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Abstract. Rough sets are applied to information tables containing im-
precise values that are expressed in a probability distribution. A family
of weighted equivalence classes is obtained where each equivalence class
is accompanied by the probability to which it is an actual one. By us-
ing the family of weighted equivalence classes, we derive lower and up-
per approximations. The lower and upper approximations coincide with
ones obtained from methods of possible worlds. Therefore, the method
of weighted equivalence classes is justified. In addition, this method is
applied to missing values interpreted probabilistically. Using weighted
equivalence classes correctly derives a lower approximation, even in the
case where the method of Kryszkiewicz does not derive any lower ap-
proximation.

Keywords: Rough sets, Imprecise information, Probabilistic value,
Weighted equivalence class, Lower and upper approximations.

1 Introduction

Rough sets play a significant role in the field of knowledge discovery and data min-
ing since the first paper published by Pawlak [19]. The framework of rough sets
is constructed under the premise that information tables consisting of precise in-
formation are obtained. However, there ubiquitously exists imprecise information
in the real world [18]. Thus, it has been investigated to apply rough sets to infor-
mation tables containing imprecise information represented by a missing value,
an or-set, a possibility distribution, etc [2,4,5,10,11,13,14,15,20,21,22,23,25]. The
methods are broadly separated into three ways.

The first method is one based on possible worlds [17,20,21,22]. In the method,
possible tables, which consist of precise values, are obtained from an information
table. Eachpossible table is dealtwithby the traditionalmethods of applying rough
sets to information tables containing precise information, and then the results from
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the possible tables are aggregated. In other words, the methods that are already
established are applied to each possible table. Therefore, there is no doubt for cor-
rectness of the treatment. However, the method has difficulties for knowledge dis-
covery at the level of a set of possible values, although it is suitable for finding
knowledge at the level of possible values. This is because the number of possible ta-
bles exponentially increases as the number of imprecise attribute values increases.

The second method is to use assumptions on indiscernibility of missing values
[2,5,8,10,11,25]. Under the assumptions, we can obtain a binary relation for in-
discernibility between objects. To the binary relation, rough sets are applied by
using a class of objects; for example, an indiscernible class. In the method, it is
not clarified why the assumptions are valid to real data sets.

The third method directly deals with imprecise values, without using any as-
sumptions for indiscernibility, under extending the traditional method of rough
sets [13,14,15,16,25]. In the method, imprecise values are dealt with probabilis-
tically or possibilistically and the traditional methods are probabilistically or
possibilistically extended.1 A binary relation for indiscernibility is constructed
by calculating a degree for indiscernibility between objects. Indiscernible classes
for each object are obtained from the binary relation for indiscernibility. The
correctness criterion is that any extended method has to give the same results as
the method of possible worlds [13]. This criterion is commonly used in the field
of databases handling imprecise information [1,7,28].

Stefanowski and Tsoukiàs used implication operators to calculate an inclusion
degree between indiscernible classes [25]. Nakata and Sakai have shown that the
results in terms of implication operators do not satisfy the correctness criterion
and has proposed the method that satisfies the correctness criterion [13,14,15].
However, the proposed method has difficulties for definability, because rough
approximations are defined by constructing sets from singletons. Therefore, we
propose a method using equivalence classes, called a method of weighted equiva-
lence classes. In this paper, we show how weighted equivalence classes are applied
to information tables containing imprecise values expressed in a probability dis-
tribution, called probabilistic values.2

In Section 2, we briefly address the traditional methods of applying rough sets
to information tables containing precise information. In Section 3, methods of pos-
sible worlds are mentioned. In the methods, the extended set of possible tables is
obtained from an information table containing imprecise values. The traditional
methods of applying rough sets to precise information deal with each possible ta-
ble, and then the results from possible tables are aggregated. In Section 4, meth-
ods of applying rough sets to information tables containing probabilistic values
are described in terms of weighted equivalence classes. In Section 5, the method
of weighted equivalence classes is applied to information tables containing missing
values under probabilistic interpretation. Section 6 presents conclusions.

1 Ziarko proposes methods of rough sets applying data tables where each data is
accompanied by a probability [26,27].

2 See the reference [16] for information tables containing possibilistic values expressed
in a possibility distribution.
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2 Rough Sets to Precise Information

A data set is represented as a table, called an information table, where each row
represents an object and each column represents an attribute. The information
table is pair A = (U, AT ). U is a non-empty finite set of objects called the uni-
verse. Concretely speaking, U is the set of objects that comprise the information
table. AT is a non-empty finite set of attributes such that ∀a ∈ AT : U → Va.
Set Va is called the domain of attribute a. In information table T whose frame-
work is set AT of attributes, binary relation IND(ΨA) for indiscernibility of
objects in subset Ψ ⊆ U on subset A ⊆ AT of attributes is,

IND(ΨA) = {(o, o′) ∈ Ψ × Ψ | ∀a ∈ A a(o) = a(o′)}, (1)

where a(o) and a(o′) denote values of attribute a for objects o and o′, respec-
tively. This relation is called an indiscernibility relation. Obviously, IND(ΨA)
is an equivalence relation. From the indiscernibility relation, equivalence class
E(ΨA)o(= {o′ | (o, o′) ∈ IND(ΨA)}) containing object o is obtained. This is also
the set of objects that is indiscernible with object o, called the indiscernible class
for object o. Finally, family U/IND(ΨA) (= {E(ΨA)o | o ∈ Ψ}) of equivalence
classes is derived from the indiscernibility relation. All equivalence classes ob-
tained from the indiscernibility relation do not intersect with each other. This
means that the objects are uniquely partitioned.

Using equivalence classes, lower approximation Apr(ΦB, ΨA) and upper ap-
proximation Apr(ΦB , ΨA) of Φ/IND(ΦB) by Ψ/IND(ΨA) are,

Apr(ΦB , ΨA) = {E(ΨA) | ∃E(ΦB) E(ΨA) ⊆ E(ΦB)}, (2)

Apr(ΦB , ΨA) = {E(ΨA) | ∃E(ΦB) E(ΨA) ∩ E(ΦB) �= ∅}. (3)

where E(ΨA) ∈ Ψ/IND(ΨA) and E(ΦB) ∈ Φ/IND(ΦB) are equivalence classes
for sets Ψ and Φ of objects on sets A and B of attributes, respectively. These
formulas are expressed in terms of a family of equivalence classes. When we
express the approximations in terms of a set of objects, the following expressions
are used:

apr(ΦB , ΨA) = {o | o ∈ E(ΨA) ∧ ∃E(ΦB) E(ΨA) ⊆ E(ΦB)}, (4)
apr(ΦB , ΨA) = {o | o ∈ E(ΨA) ∧ ∃E(ΦB) E(ΨA) ∩ E(ΦB) �= ∅}. (5)

3 Methods of Possible Worlds

In methods of possible worlds, the traditional ways addressed in the previous
section are applied to each possible table, and then the results from possible
tables are aggregated.

When probabilistic values expressed in a probability distribution is contained
in information table T , we obtain extended set rep(T ) of possible tables,

rep(T ) = {(pt1, μ(pt1)), . . . , (ptn, μ(ptn))}, (6)
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where μ(pti) denotes the probability to which possible table pti is the actual one
and n is equal to Πi=1,mli, where the number of probabilistic values is m and each
of them is expressed in a probability distribution having li(i = 1, m)) elements.
When possible table pti is the table where probabilistic values in information
table T are replaced by vi1, vi2, . . ., vim,

μ(pti) =
∏

k=1,m

π(vik), (7)

where
∏

denotes product and probability π(vik) of element vik comes from
probability distribution π expressing the probabilistic value to which the element
belongs.

Each possible table consists of precise values. Family U/IND(ΨA)pti of equiv-
alence classes on set A of attributes is obtained from each possible table pti.
Possible table pti is accompanied by probability μ(pti) to which it is the actual
information table. Thus, the family of possible equivalence classes accompa-
nied by a probability is obtained for each possible table, which is expressed by
(U/IND(ΨA)pti , μ(pti)). When we express (U/IND(ΨA)pti , μ(pti)) in terms of
equivalence classes,

(U/IND(ΨA)pti , μ(pti)) = {(E(ΨA), μ(pti)) | E(ΨA) ∈ U/IND(ΨA)pti}, (8)

where equivalence class E(ΨA) is a possible equivalence class on set A of at-
tributes and has probability μ(pti) to which it is one of actual equivalence classes.
U/IND(ΨA) is the union of (U/IND(ΨA)pti , μ(pti)),

U/IND(ΨA) = ∪i(U/IND(ΨA)pti , μ(pti)). (9)

Note that the summation of probabilities is taken in the union if there are the
same elements accompanied by a probability. When we express family U/IND
(ΨA) in terms of equivalence classes,

U/IND(ΨA) = {(E(ΨA), κ(E(ΨA) ∈ U/IND(ΨA))) |
κ(E(ΨA) ∈ U/IND(ΨA)) > 0},(10)

where probability κ(E(ΨA) ∈ U/IND(ΨA)) to which equivalence class E(ΨA) is
contained in U/IND(ΨA) is,

κ(E(ΨA) ∈ U/IND(ΨA)) =
∑

E(ΨA)∈U/IND(ΨA)pti

μ(pti). (11)

To obtain lower and upper approximations, the traditional methods addressed
in the previous section are applied to possible tables. Let Apr(ΦB, ΨA)pti and
Apr(ΦB, ΨA)pti denote the lower and upper approximations of U/IND(ΦB)pti

by U/IND(ΨA)pti in possible table pti having probability μ(pti). Apr(ΦB , ΨA)pti

and Apr(ΦB , ΨA)pti are accompanied by probability μ(pti), which is expressed
by (Apr(ΦB , ΨA)pti , μ(pti)) and (Apr(ΦB , ΨA)pti , μ(pti)). Apr(ΦB, ΨA) and Apr
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(ΦB , ΨA) are the union of (Apr(ΦB , ΨA)pti , μ(pti)) and (Apr(ΦB , ΨA)pti , μ(pti)),
respectively.

Apr(ΦB , ΨA) = ∪i(Apr(ΦB , ΨA)pti , μ(pti)), (12)

Apr(ΦB , ΨA) = ∪i(Apr(ΦB , ΨA)pti , μ(pti)). (13)

When we express approximations in terms of equivalence classes,

Apr(ΦB, ΨA) = {(E(ΨA), κ(E(ΨA) ∈ Apr(ΦB , ΨA))) |
κ(E(ΨA) ∈ Apr(ΦB , ΨA)) > 0}, (14)

Apr(ΦB, ΨA) = {(E(ΨA), κ(E(ΨA) ∈ Apr(ΦB , ΨA))) |
κ(E(ΨA) ∈ Apr(ΦB , ΨA)) > 0}, (15)

where probabilities κ(E(ΨA) ∈ Apr(ΦB , ΨA)) and κ(E(ΨA) ∈ Apr(ΦB , ΨA)) to
which equivalence class E(ΨA) is contained in Apr(ΦB, ΨA) and Apr(ΦB , ΨA)
are,

κ(E(ΨA) ∈ Apr(ΦB , ΨA)) =
∑

E(ΨA)∈Apr(ΦB ,ΨA))pti

μ(pti), (16)

κ(E(ΨA) ∈ Apr(ΦB , ΨA)) =
∑

E(ΨA)∈Apr(ΦB ,ΨA))pti

μ(pti). (17)

These formulas show that the summation of the probabilities of possible tables
where equivalence class E(ΨA) is contained in rough approximations is equal to
the probability for equivalence class E(ΨA).

Proposition 1
When (E(ΨA), κ(E(ΨA) ∈ Apr(ΦB , ΨA))) is an element of Apr(ΦB, ΨA) in in-
formation table T , there exists set PT of possible tables where for all pt ∈
PT Apr(ΦB , ΨA)pt contains E(ΨA) and

∑
pt∈PT μ(pt) is equal to κ(E(ΨA) ∈

Apr(ΦB, ΨA)).

Proposition 2
When (E(ΨA), κ(E(ΨA) ∈ Apr(ΦB , ΨA))) is an element of Apr(ΦB, ΨA) in in-
formation table T , there exists set PT of possible tables where for all pt ∈
PT Apr(ΦB , ΨA)pt contains E(ΨA) and

∑
pt∈PT μ(pt) is equal to κ(E(ΨA) ∈

Apr(ΦB, ΨA)).

When the lower and upper approximations are expressed in terms of a set of
objects,

apr(ΦB, ΨA) = {(o, κ(o ∈ apr(ΦB , ΨA))) | κ(o ∈ apr(ΦB, ΨA)) > 0}, (18)
apr(ΦB, ΨA) = {(o, κ(o ∈ apr(ΦB , ΨA))) | κ(o ∈ apr(ΦB, ΨA)) > 0}, (19)
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and

κ(o ∈ apr(ΦB , ΨA)) =
∑

E(ΨA)�o

κ(E(ΨA) ∈ Apr(ΦB , ΨA)), (20)

κ(o ∈ apr(ΦB , ΨA)) =
∑

E(ΨA)�o

κ(E(ΨA) ∈ Apr(ΦB , ΨA). (21)

We adopt results from methods of possible worlds as a correctness criterion
of extended methods of applying rough sets to imprecise information. This is
commonly used in the field of databases handling imprecise information [1,7,28].

Correctness criterion
Results obtained from applying an extended method to an information table con-
taining imprecise values are the same as ones obtained from applying the corre-
sponding traditional method to every possible table derived from that information
table and aggregating the results created in the possible tables.

4 Rough Sets to Information Tables Containing
Probabilistic Values

When object o takes imprecise values for attributes, we calculate the degree to
which the attribute values are the same as another object o′. The degree is the
indiscernibility degree of object o and o′ on the attributes. In this case, a binary
relation for indiscernibility on set A of attributes is,

IND(ΨA) = {((o, o′), κ(A(o) = A(o′))) |
(κ(A(o) = A(o′)) �= 0) ∧ (o �= o′)} ∪ {((o, o), 1)},(22)

where κ(A(o) = A(o′)) denotes the indiscernibility degree of objects o and o′ on
set A of attributes and is equal to κ((o, o′) ∈ IND(ΨA)),

κ(A(o) = A(o′)) =
⊗

a∈A

κ(a(o) = a(o′)), (23)

where operator
⊗

depends on properties of imprecise attribute values. When
the imprecise attribute values are expressed in a probability distribution, the
operator is product denoted by

∏
.

From binary relation IND(ΨA) for indiscernibility, family U/IND(ΨA) of
weighted equivalence classes is obtained via indiscernible sets. Among the ele-
ments of IND(ΨA), set SA(o) of objects that are paired with object o, called
the indiscernible set on set A of attributes for object o, is,

SA(o) = {o′ | κ((o, o′) ∈ IND(ΨA)) > 0}. (24)

SA(o) is the greatest possible equivalence class among possible equivalence classes
containing objects o, when objects o has a precise value on all attributes in set A



288 M. Nakata and H. Sakai

of attributes. Let PSA(o) denote the power set of SA(o). From PSA(o), fam-
ily Can(U/IND(ΨA)o) of candidates for possible equivalence classes containing
object o is obtained,

Can(U/IND(ΨA)o) = {E(ΨA) | E(ΨA) ∈ PSA(o) ∧ o ∈ E(ΨA)}. (25)

Whole family Can(U/IND(ΨA)) of candidates for possible equivalence classes
is,

Can(U/IND(ΨA)) = ∪oCan(U/IND(ΨA)o). (26)

Probability κ(E(ΨA) ∈ U/IND(ΨA)) to which candidate E(ΨA) ∈ Can(U/IND
(ΨA)) is an actual one is,

κ(E(ΨA) ∈ U/IND(ΨA)) = κ(∧o∈E(ΨA) and o′∈E(ΨA)(A(o) = A(o′))
∧o∈E(ΨA) and o′ �∈E(ΨA)(A(o) �= A(o′))), (27)

where o �= o′, κ(f) is the probability to which formula f is satisfied, and κ(f) = 1
when there exists no f . When set Ψ of objects contains k objects and equivalence
class E(ΨA) consists of l objects,

κ(E(ΨA) ∈ U/IND(ΨA)) =
∑

(u,v1,···,vk−l)

(
∏

o∈E(ΨA)

πA(o)(u) ×
∏

oi �∈E(ΨA)

(πA(o1)(v1), πA(o2)(v2), . . . , πA(ok−l)(vk−l))), (28)

where

πA(o)(u) =
∏

j=1,m

πaj(o)(uj), (29)

πA(oi)(vi) =
∏

j=1,m

πaj(oi)(vij), (30)

where two values u and vi are different and are expressed in (u1, · · · , um) and
(vi1, · · · , vim) on set A(= {a1, a2, . . . , am}) of attributes, respectively. Finally,
family U/IND(ΨA) of weighted equivalence classes is,

U/IND(ΨA) = {(E(ΨA), κ(E(ΨA) ∈ U/IND(ΨA))) |
κ(E(ΨA) ∈ U/IND(ΨA)) > 0}.(31)

Proposition 3
When (E(ΨA), κ(E(ΨA) ∈ U/IND(ΨA))) is an element of U/IND(ΨA) in in-
formation table T , there exists set PT of possible tables where for all pt ∈
PT U/IND(ΨA)pt contains E(ΨA) and

∑
pt∈PT μ(pt) is equal to κ(E(ΨA) ∈

U/IND(ΨA)).



Applying Rough Sets to Information Tables Containing Probabilistic Values 289

Proposition 4
U/IND(ΨA) in an information table is equal to the union of the families of
possible equivalence classes accompanied by a probability, where each family of
possible equivalence classes is obtained from a possible table created from the
information table.

Proposition 5
For any object o,

∑

E(ΨA)�o

κ(E(ΨA) ∈ U/IND(ΨA)) = 1. (32)

Using families of weighted equivalence classes, we can obtain lower approxi-
mation Apr(ΦB , ΨA) and upper approximation Apr(ΦB , ΨA) of U/IND(ΦB) by
U/IND(ΨA). For the lower approximation,

Apr(ΦB , ΨA) = {(E(ΨA), κ(E(ΨA) ∈ Apr(ΦB, ΨA))) |
κ(E(ΨA) ∈ Apr(ΦB, ΨA)) > 0}, (33)

κ(E(ΨA) ∈ Apr(ΦB , ΨA)) =
∑

E(ΦB)

(κ(E(ΨA) ⊆ E(ΦB)) ×

κ(E(ΨA) ∈ U/IND(ΨA)) × κ(E(ΦB) ∈ U/IND(ΦB))), (34)

where

κ(E(ΨA) ⊆ E(ΦB)) =
{

1 if E(ΨA) ⊆ E(ΦB),
0 otherwise. (35)

Proposition 6
If (E(ΨA), κ(E(ΨA) ∈ Apr(ΦB , ΨA))) in information table T is an element of
Apr(ΦB, ΨA), there exists set PT of possible tables where for all pt ∈ PT
Apr(ΦB, ΨA)pt contains E(ΨA) and

∑
pt∈PT μ(pt) is equal to κ(E(ΨA) ∈ Apr

(ΦB , ΨA)).

For the upper approximation,

Apr(ΦB , ΨA) = {(E(ΨA), κ(o ∈ Apr(ΦB, ΨA))) |
κ(E(ΨA) ∈ Apr(ΦB , ΨA)) > 0}, (36)

κ(E(ΨA) ∈ Apr(ΦB , ΨA)) = κ(E(ΨA) ∩ ΦB �= ∅) ×
κ(E(ΨA) ∈ U/IND(ΨA)), (37)

where

κ(E(ΨA) ∩ ΦB �= ∅) =
{

1 if E(ΨA) ∩ ΦB �= ∅,
0 otherwise. (38)

From this formula, the upper approximation is trivial when ΦB = UB; namely,
Apr(UB, ΨA) = U/IND(ΨA).
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Proposition 7
If (E(ΨA), κ(E(ΨA) ∈ Apr(ΦB , ΨA))) in information table T is an element of
Apr(ΦB, ΨA), there exists set PT of possible tables where for all pt ∈ PT
Apr(ΦB, ΨA)pt contains E(ΨA) and

∑
pt∈PT μ(pt) is equal to κ(E(ΨA) ∈ Apr

(ΦB , ΨA)).

For expressions in terms of a set of objects, the same expressions as in
Section 3 are used.

Proposition 8
The lower and upper approximations that are obtained by the method of
weighted equivalence classes coincide with ones obtained by the method of pos-
sible worlds.

5 Information Tables Containing Missing Values

We apply the method of weighted equivalence classes to information tables con-
taining missing values. We briefly compare the method where Kryszkiewicz uses
indiscernible classes with the method of weighted equivalence classes.

When missing values are contained in information table T , Kryszkiewicz de-
fines binary relation IND(UA) for indiscernibility between objects on set A of
attributes as follows [8,10]:

IND(UA) = {(o, o′) ∈ U × U | ∀a ∈ A, a(o) = a(o′) ∨ a(o) = ∗ ∨ a(o′) = ∗},(39)

where ∗ denotes a missing value and U is used in place of Ψ when Ψ is equal to
universe U . From this definition, an object having missing values for all attributes
on set A of attributes is indiscernible with any object. This corresponds to“do not
care” semantics of missing values addressed by Grzymala-Busse [4,5]. By using
indiscernible classes obtained from IND(UA), Kryszkiewicz expresses lower and
upper approximations of set Φ ⊆ U of objects:

apr(Φ, UA) = {o ∈ U | SA(o) ⊆ Φ}, (40)
apr(Φ, UA) = {o ∈ U | SA(o) ∩ Φ �= ∅}, (41)

where SA(o)(= {o′ | (o, o′) ∈ IND(UA)}) denotes the indiscernible class for
object o.

When we use the method of weighted equivalence classes, a missing value in
an attribute is probabilistically interpreted. In the missing value, every element
in the domain of the attribute has the same probability to which the element is
the actual value. In other words, a missing value in attribute a is equal to the
probabilistic value expressed in the uniform probability distribution where every
element over the domain has the same probability 1/|Va|. When attribute value
a(o) of object o is a missing value,

κ(a(o) = a(o′)) =
∑

u,v∈Va

(μ=(u, v) × πa(o)(u) × πa(o′)(v)) = 1/|Va|,
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where πa(o)(u) and πa(o′)(u) denote probability distributions expressing attribute
values a(o) and a(o′),3 respectively, and,

μ=(u, v) =
{

1 if u = v,
0 otherwise.

This shows that the indiscernibility degree of an object taking a missing value
on attribute a with the other objects is equal to 1/|Va|; namely, the object is in-
discernible with all objects with probability 1/|Va|. We express lower and upper
approximations in terms of weighted equivalence classes, as is shown in the pre-
vious section. Differences between the method of Kryszkiewicz and the method
of weighted equivalence classes are clarified in the following simple example:

Example
We suppose that information table T is obtained:

T
O a1 a2 a3

1 x 1 a
2 x 1 a
3 x 1 a
4 x 1 a
5 ∗ 2 b

The mark O denotes the object identity. Domains Va1 , Va2 , and Va3 of attributes
a1, a2, and a3 are {x, y}, {1, 2}, and {a, b}, respectively.

First, we apply the method of Kryszkiewicz to information table T . For indis-
cernible classes of each object on attribute a1,

Sa1(o1) = Sa1(o2) = Sa1(o3) = Sa1(o4) = Sa1(o5) = {o1, o2, o3, o4, o5}.
We suppose that Φ = {o1, o2, o3, o4} for simplicity. For the lower approximation,
using formula (40), because of {o1, o2, o3, o4, o5} �⊆ {o1, o2, o3, o4},

apr(Φ, Ua1) = ∅
This shows that we do not obtain any information for the lower approximation.4

This is true for different expressions [4,6,12] proposed by several authors. For
the upper approximation, using formula (41), because of {o1, o2, o3, o4, o5} ∩
{o1, o2, o3, o4} �= ∅,

apr(Φ, Ua1) = {o1, o2, o3, o4, o5}.

Second, we use the method of weighted equivalence classes. Missing value ∗ in
information table T is expressed in probability distribution {(x, 1/2), (y, 1/2)}p.
Using formulas (24) – (31),
3 When a(o′) is a precise value; for example, a(o′) = x, probability distribution πa(o′)

is expressed in {(x, 1)}p, where subscript p denotes a probability distribution.
4 Stefanowski and Tsoukiàs points out that the method of Kryszkiewicz using ”do

not care” semantics creates quite poor results [24]. To handle the problem, other
assumptions for indiscernibility of missing values are proposed [2,24].
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U/IND(Ua1) = {({o1, o2, o3, o4}, 1/2), ({o1, o2, o3, o4, o5}, 1/2)},
Applying formulas (33) – (38),

Apr(Φ, Ua1) = {({o1, o2, o3, o4}, 1/2)},
Apr(Φ, Ua1) = {({o1, o2, o3, o4}, 1/2), {({o1, o2, o3, o4, o5}, 1/2)}.

Using formulas (18) – (21),

apr(Φ, Ua1) = {(o1, 1/2), (o2, 1/2), (o3, 1/2), (o4, 1/2)},
apr(Φ, Ua1) = {(o1, 1), (o2, 1), (o3, 1), (o4, 1), (o5, 1/2)}.

Last, we show results by the method of possible worlds. Extended set rep(T ) of
possible tables is,

rep(T ) = {(pt1, 1/2), (pt2, 1/2)}p.

pt1
O a1 a2 a3

1 x 1 a
2 x 1 a
3 x 1 a
4 x 1 a
5 x 2 b

pt2
O a1 a2 a3

1 x 1 a
2 x 1 a
3 x 1 a
4 x 1 a
5 y 2 b

For families of equivalence classes of possible tables,
(U/IND(Ua1), 1/2)pt1 = {({o1, o2, o3, o4, o5}, 1/2)},
(U/IND(Ua1), 1/2)pt2 = {({o1, o2, o3, o4}, 1/2), ({o5}, 1/2)},

For lower and upper approximations of each possible table,
Apr(Φ, Ua1)pt1 = ∅,
Apr(Φ, Ua1)pt1 = {({o1, o2, o3, o4, o5}, 1/2)},
Apr(Φ, Ua1)pt2 = {({o1, o2, o3, o4}, 1/2)}.
Apr(Φ, Ua1)pt2 = {({o1, o2, o3, o4}, 1/2)}.

Finally, using formulas (12) – (17) and (18) – (21),
Apr(Φ, Ua1) = {({o1, o2, o3, o4}, 1/2)},
Apr(Φ, Ua1) = {({o1, o2, o3, o4}, 1/2), ({o1, o2, o3, o4, o5}, 1/2)},
apr(Φ, Ua1) = {(o1, 1/2), (o2, 1/2), (o3, 1/2), (o4, 1/2)},
apr(Φ, Ua1) = {(o1, 1), (o2, 1), (o3, 1), (o4, 1), (o5, 1/2)}.

Indeed, the results obtained from the method of weighted equivalence classes
coincide with ones from the method of possible worlds.
This simple example shows that we obtain correct results for the lower approxi-
mation when weighted equivalence classes are used. On the other hand, we cannot
obtain any information for the lower approximation by the existence of only the
missing value in the method of Kryszkiewicz where indiscernible classes are used.
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6 Conclusions

We have proposed a method, where weighted equivalence classes are used, to
deal with imprecise information expressed in a probability distribution. The
lower and upper approximations by the method of weighted equivalence classes
coincide with ones by the method of possible worlds. In other words, this method
satisfies the correctness criterion that is used in the field of incomplete databases.
This is justification of the method of weighted equivalence classes.

We have applied the method of weighted equivalence classes to information
tables containing missing values under probabilistic interpretation. We obtain
correct results for rough approximations when weighted equivalence classes are
used, even if we do not obtain any results for the lower approximation when the
method of Kryszkiewicz is used.

Acknowledgment. This research has been partially supported by the Grant-
in-Aid for Scientific Research (C), Japan Society for the Promotion of Science,
No. 18500214.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
London, UK (1995)

2. Greco, S., Matarazzo, B., Slowinski, R.: Handling Missing Values in Rough Set
Analysis of Multi-attribute and Multi-criteria Decision Problem. In: Zhong, N.,
Skowron, A., Ohsuga, S. (eds.) New Directions in Rough Sets, Data Mining, and
Granular-Soft Computing. LNCS (LNAI), vol. 1711, pp. 146–157. Springer, Hei-
delberg (1999)

3. Grzymala-Busse, J.W.: On the Unknown Attribute Values in Learning from Ex-
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24. Stefanowski, J., Tsoukiàs, A.: On the Extension of Rough Sets under Incomplete
Information. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) New Directions in Rough
Sets, Data Mining, and Granular-Soft Computing. LNCS (LNAI), vol. 1711, pp.
212–219. Springer, Heidelberg (1999)
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