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Abstract. Training an artificial neural network is an optimization task
since it is desired to find optimal weight set of a neural network in train-
ing process. Traditional training algorithms has some drawbacks such as
getting stuck in local minima and computational complexity. Therefore,
evolutionary algorithms are employed to train neural networks to over-
come these issues. In this work, Artificial Bee Colony (ABC) Algorithm
which has good exploration and exploitation capabilities in searching
optimal weight set is used in training neural networks.

1 Introduction

Since Artificial Neural Networks (ANNs) are quite successful in modelling non-
linearity and have characteristics such as being capable of generalizing, adapt-
ability, self-organizing, real time operation and fault tolerance, they are involved
in so many applications in research fields. Finding a suitable network structure
and finding optimal weight values make design of ANNs difficult optimization
problems. In other words, the success of ANNs largely depends on the architec-
ture, the training algorithm, and the choice of features used in training.

Artificial neural network training has traditionally been carried out using the
back-propagation (BP) gradient descent (GD) algorithm [1]. But this technique
has some drawbacks such as dependence of error surface shape, initial values of
connection weights, parameters. If the error surface is multimodal, the gradient
descent based algorithms are trapped at local minima. Involving differentiation
of error function is another issue with this kind of algorithms [2]. Saturation may
occur if the output is pushed towards its extremes at some point before conver-
gence is reached, so that the derivative is too small to make further significant
weight changes, causing the network to settle in an incorrect local minimum or
reach a state of network paralysis . This saturation may occur for a number of
reasons, most of which are easily avoided [3].In order to overcome the disad-
vantages of gradient based algorithms, many global optimization methods have
been proposed for training feed-forward neural networks such as Genetic Algo-
rithms [4,5,6,7,8,9,10,11,12,13,14,15,16,17], The Particle Swarm Optimization
algorithm [18, 19, 20, 22, 21, 23], Differential Evolution [24, 25, 26, 27, 28, 29] and
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Evolutionary Programming algorithms [30,31,32]. Also, some hybrid techniques
combining traditional techniques such as back propagation and evolutionary
algorithms are proposed for training neural networks [33]. Not all of this algo-
rithms handle with only connection weights, they also optimize the structure
of the network. However, when the neural network training becomes a large
scale, the number of network parameters grows drastically. For example,learning
a huge number of hidden layer weights in a multi-layer perceptron (MLP) neural
network can be considered as a large scale optimization problem.

Karaboga has described Artificial Bee Colony (ABC) algorithm based on the
foraging behaviour of honey bees for numerical optimization problems [34], and
Karaboga and Basturk have compared the performance of the ABC algorithm
with those of other well-known modern heuristic algorithms such as Genetic Al-
gorithm (GA), Differential Evolution (DE), Particle Swarm Optimization (PSO)
on unconstrained problems [35]. In this work, the ABC algorithm is employed in
training feed-forward neural networks and the performance of the algorithm is
compared with Genetic Algorithm (GA) from evolutionary algorithms and Back-
Propagation (BP) Algorithm. The paper is organized as follows: In Section 2,
training an artificial neural network is described. In Section 3, implementation
of artificial neural network training by using the ABC algorithm is introduced.
In Section 4, experiments and results of produced by ABC, GA, and BP are
presented and discussed.

2 Training Feed Forward Artificial Neural Networks

An ANN consists of a set of processing elements (Fig. 1), also known as neurons
or nodes, which are interconnected with each other [14]. Output of the ith neuron
can be described by Eq. 1

yi = fi(
n∑

j=1

wijxj + θi) (1)

where yi is the output of the node, xj is the jth input to the node, wij is the
connection weight between the node and input xj , θi is the threshold (or bias)
of the node, and fi is the node transfer function. Usually, the node transfer
function is a nonlinear function such as a heaviside function, a sigmoid function,
a Gaussian function, etc.

Generally, the adaptation can be carried out by minimizing (optimizing) the
network error function E. The error function is given by Eq. 2:

E(w(t)) =
1
n

n∑

j=1

K∑

k=1

(dk − ok)2 (2)

where, E(w(t)) is the error at the tth iteration; w(t), the weights in the connec-
tions at the tth iteration; dk, the desired output node; ok, the actual value of
the kth output node;K, the number of output nodes; n, the number of patterns.
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Fig. 1. Processing unit of an ANN (neuron)

The optimization goal is to minimize the objective function by optimizing the
network weights w(t). In Evolutionary Algorithms, the major idea underlying
this synthesis is to interpret the weight matrices of the ANNs as individuals, to
change the weights by means of some operations such as crossover and mutation,
and to use the error E produced by the ANNs as the fitness measure which guides
selection. This leads to the following evolutionary training cycle [36]:

1. Formation of the next population of ANNs by means of operators such as
crossover and mutation and fitness–oriented selection of the the weight ma-
trices. (The initial population is randomly created.)

2. Evaluation of the fitness values of the ANNs.
3. If the desired result is obtained, then stop; otherwise goto step 1.

3 Artificial Bee Colony Algorithm

Artificial Bee Colony (ABC) algorithm was proposed by Karaboga for optimizing
numerical problems in 2005 [34]. The algorithm simulates the intelligent forag-
ing behaviour of honey bee swarms. It is a very simple, robust and population
based stochastic optimization algorithm. Karaboga and Basturk have compared
the performance of the ABC algorithm with those of other well-known mod-
ern heuristic algorithms such as Genetic Algorithm (GA), Differential Evolution
(DE), Particle Swarm Optimization (PSO) on unconstrained problems [35].

Detailed pseudo-code of the ABC algorithm is given below:

1: Initialize the population of solutions xi, i = 1 . . . SN
2: Evaluate the population
3: cycle=1
4: repeat
5: Produce new solutions υi for the employed bees by using (4) and evaluate

them
6: Apply the greedy selection process
7: Calculate the probability values pi for the solutions xi by (3)
8: Produce the new solutions υi for the onlookers from the solutions xi se-

lected depending on pi and evaluate them
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9: Apply the greedy selection process
10: Determine the abandoned solution for the scout, if exists, and replace it

with a new randomly produced solution xi by (5)
11: Memorize the best solution achieved so far
12: cycle=cycle+1
13: until cycle=MCN

In ABC algorithm, the position of a food source represents a possible solution to
the optimization problem and the nectar amount of a food source corresponds to
the quality (fitness) of the associated solution. The number of the employed bees
or the onlooker bees is equal to the number of solutions in the population. At the
first step, the ABC generates a randomly distributed initial population P (G = 0)
of SN solutions (food source positions), where SN denotes the size of population.
Each solution xi (i = 1, 2, ..., SN) is a D-dimensional vector. Here, D is the num-
ber of optimization parameters. After initialization, the population of the posi-
tions (solutions) is subjected to repeated cycles, C = 1, 2, ..., MCN , of the search
processes of the employed bees, the onlooker bees and scout bees. An employed
bee produces a modification on the position (solution) in her memory depending
on the local information (visual information) and tests the nectar amount (fitness
value) of the new source (new solution). Provided that the nectar amount of the
new one is higher than that of the previous one, the bee memorizes the new posi-
tion and forgets the old one. Otherwise she keeps the position of the previous one
in her memory. After all employed bees complete the search process, they share
the nectar information of the food sources and their position information with the
onlooker bees on the dance area. An onlooker bee evaluates the nectar information
taken from all employed bees and chooses a food source with a probability related
to its nectar amount. As in the case of the employed bee, she produces a modifica-
tion on the position in her memory and checks the nectar amount of the candidate
source. Providing that its nectar is higher than that of the previous one, the bee
memorizes the new position and forgets the old one.

An artificial onlooker bee chooses a food source depending on the probability
value associated with that food source, pi, calculated by the following expression
(3):

pi =
fiti

SN∑
n=1

fitn

(3)

where fiti is the fitness value of the solution i which is proportional to the nec-
tar amount of the food source in the position i and SN is the number of food
sources which is equal to the number of employed bees (BN).

In order to produce a candidate food position from the old one in memory,
the ABC uses the following expression (4):

vij = xij + φij(xij − xkj) (4)

where k ∈ {1, 2,..., SN} and j ∈ {1, 2,..., D} are randomly chosen indexes. Al-
though k is determined randomly, it has to be different from i. φi,j is a random
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number between [-1, 1]. It controls the production of neighbour food sources
around xi,j and represents the comparison of two food positions visually by a
bee. As can be seen from (4), as the difference between the parameters of the
xi,j and xk,j decreases, the perturbation on the position xi,j gets decrease, too.
Thus, as the search approaches to the optimum solution in the search space, the
step length is adaptively reduced.

The food source of which the nectar is abandoned by the bees is replaced
with a new food source by the scouts. In ABC, this is simulated by producing
a position randomly and replacing it with the abandoned one. In ABC, pro-
viding that a position can not be improved further through a predetermined
number of cycles, then that food source is assumed to be abandoned. The value
of predetermined number of cycles is an important control parameter of the ABC
algorithm, which is called “limit” for abandonment. Assume that the abandoned
source is xi and j ∈ {1, 2,..., D} , then the scout discovers a new food source to
be replaced with xi. This operation can be defined as in (5)

xj
i = xj

min + rand(0, 1)(xj
max − xj

min) (5)

After each candidate source position vi,j is produced and then evaluated by
the artificial bee, its performance is compared with that of its old one. If the new
food source has an equal or better nectar than the old source, it is replaced with
the old one in the memory. Otherwise, the old one is retained in the memory. In
other words, a greedy selection mechanism is employed as the selection operation
between the old and the candidate one.There are three control parameters in the
ABC: The number of food sources which is equal to the number of employed or
onlooker bees (SN), the value of limit, the maximum cycle number (MCN).

In a robust search process, exploration and exploitation processes must be
carried out together. In the ABC algorithm, while onlookers and employed bees
carry out the exploitation process in the search space, the scouts control the
exploration process.

4 Experimental Study

In this work, three problems are considered: XOR, 3-Bit Parity and 4-Bit
Encoder-Decoder problems, which are benchmark problems used in training neu-
ral networks.

4.1 The Exclusive-OR Problem

The first test problem we used in the experiments is the exclusive-OR (XOR)
Boolean function which is a difficult classification problem mapping two binary
inputs to a single binary output as (0 0;0 1;1 0;1 1)→(0;1;1;0). In the simula-
tions we use a 2-2-1 feed-forward neural network with six connection weights, no
biasses (having six parameters, XOR6) and a 2-2-1 feed-forward neural network
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with six connection weights and three biases (having 9 parameters, XOR9) and a
2-3-1 feed-forward neural network having nine connection weights and four biases
totally thirteen parameters (XOR13). For XOR6, XOR9 and XOR13 problems,
the parameter ranges [-100,100], [-10,10] and [-10,10] are used, respectively.

4.2 3-Bit Parity Problem

The second test problem is the three bit parity problem. The problem is taking
the modulus 2 of summation of three inputs. In other words, if the number of
binary inputs is odd, the output is 1, otherwise it is 0. (0 0 0;0 0 1;0 1 0;0 1 1;
1 0 0; 1 0 1; 1 1 0; 1 1 1)→(0;1;1;0;1;0;0;1) We use a 3-3-1 feed-forward neural
network structure for the 3-Bit Parity problem. It has twelve connection weights
and four biasses, totally sixteen parameters. The parameter range was [-10,10]
for this problem.

4.3 4-Bit Encoder/Decoder Problem

The third problem is 4-bit encoder/decoder problem. The network is presented
with 4 distinct input patterns, each having only one bit turned on. The output
is a duplication of the inputs. (0 0 0 1;0 0 1 0;0 1 0 0;1 0 0 0)→(0 0 0 1;0 0 1 0;0
1 0 0;1 0 0 0). This is quite close to real world pattern classification tasks, where
small changes in the input pattern cause small changes in the output pattern [37].
A 4-2-4 feed-forward neural network structure is used for this problem and it
has totally 22 parameters including sixteen connection weights and six biases.
For this problem, the parameter range is [-10,10].

The parameter ranges, dimension of the problems, and the network structures
are presented in Table 1.

Table 1. Parameters of the problems considered in the experiments. D: Dimension of
the problem.

Range NN Structure D

XOR6 [-100,100] 2-2-1 without Bias 6

XOR9 [-10,10] 2-2-1 with bias 9

XOR13 [-10,10] 2-3-1 with bias 13

3-Bit Parity [-10,10] 3-3-1 with bias 16

4-Bit Enc.-Dec. [-10,10] 4-2-4 with bias 22

4.4 Settings

Experiments were repeated 30 times for each case and each run was started
with a random population with different seeds. In each network selected for each
problem, sigmoid function is employed as transfer function. Training processes
were stopped when the mean squared error of the outputs associated with inputs
was equal to or less than 0.01 (MSE≤0.01) or when the maximum generation
or cycle or epoch has been reached. Since the difficulty of each problem is dif-
ferent, different parameter settings were used for each of them. Among all of
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the problems, XOR6 is the most difficult one since it does not employ biases.
Therefore, all algorithms were run through more generations/cycles/epochs for
this problem.

ABC Settings: The value of “limit” is equal to SN x D where D is the
dimension of the problem. Colony size (2 ∗ SN) is 50 for all problems

GA Settings: In the experiments, roulette wheel selection scheme, single point
crossover with the rate of 0.8, uniform mutation with the rate of 0.05 are em-
ployed. Generation gap is set to 0.9. The population size in GA were 50 for all
problems.

BP Settings: In back-propagation experiments, NNs were trained by using
Levenberg-Mardquart (LM) and Gradient Descent (GD) training algorithms.
Learning rate for GD is 0.8.

These settings are summarized in Table 2.

Table 2. Values for control parameters of the algorithms. LR: Learning Rate, Pop:
Population Size, CR: Crossover Rate, MR: Mutation Rate, GP: Generation Gap, SN:
Colony Size.

BP GA ABC

LR: 0.8 Pop: 50 SN: 50
CR: 0.8 limit: SN*D
MR: 0.05
GP: 0.9

Maximum cycle number (MCN) for ABC and maximum generation num-
ber for GA were 7500,100,75,1000 1000 for XOR6, XOR9, XOR13, 3-Bit Parity
and 4-Bit Encoder-Decoder problems, respectively. Hence, the total objective
function evaluation numbers were 375 000, 5000, 3750, 50000 and 50000 for
the problems, respectively. In case of BP algorithm, the number of epochs for
problems were 32000, 500, 250, 1600 and 2100, respectively. These values are
presented in Table 3.

Table 3. Maximum Cycle/Generation/Epoch numbers for ABC/GA/BP and the total
Objective Function Evaluation (OFE) numbers for algorithms

Cycle/Gen. OFE Epoch

XOR6 7500 375000 32000

XOR9 100 5000 500

XOR13 75 3750 250

3-Bit Parity 1000 50000 1600

4-Bit Enc.-Dec. 1000 50000 2100
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4.5 Results and Discussion

Statistical results and the success rates of the algorithms for XOR6, XOR9,
XOR13, 3-Bit Parity and 4-Bit Encoder-Decoder problems are given in Ta-
bles 4-6. For XOR6 problem, back propagation algorithm trained by GD has
3 % success and back propagation algorithm trained by LM has 6% success.
Genetic algorithm has 0% success while the ABC algorithm has 100 % suc-
cess. On XOR6 problem, GA could not find the global minima. Mean cycle
number of ABC algorithm is 2717.4 for XOR6 problem. Mean cycle number
of ABC is more than the mean epoch number of the BP (LM), but the LM
algorithm has got stuck with the local minima of XOR6 problem. For XOR9
problem, BP (GD) has 0% success while BP (LM) has 66.66 % success with
the mean of 13 epochs. GA has 40 % success with a mean of 77.067 gener-
ations. The ABC algorithm has 100 % success and the mean of cycles is 32.
As seen from the mean OFE and success numbers, the BP (LM) algorithm
has very fast convergence speed but it gets stuck to the local minima while
ABC algorithm goes on searching without being stuck in local minima. For
XOR13 problem, BP (GD) has 0% success with an average of 250 epochs while
BP (LM) has 96.66% success with an average of 9 epochs. On XOR13 prob-
lem, GA has 76.66 % success rate and ABC has 100 % success with an aver-
age of 28.2 cycles. Although the problems were the same in the case of XOR6,
XOR9 and XOR13, the network structures employed in the experiments were
different. The NN used for XOR13 problem has 3 hidden neurons while the
networks employed for XOR6 and XOR9 have 2 hidden neurons. More com-
plex network structures do not always facilitate the problems or small size net-
works can not produce good results for the problems. It is known that finding
adequate network structure is another design problem as well as finding op-
timum weights in training process. For 3-Bit parity problem, BP(GD) could
not find the optima in any of runs. BP(LM) could find the optimum with
a success rate of 86.66%. The success rate of GA was 63.33% on this prob-
lem. The ABC algorithm was able to find the desired network output in each
run with an average cycle of 179.06. For Encoder-Decoder problem, BP(GD)
has 2% success and BP(LM) has 73.33 %. GA has 86.66 % and the ABC al-
gorithm has 100% success rate on this problem. Consequently, ABC outper-
forms other algorithms on all problems considered in this work for the same
evaluation number and can consistently find the optimum weight set for the
networks. For all problems, the success rate of ABC algorithm is 100 %. An
algorithm that only uses the gradient steepest descent will be trapped in a lo-
cal optima, but any search strategy that analyzes a wider region will be able
to cross the valley among the optima and achieve better results. In order to
obtain good results for multimodal problems, the search strategy must com-
bine the exploratory and exploitative components efficiently. Since the ABC
algorithm combine the exploration and exploitation processes succesfully, it
shows high performance on training feed-forward ANNs for classification
problems considered in this work.
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Table 4. Experimental Results 30 runs of ANN training process results produced
by BP, GA and ABC Algorithms. MMSE:Mean of Mean Squared Errors of 30 Runs,
SDMSE: Standard Deviation of Mean Squared Errors of 30 runs.

Algorithms XOR6 XOR9 XOR13 3-Bit Parity Enc. Dec.

BP (GD)
MMSE 0.1182 0.212 0.2468 0.2493 0.0809
SDMSE 0.0763 0.0369 0.008 0.0025 0.0756

BP (LM)
MMSE 0.1107 0.0491 0.0078 0.0209 0.0243
SDMSE 0.0637 0.0646 0.0223 0.043 0.0424

GA
MMSE 0.099375 0.047968 0.015200 0.028725 0.016400
SDMSE 0.02785 0.052000 0.022850 0.032900 0.031300

ABC
MMSE 0.007051 0.006956 0.006079 0.006679 0.008191
SDMSE 0.002305 0.002402 0.003182 0.002820 0.001864

Table 5. Experimental Results 30 runs of ANN training process results produced by
BP, GA and ABC Algorithms. ME: Mean of Epoch Numbers, SDE: Standard Deviation
of Epoch Numbers, MG: Mean of Generation Numbers, SDG: Standard Deviation of
Generation Numbers, MC: Mean of Cycle Numbers, SDC: Standard Deviation of Cycle
Numbers.

Algorithms XOR6 XOR9 XOR13 3-Bit Parity Enc. Dec.

BP (GD)
ME 31603 500 250 1600 2020
SDE 2176 0 0 0 236.8019

BP (LM)
ME 67.53 13 9 21.333 83.3667
SDE 59.3759 6.8304 3.2056 10.0046 174.1683

GA
MG 7500 77.067 38.6000 501.1333 400.1333
SDG 0 33.394 25.0236 415.8687 340.4838

ABC
MC 2717.4 32 28.2 179.066666 185
SDC 3.359377 0.182827 1.241569 12.792384 5.842378

Table 6. Success Rates of BP(GD), BP(LM), GA and ABC Algorithms

Algorithms XOR6 XOR9 XOR13 3-Bit Parity Enc. Dec.

BP (GD) 3 0 0 0 2

BP (LM) 6 66.66 96.66 86.66 73.33

GA 0 40 76.6667 63.3333 86.6667

ABC 100 100 100 100 100

5 Conclusion

In this work, Artificial Bee Colony Algorithm which is a new, simple and ro-
bust optimization algorithm has been used to train feed-forward artificial neural
networks for classification purpose. The performance of the algorithm has been
compared with the traditional back propagation algorithm and the genetic algo-
rithm which is a well-known evolutionary algorithm. Results of the experiments
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show that the Artificial Bee Colony algorithm can be successfully applied to train
feed-forward neural networks. The application of ABC to other classification test
problems such as iris, diabetes, cancer classification and the implementation of
the algorithm for optimizing the network structure as well as optimizing weights
remain as future works.
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