating MC/DC adequate test sequences
through model checking. In: 28th Annual NASA Goddard Software Engineering
Workshop (SEW 03) (2003)

37. Schimd, J.: Executing ASM specifications with AsmGofer,
http://www.tydo.de/AsmGofer

38. Tsuchiya, T., Kikuno, T.: On fault classes and error detection capability of
specification-based testing. ACM Trans. Softw. Eng. Methodol. 11(1), 58–62 (2002)

39. Weyuker, E., Goradia, T., Singh, A.: Automatically generating test data from a
Boolean specification. IEEE Transactions on Software Engineering 20(5), 353–363
(1994)

40. Zhu, H., Hall, P., May, J.: Software unit test coverage and adequacy. ACM Com-
puting Surveys 29(4), 366–427 (1997)

http://www.tydo.de/AsmGofer

White-Box Testing by Combining
Deduction-Based Specification Extraction and

Black-Box Testing

Bernhard Beckert and Christoph Gladisch

University of Koblenz-Landau, Dept. of Computer Science
beckert@uni-koblenz.de, gladisch@uni-koblenz.de

Abstract. We propose to use deductive program verification systems to
generate specifications for given programs and to then use these specifi-
cations as input for black-box testing tools. In this way, (1) the black-box
testing method can make use of information about the program’s struc-
ture that is contained in the specification, and (2) we get a separation
of concerns and a clear interface between program analysis on the one
hand and test-case generation and execution on the other hand, which
allows the combination of a wide range of tools.

The method for specification extraction using a program verification
calculus described in this paper has been successfully implemented in the
KeY program verification system.

1 Introduction

Overview. We propose to use deductive program verification systems to generate
specifications for given programs and to then use these specifications as input for
black-box testing tools (e.g. [17,13,14]). Thus, (1) the black-box testing method
can make use of information about the program’s structure that is contained in
the specification, and (2) we separate concerns and get a clear interface between
program analysis on the one hand and test-case generation and execution on the
other hand, which allows the combination of a wide range of tools.

To achieve goal (1), the structure of the extracted specification must reflect the
structure of the analysed program. That is easy to achieve using the symbolic
execution rules that are an inherit part of verification calculi while excluding
simplification rules that would replace parts of the resulting specification by
(simpler) logically equivalent formulae with less structural information.

Using deductive techniques, it is easy to fine-tune the specification generation
process, yielding different levels of testing coverage. More scalability of quality
assurance in the software development process can be achieved.

Background. The work reported in this paper has been carried out as part of the
KeY project [1,3] (www.key-project.org). The goal of this project is to develop
a tool supporting formal specification and verification of JAVA CARD programs
within a commercial platform for UML-based software development.

B. Meyer and Y. Gurevich (Eds.): TAP 2007, LNCS 4454, pp. 207–216, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.key-project.org

208 B. Beckert and C. Gladisch

Fig. 1. Overview of our approach

The method for specification extraction using a program verification calculus
described in this paper has been successfully implemented in KeY. In the follow-
ing, we use the KeY verification system, its verification calculus (dynamic logic),
and target language (JAVA CARD) to describe our approach. However, the ideas
we present in this paper are independent of particular programming languages
and verification calculi, and are easily adapted to other tools.

Another method combining testing and verification has been implemented in
KeY that uses similar techniques but is different from our method in that it does
not use specification generation as an intermediate step [8].

2 The General Approach

A symbiosis of software testing and verification techniques is a highly desired
goal, but at the current state of the art most available tools are dedicated to only
either one of the two tasks: verification and testing. They do not offer interfaces
providing information that could be used for the other task.

The solution that we propose (see Figure 1), is to use specifications that are ex-
tracted from programs for interfacing. Generated specifications are in the middle
between program analysis and deductive verification (using symbolic execution)
on one side and test-case generation on the other side. On both sides, there are
tools that can produce specifications resp. take them as input for test-case gen-
eration (tools that do not immediately offer required interface can be extended
with little effort).

As explained in detail in the following section, deductive verification mecha-
nism that use rules for symbolically executing programs can be used for specifica-
tion generation. These derived specifications can be weak (i.e., partial) or strong
(i.e., complete) depending on the methods used and the complexity of the pro-
gram. Derivation of a strong—or even the strongest—specification can be done
automatically in some cases but may require user interaction (if a complicated
invariant has to be provided). For testing purposes, the strongest specification
is usually not required, so that automatic specification generation is sufficient.

The extracted specification consists of pre- and post-conditions expressed in
classical first-order or higher-order logic. Since that is the basis for virtually
all specification languages—such as the Object Constraint Language (OCL), Z,

White-Box Testing by Combining Deduction-Based Specification Extraction 209

the Java Modeling Language (JML), or Spec#—simple syntactic changes are
sufficient to generate the appropriate input for a particular testing tool.

When the structure-preserving extraction of a specification is combined with
a black-box testing tool that analyses the specification’s structure, the result is
effectively a white-box testing method (as illustrated by Figure 1). The black-
box testing tool generates test cases for every pair of pre- and post-conditions
in the specification and, thus, generates tests for every execution path that has
been obtained by symbolically executing the program. Depending on the meth-
ods used for its extraction, the specification may not cover iterations of loops
above a certain limit. However, by combining the extracted specification with
a given requirement specification, black-box testing methods can generate tests
that exercise random amounts of loop iterations including those not covered by
the extracted specification alone. In this way, it is also possible to achieve a
combination of code coverage and data coverage criteria from both techniques.

3 A Deductive Program Verification Calculus

Dynamic Logic. The program logic we consider in this paper is an instance of
dynamic logic [11]. This instance, called JAVA CARD DL, is the logical basis of the
KeY system’s software verification component [2]. Dynamic logic is a multi-modal
logic with a modality [p] for every program p of the considered programming
language. The formula [p]φ expresses that, if the program p terminates in a
state s, then φ holds in s. A formula ψ → [p]φ expresses that, for every state s1

satisfying pre-condition ψ, if a run of the program p starting in s1 terminates
in s2, then the post-condition φ holds in s2. For deterministic programs, there
is exactly one such world s2 (if p terminates) or there is no such world (if p does
not terminate). The formula ψ → 〈p〉φ is thus equivalent to the Hoare triple
{ψ}p{φ}. In contrast to Hoare logic, the set of formulas of DL is closed under
the usual logical operators.

State Updates. We allow updates of the form {x := t} resp. {o.a := t} to be at-
tached to formulas, where x is a program variable, o is a term denoting an object
with attribute a, and t is a term. The semantics of an update is that the formula
that it is attached to is to be evaluated after changing the state accordingly, i.e.,
{x := t}φ has the same semantics as 〈x = t;〉φ. We also allow parallel updates
of the form {u1 ||u2}. Updates can be seen as a language for describing program
transitions. The KeY system has a powerful update simplification mechanism
that transforms sequences of updates into a single parallel update.

Program Verification by Symbolic Execution. The JAVA CARD DL calculus used
for program verification in the KeY system is a sequent calculus that works by
reducing the question of a formula’s validity to the question of the validity of
several simpler formulae. Since JAVA CARD DL formulae contain programs, the
JAVA CARD DL calculus has rules that reduce the meaning of programs to the
meaning of simpler programs, which corresponds to a symbolic execution [12].
For example, to find out whether the sequent (“=⇒” is the sequent symbol)

210 B. Beckert and C. Gladisch

=⇒ 〈o.next.prev=o;〉o.next.prev .= o

is valid, we symbolically execute the JAVA code in the diamond modality. At
first, the calculus rules transform it into an equivalent but longer (albeit in a
sense simpler) sequence of statements:

=⇒ 〈ListEl v; v=o.next; v.prev=o;〉o.next.prev .= o .

This way, we have reduced the reasoning about a complex expression to reasoning
about several simpler expressions (unfolding).

Now, when analysing the first of the simpler assignments (after removing
the variable declaration), one has to consider the possibility that evaluating
the expression o.next may produce a side effect if o is null (in that case an
exception is thrown). However, it is not possible to unfold o.next any further.
Something else has to be done, namely a case distinction. This results in the
following two new goals:

¬(o .= null) =⇒ {v := o.next}〈v.prev=o;〉o.next.prev .= o

o .= null =⇒ 〈throw new NullPointerException();〉o.next.prev .= o

Thus, we can state the essence of symbolic execution: the JAVA code in the
formulae is step-wise unfolded and replaced by case distinctions and syntactic
updates. Loops and recursion are handled using invariants and induction.

4 Specifications Extraction in the Simple Case

In the following, we describe the automatic specification extraction that has
been implemented in the KeY system. The main idea is: (1) We use symbolic
execution to construct an update and a path condition for every execution path
of the program (as described in the previous section). Consider, for example, the
simple program x=x+2;x=x+3; that has only one path (and no condition). The
resulting update is {x := x+5}. (2) To construct a specification, the updates are
then applied to a (trivial) post-condition Φ consisting of equalities of the form
x′ .= x (for every location x that may be changed by the program). The new
variable x′ represents the post-value of x. In the example, applying the update
results in the equality x′ .= x+5, which specifies the program.

We demonstrate this idea in more detail using the following program that
switches the values of the variables x and y:

JAVA

1 d=myMath.abs(x-y);
2 if (x<y) { x=x+d; y=y-d; }
3 else { x=x-d; y=y+d; }

JAVA

White-Box Testing by Combining Deduction-Based Specification Extraction 211

The specification extraction is realised by the construction of a proof tree for the
proof obligation Γ =⇒ 〈α〉Φ, where α is the above JAVA program and Φ is the
(trivial) post-condition x′ .= x ∧ y′ .= y (where x′, y′ represent the post-values of
x resp. y). In general, Φ contains an equation for every location that the program
may change (these locations may be given by the user or found automatically by
analysing the program). If an approximation is used and not all locations occur
in Φ that are actually changed, the constructed specification lacks information
about locations not mentioned in Φ but is correct.

The premiss Γ may contain lemmas and specifications of library functions. In
our example, it consists of the method contract for the method abs:

(x ≥ 0→ 〈res=abs(x)〉res .= x) ∧ (x < 0 → 〈res=abs(x)〉res .= −x) .

Using this contract and applying some simplification steps to perform the case
distinction between x ≥ 0 and x < 0, we obtain the following partial proof tree:

(B1) (B2)
Γ ′, x ≥ y =⇒
{d := x− y}〈if . . .〉Φ

(B3) (B4)
Γ ′, x < y =⇒
{d := −(x− y)}〈if . . .〉Φ (B5)
· · ·

Γ =⇒ 〈d=myMath.abs(x-y); if . . .〉Φ

where Γ ′ contains the additional condition ¬(myMath .= null) and the subtree
(B5) considers the case of a null pointer dereferencing in line 2 of the source code.
The subtrees (B1) and (B2) examine the case x ≥ y. Moreover, (B1) analyses
the execution path where the condition in the if-statement is true. Thus, (B1)
is the following closed proof branch:

∗
. . . , x ≥ y, x < y =⇒ . . .

. . . , x ≥ y, {d := x− y}(x < y) =⇒ {d := x− y}〈x=x+d; y=y-d〉Φ
(B1)

(B1) and (B4) are closed by a contradiction on the left side of the sequent as
they corresponds to execution paths that, in fact, are infeasible.

The specification parts corresponding to feasible execution paths are contained
in open proof branches such as (B2), which considers the case where the condition
of the if-statement is false:

. . . , x ≥ y =⇒ x′ = y ∧ y′ = x
. . . , x ≥ y =⇒ {x := y || y := x}Φ

. . . , x ≥ y =⇒ {d := x− y || x := y || y := y− (x− y)}Φ
. . . , x ≥ y, ¬(x < y) =⇒ {d := x− y || x := x + (x− y)}〈y=y-d〉Φ

. . . , x ≥ y, {d := x− y}¬(x < y) =⇒ {d := x− y}〈x=x+d; y=y-d〉Φ
(B2)

The open goal in (B2) yields the pre-/post-conditions ¬(myMath .= null) ∧ x ≥ y
and x′ = y ∧ y′ = x. The branche (B3) is similar and yields the pre-/post-
condition pair ¬(myMath .= null) ∧ x < y and x′ = y ∧ y′ = x.

212 B. Beckert and C. Gladisch

These two pairs could be simplified into one but that would remove structure
from the specification. If the intended coverage criterion is path coverage, the
black-box technique must be provided a distinct specification for each path.

Branch (B5) handles the case that a NullPointerException is thrown at
line 2 of the source code. We obtain the open goal

myMath .= null =⇒ 〈throw e;〉Φ

which expresses that an exception is thrown if myMath .= null.
The generated specification can now be translated into input languages for

testing tools. In the example, we use the Java Modeling Language (JML):

JAVA + JML

1 /*@ REQ;

2 @ ENS;

3 @ x>=y && myMath != && REQ;

4 @ y= (x) && x= (y) && ENS;

5 @ x<y && myMath != && REQ;

6 @ y= (x) && x= (y) && ENS;

7 @ myMath == && REQ;

8 @ (NullPointerException e) && ENS; @*/

9 swap() NullPointerException { d=myMath... }

JAVA + JML

REQ/ENS are the requires/ensures pairs from the original requirement specifi-
caiton. A conjunctive cross-product has to be made from both specifications.

The generation of the test cases, the computation of the preamble, and the
execution of the test suite is then performed by a black-box testing tool like
UTJML [7] or JMLTT [4]. Using the structure of the specification, the test
data {1, 0, M}, {0, 1, M}, {1, 0, null} may be generated for the program vari-
ables {x, y, myMath} (where M refers to an appropriate object). In this way all
execution paths are excercised.

If the symbolically executed source code does not contain loops or recursive
methods, then the set of the extracted pre-/post-conditions can ensure path
coverage and even stronger coverage criteria. Which criterion is satisfied by the
extracted specification depends on properties of the used method contracts and
in particular on the subset of calculus rules that are actually used in the con-
struction of a proof tree. Certain rules could simplify the program or the formulas
too much with the effect that structural properties of the program are lost. The
relation between the used verification calculus rules and coverage criteria is one
of our current research topics.

Integer overflow checks and the creation and initialization of objects and
classes, which has been ignored here due to space limitations, are covered by
the KeY JAVA CARD DL calculus.

White-Box Testing by Combining Deduction-Based Specification Extraction 213

5 Handling Loops and Recursion

The automatic extraction of a (partial) specification from a program that con-
tains loops is implemented in the KeY tool by unwinding or unfolding. Invariant
generation in general requires user interaction but in simple cases invariants can
be automatically generated.

Since loops can create arbitrarily long execution paths, it is impossible to
create a test set that satisfies a criterion like full path coverage in this case.
However, by loop unwinding, a set of partial specifications can be generated that
satisfies the path coverage criterion for a bounded amount of total loop iterations.
Our experiences show that most loops behave similarly on loop iterations with
different bounds. We will refere to the bound by K.

We describe the specification extraction by loop unwinding using the following
program P as an example:

JAVA

k=0; j=0; n=a.length; line.prev= ;

(k<n) {

(j=23) {

j = 0; oldline = line;

line = Line(23);

oldline.next = line; line.prev = oldline;

}

(j>23 || k>n) Exception();

line.setCharAt(j,a[k]); k++; j++;

}

JAVA

This program copies values from the array a into dynamically created Line
objects, where only 23 values can be saved in any one line (we assume that the
first Line object is created and the array is initialised before P is started). Again
due to space restrictions, we cannot present all details in program execution that
are considered by the KeY tool.

By unwinding a loop, an if-cascade is created (for nested loops this has to be
done recursively). From the program P , we obtain the following if-cascade:

JAVA

(k<n){ (j=23){..}; (j>23||k>n)..setCharAt(j,a[k]);k++;j++;

(k<n){ (j=23){..}; (j>23||k>n)..setCharAt(j,a[k]);k++;j++;

...

(k<n){...}

}

}

JAVA

The specification extraction process results in a proof tree with K sequents of
the following form as its leaves, where body represents the loop body:

214 B. Beckert and C. Gladisch

Γ, ¬(k < n) =⇒ 〈〉Φ
Γ, k < n, ¬(k + 1 < n) =⇒ 〈body;〉Φ

Γ, k < n, k + 1 < n, ¬(k + 2 < n) =⇒ 〈body;body;〉Φ
· · ·

These sequents already show the desired pre-conditions; post-conditions are ex-
tracted as follows. From the formula 〈〉Φ we get the post-condition for the case
that the loop iterates zero times, which is:

k′ .= 0 ∧ j′ .= 0 ∧ n′ .= a.length∧ a′ .= a ∧ line ′ .= line (1)

Simplification of the formula 〈body〉Φ results in the post-condition that holds for
all execution paths where the loop iterates exactly once. We assume that the
following contract is given for the method setCharAt:

¬(line .= null) ∧ 〈ret=line.getLength()〉(0 < x ∧ x < ret)→
〈line.setCharAt(x,c); res=line.getCharAt(x)〉(res .= a[x]) (2)

Then, the post-condition that is extracted for the case where the loop executes
exactly once is the following conjunction:

k′ .= 1 ∧ j′ .= 1 ∧ n′ .= a.length∧ a′ .= a ∧ line ′ .= line∧ (3)
〈ret=line.getCharAt(0)〉(ret .= a[0]) (4)

Conjunction (3) is an updated version of the post-condition (1), and (4) it the
result of applying the method contract (2).

An invariant inference tool that generates inequalities is able to infere the
invariant

0 ≤ k ≤ n ∧ 0 ≤ j ≤ n ∧ j ≤ 23

automatically. This invariant is not the strongest and therefore it is less accurate
on the first K iterations than the specification we have obtained by unrolling. But
in contrast to unrolling it contains information about all possible iterations of
the loop. Using this invariant allows to generate different test cases that exercise
the if-statements in the loop body. In order to execute the then-case of the if-
statement, the condition j .= 23 must be true. Applying an invariant rule results
in a proof obligation that the invariant is in fact preserved by the loop body.
Applying calculus rules to that obligation corresponds to a symbolic execution of
the loop body (including the if-statement). Leaves of that part of the proof then
result in pre-/post-condition pairs from which test cases with array length 23
can be generated.

The purpose of this example was to show that loop unwinding and the invari-
ant rule are complementary concepts by which different kinds of test sets can
be produced that execute different parts of code. The automatic generation of
loop invariants will be implemented in the KeY tool and an integration of the
dynamic invariants inference tool Daikon is considered (similar to the integration
of Daikon into ESC/Java [15]). Relevant work on automatic invariant inference
can also be found in [9,10,6,16].

White-Box Testing by Combining Deduction-Based Specification Extraction 215

6 Related Work

In the Echo approach [18], a requirement specification is manually refined until
an implementation is obtained. The correctness of the manual refinement process
is then verified by extracting a specification from the implementation and com-
paring it to the requirement specification (this does not involve testing).

Synergies between using specifications and testing are also explored in [20].
This approach is similar to our’s, because it coincides with the second step
in our approach. The difference is, however, in the first step as the extracted
specification is obtained by dynamic analysis and, therefore, the result is a black-
box testing method.

Another related approach is described by Nimmer [15]. It involves, however,
dynamic analysis (where we use static analysis) and, in the second step, theorem
proving (where we use testing). The Korat system [5] uses symbolic execution
to generate test cases (without generating a specification).

Deduction-based specification extraction is similar to test-case generation by
symbolic execution (like in Symstra [19])—except that our approach allows to
also derive post-conditions.

Our approach is complementary to these methods, and there is no work that
more clearly separates static program analysis from test case generation (like it
is done in our approach), in order to combine test coverage criteria from the two
complementary techniques.

7 Conclusion

We have described how deductive program verification systems can be used
to generate specifications, which then can be used as input for black-box test-
ing tools, turning them into white-box testing methods. This approach can be
adapted to other symbolic execution methods (e.g., weakest precondition calculi)
that allow to extract specifications from programs, provided that the structure
of the extracted specification reflects the structure of the program. Since the
pre- and post-conditions are extracted a reference implementation can be used
as a requirement specification. Furthermore this allows to establish a connection
between variables before and after the program execution.

Future work is to investigate the precise relation between test coverage and
different simplification rules used for specification extraction.

References

1. Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle, R., Menzel, W.,
Mostowski, W., Roth, A., Schlager, S., Schmitt, P.H.: The KeY tool. Software and
System Modeling 4, 32–54 (2005)

2. Beckert, B.: A dynamic logic for the formal verification of Java Card programs. In:
Attali, I., Jensen, T. (eds.) JavaCard 2000(revised papers). LNCS, vol. 2041, pp.
6–24. Springer, Heidelberg (2001)

216 B. Beckert and C. Gladisch

3. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware: The KeY Approach. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

4. Bouquet, F., Dadeau, F., Legeard, B., Utting, M.: JML-testing-tools: a symbolic
animator for JML specifications using CLP. In: Halbwachs, N., Zuck, L. (eds.)
TACAS 2005. LNCS, vol. 3440, pp. 551–556. Springer, Heidelberg (2005)

5. Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing based on java
predicates. In: Proceedings, International Symposium on Software Testing and
Analysis, Roma, Italy, pp. 123–133. ACM Press, New York (2002)

6. Bundy, A., Lombart, V.: Relational rippling: A general approach. In: Proceedings,
International Joint Conference on Artificial Intelligence, Montréal, Canada, pp.
175–181. Morgan Kaufmann, San Francisco (1995)

7. Cheon, Y., Kim, M., Perumandla, A.: A complete automation of unit testing
for java programs. In: Proceedings, Software Engineering Research and Practice
(SERP), Las Vegas, USA, pp. 290–295. CSREA Press (2005)

8. Engel, C., Hähnle, R.: Generating unit tests from formal proofs. In: Gurevich,
Y. (ed.) Proceedings, Testing and Proofs, Zürich, Switzerland. LNCS, Springer,
Heidelberg, 2007 (to appear)

9. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering
likely program invariants to support program evolution. IEEE Trans. Software
Eng. 27(2), 99–123 (2001)

10. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: Pro-
ceedings, Principles of Programming Languages (POPL), Portland, USA, pp. 191–
202. ACM Press, New York (2002)

11. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
12. King, J.C.: Symbolic execution and program testing. Communications of the

ACM 19(7), 385–394 (1976)
13. Kosmatov, N., Legeard, B., Peureux, F., Utting, M.: Boundary coverage criteria

for test generation from formal models. In: Proceedings, Software Reliability En-
gineering, Saint-Melo, France, pp. 139–150. IEEE CS Press, Los Alamitos (2004)

14. Legeard, B., Peureux, F., Utting, M.: Automated boundary testing from Z and
B. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, Springer,
Heidelberg (2002)

15. Nimmer, J.W., Ernst, M.D.: Static verification of dynamically detected pro-
gram invariants: Integrating Daikon and ESC/Java. Electr. Notes Theor. Comput.
Sci. 55(2) (2001)

16. Nimmer, J.W., Ernst, M.D.: Automatic generation of program specifications. In:
ISSTA, pp. 229–239 (2002)

17. Parasoft: JTest manual (2004), http://www.parasoft.com/jtest
18. Strunk, E.A., Yin, X., Knight, J.C.: Echo: a practical approach to formal verifi-

cation. In: Proceedings, Formal Methods for Industrial Critical Systems (FMICS),
Lisbon, Portugal, pp. 44–53. ACM Press, New York (2005)

19. Xie, T., Marinov, D., Schulte, W., Notkin, D.: Symstra: A framework for generating
object-oriented unit tests using symbolic execution. In: Halbwachs, N., Zuck, L.D.
(eds.) TACAS 2005. LNCS, vol. 3440, pp. 365–381. Springer, Heidelberg (2005)

20. Xie, T., Notkin, D.: Exploiting synergy between testing and inferred partial spec-
ifications. In: Proceedings, ICSE Workshop on Dynamic Analysis (WODA), Port-
land, USA, pp. 17–20 (2003)

http://www.parasoft.com/jtest

Author Index

Back, Ralph-Johan 61
Beckert, Bernhard 207
Brucker, Achim D. 149
Butler, Michael 95

Csallner, Christoph 1

Engel, Christian 169
Eriksson, Johannes 61

Gargantini, Angelo 189
Gladisch, Christoph 207

Hähnle, Reiner 169
Haiyan, Qiao 79

Le Gall, Pascale 131
Leuschel, Michael 95
Liu, Lisa (Ling) 114

Meyer, Bertrand 114
Myreen, Magnus 61

Ostroff, Jonathan S. 17

Ramesh, S. 95
Rapin, Nicolas 131
Rümmer, Philipp 41

Satpathy, Manoranjan 95
Schoeller, Bernd 114
Shah, Muhammad Ali 41
Smaragdakis, Yannis 1

Torshizi, Faraz Ahmadi 17
Touil, Assia 131

Wolff, Burkhart 149

	Title Page
	Preface
	Organization
	Table of Contents
	Combining Static and Dynamic Reasoning for Bug Detection
	Introduction
	Bug Finding Musings
	Static and Dynamic Analysis
	Soundness for Incorrectness
	Why Prove a Program Incorrect?

	Soundness of Automatic Bug Finding Tools
	Background: ESC/Java
	Language-Level Soundness: Program Execution Semantics
	User-Level Soundness: Informal Specifications

	Turning ESC/Java into a Sound Tool for Automatic Bug Finding
	Check ’n’ Crash: Making ESC/Java Language-Level Sound
	DSD-Crasher: Improving ESC/Java’s User-Level Soundness

	A Small Case Study
	Setting
	Baseline: JCrasher
	Check ’n’ Crash
	DSD-Crasher

	Related Work
	Conclusions
	References

	Testable Requirements and Specifications
	Introduction
	Requirements and Specifications
	Fit Tables as Testable Requirements
	Informal Requirements for a Chat Application
	A Fit Table to Test the First Requirement
	Implementation Correctness
	Specification Correctness

	Writing Complete Modular Contracts
	The Need for Mathematical Models

	Contract Violations in Fit Tables
	ESpecTool
	References

	Proving Programs Incorrect Using a Sequent Calculus for Java Dynamic Logic
	Introduction
	Formalisation of the Problem in Dynamic Logic
	Heap Representation in Dynamic Logic for Java
	Formalising the Violation of Post-conditions
	Quantification over Program States

	Constructing Proofs for Program Incorrectness
	Construction of Proofs Using a Ground Proof Procedure
	Construction of Proofs Using Metavariables and Backtracking
	Construction of Proofs Using Incremental Closure
	A Hybrid Approach: Backtracking and Incremental Closure

	Representation of Solutions: Constraint Languages
	Reasoning About Lists and Arithmetic
	Rules for the Theory of Lists
	Fairness Conditions
	Arithmetic Handling in KeY

	Related Work
	Conclusions and Future Work
	References

	Testing and Verifying Invariant Based Programs in the SOCOS Environment
	Introduction
	Related Work
	Contribution

	Invariant Diagrams
	Invariant Diagrams in SOCOS
	Diagram Editor

	Run-Time Checking of Invariant Diagrams
	Compilation
	Translating Conditions to Python
	Debugging

	Proving Correctness of Invariant Diagrams
	Verification Condition Generation
	Interaction with External Tools
	Translation of Verification Conditions

	Example: Sorting
	Specification
	Implementation
	Testing the Implementation
	Verifying the Implementation

	Conclusion and Future Work
	References

	Testing and Proving Distributed Algorithms in Constructive Type Theory
	Introduction
	The Proof Assistant Agda/Alfa
	Testing and Proving in Constructive Type Theory
	The Dining Philosophers Problem
	Dining Philosophers, the Version Using Trace Semantics
	The Protocol
	Testing and Proving Safety Properties of the Protocol

	Modelling the Protocol Using Graph Semantics
	Precedence Graphs
	Modelling the Problem in Agda/Alfa
	Proving the Safety Property
	Proving the Liveness Property

	Related Work and Future Work
	References

	Automatic Testing from Formal Specifications
	Introduction
	Related Work
	TheB-MethodandExamples
	The Method I: Deterministic Models
	The Method II: Non-deterministic Models
	Pre-processing of the B Model
	Coverage Graph for a Non-deterministic Model
	Test Cases from Non-deterministic Models
	Test Driver Generation

	Implementation
	Discussion
	Conclusion
	References

	Using Contracts and Boolean Queries to Improve the Quality of Automatic Test Generation
	Overview
	Correctness and Contracts
	Testing and Program States
	Query-Based Testing

	The Role of Boolean Queries
	Classes and Object States
	Argumentless Boolean Queries
	The Conjecture
	Assessing the Conjecture

	Using Contracts and Proof Techniques
	Basic Definitions
	Query-Based Testing
	Generating Abstract State Through Boolean Constraint Solving
	Pruning the State Space Through Theorem Proving
	Forward Testing
	Inspecting the Specification

	Experimental Setup and Study Results
	Choice of Library
	Choice of Target Classes
	The Testing Environment
	Study Results
	Evaluation

	Related Work
	Construction of Abstract States
	Black-Box Test Coverage Criteria
	Test Case Generation and Automatic Testing

	Future Work
	References

	Symbolic Execution Techniques for Refinement Testing
	Introduction
	Input Output Symbolic Transition Systems
	Data Types
	Syntax
	Semantics

	Refinement
	Definition
	Our Approach for Refinement Testing
	Symbolic Execution

	Refinement Verification by Testing
	Our Approach
	Trace Selection and Implementation Issues

	Conclusion
	References

	Test-Sequence Generation with Hol-TestGen with an Application to Firewall Testing
	Introduction
	Foundations
	Isabelle
	Higher-Order Logic

	The HOL-TestGen System: An Overview
	Test Case Generation with Explicit Test-Hypothesis
	Inserting Uniformity Hypothesis
	Inserting Regularity Hypothesis
	Principles of Test-Sequence-Generation in HOL-TestGen
	An Infra-structure for Reactive Sequence Test
	An Example

	Case-Study: Testing Firewall Configurations
	A Bluffers Guide to Firewalls
	A Formal Firewall Model
	Testing Stateless Firewalls
	Testing Statefull Firewalls

	Conclusion
	References

	Generating Unit Tests from Formal Proofs
	Introduction
	Background
	Overview of Verification-Based Test Generation
	Unbounded Number of Execution Paths and Test Coverage
	Partial Proofs
	Complete Proofs

	Increasing Automation
	Additional Coverage Criteria
	Evaluation
	Conclusion, Related and Future Work
	References

	Using Model Checking to Generate Fault Detecting Tests
	Introduction
	Preliminaries
	Abstract State Machines
	Test Sequence
	Structural Coverage Criteria for ASMs

	Fault Classes
	Discovering Faults
	Generation of Tests
	Evaluating the Fault Coverage
	Undetectable Faults

	Experiments
	Generation of Tests
	Comparison with Structural Coverage Criteria
	Cross Coverage Among Fault Classes

	Related Work
	Conclusions and Future Work
	References

	White-Box Testing by Combining Deduction-Based Specification Extraction and Black-Box Testing
	Introduction
	The General Approach
	A Deductive Program Verification Calculus
	Specifications Extraction in the Simple Case
	Handling Loops and Recursion
	Related Work
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /UseDeviceIndependentColorForImages
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

