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Preface

This volume contains papers presented at the 4th International Conference on
Modeling Decisions for Artificial Intelligence (MDAI 2007), held in Kitakyushu,
Japan, August 16-18. This conference followed MDAI 2004 (Barcelona, Catalonia,
Spain), MDAI 2005 (Tsukuba, Japan), and MDAI 2007 (Tarragona, Catalonia,
Spain) with proceedings also published in the LNAI series (Vols. 3131, 3558, and
3885).

The aim of this conference was to provide a forum for researchers to dis-
cuss the theory and tools for modeling decisions as well as applications that
encompass decision-making processes and information-fusion techniques.

The organizers received 193 papers from 21 different countries, from Asia,
Europe, America, Africa, and Australia, 42 of which are published in this volume.
Each submission received at least two reviews from the Program Committee and
a few external reviewers. We would like to express our gratitude to them for
their work. The plenary talks presented at the conference are also included in
this volume.

The conference was supported by the University of Kitakyushu, the UNESCO
Chair in Data Privacy, the Japan Society for Fuzzy Theory and Intelligent Infor-
matics (SOFT), the Catalan Association for Artificial Intelligence (ACIA), the
European Society for Fuzzy Logic and Technology (EUSFLAT), and the City of
Kitakyushu.

May 2007 Vicenç Torra
Yasuo Narukawa

Yuji Yoshida
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An Overview of Fuzzy Relational Calculus and
Its Applications

Etienne E. Kerre

Fuzziness & Uncertainty Modelling,
Department of Applied Mathematics & Computer Science,

Ghent University, Krijgslaan 281 - S9,
B-9000, Belgium

etienne.kerre@ugent.be

http://www.fuzzy.ugent.be

The calculus of relations has been very important during the past 40 years from
theoretical as well as from practical point of view. The development of fuzzy
set theory, particularly in the framework of relational calculus has undoubtly
increased the interest in this domain of science.

In this paper I will give a brief overview of the most recent colourings of the
classical theory of relations and convince the reader about the high applicabil-
ity of fuzzy relational calculus in providing examples from information retrieval,
relational databases, approximate reasoning, preference modelling, medical diag-
nosis. Most of the work presented here has been developed in my research team
at Ghent University during the past 30 years.

1 New Concepts in Classical Relational Calculus

The concept of a relation is fundamental since only in a few steps one can
introduce this concept in the framework of set theory. Indeed as soon as the
meaning of the so-called classifier {z|P}, i.e., the class of all objects z that satisfy
a given property P , has been introduced (intuitively in the sense of Cantor or
axiomatically in the sense of Gödel-Bernays-Von Neumann or Zermelo-Fraenkel)
one may define a singleton, a doubleton, an ordered pair, the cartesian product
of two sets and finally a relation from X to Y as a subset of the cartesian
product X×Y . This concept may be extended to a relation between n universes
X1, X2, . . . , Xn as a subset of X1 × X2 × . . . × Xn. We all are familiar with a
special kind of relations, namely the functional relations or shortly functions. It
is hard to image mathematics without the concept of a relation, in particular
without the concept of a function. Some auxiliary notions with respect to a
relation R from X to Y are:

– The domain dom(R) consisting of all elements of X that are coupled by R
to at least one element of Y .

– The range rng(R) consisting of all elements of Y that are linked to at least
one element of X .

V. Torra, Y. Narukawa, and Y. Yoshida (Eds.): MDAI 2007, LNAI 4617, pp. 1–13, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 E.E. Kerre

– The inverse R−1 consisting of all ordered pairs (y, x) such that (x, y) belongs
to R.

– The R-afterset of x (denoted xR) consisting of all elements of Y that are
linked to x.

– The R-foreset of y (denoted Ry) consisting of all elements of X that are
linked to y.

Due to the last two notions introduced by Bandler and Kohout [1] in the 80’s,
a lot of new concepts concerning images and compositions could be introduced.
These concepts substantially enlarge the toolkit of relational calculus.

Since relations are sets all set-theoretic operations such as union, intersection,
complementation, difference, symmetric difference as well as the natural join
operation can be applied to relations. For example suppose that R1 and R2 are
relations from X to Y , then the union R1∪R2 consists of all ordered pairs (x, y)
that belong to R1 or to R2. It is interesting to note that all these operations can
be directly applied to aftersets and foresets, i.e., the (R1 ∪R2)-afterset of x ∈ X
equals the union of xR1 and xR2, i.e., the family of aftersets (xR)x∈X contains
all relevant information concerning the relation R and similarly for the family
of foresets (Ry)y∈Y .

Important notions in mathematics like continuity and measurability are based
on the concept of direct and inverse image of a set under a (functional) relation.

Let R be a relation from X to Y , A a subset of X and B a subset of Y , then

– the direct image of A under R is given by:

R(A) = {y|(∃x ∈ A)((x, y) ∈ R)}
or equivalently using after- and foresets:

R(A) = {y|A ∩Ry �= ∅}
= ∪

x∈A
xR

– the inverse image of B under R is given by:

R−1(B) = {x|(∃y ∈ B)((x, y) ∈ R)}
= {x|B ∩ xR �= ∅}
= ∪

y∈B
Ry

Inspired by the work of Bandler-Kohout [1] on the new compositions, De
Baets-Kerre [2-5] have introduced some new images that could be defined using
after- and foresets:

– the subdirect image of A under R:

R�(A) = {y|A ∩Ry �= ∅ and A ⊆ Ry}
= {y|A �= ∅ and Ry �= ∅ and A ⊆ Ry}
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– the superdirect image of A under R:

R�(A) = {y|A ∩Ry �= ∅ and Ry ⊆ A}
= {y|A �= ∅ and Ry �= ∅ and Ry ⊆ A}

– the squaredirect image of A under R:

R�(A) = {y|A ∩Ry �= ∅ and A = Ry}
= {y|A �= ∅ and Ry �= ∅ and A = Ry}

Finally we mention the most important operation on relations, namely composi-
tion or product and its useful extensions introduced by Bandler-Kohout [1] and
slightly modified by De Baets-Kerre [2-5].

Let R1 be a relation from X to Y and R2 a relation from Y to Z, then:

– the round product of R1 and R2 (read R1 before R2, R1 followed by R2) is
defined as the relation from X to Z given by:

R1 ◦R2 = {(x, z)|(∃y)((x, y) ∈ R1 and (y, z) ∈ R2)}

or equivalently using after- and foresets:

R1 ◦R2 = {(x, z)|xR1 ∩R2z �= ∅}

– the subproduct of R1 and R2:

R1 � R2 = {(x, z)|xR1 ∩R2z �= ∅ and xR1 ⊆ R2z}
= {(x, z)|xR1 �= ∅ and R2z �= ∅ and xR1 ⊆ R2z}

– the superproduct of R1 and R2:

R1 � R2 = {(x, z)|xR1 ∩R2z �= ∅ and R2z ⊆ xR1}
= {(x, z)|xR1 �= ∅ and R2z �= ∅ and R2z ⊆ xR1}

– the squareproduct of R1 and R2:

R1�R2 = {(x, z)|xR1 ∩R2z �= ∅ and xR1 = R2z}
= {(x, z)|xR1 �= ∅ and R2z �= ∅ and xR1 = R2z}

2 A Brief Outline of Fuzzy Relational Calculus

Since the old Greeks scientists have recognized that binary or black-or-white
logic is not sufficient to model our knowledge which is mostly pervaded with
imprecision. We have to wait until 1965 when Lotfi Zadeh introduced the con-
cept of a fuzzy set in his seminal paper entitled “Fuzzy Sets”,in order to model
imprecise terms as “sets” with unsharp bounderies where the transition from be-
longing to not belonging is rather gradual than abrupt. In the same spirit Zadeh
introduced the concept of a fuzzy relation from a universe X to a universe Y as
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a fuzzy set R in the cartesian product X×Y where R(x, y) denotes the strength
of relationship between x ∈ X and y ∈ Y .

More formally a fuzzy relation R from X to Y is a mapping from X × Y into
the unit interval [0, 1], attaching to every ordered pair (x, y) in X × Y a degree
of relationship R(x, y) belonging to [0, 1].

The basic concepts introduced in section 1 can be generalized or fuzzified as
follows. Let R be a fuzzy relation from X to Y , then:

– the domain of R is a fuzzy set in X given by:

dom(R)(x) = sup{R(x, y)|y ∈ Y }, ∀x ∈ X
– the range of R is a fuzzy set in Y given by:

rng(R)(y) = sup{R(x, y)|x ∈ X}, ∀y ∈ Y
– the inverse R−1 of R is the fuzzy relation from Y to X given by:

R−1(y, x) = R(x, y), ∀(y, x) ∈ Y ×X
– the R-afterset of x ∈ X is the fuzzy set in Y given by:

xR(y) = R(x, y), ∀y ∈ Y
– the R-foreset of y ∈ Y is the fuzzy set in X given by:

Ry(x) = R(x, y), ∀x ∈ X
All the set-theoretic operations have been extended in an infinite number of
ways to fuzzy sets and a fortiori to fuzzy relations using the concepts of tri-
angular norms and conorms introduced by Schweizer-Sklar in the framework of
probabilistic metric spaces. A triangular norm T is a [0, 1]2 − [0, 1] mapping
satisfying commutativity, associativity, monotonicity and the boundary condi-
tion T (x, 1) = x, ∀x ∈ [0, 1]. A triangular conorm S is defined in a similar way
but with the boundary condition S(x, 0) = x, ∀x ∈ [0, 1]. The T -intersection
(S-union) of two fuzzy relations R1 and R2 from X to Y is defined as a fuzzy
relation from X to Y given as:

R1 ∩T R2(x, y) = T (R1(x, y), R2(x, y))

R1 ∪S R2(x, y) = S(R1(x, y), R2(x, y))

for all (x, y) ∈ X × Y .
All operations on fuzzy relations may be defined using after- and foresets, i.e.:

x(R1 ∩T R2) = xR1 ∩T xR2, ∀x ∈ X
(R1 ∪S R2)y = R1y ∪S R2y, ∀y ∈ Y

In order to fuzzify the concepts of images and compositions we need an ex-
tension of the classical intersection or conjunction operation and the binary
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implication to model the inclusion. As said before the intersection of two fuzzy
sets in some universe may be modelled by a triangular norm ranging from the
smallest one (the drastic one) to the largest one being the minimum operator.
In this way we obtain for the T -direct image of a fuzzy set A in X under a fuzzy
relation R from X to Y :

RT (A) : Y → [0, 1]
y �→ sup

x∈X
T (A(x), R(x, y)), ∀y ∈ Y

Similarly for the T -round composition of a fuzzy relation R1 from X to Y
followed by a fuzzy relation R2 from Y to Z we obtain:

R1 ◦T R2 : X × Z → [0, 1]
(x, z) �→ sup

y∈Y
T (R1(x, y), R2(y, z)), ∀(x, z) ∈ X × Z

A fuzzy implication is defined as a [0, 1]2 − [0, 1] mapping I satisfying the
boundary conditions: I(0, 0) = I(0, 1) = I(1, 1) and I(1, 0) = 0.

Putting extra conditions such as hybrid monotonicity, neutrality principle and
exchange principle leads to more specific implication operators. Some popular
operators are:

– the Kleene-Dienes implication IKD given as:

IKD(x, y) = max(1− x, y)
– the Lukasiewicz implication IL given as:

IL(x, y) = min(1, 1− x+ y)

– the Reichenbach implication IR given as:

IR(x, y) = 1− x+ xy

Let R be a fuzzy relation from X to Y , A a fuzzy set in X , T a triangular norm
and I a fuzzy implication. Then we define:

– the T -I subdirect image of A under R as:

R�
T,I(A) : Y → [0, 1]

y �→ min(sup
x∈X

T (A(x), R(x, y)), inf
x∈X

I(A(x), R(x, y))), ∀y ∈ Y

– the T -I superdirect image of A under R as:

R�
T,I(A) : Y → [0, 1]

y �→ min(sup
x∈X

T (A(x), R(x, y)), inf
x∈X

I(R(x, y), A(x))), ∀y ∈ Y

– the T -I squaredirect image of A under R as:

R�
T,I(A) : Y → [0, 1]

y �→ min(R�
T,I(A)(y), R�

T,I(A)(y)), ∀y ∈ Y
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Finally let us fuzzify the new compositions of fuzzy relations. Let R1 be a
fuzzy relation from X to Y , R2 a fuzzy relation from Y to Z, T a triangular
norm and I a fuzzy implication. Then we define:

– the T -I subproduct of R1 and R2 as:

R1 �T,I R2 : X × Z → [0, 1]
(x, z)�→min(sup

y∈Y
T (R1(x, y), R2(y, z)),inf

y∈Y
I(R1(x, y), R2(y, z))),

∀(x, z) ∈ X × Z
– the T -I superproduct of R1 and R2 as:

R1 �T,I R2 : X × Z → [0, 1]
(x, z)�→min(sup

y∈Y
T (R1(x, y), R2(y, z)),inf

y∈Y
I(R2(y, z), R1(x, y))),

∀(x, z) ∈ X × Z
– the T -I squareproduct of R1 and R2 as:

R1�T,IR2 : X × Z → [0, 1]
(x, z) �→min(R1 �T,I R2(x, z), R1 �T,I R2(x, z)),∀(x, z) ∈ X × Z

For more detailed information about the basics of fuzzy relational calculus and
some of its extensions such as to intuitionistic fuzzy set theory and rough set
theory we refer to [6-16].

3 A List of Successful Applications of Fuzzy Relational
Calculus

In this section I want to convince the reader about the huge number of domains
where fuzzy relations can be applied. Once more I will restrict myself to those
domains in which my research team has been active during the past 30 years.

3.1 Information Retrieval

In a document retrieval system there are basically 3 finite sets involved: a set
U = {u1, . . . , up} of users of the system, a setD = {d1, . . . , dq} of documents con-
stituting the system and a set T = {t1, . . . , tr} of terms (descriptors, keywords)
describing the documents. The document retrieval system can be described by
means of a fuzzy relation F from D to T where F (d, t) indicates for every pair
(d, t) belonging to D×T to what degree a document d deals with a term t. From
such a document description relation a lot of information can be obtained using
the apparatus of fuzzy relational calculus. Some examples:

– the F -afterset of a document d gives the fuzzy set of terms that are treated
in this document,

– the F -foreset of a term t gives the fuzzy set of documents that deal with t,
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– the compositions F ◦T F
−1, F �T,I F

−1, F �T,I F
−1, F�T,IF

−1 are fuzzy
relations fromD toD that measure the overlap or redundancy of information
available in the documents,

– the compositions F−1 ◦T F , F−1 �T,I F , F−1 �T,I F , F−1�T,IF are fuzzy
relations from T to T that measure the dependencies between the terms,

– the compositions G ◦T F
−1, G �T,I F

−1, G �T,I F
−1, G�T,IF

−1, where G
is a fuzzy relation from the set U of users to the set T of terms, are fuzzy
relations from U to D that measure the interest of the users in the document
available.

For more information we refer to [17-21].

3.2 Relational Databases

Relational calculus has started its development with the introduction of set
theory by Cantor at the end of the 19th century. However we had to wait till
1970 when Codd launched the most popular database management system based
on relational calculus for a renewed interest in this domain of mathematics. A
classical relational data model consists in a finite number of finite setsD1, . . . , Dn

called domains and a number of variables A1, . . . , An called attributes, that
assume values in the respective setsD1, . . . , Dn. Now the data can be represented
by means of n-ary relations between D1, . . . , Dn.

The class of all n-ary relations on D1, . . . , Dn is called the relational scheme
on the domainsD1, D2, . . . , Dn. Then relational algebra has been used to provide
the answer to the queries. Like other classical models, the classical relational data
model is also of an all-or-nothing nature in data representation as welll as in data
manipulation, i.e., anything in or about the database should be precisely defined
(for example: salary = 3.000 EUR per month) and represented. That’s why the
creation of fuzzy relational databases in which attribute values may be impre-
cise (salary=between 2.500 and 3.500 EUR per month) or fuzzy (salary = high)
and where queries may be formulated in natural language (necessarily contain-
ing vague predicates), has substantially enhanced the applicability of relational
databases. For more details about important concepts such as data redundancy,
functional dependencies, normal forms and integrity we refer to [22-40].

3.3 Application to Approximate Reasoning

Commonsense knowledge in general and expert knowledge in particular are per-
vaded with imprecision and uncertainty. Relational calculus is very useful to
treat both aspects of incomplete information. The knowledge base of an expert
system consists of a database of facts (for example: unemployment is very high)
and a rulebase of so-called IF-THEN rules (for example: if unemployment is high
then salaries will be low) being of the general form: IF X is A THEN Y is B,
where: X is a variable taking values in a universe U ,

Y is a variable taking values in a universe V ,
A is a fuzzy set in U ,
B is a fuzzy set in V .
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Such a rule can be modelled by means of a fuzzy relation R from U to V :
R(u, v) = I(A(u), B(v)) where I represents a fuzzy implication, i.e., a [0, 1]2 −
[0, 1] mapping satisfying the boundary conditions I(0, 0) = I(0, 1) = I(1, 1) = 1
and I(1, 0) = 0. Now suppose we also know that “X is A′” where A′ is a fuzzy set
in U . Then we can infer (the so-called generalized modus ponens) a restriction
on the variable Y : Y is B′ where B′ = RT (A′).

This compositional rule of inference can be generalized to an arbitrary number
of relational connections between an arbitrary number of variables using the
concepts of cylindrical extension and projection. For more details see [44-45].

Another important application of fuzzy relations, in particular resemblance re-
lations, in approximate reasoning concerns the representation of linguistic hedges
(more-or-less, very, roughly) used for the modification of linguistic values. For
more details we refer to [50].

The concept of a rough set as introduced by Z. Pawlak is based on an approx-
imation space, i.e., a non-empty universe together with an equivalence relation.
Generalizing an equivalence relation to a similarity relation R (i.e., a fuzzy rela-
tion satisfying relexivity, symmetry and sup-min transitivity) leads to a so-called
fuzzy approximation space (see [55]). For every fuzzy set A in X , a fuzzy impli-
cator I and a triangular norm T , we defined a lower and an upper fuzzy rough
approximation of A as:

RI(A)(x) = inf
y∈X

I(R(x, y), A(y)), ∀x ∈ X

RT (A)(x) = sup
y∈X

T (R(x, y), A(y)), ∀x ∈ X

i.e., the lower fuzzy rough approximation is closely related to the T -I superdirect
image of A under R, while the upper fuzzy rough approximation equals the
T -direct image of A under R. For more information about fuzzy rough sets
consisting of an ordered pair of a lower and an upper fuzzy rough approximation
we refer to [55]. In [54] we gave several characterizations of important classes
of (L-) fuzzy relations (serial, reflexive, irreflexive, symmetric, L-transitive, L-
cotransitive, L-Euclidean and L-coEuclidean) in terms of fuzzy modal operators.

Further applications of fuzzy relational calculus for approximate reasoning
can be found in [41-57].

3.4 Application to Preference Modelling

In a decision making problem one is usually confronted with a set A of alter-
natives among which the best one has to be choosen. The decision maker has
to compare any two alternatives a and b and has to choose one of the following
statements: a is preferred to b, b is preferred to a, indifferent to a and b, unable
to compare a and b. In this way 3 crisp binary relations on A are defined: P
(preference), I (indifference) and J (incomparability), satisfying:

(1) I is reflexive and J is irreflexive,
(2) P is asymmetric,
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(3) I and J are symmetric,
(4) P ∩ I = ∅ and P ∩ J = ∅ and I ∩ J = ∅
(5) P ∪ P t ∪ I ∪ J = A2,

where P t denotes the transpose of P .
In a series of papers we have investigated the fuzzified version of such a clas-

sical preference structure. For more details we refer to [71-77].

3.5 Application to Image Processing, Ordering Techniques and
Medical Diagnosis

Because of space limitation I cannot provide more details about these applica-
tions. Application to image processing techniques, especially to fuzzy mathemat-
ical morphology can be found in [58-62]. The use of fuzzy relational calculus for
fuzzy order relations and for ranking fuzzy quantities has been demonstrated in
[63-67]. Finally some applications of fuzzy relations to medical diagnosis have
been described in [68-70].
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Abstract. The Golden ratio is one of the most beloved numbers in hu-
man society. It is a symobol of combination of beauty and practical use.
We consider the Golden ratio through four models —(i) optimization, (ii)
inequality, (iii) identity and (iv) opertator —. We introduce the Golden
matrices whose characteristic values are the Golden number and its con-
jugate. We show that the Golden matrices take an important role in the
four models. Further the role is essentially equivalent.

1 Introduction

The Golden ratio is one of the most beautiful irrational numbers in science, tech-
nology and art, especially in mathematics, biology and architecture [2,3,7,8,9].
The human history proves it. We enjoy it in our daily life.

In this paper we show that the Golden number takes an important and beau-
tiful part in mathematical models. We take four mathematical models — opti-
mization, inequality, identity and operator —. These mutually related four are
the basic mathematical tools. We show that if we place the Golden number
in the center of the four models, a beautiful relation is observed. It is shown
that optimization, inequality and identity are equivalent each other [4,5]. As the
fourth equivalent model we consider operator, which is expressed by a 2×2 integer
symmetric matrix.

In section 2, we introduce an elemental matrix which is called Golden. Section
3 shows a quadruplet associated with the Golden matrix. Section 4 shows the
n-th power of the Golden matrix. In section 5, a quadruplet associated with the
the n-th power matrix is shown. In the last section, we introduce another three
Golden matrices and state their corresponding results.

2 Golden Matrix A

A real number

φ =
1 +

√
5

2
≈ 1.618

is called Golden number. It is the larger of the two solutions to quadratic equation
(QE)

x2 − x− 1 = 0. (1)
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Sometimes QE (1) is called Fibonacci or Golden. The Golden QE has two real
solutions: φ and its conjugate φ := 1− φ. We note that

φ+ φ = 1, φ ·φ = −1.

Further we have

φ2 = 1 + φ, φ
2

= 2− φ
φ2 + φ

2
= 3, φ2 ·φ2

= 1.

Let us consider an integer symmetric matrix

A =
(

1 −1
−1 0

)
as an elemental matrix. The matrix A is called Golden. A reason will be clarified
as follows. The characteristic equation of A is Golden:

λ2 − λ− 1 = 0. (2)

Eq.(2) has the two eigenvalues — the Golden number and its conjugate —

λ1 = φ, λ2 = 1− φ = φ (3)

with the corresponding eigenvectors with the Golden ratio

x1 = c

(−φ
1

)
, x2 = c

(
1
φ

)
(4)

where −∞ < c <∞. For the normality, we take

c =
1√

2 + φ
.

Then the eigenvectors x1, x2 are orthonormal.

3 The First Quadruplet

We consider an equivalence between four models — optimization, inequality,
identity and operator — through the Golden matrix A.

Let us now take the quadratic form

(x, y)A
(
x
y

)
= x2 − 2xy

as an objective function. Our optimization problem is

Maximize and minimize x2 − 2xy
(OP) subject to (i) x2 + y2 = 1

(ii) −∞ < x, y <∞.
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Theorem 1. (Optimization) Then (OP) has the maximum value M = φ at

the points (x∗, y∗) = ± 1√
2 + φ

(φ, −1 ) and the minimum value m = φ at the

points (x̂, ŷ) = ± 1√
2 + φ

(1, φ ) .

The following inequality and identity hold true.

Theorem 2. (Inequality) It holds that

φ(x2 + y2) ≤ x2 − 2xy ≤ φ(x2 + y2) on R2.

The sign of right equality holds if and only if x+φy = 0. The sign of left equality
holds if and only if φx− y = 0.

Theorem 3. (Identity) It holds that

x2 − 2xy − φ(x+ φy)2 = φ(x2 + y2)

φ(x2 + y2)− φ(φx − y)2 = x2 − 2xy.

The forementioned three statements are equivalent each other (see [1,5,6]).
Let the Golden matrix

A =
(

1 −1
−1 0

)
be associated with two auxiliary matrices

U = φI −A , V = A− φI.
Both identity matrix and zero matrix are denoted by

I =
(

1 0
0 1

)
, O =

(
0 0
0 0

)
.

Then we have

U =
(−φ 1

1 φ

)
, V =

(
φ −1
−1 −φ

)
.

We note that

(x, y)U
(
x
y

)
= − φx2 + 2xy + φy2

= − φ(x+ φy)2 ≥ 0

(x, y)V
(
x
y

)
= φx2 − 2xy − φy2

= − φ(φx− y)2 ≥ 0.

We write P > Q (resp. P ≥ Q) if and only if the subtracted matrix P −Q is
positive definite (resp. nonnegative definite). These are also written as Q < P
(resp. Q ≤ P ). Then we have the following results.
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Lemma 1. {
U ≥ O

V ≥ O.

Further we have ⎧⎪⎪⎨⎪⎪⎩
−U + V =

(
1 −2
−2 −1

)
U + V = (φ− φ)I.

Lemma 2. ⎧⎪⎪⎨⎪⎪⎩
UV = O

U2 = (φ− φ)U
V 2 = (φ− φ)V.

(5)

We say that U, V are φ-quadratic iff (5) is satisfied.

Theorem 4. (Operator) It holds that{
A = φI − U
A = φI + V

where

{
U ≥ O

V ≥ O.

It is easily shown that Theorems 1, 2, 3 and 4 are equivalent. Thus we have a
quadruplet of equivalent statements.

4 The n-th Power An

It is well known that the Golden number is closely related to the Fibonacci
sequence. The Fibonacci sequence {an} is defined by the difference equation

an+2 − an+1 − an = 0 a0 = 0, a1 = 1. (6)

In fact, the Golden number and its conjugate are the limits of the ratio of
adjacent terms in the Fibonacci sequence:⎧⎪⎨⎪⎩

φ = lim
n→∞

an+1

an

φ = lim
n→−∞

an+1

an
.

The Fibonacci sequence is tabulated in Table 1.
The number an is called n-th Fibonacci number. We note that

an > 0 n = · · · ,−3,−1, 0, 1, 2, · · ·
(7)

an < 0 n = · · · ,−6,−4,−2.
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Table 1. Fibonacci sequence {an}

n −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1
an 233 −144 89 −55 34 −21 13 −8 5 −3 2 −1 1 0 1

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
an 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597

We remark that the linearization{
φn = an−1 + anφ

φ
n

= an−1 + anφ

holds true. A matrix form is the following.

Theorem 5. (Linearization)

An = anA+ an−1I

where an is the n-th Fibonacci number.

Thus we have

An =
(
an+1 −an

−an an−1

)
.

5 The n-th Quadruplet

Now let us consider a quadruplet associated with the n-th power matrix An.

Theorem 6. (n-Operator){
An = φnI − anU

An = φ
n
I + anV

where

{
U = φI −A ≥ O

V = A− φI ≥ O.

where an is the n-th Fibonacci number.

Proof. The proof is by induction or through linearization. ��

Corollary 1.

φ
n
I ≤ An ≤ φnI n = · · · ,−3,−1, 0, 1, 2, · · ·

φ
n
I ≥ An ≥ φnI n = · · · ,−6,−4,−2.

Corollary 2. ⎧⎪⎪⎨⎪⎪⎩
An =

1
2

(
φn + φ

n
)
I +

an

2

(
1 −2
−2 −1

)
(
φn − φn

)
= an(φ− φ).
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Let us now take an optimization problem associated with matrix

An =
(
an+1 −an

−an an−1

)
.

We consider the optimization problem

Maximize and minimize an+1x
2 − 2anxy + an−1y

2

(OPn) subject to (i) x2 + y2 = 1
(ii) −∞ < x, y <∞.

From Therem 6 together with (7), we have three equivalent statements as
follows.

Theorem 7. (n-Optimization) (i) Let an integer n be negative odd or non-
negative. Then (OPn) has the maximum value M = φn at the points (x∗, y∗) =

± 1√
2 + φ

(φ, −1 ) and the minimum value m = φ
n

at the points (x̂, ŷ) =

± 1√
2 + φ

(1, φ ) .

(ii) Let an integer n be negative even. Then (OPn) has the minimum value

m = φn at the points (x̂, ŷ) = ± 1√
2 + φ

(φ, −1 ) and the maximum value

M = φ
n

at the points (x∗, y∗) = ± 1√
2 + φ

(1, φ ) .

Theorem 8. (n-Inequality) (i) Let an integer n be negative odd or nonnega-
tive. Then it holds that

φ
n
(x2 + y2) ≤ an+1x

2 − 2anxy + an−1y
2 ≤ φn(x2 + y2) on R2.

(ii) Let an integer n be negative even. Then it holds that

φ
n
(x2 + y2) ≥ an+1x

2 − 2anxy + an−1y
2 ≥ φn(x2 + y2) on R2.

In either case, the sign of right equality holds if and only if x+φy = 0. The sign
of left equality holds if and only if φx− y = 0.

Theorem 9. (n-Identity) It holds that

an+1x
2 − 2anxy + an−1y

2 − anφ(x+ φy)2 = φn(x2 + y2)

φ
n
(x2 + y2)− anφ(φx − y)2 = an+1x

2 − 2anxy + an−1y
2.

We note that (
an+1 −an

−an an−1

)
= an

(
1 −1
−1 0

)
+ an−1

(
1 0
0 1

)
.
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This yields the identity.

an+1x
2 − 2anxy + an−1y

2 = an(x2 − 2xy) + an−1(x2 + y2).

Therefore, an optimization of quadratic form

an+1x
2 − 2anxy + an−1y

2

under a condition x2 + y2 = c is reduced to optimization of

x2 − 2xy

under the same condition.
Now we may take the first optimization problem

Maximize and minimize x2 − 2xy
(OP1) subject to (i) x2 + y2 = 1

(ii) −∞ < x, y <∞.

Then (OP1) has the maximum valueM = φ at the points (x∗, y∗) = ± 1√
2 + φ

×

(φ, −1 ) and the minimum valuem = φ at the points (x̂, ŷ) = ± 1√
2 + φ

(1, φ ) .

Let an integer n be negative odd or nonnegative. Then the n-th optimization
problem (OPn) has the maximum value M = anφ + an−1 at the same points
(x∗, y∗) and the minimum value m = anφ + an−1 = −anφ + an+1 at the same
points (x̂, ŷ). Let n be negative even. Then (OPn) has the minimum value m =
anφ + an−1 at the points (x∗, y∗) and the maximum value M = anφ + an−1 =
−anφ+ an+1 at the points (x̂, ŷ).

6 Golden Matrices B, C and F

We have considerd some properties of the elemental matrix

A =
(

1 −1
−1 0

)
.

Now we specify the similar results for another three elemental matrices.

B =
(

1 1
1 0

)
, C =

(
0 −1
−1 1

)
, F =

(
0 1
1 1

)
.

Let us now introduce the associated three matrices as follows.

J =
(

1 0
0 −1

)
, K =

(
0 1
1 0

)
, L =

(
0 1
−1 0

)
.



Golden Quadruplet 21

Lemma 3. The first two are symmetric and the third is skew-symmetric:

J ′ = J, K ′ = K, L′ = −L.

The square are
J2 = I, K2 = I, L2 = −I.

Thus the inverse matrices are

J−1 = J, K−1 = K, L−1 = −L.

The three matrices B, C and F are connected to the matrix A through J, K
and L, respectively.

Lemma 4.

B = JAJ, C=KAK, F = L′AL,

A = JBJ, A=KCK, A = L′FL.

6.1 Matrix B

The elemental matrix B =
(

1 1
1 0

)
has the following properties.

Corollary 3. It holds that {
Bn = φnI − anU

Bn = φ
n
I + anV

where two nonnegative definite matrices

U =
(−φ −1
−1 φ

)
, V =

(
φ 1
1 −φ

)
are φ-quadratic. Therefore,

φ
n
I ≤ Bn ≤ φnI n = · · · ,−3,−1, 0, 1, 2, · · ·

φ
n
I ≥ Bn ≥ φnI n = · · · ,−6,−4,−2.

Thus, for matrix B, we have a corresponding Theorem 6 (n-Operator),
Theorem 7 (n-Optimization), Theorem 8 (n-Inequality) and Theorem 9 (n-
Identitity). A golden quadruplet holds true for matrix B.

6.2 Matrix C

The elemental matrix C =
(

0 −1
−1 1

)
has the following properties.



22 S. Iwamoto

Corollary 4. It holds that {
Cn = φnI − anU

Cn = φ
n
I + anV

where two nonnegative definite matrices

U =
(
φ 1
1 −φ

)
, V =

(−φ −1
−1 φ

)
are φ-quadratic. Therefore,

φ
n
I ≤ Cn ≤ φnI n = · · · ,−3,−1, 0, 1, 2, · · ·

φ
n
I ≥ Cn ≥ φnI n = · · · ,−6,−4,−2.

Thus, for matrix C, we have a correponding golden quadruplet: optimization –
inequality – identitity – operator.

6.3 Matrix F

The elemental matrix F =
(

0 1
1 1

)
has the following properties.

Corollary 5. It holds that {
Fn = φnI − anU

Fn = φ
n
I + anV

where two nonnegative definite matrices

U =
(
φ −1
−1 −φ

)
, V =

(−φ 1
1 φ

)
are φ-quadratic. Therefore,

φ
n
I ≤ Fn ≤ φnI n = · · · ,−3,−1, 0, 1, 2, · · ·

φ
n
I ≥ Fn ≥ φnI n = · · · ,−6,−4,−2.

Thus, a golden quadruplet holds true for matrix F .
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Abstract. Pattern discovery from string data is an important problem
with many applications. In this paper, we give a brief overview of our
work on the optimal correlated pattern discovery problem, which inte-
grates numerical attribute information into the string pattern discovery
process.

1 Introduction

Due to the phenomenal growth of the Internet, computer storage and compu-
tational power, we are now able to store and utilize massive amounts of data.
Although the types of data are diverse, a large portion of the data can be consid-
ered as strings, for example, web pages and biological sequences such as DNA,
RNA, and proteins. Discovering meaningful string patterns from these data is
an important topic of study, with numerous applications [1,2].

Unlike conventional data attributes which are explicitly given, attributes on
string data are implicit, and various pattern classes can be considered. Good
patterns which characterize a set of strings can be very useful, since it is not
very difficult to interpret the knowledge encapsulated in them. Patterns can also
be used as a basis for classifying and characterizing new and unknown strings,
by determining whether or not the pattern matches the string. Our research
group has been actively studying this area, starting from the development of the
BONSAI system [3], which was one of the early systems for the classification of
string data. We have then explored the subproblem of finding the optimal string
pattern that distinguishes between positive and negative string sets, for various
pattern classes [4,5,6,7,8,9].

Due to recent technical advances such as the development of microarrays [10],
vast amounts of numerical measurements that are related to genomic sequences
have been produced. For example, it is possible to measure the expression lev-
els of all the genes of a given organism. To output more relevant and reliable
results, methods that effectively integrate different sources of information into
the data analysis process have come to attract attention [11,12]. To this end, we
have considered a new formulation of pattern discovery called correlated pattern
discovery. We consider the case where we are given a single set of sequences,
and each sequence is assigned a numeric attribute value. The problem is to find
the pattern whose occurrence in the sequences are correlated with the numeric
attribute value [13,14,15,16].
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In this paper, we briefly review our basic framework for optimal correlated
pattern discovery.

2 The Optimal Pattern Discovery Problem

Let Σ be a finite alphabet. An element of Σ∗ is called a string. Strings x, y, and
z are said to be a prefix, substring, and suffix of string w = xyz, respectively.
The length of a string w is denoted by |w|. The empty string is denoted by ε,
that is, |ε| = 0. Let R represent the set of real numbers.

A pattern class is a pair C = (Π,ψ), where Π is a set called the pattern set
and ψ : Π × Σ∗ → {true, false} is a pattern matching function. An element
p ∈ Π is called a pattern. For a pattern p and string t ∈ Σ∗, we say that the
pattern p of class C matches text t if ψ(p, t) = true, and p of class C does
not match t, otherwise. For example, the substring pattern class is defined as
Csubstr = (Σ∗, ψsubstr), where ψsubstr(p, t) = true iff p is a substring of t.

For a given pattern class C = (Π,ψ) and a set of strings S = {s1, . . . , sm}, let
Mψ(p, S) denote the set of indices of strings in S that p matches. That is,

Mψ(p, S) = {i | ψ(p, si) = true, i = 1, . . . ,m}.
The optimal classificatory pattern discovery problem is defined as follows:

Problem 1 (Optimal classificatory pattern discovery). For a given pattern class
C = (Π,ψ), string sets S, T ⊆ Σ∗ (S ∩ T = ∅), and function score, find p̂ ∈ Π
such that:

p̂ = argmax
p∈Π

score(|Mψ(p, S)|, |S|, |Mψ(p, T )|, |T |).

We require that the scoring function is dependent only on the classificatory
strength of a pattern, represented by the number of strings in each set, as well
as the number of strings in each set that the pattern matches. Examples of such
scoring functions are: Gini index, information entropy gain, and chi-squared
statistic.

Now suppose that for a given set of strings S = {s1, . . . , sm}, we are given a set
of numeric attribute values R = {r1, . . . , rm}, where each ri ∈ R represents some
aspect of string si ∈ S. Without loss of generality, assume that r1 ≤ . . . ≤ rm.

Problem 2 (Optimal correlated pattern discovery). For a given pattern class C =
(Π,ψ), a set of strings S = {s1, . . . , sm}, a set of numeric attributes R =
{r1, . . . , rm}, and function score, find the pattern p̂ ∈ Π such that:

p̂ = argmax
p∈Π

score(|Mψ(p, S)|, |S|,
∑

i∈Mψ(p,S)

ri,
∑

i∈{1,...,m}
ri).

Here, we require that the scoring function is dependent on the number of strings
and the total sum of the numeric attribute values, as well as the number of
strings that the pattern matches, and the total sum of the numeric attribute
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values for strings that the pattern matches. Examples of such scoring functions
are: interclass variance and Wilcoxon rank sum test statistic (provided that ri
is converted to rank information).

It is not difficult to see that the optimal classificatory pattern discovery prob-
lem is a special case of the optimal correlated pattern discovery problem. For
a given instance of the optimal classificatory pattern discovery problem, let
S′ = S ∪ T = {s1, . . . , sm}, and let R = {r1, . . . , rm} where ri = 1 if si ∈ S
and ri = −1 if si ∈ T . Noticing that |Mψ(p, S′)| = |Mψ(p, S)| + |Mψ(p, T )|,∑

i∈Mψ(p,S′) ri = |Mψ(p, S)| − |Mψ(p, T )|, and
∑

i∈{1,...,m} ri = |S| − |T |, we
have that

|Mψ(p, S)| =
|Mψ(p, S′)|+∑i∈Mψ(p,S′) ri

2
,

|Mψ(p, T )| =
|Mψ(p, S′)| −∑i∈Mψ(p,S′) ri

2
,

|S| = |S′|+∑i∈{1,...,m} ri

2
,

|T | = |S′| −∑i∈{1,...,m} ri

2
.

Therefore, the optimal correlated pattern for string set S, attribute set R, and
scoring function score ′(w, x, y, z) = score

(
w+y

2 , w−y
2 , x+z

2 , x−z
2

)
is equivalent to

the optimal classificatory pattern for string set S, T , and scoring function score.
In what follows, we will denote score(w, y) = score(w, x, y, z) since x and z

are constant for a given instance of the problem.

3 Algorithm Overview

Finding the optimal correlated pattern basically amounts to enumerating all
possible patterns in the pattern class as candidates, and selecting the pattern
that gives the best score.

For the substring pattern class, the problem can be solved very efficiently
making use of the suffix tree data structure [17]. A suffix tree for a given string
is a compacted trie of all the suffixes of the string, and can be represented and
constructed in linear time and space. Although the number of substrings of a
given string is quadratic in its length, the number of candidate patterns can be
restricted to a linear number. Furthermore, it is possible to calculate the score
of each candidate pattern in constant time using algorithmic techniques [18,14].

Unfortunately, the problem has been shown or are believed to be NP-hard for
most other useful pattern classes [19,20]. In the worst case, we must enumerate an
exponential number of candidate patterns. We have therefore developed branch
and bound heuristics so that the problem can be solved in a practical amount
of time. The following property holds for reasonable scoring functions:
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Property 1. For any 0 ≤ x ≤ m, there exists y ∈ R such that:

score(x, y′) ≤ score(x, y′′) for any y ≤ y′ < y′′ and
score(x, y′) ≥ score(x, y′′) for any y′ < y′′ ≤ y

For such scoring functions, we can use the following lemma to prune the search
space of candidate patterns. Notice that for most reasonable pattern classes,
any pattern q ∈ Π obtained by elongating pattern p ∈ Π will have Mψ(p, S) ⊇
Mψ(q, S).

Lemma 1 (Pruning Lemma). Consider a given pattern class C = (Π,ψ), a
set of strings S = {s1, . . . , sm}, a set of numeric attributes R = {r1, . . . , rm}, and
function score. Consider a fixed pattern p ∈ Π, and letMψ(p, S) = {ij1 , . . . , ijk}.
Then, for any q ∈ Π such that Mψ(p, S) ⊇Mψ(q, S),

score(|Mψ(q, S)|,
∑

i∈Mψ(q,S)

ri)

≤ max{{score(l,
l∑

h=1

rijh ) | l = 0, . . . , k} ∪ {score(l,
l∑

h=1

rijk−h+1
) | l = 0, . . . , k}}

By using this lemma, we have shown in several computational experiments that
the problem can be solved in a reasonable amount of time for several pattern
classes [13,15,16].

4 Concluding Remarks

We have briefly presented the basic framework of our optimal correlated pattern
discovery algorithms. We have recently extended the framework further to con-
sider more general matching functions ψ : Π × Σ∗ → R. For example, ψ(p, t)
could represent the number of times a given pattern p ∈ Π occurs in the string
t [21].
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Abstract. We take institutions seriously as both a rational response to dilemmas 
in which agents found themselves and a frame to which later rational agents 
adapted their behaviour in turn. Medieval corporate bodies knew that they 
needed choice procedures. Although the social choice advances of ancient 
Greece and Rome were not rediscovered until the high middle ages, the rational 
design of choice institutions predated their rediscovery and took some new 
paths. Both Ramon Llull (ca 1232-1316) and Nicolaus of Cusa (a.k.a Cusanus; 
1401-64) made contributions which had been believed to be centuries more 
recent. Llull promotes the method of pairwise comparison, and proposes the 
Copeland rule to select a winner. Cusanus proposes the Borda rule, which 
should properly be renamed the Cusanus rule. 

Voting might be needed in any institution ruled by more than one person, 
where decisions could not simply be handed down from above. Medieval 
theologians no doubt believed that God’s word was handed down from above; 
but they well knew that they often had to decide among rival human 
interpretations of it. The Church faced its own decision problem every time a 
new Pope needed to be elected. Bodies not directly in the hierarchy of the 
Church had to evolve their own decision procedures. The chief such bodies 
were commercial and urban corporations; religious orders; and universities.  

The disagreement between Llull and Cusanus raises the issue: should voting 
be regarded as a method of aggregating judgments or as a method of 
aggregating interests? In the former interpretation (only), voting procedures are 
a solution to a problem of approximate reasoning. There is an unknown, true 
state of affairs (for medieval thinkers, divine will). A voting procedure 
aggregates unreliable individual perceptions of the will of God to a more 
reliable group judgment of it. In the rougher world of Cusanus, and probably of 
electors to the papacy and to Dogeships, only at most lip service is paid to the 
will of God, and voting is a process of aggregating interests. 

Keywords: Voting, Medieval Papacy, Religious Orders. 

1   Introduction 

We take institutions seriously as both a rational response to dilemmas in which agents 
found themselves and a frame to which later rational agents adapted their behaviour in 
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turn. Modalities of thought differ; rationality does not. We aim to show that the 
institutions we discuss represent rational responses to problems. Medieval corporate 
agents knew that they needed choice procedures. Although the social choice advances 
of ancient Greece and Rome were not rediscovered until the high middle ages, the 
rational design of choice institutions predated their rediscovery and took some new 
paths. 

Although we normally think of voting as a mechanism for expressing tastes or 
preferences, there is an alternative framework in which it represents judgments. This 
was the framework not only for medieval social choice but also for much of classical 
social choice up to and including Condorcet. Ramon Llull saw voting precisely as a 
mechanism for approximate reasoning. Humans had an imperfect understanding of 
God’s will. They differed in their understanding of the correct course of action, where 
the correct course of action was to carry out God’s will. Voting was a procedure for 
aggregating these imperfect individual judgments into a more reliable group 
judgment. His follower Nicolaus Cusanus proposed a different choice procedure, for 
rival electors from different parts of Europe, with different territorial interests, to 
choose an Emperor. In Llull's interpretation (only), voting procedures are a solution to 
a problem of approximate reasoning. There is an unknown, true state of affairs  
(for Llull, the will of God). In the rougher world of Cusanus, and probably of electors 
to the papacy and to Dogeships, only at most lip service is paid to the will of God, and 
voting is a process of aggregating interests.  

The strategy of this paper is as follows. Section 2 introduces and interprets the 
texts of Llull and Cusanus. Sections 3 and 4 review medieval practice in elections of 
popes and officials of monastic orders. Section 5 concludes, reviewing the history of 
the two rival conceptions of voting in medieval Europe. 

2   Theory: Llull and Cusanus  

The classical Greek contribution to the theory and practice of social choice lies in the 
development of juries and other random choice procedures of judgment aggregation. 
In democratic Athens in the era of Pericles, the governing institutions were Assembly, 
Council, and juries. The Assembly was the meeting of all citizens. The executive was 
the Council, whose membership was chosen by lot and rotation, so that any citizen 
might be president of Athens for a day. Juries were bodies of (typically) 501, 1001, or 
1501 members, numbers being odd to avoid ties. Voting played a relatively minor 
role, the most common recorded case being votes on proposals to ostracise (banish) 
citizens.  

Voting was a more developed institution in republican Rome. Pliny the Younger 
discusses parliamentary procedure in the Roman Senate (Farquharson 1969 passim; 
Riker 1986 chapter 7; McLean and Urken 1995, chapter 2). He is clearly writing in a 
context of commonly understood rules. However, he is thinking more in an interests 
than in a judgments framework, since the context is what we now label strategic, or 
sophisticated, voting. Pliny tried to justify his novel stratagem (of replacing binary 
voting by ternary, in the vain hope of gaining a strategic advantage) in terms of 
appeals to ancient parliamentary authority.  
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The theorists we consider here made an entirely fresh start. After Pliny, social 
choice theory did not appear again in the Western world until the sudden emergence 
of sophisticated themes in the work of Ramon Llull (ca. 1232--1316).  Llull, and 
probably Nicolaus of Cusa (Cusanus; Niklaus von Kues, 1401-64), did not know the 
Greek and Latin writings on social choice. But Llull worked at the frontier of 
Christian and Islamic scholarship. Thus the issue may have been discussed during the 
golden age of Arabic scholarship between the seventh and thirteenth centuries C.E.; 
but we have not found any evidence for that. However, progress beyond Pliny 
requires algebra and some knowledge of combinations and permutations, and these 
were Arabic inventions. Medieval Europe saw little discussion of democracy. The 
framework within which people either thought or had to pretend that they thought was 
one in which a choice either conformed to the will of God or it did not: a binary 
choice. Llull and Cusanus saw that the case of multiple candidates threw up new 
problems.  

Llull was a native of Palma (Mallorca), which in his time was part of a Catalan 
economic empire with links across the western Mediterranean, including mainland 
Spain, recently under Islamic rule, and north Africa, still under Islamic rule. Llull 
wrote copiously in Catalan, Arabic, and Latin.  At the age of about thirty he became a 
devout Christian and devoted the rest of his life to missionary work and theology. He 
wrote poetry and a novel (the first in any Western European language), and copious 
writings in mathematics and logic. In his autobiography, written in 1311, he wrote 
that when he was converted he had a vision that God had called him to write "a book, 
the best book in the world, against the errors of unbelievers" (Llull 1311, in Bonner 
1985, I:15). This was to be the Ars Generalis with which Llull struggled for the rest 
of his life, in between journeys to North Africa to convert the Moors and equally 
unsuccessful visits to successive popes urging them to set up language schools for 
missionaries. He frequently introduced mathematical arguments for the truth of 
Christianity into his theological works. His theory of voting appears three known 
places: his novel Blanquerna, written in Catalan between 1282 and 1287; a newly 
discovered paper Artifitium electionis personarum (discovered by Perez Martinez 
1959, but first discussed by Hägele and Pukelsheim 2001; date unknown but before 
1283) and a short paper entitled De arte eleccionis, written in 1299. We describe first 
the more picturesque text, then the more scholarly ones.  

Blanquerna is the beloved son of Evast and Aloma. When he reaches the age of 
eighteen, he decides to become a hermit despite his mother's anguished pleas to stay 
with his parents. His mother sends Natana to him in the hope of persuading him to 
stay; instead, he persuades Natana to renounce her possessions as well and enter a 
nunnery. In due course she becomes its abbess; meanwhile, Blanquerna becomes 
successively a monk, an abbot, a bishop (reluctantly), and the pope, before 
renouncing everything again and becoming a hermit. The story gives Llull the 
opportunity to introduce homely dialogs illustrating the deadly sins and the virtues of 
the Christian life. In one of his anecdotes, the Abbess has died, and the nuns are 
deciding what to do.  

All the sisters wanted to elect their abbess by their usual electoral method, 
but Natana said that she had heard of a new electoral method, which consisted 
in art [in other words, Llull's General Art] and figures. (McLean and Urken 
1995, p. 71).  
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Natana told the twenty sisters that they should first elect seven electors, each to 
nominate (presumably seven) names excluding herself. The seven electors should 
compare the candidates with each other according to four conditions, namely, which 
of them best loves and knows God, which of them best loves and knows the virtues, 
which of them knows and hates most strongly the vices, and which is the most 
suitable person. 

She goes on to describe the case of nine candidates (viz., the seven electors and 
two outsiders). The electors should compare the candidates two by two, and for each 
pair determine which they judge to be the more God-loving, virtuous, vice-hating, and 
suitable: 

Therefore, taking this number as an example, 36 cells [cambres] will be 
produced in which the votes of each candidate will appear. The candidate to be 
elected should be the one with the most votes in the most cells. (adapted from 
McLean and Urken 1995, pp. 71-3).   

The theory of elections recurs in later chapters of Blanquerna, as when Blanquerna 
is elected abbot "according to the manner of election whereby Natana had been 
elected abbess." Later still, he is proposed for a bishopric. He does not want it because 
it would mean giving up the contemplative life. Most of the electors nevertheless vote 
for him on the advice of the retiring bishop, but his enemy the archdeacon "opposed 
the holding of an election according to the art".  One takes place "without the art," but 
it leads to a dispute, the majority electing Blanquerna and the minority the 
archdeacon.  Both sides go to Rome, where the pope rules in favor of the reluctant 
Blanquerna. Thus people who oppose the correct art of elections come to a suitably 
sticky end (Peers 1926, chaps. 24, 60, and 67).  

Hägele and Pukelsheim (2001) date Artifitium electionis personarum to between 
1274 and 1283. It is in a Vatican MS which they translate into English for the first 
time. Like the later De Arte Eleccionis, it opens with a matrix for pairwise 
comparisons of candidates, in this case with 16 candidates and hence 120 pairs. The 
crux of the procedural description is in these sentences, describing how each pair is to 
be scored:  

Et omnes responderint et eligerint prout eis uidebitur[. F]iat vnus punctus in 
littera attribuata illi person[a]e qu[a]e plures uoces habuerit. Qui punctus fiat 
ipsi littere in qualibet figurarum existentium in locis diuersis. Si uero vna 
habuerit tot uoces ut altera fiat in qualibet littera ipsius camere punctus vnus et 
hoc in qualibet figurarum.  

And all shall respond, and shall elect as it appears [fit] to them. [Then] a 
point is placed by the letter assigned to the person who has the most votes. 
Such a point is marked in each of the figures existing at the distinct locations. 
If now one [person] has as many votes as another, then a point is placed by 
both letters of this cell, and this [is done] in each of the figures [in the vote 
matrix]. (Transcription and translation by Hägele and Pukelsheim 2001 with 
minor edits by IM and HL) 

The electoral procedure in De Arte Eleccionis was devised, Llull tells us, at Paris 
on 1 July, 1299. In his autobiography he complained that nobody understood him 
when he lectured in Paris because of his "Arabic way of speaking" (Bonner 1985,  
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vol. 1, pp. 29, 38).)  De Arte Eleccionis contains a proposed method of election, 
similar to that in Artifitium electionis personarum, except that it does not use all the 
pairwise comparisons in the vote matrix. 

The electoral method in Blanquerna is a two-stage procedure.  Like Condorcet and 
the US Federalists five centuries later, Llull seems to wish to compromise between 
democracy and giving a more decisive voice to better qualified electors. The election 
is to be made on multiple (four) criteria. Llull may have realized that multiple-
criterion decision making can lead to difficulties in aggregating from individual to 
social orderings. And it is a method of exhaustive pairwise comparisons. Votes are to 
be placed in 36 cambres (cells). These represent the 36 combinations of two 
candidates from nine---as it would now be written n(n - 1)/2 for n = 9. Llull has 
Natana state that "the candidate to be elected should be the one with the most votes in 
the most cells".  How is this phrase to be interpreted? There are two natural 
interpretations, one of which makes Blanquerna an anticipation of the Borda rule and 
the other an anticipation of the Copeland rule. (Riker 1982 p. 79; McLean and Urken 
1995, p. 18; Klamler 2005). 

On the first interpretation, the phrase "in the most cells" is redundant, since each 
candidate will have votes in just eight cells. These votes are simply summed, and the 
candidate with the highest aggregate is elected. This is, as is now well known, exactly 
a Borda count in which zero points are awarded for a last place, one for a second-to-
last, and so on up to n-1 for a top place.  Borda pointed out this equivalence in his 
paper of 1770 (in McLean and Urken 1995, p. 87). On this interpretation, the 
following passage about ties refers to ties in the Borda count:  

One of the sisters asked her, "If it turns out that some candidates have as 
many votes as each other in the cells, what procedure does the art 
recommend?" Natana replied, "The art recommends that these two or three or 
more should be judged according to art alone. It should be found out which of 
these best meets the four aforementioned conditions, for she will be the one 
who is worthy to be elected".  

The Copeland rule has regard to the number of majorities each candidate has, not 
to their size, individually or in aggregate. It selects the candidate who wins the largest 
number of contests.  If there is no cycle, the Copeland winner is the same as the 
Condorcet winner. If there is a top cycle, there is no Condorcet winner and a set of 
Copeland winners numbering three or more. Is this what Llull meant? On this 
interpretation, the whole phrase, "The candidate to be elected should be the one with 
the most votes in the most cells” is then an exact instruction to select the Copeland 
winner, reading the first "most" as "more"; and the passage about ties is an instruction 
on how to select a unique winner from the Copeland set if that contains more than one 
member. But note that the Copeland set cannot contain just two members unless there 
are ties on individual pairs arising from abstention, individual indifference, or an even 
number of voters, none of which Llull seems to allow in this text since he seems to 
insist on an odd number of voters, each with a strong ordering.  

There is no such ambiguity in either Artifitium electionis personarum (AEP) or in 
De Arte Eleccionis. (DAE) The passage translated above from AEP seems to clinch 
matters in favor of Copeland. The winner of each pair is counted and a mark put 
against the winner’s name. The passage translated makes it clear that this is a group, 
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not an individual, mark. That individual is then given one point (unus punctus) for 
each majority win. The winner must be the candidate with the largest number of 
puncti, that is, the Copeland winner. If there is a tie, both candidates are awarded one 
point, so that there could be a Copelandoid set of size 2. The procedure Llull 
recommends in the two papers, unlike that described in Blanquerna, is a Condorcet 
pairwise comparison procedure.  It uses matrix notation, previously thought to have 
been first used by C. L. Dodgson (Lewis Carroll) nearly six centuries later.  Because 
the winning candidate must have beaten at least one other, it cannot select a 
Condorcet loser, and if a Condorcet winner exists, it will select him or her. The AEP 
procedure could, but the DAE procedure could not, detect the existence of cycles 
because in DAE not every comparison in the matrix is actually used in selecting the 
winner. The fact that Llull makes this (to us) retrograde step in the later procedure 
suggests that he did not discover cycling. 

Thus Llull does not deserve the scornful treatment he gets in modern histories of 
mathematics and logic. Combinatorics, which he was probably one of the first 
mathematicians in the West to import from the Arab world, fascinated him endlessly 
and fueled the magnificent but impossible dream of the General Art. Llull believed 
that applying successive pairwise combinations of virtues could lead one to 
"demonstrating the truth of the holy Catholic faith through the use of necessary 
reasons to those who are ignorant of it" (Bonner 1985, 69). This led Donald Michie to 
label Llull "one of the most inspired madmen who ever lived" (Gardner 1982, ix). 
Martin Gardner has written that Llull's life was "much more fascinating than his 
eccentric logic. . . . Llull's mistake . . . was to suppose that his combinatorial method 
had useful applications to subject matters where today we see clearly that it does not 
apply" (Gardner 1982, xiv, 18). However, the application to voting rules is an entirely 
appropriate application of the mathematics of combinations, not repeated until 1785. 
Providing that voting is regarded as a procedure for aggregating imperfect individual 
judgments into a more reliable group judgment, exhaustive pairwise comparison is an 
appropriate method. 

Nicolaus Cusanus read De arte eleccionis and may have been the transcriber of the 
only known copy: Cusanus was born in 1401 beside the river Moselle. He studied first 
at Heidelberg, then at Padua, where he gained his doctorate in 1423, then at Cologne. 
Padua was one of the leading intellectual centers of Europe, and Llull's mathematical 
and theological works were on the curriculum there (Sigmund 1963, 22-35).  Llull 
had a dangerous reputation: anybody whose ideas were as hard to follow as his risked 
being suspected of heresy.  But the intellectual climate in northern Italy was more 
open than elsewhere. Cusanus was active in the conciliar movement of his time. The 
Council of Constance (1414-1417) addressed the Great Schism in the papacy that had 
lasted since 1378; it succeeded in ousting all three of the current contenders for the 
title of pope and electing one of its choice. It featured a weighted voting scheme 
(voting by nations) to ensure that the Italian electors did not carry the day by sheer 
force of numbers. Most council members were bishops, and Italy had the largest 
number of bishoprics.  

Cusanus's De concordantia catholica was written while he was attending the 
Council of Basel, which opened in 1431; Cusanus was an active member from 1432 
to 1434. De concordantia catholica defends the rights of councils to elect popes,  
and it discusses voting procedures for electing a Holy Roman Emperor in chapters  
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36 to 38 of Book III. Cusanus first discusses the need to prevent practicas 
absurdissimas et inhonestissimas (the most absurd and dishonest practices) and notes 
that because particular electors come from particular districts, turpiter foedatae 
electiones per iniustas pactiones fieri dicuntur (elections are said to be disgracefully 
rigged by means of unjust pacts) (McLean and Urken 1995, pp. 77-8).  

Cusanus' scheme is just the Borda count, giving 1 for a last place and so on up to n 
for a top place. Although Cusanus knew of the existence of Blanquerna, he had 
probably not read it. A mention of it exists in a handlist of Llull's work in Cusanus's 
library (Honecker 1937b, 570--1), but the work itself does not, and the library is 
believed to have survived complete.  The only known copy of De Arte Eleccionis 
comes from this library, transcribed in what is believed to be Cusanus's handwriting. 
Thus Cusanus knew Llull’s Condorcet scheme of public voting; but he proposed 
instead a Borda scheme with secret voting.   

We believe that Cusanus’ rejection of Llull is deliberate. We refer to the phrase 
quoniam omnes comparationes omnium personarum et omnes mixturae et syllogismi 
per unumquemque ex electoribus factibiles in hoc modo includuntur. "For this method 
takes account of all comparisons of candidate to candidate---in whatever groupings or 
combinations---that any elector can make," in Cusanus's paragraph 540.  The use of 
syllogismi in this sense is highly unusual.  A syllogism involves at least three 
elements (major premise, minor premise and conclusion). In using the word, Cusanus 
may have had in mind that a voter's transitive ordering of three elements (I prefer A to 
B and B to C; therefore I prefer A to C) is fully captured by the Borda count but not 
always by the scheme of De Arte Eleccionis. The theory of voting involves pairwise 
comparisons, as Llull had seen. But it does not only involve pairwise comparisons.  

Both writers wish to eliminate strategic voting, but they make opposite 
recommendations. Llull, in Blanquerna, writes about the members of a religious order 
voting selecting their own leader. The electors are all known to each other and must 
continue to live together after the vote. A voter will then be constrained by her fellow 
voters' knowledge of her preferences.  In general, this is the argument for open voting 
in committees where the members must trust one another if business is to be done. It 
is an argument traditionally accepted in the direct democracy, with open voting, of 
some Swiss cantons (Barber 1985). Cusanus writes about a body of electors meeting 
once only and suspicious of one another's strategic voting intentions before the 
election starts. Increasing the amount of information about others' votes available to 
each voter increases the opportunities and incentives for strategic voting of a 
logrolling kind. It was presumably in part to prevent this that the Council of 
Constance had voted by nations. Llull sees voting as an aggregation of judgments; 
Cusanus, writing from bitter experience, sees it as an aggregation of interests. 

Cusanus goes on to show that his method may also be applied to votes on 
propositions when more than two possibilities exist and contrasts it with the simple 
binary procedure in use in Venice for yes or no propositions and for elections 
(Sigmund 1991, 307, 580). The Venetian procedure for electing a doge, in use 
between 1268 and 1797, has been regarded as pointlessly complicated. Lines (1986), 
however, shows that "a great deal of the tedious complication . . . served only to 
ensure the impossibility of forecasting just who would be in the Quarantuno [the 41 
electors]" (Lines 1986, 156).  The actual election stage was approval voting with a 
lower bound. The electors voted on each of the ten candidates separately and could 
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vote in favor of or against as many as they chose; the winner would be the candidate 
with the most favorable votes, as long as he got more than 25.  

Thus we find four of the main solution concepts of modern voting theory---the 
Borda rule, the Condorcet principle, the Copeland rule, and approval voting---in use 
in medieval Europe.  We should not be surprised to find intelligent discussion of 
voting schemes first appearing in the West in the Middle Ages. The experience of the 
Great Schism in the papacy showed that elections could not be restricted to two 
candidates. All orders of monks, nuns and friars had to make their own rules for 
electing their superiors; since they were entirely separate from the ordinary parish 
clergy, there was no hierarchy except their own to choose their leaders.  This is the 
situation addressed by Llull.  

3   Practice: The Papacy  

Unanimity was first conceived as the only rule that could reveal God's will, but it led 
to frequent deadlocks, conflicts and schisms. It was replaced with the qualified 
majority rule of two-thirds in 1179. However the particular mixture of devices that 
were adopted by the Church during the late Middle Ages did not tend to produce 
quick and consensual decisions, but frequently led to uninformed coalition-building 
with surprising results.  

In early centuries, the Pope was elected by a multicameral college. First, the lay 
members of the Roman Church proposed candidates. Second, the clergy proceeded to 
reduce or to enlarge that list. Finally, the sixteen bishops of the Roman province met 
and decided. This sequence was reflected in the motto of pope Leo I (440-61) vota 
civium, testimonia populorum, honoratum arbitrium, electio clericorum. This 
frequently produced conflicts and schisms. Before the Emperor had officially 
accepted Christianity, there was at least one simultaneous election of two different 
popes (in 250, after 18 months of deadlock). Afterwards, elections of pairs of popes 
by different factions of the Church provoked intervention of Roman troops in 366 and 
418. These conflicts put the Church under political protection. The emperor Honorius 
ruled in 420 that if two popes were elected, neither would be valid and a new election 
would be called in which divine judgment, as revealed by unanimity (divinum 
judicium et universitatis consensus), would be required.  

The primacy of the Pope over political powers was doctrinally asserted in pope 
Gregory VII's bull Dictatus Papae (1075). But enforcing it required intensive 
legislative activity, starting with Gratian (1139-40), followed by four enlarged canon 
law codes in 100 years.  

The Church required an orderly succession of its monarch. New rules emerged 
from successive decisions on partial aspects of the question. The first was a papal bull 
of 1059 which excluded laymen from the election of the Pope (Nicolaus II, In nomine 
Domini). The role of the Emperor was once again reduced to mere acceptance of the 
Church's decision. Although secular rulers tried to continue exercising their veto-right 
against certain candidates for pope, this now had to be implemented by way of some 
faction of cardinals. Royal or imperial 'anti-popes' ceased to exist after 1122. This did 
not avert conflict. Three 12th-century elections produced a total of eight antipopes to 
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only nine 'official' popes in less than fifty years. Even without direct imperial 
appointments, these schisms emerged because the voters could not reach unanimous 
agreement. 

Several procedures to manufacture unanimity were implemented, known as 
'acclamation', 'scrutiny', and 'compromissum'. Elections by 'acclamation' were rare 
and, even according to some participants, enthusiastic and threatening roaring of 
crowds induced them, not initial coincidence of voters around a single candidate. (For 
the election of Gregory VII in 1073, so reported by the pope himself, see Robinson, 
1990: 59-60).  

'Compromissum' consisted in delegating the decision to a small commission when 
unanimous agreement could not be reached. However, delegation should be adopted 
by unanimity of those entitled to vote, specifying the rule to be followed by the 
delegates, and this was not a frequent resource either. The most common procedure 
was 'scrutiny', that is, voting, but new intellectual devices had to be implemented to 
create apparent unanimity where it did not exist. The most discussed of these was the 
sanior et maior pars, the 'sounder and greater part'. Sanior referred to the priority 
given to cardinal-bishops, to candidates' merit and to voters' merits, zeal or dignity 
(including age or seniority in post, and hierarchy). All these qualities were considered 
factors for the choice of 'the best' candidate. But the 'sanior pars' often did not 
coincide with the 'maior pars'. In elections of bishops or abbots such disputes were 
usually submitted to some arbitrator, such as the metropolitan bishop or even the 
Pope, but no such arbiter existed for papal elections (See authorities cited in Colomer 
and McLean 1998, p. 2).  

Such conflicts led to the adoption of two-thirds majority rule by Pope Alexander 
III in 1179. The rule of two-thirds had previously been used in the election of some 
abbots. Two-thirds and other qualified-majority rules were also used in several Italian 
communes of the Middle Ages. Alexander III spent six months in Venice in 1177, 
forging reconciliation with the Emperor Frederick Barbarossa who had supported the 
'anti-pope'.  

Alexander decreed.  

Concerning the election of the supreme pontiff 
…We decree, therefore, that if, by chance, some hostile man sowing discord 

among the cardinals, full concord cannot be attained with regard to 
constituting a pope; and, with the two thirds which agree, the other third be 
unwilling to agree, or presume of itself to ordain someone else: he shall be 
considered Roman pontiff who shall be elected and received by two thirds….. 

Moreover if anyone is elected to the office of pope by fewer than two 
thirds--unless greater concord is attained, he shall by no means be accepted, 
and shall be subject to the aforesaid penalty if he is unwilling to humbly 
abstain. From this, however, let no prejudice to the canonical and other 
ecclesiastical decrees arise, with regard to which the opinion of the greater and 
the sounder part [maior et sanior pars] should prevail; for when a doubt arises 
with regard to them, it can be defined by the judgement of a higher power. But 
in the Roman church, special decrees are made because recourse cannot be had 
to a higher power. (Doeberl, iv. p 253)  
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It seems clear that the basic aim of the qualified majority of two-thirds was to 
induce the formation of a sufficiently large coalition of cardinals. A two-thirds winner 
would tend to require a previous negotiation between supporters of different 
candidates, probably around compromise solutions. As some contemporary analyses 
noted, once a candidate was elected, the losers would need to persuade a majority of 
the winner's original supporters to change their mind. Faced with this requirement, it 
was reasonable to expect that the losing coalition would not fight on (see also Saari, 
1994: 15-16).  

Caplin and Nalebuff (1988) have shown that the rule of 64% guarantees a single 
winner under conditions of 'concavity' in voter preferences. This means that, when 
more voters prefer intermediate candidates than the average of those favoring 
extremes, there exists an unbeatable proposal, and furthermore no cycles are possible. 
In general, the majority rule needed to avoid cycles and ensure existence of an 
unbeatable proposal in a n-dimensional issue space is no higher than 1- [n/(n+1)]n. 
This ratio is 55% for two dimensional spaces, 57% for three-dimensional spaces, and, 
being increasing in n, its limit is 1 - (1/e), which is just under 64%. In a simple 
aggregation of interests, there can be up to many dimensions as candidates. This 
means that the 2/3 rule used to elect the Pope produces a stable outcome if Caplin and 
Nalebuff's conditions hold.  

After adopting the rule of two-thirds, popes and canonists tended to agree that the 
'maior pars' is always, by definition, also the 'sanior pars'. As pope Pius II summarized 
(on his own election in 1458): "What is done by two thirds of the sacred college, that 
is surely of the Holy Ghost, which may not be resisted" (in Gragg and Gabel, 1959: 
88). The 2/3 rule is, for the first time, explicitly defended as a judgmental aggregation 
rule of approximate reasoning - even if it was reached by a completely different route. 

The qualified majority requirement produced the desired stability effects but it had 
predictable consequences. The electors in 1216, 1241, 1243, 1261, 1265 and 1268-70 
took several months to reach a decision, having to resort to commissions in several 
cases. In two of these elections, (1216 and 1243), the civil authorities reacted to 
cardinals' slowness by locking them up. In 1241 the head of civil administration in 
Rome locked them up in an old unhygienic building, guarded by police, but he only 
elicited a decision by threatening to have the corpse of the dead pope exhumed and 
shown publicly in full papal regalia after two years of the vacancy. In 1270, when two 
years had passed without an agreement, the public besieged the cardinals in the 
episcopal palace, removed the roof of the palace and allowed nothing but bread and 
water to be sent in. A new pope was elected on this occasion by compromissum after 
a record vacancy of 34 months (Vauchez, 1990: 522-3). Thus the two-thirds rule 
produced efficacious and rather stable outcomes, at the price of long delays in 
decision-making. This is now recognized as a classic trade-off in social choice.  

The experiences of locking cardinals up led pope Gregory X to adopt a new 
procedure for their seclusion, known as the Conclave (Latin: 'with-key'), which was 
approved by the council of Lyon in 1274 (Ubi periculum). It aimed to obtain a quick 
decision, and to prevent strategic maneuvering in the election of the Pope. Similar 
institutions had been established in the Dominican constitution of 1228, as well as in 
communes such as Venice and Piacenza, respectively in 1229 and 1233 (Ruffini 
Avondo, 1925; Ullmann, 1972).  
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The cardinals gathered together, each with no more than one servant, in a closed 
papal palace, whose doors were walled up and watched by soldiers; they were to lead 
a life in common in a single room; to have no communication with the outer world; 
food was to be supplied to them through a guarded window; the menu was restricted 
from the fourth day on and reduced to bread, water and wine after the ninth day; the 
cardinals received no income until they reached a collective decision. Although some 
of these provisions were later softened, they created strong and increasing incentives 
for the cardinals to reach a common decision. Many cardinals fell ill and several died 
in conclave, precipitating agreement among the remaining participants. All side-
payments, coercion or explicit pacts between cardinals were forbidden under penalty 
of excommunication and annulment of the election; they must keep silence during the 
election and afterwards. These rules made exchanges and formation of large 
coalitions very difficult and often promoted agreed outcomes on the basis of the 
immediate, apparent appeal of some candidate rather than on careful evaluation of his 
merits or religious fervor.  

The first papal election under this procedure, in 1276, was made in one single day. 
The following popes suspended the application of this procedure, whereupon long 
delays reappeared: more than seven months in 1277, six months in 1281, almost 
eleven months in 1288, and 27 months in 1292-94. This evidence of conclaves’ 
efficacy moved the pope elected in 1294, Celestine V, to re-establish it. Successful 
conclaves of one or a few days have become normal since then, including in 2006. 
For the rules of conclave see the authorities cited by Colomer and McLean 1998,  
p. 14.  

4   Practice: Monastic Orders  

Monastic orders faced the same problem as the papacy. They were not directly subject 
to papal control at all times, and were required to choose their own leaders and secure 
an unbroken succession whenever a leader died. The papal bull Exiit qui seminat, 
promulgated by Pope Nicholas III in 1279, contains provisions for the Franciscan 
order that illustrates just how reliant on self-determination and tradition the 
succession issue could be.  As the bull notes, outlining the accepted procedure for 
choosing a new master of the order,  

 

Besides the friars of the aforesaid order doubting  in regard to that which is 
said in the rule, that with the decease of the minister general there is to be an 
election of a successor by the ministers provincial and guardians1 (custodes) in 
the Pentecost chapter, whether it is fitting that the multitude of all the custodes 
come together to the general chapter, or whether, so that everything be 
managed with greater tranquillity, it may be able to suffice that some from 
each province, who would vote in the name of others, would take part, We 
give this answer that namely the custodes of each province are to appoint one 
from [among] themselves, whom they are to send with their minister 
provincial on their own behalf to the chapter, committing their votes and 

                                                           
1 This could mean ‘guardian’ in any of several senses, e.g., one appointed to watch over good 

order generally, or more specifically to supervise votes and elections. 
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powers to the same, because, when they have   appointed [him] by themselves, 
even We reckon a statute of this kind to have been approved, because also 
[Our] predecessor, Gregory IX, in a case of this kind is said to have responded 
in this manner. (Exiit qui seminat, Nicholas III.  Our translation from the Latin 
text transcribed from the Registers of Nicholas III, p. 232-241, #564) 

 

Many of the later monastic rules exhibit more sophisticated choice procedures.  
The rule of St Benedict (6th century) was the first to be codified, and all subsequent 

orders until the Dominicans (early 13th century) followed the Benedictine rule with 
minor tweaks. All new orders had to deal with the succession crisis following the 
death of their founder.  The rule of St. Benedict makes it clear that officials that were 
simply appointed, rather than elected by a majority, might cause dissent within an 
abbey--or the entire order. 

It happens all too often that the constituting of a Prior gives rise to grave 
scandals in monasteries. For there are some who become inflated with the evil 
spirit of pride and consider themselves second Abbots. By usurping power 
they foster scandals and cause dissensions in the community. Especially does 
this happen in those places where the Prior is constituted by the same Bishop 
or the same Abbots who constitute the Abbot himself. What an absurd 
procedure this is can easily be seen; for it gives the Prior an occasion for 
becoming proud from the very time of his constitution, by putting the thought 
into his mind that he is freed from the authority of his Abbot. (Rule of St. 
Benedict. St. Benedict’s rule for monasteries, tr. Leonard Doyle OSB, 
Collegeville, MN, 2001. Chapter 65: On the Prior of the Monastery, Apr. 22 - 
Aug. 22 - Dec. 22) 

 

Another example is that of the Gilbertines, founded by Gilbert of Sempringham 
some time before 1147, when he travelled to the Cistercian headquarters at Citeaux in 
order to derive a constitution from theirs. As the Gilbertines were a double order, of 
both monks and nuns, he had to devise a more complex choice procedure. It was 
assumed in typical Benedictine procedure that decisions would be unanimous, but in 
the case of a difference, a majority of 3 to 1 sufficed, any huge differences were 
referred to the magister (head of the order). (The Gilbertine constitution is in 
University of Oxford, Bodleian Library, MS Douce 136).  

The most elaborate constitution was that of the Dominicans, first written in 1216, 
and revised in 1228 (Galbraith 1925, especially 5, 33, 46, 64, 103, 114, 226---36). 
They give a much greater role than earlier constitutions to internal democracy. In the 
early years of the Order, friars acquired the suffrage immediately upon profession. 
Later, friars had to wait first one, then two, then ultimately 4 years after profession to 
receive voting privileges.  

Later in the 13th century, this concept of democracy gained the authority of 
Aquinas, through his rediscovery and commendation of Aristotle.  

Question 105. The Various Forms of Government, and their Fusion in the 
Government Given by God to the Jews. (Art. 1)  

With respect to the right ordering of power in a city or nation, two points 
must be considered: the first is that all should in some respect participate in the 
government…. So the best ordering of power within a city or a kingdom is 
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obtained when there is one virtuous head who commands over all; and who has 
under him others who govern virtuously; and when, furthermore, all participate 
in such government, both because all are eligible, and because all participate in 
the election of those who rule…. For Moses and his successors governed their 
people as sole heads over all: but they elected to their assistance seventy two 
Elders according to virtue: as it is said (Deuteronomy I:15): ‘And I took out of 
your tribes men, wise and honourable, and appointed them rulers’. And this 
was aristocracy. But it was democratic in the sense that they were elected from 
the whole people, for it is said in Exodus (XVIII:21): ‘Seek out from the whole 
people wise men,’ etc.;  and also in the sense that the people elected them, for 
it is said in Deuteronomy (I:13): ‘Let me have from among you wise and 
understanding men,’ etc.  So it is clear that there was an excellent ordering of 
authority in the Law [of the Old Testament]. (Aquinas 1948, pp 148-151)  

This is what we are accustomed to think of as a Schumpeterian conception of 
democracy, which should perhaps be relabelled Thomist. Democracy entails the right 
to elect the sovereign. But while in place, the sovereign’s authority is absolute. 
Clearly, such a doctrine justified the papal constitution, and that of any order that 
gave its magister sovereign authority. Typically, however, the Dominicans were 
ahead of the pack. Their constitution foresaw the problem of an incompetent magister. 
The Master General of the Order held office for life, but the general chapter had the 
right to impeach him. There were four acceptable reasons:  

1 Crime  
2 Causing disunity or harm to the Order  
3 Inept administration  
4.  Inability to effectively perform his duties (illness, senility, etc).  

Before impeachment, the general chapter was supposed to take one final step, 
which was to ask for his resignation. If he refused to resign, the impeachment process 
to formally depose him would take place.  

Other self-governing bodies in medieval Europe included communes (such as 
Venice) and universities (such as Bologna, Paris, Oxford, and Cambridge - including 
their constituent colleges). They too needed election rules such that they could elect 
their own heads without outside interference. Their constitutions await detailed study. 
Just like the papal, imperial, Gilbertine, or Dominican electors, the writers of college 
constitutions needed a device to prevent a succession crisis. The senior fellow is 
always an identifiable person (quae in ecclesia vacante prius fuit recepta, in Llull’s 
words). The old formula maior et sanior pars could very easily be amended, or 
corrupted, to maior et senior pars. Seniority can be held to breed wisdom. This 
confusion is as old as Llull and as new as the Statutes of Nuffield College, Oxford 
(1958), which entrust the procedure to elect a new Warden to the senior - not to the 
wisest - of the fellows. 

5   Conclusion 

The two modern conceptions of voting both occur in medieval choice theory, and 
medieval practice. Conception #1 is both epistemic and stochastic. Conception #2 is 



 Voting in the Medieval Papacy and Religious Orders 43 

neither. In first conception, the task of voting is to aggregate imperfect human 
judgments to the most reliable achievable group judgment of an unknowable true state 
of affairs. For medieval choice theorists, that unknown state of affairs was the will of 
God. For Condorcet, reviving choice theory in the 18th century, it was the truth of an 
allegation that a jury was called upon to decide – hence Condorcet’s formulation has 
come to be known as his ‘jury theorem’. This conception of voting is still unfamiliar 
to most voters, but an example where it applies is the task of determining, given that 
one or more sensors have indicated a fault in a piece of equipment, whether it is 
likelier that the equipment is faulty or that the sensor(s) have shown a false negative. 

But reality kept on intruding. Electors to the papacy abandoned the unanimity rule 
in favour of the 2/3 rule, but then found that to avoid deadlock they had to impose 
privation, open voting, and rules against trade-offs and side-payments. The formula 
‘maior et sanior pars’ was unstable. As early as St Benedict, rule-makers discovered 
that every defeated minority clamed to be ‘sanior’ than the majority. Intriguers like 
Llull’s fictional archdeacon obviously abounded. Nobody seriously pretended, in 
Cusanus’ day, that election of a Holy Roman Emperor was a process of finding the 
will of God. Rather, it was a process of finding a candidate who was acceptable to a 
sufficient number of electors. The Borda (Cusanus) rule chooses the candidate who on 
average ranks highest on electors’ schedules. Unfortunately, it is highly manipulable, 
which is probably why Cusanus recommends voting by secret ballot. 

Black’s (1958) rediscovery of Condorcet (1785) reintroduced the idea that there are 
two rival conceptions of voting – as the aggregation of judgments and as the 
aggregation of interests. In an ordinary election, as Black (1958, p. 163) says, ‘the 
phrase “the probability of the correctness of a voter’s opinion” seems to be without 
definite meaning. In a jury vote it does have meaning. 

The two leading solution concepts for elections and juries faced with n > 2 options 
are the Condorcet rule (with its extension, the Copeland rule), and the Borda rule. The 
Condorcet rule is ‘Choose the option that wins each of its pairwise contests against 
each of the others’. The Copeland extension is ‘Choose the option that scores the 
largest number of pairwise victories’. The Borda rule is ‘Choose the option with the 
highest average rank’. These solution concepts may be applied to either conception of 
the nature of elections. For instance, Condorcet found to his embarrassment that 
where individual voter reliabilities are low, the Borda rule is more likely than the 
Condorcet rule to find the most probable solution to a jury problem (Black 1958, p. 
170). We have shown that they are centuries older than the thinkers whose names they 
bear. Llull proposed the Copeland rule and may have proposed the Borda rule. 
Cusanus proposed the Borda rule. It may be too late to rename them, but it is not too 
late to hail these medieval discoveries. 
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Abstract. In Group-Choice Decision Making (GCDM) where a number of 
stakeholders are involved in choosing a single solution from a set of available 
solution options, it is common for the stakeholders to form coalition during 
negotiation in order to increase their individual welfare. It is also common to 
use Multi-Agent Systems (MAS) to automate GCDM processes. In such MAS, 
agents have to form coalitions like their human counterparts, and within each 
coalition, the individual agents behave according to the strategies of their 
clients. This paper presents a coalition formation engine that has two coalition 
formation algorithms. One of the algorithms is based on the concept of static 
coalition formation, and the other is based on the concept of dynamic coalition 
formation. Moreover, the coalition formation engine is coupled with algorithms 
that govern the social behavior of the agents in their coalitions, to form an agent 
negotiation engine. Finally, this paper presents an example and simulation 
results that illustrate the operational effectiveness of the two coalition formation 
algorithms, as well as the algorithms that govern the social behavior of the 
agents. 

Keywords: Agent, Group-Choice, Coalition-formation, Negotiation, Static, and 
Dynamic.  

1   Introduction 

Coalition formation has the potential of increasing the welfare of negotiating entities. 
Therefore, the notion of forming coalitions is normally applied in various domains, 
including commerce, engineering and social planning. Furthermore, coalition 
formation in Multi-Agent Systems has attracted a lot of attention because agents can 
easily to be used to represent the negotiating entities, and they are capable of finding 
more profitable coalitions than humans in complex environments. 

Although a variety of automatic coalition formation models have been proposed in 
literature, they all fall under two distinctive categories: the utility based models and 
the knowledge based models. Utility based models (e.g. Game Theoretic Models) 
normally aim at identifying stable coalitions of negotiating agents, as well  
as determining appropriate models for sharing coalition benefits [1, 2, 3, 8]. Most  
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of these algorithms are naturally centralized; this is against the principle of 
decentralization, which is fundament to the concept of Multi-Agent Systems (MAS). 
The computational requirements of utility based coalition formation algorithms make 
them hard to implement [4]. Moreover, the algorithms normally implicitly assume 
that the agents surrender all their autonomy to their coalitions. 
    Knowledge based algorithms for coalition formation [5, 6, 7] depend on the skills 
of the individual agents to establish the most beneficial coalition structures. These 
algorithms are normally computationally feasible, but they invariably have the 
following shortfalls:  

• They implicitly assume that there is no coalition structure that is more 
beneficial to all agents, than the grand (coalition of all negotiating agents) 
coalition [4].  

• Like the utility based coalition formation algorithms, knowledge based 
algorithms normally assume total loyalty of agents to their coalitions. 

    Coalition formation algorithms can also be classified into static and dynamic 
algorithms. We define static coalition algorithms as those that do not allow for 
possible changes to the membership of coalitions as new information emerges. On the 
other hand, dynamic algorithms address the need for changes in the membership of 
coalitions as new information emerges [3]. While many coalition formation 
algorithms of both types (static and dynamic) have been proposed in literature, the 
issue of using multiple algorithms so to give agents the ability to benefit from the 
strength of both types of coalition formation algorithms has not attracted any 
attention. This paper presents an agent negotiation engine that can employ multiple 
coalition formation algorithms. The engine is made up of four main components: the 
first component contains the algorithms for coalition formation, the second 
component contains algorithms for the individual and group ranking of the solution 
options, the third component contains a model that represents the level of 
commitment of the agents to their coalitions, and the fourth component store the 
parameters for decision making. Besides increasing the utility of the negotiating 
agents through coalition formation, and controlling the dynamics of the negotiation 
process, our negotiation engine has the following advantages in respect of coalition 
formation: 

• The negotiation engine takes into account the fact that although agents 
usually join coalitions to maximize the benefits associated with the goals that 
are share among the coalition members; within their coalitions, the 
individual agents act to maximize the benefits associated with the unshared 
goals. Our coalition formation model does not assume total loyalty of agents 
to their coalitions. Instead, it allows the agents to have commitment levels 
any where between the extremes of being absolutely loyal, and being entirely 
disloyal.   

• Most knowledge based coalition formation models are applicable in 
environments where agents form a single grand coalition. However, a variety 
of coalition structures are normally feasible in practice. Our model is not 
limited to any type of coalition structures. 

• The model does not add any extra communication requirements to the MAS. 
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The rest of this paper is arranged as follows, Section 2 discussed the coalition 
formation problem. In Section 3, we present our negotiation model, as well as its 
coalition formation algorithms. Section 4 deals with simulation experiments that 
illustrate the capabilities of the coalition formation model. Finally, conclusions are 
given in Section 5. 

2   The Coalition Formation Problem 

To develop satisfactory automatic coalition formation algorithms, it is necessary to 
understand the general coalition formation problem. The first step towards this is to 
partition the problem into small sub-problems that can be solved directly by 
executable algorithms. From our experience of designing and implementing a Group-
Choice Decision Support System (GCDSS) based on multi-agent technology, we have 
identified the following coalition formation sub-problems to be of utmost importance: 

1. Representation of when to join and/or leave a coalition. 
2. How to handle the various feasible coalition structures. 
3. Determination of what agents gain and/or loss when they join coalitions. 

In the following paragraphs, we discuss each of the above coalition formation sub-
problems in detail. 

The general goal for coalition formation is maximizing utility, but the actual 
reasons for forming coalitions are normally different for different agents, and for 
different negotiations. Figure 1 shows the relationship between the reasons for 
forming coalitions and the goals of coalition formation. Furthermore, the Figure 
illustrates that the reasons for coalition formation fall in two categories. The first 
category usually result in dynamic coalition formation because the parameters upon 
which the decision to join or leave a coalition is based (e.g. similarity of preferences), 
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Fig. 1. Relationship between the Basis for Forming Coalition and the Goals of Coalition 
Formation 
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change as the negotiation process progresses, resulting in dynamic coalition 
structures. On the other hand, coalition formation reasons of the second category 
usually result in static coalition structures. 

Negotiation in MAS can involve a variety of coalition structures. Therefore, 
practical coalition formation models must be able to operate with different coalition 
structures.  

Figure 2 presents some examples of coalition structures that are briefly described 
the coalition structures in the Figure as follows:  

• Figure 2 (a): All agents in the MAS belong to the same grand coalition.  
• Figure 2 (b): Agents A1, A2, and A3 are in one coalition, and agents B1 and 

B2 are in another coalition. 
• Figure 2 (c): Agents A1, A2, and A3 are in the same coalition, and they do 

not consider agents B1 and B2 to be in their allies. Yet, agents B1 and B2 
consider A1, A2, and A3 to be their allies.  

Figure 2 (d): Agent B1 is an ally of all the other agents in the MAS, but agent B2 is 
an ally of agent B1 only. 
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Fig. 2. Examples of Coalition Structures 

    Once an agent has joined a coalition, it is expected to compromise on some issues 
in order to gain on others. Consequently, coalition formation models must have 
representations of what agents are willing to gain and/or loss when they join 
coalitions. Such representations are related to the commitment levels of the agents to 
their coalitions. A totally committed agent is one that is willing to give up anything in 



 Static and Dynamic Coalition Formation in Group-Choice Decision Making 49 

order to reach agreement with the other coalition members. On the other hand, a 
totally uncommitted agent is one that is unwilling to give up anything. Other levels of 
agent commitment lay between these two extremes. Models for representing what 
agents are willing to gain and/or loss when they join coalitions must be able to 
convert any agent commitment level into tangible negotiation tradeoffs. 

3   Agent Negotiation Engine with Coalition Formation Capabilities 

Our coalition formation algorithms are incorporated into an agent negotiation engine 
for collaborative decision-making called the Agent Negotiation Engine for 
Collaborative Decision Making (ANE-CODEM). This engine is presented in detail in 
Wanyama and Far [9]. Figure 3 shows that the main components of the modified 
ANE-CODEM are the following: the Algorithm Component, the Social Component, 
and the Commitment Component.   

 
 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 

Reasoning Component 

 

 

 

 

Fig. 3. Coalition Formation Model 

Moreover, Figure 3 illustrates that the modified ANE-CODEM works as follows:  

1. On receiving an offer, an agent sends it to the Algorithm Component of the 
negotiation engine to determine whether the proposer is an ally. If the 
proposer is not an ally, its offer is sent to the decision-making component so 
that the agent responds to the offer. On the other hand, if it is determined that 
the proposer of the offer is an ally then the information generated in the 
Algorithm Component is sent to the Social Component for further 
processing.  



50 T. Wanyama 

2. In the case of our Group-Choice Decision Support System (GC-DSS) based 
on multi-agent technology, the Algorithm Component estimates the 
preference value function of the proposer. This function is sent to the Social 
Component, which uses a MCDM model to determine the estimated scores 
of all the solution options for the proposer.  The estimated scores of the 
solution options for all coalition members which have already made their 
offers, together with the scores of the solution options for the concern agents 
are fed in a Game theory model to generate the Social Fitness Factors 
( )fSF of the Solutions. These factors represent the tradeoffs associated with 

the solution options in respect of the coalition.  
3. Besides generating the estimated preference value function of the proposer, 

the Algorithm of component of our GC-DSS determines the Tradeoff 

Factors ( )fT  of the solution options. These factors represent the tradeoffs 

associated with the solution options with respect to the concern agent. The 
Tradeoff Factors and the Social Fitness Factors of each of the solution 
options are combined in the Commitment Component to generate the 

Acceptance factors ( )fA  of the solution options.  The Acceptance Factor of 

a solution option is a measure of the ability of the solution to satisfy the 
combined preferences of the coalition members, from the perspective of a 
given coalition member. The generated Acceptance factors are used to 
update the offer acceptance/rejection criteria in the decision-making 
component of the agent before responding to the current offer. Furthermore, 
the Acceptance factors associated with the last offer in each negotiation 
round are used in the modification of the preference value function of the 
concern agent. 

The coalition formation component of ANE-CODEM enables each agent to select 
individually its allies or coalition. Therefore, the component supports the formation of 
any coalition structure, and it does not require any extra communication or central 
coordination entity or agent. In the following subsections, we briefly describe the 
major components of the modified ANE-CODEM, in the context of coalition 
formation.  

3.1   The Algorithm Component 

The Algorithm Component of our coalition formation model can have multiple 
coalition formation algorithms. In view of that, the GC-DSS we developed has two 
coalition formation algorithms. The first algorithm is based on ownership (example of 
static coalition structures), while the second is based on similarity of preferences 
(example of dynamic coalition structures). The two algorithms can work in cascade 
where the ownership criterion is initially applied, and if not met, then the similarity of 
preferences is applied. Alternatively, one of the algorithms can be bypassed, leaving 
the Algorithm Component to have the characteristics of the remaining coalition 
formation algorithm. Besides the coalition formation algorithms, the Algorithm 
Component has an algorithm for determining the tradeoff factors of the solution 
options (see Figure 4). 
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3.1.1   The Ownership Based Coalition Formation Algorithms 
This algorithm is very simple; all it requires is the agents to have the ability to 
identify the owners of their negotiation opponents. When agents make offers in the 
first negotiation around, they also broadcast their ownership identity. This enables 
each agent to identify the member of its coalition (i.e. the agents with the same owner 
as itself, and/or the agents owned by allies of its client). If agent is determined to be 
an ally (member of the coalition), its preference model is estimated using part of the 
coalition formation algorithms that is based on similarity of preferences. Thereafter, 
the model is sent to the social component for further processing. 

3.1.2   The Coalition Formation Algorithms Based on Similarity of Preferences 
This algorithm involves estimating the preference value function of the negotiation 
opponents of the concern agent based on the offers that they make, and comparing the 
estimated preference value functions of the opponents with the preference value 
function of the concern agent. Agents, whose preference models are found to be 
similar to that of the concern agent, are treated as allies of the agent, and their 
preferences are used in the social component to finally set the decision parameters in 
the decision component. Figure 4 presents the pseudo code of the coalition formation 
algorithms based on similarity of preferences. In the code, it is assumed that the 
concern agent prefers Solution Option B, and an offer of Solution Option A has been 
made by one of the negotiation opponents. 
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Fig. 4. Coalition Formation Algorithm based on the Similarity of Preferences 

 
This algorithm is based on the concept of Qualitative Reasoning [11], and it works 

as follows:  

1. The first ‘For’ loop determines the strength difference between solution 
option A and solution option B in each evaluation criteria.  

2. The first two lines of the ‘While” loop determine parameters which 
correspond to the reasoning that the difference between the utilities 
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associated with different solution options depends more of the evaluation 
criteria (decision variables) that have high criteria weights (preferences 
values) than on the criteria with low weights.  

3. The ‘If’ loop within the ‘While’ loop determines the estimated criteria 
weights (preference values). 

4. The last part of the ‘While’ loop reevaluates the solutions to check if the 
estimation of the preference values is working. 

5. After the ‘While’ loop, the algorithm calculates the amount of tradeoff –
factor associated with the offered solution option.  

6. Finally, the algorithm compares the estimated preference value function of 
the proposer of the offer to that of the concern agent. If all the estimated 
preference values fall within the limits set by the agent client of determined 
by the agents its self, the Coalition_Value is set to 1, meaning that the 
proposer of the offer is an ally (member of the coalition). Otherwise, the 
Coalition_Value is set to 0, implying that the proposer is not an ally. 

3.2   The Social Component 

This component has an algorithm that determines the Social Fitness Factors of the 
solution options as follows: 

• Based on the estimated preference value function of the proposer, estimate 
the scores of the solution options using a MCDM model. 

• Using the scores of the solution options for all the negotiation opponents, 
which have so far made their offers, as well as the scores of the solution 
options for the concern agent as the input to a Game Theory model, 
determine the Social Fitness Factors of the solution options. 

    The Social Fitness Factors represent the tradeoff associated with each of the 
solution options with respect to the coalition of the concern agent.  Therefore, if the 
concern agent is totally committed to its coalition, then the solution option with  
the best Social Fitness Factors would be an acceptable option if offered. Otherwise, 
the agent has to identify the solution option that meets its level of commitment to the 
coalition by integrating the Social Fitness Factors with the Tradeoff Factors. 

3.3   The Commitment Component 

Coalition formation is a result of shared goals that agents need to optimize through 
cooperation. Nevertheless, the individual agents normally have unshared goal that 
they need to optimize through their individual actions. The level an agent is concern 
about the shared goals (or the coalition tradeoffs) in comparison to its concern about 
the unshared goals (or the individual tradeoffs), is represented by the Commitment 

Level ( )ω of the agent. In other words, the Commitment Level of an agent is a 

measure of the commitment of the agent to its coalition. The ability of a solution 
option to satisfy the commitment level of an agent is represented by the Acceptance 
Factor ( )fA , which is given by Equation 1. 
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fff SFTA )1(. ωω −+=  .                                         (1) 

where, 10 ≤≤ ω . 

The Acceptance Factors of all the solution options are sent to the decision-making 
component of each agent to update its decision parameters. It should be noted that if 
an agent makes an offer, which has the best known Acceptance Factor, that offer is 
accepted even if the proposing agent is not a member of the coalition. Moreover, the 
Acceptance Factors generated at the end of the negotiation round are used as the basis 
for adjusting the preference value function of the concern agent 

4   Example 

We adopted a group-choice decision making problem from Wanyama and Far [10]. 
However, only the problem solving processes that are relevant to coalition formation 
are presented in this paper. 

In the example, an organization dealing in chinese food intends to change its 
business model from delivering food to households based on phone orders, to building 
a webshop where orders can be placed. The team developing software for the 
webshop intends to use a COTS to provide most of the functional requirements, then 
develop the extra requirements and interfaces inhouse. It is assumed that the three 
outlets, which are to be connected to the web-based shop, have to contribute 
financially towards its development, deployment and maintenance. Therefore, the 
products are evaluated based on the quality and business concerns of the outlets 
managers. Four COTS products have been identified as possible solutions to the 
problem, and the selection of the best-fit solution potion is to be carried out online. 
Therefore, each outlet manager has been availed with an Agent that has automatic 
negotiation capabilities enabled the modified ANE-CODEM. 

4.1   Simulation Experiment 

Negotiation experiments were carried out, based on the preference value functions 
developed by three stakeholders through their respective agents Agent a, Agent b, and 
Agent c. Therefore, the experiments simulated the negotiation between the three 
stakeholders. During negotiation, the agents made offers in turns until an agreement 
was reached. Moreover, the agents were set to start negotiations with their 
commitment levels set to 0.5, and they were allowed to adjust this value whenever it 
was required to break deadlocks. In all the experiments, the utility for each agent 
associated with the offers made was noted. Figure 6 shows the utilities of two of the 
agents (Agent a, and Agent b) for the offer made during the negotiation processes for 
the six simulation experiments. In the Figure, the circles represent the offers made by 
Agent b, and the crosses represent the offers made by Agent a. A cross inside a circle 
represents the agreement offers. 

Since the main objective of the experiments was to determine the effects of 
different coalition formation algorithms, and/or coalition structures on the utility and 
dynamics of a negotiation process, each of simulation experiments were carried out 
with one of the following conditions: 
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• No coalition formation. 
• Agent b and Agent c are allies (are in a static coalition) against Agent a, and 

Agent a does not consider them its allies. 
• Agent b and Agent c are allies, and they do not consider Agent a to be in their 

ally. Yet, Agent a considers both Agent b and Agent c to be its allies. This 
coalition structure is static through out the negotiation. 

• Agent a, Agent b, and Agent c are in one static grand coalition.  
• Agent b and Agent c can form a coalition based on the similarity of their 

preferences, but no alliance with Agent a is permitted. 
• Each of the three agents can form alliances with any other agent based on the 

similarity of their preferences.  

These negotiation condition were achieved by either bypassing one of the 
negotiation algorithms, or by operation the two algorithms in the “OR” or the “AND” 
mode. The OR-mode is where the proposer of an offer is required to meet the 
conditions of at least one of the algorithms to be a member of the coalition, and the 
AND-mode requires the proposer to satisfy the conditions of both coalition formation 
algorithms in order to be a member of the coalition. 

4.2   Results 

The results of the six simulation experiments are presented in Figure 5 below. 
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5(d) All the three Agents are members of a single static grand 
coalition  

5(c) Agents b and c are in a static coalition, they do not consider Agent 
a to be their ally, but Agent a considers both Agent b and c to be its 
allies   

Fig. 5. Results of the Simulation Experiments 
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5(f) All the three Agents are free to form alliances based on 
the similarity of their preferences  

5(d) Agents b and c can form a coalition based of the similarity of their 
preferences, but no coalition with Agent a is permitted  
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Fig. 5. (continued) 

4.3   Discussion of Results 

Generally, coalition formation creases utility. That is, the utility of the agreement 
offer for no coalition formation negotiation (Figure 5(a)) is smaller then the utility of 
agreement offers for any of the negotiations with coalition formation (Figures 5(b) - 
(f)). However, simply making alliances based on static parameters such ownership 
does not ensure maximizing utility (compare utility of agreement offer in Figures 5(d) 
and 5(f)). Therefore, the major issue of coalition formation in MAS is not the 
coalition structures themselves, but the search for the structures that maximize utility. 
This implies that concept of designing coalition formation algorithms that target 
particular coalition structures (e.g. the grand coalition), misses the main objective of 
coalition formation. Unfortunately, this is the approach that most knowledge coalition 
formation algorithms follow. 

Figure 5 illustrates that coalition formation controls the dynamics of the 
negotiation process. Moreover, the Figure demonstrates that coalition formation 
expedites the negotiation process (forming coalitions resulted in few negotiation 
rounds), and agents negotiation in a smart manner, where they make offers that aim at 
identifying a mutually acceptable solution. Static coalition structures offer better 
control of the negotiation dynamics, and expedite the negotiation process more than 
the dynamic structures, but at the risk of reduced utility (compare Figures 5(c) and (d) 
and one hand, with Figures 5 (e) and (f) on the other).  

5   Conclusions and Future Work 

This paper deals with the issue of coalition formation in MAS; it relates the reasons 
for forming coalition to the goals of coalition formation, to the of coalition structure 
types and to the utilities of the coalition and of the individual agents.  In addition, this 
paper presents a negotiation engine that is capable of employing multiple coalition 
formation algorithms. Currently, the engine has two coalition formation algorithms, 
one based of the ownership of the agents, and the other based on the similarities 
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between the preferences of the agents. Finally, the paper presents an example that 
illustrates the capabilities of our coalition formation algorithms.  

For the future, this research will be extended in two major directions. Firstly, we 
would like to model coalition membership such that agents that belong to multiple 
coalitions can exhibit different levels commitment to different coalitions. Secondly, 
we would like to continue studying the coalition formation process in order to 
improve the efficiency of our coalition formation model. 
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Abstract. We present a multicriteria fuzzy system using gradual rules and fuzzy
arithmetic. We first present a multicriteria problem and its solution for the case
of precise information. Then we extend the model to treat pieces of information
that may involve imprecision/vagueness. We show that the use of residuated im-
plication operators, employed by gradual rules, coupled with similarity relations
offer a better treatment of the problem than a Mamdani-like approach.

1 Introduction

A crucial step for solving a decision making problem is to formulate the preferences of
the individual. In a multicriteria decision making (MCDM) problem, such formulation
should take into account the preferences of each of the considered criteria.

Several approaches have been defined to express the preferences among alterna-
tives. The two main categories of such approaches are (i) assigning values to alter-
natives and (ii) defining preference relations between alternatives. In the first category,
different methods consist of assigning different types of values. For example, real num-
bers [14,13], linguistic terms (in ordinal scales) [15], and fuzzy values [1]. Some meth-
ods [11] also permit the user to express preferences by means of nonhomogeneous types
of values (numeric and linguistic). In the second category, methods also differ on the
type of values used. For example, real values [2] or rough sets [10].

When preferences are expressed by assigning values to the alternatives, MCDM
problems are often solved in a two stage process consisting of i) aggregation of the
satisfaction of all criteria and (ii) ranking (or selection) of the alternatives according
to the overall satisfaction. An alternative to this is (i) to build preferences from the
satisfaction degrees and (ii) to aggregate the preferences.

In this paper, we are interested in the first category of problems. We consider the
case in which rule bases are used to express the satisfaction of a user considering sets
of criteria. The set of input variables in each rule base is a subset of the whole set of
criteria considered by the user (possibly a singleton, i.e. a single criterium) and the
output variable is the satisfaction obtained when only those criteria are considered. The
overall satisfaction is obtained by merging together the satisfaction results yielded from
each rule base using aggregation functions defined on the real line. Our aim in this paper
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is to propose a means to extend the solution to this kind of problem when all the values
used in the rule bases are given in the form of imprecise or vague terms.

For that we consider that the rule bases are composed of gradual rules, of the type
"the more x is A, the more y is B" [5]. We use similarity relations to overcome the
inconsistency that is often yielded as a result of the use of this type of rules [8,9] . In
what concerns the aggregation of the outcomes of the rules, we base our approach on
the extension principle. The approach proposed in [1] is similar to ours in what regards
aggregating fuzzy numbers, although in that case numbers are restricted to be triangular.

In the following, we present an example of the problem in the non-fuzzy case. We
use this same example to illustrate the various issues that are raised as we treat the
problem in the fuzzy case. On Section 3 we then give a series of basic definitions and
notations. In Section 4 we propose an approach to extend the framework delineated in
the example to the case of imprecise/fuzzy values and discuss some of its limitations.
Finally, Section 5 brings the conclusion.

2 Running Example

Let us suppose a visitor asked us to rent a car for him based on the criteria R =
{cost, power, age}. Let us suppose that his level of satisfaction in relation to each of
these criteria, - named sat-, is obtained through the use of the set of rules given in Table
1, and expressed by values in the scale < none, low, reasonable, high, perfect >,
and denoted by < NS,LS,RS,HS, PS >. The input values for cost and power are
given in the scale < low,medium, high > and denoted by < L,M,H >, whereas
those for age are given in < old,medium, new > and denoted by < O,M,N >. The
rule “high cost → no satisfaction” is represented in the 3rd entry of the first KB.

Table 1. Knowledge bases for the car problem

cost : L M H

sat : PS HS NS

power : L M H

sat : LS HS RS

age : O M N

sat : LS HS PS

Let us suppose there exist 2 available cars S = {c1, c2}, such that c1 is rather expen-
sive, rather fast and rather old and c2 is not very expensive, rather slow and rather new,
and that they can be best modeled using only the values in < L,M,H > as

– cost(c1) = H , power(c1) = H , age(c1) = O
– cost(c2) = M , power(c2) = L, age(c2) = N

Comparing the features of the cars with the knowledge in the rules we obtain
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– satcost(c1) = NS, satpower(c1) = RS, satage(c1) = LS and
– satcost(c2) = HS, satpower(c2) = LS, satage(c2) = PS.

The aggregation of the satisfactions using the minimum, the arithmetic mean (here
approximated by the middle term) and the maximum are given in Table 2. In our case,
with any of these operators, car c2 would be preferred over c1.

Table 2. Aggregated results for cars c1 and c2

cost power age min mean max
c1 : NS RS LS NS LS RS
c2 : HS LS PS LS HS PS

3 Basic Definitions and Notations

In this section we recall some basic definitions that are used in the rest of the paper
and provide some notation. Most of the definitions and remarks are well-known in the
literature.

In the rest of the paper, unless stated otherwise, we shall work with fuzzy subsets
of the real line, so the domain U below is assumed to be R. The core (respec. support)
of a fuzzy set A : U → [0, 1] is defined as core(A) = {x | A(x) = 1} (respec.
supp(A) = {x | A(x) > 0}). For any α ∈ [0, 1], the α-cut of A is defined as [A]α =
{x ∈ U | A(x) ≥ α}. A is said to be normalized when there exists x such that
A(x) = 1, and convex when for all x, y, z, if x ≤ y ≤ z, A(y) ≥ min(A(x), A(z)). A
linear by parts convex fuzzy set A, a trapezoid, is denoted as < a1, a2, a3, a4 > where
supp(A) = (a1, a4) and core(A) = [a2, a3].

An operator � : [0, 1]2 → [0, 1] is called a t-norm if it is commutative, associa-
tive, monotonic and has 1 as neutral element. A residuated implication operator →�
is defined as a →� b = supc∈[0,1]�(a, c) ≤ b, where � is a left-continuous t-norm
(→� is said to be the residuum of �). One well-known residuated operator is Gödel
implication (residuum of � = min) defined as a→�Gb = 1 if a ≤ b and a→�Gb = b
otherwise. Another one is Goguen implication, defined as a→�Πb = 1 if a ≤ b and
a→�Πb = b/a otherwise. Also noteworthy is the so-called Rescher-Gaines implication
function, defined as a→�RGb = 1 if a ≤ b and a→�RGb = 0 otherwise, which is not
a residuated operator itself but is the point-wise infimum of all residuated implications.

Residuated implication operators are used to model gradual fuzzy rules, whose se-
mantics corresponds to statements of the form "the more x is A, the more y is B" [5].
Once a (continuous) t-norm� is fixed, a gradual fuzzy rule “If x is Ai then y is Bi” in-
duces a fuzzy relation between input and output values which is defined as Ri(x, y) =
(Ai →� Bi)(x, y) = Ai(x) →� Bi(y). Then, given a gradual rule set K = {“If x
is Ai then y is Bi”}i∈I , the induced global fuzzy relation RK is the intersection of the
individual ones, i.e. RK(x, y) = mini∈I Ri(x, y). Finally, given an (imprecise) input
“x is A0”, the output “y is B0” produced byK is usually computed as sup-� composi-
tion of A0 with RK , that is, B0(y) = output(K,A0)(y) = supx�(A0(x), RK(x, y)).
In particular, if the input is a precise value, x = x0, the expression is simplified to
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output(K, {x0}) = RK(x0, y) = mini∈IB
′
i(y), where B′

i(y) = αi →� Bi(y), and
αi = Ai(x0).

A similarity relation S on a domain U is a binary fuzzy relation, i.e. a mapping
S : U × U → [0, 1] that satisfies the following properties:

(i) ∀x ∈ U, S(x, x) = 1 (reflexivity);
(ii) ∀x, y ∈ U, S(x, y) = S(y, x) (symmetry);

Some authors require similarity relations to also satisfy the T-norm transitivity property
(�(S(x, y), S(y, z)) ≤ S(x, z) for all x, y, z ∈ U and some t-norm �), but we do not
take it into consideration here as it does not seem to play a role in our framework.

The application of a similarity relation S on a fuzzy termA, denoted by S◦A, creates
a “larger” term approximately_A. Formally, we have

(S ◦A)(x) = supy∈U min(S(x, y), A(y)).

The set of similarity relations on a given domain U forms a lattice (not linearly
ordered) with respect to the point-wise ordering (or fuzzy-set inclusion) relationship.
The top of the lattice is the similarity S� which makes all the elements in the domain
maximally similar: S�(x, y) = 1 for all x, y ∈ U . The bottom of the lattice S⊥ is
the classical equality relation: S⊥(x, y) = 1 if x = y, S⊥(x, y) = 0, otherwise. The
higher a similarity is placed in the lattice (i.e. the bigger are their values), the less
discriminating it is.

Particularly useful are families of parametric similarity relations S = {S0, S+∞} ∪
{Sβ}β∈I⊆(0,+∞) that are such that:

(i) S0 = S⊥,
(ii) S+∞ = S�, and

(iii) β < β′, then Sβ ≺ Sβ′ .

Here S ≺ S′ means S(x, y) ≤ S′(x, y) for all x, y ∈ U and S(x0, y0) < S′(x0, y0)
for some x0, y0 ∈ U .

The family given by Sλ(x, y) = max(0, 1 − λ−1 · |x − y|), where λ > 0, satisfies
interesting properties such as compatibility with the Euclidean distance, preservation of
convexity, order and core [3].

Given any function f fromX to Y , the extension principle permits us to extend f to
fuzzy sets. That is,

f̂(A)(y) = max
x∈X,f(x)=y

A(x)

This expression is extended easily into functions f : X1, . . . , XN → Y . For illustration,
when f is the sum, the extension principle permits us to compute the fuzzy sum of fuzzy
sets A and B:

CA⊕B(y) = sup
(x1,x2)/x1+x2=y

min(A(x1), B(x2))
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4 The Proposed Fuzzy System

Let us suppose we have a set of criteria X to judge a set of objects S. We construct a
set of fuzzy rule-based systems, such that each rule base KBi deals with a set of input
variables xi ⊆ X and an output variable sati defined on a domain Y .

Let us suppose that the rules in a given KB are given in the form

Rij : If xi = Aij then sati = Bij

where Aij is a fuzzy term defined in the domain of variable xi and Bij is a fuzzy term
defined on Y . For simplicity sake, each rule base has a single input variable xi ∈ X ,
but the model can be easily extended to deal with input variables that have to be taken
into account conjointly.

In our example, the terms presented in Table 1 can be modeled by fuzzy terms.
Let us suppose that the terms for the output variables are defined on the [0,1] domain
and given by NS :< 0, 0, .2, .4 >, LS :< .2, .4, .4, .5 >, RS :< .4, .5, .5, .6 >,
HS :< .5, .6, .6, .8 >, and PS :< .6, .8, 1, 1 > (see Figure 1).

.8.6.5.4.2 1

NS LS RS HS PS
1

sat

Fig. 1. Example of fuzzy sets partition for output variable sat in all KBs

To deal with the extended problem, we have to address two main issues:

1. what kind of inference should be used in the KBs and, accessorily, how the output
of the various rules from the same KB should be aggregated together and

2. how the results yielded by the various KBs should be aggregated in order to produce
an overall satisfaction value for each object.

To deal with the first issue we propose to use a true implication operator as the
means to perform the inference in the KBs, along with a t-norm to aggregate the outputs
concerning a single KB. To deal with the second issue we propose to apply the extension
principle to aggregate the fuzzy sets yielded by the different KBs.

4.1 Inference

We propose to view the rules in the KBs as gradual rules, thus using residuated impli-
cation operator. This is done for two reasons:
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– gradual rules seem to be closer to the way people express preferences (e.g. "the
cheaper is the car, the better"), and

– the widely used Mamdani approach, in which the t-norm min is used as inference
operator and max is used to aggregate the results, does not seem to be useful in this
case.

Let us suppose that we use values for the input variables that resulted in the ob-
tention of the terms in Figure 2.a (resp. Figure 2.b) for car c1 (respec. c2). In each
figure, it is indicated the degree of compatibility of the fuzzy term in the rule premise
(not illustrated here) and the input. For example, regarding the cost of car c1, the in-
put value is compatible with degree α = .75 for the rule “high cost → no satisfac-
tion”, and degree α = .25 for the rule with “medium cost → high satisfaction” (see
Table 1).

.8.6.5.4.2 1 .8.6.5.4.2 1

.8.6.5.4.2 1

.8.6.5.4.2 1 .8.6.5.4.2 1

.8.6.5.4.2 1

.75

.25

.75

.25

.75

.25

.75

.25

.75

.25

.75

.25

NS HS
1

sat

HS PS
1

sat

RS HS
1

sat

LS HS
1

sat

HS PS
1

sat

LS HS
1

sat

cost

power

age

cost

power

age

car c2

a) b)

car c1

car c1

car c1 car c2

car c2

Fig. 2. Rule output fuzzy set and compatibility degree for cars c1 (a) and c2 (b) when their re-
spective input is applied to the KBs

Figure 3.a) illustrates the application of the Mamdani framework (inference with
min, rule aggregation with max) and the gradual rules one (inference with residuated
implication operators Gödel and Goguen, aggregation with min), in KBcost before the
rule aggregation step. We see that none of the results is completely satisfactory.

The application of the max on the resulting output in Mamdani framework
yields a non-convex, non-normalized result. The application of min in the gradual rule
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.8.6.5.4.2 1

.8.6.5.4.2 1

.8.6.5.4.2 1
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.25
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.25

.8.6.5.4.2 1

.8.6.5.4.2 1
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.25
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.25

.75

.25

NS HS
1

sat

1

sat

HS
1
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cost

cost

cost

NS HS
1

sat

1

sat

HS
1

sat

cost

cost

cost

NS

NS

HS HS

NS

NS

b)a)

MamdaniMamdani

Godel

GoguenGoguen

Godel

Fig. 3. Result of rule aggregation using different operators a) without similarity relation and b)
with similarity relation S.3

framework yields the empty fuzzy set as result, i.e., complete inconsistency, no matter
which is the residuated implication operator used. Indeed, in the gradual rules frame-
work, since the aggregation of the resulting fuzzy sets is done by a T-norm, complete
inconsistency is very likely to occur.

Conditions characterizing consistency in systems of fuzzy gradual rules have been
basically addressed by Dubois, Prade and Ughetto in [6,7]. A way to deal with incon-
sistency in gradual rules KBs is to apply a similarity relation [8,9] to the fuzzy terms in
the output variable partition. A rule “If x is A then y is B” is then understood as “If x
is A then y is approximately_B”.

Figure 3.b brings the result of applying the parameterized similarity relation family
presented in Section 2 with λ = .3 on the rules output terms before inference. We see
that we obtain good results with the gradual rules framework but that it is not appropri-
ate for the Mamdani framework. In particular, it illustrates the fact that Goguen results,
albeit less specific than Gödel ones, can be more easily represented, usually with only
2 level cuts.

Figure 4 brings the result of applying the same similarity relations family on the KB
regarding power for car c1 (see Figure 2.a) for the Goguen operator with parameters
λ = 0, which is the equivalent of applying no similarity relation, and λ = .3. We see
that in this case, the result with the application of S0 produces better results than with
S.3.
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.8.6.5.4.2 1

.75

.25

HS
1

sat
power

RS

.8.6.5.4.2 1

.75

.25

HS
1

sat

RS

power

a) b)

Fig. 4. Example of application of Goguen operator with a) S0 and b) S.3

To deal with inconsistency and yet obtain the most specific results, we adopt the
approach proposed in [8] in which we use the smallest similarity relation that applied
on the terms issues a normalized result upon the aggregation with min in the gradual
rule framework.

Formally, for a precise input xi = a, we just transform each rule Rij : If xi = Aij

then sati = Bij into a rule Rij∗ : If xi = Aij then sati = Bij∗, where Bij∗ =
Bij ◦ Sλ, such that λ is the smallest parameter that makes Bi∗′ = mini∈IBij∗′ = 1.

The results regarding the three KBs for each car in the gradual rule framework, using
the smallest similarity relation capable of issuing a normalized result, are depicted in
Figure 5 using Goguen operator.

.8.6.5.4.2 1

.75

.25

.8.6.5.4.2 1

.75

.25

b)a)

1

sat

cost age power

car c1
1

sat

power cost age

car c2

Fig. 5. Satisfaction results using Goguen implication and the most suitable similarity relation for
cars a) c1 and b) c2

4.2 Satisfaction Aggregation

The inference in our framework is such that the satisfaction according to each criterium
about a given object is modeled by fuzzy sets. Therefore, in order to aggregate them, the
natural solution is to apply the extension principle on the same aggregating functions
that would be used in a numerical non-fuzzy setting.

Given a set of results sati(o) = Bi∗′, the final satisfaction concerning object o, and
aggregation function f is calculated as

sat = B∗′ = f̂(B1∗′, ..., Bn∗′),
where f̂ is the fuzzy extension of function f .

Figure 6 illustrates the application of three different fuzzy operators obtained through
the use of the extension principle: the min, the max and the arithmetic mean. We can
see that the results are compatible with those obtained in the non-fuzzy case.
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1
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fuzzy mean

fuzzy min
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Fig. 6. Results of application of fuzzy operators: a) min, b) arithmetic mean, and c) max

4.3 Discussion

The equivalence between the non-fuzzy and fuzzy cases is only possible if the fuzzy
sets are labeled in the same order as in the non-fuzzy case. But some other restrictions
are needed to obtain the equivalence, mainly concerning how the fuzzy sets are defined
in each variable domain, i.e. its partition.

Figure 7 brings examples of a variable partitions: 7.a) is a so-called Ruspini partition,
in which ∀x,∑iAi(x) = 1 (Figure 1 is also a Ruspini partition), 7.b) and 7.c) are
partitions in which not all elements are covered, i.e. ∃x, supiAi(x) = 0 and 7.d) is
a partition in which ∃x,∑iAi(x) ≥ 1, and for some elements there are more than 2
fuzzy sets with positive membership degrees for a given element of the variable domain.

Given a rule A → B, if the input is a fuzzy set A′ that is more specific than A,
then the fuzzy set B′ resulting from the inference step will be the same as B. More
formally, due to the properties of residuated implication operators, it is straighforward
to prove that if ∀x,A′(x) ≤ A(x), i.e. A′(x) is included in A(x) in the sense of Zadeh
[16], then B′ = B. Therefore, in what concerns inference, to obtain in the fuzzy case,
values whose labels are exactly the same as those that we would obtain in the non-fuzzy
case, the (conveniently ordered) fuzzy sets in the input partition need to have empty
intersection, i.e. for any two fuzzy sets Ai and Aj in the input space such that i �= j,
we have to have ∀x,min(Ai(x), Aj(x)) = 0. Partitions in Figures 7.a) and 7.d) do not
satisfy such a condition whereas 7.b) and 7.c) do.

In what regards aggregation, the condition above is not necessary for some opera-
tors, like min and max. On the other hand, it may be necessary but not suficient for
some others operators. For instance, let us suppose that the output values regarding the
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Fig. 7. Examples of fuzzy input partitions

satisfaction with respect to a given object in the non-fuzzy case are B1 = 1, B2 =
2, B3 = 3. Now, let us suppose that the corresponding fuzzy sets are defined as B1 =
< 0, 1, 1, 2 >B2 =< 2, 2, 2, 2 >B3 =< 2, 3, 3, 4 >. Using the fuzzy arithmetic mean
we obtain B′ =< 4/3, 2, 2, 8/3 > which is less specific than the original precise fuzzy
set B2.

To deal with uncovered domains, as in Figures 7.b) and 7.c), similarity relations
can be applied also on input variables, as proposed in [9]. In this case, a rule ‘If x is
A then y is B” with uncovered regions in the input domain is understood as “If x is
approximately_A then y is B” on those regions.

5 Conclusion

We presented here a multicriteria fuzzy system that extends the non fuzzy case in a
natural manner. Inference is done using rule bases for each criterium, consisting of
fuzzy gradual rules with Goguen residuated implication operator. The satisfaction with
respect to to the criterium issued by its corresponding rule base is aggregated into a
final satisfaction value by applying the extension principle on non-fuzzy aggregation
operators (fuzzy arithmetic).

The extension principle can be burdensome to calculate. However, algorithms for
many specific functions are quite straightforward when the fuzzy sets are LR [4], such
as trapezes and Gaussian functions.

The approach shown here was inspired in social games [12], and we are working
towards the integration of this model into SocLab (available at sourceforge.net). So-
ciology is mainly concerned with the kinds of links that make human beings to build
societies in which they live, and social games study the links that social actors can pro-
duce, resulting in states of affairs where each actor accepts both his/her own position
and the position of others. SocLab has been developed for games in which each actor
behaves strategically although he has only bounded rationality capabilities. Each actor
in a game controls a resource that is needed to some extend by at least one of the other
actors. The action (move) performed by any given actor has an effect on all actors and
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the satisfaction of each actor depends on the effects of the actions of all the actors. Our
aim is to implement the approach described here in SocLAb, to help a system user to
model a) the effect of each action on a given actor, and b) the overall satisfaction of the
actor, which correspond respectively to the inference and satisfaction aggregation steps
in our approach.

Acknowledgements. The authors thank anonymous reviewers for their comments and
suggestions.
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Abstract. In this paper, we discuss a behavioral model of decision mak-
ing using weather information, making use of the so-called fuzzy target
based decision model. Due to forecasting uncertainty in weather fore-
casts, many decision problems in practice influenced by weather informa-
tion have been formulated as that of decision making under uncertainty.
After introducing the fuzzy target based decision model which states
that, after assessing a fuzzy target, the decision maker should select the
decision which maximizes the probability of meeting his target, we will
show that different behaviors of the decision maker about his target can
lead to different decisions. This behavioral analysis not only provides an
interpretation for influence of psychological personality features of the
decision maker on his decisions, but also has a corresponding link to
attitudes towards risk in terms of utility function.

1 Introduction

Many human activities and enterprizes are affected by uncontrollable future
weather conditions. And the outcomes of many decision activities, ranging from
fairly trivial (such as carrying an umbrella) to vitally important (substantially
affecting the livelihoods of firms or individuals) are dependent on these weather
conditions [14]. Therefore, it is natural that individuals/firms will seek out in-
formation about the future to make better decisions. The issue of using weather
forecasting information in decision making has been a concern for many decades.

Due to forecasting uncertainty in weather forecasts and a wide range of ser-
vices, it makes it difficult to utilize weather information for business purpose. For
example, in Japan, beside Japan Meteorological Agency (JMA) there are also
many private companies involving in weather forecasting services. However, in
recent years, gross sales for private weather companies are depressed an annual
total of thirty billion Japanese yen [12] and most of the certified weather fore-
casters have no opportunity to use their meteorological knowledge practically.
To find a way out of these situations, it is said that something of highly sophis-
ticated knowledge management, that means special observation equipment or
original numerical weather prediction system, is useful [3].
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Recently, in an attempt of making use of weather forecasting information in
decision analysis for transportation companies at Ishikawa (Japan) in winter
season, Hiramatsu [7] has studied a knowledge management model for weather
business (Fig. 1) and then applied the so-called cost/loss ratio model for some
simple case studies [8]. Though the cost/loss ratio model has a long tradition of
study, especially in the meteorological community, it is a very simple and may
not be appropriate for complex problems.

JMA
Weather
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Analysis Private Weather Company

Enterprises

Production planning, 
Sales planning,
Purchase planning,
Stock management, etc.

Product development, 
Marketing, etc.

Users
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factor
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TV, Newspaper, etc
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in Business
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Collaboration
(Organizational 
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Fig. 1. The Concept of Knowledge Management for Weather Business

As mentioned in [14], a quite powerful treatment of weather-sensitive decisions
made under uncertainty can be accomplished through the construction of the
so-called decision analytic models. By this approach, many decision problems in
practice influenced by weather information have been formulated as that of de-
cision making under uncertainty (DUU) in the decision theory [18]. In addition,
in [16] Thompson interestingly discussed the influence of behavioral/ability of
the decision maker to the various use of decision strategies in meteorological de-
cision making. On the other hand, the authors in [10,11] have recently studied a
fuzzy target based decision model for DUU in which we can interestingly estab-
lish a direct link between the decision maker’s different attitudes about target
and different risk attitudes in terms of utility functions.

In this paper we will discuss the influence of behavior/ability of the decision
maker in meteorological decision making using only the fuzzy target-based deci-
sion model but with various target attitudes. We will also show how our analysis
is consistent with that conducted by Thompson [16]. The next section will briefly
introduce the (fuzzy) target based decision model. In Section 3, after recalling
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the behavioral analysis in meteorological decision making using different decision
strategies by Thompson [16], a behavioral analysis using the fuzzy target based
decision model is discussed. Section 4 presents some concluding remarks.

2 Target-Based Decision Model of DUU

In this section, we will introduce the fuzzy target based model for the problem
of DUU, which has been recently investigated in [10,11]. Formally, the problem
of decision making in the face of uncertainty is generally described using the
decision matrix shown in Table 1. In this matrix, Ai(i = 1, . . . , n) represent the
actions available to a decision maker, one of which must be selected. The elements
Sj(j = 1, . . . ,m) correspond to the possible values associated with the so-called
state of nature S. Each element cij of the matrix is the payoff the decision maker
receives if action Ai is selected and state Sj occurs. The uncertainty associated
with this problem is generally a result of the fact that the value of S is unknown
before the decision maker must choose an action Ai. Let us consider the decision
problem as described in Table 1 with assuming a probability distribution PS
over S = {S1, . . . , Sm}. Here, we restrict ourselves to a bounded domain of the
payoff variable that D = [cmin, cmax].

Table 1. Decision Matrix

Actions
State of Nature

S1 S2 . . . Sm

A1 c11 c12 . . . c1m

A2 c21 c22 . . . c2m

...
...

...
. . .

...

An cn1 cn2 . . . cnm

As is well-known, the most commonly used method for valuating acts Ai to
solve the DUU problem described by Table 1 is to use the expected utility value:

v(Ai) � EUi =
m∑

j=1

PS(Sj)U(cij) (1)

where U is a utility function defined over D.
On the other hand, each action Ai can be formally considered as a random

payoff having the probability distribution Pi defined, with an abuse of notation,
as follows:

Pi(Ai = x) = PS({Sj : cij = x}) (2)
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Then, the target-based decision model [1] suggests using the following value
function

v(Ai) � P (Ai ≥ T )

=
∑

x

P (x ≥ T )Pi(Ai = x)

=
m∑

j=1

PS(Sj)P (cij ≥ T ) (3)

where the random target T is stochastically independent of any random payoffs
Ai, and P (x ≥ T ) is the cumulative distribution function of the target T .

Interestingly, these two different procedures are shown to be both mathemati-
cally and observationally equivalent [1,4]. In other words, despite the differences
in approach and interpretation, both target-based procedure and utility-based
procedure essentially lead to only one basic model for decision making. It should
be worth, however, emphasizing that while both target-based and utility-based
decision making demand an understanding of probabilities, the utility-based
model additionally requires a comprehension of cardinal utilities [2].

2.1 The Fuzzy Target Based Model

In some practical situations, due to a lack of information or statistical evidence,
it may be difficult or impossible for decision maker to assess a probabilistic target
as in the target-based decision model above. Instead, decision maker may be able
to assess a fuzzy target based on his experience/feelings. It would be also noting
that defining fuzzy targets is much easier and intuitively natural than directly
defining random targets, especially in decision situations where the decision may
be strongly influenced by the personal behavior of decision maker.

Under such observation, a fuzzy target-based decision model has been pro-
posed and studied in [10,11]. Particularly, let us turn back to the DUU problem
described in Table 1. In the fuzzy target-based decision model, we assume that
the decision maker is able to establish a fuzzy target T which reflects his atti-
tude. Then, after assessing the target he would select the course of action which
maximizes the expected probability of meeting the target defined by

v(Ai) =
m∑

j=1

PS(Sj)P(cij ≥ T ) (4)

where P(cij ≥ T ) is a formal notation indicating the probability of meeting the
target of value cij or, equivalently, the utility U(cij) � P(cij ≥ T ) in the utility-
based language. In [9], two methods for calculating P(cij ≥ T ) from fuzzy targets
have been discussed. We now briefly recall these two methods.

2.2 Probability of Meeting a Fuzzy Target

Note here that by a fuzzy target we mean a possibility variable T over the domain
D represented by a possibility distribution μT : D → [0, 1]. For simplicity, we
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assume further that T is normal, convex and has a piecewise continuous function
with supp(T ) = [cmin, cmax], where supp(T ) denotes the support of T .

Simple Normalization. A direct and simple way to define P(cij ≥ T ) is
making use of Yager’s method [17] for converting a possibility distribution into
an associated probability distribution via the simple normalization. Particularly,
the possibility distribution μT of the target T is first converted into its associated
probability distribution, denoted by PT , as follows

PT (t) =
μT (t)∫ cmax

cmin
μT (t)dt

Then P(cij ≥ T ) is defined as the cumulative distribution function as usual by

P(cij ≥ T ) =
∫ cij

cmin

PT (t)dt (5)

The α-Cut Based Method. Another method for inducing the utility function
associated with P(cij ≥ T ) is based on the α-cut representation of fuzzy target
T , where each α-cut Tα is viewed as a crisp approximation of T at the level
α ∈ (0, 1]. In particular, under an interpretation of {Tα}α∈(0,1] as a uniformly
distributed random set, consisting of the Lebesgue probability measure on [0, 1]
and the set-valued mapping α �→ Tα [5], the probability P(cij ≥ T ) is defined as

P(cij ≥ T ) =
∫ 1

0

P (cij ≥ Tα)dα (6)

where P (cij ≥ Tα) is the cumulative distribution function of the random variable
having a uniform distribution over Tα. As mentioned in [9], the fuzzy target-
based decision model using the α-cut based method for inducing the utility
function in (6) reflects a stronger decision attitude towards the target than that
using the simple normalization as in (5). So in this paper the α-cut based method
is used for computing P(cij ≥ T ).

3 Behavioral Analysis Using Fuzzy Targets in
Meteorological Decision Making

The problem of selecting an appropriate decision strategy in the face of forecast-
ing uncertainty in weather information has been of concern to the meteorological
community for many decades. In [6], Gleeson did describe two decision strate-
gies based on the theory of games for this problem and simultaneously provided
examples of their economic consequences. As mentioned in Thompson [16], there
was a conceptual parallel between the various decision strategies and the familiar
meteorological models which, however, might not be clearly evident to meteo-
rologists. At the same time, the author did draw attention to this similarity and
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interestingly discussed the influence of behavioral/ability of the decision maker
to the various use of decision strategies via a simple example as shown in Ta-
ble 2. In the following, we first introduce Thompson’s analysis in meteorological
decision making using three decision strategies, and then present a similar anal-
ysis by using only the fuzzy target-based decision model but with various target
attitudes.

3.1 Three Decision Models and Thompson’s Discussion

In Table 2, the first three rows (Di) are the operational decisions which are re-
lated to the occurrence of weather events represented by columns headings (Wj).
Elements (aij) in the table are gains and losses associated with corresponding
pairs (Di,Wj), i.e. aij is the profit or loss the decision maker receives if the
decision Di is taken and the weather event Wj occurs. The lower portion of the
table shows the relative frequencies (pj) of the occurrence of Wj , and the upper
(pup

j ) and lower (plo
j ) confidence limits for these frequencies.

Table 2. Gain/Loss Matrix with Various Weather Events [16]

Weather Events

W1 W2 W3 W4

D1 1 4 1 0

Decisions D2 -1 0 4 1

D3 -3 0 2 7

pj 0.10 0.25 0.50 0.15

Probability Information pup
j 0.30 0.40 0.60 0.30

plo
j 0.05 0.20 0.20 0

As for the purpose of selecting the proper decision Di, the following decision
models were considered according to different behaviors of the operator [16]:

1. If the operator wishes to conduct his operation so as to minimize large losses,
he may select the course of action, denoted by D(min)

∗ , which will produce the
maximum benefit from the minimum economic expectation model defined as

D
(min)
∗ = argmax

Di

m∑
j=1

aijp
(min)
ij (7)

where p(min)
ij is a fictitious relative frequency of eventWj which is a maximum

or minimum when aij is a minimum or maximum, respectively, subject to
the constraint

plo
j ≤ p(min)

ij ≤ pup
j (8)
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2. If the operator is risk neutrality, he may use the mean economic expectation
model1 to select course of action D(mean)

∗ as follows:

D
(mean)
∗ = arg max

Di

m∑
j=1

aijpj (9)

3. If the operator is willing to risk possible large losses, he may decide on the
course of action, denoted by D(max)

∗ , which will produce the maximim profit
from the maximum economic expectation model defined by

D
(max)
∗ = argmax

Di

m∑
j=1

aijp
(max)
ij (10)

where p(max)
ij is a fictitious relative frequency of eventWj which is a maximum

or minimum when aij is a maximum or minimum, respectively, subject to
the same constraint as p(min)

ij in (8).

Applying these three models to the decision matrix given in Table 2 yields
the results as shown in Table 3. For the detail of computations involved in this
example could be referred to [6]. As we have seen, depending on the decision

Table 3. Economic Expectation with Various Decision Models [16]

Economic Expectation

Minimum Mean Maximum

D1 1.30 1.60 2.20

Decisions D2 0.60 2.05 2.50

D3 -0.30 1.75 2.85

model used, different courses of action will be selected with different maximum
gains produced. Now the question arises: which model should be used for making
the decision? Clearly, no single course of action is appropriate in all cases and
as Thompson [16] mentioned, the decision maker should assess the particular
nature of the operation in order to determine an appropriate decision model.
Simultaneously, Thompson offered several following suggestions. If the operator
is working on a close economic margin, such an initial loss or series of losses,
he would preclude continuation of the operation, then the minimum economic
expectation model would be an appropriate one. However, if the operator has
sufficient capital to absorb potential losses, then the mean or even the maximum,
economic expectation model may be considered. Furthermore, it was also noticed
that the personal philosophy of the decision maker may influence, to some extent,
his selection of a decision model used. Particularly, a cautious operator may feel
1 The expected value model.
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more comfortable with a decision based on the minimum economic expectation,
while a more adventurous entrepreneur may wish to gamble so that the maximum
economic expectation model would be used.

In the above discussion of three decision models, it is required to have ad-
ditional information such as upper and lower limits for probabilities of weather
events, which may be practically difficult or expensive to be assessed. It is worth
noting here that Thompson’s analysis of the decision maker’s attitudes towards
risk is essentially based on the various use of these three models, but not in
terms of ‘utility’ function as in theory of decision analysis with uncertainty. In
the following we provide a behavioral analysis of the decision maker by means
of the fuzzy target based decision model.

3.2 Fuzzy Targets and Behavioral Analysis

Let us consider to apply the fuzzy target based decision model to the problem of
decision making using weather information as discussed above. Here we assume
to have the relative frequencies (pj) of the occurrence of weather event Wj only.
Furthermore, we also suppose that depending upon the ability/behavior of the
decision maker, he may first assess a fuzzy target T as his aspiration of profit,
which can be defined as membership function μT : [amin, amax] → [0, 1], where
amin = min{aij} and amax = max{aij}. Then he may select the course of action
which maximizes the probability of meeting his target as follows:

DT
∗ = argmax

Di

m∑
j=1

pjP(aij ≥ T ) (11)

In this model, depending upon the ability/behavior of the decision maker
he may assess his own fuzzy target, and several prototypical targets may be
described as follows.

1. The first target is called the pessimistic target, which may correspond to
the operator who wishes to avoid a serious loss and believes bad things
may happen. Therefore he may have a conservative assessment of the target,
which corresponds to ascribing high possibility to the uncertain target being
a low gain or large loss. For simplicity, the membership function of this target
is defined by

Tpess(x) =
{

amax−x
amax−amin , if amin ≤ x ≤ amax

0, otherwise
(12)

Fig. 2 a) graphically depicts the membership function Tpess(x) of this target
and its corresponding utility function UTpess(x) = P(aij ≥ Tpess).

2. The second target expresses a neutral behavior on target of the decision
maker and is represented by the possibility distribution Tneutral(x) = 1 for
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amin ≤ x ≤ amax, and Tneutral(x) = 0 otherwise. In this case, it is easily to
see that the model (13) becomes:

Dneutral
∗ = arg max

Di

m∑
j=1

pj
aij − amin

amax − amin
(13)

which is equivalent to the mean economic expectation model as in (9).
3. The third one is called the optimistic target. This target would be set by

the decision maker who is able to accept a risk of getting large losses, for
example in case he has enough capital to absorb potential losses, and has an
aspiration towards the maximal payoff. Formally, the optimistic fuzzy target,
denoted by Topt, can be defined as follows

Topt(x) =

{
x−amin

amax−amin , if amin ≤ x ≤ amax

0, otherwise
(14)

Fig. 2 b) graphically depicts the membership function Topt(x) and the utility
function UTopt(x) = P(aij ≥ Topt) corresponding to this target.

4. Interestingly, in some cases if the operator does not like any extremal views
of target, he may express his aspiration level of gains or his acceptable level
of losses, which is linguistically represented as “about a0” having the mem-
bership function defined as

Tã0(x) =

⎧⎪⎨⎪⎩
x−amin

a0−amin , a
min ≤ x ≤ a0

amax−x
amax−a0

, a0 ≤ x ≤ amax

0, otherwise
(15)

where amin < a0 < amax, and this fuzzy target is called unimodal. For
example, in the example above, if the decision maker taking a0 = 0 and
is graphically illustrated in Fig. 3 a), along with its corresponding utility
function UTã0

(x) = P(aij ≥ Tã0).
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Now let us turn back to the decision problem as described by Table 2. Applying
the fuzzy target based decision model with different targets discussed above
produces results as shown in Table 4.

Table 4. Expectation of Meeting the Target with Different Targets

Expectation of Meeting the Target

Pessimistic Neutral Optimistic About 0 Very Pessimistic

D1 0.7968 0.4600 0.1481 0.6330 0.9053

Decisions D2 0.8075 0.5050 0.1979 0.6353 0.9003

D3 0.7388 0.4750 0.2392 0.6005 0.8249

As we have seen in Table 4, the result interestingly reflects very well how a
course of action selected is influenced by the behavior of the operator. That is,
if the decision maker assessed a neutral target, the decision D2 is selected as
in the expected value model. If the decision maker wishes to get profit as big
as possible, accepting a risk that if the desirable weather event will not occur,
he may get a large loss, then he probably assesses an optimistic target which
corresponds to D3 being selected. In the case of the decision maker who assesses
a pessimistic target, though D2 is still selected, D1 becomes more preferred over
D3. This means that the pessimistic operator is looking for sure of avoiding
losses. However, by assessing a linear membership function for Tpess he is not
enough pessimistic (see, Fig. 3 b)) to refuse D2 which provides very attractive
profit potential with relatively little risk. Let us assume that a more pessimistic
target is assessed as follows:

Tvery−pess(x) =

{
(amax−x)2

(amax−amin)2 , if amin ≤ x ≤ amax

0, otherwise
(16)
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Then the result corresponding this target is shown in the last column of Table 4,
which suggests D1 should be selected for surely avoiding a loss. It would be of
interest to note that the nature of the target assessment may be also influenced
by the personal philosophy of the decision maker. That is, a cautious decision
maker may have a pessimistic-oriented target, while a more adventurous en-
trepreneur may prefer a optimistic-oriented target. However, unimodal targets
would intuitively be the most natural to be assessed.

Now let us discuss a link between different attitudes about target and different
attitudes towards risk in terms of utility functions. Looking at Fig. 2 a) and Fig. 3
b), we see that the pessimistic-oriented targets Tpess and Tvery−pess lead to con-
cave utility functions and therefore, exhibit a risk-aversion behavior. By contrast,
Fig. 2 b) shows that the optimistic target induces a concave utility function and
thus equivalently corresponds to risk-seeking behavior. From the results shown
in Table 3 and Table 4, we can see that the behavioral analysis by the fuzzy
target based decision model is consistent with that discussed by Thompson [16]
using three decision models. However, in our opinion, using fuzzy targets would
be more nature and easier, while having a direct link to the traditional notion
of utility functions. In addition, the unimodal target induces a utility function
that is equivalent to the S-shape utility function of Kahneman and Tversky’s
prospect theory [13], according to which people tend to be risk averse over gains
and risk seeking over losses. In the fuzzy target-based language, as the decision
maker assesses his uncertain target as distributed around the modal value, he
feels loss (respectively, gain) over payoff values that are coded as negative (re-
spectively, positive) changes with respect to the modal value. This would lead
to the behavior consistent with that described in the prospect theory and it is
also suggested that this sort of target be the most natural one to occur.

4 Conclusion

In this paper, we have discussed a behavioral model of decision making using
weather information by using the fuzzy target based decision model. It is ob-
served from the comparative results that the behavioral analysis by the fuzzy
target based decision model is not only consistent with that discussed in the
literature of meteorological decision making, but also has a direct link to the
well-known notion in the decision theory of attitudes towards risk in terms of
utility functions. As for future work, we are conducting case studies for applica-
tion of the fuzzy target based decision model to the problem of decision making
using weather forecasting services of transportation companies in Ishikawa, par-
ticularly in the winter season.
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Abstract. In group decision making (GDM) processes, prior to the
selection of the best alternative(s), it would be desirable that experts
achieve a high degree of consensus or agreement between them. Due
to the complexity of most decision making problems, individuals’ pref-
erences may not satisfy formal properties. ‘Consistency’ is one of such
properties, and it is associated with the transitivity property. Obviously,
when carrying out a rational decision making, consistent information,
i.e. information which does not imply any kind of contradiction, is more
appropriate than information containing some contradictions. Therefore,
in a GDM process, consistency should also be sought after.

In this paper we present a consensus model for GDM problems that
proceeds from consistency to consensus. This model includes a novel con-
sistency reaching module based on consistency measures. In particular,
the model generates advice on how experts should change their prefer-
ences in order to reach a solution with high consistency and consensus
degrees.

1 Introduction

Any decision making problem includes a selection process which involves, as part
of it, the choice between the various alternatives solutions to the problem [14].
In GDM problems, however, it may happen that some experts from the group
would not accept the group choice if they consider that their opinions have not
been take into account ‘properly’. Indeed, group choice should be based on the
desires or preferences of ‘all’ the individuals in the group, a premise on which
democratic theory is based on [3].

Preference relations are usually assumed to model experts’ preferences in
group decision making problems [4,12]. Classically, given two alternatives, an
expert judges them in one of the following ways:
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(i) one alternative is preferred to another;
(ii) the two alternatives are indifferent to him/her;
(iii) he/she is unable to compare them.

However, given three alternatives xi, xj , xk such that xi is preferred to xj and xj

to xk, the question whether the “degree or strength of preference” of xi over xj

exceeds, equals, or is less than the “degree or strength of preference” of xj over xk

cannot be answered by the classical preference modelling. The implementation of
the degree of preference between alternatives may be essential in many situations,
and this can be modelled using fuzzy preference relations [1,2].

The main advantage of pairwise comparison is that of focusing exclusively on
two alternatives at a time which facilitates experts when expressing their prefer-
ences. However, this way of providing preferences limits experts in their global
perception of the alternatives and, as a consequence, the provided preferences
could be not rational. Usually, rationality is related to consistency, which is asso-
ciated with the transitivity property [8]. Many properties have been suggested to
model transitivity of a fuzzy preference relation and, consequently, consistency
may be measured according to which of these different properties is required
to be satisfied. One of these properties is the “additive transitivity”, which, as
shown in [8], can be seen as the parallel concept of Saaty’s consistency property
in the case of multiplicative preference relations.

In any ‘rational’ decision making process, consistent information, i.e. infor-
mation which does not imply any kind of contradiction, is more relevant or
important than information containing some contradictions. As a consequence,
in GDM processes consistency should also be sought after in order to make ratio-
nal choices. To do this, experts should know how consistent they are. By letting
the experts know their associated consistency measures at any moment, they
could judge whether or not it is high enough. Also, with this information, expert
would be able to analyse their preferences and make the necessary changes to
their most inconsistent preference values to increase their global consistency.

In GDM situations, consensus between experts is usually searched using the
basic rationality principles that each expert presents. Thus, consistency criteria
should be first applied to fix the rationality of each expert and only afterwards
experts’ agreement should be obtained. If we were to secure consensus and only
thereafter consistency, we could destroy the consensus in favour of the individual
consistency and the final solution might not be acceptable for the group of expert.

In [5,6] a consensus model was proposed for GDM problems which used two
types of measurements to guide the consensus reaching process [10]: consensus de-
grees to evaluate the agreement of all the experts, and proximity degrees to eval-
uate the distance between the experts’ individual preferences and the group or
collective ones. In [9] a consensus model which uses a recommendation module to
help experts to change their preferences was presented. In [11] a consensus model
with an adaptive recommendation module to the current level of agreement in each
one of the consensus round was defined. In this paper, we continue improving that
consensus model by incorporating a consistency criteria, and, when necessary,
to advice experts on how to become more consistent. We define a new adaptive
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consensus model in which once the experts provide their individual preference
relations, consistency measures for each one are computed. These consistency mea-
sures are used to generate a consistency feedback mechanism that generates advice
to the most inconsistent experts on the necessary changes to their most
inconsistent preference values to increase their global consistency. Once the agreed
minimum level of consistency has been reached, consensus is sought after.

The rest of the paper is set out as follows. Section 2 presents the structure of
the new adaptive consensus model with its consistency control module. Section 3
describes in detail the consistency control module. Finally, Section 4 draws our
conclusions.

2 An Adaptive Consensus Model with Consistency
Control

In this section we present the structure of a new adaptive consensus model with
consistency control. The structure of this new consensus model is depicted in
Fig. 1.

NO

Consistency
recommendations

CONSISTENCY CONTROL MODULE

Computation of consensus degree

First round? Experts' preferences

Adaptive module

Control of consensus process SELECTION
PROCESS

Consensus
recommendations

YES

CONSENSUS REACHING PROCESS

Computation of consistency degrees

Control of consistency degrees

Consistency advice system

Fig. 1. Adaptive consensus model with consistency control

It is composed of two processes:

i) Consistency Control Process. Once experts’ preferences are given, their
consistency degrees are computed. If an expert is not consistent enough,



Group Decision Making: From Consistency to Consensus 83

that expert will receive appropriate changes of preference values in order to
increase his/her global consistency to an acceptable/agreed threshold level
one. This process is explained in detail in Section 3.

ii) Adaptive Consensus Reaching Process. The consensus process is con-
sidered adaptive because the search for consensus is adapted to the current
level of agreement among experts.

This adaptive process to achieve consensus among the group of experts con-
sists of three steps:

1 Computation of consensus degrees. In this step consensus measures are com-
puted for each fuzzy preference relation. In each consensus round, these
measures are used to compute the level of agreement (consensus) between
the experts of the group at the three different levels of a preference relation:
pairs of alternatives, alternatives and preference relation.

2 Consensus control. In this step, it is decided whether to stop or to continue the
application of the consensus process. This decision is based on the achieve-
ment or not of a fixed a priori consensus threshold value, γ ∈ [0, 1], repre-
senting the minimum level of global agreement the experts should reach in
order to proceed with the selection of the solution alternative to the problem.

3 Adaptive module. The consensus reaching process involves a procedure which
identifies those preference values experts should change to achieve the desired
agreement level. This identification is not fixed but it adapts to the current
level (low, medium, high) of consensus computed in step 1:
3.1 Low consensus. Naturally, at the very beginning of the consensus process

experts’ preferences may differ substantially. In these cases the level of
agreement could be quite low and a large number of experts’ preferences
should change in order to make the opinions closer. At this stage of
the consensus process, and while the consensus is considered as ‘low’,
‘all’ experts are advised to change ‘all’ the preference values in which
disagreement has been identified.

3.2 Medium consensus. In the ‘intermediate’ rounds of the consensus reach-
ing process the consensus degree might not be considered as low anymore.
In this stage of a consensus process, and while the consensus degree is
considered as ‘medium’, only those experts furthest from the group as
a collective will be advised to make changes on the preference values of
those alternatives in which disagreement has been identified.

3.3 High consensus. When the level of consensus is approaching the con-
sensus threshold value, only those experts furthest from the group as a
collective will be advised to make changes on the preference values in
which disagreement has been identified.

For more details on the described adaptive consensus reaching process the reader
is referred to [11]. We should point out that the consistency control process is
applied only in the first round of the consensus reaching process, because, as
we shall show in the following section, when all the individual preference rela-
tions have associated a consistency degree above a particular minimum threshold
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value then any weighted average collective preference relation will also have as-
sociated a consistency degree above that threshold value. Adding to this the
fact that the consensus process tends to make the individual opinions closer to
the collective ones [7], we conclude that individual consistency degrees will tend
towards the collective one and therefore above the threshold value. Therefore, it
is unnecessary to control the consistency level of each expert in each consensus
round.

3 Consistency Control Module

The purpose of the consistency control module is to measure the level of con-
sistency of each individual preference relation (expert) in order to identify the
experts, alternatives and preference values most inconsistent within the GDM
problem. This inconsistency identification is also used to suggest new ‘consis-
tent’ preference values. The consistency control module develops its activity by
means of three processes as illustrated in Fig. 2, which will be covered in the
following subsections.

YESNO

Consistency
recommendations

CONSISTENCY
ADVICE SYSTEM Enough consistency?

CONSISTENCY  DEGREES
COMPUTATION

CONSYSTENCY  CONTROL MODULE

Experts' preferences

Fig. 2. Consistency control module

3.1 Computation of Consistency Degrees

In GDM problems with fuzzy preference relations some properties about the
preferences expressed by the experts are usually assumed and desirable in order
to avoid contradictions in their opinions, i.e, inconsistent opinions. One of these
properties is associated with the transitivity in the pairwise comparison among
any three alternatives. For fuzzy preference relations, transitivity has been mod-
elled in many different ways due to the role the intensities of preference have
(see [8]). In this paper, we make use of the additive transitivity property.
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Being P = (pij) a fuzzy preference relation, the mathematical formulation of
the additive transitivity was given by Tanino in [15]:

(pij − 0.5) + (pjk − 0.5) = (pik − 0.5) ∀i, j, k ∈ {1, . . . , n} (1)

As shown in [8,13] additive transitivity can be used to obtain more consistent
fuzzy preference relation from a given one. Additive transitivity implies additive
reciprocity. Indeed, because pii = 0.5 ∀i, if we make k = i in (1) then we have:
pij + pji = 1 ∀i, j ∈ {1, . . . , n}. Then, (1) can be rewritten as:

pik = pij + pjk − 0.5 ∀i, j, k ∈ {1, . . . , n} (2)

We will consider a fuzzy preference relation P to be “additive consistent”
when for every three alternatives in the problem xi, xj , xk ∈ X their associated
preference degrees pij , pjk, pik fulfil (2). An additive consistent fuzzy preference
relation will be referred as consistent throughout the paper, as this is the only
transitivity property we are considering.

Given a reciprocal fuzzy preference relation, (2) can be used to calculate an
estimated value of a preference degree using other preference degrees. Indeed,
using an intermediate alternative xj , the following estimated value of pik (i �= k)
is obtained:

epj
ik = pij + pjk − 0.5 (3)

The overall estimated value epik of pik is obtained as the average of all possible
values epj

ik, i.e.,

epik =
n∑

j=1
j �=i,k

epj
ik

n− 2
. (4)

The value |epik − pik| can be used as a measure of the error between a pref-
erence value and its estimated one.

It is easy to obtain the expression of the estimated value of an estimated
value, e2pik, which is:

e2pik = epik +
2

n− 2
· (pik − epik)

This expression implies that the process of estimating preference values converges
toward perfect consistency, which is expressed in the following proposition:

Proposition 1. Let P be a reciprocal fuzzy preference relation. The following
holds: ∣∣erpik − er−1pik

∣∣ = ( 2
n− 2

)r−1

|epik − pik| , r > 1.

When the information provided is completely consistent then epj
ik = pik ∀j.

However, because experts are not always fully consistent, the information given
by an expert may not verify (2) and some of the estimated preference degree
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values epj
ik may not belong to the unit interval [0, 1]. We note, from (3), that the

maximum value of any of the preference degrees epj
ik is 1.5 while the minimum

one is -0.5. In order to normalize the expression domains in the decision model
the final estimated value of pik (i �= k), cpik, is defined as the median of the
values 0, 1 and epik:

cpik = med{0, 1, epik}. (5)

The error in [0, 1] between a preference value pik and its final estimated cpik

is:
εpik = |cpik − pik|. (6)

Given a preference value pik ∈ [0, 1], the following holds |epik − pik| = |epik −
cpik|+ |cpik − pik| and therefore εpik ≤ |epik − pik| ∀i, k.

For being P = (pij) reciprocal, it is obvious that the preference relation
CP = (cpik) is also reciprocal and εpik = εpki. We interpret εpik = 0 as a
situation of total consistency between pik (pki) and the rest of information in P .
Obviously, the higher the value of εpik the more inconsistent is pik (pki) with
respect to the rest of information in P .

This interpretation allows us to evaluate the consistency in each one of the
three different levels of a reciprocal fuzzy preference relation P :

Level 1. Consistency degree associated to a pair of alternatives pik (pki),

cdik = 1− εpik (7)

Level 2. Consistency degree associated to an alternative xi,

cdi =
n∑

k=1
k �=i

cdik

n− 1
(8)

When cdi = 1 all the preference values involving the alternative xi are fully
consistent, otherwise, the lower cdi the more inconsistent these preference
values are with respect to the rest of information in P .

Level 3. Consistency degree of the reciprocal fuzzy preference relation,

cd =
n∑

i=1

cdi

n
(9)

When cd = 1 the reciprocal fuzzy preference relation P is fully consistent,
otherwise, the lower cd the more inconsistent P .

The computation of the estimated values and consistency degrees for a recip-
rocal preference relation are illustrated in the following example:

Example 1. The following are a reciprocal fuzzy preference relation and its re-
ciprocal estimated fuzzy preference relation

P =

⎛⎜⎜⎝
− 0.7 0.9 0.5
0.3 − 0.6 0.7
0.1 0.4 − 0.8
0.5 0.3 0.2 −

⎞⎟⎟⎠ −→ CP =

⎛⎜⎜⎝
− 0.55 0.5 1.0

0.45 − 0.55 0.6
0.5 0.45 − 0.35
0.0 0.4 0.65 −

⎞⎟⎟⎠



Group Decision Making: From Consistency to Consensus 87

The value cp14 = 1 has been obtained as follows:

ep14 =
ep214 + ep314

2
=

0.9 + 1.2
2

= 1.05 ⇒ cp14 = med{0, 1, 1.05} = 1.

The consistency degrees at the three levels of the preference relation are:

Level 1. Consistency degrees at the level of pairs of alternatives

CD =

⎛⎜⎜⎝
− 0.85 0.6 0.5

0.85 − 0.95 0.9
0.6 0.95 − 0.55
0.5 0.9 0.55 −

⎞⎟⎟⎠
Level 2. Consistency degree of each alternative:

cd1 = 0.65 cd2 = 0.9 cd3 = 0.7 cd4 = 0.65

Level 3. Consistency degree of the relation:

cd = 0.73.

Let P c = (pc
ij) be a weighted mean collective preference relation obtained

from a set of reciprocal fuzzy preference relations {P 1, . . . , Pm}. The estimated
value of the collective preference value pc

ij =
∑n

l=1 wl · pl
ij , with wl ≥ 0 ∀l and∑

l wl = 1, is epc
ij =
∑n

k=1
j �=i,k

(epcij)
k

n−2 , with (epc
ij)

k = pc
ik + pc

kj − 0.5. Putting these

expressions together we get:

epc
ij =

n∑
k=1

j �=i,k

∑n
l=1 wl · pl

ik +
∑n

l=1 wl · pl
kj − 0.5

n− 2
=

n∑
k=1

j �=i,k

∑m
l=1 wl · (pl

ik + pl
kj − 0.5)

n− 2

=
m∑

l=1

wl

∑n
k=1

j �=i,k
pl

ik + pl
kj − 0.5

n− 2
=

m∑
l=1

wl · epl
ij

This result is summarised in the following proposition:

Proposition 2. The estimated collective preference relation of a weighted mean
collective preference obtained from a set of reciprocal fuzzy preference relations
is also the weighted mean of the estimated individual preference relations.

The error between a collective preference value and its estimated one is

∣∣epc
ij − pc

ij

∣∣ = ∣∣∣∣∣
m∑

l=1

wl · epl
ij −

n∑
l=1

wl · pl
ij

∣∣∣∣∣ =
∣∣∣∣∣

m∑
l=1

wl · (epl
ij − pl

ij)

∣∣∣∣∣
Using the well known properties |a+ b| ≤ |a|+ |b| and |a · b| = |a| · |b| we have∣∣∣∣∣

m∑
l=1

wl · (epl
ij − pl

ij)

∣∣∣∣∣ ≤
m∑

l=1

wl ·
∣∣epl

ij − pl
ij

∣∣ ≤ max
l

∣∣epl
ij − pl

ij

∣∣
Therefore, we have proved that
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Proposition 3. The error between a collective preference value and its esti-
mated one is lower or equal to the maximum error between the individual pref-
erence values and their estimated ones.

From εpij ≤ |epij − pij | and proposition 3 we can easily prove that when all
estimated values of each one of the individual preference relations of the set
{P 1, . . . , Pm} are in [0, 1] the consistency degree of a weighted mean collective
preference relation will be greater or equal than the minimum of the individual
consistency degrees, minl cd

l. When one or more individual estimated values are

not in [0, 1] then this limit is reduced by the quantity
∑

i,j;j �=i

maxl |eplij−cplij |
n(n−1) . In

a situation of high individual consistency degrees the distance between cpl
ij =

med{0, 1, epl
ik} and pl

ij will be small (or zero) and as a consequence the dis-
tance between epl

ij and cpl
ij will also be small (or zero). All this together can be

used to claim that in GDM problems in which all experts provide highly con-
sistent preferences the (weighted mean) collective preference will also be highly
consistent.

3.2 Consistency Control

We assume that before providing any preferences the group of experts agree on
a threshold consistency degree value (β) for an expert to be considered as con-
sistent. After providing preferences, experts’ associated consistency degrees are
obtained, cdi∀i. If all experts are consistent, i.e. cdi ≥ β ∀i, then the consensus
reaching process is applied. Otherwise, a consistency advice system is applied
i) to identify the inconsistent experts, alternatives, and preference values; and
ii) to generate an alternative consistent value for each one of the inconsistent
preference values.

3.3 Consistency Advice System

This system suggests experts some changes on the most inconsistent preference
values. To do so, the following three steps are carried out:

1. To identify those experts (l) in the group with a global consistency level
(cdl) lower than the minimum threshold consistency value (β).

2. To identify for each one of these experts those alternatives (i) with a consis-
tency degree (cdl

i) lower than β.
3. To identify for each one of these alternatives the preference values whose

consistency level (cdl
ij) is lower than β.

The set of preference values to be recommended for change will be:

{(l, i, j)|max{cdl, cdl
i, cd

l
ij} < β}.

Based on proposition 1, a preference value of the above set (pl
ij) will be rec-

ommended to be changed to a value closer to its final estimated value (cpl
ij).

This change will bring the original individual preference relation (P l) closer to
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its estimated one (CP l) and therefore it will become more consistent globally.
Thus, if cdl

ij < β, in order to reach the minimum threshold value, ph
ij will be

recommended to be changed to

p̄l
ij = pl

ij + sign(cpl
ij − pl

ij) · (β − cdl
ij),

where sign(X) returns the sign of X. Finally, in order to maintain reciprocity,
the value pl

ji will be recommended to be changed to p̄l
ji = 1− p̄l

ij .

Example 2. Suppose we have a set of four experts providing the following fuzzy
preference relations on a set of four alternatives:

P 1 =

⎛⎜⎜⎝
− 0.2 0.6 0.4
0.8 − 0.9 0.7
0.4 0.1 − 0.3
0.6 0.3 0.7 −

⎞⎟⎟⎠ P 2 =

⎛⎜⎜⎝
− 0.7 0.9 0.5
0.3 − 0.6 0.7
0.1 0.4 − 0.8
0.5 0.3 0.2 −

⎞⎟⎟⎠

P 3 =

⎛⎜⎜⎝
− 0.3 0.5 0.7
0.7 − 0.1 0.3
0.5 0.9 − 0.25
0.3 0.7 0.75 −

⎞⎟⎟⎠ P 4 =

⎛⎜⎜⎝
− 0.25 0.15 0.65

0.75 − 0.6 0.8
0.85 0.4 − 0.5
0.35 0.2 0.5 −

⎞⎟⎟⎠
Let the threshold value be β = 0.8. We have the following global consistency

values:
cd1 = 1, cd2 = 0.73, cd3 = 0.63; cd4 = 0.82.

This means that recommendations of change will be given to experts e2, e3.
For these two experts we have the following consistency degree matrices and
consistency degree of alternatives:

CD2 =

⎛⎜⎜⎝
− 0.85 0.6 0.5

0.85 − 0.95 0.9
0.6 0.95 − 0.55
0.5 0.9 0.55 −

⎞⎟⎟⎠ ; cd21 = 0.65, cd22 = 0.9, cd23 = 0.7, cd24 = 0.65

CD3 =

⎛⎜⎜⎝
− 0.4 0.93 0.48
0.4 − 0.48 0.93
0.93 0.48 − 0.55
0.48 0.93 0.55 −

⎞⎟⎟⎠ ; cd31 = 0.6, cd32 = 0.6, cd33 = 0.65, cd34 = 0.65

The recommended new preference values would be:

e2: p̄13 = 0.7 (p̄31 = 0.3); p̄14 = 0.8 (p̄41 = 0.2); p̄34 = 0.55 (p̄43 = 0.45).
e3: p̄12 = 0.7 (p̄21 = 0.3); p̄14 = 0.38 (p̄41 = 0.62); p̄23 = 0.43 (p̄32 =

0.57); p̄34 = 0.5 (p̄43 = 0.5).

If these recommended values were assumed by these experts, their new global
consistency values would become cd2 = 0.94 and cd3 = 0.92, which represent
a considerable improvement regarding their previous global consistency levels.
Afterwards the consensus and selection process are carried out.
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4 Conclusions

In any rational GDM process, both consensus and consistency should be sought
after. In this paper we have addressed the issues of measuring consistency and
of achieving a high level of consistency within an adaptive consensus reaching
process. For doing that, we have developed a consistency advice module, based
on theoretical results, for recommending ‘consistent’ changes to experts for the
most inconsistent preference values. We have argued that consistency is needed
to be checked just once before the application of the consensus process, be-
cause (a) when all individual experts provide highly consistent preferences the
(weighted mean) collective preference will also be highly consistent, and (b) the
consensus process tends to make the individual opinions closer to the collective
ones. Also, if we were to secure consensus and only thereafter consistency, we
could destroy the consensus in favour of the individual consistency and the final
solution could not be acceptable for the group of expert.
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Abstract. In this paper we introduce a multi-stage decision making pro-
cedure where decision makers sort the alternatives by means of a fixed
set of linguistic categories, each one has associated a numerical score.
First we average the scores obtained by each alternative and we consider
the associated collective preference. Then, we obtain a distance between
each individual preference and the collective one through the Euclidean
distance among the individual and collective scoring vectors. Taking into
account these distances, we measure the agreement in each subset of de-
cision makers, and a weight is assigned to each decision maker: his/her
overall contribution to the agreement. Those decision makers whose over-
all contribution to the agreement are not positive are expelled and we
re-initiate the decision procedure with only the opinions of the decision
makers which positively contribute to the agreement. The sequential pro-
cess is repeated until it determines a final subset of decision makers where
all of them positively contribute to the agreement. Then, we apply a
weighted procedure where the scores each decision maker indirectly as-
signs to the alternatives are multiplied by the weight of the corresponding
decision maker, and we obtain the final ranking of the alternatives.

1 Introduction

When a group of decision makers have to decide a collective ranking of a set of
alternatives, usually they rank the alternatives and then an aggregation proce-
dure is applied for generating the collective order. If the number of alternatives
is high, then decision makers can have difficulties in the task of ranking feasi-
ble alternatives. According to Dummett [7]: “If there are, say, twenty possible
outcomes, the task of deciding the precise order of preference in which he ranks
them may induce a kind of psychological paralysis in the voter”.

In order to facilitate decision makers to arrange the alternatives, we propose
that decision makers sort the alternatives within a small set of linguistic cate-
gories (for instance, excellent, very good, good, regular, bad and very bad).1

1 The use of linguistic information within the decision making framework has been
widely used in the literature. See, for instance, Yager [12] and Herrera and Herrera-
Viedma [10].
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We assign a score to each linguistic category and then a collective score is
associated with each alternative by means of the average of the individual scores.
Consequently, the alternatives are ordered by the obtained collective scores.

After this first stage, we introduce a distance among individual opinions and
the aggregated weak order. Through these distances, we propose an index for
measuring the overall contribution to the agreement of each decision maker.2

Those decision makers whose indices are not positive will be excluded, and we
re-initiate the process with only the opinions of the individuals which positively
contribute to the agreement. We repeat this procedure, by recalculating the
overall indices, until obtaining a final subset of decision makers where all of them
positively contribute to the agreement. Then, we weight the scores that decision
makers (indirectly) assign to the alternatives by their overall contribution to the
agreement indices, and we obtain the final collective ranking of the alternatives.

Notice that weighting individual opinions with the mentioned indices, decision
makers are incentivated to not declare very divergent opinions with respect to
the mean opinion. Otherwise, they can be penalized by reducing their influence
over the collective ranking or being eliminated of the group.

The paper is organized as follows. Section 2 is devoted to introduce the nota-
tion and the main notions needed in the multi-stage decision procedure, which
we present in Section 3. Finally, Section 4 includes some concluding remarks.

2 Preliminaries

Let V = {v1, . . . , vm} a set of decision makers (or voters) who show their pref-
erences on the pairs of a set of alternatives X = {x1, . . . , xn}, with m,n ≥ 3.
P(V ) denotes the power set of V (I ∈ P(V ) ⇔ I ⊆ V ). Linear orders are binary
relations satisfying reflexivity, antisymmetry and transitivity, and weak orders
(or complete preorders) are complete and transitive binary relations. With |I|
we denote the cardinal of I.

We consider that each decision maker classifies the alternatives within a set of
linguistic categories L = {l1, . . . , lp}, with p ≥ 2, linearly ordered l1 > · · · > lp.
The individual assignment of the decision maker vi is a mapping Ci : X −→ L
which assigns a linguistic category Ci(xu) ∈ L to each alternative xu ∈ X .

Associated with Ci, we consider the weak order Ri defined by xuRi xv

if Ci(xu) ≥ Ci(xv). With Pi and Ii we denote, respectively, the asymmetric
(strict preference) and symmetric (indifference) relations associated with Ri, i.e.,
xu Pi xv whenever not xv Ri xu, and xu Ii xv whenever xuRi xv and xv Ri xu.

It is important to note that decision makers are not totally free in declar-
ing their preferences. They have to adjust their opinions to the set of linguistic
categories, so the associated weak orders depend on the way they sort the alter-
natives within the fixed scheme provided by L. Even more, given a weak order

2 The use of metrics for aggregating individual preferences has been analyzed in the
literature by many authors (see, for instance, Kemeny [11], Cook and Seiford [5,6],
Armstrong, Cook and Seiford [1] and Cook, Kress and Seiford [4]).
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Ri with no more than p equivalence classes, it is possible to define different indi-
vidual assignments. For instance, given the weak order x1 Ii x2 Pi x3 Pi x4 Ii x5,
for p = 4 we can associate the assignment: Ci(x1) = Ci(x2) = l1, Ci(x3) = l2
and Ci(x4) = Ci(x5) = l4; but also Ci(x1) = Ci(x2) = l1, Ci(x3) = l2 and
Ci(x4) = Ci(x5) = l3; and so on.

A profile is a vector C = (C1, . . . , Cm) of individual assignments. We denote
by C the set of profiles.

We assume that every linguistic category lk ∈ L has associated a score sk ∈ R
in such a way that s1 ≥ s2 ≥ · · · ≥ sp and s1 > sp = 0. For the decision
maker vi, let Si : X −→ R be the mapping which assigns the score to each
alternative, Si(xu) = sk whenever Ci(xu) = lk. The scoring vector of vi is
(Si(x1), . . . , Si(xn)).

Naturally, if si > sj for all i, j ∈ {1, . . . , p} such that i > j, then each
linguistic category is univoquely determined by its associated score. Thus, given
the scoring vector of a decision maker we directly know the way this individual
sort the alternatives. Although linguistic categories are equivalent to decreasing
sequences of scores, there exist clear differences from a behavioral point of view.

Example 1. Consider three decision makers who sort the alternatives of
X = {x1, , . . . , x9} according to the set of linguistic categories L = {l1, . . . , l6}
and the associated scores given in Table 1.

Table 1. Linguistic categories

L Meaning Score
l1 Excellent s1 = 8
l2 Very good s1 = 5
l3 Good s1 = 3
l4 Regular s1 = 2
l5 Bad s1 = 1
l6 Very bad s1 = 0

In Table 2 we include the way of decision makers sort the alternatives within
the set of linguistic categories.

It seems reasonable to assign as collective score S(xu), for each alternative xu ∈
X , the average of the individual scores:

S(xu) =
1
m

m∑
i=1

Si(xu).

Taking into account the average collective scoring vector, (S(x1), . . . , S(xn)),
we define the average collective weak order on X :

xuRxv ⇔ S(xu) ≥ S(xv).
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Table 2. Sorting alternatives

R1 R2 R3

l1 x1 x3

l2 x3 x6 x8 x1 x2 x5

l3 x2 x4 x5 x8 x4 x6 x4 x6

l4 x7 x1 x9 x3

l5 x9 x5 x7 x8

l6 x2 x7 x9

Table 3. Scores

S1 S2 S3 S

x1 8 2 5 5
x2 3 0 5 2.666
x3 5 8 2 5
x4 3 3 3 3
x5 3 1 5 3
x6 5 3 3 3.666
x7 2 0 1 1
x8 3 5 1 3
x9 1 2 0 1

Following Example 1, in Table 3 we show the individual and collective scores
obtained by each alternative.

In Table 4 we show the collective preference provided by the weak order R.

Table 4. Collective order

x1 x3

x6

x4 x5 x8

x2

x7 x9

If we compare the collective preference with the individual ones in Example 1,
it is clear that there exist some differences. In order to have some information
about the agreement in each subset of decision makers, we firstly introduce a dis-
tance between pairs of preferences (scoring vectors). Since the arithmetic mean
minimizes the sum of distances to individual values with respect to the Euclidean
metric, it seems reasonable to use this metric for measuring the distance among
scoring vectors.
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Definition 1. Let (S(x1), . . . , S(xn)), (S′(x1), . . . , S′(xn)) be two individual or
collective scoring vectors. We define the distance between these vectors by means
of the Euclidean metric:

d(S, S′) =

√√√√ n∑
u=1

(S(xu)− S′(xu))2.

Taking into account Example 1, the distances among the individual opinions and
the collective preference are given by:

d(S1, S) = 3.448 < d(S3, S) = 4.887 < d(S2, S) = 5.962 . (1)

In next section we introduce an index which measures the overall contribution
to the agreement for each decision maker. By means of these measures, we modify
the initial group decision procedure for priorizating consensus3.

3 The Multi-stage Decision Making Procedure

In order to introduce our multi-stage group decision making procedure, we first
consider a specific agreement measure which is based on the distances among
individual and collective scoring vectors in each subset of decision makers.

We note that Bosch [2] introduced a general concept of consensus measure
within the class of linear orders by assuming three axioms: Unanimity, Anonymity
(symmetry with respect to decision makers) and Neutrality (symmetry with re-
spect to alternatives).

Definition 2. The mapping M : C × P(V ) −→ [0, 1] defined by

M(C, I) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩1−

∑
i∈I

d(Si, S)

|I| s1√n , if I �= ∅,

0, if I = ∅
is called overall agreement measure.

We note that s1
√
n is the maximum distance among scoring vectors, clearly

between (S(x1), . . . , S(xn)) = (s1, . . . , s1) and (S′(x1), . . . , S′(xn)) = (0, . . . , 0):

d(S, S′) =
√
n s21 = s1

√
n.

Then, M(C , I) ∈ [0, 1], for every (C , I) ∈ C × P(V ).
3 Along the paper we do not talk about consensus, but about agreement. The reason

is that consensus has different meanings. One of them is related to an interactive
and sequential procedure where decision makers have to change their preferences
in order to improve the agreement. Usually, a moderator advise decision makers to
modify some opinions (see, for instance, Eklund, Rusinowska and de Swart [8]).
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It is important to note that M(C , I) = 1 if and only if d(Si, S) = 0 for
every vi ∈ I, i.e., Si = Sj and Ci = Cj for all vi, vj ∈ I; in other words,
M(C , I) = 1 if and only if all the decision makers share the same assignment
(Unanimity).

The problem of determine the minimum agreement (or total disagreement)
presents more difficulties, because in the case of more than 2 decision makers
agreement and disagreement are not symmetric notions (see Bosch [2]).

It is easy to see that our overall agreement measure satisfies the other axioms
of Bosch [2], Anonymity and Neutrality.

We now introduce an index which measures the overall contribution to the
agreement of each voter with respect to a fixed profile, by adding up the marginal
contributions to the agreement in all the subsets of decision makers.

Definition 3. The overall contribution to the agreement of decision maker vi
with respect to a profile C ∈ C is defined by:

wi =
∑
I⊆V

(
M(C, I)−M(C, I \ {vi})

)
.

Obviously, if vi /∈ I, then M(C , I) −M(C , I \ {vi}) = 0. If wi > 0, we say
that decision maker vi positively contributes to the agreement; and if wi < 0,
we say that decision maker vi negatively contributes to the agreement.

We now introduce a new collective preference by weighting the scores which
decision makers (indirectly) assign to alternatives with the corresponding overall
contribution to the agreement indices.

Definition 4. The collective weak order associated with the weighting vector
w = (w1, . . . , wm), Rw, is defined by

xuR
w xv ⇔ Sw(xu) ≥ Sw(xv),

where

Sw(xu) =
1
m

m∑
i=1

wi · Si(xu).

Consequently, we prioritize the decision makers in order of their contribution to
the agreement (see Cook, Kress and Seiford [4]).

Notice that the average collective weak order is just the collective weak order
associated with the weighting vector w = (1, . . . , 1).

Example 2. Following Example 1 and the overall contributions to the agreement
introduced in Definition 3, we obtain w1 = 0.670, w2 = 0.557 and w3 = 0.605.
If we apply these weights in the collective decision procedure of Definition 4,
then the opinion of the first decision maker counts w1/w2 = 1.203 times the
opinion of the second one; w1/w3 = 1.107 times the opinion of the second one;
and the opinion of the third decision maker counts w3/w2 = 1.087 times the
opinion of the second one.
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In Table 5 we show the initial collective scores given in Table 3 and the new
collective scores after we weight the opinions of the decision makers with the
overall contributions to the agreement. We also include the ratio between the
new collective scores, Sw , and the initial collective scores, S. These differences
are due to the individual contributions to the agreement. It is important to note
that in the new version of the decision procedure there are not ties.

Table 5. New collective scores

S Sw Sw/S

x1 5 3.168 0.633
x2 2.666 1.679 0.629
x3 5 3.006 0.601
x4 3 1.833 0.611
x5 3 1.865 0.621
x6 3.666 2.280 0.621
x7 1 0.648 0.648
x8 3 1.800 0.600
x9 1 0.594 0.594

According to the obtained weights, the new version of the decision procedure
linearly order the alternatives, by means of Rw , in the following way:

x1, x3, x6, x5, x4, x8, x2, x7, x9. (2)

Since negative values ofwi could artificially alter the outcomes ofRw , we consider
the weighting vector w ′ = (w′

1, . . . , w
′
m), where w′

i = max{wi, 0}. This problem
is now analyzed through an example.

3.1 An Illustrative Example

Consider four decision makers who sort the alternatives of X = {x1, , . . . , x9}
according to the set of linguistic categories L = {l1, . . . , l6} and the associated
scores given in Table 1. Table 6 contains the way these decision makers rank the
alternatives. In Table 7 we show the individual and collective scores obtained by
each alternative, and Table 8 includes the collective preference provided by the
weak order R.

The overall contributions to the agreement are w1 = 0.387, w2 = 0.151,
w3 = −0.204 and w4 = 0.197. According to these indices, the weighted decision
procedure (Definition 4) linearly order the alternatives in the following way:

x4, x5, x3, x1, x2, x7, x8, x6, x9. (3)

Since the third decision maker negatively contributes to the agreement, then
his/her associated scores are multiplied by a negative weight. In order to avoid
this undesirable effect, we will consider non negative weights w′

i = max{wi, 0}:
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Table 6. Sorting alternatives

R1 R2 R3 R4

l1 x3 x1 x2 x6 x9 x5

l2 x1 x2 x4 x4 x3 x7 x8 x4

l3 x5 x5 x1 x2 x3 x7 x8

l4 x6 x7 x7 x8 x9

l5 x8 x9 x2 x3 x6 x4 x1

l6 x9 x5 x6

Table 7. Scores

S1 S2 S3 S4 S

x1 5 8 3 1 4.25
x2 5 1 8 3 4.25
x3 8 1 5 3 4.25
x4 5 5 1 5 4
x5 3 3 0 8 3.5
x6 2 1 8 0 2.75
x7 2 2 5 3 3
x8 1 2 5 3 2.75
x9 1 0 8 2 2.75

w′
1 = 0.387, w′

2 = 0.151, w′
3 = 0 and w′

4 = 0.197. Applying again the decision
procedure, we obtain a new linear order on the set of alternatives:

x3, x4, x1, x5, x2, x7, x8, x6, x9. (4)

Note that x3 is ranked in the third position in (3) and it is the first alternative
in (4). Since in (3), S3(x3) = 5 has been multiplied by the negative weight
w3 = −0.204, this alternative has been penalized. However, in (4) the opinion
of the third decision maker has not been considered. This fact joint with the
first decision maker, with the highest weight w1 = 0.387, ranks x3 at the first
alternative, induce that this alternative reaches the top position.

Although the new ranking (4) is more appropriate than (3) for reflecting
the individual opinions, it is important to note that all the calculations have
been made taking into account the opinions of the third decision maker. If we
think that the third decision maker judgments should not be considered (because
his/her divergent opinions with respect to the global opinion), we can start a
new step of the decision procedure where only the opinions of the rest of the
decision makers are taken into account.

In Table 10 we show the individual and collective scores obtained by each
alternative, and Table 11 contains the collective preference provided by the weak
order R.
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Table 8. Collective order

x1 x2 x3

x4

x5

x7

x6

x8 x9

Table 9. Sorting alternatives

R1 R2 R3 R4

l1 x3 x1 x2 x6 x9 x5

l2 x1 x2 x4 x4 x3 x7 x8 x4

l3 x5 x5 x1 x2 x3 x7 x8

l4 x6 x7 x7 x8 x9

l5 x8 x9 x2 x3 x6 x4 x1

l6 x9 x5 x6

The new overall contributions to the agreement are

w
(2)
1 = 0.583 > w(2)

2 = 0.570 > w(2)
4 = 0.566,

while

w
(1)
1 = w1 = 0.387 > w(1)

4 = w4 = 0.197 > w(1)
2 = w2 = 0.151.

These differences are due to the fact that in the second iteration of the decision
procedure the divergent opinions of the third decision maker have not been
considered.

According to the weights w(2)
1 , w

(2)
2 , w

(2)
4 , the new stage of the decision pro-

cedure linearly order the alternatives in the following way:

x4, x1, x5, x3, x2, x7, x8, x6, x9. (5)

Clearly, there exist important differences among the linear orders provided by
(3), (4) and (5). In fact, (3) takes into account the divergent opinions of the third
decision maker; (4) does not consider the opinions of the third decision maker,
but the collective ranking and, consequently, all the weights are based on the
opinions of all the decision makers, including that of the divergent third decision
maker; finally, (5) totally excludes the opinions of the third decision maker.

3.2 Scheme of the Multi-stage Group Decision Procedure

In 3.1 we have analyzed through examples how aggregate individual opinions
by considering the overall contributions to the agreement. We now present the
considered multi-stage decision procedure in a general and precise way.
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Table 10. Scores

S1 S2 S4 S

x1 5 8 1 4.666
x2 5 1 3 3
x3 8 1 3 4
x4 5 5 5 5
x5 3 3 8 4.666
x6 2 1 0 1
x7 2 2 3 2.333
x8 1 2 3 2
x9 1 0 2 1

Table 11. Collective order

x4

x1 x5

x3

x2

x7

x8

x6 x9

1. Decision makers V = {v1, . . . , vm} sort the alternatives of X = {x1, . . . , xn}
according to the linguistic categories of L = {l1, . . . , lp}. Then, we obtain
individual weak orders R1, . . . , Rm which rank the alternatives within the
fixed set of linguistic categories.

2. Taking into account the scores s1, . . . , sp associated with l1, . . . , lp, a score is
assigned to each alternative for every decision maker: Si(xu), i = 1, . . . ,m,
u = 1, . . . , n.

3. We aggregate the individual opinions by means of collective scores which are
defined as the average of the individual scores:

S(xu) =
1
m

m∑
i=1

Si(xu)

and we rank the alternatives through the collective weak order R:

xuRxv ⇔ S(xu) ≥ S(xv).

4. We calculate the overall contributions to the agreement (Definition 3) for all
the decision makers: w1, . . . , wm.
(a) If wi ≥ 0 for every i ∈ {1, . . . ,m}, then we obtain the new collective

scores by:

Sw (xu) =
1
m

m∑
i=1

wi · Si(xu)
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and we rank the alternatives by means of the collective weak order Rw :

xuR
w xv ⇔ Sw (xu) ≥ Sw(xv).

(b) Otherwise, we eliminate those decision makers whose overall contribu-
tions to the agreement are not positive. We now initiate the decision
procedure for the remaining decision makers V + = {vi ∈ V | wi > 0}.

4 Concluding Remarks

Usually decision makers have difficulties to rank order a high number of al-
ternatives. In order to facilitate this task, we have considered a mechanism
where decision makers sort alternatives through a small set of linguistic cat-
egories. We associate a score to each linguistic category and then we aggregate
the individual opinions by means of the average of the individual scores, pro-
viding a collective weak order on the set of alternatives. Then we assign an
index to each decision maker which measures his/her overall contribution to
the agreement. Taking into account these indices, we weight individual scores
and we obtain a new collective ranking of alternatives after excluding the opin-
ions of those decision makers whose overall contributions to the agreement
are not positive. The new collective ranking of alternatives provides the final
decision.

Since overall contribution to the agreement indices (which multiply individual
scores) usually are irrational numbers, it is unlikely that the weighted procedure
provides ties among alternatives.

Since the proposed decision procedure penalizes those individuals that are far
from consensus positions, this fact incentives decision makers to moderate their
opinions. Otherwise, they can be excluded or their opinions can be underesti-
mated. However, it is worth emphasizing that our proposal only requires a single
judgement to each individual about the alternatives.

We can generalize our group decision procedure by considering different ag-
gregation operators (see Fodor and Roubens [9] and Calvo, Kolesárova, Ko-
morńıková and Mesiar [3]) for obtaining the collective scores. Another way of
generalization consists in measuring distances among individual and collective
scoring vectors by means of different metrics.
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Abstract. By selecting and asking the user to label only the most informative 
instances, active learners can significantly reduce the number of labeled training 
instances to learn a classification function. We focus here on how to select the 
most informative instances for labeling. In this paper we make three contribu-
tions. First, in contrast to the leading sampling strategy of halving the volume of 
version space, we present the sampling strategy of reducing the volume of ver-
sion space by more than half with the assumption of target function being cho-
sen from nonuniform distribution over version space. Second, via Halving 
model, we propose the idea of sampling the instances that would be most possi-
bly misclassified. Third, we present a sampling method named CBMPMS 
(Committee Based Most Possible Misclassification Sampling) which samples 
the instances that have the largest probability to be misclassified by the current 
classifier. Comparing the proposed CBMPMS method with the existing active 
learning methods, when the classifiers achieve the same accuracy, the former 
method will sample fewer times than the latter ones. The experiments show that 
the proposed method outperforms the traditional sampling methods on most se-
lected datasets. 

1   Introduction 

Supervised learning methods construct classifiers using labeled instances as the train-
ing set. However, labeling instances may be time-consuming, tedious, error prone and 
costly in some tasks (e.g., document categorization and gene expression analysis). To 
cope with this problem, active learning algorithms [1] were proposed which select the 
most informative instances and ask the user to label them. Thus the burden of labeling 
large number of instances could be alleviated. 

There are two main types of active learning methods according to the source of 
unlabeled instances: pool-based and stream-based. The former assumes that the active 
learner has access to a pool of unlabeled instances; when labeling, the active learner 
could go through the entire pool and select the most informative one or ones. In con-
trast, in the stream-based scenario, successive instances from a stream of unlabeled 
set are presented to the active learner which should decide whether or not label the 
current instance. In this paper, we only focus on the pool-based scenario. 
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In general, the pool-based active learning method comprises two parts: a learning 
engine and a sampling engine [2]. The whole process of active learning could be  
described as follows. Initially, the system has a training set of labeled instances and a 
set of unlabeled instances. Then, the learning engine trains a classifier on the original 
training set. After that, the sampling engine chooses the most informative instances 
from the unlabeled instances and requests a human expert to label it before it is added 
into the training set. Then the learning engine constructs a new classifier on the up-
dated training set. The whole process runs repeatedly until the evaluation index of the 
classifier or iteration times reaches the preset value. 

Depending on the criterion used to select instances to label, the current research 
fall under several categories: uncertainty reduction, expected-error minimization and 
version space reduction. The uncertainty reduction [1] approach selects the instances 
on which the current classifier has the least certainty to predict. Many sampling 
methods apply the similar strategy [4, 5, 6]. They perform better than random sam-
pling in most tasks, but sometimes they may select outliers. The expected-error 
minimization approach [7, 8] samples the instances that minimize the future ex-
pected error rate on the test set. Such methods expect to achieve the lowest error, but 
they are computationally expensive. The version space reduction approach tries to 
select the instances that can reduce the volume of version space by half. Query-by-
Committee [9, 10] is a representative method of this approach that constructs a 
committee consists of randomly selected hypotheses from the version space and se-
lects the instances on which the disagreement within the committee is the greatest. 
The version space reduction approach also includes sg-net [11], QBag [12], QBoost 
[12] and Active Decorate [13]. 

In this paper, we make three contributions. First, in contrast to the leading sam-
pling strategy of halving the volume of version space, we present the sampling strat-
egy of reducing the volume of version space by more than half with the assumption of 
target function being chosen from nonuniform distribution over version space. Sec-
ond, we illustrate the idea of sampling the instances that would be most possibly mis-
classified via Halving model. Third, we present a sampling method named CBMPMS 
(Committee Based Most Possible Misclassification Sampling) which samples the in-
stances that have the largest probability to be misclassified by the current classifier. 
Comparing the proposed CBMPMS method with the existing active learning methods, 
when the classifiers achieve the same accuracy, the former method will sample fewer 
times than the latter ones. 

In general, our CBMPMS method has several characters. First, a measurement of 
misclassification is used as the sampling criterion. Second, multi-class problems 
could also be handled by our CBMPMS method. Third, instead of class label, our 
sampling criterion focuses on the class probability distribution given by the base clas-
sifier which is more precise.  

The following sections of the paper are organized as follows. Section 2 describes 
the general process of active learning and how sampling influences the version space. 
Section 3 describes the proposed active learning method CBMPMS. Section 4 shows 
the experimental results of the CBMPMS method as well as other methods on many 
data sets. Section 5 draws the conclusion. 
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2   Background on Active Learning 

2.1   General Process of Active Learning 

The active learning framework can be denoted by , , , , ,L UL I S M ES< > , where 
L  denotes the set of labeled instances; 
UL denotes the set of unlabeled instances; 
I denotes the classifier; 
S denotes the stopping criterion which could be the accuracy to reach or the itera-

tion times; 
M denotes the number of instances which would be sampled in each iteration; 
ES denotes the effectiveness score。 
The general process of active learning framework is as follows: 

  
Input:  

An initial labeled set L, an unlabeled set UL, a classifier I, a stopping crite-
rion S, and an integer M that specify the number of instances sampled in each  
iteration.  

1. Train the classifier I  by L ; 
2. While stopping criterion S is not satisfied, execute (1)-(6) 

(1) For each example ix UL∈  compute iES , the effectiveness; 

(2) Select a subset  A of size M from UL  based on iES ; 

(3) Remove A from UL ; 
(4) Label instances in A; 
(5) Add A into L ; 
(6) Train the classifier I  by L . 

Output: 
The classifier I trained by the final labeled set L. 

 

2.2   The Influence of Sampling on Version Space 

In active learning problem, we denote the target function to learn by 0 ( )Xθ , and the 

parametric learning model by ( , )W Xθ . Both 0 ( )Xθ  and ( , )W Xθ  are Boolean-

valued functions. X  is an independent variable and W  is a vector of model parame-

ters. So learning is to find out a vector 0w  such that 0 0( ) ( , )X w Xθ θ=  for all X . 

Then the version space tW  after the t th instance was sampled will be:  

0{ | ( , ) , 1, ..., }( )t i iW w w x i txθ θ= = =  (1) 

Then, the reduction of version space after the ( 1)t + th instance was sampled  

will be: 



 An Active Learning Method Based on Most Possible Misclassification Sampling 107 

    1 1 0 1 0{ | ( , ) ( ), ( , ) , 1, ..., }( )t t t t t i iW W W w w x x w x i txθ θ θ θ+ + +Δ = − = ≠ = =  (2) 

Obviously, the bigger #( )tWΔ  is, the faster the volume of version space will be re-

duced and the more informative the ( 1)t + th instance will be.  

Generally, for binary classification, it is thought that the best sampling method is 
selecting the instance which could make about half of hypotheses in the version space 
predict as positive and half of hypotheses predict as negative. Thus about half of hy-
potheses in the version space could be deleted at each sampling time. Then the target 

function could be found with about 2log | |H  sampling. So, the leading sampling 

methods (i.e. uncertainty method) are based on this idea. 

3   CBMPMS Method 

3.1   Reducing the Version Space Size by More Than Half 

Actually, the target function is chosen from some distribution π  over version space. 
The strategy of halving the size of version space is based on an assumption that the 
distribution π  uniform over version space. Under this assumption, the probability of 
a hypothesis being the target function is:  

1
( | ) , 1, ,i op w w D i t

t
= = = L  (3) 

where iw  is a hypothesis in the version space, ow  is the target function, t  is the 

number of the hypotheses in the version space and D  is the training set. In this situa-
tion, halving the size of version space is the best way to find the target function as 
quickly as possible. 

However, the distribution π  may not be uniform over version space. Then, the 
probability of a hypothesis being the target function would be: 

( | ) , 1, ,i o ip w w D i tα= = = L  (4) 

where 
1

1
t

ii
α= =∑  and each iα  may not equal to the same value. Then, the strategy 

of halving the size of version space is not appropriate for this situation. To address 
such problem, we present an intuitive sampling strategy which is aiming to reducing 

the version space size by more than half. As each iα  may not be equal to the same 

value, it is possible to pick a few hypotheses with the largest iα  and keep them in the 

version space when sampling. Thus, the volume of version space would be reduced by 

more than half when sampling. Actually, it is so hard to know the exact value of iα  

that this strategy can not be used directly. But, this strategy yields the idea of sam-
pling the most possibly misclassified instances which is explained via halving model 
in the following section. 
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3.2   Most Possible Misclassification Sampling 

Halving model is a machine learning model that maintains a description of the version 
space. It gives each hypothesis in the version space equal right to vote. At the training 
stage, the hypotheses whose predictions agree with the instance's true label would be 
kept unremoved, while the hypotheses whose predictions do not agree with the in-
stance's true label would be eliminated. When the classifier meets an instance to pre-
dict, all hypotheses in the version space vote for its label and the resulting label will 
be the one that gets a majority vote.  

Consider the following idea: after the halving model predicts the new instance's la-
bel, if we could know the true label of it, we can check whether the instance is mis-
classified. When the predicted label is the same as the true label, it means the majority 
of hypotheses in version space predict right and the remainder hypotheses which pre-
dict wrong should be eliminated. When the predicted label is not the same as the true 
label, it means the majority of hypotheses in version space predict wrong and should 
be eliminated. 

So, if we can sample the misclassified instance, halving model would eliminate the 
majority of hypotheses in version space. Thus it would converge faster than those 
methods halving the version space size. The CBMPMS method is based on such an 
idea. It is quite different from the idea of the uncertainty method. The CBMPMS 
method aims to select the instance which the classifier believes to belong to one cate-
gory but actually not. In contrast, the uncertainty sampling method selects the in-
stance which almost has the equal probability to belong to either category judged by 
the current classifier. 

To measure the degree of an instance ix  being misclassified, the parameter iR  is 

defined as:  

( ( | ), ( | ))ii i DR L P Y x P Y x=  (5) 

where L  is a loss function that measures the differences between its two input vari-
ables, Y  is the variable which an instance could be classified as and ( | )P Y x  is   a 

vector of which each element is the probability of an instance x  being classified as 

each possible value of Y . Then ( | )iP Y x  denotes the true class probability distribu-

tion (CPD) and ( | )D iP Y x  denotes the CPD which is got by the classifier trained on 

the training set D . Thus, iR  measures the difference between the true CPD and the 

CPD got by the classifier trained on the training set. 
The loss function L  has a variety of candidates, and after careful comparison and 

testing, the chosen one is: 

( ( | ), ( | )) ( log )i D i i i
y Y

L P Y x P Y x χ χ
∈

= −∑  (6) 

where iχ  denotes ( | ) ( | )i D iP y x P y x− . Then iR  is the entropy of the absolute dif-

ference between ( | )iP Y x  and ( | )D iP Y x . It is picked for several reasons: First, it is 



 An Active Learning Method Based on Most Possible Misclassification Sampling 109 

theoretically well founded on the information theory; second, its counterparts perform 
not well in the test. 

Furthermore, the true class probability distribution ( | )iP Y x  is unknown, so we 

should estimate it. 
As Hansen and Salamon [14] have pointed out, a committee can be more accurate 

than its component classifiers when each component classifier outputs independently 
and has an accuracy over 1/2. Moreover, they also introduce that the more component 
classifiers used, the less likelihood of an error by a majority decision rule. Further-
more, the committee error rate goes to zero with an infinite size of the committee 
[14]. Hence, it is reasonable to estimate the true CPD using committee on the assump-
tion that each component classifier responses independently and has an accuracy over 

1/2. As a result, the estimate of iR  is: 

( ( | ) ( | ) ) log( ( | ) ( | ) )com com
i D i D i D i D i

y Y

R P y x P y x P y x P y x
∈

= − − −∑  (7) 

where ( | )com
D iP y x  is the class probability distribution of ix  predicted by the com-

mittee consisting of random selected hypotheses in the version space on the training 
set D . 

3.3   The Process of the CBMPMS Method 

The process of CBMPMS method is given as follows: 

 
Input:  

an initial labeled set L, an unlabeled set UL, a classifier I, a stopping criterion 
S, and an integer M which specify the number of instances sampled in each it-
eration.  

1. Train the classifier I by L; 
2. While stopping criterion S not met, execute (1)-(6) 

(1) For each example ix UL∈  compute  

( ( | ) ( | ) ) log( ( | ) ( | ) )com com
i D i D i D i D i

y Y

ES P y x P y x P y x P y x
∈

= − − −∑ ; 

(2) Select a subset A of size M from UL in which instances have the 

biggest iES ; 

(3) Remove A from UL; 
(4) Label instances in A; 
(5) Add A into L; 
(6) Train the classifier I by L. 

Output: 
 The classifier I trained by the final labeled set L. 
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4   Experiments 

Experiments were conducted to compare the performance of our CBMPMS method 
with other active learning methods. Five different active learning algorithms were 
tested: 

 Random sampling: choosing the instance at random. 
 Uncertainty sampling: choosing the instance with the largest label uncer-

tainty, as in [1]. 
 QBC sampling: choosing the instance that the committee members disagree 

with most, as in [9]. 
 Error-Reduction sampling: choosing the instance that maximizes the reduc-

tion in the total predicted label entropy, as in [8]. 
 CBMPMS sampling (the method introduced in this paper): choosing the in-

stance that most likely to be predicted wrong. 

The experiments were done on 18 representative datasets from machine learning 
repository provided by UCI [15]. Naive bayes was selected to be the base classifier. 

For lack of space we can not give the details of all the tests. So we displayed the 
results of only a few selected tests that were most representative in figures and sum-
marized the data utilization of the different active learners in Table 1. We define data 
utilization as the number of instances an active learner requires to reach the target er-
ror rate. 10-fold cross-validation is used to compare the performance of the selected 
active learner on the 18 datasets. All results presented were averages of ten runs. 

In Table 1, the least data utilization is marked in bold in each row and the number 
of wins is presented in the last row.  

Table 1. Data utilization of the different active learners 

 Random Uncertainty QBC Error-reduction CBMPMS Target 
Accuracy (%) 

car 148.9 83.8 134.0 672.8 91.6 80.11 
ionosphere 43.8 68.1 12.9 46.3 29.2 86.04 
mushroom 2598.1 38.1 28.3 1690.5 37.2 95.00 
vote 172.3 74.8 107.2 87.7 67.7 95.01 
waveform-5000 42.0 84.5 32.7 41.1 27.9 76.08 
nursery 98.7 71.9 221.5 2796.9 118.8 84.74 
anneal 254.7 271.4 243.8 354.2 202.9 84.28 
balance-scale 51.6 283.6 53.7 27.9 143.7 80.89 
colic 220.8 350.9 236.3 69.7 209.6 76.61 
credit-g 157.2 393.2 211.6 295.8 119.0 75.02 
cylinder-bands 19.8 123.5 44.9 42.5 36.8 63.65 
kr-vs-kp 163.0 48.7 84.8 1396.5 144.4 84.22 
mfeat-fourier 192.0 153.1 138.6 213.0 130.6 72.10 
mfeat-pixel 154.9 86.2 157.6 139.6 87.2 88.97 
segment 142.1 291.3 92.0 509.6 115.8 77.63 
soybean 262.0 229.1 206.4 299.0 111.9 91.47 
splice 136.7 91.6 118.4 414.7 170.0 88.21 
vowel 227.8 300.0 169.0 434.0 121.6 61.66 
No. of Wins 1 5 3 2 7  
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According to Table 1, it shows that our CBMPMS sampling method has a superior 
performance than other sampling methods on most datasets. Moreover, our CBMPMS 
method performs better than the Uncertainty method on 13 datasets and the QBC 
method on 12 datasets.  Based on these results, we can conclude that using the idea of 
CBMPMS is much likely to reduce the size of version space by more than half. For 
those datasets which the CBMPMS method is defeated, there may be some reasons. 
First, the estimated true class probability distribution given by the committee may not 
be precise when the committee has a small size for some special tasks or the compo-
nent hypothesis has an accuracy less than 1/2. Second, there may be some better loss 
functions or estimated true CPD than the current one we choose on those datasets. In 
future work we will deal with these problems. 

 

 

Fig. 1. Average testing accuracy on waveform-5000 dataset 

 

Fig. 2. Average testing accuracy on soybean dataset 
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Fig. 3. Average testing accuracy on mfeat-fourier dataset 

Figure 1, 2 and 3 show the results on the datasets of waveform-5000, soybean and 
mfeat-fourier, respectively. In all these figures, the vertical axis shows the accuracy of 
the classifier and the horizontal axis shows the number of labels. 

In figure 1, it shows that our CBMPMS method outperforms the other methods. 
The random method achieves its maximal accuracy 80.22% at about the 291st sam-
pling. Our CBMPMS method requires 61 sampling to obtain the same accuracy.  

Figure 2 shows the accuracy of the CBMPMS method reaches 92.24% at the 151st 
sampling while the uncertainty method reaches the same accuracy at 291st sampling. 
Surprisingly, the error-reduction method does a little worse than the random method. 
There might be two reasons. First, the random method might be a very competitive 

method, which could get an expected generalization error decrease of 1( )O
nα  

where n  is the training set size and α  depends on the task and learning method [3]. 
Second, the error-reduction method uses loss function to estimate the expected error 
of the classifier, which is not precise. So when the unlabeled instances provide some 
false expected error information, the error-reduction method would lose some  
efficiency.  

In figure 3, our CBMPMS method outperforms the other active learners throughout 
the learning curve. The QBC method gets its highest accuracy, about 75.22%, after 
291 sampling while the CBMPMS method reaches the same accuracy at the 191st 
sampling. Furthermore, the other methods even can not get the accuracy of 75.22%. 

5   Conclusion 

Focusing on the sampling question in pool-based active learning, we analyze the in-
fluence of sampling on version space and propose a strategy to reduce the volume of 
version space by more than half which is different from the current sampling methods 
that halve the size of version space. Based on this strategy, we proposed the idea of 
sampling the instances that would be most possibly misclassified. Then, we present 
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the CBMPMS method, which samples the instances with the highest probability of 
misclassification by the current classifier. It has an advantage on converging speed 
over other sampling methods and could be effective in active learning area. Experi-
ments show that the CBMPMS method is efficient and practical.  

We would like to pursue following directions: calculating more precise local accu-
racy of the classifier, providing the theoretical proof of the converging speed of the 
version space and application of the CBMPMS method in the real world area. 
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Abstract. Main issues to be faced by next-generation Grids are the 
management and exploitation of the overwhelming amount of data produced by 
applications but also by Grid operation, and the intelligent use of Grid resou-
rces and services. To achieve these very ambitious goals, next-generation  
Grids should include knowledge discovery and knowledge manage- 
ment functionalities, for both applications and system management. This paper 
proposes a fuzzy assessment method. The assessment of Next-generation Grids 
is composed of objective and subjective assessment. The results manifest that 
the assessment method is effective through testing in some system. 

Keywords: Next-generation Grids, fuzzy assessment, knowledge discovery, 
knowledge management.  

1   Introduction 

Main issues to be faced by next-generation Grids are the management and 
exploitation of the overwhelming amount of data produced by applications but also by 
Grid operation, and the intelligent use of Grid resources and services [1]. To achieve 
these very ambitious goals, next-generation Grids should include knowledge 
discovery and knowledge management functionalities, for both applications and 
system management. The way how data and information available at different levels 
of Grid can be effectively acquired, represented, exchanged, integrated, and converted 
into useful knowledge is an emerging research field known as Grid Intelligence.  

The solutions that will be developed will certainly driven by the previous needs and 
requirements, but will also leverage and probably integrate some key technologies and 
methodologies emerging in many computer science fields, apparently far and unaware 
of Grids, such as peer-to-peer and ubiquitous computing, ontology-based reasoning, 
and knowledge management[2][3]. In particular, ontologies and metadata are the basic 
elements through which Grid Intelligence services can be deployed. Using ontologies, 
Grids may offer semantic modeling of user's tasks, available services, and data sources 
to support high level services and dynamic services finding and composition. 
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Moreover, data mining and knowledge management techniques could enable high level 
services based on the semantics of stored data. Such services could be employed both 
at operation layer, where Grid management could gain from information hidden into 
data, and at application layer, where user could be able to exploit distributed data 
repository, using the Grid not only for high-performance access, movement and 
processing of data, but also to apply key analysis tools and instruments. 

The assessment of next-generation Grids can help developers know the weaknesses 
of next-generation Grids so as to take effective improvement actions. It can also 
enable users to select a suitable next-generation Grids to solve problems. An ideal 
assessment method should consider social, cultural, economic and technical factors. 
In the proposed method, the objective and subjective assessment criteria are 
established by taking into account the experiences of the next- generation Grids 
developers, the software assessment standards, and the suggestions of users. The 
objective assessment criteria consist of two parts: the criteria commonly used in 
website assessment and those related to knowledge organization and management. 
We use the available network testing software to obtain the former and develop a 
system to test the latter. The subjective assessment about the quality of knowledge 
service carries out through the cooperation between experts and agents. The overall 
performance assessment of the next-generation Grids is determined by the 
membership functions of the integrated assessment value. Finally, we propose an 
optimum solution to improve the performance of next-generation Grids.  

2   Next-Generation Grids Frame 

To face the growing complexity of Grids and the overwhelming amount of data to be 
managed, main requirements of future Grids will be: knowledge discovery and 
knowledge management functionalities, system management, semantic modeling of 
user's tasks, Grid services, data sources, computing devices, to offer high level 
services and dynamic services finding and composition.  

In particular, to fulfill some of the requirements listed before, we envision that 
next-generation Grids should first provide the following three main classes of services 
and related architectural framework:  

Knowledge management and ontology-based services. They are used to build, 
manipulate, and interoperate, in a homogeneous way, the Grid knowledge base. The 
term Grid knowledge base is used here to indicate all the data stored, maintained, 
and updated by the Grid, both for user, application, and operation purposes. It 
comprises, for example, the Globus MDS data and metadata, the Grid services usage 
data, the application data sources and results, etc. Many of these data are currently 
maintained by Grid middleware or by Grid applications, so the very main challenge 
for next-generation Grids will be their seamless integration and utilization. From an 
architectural point of view, technologies useful for building, manipulating, and 
reasoning on the Grid knowledge base are ontologies and logic programming.  
In such scenario, each object on the Grid is classified through one or more ontolo-
gies into the knowledge base. Two important services that could be offered are: 
ontology-based Grid programming and request-resource matchmaking. In the next 
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Section we will show a simple example of component-based programming based on 
domain ontology.  

Knowledge discovery services. They are used to extract knowledge from the data 
stored inside the Grid knowledge base. These services will be used both to build high-
level knowledge discovery applications, as in the case of the Knowledge discovery, 
and to enhance existing basic Grid services. Two examples of high level services 
needing distributed data mining functionalities and accessing distributed partitions of 
a knowledge base are, for example, an enhanced version of the GridFTP protocol that 
classifies GridFTP usage data with data mining techniques to choose best connection 
parameters, and a Grid-based document management application.  

Context-aware access to information and service adaptation. Semantic compression 
and synthesis of Grid information could be used to offer different views of the Grid 
knowledge base depending on many factors: user/service goals, scope of resource 
information. Other than usual compression techniques contents can be reorganized 
according to some aggregation functions, resulting in a synthetic yet meaningful 
version. Synthesis techniques, e.g. based on Data Mining metadata exploration, could 
enable the provision of different views of Grid resources exposing different levels of 
details, allowing adapting the access and use of such information to different 
users/services goals. Moreover, adaptation techniques coming from the Adaptive 
Hypermedia research community could be employed to adapt services to the user's 
computing environment on the basis of context.  

 

 

Fig. 1. Next-generation Grids Frame 
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Dynamic resource discovery. When the Grid goes beyond a static, well established 
configuration, becoming a Pervasive Grid, i.e. when new devices and resources are 
allowed to enter and exit the Grid in a very dynamic way, new services able to adapt 
themselves to the environment have to be developed. Peer-to-Peer technologies could 
be used to implement dynamic discovery algorithms.  

Such services can be incrementally built leveraging current Grid efforts and 
projects. Figure 1 show how the recent research initiatives in the Grid community  
could be composed to provide a coherent architecture of services. Although these 
initiatives present some overlapping, they complement each others. Some enabling 
technologies, such as ontologies and reasoning, knowledge management and 
knowledge discovery, are currently offered by the depicted layers, but their main 
impact will be really evident when they will be used internally to enhance Grid 
management and operation. On the other hand, peer-to-peer and ubiquitous 
computing techniques start to be used very recently [4]. In our opinion peer-to-peer 
will be the orthogonal technology on which main tasks such as presence management, 
resource discovery and sharing, collaboration and self-configuration will be based.  

3   Assessment Method 

The fuzzy assessment method consists of the following steps: generate the objective 
and subjective assessment criteria, objectively assess the Next-generation Grids, 
subjectively assess the Next-generation Grids; integrate the objective and subjective 
assessment result according to the assessment value and the progressive weight 
distribution function, overall performance assessment.  

 

Fig. 2. Fuzzy assessment method for Next-generation Grids 

3.1   Generate the Assessment Criteria 

The Next-generation Grid developers propose the initial criterion set, and experts are 
invited to vote for the criteria online. The initial criteria will be filtered according to 
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the weighted average preferences and a predefined threshold. The new criterion set 
consists of the reserved criteria and those suggested by the experts. Advice and 
suggestions of the experts make the assessment criteria more complete and reasonable. 
After generating the new assessment criterion set, the experts are invited to revote and 
rank the criteria in a descending order. As a result, the criteria with high ranks 
construct the final assessment criterion set.  

3.2   Objective Assessment of Next-Generation Grid 

The objective Next-generation Grid Next-generation Grid assessment criteria are 
composed of knowledge organization, knowledge management, and technical aspects. 
The objective criteria related to knowledge organization include: the knowledge 
coverage degree, ratio of redundant semantic concern links, and ratio of inconsistent 
semantic links. The knowledge coverage degree of the Next-generation Grid reflects 
the connectivity of the stored knowledge. It can be computed as follows [5]: 
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N α≥ , [0,1]α ∈  the knowledge nodes in clique j of network i , FjN  the number of 

knowledge nodes in fragment j of network i, p Z +∈ ,and p m≤ (the number of 

fragments in network i ), and n the number of semantic link networks in the Next-
generation Grid. 

The criteria related to the knowledge management are assessed as follows: the 
consistency reflects the content correctness of the Next-generation Grid and can be 
computed by the ratio of the number of consistent knowledge nodes to the total 
number. The conciseness is assessed according to the ratio of the number of non-
redundant knowledge nodes to the total number. The active nodes are the nodes that 
are activated in a certain frequency and used by the users or agents. The bigger the 
ratio of the number of active nodes to the total number, the better the performance of 
the Next-generation Grid is. The up-to-date degree is the ratio of the newly updated 
knowledge nodes to the total knowledge nodes. The knowledge category coverage 
degree reflects the ratio of categories in the Next-generation Grid to the available 
knowledge categories. The knowledge level coverage degree reflects the ratio of 
levels in the Next-generation Grid to the standard knowledge level classification. The 
satisfaction of users’ interests reflects the average accordance of actual knowledge 
nodes distribution to the distribution of users’ interests, which can be computed as 
follows [6]: 
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Where di diα β− is the absolute value of the differences between diα  (the ratio of 
users who are interested in category id  to the total users) and diβ  (the ratio of the 
number of knowledge nodes about category id  to the total number of knowledge 
nodes), and n the total number of the categories. 

The technical assessment criteria include the response time and the across platform 
understandability.  

3.3   Subjectively Assess the Next-Generation Grid 

We use 1 ( )T
n ijV p× = ( 1, , )j n= L to denote the preference vector of expert I for the n 

subjective criteria. The weighted average and variance of the preferences are 
considered when computing the subjective assessment value. 

Let 1( , )T
j mjP P P= L  be the subjective assessment vector of m experts for criterion 

j, 1( , , )T
mW W W= L be the weight vector. The overall subjective assessment for 

criterion j can be computed by  
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3.4   Integrate the Objective and Subjective Assessment 

Let 1 2{ , , , }nC c c c= L be the final assessment criterion set, the objective and 

subjective assessment value construct a K-measurable function ( )ih c , and the 

progressive weight distribution function 
1
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=

=∑ is 0-fuzzy metric. By using 

integral approach, the overall assessment of Next-generation Grid can be computed by  

1

max( min( ( ), ( ))
n

i i
i

u h c Hw c
=

= ∑  (4) 

3.5   Overall Performance Assessment for the Next-Generation Grid 

According to the experts’ suggestions, five fuzzy grades: Excellent, Good, Fair, P 
Poor, very Poor and the corresponding membership functions are established. The 
membership functions of the integrated assessment value indicate the overall 
performance of the Next-generation Grid. 
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4   Conclusions 

The characteristics and structure of Next-generation Grids is proposed in the paper. 
The assessment of Next-generation Grids is composed of objective and subjective 
assessment. The method makes use of the fuzzy method to realize assessment and 
plan the improvement. The results manifest that the assessment method is effective 
through testing in some system. I wish that this article’s work could give references to 
certain people. 
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Abstract. In this paper we present an alternative evidential method of
combining prioritized decisions, in order to arrive at a “consensus”, or ag-
gregate, decision. Previous studies have suggested that, in some classifica-
tion domains, the better performance can be achieved through combining
the first and second decisions from each evidence source. However, it is
easy to illustrate the fact that going further down a decision list, to give
longer preferred decisions, can provide the alternative to the method of
combining only the first one and second decisions. Our objective here is to
examine the theoretical aspect of an alternative method in terms of quartet
− how extending a decision list of any length by one extra preferred deci-
sion affects classification results. We also present the experimental results
to demonstrate the effectiveness of our alternative method.

1 Introduction

There has been much interest from a wide range of areas in the representation
of prioritized decisions/preferences and their subsequent manipulation. Applica-
tions have driven this to a great extent — for example, in areas of searching,
optimization, planning, recommender systems, and efficient information access
and management systems. Issues such as elicitation (or mining), representation
and modelling, combination and merging of preferences, decisions and evidence
have been extensively reviewed and addressed in [1].

The approach presented in this paper is based on the Dempster-Shafer (DS)
theory of evidence, and it is applicable in many of the application domains
listed above. We follow the Barnett’s idea to use the DS theory of evidence to
combine prioritized decisions which are naturally expressed as preferences for
subsets of possible decisions [2]. We propose an approach, a model and theorems
underpinning combination algorithms for this. Preference lists are combined to
give aggregated decisions which can be used effectively in classification.

In this study our focus is upon trimming a list of prioritized decisions to restrict
the length of the lists in each case − to 2 and 3 prioritized decisions − in order to
transfer the DS theory to practical applications, and also to examine their effec-
tiveness in classification. We describe novel structures, called triplets and quartets,

V. Torra, Y. Narukawa, and Y. Yoshida (Eds.): MDAI 2007, LNAI 4617, pp. 121–132, 2007.
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for the representation of decisions in the truncated form, based on the stated or
derived confidence levels associated with the decisions and organize the trimmed
them into triplets, quartets, etc. depending on the number of list elements.

A previous study of applying the triplet-based approach to Text Catego-
rization suggested that combining the best and the second best classification
decisions from each classifier using the evidential operations can achieve good
performance and efficiency [3][4]. Clearly theory and methods are required for
choosing the list length such as 3 decisions. Here we present detailed and general
analysis of the quartet-based method, including the formal definition of quartet,
the representation of prioritized decisions by quartets, the combination methods
for multiple quartet mass function in any application areas, making available an
alternative combining method in classification.

The rest of the paper is organized below. In section 2, we present an overview
of the Dempster-Shafer (DS) theory of evidence. In Section 3, we introduce an
application-specific mass function along with the triplet combination method.
In section 4, we discuss the quartet definition and theoretical underpinning for
establishing the algorithms of combining multiple quartet mass functions. In
section 5, we present evaluation results based on 20-newsgroups − a benchmark
data. Finally, we draw conclusions in Section 6.

2 An Overview of the Dempster-Shafer (DS) Theory of
Evidence

In any exercise where decisions or preferences are to be combined, quantitative
and qualitative pertinent information and knowledge often originate from differ-
ent evidence sources and they are often pervaded with uncertainty. We seek a
way to formalize the reasoning and decision processes − how evidence pertinent
to a situation from multiple sources, is combined.

One method of combining evidence is to use the Dempster’s rule or the orthog-
onal sum. It can make use of both judgemental and observational information
available to find the ’best supported’ decision [5]

Definition 1. Let Θ be a finite nonempty set, and call it the frame of discern-
ment. Let [0, 1] denote the interval of real numbers from zero to one, inclusive:
[0, 1] = {x|0 ≤ x ≤ 1}. A function m : 2Θ → [0, 1] is called a mass function if it
satisfies: m(∅) = 0,

∑
X⊆Θm(X) = 1.

A mass function is a basic probability assignment bpa to all subsets X of Θ. A
subsetA of a frameΘ is called a focal element of a mass functionm overΘ ifm(A) >
0. These corresponding definitions apply to propositions as well as subsets.

The fundamental operation of evidential reasoning, namely, the orthogonal
sum of evidential functions, is known as the Dempster’s rule. Let m1 and m2 be
mass functions on the frame Θ. Denote N =

∑
X∩Y �=∅m1(X)m2(Y ). Suppose

N > 0, i.e.,
∑

X∩Y =∅m1(X)m2(Y ) < 1. Then the following function m : 2Θ →
[0, 1] is a mass function: m(∅) = 0, and m(A) =

∑
X∩Y =Am1(X)m2(Y )/N for

all subsets A �= ∅ of Θ. The mass function m is called the orthogonal sum of m1
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and m2, and is denoted by m1 ⊕m2, and K = 1/N is called the normalization
constant of the orthogonal sum of m1 and m2. If N = 0, then we say that
the orthogonal sum m1 ⊕ m2 does not exist, and that m1 and m2 are totally
contradictory. We often allocate some mass to undeterministic status by means
of ignorance.

3 The Triplet Combination Method in Classification

We consider a generic approach to classification. Suppose we are given a clas-
sification model, for new instances, the process of classifying any instance is to
calculate similarity scores between a instance and the model. It is intuitively
sensible that the higher this score, the more likely the instance belongs to the
class to which the model dedicates. Formally let D = {d1, d2, ..., d|D|} be a train-
ing set of instances, where d is represented by a |V |-dimensional weighted vector
and V is a set of attribute / feature values. Let C = {c1, · · · , c|C|} be a set of
categories, then the task of assigning predefined categories to instances can be
regarded as a mapping of each pair < d, c >∈ D×C to a boolean value true (T )
or false (F ). If value T is assigned to < d, c >, it means that a decision is made
to include instance d under category c, whereas value F indicates that instance
d is not under category c. A learning for classification task is to construct an
approximation to an unknown function ϕ : D × C → {T, F}, where ϕ is called
a classifier.

However, given a test instance d, such a mapping cannot guarantee that an as-
signment of a category to d is either true or false; instead we use |C|-dimensional
vector of numeric values, denoted by ϕ(d) = {s1, · · · , s|C|}, where these si repre-
sent the relevance of document d to the respective categories in the form of similar-
ity scores or probabilities, i.e. the greater the score for category ci, the greater the
correspondenceof the document to that category.Now we model a |C|-dimensional
vector of numeric values as a preference by prioritizing these values.

Definition 2. Let C be a frame of discernment and D be a training set of
instances, where each choice ci ∈ C is a proposition of the form source d ∈ D
chooses, or supports ci, and let ϕ(d) be a piece of evidence to allocate a strength
si to each choice c1, · · · , c|C|.

Then m({ci}) = si∑ |C|
k=1 sk

is a basic probability assignment (bpa) to ci for 1 ≤
i ≤ |C|. It is also a mass function bpa that expresses the degrees of beliefs in
respective propositions corresponding to each choice to which a given source
could belong.

Definition 3. Let C be a frame of discernment and ϕ(d) = (m({c1}), · · · ,
m({c|C|})), where |C| ≥ 2, a focal element triplet is defined as an expression
of the form Y = 〈A1, A2, A3〉, where A1, A2 ⊆ C are singleton, and A3 is the
whole set C.

To allocate mass values to A1, A2 and A3, we rank ϕ(d) to be m(ci1) ≥
m(ci2) ≥ ... ≥ m(ci|C|) in decreasing order. Then we have prioritized decisions
A1 = {ci1}, A2 = {ci2} alone with A3 = C. The associated mass function is:



124 Y. Bi, S. Wu, and G. Guo

m(A1) = m({ci1}), m(A2) = m({ci2}) and m(A3) = 1 −m(A1) −m(A2) that
represents ignorance. The mass function in such a form is called triplet mass func-
tion, 2-points mass function, or simply 2-points focussed, an important property
associated with the triplet mass function is that it has no focuses other than two
singletons and Θ. That is, there exist two and only two elements x, y ∈ Θ such
that

m({x}) +m({y}) +m(Θ) = 1; 0 ≤ m({x}),m({y}),m(Θ) ≤ 1.

4 Focusing on 3 Focal Elements — Quartet

Generally, a mass function may have more than three focal singletons. We have
briefly presented 2 points focussed in the previous section, the detailed dis-
cussions can be found in [4], [6]. Similarly, we can consider 3-points focussed,
4-points focussed, ..., n-points focussed mass functions. We here confine our
interest in 3-points focussed − quartet. Now we give a formal definition of three-
points focused mass function

Definition 4. Let C be a frame of discernment and ϕ(d) = (m({c1}), · · · ,
m({c|C|})), where |C| ≥ 2, a quartet is defined as an expression of the form
Y = 〈A1, A2, A3, A4〉, where A1, A2, A3 ⊆ C are singleton, and A4 is the whole
set C.

In order to organize a list of decisions into a quartet, we again rank ϕ(d)
to be m(ci1) ≥ m(ci2) ≥ ... ≥ m(ci|C|) in decreasing order and then trims
down the prioritized decisions to three points focused, as a result we have A1 =
{ci1}, A2 = {ci2}, A3 = {ci3} and A4 = C. The associated mass function is:
m(A1) = m({ci1}), m(A2) = m({ci2}), m(A3) = m({ci3})and m(A4) = 1 −
m(A1)−m(A2)−m(A3)

We have looked at the computational process for combining triplet mass func-
tions [6]. Given two quartets A = 〈A1, A2, A3, A4〉 and B = 〈B1, B2, B3, B4〉 and
associated mass functions m1 andm2, we need to consider enumerative relations
between any pairs of singletons from A and B to compute combinations of two
quartet mass functions. Here we identify situations which two mass functions
in quartet form can be combined together for the cases where all 3 focuses are
equal, 2 focuses are equal, when just one focus is equal, and when there are no
focus are in common, respectively. The corresponding analysis addresses, in each
case, the situation where the focuses are ordered by their masses for each of the
two pieces of evidence being combined, which have been implemented in a set
of algorithms.

Now we develop four theorems ensuring that the combinations of quartet
mass functions exist for the different cases stated above. These theorems form
the theoretical basis for establishing a set of formulae for computing various
quartet mass functions.

First we consider the case where the 3 focuses are equal (eg x, y, z in the
following context).
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Theorem 1. Letm1,m2 be two 3-points focussed mass functions having 3 points
equal,

m1({x}) +m1({y}) +m1({z}) +m1(Θ) = 1; 0 ≤
m1({x}),m1({y}),m1({z}),m1(Θ) ≤ 1;

m2({x}) +m2({y}) +m2({z}) +m2(Θ) = 1; 0 ≤
m2({x}),m2({y}),m2({z}),m2(Θ) ≤ 1.

Then 1/K = N = 1−m1({x})m2({y})−m1({y})m2({x})
−m1({x})m2({z})−m1({z})m2({x})−m1({y})m2({z})−m1({z})m2({y}),

and m1,m2 are combinable if and only if

m1({x})m2({y}) +m1({y})m2({x}) +m1({x})m2({z}) +m1({z})m2({x})
+m1({y})m2({z}) +m1({z})m2({y}) < 1.

When m1,m2 are combinable we have

(m1⊕m2)({x}) = K(m1({x})m2({x})+m1({x})m2(Θ)+m1(Θ)m2({x})), (1)

(m1⊕m2)({y}) = K(m1({y})m2({y})+m1({y})m2(Θ)+m1(Θ)m2({y})), (2)

(m1⊕m2)({z}) = K(m1({z})m2({z})+m1({z})m2(Θ)+m1(Θ)m2({z})), (3)

(m1 ⊕m2)(Θ) = Km1(Θ)m2(Θ). (4)

Proof. By using the orthogonal sum operation to combinem1,m2, we can obtain
(m1 ⊕m2)(A) = K

∑
X∩Y =Am1(X)m2(Y ), where we have that

1/K = N = 1−
∑

X∩Y =∅
m1(X)m2(Y ) = 1−m1({x})m2({y})−m1({y})m2({x})

−m1({x})m2({z})−m1({z})m2({x})−m1({y})m2({z})−m1({z})m2({y}),
and it is easy to see that m1,m2 are combinable if and only if N > 0, i.e.,

1−m1({x})m2({y})−m1({y})m2({x})−m1({x})m2({z})−m1({z})m2({x})
−m1({y})m2({z})−m1({z})m2({y}) > 0

i.e., m1({x})m2({y}) +m1({y})m2({x}) +m1({x})m2({z}) +m1({z})m2({x})
+m1({y})m2({z}) +m1({z})m2({y}) < 1.

By the orthonogonal sum operation above for m1 ⊕m2 we find that

(m1 ⊕m2)({x}) = K(m1({x})m2({x}) +m1({x})m2(Θ) +m1(Θ)m2({x})),
(m1 ⊕m2)({y}) = K(m1({y})m2({y}) +m1({y})m2(Θ) +m1(Θ)m2({y})),
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(m1 ⊕m2)({z}) = K(m1({z})m2({z}) +m1({z})m2(Θ) +m1(Θ)m2({z})),
(m1⊕m2)(Θ) = Km1(Θ)m2(Θ). ��

Now the 3 points equal case is probably the simplest. We need to consider other
possibilities.

Theorem 2. Let m1,m2 be two 3-points focussed mass functions having two
equal points,

m1({x}) +m1({y}) +m1({z}) +m1(Θ) = 1; 0 ≤
m1({x}),m1({y}),m1({z}),m1(Θ) ≤ 1;

m2({x}) +m2({y}) +m2({u}) +m2(Θ) = 1; 0 ≤
m2({x}),m2({y}),m2({u}),m2(Θ) ≤ 1.

Then 1/K = N = 1−m1({x})m2({y})−m1({y})m2({x})−m1({z})m2({u})
−m1({x})m2({u})−m1({z})m2({x})−m1({y})m2({u})−m1({z})m2({y}),

and m1,m2 are combinable if and only if

m1({x})m2({y}) +m1({y})m2({x}) +m1({x})m2({u}) +m1({z})m2({x})
+m1({y})m2({u}) +m1({z})m2({y}) +m1({z})m2({u}) < 1.

When m1,m2 are combinable we have

(m1⊕m2)({x}) = K(m1({x})m2({x})+m1({x})m2(Θ)+m1(Θ)m2({x})), (5)

(m1⊕m2)({y}) = K(m1({y})m2({y})+m1({y})m2(Θ)+m1(Θ)m2({y})), (6)

(m1 ⊕m2)({z}) = Km1({z})m2(Θ), (7)

(m1 ⊕m2)({u}) = Km1(Θ)m2({u}), (8)

(m1 ⊕m2)(Θ) = Km1(Θ)m2(Θ). (9)

Proof
To combine m1,m2 by using the orthogonal sum operation, we have (m1 ⊕
m2)(A) = K

∑
X∩Y =Am1(X)m2(Y ), where 1/K = N

= 1−
∑

X∩Y =∅
m1(X)m2(Y ) = 1−m1({x})m2({y})−m1({y})m2({x})

−m1({z})m2({u})
−m1({x})m2({u})−m1({z})m2({x})−m1({y})m2({u})−m1({z})m2({y}),

and it is straightforward to obtain that m1,m2 are combinable if and only if
N > 0, i.e.,

1−m1({x})m2({y})−m1({y})m2({x})−m1({z})m2({u})
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−m1({x})m2({u})−m1({z})m2({x})−m1({y})m2({u})−m1({z})m2({y}) > 0

i.e., m1({x})m2({y}) +m1({y})m2({x}) +m1({x})m2({u}) +m1({z})m2({x})

+m1({y})m2({u}) +m1({z})m2({y}) +m1({z})m2({u}) < 1.

Similarly, by the orthogonal sum formula for m1 ⊕m2 we find that

(m1 ⊕m2)({x}) = K(m1({x})m2({x}) +m1({x})m2(Θ) +m1(Θ)m2({x})),

(m1 ⊕m2)({y}) = K(m1({y})m2({y}) +m1({y})m2(Θ) +m1(Θ)m2({y})),
(m1 ⊕m2)({z}) = Km1({z})m2(Θ), (m1 ⊕m2)({u}) = Km1(Θ)m2({u}),

(m1⊕m2)(Θ) = Km1(Θ)m2(Θ). ��

The following theorem guarantees two quartet mass functions are combinable
when only one focus might be shared by the two sets of results.

Theorem 3. Let m1,m2 be two 3-points focussed mass functions having one
equal point,

m1({x}) +m1({y}) +m1({z}) +m1(Θ) = 1;

0 ≤ m1({x}),m1({y}),m1({z}),m1(Θ) ≤ 1;

m2({x}) +m2({u}) +m2({v}) +m2(Θ) = 1;

0 ≤ m2({x}),m2({u}),m2({v}),m2(Θ) ≤ 1.

Then 1/K = N = 1−m1({x})m2({u})−m1({y})m2({x})−m1({z})m2({v}

−m1({y})m2({u})−m1({x})m2({v})−m1({z})m2({x})−m1({y})m2({v})

−m1({z})m2({u}),
and m1,m2 are combinable if and only if

m1({x})m2({u}) +m1({y})m2({x}) +m1({x})m2({v}) +m1({z})m2({x})

+m1({y})m2({v})+m1({z})m2({u})+m1({z})m2({v}+m1({y})m2({u}) < 1.

When m1,m2 are combinable we have

(m1 ⊕m2)({x}) = K(m1({x})m2({x}) +m1({x})m2(Θ) +m1(Θ)m2({x})),
(10)

(m1 ⊕m2)({y}) = Km1({y})m2(Θ), (11)

(m1 ⊕m2)({z}) = Km1({z})m2(Θ), (12)

(m1 ⊕m2)({u}) = Km1(Θ)m2({u}), (13)

(m1 ⊕m2)({v}) = Km1(Θ)m2({v}), (14)

(m1 ⊕m2)(Θ) = Km1(Θ)m2(Θ). (15)
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Proof
To combine m1,m2 by using the orthogonal sum operation, we know that (m1⊕
m2)(A) = K

∑
X∩Y =Am1(X)m2(Y ),

where 1/K = N = 1−∑X∩Y =∅m1(X)m2(Y )

= 1−m1({x})m2({u})−m1({y})m2({x})−m1({z})m2({v}−m1({y})m2({u})

−m1({x})m2({v})−m1({z})m2({x})−m1({y})m2({v})−m1({z})m2({u}),
from this expression, we can see the statement of that m1,m2 are combinable is
true if and only if with the fact of N > 0, i.e.,

1−m1({x})m2({u})−m1({y})m2({x})−m1({z})m2({v} −m1({y})m2({u})

−m1({x})m2({v})−m1({z})m2({x})−m1({y})m2({v})−m1({z})m2({u}) > 0

i.e.,

m1({x})m2({u}) +m1({y})m2({x}) +m1({x})m2({v}) +m1({z})m2({x})

+m1({y})m2({v})+m1({z})m2({u})+m1({z})m2({v}+m1({y})m2({u}) < 1.

By the orthogonal sum for m1 ⊕m2 we find that

(m1 ⊕m2)({x}) = K(m1({x})m2({x}) +m1({x})m2(Θ) +m1(Θ)m2({x})),
(m1 ⊕m2)({y}) = Km1({y})m2(Θ), (m1 ⊕m2)({z}) = Km1({z})m2(Θ),

(m1 ⊕m2)({u}) = Km1(Θ)m2({u}), (m1 ⊕m2)({v}) = Km1(Θ)m2({v}),
(m1⊕m2)(Θ) = Km1(Θ)m2(Θ). ��

In the following we consider the case where no any focus is shared between the
two sets of results.

Theorem 4. Let m1,m2 be two 3-points focussed mass functions having no
equal point,

m1({x}) +m1({y}) +m1({z}) +m1(Θ) = 1

0 ≤ m1({x}),m1({y}),m1({z}),m1(Θ) ≤ 1;

m2({u}) +m2({v}) +m2({w}) +m2(Θ) = 1

0 ≤ m2({u}),m2({v}),m2({w}),m2(Θ) ≤ 1.

Then

1/K = N = 1−m1({x})m2({u})−m1({y})m2({u})−m1({z})m2({u}

−m1({x})m2({v})
−m1({y})m2({v})−m1({z})m2({v} −m1({x})m2({w})−m1({y})m2({w})

−m1({z})m2({w},
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and m1,m2 are combinable if and only if

m1({x})m2({u}) +m1({y})m2({u}) +m1({z})m2({u})+

m1({x})m2({v}) +m1({y})m2({v}) +m1({z})m2({v})+
m1({x})m2({w}) +m1({y})m2({w}) +m1({z})m2({w}) < 1.

When m1,m2 are combinable we have

(m1 ⊕m2)({x}) = Km1({x})m2(Θ), (16)

(m1 ⊕m2)({y}) = Km1({y})m2(Θ), (17)

(m1 ⊕m2)({z}) = Km1({z})m2(Θ), (18)

(m1 ⊕m2)({u}) = Km1(Θ)m2({u}), (19)

(m1 ⊕m2)({v}) = Km1(Θ)m2({v}), (20)

(m1 ⊕m2)({w}) = Km1(Θ)m2({w}), (21)

(m1 ⊕m2)(Θ) = Km1(Θ)m2(Θ). (22)

Proof
To combine m1,m2, we need to consider the orthogonal sum operation for m1⊕
m2, and we know that (m1 ⊕ m2)(A) = K

∑
X∩Y =Am1(X)m2(Y ), where we

have that 1/K = N = 1−∑X∩Y =∅m1(X)m2(Y )

= 1−m1({x})m2({u})−m1({y})m2({u})−m1({z})m2({u}−m1({x})m2({v})

−m1({y})m2({v})−m1({z})m2({v} −m1({x})m2({w})−m1({y})m2({w})
−m1({z})m2({w},

and clearly to guarantee that m1,m2 are combinable, it must be ensured that
N > 0, i.e.,

1−m1({x})m2({u})−m1({y})m2({u})−m1({z})m2({u}

−m1({x})m2({v})−m1({y})m2({v})−m1({z})m2({v}
−m1({x})m2({w})−m1({y})m2({w})−m1({z})m2({w} > 0

i.e.,
m1({x})m2({u}) +m1({y})m2({u}) +m1({z})m2({u})+
m1({x})m2({v}) +m1({y})m2({v}) +m1({z})m2({v})+

m1({x})m2({w}) +m1({y})m2({w}) +m1({z})m2({w}) < 1.

By the orthogonal sum operation above, we find that

(m1 ⊕m2)({x}) = Km1({x})m2(Θ), (m1 ⊕m2)({y}) = Km1({y})m2(Θ),
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(m1 ⊕m2)({z}) = Km1({z})m2(Θ), (m1 ⊕m2)({u}) = Km1(Θ)m2({u}),
(m1 ⊕m2)({v}) = Km1(Θ)m2({v}), (m1 ⊕m2)({w}) = Km1(Θ)m2({w}),

(m1⊕m2)(Θ) = Km1(Θ)m2(Θ). ��

With M triplet mass functions existing, we can use the formula of pairwise or-
thogonal sums below (Equation 23) to combine them. However for each compu-
tational result, the focusing operator may be applied to the combination process
proceed iteratively. Finally it produces a new mass distribution over some classes,
which represents the consensus of the decisions of multiple classifiers to a new
instance.

m1 ⊕m2 ⊕ [m3 ⊕ [m4 ⊕ ...[mM−1 ⊕mM ]]...] (23)

We have extended the triplet structure to greater numbers of focuses — quar-
tet. With these theorems, we obtain the conditions where using an additional
focus in decision list is desirable. This theoretical results underpins a set of al-
gorithms by allowing the alternative structure length to be chosen for decision
aggregations.

5 Evaluation

In this section we describe the experiment which has been performed to evaluate
our combination method given in the previous sections. For our experiments, we
have chosen a public benchmark dataset, often referred to as 20-newsgroup.
It consists of 20 categories, and each category has 1,000 documents (Usenet
articles), so the dataset contains 20,000 documents in total. Except for a small
fraction of the articles (4%), each article belongs to exactly one category [7].

We use information gain as a measure for feature selection at the pre-
processing stage for each classification method, and weight features by using
tfidf (term frequency within the document and inverse document frequency) af-
ter removing function words and applying stemming [8]. 5300 features have been
selected in total. The experiments have been conducted using a ten-fold cross
validation. For each classification method, ten classifiers are generated and the
performance of the method is the mean value of the ten classifiers. The per-
formance of learning algorithms have been measured using a measure which is
widely used in information retrieval and text categorization: the macro-average
F1 defined on a pair of measures, called Precision and Recall [9].

Fig. 1 demonstrates the performance comparison among the best combined
classifier (SVM and kNNM - called SM) and 4 individual classifiers (SVM,
kNNM, kNN and Rocchio) on 20 document categories. The best combined clas-
sifier outperforms any individual classifiers on the average. The estimated per-
formance of the best combination is 90.15%, which is 2.69% better than the
best individual classifier (SVM). Fig. 2 illustrates the performance comparison
among the best combinations of two classifiers SM (SVM + kNNM), three clas-
sifiers SMR (SVM + kNNM + Rocchio), and the four classifiers SMNR (SVM
+ kNNM + kNN + Rocchio). As we see, the best combination of two classifiers
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Fig. 1. The performance of the best combined classifier SM (SVM + kNNM) against
the individual classifier SVM, kNNM, kNN, and Rocchio

Fig. 2. The performance comparison of the combined classifiers SM (SVM + kNNM),
SMR (SVM + kNNM + Rocchio) and SMNR (SVM + kNNM + kNN + Rocchio)

SM outperforms SMR and SMNR, and the performance of the best combination
of SMR is almost the same as that of SMNR with the exception of document
categories of 8 - 11 and 13 - 16. The estimated classification accuracies of SMR
and SMNR are 86.12% and 84.58% respectively, which are 1.35% and 2.88%
worse than the best individual classifier SVM. So our experimental results show
that the combination of the best and the second best classifiers is the best com-
bination that outperforms the individual classifiers and the combined classifiers.
These experimental results are consistent with those presented in [3,6]

6 Conclusion

We suggest the extension of a novel technique triplet to quartet to greater num-
ber of focuses for representing prioritized decisions, and present an evidential
method for combining multiple classification decisions based on this new evi-
dence structure. In particular our experimental results show the performance of
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the quartet method is comparable with that of the triplet method in combin-
ing classification decisions over the same benchmark data of 20-newsgroup. Like
the triplet structure, this structure, and the associated methods and techniques
developed in this research are particularly useful for preference analysis and de-
cision making when knowledge and information are insufficient and incomplete.
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Abstract. Capturing human resources, their capabilities and dynamics can 
greatly contribute to an efficient and effective organization mission goals 
accomplishment. In practice however, this is often done in an ad-hoc manner 
leading to a big gap between the organizational specification model (at the 
design time) and its instance model (during the life cycle). In this paper we 
present a generic organizational model that captures the human resources, their 
operational and strategic capabilities, and adaptive coalition formation. The key 
elements of the model are capabilities, roles, agents and coalitions. We show 
how the resulting model can be used for role functionalities and performance 
control, as well as for capturing the knowledge in context-aware applications 
which is often present in an implicit manner. 

Keywords: adaptive organizational modeling, human in the loop, support 
system, operational activities, strategic goals, coalition, collaboration. 

1   Introduction 

It is now well-acknowledged that the field of multiagent systems is well suited for 
real world social structure settings, such as individuals, collaborative teams, and 
organization support. The design and use of any of these agent-based systems 
necessitates careful consideration of human resources, their roles, capabilities and 
environment adaptability. The importance of capturing human resources in the 
modeling process is obvious: first, human are characterized by their non-deterministic 
and subjective behavior which has a paramount impact on the organizational process 
evolution; second,  the effect of the execution risks of activities which are not 
adequate to the capacity of human resources; third the importance of capturing their 
operational and strategic capabilities, and adaptability to changes in the environment 
to achieve the required goals’ efficiency and effectiveness. Therefore, these reasons 
entail for an explicit examination of knowledge which is often present in an implicit 
manner. Examples of such knowledge are who is involved, who is doing what with 
whom, and how interactions are held. 
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In this paper we provide a formal approach for human centered adaptable 
organizational modeling which includes integrating physical human agents in the 
modeling loop, incorporation of  both  role’s capabilities (operational and strategic) 
and coalitions formation. We identify four main pillars that have relevant impact on 
dynamic organizational modeling: (i) capabilities, (ii) roles, (iii) agents, and (iv) 
coalitions. The main idea of our approach is to integrate both of the identified 
capabilities (operational and strategic) in a coherent and unified form; our technical 
approach to this integration is based on building the coalition of agents for an 
organizational role and their adaptation for a conceptual role. The objective here is 
that human will be able to assign the performance management of their activities to 
software agents so that they can fully focus their cognitive capabilities on processing, 
decision making, etc.  

The remainder of the paper is structured as follows: Section 2 describes the 
fundamental considerations for building our adaptive organizations approach. Section 3 
presents in details our formally founded organization model. In Section 4 we delineate 
the system architecture, and in Section 5 we summarize the related work. Finally, 
Section 6 concludes and outlines the ongoing and future works. 

2   Fundamental Considerations 

Although there is a wide variability of what an organization is, in organizational 
research areas an organization refers to humans and operational functions that are 
distributed among team members who coordinate their actions in order to achieve a 
common goal [8]. The modeling of today’s competitive organizations calls for 
integration of multiple work systems in a single information system that coordinates 
multiple tasks performed by multiple actors, who are individually neither capable nor 
knowledgeable about all the different tasks in the entire organizational environment. 
The underlying implementation of this integration is based on the organization’s 
specifications, its instances, and dynamics. Thus, organizational modeling cannot be 
fixed in every detail at the specification level (building time); instead it should be 
possible to model the organization only at the coarse-grained level, and to allow an 
optimized evolution at organizational instance level according to its norms and 
specific goals. 

In this research we consider an integrated organizational model that essentially 
incorporates capabilities structured into roles that are played by agents who 
participate in coalitions to achieve a common goal; that is an organization is a tuple of 
<capabilities, roles, agents, coalitions>. Figure 1 depicts key elements of our 
collaborative and dynamic organization model which allows integrating human in the 
loop, captures operational and strategic capabilities on one hand and their changes on 
the other. In detail, the model must: 

− Provide human agents and teams with awareness of their work evolution with 
precise definition at any time of who is doing what with whom, and how well.  

− Integrate operational activities and strategic goal with the organization model.  
− Perform proactive performance monitoring and control in order to automatically 

derive reorganization strategy.  
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Fig. 1. An integrated organizational model 

3   A Generic Approach for Modeling Dynamic Organization 

In this section we present the definition of the key elements of our organizational 
model, along with the coalition formation and its dynamics. 

3.1   Basic Concepts 

3.1.1   Capabilities 
The notion of capability is usually related to both the roles and the agents. A role 
requires a set of capabilities to accomplish a specific goal, while an agent needs to 
possess specific capabilities in order to be able to play the role [3]. From a role 
perspective, we have identified two distinct types of capabilities: operational 
capabilities which only deal with the processing of the activity’s tasks, that is its 
execution, its related communications, and decision makings towards accomplishment 
of the goal. Strategic capabilities, on the other hand cope with the performance 
management such as the delivery time, the product or service quality, cost, effort etc. 
Basically the formal looks after of the efficiency aspect of the goal accomplishment, 
whereas the later considers the effectiveness aspect. As for an agent, it possesses 
capabilities which are intrinsic to a particular role; this includes data access, data 
manipulation, and computation. 

3.1.2   Roles 
We define a role as “a collection of duties and rights” [1]. Duties represent the tasks 
and interactions that the role is obligated to perform, whereas rights represent the 
permissions to utilize information entities to perform tasks or interactions. Thus, the 
concept of role in our system is essentially an abstraction on one hand, for the tasks 
that are necessary to be performed and/or the interactions that need to occur with 
other roles to achieve an individual goal, and on the other hand, the information that 
needs to be accessed or will be generated during the course of performance of those 
tasks/interactions. We have defined two categories of roles: an organizational role 
and a conceptual role. 

3.1.2.1   An Organizational Role. An organizational role is related to a physical 
human agent with clear responsibilities. It may consist of one or more roles depending 
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on the profile. An organizational role in our model is played by one human agent 
surrounded by a set of software agents that assist him/her in the operational and/or 
performance management. This organizational role is represented by a human proxy 
agent. Figure 2a delineates the two types of capabilities of an organizational role. 
These are operational and strategic capabilities; the arrow in the middle indicates the 
possible shift between the two; that is when some of the capabilities are delegated to 
software agents. The abstraction of an organizational role is presented in Figure 2b 
and requires a coalition of agents with the different required capabilities. 

3.1.2.2   A Conceptual Role. A conceptual role necessitates coalitions of agents of 
more than one organizational role, and often involves relationships (i.e., collaboration, 
conflict resolution, etc) among the roles. It requires a set of capabilities necessary to 
perform an activity. An activity consists of a well defined set of tasks. A conceptual 
role coalition is founded on the notion of shared activity that associates a goal with a 
set of agents and a set of tasks.  

Both organizational and conceptual role models are task centered ones. A task 
represents anything which has an agent involvement, attributes, properties and agent 
means of interactions. A task has both functional and behavioral perspective. The 
functional perspective describes the hierarchical structure of tasks. Whereas, the 
behavioral perspective specifies how the tasks should be performed. A task is 
described by its inputs, outputs, and methods. Inputs are data needed for the execution 
of the task, outputs are data generated by the task during its execution, and methods 
are mechanisms describing the execution of the tasks. 

3.1.3   Agents  
Agents refer to physical human or software agents that implement their respective 
roles. We defined two types of agents; the operational agents responsible for the 
functional capabilities of the identified roles in the organization, and the strategic 
agents which take care of the performance indicators capabilities. The operational 
agents receive information from the role in terms of well defined tasks. From this 
information, operational agents extract performance data (i.e. schedule, 
deliverable, effort, cost, quality etc...). This performance data is communicated to 
selected strategic agents. For example, the strategic agent dealing with delivery 
time receives all the time data for task start, progress, delivery, etc. Operational 
agents may exchange information with other operational agents, when the task is 
shared. For the performance indicators, we identified several types of knowledge, 
which we collected and coded following these steps. First, the list of performance 
indicators and their relationships was identified, second we incorporate the humans 
and the organization’s preferences in the performance, i.e. which indicators are 
considered to be most important, which of their values should be considered 
successful performance and where the individuals/organization should strive for 
improvement. Identifying these elements is not trivial and requires input from 
organization’s management and domain experts. In coding the knowledge into the 
software system, we first use interviews to collect this data [4], then construct a 
comprehensive ontology using protégé tool [9]. 
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Fig. 2. (a) An organizational role capabilities    (b) An abstraction of an organizational role 

3.1.4   Coalition  
Coalition formation deals with how organizational role (physical human or software 
agent) plays its role, it consists of binding between an agent and its tasks. It examines 
the agent’s engagement in the coordination process, what makes them keep/leave the 
coalition and which partners in an organization will work together for a task or how 
the operational structure will be restructured during the project or organization 
lifecycle. In the next section we present the formal model of this coalition. 

3.2   Formalizing the Coalitions 

In this section we present algorithms for coalition formations and their dynamics for 
both organizational and conceptual roles. 

3.2.1   Constructing the Organizational Role Coalition  
An organizational role coalition consists of two steps, first the binding between the 
operational agent(s) and the allocated tasks, second allowing the interaction with 
other organizational roles when there is task dependencies or organizational hierarchy 
responsibility (i.e. with the team leader). Table 1 shows the types of communication 
we identified; (i) we allow the human proxy agent as the only agent to talk to human, 
(ii) the strategic agents of an organizational role to collaborate among themselves, and 
(iii) we let one human proxy agent to communicate with another human proxy agent 
for shared tasks or responsibilities. 

For our goal of modeling adaptive organization with human in the loops, the 
system should capture the operational and strategic capabilities. Here we assume that 
operational capabilities are carried by human physical agent (Ha), however he/she can 
delegate those routine tasks to software agents like the work of [2]. Strategic 
capabilities on the other hand deal with the execution and communication aspect 
towards the goal. In this paper we dealt only with the execution aspect that is 
scheduling, bookkeeping, product deliverable, effort, cost, etc, future extension of this 
work will include the communication part. For the problem addressed, we pursue an 
example of a software engineering organizational model setting; a member of an 
organization can be involved in specific project(s) as well as organizational tasks,  
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these are PTa, OTa respectively. Team’s project and team’s organization tasks are 
denoted by PTT and OTT correspondingly. The members of the team are TH and task’s 
dependency function is defined by tdf. Each individual is assisted by five agents: the 
proxy, coordinator, scheduler, bookkeeper, and product deliverables, (HP;RC;RS;RB;RD) 
respectively (step 2). These agents are assigned the individual’s organization and project 
tasks, and their dependencies (steps3). For every task (project or organization) we allow 
the cooperation among the supporting agents of an organizational role according to the 
interaction types identified in table 1. (step5-6). If the task has no dependencies we add 
the collaboration with the team leader proxy (step 7). If the task has dependencies (i.e. 
carried by more than one individual) we allow interaction between proxy agents of the 
individuals sharing the task as well as between the agents of the teams’ leaders (step8). 
The next level of collaboration, deals with the team leader (step 12-15), where he/she is 
assisted by a proxy, coordinator, scheduler, and product deliverable support agents 
(step13). The team’s project and organization tasks, their dependencies, and the team 
members list are assigned to the supporting agents of the team leader (step 14). 

Table 1. Agent interaction types 

 Between Definition 

1 HP1 ∞  H1 Interaction between human proxy agent and the physical human  it represents 

2 Ri1  ∞ Rj1 Interaction among agents that support the same physical human agent 

3 HP1 ∞ HP2 Interaction between one human proxy agent and another human proxy agent 

Inputs: 

1

n

Ta i
i

P t
=

=∑ ;

1

m

Ta j
j

O t
=

=∑ ;

1

Q

TT q
q

P t
=

=∑ ;

1

L

TT l
l

O t
=

=∑ ;

1

K

H k
H

T H
=

=∑ ; tdf . 

Outputs: 
-Human’s Physical agent (Ha) support agents’ collaboration binding 
-Humans’ agent proxy interaction when there is task dependencies, or 
hierarchy responsibilities 
 
1. for each human physical agent (Ha) 

2. ( ): ; ; ; ;a Pa C S B DH H R R R R=   

3. ( ) [ ]Ta Ta; ; ; ; : P ; ;Pa C S B DH R R R R O tdf=   

4. end for 
5. for All 

TaP   and TaO  

6. ( )Pa aH H∞ and ( )Pa C S B DH R R R R∞ ∞ ∞ ∞   

7. if ( ),i jtdf t¬∃ then ( )Pa TLPaH H∞   

8. else ( )a kH H∞ and ( )Pa PkH H∞ and ( )ai kiR R∞  and ( )Pa PTLaH H∞  

and ( )PTLa PTLkH H∞  

9. end if    
10. go to 12   
11. end for 
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12. for all 
TTP and 

TTO   

13. ( ): ; ; ;TL TLP C S DH H R R R=  

14. ( ) [ ]TT TT; ; ; : P ; ; ;TLP C S D HH R R R O tdf T=  

15. end for  
 

3.2.2   Constructing the Conceptual Role Coalition 
A conceptual role coalition is founded on the notion of shared activity that associates 
a goal with a set of agents and a set of tasks. According to the following semantics; 
the individuals involved in the activity have a common goal to achieve through the 
accomplishment of the tasks of the activity. Performing a task requires a binding to it. 
A conceptual role coalition dynamically binds a set of tasks and agents from a given 
activity. This binding is normalized by a set of rules specified bellow and managed by 
an algorithm illustrated in the next subsection. An agent a assigned to activity V 
performs a task t from V, if and only if, he has a binding on t. We call cv(A, T) a 
conceptual role coalition of the activity V binding a set of agents A to a set of tasks T 
from V, such that every agent of A is assigned to a task from T. The conceptual role 
coalition combines the collaborations of the agents with the tasks. A given coalition 
shows who is sharing tasks with whom, and which tasks are shared. The conceptual 
role coalition is based on the following rules. 

Rule 1: The set A of agents of the conceptual role is maximum that is A contains all 
the members of the activity bound on any of the tasks of the activity. 
Rule 2: The set T of tasks of the conceptual role is maximum that is T contains all the 
tasks of the activity that the members of the conceptual role are sharing (a task is 
shared if and only if, more than one binding exist). 

To ensure rules 1 and 2, we define the following operation. 

Operation: Two conceptual roles can be merged if and only if they have the same 
agent members or they have the same tasks.  

The result of merging two conceptual role coalition c1V(A;T) and c2V(A’;T’) is an 
other conceptual role c3V(AU A’; TU T’). 

For example c1V({a1,a2};{t1,t2,t3}) is mergeable with c2V({a1,a2};{t4}) and the result 
is c3V({a1,a2};{t1,t2,t3,t4}). Similarly c1V({a1,a2};{t1}) and c2V({a3,a4};{t1}) are mergeable 
in c3V({a1,a2,a3,a4}; {t1}).  

The binding of agents and tasks control the evolution of the coalition set of an 
activity but must guarantee rules 1 and 2. 

3.2.2.1   Illustrative Example. We demonstrate the coalition dynamic methods through 
an example; in this example an activity V has four agent members: a1, a2, a3, and a4 
that are responsible for t1, t2, t3, t4 and t5 in this way: 

− a1, a2 and a3 are collaborating on the tasks t1, t2, and t3. 
− a1 and a2 are collaborating on t4. 
− a4 is active on t5. 
This is represented by three conceptual role coalitions 

c1V({a1,a2,a3};{t1,t2,t3});c2V({a1,a2};{t4}) and c3V({ a4};{t5})(see Figure 3(a)).  
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Fig. 3. Conceptual role coalition dynamics 

3.2.2.2   Coalition Dynamics  

Upon Joining the Coalition 
If the agent a3 will be involved in task t4, he has to bind to t4, then the conceptual role 
coalition involving t4 must show that a3 joins the group of agents responsible for t4, so 
a3 will be added to c2V which becomes c2V({a1,a2,a3};{t4}). However this will break the 
rule 2, because conceptual role coalitions c1V and c2V have the same members. The 
two conceptual role coalitions have to be merged; and the coalition set becomes: 
c1V({a1,a2,a3};{t1, t2, t3, t4}); and c3V({a4};{t5})(see Figure 3(b)). 

If the agent a4 becomes involved on t3, then a4 has to be added to coalition c1V, but 
this will violate rule 1 because a4 is not bound to t1, t2, t4. Therefore the coalition c1V 
will be split into c’1V ({a1, a2, a3};{t1, t2, t4}) and c’’1V({a1,a2, a3 , a4};{t3}). These two 
new conceptual role coalitions are not mergeable with any of the other coalitions of 
the activity, so the resulting coalition set is: c’1V ({a1,a2, a3};{t1, t2, t4}) and 
c’’1V({a1,a2,a3,a4};{ t3}), c3V({ a4};{t5}).(see Figure 4(c)). 

We construct the conceptual role join coalition algorithm as fellow: 
Let (m,t) be the new bindings, in order to ensure rules 1 and 2, we present the 
algorithm in two steps. The first step consist of finding the conceptual role coalition 
cV involving task t, if such coalition exists, and then adding the member m to cV 
member set. The second step is the merge of the coalitions. 
We arrange the coalitions in three sets: 

− ToChange: includes the coalition that will be modified. 
− Mergeable: contains the possible mergeable coalitions: it is composed of the 

remaining coalitions having agent member m as a member. 
− UnChanged: contains the coalitions that will be left unmodified, it is composed 

of the remaining coalitions. 

Upon Leaving the Coalition  
When the agent leave the coalition and release the binding on task t, this must be 
reflected in the relevant conceptual role coalition. The first step is to find the relevant 
coalition that is finding the coalition involving the task t. The second step is to 
remove the agent from the list of the agent of this conceptual role coalition, and to 
guarantee that the resulting coalition does still correspond to the coalition definition 
and still respects rules 1 and 2. 
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This restriction will imply a reorganization of the conceptual role coalition. Using the 
previous example, we had the following coalition set: 
{c’1V({a1,a2,a3};{t1,t2,t4}), c’’1V({a1,a2, a3 , a4};{t3}), c3A({ a4};{t5})} (See Figure 4(c)). 

If agent a3 releases the task t4, it has to be removed from the member associated 
with t4 in c’1V. Rule 2 implies splitting the coalition into c1V ({a1,a2, a3};{t1, t2}) and 
c2V({a1, a2};{t4})  

Algorithm 
We consider the following: 

- ( );Vc Tζ ζ=  with T a set of tasks. 

- ( );Vc A ζ ζ=  with A  a set of agents member of the activity V . 

-Given 
VC  the set of the coalitions of an activityV , 

1a  an agent and 

1t  a task of V . 

 

//--------- Upon joining the coalition 
Begin 
consider 

ToChange { }1( ; ), ,V V Vc A T c C t T= ∈ ∈  

Mergeable { }1' ( ; '), ,V V Vc A T c C a A= ∈ ∈  

UnChanged=
VC -ToChange-Mergeable 

if ToChange ζ=  then 

 if { }1' ( ); ')Vc a T∃ ∈Mergeable then 

  { } { }{ }1 1: ' ' ( ; ' )V V v VC C c c a T t= − ∪ ∪  

 else 

  form { } { }1 1'' ( ; )Vc a t  

  { }: ''V V VC C c= ∪  

else 

consider ToChange ( ){ };Vc A T= (with 
1t T∈ ) 

if { }( )1' ; 'Ac A a T∃ ∪ ∈ Mergeable then 

 { }( ) { } { }( ){ }1 1 1: ' ; , ' ; 'V V V V V VC C c c c A T t c A a T t= − − ∪ − ∪ ∪  

else 

 { }( ) { } { }( ){ }1 1 1: ; , ' ;V V V VC C c A T t c A a t= − ∪ − ∪  

end 
//------- Upon leaving the coalition 

Begin 
consider 

ToChange { } { }{ }1 1( ;Vc A a T t= ∪ ∪  

Mergeable ( ){ }1' ; ' , ,V V Vc A T c C a A= ∈ ∉  

UnChanged=
VC -ToChange-Mergeable 

if A ζ=  then 
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 if T ζ=  and Unchanged ζ≠ then 

 :V V VC C c= −  

 else  { }( ){ }1: ' ;V V V VC C c c a ζ= − ∪  

else 
 if T ζ=  then 

if Unchanged ζ=  then 

 { }( ) { }( ){ }1 1: ' ; , '' ;V V V V VC C c c A t c a ζ= − ∪  

else { }( ){ }1: ' ;V V V VC C c c A t= − ∪  

else  

if ( )''' ; '''Vc A T∃ ∈Mergeable then 

 { }( ) { }( ){ }1 1: ''' ' ; , '' ; '''V V V V V VC C c c c A a T c A T t= − − ∪ ∪ ∪  

else    { }( ) { }( ){ }1 1: ' ; , '' ;V V V V VC C c c A a T c A t= − ∪ ∪  

end 

4   System Architecture 

We sketch the basic components of our overall system architecture (cf. figure 4). It 
consists of three main modules: (1) the users’ platform, (2) the shared organizational 
data, norms, processes and projects data, (3) and an intelligent agent-based control 
module. The prototype provides the ability to trace the work done during both 
autonomy periods and collaborative periods. By storing main states of all activities, 
duration of these activities, missed deadlines or decisions taken, we provide a view of 
what happened and when and where the process failed or succeeded. As illustrated 
determining the activity’s tasks evolution and their performance is highly relevant for 
organizational competencies. The incorporation of this kind of knowledge required an 
integrated monitoring of the concept of capabilities, roles, agents and coalitions that 
abstract the human in the loop as well as the process. The intelligent control module 
contains mechanisms for coalition management presented in the previous section, and 
allows adaptability during lifecycle. The interface of module 3 displays the information 
on activities evolution and agents’ involvement, as well as their performance at the 
current time. This assists organizations in identifying potential problems in order to take 
corrective actions as required. The shared data module stores organization’s policies and 
norms, projects’ processes, human agent profiles, organization assignment of activities, 
tasks and roles. At the user side, we design a set of collaborative strategic agents 
(scheduler, bookkeeper, product deliverable, etc,) that collect the data from wrapper 
tools used to execute the tasks, as well as inputs from human users. The current 
implementation is based on a distributed architecture that uses java and Jade tool [5]. 
Each member of the organization team hosts a part of the organization and project data 
repository and exchanges are done using SOAP [12] messages.  
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Fig. 4. System architecture 

5   Related Works 

There are essentially three contribution made by this paper: first, the idea of including 
human in the loop for organizational modeling; second, the combination of 
operational capabilities and strategic performance management when assisting 
organization teams; and third the notion of capturing the dynamic organizational 
knowledge which is often presented in an implicit manner. We will situate out our 
work in relation to each of the categories. 

Authors of [14], [3] and [7] propose organizational modeling using agents; they 
share the concept of role, agent in their modeling approaches. Although, the work of 
[3] describes an adaptable organization modeling, the human in the loop was not 
explicitly captured in this model. The work of [14] presents a theoretical methodology 
for role based modeling where agents take and release roles at run time, however it 
was not verified in real world applications and it also does not take advantage of the 
power of including human in the modeling loop. Authors in [7] propose a modeling 
approach to build an agent based information system targeting interaction between 
operational and strategic goals; however their model does not clarify how the two 
capabilities are integrated. 

With regards using agents to support individuals and teams, work of [13], [6], and 
[2] tackled this aspect, however their approaches targeted some specific applications  
with no formal foundation , their generality was not verified, and there was not a 
clarity between the operational and strategic capabilities, physical human agents also 
were not explicitly modeled as well as their dynamics. Authors of [10] propose a data-
driven process control and exception handling for the logistic area, the work focuses 
only on handling exception with regards process data, however exception can include 
agent joining and/or leaving the environment, the notion of organizational and 
conceptual role coalitions presented in this work makes more general strides. 

6   Conclusion and Future Works 

We have presented a generic approach for modeling adaptive organizations with 
human agents in the loop. This approach is based on four pillars: capabilities, roles, 
agents, and coalitions. It integrates operational and strategic capabilities with 
mechanisms for different types of coalitions; this allows organizations to handle their 
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resources and processes in a very elegant and user friendly manner. Ongoing work deals 
with simulation of the model using the third generation distributed dynamic decision 
making DDD-III [11] for a software engineering project case study involving different 
performance indicators i.e. delivery time, product deliverable quality, effort, cost, etc.  
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Abstract. This paper studies multidimensional fuzzy integrals. We con-
sider a multidimensional generalized fuzzy integral that generalizes the
multidimensional Choquet and Sugeno integrals. Then, an extension of
part of Fubini’s theorem is given. Finally, citation analysis is considered
as an example of the application of the results presented here.

Keywords: fuzzy integral, Choquet integral, Sugeno integral, multidi-
mensional integrals.

1 Introduction

In a recent paper [10] we studied fuzzy multidimensional integrals motivated by
their application on citation analysis. We showed that when computing indices
for evaluating research, it is meaningful to aggregate the citations of a researcher
with respect to the publications and the years in which these citations are found.
The standard approach of counting citations as well as the Hirsch index [4] can
be seen from this perspective [12].

In this paper we present new mathematical results that can be applied in this
setting. Formally, we consider multidimensional generalized fuzzy integrals. We
introduce them and prove that under some conditions the order of integration
is not relevant. This result generalizes the one by Machida in [8].

Our approach for integrating multidimensional functions is only valid for a
restricted type of functions. In fact, it is usual that functions representing the
number of citations do not belong to such type of functions. To permit ar-
bitrary functions we introduce an extension of the domain and consider the
integrals in this new setting. A similar theorem is proven in this alternative
framework.

The structure of this paper is as follows. First, we review in Section 2 some
concepts that are needed later on in this paper. Then, in Section 3 we will con-
sider the generalized fuzzy integral, and in Section 3 multidimensional integrals.
Section 5 considers the application of multidimensional integrals for citation
analysis. The paper finishes with some conclusions.
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2 Preliminaries

Next, we present the basic definitions of a fuzzy measure.

Definition 1. Let X be a universal set and X be a subset of 2X. (X,X ) is called
a fuzzy measurable space. We say that a function f : X → R+ is X -measurable
if {x|f(x) ≥ a} ∈ X for any a ≥ 0.

Definition 2. [3] Let f and g are X -measurable functions on X . We say that
f and g are comonotonic if

f(x) < f(y) ⇒ g(x) ≤ g(y)
for x, y ∈ X .

Definition 3. [11] Let (X,X ) be a fuzzy measurable space. A fuzzy measure
μ on (X,X ) is a real valued set function, μ : X −→ R+ with the following
properties. A triplet (X,X , μ) is said to be a fuzzy measure space.

(1) μ(∅) = 0 , μ(X) = 1
(2) μ(A) ≤ μ(B) whenever A ⊂ B, A,B ∈ X .

Definition 4. [2,9] Let (X,X , μ) be a fuzzy measure space and f be a X -
measurable function.

The Choquet integral of f with respect to μ is defined by

(C)
∫
fdμ :=

∫ ∞

0

μf (r)dr,

where μf (r) = μ({x|f(x) ≥ r}).

If a X -measurable function f is a simple function, that is, f(x) :=
n∑

i=1

ai1Ai

ai ≥ 0 A1 ⊃ A2 ⊃ . . . An,Ai ∈ X we have

(C)
∫
fdμ =

n∑
i=1

aiμ(Ai).

Definition 5. [11] Let (X,X , μ) be a fuzzy measure space and f : X → [0, 1] be
a X -measurable function. The Sugeno integral of f with respect to μ is defined
by

(S)
∫
fdμ := sup

r∈[0,1]

[r ∧ μf (r)]

where μf (r) := μ({x|f(x) ≥ r}).
If f is a simple function, the Sugeno integral is written as

(S)
∫
fdμ =

n∨
i=1

((a1 + · · ·+ ai) ∧ μ(Ai)).
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3 Generalized Fuzzy Integral

In this section, we use t−conorms and t−norms. They are binary operators that
generalize addition and multiplication, and also max and min. In the following,
we assume that the universal set X is a finite set.

Definition 6. A triangular norm (t-norm) � is a binary operation on [0, 1]
fulfilling the conditions:

(T1) x�1 = 1.
(T2) x�y ≤ u�v whenever x ≤ u and y ≤ v.
(T3) x�y = y�x.
(T4) (x�y)⊥z = x�(y�z).

A triangular conorm (t-conorm) ⊥ is a binary operation on [0, 1] fulfilling the
conditions:

(T1) x⊥0 = x.
(T2) x⊥y ≤ u⊥v whenever x ≤ u and y ≤ v.
(T3) x⊥y = y⊥x.
(T4) (x⊥y)⊥z = x⊥(y⊥z).

A t-conorm is said to be strict if and only if it is continuous on [0, 1] and
strictly increasing in each of its places. A t-conorm ⊥ is said to be Archimedean
if and only if x⊥x > x for all x ∈ (0, 1).

Example 1

(1) The maximum operator x ∨ y is a non Archimedean t-conorm.
(2) The bounded sum x+̂y := 1 ∧ (x+ y) is an Archimedean t-conorm.
(3) The Sugeno operator x +λ y := 1 ∧ (x + y + λxy) (−1 < λ < ∞) is an

Archimedean t-conorm.

Proposition 1. [7] If a t-conorm ⊥ is continuous and Archimedean, then there
exists a continuous and strictly increasing function g : [0, 1] → [0,∞] such that
x⊥y = g(−1)(g(x)+g(y)), where g(−1) is the pseudo inverse of g which is defined
by

g(−1)(u) :=
{
g(−1)(u) if u ≤ g(1)
1 if u > g(1).

The function g is called an additive generator of a t-conorm ⊥.

Example 2. Let P be a probability measure on (X, 2X). Define a function
ϕλ : R→ R by

ϕλ(r) := log1+λ(1 + λr)

and a fuzzy measure μλ by μλ := ϕ−1
λ ◦ P .

ϕλ is the additive generator of the Sugeno operator +λ.
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Definition 7. Let m be a fuzzy measure on a fuzzy measurable space (X,X ). We
say that m is ⊥-decomposable if m(A ∪B) = m(A)⊥m(B) whenever A ∩B �= ∅
for A,B ∈ X . A ⊥-decomposable fuzzy measure m is called normal if ⊥ = ∨ or
g ◦m is an infinite additive measure or g ◦m is a finite additive measure, where
g is a generator of ⊥.

Definition 8. Let ⊥ be a continuous t-conorm, which is ∨ or Archimedean.
Define a non decreasing operator � : [0, 1]× [0, 1] → [0, 1] satisfying

(M1) � is left continuous t-norm on (0, 1].

(M2) a� x = 0 if and only if a = 0 or x = 0.

(M3) if x⊥y < 1 then a� (x⊥y) = (a� x)⊥(a� y).

(M4) if a⊥b < 1 then (a⊥b) � x = (a� x)⊥(b � x).

We say that (⊥,�) is a t-system.

For a given t-conorm ⊥, we define an operation −⊥ by

a−⊥ b := inf{c|b⊥c ≥ a}
for all (a, b) ∈ [0, 1]2. We say that −⊥ is a pseudo inverse of ⊥.

Definition 9. Let m be a fuzzy measure on a fuzzy measurable space (X,X ),
and (⊥,�) be a t-system. If m is a normal ⊥− decomposable fuzzy measure,
then for a function f : X → [0, 1] such that f = ⊥n

i=1ri1Di where Di ∩Dj �= ∅
for i �= j, the t-conorm integral is defined as follows:

(T )
∫
f � dm := ⊥n

i=1ri �m(Di).

Example 3. A uninorm [13] is a binary operation on the unit interval which is
commutative, associative, non-decreasing in each component, and which has a
neutral element. Let ([0, 1], S, U) be a conditionally distributive semiring [5]; that
is, S is a continuous t−conorm and U is a left continuous uninorm satisfying the
conditional distributivity of U over S: for all x, y, z ∈ [0, 1] with S(x, y) < 1 we
have U(x, S(y, z)) = S(U(x, y), U(x, z)). Suppose that U(0, x) = 0 for x ∈ [0, 1].
In the case of ⊥ = S and � = U , the t− conorm integral in Definition 9 coincides
with (S,U)− integral by Klement, Mesiar and Pap [6].

Definition 10. Let m be a fuzzy measure on a measurable space (X,X ), and

(⊥,�) be a t-system. For a measurable function f(x) :=
n∑

i=1

ai1Ai where ai ≥ 0

A1 ⊃ A2 ⊃ . . . An,Ai ∈ X , the generalized t-conorm integral (GT-integral) is
defined as follows:

(GT )
∫
f � dm := ⊥n

i=1ai �m(Ai).
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The next proposition follows from the definition of the pseudo inverse −⊥, the
generalized t-conorm integral (Definition 10) and the t-conorm integral (Defini-
tion 9).

Proposition 1. Let m be a fuzzy measure on a measurable space (X,X ), and
(⊥,�) be a t-system. If m is a normal ⊥-decomposable fuzzy measure, the gen-
eralized t-conorm integral coincides with the t-conorm integral.

Example 4. (1) If ⊥ = +̂ and � = · , the generalized t-conorm integral is a
Choquet integral.

(2) If ⊥ = ∨ and � = ∧, the generalized t-conorm integral is a Sugeno integral.

Let measurable functions f, g be comonotonic. Since we have {x|f(x) ≥ a} ⊂
{x|g(x) ≥ b} or {x|f(x) ≥ a} ⊃ {x|g(x) ≥ b} for every a, b ∈ [0, 1], we have

(f⊥g)(x) :=
n∑

i=1

ai1Ai

where ai ≥ 0 A1 ⊃ A2 ⊃ . . . An,Ai ∈ X , Therefore we have the next theorem

Theorem 1. Let (X,X , μ) be a fuzzy measure space and (⊥,�) be a t-system.
If measurable functions f, g are comonotonic; then, we have

(GT )
∫

(f⊥g) � dm = (GT )
∫
f � dm⊥(GT )

∫
g � dm.

We say that the property above is the ⊥-additivity of generalized fuzzy integral.

4 Multidimensional Integrals

4.1 Measurable Function

We consider below the case of the product of two fuzzy measurable spaces. Let
X and Y be two universal sets and X × Y be a direct product of X and Y . Let
(X,X ) and (Y,Y) be fuzzy measurable spaces. Now, let us define the following
class of sets:

X × Y := {A×B|A ∈ X , B ∈ Y}
We will consider a measurable space (X × Y,X × Y).

Suppose that X := 2X and Y := 2Y . Note that X ×Y �= 2X×Y . Therefore the
class of X ×Y-mesurable function is smaller than 2X×Y −measurablefunction.

Example 5. Let X := {x1, x2} and Y := {y1, y2}. We have

2X × 2Y := {{(x1, y1)}, {(x1, y2)}, {(x2, y1)},
{(x2, y2)}, {(x1, y1), (x2, y1)}, {(x1, y2), (x2, y2)},
{(x1, y1), (x1, y2)}, {(x2, y1), (x2, y2)},
{(x1, y1), (x1, y2), (x2, y2), (x2, y2)}}

Hence {(x1, y1), (x2, y2)} �∈ 2X × 2Y .
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Let f : X × Y → [0, 1] be a X × Y-mesurable function. Then, for every a ≥ 0
there exist A ∈ X and B ∈ Y such that A× B = {(x, y)|f(x, y) ≥ a}. Then we
have the next proposition immediately.

Proposition 2. Let f : X × Y → [0, 1] be a X × Y-mesurable function.

(1) For fixed y ∈ Y , f(·, y) is X -measurable.
(2) For fixed x ∈ X, f(x, ·) is Y-measurable.

Example 6. Let X := {x1, x2} and Y := {y1, y2}. Consider two fuzzy measur-
able space (X,X ) and (Y,Y) where X = 2X and Y = 2Y .

(1) Define a function f : X × Y → [0, 1] by
f(x1, y1) = f(x1, y2) = 0.2,
f(x2, y1) = 0.6,f(x2, y2) = 1.

Then we have

{(x, y)|f(x, y) ≥ 1} ={(x2, y2)} = {x2} × {y2},
{(x, y)|f(x, y) ≥ 0.6} ={(x2, y1), (x2, y2)} = {x2} × {x1, y2},
{(x, y)|f(x, y) ≥ 0.2} ={(x1, y1), (x1, y2), (x2, y1), (x2, y2)}

={x1, x2} × {y1, y2}.
Therefore f is X × Y-measurable.

(2) Define a function g : X × Y → [0, 1] by
g(x1, y1) = 0.2, g(x1, y2) = 0.4,
g(x2, y1) = 0.6, g(x2, y2) = 1.

Then we have
{(x, y)|g(x, y) ≥ 0.4} = {(x1, x2), (x2, y1), (x2, y2)} �∈ X × Y.

Therefore g is not X × Y-measurable. In fact, if A ∈ X × Y, then we have
|A| = 0, 1, 2, 4.

As we have seen the example above, we have the next proposition.

Proposition 3. Let (X×Y,X×Y) be a measurable space and f : X×Y → [0, 1].
If f is X ×Y-measurable, then |{(x, y)|f(x, y) ≥ a}| is a divisor of |X | × |Y | for
all a ∈ [0, 1].

4.2 Multidimensional Generalized Fuzzy Integral

Let (X,X , μ) and (Y,Y, ν) be two fuzzy measure spaces, f : X × Y → [0, 1] be a
X ×Y-mesurable function and (⊥,�) be a t-system. Then f can be represented as

f(x) :=
n∑

i=1

ai1Ai×Bi

where ai ≥ 0, A1 ⊃ A2 ⊃ . . . An,Ai ∈ X , B1 ⊃ B2 ⊃ . . . Bn,Bi ∈ Y .

Since 1A×B = 1A � 1B, we have f(x) :=
n∑

i=1

ai1Ai × 1Bi . Then we have

(GT )
∫
fdν = ⊥n

i=1ai1Ai � ν(Bi) = ⊥n
i=1ai � ν(Bi)1Ai .
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Since each 1Ai is comonotonic for all i, it follows from comonotonic ⊥-additivity
that

(GT )
∫

((GT )
∫
fdν)dμ = (GT )

∫
(⊥n

i=1ai � ν(Bi)1Ai)dμ

= ⊥n
i=1(GT )

∫
(ai � ν(Bi)1Ai)dμ

= ⊥n
i=1ai � ν(Bi) � μ(Ai)

= ⊥n
i=1ai � μ(Ai) � ν(Bi).

On the other hand, since f(x) :=
n∑

i=1

ai1Bi × 1Ai , we have

(GT )
∫
fdμ = ⊥n

i=1ai1Bi � μ(Ai) = ⊥n
i=1ai � μ(Ai)1Bi .

Since each 1Bi is comonotonic for all i, it follows from comonotonic ⊥-additivity
that

(GT )
∫

((GT )
∫
fdμ)dν = (GT )

∫
(⊥n

i=1ai � μ(Ai)1Bi)dμ

= ⊥n
i=1(GT )

∫
(ai � μ(Ai)1Bi)dμ

= ⊥n
i=1ai � μ(Ai) � ν(Bi).

Define a fuzzy measure m on X ×Y by m(A×B) := μ(A)×ν(B) for A×B ∈
X × Y. We have the next theorem, which is the main theorem in this paper.

Theorem 2. Let (X,X , μ) and (Y,Y, ν) be fuzzy measure spaces. Suppose that
f : X × Y → [0, 1] be a X × Y-mesurable function. Then there exists a fuzzy
measure m on X × Y such that

(GT )
∫

((GT )
∫
fdμ)dν = (GT )

∫
fdm = (GT )

∫
((GT )

∫
fdν)dμ.

Since GT-integral is the generalization of both Choquet integral and Sugeno
integrals, considering ⊥ = +̂, � = ·, we have the next corollary which was
proven by Machida [8].

Corollary 1. [8] Let (X,X , μ) and (Y,Y, ν) be two fuzzy measure spaces and f
be a X × Y-measurable function.

Then, there exists a fuzzy measure m on X × Y such that

(C)
∫

((C)
∫
f(x, y)dμ)dν = (C)

∫
((C)
∫
f(x, y)dν)dμ =(C)

∫
f(x, y)dm

Considering the characteristic function of A×B ∈ X × Y, we have m = μν.
In case of Sugeno integral, let ⊥ = ∨,� = ∧ we have the next corollary in the

same way.
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Corollary 2. [10] Let (X,X , μ) and (Y,Y, ν) be two fuzzy measure spaces and
f be a X × Y-measurable function.

Then, there exists a fuzzy measure m on X × Y such that

(S)
∫

((S)
∫
f(x, y)dμ)dν = (S)

∫
((S)
∫
f(x, y)dν)dμ =(S)

∫
f(x, y)dm

Considering the characteristic function of A×B ∈ X × Y, we have m = μ ∧ ν.

4.3 Extension of Domain

Let (X,X ) and (Y,Y) be fuzzy measurable spaces. Suppose that|X |, |Y | are
finite and X := 2X and Y := 2Y . As we have shown in Section 4.1, the class of
X ×Y is smaller than 2X×Y . Therefore the class of this measurable functions is
small. If there is no other assumption on the fuzzy measure, it is impossible to
extend the domain. If we assume that μ on (X,X ) and ν on (Y,Y) are normal
⊥-decomposable fuzzy measures; then, it is possible to extend the domain.

Define a class X × Y of set A ∈ 2X×Y by

X × Y := {A ∈ 2X×Y |A = ∪i∈IAi, Ai ∈ X × Y, I : finite}.
Since {(x, y)} = {x} × {y} ∈ X × Y for every x ∈ X, y ∈ Y , we have the next
proposition.

Proposition 4. If X = 2X and Y = 2Y , then X × Y = 2X×Y .

It follows from Proposition 4 that every function f : X×Y → [0, 1] is X × Y-
measurable. Let A ∈ X × Y. Then A can be represented as

A = ∪i∈I,j∈J{xi} × {yj} (1)

for I, J : finite sets. Therefore we can define a fuzzy measure m on X × Y by

m(A) := ⊥i∈I,j∈Jμ({xi}) � ν({yj}). (2)

The next prosition follows from the definition above immediately.

Proposition 5. The extended fuzzy measure m on X × Y is normal ⊥-
decomposable.

Let f : X × Y → [0, 1] be X × Y-measurable. f can be represented as

f := ⊥1
n
i=1rij1{xi}×{yj} where xi ∈ X, yj ∈ Y,

then it follows from t-conorm integral that

(T )
∫
f � dm = ⊥i,jrij �m({(xi, yj)}) = ⊥i,jrij � μ({xi}) � ν({yj}))

= ⊥j(⊥irij � μ({xi})) � ν({yj}))
= ⊥j((T )

∫
f � dμ) � ν({yj}) = (T )

∫
(
∫
f � dμ) � dν

Therefore we have the next theorem.
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Theorem 3. Let (X,X , μ) and (Y,Y, ν) be fuzzy measure spaces and μ and ν
be normal ⊥-decomposable fuzzy measures. If f : X × Y → [0, 1] be a X × Y-
mesurable function, then there exists a fuzzy measure m on X × Y such that

(T )
∫

((T )
∫
fdμ)dν = (T )

∫
fdm = (T )

∫
((T )
∫
fdν)dμ.

Considering ⊥ = +̂, � = ·, the integral is standard Lebesgue integral. Theorem
3 is a part of standard Fubini’s theorem.

Considering ⊥ = ∨, � = ∧, and considering the characteristic function of
A×B ∈ X ×Y, we have m(A×B) = ∨a∈A,b∈Bμ({a}) ∧ ν({b}). Therefore m is
a possibility measure.

Corollary 3. [10] Let (X,X , μ) and (Y,Y, ν) be two fuzzy measure spaces and
μ and ν be possibility measures. Suppose that f be a X × Y-measurable function.

Then, there exists a possibility measure m on X × Y such that

(S)
∫

((S)
∫
f(x, y)dμ)dν = (S)

∫
((S)
∫
f(x, y)dν)dμ =(S)

∫
f(x, y)dm

5 Citation Analysis and Multidimensional Integrals

As we have stated in the introduction, the results presented here were partially
motivated by our interest on indexes for citation analysis. In a recent paper [12],
we have shown that the new Hirsch index [4] is equivalent to a Sugeno integral
with a particular fuzzy measure.

Formally, we consider for each researcher a function f that corresponds to
the number of citations of a particular paper and a fuzzy measure μ on the
sets of publications of that author. Then, the Sugeno integral of f with respect
to μ corresponds to the Hirsch index when μ is the cardinality of the set. The
paper also proves that the Choquet integral of function f with respect to the
same measure corresponds to the standard method of counting the number of
citations. See [12] for details.

From the perspective of [12], we can define new indexs for citation analy-
sis using other fuzzy measures or other fuzzy integrals. In particular, we have
considered in [10] the case that the function f is two dimensional: fa(x) corre-
sponds to the number of citations of a paper x in year a. Also, we consider the
function ga(x) that corresponds to the citations obtained by x in year a. Nat-
urally, fγ(x) =

∑
y≤γ gy(x). Table 1 illustrates function g on five publications

X = {p1, p2, p3, p4, p5}.
In this context, it is relevant to consider the multidimensional integral of

function g. Theorem 2 implies that the order in which we integrate g is not
relevant (when appropriate conditions hold).

At this point, it is important to note that the measure μ involved in the Hirsch
index is additive and with a range beyond [0, 1]. So, the results obtained here
are not directly applicable into that setting. Nevertheless, as the fuzzy integrals
are monotonic with respect to the fuzzy measure, it is always possible to define



154 Y. Narukawa and V. Torra

Table 1. Set of functions corresponding to the new number of citations for each year
in the period 2002-2006 and for the following papers: X = {p1, p2, p3, p4, p5}

p1 p2 p3 p4 p5 p6

g2006 60 30 5 4 2 1
g2005 30 0 2 1 0 0
g2004 8 20 0 0 0 0
g2003 2 0 0 0 0 0
g2002 0 0 0 0 0 0

μ′ := μ/K so that we have a normalized measure μ′. Any comparison between
the performance of two researchers will be not influenced by a normalization
factor K (if both use the same value K).

In particular, when the Choquet integral is considered, the integral with re-
spect to μ(A) = |A|/K1 and ν(A) = |A|/K2 corresponds to:∑

i

∑
x∈X gi(x)
K1K2

So, the integral of g corresponds to the total number of citations (multiplied
by a normalization factor). In this case, according to the results above, we have
m(C) = (|A|/K1)(|B|/K2), when C = A× B. When we consider the results on
the extension of the domain, we have that with μ({r}) = 1/K1 and ν({s}) =
1/K2 the same result is obtained. This corresponds to the Choquet integral of the
same function with m(C) = |C|/(K1K2). Note that this measure is consistent
with μ(C) = (|A|/K1)(|B|/K2), when C = A×B.

Note that for the particular function g in Table 1, only Theorem 3 applies but
not Theorem 2. This is so because the function g is not X × Y-measurable but
it is X × Y-measurable. For example, {(p1, 2006), (p2, 2006), (p3, 2005)} is not in
X × Y but is in X × Y = 2X×Y .

In the case of the Sugeno integral, Corollary 2 also shows that the result of
the Sugeno integral for X × Y-measurable functions does not depend on the
order in which we integrate and that, with μ(A) = |A|/K1 and ν(A) = |A|/K2

the multidimensional integral is equivalent to one with respect to m defined by
m(C) = min(|A|/K1, |B|/K2), for those C = A×B. Note that Theorem 2 does
not apply to the function g above because g is not X × Y-measurable. Besides,
as m is not possibility measures, it is not possible to apply Theorem 3 on the
extension.

6 Conclusions

In this paper we have studied multidimensional fuzzy integrals and briefly de-
scribed their application to citation analsysis.
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Abstract. Formal concept analysis (FCA) is a method of exploratory
data analysis. The data is in the form of a table describing relationship
between objects (rows) and attributes (columns), where table entries
are grades representing degrees to which objects have attributes. The
main output of FCA is a hierarchical structure (so-called concept lattice)
of conceptual clusters (so-called formal concepts) present in the data.
This paper focuses on algorithmic aspects of FCA of data with graded
attributes. Namely, we focus on the problem of generating efficiently all
clusters present in the data together with their subconcept-superconcept
hierarchy. We present theoretical foundations, the algorithm, analysis of
its efficiency, and comparison with other algorithms.

1 Introduction

Our paper contributes to the area of exploratory analysis of tabular data.
Namely, we focus on data supplied as tables with rows corresponding to ob-
jects and columns corresponding to attributes. Datasets of this form are often
described by bivalent (presence/absence) attributes. That is, each attribute ei-
ther applies or does not apply to a particular object. The corresponding data
table is thus binary, i.e., it is a matrix filled with 0’s (the object given by row does
not have the attribute given by column) and 1’s (the object given by row has
the attribute given by column). Formal concept analysis (FCA) [8,20] aims at
revealing all “conceptual clusters” (so-called formal concepts) which are hidden
in the binary data table. Formal concepts are particular clusters of objects and
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attributes that correspond to maximal submatrices filled with 1’s. Alternatively,
formal concepts may be understood as concepts in the traditional sense—as enti-
ties consisting of a set A of objects and a set B of attributes to which the concept
applies (e.g., concept dog applies to objects poodle, foxhound, . . . and attributes
barks, has limbs, . . . ). Formal concepts are partially ordered by the subconcept-
superconcept hierarchy. The resulting partially ordered set of formal concepts
(the so-called concept lattice) represents a hierarchical structure of all naturally
interpretable clusters (concepts) existing in the data (e.g., concept mammal is
more general a concept than dog). Applications of FCA in exploratory data
analysis can be found in [6,8]; [8] provides theoretical foundations.

In practice, more often than not, attributes are graded (fuzzy) rather than
bivalent. That is, an attribute applies to an object to a certain degree which
may be represented, e.g., by a number from the unit interval [0, 1]. The data ta-
ble is then a [0, 1]-valued matrix, with table entries corresponding to degrees to
which attributes apply to objects. There have been several approaches to FCA
in a graded setting. The most relevant approach was independently developed
in [1,2,4] and [19]. Up to now, not much attention has been paid to computa-
tional aspects of FCA with graded attributes. As an exception, in [3] the author
presents an algorithm for determining formal concepts present in data table with
graded attributes.

The aim of this paper is to propose another algorithm for generating all for-
mal concepts (which can be seen again as certain maximal submatrices). Unlike
the algorithm presented in [3], our algorithm enables us to generate all formal
concepts together with their subconcept-superconcept hierarchy. The absence of
conceptual hierarchy is not crucial if, for instance, the output of FCA is used for
preprocessing (e.g., for mining non-redundant association rules, see [21]). On the
other hand, if we want to present the output of analysis directly to users, it is
more convenient to depict the clusters in a hierarchy which models the natural
subconcept-superconcept ordering. Thus, from the point of view of applications,
it is important to have an efficient algorithm which generates the hierarchy along
with the clusters present in data table with graded attributes.

The paper is organized as follows. In Section 2, we present preliminaries from
classical formal concept analysis, fuzzy sets, and formal concept analysis of data
with graded attributes. In Section 3, we present the algorithm and prove its cor-
rectness. Section 4 contains experiments and comparisons of the new algorithm
with that from [3].

2 Preliminaries
This section provides basic notions of FCA and fuzzy logic. More details can be
found in [6,8,20] (formal concept analysis) and in [1,9,12,16] (fuzzy logic).

2.1 Formal Concept Analysis

Let X and Y be nonempty sets (of objects and attributes, respectively), let
I ⊆ X×Y be a binary relation between X and Y . The triplet 〈X,Y, I〉 is called
a formal context, the fact 〈x, y〉 ∈ I is interpreted as “x has y” (“y applies
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to x”). A formal context corresponds to a binary data table with rows and
columns corresponding to objects and attributes, respectively, such that the
entry corresponding to objects x and attribute y is 1 if 〈x, y〉 ∈ I and 0 if
〈x, y〉 �∈ I. For A ⊆ X and B ⊆ Y we define sets A↑ ⊆ Y and B↓ ⊆ X by

A↑ = {y ∈ Y | for each x ∈ A : 〈x, y〉 ∈ I}, (1)

B↓ = {x ∈ X | for each y ∈ B : 〈x, y〉 ∈ I}. (2)

Therefore, A↑ is the set of all attributes common to all objects from A and
B↓ is the set of all objects common to all attributes from B. According to the
traditional understanding, a pair 〈A,B〉 where A ⊆ X (so-called extent) and
B ⊆ Y (so-called intent) is called a formal concept of 〈X,Y, I〉 iff A↑ = B
and B↓ = A. Thus, 〈A,B〉 is a formal concept of 〈X,Y, I〉 iff A is the set of
all objects sharing all the attributes of B and, conversely, B is the set of all
attributes common to all objects from A. Alternatively, formal concepts may be
understood as maximal rectangles of the data matrix which are filled with 1’s:
〈A,B〉 is a formal concept of 〈X,Y, I〉 iff it is a maximal rectangle filled with 1’s
which is contained in I (i.e., a maximal submatrix of 〈X,Y, I〉 filled with 1’s).

The set B(X,Y, I) = {〈A,B〉 |A↑ = B, B↓ = A} is called the concept lattice
induced by the input data 〈X,Y, I〉. Moreover, B(X,Y, I) can be equipped by a
partial order relation ≤ defined by 〈A,B〉 ≤ 〈C,D〉 iff A ⊆ C (or, equivalently,
B ⊇ D). The partial order ≤ which is, in fact, a complete lattice order, models
the subconcept-superconcept hierarchy: 〈A,B〉 ≤ 〈C,D〉 means that the concept
〈C,D〉 is more general than 〈A,B〉 (covers more objects, or, equivalently, less
attributes).

2.2 Fuzzy Sets and Fuzzy Relations

A fuzzy set A in a universe set X [22] is a mapping assigning to each x ∈ X a
truth degree A(x) ∈ L where L is some partially ordered set of truth degrees
containing at least 0 (full falsity) and 1 (full truth). Usually, L is the unit interval
[0, 1] or a suitable subset of [0, 1]. A(x) is interpreted as the degree to which x
belongs to A. The notion of a fuzzy set enables us to model vaguely (nonsharply)
delineated collections: For instance, the collection described linguistically as “tall
men” can be modeled by a fuzzy set to which men with heights 150, 180, and
200 cm belong to degrees 0, 0.7, and 1, respectively.

In order to be able to develop the basic calculus with fuzzy sets and fuzzy rela-
tions, the set L of truth degrees needs to be equipped by suitable operations gen-
eralizing logical connectives of classical (two-valued) logic. Particularly, we will
need fuzzy conjunction ⊗ and fuzzy implication →. In the literature, there have
been proposed several fuzzy conjunctions and fuzzy implications [16]. A general
class of logical connectives is captured by the notion of a complete residuated lat-
tice [1,10,14]: A complete residuated lattice is a structure L = 〈L,∧,∨,⊗,→, 0, 1〉
such that (1) 〈L,∧,∨, 0, 1〉 is a complete lattice (with the least element 0, great-
est element 1), i.e. a partially ordered set in which arbitrary infima (

∧
) and

suprema (
∨

) exist; (2) 〈L,⊗, 1〉 is a commutative monoid, i.e. ⊗ is a binary
operation which is commutative, associative, and x ⊗ 1 = x (x ∈ L); (3) ⊗,→
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satisfy x⊗y ≤ z iff x ≤ y → z. Operations ⊗ (multiplication) and → (residuum)
play the role of a fuzzy conjunction and a fuzzy implication, respectively. The
class of complete residuated lattices includes structures defined on the real unit
interval with ∧ and ∨ being minimum and maximum, respectively, ⊗ being left-
continuous t-norm, and → being its residuum, see [1,9,12,15] for details.

In what follows, L always refers to a complete residuated lattice and≤ denotes
the induced lattice order (i.e., a ≤ b iff a ∧ b = a iff a ∨ b = b iff a → b = 1).
We write a < b to denote that a ≤ b and a �= b. Given L, a fuzzy set with
truth degrees from L (called also an L-set) is a mapping A : X → L assigning
to any x ∈ X a truth degree A(x) ∈ L to which x belongs to A. Similarly, a
binary fuzzy relation R with truth degrees from L is a mapping R : X × Y → L
assigning to any x ∈ X and y ∈ Y a truth degree R(x, y) ∈ L to which x and
y are related under R. The set of all L-sets in a universe X is denoted LX . For
a fuzzy set A ∈ LX and a truth degree a ∈ L we denote by a/A the a-cut of
A, i.e. a/A = {x ∈ X |A(x) ≥ a} (the ordinary set of elements from X which
belong to A to degree at least a). A fuzzy set A ∈ LX is called crisp if, for each
x ∈ X , A(x) ∈ {0, 1}. Following common usage we will identify crisp fuzzy sets
in X with (characteristic functions of) ordinary subsets of X . In particular, by
∅ and X we denote crisp fuzzy sets ∅ ∈ LX and X ∈ LX such that ∅(x) = 0 and
X(x) = 1 for each x ∈ X . For fuzzy sets A,B ∈ LX we put A ⊆ B (A is a subset
of B) if for each x ∈ X we have A(x) ≤ B(x), in which case we say that A is
(fully) contained in B. If for A,B ∈ LX we have A ⊆ B and there is x ∈ X such
that A(x) < B(x), we write A ⊂ B and say that A is strictly contained in B.

2.3 Fuzzy Attributes, Fuzzy Contexts, and Formal Concepts

When dealing with real-world situations, it is very often the case that attributes
that we observe on the objects of interest are fuzzy rather than bivalent. In
general, an attribute y applies to an object x to some degree I(x, y) ∈ L not
necessarily being equal to 0 or 1. The larger I(x, y), the more y applies to x.
From the point of view of FCA, the input data table, which is no longer a binary
one, is represented by a triplet 〈X,Y, I〉 (called a formal fuzzy context) where
I ∈ LX×Y , i.e. I is a fuzzy relation between X and Y .

The agenda of formal concept analysis of data with fuzzy attributes [1,4,19]
is the following. For fuzzy sets A ∈ LX (i.e., A is a fuzzy set of objects) and
B ∈ LY (i.e., B is a fuzzy set of attributes), consider fuzzy sets A↑ ∈ LY (fuzzy
set of attributes) and B↓ ∈ LX (fuzzy set of objects) defined by

A↑(y) =
∧

x∈X(A(x) → I(x, y)), (3)

B↓(x) =
∧

y∈Y (B(y) → I(x, y)). (4)

Using basic rules of fuzzy logic, one can see that A↑(y) is the truth degree of
“y is shared by all objects from A” and B↓(x) is the truth degree of “x has
all attributes from B”, i.e. (3) and (4) properly generalize (1) and (2). Each
〈A,B〉 ∈ LX × LY such that A↑ = B and B↓ = A is called a formal fuzzy
concept of 〈X,Y, I〉. The set of all formal fuzzy concepts of 〈X,Y, I〉 will be
denoted by B(X,Y, I). Both the extent A and intent B of a formal fuzzy concept
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〈A,B〉 ∈ B(X,Y, I) are fuzzy sets. This corresponds well to the intuition that
a concept may apply to objects and attributes to various intermediate degrees,
not necessarily to 0 and 1 only. For brevity, by Int(X,Y, I) we denote the set of
all intents of 〈X,Y, I〉, i.e. Int(X,Y, I) = {B ∈ LY | 〈A,B〉 ∈ B(X,Y, I) for some
A ∈ LX}. Analogously, Ext(X,Y, I) denotes the set of all extents of 〈X,Y, I〉.
The conceptual hierarchy in B(X,Y, I) is modeled by a relation ≤ defined on
B(X,Y, I) by

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (iff B1 ⊇ B2), (5)

where A1 ⊆ A2 means that A1 is fully contained in A2 for each x ∈ X (see
Section 2.2). The following theorem characterizes the structure of fuzzy concept
lattices.

Theorem 1 (see [4]). The set B(X,Y, I) is under ≤ a complete lattice where
the infima and suprema are given by∧

j∈J 〈Aj , Bj〉 =
〈⋂

j∈J Aj , (
⋃

j∈J Bj)↓↑
〉
, (6)∨

j∈J 〈Aj , Bj〉 =
〈
(
⋃

j∈J Aj)↑↓,
⋂

j∈J Bj

〉
. (7)

Moreover, an arbitrary complete lattice V = 〈V,∧,∨〉 is isomorphic to some
B(X,Y, I) iff there are mappings γ : X×L→ V , μ : Y ×L→ V such that γ(X,L)
is
∧

-dense in V; μ(Y, L) is
∨

-dense in V; a⊗b ≤ I(x, y) iff γ(x, a) ≤ μ(y, b). ��
If we take L with L = {0, 1}, i.e. there are only two truth degrees involved
(our structure of truth degrees is the two-valued Boolean algebra), all notions
introduced in Section 2.1 will become particular cases of notions presented in
this section. This is the way the fuzzy approach generalizes the classical one [8].

Remark 1. Formal fuzzy concepts can also be characterized as maximal rectan-
gles contained in I: For a pair 〈A,B〉 ∈ LX× LY (call it a rectangle), define a
fuzzy relation A⊗B ∈ LX×Y by (A⊗B)(x, y) = A(x)⊗B(y). 〈A,B〉 is said to
be contained in I if A ⊗ B ⊆ I. Furthermore, put 〈A,B〉 " 〈A′, B′〉 iff A ⊆ A′

and B ⊆ B′. Then we have [1] that 〈A,B〉 is a formal fuzzy concept of 〈X,Y, I〉
iff it is a maximal (w.r.t. ") rectangle contained in I.

3 Computing Fuzzy Concepts and Conceptual Hierarchy

The best known algorithm for computing formal concepts is probably Ganter’s
NextIntent algorithm, see [7,8]. The original NextIntent generates in a lexi-
cal order all concepts present in a (classical/bivalent) context. Graded extension
of Ganter’s algorithm has been presented in [3]. In this section we develop an
algorithm for computing fuzzy concepts (along with their hierarchy) which is
inspired by the Lindig’s NextNeighbor algorithm [18].

Our goal is the following. Given an input data table represented by a formal
fuzzy context 〈X,Y, I〉, (i) generate all formal fuzzy concepts 〈A,B〉 of the fuzzy
concept lattice B(X,Y, I) and, at the same time; (ii) compute for each fuzzy con-
cept 〈A,B〉 a set of its direct subconcepts and direct superconcepts. The sets of
(direct) subconcepts/superconcepts fully determine the whole hierarchical struc-
ture of fuzzy concepts. Information about direct subconcepts and superconcepts
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is of crucial importance for applications. For instance, it allows us to navigate
users through the concepts, it is used as an input for geometrical method for
drawing concept lattices, and more (see [8] for other applications).

Each fuzzy concept 〈A,B〉 is uniquely given by each of its components: by
its extent A (since B = A↑) or by its intent B (since A = B↓). Therefore, in
order to generate all fuzzy concepts from B(X,Y, I), it is sufficient to generate all
intents from Int(X,Y, I) (or, equivalently, all extents). Moreover, B ∈ LY is an
intent from Int(X,Y, I) iff B = B↓↑, i.e. iff B is a fixed point of the fuzzy closure
operator ↓↑ : LY → LY which is a composition of operators ↓ and ↑ defined by (3)
and (4), see [1]. Thus, the task to compute all fuzzy concepts present in 〈X,Y, I〉
can be reduced to a task of computing all fixed points of a fuzzy closure operator
↓↑ : LY → LY . In what follows we forget about the operators ↓, ↑ for a while
and develop the algorithm so that it accepts a general fuzzy closure operator
C : LY → LY (i.e., C is extensive, monotone, and idempotent [1]) as its input,
and produces a set of its fixed points (with their hierarchy) as its output. The
set of all fixed points of C : LY → LY will be denoted by fix(C), i.e.

fix(C) = {B ∈ LY |B = C(B)} = {C(B) |B ∈ LY }. (8)

Note that due to computational reasons, we restrict ourselves to finite structures
of truth degrees, and always assume that X (set of objects) and Y (set of at-
tributes) are finite. This will ensure that the set of all fuzzy concepts extracted
from the data will be finite and thus enumerable in finitely many steps. For sim-
plicity, we describe only the case when L is linearly ordered (the case of general
finite L is technically more complicated and will be discussed in a full version of
this paper). In the rest of the paper C : LY → LY always denotes a fuzzy closure
operator.

For convenience, denote L = {a1, . . . , ak} so that a1 < a2 < · · · < ak. If i < k,
we write a+

i instead of ai+1. Upper neighbors can be introduced as follows:
D ∈ fix(C) is called an upper neighbor of B ∈ fix(C) (w.r.t. C), written B ≺C D,
if (i) B ⊂ D, and (ii) there is no D′ ∈ fix(C) such that B ⊂ D′ ⊂ D.

Lower neighbors can be defined dually. Note that if C is ↓↑, then upper neigh-
bors of an intent B with respect to ↓↑ are exactly the intents of the direct sub-
concepts of 〈B↓, B〉. One should not be mislead here: even if the upper neighbors
of B are intents which are greater than B, they determine subconcepts due to
the fact that greater fuzzy sets of attributes are shared by smaller fuzzy sets of
objects, see the definition of conceptual hierarchy (5).

For each B ∈ LY and y ∈ Y such that B(y) < 1, let C
(
B ∪ {B(y)+/y})

be abbreviated by [y]CB. From now on, if we write [y]CB we tacitly assume that
B(y) < 1. If [y]CB is an upper neighbor of B w.r.t. C, then [y]CB will be called
an upper neighbor generated by y; y is called a generator of [y]CB. For technical
reasons, we assume Y = {y1, . . . , yn} and consider a fixed order of attributes
from Y given by the indices, i.e. yi < yj iff i < j. In the sequel, we write just
i < j to denote yi < yj . The following assertion says that each upper neighbor
is in fact an upper neighbor generated by some y. In addition the generator y
can be chosen so that it is the greatest generator with respect to the ordering of
attributes.
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Lemma 1. The following are true for any fuzzy closure operator C : LY → LY .

(i) For each B ∈ LY and y ∈ Y such that B(y) < 1, we have B(y) < ([y]CB)(y).
(ii) Let B,D ∈ fix(C) such that B ⊂ D and put

i = max{j |B(yj) < D(yj)}. (9)

Then, for each k > i, D(yk) = B(yk). Moreover, if B ≺C D then D = [yi]CB.

Proof. (i) is obvious. In order to prove (ii), let B,D ∈ fix(C) such that B ⊂ D.
Clearly, {j |B(yj) < D(yj)} is a nonempty finite set, i.e. it has a maximum.
Denote the maximum by i as in (9). Take any k > i. Since B ⊂ D and i is the
maximum of all indices such thatB(yj) < D(yj), we getB(yk) = D(yk). Suppose
we have B ≺C D. From B(yi) < B(yi)+ ≤ D(yi), we get B ∪ {B(yi)

+
/yi} ⊆ D,

which further gives [yi]CB = C
(
B∪{B(yi)

+
/yi}
) ⊆ C(D) = D because D is a fixed

point of C. Furthermore, from B ⊂ [yi]CB ⊆ D it follows that [yi]CB = D because
[yi]CB ∈ fix(C) and D was supposed to be an upper neighbor of B. ��
Indices defined by (9) will play an important role. Therefore, we will introduce
the following notation. For C : LY → LY , B,D ∈ fix(C) such that B ⊂ D, and i
given by (9), we denote yi ∈ Y by yC

B(D). Furthermore, we put

MC
B = {y ∈ Y |B ≺C [y]CB and y = yC

B([y]CB)}. (10)

Note that yC
B and, consequently, MC

B depend on the chosen ordering of at-
tributes. Since the ordering is fixed, we will not mention it explicitly. Regardless
of the ordering, we have that {[y]CB | y ∈ MC

B} is a set of all upper neighbors
of B w.r.t. C. Moreover, the attributes from MC

B uniquely correspond to the
upper neighbors from {[y]CB | y ∈ MC

B}. This follows directly from (10) and from
Lemma 1 (ii). Hence, in order to compute the upper neighbors it suffices to de-
termine MC

B. The following assertions provides us with a quick test of presence
of an attribute in MC

B.

Theorem 2. Let B ∈ fix(C) and yi ∈ Y such that yi = yC
B([yi]CB). Then we have

yi ∈ MC
B iff for each yk ∈ MC

B such that k < i we have ([yi]CB)(yk) = B(yk).

Proof. Take B ∈ fix(C) and let yi ∈ Y such that yi = yC
B([yi]CB). Hence, from (9)

it follows that ([yi]CB)(yi) > B(yi) and ([yi]CB)(yk) = B(yk) (k > i).
“⇒”: Let yi ∈ MC

B, i.e. B ≺C [yi]CB . Take any yk ∈ MC
B such that k < i.

Suppose, by contradiction, that ([yi]CB)(yk) > B(yk). Since we have

B(yk) < B(yk)+ ≤ ([yi]CB)(yk),

we get B ∪ {B(yk)
+
/yk} ⊆ [yi]CB, i.e.

B ⊂ [yk]CB = C
(
B ∪ {B(yk)

+
/yk}
) ⊆ C

(
[yi]CB
)

= [yi]CB. (11)

Since B ≺C [yi]CB, (11) yields [yk]CB = [yi]CB . From yk = yC
B([yk]CB) and k < i

is follows that ([yk]CB)(yi) = B(yi), which is a contradiction to ([yk]CB)(yi) =
([yi]CB)(yi) > B(yi). Therefore, ([yi]CB)(yk) = B(yk).

“⇐”: Conversely, let ([yi]CB)(yk) = B(yk) be true for each yk ∈ MC
B such that

k < i. We prove that yi ∈ MC
B. In order to prove this claim, it suffices to check



Lindig’s Algorithm for Concept Lattices over Graded Attributes 163

Algorithm 1. (Compute all upper neighbors of B w. r. t. C)

1 procedure Neighbors (B, C):
2 U := ∅
3 Min := {y ∈ Y |B(y) < 1}
4 for each y ∈ Y such that B(y) < 1:
5 D := [y]CB
6 Increased := {z ∈ Y | z �= y and B(z) < D(z)}
7 if Min ∩ Increased = ∅:
8 add D to U
9 else:

10 remove y from Min
11 return U

that no [y]CB where yi �= y ∈ MC
B is contained in [yi]CB because this will give

B ≺C [yi]CB from which the claim follows immediately. Thus, take yi �= y ∈ MC
B.

If y = yk where k < i then, by assumption, ([yi]CB)(yk) = B(yk) which directly
gives that [yk]CB cannot be contained in [yi]CB because ([yk]CB)(yk) > B(yk) =
([yi]CB)(yk). If i < k, we have ([yi]CB)(yk) = B(yk) on account of yC

B([yi]CB) = yi.
Hence, again, [yk]CB cannot be contained in [yi]CB which proves yi ∈ MC

B. ��
Theorem 2 leads to Algorithm 1 for computing all upper neighbors. The algo-
rithm accepts C : LY → LY and B ∈ fix(C) as its input and produces a set of
all upper neighbors of B w.r.t C.

Theorem 3. Algorithm 1 is correct.
Proof. The algorithm uses the following variables: U is a set of upper neighbors
which is initially empty; Min is an ordinary set of attributes which should be
understood as a set of possible generators of upper neighbors. The roles of U and
Min are the following. The set Min is initially set to {y ∈ Y |B(y) < 1} and at
the end of computation, we will have Min = MC

B, i.e. Min will be a collection
of generators of upper neighbors which is built by removing attributes which do
not belong to (10), the ordering of attributes (see comments before Lemma 1) is
given by the order in which the loop between lines 4–10 processes the attributes.
As we can see from lines 5, 8 and 10, y is left in Min iff D = [y]CB is added to
U . The important part of the algorithm is the test present at line 7. It can be
seen that Min ∩ Increased = ∅ happens iff yC

B(D) = y and for each yk ∈ Min
that has already been processed (i.e., k < i), we have D(yk) = B(yk). Thus,
Theorem 2 gives that test at line 7 is successful iff D is an upper neighbor of B
such that y ∈ MC

B. Hence, y can be left in Min and D is added to U which is
exactly what happens between lines 7–10. By induction, we can prove that at
the end of computation, Min = MC

B and U = {[y]CB | y ∈ MC
B}. The full proof is

omitted due to the limited scope of this paper. ��
Example 1. For illustration, take L = 〈{0, 0.5, 1},min,max,⊗,→, 0, 1〉 with ⊗
and → being �Lukasiewicz operations. Consider a fuzzy context from Fig. 1 (left)
and an induced closure operator C being ↓↑. Let B = {0.5/c,0.5/d, e}. When
Neighbors (B,C) is invoked, the procedure goes as follows. First, Min is set to
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Algorithm 2. (Compute all fixed points of C and their hierarchy)

1 procedure GenerateFrom (B):
2 while B �= Y :
3 B∗ := Neighbors (B,C)
4 N := B∗ − F
5 for each D ∈ B∗:
6 add B to D∗
7 if D ∈ N :
8 add D to F
9 for each D ∈ N :

10 call GenerateFrom (D)

11 procedure Lattice (C, Y ):
12 F := ∅
13 B := C(∅)
14 add B to F
15 call GenerateFrom (B)
16 return 〈F , {B∗|B ∈ F}, {B∗|B ∈ F}〉

{a, b, c, d}. Then, a ∈ Y is processed. We get D = [a]CB = {0.5/a,0.5/b,0.5/c, d, e}
and Increased = {b, d}, i.e. a is removed from Min . We continue with b ∈ Y for
which D = {0.5/a,0.5/b,0.5/c, d, e} and Increased = {a, d}. Thus, b is also removed
from Min . Notice that a, b were removed from Min although both the attributes
are generators of the upper neighbor D of B. This is correct because neither of
them equals yC

B(D). In the next step, we process c ∈ Y : D = {0.5/a,0.5/b, c, d, e}
and Increased = {a, b, d}. Again, c is removed from Min only this time, c is not
even a generator of an upper neighbor of B. Finally, we process d ∈ Y in which
case D = {0.5/a,0.5/b,0.5/c, d, e} and Increased = {a, b}. Since Min = {d}, we add
D to U . Then U is returned as the result of calling Neighbors (B,C).

Now, the algorithm for computing all fixed points can be described as follows. We
start with the least fixed point of C which is C(∅) and add it to the collection of
found fixed points. For each newly found fixed point we first use Neighbors from
Algorithm 1 to compute its upper neighbors and then we update the information
about lower neighbors (D is an upper neighbor of B iff B is a lower neighbor
of D). For each upper neighbor which has not been found in previous steps, we
recursively repeat the process until we arrive to Y (greatest fixed point of C).
The whole procedure is summarized in Algorithm 2.

Algorithm 2 consists of two procedures: Lattice accepts a closure operator
C : LY → LY and Y as its input and initiates the recursive generation of fixed
points starting with the least one. The auxiliary procedure GenerateFrom

does the actual job of generating fixed points. Both the procedures use the
following variables: F is a collection of found fixed points, for each B ∈ F we
denote by B∗ the set of all upper neighbors of B, and by B∗ we denote the set of
all lower neighbors of B. Variable N is local in GenerateFrom and represents
fixed points that were newly found during a particular call of GenerateFrom.

Theorem 4. Algorithm 2 is correct.

Proof. Due to the limited scope of the paper, we present only a sketch of the
proof (full proof will be presented in the full version of the paper). The crucial
observation is that each fixed point of C is in GenerateFrom processed only
once. This in ensured at line 10, where GenerateFrom is called only for fixed
points that have not been found so far (see definition of N at line 4). The
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a b c d e

x1 1 0.5 0.5 1 1
x2 1 1 1 1 0.5
x3 0 0 0.5 0.5 1

0

1 2

3 4 5

6 7

8

9

0

12

34

5

6

78

9

Fig. 1. Input data table and the hierarchy of conceptual clusters

information about lower neighbors (line 6) is also updated correctly because
each B (considered only once) is a lower neighbor only of the fixed points which
are upper neighbors of B. ��
Remark 2. (a) Consider the fuzzy context from Fig. 1 (left). The correspond-
ing structure of fuzzy concepts computed by Algorithm 2 is depicted in Fig. 1
(middle). The numbers in nodes indicate the order in which the intents deter-
mining the nodes are computed. Formal concepts corresponding to the nodes of
diagram in Fig. 1 (middle) are the following:

C0 : 〈{x1, x2, x3},{.5/c, .5/d, .5/e}〉, C1 : 〈{x1, x2,
.5/x3},{.5/a, .5/b, .5/c, d, .5/e}〉,

C2 : 〈{x1,
.5/x2, x3},{.5/c, .5/d, e}〉, C3 : 〈{x1, x2}, {a, .5/b, .5/c, d, .5/e}〉,

C4 : 〈{.5/x1, x2,
.5/x3},{.5/a, .5/b, c, d, .5/e}〉, C5 : 〈{x1,

.5/x2,
.5/x3},{.5/a, .5/b, .5/c, d, e}〉,

C6 : 〈{.5/x1, x2}, {a, b, c, d, .5/e}〉, C7 : 〈{x1,
.5/x2}, {a, .5/b, .5/c, d, e}〉,

C8 : 〈{.5/x1,
.5/x2}, {a, b, c, d, e}〉, C9 : 〈{.5/x1,

.5/x2,
.5/x3},{.5/a, .5/b, c, d, e}〉.

Note that the order in which Algorithm 2 computes the intents (of concepts)
differs from the order in which the intents are computed using the algorithm
from [3]. The order in which the intents are computed in case of algorithm
from [3] is depicted in Fig. 1 (right).

(b) Both the algorithms introduced in this section use a general fuzzy closure
operator C instead of a fixed operator ↓↑ induced by a data table. The approach
via arbitrary C is more general. More importantly, general closure operators
play an important role for constraining the output of concept analysis, see [5],
for which Algorithm 2 can also be used.

4 Comparison with Other Algorithms and Experiments

Algorithm 2 for computing fixed points of closure operators together with their
hierarchy has the same asymptotic complexity as the algorithm proposed in [3].
Taking into account graded attributes, the latter claim can be proved in an
analogous way as in [18]. Due to the limited scope of the paper, we omit the proof
and, instead, we turn our attention to the practical performance of Algorithm 2
compared to the algorithm from [3].
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Fig. 2. Running time of algorithms for L with 5 degrees

The efficiency of the implementation of Algorithm 2 depends of the chosen
data structures. The representation of F (and, consequently, B∗ and B∗ which
are likely to be stored along with B) seems to be critical because the elements
in F are frequently accessed (see line 4 of Algorithm 2). To avoid the linear
time complexity of accessing elements of F , we have organized F (i) as a search
tree (analogously as in [18]) and (ii) by a dynamic hash table. Moreover, the
sets Min and Increased in Algorithm 1 can be represented by bit arrays which
significantly increases the performance (condition at line 7 of Algorithm 1 can
be checked by applying the bitwise “and”).

We have run several performance tests to compare Algorithm 2 to the algo-
rithm from [3]. Since the algorithm from [3] does not compute the hierarchy of
concepts, we have included in our tests an extension of that algorithm which com-
putes the hierarchy after all the concepts are generated. Computing the complete
hierarchy has asymptotic time complexity O(n2), where n is the number of con-
cepts. The algorithms were implemented in ANSI C using the above-mentioned
data structures (hashing tables and bit arrays). All experiments were run on
otherwise idle Intel Pentium 4 (3.00 GHz CPU, 512 MB RAM).

To compare the performance of the algorithms we did series of experiments
with randomly generated data tables with fuzzy attributes. As structures of truth
degrees we used finite �Lukasiewicz chains of varying size. We were interested in
the dependency of running time of the algorithms on the number of generated
concepts given by fixed points of ↓↑. The results of one of the experiments are
depicted in Fig. 2. In this particular test we have used a five-element �Lukasiewicz
chain and we measured the average time needed for computing the concepts
and their hierarchy. In the graph, the dashed line with triangles represents the
average running time of the algorithm from [3], the dotted line with squares
represents the running time of the algorithm from [3] followed by the hierarchy
computation, and the solid line with circles corresponds to Algorithm 2.

We can see from the figure that the algorithm from [3] is the best of the three
ones if we want to compute the concepts only. If we are interested in generat-
ing the concepts along with their hierarchy, Algorithm 2 proposed in this paper
is considerably faster than the algorithm from [3] followed by the computation
of the hierarchy. Tests with larger data and/or structures of truth degrees have
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shown a similar tendency. These experimental results were expected and are in
accordance with results presented in [18] for binary data.

References

1. Belohlavek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer,
Academic/Plenum Publishers, New York (2002)

2. Belohlavek, R.: Fuzzy Galois connections. Math. Logic Quarterly 45(4), 497–504
(1999)

3. Belohlavek, R.: Algorithms for fuzzy concept lattices. In: Proc. Fourth Int. Conf. on
Recent Advances in Soft Computing. Nottingham, United Kingdom, pp. 200–205
(December 12–13, 2002)

4. Belohlavek, R.: Concept lattices and order in fuzzy logic. Annals of Pure and
Applied Logic 128(1-3), 277–298 (2004)

5. Belohlavek, R., Vychodil, V.: Reducing the size of fuzzy concept lattices by fuzzy
closure operators. In: Proc. SCIS & ISIS 2006, pp. 309–314. Tokyo Institute of
Technology, Japan, (September 20–24, 2006) ISSN 1880–3741

6. Carpineto, C., Romano, G.: Concept Data Analysis. Theory and Applications.
J. Wiley, Chichester (2004)

7. Ganter, B.: Two basic algorithms in concept analysis. FB4-Preprint No. 831, TH
Darmstadt (1984)

8. Ganter, B., Wille, R.: Formal concept analysis. Mathematical Foundations.
Springer, Heidelberg (1999)

9. Gerla, G.: Fuzzy Logic. Mathematical Tools for Approximate Reasoning. Kluwer,
Dordrecht (2001)

10. Goguen, J.A.: The logic of inexact concepts. Synthese 18, 325–373 (1968-69)
11. Gratzer, G.A.: General Lattice Theory. Birkhauser, 2nd edn. (1998)
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Abstract. In this paper, Lebesgue decomposition type theorems for
non-additive measure are shown under the conditions of null-additivity,
converse null-additivity, weak null-additivity and σ-null-additivity, etc..
In our discussion, the monotone continuity of set function is not required.
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1 Introduction

Lebesgue decomposition of a set function μ is stated as: for another given set
function ν, μ is represented as μ = μc + μs, where μc and μs are absolutely
continuous and singular with respect to ν, respectively. In measure theory this
decomposition is a well-known fact, which is referred to as Lebesgue decompo-
sition theorem [2].

For the case of non-additive measure theory, the situation is not so simple.
There are many discussions on Lebesgue decomposition type theorems such as, a
version on submeasure (cf. [1]), a version on ⊥-decomposition measure (cf. [5]), a
version on σ-finite fuzzy measure (cf. [3]), and a version on signed fuzzy measure
(cf. [10]), and so on. In those discussion, the monotone continuity or autoconti-
nuity of set function are required. However we will try to weaken this condition.

In this paper, we shall show several versions of Lebesgue decomposition theo-
rems of non-additive measure μ for another given non-additive measure ν, where
μ is converse null-additive or exhaustive, superadditive or order continuous, and
ν is either weakly null-additive and continuous from below or σ-null-additive.
In our discussion the monotone continuity of set function is not required, so
Lebesgue decomposition theorem is formulated in generality.
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2 Preliminaries

Let X be a non-empty set, R a σ-ring of subsets of X , and (X,R) denotes the
measurable space.

Definition 2.1. A non-additive measure on R is an real valued set function
μ : R→ [0,+∞) satisfying the following two conditions:

(1) μ(∅) = 0;
(2) A ⊂ B and A,B ∈ R ⇒ μ(A) ≤ μ(B). (monotonicity)

When a non-additive measure μ is continuous from below, it is called a lower
semicontinuous fuzzy measure (cf. [8]). In some literature, a set function μ sat-
isfying the conditions (1) and (2) of Definition 2.1 is called a fuzzy measure.

A set function μ : R → [0,+∞) is said to be (i) exhaustive (cf. [6]), if
lim

n→+∞
μ(En) = 0 for any infinite disjoint sequence {En}n; (ii) order-continuous

(cf. [2]), if limn→∞ μ(An) = 0 whenever An ∈ R and An ↘ ∅ (n → ∞); (iii)
strongly order-continuous (cf. [4]), if limn→∞ μ(An) = 0 whenever An, A ∈ R,
↘ A and μ(A) = 0; (iv) to have property (S) (cf. [7]), if for any {An}n=1,2,··· ⊂ R
with limn→+∞μ(An)=0, there exists a subsequence {Ani}i=1,2,··· of {An}n=1,2,···
such that μ(lim supAni) = 0.

Definition 2.2. ([9]) Let μ and ν be two non-additive measures. We say that
(1) μ is absolutely continuous of Type I with respect to ν, denoted by μ%I ν,

if μ(A) = 0 whenever A ∈ R, ν(A) = 0;
(2) μ is absolutely continuous of Type VI with respect to ν, denoted by μ%VI ν,

if for any ε > 0, there exists δ > 0 such that μ(A) < ε whenever A ∈ R,
ν(A) < δ.

Definition 2.3. ([1]) We say that μ is singular with respect to ν, and denote
μ ⊥ ν, if there is a set Q ∈ R such that ν(Q) = 0 and μ(E − Q) = 0 for any
E ∈ R.

For non-additive measures μ and ν, if μ %VI ν, then μ %I ν. The inverse
statement may not be true.

Proposition 2.1. Let μ and ν be two non-additive measures. If μ is strongly
order-continuous, ν have property (S), then μ%VI ν if and only if μ%I ν.

3 Null-Additivity of Set Function

The several kinds of null-additivity of non-additive measure play important role
in establishing Lebesgue decomposition type theorems of non-additive measure.
We recall them in the following.

Definition 3.1. ([8,9]) A set function μ : R → [0,+∞) is said to be (i) null-
additive, if μ(E ∪F ) = μ(E) whenever E,F ∈ R and μ(F ) = 0; (ii) weakly null-
additive, if μ(E ∪ F ) = 0 whenever E,F ∈ R, μ(E) = μ(F ) = 0; (iii) converse
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null-additive, if μ(A − B) = 0 whenever A ∈ R, B ∈ A ∩ R, μ(B) = μ(A);
(iv) pseudo-null-additive, if μ(B ∪C) = μ(C), whenever A ∈ R, B ∈ A∩R, C ∈
A ∩R, μ(A −B) = μ(A).

Proposition 3.1. If μ is null-additive, then it is weakly null-additive. If μ is
pseudo-null-additive, then it is converse null-additive.

Definition 3.2. ([6]) A non-additive measure μ is said to be σ-null-additive,
if for every sequence {Bi}i=1,2,··· of pairwise disjoint sets from R and μ(Bi) = 0
we have

μ

(
A ∪

+∞⋃
i=1

Bi

)
= μ(A) ∀A ∈ R.

Proposition 3.2. μ is σ-null-additive if and only if μ is null-additive and
μ(Bi) = 0 (i = 1, 2, · · ·) implies μ(∪+∞

i=kBi) = 0 for every sequence {Bi}i=1,2,···
of pairwise disjoint sets from R.

4 Lebesgue Decomposition Theorems of Non-additive
Measure

In this section we show the Lebesgue decomposition type theorems of non-
additive measure. Unless stated, in the following we always assume that all set
functions are non-additive measure.

Lemma 4.1. Let μ be converse null-additive non-additive measure on R. Then,
there is a set Q ∈ R such that μ(E −Q) = 0; and further, if μ is null-additive,
then μ(E) = μ(Q ∩ E) for any E ∈ R.

Proof. Let α = sup{μ(E) : E ∈ R}. By the definition of α, we can choose a
sequence {E(1)

n }n=1,2,··· from R such that for every n = 1, 2, · · ·,

α− 1
n
< μ(E(1)

n ) ≤ α.

Denote Q1 =
+∞⋃
n=1

E(1)
n , then Q1 ∈ R. Thus we have

α− 1
n
< μ(E(1)

n ) ≤ μ(Q1) ≤ α,

n = 1, 2, · · ·. Let n→ +∞, we have μ(Q1) = α.
Similarly, there exists a sequence {E(2)

n }n=1,2,··· from R such that

E(2)
n ⊂ X −Q1, ∀n ≥ 1,

and
μ(Q2) = sup{μ(E) : E ∈ R, E ⊂ X −Q1}

where Q2 =
+∞⋃
n=1

E(2)
n .
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Let us denote Q = Q1 ∪Q2. Then Q ∈ R, and

α = μ(Q1) ≤ μ(Q) ≤ sup{μ(E) : E ∈ R}.
Therefore μ(Q) = μ(Q1) = α. By the converse null-additivity of μ, and noting
Q1 ∩Q2 = ∅, we have μ(Q2) = μ(Q−Q1) = 0. Therefore, for any E ∈ R, it is
follows from

E −Q ⊂ E −Q1 ⊂ X −Q1

that
μ(E −Q) ≤ μ(Q2) = 0.

Thus, for any E ∈ R, we have μ(E − Q) = 0. When μ is null-additive, then
μ(E) = μ((E−Q)∪(E∩Q) = μ(Q∩E) for any E ∈ R. The proof of the lemma is
now complete. �

Lemma 4.2. Let μ be exhaustive non-additive measure on R. Then, there is
a set Q ∈ R such that μ(E − Q) = 0; and further, if μ is null-additive, then
μ(E) = μ(Q ∩E) for any E ∈ R.

Proof. It is similar to the proof of Theorem 2 in [3] and Lemma 4.1 above.
The following theorems with their corollaries are several versions of Lebesgue
decomposition theorem for non-additive measure.

Theorem 4.1. (Lebesgue decomposition theorem) Let μ and ν be non-additive
measures on R. If μ is either converse null-additive or exhaustive, ν is weakly
null-additive and continuous from below, then there exists a set Q ∈ R such that
those non-additive measures μc and μs defined by

μc(E) = μ(E −Q) and μs(E) = μ(E ∩Q), ∀E ∈ R

satisfy μc %I ν and μs ⊥ ν, respectively.

Proof. Put R1 = {A ∈ R : ν(A) = 0}. Then, R1 is a σ-subring of R by the
weak null-additivity and continuity from below of ν. By using Lemma 4.1 and
4.2, we may take a set Q ∈ R1 such that

μ(Q) = sup{μ(A) : A ∈ R1} and μ(E −Q) = 0, ∀E ∈ R1.

Now we take that μc(E) = μ(E − Q) and μs(E) = μ(E ∩Q), E ∈ R, then μc

and μs satisfy the required properties:

μc(E) = 0 if ν(E) = 0

and
μs(E −Q) = μ((E −Q) ∩Q) = μ(∅) = 0

for any E ∈ R. �

From Proposition 3.1 and Theorem 4.1, we have the following corollary.
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Corollary 4.1. If μ is pseudo-null-additive, ν is null-additive and continuous
from below, then there exists a set Q ∈ R such that those non-additive measures
μc and μs defined by

μc(E) = μ(E −Q) and μs(E) = μ(E ∩Q), ∀E ∈ R

satisfy μc %I ν and μs ⊥ ν, respectively.

Definition 4.1. ([6]) A set function μ : R → [0,+∞) is called superadditive, if
for every A,B ∈ R and A ∩B = ∅,

μ(A ∪B) ≥ μ(A) + μ(B).

Proposition 4.1. If μ is superadditive, then it is converse null-additive and
exhaustive.

Note that a condition of superadditivity do not imply the order continuity. There
is a counterexample: A superadditive non-additive measure is not necessarily
order continuous. Counterexample: Let μ be the non-additive measure on 2N ,
the power set of the set N of all the positive integers, defined by μ(E) = 1 if E
is cofinite (i.e., the complement of a finite set), 0 otherwise. Then obviously μ is
superadditive non-additive measure. HoweverAn = {n, n+1, · · ·} for n = 1, 2, · · ·
decreasingly converges to the empty set, but the limit of {μ(An)} is equal to 1,
not zero. This counterexample is noticed by the anonymous referee.

As a direct result of Proposition 4.1 and Theorem 4.1, we can obtain the
following theorem immediately.

Theorem 4.2. Let μ and ν be non-additive measures on R. If μ is superaddi-
tive, ν is weakly null-additive and continuous from below, then there exist non-
additive measures μc and μs on R such that μc %I ν, μs ⊥ ν, and μ ≥ μc +μs.

By using Proposition 3.2, similar to the proof of Theorem 4.1, we can prove the
following theorem.

Theorem 4.3. Let μ and ν be non-additive measures on R. If μ is either
converse null-additive or exhaustive, ν is σ-null-additive, then there exist non-
additive measures μc and μs on R such that μc %I ν and μs ⊥ ν.
Corollary 4.2. Let μ and ν be non-additive measures on R. If μ is superad-
ditive, ν is σ-null-additive, then there exist non-additive measures μc and μs on
R such that μc %I ν, μs ⊥ ν, and μ ≥ μc + μs.

Note that it is not required that ν has the continuity from below in Theorem 4.3
and Corollary 4.2.

Combining Theorem 4.1 and Proposition 2.1, we can obtain the following
result.

Theorem 4.4. Let μ and ν be non-additive measures on R. If μ is strongly
order continuous, ν is weakly null-additive and continuous from below, and have
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property (S), then there exists a set Q ∈ R such that those non-additive measures
μc and μs defined by

μc(E) = μ(E −Q) and μs(E) = μ(E ∩Q), ∀E ∈ R

satisfy μc %VI ν and μs ⊥ ν, respectively.

5 Conclusions

There are several versions of Lebesgue decomposition theorem as noted in the
first section. Here we proved that Lebesgue decomposition type theorems for
non-additive measure are shown under the conditions of null-additivity, converse
null-additivity, weak null-additivity and σ-null-additivity. It should be clarified
these relations and also considered applications to the various fields.
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useful comment. We impose the exhaustivity for Lebesgue decomposition the-
orem of Theorem 4.2 in stead of the order continuity. By this comment, the
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Abstract. The paper presents theorems characterizing concept lattices
which happen to be trees after removing the bottom element. Concept
lattices are the clustering/classification systems provided as an output of
formal concept analysis. In general, a concept lattice may contain over-
lapping clusters and need not be a tree. On the other hand, tree-like
classification schemes are appealing and are produced by several classi-
fication methods as the output. This paper attempts to help establish
a bridge between concept lattices and tree-based classification methods.
We present results presenting conditions for input data which are suffi-
cient and necessary for the output concept lattice to form a tree after one
removes its bottom element. In addition, we present illustrative examples
and several remarks on related efforts and future research topics.

1 Introduction

Data tables describing objects and their attributes represent perhaps the most
common form of data. Among several methods for analysis of object-attribute
data, formal concept analysis (FCA) is becoming increasingly popular, see [7,4].
The main aim of FCA is to extract interesting clusters (called formal concepts)
from tabular data along with a partial order of these clusters (called conceptual
hierarchy). Formal concepts correspond to maximal rectangles in a data table
and are easily interpretable by users. FCA is basically being used two ways.
First, as a direct method of data analysis in which case the hierarchically ordered
collection of formal concepts extracted from data is presented to a user/expert
for further analysis, see e.g. [4] for such examples of FCA applications. Second,
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as a data preprocessing method in which case the extracted clusters are used
for further processing, see e.g. [13] for applications of FCA in association rules
mining.

Unlike several other clustering and classification techniques [1,5], which yield
clustering and classification trees, FCA yields diagrams of hierarchically ordered
clusters which are richer than trees. Namely, the diagrams are lattices and are
called called concept lattices. A practical difference is that concept lattices usu-
ally contain overlapping clusters. Another difference is that the clusters in FCA
are based on sharing of attributes rather than distance. FCA can thus be thought
of as a new method of clustering and classification which is substantially differ-
ent from conventional methods. Although FCA has been justified by many real-
world applications already, see e.g. [4], the following quote from John Hartigan,
a leading expert in clustering and classification, is relevant [1,5]:

“My second remark is about future focus. We pay too much attention to
the details of the algorithms. . . . It is more important to think about the
purposes of clustering, about the types of clusters we wish to construct,
. . . These details are interesting, . . . , but we have plenty of algorithms
already. . . . what kinds of families of classes should we be looking for?
At present, we think of partitions, trees, sometimes overlapping clusters;
these structures are a faint echo of the rich classifications available in
everyday language. . . .We must seek sufficiently rich class of structures
. . . ”

The present paper seeks to contribute to the problem of establishing relation-
ships between FCA and other methods of clustering and classification. Needless
to say, this goal requires a long-term effort. In this paper we consider a partic-
ular problem. Namely, we present conditions for input data which are sufficient
and necessary for the output concept lattice to form a tree after removing its
bottom element. In addition, we present illustrative examples and several re-
marks on related efforts and future research topics. Note that a related problem,
namely, of selecting a tree from a concept lattice by means of constraints using
attribute-dependency formulas, was considered in [2].

Section 2 presents preliminaries. Section 3 presents the main results, illustra-
tive examples, and remarks. Section 4 presents conclusions and an outline of
future research.

2 Preliminaries

In this section, we summarize basic notions of formal concept analysis (FCA). An
object-attribute data table describing which objects have which attributes can
be identified with a triplet 〈X,Y, I〉 where X is a non-empty set (of objects), Y is
a non-empty set (of attributes), and I ⊆ X×Y is an (object-attribute) relation.
In FCA, 〈X,Y, I〉 is called a formal context. Objects and attributes correspond
to table rows and columns, respectively, and 〈x, y〉 ∈ I indicates that object x
has attribute y (table entry corresponding to row x and column y contains × or



176 R. Belohlavek et al.

1; if 〈x, y〉 �∈ I the table entry contains blank symbol or 0). For each A ⊆ X and
B ⊆ Y denote by A↑ a subset of Y and by B↓ a subset of X defined by

A↑ = {y ∈ Y | for each x ∈ A : 〈x, y〉 ∈ I}, (1)
B↓ = {x ∈ X | for each y ∈ B : 〈x, y〉 ∈ I}. (2)

Described verbally, A↑ is the set of all attributes from Y shared by all objects
from A and B↓ is the set of all objects from X sharing all attributes from B.
A formal concept in 〈X,Y, I〉 is a pair 〈A,B〉 of A ⊆ X and B ⊆ Y satisfying
A↑ = B and B↓ = A. That is, a formal concept consists of a set A (so-called
extent) of objects which fall under the concept and a set B (so-called intent)
of attributes which fall under the concept such that A is the set of all objects
sharing all attributes from B and, conversely, B is the collection of all attributes
from Y shared by all objects from A. Alternatively, formal concepts can be
defined as maximal rectangles (submatrices) of 〈X,Y, I〉 which are full of ×’s:
For A ⊆ X and B ⊆ Y , 〈A,B〉 is a formal concept in 〈X,Y, I〉 iff A×B ⊆ I and
there is no A′ ⊃ A or B′ ⊃ B such that A′ ×B ⊆ I or A×B′ ⊆ I.

A set B(X,Y, I) = {〈A,B〉 |A↑ = B,B↓ = A} of all formal concepts in data
〈X,Y, I〉 can be equipped with a partial order ≤ (modeling the subconcept-
superconcept hierarchy, e.g. dog ≤ mammal) defined by

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (iff B2 ⊆ B1). (3)

Under ≤, B(X,Y, I) happens to be a complete lattice, called a concept lattice of
〈X,Y, I〉, the basic structure of which is described by a so-called main theorem
of concept lattices [7]:

Theorem 1 (Main Theorem of Concept Lattices). (1) The set B(X,Y, I)
is under ≤ a complete lattice where the infima and suprema are given by∧

j∈J 〈Aj , Bj〉 =
〈⋂

j∈J Aj , (
⋃

j∈J Bj)↓↑
〉
, (4)∨

j∈J 〈Aj , Bj〉 =
〈
(
⋃

j∈J Aj)↑↓,
⋂

j∈J Bj

〉
. (5)

(2) Moreover, an arbitrary complete lattice V = 〈V,≤〉 is isomorphic to
B(X,Y, I) iff there are mappings γ : X → V , μ : Y → V such that

(i) γ(X) is
∨

-dense in V , μ(Y ) is
∧

-dense in V ;
(ii) γ(x) ≤ μ(y) iff 〈x, y〉 ∈ I. ��

Note that a subset K ⊆ V is
∨

-dense in V (
∧

-dense in V ) if for every v ∈ V
there is K ′ ⊆ K such that v =

∨
K ′ (v =

∧
K ′). Note also that operators ↑ and

↓ form a so-called Galois connection [7] and that B(X,Y, I) is in fact a set of all
fixed points of ↑ and ↓. That is, ↑ and ↓ satisfy the following conditions:

A ⊆ A↑↓, (6)
if A1 ⊆ A2 then A2

↑ ⊆ A1
↑, (7)

B ⊆ B↓↑, (8)
if B1 ⊆ B2 then B2

↓ ⊆ B1
↓, (9)

for each A,A1, A2 ⊆ X and B,B1, B2 ⊆ Y . Furthermore, the composed op-
erators ↑↓ : 2X → 2X and ↓↑ : 2Y → 2Y are closure operators in X and Y ,
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respectively. As a consequence, A ⊆ X is an extent of some concept in B(X,Y, I)
(i.e., there is B ⊆ Y such that 〈A,B〉 ∈ B(X,Y, I)) iff A = A↑↓, i.e. A is closed
under ↑↓. Analogously for intents.

Concept lattices are the primary output of formal concept analysis. There
is another output of FCA which is equally important, namely, so-called non-
redundant bases of attribute implications. An attribute implication is an expres-
sion A⇒ B where A,B ⊆ Y with Y being the same set of attributes as above.
An attribute implication A⇒ B is called true in M ⊆ Y , written M |= A⇒ B,
if the following condition is satisfied:

if A ⊆M then B ⊆M.
If M ⊆ Y represents a set of attributes of some object x then M |= A⇒ B has
the following meaning: “if x has all attributes from A, then x has all attributes
from B”. Thus, attribute implications are particular if-then rules describing
dependencies between attributes.

Given a formal context 〈X,Y, I〉, for each x ∈ X we define a set Ix of attributes
Ix = {y ∈ Y | 〈x, y〉 ∈ I}, i.e. Ix is the set of all attributes of object x in 〈X,Y, I〉.
Notice that Ix corresponds to a row in data table representing format context
〈X,Y, I〉. An attribute implication A ⇒ B is called true in 〈X,Y, I〉, written
I |= A ⇒ B, iff Ix |= A ⇒ B for each (x ∈ X). Hence, I |= A ⇒ B iff for each
object x ∈ X we have: if x has all attributes from A, then x has all attributes
from B.

The set of all attribute implications which are true in 〈X,Y, I〉 is, along with
the concept lattice B(X,Y, I), the basic output of FCA. Unfortunately, the set
of all attribute implications is usually too large and it cannot be presented
to users directly. Therefore, we use special indirect description of all attribute
implications being true in 〈X,Y, I〉. Namely, we select from all the attribute
implications in question a small subset from which the other implications follow.
This can be done using the following notions.

Let T be any set of attribute implications. A setM ⊆ Y of attributes is called
a model of T , if M |= A ⇒ B for each A ⇒ B ∈ T . The set of all models of T
will be denoted by Mod(T ), i.e.

Mod(T ) = {M ⊆ Y | for each A⇒ B ∈ T : M |= A⇒ B}. (10)

An attribute implication A⇒ B follows from T (A⇒ B is semantically entailed
by T ), written T |= A ⇒ B, if M |= A ⇒ B for each M ∈ Mod(T ). A set
T of attribute implications is called complete in 〈X,Y, I〉 if, for each attribute
implication A⇒ B, we have

T |= A⇒ B iff I |= A⇒ B,

i.e., if the attribute implications which are entailed by T are exactly the attribute
implications which are true in 〈X,Y, I〉. Hence, if T is complete in 〈X,Y, I〉,
then T describes exactly the attribute implications which are true in 〈X,Y, I〉.
This is important especially if T is “reasonably small”. Therefore, we define
the following notion. A set T of attribute implications is a non-redundant basis
of 〈X,Y, I〉 if (i) T is complete in 〈X,Y, I〉 and (ii) no proper subset of T is
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complete in 〈X,Y, I〉. Alternatively, a non-redundant basis of 〈X,Y, I〉 can be
described as complete sets of attribute implications such that no implication in
the set is entailed by the other implications in that set. There have been proposed
algorithms to generate, given 〈X,Y, I〉, a non-redundant basis of 〈X,Y, I〉, see
e.g. [6,7,10].

For a detailed information on formal concept analysis and lattice theory we
refer to [4,7,8] where a reader can find theoretical foundations, methods and
algorithms, and applications in various areas.

3 Trees in Concept Lattices

In this section we will be interested in concept lattices corresponding to trees.
Trees are usually defined as undirected graphs which are acyclic and connected
[9]. Since we are going to identify trees in particular ordered sets, we deal with
trees as with ordered sets. In particular, a finite partially ordered set 〈U,≤〉 will
be called a tree if for each a, b ∈ U :

(i) there is a supremum of a and b in 〈U,≤〉, and
(ii) there is an infimum of a and b in 〈U,≤〉 iff a and b are comparable

(i.e., iff a ≤ b or b ≤ a).

Obviously, 〈U,≤〉 being a tree corresponds to the usual graph-theoretical rep-
resentation of a rooted tree. The root of 〈U,≤〉 is the supremum of all elements
from U (which exists in 〈U,≤〉 because U is finite). An element u ∈ U is a direct
descendant of w ∈ U iff u < w, and there is no v ∈ U such that u < v < w.

From Theorem 1 it follows that each concept lattice is a complete lattice.
Hence, the above-mentioned condition (i) is satisfied for each B(X,Y, I). On
the other hand, (ii) need not be satisfied. It is easily seen that (ii) is satisfied iff
B(X,Y, I) is linearly ordered. So, the whole concept lattice is a tree iff it is linear,
which is not a worthwhile observation because linear trees are a degenerate form
of trees and therefore not interesting. Because of the observation we have just
made, we turn our attention to trees which form important parts of concept
lattices. We focus mainly on trees which appear in B(X,Y, I) if we remove its
least element.

Since concept lattices are complete lattices, each concept lattice B(X,Y, I)
has both the greatest and least element. Namely, 〈X,X↑〉 is the greatest ele-
ment (concept of all objects) of B(X,Y, I) and 〈Y ↓, Y 〉 is the least one (concept
of objects sharing all attributes from Y ). If 〈X,Y, I〉 does not contain an at-
tribute shared by all objects (i.e., a table representing 〈X,Y, I〉 does not contain
a column full of ×’s), which is quite common if 〈X,Y, I〉 represents a real-world
data, then 〈X,X↑〉 equals 〈X, ∅〉. Analogously, there is no object sharing all the
attributes from Y (i.e., a table representing 〈X,Y, I〉 does not contain a row full
of ×’s), 〈Y ↓, Y 〉 becomes 〈∅, Y 〉.

In what follows we investigate under which conditions B(X,Y, I) becomes a
tree if we remove its least element.
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3.1 Formal Contexts Generating Trees

For brevity, let B(X,Y, I)−{〈Y ↓, Y 〉} be denoted by B�(X,Y, I). Note that if we
consider B�(X,Y, I), we assume that it is equipped with a partial order which
is a restriction of the partial order defined by (3) to elements of B�(X,Y, I).

The following assertion characterizes when B�(X,Y, I) is a tree in terms of
extents of formal concepts.

Theorem 2. Let 〈X,Y, I〉 be a formal context. Then B�(X,Y, I) is a tree iff,
for each concepts 〈A,B〉, 〈C,D〉 ∈ B(X,Y, I) at least one of the following is true:

(i) A ⊆ C or C ⊆ A,
(ii) A ∩ C ⊆ Y ↓.

Proof. Let B�(X,Y, I) be a tree. Take any concepts 〈A,B〉, 〈C,D〉 ∈ B(X,Y, I).
If (i) is satisfied for A and C, we are done. Hence, assume that (i) is not satisfied,
i.e. we have A � C and C � A. From the definition of ≤, see (3), it follows that
〈A,B〉 � 〈C,D〉 and 〈C,D〉 � 〈A,B〉, i.e. formal concepts 〈A,B〉 and 〈C,D〉
are incomparable. Therefore, both 〈A,B〉 and 〈C,D〉 are in B�(X,Y, I). Since
B�(X,Y, I) is supposed to be a tree, infimum of 〈A,B〉 and 〈C,D〉 does not exist
in B�(X,Y, I). It means that the infimum of 〈A,B〉 and 〈C,D〉 in B(X,Y, I) is
〈Y ↓, Y 〉 because B�(X,Y, I) results from B(X,Y, I) by removing 〈Y ↓, Y 〉 and
B(X,Y, I) is a complete lattice. Using (4), we get that Y ↓ = A∩C, showing (ii).

Conversely, let (i) and (ii) be satisfied for any 〈A,B〉, 〈C,D〉 ∈ B(X,Y, I). Take
〈A,B〉, 〈C,D〉 ∈ B�(X,Y, I) such that 〈A,B〉 and 〈C,D〉 are incomparable. Such
〈A,B〉 and 〈C,D〉 cannot satisfy (i), i.e. we have A∩C ⊆ Y ↓. Hence, using (4),
the infimum of 〈A,B〉 and 〈C,D〉 in B(X,Y, I) is the least element of B(X,Y, I).
As a consequence, 〈A,B〉 and 〈C,D〉 does not have an infimum in B�(X,Y, I)
which proves that B�(X,Y, I) is a tree. ��
Theorem 2 can also be formulated in terms of intents of formal concepts:

Corollary 1. B�(X,Y, I) is a tree iff, for each 〈A,B〉, 〈C,D〉 ∈ B(X,Y, I) we
either have (i) B ⊆ D or D ⊆ B, or (ii) (B ∪D)↓ ⊆ Y ↓. ��

Remark 1. If 〈Y ↓, Y 〉 is equal to 〈∅, Y 〉, i.e. if the table representing 〈Y ↓, Y 〉
does not contain a row full of ×’s (or 1’s), then (iii) in Theorem 2 simplifies to
A ∩C = ∅, i.e. A and C are required to be disjoint.

Example 1. Consider a set of objects X = {1, 2, . . . , 14} (objects are denoted
by numbers) and a set of attributes Y = {g, h, . . . , z}. If we consider a formal
context 〈X,Y, I〉 which is represented by the data table in Fig. 1 (left) then the
corresponding B�(X,Y, I), which is depicted in Fig. 1 (right), is a tree. The root
of the tree represents concept 〈X, ∅〉. The other nodes are numbered and the
intents of the corresponding concepts are the following:

1 : {i, r}, 5: {m, s, z}, 9: {g,m, n, q, s, v, z},
2 : {i, o, r}, 6: {g,m, n, s, v, z}, 10: {m, s, x, z},
3: {i, l, o, r}, 7 : {g, j,m, n, p, s, t, v, z}, 11: {h,m, s, x, z},
4 : {i, r, w}, 8 : {g, j, k,m, n, p, s, t, u, v, z}, 12 : {m, s, y, z}.
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g h i j k l mn o p q r s t u v w x y z
1. 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 0 1
2. 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1
3. 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
4. 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1
5. 1 0 0 1 1 0 1 1 0 1 0 0 1 1 1 1 0 0 0 1
6. 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 1
7. 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1
8. 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
9. 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1

10. 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
11. 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1
12. 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
13. 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1
14. 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

∅

1

2

3

4

5

6

7

8

9

10

11

12

i, r

o

l

w

m, s, z

g, n, v

j, p, t

k, u

q

x

h

y

Fig. 1. Formal context generating a tree

If two nodes are connected by an edge, the lower concept has a strictly greater
intent. Using this observation, we can decorate edges of the tree by attributes
being added to intents of lower concepts as it is shown in Fig. 1 (right). On can
check that all the intents from B(X,Y, I) satisfy condition of Theorem 1.

Now, an important question is, if we can check that B�(X,Y, I) is a tree
directly from the context 〈X,Y, I〉, i.e. without computing the set of all concepts
first. We shall show that this is indeed possible. We will take advantage of the
following notion.

Definition 1. Let 〈X,Y, I〉 be a formal context. We say that 〈X,Y, I〉 generates
a tree if B�(X,Y, I) is a tree.

Recall that due to (2), {y}↓ is a set of all objects sharing the attribute y. That
is, {y}↓ naturally corresponds to a column in data table representing 〈X,Y, I〉.
Such “columns” will play an important role in the following theorem which
characterizes contexts generating trees.

Theorem 3. Let 〈X,Y, I〉 be a formal context. Then 〈X,Y, I〉 generates a tree
iff, for any attributes y1, y2 ∈ Y , at least one of the following conditions is true:

(i) {y1}↓ ⊆ {y2}↓,
(ii) {y2}↓ ⊆ {y1}↓,
(iii) {y1}↓ ∩ {y2}↓ ⊆ Y ↓.

Proof. Assume that 〈X,Y, I〉 generates a tree, i.e. B�(X,Y, I) is a tree. Each pair
of the form 〈{y}↓, {y}↓↑〉 is a formal concept from B(X,Y, I), see [7]. Therefore,
Theorem 2 yields that the above conditions (i)–(iii), being particular instances
of (i) and (ii) from Theorem 2, are satisfied.

Conversely, suppose that 〈X,Y, I〉 does not generate a tree. Thus, there are
some incomparable formal concepts 〈A1, B1〉, 〈A2, B2〉 ∈ B(X,Y, I) whose infi-
mum is not equal to the least element of B(X,Y, I). That is, for 〈A1, B1〉 and
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〈A2, B2〉 we have A1 � A2, A2 � A1, and A1 ∩ A2 � Y ↓. Note that as a con-
sequence we get that B1 � B2 and B2 � B1. We now show that we can pick
from B1 and B2 two attributes violating the above conditions (i)–(iii). Since
B1 � B2, there is y1 ∈ B1 such that y1 �∈ B2. Analogously, there is y2 ∈ B2

such that y2 �∈ B1 because B2 � B1. For y1 and y2 we can show that (i) is not
satisfied. Indeed, from y1 ∈ B1 = A1

↑ and (9) it follows that

A1 ⊆ {y1}↓. (11)

Moreover, y2 �∈ B1 = A1
↑ gives that there is x ∈ A1 such that 〈x, y2〉 �∈ I. Hence,

there is x ∈ A1 such that x �∈ {y2}↓, i.e. we get

A1 � {y2}↓. (12)

As an immediate consequence of (11) and (12) we get that {y1}↓ � {y2}↓, i.e.
condition (i) is violated. In a symmetric way (i.e., with y1 and y2 interchanged),
we can also show that (ii) is violated. So, now it remains to show that (iii) cannot
be satisfied. But this is now easy to see. From y1 ∈ B1, y2 ∈ B2, and (9) we get
A1 = B1

↓ ⊆ {y1}↓ and A2 = B2
↓ ⊆ {y2}↓ which yield A1 ∩A2 ⊆ {y1}↓ ∩ {y2}↓.

Therefore, from A1 ∩A2 � Y ↓ it follows that {y1}↓ ∩ {y2}↓ � Y ↓, showing that
(iii) is not satisfied. Altogether, we have shown that if 〈X,Y, I〉 does not generate
a tree, then there are y1, y2 ∈ Y such that neither of (i)–(iii) is satisfied. ��
Remark 2. Conditions (i)–(iii) from Theorem 3 say that, roughly speaking, for
each two columns of a data table, either one of the columns is contained in the
other, or the columns have in common only attributes shared by all objects.
In particular, if no row of the data table contains all ×’s (or 1’s), the latter
condition says that the columns do not have any attributes in common. Note
that (i)–(iii) can be checked with asymptotic time complexity O(n3), where n is
the maximum of |X | and |Y |.
Theorem 3 can be restated as follows:

Corollary 2. A formal context 〈X,Y, I〉 generates a tree iff, for any y1, y2 ∈ Y ,
we either have {y1}↓ ∩ {y2}↓ ∈ {{y1}↓, {y2}↓}, or {y1}↓ ∩ {y2}↓ ⊆ Y ↓. ��
We now turn our attention to a converse problem. Given a tree (defined possibly
by its graph-theoretical representation), we wish to find a formal context which
generates the tree. First, let us note that for each tree such a context exists.
This is, in fact, a consequence of the main theorem of concept lattices. In a more
detail, consider a graph G = 〈V,E〉 which is a tree [9]. We say that edge e1 ∈ E
in under e2 ∈ E (in G) if G contains a path v1, e1, . . . , v2, e2, . . . ending in the
root node of G (for the notions involved, see [9]). We now get the following
characterization.

Theorem 4. Let G = 〈V,E〉 be a tree. Define a formal context 〈E,E, IG〉 such
that 〈e1, e2〉 ∈ IG iff e1 is under e2 in G. Then 〈E,E, IG〉 generates a tree which
is isomorphic to G = 〈V,E〉.
Proof. Follows from Theorem 1. We omit details of the proof due to the limited
scope of this paper. ��
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e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e12

e 1 e 2 e 3 e 4 e 5 e 6 e 7 e 8 e 9 e 1
0

e 1
1

e 1
2

e1 1 0 0 0 0 0 0 0 0 0 0 0
e2 1 1 0 0 0 0 0 0 0 0 0 0
e3 1 1 1 0 0 0 0 0 0 0 0 0
e4 1 0 0 1 0 0 0 0 0 0 0 0
e5 0 0 0 0 1 0 0 0 0 0 0 0
e6 0 0 0 0 1 1 0 0 0 0 0 0
e7 0 0 0 0 1 1 1 0 0 0 0 0
e8 0 0 0 0 1 1 1 1 0 0 0 0
e9 0 0 0 0 1 1 0 0 1 0 0 0

e10 0 0 0 0 1 0 0 0 0 1 0 0
e11 0 0 0 0 1 0 0 0 0 1 1 0
e12 0 0 0 0 1 0 0 0 0 0 0 1

Fig. 2. Tree and its generating formal context

Example 2. If we return to Example 1 and consider the tree from Fig. 1 (right)
as an input tree, we may construct a formal context generating that tree as
follows. First, we choose a labeling of edges. For instance, we may choose labeling
as in Fig. 2 (left). Then, a formal context which corresponds to 〈E,E, IG〉 from
Theorem 4 is given by data table in Fig. 2 (right). Since we have labeled the edges
in a depth-first manner, 〈E,E, IG〉 is in a lower-triangular form. By Theorem 4,
tree B�(E,E, IG) generated from 〈E,E, IG〉 is isomorphic to the initial tree.

3.2 Characterization of Trees by Attribute Implications

In the previous section, we have shown that contexts generating trees can be
characterized based on the dependencies between attributes (columns of data
tables representing formal contexts). Since attribute dependencies are often ex-
pressed by attribute implications, it is tempting to look at trees in a concept
lattice from the point of view of attribute implications.

The following assertion characterizes contexts generating trees by means of
attribute implications.

Theorem 5. Let 〈X,Y, I〉 be a formal context. Then 〈X,Y, I〉 generates a tree
iff, for any attributes y1, y2 ∈ Y , at least one of the following is true:

(i) I |= {y1}⇒{y2},
(ii) I |= {y2}⇒{y1},
(iii) I |= {y1, y2}⇒Y .

Proof. Note that attribute implications being true in 〈X,Y, I〉 can be character-
ized using operators ↑ and ↓ induced by 〈X,Y, I〉. Namely, one can check that
I |= A⇒ B iff, for each x ∈ X , if A ⊆ {x}↑ then B ⊆ {x}↑ which is iff, for each
x ∈ X , if x ∈ A↓ then x ∈ B↓ which is true iff A↓ ⊆ B↓, see [7]. Thus, (i) and (ii)
are true iff {y1}↓ ⊆ {y2}↓ and {y2}↓ ⊆ {y1}↓, cf. Theorem 3 (i) and (ii). More-
over, (iii) is true iff we have {y1}↓ ∩ {y2}↓ = ({y1} ∪ {y2})↓ = {y1, y2}↓ ⊆ Y ↓.
Using Theorem 3, we finally obtain that 〈X,Y, I〉 generates a tree iff, for any
y1, y2 ∈ Y , at least one of (i)–(iii) is true. ��
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3.3 Algorithms For Trees in Concept Lattices

Trees in concept lattices, as they were introduced in previous sections, can be
computed by algorithms for computing formal concepts. Currently, there have
been proposed several algorithms, see e.g. [4,7,12] and a survey paper [11]. Some
of the algorithms for FCA simplify in case of contexts generating trees.

For instance, Lindig’s algorithm for generating formal concepts simplifies due
to the fact that it is no longer necessary to organize found concepts in some
type of searching structure, because we cannot generate the same concept mul-
tiple times. Indeed, recall from [12] that Lindig’s algorithm is based on the
NextNeighbors procedure which, given a concept as its input, generates all
its (lower or upper) neighbors. Then, all concepts are computed using a recursive
procedure which fist uses NextNeighbors to compute neighbors of a given con-
cept and then recursively processes all the neighbors to obtain further concepts.
During the computation, the original procedure has to ensure that no concept
will be computed twice (or multiple times). Therefore, the procedure must orga-
nize all found concepts in a suitable searching structure which allows us to check
whether a concept has already been found. Needless to say, the searching struc-
ture should be efficient because the tests of presence of a concept between the
found concepts influences the overall efficiency of the procedure. The searching
structure is usually implemented as a searching tree or a hashing table.

In case of context generating trees, this part of the algorithm need not be
implemented at all because the only concept that can be computed multiple
times is 〈Y ↓, Y 〉 which is excluded from B�(X,Y, I). This allows to have an
algorithm which is faster and simpler to implement.

4 Conclusions and Future Research

We presented conditions for input data for FCA which are sufficient and neces-
sary for the output concept lattice to form a tree after one removes its bottom
element. Trees are the most common structures which appear in traditional
clustering and classification. Out long-term effort will be focused on establish-
ing connections between FCA and other clustering and classification methods.
First, establishing such relationships helps us see the pros and cons, and limits
of the respective methods. Second, with the basic relationships established, one
can hopefully enrich the respective methods by techniques used in the other
methods. The problems we want to address next include the following ones:

– A concept lattice can be seen as consisting of several overlapping trees. What
can we say about such a “decomposition” of a concept lattice into trees?
What are the relationships between these trees?

– A user of FCA might be interested in a part of a concept lattice rather than
in the whole lattice. Particularly, that part might be a tree, but other parts
might be interesting as well. The issue of selecting parts of concept lattices
by constraints was discussed in [2,3]. In particular, it can be shown that a
tree contained in a concept lattice can be selected by means of a particular
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closure operator. Constraints which lead to tree-like parts of concept lattices
need to be further investigated.

– Investigate connections between concept lattices and decision trees. Both
concept lattices and decision trees contain clusters of objects in their nodes.
Leafs of a decision tree correspond to particular attribute-concepts. A con-
struction of a decision tree may be thought of as a selection of a particular
part from a concept lattice. Containment of decision trees in concept lattices
needs to be further investigated.
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Abstract. An axiomatization of a generalized Shapley value of games
is proposed. The authors follow Faigle and Kern, in the sense that our
basic material is the maximal chains of the underlying set system. This
generalized Shapley value may have applicability to the game on set
systems which satisfy the condition of a sort of normality.

1 Introduction

Let X = {1, 2, . . . , n} be a set consisted of n players. Then a subset of X is called
a coalition. A function which shows the profit by any coalition v : 2X → IR is
called a cooperative game. The solution of the game is a function from the
whole set of the game to n dimension real vector which measures each player’s
contribution or share-out. The Shapley value and the Banzhaf value are known as
the solution, and they are characterized by natural axiomatizations [3][4]. In this
paper we shall show the axiomatization of the generalized Shapley value. Faigle
and Kern have generalized the Shapley value using the concept of the maximal
chain [5], it can be applied to the multi-choice game. Algaba et al. have also
generalized it using the concept of the interior which can be applied to the game
defined on antimatroid set systems, and they have given its axiomatizations [1].
Using these generalized Shapley value, we can obtain solutions of the bi-capacity
and the multi-choice game and so on. We shall make Faigle and Kern’s Shapley
value more general and also show its axiomatization.

2 Set System and Shapley Value of a Game on It

We begin by introducing some notations and definitions. Throughout this paper,
we consider a finite universal set X = {1, 2, . . . , n}, n ≥ 1, and 2X denotes the
power set of X . Let us consider S a subset of 2X which contains ∅ and X . Then
we call (X,S) (or simply S if no confusion occurs) a set system. A set system
endowed with inclusion is a particular case of a partially ordered set (S,⊆), i.e.,
a set S endowed with a partial order (reflexive, antisymmetric and transitive)
as ⊆.
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Let A,B ∈ S. We say that A is covered by B, and write A ≺ B or B & A, if
A � B and A ⊆ C � B together with C ∈ S imply C = A.

Definition 1 (maximal chain of set system). Let S be a set system. We
call C a maximal chain of S if C = (C0, C1, . . . , Cm) satisfies ∅ = C0 ≺ C1 ≺
· · · ≺ Cm = X,Ci ∈ S, i = 0, . . . ,m.

The length of the maximal chain C = (C0, C1, . . . , Cm) is m. We denote the set
of all m-length maximal chains of S by Γm(S), 1 ≤ m ≤ n.
Example 1. Let X := {1, 2, 3},S1 := ({∅, {1}, {1, 2}, {1, 3}, {2, 3}, X}. Then the
maximal chains of S1 are C1 := {∅, {1}, {1, 2}, X},C2 := {∅, {1}, {1, 3}, X},
C3 := {∅, {2, 3}, X}, Γ2(S) = {C3} and Γ3(S) = {C1,C2} (Fig. 1).

Remark 1. (X, 2X) has n! maximal chains and all of their length are n.

Definition 2 (totally ordered set system). We say that (X,S) is a totally
ordered set system if for any A,B ∈ S, either A ⊆ B or A � B.

If (X,S) is a totally ordered set system, then it has only one maximal chain
which length is n.

Definition 3 (normal set system). We say that (X,S) is a normal set sys-
tem if for any A ∈ S there exists C ∈ Γn(S) satisfying A ∈ C .

Example 2. ({1, 2, 3}, {∅, {1}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}) is not a normal set
system, because there are not any 3-length maximal chains which includes {2, 3}
(Fig. 1).

Remark 2. Normality does not mean that all length of maximal chains are n. In
fact, ({1, 2, 3, 4}, {∅, {1}, {3}, {1, 2}, {3, 4}, {1, 2, 3}, {2, 3, 4}, {1, 2, 3, 4}}), which
has 3-length maximal chain (∅, {3}, {1, 2, 3}, {1, 2, 3, 4}), is a normal set system
(Fig. 2).

Definition 4 (game on a set system). Let (X,S) be a set system. A function
v : S → IR is a game on (X,S) if it satisfies v(∅) = 0.

Definition 5 (Shapley value of game on (X, 2X)[3]). Let v be a game on
(X, 2X). The Shapley value of v, Φ(v) = (φ1(v), . . . , φn(v)) ∈ [0, 1]n is defined
by

φi(v) :=
∑

A⊆X\{i}
γn
|A|(v(A ∪ {i})− v(A)), i = 1, . . . , n,

where

γn
k :=

(n− k − 1)! k!
n!

.

Remark that
∑n

i=1 φ
i(v) = v(X) holds. The Shapley value can be represented

by using the maximal chains as follows.
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{1, 2, 3}

{1}

{1, 3}{1, 2} {2, 3}

∅

{1, 2, 3, 4}

{1} {3}

{1, 2}

{1, 2, 3}

{3, 4}

{2, 3, 4}

∅

Fig. 1. set systems

Proposition 1. Fix arbitrarily i ∈ X. For any C ∈ Γn(2X), there exists a
unique AC ∈ C such that i /∈ AC and AC ∪ {i} ∈ C , and

φi(v) =
1
n!

∑
C∈Γn(2X)

(v(AC ∪ {i})− v(AC ))

holds.

The fact is well known in the game theory. We give a proof of Proposition 1 for
the sake of completeness.

Proof. |Γn(2X)| = n! holds. First, we show that for any C ∈ Γn(2X), there is
an AC ∈ C such that i /∈ AC and AC ∪ {i} ∈ C . Fix C = (C0, C1, . . . , Cm) ∈
Γn(2X). We have for k = 1, . . . ,m, |Ck \ Ck−1| = 1 so that m = n holds. We
have Ck \ Ck−1 �= Cj \ Cj−1 for k < j because if Ck \ Ck−1 = Cj \ Cj−1 then
Cj ⊇ Ck \Ck−1. But since k < j, Cj−1 ⊇ Ck therefore Cj−1 ⊇ Ck \Ck−1 which
is a contradiction. Hence for any i ∈ X , there is an AC ∈ C , which satisfies
i /∈ AC and AC ∪ {i} ∈ C .

Next we show that for A ⊆ X \{i}, the number of chains which include A∪{i}
and A is (n− |A|− 1)!|A|!. Fix arbitrarily i ∈ X . Number of chains from A∪{i}
to X is (n− |A|− 1)! and chains from ∅ to A is |A|!. Hence the number of chains
which include A ∪ {i} and A is |A|! · (n− |A| − 1)!. Therefore

1
n!

∑
C∈Γn(2X)

(v(AC ∪ {i})− v(AC ))

=
(n− |A| − 1)! · |A|!

n!

∑
A∈X\{i}

(v(A ∪ {i})− v(A)),

which completes the proof.
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Faigle and Kern had generalized the Shapley value for applying the multi-choice
game using the concept of the maximal chain. We extend their Shapley value
for applying to more general cases.

Definition 6 (Shapley value of game on set system). Let v be a game on
a normal set system (X,S). The Shapley value of v, Φ(v) = (φ1(v), . . . , φn(v)) ∈
IRn is defined by

(FK) φi
FK(v) :=

1
|Γn(S)|

∑
C∈Γn(S)

(v(AC ∪ {i})− v(AC )),

where AC := A ∈ C ∈ Γn(S) such that i /∈ A and A ∪ {i} ∈ C .

We discuss the domains of Φ. Let (X,S) be a normal set system and let v
be a game on (X,S). Then we call (X,S, v) a game space. Let Σn be the
set of all normal set systems of X := {1, 2, . . . , n} and let ΔS be the set of
all game spaces defined on a normal set system (X,S). The domain of Φ is
Δ :=

⋃∞
n=1

⋃
S∈Σn

ΔS, and Φ is a function defined on Δ to IRn. We denote
simply Φ(v) and φi(v) instead of Φ(X,S, v) and φi(v) as far as no confusion
occurs.

We introduce further concepts about games, which will be useful for stating
axioms.

Definition 7 (dual game). Let v be a game on (X,S). Then the dual game
of v is defined on Sd := {A ∈ 2X | Ac ∈ S} by vd(A) := 1 − v(Ac) for any
A ∈ Sd, where Ac := X \A.

Definition 8 (permutation of v). Let v be a game on (X,S) and π be a
permutation on X. Then the permutation of v by π is defined on π(S) :=
{π(A) ∈ 2X | A ∈ S} by π ◦ v(A) := v(π−1(A)).

Let us consider a chain of length 2 as a set system, denoted by 2 (e.g., {∅, {1},
{1, 2}}), and a game v2 on it. We denote by the triplet (0, u, t) the values of v2

along the chain. We suppose 2 := {∅, {1}, {1, 2}} unless otherwise noted.

Definition 9 (embedding of v2). Let v be a game on a totally ordered normal
set system (X,S), where S := {C0, . . . , Cn} such that Ci−1 ≺ Ci, i = 1, . . . , n,
and let v2 := (0, u, t), t �= 0, be a game on 2. Then for Ck ∈ S, vCk is called
the embedding of v2 into v at Ck and defined on the totally ordered normal set
system (XCk ,SCk) by

vCk(A) :=

⎧⎨⎩
v(Cj), if A = Cj , j < k,
v(Ck−1) + u

t ·
(
v(Ck)− v(Ck−1)

)
, if A = C′

k,
v(Cj−1), if A = C′

j , j > k,
(1)

where {ik} := Ck \ Ck−1, i
′
k �= i′′k, (X \ {ik}) ∩ {i′k, i′′k} = ∅, XCk := (X \ {ik}) ∪

{i′k, i′′k}, C′
k := (Ck \ {ik}) ∪ {i′k}, C′

j := (Cj−1 \ {ik}) ∪ {i′k, i′′k} for j > k, and
SCk := {C0, . . . , Ck−1, C

′
k, C

′
k+1, . . . , C

′
n+1}.
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Remark that more properly, the dual game of v is the dual game space of the
game space (X,S, v) which is defined by (X,S, v)d := (X,Sd, vd) with Sd :=
{Ac ∈ 2X | A ∈ S}, the permutation of v is the permutation of the game space
(X,S, v) which is defined by (X,S, v)π := (X,π(S), π◦v), and the embedding of
(0, u, t), t �= 0, into v is the embedding of the game space ({1, 2},2, (0, u, t)) into
the game space (X,S, v), and it is defined by (X,S, v)Ck := (XCk ,SCk , vCk).

3 Axiomatization of the Shapley Value of Games

We introduce six axioms for the Shapley value of games on normal set systems.

Axiom 1 (continuity of v2). The function φ1(0, u, t) is continuous with re-
spect to u.

Axiom 2 (efficiency of v2). For any game v2 = (0, u, t) on 2, φ1(0, u, t) +
φ2(0, u, t) = t = v(X) holds.

Axiom 3 (dual invariance of v2). For any game v2 =(0, u, t) on 2, Φ(0, u, t)=
Φ(0, u, t)d holds.

Axiom 4 (embedding efficiency). Let (X,S) be a totally ordered normal
set system and let S := {C0, . . . , Cn}, Ci−1 ≺ Ci, i = 1, . . . , n. Then for any
v on (X,S), any (0, u, t), t �= 0, and any Ck ∈ S, φi(vCk) = φi(v) for any
i �= i′k, i

′′
k, φi′k (vCk) = φik(v) · φ1(0, u, t)/t and φi′′k (vCk) = φik(v) · φ2(0, u, t)/t

hold, where {ik} := Ck \ Ck−1.

Axiom 5 (convexity). Let (X,S), (X,S1) and (X,S2) be normal set sys-
tems satisfying Γn(S1) ∪ Γn(S2) = Γn(S) and Γn(S1) ∩ Γn(S2) = ∅ and v be
a game on S. Then there exists α ∈]0, 1[ satisfying that for every game v on S
and for every i ∈ X, φi(v) = αφi(v|S1 ) + (1 − α)φi(v|S2 ).

Axiom 6 (permutation invariance). Let (X,S) be a normal set system and
v be a game on (X,S). Then for any permutation π on X satisfying π(S) = S,
φi(v) = φπ(i)(π ◦ v), i = 1, . . . , n holds.
Then we obtain the following theorem.

Theorem 1. Let v be a game on a normal set system (X,S). Then there exists
a unique function satisfying Axioms 1, 2, 3, 4, 5 and 6, and it is given by (FK).

Now, we discuss in detail the above axioms.

3.1 Efficiency of v2

More generally, for any game on a normal set system, Axiom 2 holds.

Proposition 2. Let (X,S) be a normal set system. Then for any game on
(X,S),

∑n
i=1 φ

i
FK(v) = v(X) holds.
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3.2 Dual Invariance

More generally, for any game on a normal set system, Φ(v) is dual invariant.

Proposition 3. Let (X,S) be a normal set system. Then for any v on (X,S),
ΦFK(vd) = ΦFK(v).

3.3 Embedding Efficiency

Let v be a game on a totally ordered normal set system S := {C0, . . . , Cn} such
that Ci−1 ≺ Ci, i = 1, . . . , n, Then the embedding at Ck into v by (0, u, t) means
that ik := Ck\Ck−1 is splitted to {i′k, i′′k}. Axiom 4 implies φi′k(vCk)+φi′′k (vCk) =
φik(v) and φi(vCk) = φi(v) for i �= i′, i′′, so that Axiom 4 is natural property in
the meaning of the contributions of i′k and i′′k.

4 Application to Game on Lattice

The lattice (L,≤) is a partially ordered set such that for any pair x, y ∈ L,
there exist a least upper bound x ∨ y (supremum) and a greatest lower bound
x∧y (infimum) in L. Consequently, for finite lattices, there always exist a greatest
element (supremum of all elements) and a least element (infimum of all elements),
denoted by �,⊥ (see [2]). Our approach may have applicability to games defined
on lattices which satisfy a kind of normality by the translation from lattices to
set systems (cf. [6]).

Definition 10 (game on lattice). Let (L,≤) be a finite lattice with least ele-
ment denoted by ⊥. A game on L is a function v : L→ IR satisfying v(⊥) = 0.

Evidently the set system is not necessarily a lattice. Moreover, the normal set
system is not necessarily a lattice. Indeed, take X := {1, 2, 3, 4} and S :=
{∅, {1}, {4}, {1, 2}, {1.3}, {2, 4}, {3, 4}, {1, 2, 4}, {1, 3, 4}, X}. Then, (X,S) is a
normal set system, but it is not a lattice, because there is not the supremum of
{1} and {4} (Fig. 2).

Definition 11 (join-irreducible element). An element x ∈ (L,≤) is join-
irreducible if for all a, b ∈ L, x �= ⊥ and x = a ∨ b implies x = a or x = b.

We denote the set of all join-irreducible elements of L by J (L).
The mapping η for any a ∈ L, defined by

η(a) := {x ∈ J (L) | x ≤ a}

is a lattice-isomorphism of L onto η(L) := {η(a) | a ∈ L}, that is, (L,≤) ∼=
(η(L),⊆). (Fig. 3)

Translating lattices which is underlying space of a game v to set systems,
we obtain a set of players as J (L) and a set system as η(L) and we can apply
Definition 6 to a game on them if that is the case where the set system is normal.
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X

{1, 2, 4} {1, 3, 4}

{1, 2} {1, 3} {2, 4} {3, 4}

{1} {4}

∅

Fig. 2.

a

d e f

b c

g

L

{d, e, f}

{d} {e} {f}

{d, e} {e, f}

∅

η(L)

Fig. 3. Translation of lattice

In this paper we treat games defined on normal set systems. If the underlying
space is not normal, Definition 6 can not be applied to such games and this
fact is natural. Because φi(v) means a sort of the contribution of player i and
is calculated as an average of i’s contributions v(A ∪ {i})− v(A). For instance,
let X := {1, 2, 3} and S1 := {∅, {1}, {1, 2, 3}} which is not normal, and let v
be a game on (X,S1). Then we cannot know contributions of each single {2}
nor {3}. If we regard {∅, {1}, {1, 2, 3}} as the lattice, not the set system, the
situation is a little different. In this case, the name of elements are just the
label. We have J (S1) = {{1}, {1, 2, 3}} and |J (S1)| = 2, so that considering
S1 as a set system (J (S1),S1), we can apply Definition 6 to the game on S1,
and we obtain φ{1}(v) and φ{1,2,3}(v).
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Abstract. A membership matrix of fuzzy c-mans clustering is asso-
ciated with the corresponding fuzzy classification rules as membership
functions defined on the whole space. In this paper such functions in
fuzzy c-means and possibilistic clustering are directly derived using the
calculus of variations. Consequently, the present formulation generalizes
the ordinary fuzzy c-means and moreover related methods can be dis-
cussed within this framework.

1 Introduction

The method of fuzzy c-means clustering is now used in a variety of applications
and one of the best-known techniques for data analysis. Nevertheless, there are
still problems to be solved and theoretical properties to be uncovered.

One of such problems is the derivation of a fuzzy classification rule also called
a fuzzy classifier. Although there are different proposals for fuzzy classifiers,
a standard classification rule is the membership function that interpolates the
membership values of the objects for clustering, whereby many theoretical prop-
erties of fuzzy c-means can be uncovered [13]. Although a standard fuzzy clas-
sifier is associated with each formulation of fuzzy c-means, it cannot be derived
directly. In this paper we derive a classifier using the calculation of variations [6].
This method derives the membership matrix and the classifier at the same time
by changing the distribution of objects. We also have similar results on possibilis-
tic clustering [11]. Moreover generalizations of the existing formulation of fuzzy
c-means and possibilistic clustering are obtained using the present formulation
of the calculus of variations.

The outline of this paper is as follows. After reviewing briefly fuzzy clustering
algorithms and the concept of classification functions which is obtained from the
membership matrices in Section 2, we propose the formulation of the clustering
problem based on the calculus of variations, whereby classification functions
are directly derived in Section 3. Section 4 discusses a generalization of the
formulation which includes ordinary membership matrices, noise clustering, and
other variations of the fuzzy c-means clustering. Moreover, Section 5 is concerned
with theoretical properties of the classification functions derived in Section 3.
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2 Different Objective Functions

Objects for clustering are denoted by xk = (x1, . . . , xp
k) ∈ Rp, k = 1, . . . , n, a vec-

tor in the p-dimensional Euclidean space. Cluster centers are vi = (v1i , . . . , v
p
i )T ,

i = 1, . . . , c, where c is the number of clusters. An abbreviated symbol V =
(v1, . . . , vc) is used for the whole collection of cluster centers. The matrix U =
(uik), (i = 1, . . . , c, k = 1, . . . , n) is used as usual, where uik means the de-
gree of belongingness of object xk to cluster i. In fuzzy c-means clustering, the
constraint for a fuzzy partition is

Mf = {U = (uik) :
c∑

i=1

uik = 1, ∀k;ujk > 0, ∀j, k}.

The dissimilarity for clustering is the standard squared Euclidean distance
between an individual and a cluster center:

Dik = ‖xk − vi‖2.

We moreover use the dissimilarity between a generic element x ∈ Rp and vi,
which is denoted by

D(x, vi) = ‖x− vi‖2.

2.1 Fuzzy c-Means and Possibilistic Clustering

As is well-known, fuzzy c-means clustering is based on the optimization of an
objective function. We consider three different types of objective functions.

J1(U, V ) =
n∑

k=1

c∑
i=1

(uik)mDik (1)

J2(U, V ) =
n∑

k=1

c∑
i=1

{uikDik + νuik log uik/e} (2)

J3(U, V ) =
n∑

k=1

c∑
i=1

(uik)mDik +
c∑

i=1

ηi

n∑
k=1

(1− uik)m (3)

J1 is the well-known objective function proposed by Bezdek [1] and Dunn [5],
while J2 is an entropy-based method proposed by several authors (e.g. [12]). J3

is the function for the possibilistic clustering [11].
In the next description of the alternative optimization FCM of fuzzy c-means

clustering, we can use J = Ji, i = 1, 2 and M =Mf .

AlgorithmFCM
FCM0. Set an initial value V̄ .
FCM1. Find optimal solution of J with respect to U while V is fixed: put

Ū = arg min
U∈M

J(U, V̄ ).
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FCM2. Find optimal solution of J with respect to V while U is fixed: put

V̄ = arg min
V
J(Ū , V ).

FCM3. If the solution (Ū , V̄ ) is convergent, stop; else go to FCM1.
End of FCM.

We show solutions of each step and we write, for simplicity, uik instead of ūik, vi
instead of v̄i, without confusion. Moreover the solution uik when J� (� = 1, · · · , 3)
is used is denoted by u(�)

ik , if necessary. However, the superscript (�) is omitted
when no confusion arises. For this purpose Let us define three basic functions
F (�)(x; vi) (� = 1, . . . , 3) for the respective objective functions.

F (1)(x; vi) =
1

‖x− vi‖ 2
m−1

,

F (2)(x; vi) = exp(−ν−1‖x− vi‖2),

F (3)(x; vi) =
1

1 + (‖x− vi‖2/ηi)
1

m−1
.

Remark that u(�)
ik (� = 1, 2) are represented as

u
(�)
ik =

F (�)(xk; vi)∑c
j=1 F

(�)(xk; vj)
. (4)

Notice that J3 cannot be used for fuzzy c-means in general, but for the specific
case of m = 2 in J3, equation (4) can be used for u(3)

ik .
On the other hand, solutions of cluster centers are as follows.

vi =
∑n

k=1(uik)mxk∑n
k=1(uik)m

. (5)

where m = 1 for J2.

Possibilistic clustering. In possibilistic clustering, the constraint Mf is not
imposed on U . Instead of Mf , we assume

M = (R+)cn, (6)

that is, practically no constraint for U . When J1 is assumed, the solution Ū is
trivial, and hence this objective function is useless. Thus we have

u
(�)
ik = F (�)(xk; vi), � = 2, 3. (7)

for J2 and J3.
The solution for the cluster center is given by the same equation (5).
We also note J2 and J3 with m = 2 are applicable to both fuzzy c-means and

possibilistic clustering [4,12].
Notice that the function F (�)(x; vi) is directly employed to solutions uik in

possibilistic clustering by substituting x = xk. whereas the solution of fuzzy
c-means is the ratio of this function F (�)(x; vi) to the sum of F (�)(x; vj) for all
cluster j.
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2.2 Fuzzy Classification Functions

Let use define three functions of x ∈ Rp:

u(�)
i (x;V ) =

F (�)(x; vi)∑c
j=1 F

(�)(x; vj)
, i = 1, 2, . . . , c (8)

where m = 2 for � = 3. This function implies a fuzzy classification rule or
fuzzy classifier associated with the membership matrix (u(�)

ik ), as it is a function
u(�)

i (·;V ) : Rp → [0, 1] and interpolates the membership value: u(�)
i (xk;V ) = u

(�)
ik

with x = xk. The function moreover has the parameter V . We hereafter call this
function as a fuzzy classification function to distinguish it from the term of
fuzzy classifier, as the latter term is used for different functions of classification
rules [2].

The fuzzy classification function can immediately be obtained by replacing
the object symbol xk by the variable x. This derivation is, however, artificial
and does not uncover a fundamental idea behind the fuzzy classification rules.

Note that such fuzzy classification functions have been used for other purposes
than fuzzy c-means. For example fuzzy self-organizing scheme [14] and super-
vised classification rules [9] employ the fuzzy classification function. A fuzzy
classification function is thus important in itself apart from the alternative op-
timization algorithm. Hence direct derivation of a fuzzy classification function
without the concept of clustering should be considered.

Note 1. In the case of possibilistic clustering, it is immediate to see that F (x; vi)(�)

(� = 2, 3) is the fuzzy classification function.

3 Direct Derivation of Classification Functions

For this purpose we first notice that the classification rules should be determined
using prototypes v1, · · · , vc. In clustering these are cluster centers but they are
not necessarily centers but may be other prototypes in the case of supervised
classification.

Assume v1, · · · , vc are given in some way and suppose we wish to determine
a classification rule of nearest prototype. The solution is evident:

Ui(x) =

{
1 (vi = arg min

1≤j≤c
D(x, vj)),

0 (otherwise).
(9)

For a technical reason we employ a closed ball B(r) with the radius r:

B(r) = { x ∈ Rp : ‖x‖ ≤ r }. (10)

where r is sufficiently large so that it contains all prototypes v1, · · · , vc, and we
consider the problem inside this region.
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Note that this function is the optimal solution of the following problem:

min
Uj ,j=1,...,c

c∑
j=1

∫
B(r)

Uj(x)D(x, vj) dx (11)

subject to
c∑

j=1

Uj(x) = 1, U�(x) ≥ 0, � = 1, . . . , c. (12)

We fuzzify this function. We note the above function is not differentiable. We
‘regularize’ the function by considering a differentiable approximation of this
function.

For this purpose we add an entropy term and consider the following.

min
Uj ,j=1,...,c

c∑
j=1

∫
B(r)

Uj(x)D(x, vj)dx+ ν
c∑

j=1

∫
B(r)

Uj(x) log Uj(x)/edx (13)

subject to
c∑

j=1

Uj(x) = 1. (14)

To obtain the optimal solution we employ the calculus of variations. Let

J =
c∑

j=1

∫
B(r)

Uj(x)D(x, vj) + ν
c∑

j=1

∫
B(r)

Uj(x) log Uj(x)/e

and notice the constraint. Hence we should minimize the Lagrangean

L = J +
∫

B(r)

λ(x){
c∑

j=1

Uj(x) − 1}dx.

Put U(x) = (U1(x), . . . ,Uc(x)) for simplicity. Let

εδL+ o(ε2) = L(U + εζi, λ)− L(U, λ).

where

[U + εζi](x) = (U1(x), . . . ,Ui−1(x),Ui(x) + εζi(x),Ui+1(x), . . . ,Uc(x)).

We then have

δL =
∫

B(r)

ζi(x)D(x, vi)dx + ν
∫

B(r)

ζi(x){1 + log Ui(x)}dx

+
∫

B(r)

ζi(x)λ(x)dx.

Put δL = 0 and note ζi(x) is arbitrary. We hence have

D(x, vi) + ν(1 + log Ui(x)]) + λ(x) = 0
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from which
Ui(x) = exp(−1− λ(x)/ν) exp(−D(x, vi)/ν)

holds. Summing up the above equation with respect to j = 1, . . . , c:

1 =
c∑

j=1

Uj(x) =
c∑

j=1

exp(−1− λ(x)/ν) exp(−D(x, vj)/ν).

We thus obtain the solution

Ui(x) =
exp(−D(x, vi)/ν)

c∑
j=1

exp(−D(x, vj)/ν)

, (15)

which is the same as (8) with � = 2.
For the classification function (8) with � = 1, the same type of the calculus of

variations should be applied. Thus the problem to be solved is

min
Uj ,j=1,...,c

c∑
j=1

∫
B(r)

(Uj(x))mD(x, vj)dx (16)

subject to
c∑

j=1

Uj(x) = 1. (17)

The optimal solution is, as we expect,

Ui(x) =
1/D(x, vi)

1
m−1

c∑
j=1

1/D(x, vj)
1

m−1

. (18)

We omit the derivation, as it is similar to the former derivation.
Let us consider a functional for the possibilistic clustering.

min
Uj ,j=1,...,c

c∑
j=1

∫
B(r)

{(Uj(x))mD(x, vj)dx + ηi(1 −Uj(x))m} (19)

Note that no constraint is imposed for the possibilistic clustering. Let

Ji =
∫

B(r)

{(Uj(x))mD(x, vj)dx + ηi(1 −Uj(x))m}

and note that Ji are independently minimized of other J�. Hence we should
calculate

εδJi + o(ε2) = Ji(U + εζ)− Ji(U).

We have

δJi = m

∫
B(r)

{(Uj(x))m−1D(x, vj)− ηi(1 −Uj(x))m−1}ζ(x)
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Put δJi = 0 and noting ζ(x) is arbitrary, we have

(Uj(x))m−1D(x, vj)− ηi(1 −Uj(x))m−1 = 0,

form which we have

Uj(x) =
1

1 + (D(x, vj)/ηi)
1

m−1
.

The formulation by the calculus of variations thus justifies the use of these
functions in the fuzzy learning and fuzzy classification. For example, we can
consider a learning scheme (cf.[14]) with a fuzzy classification function of the
above functions. In a fuzzy K-nearest neighbor method [9,2], either of F (x; vi)(�)

(� = 2, 3) can be used for fuzzy classification.
As the last remark in this section, we note that the radius r in B(r) can be

arbitrarily large, and hence the classification function is assumed to be given in
the whole space Rp. The remark is valid for all classification functions discussed
in this paper.

4 Generalizations

Let us consider a generalized formulation by introducing another function ξ(x)
into the functional. Consider

min
Uj ,j=1,...,c

c∑
j=1

∫
B(r)

Uj(x)ξj(x)D(x, vj)dx+ ν
c∑

j=1

∫
B(r)

Uj(x) log Uj(x)/edx(20)

subject to
c∑

j=1

Uj(x) = 1, U�(x) ≥ 0, � = 1, . . . , c. (21)

The solution is
Ui(x) =

exp(−ξi(x)D(x, vi)/ν)∑c
j=1 exp(−ξj(x)D(x, vj)/ν)

. (22)

While the previous section with ξj(x) ≡ 1 leads to the fuzzy classification func-
tion, the function ξj(x) can be taken to be a ‘distribution of objects.’ In order
to represent ordinary objects {x1, . . . , xn}, we can take

ξj(x) =
n∑

k=1

δ(x− xk)

where δ(x−xk) is the delta function as the opposite extreme case. Consequently
the problem is reduced to the minimization of J2(U, V ) with respect to U .

What occurs to Ui(x) for x �= xk (k = 1, 2, . . . , n)? Equation (22)
shows Ui(x) = 1/c which means we have no information and hence the equal
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membership to every cluster is attached. This solution is acceptable but on the
other hand there is no information Ui(x) from J2(U, V ). To solve this inconsis-
tency we put

ξj(x) =
n∑

k=1

δ(x− xk) + ε,

and take the limit of ε → 0. We then have Ui(xk) = uik and Ui(x) = 1/c for
x �= xk (k = 1, 2, . . . , n) from the formulation (20), as expected.

The other choice of the distribution of objects is to take uncertainty of object
locations into account [3,4]. For example we can assume

θ(x) =

{
1 (‖x‖ ≤ γ),
0 (otherwise),

(γ > 0 is a given parameter) and put

ξj(x) =
n∑

k=1

θ(x− xk) + ε.

Then equation (22) gives the desired solution as well.
Another generalization is to changeD(x, vi) = ‖x−vi‖2. For example suppose

D is a region in Rp. We take

D(x, v1) =

{
α (x ∈ D),
β (x /∈ D),

D(x, vi) = ‖x− vi‖2, i = 2, . . . , c.

with α, β > 0 and ξi(x) ≡ 1. Let α be a constant while β →∞. We then have

Ui(x) =

⎧⎪⎪⎨⎪⎪⎩
exp(−α/ν)∑c

j=2 exp(−D(x, vj)/ν) + exp(−α/ν) (i = 1),

exp(−D(x, vi)/ν)∑c
j=2 exp(−D(x, vj)/ν) + exp(−α/ν) (i = 2, . . . , c),

(23)

for x ∈ D, while

Ui(x) =

⎧⎪⎨⎪⎩
0 (i = 1),

exp(−D(x, vi)/ν)∑c
j=2 exp(−D(x, vj)/ν)

(i = 2, . . . , c).
(24)

This formulation is useful when noise cluster should be taken into account. The
region D is the set in which noise can be contained.

Other generalizations are also possible. For example vi can be not only the
cluster center but also other types of cluster prototypes such as those in fuzzy
c-varieties [1], fuzzy c-regression models [7], and fuzzy c-shell prototypes [8]. The
formulation is similar to the case of a noise cluster shown above and we omit
the detail.
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5 Properties of Classification Functions

Investigation of the classification functions leads us to a number of observations
on their theoretical properties. It is convenient to see the inverse of the function
1/Ui(x) instead of Ui(x). That is, we have

1

U(1)
i (x)

= 1 +
∑
j �=i

D(x, vi)
D(x, vj)

, (25)

1

U(2)
i (x)

= 1 +
∑
j �=i

exp
(
ν−1(D(x, vj)−D(x, vi))

)
. (26)

where U(1)
i (x) and U(2)

i (x) are respectively the classification functions for the
standard fuzzy c-means and the entropy-based method. Notice in particular that
the function U(1)

i (x) is different from those in standard literature [1]. That is,
singularity at x = vi is eliminated in (25).

For convenience the hard classification rule is named U0
i (x). Thus,

U0
i (x) =

{
1 (vi = arg min

1≤j≤c
D(x, vj)),

0 (otherwise).
(27)

It has been well-known that U0
i (x) gives the Voronoi set with the center vi [10].

The Voronoi set with the center vi is denoted by V (vi). Moreover we make the
fuzzy classification functions crisp by the maximum membership rule.

C(U(�)
i (x)) =

{
1 (U(�)

i (x) > U(�)
j (x), ∀j �= i),

0 (otherwise),
(28)

where � = 1, 2 and C(·) is a mapping of [0, 1]R
p

into {0, 1}Rp

.
We have the following propositions by observing (25) and (26) whose proofs

are not difficult and omitted here (see [13]).

Proposition 1. Given cluster centers v1, . . . , vc, the function U0
i (x) and

C(U(�)
i (x)) gives the same Voronoi sets:

U0
i (x) = C(U(�)

i (x)), ∀x ∈ Rp, � = 1, 2.

Proposition 2. The classification function for the standard fuzzy c-means
U(1)

i (x) takes its maximum value 1 at x = vi, while as ‖x‖ → ∞, the func-
tion approaches to 1/c:

U(1)
i (vi) = max

x∈Rp
U(1)

i (x) = 1

lim
‖x‖→∞

U(1)
i (x) =

1
c
.
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Proposition 3. The classification function for the entropy-based method
U(2)

i (x) does not necessarily take its maximum value at x = vi. Assume the
Voronoi region V (vi) is bounded. Then

lim
‖x‖→∞

U(2)
i (x) = 0.

On the other hand, if the Voronoi region V (vi) is unbounded, there is a direction
such that ‖x‖ → ∞ and x ∈ V (vi). We have

lim
‖x‖→∞

U(2)
i (x) = 1,

provided that none of two vectors vi − vj, vi − v� (j, � �= i) are on a line.

In this way, investigation of the fuzzy classification function reveals a number of
theoretical properties underlying methods of fuzzy c-means.

6 Conclusion

We have investigated fuzzy classification functions associated with different ob-
jective functions of fuzzy c-means and possibilistic clustering. The method of
calculus of variations has been employed to derive the classification functions
directly, whereby the natures of different classification functions have been un-
covered. Moreover generalizations of the formulation have been studied and the-
oretical properties of the classification functions are investigated. Without a clas-
sification function, it is difficult to see such theoretical properties of the fuzzy
c-means clustering.

The present method is useful for both theory and applications. As shown
above, we can predict the behavior of different solutions of fuzzy c-means and
possibilistic clustering by examining their classification functions, whereby we
can select the best method for a particular application. As applications, we can
design different classification algorithms using the functions discussed here.

Various generalizations of the formulation should further be studied. We have
thus much room for future studies.
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Abstract. Most existing text classification methods use the vector space model 
to represent documents, and the document vectors are evaluated by the TF-IDF 
method. However, TF-IDF weighting does not take into account the fact that 
the weight of a feature in a document is related not only to the document, but 
also to the class that document belongs to. In this paper, we present a 
Clustering-based feature Weighting approach for text Classification, or CWC 
for short. CWC takes each class in the training collection as a known cluster, 
and searches for feature weights iteratively to optimize the clustering objective 
function, so the best clustering result is achieved, and documents in different 
classes can be best distinguished by using the resulting feature weights. 
Performance of CWC is validated by conducting classification over two real 
text collections, and experimental results show that CWC outperforms the 
traditional KNN. 

Keywords: Text classification, clustering, feature weighting, KNN. 

1   Introduction 

As the dramatic expansion of the Internet and the World Wide Web continues, the 
amount of on-line text information grows so drastically that automatic text 
classification becomes a key technique for organizing and processing text data. Text 
classification is a supervised learning process, defined as assigning category labels 
(pre-defined) to new documents based on the likelihood suggested by a training set of 
labeled documents. It has been extensively studied in machine learning and 
information retrieval research areas. A number of approaches for text classification 
have been proposed, which include decision trees [1], regression models [2], KNN (K-
Nearest Neighbor) classification [3], [4], Bayesian probabilistic methods [5], 
inductive rule learning [6], neural networks [7], Support Vector Machines [8], and 
boosting method [9], and some others [10], [11], to name a few. 

Among these text classification methods, KNN is the simplest strategy that 
searches the k-nearest training documents to the test document and use the classes 
assigned to those training documents to decide the class of the test document. It is 
easy to implement for it needs no training stage, which is a must for most other 
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classification methods. Furthermore, experimental studies show that the KNN method 
offers promising performance in text classification [10].  

Similar to many other existing classification methods, KNN also adopts the vector 
space model (VSM) [12] to represent documents. Each document is represented by a 
vector (W1, W2, W3, …, Wn) in the feature space, where Wi stands for the weight of the 
ith feature. The document vectors are evaluated mainly by the TF-IDF method and its 
variants [13]. However, TF-IDF feature weighting has obvious drawback: it does not 
take into account the fact that the weight of a feature in a document is related not only 
to the document, but also to the class that the document belongs to. In almost all real 
document collections, feature distribution in one class is often quite different from 
that in other classes. What’s more, the same feature may have different importance or 
relevance in different classes. Hence, it is not sufficient to use only TF-IDF feature 
weighting, for it treats each feature equally for all classes. However, considering that 
each feature may have different importance in different classes, TF-IDF weighting 
can not differentiate the importance of a feature in different classes, which is 
unfavorable for classification performance. 

In this paper, we present a new feature weighting scheme for text classification. 
We term the new approach Clustering-based feature Weighting approach for text 
Classification, CWC for short. The CWC approach is simple but effective in that it 
assigns different weights for the same feature in different documents and different 
classes. The idea of CWC is as follows: given a training text collection, taking each 
class in the training collection as a known cluster, then searching for feature weights 
iteratively to optimize the clustering objective function, so that the best clustering 
result is achieved, which means that documents in different classes are best 
distinguished using the resulting feature weights. The resulting weights are used 
further for text classification. Considering that the resulting weights can optimally 
partition the training documents, it is naturally to think that these weights should be 
most suitable for classification task. We evaluate the classification performance of the 
proposed method by conducting experiments over two real text collections, Reuters-
21578 and 20- Newsgroups, and experimental results show that CWC can achieve 
better classification performance than the traditional KNN without using our 
weighting method. 

The remainder of this paper is organized as follows. Section 2 introduces some 
related work. Section 3 presents our clustering-based feature weighting approach for 
text classification in detail. Section 4 describes the experimental results for evaluating 
the proposed approach and comparing CWC with the traditional KNN. Finally, 
Section 5 summarizes the paper and highlights future research work. 

2   Related Work 

Vector Space Model is the commonly used model for document representation. That 
is, a document corresponds to an n-dimensional document vector. All document 
vectors form the document space. Given a document vector, its dimensional 
components indicate the corresponding features’ weights that indicate the importance 
of these features in that document. For a document d in a training corpus D, it can be 
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represented by VSM as ),...,,( 21 nwwwd =
r

. Here, d
r

indicates the vector of document d; 

wi is the weight of the ith feature. The TF-IDF method is often used to evaluate feature 
weight as follows: 

∑
=

×=
n

i
ii

ii
i

nNtf

nNtf
w

1

22 )]/[log()(

)/log(  

(1) 

Above, N is the total number of documents in D, tfi is the occurrence frequency of the 
ith feature in document d, and ni is the number of documents where the ith feature 
appears. Given two documents di and dj, the similarity coefficient between them can 
be measured by the inner product of their corresponding document vectors as follows: 

jiji ddddSim
rr

•=),(  (2) 

Feature selection or weighting is a crucial subtask for text classification, which can 
influence the scalability, efficiency and accuracy of the trained classifiers. In feature 
selection, the goal is to eliminate irrelevant features. This is done by assigning binary 
relevance weights to the features (1 for relevant, and 0 for irrelevant). Up to date, 
various methods have been proposed for feature selection, such as document 
frequency, information gain, mutual information, chi-square, correlation coefficient, 
relevancy score, etc. [14], [15], [16], [17], [18]. Feature weighting can be seen as an 
extension of the selection process where the features are assigned continuous weights 
which can be regarded as degrees of relevance or importance. In text classification, 
the combination of feature selection and feature weight computation is actually 
feature weighting. However, this kind of feature selection has an inherent drawback. 
That is, regardless of the distribution difference of each feature in different classes of 
the training collection, it produces a set of weights for all classes. To tackle the 
problem, we propose the Clustering-based Feature Weighting approach, and use it for 
text classification. In fact, we combine feature selection and feature weighting into the 
same framework. First, we do the normal feature selection as in other classification 
methods. Second,  based on the results of feature selection above, we do further 
feature weighting based on clustering optimization to get the importance value of 

each feature k in class Ci as 
ikv ( 0 1ikv≤ ≤ ), and represent the final weight of this 

feature to document Dj as _ *kj iktf idf v .  

KNN text classification is a well-known lazy learning approach, which has been 
extensively studied in machine learning and pattern recognition, and applied to text 
classification. The idea of KNN classification is quite simple: given a test document, 
the system finds the K nearest neighbors among training documents in the training 
corpus, and uses the classes of the K nearest neighbors to weight class candidates. The 
similarity score of each nearest neighbor document to the test document is used as the 
weight of the classes of the neighbor document. If several of the K nearest neighbors 
share a class, then the per-neighbor weights of that class are added together, and the 
resulting weighted sum is used as the likelihood score of that class. By sorting  
the scores of candidate classes, a ranked list is obtained, and by setting a threshold on 
the scores, binary class assignments are achieved. The usage of threshold is a kind of 
soft classification strategy, which can make a document belong to several classes. For 
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simplicity, in this paper we consider only binary classification problem, i.e. the class 
space has flat structure and all classes in question are semantically disjointed, and 
each document in the training corpus belongs to only one class, and each test 
document can be classified into only one class that has the highest weighted sum. 

Feature weighting has also been employed in cluster analysis [19, 20]. In [19], the 
SKWIC (Simultaneous KeyWord Identification and Clustering), which is a kind of K-
Means based clustering approach but has better clustering results. The main idea of 
SKWIC is based on “Not all terms are considered equally relevant in a single category 
of text documents”. The method learns a different set of keyword weights for each 
cluster, with which each document cluster can be characterized by a possibly different 
set of keywords and described compactly in terms of not only the attribute values, but 
also their relevance. The SKWIC approach is based on k-Means algorithm, thus it 
inherits most of the advantages of k-Mean-type clustering algorithms, such as ease of 
computation and simplicity. 

Unlike SKWIC, our goal is text classification that uses clustering method to weight 
the features. Our CWC approach employs SKWIC for clustering and feature weighting 
by considering each class in the training collection as a known cluster, and searching 
for feature weights iteratively to optimize the clustering objective function, so as to 
achieve the best clustering result, and then utilizing the resulting feature weights for 
classification. In fact, we must not use the SKWIC method; we can use other 
clustering methods to achieve our goal, e.g., the method in [20, 21].  The key point of 
the CWC method is applying clustering for feature weighting in text classification. 

3   Clustering-Based Feature Weighting for Text Classification 

Given a classification task, the training corpus χ contains N documents that form C 
distinct classes. Each document is represented by an n-dimensional document vector, 
and each document class corresponds to the centroid vector of the vectors of all 
documents in the class. We treat the C classes as C established clusters. Let [ ]i ikV v=  

stand for the relevance weight of the kth feature in cluster Ci, and jkx  is the weight of 

the kth dimension in document
jx , and ikc  is the kth component of the ith cluster’s 

center vector. Here, 1≤i≤C, 1≤j≤N, and 1≤k≤n. Our goal is to determine the values 
[vik] (1≤i≤C and 1≤k≤n), such that the objective function of the C established clusters 
is optimized. For text classification, the cosine similarity measure is used for distance 
computation between two vectors. As in the SKWIC approach [19], we define the 

dissimilarity between document jx  and the center vector of the ith cluster as follows:  

1
ij ij

n
k

w c ik w c
k

D v D
=

= ∑%   (3) 

where  

1
( )

i j

k
w c jk ikD x c

n
= − •  . (4) 
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Since text classification is a kind of supervised learning, and each training 
document belongs to a certain known class, so we can determine each cluster center 
directly from the training text set, i.e., the averaged vector of all training vectors that 
belong to the cluster, which can be described as follows.  

j i
j kx

i k
i

x
c

χ

χ
∈=

∑  . (5) 

Therefore, 
ij

k
wcD  represents for the distance between the kth dimension document 

jx  to 

the cluster Ci, and 
ijwcD%  stands for the weighted aggregate sum of cosine-based 

distances of document jx  to cluster Ci along the individual dimensions, i.e. the 

dissimilarity between document 
jx  and the cluster Ci. Here, we omit the 

normalization of 
ij

k
wcD , for we assume that 

jkx  and 
ikc  are normalized to unit length 

before the evaluation of formula (4).  
The aim of clustering based weighting of CWC is to search for an optimal set of 

feature weights. Each cluster Ci has its own set of feature weights 1[ , , ]i i inV v v= ⋅⋅⋅ , 

and all clusters are internally compact under such feature weights. The objective 
function is defined similarly to that of SKWIC as follows: 

2

1 1 1 1

( , ; )
i j

j i

C n C n
k

ik w c i ik
i x C k i k

J C V v D vχ δ
= ∈ = = =

= +∑ ∑ ∑ ∑ ∑  , 
(6) 

in which 

1

[0 ,1] , ;

1 .

ik

n

ik
k

v i k

v i
=

∈ ∀⎧
⎪
⎨ = ∀⎪⎩
∑

 
(7) 

Above, the objective function is composed of two parts. The first component is the 
sum of weighted distances of all documents to the cluster centers, which is minimized 
when only one feature in each cluster is completely relevant ( 1ikv = ), and all other 

features are irrelevant ( 0ikv = ). The second component is the sum of the squared 

feature weights, which achieves global minimum when all features are equally 
weighted. When the two components are combined and all iδ  (1≤i≤C) are chosen 

appropriately, we can get minimized objective function with the optimized feature 
weights.  

With respect to the constraints in (7), we can get optimized J with the Lagrange 
multiplier technique, and have  

2

1 1 1 1 1 1

( , ) ( 1)
ij

j i

C n C n C n
k

ik wc i ik i ik
i x C k i k i k

J V v D v vδ λ
= ∈ = = = = =

Λ = + − −∑ ∑ ∑ ∑ ∑ ∑ ∑ . 
(8) 

where t
c1 ],,[ λλ K=Λ . 

Considering that the rows of V are independent to each other, we can simplify the 
minimization of ( , )J VΛ  as minimizing each independent component as follows: 
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      2

1 1 1

( , ) ( 1)
ij

j i

n n n
k

i i i ik wc i ik i ik
x C k k k

J V v D v vλ δ λ
∈ = = =

= + − −∑ ∑ ∑ ∑ , i=1, …, C . 
(9) 

Evaluating the gradient of Ji over ikv  and iλ , and setting the gradients to zero, we 

have the following group of equations: 

   
1

( , )
( 1) 0

( , )
2 0

i j

j i

n
i i i

ik
ki

ki i i
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=
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(10) 

Solving the above group of equations (10) for ikv , we obtain 

11 1
[ ]

2
ij

ij

j i

n k
wck k

ik w c
x Xi

D
v D

n nδ
=

∈

= + −∑∑  . (11) 

The first part of ikv , i.e. 1/n, is the default weight value when all features are regarded 

to have uniform distribution in the classes, while the second part are the weights 
considering the discriminations for non-uniform feature distributions. The bias may 
be positive when the distance along one dimension is less than the averaged total 
distance over all dimensions. That is to say, the feature is more compact than other 
features in the cluster; therefore the feature should be emphasized and assigned a 

relatively larger weight ikv . Moreover, the 
ij

k
wcD  is possible to be negative, which 

means that the feature distribution along this dimension is further more compact and 

the importance of this dimension should be emphasized further with larger ikv . 

The determination of 
iδ  value is also important for the objective function. If 

iδ  is 

too small, then only one feature in cluster Ci will be relevant and assigned a weight of 
one and all other features will be assigned quite small weights or even zero weights; 
while if 

iδ  is chosen too large, then all features in cluster Ci will be assigned equal 

weights as 1/n, and all features are considered to have the same importance, which is 
not reasonable in practice. Consequently, we will compute the optimal iδ  iteratively 

as follows. 

( 1 )( 1)

1( )

( 1) 2

1

( )

( )

t

ijj i

n t k
ik w cx kt

i n t
ikk

v D
K

v

χ
δδ

−−
∈ =

−
=

=
∑ ∑

∑
 . (12) 

In equation (12), the superscript (t-1) denotes the results in iteration (t-1), Kδ  is a 

constant and can be adjusted during the iteration process. If 
ikv  is often out of range 

[0, 1], which indicates that 
iδ  is too small, then Kδ  should be increased. And if 

ikv  is 

nearly on the verge of 1/n, which means 
iδ  is too large, then the value of Kδ  needs to 
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be reduced.  If it occurs a few times that ikv  is negative, then we can adjust the 

negative feature weights according to the following formula: 

1

min 0
n

ik ik ik ik
k

v v v if v
=

← + <  . (13) 

The computation process of clustering based feature weighting of CWC is 
summarized in Algorithm 1, which is illustrated in Figure 1.  

By using the clustering algorithm above to get a set of feature weights 
iV  for each 

cluster, we can compute the similarities between documents in the weighted feature 
space. Then the formula for the similarity between a test document x

r
 and a training 

document 
jd
r

 is adjusted as follows: 

1, ( )

( , ) ( )
j

n

j ik k jk
k class d i

sim x d v x d
= =

= ⋅ ⋅∑ r

rr  . 
(14) 

Next, CWC can classify the documents based on KNN approach or other vector-based 
methods. By sorting the scores of candidate classes, we get a ranked list for the test 
document. Finally, by setting a threshold on the scores, binary class assignments are 
achieved.  

 

Algorithm 1. Clustering-based Feature Weighting of CWC 

Evaluate the center vector of each cluster ic
r

 according to equation (5); 

Initialize the feature weights 
ikv  to 1/n; 

REPEAT { 
Compute 

ij

k
wcD , for 1 i C≤ ≤ , 1 j N≤ ≤  and 1 k n≤ ≤ ; according to equation (4); 

Update the feature weights 
ikv  by using equation (11); 

Adjust the value of 
ikv  according to equation (13); 

Compute 
ijwcD% , for 1 i C≤ ≤ , 1 j N≤ ≤ ; according to equation (3); 

Update iδ , for 1 i C≤ ≤  by using (12); 

} UNTIL ( ikv  stabilize); 

Fig. 1. Clustering-based feature weighting algorithm 

4   Experimental Results 

This section provides empirical evidence that CWC outperforms the traditional KNN 
without using feature weighting. Experimental results are achieved by conducting 
classification over two real text collections: Reuters-21578 and 20-Newsgroups, 
which are two commonly used data sets for text classification performance 
evaluation.  



 CWC: A Clustering-Based Feature Weighting Approach for Text Classification 211 

4.1   Experimental Setup 

Automatic text classification performance is usually measured in terms of precision 
(Pr) and recall (Re), which reflect the two aspects of classification quality. However, 
neither precision nor recall makes real sense when used separately. In this paper, in 
addition to Pr and Re, we also use a combined value of Pr and Re, i.e., F1, to evaluate 
classification performance. F1 is evaluated in the following formula [16]: 

2
1

Pr Re
F

Pr Re

× ×=
+

. (15) 

To evaluate the average precision, recall and F1, there exist the micro and the 
macro averaging methods. Macro averaging is based on classes, and micro averaging 
is based on documents. Here, we provide both micro and macro-averaged precision, 
recall and F1. 

Our CWC approach is implemented based on the open source classification tool 
“rainbow” [22]. In our experiments, the k-fold cross-validation method is applied to 
train and test the classifier.  We divide the testing data set into 10 subsets evenly, and 
get {T1, T2, …, T10}, each of which stands for a subset, and let the testing set Ttest=Ti, 
and the training set Ttrain=T-Ti, where i=1, 2, …, 10. The averaged results of these 10 
experiments are taken as the final results. The preprocessing of text collections 
consists of: filtering stop-words, stemming, and feature selection. We sort all features 
in a decreasing order according to their information gain values, and select the top n 
features for further weighting. By default, we let n=2,000.  

4.2   Experimental Results of Mini_newsgroups 

Mini_newsgroup1 and mini_newsgroup2 are two manually-compiled subsets of the 
20-Newsgroups. Mini_newsgroup1 consists of four classes of quite different content, 
and Mini_newsgroup2 is composed of four classes of nearly similar content. Here, we 
set the parameters for KNN as K=20 and Kδ =0.001. The computation of optimal 
feature weights converges at the 12th iteration. We compare the performance of CWC 
to that of the traditional KNN method. Experimental results are shown in Table 1 and 
Table 2 respectively. From the results in the two tables, we can clearly see that CWC 
outperforms traditional KNN. Especially, for the text collections containing classes of 
quite similar content (e.g. mini_newsgroup2), our CWC approach improves the 
traditional KNN method considerably.  

4.3   Experimental Results of 20-Newsgroups  

We then conduct experiments on the entire 20-Newsgroups text collection. 20-
Newsgroups contains 20 classes of different news. We test how the micro-averaged 
precision changes with k’s value. The results for CWC and traditional KNN are shown 
in Figure 2, where k’s value increases from 1 to 50. We can see that two methods all 
 



212 L. Zhu, J. Guan, and S. Zhou 

get precision improved considerably as K increases from 1 to 10, while the precision 
keeps stable as K increases from 10 to 50. Nevertheless, within the test score of K’s 
value, not matter what K is, the precision of CWC outperforms traditional KNN by 
about 2.5%. Figure 3 shows the changing trend of micro-averaged precision with the 
number of selected features (or features set size). Here, we let K=20. From Figure 3, 
we can see that within our test range of feature size, no matter how much the feature 
size is, the precision of CWC are larger than that of the traditional KNN, and with the 
increasing of feature size, the difference is enlarging. This demonstrate the 
performance advantage our CWC approach. 

Table 1. Macro-averaged classification perform ance on mini_newsgroup1(CWC vs. KNN) 

class macro-precision% macro-recall% macro-F1 
 CWC KNN CWC KNN CWC KNN 

comp.os.ms-windows.misc 99.11  96.97  100.00 99.00  .9955  .9797  
rec.autos 99.01  97.84  99.60 99.00  .9930  .9842  
sci.med 98.70  98.88  98.70 96.00  .9870  .9742  
talk.religion.misc 99.00 99.10 99.00 98.50 .9900 .9880 
Averaged 98.96 98.20 99.33 98.13 .9914 .9815 

Table 2. Macro-averaged classification performance on mini_newsgroup2 (CWC vs. KNN) 

macro-precision% macro-recall% macro-F1 
class 

CWC KNN CWC KNN CWC KNN 
comp.graphics 98.21  95.04  91.90  89.20  .9495  .9203  
comp.os.ms-windows.misc 92.46  89.58  98.60  89.80  .9543  .8969  
comp.sys.ibm.pc.hardware 95.53  86.07  92.80  88.20  .9415  .8712  
comp.sys.mac.hardware 95.15  89.94  97.50  91.80  .9631  .9086  
Averaged 95.34  90.16  95.20  89.75  .9521  .8993  

4.4   Experimental Results of Reuters-21578 

Finally, we carry out experiments on the reuters-21578 text collection. Reuters-21578 
contains 11,098 documents that can be classified into 71 classes, form which 7,780 
documents are used for training, and 3,309 documents for testing. For the training set, 
the averaged number of documents per class is 109.70, and for the testing set, the 
value is 46.61. The precision results of traditional KNN and CWC are shown in Figure 
4, where we take Kδ =0.05 and let K increases from 1 to 50. From Figure 4, we can 
see that the precision are improved quickly as K increases from 1 to 10, and reaches 
the highest point when K is around 10, while the precision decreases after K >10. 
However, within the test score of K’s value, no matter what value K takes, CWC 
outperforms traditional KNN obviously. And the advantage of CWC over traditional 
KNN becomes more evident as K increases. 
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Fig. 2. Micro-precision vs. K (20-Newsgroups) 
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Fig. 3. Micro-precision vs. feature size (20-Newsgroups) 
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Fig. 4. Micro-precision vs. K (Reuters-21578) 
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5   Conclusion and Future Work 

In this paper, we present the Clustering-based feature Weighting approach for text 
Classification approach, or CWC for short. CWC takes each class in the training 
collection as a known cluster, and searches for feature weights iteratively to optimize 
the clustering objective function, so the best clustering result is achieved. This also 
means that documents in different classes are best distinguished using the resulting 
feature weights. Performance of the proposed approach is validated by conducting 
experiments over two real text collections, and experimental results of classification 
performance show that CWC outperforms the traditional KNN evidently.  

The CWC approach proposed in this paper adopts hard clustering model. However, 
in reality, the class of a document is usually quite fuzzy for it may belong to several 
different classes. That is, documents in a collection can rarely be described as 
members of a single or exclusive class. Most documents tend to straddle between two 
or more different classes, and assign such a document into a single class will affect 
the classification and retrieval abilities. Hence, to deal with real large document 
collections, further research is needed, such as fuzzy clustering methods for data set 
containing overlapping classes. Then each document will be labeled into several 
classes according to the relevance of the document to these classes. This is under 
consideration for our next steps. Further comparative studying of CWC with other 
weighting methods is another task of our future work. 
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Abstract. Spatial clustering is one of the very important spatial data mining 
techniques. So far, a lot of spatial clustering algorithms have been proposed. 
DBSCAN is one of the effective spatial clustering algorithms, which can discover 
clusters of any arbitrary shape and handle the noise effectively. However, it has 
also several disadvantages. First, it does based on only spatial attributes, does not 
consider non-spatial attributes in spatial databases. Secondly, when DBSCAN 
does handle large-scale spatial databases, it requires large volume of memory 
support and the I/O cost. In this paper, a novel spatial clustering algorithm with 
sampling (NSCAS) based on DBSCAN is developed, which not only clusters 
large-scale spatial databases effectively, but also considers spatial attributes and 
non-spatial attributes. Experimental results of 2-D spatial datasets show that 
NSCAS is feasible and efficient. 

1   Introduction  

Spatial data mining refers to the extraction from spatial databases of implicit knowl-
edge, spatial relations or significative features or patterns that are not explicitly stored 
in spatial databases[1]. Spatial data mining needs to integrate data mining and tech-
niques of spatial database. It can be used for understanding spatial data, discovering 
spatial relationships and intrinsic relationships between spatial and non-spatial data, 
constructing spatial knowledge-bases, and reorganizing spatial databases, optimizing 
spatial queries, etc. It is expected to have wide applications in geographic information 
systems(GIS), remote sensing, image databases exploration, medical imaging, robot 
navigation, and other areas where spatial data are used. 

Clustering is the process of grouping a set of objects into classes or clusters so that 
objects within a cluster have similarity in comparison to one another, but are dissimilar 
to objects in other clusters. So far, many clustering algorithms have been proposed, 
Based on a general definition, they can be categorized into five broad categories, i.e., 
hierarchical, partitional, density-based, grid-based and model-based[1]. (1) Partitional 
clustering methods[2]. For example, CLARANS. (2) Hierarchical clustering meth-
ods[3-4]. Such as CURE and BIRCH. (3) Density-based clustering methods[5-8]. 
Examples of density-based clustering methods include DBSCAN, OPTICS, DBRS and 
GDBSCAN. (4) Grid-based clustering methods[9-10]. Such as STING and WaveClus-
ter. (5)Model-based clustering methods. For example, COBWEB. DBSCAN is one of 
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the very effective spatial clustering algorithms, which can discover clusters of any  
arbitrary shape and handle the noise effectively. However, it has also several disad-
vantages. First, it does based on only spatial attributes, does not consider non-spatial 
attributes in spatial databases. Secondly, when DBSCAN does handle large-scale spatial 
databases, it requires large volume of memory support and the I/O cost. In this paper, a 
novel spatial clustering algorithm with sampling (NSCAS) based on DBSCAN is de-
veloped, which not only clusters large-scale spatial databases effectively, but also 
considers spatial attributes and non-spatial attributes.  

The remainder of the paper is organized as follows: In section 2, we give an intro-
duction to DBSCAN and analyze its disadvantages. Section 3 presents the NSCAS al-
gorithm. Section 4 reports the experimental evaluation. Finally, Section 5 concludes the 
paper. 

2   DBSCAN  

DBSCAN is the first density-based spatial clustering method proposed [5].The key idea 
in DBSCAN is that to define a new cluster or to extend an existing cluster, a 
neighborhood around an object of a given radius (ε) must contain at least a minimum 
number of objects (MinPts), i.e., the minimum density for the neighborhood. The pro-
cedure for finding a cluster is based on the fact that a cluster is uniquely determined by 
any of its core objects. 

To find a new cluster, DBSCAN starts from an arbitrary object q. It begins by per-
forming a region query, which finds the neighborhood of the object q. If the 
neighborhood is sparsely populated, i.e. it contains fewer than MinPts objects, then the 
object q is labeled as noise. Otherwise, a cluster is created and all objects in q’s 
neighborhood are placed in this cluster. Then the neighborhood of each of q’s 
neighbors is examined to see whether it can be added to the cluster. If so, the process is 
repeated for every object in this neighborhood, and so on. If a cluster cannot be ex-
panded further, DBSCAN selects another arbitrary unclassified object and repeats the 
process. This procedure is iterated until all objects in the dataset have been placed in 
clusters or labeled as noise. For a dataset containing n objects, n region queries are 
required. So its average time complexity is O(n2); If it uses an efficient spatial access 
data structure, such as an R*-tree[11], its the average time complexity is O(nlogn). 

In fact, for DBSCAN the process of clustering is an iterative procedure of executing 
region query, most of the time for clustering process is spending on region query op-
eration. DBSCAN carries out region query operation for every object contained in the 
core object's neighborhood. However, executing all region queries to find these 
neighborhoods is very expensive. For a given core object p in cluster C, it's conceivable 
that the neighborhoods of the objects contained in p’s neighborhood are most possibly 
intersecting with each other. Suppose q is an object in p’s neighborhood, if its 
neighborhood is covered by the neighborhoods of other objects in p’s neighborhood, 
then the neighborhood query operation for q can be omitted, which means that q is not 
necessary to be selected as a seed for cluster expansion. Therefore, the time consumed 
on region query operation for q can be cut down. As a matter of fact, for the dense 
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clusters, a lot of objects in a core object's neighborhood can be ignored being selected 
as seeds. So in order to speed up DBSCAN algorithm, we should take some represen-
tative objects rather than all objects in p's neighborhood as new seeds for the sake of 
reducing region queries.  

Secondly, if non-spatial attributes play a important role in determining the desired 
clustering result, DBSCAN is not appropriate, because it does not consider non-spatial 
attributes. Spatial databases save a finite set of objects characterized by spatial and 
non-spatial attributes. The spatial attributes may represent, e.g., points or spatially ex-
tended objects such as polygons in the d-dimensional space .The non-spatial attributes 
of an object may represent additional properties of a spatial object, e.g., the unem-
ployment rate for a community represented by a polygon in a geographic information 
system. In order to improve the quality of clustering, the clustering algorithm should 
not only depend on spatial attributes but also depend on non-spatial attributes.  

3   A Novel Spatial Clustering Algorithm with Sampling 

In this section, we present the NSCAS algorithm. In order to deal with non-spatial  
attributes, the concept of the matching neighborhood is proposed. 

3.1   Basic Concepts  

Given a dataset DB, a symmetric distance function dist, parameters ε and MinPts, and 
variable attr indicates the non-spatial attribute, the following definitions are used to 
specify NSCAS. (Extension to multiple non-spatial attributes is straightforward.)  

Definition 1 (ε-neighborhood). The neighborhood of an object p, denoted by Nε(p), is 
defined as Nε(p) ={q∈DB| dist(p,q)≤ε}. 

Definition 2 (ε-matching neighborhood). The matching neighborhood of an object p, 

denoted by ' ( )N pε , is defined as ' ( )N pε  ={q∈DB|dist(p,q)≤εand p.attr=q.attr}.  

From the definition, it is obvious that the number of objects in the object p’s ε-matching 

neighborhood must be fewer than or equal to that in its ε-neighborhood. Following the 

definition of DBSCAN, we give the definition of the NSCAS algorithm as follows. 

Definition 3 (purity-core object). If the matching neighborhood of an object p has at 

least MinPts objects, i.e., |
' ( )N pε |≥MinPts, the object p is a purity-core object  

Definition 4 (directly purity-density-reachable). An object p is directly pu-

rity-density-reachable from an object q wrt.ε and MinPts, denoted by p⇒ q, if 
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⑴ q∈ ' ( )N pε  

⑵ | ' ( )N pε |≥MinPts 

Definition 5 (purity-density-connected). The purity-density-connected denoted by 

⇔ (wrt.ε and MinPts) is defined as the following: 

⑴ ∀ p∈DB，p ⇔ p 

⑵ There is a chain of objects p1,p2,,…,pn,p1=q, pn=p, pi∈DB（i=1,2,…,n), if pi+1 ⇒ pi 

or pi⇒ pi+1,then p ⇔ q 

From the definition, we can directly deduce the following important lemma. 

Lemma 1. The relationship purity-density-connected ⇔  wrt.ε and MinPts in dataset 

DB is an equivalent relationship. 

For a non-empty dataset DB, because the relationship purity-density-connected ⇔  is 

an equivalent relationship, it can be used to determine an unique partitioning of DB, 

each partitioning is a cluster or noise. 

Definition 6.（Cluster）A cluster C wrt. ε and MinPts is a non-empty subset of dataset 

DB satisfying the following conditions: 

⑴∀ p, q∈DB, if p∈C and p ⇔ q, then q∈C; 

⑵∀ p, q∈C，p ⇔ q 

3.2   Selection of Seeds 

The selection of seeds is very important, the number of seeds should not be too small 
and too large. If it is too small, the neighborhoods of seeds can not completely cover the 
neighborhoods of other objects, objects lost and clusters divided may be yielded. 
Otherwise, unwanted region queries are executed, the advantage of the algorithm 
cannot be fully exploited. Here we will consider two-dimensional objects only. The 
method can be generalized for any possible dimensions greater than two. As shown in 
the Fig 1, with regard to ε and a purity-core object P, a circle is drawn with radius εand 
center at object P. In addition, we draw the coordinate axes(xPy) pass through the 
center object P and the coordinate axes( x′ P y′ ) making the x′ -axis an angle of 45o to 
the x-axis. In the coordinate axes(xPy), the coordinates of the objects are (x,y),while 
the coordinates of them are ( x′ , y′ ) in the coordinate axes( x′ P y′ ). 
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Fig. 1. Selection of seeds 

The algorithm for selecting representative seeds from a purity-core object's 
neighborhood is proposed as the following, which is inspired by the FDBSCAN algo-
rithm[12].The major difference between FDBSCAN algorithm and NSCAS algorithm is 
that in NSCAS algorithm the number of the representative seeds is eight while in the 
FDBSCAN algorithm it is four. Because the number of the representative seeds is only 
four, objects lost and clusters divided may be yielded. The key idea in the algorithm is 
that identifying the objects which their abscissa or ordinate is the biggest or the smallest 
in the corresponding coordinate axes and select them to be the representative seeds.  

Finding_seeds(O,ε,Seeds) 

Neighbours=DB.matchingNeighbours(O,ε); 

Flag=i=1; 

for each unclassified object p in the Neighbours do 

if Flag==1then 

While i<=8 do 

seed_object[i]=p; 

i++; 

Flag++; 

    endwhile 

else 

if p.x>seed_object[1].x then seed_object[1]=p; 
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if p. x′ >seed_object[2]. x′ then seed_object[2]=p; 

if p.y>seed_object[3].y then seed_object[3]=p; 

if p. y′>seed_object[4]. y′ then seed_object[4]=p; 

if p.x<seed_object[5].x then seed_object[5]=p; 

if p. x′ <seed_object[6]. x′  then seed_object[6]=p; 

if p.y<seed_object[7].y then seed_object[7]=p; 

if p. y′<seed_object[8]. y′ then seed_object[8]=p; 

endif 

Seeds=seed_object[1]∪seed_object[2]∪seed_object[3]∪

seed_object[4]∪seed_object[5]∪seed_object[6]∪

seed_object[7]∪seed_object[8]; 

endfor 

end 

3.3   Algorithm Description 

Input: DB: database ; ε , MinPts: thresholds. 

Output: Clusters of DB.  

Algorithm NSCAS(DB, ε ,MinPts） 

ClusterId=nextId(NOISE); 

for each object O in DB do 

   if O.ClId=UNCLASSIFIED 

      if Expanding_cluster(O,ε,DB,MinPts,ClusterId) 

           ClusterId=nextId(ClusterId); 

end 
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Expanding_cluster(O,ε,DB,MinPts,ClId):Boolean 

//expanding clusters 

Neighbours=DB.matchingNeighbours(O,ε); 

if(|Neighbours|<MinPts)//O is a noise  

   DB.changClId(O,NOISE); 

 return false; 

else//O is a purity-core object 

   DB.changClId(Neighbours,ClId); 

   Finding_Seeds(O,ε,Seeds); 

   Seed_list=Seed_list.add(Seeds); 

   While Seed_list≠NULL do 

      currentP=Seed_list.first(); 

      Neighbours=DB.matchingNeighbours(currentP,ε); 

if(|Neighbours|≥MinPts) 

//currentP is a purity-core object 

        Finding_Seeds(currentP,ε,Seeds);                        

        Seed_list=Seed_list.add(Seeds); 

        for each object p in Neighbours do 

          if p.ClId= UNCLASSIFIED or NOISE  

               DB.changClId(p,ClId); 

           else 

                ClId=p.ClId; 

// two purity-density-connected clusters are combined        

Seed_list.delete(currentP); 

       Endif 

     endwhile 
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    return true; 

  endif 

end                  

The most important function used by NSCAS is Expand_Cluster, Expand_Cluster 
starts with an arbitrary unclassified object O and finds its matching neighborhood 
Neighbours. If the size of Neighbours is less than MinPts, then O is a noise. The 
algorithm finds its representative seed objects by the function of Finding_seeds for 
cluster expansion and adds them to Seed_list. After examining the matching 
neighborhood of O, the algorithm selects a representative seed object and repeats the 
above procedure for cluster expansion and then deletes the seed from Seed_list. The 
procedure is iterated until Seed_list becomes empty. If the cluster cannot be expanded 
further, the algorithm selects another arbitrary unclassified object and repeats the 
above procedure. The procedure is iterated until every object in the dataset is clus-
tered or is labeled as noise.  

Compared with DBSCAN, NSCAS has mainly following improvement. Firstly, 
NSCAS can deal with non-spatial attributes. Because spatial databases save a finite set 
of objects characterized by spatial and non-spatial attributes, the clustering algorithm 
should not only depend on spatial attributes but also depend on non-spatial attributes. 
Secondly, in the function of Expanding_cluster, two purity-density-connected clusters 
can be combined by the sentence of ClId=p.ClId. Lastly, by adding the function of 
Finding_seeds into the function of Expanding_cluster, the algorithm needn’t execute 
region query for all objects in a purity-core object's neighborhood, saving a lot of 
clustering time. 

4   Experimental Evaluation 

Here we evaluate the performance of NSCAS and compare it with the performance of 
DBSCAN, We have used both the synthetic database and the dataset, which was also 
used in Ref.[5]. All experiments were run on a 2.2 GHz PC with 256M memory. 

4.1   Quality of the Clusters  

To test the quality of the clusters, we applied two algorithms to a dataset used in 
Ref.[5]. In the dataset, the non-spatial attribute for the objects in the right part of the 
"Y" shaped dataset is different from that for those in left part. Fig 2(a) shows the 
clusters found by NSCAS, the "Y" shape at the right-bottom corner is divided into two 
clusters because of a difference in the values of the non-spatial attribute. The accuracy 
of NSCAS for this dataset is 100%. As shown in Figure 2(b),DBSCAN does not separate 
the cluster because it ignores the non-spatial attribute, the accuracy of DBSCAN for this 
dataset is lower than that of NSCAS.  
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                      (a) NSCAS                                                       (b) DBSCAN 

Fig. 2. Clusters found by two algorithms  

4.2   Efficiency 

For comparison computational efficiency of NSCAS and DBSCAN, we used synthetic 
datasets that are consisted of objects from 20000 to 100,000. As shown in Figure 3, the 
performance of NSCAS is obviously better than that of DBSCAN. Using a spatial index 
such as an R*-tree, NSCAS has the average time complexity O(nlogn) as that of 
DBSCAN, where n is the size of the dataset. By sampling, NSCAS executes less region 
queries than DBSCAN does, which saves a lot of clustering time. Although NSCAS uses 
more one function than DBSCAN named Finding_seeds, Use of the function does not 
increase the overall complexity, the function of Finding_seeds used here has com-
plexity O(md), where m is the neighborhood size and d is the dimension of the object. 
The neighborhood size and dimension of an object are very small compared to the size 
of the database. 

 
Fig. 3. Efficiency comparisons between NSCAS and DBSCAN 
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5   Conclusions 

Based on DBSCAN, this paper presents a novel spatial clustering algorithm with sam-
pling(NSCAS), which can also discover clusters of any arbitrary shape and handle the 
noise effectively. By sampling, NSCAS executes less region queries than DBSCAN 
does, which saves a lot of clustering time; As well, NSCAS can deal with non-spatial 
attributes, which improves clustering quality. Along with the amount of spatial data has 
been growing tremendously, we need further research how to improve the quality and 
the efficiency of clustering. 
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Abstract. Possibilistic clustering that is robust to noise in data is an-
other useful tool in addition to the best-known fuzzy c-means. However,
there is a fundamental problem of strong dependence on initial values in
possibilistic clustering and there is a proposal of an algorithm generating
‘one cluster at a time.’ Moreover this method is related to the mountain
clustering algorithm. In this paper these features are reconsidered and
a number of algorithms of sequential generation of clusters which in-
cludes a possibilistic medoid clustering are proposed. These algorithms
automatically determine the number of clusters. An illustrative example
with different methods of sequential clustering is given.

1 Introduction

As applications of data clustering are becoming more and more popular in a
variety of research areas in sciences and engineering, many fuzzy clustering algo-
rithms have been developed [1,2,5]. Among different methods of fuzzy clustering,
the possibilistic clustering [8] is a useful tool from the viewpoint of robustness
to noise in data [3] in addition to the best-known fuzzy c-means [4,1]. How-
ever, there are a fundamental problem of strong dependence on initial values in
possibilistic clustering. Although there is a proposal of an algorithm generating
‘one cluster at a time’ [3] to mitigate this drawback, but an algorithm for such
sequential generation of clusters is not yet fully studied.

In this paper problems in and around this method are investigated, whereby a
family of new objective functions are derived which has the form of J(V ) of the
variable of cluster centers instead of J(U, V ) of the two variables of memberships
and the centers in the fuzzy c-means and possibilistic clustering in the original
formulation.

Consequnetly, new algorithms of sequential generation of clusters are proposed
from observation of the new objective functions. It will also be shown that these
algorithms are related to the mountain clustering algorithm [13]. Moreover a
medoid algorithm [6] related to possibilistic clustering is mentioned. An illustra-
tive example is given to show properties of the proposed algorithms.

V. Torra, Y. Narukawa, and Y. Yoshida (Eds.): MDAI 2007, LNAI 4617, pp. 226–236, 2007.
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2 Objective Functions for Possibilistic Clustering

An object for clustering are denoted by xk = (x1, . . . , xp
k) ∈ Rp, (k = 1, . . . , n),

which is a vector in the p-dimensional Euclidean space. The set of object is
denoted byX = {x1, . . . , xn}. Cluster centers are vi = (v1i , . . . , v

p
i )T , i = 1, . . . , c,

where c is the number of clusters. An abbreviated symbol V = (v1, . . . , vc) is
used for the whole collection of cluster centers, while the matrix U = (uki),
(i = 1, . . . , c, k = 1, . . . , n) is used as usual, where uki means the degree of
belongingness of object xk to cluster i. In fuzzy c-means clustering, the constraint
for a fuzzy partition is

M = {U = (uki) :
c∑

i=1

uki = 1, ∀k;ukj > 0, ∀j, k},

while in possibilistic clustering we set

M = {U = (uki) : ukj ≥ 0, ∀j, k}. (1)

The dissimilarity for clustering is the standard squared Euclidean distance be-
tween an individual and a cluster center:

Dki = ‖xk − vi‖2.

We moreover use the dissimilarity between generic elements x, y ∈ Rp, which is
denoted by

D(x, y) = ‖x− y‖2.

Note 1. The constraint (1) is different from that in [8], but we observe the present
constraint is easier to handle and has no harmful effect on the solutions.

2.1 Fuzzy c-Means and Possibilistic Clustering

As is well-known, fuzzy c-means [1] and possibilistic clustering are based on
the optimization of an objective function. We consider two different types of
objective functions.

Je(U, V ) =
n∑

k=1

c∑
i=1

{ukiDki + λ−1uki(log uki − 1)} (2)

J2(U, V ) =
n∑

k=1

c∑
i=1

{(uki)2Dki + ζ−1(1 − uki)2} (3)

Je is the entropy-based objective function [9], while J2 is the function for the
possibilistic clustering [8] which is restricted to m = 2 and ηi = ζ−1 (1 ≤ i ≤ c).

Since we discuss the possibilistic clustering, the objective function of fuzzy
c-means by Bezdek [1] and Dunn [4] is useless, since it gives the trivial solution
of uki = 0 in possibilistic clustering.

In the next description of the alternative optimization PCM of fuzzy c-means
clustering, we can use J = Je or J2 and the constraint (1) for possibilistic
clustering.
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AlgorithmPCM
PCM0. Set an initial value V̄ .
PCM1. Find optimal solution of J with respect to U while V is fixed: put

Ū = arg min
U∈M

J(U, V̄ ).

PCM2. Find optimal solution of J with respect to V while U is fixed: put

V̄ = arg min
V
J(Ū , V ).

PCM3. If the solution (Ū , V̄ ) is convergent, stop; else go to PCM1.
End of PCM

We show solutions of each step and we write, for simplicity, uki instead of ūki,
vi instead of v̄i, without confusion.

uki = exp(−λDki) (4)

for Je, or

uki =
1

1 + ζDki
(5)

for J2, while

vi =
∑n

k=1(uki)mxk∑n
k=1(uki)m

. (6)

in PCM2 where m = 1 for Je and m = 2 for J2.

3 Sequential Extraction of Clusters

Let use define two functions related to (4) and (5).

Ue(xk, y) = exp(−λD(xk, y)) (7)

U2(xk, y) =
1

1 + ζD(xk, y)
(8)

and note Ue(xk, vi) = uki for Je; U2(xk, vi) = uki for J2.
In order to investigate properties of possibilistic clustering, we substitute

U(V ) = (Ue(xk, vi))i=1,...,c into Je(U, V ) where vi is regarded as a variable.
We have

Je(U(V ), V ) = −λ
c∑

i=1

n∑
k=1

exp(−λD(xk, vi)).

If we put J ′
e(V ) = Je(U(V ), V ) and

je(y) = −
n∑

k=1

exp(−λD(xk, y)),
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we have

J ′
e(V ) = Je(U(V ), V ) = λ

c∑
i=1

je(vi).

Although optimization of J ′
e(V ) is not identical with the alternative minimiza-

tion of Je(U, V ), they are expected to have similar properties (cf. [12]). We hence
investigate properties of J ′

e(V ) as a function of V .
We immediately notice that J ′

e(V ) is the sum of je(vi) and since there is no
constraint on vi, every je(vi) can be minimized independently from other je(vj)
(j �= i). If we assume the minimizing element is unique, then the minimization
leads to v̄ = v1 = · · · = vc and therefore only one cluster center will be obtained
as the minimizing element of J ′

e(V ). This means that if we want to have multiple
clusters from this function, we should search several solutions of a multi-modal
function at a time which is far more difficult than the minimization of a unimodal
function.

This observation leads us to the idea of extracting ‘one cluster at a time’
which has been discussed by Davé and Krishnapuram [3]. We also note this idea
has been given by them but not yet fully developed. Hence we discuss their idea
in more detail, whereby we develop new algorithms.

We proceed to consider J2(U, V ). Let us substitute U(V ) = (Ue(xk, vi))i=1,...,c

into J2(U, V ) in which vi is a variable. We have

J ′
2(V ) = J2(U(V ), V ) =

c∑
i=1

n∑
k=1

D(xk, vi)
1 + ζD(xk, vi)

.

We put

j2(y) =
n∑

k=1

D(xk, y)
1 + ζD(xk, y)

,

and it follows that

J ′
2(V ) =

c∑
i=1

j2(vi).

We note again that j2(vi) can be minimized independently from other j2(vj).
We thus have a unique solution v̂ = v1 = · · · = vc, that minimizes J ′

2(V ).
These observations justify the use of an algorithm to extract ‘one cluster at a

time.’ A general and informal procedure for this is as follows.

1. Let the initial set of objects be X(0) = X and k = 0 Let the function
J(v; k) = je(v) (or J(v; k) = j2(v)) with the set of objects X(k).

2. Search the minimizing element of J(v; k):

v(k) = arg min
v
J(v; k)

3. Extract cluster G(k) that belongs to the center v(k).
4. Let X(k+1) = X(k) − G(k). If X(k+1) does not have sufficient elements to

extract one more cluster, stop; else k := k + 1 and go to step 2.
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A notable feature in this procedure is that we do not need to specify the number
of clusters beforehand. However, the method of minimization is not specified
in this procedure and hence we will consider this problem in the next section.
Before considering the minimization schemes, we compare the above two objec-
tive functions and also review the mountain clustering. Note that a method of
extracting one cluster at a time is called a sequential algorithm of possibilistic
clustering here.

Note 2. The idea of ‘one cluster at a time’ has already been proposed in [3], but
the above analysis, and algorithms shown below have not yet been studied.

3.1 Comparison of Objective Functions

In order to theoretically compare the objective functions J ′
e(V ) and J ′

2(V ), we
investigate je(y) and j2(y). Recall that je(y) and j2(y) are respectively the sum
of −Ue(xk, y) and U2(xk, y):

je(y) = −
n∑

k=1

Ue(xk, y),

j2(y) =
n∑

k=1

U2(xk, y).

We observe that Ue(xk, y) and U2(xk, y) as the function of y has similar proper-
ties in the minimization of je(y) and j2(y).

Proposition 1. The function Ue(xk, y) satisfies

−Ue(xk, xk) = min
y
−Ue(xk, y) = −1; lim

‖y‖→∞
−Ue(xk, y) = 0,

while U2(xk, y) satisfies

U2(xk, xk) = min
y
U2(xk, y) = 0; lim

‖y‖→∞
U2(xk, y) =

1
ζ
.

Moreover, if we put

ge(z) = − exp(−λz), g2(z) =
z

1 + ζz
, (0 ≤ z < +∞),

we see that the both functions ge(z) and g2(z) are monotonically increasing.

This proposition shows that we are handling objective functions of similar the-
oretical properties.
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3.2 Mountain Clustering

Before stating minimization algorithms, we briefly review the mountain method
[13], as this technique has a close relation to the present consideration. Indeed,
the mountain clustering extracts sequentially, i.e., a cluster at a time.

This method considers the mountain function

M(y) =
n∑

k=1

exp(−αD(xk, y)), (α > 0) (9)

where y ∈ Rp is restricted to grid points. Let y(1) be the maximizing point of
(9). Then the second mountain function is defined:

M (2)(y) = M(y)−M(y(1))
n∑

k=1

exp(−αD(y(1), y)).

and then the calculation is repeated:

M (�)(y) =M(�− 1)(y)−M(y(�−1))
n∑

k=1

exp(−αD(y(�−1), y)). (10)

until there is no significant cluster. The stopping criterion is given by the ratio
and a given parameter δ > 0:

M(y(1))
M(y(�−1))

< δ. (11)

We see that M(y) is the same as −je(y) and also the clusters are extracted one
by one. Thus the idea of the mountain method is closely related to the present
discussion.

4 Algorithms of Sequential Extraction of Clusters

The main problem in the above procedure is how to optimize the function J(v; k),
which we consider in this section.

Three procedures for the minimization are described in order to optimize
J(v; k).

First procedure is simplest. It minimizes the objective function on the finite
set {y1, . . . , yL}.

Procedure A
A1. Generate candidate points y1, . . . , yL ∈ Rp. X(0) = X and k = 0.
A2. Find minimizing element

ȳ = arg min
v=y1,...,yL

J(v; k).
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A3. Find the cluster G(k) with the center ȳ. ExtractG(k): X(k+1) = X(k)−G(k).
If X(k+1) does not have sufficient elements to extract one more cluster, stop;
else k := k + 1 and go to A2.

The points y1, . . . , yL can taken at grid points which is similar to the moun-
tain method, or can be randomly chosen from X . Alternatively, we can take
{y1, . . . , yL} = X , then the method may be called a one-pass algorithm of se-
quential possibilistic medoid calculation, since the medoid is the cluster center
that corresponds to an object (cf. Kaufman, Rousseeuw [6] for hard c-medoid).

The second procedure which is similar to the ordinary alternative minimiza-
tion of fuzzy c-means is also useful, but it requires more calculation than the
first method.

Procedure B
B1. Generate candidate points y1, . . . , yL ∈ Rp and they are initial cluster

centers. X(0) = X and k = 0.
B2. Repeat calculation of uki and vi until convergence. Converged points are

denoted by z1, . . . z�. Find minimizing element

z̄ = arg min
v=z1,...,z�

J(v; k). (12)

B3. Find the cluster G(k) with the center z̄. Extract G(k): X(k+1) = X(k)−G(k).
If X(k+1) does not have sufficient elements to extract one more cluster, stop;
else k := k + 1 and go to B2.

It has been observed that several cluster centers are simultaneously obtained if
we do not impose the condition (12), and hence this procedure is also useful as
an algorithm of ordinary possibilistic clustering in general (cf. [11]).

4.1 Possibilistic Medoid Calculation

We can moreover mention the next procedure which may be called a multi-pass
possibilistic medoid clustering in a generalized form.

Procedure C
C1. Generate candidate points y1, . . . , yL ∈ X and choose initial cluster centers

z1, . . . , zc from Y = {y1, . . . , yL}. X(0) = X and k = 0.
C2. Repeat C3 until convergence.
C3. Let yi1, . . . , yki ∈ Y be K-nearest elements to zi (i = 1, . . . , c).

Find minimizing element

z̄i = arg min
v=zi,yi1,...,yki

J(v; k).

Put zi = z̄i.



Algorithms for Sequential Extraction of Clusters 233

C4. Let
z̄ = arg min

v=zi,yi1,...,yki
J(v; k).

Find the cluster G(k) with the center z̄. Extract G(k): X(k+1) = X(k)−G(k).
If X(k+1) does not have sufficient elements to extract one more cluster, stop;
else k := k + 1 and go to C2.

This procedure requires more calculation than the procedures A and B, and
hence seems less useful for the sequential possibilistic clustering, but in order
to find a medoid as a cluster center, such a procedure should be considered.
With a slight modification, Procedure C is used for ordinary possibilistic medoid
clustering. We thus have the next procedure.

Procedure C’ (ordinary possibilistic medoid clustering)
C’1. Generate candidate points y1, . . . , yL ∈ X and choose initial cluster centers

z1, . . . , zc from Y = {y1, . . . , yL}.
C’2. Repeat C’3 until convergence.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

1
2
3
4

center

Fig. 1. Clusters 1 ∼ 4 sequentially extracted from a set of points on the plane using
Procedure B
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C’3. Let yi1, . . . , yki ∈ Y be K-nearest elements to zi (i = 1, . . . , c).
Calculate

ūki = exp(−λD(xk, zi)), ∀k, i,
V̄ = arg min

vi=zi,yi1,...,yki
J(Ū , V ).

Put zi = v̄i (i = 1, . . . , c).

5 An Illustrative Example

Figures 1 and 2 are respectively the clusters obtained from Procedures B and C
for the same set of points on the plane. The objective function J ′

e with has been
used and the extraction of objects uses the crisp criterion of

G(k) = {x� ∈ X : exp(−λD(x�, v
(k))) ≥ β}.
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Fig. 2. Clusters 1 ∼ 5 sequentially extracted from a set of points on the plane using
Procedure C
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with the parameter β = 0.2.
The numbers 1, . . . , 5 at the lower right corner implies the number of the clus-

ters sequentially extracted with the centers shown by small circles: the number 1
is the first cluster, the number 2 is the second, and so on.

In Figure 1, clusters 1 ∼ 4 have successfully extracted with the exception
of several misclassified points shown by ∗ and +. After the fourth cluster havs
been extracted, no object remains. We note that the correct number of the four
clusters have been extracted although the number of clusters has not been given
beforehand.

In Figure 2, the medoid algorithm has been used with all objects as {y1, . . . , yL}
in Procdure C; the result is similar to that in Figure 1 except that the fifth clus-
ter has been detected, but it is not well-separated from other clusters. Thus, this
algorithm fails to find the correct number of clusters, but overall performance is
acceptable.

Generally the medoid method does not perform as well as the method of c-
means, as this figure shows, although medoids may be preferred in some real
applications.

Note 3. We have omitted the result from Procedure A. It is similar to that
from Procedure C. Generally Procedure C requires more calculation than Pro-
cedure A, but the results are more stable, since an iterative algorithm is used.

6 Conclusion

We have studied several algorithms of sequential extraction of clusters which con-
nects the idea of possibilistic clustering [8,3] and the mountain clustering [13] by
eliminating the membership matrix considering objective function of the cluster
centers alone. We have also considered medoid algorithm using the sequential
extraction and the possibilistic method.

The present study has uncovered the nature and properties of the method of
possibilistic clustering and its variations. An implication of this study is that the
mountain clustering has other options of taking random points instead of the
grid points [13], and moreover J ′

2(V ) can be used for the objective function in
the mountain method. As another proposal we have mentioned the use of possi-
bilistic medoids. Although we could not show an advantage of the medoid herein,
applications such as document retrieval may prefer a medoid as a representative
object of a cluster than a centroid.

In summary, possibilistic clustering as a sequential algorithm should be re-
marked, as the good property of the automatic determination of the number
of clusters in this method should not be overlooked. Moreover, as there are
many variations of fuzzy c-means, we have further investigations to be done in
both methodological features and applications with regard to the present
method.
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Abstract. The paper presents some new clustering algorithms which
are based on fuzzy c-means. The algorithms can treat data with toler-
ance defined as hyper-rectangle. First, the tolerance is introduced into
optimization problems of clustering. This is generalization of calculation
errors or missing values. Next, the problems are solved and some algo-
rithms are constructed based on the results. Finally, usefulness of the
proposed algorithms are verified through numerical examples.

1 Introduction

Clustering is one of the unsupervised classification and fuzzy c-means (FCM)[1]
is one of the typical technique of fuzzy clustering.

In general, each data on a real space is transformed to a point in a pattern
space and analyzed in clustering. However, the data should be often represented
not by a point but by a set because of uncertainty of the data, e.g., measure-
ment error margin, data that cannot be regarded as one point, and missing
values in data. In the past, these uncertainties of data have been represented as
interval range and many clustering algorithms for these interval ranges of data
have been constructed[2,3] and one of the authors have also proposed one of such
algorithms[4,5]. In these algorithms, nearest neighbor distance, furthest neighbor
distance and Hausdorff distance have been used to calculate the dissimilarity be-
tween the target data in clustering. However, the guideline to select the available
distance in each case has not been shown so that this problem is difficult. When
we consider such a situation, it is more desirable to calculate the dissimilarity
between such interval ranges of data without introducing a particular distance,
e.g., nearest neighbor one and so on.

One of the authors has introduced the new concept of tolerance, which includes
the above-mentioned uncertainties of data. The tolerance is different from the
interval from the viewpoint of introduction of tolerance vectors. However he
proposed two clustering algorithms, one is based on Euclidean norm[6] and the
other is L1-norm[7]. The tolerance is defined as hyper-sphere in these algorithms.

V. Torra, Y. Narukawa, and Y. Yoshida (Eds.): MDAI 2007, LNAI 4617, pp. 237–248, 2007.
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In this paper, we consider new optimization problems in which the tolerance
is defined as hyper-rectangle and we construct new clustering algorithms based
on sFCM (Standard Fuzzy c-means)[1] and eFCM (Entropy regularized Fuzzy c-
means)[8] on L1-norm and Euclidean (L2) norm for data with tolerance through
solving the optimization problems. It is easier to represent the uncertainty by
hyper-rectangle than hyper-sphere because each objective attribute and the axis
of pattern space are in one-to-one correspondence.

2 Theory

In this section, we discuss about optimization problems for clustering.
We define some notations at the beginning. X = {x1, . . . , xn} is a subset

on a p dimensional vector space Rp and we write xk = (xk1, . . . , xkp)T ∈ Rp.
Here, we consider classifying the data set X into clusters Ci(i = 1, . . . , c). Let
vi = (vi1, . . . , vip)T ∈ Rp be the cluster center Ci and V = {v1, . . . , vc} be the
set of cluster centers. Moreover, μki is the membership grade belonging xk to Ci

and we denote the partition matrix U = [μki]. Fuzzy c-means calculates V and
U which minimize an objective function by alternative optimization.

Here, we define tolerance vector εk = (εk1, . . . , εkp)T ∈ Rp, and E = {ε1,
. . . , εn} is a set of tolerance vectors. In the conventional works, the data has
been represented as xk. On the other hand, the data in this paper is allowed to
be xk + εk because of the uncertainty. Simply speaking, the tolerance vector εk
means divergence of the data from xk. The constraint condition is shown by the
following expression.

|εkj | ≤ κkj , (κkj > 0). (1)

Fig. 1 shows an example of tolerance vector in R2.

Fig. 1. An example of tolerance vector in R2
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The purposes of the proposed algorithms are calculation of U , V and E by al-
ternate optimization. In the next session, we will construct clustering algorithms
for data with tolerance through mathematical discussion.

2.1 sFCM for Data with Tolerance Based on L1-Norm

The objective function of sFCM based on L1-norm is defined by Jajuga[9].

JsFCM-L1 =
c∑

i=1

n∑
k=1

p∑
j=1

μm
ki|xkj − vij |,

under the constraint
c∑

i=1

μki = 1, (μki ≥ 0). (2)

We define the following objective function based on the above equation.

JsFCMTR-L1 =
c∑

i=1

n∑
k=1

μm
kidki, (3)

where

dki =
p∑

j=1

|xkj + εkj − vij |.

The following optimal solution is obtained by using the Lagrange function.

μki =

(
c∑

s=1

(
dki

dks

) 1
m−1
)−1

. (4)

Here we propose two methods to obtain vij . One is based on Ref.[10] and called
Method 1. The other is based on Ref.[9] and called Method 2.

Method 1

From (3), semi-objective function is

Jij(vij) =
n∑

k=1

μm
ki|xkj + εkj − vij |.

If this equation is minimized, the objective function is also minimized. The
optimal solution of vij is calculated according to the following procedures.

Step 1. Data is sorted in ascending order in each dimension.

x1j + ε1j , . . . , xnj + εnj

↓ Sorting

xq(1)j + εq(1)j ≤ . . . ≤ xq(n)j + εq(n)j

where q(k) is substitution of (1, . . . , n).
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Step 2. We calculate as follows.

S = −1
2

n∑
k=1

(μki)m.

Step 3. It starts from r = 0 and the following calculations are repeated between
S < 0. r := r + 1;

S := S + (μq(r)i)m;

Step 4. From the above calculation, we obtain

vij = xq(r)j + εq(r)j . (5)

Method 2

From (3), semi-objective function is

Jij(vij) =
n∑

k=1

wki(xkj + εkj − vij)2, (6)

where

wki =
μm

ki

|xkj + εkj − vij | .

From (6),
∂Jij

∂vij
= −2

n∑
k=1

wki(xkj + εkj − vij) = 0.

Then, we have

vij =
∑n

k=1 wki(xkj + εkj)∑n
k=1 wki

. (7)

Next, we consider the way to obtain εkj . The procedure is as same as vij .

Method 1

Step 1. Data is sorted in ascending order in each dimension.

v1j − xkj , . . . , vcj − xkj

↓ Sorting

vq(1)j − xkj ≤ . . . ≤ vq(c)j − xkj

where q(i) is substitution of (1, . . . , c).

Step 2. We calculate as follows.

S = −1
2

c∑
i=1

(μki)m.



Fuzzy c-Means for Data with Tolerance 241

Step 3. It starts from r = 0 and the following calculations are repeated between
S < 0.

r := r + 1;
S := S + (μkq(r))m;

Step 4. From the above calculation, we obtain

εkj = sign(vq(r)j − xkj)×min{|vq(r)j − xkj |, κkj}. (8)

Method 2

From (3), semi-objective function is

Jkj(εkj) =
c∑

i=1

wki(xkj + εkj − vij)2. (9)

We partially differentiate (9) with respect to εkj and we have

εkj =
∑c

i=1 wki(vij − xkj)∑c
i=1 wki

. (10)

From (1) and (10), we obtain

εkj = sign
( ∑c

i=1 wki(vij − xkj)∑c
i=1 wki

)
×min

{ ∣∣∣∑c
i=1 wki(vij − xkj)∑c

i=1 wki

∣∣∣, κkj

}
. (11)

2.2 eFCM for Data with Tolerance That Based on L1-Norm

The objective function is

JeFCMTR-L1 =
c∑

i=1

n∑
k=1

μkidki + λ−1
c∑

i=1

n∑
k=1

μki logμki. (12)

The constraint condition is (2).
The following optimal solution is obtained by using the Lagrange function.

μki =
e−λdki∑c

s=1 e
−λdks

. (13)

Two methods to obtain vij are considered in the same way of Section 2.1.

Method 1

From (12), semi-objective function is

Jij(vij) =
n∑

k=1

μki|xkj + εkj − vij |.

Then, vij is obtained according to the procedure similar to the Section 2.1 by
replacing (μki)m and (μq(k)i)m with μki and μq(k)i respectively.
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Method 2

From (12), semi-objective function is

Jij(vij) =
n∑

k=1

wki(xkj + εkj − vij)2, (14)

where
wki =

μki

|xkj + εkj − vij | .

Similar to Section 2.1

vij =
∑n

k=1 wki(xkj + εkj)∑n
k=1 wki

. (15)

We can get also εkj Section 2.1.

Method 1

εkj is obtained according to the procedure similar to the Section 2.1 by replacing
(μki)m and (μkq(i))m with μki and μkq(i) respectively.

Method 2

(11) is obtained according to the procedure similar to Section 2.1.

2.3 sFCM for Data with Tolerance That Based on Euclidean Norm

We introduce the tolerance into the objective function of sFCM by Bezdek[1].

JsFCMTR-L2 =
c∑

i=1

n∑
k=1

μm
ki‖xk + εk − vi‖2,

where

‖xk + εk − vi‖2 =
p∑

j=1

(xkj + εkj − vij)2,

under the constraints
c∑

i=1

μki = 1, (μki ≥ 0), (16)

ε2kj ≤ κ2
kj , (κkj > 0). (17)

We introduce the following Lagrange function to solve the optimization
problem,

Ls =
n∑

k=1

c∑
i=1

μm
ki‖xk + εk − vi‖2 +

n∑
k=1

γk(
c∑

i=1

μki − 1) +
n∑

k=1

p∑
j=1

δkj(ε2kj − κ2
kj).



Fuzzy c-Means for Data with Tolerance 243

From the Kuhn-Tucker condition, the necessary conditions are as follows.{
∂Ls
∂vij

= 0, ∂Ls
∂μki

= 0, ∂Ls
∂εkj

= 0,
∂Ls
∂γk

= 0, ∂Ls
∂δkj

≤ 0, δkj
∂Ls
∂δkj

= 0, δkj ≥ 0.
(18)

From the convexity of JsFCMTR-L2 , it is sufficient to consider the case of (18).
For μki, from

∂L1

∂μki
= mμm−1

ki ‖xk + εk − vi‖2 + γk = 0, (19)

we have

μki =
( −γk

m‖xk + εk − vi‖2

) 1
m−1

.

In addition, from the constraint condition (16), we have

c∑
l=1

( −γk

m‖xk + εk − vl‖2

) 1
m−1

= 1. (20)

From (19) and (20), we have

μki =

(
c∑

l=1

(‖xk + εk − vi‖2

‖xk + εk − vl‖2

) 1
m−1
)−1

. (21)

For vij , from
∂Ls

∂vij
= −

n∑
k=1

2μm
ki(xkj + εkj − vij) = 0,

we have

vij =
∑n

k=1 μ
m
ki(xkj + εkj)∑n
k=1 μ

m
ki

. (22)

For εkj , from

∂Ls

∂εkj
=

n∑
k=1

2μm
ki(xkj + εkj − vij) + 2δkjεkj = 0,

we have

εkj =
−∑c

i=1 μ
m
ki(xkj − vij)∑c

i=1 μ
m
ki + δkj

. (23)

On the other hand, from

δkj
∂Ls

∂δkj
= δkj(ε2kj − κ2

kj) = 0,
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we have to consider two cases, δkj = 0 and ε2kj = κ2
kj . First, we consider the case

of δkj = 0. From
∂Ls

∂εkj
=

n∑
k=1

2μm
ki(xkj + εkj − vij) = 0,

we have

εkj =
−∑c

i=1 μ
m
ki(xkj − vij)∑c

i=1 μ
m
ki

. (24)

Next, we consider the case of ε2kj = κ2
kj . From (23) and ε2kj = κ2

kj , we have

ε2kj =
{−∑c

i=1 μ
m
ki(xkj − vij)∑c

i=1 μ
m
ki + δkj

}2

= κ2
kj .

Then, we have
c∑

i=1

μm
ki + δkj = ±|

∑c
i=1 μ

m
ki(xkj − vij)|
κkj

.

From δkj ≥ 0, the right side is positive. Then, from (23) we get

εkj = −κkj

∑c
i=1 μ

m
ki(xkj − vij)

|∑c
i=1 μ

m
ki(xkj − vij)| . (25)

εkj which satisfies (24) and (25) is

εkj = −αkj

c∑
i=1

μm
ki(xkj − vij), (26)

where

αkj = min
{

κkj

|∑c
i=1 μ

m
ki(xkj − vij)| ,

1∑c
i=1 μ

m
ki

}
.

2.4 eFCM for Data with Tolerance That Based on Euclidean Norm

The objective function is

JeFCMTR-L2 =
n∑

k=1

c∑
i=1

μki‖xk + εk − vi‖2 + λ−1
n∑

k=1

c∑
i=1

μki logμki,

under the constraints (16) and (17).
Similar to Section 2.3, we introduce the following Lagrange function to solve

the optimization problem,

Le =
n∑

k=1

c∑
i=1

μki‖xk + εk − vi‖2 + λ−1
n∑

k=1

c∑
i=1

μki log μki

+
n∑

k=1

γk(
c∑

i=1

μki − 1) +
n∑

k=1

p∑
j=1

δkj(ε2kj − κ2
kj).
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From the Kuhn-Tucker condition, the necessary conditions are as follows.{
∂Le
∂vij

= 0, ∂Le
∂μki

= 0, ∂Le
∂εkj

= 0,
∂Le
∂γk

= 0, ∂Le
∂δkj

≤ 0, δkj
∂Le
∂δkj

= 0, δkj ≥ 0.
(27)

From the convexity of JeFCMTR-L2 , it is sufficient to consider the case of (27).
For μki, from

∂Le

∂μki
= ‖xk + εk − vi‖2 + λ−1(logμki + 1) + γk = 0,

we have

μki =
e−λ‖xk+εk−vi‖2∑c
l=1 e

−λ‖xk+εk−vl‖2 . (28)

For vij , we obtain following equation by calculating in the same way of
Section 2.3.

vij =
∑n

k=1 μki(xkj + εkj)∑n
k=1 μki

. (29)

For εkj , from (14) and

∂Le

∂εkj
=

n∑
k=1

2μki(xkj + εkj − vij) + 2δkjεkj = 0,

we have

εkj =
−∑c

i=1 μki(xkj − vij)
δkj + 1

.

According to the procedure of Section 2.3, we obtain

εkj = −αkj(xkj −
c∑

i=1

μkivij), (30)

where

αkj = min
{

κkj

|xkj −
∑c

i=1 μkivij | , 1
}
.

3 Algorithms

The algorithmsderived in the above section are called sFCMTR-L1-1sFCMTR-
L1-2 eFCMTR-L1-1eFCMTR-L1-2 sFCMTR-L2and eFCMTR-L2 in turn.

Each algorithm is calculated according to the following procedure. Please refer
to Table 1 for the equation of those optimal solutions.

Algorithm

Step 1 Give the values of m and κkj , and set initial values of E and V .
Step 2 Calculate U = μki by Eq.A.
Step 3 Calculate V = vij by Eq.B.
Step 4 Calculate E = εkj by Eq.C.
Step 5 If (U,E, V ) is convergent, stop. Otherwise, go back to Step 2.
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Table 1. This table shows optimal solutions of each algorithm

Algorithm Eq.A Eq.B Eq.C
sFCMTR-L1-1 (4) (5) (8)
sFCMTR-L1-2 (4) (7) (11)
eFCMTR-L1-1 (13) (5) (8)
eFCMTR-L1-2 (13) (15) (11)
sFCMTR-L2 (21) (22) (26)
eFCMTR-L2 (28) (29) (30)

4 Numerical Examples

In this section, we show some examples of classification by the above-mentioned
six algorithms. The classified data set is diagnosis of heart disease[11]. The
result of the diagnosis is known. We choose five attributes from 13 ones of
original data referring to the advice of a specialist. The number of data is
866 and 560 data contains missing values in some attributes. Please refer to
Table 2 for the explanation of each attribute and the number of missing
values.

Table 2. The explanation of each attribute and the number of missing values

Attribute Number of missing values
Resting blood pressure 5

Maximum heart rate achieved 1
ST depression induced by exercise relative to rest 8

The slope of the peak exercise ST segment 255
Number of major vessels colored by flouroscopy 557

To treat missing values as tolerance, we give the average of maximum value
and minimum one to the missing one of each attribute, and set the maximum
tolerance κkj on the absolute value of difference between the average and the
minimum value.

In all algorithms, the convergence condition is

max
i,j

|vij − v̄ij | < 10−6,

where v̄ij is the previous optimal solution. In addition, m = 2 in sFCMTR and
λ = 3 in eFCMTR.

In each algorithm, we give initial cluster centers at random and classify the
data set into two clusters. We run this trial 1000 times and show the average of
ratio of correctly classified results. Please refer to Table 3 for the results of only
306 data without missing values, Table 4 for the results of the classification by
using the algorithms proposed in this paper and Table 5 for the results of the



Fuzzy c-Means for Data with Tolerance 247

Table 3. The results of classifying only 306 data without missing values

Algorithm The average of ratio correctly classified
sFCM-L1-1 70.0
sFCM-L1-2 71.9
eFCM-L1-1 74.1
eFCM-L1-2 74.8
sFCM-L2 75.2
eFCM-L2 69.2

Table 4. The results of the classification by using the proposed algorithms in this
paper

Algorithm The average of ratio correctly classified
sFCMTR-L1-1 68.6
sFCMTR-L1-2 67.4
eFCMTR-L1-1 66.2
eFCMTR-L1-2 62.4
sFCMTR-L2 73.4
eFCMTR-L2 61.3

Table 5. The results of the classification by using the algorithms which treat missing
value as interval data and use nearest neighbor distance to calculate dissimilarity

Algorithm The average of ratio correctly classified
sFCM-L1-1 69.0
sFCM-L1-2 68.9
eFCM-L1-1 69.2
eFCM-L1-2 68.6
sFCM-L2 67.2
eFCM-L2 67.6

classification by using the algorithms which treat missing value as interval data
and uses nearest neighbor distance to calculate the dissimilarity.

To compare the results for all data by the proposal algorithms(Table 4) with
the results for only data without missing values(Table 3), the latter is a little
better than the former. However, this is very natural. From these examples, we
can not find significant difference between the algorithms, using the tolerance
and nearest neighbor distance. The important point is that ε is calculated only
by the proposed algorithms. The meaning of ε depends on the data set.

5 Conclusion

In this paper, we considered the optimization problems for data with tolerance
and solved the optimal solutions. Using the results, we have constructed new
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six algorithms. Moreover, we shown the usefulness of the proposed algorithms
through some numerical examples.

In these algorithms, data with tolerance is not regarded as interval data.
The reason is that the algorithms is more appropriate because we can use the
former dissimilarities based on normal distance in the frame of the optimization.
Moreover, we can use the proposed algorithms for the data with tolerance defined
as hyper-rectangle in more cases than the algorithms for the data with tolerance
defined as hyper-sphere[6,7] because more certainties should be represented as
hyper-rectangle than hyper-sphere.

In the forthcoming paper, we will consider to apply the concept of tolerance
to regression analysis and support vector machine.
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Abstract. A fuzzy neighborhood model for analyzing information sys-
tems having topological structures on occurrences of keywords is pro-
posed and associated kernel functions are studied. Sufficient conditions
when a neighborhood defines a kernel are derived. Accordingly, agglomer-
ative clustering algorithms are applicable which employ kernel functions.
An illustrative example is given.

1 Introduction

Text mining and web information analysis are hot topics of today; yet existing
methods are insufficient, and hence a new theory for these applications should
be developed. From the viewpoint of rough sets [11,12], the classical framework
of classifications of the universal set is frequently too strict, and more general
structure of the topology should be considered, as texts and web information
have natural topologies.

We have proposed a model of fuzzy neighborhoods [9] which partly generalizes
non-standard rough sets [16] using fuzzy relations. Another feature of this model
is to analyze a set of terms of which occurrences are dispersed on an universal
set with a natural topology. Accordingly dissimilarity measures are defined on
the set of terms and classification and clustering of terms have been considered.
A drawback of this model is that such a dissimilarity measure is a weaker math-
ematical structure than the Euclidean metric in which not only the distance but
also the cosine between two objects are defined.

In this paper we proceed to introduce an inner product space into the neigh-
borhood model using the high-dimensional feature space used in support vector
machines [15]. In particular the idea of the convolution kernel [4] is employed. A
type of data is focused upon that is a sequence of occurrences of terms. Two suf-
ficient conditions that the fuzzy neighborhoods provide kernel functions will be
given. Namely, a theorem by Pólya [13] can be used, and moreover a fuzzy equiv-
alence relation defines another kernel. Accordingly agglomerative clustering algo-
rithms are applicable including the centroid method and the Ward method [3,5],

V. Torra, Y. Narukawa, and Y. Yoshida (Eds.): MDAI 2007, LNAI 4617, pp. 249–260, 2007.
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which assumes the use of a Euclidean distance. Finally an illustrative example
is given to show the present algorithm correctly works.

2 Term Space and Fuzzy Neighborhood Space

Throughout this paper, we assume A(x) means the membership value of fuzzy
set A at x instead of the classical symbol μA(x).

The fuzzy neighborhood model basically consists of the quadruple

< T,O,R,N > (1)

in which T is called a term set in which elements are denoted by t, t′, ti, . . . ∈ T ;
O is called an occurrence space in which elements are denoted by o, o′, oi, . . . ∈ O.
T is generally a finite set, while O can be either finite or infinite. R is a fuzzy
relation on T ×O, while N is a fuzzy relation on O ×O. We moreover define a
family of fuzzy sets N [o] of the same symbol:

N(o, o′) = N [o](o′), ∀o′ ∈ O. (2)

That is, N [o] is a fuzzy set that is dependent on o, which is defined by the above
equation. The fuzzy set N [o] is called a fuzzy neighborhood of o ∈ O.

In applications, the set T is a set of keywords which we wish to classify or
divide into clusters. In real worlds, the keywords may occur many times in a
text, or distributed on web pages. Hence keyword occurrences are represented
by o, o′ . . . ∈ O. When o means a keyword t, R(t, o) = 1. However, there are
similar keywords and hence generally 0 ≤ R(t, o) ≤ 1. When an occurrence o
does not correspond to any keyword t, R(t, o) = 0. We assume, for each t ∈ T ,
there exists o ∈ O such that R(t, o) > 0. We hereafter use the word of a term
instead of a keyword.

Basically we assume N [o], a neighborhood of occurrence o, is given. In appli-
cations, however, a distance may be given instead of a neighborhood. When a
distance d(o, o′) is defined on O, we can define N [o] by the next procedure.

(i) Let f : [0,∞) → [0, 1] be a strictly monotonically decreasing function such
that f(0) = 1 and

lim
x→+∞

f(x) = 0. (3)

(ii) Define N [o] by
N [o](o′) = f((d(o, o′)). (4)

Notice that the relation N(o, o′) defined by (4) satisfies the symmetry

N(o, o′) = N(o′, o). (5)

Although there are other ways to define directly the neighborhoods, we assume
the symmetry throughout this paper.

We moreover state additional assumptions.
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(I) Reflexivity: N(o, o) = 1 for all o ∈ O.
(II) Finiteness: For an arbitrary o ∈ O, |{o′ : N(o, o′) > 0}| < +∞, i.e., the

number of elements which have nonzero membership values are finite.

The interpretation of N [o] is straightforward, If N [o](o′) > N [o](o′′), then o′

is nearer to o than o′′. If N [o](o′) = 0, then the relation of o to o′ is neglected
by the model.

2.1 Text Mining: Term Relations in Text Sets

Although there is an important application area of web information, we fo-
cus upon documents as a sequence of terms. Let the set of documents be D =
{d1, d2, . . . , dn}. A document d consists of a sequence of occurrences. For simplic-
ity, suppose an occurrence corresponds to a unique term. We handle a sequence
of occurrences, and accordingly we define Sqnc(d) is the sequence of occurrences.
For example assume Sqnc(d) = abcde and term of a, b, d is t; term of c and e is
t′. Then Sqnc(d) = ttt′tt′ using the term symbols.

From technical reason we define concatenation of two document sequences by
Sqnc(d)|Sqnc(d′). Thus if

Sqnc(d) = abcd, Sqnc(d′) = vwxyz,

then

Sqnc(d)|Sqnc(d′) = abcdvwxyz.

The whole sequence X of the document set D is

X = Sqnc(d1)|Sqnc(d2)| · · · |Sqnc(dn).

A natural distance D is defined:

D(a, b) = { number of term occurrences between a and b }+ 1 (6)

For the above d and d′, D(v, w) = 1 and D(v, z) = 4. Thus for this distance the
fuzzy neighborhood is naturally defined. The next two are typical examples.

Crisp and fuzzy neighborhoods NCK [a] and NFβK
[a]:

NCK [a](x) =

{
1 (D(a, x) ≤ K),
0 (D(a, x) > K).

(7)

NFβK
[a](x) =

{
1− {D(a, x)/K}β (D(a, x) ≤ K),
0 (D(a, x) > K).

(8)

The meanings of these neighborhoods are clear.
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3 Inner Product Space Derived from Fuzzy Neighborhood

Generally a system of fuzzy neighborhoods defines a weak topological struc-
ture than the standard Euclidean space. In other words, we cannot construct a
strong mathematical model whereby various theoretical tools and algorithms are
applied. One reason why the Euclidean space has good theoretical properties is
that it has the inner product. Hence if we derive an inner product on the space
of terms using fuzzy neighborhoods, we can expect most mathematical tools of
data analysis are applicable. Therefore the main question herein is when and
how we can derive an inner product in the present framework. The key idea is
the convolution kernel [4].

3.1 A Proximity Measure

Let us define a proximity measure p(t, t′) between two terms t, t′ ∈ T and a
normalized measure s(t, t′) associated with the former.

p(t, t′) =
∑
a∈O

∑
b∈O

R(t, a)N(a, b)R(t′, b) (9)

s(t, t′) =
p(t, t′)√

p(t, t)p(t′, t′)
. (10)

What we will show in this paper is when and how the above measure p(t, t′)
becomes an inner product and accordingly s(t, t′) is a cosine correlation [3] as-
sociated with p(t, t′).

3.2 Vector Space Derived from Terms

Let us suppose for the moment that p(t, t′) is a positive definite function, i.e.,
the eigenvalues of matrix P = (p(t, t′)) are all positive, or in other words,∑

t,t′∈T

ztzt′p(t, t′) > 0, for all (zt) �= 0.

Then we can define a vector space R|T | with the inner product

〈z, z′〉P = ztPz, z, z′ ∈ R|T |.

Such a positive definite matrix provides an inner product of a vector space. In
such a case the matrix or a function p(t, t′) is called a kernel function.

The correspondence between a term t and zt, the t-th component of z can
be explained in terms of real-valued bags (or multisets) [8]. Thus, zt implies the
weight on the term t which can both be positive or negative. Such an interpre-
tation of a term space is not new, since the vector space method [14] is based
on such an idea.
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Moreover, p(t, t′) is called positive semi-definite, if and only if all the eigen-
values of P are nonnegative, or in other words,∑

t,t′∈T

ztzt′p(t, t′) ≥ 0.

In applications, the difference between the positive definite matrix and the pos-
itive semi-definite matrix is not very important, since a positive semi-definite
matrix can be approximated by a positive definite matrix using the regulariza-
tion P + εI (ε > 0). Note

P + εI → P (ε→ 0).

We therefore do not strongly distinguish the positive definiteness and positive
semi-definiteness below.

3.3 Kernel Functions on Terms and Fuzzy Neighborhoods

Let us consider sufficient conditions when a neighborhood defines a kernel func-
tion.

To begin with, consider a simple case when T = O and R(t, a) = 1 if and
only if t = a. That is, an occurrence itself is a term. In this case (9) reduces
to p(t, t′) = N(t, t′) and hence the necessary and sufficient condition such that
p(t, t′) is positive definite is N(t, t′) is positive definite.

We proceed to the general case of (9).

Proposition 1. A sufficient condition such that p(t, t′) is positive definite is
that N(a, b) is positive definite for all a, b ∈ O.

Proof. Let y(a) =
∑

t ztR(t, a). Then, from

ztPz =
∑
t,t′

ztzt′
∑
a,b

R(t, a)N(a, b)R(t′, b)

=
∑
a,b

∑
t

ztR(t, a)
∑
t′

zt′R(t′, b)N(a, b)

=
∑
a,b

y(a)y(b)N(a, b),

we have ∑
a,b

y(a)y(b)N(a, b) ≥ 0 =⇒ ztPz ≥ 0.

��
We also have

Proposition 2. If p(t, t′) is positive definite, then s(t, t′) defined by (10) is also
positive definite.
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Proof. Let ζt = zt/
√
p(t, t) and note p(t, t) > 0 from the positive definiteness of

p(t, t′). Then,

ztSz =
∑
t,t′

ztzt′s(t, t′) =
∑
t,t′

ζtζt′p(t, t′) ≥ 0,

which shows that s(t, t′) is positive definite. ��
Hence we should study when N(a, b) is positive definite.

3.4 A Kernel Function for Text Mining

Let us consider the term sequence X with the natural distance D(a, b). In other
words, the set O of occurrences is the term sequence X . The fuzzy neighborhood
is defined:

N(a, b) = N [a](b) = f(D(a, b))

using (4). We have the following sufficient condition.

Proposition 3. A sufficient condition such that N(a, b) is positive definite is
that the function f is convex on [0,+∞) and f(x) → 0 as x→ +∞.

Proof. Take an arbitrary c ∈ O. The conclusion is immediately obtained from
Pólya’s theorem [13] which states that∑

a,b

zazbf(|x(a) − x(b)|) ≥ 0

when f is convex on [0,+∞) and f(x) → 0 as x → +∞. Note that x(a) is the
real value defined by x(a) = D(a, c) when a is the left hand of c; x(a) = −D(a, c)
when a is right hand of c. ��
For example, the fuzzy neighborhood NFβK

[a](x) of (8) is convex if 0 < β ≤ 1,
while the crisp neighborhood (7) is not guaranteed to provide a positive definite
kernel.

Note 1. A function g : Rn → R is said to be convex when

g(λx+ (1− λ)y) ≤ λg(x) + (1− λ)g(y), ∀x, y ∈ Rn and ∀λ ∈ [0, 1].

3.5 Fuzzy Rough Approximation and a Kernel Function

A more interesting result for researchers in rough sets is that relations for fuzzy
rough approximations [1] provide kernel functions. A fuzzy rough approximation
here is defined by a fuzzy equivalence relation on O. That is, N(a, b) is assumed
to satisfy the transitivity

N(a, b) ≥ min{N(a, c), N(c, b)}, ∀c ∈ O (11)
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in addition to the reflexivity N(a, a) = 1 and the symmetry N(a, b) = N(b, a).
Then it is well-known that for arbitrarily fixed α ∈ (0, 1], the subset

[N(a, ·)]α = {b ∈ O : N(a, b) ≥ α}

forms a partition of O: either one of [N(a, ·)]α = [N(b, ·)]α or [N(a, ·)]α ∩
N(b, ·)]α = ∅ holds.

We now have the next proposition.

Proposition 4. Assume that N(a, b) is a fuzzy equivalence relation. Then
N(a, b) and also p(t, t′) are positive definite kernel functions.

Proof. To prove this proposition, we consider a partition matrix U = (uij).
Namely, an n × n real matrix U is called a partition matrix iff there exists a
partition K1, . . . ,Kc of n = {1, 2, . . . , n} ( i.e.,

⋃
j Kj = n and Ki ∩Kj = ∅, for

i �= j ) such that
uij = 1, ∀i, j ∈ Kh

for some h and
uij = 0, ∀i ∈ K�, j ∈ Kh

for h �= �.
It should be noted here that a partition matrix U is positive semi-definite,

and it is positive definite if and only if U is identity matrix (U = I), since

xtUx =
c∑

i=1

⎛⎝ ∑
xj∈Ki

xj

⎞⎠2

.

The proof of the proposition is now straightforward. We assume that O is a
finite set for simplicity. Then an equivalence relation is represented by a parti-
tion matrix. Moreover a fuzzy equivalence relation F is represented by a finite
collection U1, . . . , Uk of partition matrix and positive β1, . . . , βk:

F =
k∑

j=1

βjUj .

Consequently we have

xtFx =
k∑

j=1

βjx
tUjx ≥ 0.

Hence N(a, b) is positive definite. From Proposition 1, p(t, t′) is also positive
definite. The proposition is thus proved. ��
It has been known that a fuzzy equivalence relation gives a hierarchical classifi-
cation [3,5]. Conversely, given a hierarchical classification represented by a tree,
we can define a fuzzy equivalence relation by putting a real number to each node
of the tree.
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Another question is how to obtain a fuzzy equivalence relation, since the con-
dition of transitivity (11) seems strict. A natural answer is to perform the single
link method of agglomerative clustering [3], which is equivalent to connected
components of a fuzzy graph [5]. In terms of dissimilarity measure, the transi-
tivity is called an ultrametric [3]. To summarize, to obtain a fuzzy equivalence
relation is not very difficult, but the single link clustering is necessary if we do
not have a predefined categorical structure.

4 Application to Agglomerative Clustering

We show the general procedure AHC of agglomerative clustering in which G =
{G1, . . . , GC} is a family of clusters G1, . . . , GC which forms a partition of T .
Note also that d(G,G′) is a dissimilarity measure between two clusters.

Algorithm AHC (Agglomerative Hierarchical Clustering)
AHC0. Put the number of clusters C = |T |; initialize clusters:

Gi = {ti}, i = 1, . . . , C; d(Gi, Gj) = d(ti, tj), all i, j.
AHC1. Calculate (G,G′) = arg min

1≤i,j≤C,i�=j
d(Gi, Gj).

Put Ĝ = G ∪G′. Remove G,G′ from G and add Ĝ to G.
AHC2. Let C = C − 1. If C = 1, output the dendrogram and stop.

Else update d(Ĝ,G′′), ∀G′′ ∈ G, and go back to AHC1.
End of AHC.

Among different ways to update the dissimilarity measures, well-known tech-
niques are the single-link, the complete link, the average-link, the centroid
method, and the Ward method [3,5]. It is immediate to see that the single
link, the complete link, and the average link are applicable to p(t, t′) and s(t, t′),
while the centroid method and the Ward method require the assumption of a
Euclidean space. It has been shown, however, that these two methods can also
be used when a kernel function is employed, and moreover that the updating
formulas are just the same as the ordinary formulas [2]. Hence the only difference
in the nernel-based agglomerative clustering is the initial values d(t, t′). We can
take either p(t, t′) or s(t, t′) as the inner product, but let us take s(t, t′) here.
For the centroid method,

d(t, t′) = 2− 2s(t, t′)

and for the Ward method,

d(t, t′) = 1− s(t, t′).

4.1 An Illustrative Example

A simple example is shown to see that the algorithm correctly works. We use
the Ward method with two fuzzy neighborhoods on a simple sequence of term
occurrences
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A

B

D

E

C

i

k

j

l

X

Y

Z

Fig. 1. Dendrogram from the letter sequence using the Ward method with s(t, t′) and
the kernel N1

A,B,A,C,i,j,j,l,A,D,E,D,E;Y,Z,A,E,B,D,j,k,i,k;
B,C,A,C;E,X,Y,X,Z,B,E,C,D;i,l,k,l,A,D,B,A,C,i,j;
j,l;A,D,B,D,E,A,A,Z,Z,Y,Y,Z;A,E,B,D;
j,k,i,k,B,C,A,E,X,Y,X,Z;B,E,C,D,i,l,k,l

in which a letter stands for an occurrence separated by a comma(,), while
the semicolon(;) implies separation of documents and hence no neighborhood
can intersect the semicolon. The correct answer should be three clusters of
{A, B, C, D, E}, {i, j, k, l}, {X, Y, Z}.

The two fuzzy neighborhoods are

N1(x) = 2−|x| (12)

N2(x) =

{
1− |x|/20 (|x| ≤ 20)
0 (|x| > 20)

(13)

It is immediate to see that these two neighborhoods satisfy the condition in
Proposition 3.
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A

D

E

B

C

i

k

j

l

X

Y

Z

Fig. 2. Dendrogram from the letter sequence using the Ward method with s(t, t′) and
the kernel N2

We show the two dendrograms by the Ward method using s(t, t′) with the
kernels N1 and N2, respectively, in Figures 1 and 2. We see the correct results
in these dendrograms.

5 Conclusions

In this paper a model of fuzzy neighborhoods with application to text mining is
shown and associated kernel functions are proposed, whereby the term set can
be interpreted as a vector space with an inner product.

Concerning the relation between the present theory and rough sets, a neigh-
borhood system [10] is proposed by us that assumes a system of subsets, whereby
a family of kernel functions on generalized rough sets is considered, which is dif-
ferent from the kernels herein.

Although we have mainly shown theoretical properties in this paper without
any real example, the present results imply that a number of existing methods in
data analysis are applicable to the present model, since an inner product space
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has good mathematical properties. Namely, after establishing kernel functions,
we can apply many methods of classification and clustering such as the support
vector machines [15] and kernel fuzzy c-means [6,7]. In this sense, the kernel
method proposed here has broad area of applications.

From theoretical viewpoint, an important point is that several different theo-
ries are put together in the present framework, i.e., neighborhood systems, clas-
sification and fuzzy classification [5], positive definite functions, agglomerative
clustering, and so on.

When different theories meet together in such a way, we have an ample re-
search possibility in near future. The present method is typical in this sense.
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Abstract. In this paper, we discuss c-means clustering algorithms on
the multinomial manifold. Data forms a Riemannian manifold with the
Fisher information metric via the probabilistic mapping from datum to
a probability distribution. For discrete data, the statistical manifold of
the multinomial distribution is appropriate. In general, The euclidean
distance is not appropriate on the manifold because the parameter space
of the distribution is not flat. We apply the Kullback-Leibler (KL) diver-
gence or the Hellinger distance as approximations of the geodesic distance
to hard c-means and fuzzy c-means.

1 Introduction

Data mining for discrete data, such as graph, text, and biological sequences, is
significant for real-world applications. In the discrete setting, the representation
of data is crucial. It is not appropriate to use raw data directly because data are
very sparse and very high-dimensional.

Recently the probabilistic mapping from datum x to a probability distribution
p(x) have been used in [1]. It is a suitable representation of discrete data. For
documents, ”bag of words” representation is that a document is described as a
multinomial distribution (or histogram) of words.

A family of probability distributions forms a Riemannian manifold [2]. The
structure of a manifold is given by the Fisher information metric. For the multi-
nomial family, all probability vectors are on m-simplex. The Riemannian man-
ifold is usually “curved” while the Euclidean space is “flat”. Therefore, the
squared Euclidean distance is not suitable as dissimilarity when we apply the
usual c-means (K-means) to a set of probability distribution. The geodesic dis-
tance by the Fisher information metric or its approximation is needed to clus-
tering on the manifold.

In this paper, we discuss c-means clustering on the statistical manifold of the
multinomial distribution. It is difficult to apply directly the geodesic distance
as a dissimilarity. Instead, we apply the Kullback-Leibler (KL) divergence to
hard c-means and fuzzy c-means. In addition, we discuss the use of the Hellinger
distance.
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2 The Multinomial Manifold

We now present a brief introduction of the multinomial manifold. For further
details, see [2,3].

The multinomial manifold is the parameter space of the multinomial distri-
bution

Pm =
{
x ∈ Rm+1 : ∀j, xj > 0,

m+1∑
j=1

xj = 1
}
. (1)

The structure of a manifold is given by the Fisher information metric,

gθ(u, v) =
∑
i,j

uivjEpx

(∂2 log px(y)
∂xi∂xj

)
(2)

=
m+1∑
j=1

ujvj
xj

, (3)

where u, v ∈ TxPm are tangent vectors to Pm at x represented in the standard
basis of Rm+1. The inner product (3) defines the structure of the manifold, such
as distance, angle, curvature on Pm. It is quite different from the inner product
on the Euclidean space.

It is well-known fact the multinomial manifold is isometric to the positive
m-sphere

Sm
+ =
{
x ∈ Rm+1 : ∀j, xj > 0,

m+1∑
j=1

x2
j = 1

}
, (4)

through the diffeomorphism F : Pm → Sm
+ ,

F (x) = (
√
x1, . . . ,

√
xm+1). (5)

Therefore the geodesic distance between x, x′ ∈ Pm can be computed as the
geodesic distance between F (x), F (x′) ∈ Sm

+ , the shortest curve connecting F (x)
and F (x′),

DG(x, x′) = arccos
(m+1∑

j=1

√
xjx′j

)
. (6)

The direct use of the geodesic distance is much difficult to analyze. We in-
troduce another familiar dissimilarity measures. The Kullback-Leibler (KL) di-
vergence have been frequently used to measure the distance between probability
distributions. For the multinomial family, KL-divergence is defined by

DKL(x||x′) =
m+1∑
j=1

xj log
xj

x′j
. (7)
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The Hellinger distance have been also used.

DH(x, x′) =

√√√√m+1∑
j=1

(√
xj −
√
x′j

)2
(8)

3 Hard c-Means Based on KL-Divergence

Probability vectors to be clustered are denoted by xk = (xk1, . . . , xk,m+1) ∈
Pm+1, k = 1, . . . , n, Cluster centers are vi = (vi1, . . . , v1,m+1)T , i = 1, . . . , c,
where c is the number of clusters. An abbreviated symbol V = (v1, . . . , vc) is used
for the whole collection of cluster centers. The matrix U = (uik), (i = 1, . . . , c,
k = 1, . . . , n) is used as usual, where uik means the degree of belongingness of
object xk to cluster i.

As is well-known, hard c-means clustering is based on the optimization of an
objective function.

J =
n∑

k=1

c∑
i=1

uikDKL(xk||vi) (9)

Note that xk and vi are probability vectors defined by
m+1∑
j=1

xkj =
m+1∑
j=1

vij = 1. (10)

The constraints is assumed for U ,

M = {U = (uik) :
c∑

i=1

uik = 1, ujk ∈ {0, 1}, ∀j, k }. (11)

A cluster assignment of xk is the same as a usual hard c-means,

l = arg min
1≤i≤c

DKL(xk||vi). (12)

Cluster centers are derived from the Lagrange multiplier method with the
constraint.

L = J +
c∑

i=1

μi(
m+1∑
j=1

vij − 1)

∂L

∂vij
= −

n∑
k=1

uikxkj

vij
+ μi = 0

As a result, cluster centers are calculated in the same way as a usual hard c-
means.

vij =

n∑
k=1

uikxkj

n∑
k=1

uik

(13)
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AlgorithmHCM. (Hard c-means)
HCM0. Set an initial value V̄ , ᾱ, S̄ for V, α, S.
HCM1. Find optimal solution of J with respect to U while other variables

are fixed: put
Ū = arg min

U∈M
J(U, V̄ ).

HCM2. Find optimal solution of J with respect to V while other variables
are fixed: put

V̄ = arg min
V
J(Ū , V ).

HCM3. If the solution (Ū , V̄ ) is convergent, stop; else go to HCM1.
End of HCM.

4 Fuzzy c-Means Based on KL-Divergence

Fuzzy c-means[4] obtains a posterior probability of the class membership. Fuzzy
c-Means by the entropy regularization [5] is regularized hard c-means to obtain
a smoothing membership. The objective function is

J(U, V, α) =
n∑

k=1

c∑
i=1

uikDKL(xk||vi) + λ−1
n∑

k=1

c∑
i=1

uik log
uik

αi
. (14)

The second term of the right-hand side of (14) is the regularization term. α =
(α1, . . . , αc) is a cluster volume size variable with the constraint

A = {α = (α1, . . . , αc) :
c∑

i=1

αi = 1, αj ≥ 0, ∀j }. (15)

The relax constraint is assumed for U ,

Mf = {U = (uik) :
c∑

i=1

uik = 1, ujk ≥ 0, ∀j, k }. (16)

The solution for U is

uik =
αi exp(−λDKL(xk||vi))∑c

j=1 αj exp(−λDKL(xk||vj)) . (17)

The solution for V is the same as (22). The solution for α is

αi =
1
n

n∑
k=1

uik. (18)

AlgorithmFCM. (Fuzzy c-means)
FCM0. Set an initial value V̄ , ᾱ for V, α.
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FCM1. Find optimal solution of J with respect to U while other variables
are fixed: put

Ū = arg min
U∈Mf

J(U, V̄ , ᾱ).

FCM2. Find optimal solution of J with respect to V while other variables
are fixed: put

V̄ = arg min
V
J(Ū , V, ᾱ).

FCM3. Find optimal solution of J with respect to α while other variables
are fixed: put

ᾱ = arg min
α∈A

J(Ū , V̄ , α).

FCM4. If the solution (Ū , V̄ , ᾱ) is convergent, stop; else go to FCM1.
End of FCM.

5 c-Means Clustering Based on the Hellinger Distance

We also apply the Hellinger distance to hard c-means. The Hellinger distance
is closely related with the geodesic distance [3]. Now we consider the squared
Hellinger distance,

D2
H(x, x′) =

m+1∑
j=1

(√
xkj −√

vij

)2
. (19)

Therefore, The objective function is

J =
n∑

k=1

c∑
i=1

uikD
2
H(xk, vi). (20)

The cluster assignment is almost the same as (12).

l = arg min
1≤i≤c

D2
H(xk, vi) (21)

Cluster centers are also derived from the Lagrange multiplier method with the
constraint.

L = J +
c∑

i=1

μi(
m+1∑
j=1

vij − 1)

∂L

∂vij
= −

n∑
k=1

uik(√xkj −√
vij)√

vij
+ μi = 0

As a result, cluster centers are calculated in the different way from a usual hard
c-means.

vij =

n∑
k=1

n∑
l=1

uikuilxkjxlj

n∑
k=1

n∑
l=1

uikuil〈xk, xj〉
(22)
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6 Illustrative Example

First, we show equal distance contours from one point in Pm. The contour by
the Euclidean distance is shown in Fig. 1, The contour by the KL-divergence is
shown in Fig. 2, and The contour by the Hellinger distance is shown in Fig. 3.
They show the Hellinger distance emphasize the geom try of the manifold. Sec-
ond, Artificially generated 60 points on 2d-simplex were analyzed. We applied
hard c-means with three different dissimilarities to data. Fig. 4 shows the result
from hard c-means with the Euclidean distance, Fig. 5 shows the result from
hard c-means with the KL-divergence, and Fig. 6 shows the result from hard
c-means with the Hellinger distance. Fig. 6 is quite different from other two
clustering results. The Hellinger distance may be the most appropriate dissim-
ilarity on the manifold. Fig. 7, 8, 9 show equal distance contours from cluster
centers.

Fig. 1. Equal Euclidean distance con-
tour on Pm

Fig. 2. Equal KL-divergence contour
on Pm

Fig. 3. Equal Hellinger distance con-
tour on Pm

Fig. 4. Result from Hard c-means with
the Euclidean distance
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Fig. 5. Result from Hard c-means with
the KL-divergence

Fig. 6. Result from Hard c-means with
the Hellinger distance

Fig. 7. Equal Euclidean distance con-
tour from cluster centers

Fig. 8. Equal KL-divergence contour
from cluster centers

Fig. 9. Equal Hellinger distance con-
tour from cluster centers
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7 Conclusion

In this paper, we discuss c-means clustering on the multinomial manifold. Instead
of the geodesic distance, the KL-divergence and the Hellinger distance are used
in c-means clustering. The Hellinger distance is a good approximation of the
geodesic distance compared to the KL-divergence. These metrics are more useful
to detect clusters on the manifold than the Euclidean distance.

Future studies include real-world applications such as document clustering,
and developments of clustering algorithms using the information geometry.
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Abstract. Rough set theory has mainly been applied to data with cat-
egorical values. In order to handle data with numerical values, we have
defined numerical patterns with two symbols # and @, and have pro-
posed more flexible rough sets based rule generation. The concepts of
‘coarse’ and ‘fine’ for rules are explicitly defined according to numer-
ical patterns. This paper focuses on the rough sets based method for
rule generation, which is enhanced by numerical patterns, and refers to
the tool programs. Tool programs are applied to data in UCI Machine
Learning Repository, and some useful rules are obtained.

Keywords: Rough sets, Rule generation, Numerical values, Tool, Nu-
merical patterns.

1 Introduction

Recently, rough sets based concepts have been applied to several research
area [1-7]. We have also proposed a framework Rough Non-deterministic
Information Analysis (RNIA), which handles not only tables with determin-
istic information but also tables with non-deterministic information [8-10]. How-
ever, we implicitly handled tables with categorical values, and we omitted tables
with numerical values. Because, multivariate analysis has mainly been employed
for tables with numerical values. In order to enhance the framework of RNIA,
it is necessary to handle tables with numerical values.

In this paper, we focus on rough sets based rule generation with numerical pat-
terns [11]. Generally, rules are defined by implications Condition ⇒ Decision,
which satisfy some appropriate constraints. Then, we refer to the realized tool
programs. Finally, we compare previous research with our research.

2 An Example and Rough Sets Based Issues

Let us consider Table 1, which is a part of baseball game data. This is small size
data, however it is enough to discuss rough sets based issues.

V. Torra, Y. Narukawa, and Y. Yoshida (Eds.): MDAI 2007, LNAI 4617, pp. 269–281, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Table 1. Players’ Batting Data in Baseball Games, AVG: Batting Average, SF&SH:
Sacrifice Flies and Hits, SB: Stolen Bases, OBP: On-Base Percentage, SLG: Slugging
Percentage

OBJECT (P layers) AV G SF&SH SB OBP SLG

p1 0.322 0 03 0.397 0.553
p2 0.312 1 07 0.391 0.430
p3 0.309 0 03 0.390 0.557
p4 0.300 0 01 0.307 0.556
p5 0.273 0 05 0.326 0.467
p6 0.402 0 02 0.362 0.628
p7 0.274 3 11 0.327 0.437
p8 0.271 1 03 0.361 0.466
p9 0.266 0 00 0.292 0.525
p10 0.263 0 03 0.294 0.363

Every value in AV G is in the form of 0.??? (?: 0, 1, · · ·, 9). We name such
formulas, like 0.???, types of values. In Table 1, the values 03 and 07 in SB
implies 3 or 7, respectively. In order to handle numerical values in the same
form, we may add some 0 digits to every value.

Now, let us survey rough sets based concepts [1,2] according to Table 1. For
an attribute ATR, let eq(ATR) denote a set of all equivalence classes for ATR,
and let [pi]ATR denote an equivalence class with player pi. In Table 1, let us
consider such a relation that two players pi and pj are related if attribute values
are the same. According to this relation, we have

eq(AV G)={{p1}, {p2}, {p3}, {p4}, {p5}, {p6}, {p7}, {p8}, {p9}, {p10}},
eq(SLG)={{p1}, {p2}, {p3}, {p4}, {p5}, {p6}, {p7}, {p8}, {p9}, {p10}}.

Since [pi]AV G ⊆ [pi]SLG holds for every pi, there exists data dependency from
AV G to SLG [1,2]. The degree of dependency is 1.0, and it is possible to ob-
tain consistent implications from Table 1. We see such consistent implications as
candidates of rules. Intuitively, ‘consistent’ means that the same condition con-
cludes the same decision. For example, an implication [SB, 07] ⇒ [AV G, 0.312]
from p2 is consistent, and an implication [SB, 03] ⇒ [AV G, 0.322] from p1 is
not consistent, because there is an implication [SB, 03] ⇒ [AV G, 0.309] from p3.
Here, every [pi] ∈ eq(AV G) is a singleton set {pi}. Therefore, every degree of
dependency from AV G to any attribute is always 1.0. Although we can obtain
consistent implications like [AV G, val] ⇒ Decision, every implication represents
just a player’s property, and such a consistent implication does not represent the
total players’ property.

In rough set theory, we usually handle a finite set of categorical values, and im-
plicitly the number of attribute values is restricted to small size. Therefore, we have
small number of equivalence classes for every attribute. In an attributeAV G in Ta-
ble 1, attribute values are decimal numbers between 0.000 and 1.000. The amount
of attributes values is 1001. This amount seems too large in rough set theory. For
such reason, it is necessary to reduce the number of all equivalence classes.
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3 Numerical Patterns, Coarse and Fine Concepts

This section defines numerical patterns, coarse and fine concepts.

3.1 Meaningful Figures and Numerical Patterns

Now in this section, we propose a concept of meaningful figures in numerical
values. Let us consider an irrational number π=3.14· · ·. For students in elemen-
tary schools, π=3.14 will be sufficient for calculating the area of a circle. On the
other hand, π=3.14 may be insufficient for researchers of numerical analysis.

Here, we introduce two symbols @ and #, which represent numeric from 0
to 9. We implicitly employ 10-adic numbers for expressing numerical data. A
numerical pattern is a sequence of @ and #, for example @@@, @@#, @##,
@@.@ and @#.#. Here, ‘.’ denotes a decimal point, and @ does not occur after
#. We see @@@, @@#, @## and ### have the same type ???. Three patterns
@@.@, @@.# @#.# have the same type ??.?, too. Here, @ denotes a significant
figure and # denotes a figure, which we do not care. For example, AV G values
of p3 and p4 are 0.309 and 0.300, respectively. These two values are different
according to a numerical pattern 0.@@@, but these two values are the same ac-
cording to a numerical pattern 0.@@#. By means of introducing such numerical
patterns, we explicitly define the meaningful figures in numerical values.

3.2 Precision, Fine and Coarse Equivalence Classes

Numerical patterns cause different kinds of equivalence classes for the same data.
For an attribute ATR and a numerical pattern patt, let eq(ATR, patt) denote a
set of all equivalence classes according to patt. In Table 1, we have the following:

eq(AVG,0.@##)={{p1, p2, p3, p4}, {p5, p7, p8, p9, p10}, {p6}}.
eq(AVG,0.@@#)={{p1}, {p2}, {p3, p4}, {p5, p7, p8}, {p6}, {p9, p10}}.
eq(AVG,0.@@@)={{p1}, {p2}, {p3}, {p4}, {p5}, {p6}, {p7}, {p8}, {p9}, {p10}}.
eq(SF&SH,@)={{p1, p3, p4, p5, p6, p9, p10}, {p2, p8}, {p7}}.
eq(SB,@#)={{p1, p2, p3, p4, p5, p6, p8, p9, p10}, {p7}}.

: : :
eq(SLG,0.@##)={{p1, p3, p4, p9}, {p2, p5, p7, p8}, {p6}, {p10}}.
eq(SLG,0.@@#)={{p1, p3, p4}, {p2, p7}, {p5, p8}, {p6}, {p9}, {p10}}.
eq(SLG,0.@@@)={{p1}, {p2}, {p3}, {p4}, {p5}, {p6}, {p7}, {p8}, {p9}, {p10}}.

Clearly, it is possible to introduce an order (<p) on precision into a set of patterns
with the same type. The order is

0.@@@ <p 0.@@# <p 0.@## <p 0.###
for a type 0.???. The numerical pattern 0.@@@ is the most precise, and the
numerical pattern 0.### is the most coarse.

Proposition 1. For eq(ATR) and eq(ATR′), we define that eq(ATR) ⊆ eq
(ATR′) holds, if [x]ATR ⊆ [x]ATR′ holds for every object x. Let PATT denote a
set of numerical patterns (on a set ATR of attributes) with the same type. For
patt1, patt2 ∈ PATT , let us suppose patt1 <p patt2. Then, eq(ATR, patt1) ⊆
eq(ATR, patt2) holds.
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The concept of precision has already been introduced into rough set theory,
and eq(ATR, patt1) is calledmore fine and eq(ATR, patt2) is calledmore coarse
in [1]. Recently such fine and coarse information is picked up [12,13,14]. Equiva-
lence relations eq(ATR, patt), which depends upon numerical pattern patt, give
a real instance of the framework defined in [12,13,14].

Definition 1. Let [x]ATR,patt denote an equivalence class with numerical pat-
terns patt. For patt1 <p patt2, we say [x]ATR,patt2 is more coarse than
[x]ATR,patt1 and [x]ATR,patt1 is more fine than [x]ATR,patt2 .

Definition 2. For [x]ATR,patt, we replace every @ symbol in patt with the at-
tribute value of x for ATR. Then, we have a value, which may contain # sym-
bol. Let valATR,patt denote this value. We name [ATR, valATR,patt] a descriptor
with numerical pattern patt. For patt1 <p patt2, we say [ATR, valATR,patt1 ]
is more fine than [ATR, valATR,patt2 ] and [ATR, valATR,patt2 ] is more coarse
than [ATR, valATR,patt1 ].

Example 1. For numerical patterns 0.@## and 0.@@# in attribute AV G,
the order 0.@@# <p 0.@## holds, and [p1]AV G,0.32# ⊆ [p1]AV G,0.3## also
holds. [p1]AV G,0.32# is more fine than [p1]AV G,0.3##. In an equivalence class
[p1]AV G,0.3##, [AVG,0.3##] is the descriptor with numerical pattern 0.@##.
[AVG,0.32#] is more fine than [AVG,0.3##].

4 A Merit of Employing Numerical Patterns

4.1 A Real Execution Handling Standard Descriptors

It is possible to apply programs in [8,10] to Table 1. The following is a real execu-
tion for generating minimal consistent rules [10] in the form of Conditions⇒
[SLG, 0.556].
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Every attribute is displayed as its ordinal number, for example, SLG is displayed
as whose ordinal number 5. The decision part [SLG, 0.556] is so strict that
every implication represents only p4. For every implication τ (= Condition ⇒
Decision), each list [(0.1,0.1),(1.0, 1.0)] implies the minimum and the maximum
values of support(τ) and accuracy(τ), which are the most familiar criteria for
rule generation.

support(τ)=number of the implication τ / number of all players,
accuracy(τ)=number of the implication τ / number of the condition.

In non-deterministic information, the minimum and the maximum values may
be different. Program minimal was implemented for handling tables with non-
deterministic information. Of course, program minimal can handle tables with
deterministic information. Program disfunc(4,M) generates a discernibility
function [10,15], which is in the form of disjunctive normal form. For example, the
first term [[1,[1,0.300],[3,1],[4,0.307]] in M implies that p1 can be discriminated
from p4 by using either of the descriptor [AV G, 0.300], [SB, 1] or [OBP, 0.307]
from p4. In program minimal, this function M is generated, and three minimal
solutions, which assign true to the function M , are obtained. Every solution
becomes the condition part of the rule.

4.2 New Candidates of Rules with Numerical Patterns

Programminimal handles standard descriptors, and does not handle descriptors
with numerical patterns, so it is impossible to obtain such a minimal consistent
implication

τ1:[OBP,0.39#]⇒[AVG,0.3##],
support(τ1)=0.3 and accuracy(τ1)=1.0 (consistent),

which represents three players p1, p2 and p3. The following will be an admissible
minimal consistent implication, too.

τ2:[OBP,0.3##]∧[SLG,0.5##]⇒[AVG,0.3##],
support(τ2)=0.3 and accuracy(τ2)=1.0 (consistent).

Furthermore, we can easily define the precision, i.e., coarse and fine concepts,
on rules by means of numerical patterns. For two implications

τ:[CON,valCON]⇒[DEC,valDEC], τ ′:[CON,val′CON]⇒[DEC,val′DEC]
[CON,val′CON]<p[CON,valCON] or [DEC,val′DEC]<p[DEC,valDEC],

τ is more coarse than τ ′, and τ ′ is more fine than τ . Generally, support(τ) ≥
support(τ ′) holds, and τ covers more objects than τ ′. In order to increase accuracy
(τ), we may replace descriptors in the condition part with more fine descriptors.
On the other hand, we may replace descriptors in the condition part with more
coarse descriptors in order to increase support(τ). According to such manipula-
tion, we can easily define more coarse implications and more fine implications.

5 Rule Generation with Numerical Patterns

In this section, we employ not only standard descriptors but also descriptors with
numerical patterns, and focus on generating implications with such descriptors.
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5.1 Two Strategies for Rule Generation

We employ the following two strategies for rule generation.

Support Based Strategy (SB-strategy): For a table, let DEC be decision
attributes and let η be a tuple of decision attributes values for DEC. Then, find
every implication τ : Condition⇒ [DEC, η] satisfying (1) and (2) below;
(1) support(τ) ≥ α for a threshold value α (0 < α ≤ 1),
(2) accuracy(τ) is maximum.

Consistency Based Strategy (CB-strategy): For a table, let DEC be deci-
sion attributes and let η be a tuple of decision attributes values for DEC. Then,
find every implication τ : Condition⇒ [DEC, η] satisfying (1) and (2) below;
(1) τ is consistent,
(2) support(τ) is maximum.

Every strategy has each property. In SB-strategy, the condition support(τ) ≥
α is assured, but accuracy(τ) may be small. In CB-strategy the consistency of τ is
assured, but support(τ) may be small. For data with consistency, we may employ
CB-strategy, and we may employ SB-strategy for data without consistency.

5.2 Rule Generation by Support Based Strategy

In Table 1, if we employ either eq(AV R, 0.@@@), eq(OBP, 0.@@@) or eq(SLG,
0.@@@), support(τ) is 0.1 for every implication. For α=0.3, there is no implica-
tion with attributes AV R, OBP nor SLG. For α=0.3 in Table 1, it is necessary
to obtain such an implication τ : [CON, valCON ] ⇒ [DEC, valDEC ] that τ
occurs more than 3(=0.3 × 10) times. In this case, both [CON, valCON ] and
[DEC, valDEC ] must occur more than 3 times at least. Such a property is em-
ployed in Apriori Algorithm [16,17]. We follow this Apriori algorithm, and revise
this algorithm for handling numerical patterns.

Algorithm 1. (An Overview of Support Based Rule Generation)
(SB-1) Fix a threshold α and a decision attribute DEC.
(SB-2) Let OB denote the total set of objects. Find candidates of descriptors
CAN1 with numerical patterns,
CAN1={[A, valA,patt]||[x]A,valA,patt | ≥ α× |OB| holds for an object x}.

(SB-3) Generate CAN2;
CAN2={[A, valA,patt1] ∧ [DEC, valDEC,patt2]|
|[x]{A,DEC},{valA,patt1,valDEC,patt2}| ≥ α× |OB| holds for an object x,
[A, valA,patt1] ∈ CAN1, A �= DEC},

and examine accuracy(τ) in every implication τ
τ : [A, valA,patt1] ⇒ [DEC, valDEC,patt2].
If accuracy(τ)=1.0, this implication satisfies the condition. We store this
implication, and remove [A, valA,patt1] ∧ [DEC, valDEC,patt2]
from CAN2. We also remove the conjunction, which implies a redundant
implication of previously obtained.

(SB-4) Generate CANn recursively and obtain rules until CANn={}.
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In Algorithm 1, we may not fix decision attribute values in SB-strategy. Let
us apply Algorithm 1 to Table 1, and simulate Algorithm 1.

Example 2. Let us fix a threshold α=0.3, and DEC={AVG}. Since 0.3 ×
|OB|=0.3 × 10=3, we consider descriptors which occur more than 3 times in
Table 1. In (SB-2), we obtain CAN1 in the following.

CAN1={[1,0.3##],[1,0.2##],[1,0.27#],[2,0],[3,0#],[3,3],
[4,0.3##],[4,0.39#],[5,0.5##],[5,0.4##],[5,0.55#]}.

Every descriptor occurs more than 3 times in Table 1. Every implication consists
of some descriptors, so any implication with [A, valA] �∈ CAN1 occurs less than
2 times in Table 1, and such an implication τ does not satisfy support(τ) ≥ 0.3.
It is enough to consider descriptors just in CAN1. In (SB-3), we have

CAN2={[1,0.3##][2,0],[1,0.3##][3,0#],[1,0.3##][4,0.3##],
[1,0.3##][4,0.39#],[1,0.3##][5,0.5##],[1,0.3##][5,0.55#],
[1,0.2##][2,0],[1,0.2##][3,0#],[1,0.2##][4,0.3##],
[1,0.2##][5,0.4##],[1,0.27#][4,0.3##],[1,0.27#][5,0.4##]}.

Every element in CAN2 is a conjunction of [A, valA], [1, val1] ∈ CAN1 (A �= 1),
and for example, we see the first conjunction [1, 0.3##][2, 0] as an implica-
tion [SF&SH, 0] ⇒ [AV G, 0.3##]. In CAN2, we calculate accuracy(τ) of 12
conjunctions respectively, and we have the following two implications whose
accuracy() is 1.0,
τ1: [4,0.39#]=>[1,0.3##],
τ3: [5,0.55#]=>[1,0.3##].

Since accuracy(τ)=1.0 means accuracy of τ is maximum, these two implications
are rules to be obtained. The first implication τ1 has already been shown in
section 4.2. We remove the above two conjunctions from CAN2, and repeat
this procedure until CANn={}. In (SB-4), we obtain CAN3, and we have an
implication in the following
τ2: [4,0.3##]∧[5,0.5##]=>[1,0.3##],

whose accuracy() is 1.0. This implication τ2 has also been shown in section 4.2.
In the next step, we have CAN4 in the following

CAN4={[1,0.3##][2,0][3,0#][4,0.3##],
[1,0.3##][2,0][3,0#][5,0.5##]}.

The both accuracy() values are less than 1.0 in CAN4, and CAN5 becomes
an empty set {}. According to these procedures, we obtain three rules whose
support() are more than 0.3 and accuracy() are 1.0, respectively.

5.3 Computational Issues on Support Based Strategy

Let OB, AT and PATTA be a set of all objects, a set of all attributes, and a
set of all patterns in A ∈ AT , respectively. In (SB-2), we first prepare arrays for
handling the occurrence of [A, valA,patt] (A ∈ AT , patt ∈ PATTA). By means of
examining every attribute value in x and A, it is possible to obtain the occurrence
of [A, valA,patt]. This complexity depends upon |OB|×|AT |. At the same time, we
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Table 2. Numerical Patterns for discriminating p5 to p10 from p1

P layer SF&SH SB OBP SLG

p5 03 0.39# 0.5##
p6 03 0.39# 0.5##
p7 0 0# 0.39# 0.5##
p8 0 0.39# 0.5##
p9 03 0.3## 0.55#
p10 0.3## 0.5##

store a set of objects satisfying [A, valA,patt]. For every descriptor [A, valA,patt],
we examine the condition that the occurrence is more than α × |OB|, and we
obtain CAN1.

In (SB-3), we generate conjunctions of descriptors. Let numCON be the num-
ber of descriptors [A, val] (A �= DEC) in CAN1, and let numDEC be the num-
ber of descriptors [DEC, val] in CAN1. Then, the number of conjunctions is
numCON×numDEC . For every conjunction [A, valA,patt1]∧ [DEC, valDEC,patt2]
(A �= DEC), it is possible to obtain the occurrence by means of applying the
intersection operation of corresponding two sets.

We repeat the above procedure. The most time-consuming part is to gen-
erate CANi (i=2,3,· · ·), especially CAN2 and CAN3. This part depends upon
numCON × numDEC .

5.4 Rule Generation by Consistency Based Strategy

In CB-strategy, we follow the method by discernibility functions [15], which
we have shown in section 4.1, and revise this method for handling numerical
patterns. The following is the overview of this algorithm.

Algorithm 2. (An Overview of Consistency Based Rule Generation)
(CB-1) Fix a decision attribute DEC and decision attribute values η.
(CB-2) Obtain an equivalence classCL which is defined by a descriptor [DEC, η].
(CB-3) For an object x ∈ CL and a setOB of all objects, generate a discernibility

function below;
DF (x)=∧y∈OB−CLDisc(x, y), Disc(x, y) is a disjunction of descriptors,
which discriminate y from x.

(CB-4) The condition part is obtained as a solution of the discernibility function.
According to Table 1, we simulate Algorithm 2.

Example 3. Let us fix DEC={AVG} and η=0.3##, which means to han-
dle implications like Condition ⇒ [AV G, 0.3##]. In (CB-2), this descriptor
[AV G, 0.3##] defines CL={p1, p2, p3, p4}. In (CB-3), we pick up p1, and we
consider conditions which discriminate p5 to p10 from p1. The most coarse at-
tribute values are in Table 2. For example, [SLG, 0.5##] is enough for discrim-
inating p5 ([SLG, 0.467]) from p1 ([SLG, 0.553]). Of course, both [SLG, 0.55#]
and [SLG, 0.553] can discriminate p5 from p1. According to Table 2, we obtain
a discernibility function
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DF (p1) = Disc(p1, p5) ∧Disc(p1, p6) ∧ · · · ∧Disc(p1, p10)
= ([SB, 03] ∨ [OBP, 0.39#] ∨ [SLG, 0.5##])
∧ ([SF&SH, 0] ∨ [SB, 0#] ∨ [OBP, 0.39#] ∨ [SLG, 0.5##])
∧ ([SF&SH, 0] ∨ [OBP, 0.39#] ∨ [SLG, 0.5##])
∧ ([SB, 03] ∨ [OBP, 0.3##] ∨ [SLG, 0.55#])
∧ ([OBP, 0.3##] ∨ [SLG, 0.5##]).
Since the condition of descriptor [OBP, 0.39#] automatically satisfies the condi-
tion of [OBP, 0.3##], the descriptor [OBP, 0.39#] is a solution ofDF (p1). Every
pi (i=5, · · · , 10) clearly does not satisfy this condition [OBP, 0.39#]. Therefore,
this condition specifies a subset of CL, namely an implication,

τ1: [OBP,0.39#]⇒[AVG,0.3##]

is consistent and support(τ1)=0.3. This is the same implication in section 4.2 and
5.2 by accident. We also obtain the following consistent implications including τ2
and τ3.

τ2: [OBP,0.3##]∧[SLG,0.5##]⇒[AVG,0.3##] (support(τ2)=0.3),
τ3: [SLG,0.55#]⇒[AVG,0.3##] (support(τ3)=0.3),
τ4: [SF&SH,0]∧[SB,03]∧[OBP,0.3##]⇒[AVG,0.3##] (support(τ4)=0.2).

Since support() is maximum, we finally obtain τ1, τ2 and τ3 as the result of
CB-strategy.

6 An Implementation of a Tool for SB-Strategy and Its
Application

We first show the application of this tool, then refer to the implementation.

6.1 An Application

Now, we refer to the application of this tool to data hepatitis.dat in UCI Reposi-
tory [18]. This data consists of 155 objects and 20 attributes. Here, we omitted 75
objects with missing values, namely data consists of 80 objects and 20 attributes.
The following is a part of attributes and attribute values.

1.Class:die,live, 2.AGE:numerical, 3.SEX:male,female,
4.STEROID:no,yes, 5.ANTIVIRALS:no,yes, 6.FATIGUE:no,yes,

: : :
18.ALBUMIN:numerical, 19.PROTIME:numerical, 20.HISTOLOGY:no,yes.

The following is a part of the real data.
80
20
2 34 1 2 2 2 2 2 2 2 2 2 2 2 90 95 28 40 75 1
2 39 1 1 1 2 2 2 1 1 2 2 2 2 130 78 30 44 85 1
2 32 1 2 1 1 2 2 2 1 2 1 2 2 100 59 249 37 54 1
2 41 1 2 1 1 2 2 2 1 2 2 2 2 90 81 60 39 52 1

: : :
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In this data, all categorical values, like die and live, male and female, no and
yes, are replaced with numerical values 1 and 2 for convenience. The first values
80 and 20 implies the number of objects and attributes. In attribute 19.PRO-
TIME, attributes values seem to be between 0 and 100. Therefore in attribute
19.PROTIME, there may be 101 equivalence classes according to the usual rough
sets based definition. If we employ such equivalence classes, we may not obtain
any implication τ , whose support(τ) value is high. In such cases, we employ
numerical patterns.

For this data, we fix a decision to [Class, live] and support(τ) ≥ 0.5, and gen-
erated implications Condition⇒ [Class, live]. For execution of the program, it
is enough to specify data file, a decision and a threshold value, like 0.5. In reality,
we obtained an implication
τ5:[14,2]∧[18,4.#]=>[1,2] [0.500,1.000]

in CAN3. The values 0.500 and 1.000 implies support(τ5) and accuracy(τ5), re-
spectively. In every CANi (i ≥ 4), no implication satisfied the condition that
accuracy()=1.0. Therefore, τ5 is the unique implication based on SB-strategy.
The attribute values in 18:ALBUMIN are 4.0 to 4.9 except 4.8, namely 9 at-
tributes values. This τ5 combines these 9 attribute values, and realizes the con-
dition support(τ5) ≥ 0.5. If we do not employ # symbols, τ5 is missed.

In order to obtain more implications, we loosened such a condition that
accuracy(τ) is maximum to the condition accuracy(τ) ≥ 0.9, and we obtained
the following.

[18,4.#]=>[1,2] [0.525,0.976],
[13,2]∧[16,0##]=>[1,2] [0.512,0.931],
[13,2]∧[17,0##]=>[1,2] [0.575,0.901],
[13,2]∧[18,4.#]=>[1,2] [0.512,0.976],
[14,2]∧[16,0##]=>[1,2] [0.525,0.913],
[11,2]∧[13,2]∧[17,0##]=>[1,2] [0.500,0.909],
[11,2]∧[13,2]∧[19,0##]=>[1,2] [0.537,0.914],
[12,2]∧[14,2]∧[17,0##]=>[1,2] [0.500,0.930],
[12,2]∧[14,2]∧[19,0##]=>[1,2] [0.512,0.931],
[13,2]∧[14,2]∧[16,0##]=>[1,2] [0.500,0.952],
[13,2]∧[14,2]∧[17,0##]=>[1,2] [0.550,0.916],
[13,2]∧[14,2]∧[19,0##]=>[1,2] [0.587,0.903],
[11,2]∧[13,2]∧[14,2]∧[19,0##]=>[1,2] [0.512,0.931].

In an attribute 16:ALKPHOSPHATE, the descriptor [16,0##] implies the at-
tribute values are less than 99. Every object, whose attribute value is more
than 100, does not satisfies the condition of [16,0##]. This holds for attributes
17:SGOT and 19:PROTIME, too. Every implication contains # symbols, and
every implication is missed without # symbol. For this execution, it took about
5.770(sec) in a PC with Pentium 3 (747MHz).

6.2 An Implementation of a Tool Program

A tool program apri num() consists of some functions, and simulates Algorithm
1. Every user just specifies data file, a decision and a threshold value. According
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to the threshold value, CAN1 in (SB-2) is automatically generated, and CAN2,
CAN3, · · · are sequentially generated. At the same time, implications are ob-
tained as rules.

In (SB-2), function read file(), which includes data file, is employed at first,
and descriptors with numerical patterns are generated by using functions
make eq() and change(). Then, two functions filter() and apri gen() are em-
ployed repeatedly. Function filter() examines the condition support(τ) ≥ α for
τ , and apri gen() generates conjunctions of descriptors. The realized program
apri num() consists of about 500 lines in C.

7 Comparison of Previous Research and Our Research

There will be a large number of research on the discretization of numerical values,
like interval theory and cluster analysis. As for rough sets based rule generation,
the discretization is investigated [19,20], too. In [19,20], such an issue that how
we divide an interval into subintervals is mainly considered, and the entropy
function based discretization is proposed. This method is also employed in the
decision tree generation, like C4.5. Rules are generated from such discretized
data.

In our research, the purpose is to handle the coarse and fine concepts, which
are defined by descriptors with numerical patterns, in rule generation. For ex-
ample, [AV G, 0.3##] in Table 1 implies that this player’s batting average is 30
percent. Such information is familiar in our life. In order to handle such coarse
information explicitly in rough set theory, we introduced numerical patterns into
rough sets based rule generation. The purpose of our research is not to discretize
numerical values, but every numerical pattern defines a discretization over at-
tribute values as a result. Namely,

• In the previous research, the discretization of numerical values is proposed,
and the rough sets based method is employed. Therefore, obtained rules will
be characterized by the discretization.
• In our research, we extended the rough sets based method to a method
with numerical patterns. According to numerical patterns, the discretization
is naturally defined, and the coarse and fine concepts are defined. Therefore,
obtained rules will be characterized by descriptors with numerical patterns.

In both previous research and our research, the discretization of numerical values
is necessary, however previous research handles rule generation based on the
property of data, and our research handles rule generation based on the possible
expression of descriptors. In this point, these research will be different kinds of
research.

8 Concluding Remarks

In order to handle data with numerical values, we have proposed numerical
patterns. According to numerical patterns, it is possible to define an order of
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precision on patterns with the same type, and coarse and fine concepts over
equivalence relations, equivalence classes and descriptors are defined. These fine
and coarse equivalence classes cause more flexible rule generation in numerical
data. As for tool programs, we have shown the overview of a tool for SB-strategy.
We are now realizing tool programs for CB-strategy not in prolog but in C.
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Scientific Research (C) (No.18500214), Japan Society for the Promotion of
Science.
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Abstract. Rough sets are applied to information tables containing im-
precise values that are expressed in a probability distribution. A family
of weighted equivalence classes is obtained where each equivalence class
is accompanied by the probability to which it is an actual one. By us-
ing the family of weighted equivalence classes, we derive lower and up-
per approximations. The lower and upper approximations coincide with
ones obtained from methods of possible worlds. Therefore, the method
of weighted equivalence classes is justified. In addition, this method is
applied to missing values interpreted probabilistically. Using weighted
equivalence classes correctly derives a lower approximation, even in the
case where the method of Kryszkiewicz does not derive any lower ap-
proximation.

Keywords: Rough sets, Imprecise information, Probabilistic value,
Weighted equivalence class, Lower and upper approximations.

1 Introduction

Rough sets play a significant role in the field of knowledge discovery and data min-
ing since the first paper published by Pawlak [19]. The framework of rough sets
is constructed under the premise that information tables consisting of precise in-
formation are obtained. However, there ubiquitously exists imprecise information
in the real world [18]. Thus, it has been investigated to apply rough sets to infor-
mation tables containing imprecise information represented by a missing value,
an or-set, a possibility distribution, etc [2,4,5,10,11,13,14,15,20,21,22,23,25]. The
methods are broadly separated into three ways.

The first method is one based on possible worlds [17,20,21,22]. In the method,
possible tables, which consist of precise values, are obtained from an information
table.Eachpossible table is dealtwith by the traditionalmethodsof applying rough
sets to information tables containing precise information, and then the results from
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the possible tables are aggregated. In other words, the methods that are already
established are applied to each possible table. Therefore, there is no doubt for cor-
rectness of the treatment. However, the method has difficulties for knowledge dis-
covery at the level of a set of possible values, although it is suitable for finding
knowledge at the level of possible values. This is because the number of possible ta-
bles exponentially increases as the number of imprecise attribute values increases.

The second method is to use assumptions on indiscernibility of missing values
[2,5,8,10,11,25]. Under the assumptions, we can obtain a binary relation for in-
discernibility between objects. To the binary relation, rough sets are applied by
using a class of objects; for example, an indiscernible class. In the method, it is
not clarified why the assumptions are valid to real data sets.

The third method directly deals with imprecise values, without using any as-
sumptions for indiscernibility, under extending the traditional method of rough
sets [13,14,15,16,25]. In the method, imprecise values are dealt with probabilis-
tically or possibilistically and the traditional methods are probabilistically or
possibilistically extended.1 A binary relation for indiscernibility is constructed
by calculating a degree for indiscernibility between objects. Indiscernible classes
for each object are obtained from the binary relation for indiscernibility. The
correctness criterion is that any extended method has to give the same results as
the method of possible worlds [13]. This criterion is commonly used in the field
of databases handling imprecise information [1,7,28].

Stefanowski and Tsoukiàs used implication operators to calculate an inclusion
degree between indiscernible classes [25]. Nakata and Sakai have shown that the
results in terms of implication operators do not satisfy the correctness criterion
and has proposed the method that satisfies the correctness criterion [13,14,15].
However, the proposed method has difficulties for definability, because rough
approximations are defined by constructing sets from singletons. Therefore, we
propose a method using equivalence classes, called a method of weighted equiva-
lence classes. In this paper, we show how weighted equivalence classes are applied
to information tables containing imprecise values expressed in a probability dis-
tribution, called probabilistic values.2

In Section 2, we briefly address the traditional methods of applying rough sets
to information tables containing precise information. In Section 3, methods of pos-
sible worlds are mentioned. In the methods, the extended set of possible tables is
obtained from an information table containing imprecise values. The traditional
methods of applying rough sets to precise information deal with each possible ta-
ble, and then the results from possible tables are aggregated. In Section 4, meth-
ods of applying rough sets to information tables containing probabilistic values
are described in terms of weighted equivalence classes. In Section 5, the method
of weighted equivalence classes is applied to information tables containing missing
values under probabilistic interpretation. Section 6 presents conclusions.

1 Ziarko proposes methods of rough sets applying data tables where each data is
accompanied by a probability [26,27].

2 See the reference [16] for information tables containing possibilistic values expressed
in a possibility distribution.
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2 Rough Sets to Precise Information

A data set is represented as a table, called an information table, where each row
represents an object and each column represents an attribute. The information
table is pair A = (U,AT ). U is a non-empty finite set of objects called the uni-
verse. Concretely speaking, U is the set of objects that comprise the information
table. AT is a non-empty finite set of attributes such that ∀a ∈ AT : U → Va.
Set Va is called the domain of attribute a. In information table T whose frame-
work is set AT of attributes, binary relation IND(ΨA) for indiscernibility of
objects in subset Ψ ⊆ U on subset A ⊆ AT of attributes is,

IND(ΨA) = {(o, o′) ∈ Ψ × Ψ | ∀a ∈ A a(o) = a(o′)}, (1)

where a(o) and a(o′) denote values of attribute a for objects o and o′, respec-
tively. This relation is called an indiscernibility relation. Obviously, IND(ΨA)
is an equivalence relation. From the indiscernibility relation, equivalence class
E(ΨA)o(= {o′ | (o, o′) ∈ IND(ΨA)}) containing object o is obtained. This is also
the set of objects that is indiscernible with object o, called the indiscernible class
for object o. Finally, family U/IND(ΨA) (= {E(ΨA)o | o ∈ Ψ}) of equivalence
classes is derived from the indiscernibility relation. All equivalence classes ob-
tained from the indiscernibility relation do not intersect with each other. This
means that the objects are uniquely partitioned.

Using equivalence classes, lower approximation Apr(ΦB, ΨA) and upper ap-
proximation Apr(ΦB , ΨA) of Φ/IND(ΦB) by Ψ/IND(ΨA) are,

Apr(ΦB , ΨA) = {E(ΨA) | ∃E(ΦB) E(ΨA) ⊆ E(ΦB)}, (2)

Apr(ΦB , ΨA) = {E(ΨA) | ∃E(ΦB) E(ΨA) ∩ E(ΦB) �= ∅}. (3)

where E(ΨA) ∈ Ψ/IND(ΨA) and E(ΦB) ∈ Φ/IND(ΦB) are equivalence classes
for sets Ψ and Φ of objects on sets A and B of attributes, respectively. These
formulas are expressed in terms of a family of equivalence classes. When we
express the approximations in terms of a set of objects, the following expressions
are used:

apr(ΦB , ΨA) = {o | o ∈ E(ΨA) ∧ ∃E(ΦB) E(ΨA) ⊆ E(ΦB)}, (4)
apr(ΦB , ΨA) = {o | o ∈ E(ΨA) ∧ ∃E(ΦB) E(ΨA) ∩ E(ΦB) �= ∅}. (5)

3 Methods of Possible Worlds

In methods of possible worlds, the traditional ways addressed in the previous
section are applied to each possible table, and then the results from possible
tables are aggregated.

When probabilistic values expressed in a probability distribution is contained
in information table T , we obtain extended set rep(T ) of possible tables,

rep(T ) = {(pt1, μ(pt1)), . . . , (ptn, μ(ptn))}, (6)
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where μ(pti) denotes the probability to which possible table pti is the actual one
and n is equal toΠi=1,mli, where the number of probabilistic values ism and each
of them is expressed in a probability distribution having li(i = 1,m)) elements.
When possible table pti is the table where probabilistic values in information
table T are replaced by vi1, vi2, . . ., vim,

μ(pti) =
∏

k=1,m

π(vik), (7)

where
∏

denotes product and probability π(vik) of element vik comes from
probability distribution π expressing the probabilistic value to which the element
belongs.

Each possible table consists of precise values. Family U/IND(ΨA)pti of equiv-
alence classes on set A of attributes is obtained from each possible table pti.
Possible table pti is accompanied by probability μ(pti) to which it is the actual
information table. Thus, the family of possible equivalence classes accompa-
nied by a probability is obtained for each possible table, which is expressed by
(U/IND(ΨA)pti , μ(pti)). When we express (U/IND(ΨA)pti , μ(pti)) in terms of
equivalence classes,

(U/IND(ΨA)pti , μ(pti)) = {(E(ΨA), μ(pti)) | E(ΨA) ∈ U/IND(ΨA)pti}, (8)

where equivalence class E(ΨA) is a possible equivalence class on set A of at-
tributes and has probability μ(pti) to which it is one of actual equivalence classes.
U/IND(ΨA) is the union of (U/IND(ΨA)pti , μ(pti)),

U/IND(ΨA) = ∪i(U/IND(ΨA)pti , μ(pti)). (9)

Note that the summation of probabilities is taken in the union if there are the
same elements accompanied by a probability. When we express family U/IND
(ΨA) in terms of equivalence classes,

U/IND(ΨA) = {(E(ΨA), κ(E(ΨA) ∈ U/IND(ΨA))) |
κ(E(ΨA) ∈ U/IND(ΨA)) > 0},(10)

where probability κ(E(ΨA) ∈ U/IND(ΨA)) to which equivalence class E(ΨA) is
contained in U/IND(ΨA) is,

κ(E(ΨA) ∈ U/IND(ΨA)) =
∑

E(ΨA)∈U/IND(ΨA)pti

μ(pti). (11)

To obtain lower and upper approximations, the traditional methods addressed
in the previous section are applied to possible tables. Let Apr(ΦB, ΨA)pti and
Apr(ΦB, ΨA)pti denote the lower and upper approximations of U/IND(ΦB)pti

by U/IND(ΨA)pti in possible table pti having probability μ(pti). Apr(ΦB , ΨA)pti

and Apr(ΦB , ΨA)pti are accompanied by probability μ(pti), which is expressed
by (Apr(ΦB , ΨA)pti , μ(pti)) and (Apr(ΦB , ΨA)pti , μ(pti)). Apr(ΦB, ΨA) and Apr
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(ΦB , ΨA) are the union of (Apr(ΦB , ΨA)pti , μ(pti)) and (Apr(ΦB , ΨA)pti , μ(pti)),
respectively.

Apr(ΦB , ΨA) = ∪i(Apr(ΦB , ΨA)pti , μ(pti)), (12)

Apr(ΦB , ΨA) = ∪i(Apr(ΦB , ΨA)pti , μ(pti)). (13)

When we express approximations in terms of equivalence classes,

Apr(ΦB, ΨA) = {(E(ΨA), κ(E(ΨA) ∈ Apr(ΦB , ΨA))) |
κ(E(ΨA) ∈ Apr(ΦB , ΨA)) > 0}, (14)

Apr(ΦB, ΨA) = {(E(ΨA), κ(E(ΨA) ∈ Apr(ΦB , ΨA))) |
κ(E(ΨA) ∈ Apr(ΦB , ΨA)) > 0}, (15)

where probabilities κ(E(ΨA) ∈ Apr(ΦB , ΨA)) and κ(E(ΨA) ∈ Apr(ΦB , ΨA)) to
which equivalence class E(ΨA) is contained in Apr(ΦB, ΨA) and Apr(ΦB , ΨA)
are,

κ(E(ΨA) ∈ Apr(ΦB , ΨA)) =
∑

E(ΨA)∈Apr(ΦB ,ΨA))pti

μ(pti), (16)

κ(E(ΨA) ∈ Apr(ΦB , ΨA)) =
∑

E(ΨA)∈Apr(ΦB ,ΨA))pti

μ(pti). (17)

These formulas show that the summation of the probabilities of possible tables
where equivalence class E(ΨA) is contained in rough approximations is equal to
the probability for equivalence class E(ΨA).

Proposition 1
When (E(ΨA), κ(E(ΨA) ∈ Apr(ΦB , ΨA))) is an element of Apr(ΦB, ΨA) in in-
formation table T , there exists set PT of possible tables where for all pt ∈
PT Apr(ΦB , ΨA)pt contains E(ΨA) and

∑
pt∈PT μ(pt) is equal to κ(E(ΨA) ∈

Apr(ΦB, ΨA)).

Proposition 2
When (E(ΨA), κ(E(ΨA) ∈ Apr(ΦB , ΨA))) is an element of Apr(ΦB, ΨA) in in-
formation table T , there exists set PT of possible tables where for all pt ∈
PT Apr(ΦB , ΨA)pt contains E(ΨA) and

∑
pt∈PT μ(pt) is equal to κ(E(ΨA) ∈

Apr(ΦB, ΨA)).

When the lower and upper approximations are expressed in terms of a set of
objects,

apr(ΦB, ΨA) = {(o, κ(o ∈ apr(ΦB , ΨA))) | κ(o ∈ apr(ΦB, ΨA)) > 0}, (18)
apr(ΦB, ΨA) = {(o, κ(o ∈ apr(ΦB , ΨA))) | κ(o ∈ apr(ΦB, ΨA)) > 0}, (19)
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and

κ(o ∈ apr(ΦB , ΨA)) =
∑

E(ΨA)�o

κ(E(ΨA) ∈ Apr(ΦB , ΨA)), (20)

κ(o ∈ apr(ΦB , ΨA)) =
∑

E(ΨA)�o

κ(E(ΨA) ∈ Apr(ΦB , ΨA). (21)

We adopt results from methods of possible worlds as a correctness criterion
of extended methods of applying rough sets to imprecise information. This is
commonly used in the field of databases handling imprecise information [1,7,28].

Correctness criterion
Results obtained from applying an extended method to an information table con-
taining imprecise values are the same as ones obtained from applying the corre-
sponding traditional method to every possible table derived from that information
table and aggregating the results created in the possible tables.

4 Rough Sets to Information Tables Containing
Probabilistic Values

When object o takes imprecise values for attributes, we calculate the degree to
which the attribute values are the same as another object o′. The degree is the
indiscernibility degree of object o and o′ on the attributes. In this case, a binary
relation for indiscernibility on set A of attributes is,

IND(ΨA) = {((o, o′), κ(A(o) = A(o′))) |
(κ(A(o) = A(o′)) �= 0) ∧ (o �= o′)} ∪ {((o, o), 1)},(22)

where κ(A(o) = A(o′)) denotes the indiscernibility degree of objects o and o′ on
set A of attributes and is equal to κ((o, o′) ∈ IND(ΨA)),

κ(A(o) = A(o′)) =
⊗
a∈A

κ(a(o) = a(o′)), (23)

where operator
⊗

depends on properties of imprecise attribute values. When
the imprecise attribute values are expressed in a probability distribution, the
operator is product denoted by

∏
.

From binary relation IND(ΨA) for indiscernibility, family U/IND(ΨA) of
weighted equivalence classes is obtained via indiscernible sets. Among the ele-
ments of IND(ΨA), set SA(o) of objects that are paired with object o, called
the indiscernible set on set A of attributes for object o, is,

SA(o) = {o′ | κ((o, o′) ∈ IND(ΨA)) > 0}. (24)

SA(o) is the greatest possible equivalence class among possible equivalence classes
containing objects o, when objects o has a precise value on all attributes in set A
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of attributes. Let PSA(o) denote the power set of SA(o). From PSA(o), fam-
ily Can(U/IND(ΨA)o) of candidates for possible equivalence classes containing
object o is obtained,

Can(U/IND(ΨA)o) = {E(ΨA) | E(ΨA) ∈ PSA(o) ∧ o ∈ E(ΨA)}. (25)

Whole family Can(U/IND(ΨA)) of candidates for possible equivalence classes
is,

Can(U/IND(ΨA)) = ∪oCan(U/IND(ΨA)o). (26)

Probability κ(E(ΨA) ∈ U/IND(ΨA)) to which candidate E(ΨA) ∈ Can(U/IND
(ΨA)) is an actual one is,

κ(E(ΨA) ∈ U/IND(ΨA)) = κ(∧o∈E(ΨA) and o′∈E(ΨA)(A(o) = A(o′))
∧o∈E(ΨA) and o′ �∈E(ΨA)(A(o) �= A(o′))), (27)

where o �= o′, κ(f) is the probability to which formula f is satisfied, and κ(f) = 1
when there exists no f . When set Ψ of objects contains k objects and equivalence
class E(ΨA) consists of l objects,

κ(E(ΨA) ∈ U/IND(ΨA)) =
∑

(u,v1,···,vk−l)
(
∏

o∈E(ΨA)

πA(o)(u)×
∏

oi �∈E(ΨA)

(πA(o1)(v1), πA(o2)(v2), . . . , πA(ok−l)(vk−l))), (28)

where

πA(o)(u) =
∏

j=1,m

πaj(o)(uj), (29)

πA(oi)(vi) =
∏

j=1,m

πaj(oi)(vij), (30)

where two values u and vi are different and are expressed in (u1, · · · , um) and
(vi1, · · · , vim) on set A(= {a1, a2, . . . , am}) of attributes, respectively. Finally,
family U/IND(ΨA) of weighted equivalence classes is,

U/IND(ΨA) = {(E(ΨA), κ(E(ΨA) ∈ U/IND(ΨA))) |
κ(E(ΨA) ∈ U/IND(ΨA)) > 0}.(31)

Proposition 3
When (E(ΨA), κ(E(ΨA) ∈ U/IND(ΨA))) is an element of U/IND(ΨA) in in-
formation table T , there exists set PT of possible tables where for all pt ∈
PT U/IND(ΨA)pt contains E(ΨA) and

∑
pt∈PT μ(pt) is equal to κ(E(ΨA) ∈

U/IND(ΨA)).
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Proposition 4
U/IND(ΨA) in an information table is equal to the union of the families of
possible equivalence classes accompanied by a probability, where each family of
possible equivalence classes is obtained from a possible table created from the
information table.

Proposition 5
For any object o, ∑

E(ΨA)�o

κ(E(ΨA) ∈ U/IND(ΨA)) = 1. (32)

Using families of weighted equivalence classes, we can obtain lower approxi-
mation Apr(ΦB , ΨA) and upper approximation Apr(ΦB , ΨA) of U/IND(ΦB) by
U/IND(ΨA). For the lower approximation,

Apr(ΦB , ΨA) = {(E(ΨA), κ(E(ΨA) ∈ Apr(ΦB, ΨA))) |
κ(E(ΨA) ∈ Apr(ΦB, ΨA)) > 0}, (33)

κ(E(ΨA) ∈ Apr(ΦB , ΨA)) =
∑

E(ΦB)

(κ(E(ΨA) ⊆ E(ΦB))×

κ(E(ΨA) ∈ U/IND(ΨA))× κ(E(ΦB) ∈ U/IND(ΦB))), (34)

where

κ(E(ΨA) ⊆ E(ΦB)) =
{

1 if E(ΨA) ⊆ E(ΦB),
0 otherwise. (35)

Proposition 6
If (E(ΨA), κ(E(ΨA) ∈ Apr(ΦB , ΨA))) in information table T is an element of
Apr(ΦB, ΨA), there exists set PT of possible tables where for all pt ∈ PT
Apr(ΦB, ΨA)pt contains E(ΨA) and

∑
pt∈PT μ(pt) is equal to κ(E(ΨA) ∈ Apr

(ΦB , ΨA)).

For the upper approximation,

Apr(ΦB , ΨA) = {(E(ΨA), κ(o ∈ Apr(ΦB, ΨA))) |
κ(E(ΨA) ∈ Apr(ΦB , ΨA)) > 0}, (36)

κ(E(ΨA) ∈ Apr(ΦB , ΨA)) = κ(E(ΨA) ∩ ΦB �= ∅)×
κ(E(ΨA) ∈ U/IND(ΨA)), (37)

where

κ(E(ΨA) ∩ ΦB �= ∅) =
{

1 if E(ΨA) ∩ ΦB �= ∅,
0 otherwise. (38)

From this formula, the upper approximation is trivial when ΦB = UB; namely,
Apr(UB, ΨA) = U/IND(ΨA).
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Proposition 7
If (E(ΨA), κ(E(ΨA) ∈ Apr(ΦB , ΨA))) in information table T is an element of
Apr(ΦB, ΨA), there exists set PT of possible tables where for all pt ∈ PT
Apr(ΦB, ΨA)pt contains E(ΨA) and

∑
pt∈PT μ(pt) is equal to κ(E(ΨA) ∈ Apr

(ΦB , ΨA)).

For expressions in terms of a set of objects, the same expressions as in
Section 3 are used.

Proposition 8
The lower and upper approximations that are obtained by the method of
weighted equivalence classes coincide with ones obtained by the method of pos-
sible worlds.

5 Information Tables Containing Missing Values

We apply the method of weighted equivalence classes to information tables con-
taining missing values. We briefly compare the method where Kryszkiewicz uses
indiscernible classes with the method of weighted equivalence classes.

When missing values are contained in information table T , Kryszkiewicz de-
fines binary relation IND(UA) for indiscernibility between objects on set A of
attributes as follows [8,10]:

IND(UA) = {(o, o′) ∈ U × U | ∀a ∈ A, a(o) = a(o′) ∨ a(o) = ∗ ∨ a(o′) = ∗},(39)

where ∗ denotes a missing value and U is used in place of Ψ when Ψ is equal to
universe U . From this definition, an object having missing values for all attributes
on set A of attributes is indiscernible with any object. This corresponds to“do not
care” semantics of missing values addressed by Grzymala-Busse [4,5]. By using
indiscernible classes obtained from IND(UA), Kryszkiewicz expresses lower and
upper approximations of set Φ ⊆ U of objects:

apr(Φ,UA) = {o ∈ U | SA(o) ⊆ Φ}, (40)
apr(Φ,UA) = {o ∈ U | SA(o) ∩ Φ �= ∅}, (41)

where SA(o)(= {o′ | (o, o′) ∈ IND(UA)}) denotes the indiscernible class for
object o.

When we use the method of weighted equivalence classes, a missing value in
an attribute is probabilistically interpreted. In the missing value, every element
in the domain of the attribute has the same probability to which the element is
the actual value. In other words, a missing value in attribute a is equal to the
probabilistic value expressed in the uniform probability distribution where every
element over the domain has the same probability 1/|Va|. When attribute value
a(o) of object o is a missing value,

κ(a(o) = a(o′)) =
∑

u,v∈Va

(μ=(u, v)× πa(o)(u)× πa(o′)(v)) = 1/|Va|,
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where πa(o)(u) and πa(o′)(u) denote probability distributions expressing attribute
values a(o) and a(o′),3 respectively, and,

μ=(u, v) =
{

1 if u = v,
0 otherwise.

This shows that the indiscernibility degree of an object taking a missing value
on attribute a with the other objects is equal to 1/|Va|; namely, the object is in-
discernible with all objects with probability 1/|Va|. We express lower and upper
approximations in terms of weighted equivalence classes, as is shown in the pre-
vious section. Differences between the method of Kryszkiewicz and the method
of weighted equivalence classes are clarified in the following simple example:

Example
We suppose that information table T is obtained:

T
O a1 a2 a3

1 x 1 a
2 x 1 a
3 x 1 a
4 x 1 a
5 ∗ 2 b

The mark O denotes the object identity. Domains Va1 , Va2 , and Va3 of attributes
a1, a2, and a3 are {x, y}, {1, 2}, and {a, b}, respectively.

First, we apply the method of Kryszkiewicz to information table T . For indis-
cernible classes of each object on attribute a1,

Sa1(o1) = Sa1(o2) = Sa1(o3) = Sa1(o4) = Sa1(o5) = {o1, o2, o3, o4, o5}.
We suppose that Φ = {o1, o2, o3, o4} for simplicity. For the lower approximation,
using formula (40), because of {o1, o2, o3, o4, o5} �⊆ {o1, o2, o3, o4},

apr(Φ,Ua1) = ∅
This shows that we do not obtain any information for the lower approximation.4

This is true for different expressions [4,6,12] proposed by several authors. For
the upper approximation, using formula (41), because of {o1, o2, o3, o4, o5} ∩
{o1, o2, o3, o4} �= ∅,

apr(Φ,Ua1) = {o1, o2, o3, o4, o5}.

Second, we use the method of weighted equivalence classes. Missing value ∗ in
information table T is expressed in probability distribution {(x, 1/2), (y, 1/2)}p.
Using formulas (24) – (31),
3 When a(o′) is a precise value; for example, a(o′) = x, probability distribution πa(o′)

is expressed in {(x, 1)}p, where subscript p denotes a probability distribution.
4 Stefanowski and Tsoukiàs points out that the method of Kryszkiewicz using ”do

not care” semantics creates quite poor results [24]. To handle the problem, other
assumptions for indiscernibility of missing values are proposed [2,24].
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U/IND(Ua1) = {({o1, o2, o3, o4}, 1/2), ({o1, o2, o3, o4, o5}, 1/2)},
Applying formulas (33) – (38),

Apr(Φ,Ua1) = {({o1, o2, o3, o4}, 1/2)},
Apr(Φ,Ua1) = {({o1, o2, o3, o4}, 1/2), {({o1, o2, o3, o4, o5}, 1/2)}.

Using formulas (18) – (21),

apr(Φ,Ua1) = {(o1, 1/2), (o2, 1/2), (o3, 1/2), (o4, 1/2)},
apr(Φ,Ua1) = {(o1, 1), (o2, 1), (o3, 1), (o4, 1), (o5, 1/2)}.

Last, we show results by the method of possible worlds. Extended set rep(T ) of
possible tables is,

rep(T ) = {(pt1, 1/2), (pt2, 1/2)}p.

pt1
O a1 a2 a3

1 x 1 a
2 x 1 a
3 x 1 a
4 x 1 a
5 x 2 b

pt2
O a1 a2 a3

1 x 1 a
2 x 1 a
3 x 1 a
4 x 1 a
5 y 2 b

For families of equivalence classes of possible tables,
(U/IND(Ua1), 1/2)pt1 = {({o1, o2, o3, o4, o5}, 1/2)},
(U/IND(Ua1), 1/2)pt2 = {({o1, o2, o3, o4}, 1/2), ({o5}, 1/2)},

For lower and upper approximations of each possible table,
Apr(Φ,Ua1)pt1 = ∅,
Apr(Φ,Ua1)pt1 = {({o1, o2, o3, o4, o5}, 1/2)},
Apr(Φ,Ua1)pt2 = {({o1, o2, o3, o4}, 1/2)}.
Apr(Φ,Ua1)pt2 = {({o1, o2, o3, o4}, 1/2)}.

Finally, using formulas (12) – (17) and (18) – (21),
Apr(Φ,Ua1) = {({o1, o2, o3, o4}, 1/2)},
Apr(Φ,Ua1) = {({o1, o2, o3, o4}, 1/2), ({o1, o2, o3, o4, o5}, 1/2)},
apr(Φ,Ua1) = {(o1, 1/2), (o2, 1/2), (o3, 1/2), (o4, 1/2)},
apr(Φ,Ua1) = {(o1, 1), (o2, 1), (o3, 1), (o4, 1), (o5, 1/2)}.

Indeed, the results obtained from the method of weighted equivalence classes
coincide with ones from the method of possible worlds.
This simple example shows that we obtain correct results for the lower approxi-
mation when weighted equivalence classes are used. On the other hand, we cannot
obtain any information for the lower approximation by the existence of only the
missing value in the method of Kryszkiewicz where indiscernible classes are used.
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6 Conclusions

We have proposed a method, where weighted equivalence classes are used, to
deal with imprecise information expressed in a probability distribution. The
lower and upper approximations by the method of weighted equivalence classes
coincide with ones by the method of possible worlds. In other words, this method
satisfies the correctness criterion that is used in the field of incomplete databases.
This is justification of the method of weighted equivalence classes.

We have applied the method of weighted equivalence classes to information
tables containing missing values under probabilistic interpretation. We obtain
correct results for rough approximations when weighted equivalence classes are
used, even if we do not obtain any results for the lower approximation when the
method of Kryszkiewicz is used.
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23. S�lowiński, R., Stefanowski, J.: Rough Classification in Incomplete Information Sys-
tems. Mathematical and Computer Modelling 12(10/11), 1347–1357 (1989)
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Abstract. A set of perceived random events is given by a fuzzy ran-
dom variable, and its estimation is represented by a functional on real
random variables. The estimation of the perception regarding random
events is obtained, extending the functional to a functional of fuzzy ran-
dom variables. This paper discusses conditions and various properties of
perception-based extension of estimations with randomness, and several
examples of the perception-based extension are investigated. The results
can be applied other estimations in engineering, economics and so on.

1 Introduction

Fuzzy random variables, which were introduced by Kwakernaak [7,8], are ap-
plied to decision-making under uncertainty with fuzziness like linguistic data
in statistics, engineering and economics. The notion of fuzzy random variable is
strongly related to perception of random events. The relation between fuzzy logic
with randomness and perception is found in Zadeh [17]. On the other hand, in
decision-making with randomness we need estimations of real random variables
like the expectation as a criterion of optimization. This paper discusses condi-
tions and properties of an extended estimation for fuzzy random variables. In this
paper, a set of perceived random events, which are represented by real random
variables, is given by a fuzzy random variable. An estimation of perceived ran-
dom events is also represented by a functional on real random variables. Then,
we obtain the estimation of the perception regarding random events, extending
the functional to a functional of fuzzy random variables. We deal with a fuzzy
random variable and its estimation. In the rest of this section, we explain the
details with mathematical notations.

Put the set of all real numbers by R := (−∞,∞). A fuzzy number is denoted by
its membership function ã : R �→ [0, 1] which is normal, upper-semicontinuous,
fuzzy convex and has a compact support (Zadeh [16]). R denotes the set of all
fuzzy numbers. Let Ω be a sample space and let X be a set of real random
variables on Ω. A fuzzy-number-valued map X̃ : Ω �→ R is called a fuzzy ran-
dom variable if ω �→ X̃−

α (ω) and ω �→ X̃+
α (ω) are measurable for all α ∈ [0, 1],

where X̃α(ω) = [X̃−
α (ω), X̃+

α (ω)] := {x ∈ R | X̃(ω)(x) ≥ α} is the α-cut (Kwak-
ernaak [7,8]). Kruse and Meyer [5] gave a perception-based definition regarding

V. Torra, Y. Narukawa, and Y. Yoshida (Eds.): MDAI 2007, LNAI 4617, pp. 295–306, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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the expectation of a fuzzy random variable X̃, which is induced from Zadeh’s
extension principle, as follows.

θ(X̃)(x) := sup
X∈X : E(X)=x

inf
ω∈Ω

X̃(ω)(X(ω)), x ∈ R, (1)

where X is taken as the set of all integrable real random variables and E(X) :=∫
XdP . Then, it is known that the expectation θ(X̃) is a fuzzy number whose

α-cut is given by
θ(X̃)α = [E(X̃−

α ), E(X̃+
α )] (2)

forα ∈ (0, 1]. Hence, the term infω∈Ω X̃(ω)(X(ω)) in (1) means a level at which we
can perceive the real random variableX(ω) by the fuzzy random variable X̃(ω)(·)
since actually for each level α ∈ (0, 1] it holds that infω∈Ω X̃(ω)(X(ω)) ≥ α if and
only if X(ω) ∈ X̃α(ω) for all ω ∈ Ω. Therefore, the definition (1) implies that the
expectation of a fuzzy random variable X̃ is obtained by applying Zadeh’s exten-
sion principle to the expectation operation E(·) of real random variables X(ω)
which we can perceive by the fuzzy random variable X̃(ω)(·). The α-cut of the
fuzzy number (1) can be generally given by the following Aumann integral:

θ(X̃)α = {E(X)|X ∈ X andX(ω) ∈ X̃α(ω) for allω ∈ Ω}. (3)

Puri and Ralescu [11] discussed the conditional expectation of fuzzy random vari-
ablesbyAumannintegral,andLópez-Dı́azetal. [2]discussed itforthestudyofstatis-
tics with fuzzy data. In this paper, for a functional ϕ : X �→ R as a more general
estimation of real random variables, by the perception-based approach we discuss
fuzzy extensions ϕ̃ of the estimation ϕ which is defined in the following:

ϕ̃(X̃)(x) := sup
X∈X : ϕ(X)=x

inf
ω∈Ω

X̃(ω)(X(ω)), x ∈ R (4)

for a fuzzy random variable X̃ ∈ X̃ . Refer to Fig.1 for the image of the extension.
In the next section, we discuss some conditions and various properties regard-

ing perception-based extension (4) of estimations with randomness. In Section 3,

(!)X

~(!)X ~( )~X

( )X

Random variables perceived by

     a fuzzy random variable 

         Estimation of 

the fuzzy random variable

ϕ

ϕ

Estimation by a functional  ϕ

Estimation based on perception

A random variable Estimated random variable 

Fig. 1. Estimation of a fuzzy random variable based on perception
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we investigate several examples of the perception-based extension in statistics,
engineering and finance. In the last section, we discuss an approach to cases
where the monotone condition, which is given in Section 2, does not hold.

2 Perception-Based Extension of Estimations with
Randomness

For a fuzzy number ã(∈ R), its α-cuts are given by ãα := {x ∈ R | ã(x) ≥ α}
(α ∈ (0, 1]) and ã0 := cl{x ∈ R | ã(x) > 0}, where cl denotes the closure of an
interval. The α-cut is also written by closed intervals ãα = [ã−α , ã

+
α ] (α ∈ [0, 1]).

Hence we introduce a partial order +, so called the fuzzy max order, on fuzzy
numbers R: Let ã, b̃ ∈ R be fuzzy numbers. ã + b̃ means that ã−α ≥ b̃−α and
ã+

α ≥ b̃+α for all α ∈ [0, 1]. An addition and a scalar multiplication for fuzzy
numbers are defined as follows: For ã, b̃ ∈ R and λ ∈ R, the addition ã+ b̃ of ã
and b̃ and the scalar multiplication λã of λ and ã are fuzzy numbers given by
their α-cuts (ã+ b̃)α := [ã−α + b̃−α , ã+

α + b̃+α ] and (λã)α := [λã−α , λã+
α ] if λ ≥ 0 and

(λã)α := [λã+
α , λã

−
α ] if λ < 0, where ãα = [ã−α , ã

+
α ] and b̃α = [b̃−α , b̃

+
α ] (α ∈ [0, 1]).

Now we also use the following metric dH on R induced from Hausdorff metric:
dH(ã, b̃) := supα∈[0,1] max{|ã−α − b̃−α |, |ã+

α − b̃+α |} for ã, b̃ ∈ R.
Let X be a set of real random variables on a sample space Ω such that

λX + νY ∈ X for all X,Y ∈ X and λ, ν ∈ R. Let X̃ be a set of fuzzy random
variables X̃ on Ω such that X̃±

α ∈ X for all α ∈ [0, 1]. We consider the following
conditions regarding functionals ϕ : X �→ R.

(ϕ,≤) ϕ(X) ≤ ϕ(Y ) holds for all real random variables X,Y ∈ X satisfying
X(ω) ≤ Y (ω) for all ω ∈ Ω. (non-decreasing property)

(ϕ,≥) ϕ(X) ≥ ϕ(Y ) holds for all real random variables X,Y ∈ X satisfying
X(ω) ≤ Y (ω) for all ω ∈ Ω. (non-increasing property)

(ϕ, c) Let {Xn}n ⊂ X and X ∈ X be a sequence and its limit, i.e. limn→∞
Xn(ω) = X(ω) for all ω ∈ Ω. Then it holds that limn→∞ ϕ(Xn) = ϕ(X).
(continuity)

The properties (ϕ,≤) and (ϕ,≥) are called monotonicity. We put a family of
functionals with the non-decreasing property (ϕ,≤) by Φ≤ := {functionalsϕ :
X �→ R satisfying (ϕ,≤) and (ϕ, c)}, and we also put a family of function-
als with the non-increasing property (ϕ,≥) by Φ≥ := {functionalsϕ : X �→
R satisfying (ϕ,≤) and (ϕ, c)}.
Proposition 1. For the families Φ≤ and Φ≥, the following (i) – (iii) hold.

(i) If ϕ1, ϕ2 ∈ Φ≤, then ϕ1 + ϕ2 ∈ Φ≤. If ϕ1, ϕ2 ∈ Φ≥, then ϕ1 + ϕ2 ∈ Φ≥.

(ii) Let ϕ ∈ Φ≤. Then, λϕ ∈ Φ≤ for λ ≥ 0, and λϕ ∈ Φ≥ for λ ≤ 0.

(iii) Let ϕ ∈ Φ≥. Then, λϕ ∈ Φ≥ for λ ≥ 0, and λϕ ∈ Φ≤ for λ ≤ 0.

Proof. The proof of this proposition is trivial from the definitions. ��
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Now we obtain the following results regarding the families Φ≤ and Φ≥. Lemma
1 is derived from the properties (ϕ,≤), (ϕ,≥) and (ϕ, c), and it is used in the
proof of Theorem 1.

Lemma 1. Let X,Y ∈ X be real random variables satisfying X ≤ Y . PutXλ =
λX + (1−λ)Y for λ ∈ [0, 1]. If ϕ ∈ Φ≤ (ϕ ∈ Φ≥), then for any x ∈ [ϕ(X), ϕ(Y )]
(x ∈ [ϕ(Y ), ϕ(X)] resp.) there exists λ(∈ [0, 1]) such that ϕ(Xλ) = x.

Proof. It is sufficient to prove the case of ϕ ∈ Φ≤. Let x ∈ [ϕ(X), ϕ(Y )]. In case
of x = ϕ(X) (x = ϕ(Y )), we take λ = 1 (λ = 0 resp.). Therefore we consider only
cases where ϕ(X) < x < ϕ(Y ). We have Xλ = λX+(1−λ)Y ∈ X for λ ∈ [0, 1].
Suppose that there exist no λ(∈ [0, 1]) such that ϕ(Xλ) = x. Put Λ− := {λ ∈
[0, 1]|ϕ(Xλ) < x} and Λ+ := {λ ∈ [0, 1]|ϕ(Xλ) > x}. Then Λ− ∪ Λ+ = [0, 1].
From the property (ϕ,≤), there exists λ∗(∈ [0, 1]) such that ϕ(Xλ) < x for all
λ ∈ (λ∗, 1] and ϕ(Xλ) > x for all λ ∈ [0, λ∗). Then we have Xλ∗

= limλ→λ∗ Xλ.
From the property (ϕ, c), it follows ϕ(Xλ∗

) = limλ→λ∗ ϕ(Xλ). By the definition
of λ∗, we also have limλ↑λ∗ ϕ(Xλ) ≥ x and limλ↓λ∗ ϕ(Xλ) ≤ x. These imply
ϕ(Xλ∗

) = limλ→λ∗ ϕ(Xλ) = x, and this equation contradicts the definition of
λ∗. Thus we obtain this lemma. ��
Theorem 1. Let ϕ ∈ Φ≤ ∪ Φ≥. Define a functional ϕ̃ : X̃ �→ R by

ϕ̃(X̃)(x) := sup
X∈X : ϕ(X)=x

inf
ω∈Ω

X̃(ω)(X(ω)), x ∈ R (5)

for a fuzzy random variable X̃ ∈ X̃ . If ϕ ∈ Φ≤ (ϕ ∈ Φ≥), then the α-cut of ϕ̃(X̃)
is given by a closed interval

ϕ̃(X̃)α = [ϕ(X̃−
α ), ϕ(X̃+

α )] (ϕ̃(X̃)α = [ϕ(X̃+
α ), ϕ(X̃−

α )] resp.) (6)

for α ∈ (0, 1].

Proof. It is sufficient to prove the case of ϕ ∈ Φ≤. Let X̃ ∈ X̃ be a fuzzy
random variable and let α ∈ (0, 1]. Now we check ϕ(X̃)α ⊂ [ϕ(X̃−

α ), ϕ(X̃+
α )].

Take a point x such that x ∈ ϕ(X̃)α. Hence for any ε > 0 there exists X ∈ X
such that ϕ(X) = x and

X̃(ω)(X(ω)) ≥ α− ε for all ω ∈ Ω.
This follows X(ω) ∈ X̃(ω)α−ε for all ω ∈ Ω, and so we obtain

X̃(ω)−α−ε ≤ X(ω) ≤ X̃(ω)+α−ε for all ω ∈ Ω.
From the property (ϕ,≤), for any ε > 0 there exists X ∈ X such that ϕ(X) = x
and

ϕ(X̃−
α−ε) ≤ ϕ(X) ≤ ϕ(X̃+

α−ε).

Letting ε→ 0, by the property (ϕ, c) it follows

ϕ(X̃−
α ) ≤ x ≤ ϕ(X̃+

α ).
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Thus we get x ∈ [ϕ(X̃−
α ), ϕ(X̃+

α )], and it holds that ϕ(X̃)α ⊂ [ϕ(X̃−
α ), ϕ(X̃+

α )].
On the contrary, we suppose x ∈ [ϕ(X̃−

α ), ϕ(X̃+
α )] and ϕ(X̃−

α ) < ϕ(X̃+
α ). Then

ϕ(X̃−
α ) ≤ x ≤ ϕ(X̃+

α ).

Put Xλ = λX̃−
α +(1−λ)X̃+

α (∈ X ) for λ ∈ [0, 1]. From the properties (ϕ,≤) and
(ϕ, c), the real valued function

λ(∈ [0, 1]) �→ ϕ(Xλ)(∈ [ϕ(X̃−
α ), ϕ(X̃+

α )])

is non-decreasing, continuous and onto. Therefore, by Lemma 1 there exists
λ(∈ [0, 1]) such that ϕ(Xλ) = x. Thus we have ϕ(Xλ) = x and

X̃−
α (ω) ≤ Xλ(ω) ≤ X̃+

α (ω) for all ω ∈ Ω.

This follows Xλ(ω) ∈ X̃α(ω) for all ω ∈ Ω. and so

X̃(ω)(Xλ(ω)) ≥ α for all ω ∈ Ω.

Namely
ϕ̃(X̃)(x) = sup

X∈X : ϕ(X)=x

inf
ω∈Ω

X̃(ω)(X(ω)) ≥ α.

Thus we obtain x ∈ ϕ(X̃)α. Finally we also check the case x ∈ [ϕ(X̃−
α ), ϕ(X̃+

α )]
and ϕ(X̃−

α ) = ϕ(X̃+
α ). In this case, taking X = X̃−

α (∈ X ), we can derive
the same conclusion in the same argument. Therefore, we obtain ϕ(X̃)α =
[ϕ(X̃−

α ), ϕ(X̃+
α )] in the case of ϕ ∈ Φ≤. We obtain the results in case of Φ≥

in the same way. ��
The following proposition shows that the extended estimations ϕ̃ preserve the

properties (ϕ,≤), (ϕ,≥) and (ϕ, c).

Proposition 2. The following (i) and (ii) hold.

(i) Let ϕ ∈ Φ≤ (ϕ ∈ Φ≥). Then ϕ̃(X̃) , ϕ̃(Ỹ ) (ϕ̃(X̃) + ϕ̃(Ỹ ) resp.) holds for
all fuzzy random variables X,Y ∈ X̃ satisfying X̃(ω) , Ỹ (ω) for all ω ∈ Ω,
where , is the fuzzy max order on R.

(ii) Let ϕ ∈ Φ≤∪Φ≥. Let {X̃n}n ⊂ X̃ and X̃ ∈ X̃ be a sequence and its limit, i.e.
limn→∞ X̃n(ω) = X̃(ω) for all ω ∈ Ω. Then it holds that limn→∞ ϕ̃(X̃n) =
ϕ̃(X̃), where we use the metric dH on R.

Proof. We can easily check the proof of this proposition by Theorem 1 and the
bounded convergence theorem. ��
Finally we discuss the additivity and scalar multiplicativity for functionals ϕ ∈
Φ≤ ∪ Φ≥. Real random variables X,Y ∈ X are called comonotonic if there exist
strictly increasing functions f, g : R �→ R and a real random variable Z ∈ X
such that X = f(Z) and Y = g(Z). Fuzzy random variables X̃, Ỹ ∈ X̃ are also
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called comonotonic if there exist strictly increasing functions f, g : R �→ R and
a fuzzy random variable Z̃ ∈ X̃ such that X̃ = f(Z̃) and Ỹ = g(Z̃), where

f(Z̃)(ω)(x) := sup
Z∈X : f(Z(ω))=x

Z̃(ω)(Z(ω)), (7)

g(Z̃)(ω)(x) := sup
Z∈X : g(Z(ω))=x

Z̃(ω)(Z(ω)) (8)

for ω ∈ Ω and x ∈ R.

Proposition 3. For λ ∈ R and ϕ ∈ Φ≤ ∪ Φ≥, the following (i) – (iii) hold.

(i) If ϕ satisfies ϕ(X + Y ) ≤ ϕ(X) + ϕ(Y ) (ϕ(X + Y ) ≥ ϕ(X) + ϕ(Y )) for
all X,Y ∈ X , then it holds that ϕ̃(X̃ + Ỹ ) , ϕ̃(X̃) + ϕ̃(Ỹ ) (ϕ̃(X̃ + Ỹ ) +
ϕ̃(X̃) + ϕ̃(Ỹ ) resp.) for all X̃, Ỹ ∈ X̃ , where

(X̃+ Ỹ )(ω)(x) := sup
X,Y ∈X : X(ω)+Y (ω)=x

min{X̃(ω)(X(ω)), Ỹ (ω)(Y (ω))} (9)

for ω ∈ Ω and x ∈ R.

(ii) If ϕ satisfies ϕ(λX) = λϕ(X) for all X ∈ X , then it holds that ϕ̃(λX̃) =
λϕ̃(X̃) for all X̃ ∈ X̃ , where

(λX̃)(ω)(x) := sup
X∈X : λX(ω)=x

X̃(ω)(X(ω)) (10)

for ω ∈ Ω and x ∈ R.
(iii) If ϕ satisfies ϕ(X + Y ) = ϕ(X) + ϕ(Y ) for all comonotonic real random

variables X,Y ∈ X , then it holds that ϕ̃(X̃ + Ỹ ) = ϕ̃(X̃) + ϕ̃(Ỹ ) for all
comonotonic fuzzy random variables X̃, Ỹ ∈ X̃ .

Proof. We can easily check the proof from Theorem 1. ��
The property (iii) in Proposition 3 is called comonotonic additive.

3 Applications of Perception-Based Extension of
Estimations

In this section, we give several examples of estimations, which are used in statis-
tics, engineering and economics, and we investigate the main results in the pre-
vious section about the examples.

3.1 Expectations and Conditional Expectations

Let P be a non-atomic probability on a sample Ω. Let X be the set of all
integrable real random variables on (Ω,P ). A fuzzy random variable X̃ is called
integrable if the both end of α-cuts X̃±

α are integrable for all α ∈ [0, 1]. Let X̃
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be the set of all integrable fuzzy random variables on (Ω,P ). The expectation of
an integrable fuzzy random variable X̃ is a fuzzy number

Ẽ(X̃)(x) := sup
X∈X : E(X)=x

inf
ω∈Ω

X̃(ω)(X(ω)), x ∈ R, (11)

where we take ϕ = E(·) ∈ Φ≤ in (4) (Kruse and Meyer [5]). This extension is
well-defined and has monotone, continuous and linear properties in Propositions
2 and 3.

Let M be a σ-field on Ω and let G be a sub-σ-field of M. The conditional
expectation of an integrable fuzzy random variable X̃(∈ X̃ ) is a fuzzy random
variable

Ẽ(X̃ |G)(ω′)(x) := sup
X∈X : E(X|G)(ω′)=x

inf
ω∈Ω

X̃(ω)(X(ω)), ω′ ∈ Ω, x ∈ R, (12)

where we take ϕ = E(·|G)(ω′) ∈ Φ≤ in (4). Its α-cut is given by Ẽ(X̃|G)α =
[E(X̃−

α |G), E(X̃+
α |G)], and this extension has non-decreasing, continuous and

linear properties in Propositions 2 and 3. Puri and Ralescu [11] discussed the
properties of this extension.

3.2 Cumulative Distribution Functions and Threshold Probabilities

Let P be a non-atomic probability on a sample Ω. Let X be the set of all real
random variables on (Ω,P ). Let X̃ be the set of all fuzzy random variables on
(Ω,P ). The cumulative distribution function of a fuzzy random variable X̃(∈ X̃ )
is a fuzzy number

P̃ (X̃ < t)(x) := sup
X∈X : P (X<t)=x

inf
ω∈Ω

X̃(ω)(X(ω)), x ∈ R, (13)

where we take ϕ = P ( · < t) ∈ Φ≥ in (4). Its α-cut is given by P̃ (X̃ < t)α =
[P (X̃+

α < t), P (X̃−
α < t)], and this extension has non-increasing and continuous

properties in Proposition 2. Cumulative distribution functions P (X < t) are used
in decision-making for the optimization of threshold probabilities (Ohtsubo [10]).

3.3 Quantiles, Median and Value-at-Risk

Let P be a non-atomic probability on a sampleΩ. Let X be the set of real random
variables X on (Ω,P ) with a continuous cumulative distribution function x �→
FX(x) := P (X < x) for which there exists a non-empty open interval I such
that FX(·) : I �→ (0, 1) is a strictly increasing and onto. We put FX(inf I) := 0
and FX(sup I) := 1. Let the inverse function of FX by F−1

X (·) : [0, 1] �→ cl I,
where cl I := I ∪ {inf I} ∪ {sup I} is the closure of I. Then p-quantiles are given
by F−1

X (p) for probabilities p ∈ [0, 1]. Especially, quantiles F−1
X (0.25), F−1

X (0.75)
and the median F−1

X (0.5) are widely used in statistics (Meucci [9]).
In finance, the Value-at-Risk (VaR) at a probability level p(∈ [0, 1]) is given by

the p-quantile of the distribution function FX as follows: VaRp(X) := F−1
X (p).
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Let X̃ be the set of all fuzzy random variables on (Ω,P ). Then, Value-at-Risk
of of a fuzzy random variable X̃(∈ X̃ ) is a fuzzy number

ṼaRp(X̃)(x) := sup
X∈X : VaRp(X)=x

inf
ω∈Ω

X̃(ω)(X(ω)), x ∈ R, (14)

where we take ϕ = VaRp(·) ∈ Φ≤ in (4). Its α-cut is given by ṼaRp(X̃)α =
[VaRp(X̃−

α ),VaRp(X̃+
α )], and this extension has non-decreasing, positively ho-

mogeneous, continuous and comonotonic additive properties in Propositions 2
and 3.

3.4 Average Value-at-Risk / Expected Shortfall

Let P be a non-atomic probability on a set Ω. Let X be the set of real random
variables X on (Ω,P ) with a continuous cumulative distribution function on
Ω. In finance, the Average Value-at-Risk (AVaR) / Expected Shortfall (ES) at
a probability level p(∈ [0, 1]) is given as follows (Rockafellar and Uryasev [12],
Tasche [13]).

AVaRp(X) :=

⎧⎨⎩ inf I if p = 0
1
p

∫ p

0

VaRq(X) dq =
1
p

∫ p

0

F−1
X (q) dq if 0 < p ≤ 1. (15)

Let X̃ be the set of all fuzzy random variables on (Ω,P ). Then, Average Value-
at-Risk / Expected Shortfall of a fuzzy random variable X̃(∈ X̃ ) is a fuzzy
number

ÃVaRp(X̃)(x) := sup
X∈X : AVaRp(X)=x

inf
ω∈Ω

X̃(ω)(X(ω)), x ∈ R, (16)

where we take ϕ = AVaRp(·) ∈ Φ≤ in (4). Its α-cut is given by ÃVaRp(X̃)α =
[AVaRp(X̃−

α ),AVaRp(X̃+
α )] = [ 1p

∫ p

0 VaRq(X̃−
α ) dq, 1

p

∫ p

0 VaRq(X̃+
α ) dq] for p > 0,

and this extension is also well-defined and has non-decreasing, positively homoge-
neous, continuous and comonotonic additive properties in Propositions 2 and 3.

3.5 Call Options, Put Options and Expected Rewards

Let P be a non-atomic probability on a set Ω. Let X be the set of all integrable
real random variables on (Ω,P ). Let X̃ be the set of all integrable fuzzy random
variables on (Ω,P ). In financial engineering, call options and put options of a
stock price, which are defined by an integrable fuzzy random variable X̃(∈ X̃ )
with a strike price κ(> 0) are given respectively by

Ẽ((κ− X̃)+)(x) := sup
X∈X : E((κ−X)+)=x

inf
ω∈Ω

X̃(ω)(X(ω)), x ∈ R, (17)

Ẽ((X̃ − κ)+)(x) := sup
X∈X : E((X−κ)+)=x

inf
ω∈Ω

X̃(ω)(X(ω)), x ∈ R. (18)
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More generally, for continuous non-increasing/non-decreasing functions f : R �→
R, the expected reward of an integrable fuzzy random variable X̃(∈ X̃ ) is a fuzzy
number

Ẽ(f(X̃))(x) := sup
X∈X : E(f(X))=x

inf
ω∈Ω

X̃(ω)(X(ω)), x ∈ R, (19)

where
f(X̃)(ω)(x) := sup

X∈X : f(X(ω))=x

X̃(ω)(X(ω)) (20)

for ω ∈ Ω and x ∈ R. Hence we take ϕ = E(f(·)) ∈ Φ≤ in (4) for non-
decreasing f and its α-cut is given by Ẽ(f(X̃))α = [E(f(X̃−

α )), E(f(X̃+
α ))].

On the other hand, for non-increasing f , the α-cut is given by Ẽ(f(X̃))α =
[E(f(X̃+

α )), E(f(X̃−
α ))]. These extensions are also well-defined and have mono-

tone and continuous properties in Proposition 2. We note that call options
and put options can be represented by a continuous non-increasing function
f(x) = (κ− x)+ and a non-decreasing function f(x) = (x− κ)+, and this kinds
of problems are discussed by Yoshida [14], Kurano et al. [6] and so on.

3.6 Moments

Now we discuss the moments in statistics as an application of Theorem 1. Let
P be a non-atomic probability on a sample Ω. Let X be the set of all integrable
real random variables on (Ω,P ). In statistics, for n = 1, 2, · · · , the nth moment
of an integrable real random variable X(∈ X ) at a point c(∈ R) is given by
E((X − c)n). The nth moment of an integrable fuzzy random variable X̃(∈ X̃ )
at c(∈ R) is given by the following proposition.

Proposition 4. Let n = 1, 2, · · · . The nth moment Ẽ((X̃ − c)n) at c(∈ R) of
an integrable fuzzy random variable X̃ is a fuzzy number whose α-cuts are given
by

Ẽ((X̃ − c)n)α =
[
E((med{X̃−

α , X̃
+
α , c} − c)n), E(max{(X̃−

α − c)n, (X̃+
α − c)n})

]
(21)

for even n, and

Ẽ((X̃ − c)n)α =
[
E((X̃−

α − c)n), E((X̃+
α − c)n)

]
(22)

for odd n, where med{c1, c2, c3} is the median of three real numbers c1, c2, c3.

Proof. In case where n is odd, since the nth moment function f(x) = (x−c)n is
increasing and continuous, from Theorem 1 we obtain (22). Next, in case where
n is even, we cannot apply Theorem 1 since the nth moment does not satisfy
the monotone properties (ϕ,≤) and (ϕ,≥). Hence the α-cut of the nth moment
for a fuzzy random variable X̃

Ẽ((X̃ − c)n)(x) = sup
X∈X : E((X−c)n)=x

inf
ω∈Ω

X̃(ω)(X(ω)), x ∈ R, (23)
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is given by

Ẽ((X̃ − c)n)α = {E((X − c)n)|X ∈ X , X(ω) ∈ X̃α(ω) for allω ∈ Ω}. (24)

Therefore we investigate a set {(x − c)n|X̃−
α ≤ x ≤ X̃+

α }. We have the lower
bound

min{(x− c)n|X̃−
α ≤ x ≤ X̃+

α } =

⎧⎨⎩
(X̃+

α − c)n if X̃+
α < c

0 if X̃−
α ≤ c ≤ X̃+

α

(X̃−
α − c)n if c < X̃−

α ,

and this follows min{(x − c)n|X̃−
α ≤ x ≤ X̃+

α } = (med{X̃−
α , X̃

+
α , c} − c)n. On

the other hand, we have the upper bound

max{(x−c)n|X̃−
α ≤ x ≤ X̃+

α }=

⎧⎨⎩
(X̃−

α − c)n if X̃+
α < c

max{(X̃−
α − c)n, (X̃+

α − c)n} if X̃−
α ≤ c ≤ X̃+

α

(X̃+
α − c)n if c < X̃−

α ,

and this follows max{(x − c)n|X̃−
α ≤ x ≤ X̃+

α } = max{(X̃−
α − c)n, (X̃+

α − c)n}.
Therefore, we obtain the interval

{(x− c)n|X̃−
α ≤ x ≤ X̃+

α }
=
[
med{X̃−

α , X̃
+
α , c} − c)n,max{(X̃−

α − c)n, (X̃+
α − c)n}

]
.

Thus we obtain (21) from (24) and this equation. ��

3.7 Variances

Let P be a non-atomic probability on a set Ω. Let X be the set of all integrable
real random variables on (Ω,P ). The variance is given by

V (X) = E((X − E(X))2) =
∫

(X − E(X))2 dP. (25)

The variance does not satisfy the monotone properties (ϕ,≤) and (ϕ,≥). Hence
we can give a definition of the extended estimation Ṽ (X̃) by

Ṽ (X̃)(x) := sup
X∈X : V (X)=x

inf
ω∈Ω

X̃(ω)(X(ω)), x ∈ R, (26)

and this definition implies that its α-cut is

{E((X − E(X))2)|X ∈ X , X(ω) ∈ X̃α(ω) for allω ∈ Ω}. (27)

In general, this set does not equal to the interval (6) since the monotone proper-
ties (ϕ,≤) and (ϕ,≥) does not hold. Therefore we need to take another approach
for this case (Refer to Conclusion). However, regarding the second moments at
a point, in Section 4 we can propose a method which is based on an ideal from
the previous section.
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4 An Approach to General Cases

Finally we discuss a method for the cases where functionals ϕ do not satisfy the
monotone properties (ϕ,≤) and (ϕ,≥). Let P be a non-atomic probability on a
set Ω. Let X be the set of all integrable real random variables on (Ω,P ), and
let X̃ be the set of all integrable fuzzy random variables on (Ω,P ). Let c(∈ R)
be a fixed constant. Let n be a positive even number, and put f(x) := (x− c)n

for x ∈ R. Then we have a representation

f(x) = max{f+(x),−f−(x)} (28)

for x ∈ R, with two non-decreasing functions

f+(x) :=
{

0 if x < c
(max{x− c, 0})n if x ≥ c, f−(x) :=

{−(min{x− c, 0})n if x < c
0 if x ≥ c.

(29)
From Section 3.6, for the continuous non-decreasing functions f±, the expected
rewards of an integrable fuzzy random variable X̃(∈ X̃ ) are fuzzy numbers

Ẽ(f±(X̃))(x) := sup
X∈X : E(f±(X))=x

inf
ω∈Ω

X̃(ω)(X(ω)), x ∈ R. (30)

Therefore we obtain the following result.

Theorem 2. The expectation Ẽ(f(X̃)) of the fuzzy random variable f(X̃) is
a fuzzy number whose α-cuts are given by

Ẽ(f(X̃))α = Ẽ(max{f+(X̃),−f−(X̃)})α

=
[
E(max{f+(X̃−

α ),−f−(X̃+
α )}), E(max{f+(X̃+

α ),−f−(X̃−
α )})
]

(31)
for α ∈ [0, 1], and this term equals to (21) in case where f(x) = (x− c)n (x ∈ R)
for even n.

We note that the decomposition (28) of the function f is not unique, for example
we can take f = f+ − f−. Then the result in Theorem 2 will be different.
Therefore, we must take care of the choice of the decomposion of f .

5 Concluding Remarks

In this paper, we have discussed conditions and various properties of perception-
based extension of estimations with randomness, and we have investigated sev-
eral examples of the perception-based extension. These results are applicable to
other estimations with fuzziness like linguistic data in engineering, economics,
finance and so on.

We have also discussed an approach to cases where the monotone condition
does not hold. Regarding the second moments at a point, we have proposed a
method in Section 4. However, we cannot apply the results directly to variances
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in Section 3.7. Actually, we have to take c is the expectation of a fuzzy random
variable X̃ in (29) with n = 2. When c is a fuzzy number depending on the fuzzy
random variable X̃ , the analysis will be more difficult. We can find other ap-
proaches regarding variance in Carlsson and Fullér [1], Feng et al. [3], Körner [4]
and Yoshida [15].
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Abstract. Nowadays one of the most vital problems in embedded system co-
design is Hardware/Software (HW/SW) partitioning. Due to roughly assumed 
parameters in design specification and imprecise benchmarks for judging the 
solution’s quality, embedded system designers have been working on finding a 
more efficient method for HW/SW partitioning for years. We propose an 
application of a hybrid neural fuzzy system incorporating Boltzmann machine 
to the HW/SW partitioning problem. Its architecture and performance 
estimation against other popular algorithm are evaluated. The simulation result 
shows the proposed system outperforms other algorithm both in cost and 
performance. 

Keywords: Boltzmann machine, hybrid neural fuzzy system, hardware/ 
software partitioning, embedded system. 

1   Introduction 

1.1   HW/SW Partitioning 

Since the emergence of desktop computer, perhaps one of the most important 
technologies that enabled ubiquitous computing is the embedded system. An 
embedded system is a special-purpose system combined of computer hardware and 
software. It is widely used in everyday life, such as in cellular telephones, 
automobiles, multimedia devices, automated supermarket stockers, etc., making our 
work and life more efficient and comfortable. In the past, the design of embedded 
system was carried on serially. Software development just followed after hardware 
development. But as the scale and complexity of the system increase, this way of 
design is not suitable any more, and a new method called HW/SW co-design was 
introduced. HW/SW co-design allows simultaneous design of a system’s hardware 
and software components, thus exploiting the advantage of both, optimizing 
performance and cost, and allowing easier redesign when needed [1]. Different from 
the traditional method, HW/SW co-design focuses more on the cooperation of both 
hardware and software designers. 
                                                           
* Corresponding author. 
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Based on the granularity of system function analysis, current HW/SW co-design 
methodology is divided into two subdisciplines: one is based on coarse-grain task, 
called HW/SW co-synthesis, which uses task graph to describe the system function; 
another is based on fine-grain basic scheduling block (BSB), called HW/SW 
partitioning, which uses control data flow graph (CDFG) to describe the system 
function. In this paper, we mainly focus on the method for HW/SW partitioning. 

The purpose of HW/SW partitioning methodology is to generate a standard way of 
implementing modules in hardware and software. As the IT and VLSI technology 
develop, both hardware and software becomes more complex and the boundary 
between them isn’t as obvious as before. On one hand it is not surprising to see that 
some complicated arithmetic can be implemented in hardware; on the other hand it is 
also quite common to see that software in RISC can implement a function that used to 
be done in hardware. For the limited system size and development cycle, we urgently 
need a methodology that guides us to precise partitioning for the agile development 
and best performance. 

1.2   Introduction About Hybrid Neural Fuzzy System 

The key to fuzzy logic is to map an input space to an output space under the control of 
a list of if-then rules. These rules coming from the domain experts are linguistic and 
inaccurate, so a certain membership function is defined to translate rules into fuzzy 
set theory. The shape of the membership function has a strong impact on the final 
inference result. Though it is vital to the quality of fuzzy inference, no one knows 
which function is most suitable for solving the problem. Bias always exists, more or 
less. The combination of neural network and fuzzy logic can use the learning ability 
of neural network to enhance the accuracy of fuzzy inference. On the other hand, 
although a neural network is able to learn from given data, the trained neural network 
is generally regarded as a black box. Due to the randomly chosen weights, the final 
result can be released after at least hundreds of times of training. But fuzzy logic can 
be used to endow the nodes in neural network with specific meaning and initialize the 
weights with expert knowledge. By this means, the training time can be obviously 
reduced. In a word, the combination of fuzzy logic and neural network takes the 
merits of both and avoids their drawbacks [2]. The interest in hybrid neural fuzzy 
system has grown rapidly since it came out. Researchers have applied it to data 
classification, image retrieval, controlling, decision making and many other fields. As 
time goes on, its potential applicability will be found in more domains. 

There are several approaches to the combination of neural network and fuzzy logic, 
such as fuzzy neural network, concurrent neuro-fuzzy model, cooperative neuro-fuzzy 
model, and hybrid neuro-fuzzy model [3]. We introduce a new algorithm based on 
hybrid neuro-fuzzy model and show superiority of the algorithm. In this case, the 
system may be either interpreted as a special neural network with fuzzy parameters, 
or as a fuzzy system implemented in a parallel distributed form [3] [4]. 

2   HW/SW Partitioning Using Hybrid Neural Fuzzy System 

In embedded system, some modules implemented by hardware may have better effect 
than done by software and in other cases modules implemented by software may be 
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better than done by hardware. The “better” means the implementation needs less area 
consumption and less executing time compared to the other way under the coordinate 
condition. For instance, if bit operation can be better implemented in hardware than 
done in software, it is done in hardware; and if file I/O is hard to implement in 
hardware, it is better to be done in software. 

People have been doing research on HW/SW partitioning since mid 1990s. Many 
papers have been published in this domain with the methods of using ILP(integer liner 
programming)/MILP(mixed integer linear programming) algorithm, dynamic 
programming algorithm, genetic algorithm, simulated annealing algorithm, soft 
computing methodology, etc. In this paper, we propose a new idea for HW/SW 
partitioning using a hybrid neural fuzzy system. In section 2.1 some basic concepts 
and mathematical formulae will be mentioned. In section 2.2 the architecture of the 
hybrid neural fuzzy system will be introduced. In section 2.3 the simulation result will 
be presented. 

2.1   Specification of the HW/SW Partitioning Problem 

An embedded system can be expressed as a Directed Acyclic Graph (DAG). We take 
the specification introduced in paper [5], [6], [7] and [8] as reference. In the graph, 
node represents module and edge indicates some kind of communication between two 
modules. The DAG can be represented in form of: 

G = (N, E), (1) 

where N is the node set, N={n0,n1,……nk-1}. N is composed of two parts, N=Ns+ Nh. 
Ns is the subset of the nodes that are implemented in software and Nh is the subset of 
the nodes that are implemented in hardware, │Ns│+│Nh│= k, Ns ∩ Nh=Φ; E is the 

edge set, E={eij}, 0 ≤ i, j ≤ k-1, E ⊆ N×N.  
For each node ni∈N,  

ni = (ahi, thi, asi, tsi, tmi, Fi), (2) 

where ahi indicates the area consumption for module i when this function is 
implemented in hardware, which may be represented by the number of FPGA 
modules; 

thi is the time consumption when the function is implemented in hardware;  
asi is the area consumption when the function is implemented in software, which may 
be represented by the amount of memory required for the program logic; 
tsi is the time consumption when this function is implemented in software;  
tmi is the number of times the module i has executed;  
Fi is a binary mapping function, where Fi=1 means node ni should be mapped into 
hardware set Nh and Fi=0 means node ni should be mapped into software set Ns. For 
each node, its value is 0 initially. 

In the rest of this paper, we will call these elements in formula (2) as main properties 
of module i. 
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For each edge eij∈E,  

eij= (wtij), (3) 

( ) ( ) ( ) ( ) jihihjjihisjjisihjjisisjij FFtF1FtFF1tF1F1twt ××××××××= ＋－＋－＋－－  (4) 

where wtij indicates the input communication of node nj from node ni, or output 
communication of node ni to node nj, which presents the time spent on transferring 
data between output and input module. We define that wtij is composed of the 
following items:  

tsisj is the time consumption on data transfer when module i and j are implemented in 
software;  
tsihj is the time consumption on data transfer when module i is implemented in 
software and module j is implemented in hardware;  
thisj is the time consumption on data transfer when module i is implemented in 
hardware and module j is implemented in software;  
thihj is the time consumption on data transfer when module i and j are implemented in 
hardware. 

We suppose some preparatory works have been done before our research begins, 
such as doing HW/SW specification and verification, estimating ahi and thi using 
ASAP (As-Soon-As-Possible) scheduling algorithm, estimating asi and tsi though 
DFG liner technology and selection of different micro-process, etc. Our algorithm has 
to be applied after these important parameters have been calculated. We can use them 
directly to infer the value Fi for each module. HW/SW partitioning is a NP-Hard 
problem. If there are k nodes in the DAG, there will be 2k ways to do HW/SW 
partitioning. What we have to do is finding out a way from them with the least time 
consumption (TC) and the least area consumption (AC) under the time cost constraint 
TCcon and the area cost constraint ACcon. Based on the study in [5] and [7], we 
modified the formulae which are used to denote the partitioning problem as in 
formula (5) to (9): 

( ) ( ) ( ) ( )[ ]jihihjjihisjjisihjjisisj
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Hitherto, area consumption of a software module has not been taken into the 
calculation of the system’s area consumption. But we regard asi a valuable factor in 
calculating AC and included it in formula (7). Size becomes one of the most 
important parameters when we evaluate an embedded system. To decrease the size, 
system designer always tries to use as less registers as possible. If a software module 
uses a lot of registers which are useless or unnecessary for other modules, we have to 
reconsider its implementation mode carefully. Based on this consideration, we 
redefine formula (7) and take asi with a coefficient α  in it. α  is correlative with the 
importance of the number of registers and the size of the memory. Heuristically, 

[ ]5.0,1.0∈α . Finally, the cost function can be defined as: 

con

con

con

con

TC

TCTC

AC

ACAC
cost

－
＋

－
＝

 
(10) 

2.2   Structure of the Hybrid Neural Fuzzy System 

Our proposed hybrid neural fuzzy system is composed of two parts: a classification 
network and an operation network. The classification network is used to generate an 
initial scheme for the HW/SW partitioning problem by using fuzzy logic. Its outputs 
are transferred into the operation network to generate the optimal partitioning scheme 
under the constraints. In an overview, the whole system is working as a fuzzy system, 
while in terms of its topological structure, it is a network composed of nodes and 
weights. Therefore it combines the advantages of both fuzzy system and neural 
network with a great mapping and self-learning ability. 

2.2.1   The Structure of the Classification Network 
We propose five layers in the classification network. Neurons in the input layer are 
assumed to be the nodes in the DAG. The input data are the vectors composed of 
elements in formula (2), which indicate the main properties of each node in the DAG. 
Three layers between input and output layers are hidden in the black box. 

The first hidden layer is called fuzzy layer. A membership function is used to 
classify the vector element into several classes, which are the fuzzy sets. Supposing 
there are c elements in each input vector and each vector element data can be 
classified into s classes, there are sc×  neurons in this layer in total.  

The second hidden layer is called rule layer. The outputs of the fuzzy layer are 
transferred into this layer to match the rules from domain experts. If there are r rules, 
there will be r neurons in this layer. 

Because every rule neuron in the rule layer gives out a prediction and the 
predictions may be conflicting, we define the third hidden layer as a confirm layer to 
calculate the confidence of the final prediction, which is represent as in formula (11) 
and (12), 

⎪
⎪
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⎨

⎧
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－
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(11) 



312 Y. Huang and Y.-S. Kim 

i-rulelayer

1r

0i

O1a ∑ ×
－

＝

＝

 (12) 

where r is the number of neurons in rule layer; Orulelayer-i is the output of neuron i in 
rule layer, with the binary value 0 or 1. 

The last layer is output layer. Each input neuron has a corresponding output neuron 
to show the final predication for the input vector. As shown in formula (13), Oi with 
value 0 indicates input neuron should be implemented in software and with value 1 
indicates input neuron should be implemented in hardware. 

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤≤

>

2

r
a0if0

2

r
a if1

Oi＝

 
(13) 

The structure of the classification network is shown in Figure 1. To make its 
architecture clear and easy to see, we only show the connections for one input neuron ni. 

 

Fig. 1. Structure of the classification network 

After running this classification network, we can get an initial partitioning scheme: 
every node is marked by an alternative number 0 or 1, indicating the implementation 
mode. 

2.2.2   The Structure of the Operation Network 
The operation network is a neural network with Boltzmann machine. Boltzmann 
machine is put forward to solve the local minimum problem of both BP neural 
network (which means the MLP trained via BP training algorithm) and Hopfield 
neural network [9] [10], so it combines the advantage of their network structure, 
learning algorithm and dynamic mechanism. Similar to BP neural network, 
Boltzmann machine also has layers, called visual layer and hidden layer. And visual 
layer can be divided into input part and output part. The differences between 
Boltzmann machine and other multiple layer networks are that the layers in 
Boltzmann machine have no obvious circumscription and the connection between two 
neurons is bidirectional. Like Hopfield neural network, all the neurons in the network 
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are connected and the change of network state obeys the probability distribution. This 
combination helps Boltzmann machine to avoid falling into the local minimum of 
error function or energy function and finally get the optimal solution of the problem. 
Following Figure 2 shows the network structure of a simple Boltzmann machine [11]. 

 

Fig. 2. Network structure of a simple Boltzmann machine 

Boltzmann machine is well known for solving NP problem. In our problem, the 
input data are the character properties which are the same as classification network’s. 
The output is a sequence composed of binary number 0 or 1. Initial partitioning 
scheme gotten from the classification network is the initial state of the operation 
network. Formula (10) is working as the energy function. If Fi=1, ahi, thi, thisj and thihj 
are enabled and taken into the calculation of cost; if Fi =0, asi, tsi, tsisj and tsihj are 
enabled and considered. For every iteration, the network tries to get a balanced state 
for all the neurons under the controlling parameter T. As iteration goes on, both 
parameter T and energy cost decreases. When T becomes small enough and the 
network reaches a balanced state, the network’s output is the optimized solution for 
the problem. 

2.3   Performance Evaluation by Simulation  

The theory behind our system indicates that if the Boltzmann machine receives more 
crisp meaningful inputs, it will improve the overall output and quality of its 
prediction. To verify the availability of our proposed system, we adopt the similar 
simulation method introduced in [12] and [13]. For there is no standard test data in 
this domain, we generate a few DAGs randomly and arrange the attributes to each 
node and edge. We assume these are the practical data gotten from previous work, 
such as system performance analysis. 

2.3.1   Simulation System Architecture 
During our study on designing an embedded system, we always keep a viewpoint in 
mind that embedded system is still a kind of computer system but the processor’s 
architecture and its software are a little different from the typical conventional 
computer. Therefore for simulation purpose, we assume the system model has ten 
basic modules like a real embedded system typically has, shown in Table 1. Some of 
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the modules are HW-bound, some are SW-bound, and some are mixed. Nodes in the 
DAG are distributed into these modules. To make the simulation more reflective of 
the real system, we allocate the properties for each node based on its module. 

Table 1. System modules 

HW-bound HW-SW SW-bound 
CPU Net File System 
RAM Driver Scheduling 

Loader 
Flash Memory 

Memory Management 
Inter-Processor Call 

2.3.2   Simulation Data, Fuzzy Rules and the Neural Network 
For simulation, we generate six DAGs randomly by using GVF (Graph Visualization 
Framework), with 50, 100, 200, 400, 800, 1500 nodes respectively. Each edge and 
node in the graph has different character properties. To enlarge the simulation data 
base, we add the Gaussian noise at 10 different levels to the 6 groups of sample data. 
As a result, there are 30500 sample data for testing in total. Figure 3 shows a graph 
generated by GVF with 100 nodes and 120 edges. 

 

Fig. 3. An example graph with 100 nodes and 120 edges 

Since currently there are no standard fuzzy rules from the domain experts available 
for use, we choose 200 sample data from the simulation data base as the learning data. 
An open-source data mining software WEKA [15] is used to get the fuzzy rules for 
our hybrid neural fuzzy system. WEKA can work on the learning data and generate 
fuzzy rules automatically.  

The input data are the properties vectors fed into the hybrid system; and the 
partitioning scheme, which is a 0-1 sequence, is the output data. The main logic in 
classification network and operation network is implemented using MATLAB. In 
classification network, we choose sigmoid membership function to classify original 
data into fuzzy sets. We take the coefficient α  in formula (7) as α =0.2, and the 
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controlling parameter T in Boltzmann machine as T0=200 (the initial value of T), Tfinal 

=0.0001 (the final value of T). According to the simulation results with different 
coefficients, we found when α is more than 0.5, sometimes AC couldn’t be under the 
constraint ACcon. And also, when α  is less than 0.1, asi becomes too small to be 
meaningful. That’s the reason why we recommend the value of α  should be between 
0.1 and 0.5 and we choose α=0.2 in our simulation.   

2.3.3   Simulation Results  
The following Table 2 shows the comparison of our proposed hybrid neural fuzzy 
system (HNFS) with simulated annealing algorithm (SAA). The value of AC, TC and 
cost are listed. According to the data, AC shows no obvious difference between these 
two methods, but TC calculated by HNFS is closer to TCcon than the one calculated by 
SAA. So the cost of HNFS is less than that of SAA.  

Table 2. Performance comparison of HNFS with SAA  

HNFS SAA  ACcon TCcon AC TC cost AC TC cost 
50 8866 434380 8757 389550 0.1155 8751.8 377860 0.1430 
100 17384 1268400 17366 1192540 0.1608 17360 1030058 0.1892 
200 34626 2526800 34622 2100190 0.1689 34613 1937770 0.2332 
400 64263 4683800 64238 4017290 0.1423 64242 3846782 0.1787 
800 128558 10969000 128551 9121000 0.1684 128555 8519388 0.1959 

1500 235574 19469000 235574 17013280 0.1262 235572 16012500 0.1775 

The Figure 4 is the running time of these two methods. The curve shows the time 
HNFS spends in getting the final result is obviously less than that of SAA. Because 
the initial state of HNFS is trained by fuzzy logic, it is more meaningful than SAA’s 
random initial state. 

 

Fig. 4. Running time curve of HNFS and SAA 

3   Conclusion 

In this paper, we introduce a method of applying hybrid neural fuzzy system into the 
HW/SW partitioning problem. The main advantage of the hybrid neural fuzzy system 
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is accomplishing the task with high accuracy and less running time. Firstly, we use a 
simple neural network with fuzzy logic mechanism to match the character properties 
to the expert rules and generate an initial partitioning scheme. Then the scheme is 
transferred into a neural network based on Boltzmann machine. As iteration goes on, 
partitioning scheme is modified. When the network reaches a balanced state and the 
control parameter becomes small enough, the output of the operation network is 
regarded as the final scheme for HW/SW partitioning problem. The simulation result 
has demonstrated our method for HW/SW partitioning is viable and has a better 
performance than some of the current methods in this research domain.  
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Abstract. Training an artificial neural network is an optimization task
since it is desired to find optimal weight set of a neural network in train-
ing process. Traditional training algorithms has some drawbacks such as
getting stuck in local minima and computational complexity. Therefore,
evolutionary algorithms are employed to train neural networks to over-
come these issues. In this work, Artificial Bee Colony (ABC) Algorithm
which has good exploration and exploitation capabilities in searching
optimal weight set is used in training neural networks.

1 Introduction

Since Artificial Neural Networks (ANNs) are quite successful in modelling non-
linearity and have characteristics such as being capable of generalizing, adapt-
ability, self-organizing, real time operation and fault tolerance, they are involved
in so many applications in research fields. Finding a suitable network structure
and finding optimal weight values make design of ANNs difficult optimization
problems. In other words, the success of ANNs largely depends on the architec-
ture, the training algorithm, and the choice of features used in training.

Artificial neural network training has traditionally been carried out using the
back-propagation (BP) gradient descent (GD) algorithm [1]. But this technique
has some drawbacks such as dependence of error surface shape, initial values of
connection weights, parameters. If the error surface is multimodal, the gradient
descent based algorithms are trapped at local minima. Involving differentiation
of error function is another issue with this kind of algorithms [2]. Saturation may
occur if the output is pushed towards its extremes at some point before conver-
gence is reached, so that the derivative is too small to make further significant
weight changes, causing the network to settle in an incorrect local minimum or
reach a state of network paralysis . This saturation may occur for a number of
reasons, most of which are easily avoided [3].In order to overcome the disad-
vantages of gradient based algorithms, many global optimization methods have
been proposed for training feed-forward neural networks such as Genetic Algo-
rithms [4,5,6,7,8,9,10,11,12,13,14,15,16,17], The Particle Swarm Optimization
algorithm [18, 19, 20, 22, 21, 23], Differential Evolution [24, 25, 26, 27, 28, 29] and
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Evolutionary Programming algorithms [30,31,32]. Also, some hybrid techniques
combining traditional techniques such as back propagation and evolutionary
algorithms are proposed for training neural networks [33]. Not all of this algo-
rithms handle with only connection weights, they also optimize the structure
of the network. However, when the neural network training becomes a large
scale, the number of network parameters grows drastically. For example,learning
a huge number of hidden layer weights in a multi-layer perceptron (MLP) neural
network can be considered as a large scale optimization problem.

Karaboga has described Artificial Bee Colony (ABC) algorithm based on the
foraging behaviour of honey bees for numerical optimization problems [34], and
Karaboga and Basturk have compared the performance of the ABC algorithm
with those of other well-known modern heuristic algorithms such as Genetic Al-
gorithm (GA), Differential Evolution (DE), Particle Swarm Optimization (PSO)
on unconstrained problems [35]. In this work, the ABC algorithm is employed in
training feed-forward neural networks and the performance of the algorithm is
compared with Genetic Algorithm (GA) from evolutionary algorithms and Back-
Propagation (BP) Algorithm. The paper is organized as follows: In Section 2,
training an artificial neural network is described. In Section 3, implementation
of artificial neural network training by using the ABC algorithm is introduced.
In Section 4, experiments and results of produced by ABC, GA, and BP are
presented and discussed.

2 Training Feed Forward Artificial Neural Networks

An ANN consists of a set of processing elements (Fig. 1), also known as neurons
or nodes, which are interconnected with each other [14]. Output of the ith neuron
can be described by Eq. 1

yi = fi(
n∑

j=1

wijxj + θi) (1)

where yi is the output of the node, xj is the jth input to the node, wij is the
connection weight between the node and input xj , θi is the threshold (or bias)
of the node, and fi is the node transfer function. Usually, the node transfer
function is a nonlinear function such as a heaviside function, a sigmoid function,
a Gaussian function, etc.

Generally, the adaptation can be carried out by minimizing (optimizing) the
network error function E. The error function is given by Eq. 2:

E(w(t)) =
1
n

n∑
j=1

K∑
k=1

(dk − ok)2 (2)

where, E(w(t)) is the error at the tth iteration; w(t), the weights in the connec-
tions at the tth iteration; dk, the desired output node; ok, the actual value of
the kth output node;K, the number of output nodes; n, the number of patterns.
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Fig. 1. Processing unit of an ANN (neuron)

The optimization goal is to minimize the objective function by optimizing the
network weights w(t). In Evolutionary Algorithms, the major idea underlying
this synthesis is to interpret the weight matrices of the ANNs as individuals, to
change the weights by means of some operations such as crossover and mutation,
and to use the error E produced by the ANNs as the fitness measure which guides
selection. This leads to the following evolutionary training cycle [36]:

1. Formation of the next population of ANNs by means of operators such as
crossover and mutation and fitness–oriented selection of the the weight ma-
trices. (The initial population is randomly created.)

2. Evaluation of the fitness values of the ANNs.
3. If the desired result is obtained, then stop; otherwise goto step 1.

3 Artificial Bee Colony Algorithm

Artificial Bee Colony (ABC) algorithm was proposed by Karaboga for optimizing
numerical problems in 2005 [34]. The algorithm simulates the intelligent forag-
ing behaviour of honey bee swarms. It is a very simple, robust and population
based stochastic optimization algorithm. Karaboga and Basturk have compared
the performance of the ABC algorithm with those of other well-known mod-
ern heuristic algorithms such as Genetic Algorithm (GA), Differential Evolution
(DE), Particle Swarm Optimization (PSO) on unconstrained problems [35].

Detailed pseudo-code of the ABC algorithm is given below:

1: Initialize the population of solutions xi, i = 1 . . . SN
2: Evaluate the population
3: cycle=1
4: repeat
5: Produce new solutions υi for the employed bees by using (4) and evaluate

them
6: Apply the greedy selection process
7: Calculate the probability values pi for the solutions xi by (3)
8: Produce the new solutions υi for the onlookers from the solutions xi se-

lected depending on pi and evaluate them
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9: Apply the greedy selection process
10: Determine the abandoned solution for the scout, if exists, and replace it

with a new randomly produced solution xi by (5)
11: Memorize the best solution achieved so far
12: cycle=cycle+1
13: until cycle=MCN

In ABC algorithm, the position of a food source represents a possible solution to
the optimization problem and the nectar amount of a food source corresponds to
the quality (fitness) of the associated solution. The number of the employed bees
or the onlooker bees is equal to the number of solutions in the population. At the
first step, the ABC generates a randomly distributed initial population P (G = 0)
of SN solutions (food source positions), where SN denotes the size of population.
Each solution xi (i = 1, 2, ..., SN) is a D-dimensional vector. Here, D is the num-
ber of optimization parameters. After initialization, the population of the posi-
tions (solutions) is subjected to repeated cycles, C = 1, 2, ...,MCN , of the search
processes of the employed bees, the onlooker bees and scout bees. An employed
bee produces a modification on the position (solution) in her memory depending
on the local information (visual information) and tests the nectar amount (fitness
value) of the new source (new solution). Provided that the nectar amount of the
new one is higher than that of the previous one, the bee memorizes the new posi-
tion and forgets the old one. Otherwise she keeps the position of the previous one
in her memory. After all employed bees complete the search process, they share
the nectar information of the food sources and their position information with the
onlooker bees on the dance area. An onlooker bee evaluates the nectar information
taken from all employed bees and chooses a food source with a probability related
to its nectar amount. As in the case of the employed bee, she produces a modifica-
tion on the position in her memory and checks the nectar amount of the candidate
source. Providing that its nectar is higher than that of the previous one, the bee
memorizes the new position and forgets the old one.

An artificial onlooker bee chooses a food source depending on the probability
value associated with that food source, pi, calculated by the following expression
(3):

pi =
fiti

SN∑
n=1

fitn

(3)

where fiti is the fitness value of the solution i which is proportional to the nec-
tar amount of the food source in the position i and SN is the number of food
sources which is equal to the number of employed bees (BN).

In order to produce a candidate food position from the old one in memory,
the ABC uses the following expression (4):

vij = xij + φij(xij − xkj) (4)

where k ∈ {1, 2,..., SN} and j ∈ {1, 2,..., D} are randomly chosen indexes. Al-
though k is determined randomly, it has to be different from i. φi,j is a random
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number between [-1, 1]. It controls the production of neighbour food sources
around xi,j and represents the comparison of two food positions visually by a
bee. As can be seen from (4), as the difference between the parameters of the
xi,j and xk,j decreases, the perturbation on the position xi,j gets decrease, too.
Thus, as the search approaches to the optimum solution in the search space, the
step length is adaptively reduced.

The food source of which the nectar is abandoned by the bees is replaced
with a new food source by the scouts. In ABC, this is simulated by producing
a position randomly and replacing it with the abandoned one. In ABC, pro-
viding that a position can not be improved further through a predetermined
number of cycles, then that food source is assumed to be abandoned. The value
of predetermined number of cycles is an important control parameter of the ABC
algorithm, which is called “limit” for abandonment. Assume that the abandoned
source is xi and j ∈ {1, 2,..., D} , then the scout discovers a new food source to
be replaced with xi. This operation can be defined as in (5)

xj
i = xj

min + rand(0, 1)(xj
max − xj

min) (5)

After each candidate source position vi,j is produced and then evaluated by
the artificial bee, its performance is compared with that of its old one. If the new
food source has an equal or better nectar than the old source, it is replaced with
the old one in the memory. Otherwise, the old one is retained in the memory. In
other words, a greedy selection mechanism is employed as the selection operation
between the old and the candidate one.There are three control parameters in the
ABC: The number of food sources which is equal to the number of employed or
onlooker bees (SN), the value of limit, the maximum cycle number (MCN).

In a robust search process, exploration and exploitation processes must be
carried out together. In the ABC algorithm, while onlookers and employed bees
carry out the exploitation process in the search space, the scouts control the
exploration process.

4 Experimental Study

In this work, three problems are considered: XOR, 3-Bit Parity and 4-Bit
Encoder-Decoder problems, which are benchmark problems used in training neu-
ral networks.

4.1 The Exclusive-OR Problem

The first test problem we used in the experiments is the exclusive-OR (XOR)
Boolean function which is a difficult classification problem mapping two binary
inputs to a single binary output as (0 0;0 1;1 0;1 1)→(0;1;1;0). In the simula-
tions we use a 2-2-1 feed-forward neural network with six connection weights, no
biasses (having six parameters, XOR6) and a 2-2-1 feed-forward neural network
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with six connection weights and three biases (having 9 parameters, XOR9) and a
2-3-1 feed-forward neural network having nine connection weights and four biases
totally thirteen parameters (XOR13). For XOR6, XOR9 and XOR13 problems,
the parameter ranges [-100,100], [-10,10] and [-10,10] are used, respectively.

4.2 3-Bit Parity Problem

The second test problem is the three bit parity problem. The problem is taking
the modulus 2 of summation of three inputs. In other words, if the number of
binary inputs is odd, the output is 1, otherwise it is 0. (0 0 0;0 0 1;0 1 0;0 1 1;
1 0 0; 1 0 1; 1 1 0; 1 1 1)→(0;1;1;0;1;0;0;1) We use a 3-3-1 feed-forward neural
network structure for the 3-Bit Parity problem. It has twelve connection weights
and four biasses, totally sixteen parameters. The parameter range was [-10,10]
for this problem.

4.3 4-Bit Encoder/Decoder Problem

The third problem is 4-bit encoder/decoder problem. The network is presented
with 4 distinct input patterns, each having only one bit turned on. The output
is a duplication of the inputs. (0 0 0 1;0 0 1 0;0 1 0 0;1 0 0 0)→(0 0 0 1;0 0 1 0;0
1 0 0;1 0 0 0). This is quite close to real world pattern classification tasks, where
small changes in the input pattern cause small changes in the output pattern [37].
A 4-2-4 feed-forward neural network structure is used for this problem and it
has totally 22 parameters including sixteen connection weights and six biases.
For this problem, the parameter range is [-10,10].

The parameter ranges, dimension of the problems, and the network structures
are presented in Table 1.

Table 1. Parameters of the problems considered in the experiments. D: Dimension of
the problem.

Range NN Structure D

XOR6 [-100,100] 2-2-1 without Bias 6
XOR9 [-10,10] 2-2-1 with bias 9
XOR13 [-10,10] 2-3-1 with bias 13
3-Bit Parity [-10,10] 3-3-1 with bias 16
4-Bit Enc.-Dec. [-10,10] 4-2-4 with bias 22

4.4 Settings

Experiments were repeated 30 times for each case and each run was started
with a random population with different seeds. In each network selected for each
problem, sigmoid function is employed as transfer function. Training processes
were stopped when the mean squared error of the outputs associated with inputs
was equal to or less than 0.01 (MSE≤0.01) or when the maximum generation
or cycle or epoch has been reached. Since the difficulty of each problem is dif-
ferent, different parameter settings were used for each of them. Among all of
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the problems, XOR6 is the most difficult one since it does not employ biases.
Therefore, all algorithms were run through more generations/cycles/epochs for
this problem.

ABC Settings: The value of “limit” is equal to SN x D where D is the
dimension of the problem. Colony size (2 ∗ SN) is 50 for all problems

GA Settings: In the experiments, roulette wheel selection scheme, single point
crossover with the rate of 0.8, uniform mutation with the rate of 0.05 are em-
ployed. Generation gap is set to 0.9. The population size in GA were 50 for all
problems.

BP Settings: In back-propagation experiments, NNs were trained by using
Levenberg-Mardquart (LM) and Gradient Descent (GD) training algorithms.
Learning rate for GD is 0.8.

These settings are summarized in Table 2.

Table 2. Values for control parameters of the algorithms. LR: Learning Rate, Pop:
Population Size, CR: Crossover Rate, MR: Mutation Rate, GP: Generation Gap, SN:
Colony Size.

BP GA ABC

LR: 0.8 Pop: 50 SN: 50
CR: 0.8 limit: SN*D
MR: 0.05
GP: 0.9

Maximum cycle number (MCN) for ABC and maximum generation num-
ber for GA were 7500,100,75,1000 1000 for XOR6, XOR9, XOR13, 3-Bit Parity
and 4-Bit Encoder-Decoder problems, respectively. Hence, the total objective
function evaluation numbers were 375 000, 5000, 3750, 50000 and 50000 for
the problems, respectively. In case of BP algorithm, the number of epochs for
problems were 32000, 500, 250, 1600 and 2100, respectively. These values are
presented in Table 3.

Table 3. Maximum Cycle/Generation/Epoch numbers for ABC/GA/BP and the total
Objective Function Evaluation (OFE) numbers for algorithms

Cycle/Gen. OFE Epoch

XOR6 7500 375000 32000
XOR9 100 5000 500
XOR13 75 3750 250
3-Bit Parity 1000 50000 1600
4-Bit Enc.-Dec. 1000 50000 2100
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4.5 Results and Discussion

Statistical results and the success rates of the algorithms for XOR6, XOR9,
XOR13, 3-Bit Parity and 4-Bit Encoder-Decoder problems are given in Ta-
bles 4-6. For XOR6 problem, back propagation algorithm trained by GD has
3 % success and back propagation algorithm trained by LM has 6% success.
Genetic algorithm has 0% success while the ABC algorithm has 100 % suc-
cess. On XOR6 problem, GA could not find the global minima. Mean cycle
number of ABC algorithm is 2717.4 for XOR6 problem. Mean cycle number
of ABC is more than the mean epoch number of the BP (LM), but the LM
algorithm has got stuck with the local minima of XOR6 problem. For XOR9
problem, BP (GD) has 0% success while BP (LM) has 66.66 % success with
the mean of 13 epochs. GA has 40 % success with a mean of 77.067 gener-
ations. The ABC algorithm has 100 % success and the mean of cycles is 32.
As seen from the mean OFE and success numbers, the BP (LM) algorithm
has very fast convergence speed but it gets stuck to the local minima while
ABC algorithm goes on searching without being stuck in local minima. For
XOR13 problem, BP (GD) has 0% success with an average of 250 epochs while
BP (LM) has 96.66% success with an average of 9 epochs. On XOR13 prob-
lem, GA has 76.66 % success rate and ABC has 100 % success with an aver-
age of 28.2 cycles. Although the problems were the same in the case of XOR6,
XOR9 and XOR13, the network structures employed in the experiments were
different. The NN used for XOR13 problem has 3 hidden neurons while the
networks employed for XOR6 and XOR9 have 2 hidden neurons. More com-
plex network structures do not always facilitate the problems or small size net-
works can not produce good results for the problems. It is known that finding
adequate network structure is another design problem as well as finding op-
timum weights in training process. For 3-Bit parity problem, BP(GD) could
not find the optima in any of runs. BP(LM) could find the optimum with
a success rate of 86.66%. The success rate of GA was 63.33% on this prob-
lem. The ABC algorithm was able to find the desired network output in each
run with an average cycle of 179.06. For Encoder-Decoder problem, BP(GD)
has 2% success and BP(LM) has 73.33 %. GA has 86.66 % and the ABC al-
gorithm has 100% success rate on this problem. Consequently, ABC outper-
forms other algorithms on all problems considered in this work for the same
evaluation number and can consistently find the optimum weight set for the
networks. For all problems, the success rate of ABC algorithm is 100 %. An
algorithm that only uses the gradient steepest descent will be trapped in a lo-
cal optima, but any search strategy that analyzes a wider region will be able
to cross the valley among the optima and achieve better results. In order to
obtain good results for multimodal problems, the search strategy must com-
bine the exploratory and exploitative components efficiently. Since the ABC
algorithm combine the exploration and exploitation processes succesfully, it
shows high performance on training feed-forward ANNs for classification
problems considered in this work.
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Table 4. Experimental Results 30 runs of ANN training process results produced
by BP, GA and ABC Algorithms. MMSE:Mean of Mean Squared Errors of 30 Runs,
SDMSE: Standard Deviation of Mean Squared Errors of 30 runs.

Algorithms XOR6 XOR9 XOR13 3-Bit Parity Enc. Dec.

BP (GD)
MMSE 0.1182 0.212 0.2468 0.2493 0.0809
SDMSE 0.0763 0.0369 0.008 0.0025 0.0756

BP (LM)
MMSE 0.1107 0.0491 0.0078 0.0209 0.0243
SDMSE 0.0637 0.0646 0.0223 0.043 0.0424

GA
MMSE 0.099375 0.047968 0.015200 0.028725 0.016400
SDMSE 0.02785 0.052000 0.022850 0.032900 0.031300

ABC
MMSE 0.007051 0.006956 0.006079 0.006679 0.008191
SDMSE 0.002305 0.002402 0.003182 0.002820 0.001864

Table 5. Experimental Results 30 runs of ANN training process results produced by
BP, GA and ABC Algorithms. ME: Mean of Epoch Numbers, SDE: Standard Deviation
of Epoch Numbers, MG: Mean of Generation Numbers, SDG: Standard Deviation of
Generation Numbers, MC: Mean of Cycle Numbers, SDC: Standard Deviation of Cycle
Numbers.

Algorithms XOR6 XOR9 XOR13 3-Bit Parity Enc. Dec.

BP (GD)
ME 31603 500 250 1600 2020
SDE 2176 0 0 0 236.8019

BP (LM)
ME 67.53 13 9 21.333 83.3667
SDE 59.3759 6.8304 3.2056 10.0046 174.1683

GA
MG 7500 77.067 38.6000 501.1333 400.1333
SDG 0 33.394 25.0236 415.8687 340.4838

ABC
MC 2717.4 32 28.2 179.066666 185
SDC 3.359377 0.182827 1.241569 12.792384 5.842378

Table 6. Success Rates of BP(GD), BP(LM), GA and ABC Algorithms

Algorithms XOR6 XOR9 XOR13 3-Bit Parity Enc. Dec.

BP (GD) 3 0 0 0 2
BP (LM) 6 66.66 96.66 86.66 73.33
GA 0 40 76.6667 63.3333 86.6667
ABC 100 100 100 100 100

5 Conclusion

In this work, Artificial Bee Colony Algorithm which is a new, simple and ro-
bust optimization algorithm has been used to train feed-forward artificial neural
networks for classification purpose. The performance of the algorithm has been
compared with the traditional back propagation algorithm and the genetic algo-
rithm which is a well-known evolutionary algorithm. Results of the experiments
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show that the Artificial Bee Colony algorithm can be successfully applied to train
feed-forward neural networks. The application of ABC to other classification test
problems such as iris, diabetes, cancer classification and the implementation of
the algorithm for optimizing the network structure as well as optimizing weights
remain as future works.
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Abstract. A style dress outlet usually purchases products from multiple suppliers 
with differing cost, quality and selling price. It is assumed that some suppliers 
will sell their goods to the buyer outright, while some other suppliers will offer 
return policy for items unsold. In the latter case, the supplier buys back from the 
buyer the unsold items at the end of the selling season. The purpose of this study 
is to enable the buyer to develop a supplier selection and replenishment policy 
subject to limited budget. A minimal service level and uncertain market are 
assumed as well. Genetic algorithm (GA) is used to solve the problem.  

1   Introduction 

This study investigates a single order problem in which a buyer has the option of 
purchasing goods outright from the suppliers and/or obtaining the items with a 
return-policy agreement from some other suppliers. A return policy allows a buyer to 
return the unsold items for a partial refund. This will entice the buyer to order a larger 
quantity, resulting in an increase in the joint profit. Some items such as the style or 
catalogue goods are examples where return policies are used (Emmons and Gilbert [1]; 
Mantrala and Raman [2]). The “catalogue goods” are sold to customers through 
catalogue advertisement with fixed price during a particular selling season. 

Pasternack [3] modeled a return policy and derived a global optimization in a single 
period with uncertain demand. He demonstrated that a return policy where a vendor 
offers the buyers partial credits for all unsold items could achieve channel coordination. 
Padmanabhan and Png [4] illustrated that the implementation of return policy can 
increase a vendor’s profit and increase the buyer competition. Emmons and Gilbert [1] 
studied the effect of return policy on both the manufacturer and the buyer. Such policy 
is to maximize the vendor’s profit by inducing the buyer to place larger order when 
demand is uncertain.  

The importance of the single period problem increases due to the shortening 
products life cycle in recent years. Many extensions of the single period problem have 
been studied by Khouja [5]. Two major extensions are the unconstrained, single-item 
single-period problem, and the constrained, multi-item single-period problem. Hadley 
and Whitin [6] derived a constrained multi-item problem in a single period. Jucker and 
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Rosenblatt [7] considered an unconstrained model with three types of quantity 
discounts: all-units quantity discount, incremental quantity discounts and Carload-lot 
discounts. Gerchak and Parlar [8] developed an unconstrained model in which the 
buyer decides on the price and the order policy. Lau and Lau [9] modeled a newsboy 
problem with price-dependent distribution demand. Khouja [10] developed a newsboy 
model in which multiple discounts are used to sell excess inventory. Khouja and 
Mehrez [11] extended Khouja’s model [10] to consider multi-items. Lau and Lau [12] 
derived a capacitated multiple-product single period inventory model. Pasternack [13] 
developed a capacitated single-item newsboy model with revenue sharing.  

GA (genetic algorithms) is a powerful tool to solve complex-structure problems with 
many variables. John Holland and his team applied their understanding of the adaptive 
processes of natural systems to design software for creating artificial systems that 
retained the robustness of natural systems (Holland [14]). During the last decade, GA, 
which is a search technique based on the mechanics of natural selection and natural 
genetics, has been commonly used to solve global optimization problems. Khouja, 
Michalewicz, and Wilmot [15], and Jinxing and Jiefang [16] studied the application of 
GA for solving lot-sizing problems. Mori and Tsen [17], and Li et al. [18] demonstrated 
that GA is effective for dealing with production planning and scheduling problems. 
Poulos et al. [19] derived a Pareto-optimal genetic algorithm for warehouse 
optimization. Zhou et al. [20] made use of GA as a tool to solve a warehouses and 
retailers network design. Aytug et al. [21] made a review of using genetic algorithms to 
solve production and operations management problems. Altiparmak et al. [22] 
designed a supply chain network to optimize joint total cost and service level using GA.  

In this study, a single product replenished by multiple suppliers with differing cost, 
quality and selling price is considered in a single ordering period with return policy. 
GA is used to derive a supplier selection and replenishment policy under the buyer’s 
limit budget and a minimum service level. A mathematical modeling of a newsboy 
problem with various constraints is derived in section 2. After illustration of GA 
solution procedure (section 3), a numerical example and sensitivity analysis with 
various budgets, service level and number of trials are carried out in section 4. The 
concluding remark is given in the last section. 

2   Mathematical Modeling and Analysis 

The model in this paper is developed on the basis of the following assumptions: 

(a) Single buyer and multiple suppliers are considered. Some suppliers offer outright 
price and some suppliers offer price with return policy.  

(b) A single item supplied by multiple suppliers has different levels of cost, quality 
and selling price.  

(c) The demand is uncertain with known probability density function. 
(d) An item with single order period, short selling season and long production 

lead-time is considered (an example of this type of product is the catalogue or style 
product). 

(e) A buyer has the option of purchasing the item outright from some suppliers and/or 
obtaining the item through a return-policy agreement with some suppliers. 

(f) Two sales priority rules: Rule 1: The items purchased with return policy begin 
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selling only after the outright purchase items are sold. Rule 2: The items with 
higher defective rate begin selling only after lower defective rate. 

(g) All defective items will be found and penalized only after the items are sold to the 
end consumer. 

(h) The buyer is subject to limited budget and minimal service level constraints. 
 

The following notation is used: 

    Qi    Purchase order quantity from supplier i, i= 1, 2, 3, 4 
    f (x)  Probability density function with demand x  
    T    Buyer’s limited budget 
    S.L.  Service level  
    Ci   Buyer’s purchase cost from supplier i   
    di    Product defective rate from supplier i   
    Ri    Return price offered by supplier i for each unsold unit 
    Pi    Selling price to the end consumer for the product from supplier i   
    g    Buyer’s unit punishment cost incurred from each defective product sold    
    S    Buyer’s unit shortage cost incurred from shortage   
    EP   Buyer’s expected profit     
 

For simplicity, four suppliers (two suppliers with outright purchase and two 
suppliers with return policy) and single buyer are considered. These conditions can be 
changed in further research. A constrained newsboy model with four suppliers and 
single buyer is depicted in Figure 1. 

Supplier 1 Supplier 2 Supplier 3   Supplier 4 

Outright purchase    Return-policy purchase 

2C2R 2Q1R 1C  1Q  3R 3C 3Q
4R 4C 4Q

Buyer (limited budget and minimal service level) g S 

End consumer (uncertain demand) 

1P  2P 3P 4P

 

Fig. 1. A constrained newsboy model with four suppliers 

Two sales priority rules are assumed. Rule 1: The items purchased with return policy 
begin selling only after the outright purchase items are sold. Rule 2: The items with 
higher defective rate begin selling only after lower defective rate. The expected sales 
revenue, SR can be expressed as 
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where a and b are the lower and the upper bounds of f(x). 
If all the defective items are found and penalized after it is sold to the end consumer, 

the expected penalty cost, PC is 
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The expected salvage value incurred from return units for unsold items at the end of 
selling season, SV is 
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Shortage occurs when demand is larger than summation of Qi. The expected 
shortage cost, SC is 
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From (1) through (4), the expected profit, EP, is the sales revenue minus penalty 
cost, plus salvage value, minus shortage cost and purchase cost as follows: 

∑ =
−−+−= 4

1i iiQCSCSVPCSREP  (5) 
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The last term in (5) is the purchase cost. The problem is a constrained nonlinear 
programming subject to limited budget and minimum service level, that is 

Maximum )( iQEPEP =  (6) 

Subject to 

..)(
4

1

0
LSMinimumdxxfi iQ
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∫ =  

(7) 

TQC
i ii ≤∑ =

4

1
 (8) 

and 

0≥iQ , i= 1, 2, 3, 4. (9) 

There are four decision variables subject to six constraints in (6) through (9). 

3   GA Solution Procedure  

Using a direct analogy to this natural evolution, GA presumes a potential solution in the 
form of an individual that can be represented by strings of genes. Throughout the 
genetic evolution, some fitter chromosomes tend to yield good quality offspring inherit 
from their parents via reproduction. 

This study derives the number of deliveries per period to minimize the total cost. The 
objective function is )( iQEP  with decision variables Qi. GA deals with a chromosome 

of the problem instead of decision variables. The values of Qi can be determined by the 
following GA procedure: 

(a) Representation: Chromosome encoding is the first problem that must be 
considered in applying GA to solve an optimization problem. Phenotype 
chromosome could represent a real numbers and an integer numbers here. For each 
chromosome, real numbers or integer numbers representation are used as follows: 

4,3,2,1, == iQx i ; 10000 ≤≤ iQ  (10) 

(b) Initialization: Generate a random population of n chromosomes (which are suitable 
solutions for the problem), where n=80. 

(c)  Evaluation: Assess the fitness f(x) of each chromosome x in the population. The 
fitness value fk = f(xk) = EP( xk) where k= 1, 2…n 

(d)  Selection schemes: Select two parent chromosomes from a population based on 
their fitness using a roulette wheel selection technique, thus ensuring high quality 
have a higher chance of becoming parents than low quality individuals. 

(e)  Crossover: Approximately 70% crossover probability exists, indicating the 
probability that the parents will cross over to form new offspring. If no crossover 
occurs, the offspring are an exact copy of the parents. 



 A Multi-supplier and Return-Policy Newsboy Model 335 

(f)  Mutation: About 30% of population mutation rate mutate new offspring at each 
locus (position in the chromosome). Accordingly, the offspring might have 
genetic material information not inherited from either parent, thus avoiding falling 
into the local optimum. 

(g)  Replacement: An elitist strategy and a steady-state evolution are used to generate a 
new population, which can be used for an additional algorithm run. 

(h)  Termination: If the number of trials exceeds 1,000,000 (or 5,000,000), then stop; 
otherwise go to (b). 

Table 1. The evolutionary results when T≤$2,000 and S.L.≥0.9 

Various purchases Outright purchase Return-policy purchase

i i=1 i=2 i=3 i=4 

Supplier i Supplier 1 Supplier 2 Supplier 3 Supplier 4 

Budget T needed  
Service Level 

Expected profit 

Known Pi ($) 20 12 9 7 

Known Ci ($) 10 9 8 7 

Known Ri ($) 0 0 3 4 

Known di 0.02 0.05 0.1 0.2 

Case 1 

Variable Qi  118 0 0 117 

T=$1,999 
S.L.=0.900 
EP=$688.3 

Known Pi ($) 20 28 26 24 

Known Ci ($) 10 9 8 7 

Known Ri ($) 0 0 3 4 

Known di 0.02 0.05 0.1 0.2 

Case 2 

Variable Qi  0 150 50 35 

T=$1,995 
S.L.=0.900 

EP=$2,998.0 

Known Pi ($) 20 20.1 20.4 20.8 

Known Ci ($) 10 9 8 7 

Known Ri ($) 0 0 3 4 

Known di 0.02 0.05 0.1 0.2 

Case 3 

Variable Qi 1 86 49 100 

T=$1,876 
S.L.=0.907 

EP=$1,535.9 

Known Pi ($) 20 26 28 30 

Known Ci ($) 10 9 8 7 

Known Ri ($) 0 0 3 4 

Known di 0.02 0.05 0.1 0.2 

Case 4 

Variable Qi 0 0 0 239 

T=$1,673 
S.L.=0.927 

EP=$3,196.1 

Note:  
Qi is a nonnegative integer. 
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4   Numerical Example 

The newsboy model for a buyer with uncertain demand and multiple suppliers is 
depicted in Figure 1, the related data are assumed as follows: limited budget T≤$2,000, 
minimal service level S.L.≥0.9, demand with uniform probability density 
function )250,100()( Uxf = , shortage cost for each shortage unit 20$=S , penalty cost 

for each defective unit 20$=g and the other known parameters, Pi, Ci, Ri and di, are 

listed in Table 1. Four cases are designed for various combinations of solutions Qi. The 
stopping rule is set at 5,000,000 trials for case 1 and 3, and 1,000,000 trials for case 2 
and 4 depending on the status of convergence. 

Using genetic algorithm, the evolutionary results of decision variables Qi for Case 
1-4 are also shown in Table 1. In Case 1, the solution is {Q1=118 units, Q2=0 unit, Q3=0 
unit and Q4=117 units} because price P1 is much greater than price P2, cost C4 is less 
than C3, return price R4 is greater than R3, and the minimal service level must be met. 
Both the budget and service level constraints are active. In Case 2, the solution is {Q1=0 
unit, Q2=150 units, Q3=50 units and Q4=35 units} because price P2 is much greater than 
P1, price P3 greater than P4. Both the budget and service-level constraints are active. In 
this case, there is budget left ($2,000-$1,995=$5) because the budget left can not afford 
to order any more integral unit of Qi. In Case 3, the solution is {Q1=1 unit, Q2=86 units, 
Q3=49 units and Q4=100 units}. All Q1 through Q4 are ordered since the price 
difference between cases is not obvious. Both the budget and service level constraints  
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Fig. 2. Relationship between the expected profit and trials 
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Fig. 3. Relationship between EP’s standard deviation and trials 

Table 2. The evolutionary results when available budget is changed 

Various purchases Outright Return-policy

Qi Q1 Q2 Q3 Q4 
T S.L. EP 

Case1 178 0 12 45 $2,191 0.900 $1,111.2 

Case2 0 150 37 51 $2,003 0.920 $3,000.2 

Case3 4 80 53 99 $1,877 0.907 $1,535.2 

T≤$2,200 
and 

S.L.≥0.9 

Case4 0 0 0 239 $1,673 0.927 $3,196.1 

Case1 118 0 0 117 $1,999 0.900 $688.3 

Case2 0 150 50 35 $1,995 0.900 $2,998.0 

Case3 1 86 49 100 $1,876 0.907 $1,535.0 

T≤$2,000 
and 

S.L.≥0.9 

Case4 0 0 0 239 $1,673 0.927 $3,196.1 

Case1 52 0 0 183 $1,800 0.900 $-352.0 

Case2 0 45 49 143 $1,798 0.913 $2,626.3 

Case3 4 66 4 162 $1,800 0.907 $1,499.7 

T≤$1,800 
and 

S.L.≥0.9 

Case4 0 0 0 239 $1,673 0.927 $3,196.1 
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are non-active. In Case 4, the solution is {Q1=0 unit, Q2=0 unit, Q3=0 unit and Q4=239 
units}. Only Q4 is ordered mainly due to 1234 PPPP <<< . Both the budget and 

service-level constraints are non-active.  
Let the evolutionary number of trials be set at 10,000, 100,000, 500,000, 1,000,000 

and 5,000,000. Run five times for each trial number, one can derive the best expected 
profit and the standard deviation of expected profit. The relationship between the best 
expected profit and the trial numbers is depicted in Figure 2 for the four cases. The 
relationship between the standard deviation of expected profit and the trial numbers is 
shown in Figure 3 for the four cases. It shows that the expected profit increases with the 
number of trials, and the standard deviation of expected profit decreases with the 
number of trials. 

The sensitivity analysis is carried out when the available budget or the required 
minimum service level is changed in the following scenarios: {T≤$2,200 and 
S.L.≥0.9}, {T≤$1,800 and S.L.≥0.9}, {T≤$2,000 and S.L.≥0.92} and {T≤$2,000 and 
S.L.≥0.88}. The evolutionary results are shown in Table 2-3. 

Table 3. The evolutionary results when the minimum service level is changed  

Various purchases Outright  Return-policy 

Qi Q1 Q2 Q3 Q4 
T S.L. EP 

Case1 111 0 0 127 $1,999 0.920 $607.2 

Case2 0 147 40 51 $2,000 0.920 $3,000.1 

Case3 5 83 48 102 $1,895 0.920 $1,534.9 

S.L.≥0.92 
and 

T≤2000  

Case4 0 0 0 239 $1,673 0.927 $3,196.1 

Case1 118 0 0 117 $1,999 0.900 $688.3 

Case2 0 150 50 35 $1,995 0.900 $2,998.0 

Case3 1 86 49 100 $1,876 0.907 $1,535.9 

S.L.≥0.90 
and 

T≤$2,000  

Case4 0 0 0 239 $1,673 0.927 $3,196.1 

Case1 125 0 0 106 $1,999 0.880 $768.1 

Case2 0 149 39 49 $1,996 0.913 $3,000.3 

Case3 0 87 46 103 $1,872 0.907 $1,536.1 

S.L.≥0.88 
and 

T≤$2,000  

Case4 0 0 0 239 $1,673 0.927 $3,196.1 

5   Concluding Remarks  

This study develops a supplier selection and the buyer’s replenishment strategy for a 
newsboy model with limited budget and minimal service level using genetic algorithm. 
The buyer’s optimal strategy will change based on various parameter values, the 
available budget and the minimum service level requirement. Sometimes mixture 
strategies where items are obtained by outright purchase and with return policy are 
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used. In other times, only a purchase with outright or return-policy is considered. The 
outright purchase tends to increase when the available budget increases or the required 
service level decreases. The return-policy purchase tends to increase when the available 
budget decreases or the required service level increases. 
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Abstract. During data collection and analysis there often exist outliers
which affect final results. In this paper we address reducing effects of
outliers in classification with Radial Basis Function (RBF) networks. A
new approach called iterative RBF (iRBF) is proposed. In which train-
ing RBF networks is repeated if there exist outliers in the training set.
Detection of outliers is performed by relying upon outputs of the RBF
networks which correspond to applying the training set at the input
units. Detected outliers have had to be eliminated before the training
set is used in the next training time. In this approach we achieve a good
performance in outlier rejection and classification with training sets ex-
isting outliers.

1 Introduction

In the machine learning, one of fundamental problems is the classification. The
task of classifier is to use the feature vector provided by feature extractor to as-
sign a pattern to a class. In supervised classification, the classifier is constructed
from patterns in a training set and assign label for unseen patterns from a test
set. Each pattern belongs to one class, and the number of classes is known. There
are many approaches for the supervised classification problem such as underly-
ing probability densities [1], support vector machine (SVM) [2], [3], and neural
networks [4]. The main problem in neural network approach is choice of acti-
vation functions and estimation of connected weights to obtain decision regions
leading to minimum error. One of networks gaining much popularity in recent
times is Radial Basis Function (RBF) networks [5],[6],[7],[8]; it consists of one
hidden layer with radial basis activation functions. Several learning algorithms
have been proposed for training RBF network [5],[6],[7],[8]. However, finding the
output-layer weights is relatively simple which can use some statistical approach
such as the pseudo inverse matrix or use the delta rule [9]. Selection of a learn-
ing algorithm for a particular application depends on its accuracy and speed.
Literature usually focuses on more difficult problems that are identification of
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Gaussian centers and the proper setting of the standard deviation. There are
some approaches solved these problems. However most of approach does not
take into account outliers existing in data collection, especially in training set it
will affect so much on the classification result. Many schemes for outlier detection
have proposed by researchers [10],[11],[12],[13],[14],[15],[16]. The early outlier de-
tection methods are based-distribution. However, in practice the distribution is
not easily to known. Knorr E.M et al [11] proposed a method based on distance.
Their method overcame the prior knowledge of distribution but it can not work
well when the data set does not have uniform density global. Jinhui Liu and
Paul Gader [16] proposed outlier rejection using multilayer perceptron (MLP)
and variations of the RBF network.

In this paper, we investigate the outlier rejection to improve the classification
performance based on RBF networks. The outliers in the training set are detected
and rejected automatically in training process, and then the parameters of the
RBF network will be updated again. The experimental results show that this
method brings out a good performance in outlier rejection and classification if
the data set consists of outliers.

The rest of this paper is organized as follows. Section 2 reviews RBF networks.
In section 3, we propose a new approach to train networks with outliers. The
experimental results and analysis are shown in section 4. Finally, we conclude in
the section 5.

2 RBF Networks

A popular form of basic function networks used in classifiers is depicted in
Fig. 1. The pattern to be classified is passed to a set of components (basic func-
tions), each returns a scalar value ϕi, i = 1, 2, ...m. The outputs of the network

Fig. 1. The radial basic function network

are linear combination of these scalar values. Although theoretical and practi-
cal considerations indicate that the choice of the basic function is not critical,
common implementations of radial basic functions which are the Gaussian bell
functions described as (1).

ϕj(x) = exp(− 1
2σj

2
‖ x− μj ‖2), j = 1, . . . ,m (1)
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where m is the number of basis functions, μj and σj are the jth center and
standard deviation respectively. For each input pattern x, the neural network
first present it as a vector ϕ(x) = [ϕ1(x), ϕ2(x), . . . , ϕm(x)]. The ith output
neuron is then to be computed as (2)

oi =
m∑

j=0

wijϕj(x) (2)

where wij is the weight of link from the jth hidden node to the ith output node,
the weights wi0 are biases corresponding to ϕ0(x) = 1. The pattern is to be
classified as belonging to the ith class if its target approximates to the maximum
of the outputs, ti ≈ maxk(ok).

Training of the RBF network consists of two stages, in the first stage the
expectation-maximization (EM) algorithm is used to estimate the centers and
deviations of components (basis functions), in the second stage the weights are
estimated using back propagation style training algorithm.

3 Iterative RBF (iRBF) Approach

In the EM-stage, it is important to train components using EM updates. After
completing this stage, we expect to obtain a best fit of components to be located
at regions of the data set.

Fig. 2. Fitting of components located regions

However, it is difficult to train the components that locate well regions of
the dataset if there are exist outliers in the training set. This problem can be
demonstrated by two artificial data sets as shown in Fig. 2. These artificial data
sets are generated from Gaussians, the number of patterns is 200 for dataset
1 (Fig. 2a) consisting of only normal patterns and 234 for dataset 2 (Fig. 2b)
in which consists of 200 normal patterns from the dataset 1 and 34 outliers.
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Although two data sets are the same normal patterns, trained components of
them are quite different as shown in Table 1, especially their deviations. The
deviation of the dataset 1 is around 10 times smaller than that of the dataset
2 which includes outliers. This difference can infer that there may have large
overlapping of components among classes in the datasets containing outliers.

Table 1. Trained Components

Dataset mean(μ) deviaion(σ)
Dataset 1 0.5182 0.3364 0.0095 0.0030
Dataset 2 0.5276 0.3641 0.0215 0.0264

In classification problem, a classificaion error occur when a patten x is classi-
fied as belonging to the class Ci and the true class is Cj(i �= j), the probability
of error is

P (error) =
∑
j �=i

P (x ∈ Ci, Cj)

=
∑
j �=i

P (x ∈ Ci|Cj)P (Cj)

=
∑
j �=i

∫
Cj

p(x|Ci)P (Cj)dx

This result shown that the large overlapping of components among classes gives
the large probability of error. Thus, in order to increase the generalization per-
formance of the network, it is suggested to detect and eliminate these outliers
from training set and than retrain components. The outliers should not activate
any output node. They are detected based on the outputs of the RBF net-
work. If the maximal output value of the neural network is less than a rejection
threshold then the corresponding input pattern is viewed as an outlier and it

Fig. 3. The overlapping of components among classes
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is rejected from the training set. Whenever parameters of components are up-
dated, it is necessary to update weights connected from the hidden layer to the
output layer. This update is easily done by using the delta rule [9] or the pseudo
inverse matrix. An outline of iterative RBF training algorithm is illustrated as
following:

1. Let P be training set
2. Train RBF network with P
3. Compute the output values corresponding to P
4. Reject patterns from P which have the output values less than a rejection

threshold.
5. Repeat 2-4 until there are not exist outliers rejected or the number of rejected

patterns larger than pst% of the data set.

The value of pst% can be set relying on the dataset so that the training set should
not be less than a predefined threshold to ensure performance of training.

4 Experiments

4.1 Artificial Separable Dataset

We generate a dataset consisting of the patterns from two separable classes
(class 1 and class 2) and outlier patterns. The number of patterns generated
for each class is 200 for the training set and test set. Each pattern is de-
noted by x = [x1, x2]T . The normal patterns are generated from Gaussians
located in [0, 1]x[0, 1], and outliers are generated from a uniform distribu-
tion located in [0, 1]x[0, 1]. An illustration of the training set is shown in
Fig. 4.

The number of outlier patterns is 61 for the training set and test set. The
threshold rejection is set to 0.1. If a training pattern is an outlier, both of the
desired outputs are less than 0.1. In this dataset we already know which patterns

Fig. 4. The sample separable dataset
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Fig. 5. The outlier rejection performance

are outliers, so we will evaluate the outlier rejection performance of our algorithm
on this dataset.

As well as [16], we define a detection rate Rd as the ratio of the number of
non-outlier patterns detected as non outliers to the total number of non-outliers.
The false alarm rate Rfa is defined as the ratio of the number of outliers that
are not rejected to the total number of outliers. And the classification rate Rc

is defined as the ratio of the number of non-outlier patterns classified correctly
to the total number of non-outlier patterns. The ROC curves used to evaluate
the outlier rejection performance using RBF network and iterative RBF (iRBF)
network is shown in Fig. 5. The RBF network used consists of two components
(two hidden nodes).

The ROC curves indicate that, for each false alarm the detection rate using the
iRBF network is better than that using RBF network or for each the detection
rate the outlier rejection performance of the iRBF network is better than that
of the RBF network. The classification performance of two approaches is also
shown in Fig. 6. The classification performance of the iRBF network is 99.75%
for all of false alarm rates.

Fig. 6. The classification performance
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From the ROC curves we see that the classification performance of the iRBF
network is better than that of the RBF networks although the output values are
the linear combination of values of the components.

4.2 Artificial Nonseparable Dataset

Similarly, we generate another dataset consisting of the patterns from two non-
separable classes (class 1 and class 2) and outlier patterns with the same pa-
rameters as in the separable case. An illustration of the training set is shown
in Fig. 7. The performance of outlier rejection and classification is shown in
Fig. 8 and Fig. 9. They are lower than that in the separable case. However,
the performance of the iRBF network is also better than that of the RBF
networks.

In this case, outliers bring about a large overlapping region which affects so
much to the classification results. Finding and removing outliers give a smaller
overlapping region, so it improves significantly the performance of classifications.

Fig. 7. The sample nonseparable dataset

Fig. 8. The outlier rejection performance
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Fig. 9. The classification performance

4.3 Sonar Dataset

In this section, we evaluate the classification performance on a real data set,
Sonar, Mine vs. Rocks. The dataset contains a total of 208 patterns which con-
sists of two classes; 111 patterns for the mine class and 97 patterns for the rock
class. The patterns were obtained by bouncing sonar signals off a metal cylinder
at various angles and under various conditions.

Each pattern consists of 60 input features with values in the range 0.0 to
1.0 representing the energy within a particular frequency band, integrated over
a certain period of time. The dataset is divided into two subsets, training set
consists of 80 percent of each class, and test set consists of the remaining 20
percent.

Table 2. Classification Accuracy(%)

Training set Testing set
# of components iRBF RBF iRBF RBF

mean SD mean SD mean SD mean SD
20 82.46 1.76 82.46 1.89 80.00 5.61 78.04 4.60
30 86.89 1.37 85.02 2.56 83.14 3.50 82.68 2.92
40 88.44 2.01 88.74 2.52 84.90 3.98 83.17 2.83
50 90.96 1.63 90.96 1.63 85.37 3.67 83.63 3.71
60 93.17 2.10 92.40 1.33 85.37 3.45 85.12 3.14
70 95.21 1.01 93.95 0.91 86.34 3.67 84.15 3.50
80 95.32 1.67 95.21 1.13 86.59 3.49 84.39 4.18
90 97.31 0.90 96.82 1.05 88.54 4.30 84.39 4.90
100 97.49 1.35 97.46 1.84 88.80 3.99 86.10 3.98
110 98.56 1.02 97.60 0.86 87.56 3.89 84.88 5.24
120 99.28 0.55 99.28 0.55 88.54 2.31 87.32 2.52
130 99.64 0.56 99.32 0.63 90.24 3.89 90.00 3.98
140 99.88 0.25 99.82 0.29 89.53 3.64 89.51 3.64
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In the experiment, the rejection threshold is set to 0.1. Table 2 provides ex-
perimental results averaged over 30 runs (mean and standard deviation, SD) for
the iRBF and RBF networks, for several values of the number of components.
These results indicate that the proposed iRBF network trained iteratively with
outlier rejection provides superior performance compared to the classical RBF
network.

5 Conclusions

In this paper, we propose a new approach based on the radial basis function net-
work (RBF) to improve the performance of classification and outlier rejection.
Outliers can be detected and rejected automatically in the training process.
Hence, trained components of the RBF network will fit better regions of the
data set. The experimental results show that our approach achieves a good per-
formance in outlier rejection and the classification performance is significantly
improved if the training set has outlier patterns that reflect their distribution.
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Abstract. This paper focuses on investigating the effectiveness of the diversi-
fied crossover (DCX) operator under an evolutionary algorithm framework to 
solve the PTSP. Different combinations of four well-performed crossover op-
erators for the TSP/PTSP, i.e., edge recombination (ER) crossover, order cross-
over (OX), order based crossover (OBX), and position based crossover (PBX), 
were used to investigate its effects. A set of numerical experiments were  
conducted to test the validity of the proposed strategy based on 90 randomly 
generated test instances.  The numerical results showed that the DCX operator, 
especially by combining ER and OX crossover operators, can most effectively 
solve heterogeneous PTSP in most of the tested instances in comparison with 
the single crossover operator used in most of the previous studies.  These find-
ings show the potential of merging the proposed DCX operator into the solution 
framework of evolutionary algorithm, genetic algorithm or memetic algorithm 
for effectively solving other complicated optimization problems. 

1   Introduction 

The probabilistic traveling salesman problem (PTSP), a type of NP-hard problem, is a 
basic stochastic optimization problem [3], [15].  Due to the fact that the element of 
uncertainty not only exists, but also significantly affects, the system performance in 
many real-world transportation and logistic applications, the results from the PTSP 
can provide insights into research into other stochastic combinatorial optimization 
problems.  The PTSP can be used to model many real-world applications in logistical 
and transportation planning, such as daily pickup-delivery services with stochastic 
demand, job sequencing involving changeover cost, design of retrieval sequences in a 
warehouse or in a cargo terminal operations, meals on wheels in senior citizen ser-
vices, trip-chaining activities, vehicle routing problem with stochastic demand, and 
home delivery service under e-commerce [1], [2], [4], [10], [16], [26]. 

The PTSP is an extension of the well-known traveling salesman problem (TSP), 
which has been extensively studied in the field of combinatorial optimization.  The 
goal of the TSP is to find the minimum length of a tour to all customers, given the 
distances between all pairs of customers.  The objective of the PTSP is to minimize 
the expected length of the a priori tour where each customer requires a visit only with 
a given probability.  The a priori tour can be seen as a template for the visiting se-
quence of all customers.  In a given instance, the customers should be visited based on 
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the sequence of the a priori tour while the customers who do not need to be visited 
will simply be skipped.  The TSP can be treated as a special case of the PTSP.  The 
main difference between PTSP and TSP is that in PTSP the probability of each node 
being visited is between 0.0 and 1.0 while in TSP the probability of each node being 
visited is 1.0. 

The closed form expressions and asymptotic analysis as well as combinatorial 
properties for computing the a priori expected length of any given PTSP tour were 
first developed by Jaillet [15], [16].  Computational studies of several heuristic  
approaches modified from the TSP (e.g., nearest neighbor, savings approach, space-
filling curve, radial sorting, 1-shift, 2-opt and 3-opt exchanges) were analyzed by 
Bertsimas et al. [4], Bertsimas and Howell [5], Bianchi et al. [7].  By using stochastic 
integer programming formulation, an exact algorithm based on an integer L-shaped 
method has been used to solve 50-node instances [19].  To efficiently and effectively 
solve the large-scale PTSP, recent studies focus on adopting new algorithmic ap-
proaches based on meta-heuristics such as ant colony optimization (ACO) [6], [9], 
genetic algorithm [23], simulated annealing [8], threshold accepting [26], and scatter 
search [20], [21], [22]. 

For an evolutionary computation framework which iteratively searches for the op-
timal solution the concept of diversification has recently been adopted to improve the 
effectiveness of the algorithms.  For example, scatter search addressed the diversity of 
the reference set and used it to create the new solutions [18], [20], [21]. Variable 
neighborhood search (VNS) explored diversified neighborhood from the current  
solution [12]. Gendron et al. [11] used the diversification strategy to provide various 
starting solutions for the following local search phase.  Ishibuchi and Shibata [14] 
emphasized the effects of embedding the notion of diversification on the mating 
scheme during the execution of evolutionary multiobjective optimization. These stud-
ies have shown the promising results of introducing diversification into the solution 
framework. 

Inspired by the effectiveness of introducing the concept of diversification into 
meta-heuristics methods, this study intends to further investigate another dimension of 
diversification by using different combinations of crossover operators (i.e., ER, OX, 
OBX, PBX) under an evolutionary algorithm framework for the PTSP.  To investigate 
the potential of incorporating the element of diversification in the crossover scheme, a 
set of test instances for heterogeneous PTSP are randomly generated for the purpose 
of comparison.  The comparative results obtained can substantiate the potential of the 
diversified crossover (DCX) operator in solving the PTSP. 

The remainder of this paper is organized as follows.  Section 2 introduces the ex-
pressions for evaluating the a priori tour for the PTSP.  Section 3 presents the details 
of the algorithmic procedure used in this study for the PTSP.  Section 4 describes the 
design of the numerical experiment. Section 5 discusses the numerical results, fol-
lowed by concluding comments. 

2   Definition and Evaluation 

The PTSP is defined on a directed graph G := (V, E), where V := {0, v1, v2, ..., vn} is 
the set of nodes or vertices, E ⊆ V × V is the set of directed edges.  Node 0 represents 



 An Evolutionary Algorithm with Diversified Crossover Operator 353 

the depot with the presence probability of 1.0.  Each non-depot node vi (i = 1, 2, ..., n) 
is associated with a presence probability pi that represents the possibility that node vi 
will be present in a given realization.  Given a directed graph G, the PTSP is to find 
an a priori tour with minimal expected length in G. 

Solving the PTSP mainly relies on computing the expected length of an a priori 
tour.  The computation of the expected length of a specific a priori PTSP tour τ, de-
noted as E[τ], depends on the relative location of nodes on that tour and the presence 
probability of each node in a given instance.  Jaillet and Odoni [17] proposed an effi-
cient approach to exactly calculate E[τ] in the complexity of O(n3) for the PTSP as 
shown in (1). 
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τ(i) denotes the node that has been assigned the ith stop in tour τ and pτ(i) is the pres-
ence probability of node τ(i).  τ(0) and τ(n+1) represent node 0, which is the depot.  
dτ(i)τ(j) represents the distance between nodes τ(i) and τ(j). 

Even though (1) yields a polynomial evaluation time for the PTSP, the resulting 
O(n3) time for calculating E[τ] is still very long, especially for an evolutionary algo-
rithm which need to repeatedly evaluate the objective function value E[τ].  The pro-
posed algorithm needs to repeatedly compare two solutions (i.e., the new solution 
before and after local search procedure, which is described in the next section) based 
on their values of E[τ].  The approximate evaluation of E[τ] shown in (2) can be used 
to significantly increase the computation efficiency of the proposed algorithm [20]. 
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The only difference between (1) and (2) is the choice of truncation position λ in 
(2).  Equation (2) will have the computational complexity of O(nλ2), instead of O(n3) 
in (1).  It is easy to see that (2) becomes more accurate when λ increases.  A larger 
value of λ, however, requires more computation efforts for the computation of (2).  
The value of λ is set to be 10 in this study.  The detailed procedure of using approxi-
mate evaluation shown in (2) to accelerate the proposed algorithm is described in the 
next section. 

3   The Algorithmic Procedure 

As shown in Fig. 1, the evolutionary algorithm proposed in this study for the PTSP 
mainly consists of four components. These are: initialization, selection, diversified 
crossover (DCX) operator, and local search. 

Two loops are used in the proposed algorithm, the inner loop is denoted by I and 
the outer loop is denoted by G. For each generation, G, the number of iterations, I, is 
set to be 30 in this study. When starting to solve the PTSP, a set of initial solutions are 
generated based on the concept of nearest neighbor rule (NNR).  The best five solu-
tions in terms of their E[τ] values are then examined.  If the best five solutions are the 
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I > Imax
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No

No

I = I + 1

G = G + 1

 

Fig. 1. The proposed solution procedure for the PTSP 

same, it means that the solution is converged and the local search is used to improve 
the “converged” solution.  Otherwise, pairs of solutions are chosen by the “selection” 
procedure for creating new solutions using the DCX operator.  Fifteen combinations 
of four different crossover operators in the DCX were examined in this study.  When 
Imax is reached in the current generation, the best solution of the current generation is 
survival to next generation to maintain the solution quality. The solutions are allowed 
to evolve through successive iterations and generations until the preset maximum 
computation time (tmax) is met. 

3.1   Initialization 

The “Initialization” is designed to generate Npop initial solutions (Npop = 20 in this 
study).  Considering a PTSP with n nodes (excluding the depot, node 0), the farthest 
node, a0, from node 0 is selected first and randomly inserted into a location between 
( ⎣ ⎦2/)1( +n -3) and ( ⎣ ⎦2/)1( +n +3).  The “modified” nearest neighbor rule (NNR) 

[13] is used to systematically build up the sequence of the tour.   Basically, the near-
est, second nearest and third nearest nodes from the current node are selected by the 
probability of 0.8, 0.1 and 0.1, respectively. This mechanism is used to generate dif-
ferent initial solutions.  The procedure of building the initial solution is as follows.  
After selecting node a0, one of the top three nearest nodes from a0 is randomly  
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selected (a1) based on the specific probability and inserted in front of a0.  Similarly, 
the node (a2) is selected and inserted behind a0.  Then, among the remaining nodes, 
one of the top three nearest nodes from a1 is randomly selected (a3) based on the spe-
cific probability and inserted in front of a1, while node (a4) is randomly selected based 
on the rule described previously and inserted behind a2.  The initial solution (tour) is 
thus built by following the above rule and expressed as follows. 

0………………a5, a3, a1, a0, a2, a4, a6, .………………0 

3.2   Selection 

“Selection” is used to choose two tours (parents) for generating one or two new tours 
(children). H1 and H2 denote the set of candidates for parents 1 and 2, respectively, 
where H1 = {the best b solutions} (b = 5, in this study); H2 = {all solutions} in each 
iteration. Then, parents 1 and 2 are determined by randomly choosing from the sets of 
H1 and H2, respectively.  If parent 1 and parent 2 are the same, this pair will be dis-
carded and the procedure will re-select another pair based on the same rule. 

3.3   Diversified Crossover (DCX) Operator 

The main purpose of the DCX is to create the new solutions using a given pair of 
solutions chosen by the “selection” procedure.  Previous studies have investigated the 
performance of four commonly used crossover (i.e., ER, OX, OBX, and PBX) and 
found that the ER crossover is the most effective local search for the TSP and PTSP 
[23], [24], [25].  Inspired by the successful implementation of introducing the notion 
of diversification into meta-heuristics methods [11], [12], [18], instead of using the 
single crossover as done in most past optimization studies, the diversified crossover 
(DCX) operator stresses another dimension of diversification by using more than one 
crossover operator (i.e., ER, OX, OBX, and PBX) to create the new solutions.  In the 
DCX operator, the best tour among parents and new solutions generated by various 
crossover operators (offspring) is selected to build the population of the solution for 
next iteration. The detailed description of ER, OX, OBX, and PBX can be found  
in [24]. 

3.4   Local Search 

This component is used in an attempt to further enhance the candidate solution via a 
local search procedure.  As stated, a couple of studies have investigated the perform-
ance of three commonly used local searches (i.e., 1-shift, 2-opt, and 3-opt) and found 
that the 1-shift local search is the most effective local search for the PTSP [4], [5], [7], 
[9].  Thus, 1-shift exchange was adopted in this study. 

Assuming that one solution and its a priori tour is (0, v1, v2, v3,..., vn, 0) where vi (i 
= 1, 2,..., n) represents the ith stop of the sequence in this tour.  First, a pair of nodes va 
and vb are randomly selected from vi (i = 1, 2,..., n).  The 1-shift local search will 
generate a new solution by placing va immediately after vb.  For example, if va = 3 and 
vb = 6 for the original tour (1, 2, 3, 4, 5, 6, 1), the new tour after 1-shift will be (1, 2, 
4, 5, 6, 3, 1). Generally speaking, 1-shift local search mainly keeps the same sequence 
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of the original tour by only relocating one randomly selected node to the neighbor-
hood of the other randomly selected node. 

The approximate evaluation of the expected length of the a priori tour shown in (2) 
is then used to enhance the computational efficiency in the proposed evolutionary 
algorithm.  For a specific tour τ, ][τλ

APE  is always less than the value of E[τ] because 

of the truncation in calculating ][τλ
APE . Let τb and τa denote the a priori tour before 

and after 1-shift local search, respectively.  It means that no improvement has been 
found after the local search if ][τλ

APE  ≧ E[τb].  Equation (1) is used to exactly evalu-

ate the solution after the local search if ][τλ
APE < E[τb].  If the local search yields a 

better E[τ] value than the one from the original solution (i.e., E[τa] < E[τb]), the new 
solution (τa) will replace the original solution (τb).  If no improvement has been found 
after the local search, no replacement will be made [20].  The above procedure is 
repeated NLS times for each solution (NLS ＝ 3n in this study). 

4   Experimental Design 

For heterogeneous PTSP, 90 randomly generated instances with size n = 50, 75, and 
100 were used as numerical experiments in this study to examine the effects of adopt-
ing DCX strategy in evolutionary algorithm framework for the PTSP. Three groups of 
problem sets categorized by different intervals of customer presence probabilities 
were created for each problem size (n = 50, 75, and 100). Presence probabilities of 
customer nodes were randomly generated from a uniform distribution of intervals 
(0.0, 0.2), (0.0, 0.5), (0.0, 1.0), one for each problem size. The presence probability of 
the depot (node 0) was assigned as 1.0. Ten different problem instances were ran-
domly generated for each presence probability of customer nodes. For each instance, 
the coordinates of one depot and n customer nodes (xi, yi) were generated based on a 
uniform distribution from [0,100]2.  The Euclidean distance for each pair of nodes 
was calculated by using dij = 22 )()( jiji yyxx −+− .  

A numerical experiment was designed to compare the differential effectiveness of 
the DCX operator in solving the PTSP.  In total, fifteen tests encompassing all possi-
ble combinations of four crossover operators were conducted.  Specifically, they were 
four tests on single crossover operators widely used in the previous studies (i.e., ER, 
OX, OBX and PBX) and eleven on diversified crossover operators done by using at 
least two crossover operators. All DCX strategies are labeled as C1-C11 accordingly, 
as shown in Table 1. In summary, C1-C6 represent the DCX strategy with two cross-
over operators; C7-C10 represent the DCX strategy with three crossover operators; 
C11 is the DCX strategy with all four crossover operators.  In these tests, the average 
expected lengths of the a priori tour were examined. All implementations were coded 
in FORTRAN and performed on an Intel Pentium IV 2.8 GHz CPU personal com-
puter with 512 MB memory, running Windows XP operating system, and using Com-
paq Visual FORTRAN 6.5 compiler. All fifteen tests designed in this study were used 
to solve each problem instance 30 times for heterogeneous PTSP in an attempt to 
further enhance the robustness of the results. Since ten different problem instances 
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were tested for each presence probability of customer nodes associated with a specific 
problem size, there would be a 300-run average for heterogeneous PTSP for each of 
the fifteen tests. The algorithm terminated when the total CPU run time exceeded the 
value tmax specified by the author according to problem size. The corresponding 
maximum CPU times (tmax) were roughly 30, 100 and 200 seconds for 50-, 75-, and 
100-node instances, respectively. 

Table 1. The notation of DCX strategy 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 
ER            
OX            

OBX            
PBX            

5   Computational Results and Discussion 

The average optimal values of the expected length of the a priori tour for heterogene-
ous PTSP are listed in Tables 2-4.  In Tables 2-4, n denotes problem size, which is the 
number of customer nodes; p represents the customer presence probability interval 
(0.0, p]. 

For the single crossover operators used in most of the previous TSP and PTSP 
studies, ER and OX performed better than OBX and PBX in terms of average E[τ] 
value for all problem sizes and probability intervals, as shown in Table 2.  Similar 
results can be found in TSP applications [25].  Generally, ER crossover had a better 
average E[τ] value than OX crossover when the presence probability intervals were 
large [i.e., (0.0, 0.5) and (0.0, 1.0)].  However, OX performed slightly better than ER 
crossover when the presence probability interval was small [i.e., (0.0, 0.2)]. 

For the diversified crossover (DCX) operator proposed in this study, there are six 
tests with 2 crossover operators (C1-C6).  As shown in Table 3, the combination of 
ER and one other crossover operator (i.e., C1-C3) had a better average E[τ] value than 
the other combinations (i.e., C4-C6) when the presence probability intervals were 
large [i.e., (0.0, 0.5) and (0.0, 1.0)].  The combination of OBX and PBX (C6) per-
formed the worst among these six tests (C1-C6) for all problem sizes and probability 
intervals.  Moreover, by comparing single crossover operators and DCX with 2 cross-
over operators, the averaged E[τ] value yielded by the combination of ER and any of 
the other crossover operator (i.e., C1-C3) consistently performed better than the one 
yielded by using only single crossover operator.  Table 4 shows the results of DCX 
with the combination of 3 or 4 crossover operators. The averaged E[τ] value yielded 
by the combination of ER and other crossover operators (i.e., C7, C8, C9, and C11) 
performed better than the one yielded by using only single crossover operator for 
almost all problem sizes and probability intervals. These results indicated that the 
DCX operator combined with ER and other crossover operators can yield better solu-
tion quality than by adopting a popularly used single crossover operator.  However,  
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the combination of OX and other crossover operators performed similar results as the 
single crossover operator by using only OX crossover.  Generally speaking, the aver-
age E[τ] value yielded by the combination of ER and OX with or without other cross-
over operators (i.e., C1, C7, C8, C11) performed consistently better than the one 
yielded by using other combinations with the DCX operator or single crossover  
operator.  

Table 2. Results of four single crossover operators 

n p ER OX OBX PBX 
50 0.2 230.44  230.04  231.39  230.69  

 0.5 340.81  341.23  345.32  344.30  
 1.0 434.05  436.67  443.40  443.28  

75 0.2 279.55  278.49  280.34  279.97  
 0.5 393.88  394.61  403.23  403.10  
 1.0 538.93  556.45  575.31  573.37  

100 0.2 311.32  310.38  314.97  314.23  
 0.5 457.87  459.45  476.74  471.95  
 1.0 612.07  630.97  650.51  648.29  

Table 3. Results of DCX operator (2 crossover operators) 

n p C1 C2 C3 C4 C5 C6 
50 0.2 230.11  230.30  230.25  230.08  230.08  231.57  

 0.5 340.54  341.00  340.76  341.26  341.29  345.99  
 1.0 433.01  433.96  433.36  437.03  436.36  443.88  

75 0.2 278.59  279.13  279.05  278.33  278.41  281.53  
 0.5 392.99  393.00  392.86  393.82  394.45  403.57  
 1.0 537.57  538.29  537.06  555.82  554.59  574.01  

100 0.2 309.99  311.08  310.80  311.16  310.51  315.03  
 0.5 456.31  457.82  457.40  461.05  461.65  474.97  
 1.0 609.21  609.05  609.30  632.21  632.21  651.41  

Table 4. Results of DCX (3 and 4 crossover operators) 

n p C7 C8 C9 C10 C11 
50 0.2  230.12  230.12  230.31  230.11  230.10  

 0.5  340.49  340.58  340.86  341.18  340.68  
 1.0  433.26  433.24  433.43  436.70  433.74  

75 0.2  278.57  278.48  279.26  278.50  278.58  
 0.5  392.74  392.79  393.09  394.64  392.84  
 1.0  537.54  536.72  537.81  555.73  537.54  

100 0.2  310.10  310.08  310.90  310.72  310.25  
 0.5  455.88  456.37  457.18  461.31  457.34  
 1.0  609.11  609.04  609.43  632.67  609.53  
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6   Conclusion 

In this paper, the diversified crossover (DCX) operator was proposed and investigated 
under an evolutionary algorithm framework to solve the PTSP.  Inspired by the con-
cept of biological diversity and the successful implementation of adopting diversifica-
tion into meta-heuristics methods, this study further extended to another dimension of 
diversification by using the combination of several crossover operators (i.e., ER, OX, 
OBX, and PBX crossover), instead of a single crossover operator as used in the previ-
ous TSP and PTSP studies.  The numerical results show that the combination of ER 
and OX with or without other crossover operators yields the most promising solutions 
for heterogeneous PTSP.  This finding further suggests the potential of merging the 
diversified crossover operator into the solution framework of evolutionary algorithm, 
genetic algorithm or memetic algorithm for effectively solving complicated optimiza-
tion problems. 
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Abstract. Many situations demand from publishing data without re-
vealing the confidential information in it. Among several data protec-
tion methods proposed in the literature, those based on linear regression
are widely used for numerical data. The main objective of these meth-
ods is to minimize both the disclosure risk (DR) and the information
lost (IL). However, most of these techniques try to protect the non-
confidential attributes based on the values of the confidential attributes
in the data set. In this situation, when these two sets of attributes are
strongly correlated, the possibility of an intruder to reveal confidential
data increases, making these methods unsuitable for many typical sce-
narios. In this paper we propose a new type of methods called LiROP−k
methods that, based on linear regression, avoid the problems derived
from the correlation between attributes in the data set. We propose the
vectorization, sorting and partitioning of all values in the attributes to
be protected in the data set, breaking the semantics of these attributes
inside the record. We present two different protection methods: a syn-
thetic protection method called LiROPs-k and a perturbative method,
called LiROPp-k. We show that, when the attributes in the data set are
highly correlated, our methods present lower DR than other protection
methods based on linear regression.

Keywords: Privacy in statistical databases, Privacy preserving data
mining, Statistical disclosure risk, Linear regression masking methods.

1 Introduction

Managing large volumes of confidential data is a common practice in any organi-
zation. In many cases, this data contains valuable statistical information required
by third parties and privacy becomes essential. In this situation, it is necessary to
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release data preserving the statistics without revealing confidential information.
This is a typical problem, for instance, in official statistics institutes.

Special efforts have been made to develop a wide range of protection methods.
These methods aim at guaranteeing an acceptable level of protection of the
confidential data. Specific areas such as Privacy in Statistical Databases (PSD)
tackle the problem of protecting confidential data in order to publicly release
it, without revealing confidential information that could be linked to an specific
individual or entity. Good surveys about protection methods can be found in
the literature [1,8]. Also, Privacy Preserving Data Mining (PPDM) [2] studies
the case when a data mining technique allows an intruder to obtain confidential
information about specific individuals.

A data set D can be viewed as a file with n records, where each record contains
a attributes of an individual. The attributes in the original data set can be
classified in two different categories, depending on their capability to identify
unique individuals, as follows:

Identifiers. The identifier attributes are used to identify the individual unam-
biguously. A typical example of identifier is the passport number.

Quasi-identifiers. A quasi-identifier attribute is an attribute that is not able
to identify a single individual when it is used alone. However, when it is
combined with other quasi-identifier attributes, they can uniquely identify
an individual. Among the quasi-identifier attributes, we distinguish between
confidential and non-confidential, depending on whether they contain confi-
dential information. An example of non-confidential quasi-identifier attribute
would be the zip code, while a confidential quasi-identifier might be the
salary.

When protecting a data set, identifiers are removed or encrypted to prevent an
intruder to re-identify individuals easily. Typically, the remaining attributes are
released, some of them protected. In this paper, we assume that non-confidential
attributes are protected, while confidential attributes are not. This allows third
parties to have precise information on confidential data without revealing who
that confidential data belongs to.

Among several proposals, the use of linear regression methods is very ex-
tended. The family of synthetic data generators called Information Preserving
Statistical Obfuscation generators (IPSO) [4] is a good example of these. The
IPSO generators use multiple regression models taking confidential attributes as
independent variables and non-confidential attributes as dependent variables.

In this scenario, as shown in Figure 1, an intruder might try to re-identify
individuals by obtaining the non-confidential quasi-identifier data (Y ) together
with identifiers (Id) from other data sources. In this situation, applying record
linkage between the protected attributes (Y ′) and the same attributes obtained
from other data sources (Y ), the intruder might be able to re-identify a percent-
age of the protected individuals together with their confidential data (X).

This attack is specially effective when the intruder uses a distance to re-
identify records that takes into account correlations among attributes such as
the Mahalanobis distance [11].
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Fig. 1. Re-identification scenario

In this paper we present a new family of protection methods for numerical
data called Linear Regression on Ordered Partitions (LiROP−k). The LiROP−k
methods ignore the possible correlation between dependent (non-confidential)
(Y ) and independent (confidential) (X) attributes, by eliminating the semantics
of the different attributes. LiROP−k methods order the whole data set in a
vector, mixing attributes, in order to add perturbation by breaking the existing
relations between these attributes. Then, they split the data set into several
partitions of k elements, normalize the data in each partition and sort it again.
After this process, an independent linear regression model is computed over each
partition. All this process makes more difficult for an intruder to re-identify
individuals.

Protection methods are classified depending on the philosophy used to pro-
tect data [7]. In this paper we propose two different LiROP-k methods called
LiROPs-k and LiROPp-k, respectively. The former is a synthetic generator and
the latter is a perturbative method.

We show that these methods are preferable compared to other linear regression
methods when the correlation between attributes in X and Y is high. In these
scenarios, the DR of LiROP-k methods is clearly lower than those obtained by
IPSO methods.

This paper is organized as follows. In Section 2 we present a detailed de-
scription of the LiROP-k protection methods. In this section, we also clarify
the differences between the synthetic and the perturbative variants. Section 3
presents the results. Finally, we draw some conclusions and presents some future
work.

2 Linear Regression on Ordered Partitions (LiROP-k)

Linear Regression on Ordered Partitions methods (LiROP-k) propose a new
vision of data handling based on the vectorization, sorting and partitioning of
all the values in the data set. There are several aspects that motivate these three
steps:

Vectorization. The first step is vectorization. The basic idea is to gather all the
values in the data set in a single vector, independently of the attribute they
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belong to. This way, we are ignoring the attribute semantics and, therefore,
the possible correlation between two different attributes in the data set.

Sorting. Once all the values are inserted in the unique vector, it is necessary to
sort them in order to improve the fitness of the linear regression. Note that
sorting the values is a way of adding noise.

Partitioning. Even taking into account that data is sorted, calculating a unique
linear regression for the whole data set is not accurate enough. In order to
improve the accuracy, we propose to split the data set in several k-partitions
and to calculate a linear regression for each partition. Modifying the value
of k, LiROP methods allow us to tune the accuracy of the regression model
by changing the size of the partition being fitted. Note that if the data set
was not sorted, k would not have this property.

Since the ranges of values of two different attributes could differ significantly,
the sorting step may not merge all the values coming from different attributes ap-
propriately. For this reason, after the partitioning is complete, data is normalized
in each partition and it is sorted and re-partitioned again. Data normalization
improves the attribute merging and therefore, it is more difficult for an intruder
to re-identify an individual.

Formally speaking, let D be the original data set to be protected. We denote
by R the number of records in D. Each record consists of a numerical attributes
or fields. We assume that none of the registers contain blanks. We denote by N
the total number of values in D. As a consequence, N = R · a.

Let us V be a vector of size N . LiROP−k methods treat values in the data
set as if they were completely orthogonal. In other words, the concepts of record
and field is ignored and the N values in the data set are placed in V .

First, V is sorted increasingly. Let us denote by Vs the ordered vector of size N
containing the sorted data and vi the ith element of vector Vs, where 0 ≤ i < N .

Next, Vs is divided into smaller sub-vectors or partitions. Each sub-vector is
normalized into the [0, 1] interval and they are all sorted and partitioned again.
We define k, where 1 < k ≤ N , as the number of values per partition. Note
that if k is not a divisor of N the last partition will contain a smaller number of
values. Let P be the number of k-partitions. We call r the number of values in
the last partition where 0 ≤ r < k. Therefore, N = kP + r. If r > 0 the we have
P + 1 partitions. We denote by Pm the mth partition.

Let vm,n be defined as the nth element of Pm:{
vm,n := vmk+n n = 0 . . . k − 1 m = 0 . . . P − 1
vP,n := vPk+n n = 0 . . . r − 1

For each Pm, linear fitting is computed over the following (X , Y ) points:

(0 , vm,0) (1 , vm,1) (2 , vm,2) · · · (k − 1 , vm,(k−1))

When r > 0, the size of the last partition (PP ) is r < k. In this case, the
regression line of this partition is computed differently: the nearest last k points
of the data set are used to compute the regression line, but only the r points
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held by PP are actually protected. This guarantees that each linear regression is
computed using the same number of points, so the level of accuracy is homoge-
neous. Therefore, in this case, the linear fitting for the last partition is computed
over the following (X , Y ) points:

(0 , vm,N−k) (1 , vm,N−k+1) (2 , vm,N−k+2) · · · (k − 1 , vm,N−1)

Assuming that the resulting linear regression is lm,n = αmn + βm (where
n = 0 . . . k − 1), then the expressions used to compute αm and βm are:

αm =
2

k(k + 1)

[
(2k − 1)

k−1∑
n=0

vm,n − 3
k−1∑
n=1

n vm,n

]

βm =
2

k(k + 1)

[
−3

k−1∑
n=0

vm,n +
6

k − 1

k−1∑
n=1

n vm,n

]
These results can be derived from the normal equations as presented in [5].
Finally, LiROP-k methods add Gaussian noise to the linear regression to par-

tially change the order of the points. With the addition of noise, re-identification
will be more difficult for an intruder even knowing the values of some attributes.

Following, we present two different methods, namely LiROPs-k and LiROPp-k.
As we will see, the way LiROP-k adds this noise depends on the method.

2.1 LiROPs-k

LiROPs-k is a LiROP-k synthetic generator. As in any other synthetic generator,
the values in the attributes to be protected are only used to fit the model. Once
the linear regression model fits the original data, LiROPs-k generates new data
taking into account the model predictions and adding noise to the results.

Specifically, for each point in the regression line, a new occurrence of the
Gaussian random variable (γ) is computed. The mean of γ is μ = 0 and the
variance σ2 = α2

m (i.e. γ ∼ N(0, α2
m)) where, as defined previously, αm is the

slope of the regression line (for each m data partition) and the distance between
two neighbor points in the X axis is 1. Consequently, the projected distance on
the Y axis between two consecutive values of the regression line is αm = σ.

The protected value pm,n for vm,n is then:

pm,n = lm,n + γ

Since variance of γ is adjusted accordingly to the slope of each partition, the
probability of a protected point pm,i to be larger than the protected point of the
neighbor point pm,i+1 when adding noise, pm,i+1 − pm,i < 0, is independent of
the current partition and homogeneous for all the points.

As mentioned before, this method is synthetic because the protected values are
obtained from a regression model without considering the value of the particular
point being masked. An example is shown in Figure 2.



366 P. Medrano-Gracia et al.
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0 1 2 3 4 k-1

vm,(k-1)

Y

Fig. 2. LiROPs-k: An example of a set of points from a partition, its linear regression
and the more probable interval (±σ, corresponding to the centered 0.68 probability
interval) for the protected value.

2.2 LiROPp-k

The second LiROP-k method presented in this paper is called LiROPp-k. This
second method is a perturbative method and, therefore, data to be protected
is not only used to fit the model, but it is also used in order to calculate the
protected value generated for each point in the original data set.

In this case, the main difference between LiROPs-k and LiROPp-k is the
method used to add noise. For LiROPp-k, the mean of γ is also μ = 0 but the
variance is fixed at σ2 = 0.252 (i.e. γ ∼ N(0, 0.252)). The final protected value
pm,n for vm,n is obtained by computing:

pm,n = lm,n + γ · (vm,n − lm,n)

This method is classified as a perturbative method because noise variance
depends on the distance between the regression line and the original point.

Notice that, although the variance of γ is fixed, γ · (vm,n− lm,n) is a Gaussian
random variable with σ = 0.25 · (vm,n− lm,n). An example is shown in Figure 3.

3 Experiments

We have presented two different protection methods based on the vectorization,
sorting and partitioning of a data set.

LiROP-k methods have a very low computational cost. The execution time
of any experiment presented in this section is less than 0.5 seconds using a
conventional laptop. The sorting algorithm used is the quick-sort algorithm.

3.1 Data

We have considered two reference data sets for evaluation purposes proposed in
the CASC project [3]. One file has been extracted using the Data Extraction



Ordered Data Set Vectorization for Linear Regression on Data Privacy 367

X

vm,0
vm,1

vm,2

vm,3 vm,4

0 1 2 3 4 k-1

vm,(k-1)

Y

Fig. 3. LiROPp-k: An example of a set of points from a partition, its linear regression
and the more probable interval (±2σ, corresponding to the centered 0.95 probability
interval) for the protected value.

System (DES) from the U. S. Census Bureau [6], called Census and the other
from the U.S. Energy Information Authority [9], called EIA.

The Census data set contains 1080 records consisting of 13 attributes (which
is equal to 14040 values to be protected). Analogously to the studies presented
in [8], we have selected the 13 attributes to protect the data set ignoring the
relationship between the attributes. We use this data set in order to compare
LiROPp-k with other perturbative protection methods through an score.

The EIA data set, after removing the identifiers and the categorical attributes,
contains 4092 records consisting of 10 attributes. These attributes are divided
into two groups. The first group contains 5 non-confidential attributes which are
highly correlated with the other 5 confidential attributes in the second group.
The total number of values to be protected in this scenario is equal to 20460.
We use this data set in order to compare LiROP-k with IPSO. In this situation,
we should be able to notice a clear reduction in the DR of LiROP-k methods
compared to IPSO methods.

3.2 Measures

In order to evaluate our methods, first, we compute the score, a typical general
method used to compare two protection methods [8]. We use this score to analyze
LiROPp-k.

In order to calculate the score, we use the measures presented in previous
work:

– Information Loss (IL): LetX andX ′ be matrices representing the original
and the protected data set, respectively. Let V and R be the covariance
matrix and the correlation matrix of X , respectively; let X be the vector of
variable averages for X and let S be the diagonal of V . Define V ′, R′,X

′
,
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and S′ analogously from X ′. The information loss is computed by averaging
the mean variations of X −X ′,V − V ′,S − S′, and the mean absolute error
of R − R′ and multiplying the resulting average by 100. All these measures
have been extracted from [8] and are computed in the same way.

– Disclosure Risk (DR): We use the three different methods presented
in [10] in order to evaluate DR: (i) Distance Linkage Disclosure risk (DLD),
which is the average percentage of linked records using distance based record
linkage, (ii) Probabilistic Linkage Disclosure risk (PLD), which is the aver-
age percentage of linked records using probabilistic based record linkage and
(iii) Interval Disclosure risk (ID) which is the average percentage of original
values falling into the intervals around their corresponding masked values.
The three values are computed over the number of attributes that the in-
truder is assumed to know that, in our case, ranges from one to half of the
attributes. These measures have been extracted from [8] and are computed
in the same way.

– Score: A final score measure is computed by weighting the presented mea-
sures, also proposed in [8]:

score = 0.5 IL+ 0.125DLD+ 0.125PLD+ 0.25 ID

Second, to compare LiROP-k and IPSO, we calculate the score and we also
calculate the DR when X and Y are highly correlated using the Mahalanobis dis-
tance. The main difference between the Mahalanobis distance and the Euclidean
distance is that the first takes into account the correlations among attributes.
Mahalanobis distance is computed as follows:

d(a, b)2 = (a− b)′[V ar(V A) + V ar(V B)− 2Cov(V A, V B)]−1(a− b)

where V ar(V A) is the variance matrix of the attributes of the original data,
V ar(V B) is the variance matrix of the attributes of the protected data and
Cov(V A, V B) is the covariance matrix between original and protected data.

Typically, the intruder does not have the information necessary in order to
calculate the covariances matrix between Y and Y ′. However, results in [11] show
that the disclosure risk is higher when the intruder does not use the covariance
matrix. In this paper, we consider both that the intruder does not know the
covariance matrix (MDLD-COV0) and the intruder has hypothetically obtained
this matrix somehow (MDLD).

3.3 LiROPp-k Versus Other Perturbative Methods

We have tested LiROPp-k with values for k ranging from 50 to 5000. The range
of values for k has been selected in order to test the effect of this parameter over
IL and DR. LiROPp-k has been run 10 times for each value of k. The results
presented in Table 1 are calculated as the average of each 10 runs obtained for
each k.

Comparing results presented in [8] with our results, we observe that LiROPp-k
can be considered a good protection method.
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Table 1. Average result of IL, DLD, PLD, ID and the score for LiROPp-k using the
Census data set

Census

k IL DLD PLD ID Score

50 0.30 47.68 88.82 99.38 42.06
200 2.13 42.95 76.81 96.96 40.28
500 3.95 40.16 61.87 91.93 37.71
700 11.67 34.27 53.11 86.40 38.36
1000 15.67 35.18 58.83 86.52 41.22
2000 16.20 36.39 59.43 87.59 41.97
3000 42.31 11.81 22.45 56.92 39.66
4000 52.43 12.84 15.17 53.51 43.09
5000 99.28 10.62 2.94 48.35 63.42

As we can observe from the table, DLD, PLD and ID measures decrease when
k increases, and as we will show in the next section, this effect is maintained
even when the attributes are highly correlated.

The IL of LiROPp methods increases when k increases. This makes sense
because the linear regression model of each partition is forced to fit a larger
number of points and, therefore, the fit error is larger, and consequently the IL
increases.

3.4 LiROP-k vs IPSO for Highly Correlated Attributes

We have tested LiROP-k methods for different values of k in order to find a
situation where the IL is similar to that obtained by IPSO. This way we assure
a fair comparison between the two classes of methods. Specifically, k ranges from
50 to 5000. The results presented in Table 2 show the average of each 10 runs
obtained for each LiROP-k method and each k, using the EIA data set. Table 3
shows the same results for the three IPSO methods.

Analyzing the figures presented in these two tables, we can observe that
LiROPs-k and LiROPp-k present similar scores, being 28.18 and 28.29 the best
scores for each method, respectively. We can also observe that these scores are
lower than those obtained by IPSO methods. Specifically, IPSO-A and IPSO-B
present a score of 39.05. Note that the two IPSO methods have larger values
in terms of information lost (IL) and disclosure risk (DLD, PLD and ID) when
compared to the best scored LiROP-k methods. The IL in IPSO-C is very high
and this has a clearly negative effect on the score, that is higher than 200. From
here on, we omit IPSO-C from our experiments for being its score clearly higher
compared to the other two methods.

Re-identification comparison using the Mahalanobis distance. As we
said in Section 1, IPSO presents a high disclosure risk when non-confidential
attributes are highly correlated with the confidential attributes. In the previous
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Table 2. Average results of IL, DLD, PLD, ID for LiROP-k methods using the EIA
data set

LiROPs-k LiROPp-k

k IL DLD PLD ID Score IL DLD PLD ID Score

50 0.82 34.32 72.40 99.80 38.70 0.82 34.35 72.40 99.80 38.70
200 3.45 19.84 28.33 97.03 32.00 3.44 19.94 28.33 96.97 32.00
500 5.05 14.97 14.65 91.79 29.18 5.12 15.10 14.65 91.85 29.24
700 12.63 12.03 4.12 79.38 28.18 12.69 12.07 4.12 79.67 28.29
1000 14.44 11.82 3.50 76.92 28.37 14.64 11.89 3.50 77.22 28.55
2000 76.44 11.50 0.68 60.16 54.78 78.74 11.47 0.68 60.42 55.99
3000 61.93 11.42 1.25 65.19 48.85 61.82 11.29 1.25 65.33 48.81
4000 54.10 11.67 0.66 63.73 44.52 55.59 11.58 0.66 63.74 45.26
5000 112.76 16.56 0.26 38.23 68.04 113.31 16.58 0.26 38.62 68.41

subsection, we compared the scores and we could see that the risk of disclosure
using DLD, PLD and ID measures is higher than with our method. However,
these experiments were not tested in the worst situation. We have seen that,
using IPSO methods, it is possible to re-identify a large number of records using a
record linkage based on the Mahalanobis distance, when the correlation between
the non-confidential data (Y ) and confidential attributes (X) is high, and the
intruder has obtained the original values of the protected data (Y ) from an
alternative source.

In this subsection, we try to re-identify the protected records obtained by
LiROP-k and IPSO methods using the Mahalanobis distance. We compare IPSO-
A and IPSO-B with the LiROP-k methods presenting similar IL (in order to
make a fair comparison), namely LiROPs-1000, LiROPs-2000, LiROPs-3000,
LiROPs-4000, LiROPs-5000, LiROPp-1000, LiROPp-2000, LiROPp-3000,
LiROPp-4000 and LiROPp-5000.

As we can observe in Table 4, the DR obtained by LiROP-k methods is
significantly lower than that obtained by IPSO. While an intruder is able to re-
identify 78.35 % and 78.05 % of the individuals when the data set is protected
using IPSO-A and IPSO-B, respectively, it is only able to re-identify 3.16 % and

Table 3. Average results of IL, DLD, PLD, ID for IPSO methods using the EIA data
set

IPSO

Method IL DLD PLD ID Score

IPSO-A 32.97 34.03 9.87 68.3 39.05
IPSO-B 32.98 34.01 9.90 68.29 39.05
IPSO-C 212.4 37.64 3.96 39.15 121.19
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Table 4. Re-identification results using Mahalanobis distance. MDLD-COV0 stands
for Mahalanobis Distance Linkage Disclosure being the covariance matrix unknown,
MDLD stands for Mahalanobis Distance Linkage Disclosure being the covariance ma-
trix known.

Method DLD MDLD-COV0 MDLD PLD

IPSO-A 1.59 78.35 3.49 3.89

IPSO-B 1.59 78.05 3.30 3.89

LiROPs k = 1000 11.82 3.16 0.98 3.50
LiROPs k = 2000 11.50 0.89 0.38 0.68
LiROPs k = 3000 11.42 1.23 0.29 1.25
LiROPs k = 4000 11.67 0.71 0.17 0.66
LiROPs k = 5000 16.56 0.24 0.06 0.26

LiROPp k = 1000 11.89 3.62 1.06 3.50
LiROPp k = 2000 11.47 1.00 0.40 0.68
LiROPp k = 3000 11.29 1.35 0.79 1.25
LiROPp k = 4000 11.58 0.82 0.44 0.66
LiROPp k = 5000 16.58 0.32 0.40 0.26

3.62 % of the individuals, in the worst situation, using LiROPs-k and LiROPp-k,
respectively. Therefore, it is preferable to use LiROP-k methods better than
IPSO in this situation. Note that the results obtained by MDLD for LiROP-k
methods are always similar to those obtained by PLD. This means that the
intruder cannot get extra information even when data is highly correlated.

4 Conclusions and Future Work

In this paper, we have presented a new type of protection methods based on
linear regressions called LiROP-k. We have shown that our methods, compared
to the most well-known methods based on linear regression, are able to reduce
both the score and the DR, when confidential and non-confidential attributes
are correlated. We have seen that, breaking the semantics of the attributes in the
records and mixing all the values in the data set by ordering them in a vector,
reduces the probability of an intruder to re-identify the protected data.

As future work, we would like go further by studying data statistics and their
relation with the k parameter. Our objective is to be able to estimate a right
value for k instead of finding the optimal k experimentally. This would be very
useful when the amount of data in the data set is very large.
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Abstract. The need for protecting the privacy of relationships in so-
cial networks has recently been stressed in the literature. Conventional
protection mechanisms in those networks deal with the protection of re-
sources and data, i.e. with deciding whether access to resources and data
held by a user (owner) should be granted to a requesting user (requestor).
However, the relationships between users are also sensitive and need pro-
tection: knowing who is trusted by a user and to what extent leaks a lot
of confidential information about that user. The use of symmetric key
cryptography to implement private relationships in social networks has
recently been proposed. We show in this paper how to use public-key
cryptography to reduce the overhead caused by private relationships.

Keywords: Social networks, Privacy, Private relationships, Public-key
cryptography.

1 Introduction

Social networks have become an important web service [7] with a broad range of
applications: collaborative work, collaborative service rating, resource sharing,
searching new friends, etc. They have become an object of study both in com-
puter and social sciences, with even dedicated journals and conferences. They
can be defined as a community of web users where each network user can pub-
lish and share information and services (personal data, blogs and, in general,
resources). In some social networks, users can specify how much they trust other
users, by assigning them a trust level [1,6]. It is also possible to establish several
types of relationships among users (for example, “colleague of”, “friend of ”,
etc.). The trust level and the type of relationship are used to decide whether
access is granted to resources and services being offered.

As pointed out in [4], the availability of information on relationships (trust level,
relationship type) has increased with the advent of the Semantic Web and raises
privacy concerns: knowing who is trusted by a user and to what extent discloses a
lot about that user’s thoughts and feelings. See [2] for an analysis of related abuses.

These privacy issues have motivated some social networks [5,8] to enforce sim-
ple protection mechanisms, according to which users can decide whether their
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resources and relationships should be public or restricted to themselves and those
users with whom they have a direct relationship. Unfortunately, such straight-
forward mechanisms results in too restrictive policies.

In [3], a more flexible access control scheme is described, whereby users can be
authorized to access a resource even if they have no direct relationship with the
resource owner, but are within a specified depth in the relationship graph. Access
rules are used, which specify the set of access conditions under which a certain
resource can be accessed. Access conditions are a function of the relationship
type, depth and trust level. Relationship certificates based on symmetric-key
cryptography are used by a requestor to prove that he satisfies some given access
conditions. To access resources held by a node with whom the requestor has
no direct relationship, the requestor retrieves from a central node the chain
of relationship certificates along the path from the resource owner to himself.
Clearly, the central node is a trusted third party, as it knows the relationships
of all nodes in the network.

In [9] a mechanism to protect personal information in social networks is de-
scribed where nodes in the network are anonymous and cannot be linked to a
specific users; in contrast, the data and the relationships are public, which might
facilitate user re-identification.

An innovative privacy-preserving approach is described in [4] which leans on
the access model in [3] and focuses on relationship protection: a user can keep
private that he has a relationship of a given type and trust level with another
user. Relationship certificates are encrypted and are treated like a resource in
their own right: access to a certificate is granted using a distribution rule for that
certificate, where the distribution conditions to be satisfied by users wishing to
access the certificate are specified. If a user satisfies the distribution rule for a
certificate, he receives the corresponding symmetric certificate key allowing him
to decrypt the certificate. In [4] a scheme is proposed to manage and distribute
certificate keys. Encrypted certificates are stored at a central node; due to en-
cryption, the central node does not have access to the cleartext certificates, so it
does not need to be trusted in this respect. However, the central node needs to be
trusted in the following aspects: i) trust level computation when several relation-
ship certificates are chained (indirect relationship between a resource requestor
and a resource owner); ii) certificate revocation enforcement when a relationship
ceases to exist (the central node must maintain a certificate revocation list and
inform the other nodes about new revocations).

1.1 Contribution and Plan of This Paper

Enabling private relationships in social networks is an important issue raised
in [4]. We describe in this paper a public-key protocol which offers the same
features of [4] while eliminating the need for a central node.

Section 2 describes our protocol. A comparative analysis is given in Section 3.
Section 4 is a conclusion.
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2 A Public-Key Protocol

We follow the framework in [3], that is, we consider that the node owning a
resource rid (hereafter, the resource owner) establishes an access rule AR =
(rid, AC) where AC is the set of access conditions to be simultaneously satisfied
to access rid. Several alternative access rules can be defined for a resource. An
access condition is a tuple ac = (v, rt, dmax, tmin) where v is the node with
which the node requesting resource rid (hereafter, the requestor) must have a
direct or indirect relationship, and rt, dmax, tmin are, respectively, the type, the
maximum depth and the minimum trust level that the relationship should have.
Let PK be the public key of the resource owner and SK be its private key.

We consider that access should be enforced based on the relationship path be-
tween requestor and resource owner that yields the maximum trust level. (In [3,4]
the trust level is computed taking into account all paths between requestor and
resource owner, which is more thorough but might lead to overprotection: a re-
questor with a highly trusted direct relationship to the owner might be denied
access just because there is also a requestor-owner indirect relationship with low
trust through a third user.)

We first describe the access control enforcement protocol.

Protocol 1 (Access control enforcement)

1. The requestor A requests access to a resource rid owned by a resource owner
B.

2. The resource owner B returns a signed message with all the access rules
(say, AR1, . . . , ARr) defined for rid, that is SK(AR1, . . . , ARr).

3. The requestor A sees to it that the resource owner receives one or several
relationship certificates proving that the requestor satisfies all access condi-
tions corresponding to at least one of the access rules. Several cases can be
distinguished depending of the depth required:
(a) Depth 1. A and B have a direct relationship, that is, A is related to B

through a relationship of type rt and trust level tAB represented by a tuple
(A,B, rt, tAB) and B is related to A through a relationship (B,A, rt, tBA).
Note that the relevant trust level here is tBA (how much B trusts A) which
is assumed to be unknown to A. In this case A directly asks B whether
he is granted access to the resource on the basis of (B,A, rt, tBA). If B
evaluates that rt and tBA satisfy the set of access conditions targeted by A,
then A is granted access. Otherwise, A is required to resort to other direct
relationships or indirect relationships.

(b) Depth 2. If A and B have no direct relationships (or these are not enough
to buy him access) and there are access rules with dmax ≥ 2, then A asks
to all users with whom A is directly related whether they have direct
relationships of the relevant type rt with B. Assume C is directly related
to both A and B with relationship type rt and is willing to collaborate.
Then C sends to B a signed and encrypted certificate of his relationship
PKB(SKC(C,A, rt, tCA)), where PKB(·) denotes encryption under the
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public key of B and SKC(·) denotes encryption under the private key of
C. Then C tells A that a certificate was sent to B, but does not reveal
the certificate content. At this point B evaluates whether a relationships
of type rt, depth 2 and trust level tCA · tBC is enough to grant access of
A to rid.

(c) Depth 3. If access at depth less than or equal to 2 cannot be obtained
and there are access rules with dmax ≥ 3, then A requests to users C
directly related to him to attempt access with depth 2 on A’s behalf: each
C directly related to A and willing to collaborate contacts his other di-
rectly related users D about possible direct relationships between D and
B (similarly to what A did in Step 3b). If a D with direct relationships
to C and B exists and is willing to collaborate, B receives a chain of
two certificates

(PKB(SKC(C,A, rt, tCA)), PKB(SKD(D,C, rt, tDC)))

Now B evaluates whether a relationship of type rt, depth 3 and trust
level tCA · tDC · tBD is enough to grant access of A to rid.

(d) Successive depths. In case of failure at depth 3, successive depths are
tried in a similar way while access rules are left which accept higher
depths.

Remark 1. There is some privacy price to be paid for using indirect relation-
ships: intermediate users (e.g. C, D, etc.) are required to disclose to the resource
owner B their trust level in their upstream neighbor (the upstream neighbor of
C is A, the upstream neighbor of D is C, etc.). Such a disclosure brings no
direct benefit to the intermediate user beyond staying in good terms with the
upstream neighbor requesting collaboration. If helping the upstream neighbor is
not enough motivation and/or the resource owner B is not trusted enough to be
revealed how much the upstream neighbor is trusted, some intermediate nodes
might refuse collaboration; this is why we stress the willingness to collaborate
as a condition in Protocol 1. However, this shortcoming happens in any social
network in which indirect relationships are used for resource access and users
are free to decide on their collaborations. �
Remark 2. When the resource owner advertises the access rules for a resource,
the access conditions in those rules leak the relationships the owner is involved
in (e.g. if the owner accepts rt = ’Colleague at company X’ this means that he
works at Company X). In [4] the relationship type is kept confidential through a
symmetric encryption scheme. This becomes tricky when the same relationship
type is encrypted using two different keys by two different user communities
and these merge at a later stage; another issue is how to revoke the key used
to encrypt a given relationship type. An alternative and simpler strategy is to
“camouflage” the real relationship types among a large number of bogus relation-
ships; then access conditions are published some of which use real relationship
types and most of which use bogus relationship types. A bogus relationship type
rt′ is one that has never been established by the owner with anyone, so that no
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one can request access based on rt′. The advantage is that a snooper cannot tell
bogus relationships from real ones, so that he does not know which relationships
the owner is actually involved in. �
We will show in the next section that Protocol 1 has the advantage of not
requiring any complementary protocols for certificate management or revocation,
nor does it require to use any trusted third party or central node.

3 Comparative Analysis

We will compare Protocol 1 with the proposal in [3,4] based on two aspects:
protection of relationship certificates and certificate revocation.

3.1 Protection of Relationship Certificates

In the proposal [3,4] relationships are protected through relationship certificates
to be presented by a requestor to prove that he has the credentials to access
a certain resource. Such certificates are stored at a central node and retrieved
from it when needed.

Relationship certificates must be protected because they often convey infor-
mation that the nodes involved in the relationship would like to keep private
(who is related with whom, what the relationship type is and what the trust
level is). The authors of [4] propose to view a certificate as a resource and define
distribution rules and distribution conditions to access it; in fact distribution
rules and conditions are analogous to the access rules and conditions defined
for standard resources. Each certificate is kept encrypted at the central node
(who cannot thus read it) under a certificate key CK = (kRC , idRC) where
kRC is a symmetric key and idRC is the corresponding key identifier. When a
user satisfies the distribution rule for a certificate, he is given the corresponding
certificate key.

The following features of the above model leave room for improvement:

– A central node is needed which might not always be reachable, especially in
social networks implemented over ad hoc networks.

– Being symmetrical, certificate keys require a complex key management
scheme. In fact, a certificate key distribution algorithm is proposed in [4]:
each time a node (user) establishes a new relationship, or when the node
receives a new certificate key from one of its neighbors, the algorithm is
run by the node to verify whether such a key must be further distributed.
Distribution rules related to the certificate are transformed to be relative to
the receiving node: the algorithm substitutes the node components of each
distribution condition with the identifier of the node receiving the rule, and
the depth components are decreased by one unit.

The improvement offered by Protocol 1 can be described as:

Fault tolerance: No central node is required to be reachable all the time. For
each resource access, a user tries to get the backing of the nodes with whom
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he is related. If one of those nodes is temporarily unreachable, this is not
a problem as long as the user can reach other nodes. As mentioned above,
access is enforced based on the (reachable) relationship path between re-
questor and resource owner that yields the maximum trust level; since we
do not need all relationship paths between requestor and owner, a certain
amount of connectivity failure is tolerable.

TTP-freeness: No central node is required to compute the trust level between
requestor and owner. This computation is done by the resource owner on the
basis of the received certificates (whereas in [4] the central node is entrusted
with such a critical computation).

Minimum relationship disclosure: In Protocol 1 the resource requestor does
not see any of the relationship certificates that will be used by the resource
owner to decide whether he is granted access. The operation of [4] is differ-
ent, because there it is the requestor who retrieves the relevant relationship
certificates (the certificate chains connecting the requestor to the owner) and
forwards them to the owner. This is undesirable: if the retrieved certificates
are left unencrypted, then the requestor can see the private information in
them; if they are encrypted, then a scheme for managing certificate keys is
required (see remarks about certificate key distribution).

3.2 Certificate Revocation

In a social network, users must be able to establish new relationships and revoke
some of the existing ones. The use of certificate keys in [4] has implications
for revocation. If certificate revocation is not properly managed, unauthorized
distribution of certificate keys may occur: if A revokes a certificate relationship
with depth 2 relating A to B, it might happen that B continues to distribute
the certificate key to his neighbors after revocation. The solution adopted in [4]
is to notify revocation to the central node, who removes the revoked certificate
from the central certificate directory and stores the certificate identifier in a
certificate revocation list (CRL). Thus, the central node actually plays the role
of a trusted third party. Besides TTPs being a potential source of conflict, this
arrangement requires all users to check the CRL before accepting or distributing
a certificate, which causes substantial overhead and implicitly assumes some user
trustworthiness.

Protocol 1 has the advantage of being TTP-free. IfA wants to access a resource
owned by B using an indirect relationship through C and C has decided to revoke
his relationship with A, then C will simply send no certificate to B. There is no
need to keep revocation lists at a central node.

4 Conclusion and Future Work

Protecting the type and trust level of relationships is an important privacy issue
in social networks first raised in the important contribution [4]. We are aware
of only one approach in the literature addressing that problem. Being based
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on symmetric-key cryptography, that approach requires a central node which
must always be reachable and which behaves as a trusted third party. We have
presented a public-key protocol that also achieves relationship protection, with
the advantages of being fault-tolerant and TTP-free. Besides, the new proto-
col avoids revealing the content of relationships to the resource requestor and
substantially simplifies relationship revocation.

Future work will focus on devising public-key cryptographic techniques to
deal with the relationship type leakage associated to access rule advertising by
owners. The aim is to gain simplicity with respect to the symmetric-key strategy
without having to “litter” access rules with a large number of bogus relationship
types.
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Abstract. An architecture for a peer-to-peer mobile ad-hoc network
offering distributed information provision is presented. Any user can
volunteer to become an information server (a server-user). Volunteer-
ing implies devoting some of the user’s computational resources (stor-
age, bandwidth, processing power) to serving information. An incentive
scheme is proposed to encourage end-users to become server-users. The
latter are rewarded proportionally to the number of end-user queries
served. The proposed architecture is specified as a protocol suite taking
security and privacy aspects into account. Details are given on an imple-
mentation completed on a WiFi ad-hoc network for the specific case of
a distributed tourist information service.

Keywords: Peer-to-peer networks, Mobile ad-hoc networks, Distributed
information servers, Security and privacy.

1 Introduction

The new-generation mobile devices (e.g. cell phones, PDAs ...) are enabled with
wireless communications technologies like IEEE 802.11b WiFi, which paves the
way to a broad range of services based on ad-hoc networks, i.e. spontaneous net-
works without an underlying infrastructure. Clearly, a wireless ad-hoc network
spanning a local or a metropolitan area is an extremely flexible and powerful
tool, allowing extensive peer-to-peer communication. Access points in these new
wireless networks can be viewed as peers whose number and geographical span
can be much larger than what is affordable with conventional peer-to-peer wired
networks. From the topology standpoint, the ad-hoc model is particularly well
suited to set up hop-by-hop communication to end-nodes connected to such
wireless peer-to-peer networks.

In this paper, we propose an information system aiming to provide informa-
tion just in time and just in place in a specific area. Specifically in our scenario,
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the system is deployed in a city within which a user, regardless of her location,
can request information any time using her WiFi mobile device and its associ-
ated software. As justified above, we assume that access to information is made
possible by a metropolitan ad-hoc network based on WiFi peers.

A typical application would be tourist information: a person touring a city
can query the system to obtain a list of museums near her current location or
some information about a given historical building she is currently visiting.

The system we have just sketched needs an architecture with several informa-
tion servers replicating the knowledge, because a single information server could
become a bottleneck due to downloads of large pieces of multimedia content (pic-
tures, videoclips, etc.) or due to temporary connectivity loss caused by dynamic
changes in the topology of the ad-hoc network. However, using several servers
poses the problem of the cost associated to installing a large number of servers
around the city plus the costs resulting from their subsequent administration.

Instead of incurring the expense of installing and maintaining many servers,
we propose to trust individual users to offer services to the WiFi ad-hoc network
like in classic peer-to-peer communities (e.g. BitTorrent, Gnutella, etc). To keep
the network running efficiently, we suggest to properly motivate the users to
devote some of their computing resources to providing those services.

1.1 Previous Work

Providing and exchanging information between users is a research topic heavily
addressed in the literature. At the beginning, the information-sharing systems fol-
lowed a client-server paradigm (e.g. Napster) with the bottleneck problems asso-
ciated to this kind of structure. Afterwards, real peer-to-peer networks arose, and
decentralized content-sharing applications appeared, which avoided the client-
server related problems. Examples of this approach are BitTorrent or Gnutella.

Peer-to-peer applications are often deployed in traditional wired networks,
although most of them could also work on wireless ad-hoc networks. In [6] some
applications working on mobile ad-hoc networks are presented. Within the scope
of mobile peer-to-peer networks, we can find the iClouds Project [5] which inves-
tigates several kinds of collaboration among mobile users using the hop-by-hop
communication paradigm related to ad-hoc networks.

As stated in [16], the motivation of users to participate in the community is
a crucial factor for the success of a peer-to-peer system. The authors of that
paper describe various methods to motivate different kinds of users and de-
scribe the design of a peer-to-peer system called Comutella, which has been
developed for supporting file and service sharing. [4] presents I-Help, a system
devoted to sharing help between students where participation can be rewarded
either in real dollars (for paying teaching assistants) or in marks improvement
(for students). This system also uses hired knowledgeable persons, teaching as-
sistants or lecturers, to be constantly on-line and to immediately answer any
question. This kind of users can be considered knowledge providers in this sys-
tem, and they are very similar to the information providers presented in our
proposal.
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Providing motivation to nodes, who offer services to end-users, implies the
need of a secure way for collecting the rewards from the served users. Secure
electronic payment is a profusely studied research topic. From electronic money
to e-coupons [1], there are several electronic payment methods suitable for mobile
devices. However, for the specific case of secure incentive-based schemes, the
literature is rather scarce. [13] and [17] propose incentive-based schemes where
the network nodes have an account and the content provider gives them credit
depending on the information they have uploaded. The network nodes can use
their credit to increase their download rate or change it for money. Nonetheless,
these proposals are not designed for a mobile ad-hoc network, and the security is
only focused toward the protection of the copyrighted content. Thus, the credit of
the network node can be tampered with. In [10], the authors describe and analyze
three different schemes aimed at giving proofs of service to providers in a hybrid
environment where a server collaborates with a peer-to-peer network intended to
mitigate server congestion. The authors compare the three schemes in terms of
scalability, effectiveness and cost. Recently, [11] have proposed a lightweight and
hash-chain-based micropayment scheme for ad-hoc networks. They compensate
collaborative peers that sacrifice their resources to relay packets for others. They
also use an offline trusted third party (the Private Key Generator), but following
an ID-based approach instead of our PKI-based one.

In our proposal, we provide proofs of service to information providers using
a scheme similar to the scenario of fair exchange with an offline trusted third
party (TTP) described in [10]. However, our scenario is pretty different since
we deal with a pure peer-to-peer community working through a mobile ad-hoc
network.

1.2 Contribution and Plan of This Paper

In this paper we focus on an environment where some end-user nodes build
a WiFi ad-hoc network and act as information providers. These nodes devote
some of their computational resources (storage, bandwidth, processing power)
to storing and serving information. In this way, when another user in the ad-hoc
network requests some information, those nodes storing the requested informa-
tion can supply it. Volunteering to become an information provider is rewarded
depending to the amount of served information requests. Information is shared
according to the peer-to-peer paradigm.

Note. We concentrate on the WiFi technology because it currently is the most
common choice in mobile ad-hoc networks. However, the system described here
is open to similar wireless technologies.

To perform information searches through the peer-to-peer network, we have
implemented a catalog-based search engine. Our system makes use of an item
catalog shared between information providers. Since updating a unique catalog
distributed among all peers is a resource- and time-consuming task, this approach
is best suited to a system where the items change rarely. We have taken as a
case study a tourist information system: the information on accommodation,
monuments, etc. is pretty stable. For items that change more dinamically, e.g.
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films shown in theaters in a specific moment, a different search engine should be
used. Anyway, the communication protocol in our system has been designed to
be independent of the search engine used, which can be replaced if necessary.

Every time a server provides information to some user, it obtains a receipt
allowing it to prove that it has performed the service. Periodically, the server
contacts the main content provider (i.e. the main source of content, in our case
study the city tourist office) to get paid according to the number of requests
it has served. This is a way to encourage users to devote more resources to
providing information. The more information a server stores, the more requests
it will be able to serve, and thus, the more money it will receive for its service.
A server located at a certain place will probably contain information that may
interest nearby users.

Section 2 describes the architecture of the proposed system. Section 3 is a
security and privacy analysis. Implementation details are given in Section 4.
Section 5 is a conclusion.

2 System Architecture

In this section we present the system components: entities, messages exchanged
between entities and protocols between entities. We note that the system archi-
tecture is similar to a multi-agent system.

2.1 Entities

The proposed system consists of the following entities:

– Content Source (CS): This is the entity offering the information service.
In the aforementioned example about tourist information, this entity may
be the tourist office of a city holding information of particular interest for
residents or visitors. Some examples could be:
• Information on historical landmarks, including short multimedia videos,

audio streams and digital documents on them.
• Schedule of cultural and leisure activities, like cinema or theater, includ-

ing trailer viewing options.
• Information about restaurants: opening hours, menus, prices.
• Location of services: police stations, hospitals, pharmacies.

– Users: Users whose devices form the ad-hoc network. We distinguish two
kinds of users:
• Those that query the system when they need information. Normally,

they use a mobile device and request information through the ad-hoc
network. We refer to them as end-users (EU).

• Those that devote part of their computational resources to storing and
serving some of the information supplied by the content source. These
users not necessarily use a mobile device. They could store information
in their desktop PC with an ad-hoc network interface. We refer to these
users as server-users (SU).
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Our description assumes an underlying information sharing system (following
the P2P paradigm) like those described in [3]. The data query launched by A
circulates through the ad-hoc network and reaches several server-users who have
the requested data. Those users will send a positive answer to A. Then, A chooses
one of them, denoted by B. Next, A requests the information from B who will
send it to A. Finally A sends a receipt to B.

SUs store all the receipts they collect during a given period. At the end of
that period, they send all the receipts to the CS in order to get paid according
to the number of served requests. Upon getting the receipts, CS checks their
validity. If everything is correct, CS pays to the user the money corresponding
to the services provided.

2.2 Messages

In our proposal, we distinguish two types of communication:

– The first type follows a client-server paradigm and involves the content
source CS. We have chosen this approach because the communication be-
tween CS and the other two entities (SU, EU) only occurs at very specific
moments and is unlikely to cause a bottleneck.

– The second type of communication, the dialog between an EU and a SU,
follows a P2P paradigm.

In both cases, the communication uses structured messages coded with XML.
Messages consist of two parts. The first part contains the message itself, divided
in two or three sections: message type, sender identifier (in the P2P environ-
ment) and message body. The second part contains the cryptographic data: the
signature on the first part of the message, the algorithm used to calculate the
signature and the digital certificate for the sender’s public key. This structure
allows the receiver to verify the validity of the message.

2.3 Protocols

In this section, we detail the different protocols used by the entities participating
in the system:

– End-user registration
– Server-user registration
– Information request
– Server-user payment

The following notation is used in the rest of the paper:

– Pentity , Sentity : Asymmetric key pair of entity, where Pentity is the public
key and Sentity is the private key.

– Sentity [m]: Digital signature of message m by entity. By digital signature
we refer to computing the hash value of message m using a collision-free
one-way hash function and encrypting this hash value using the private key
of entity.
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– Eentity(m): Encryption of message m under the public key of entity.
– Dentity(c): Decryption of message c under the private key of entity.
– H(m): Hash value of messagem using a collision-free one-way hash function.
– m1||m2: Concatenation of messages m1 and m2.

End-user registration. To register as an end-user, a candidate user must
contact the CS and install the necessary application software. E.g. in our tourist
information case study we assume that there exist several places in the city (e.g.
airport, railway station or tourist office) where a user can register. The end-user
registration protocol is as follows:

Protocol 1

1. The user does:
(a) Obtain the following information from the CS:

– Internet address from which to download the application software.
– Validity period, i.e. time window during which the user will be allowed

to use the system.
– Access code to download and install the software. In our case study

implementation the access code consists of 16 alphanumeric charac-
ters, for instance A3GZ-BB44-223G-AGDR.

(b) Connect her device to the Internet and download the application software.
(c) Install the application software.
(d) Run Procedure 1 below and obtain the private key SEU in a PKCS#8

file [12], and a Certificate Signing Request (CSR).
(e) Send the CSR to the Content Provider.

2. The CS does:
(a) Issue the user’s certificate using the CSR.
(b) Add the issued certificate to the CS database.
(c) Send the issued certificate to the user.

3. The user stores the following information in a PKCS#12 [12] file:
– User private key SEU .
– User certificate.
– CS certiticate.

Procedure 1

1. Generate a private/public RSA key pair [14].
2. Store the private key in a PKCS#8 file.
3. Generate a Certificate Signing Request (CSR). The file must use the PKCS#

10 [12] standard.
4. Return the PKCS#8 file and the CSR.

Server-user registration. A user wishing to register as a server-user contacts
the CS from whom she will receive a unique identifier and the software that will
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enable her to serve information. Afterwards, the user generates a private/public
key pair and sends her public key and her identifier to the CS in order to get
the corresponding certificate. Finally, the user indicates the desired informa-
tion items and downloads them to her hard disk. More formally, the server-user
registration protocol is as follows:

Protocol 2

1. The user does:
(a) Sign a contract with the CS specifying the user’s rights and duties.
(b) Send the user’s bank data for future payments to CS. For confidentiality,

these data are sent encrypted under the public key of CS.
2. CS does:

(a) Generate a unique identifier Id.
(b) Send to the user the unique identifier Id and the software that will enable

the user to serve information. For confidentiality, Id is sent encrypted
under the public key PEU (the candidate server-user is assumed to be
already an end-user with a private/public key pair (SEU , PEU )).

3. The user does:
(a) Run Procedure 1 to obtain the private key SU in a PKCS#8 file, and a

Certificate Signing Request (CSR).
(b) Send the CSR to CS.

4. CS does:
(a) Issue the user’s certificate using the CSR.
(b) Add the issued certificate to CS’s database.
(c) Send the issued certificate to the user.
(d) Send the catalog information.

5. The user stores the following information in a PKCS#12 file:
– User private key SU .
– User certificate.
– CS certificate.

Information request. When an end-user requests an information item, the
query reaches several server-users. Among these, those holding the requested
item return a positive acknowledgment. Then, the end-user downloads the re-
quested information from a particular server-user selected among those which
have sent positive acknowledgment. Finally, the end-user sends a receipt to the
selected server-user. As we will see later on, the SU will use this receipt in order
to claim the corresponding reward from the CS.

Now, we describe this protocol in more detail:

Protocol 3

1. The end-user EU computes a request in order to obtain a specific informa-
tion, where the request consists of the following data:
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– Description of the requested item, I.
– Date and time of the request, Tr.
– Digital signature of I and Tr, S1 = SEU [I||Tr].

This query spreads using any of the methods described in [3].

2. Each server-user SU who receives the query does:
(a) Verify the digital signature S1 using EU’s public key.
(b) Search for the information.
(c) If I is in SU’s database, reply to EU. The reply contains the following

data:
– User’s request, REU = I||Tr.
– Date and time of the answer, Ta.
– Digital signature on REU and Ta, that is, S2 = SSU [REU ||Ta].

3. EU does:
(a) Collect the replies from the SUs. Without loss of generality, assume that

the set of SU replying to EU is SU1, SU2, · · · , SUn. See Section 3.3 below
on the value of n.

(b) Verify the digital signatures of the SUs, that is, S21, S22, S23, · · · , S2n

using the public keys of each SU.
(c) Choose one server-user SU’ ∈ {SU1, SU2, · · · , SUn}. This choice can be

performed in a way to maximize privacy (see Section 3.3 below).
(d) Send a request to SU’ with the following data:

– Description of the requested information, I.
– Date and time of the request, Tr.
– Identifier of the node this request is addressed to, IdSU ′ .
– Digital signature on I, Tr and IdSU ′ , that is, S3=SEU [I||Tr||IdSU ′ ].

4. SU’ does:
(a) Verify the digital signature S3 using the public key PEU .
(b) Send the following message:

– Description of the requested information, I.
– Requested information, Info.
– Date and time of the answer, Ta.
– Digital signature of the I, Info and Ta, that is, S4=SSU ′ [I||Info||Ta].

5. EU does:
(a) Verify the digital signature S4 using PSU .
(b) Check whether the received data correspond to the information requested.
(c) If the check is OK, issue a receipt and send it to SU’ with the following

data:
– Description where EU asserts that she has received the item described

as I from SU’.
– Date and time, T .
– Identifier of SU’, IdSU ′ .
– Digital signature on I, T , and IdSU , that is, S5 = SEU [I||T ||IdSU ].

6. SU’ does:
– Receive the receipt.
– Verify S5 using PEU

– Store the receipt.
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Server-user payment. As previously described, server-users get a receipt every
time they serve information. These receipts are stored. Once a large enough
batch of receipts has been collected, a server-user contacts CS to get paid for
the services provided. Note that sending receipts one at a time to CS would be
very inefficient. The reason is that, since the reward for a single service is very
low, the processing costs of such a payment would be too significant.

The protocol to redeem a batch of receipts is as follows:

Protocol 4

1. SU sends the receipts to CS.
2. CS does:

(a) Verify the digital signature of each receipt
(b) Check for duplicated receipts
(c) Compute the money that must be paid to the information node
(d) Transfer the money to the bank account of SU

3 Security and Privacy Analysis

Our communication protocols use different types of messages to be transmitted
in each phase. Every exchanged message contains a plaintext part and a valid sig-
nature. The plaintext part contains the information transmitted between nodes
and the signature provides authentication, integrity and non-repudiation to such
messages.

3.1 Confidentiality

In principle, confidentiality is only implemented in the server-user registration
protocol, when the user sends her bank data to CS and CS returns a unique
identifier (Steps 1 and 2 of Protocol 2). The rest of messages are assumed to be
non-confidential, which is plausible for most applications (e.g. tourist informa-
tion). However, if confidentiality is required, it can be achieved by encrypting
messages under the public key of the intended receiver.

3.2 Collusion Security

Collusion between end-users and server-users to obtain unlawful rewards is con-
ceivable: some end-users perform a huge amount of information requests to cer-
tain server-users, and the latter then share with the former the rewards obtained
from the CS.

A possible solution is to charge the end-users a small fee for enjoying the in-
formation service. This payment can be performed using offline electronic checks
as stated in [2] or any micropayment system (e.g. PayWord, [15]).

However, one must acknowledge that collecting payment from the end-users
can jeopardize the success of many applications, like the tourist information
system. Therefore, a preferred countermeasure against user collusion is for the
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CS to record and analyze the number of receipts submitted by the SUs and the
number of receipts issued by the same EU. Since each receipt contains the exact
time and date when it was issued, a limit on the number of requests that an EU
can perform within a period of time can easily be enforced. The CS will not honor
any receipts beyond those that can be issued by a certain user; furthermore, as
soon as CS detects that an end-user has issued more receipts than allowed, CS
alerts the SUs to stop serving any further request from that suspect SU. The
SUs receive this alert when they synchronize resources with the CS or when
they redeem their receipts. In this way, the effects of possible user collusions are
tolerably mitigated.

3.3 Privacy

In any information service, end-user profiling is a real threat. Indeed, information
providers can keep track of the requests submitted by end-users, with a view to
investigating their tastes, preferences, locations, etc. This is clearly a potential
privacy violation.

In a conventional information service where end-users get information directly
from a single information provider, one often assumes that information provider
to be trusted or at least not to be interested in violating the privacy of end-users.
At any rate, if there ever were any provable violation, the information provider
would be liable and could be charged accordingly.

In a peer-to-peer mobile ad-hoc information service, the privacy problem is
much more serious. End-users obtain information through server-users who are
occasional information relayers and cannot be trusted to the same extent as to
privacy preservation.

End-user privacy can be significantly increased by using an alias when regis-
tering as an end-user and by properly tuning Protocol 3:

– When the end-user application detects that there are server-users among the
n replying to Step 3a who already replied to more than p requests from the
same end-user in the past (p is a privacy parameter), the application warns
the end-user of a potential privacy problem. The end-user has two choices:
either move to a different area where she will find different server-users or
to go ahead and jeopardize her privacy.

– In Step 3c, a wise policy is for the end-user application to choose the server-
user which has replied to least requests to the end-user in the past.

Of course, we are assuming that the server-user application has not been
tampered with, so that: i) it replies when the server-user hears a request for an
information item it holds; ii) it forgets about requests for information items the
server-user does not hold.

In the presence of malicious server-users, a combination of the following two
strategies can be useful:

– Use short validity periods for end-users, which will force end-users to fre-
quently re-register under a new alias.
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– Avoid issuing many information request from the same place, which should
be easy for a roaming end-user (e.g. tourist visiting a city). Moving to another
area is a way to get rid from the current server-users, both the legitimate
and the malicious ones.

4 Implementation

We have implemented a functional prototype that demonstrates the main ca-
pabilities of the system previously described. Although not all funtionalities are
currently implemented as of this writing, the system core is fully operational
already.

We have chosen Java [7] as a language for this implementation, due to its
portability to different architectures that need to interoperate, an essential fea-
ture in our scenario. We have used JXTA [8] to establish the peer-to-peer com-
munications, although there are other options like Gnutella or Bamboo. Finally,
to implement the client-server paradigm (for communication with the CS), we
use the remote method invocation protocol (RMI) associated to the Java tech-
nology.

Specifically, the content source and the server-users have been implemented
with Java SE version 5.0 and they use databases containing touristic resources
that run on MySQL version 5.0. The CS component executes a secure web server,
which acts as an access point for new server-users willing to join the system. In
the future we will allow the end-users to enter the system through the secure
web server too. SU applications make use of JXTASE libraries, version 2.4, to
communicate with the other entities through the peer-to-peer ad-hoc network.

The end-user application is implemented in a WiFi enabled HP IPAQ se-
ries hx2700. We have installed the J9 Java Virtual Machine from IBM [9] that
works with Connected Device Configuration 1.1 and is PersonalJava 1.2 compli-
ant. This PersonalJava version follows the Java 1.1.8 version specifications. The
JXTA version that works on the PDA is the JXME 2.1.3.

4.1 Server-User Registration

Once a user runs the SU application for the first time (Protocol 2), she must
introduce an alias and a password of her choice, and enter the CS URL as well.
After this process, she generates a key pair RSA (1024 bits) and a Certificate
Signing Request (CSR) to be sent to the CS. This entity sends back the CSR
properly certified. Finally, the user generates the PKCS#12 file and a configu-
ration file, which will be used in the following executions and can be modified
any moment from the SU graphical interface. This configuration file contains
the user’s alias, the URL of the CS and the absolute path to the PKCS#12 file
which contains the user’s private key, the user’s certificate and the certificate of
the CS.

After this initial phase, the SU application displays a first window with a
menu showing some options to be chosen by the user. Then, she can pick the
items from a catalog provided by the CS. The selected items will be stored in
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the user’s computer and will be used to provide information to the end-users.
After serving some information requests from end-users, the SU can check the
number of receipts stored and the money earned. She can decide to redeem the
stored receipts.

4.2 End-User Registration

We assume that, in Step 1 of Protocol 1, the candidate end-user receives her
registration information (Internet address from which to download, validity pe-
riod, access code) offline, e.g. in a tourist office. After this (remaining steps of
Protocol 1), the user goes on-line and, much like a server-user, the end-user sub-
mits her Certificate Signing Request to CS, who will return it properly certified.
At the end of this transaction, the end-user will obtain a PKCS#12 file and a
configuration file will be created. Upon completion of this installation process,
the end-user gets her keys and is ready to use the information service.

In the tourist information service example, once the user reaches the vicinity
of a monument, she may be interested in obtaining some information about
it. For that, she must chose the corresponding item in the catalog, using the
EU application in PDA and send the request through the ad-hoc peer-to-peer
network to SU applications present in the area. In a few seconds, a list of SU
nodes offering the requested item will appear on the end-user’s screen. The user
then chooses one of the possible providers and the selected node sends the desired
information.

5 Conclusions and Future Work

An architecture for a peer-to-peer mobile ad-hoc network offering distributed in-
formation provision has been presented. The novelty of our proposal lies on the
incentive scheme to encourage users to become distributed information servers.
Our implementation demonstrates the feasibility and the usefulness of our ap-
proach.

The most challenging part of our system is security and, especially, privacy.
Indeed, allowing any user to behave as a server is not without risks. While
authentication, integrity, non-repudiation and even confidentiality can be guar-
anteed to a large extent, preserving the privacy of end-users is trickier because
they can be profiled by server-users. We have proposed and implemented some
basic privacy-preserving countermeasures, but we feel that privacy in peer-to-
peer ad-hoc networks is a far-reaching problem that definitely deserves further
research. In the specific case of our system, a challenging issue is to design pri-
vacy countermeasures which are minimally inconvenient for the end-user, e.g.
that do not require very short validity periods or constant roaming.
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Abstract. Microarray is a fascinating technology that provides us with
accurate predictions of the state of biological tissue samples simply based
on the expression levels of genes available from it. Of particular interest
in the use of microarray technology is the classification of normal and
tumor tissues which is vital for accurate diagnosis of the disease of in-
terest. In this paper, we shall make use of geometric representation from
graph theory for the classification of normal and tumor tissues of colon
and ovary. The accuracy of our geometric representation-based classifi-
cation algorithm will be shown to be comparable to that of the currently
known best classification algorithms for the two datasets. In particular,
the presented algorithm will be shown to have the highest classification
accuracy when the number of genes used for classification is small.

1 Introduction

Microarray technology is a very powerful and popular tool nowadays capable
of providing high throughput simultaneous measurement of expression levels of
thousands of genes which can accurately represent the state of a biological cell
or tissue of interest. For this reason, it is used for many applications including
identification of various types of disease-related genes [9] [10] [16], classification
of biological samples into normal and diseased [2] [12] [21], or two or more sub-
categories of a given disease [1] [4] [9] [15] [20] [23] [24], pharmacogenomics and
clinical studies [7] [13] [14], and many more.

The classification of normal and cancerous tissues, or cancer into its subtypes
is an important application area of microarray technology since correct diagnosis
is vital for successful treatment of it. For this reason, a variety of classification
methods has been investigated in the literature in the past including the ini-
tial work of [9] that used a simple voting scheme to classify the human acute
leukemia into acute lymphoblastic leukemia (ALL) and acute myeloid leukemia
(AML). Since then various types of cancer have been analyzed by numerous
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classification methods including the works of [1], [15], and [23]. In [1] and [23],
diffuse large B-cell lymphoma (DLBCL) and 60 cell lines from the National Can-
cer Institute’s anti-cancer drug screen (NCI 60), respectively, were classified into
their subcategories using hierarchical clustering, and in [15], small round blue
cell tumors (SRBCTs) were classified using neural networks. In [20] and [24],
breast cancer was classified, and in [2] and [4], colon cancer was classified. Some-
what extensive comparisons of the numerous classification methods on various
datasets that have appeared in the literature have been presented in [6], [17],
and [22].

Currently widely used methods for classification or class prediction of can-
cer that have high classification accuracy are schemes based on support vector
machines (SVMs) [8] [19], and ones based on linear discrminant analysis (LDA)
[5] [25]. SVMs are a kernel-based learning algorithm that have foundations on
the structural risk minimization principle in statistical learning theory. SVMs
perform quite well and currently have the highest classification accuracies on
various datasets. LDA is a classical method for classification that have spawned
a variety of generalizations. LDA-based algorithms also perform quite well and
possess the advantage of easy interpretability.

In this paper, we present a fundamentally different approach from the tech-
niques that have been used to solve classification of gene expression data of
cancer. Here, we formulate the problem of classification of biological samples
as that of finding a min-cut of a graph representation of the samples, where
the graph representation accurately reflects the similarities and dissimilarities
of all pairs of samples by using edges and no edges between pairs, respectively.
One can deduce from the results in [9] that in this graph representation, sam-
ples of the same class are likely to be highly connected to each other while
samples of different classes are not if the similarity measure used to generated
the graph representation is not too different from the one used in [9]. Thus
finding a min-cut of the graph representation can establish a classification of
samples into their respective classes. To this end, we present a heuristic from
graph theory called spectral bipartitioning [3] [11] [18] that computes a geo-
metric representation of the graph from which a min-cut of the graph can be
derived.

The contribution of this paper is as follows. We first show how to generate a
similarity graph of samples that accurately represents the similarities and dis-
similarities between all pairs of samples. Then we apply a spectral bipartitioning
heuristic to the similarity graph to obtain a geometric representation of it which
is essentially a classification of the samples. It will be shown that the proposed
geometric representation-based classification algorithm has accuracy that is com-
parable to that of some of the currently known best classification methods for
two publicly available datasets of colon cancer of [2] and ovarian cancer of [21].
In particular, the proposed classification algorithm in this paper will be shown
to have the highest accuracy when the number of genes used for classification is
small, say, less than 10.
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2 Systems and Methods

2.1 Preliminaries

Gene expression levels from microarray are usually represented by the expression
profile matrix P of m rows and n columns where m and n are the number of
genes and samples, respectively. So, in P = (pij), pij ∈ R, 1 ≤ i ≤ m, 1 ≤ j ≤ n,
each row corresponds to expression profile vector of a gene and each column
corresponds to that of a sample, and pij is the expression level of gene i in

sample j. Denote the expression profile vector of ith gene by gi(
�
= (pi1, · · · , pin))

and that of jth sample by sj(
�
= (p1j , · · · , pmj)).

For each expression profile vector of a sample or simply a sample vector, there
is its associated class label which characterizes the biological state of the sample.
For example, the ith sample vector si has its class label yi ∈ {0, 1} if the number
of biological states or classes is two. The classification problem of interest in this
paper involves the class assignment to a vector of unknown binary class label
given sample vectors with known binary class labels. More formally, we want to
build a classification algorithm that can accurately predict the class label of a
vector given the following two sets

S = {s1, · · · , sn} ⊆ Rm

Y = {y1, · · · , yn} ⊆ {0, 1}

where si has class label yi, i = 1, 2, · · · , n. This set S with its associated set of
class labels Y is called the training set, and set of vectors of unknown class labels
whose values are to be determined is called the test set. Hence a classification
algorithm works in two steps: the training step during which a class assignment
rule is established from the training set, and the testing step during which this
rule is applied to the test set to obtain the prediction of its vectors’ class labels.

The accuracy of the classification algorithm is tested by performing the leave-
one-out cross validation (LOOCV) in this paper. In other words, of the sample
vectors provided with class labels, we will use all but one of them, i.e., n − 1
sample vectors, as the training set and the remaining one sample vector as the
test set to check the accuracy of the classification scheme. We repeat this process
until all of the sample vectors have been used once as the test set after which
the LOOCV process is completed. Since the class label of each of the test set is
known, the accuracy of the classification scheme can be calculated by comparing
the predicted class label with the true label.

The classifier in this paper that predicts the class label of the sample vector in
the test set will utilize the similarities or the dissimilarities between the sample
vectors in the training set. To this end, we shall use in this paper a widely adopted
similarity measure in the literature. It is the Euclidean distance measure and is
defined as

d(si, sj) =

√√√√ m∑
k=1

(pki − pkj)2
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for sample vectors si and sj . In this similarity measure, smaller value of d(si, sj)
represents higher similarity or closeness between the two sample vectors si
and sj .

To create a classification algorithm that has high accuracy, it is normally
better to use only a subset of the genes that have high discriminatory power [6]
[9] instead of all the genes as can be noted in the definition of d. This selection
of a subset of genes for classification is more generally called feature selection in
the computer science community. It is important to note that feature selection
is established using only the training set data and not in combination with the
test data. For example, in performing LOOCV, feature selection is established
for each training set every time it is modified. We shall make use of two feature
selection schemes in this paper where both schemes use a selected number of
genes with highest feature scores for classification. The first scheme was originally
used in [9] and its feature score for gene gi, f1(gi), is defined as

f1(gi) =
∣∣∣μ0(gi)− μ1(gi)
σ0(gi) + σ1(gi)

∣∣∣
where μk(gi) is the mean of gene gi across samples with class label k and σk(gi)
is the standard deviation of gene gi across samples with class label k, k = 0, 1.
The second scheme was originally used in [6] and defines its feature score for gene
gi, f2(gi), as the ratio of gene’s between-groups sum of squares to within-groups
sum of squares, i.e.,

f2(gi) =

∑n
j=1

∑1
k=0 1(yj = k)(μk(gi)− μ(gi))2∑n

j=1

∑1
k=0 1(yj = k)(pij − μk(gi))2

where the function 1(·) equals 1 if the argument if true and equals 0 otherwise,
μ(gi) is the mean of gene gi across all samples and μk(gi) is the same as above in
the definition of f1(gi), k = 0, 1. Henceforth, the similarity measure d previously
defined is modified by replacing the summation in its expression by a partial
summation over the indices for which associated genes have high feature scores
for each of the two feature selection schemes. We chose 6, 10, and 20 as the
selected numbers of genes with highest feature scores used for classification.

2.2 Graph Construction

A graph G is an ordered pair of sets (V,E) where V is the set of vertices and E is
the set of edges that are unordered pairs of V . The classification algorithm that
we propose in this paper begins with a construction of a graph whose vertices
represent the sample vectors. An important feature of this graph is that it shows
the similarities between the sample vectors by having two vertices connected by
an edge if the associated sample vectors are sufficiently similar to each other,
and not having two vertices connected by an edge if otherwise.

Let us now construct the graph that summarizes the similarities between the
sample vectors which we call the similarity graph. Without loss of generality,
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consider the training step of our algorithm. Since we already know that each
vertex represents one sample vector, it remains to show how the n− 1 vertices
are connected to each other to finish the graph construction. Note that there can
be at most

(
n−1

2

)
edges in the graph. Observe that for each k ∈ {1, · · · , n− 2},

there are k closest sample vectors for each sample vector with respect to the
Euclidean distance similarity measure. For each k ∈ {1, · · · , n − 2} and feature
selection scheme, we complete graph construction by drawing edges between
pairs of vertices in the graph if both of the associated sample vectors are among
the k closest sample vectors of each other. This ensures that two adjacent ver-
tices in the graph accurately represent “closeness” of the two associated sample
vectors. Let us, by abuse of terminolgy, speak of a similarity graph with maxi-
mum vertex degree k if the graph is generated by connecting each pair of vertices
whose associated sample vectors are among the k closest sample vectors of each
other. Note that a similarity graph with maximum vertex degree k need not
necessarily have a vertex whose degree is k. We will define the parameter of a
similarity graph by k as in the similarity graph with maximum vertex degree k.
Jumping ahead, the class assignment rule to be established during the training
step of our classification algorithm is finding the parameter value that generates
“good” bipartitioning of the training set.

Let us illustrate a similarity graph construction by using a toy example in
which there are four sample vectors s1, · · · , s4, and let Nk(s) denote the set of k
closest sample vectors of sample vector s. Suppose that

N2(s1) = {s2, s3},
N2(s2) = {s1, s4},
N2(s3) = {s2, s4},
N2(s4) = {s2, s3}.

Observe that s1 and s2 are both among the 2 closest sample vectors of each other
while s1 and s3 are not. Therefore, if we denote by Gk = (Vk, Ek) the generated
similarity graph with maximum vertex degree k, we have

V2 = {v1, v2, v3, v4},
E2 = {(v1, v2), (v2, v4), (v3, v4)}

where vi corresponds to sample vector si, i = 1, · · · , 4.

2.3 Geometric Representation

This subsection describes how a geometric representation or a linear ordering of
the similarity graph of sample vectors is computed. This geometric representa-
tion is obtained from a spectral bipartitioning heuristic and induces a bipartition
or a classification of samples into two classes. Hence, geometric representation,
bipartition, and classification all essentially have the same meaning. Spectral
bipartitioning heuristic is a widely used method in VLSI and various scientific
computing communities for partitioning a graph into two clusters so that the
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number of edges cut between the two clusters is minimized. It relates the eigen-
vector associated with the second smallest eigenvalue of the Laplacian matrix
of the graph to bipartitioning. An objective in this bipartitioning involves some
bounds on the cluster sizes because solutions to the min-cut of a graph generally
tend to produce clusters of largely different sizes which will not be of much prac-
tical value. For example, if we consider a graph that has a vertex with a very
small degree, a cut to the edges of this vertex can be a min-cut which clearly
is not a meaningful bipartitioning. For this reason, various versions of spectral
bipartitioning heuristic exist in the literature [3] [11] [18] that aim at producing
more practical solutions to the bipartitioning problem. One practical solution to
the bipartitioning problem tries to minimize the ratio cut of a graph G = (V,E)
which is defined as

|e(W,V \W )|
|W ||V \W |

whereW is a subset of V , V \W is the complement ofW in V , e(W,V \W ) is the
set of edges between two sets of verticesW and V \W , and |·| is the cardinality of
the set ·. (Note that if there are no bounds on the cluster sizes, then the solution
to the bipartitioning problem only minimizes the numerator in the expression
for the ratio cut.) This minimization of the ratio cut of a graph captures the
essence of a min-cut while favoring an even bipartition [11]. We shall therefore
use the spectral bipartitioning heuristic whose goal is minimizing this ratio cut
in this paper.

To describe the spectral bipartitioning heuristic, let us introduce some def-
initions from graph theory. The adjacency matrix A = (aij) of a graph with
n vertices v1, v2, · · · , vn is the symmetric n × n matrix where aij = 1 if there
is an edge between vi and vj , and aij = 0 otherwise. Note that the diagonals
of A are all zeros. The diagonal matrix D = (dij) of the graph is defined by
dii = deg(vi) and dij = 0 for i �= j where deg(vi) is the degree of the vertex vi.
The Laplacian matrix L of the graph is defined as L = D−A. So the elements in
each row or column of a Laplacian matrix sum to zero. ¿From the semi-positive
definiteness of Laplacian matrices, Laplacian matrix has n eigenvalues that are
real and nonnegative, i.e., 0 ≤ λ1 ≤ · · · ≤ λn. The following, which is adopted
from [11], is the spectral bipartitioning heuristic that minimizes the ratio cut.

Spectral Bipartitioning

1. Compute the eigenvector μ2 corresponding to the second smallest eigenvalue
λ2 of the Laplacian matrix L of graph G.

2. For each vertex vi in G, if the ith coordinate of μ2 is less than 0, then assign
vertex vi with class label 0. Otherwise, assign vertex vi with class label 1.

The geometric representation of the graph G is induced by the eigenvector
μ2 and is a sequential list of vertices in which vertices are ordered according
to their respective values in the coordinates of μ2. Geometric representation
thus in turn induce a bipartition or a classification of the graph G. “Spectral
Bipartitioning” divides a connnected graph G into two components G0 and G1
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such that there are no edges between the two components G0 and G1, and each
component is a connected graph, or a cluster. We now describe our Geometric
Representation-based Classification (GRbC) algorithm.

Geometric Representation-based Classification

1. Generate similiarity graphs of training set each of which has n− 1 vertices.
2. For the training step, apply “Spectral Bipartitioning” to each similarity graph

of training set and identify the parameter of graph that yields “best-effort”
bipartitioning.

3. For the testing step, use this parameter to create the similarity graph of
sample vectors in both training and test sets.

4. “Spectral Bipartitioning” is applied to this graph with n vertices after which
the class label of the sample vector in the test set is assigned to the majority
of class labels of other sample vectors in the same cluster.

“Best-effort” bipartitioning here means the bipartitioning that has the most
number of vertices of the same class label in the same cluster for each cluster. In
the ideal case of “perfect” bipartitioning, all vertices of the same class label are
in the same cluster for each class label. The last step in “GRbC” needs a little
explanation since assigning the sample vector in the test set to the majority of
class labels of other sample vectors in the same cluster may not seem like the best
choice of classification when the numbers of sample vectors in the two classes are
nontrivially disproportioned. In other words, the last step in “GRbC” may seem
a biased assignment towards the class label with more sample vectors. For this
matter, we also tried a different class assignment rule that offsets this bias and
makes a “fair” judgement. It turns out that for parameter values that return best-
effort bipartitioning, the two assignment rules had almost the same classification
result which justifies this last step in “GRbC.” We also note that there can be
multiple parameter values that yield the same best-effort bipartitioning and a
particular choice of parameter value had little effect on classification accuracy.

3 Results

In this section, we show the classification results of our proposed “GRbC” and
four of the currently known best classification algorithms for microarray data
applied to the mentioned two datasets of cancer. Table 1 shows the LOOCV
classification accuracies for the colon dataset which has 62 sample vectors. In
this dataset, there are 40 tumor sample vectors and 22 normal ones. The values in
the table correspond to those of higher classification accuracy from either of the
two feature selection schemes. (The classification accuracies of the two feature
selection schemes were very close and neither one was consistently better than
the other for all of the datasets considered in this paper.) The first row in the
table shows the result of our “GRbC,” the second row shows that of SVM using
a linear kernel function, and the third row shows the same using a radial basis
kernel function. (In Tables 1 and 2, we tried out enough values for the variables in
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SVMs to optimize performance.) The forth row shows the classification accuracy
of PAM of [25] and the last row shows that of ClaNC of [5]. The table clearly
indicates that our “GRbC” is comparable to other classification algorithms listed
in the table, and in particular, “GRbC” has the highest classification accuracy
when the number of genes used is 6 and 10.

Table 1. Comparison of Classification Accuracies for Colon Dataset

number of genes
6 10 20

GRbC 87.1% 87.1% 87.1%
SVM (linear) 85.5% 85.5% 90.3%
SVM (radial) 83.9% 85.5% 85.5%

PAM 82.4% 87.1% 87.1%
ClaNC 85% 87% 89%

Table 2 shows the LOOCV classification accuracies for the ovarian dataset
which has 253 sample vectors. In this dataset, there are 162 tumor sample vectors
and 91 normal ones. The results shown in the table are similar to those of the
previous table, and in particular, “GRbC” has the highest classification accuracy
when the number of genes used is 6.

Table 2. Comparison of Classification Accuracies for Ovarian Dataset

number of genes
6 10 20

GRbC 97.6% 98% 98.4%
SVM (linear) 96.8% 98.4% 94%
SVM (radial) 96.4% 98.8% 98.4%

PAM 96.8% 98.8% 98.8%
ClaNC 97% 98% 98%

To sum up, in comparison with four of the best classification algorithms
known for microarray data, “GRbC” had the highest classification accuracy
in all datasets considered in this paper when number of genes used for classi-
fication was 6. Moreover, in one dataset considered, “GRbC” had the highest
classification accuracy when numbers of genes used were 6 and 10.

4 Discussion

In this paper, a classification technique based on a geometric representation of
graph was presented. The technique exhibits a fundamentally different approach
from the ones that have been known to classify gene expression data of cancer.
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In this technique, the classification problem was formulated as a problem of
finding a min-cut of similarity graph induced by the gene expression dataset
which was solved through a spectral bipartitioning heuristic. It turns out that
this classification technique has accuracy that is comparable to some of the
currently known best classification algorithms for the three datasets considered
in this paper. This classification algorithm, in particular, showed the highest
classification accuracy for all of the datasets considered when the number of
genes used was small. Furthermore, the algorithm facilitates easy interpretability
due to its conceptual simplicity.
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Abstract. The prediction of RNA secondary structure can be facilitated by 
incorporating with comparative analysis of homologous sequences. However, 
most of existing comparative approaches are vulnerable to alignment errors. 
Here we use unaligned sequences to devise a seed-based method for predicting 
RNA secondary structures. The central idea of our method can be described by 
three major steps: 1) to detect all possible stems in each sequence using the so-
called position matrix, which indicates the paired or unpaired information for 
each position in the sequence; 2) to select the seeds for RNA folding by finding 
and assessing the conserved stems across all sequences; 3) to predict RNA 
secondary structures on the basis of the seeds. We tested our method on data 
sets composed of RNA sequences with known secondary structures. Our 
method has average accuracy (measured as sensitivity) 69.93% for singe 
sequence tests, 72.97% for two-sequence tests, and 79.27% for three-sequence 
tests. The results show that our method can predict RNA secondary structure 
with a higher accuracy than Mfold. 

Keywords: RNA secondary structure, seed-based, unaligned RNA sequences. 

1   Introduction 

RNA, once considered a passive carrier of genetic information, is now known to play 
a more active role in nature. It catalyzes reactions, directs the site-specific 
modification of RNA nucleotides, modulates protein expression and serves in protein 
localization. Non-coding RNA (ncRNA) genes produce functional RNA molecules 
rather than encoding proteins. Recent research shows that ncRNA is far more 
widespread than was previously anticipated [1-2]. The function of an RNA molecule 
derives from its (secondary) structure. RNA secondary structure, the sum of canonical 
base pairs, is generally more stable than tertiary contacts and can largely be 
determined independently of tertiary structure. To date, experiments constitute the 
most reliable method for secondary structure determination [3]. Unfortunately, their 
difficulty and expense are often prohibitive. For this reason, computational prediction 
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provides an attractive alternative to discovery of RNA secondary structure. 
Comparative methods and Minimum Free Energy (MFE) methods [4-5] have been 
used to predict RNA secondary structures. However, there are several independent 
reasons why the accuracy of MFE structure prediction is limited in practice [6]. 
Generally the better accuracy can be achieved by employing comparative methods, in 
which a large number of sequences are aligned to reveal the common base pairing 
pattern. So far a number of methods based on comparative analysis of homologous 
sequences have been implemented to predict RNA secondary structures [7-9]. 
However, these approaches all depend on well-aligned RNA sequences and thus are 
very vulnerable to alignment errors. 

In this paper, we design a seed-based method for prediction of RNA secondary 
structure using unaligned sequences. Our method is motivated by BLAST [10] and 
completes the prediction with the aid of Mfold [4] [11-12]. Given a single RNA 
sequence or multiple unaligned sequences, we first detect all possible stems in each 
sequence using the position matrix. The matrix is composed of 0 or 1 and indicates 
the paired or unpaired information for each position in the sequence. Then, we select 
some seeds for RNA folding by finding and assessing possibly conserved stems 
across all sequences. Specially, we assess the stems using HMM for single sequence 
and Profile-HMM [13] for multiple sequences. Finally, we use Mfold to perform the 
final prediction on the basis of selected seeds. We tested our method on the data sets 
of known ncRNA sequences downloaded from the Rfam database [14]. The 
comparison with Mfold shows that our method can predict RNA secondary structure 
with a higher accuracy than Mfold. 

2   Methods 

Our method works with stems and predicts secondary structure in three major steps: 

1) Detecting all possible stems in an RNA sequence. 
2) Selecting the seeds by finding and assessing possible conserved stems. 
3) RNA secondary structure prediction based on the seeds.   

2.1   Detecting All Possible Stems in an RNA Sequence 

The idea for detecting the stem is motivated by ddbRNA [15], which is a faster 
algorithm for detecting conserved secondary structures in both pairwise and multiple 
DNA sequence alignments. However, ddbRNA does not take GU and UG pairs into 
account and not allow gaps in the alignments. Furthermore, ddbRNA possibly make 
more mistakes due to the parameter of K and the approach for shuffling alignments. 
Here, we improve it by taking GU and UG pairs into account and by assessing the 
detected stems. We first introduce the so-called position matrix which can be 
constructed from the RNA sequence. Then we describe how to get the potential stems 
by scanning the matrix row by row. 

Given an RNA sequence of length N, Seq, we build one N×N position matrix 
(denoted by MSeq) containing 0 or 1. This can be done by following steps: 



 A Seed-Based Method for Predicting Common Secondary Structures 405 

1) The reverse complement of Seq, Seq’, is firstly obtained from the original 
sequence. Specially, the following rules should be obeyed: 
• The complement of ‘G’ is not ‘C’ but the set of {C, U}. For simplicity, we 

denote φ = {C, U}. 
• The complement of ‘U’ is not ‘A’ but the set of {A, G}. For simplicity, we 

denote ψ = {A, G}. 
• To get the reverse complement of Seq, we scan it from the end of the 

sequence to the beginning. 
2) We build one N×N matrix containing Seq’ in the first row. The ith (0 ≤ i ≤ N-

1) row contains the sequence generated from Seq’ by shifting i position to the 
left (circular left shift). 

3) The position matrix MSeq is built by comparing Seq with each row of the 
matrix mentioned above. For the ith row of MSeq, 0 or 1 is assigned to the jth 
(0 ≤ j ≤ N-1) position by comparing the jth base of Seq with the jth base of the 
ith row in the matrix. Here, ‘1’ means the corresponding position is paired 
and ‘0’ means the position is unpaired. The following two rules should be 
obeyed when two bases are compared with each other: 
• If b equals b’, then 1 is assigned. 
• If b does not equal to b’, then 0 is assigned. 

Here, b is a base from Seq and b’ is an element from the matrix. Specially, when b’ is 
φ or ψ, the word “equal” means that b belongs to b’. As shown in Figure 1, One N×N 
matrix (the left) is firstly constructed from the original sequence. Then the position 
matrix, MSeq, is built by comparing Seq with each row of the left matrix.  

Seq = U A A C G U U C 

MSeq = 

G G U U 
G U U  G 

 G U U  G 
 G U U  G 

G U U  G 
U U  G  G 
U  G  G U 

 G  G U U 

0 1 1 1 1 1 1 0 
0 1 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 
1 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 1 
1 0 1 0 1 0 1 0 
1 1 0 0 1 1 0 0 
0 0 1 0 0 0 1 0

 

Fig. 1. The construction of the position matrix for an RNA sequence 

We can detect all possible stems in an RNA sequence by scanning its position 
matrix row by row. The key is to find all zones of continual non-zero in the matrix. 
There is a one-to-one mapping between the stems and the zones of continual non-zero 
in all rows of the matrix. As shown in Figure 1, one stem in the RNA sequence (Seq) 
are mapped to one zone of continual non-zero in its matrix (MSeq). Finally, we point 
that the time complexity of the approach mentioned above is O (N2). 
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2.2   Selecting the Seeds for RNA Folding 

Finding Conserved Stems Across Multiple Unaligned Sequences 
To find conserved stems across multiple sequences, we compare all the stems in the 
sequences according to their matrices. This can be done by dealing with two stems 
each time. The comparing of two stems is performed by multiplying their matrices. 
Here, the matrix for a stem means the position matrix for the sequence corresponding 
to the stem. This matrix also can be computed by the method shown in Figure1. 
Therefore, the position matrix for two aligned stems can be built by multiplying their 
matrices. Note that the i, j element of the resulting matrix is computed by: 

M [i, j] = M1 [i, j] × M2 [i, j] (1) 

Here, M1, M2 are the original matrices and M is the resulting matrix. For simplicity, 
we still describe the multiplying of the matrices with following equation: 

M = M1 × M2 (2) 

Note that the dimensions of all original matrices in equation (2) should be 
identical. It is easy to be disposed when the length of the original sequences for two 
stems is the same one, because their matrices have the same dimension in this case. In 
other cases, we only dispose the so-called compatible stems which share a certain 
number of paired positions at the core. In this case, we just add some gaps (denoted 
by ‘_’) into the shorter sequence at the beginning and the end. Then we construct a 
new matrix for the new sequence by following revised method.  

To revise the method shown in Figure 1, we add the following rule to the step 1) in 
Section 2.1: 

• The complement of a gap is also a gap. 

And we add the following rule to the step 3) in Section 2.1: 

• If b or b’ is ‘_’, or both of them are ‘_’, then 0 is assigned. 

As shown in Figure 2, Stem1 and Stem2 are easily aligned by directly multiplying 
MStem1 and MStem2. As for Stem1 and Stem3, we first verify they are compatible 
because they share two paired positions at the core. Then we add two gaps into Stem3 
and construct a new matrix for it. Finally, we align Stem1 and Stem3 by multiplying 
MStem1 and MStem3. Suppose D is an alignment of n stems and MStemi is the matrix of the 
ith stem, then the matrix for D (denoted by MD) can be computed by following 
equation: 

MD =∏
=

n

i

StemiM
1

 (3) 

Obviously, the multiplying of the matrices satisfies the commutative law and the 
associative law. To find possible conserved stems, we also search for zones of 
continual non-zero in the resulting matrix as we do in section 2.1. As shown in Figure 
2, the conserved stem across Stem1 and Stem2 can be indicated by the two rectangles 
in matrix MStem1×MStem2. The conserved stem across Stem1 and Stem3 can be indicated 
by the rectangle in the matrix MStem1×MStem3. We point that the time complexity of the  
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MStem3 =

0 1 1 1 1 0 
0 1 0 1 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 1 0 1 0 

1 1 0 0 1 1 
0 0 0 0 0 0 
1 0 0 1 0 0 
1 0 1 0 0 0 
1 1 0 1 1 0 
0 0 1 0 1 0 

Stem 1 = 

Stem 2 = 

A C G C G U 

U G G G C A 

Stem 3 = _ A A U U _ 

1 1 1 1 1 1 
0 0 0 0 0 0 
0 1 1 0 1 1 
0 0 0 0 0 0 
0 0 1 1 1 1 
0 0 0 0 0 0 

MStem1 =

MStem2 =

MStem1  MStem2 =

1 1 0 0 1 1 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 1 1 0 
0 0 0 0 0 0 

MStem1  MStem3 =

0 1 1 1 1 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0  

Fig. 2. The alignment of stems for finding conserved stems across multiple sequences 

equation (2) is still O (N2), where N is the length of the stem. Therefore, the time 
complexity of the equation (3) is O ((n-1) N2). 

Actually, to detect conserved stems across n sequences, we first select n stems 
from these n sequences (one stem for one sequence) and then apply the equation (3). 
We repeat this process until all stems from all sequences are chosen and disposed. 
Suppose m stems are selected from each sequence on average and the average length 
of the stem is l. Therefore, the time complexity of this process is approximately O (mn 

(n-1) l2). In practical application, to reduce the time cost, we keep m be a little 
constant. 

Selecting the Seeds by Assessing Conserved Stems 
We use the Signal-to-Noise to assess the conserved stems. The major steps for 
assessing a conserved stem are described as follows: 
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1) For anyone of the conserved stems detected by the approach mentioned 
above. We record its length (i.e. the number of pairs) and the sequence 
alignment of the conserved stem (i.e. the sequence fragments of the aligned 
stems). 

2) We generate a randomized alignment from the original sequence alignment of 
the conserved stem. 

3) We extract all sequences from the newly generated alignment and detect 
possible conserved stems across them using the method mentioned before. 

4) Let the length of the original conserved stem be the Signal and the length of 
the possible conserved stem in the randomized alignment be the Noise. The 
Signal-to-Noise (i.e. the ratio of the Signal to the Noise) is thus computed for 
them. Note that, we set Noise to be 1 if there are no conserved stems in the 
randomized alignment, and we set Noise to be the maximum if there are more 
than one conserved stems.  

We select some conserved stems with higher Signal-to-Noise as the seeds for RNA 
folding. We compute the Signal-to-Noise for each conserved stem across all original 
sequences using the approach mentioned above. Then, we sort them in decreasing 
order of Signal-to-Noise and select the stems with Signal-to-Noise greater than the 
given threshold as the seeds for RNA folding. 

The most difficulty in the approach mentioned above is how to get a randomized 
alignment from the original alignment. We accomplish this purpose by randomly 
permuting the columns of the original alignment. We control the permutation process 
using a probabilistic method. Given an RNA alignment, we compute the probability 
of it using the forward algorithm of Profile-HMM [13]. 

Suppose the producing model for an alignment of n sequences (denoted by ‘D’) is 
given by a five-tuple of model components λ = {S, V, π, T, E}, where λ is the Profile-
HMM, S is the set of states, V is the set of observed characters, π is the initial 
probability vector of the states, T is the matrix of transition probabilities, and E is the 
matrix of the emission probabilities. We define them as follows: 

• S = {Cod, ncRNA, Oth}, where Cod refers to the protein-coding region, ncRNA 
refers to the non-coding region, and Oth refers to other regions. 

• V = {A, C, G, U, _} n. 
• π = {πCod, πncRNA, πOth}, where πCod is the initial probability of Cod, πncRNA is the 

initial probability of ncRNA, and πOth is the initial probability of Oth. 
• T = [t (w, w’)], where w and w’ belong to S and t (w, w’) is the transition 

probability from w to w’. Obviously, T is a 3×3 matrix. 
• E = [ew(x)], where w belongs to S, x belongs to V, and ew(x) is the emission 

probability of producing x on state of w. Obviously, E is a 3×5n matrix. 

We set α as the recursion variable and initialize it with following equation: 

α0 (w) = πw ew (o0)              w∈S, o0 ∈V    (4) 

Here, oj (0 ≤ j ≤ N-1) denotes the jth column of D, and N is the length of D. 
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The recurrence process is simplified with following equation: 

αj (w’) = ∑
∈Sw

αj-1(w) t (w, w’) ew’ (oj) 

                             w, w’∈S, oj∈V, 1 ≤ j ≤ N-1 

(5) 

The probability of D, P (D|λ), is computed with following equation: 

P (D |λ) = ∑
∈Sw

αN-1(w)     (6) 

We repeat the permutation until the common difference between the probability of 
the new alignment and that of the original alignment is less than a certain threshold 
(for example 0.001). In this way, we get a randomized alignment from the original 
alignment.  

It should be pointed that the approach mentioned above is only suitable for 
multiple unaligned sequences. When the input is a single RNA sequence, we assess 
the detected stems based on HMM and also select several of them as the seeds for 
RNA folding. The approach for this case is similar to the approach mentioned above 
except that V should be changed to {A, C, G, U}. 

2.3   Structure Prediction Based on the Seeds 

We predict RNA secondary structures on the basis of seeds and the Mfold program. 
We first find some good seeds using the approach described in Section 2.2 and then 
align all sequences according to the seeds. Then we divide the alignment into many 
segments such that one seed is at the beginning of one segment. After that, we 
predict secondary structures for each segment and finally assemble them into an 
integral secondary structure. As for the prediction of each segment, we use the seed 
in it as the starting position for folding and complete the final prediction using 
Mfold program. In more detail, we respectively use Mfold to fold each sequence of 
the segment and finally select the structure with maximum base-pairs as the result. 
As shown in Figure 3, the three-way alignment is divided two segments and one 
segment includes one seed.  

G U G U A C G A A G G C U A A G G C G U U U C C A C 
G U U G A U G G G G C C U A _ G U C G A U C A C A C 
G G G U U C U C _ G G C U _ A U G C G U A U C G A U 

Seed1 Seed2

Segment1 Segment2 
 

Fig. 3. RNA secondary structure prediction based on seeds. Mfold is used to fold each section 
on the basis of corresponding seeds. 
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3   Results 

3.1   Test Data Sets 

We constructed one single-sequence data set, one two-sequence data set and one 
three-sequence data set based on Rfam7.0. To build the single-sequence data set, we 
downloaded 80 RNA sequences from Rfam. This data set is also used as the input for 
Mfold. To build the two-sequence data set and the three-sequence data set, we first 
downloaded 80 pairwise alignments and 80 three-way alignments from Rfam. Then 
we extracted two sequences from each pairwise alignment and three sequences from 
each three-way alignment. Also, we randomly extract one sequence from each 
downloaded alignment and use it as the input for Mfold. Specially, the downloaded 
sequences belong to multiple different RNA families annotated by Rfam. 

To test the performance of out method and compare it with Mfold, we also 
downloaded the secondary structure from Rfam for each alignment and compute the 
accuracy (measured as sensitivity) and error (measured as false positive rate) of 
predicting base-pairs. We compute the accuracy as the number of true positives 
divided by the sum of true positives + false negatives, the error as the number of false 
positives divided by the sum of true positives + false positives. Note that the sum of 
accuracy + error is not necessarily 1. 

3.2   Tests for RNA Sequences with Known Secondary Structures 

The results for single-sequence data set are compared with Mfold, using the 
parameters suggested by the authors of [11-12] and are reported in Table 1. The 
results for multiple RNA sequences are also compared with Mfold and are reported in 
Table 2 and Table 3. Note that the second and third columns in Table 1 through Table 
3 are the results for our method.  

As shown in Table 1, our method has comparable accuracy and error with Mfold 
for length ≤150bp, while has higher accuracy and lower error than Mfold for length 
>150bp. Our method has average accuracy 69.93% and average error 17.55% for 
single-sequence test as a whole. As shown in Table 2 and Table 3, our method has 
average accuracy 72.97% and average error 19.56% for two-sequence test, average 
accuracy 79.27% and average error 25.03% for three-sequence test. Generally, our 
method exhibits marked higher accuracy and comparable error with Mfold in the 
case of multiple unaligned sequences.  

Table 1. Accuracy and error on single-sequence data set 

Length (bp) accuracy (%) error (%) accuracy.Mfold 
(%) 

error.Mfold 
(%) 

≤100 69.02 18.02 69.65 18.16 
100-150 70.89 16.16 71.01 16.68 
150-200 71.16 15.21 69.56 20.16 
≥200 68.65 20.82 65.16 26.78 
total 69.93 17.55 68.85 20.45 
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Table 2. Accuracy and error on two-sequence data set (Id, percentage identity) 

Id (%) accuracy (%) error (%) accuracy.Mfold 
(%)  

error.Mfold 
(%) 

40-60 72.02 20.21 68.16 22.11 
60-70 75.87 21.34 69.52 25.18 
70-80 72.08 18.65 68.35 19.28 
80-100 71.92 18.02 70.98 19.64 
total 72.97 19.56 69.25 21.55 

Table 3. Accuracy and error on three-sequence data set (Id, percentage identity) 

Id (%) accuracy (%) error (%) accuracy.Mfold 
(%)  

error.Mfold 
(%) 

40-60 78.15 25.01 70.98 24.11 
60-70 79.76 24.63 70.65 24.38 
70-80 79.18 25.81 69.56 26.02 
80-100 79.99 24.65 70.05 24.16 
total 79.27 25.03 70.31 24.67 

4   Discussion 

We design, implement and evaluate a seed-based method for predicting common 
RNA secondary structures in unaligned sequences. Our method detects conserved 
stems using the position matrix, assesses conserved stems using the Profile-HMM, 
selects the seeds using the Signal-to-Noise, and uses the seeds as the constraint for 
Mfold. Our method is based on Mfold and improves it by the seed-extending idea. 
Furthermore, the fact that our method takes unaligned sequences as input makes it 
immune from alignment errors and thus be more suitable for practical application. 
Finally, the algorithms for detecting and assessing conserved stems also make our 
method differ from other methods.  

Despite the limited amount of data, we have shown in the experiments that our 
method can predict RNA secondary structures with a better performance. In the case 
of the single-sequence test, our method has a higher accuracy than Mfold, especially 
for longer RNA sequences. This should be the correct behavior, since we divide a 
longer sequence into several sections according to the seeds and respectively fold 
each section using Mfold. In the case of the multiple-sequence tests, our method 
exhibits a marked higher accuracy than Mfold, especially when more RNA sequences 
are used. This is true because we detect and assess the conserved stems using multiple 
homologous sequences and then select some of them as the seeds for folding. As a 
result, we improve Mfold by using these seeds as the constraint for RNA folding.  

There are several ways in which our method could be improved. One potential 
improvement could be assessing the stem using a combination of MFE and 
probabilistic models. To do this, we can respectively evaluate the energy and the 
Signal-to-Noise of the stem, and then assign each of them a weight. Thus, the stem 
can be assessed by both MFE and probabilistic methods. This possibly improves the 
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accuracy of selecting the seeds and thus betters the accuracy of structure prediction. 
Another way to improve our method might be changing the algorithm for 
generating randomized alignments. In this paper, we directly permute the columns 
of the alignment to get the randomized alignment. Actually, this approach might not 
take the randomicity of the original sequence into account and thus possibly gets 
bad results. Another alterative approach for this could be firstly permuting the 
columns of each sequence and then aligning the new sequences using standard 
multiple sequence alignment tools such as BLAST or CLUSTALW [16]. Finally, 
the time complexity of our method is probably high, especially for the process of 
finding conserved stems. Therefore, to speed up the method, we can detect, 
compare and assess the stems in a parallel way. But this needs further research to 
maintain the accuracy of the method. 
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Abstract. In this paper will be described a new method of automatic segmenta-
tion of inflammation and neoplastic hepatic disease symptoms, visible in com-
puted-tomography (CT) images. The liver structure will be at first extracted 
from the image using the approximate contour model. Then, the appropriate his-
togram-based transformations will be proposed to enhance neoplastic focal 
changes in CT images. For segmentation stage of cancerous symptoms, the ana-
lyzed images will be processed using binary morphological filtration with the 
application of a parameterized mean defining the distribution of pixel gray-
levels in the image. Then, the edges of neoplastic lesions situated inside the 
liver contour are localized. To assess the efficiency of the proposed processing 
procedures, experiments have been carried out for two types of tumours: hae-
mangiomas and hepatomas. The experiments were conducted on 60 cases of 
various patients. In this set 30 images showed single and multiple focal hepatic 
neoplastic lesions, and the remaining 30 images show the healthy organ. Ex-
perimental results confirmed that the proposed method is an efficient tool which 
may be used in the diagnostic support procedures for normal and abnormal 
liver. The efficiency of proposed algorithm reach the level of over 83% of cor-
rect recognition of pathological changes.  

1   Introduction 

Liver disease is one of the most widespread type of lesions in the world [3]. For ex-
ample the average incidence of liver cancer is 16 cases per 100,000 population 
worldwide, and 4 cases in Europe [3]. In most cases liver cancer manifests itself in 
abnormal cells whose growth leads to the emergence of either single or multiple neo-
plastic lesion formations. If the hepatic tumor is detected early, the progress of the 
disease can be quickly stopped. Consequently, the design and development of Com-
puter-Aided Diagnosis systems and techniques can help doctors improve their diagno-
sis. Computer support early detection of pathological changes play an important role 
in screening and specialist examinations. The Artificial Intelligence and Computa-
tional Intelligence algorithms have recently been playing a huge role in the develop-
ment of new classes of intelligent systems supporting medical diagnoses . Some of 
them can even be used to interpret the meaning of medical images [10]. However, in 
many cases, apart from the search for the semantic and medical conclusions of the 
analysed images, the systems must also conduct the preliminary processing and 
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analysis of the images in question to detect pathological lesions present in the image. 
In CT images, these lesions may be single or multiple and their correct detection 
forms an important step which determines the subsequent ability to identify the tu-
mour type and its progression [1, 5, 8]. 

In this paper will be proposed a new method which facilitates the automatic seg-
mentation of single and multiple neoplastic lesions of various shapes and locations 
within the liver structure. Research was conducted on 60 different cases obtained dur-
ing medical CT examinations for various patients. 

2   Cancerous Symptoms Segmentation in CT Liver Images 

In this section will be presented the method for automatic segmentation of single and 
multiple neoplastic lesions visible in liver CT images. In this procedures at first, the 
liver contours is extracted from the image. Next , the histogram is transformed to  
enhance, and improve visibility of neoplastic lesions in CT images. For the proper 
segmentation of neoplastic changes, the images are processed using binary morpho-
logical filtration operators with the application of a parametrized mean defining the 
distribution of gray levels of pixels in the image. The last step is to locate the edges of 
neoplastic lesions found inside the liver contour.  

 

Fig. 1. Liver contour detection in a CT image of the abdominal cavity. (a) A CT image with a 
superimposed polygon containing the approximate liver edge and a fragment of the left side of 
the image. (b) A CT image with a superimposed polygon containing the approximate liver edge 
and a fragment of the right side of the image. (c) The segmented liver structure.  

The first step in the sequence of neoplastic lesion detection is to distinguish the 
liver structure, as this allows surplus elements to be removed from the image. The 
liver structure is segmented from the CT image by first finding the liver contour made 
up of a finite number of joint polylines which approximate particular fragments of the 
liver edge in the computed tomography image. This approach is presented in detail in 
paper [2]. The area of the image located outside the liver contour is divided into two 
polygons which are eliminated from the image. Fig. 1.c shows an example of a CT 
image with the liver structure segmented using the approximate contour method [2].  
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Having segmented the liver structure in the CT image, the next step leading to the 
extraction of neoplastic foci is the transformation of the histogram by its equalisation, 
which yields an even distribution of the number of pixels relative to the gray levels. 
The histogram is a single-dimensional statistical function obtained by counting the 
number of pixels corresponding to specific grey levels. Let g: M2→

 
Z be the gray-

level CT image containing the liver structure and (x,y)∈
 

[0,M-1]×
 

[0,M-1] be the pixel 
coordinates. Then: g(x,y)∈Z. The histogram, h(k): Z→Z is defined as the following 
set:  

h(k)={(x,y): g(x,y)=k} . (1) 

where k is the value of the grey level. Let gHEq 
: M2→

 
Z be the histogram equalisation 

transformation. It is represented by the following relationship:  

     ∀ (x,y)∈M2 gHEq 
(x,y)=LUT(g(x,y)), LUT(k)=(gmax/( xmax*ymax))*Σh(j) (j=0,,k) . (2) 

where LUT(look-up table) is the adjustment table allowing the gray levels of the input 
image to be changed in accordance with the values stored in the table. The gmax vari-
able is the number of grey levels in the image, while the xmax *ymax product defines the 
size of the image frame (xmax *ymax=M2), and h(j) is the number of pixels with the j 
gray-level.  

Let gGF: M2 
→Z be the Gaussian smoothing function [6] with the mask G with the 

dimensions of 5x5, gGF =(g×
 

G)(x,y). As a result of the subsequent transformations 
gHEq

 and gGF, we obtain an image in which neoplastic foci will be detected. The image 

is defined by the following formula:  

gGF = (gHEq ×G)(x,y) . (3) 

The details of these operations are shown in Fig. 3, which presents the subsequent 
histogram transformations. Figures 2 (a) and 2 (b) contain the image of the liver struc-
ture g and its histogram h(k).  

 

Fig. 2. CT image of the liver. (a) An image containing the CT scan of liver and separated struc-
ture (b) A histogram h(k). 
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Figures 3 (a) show the gHEq 
image after the histogram equalisation transformation 

and the equalised histogram graph. Figures 3 (b) contain the gGF image after Gaussian 
smoothing and the equalised histogram graph.  

 

Fig. 3. Transformations in the CT image of the liver. (a) The image and histogram after equali-
sation transformation. (b) The image and histogram after Gaussian smoothing. 

To segment neoplastic lesions, the image gGF is first binarised using the function b: 
M2 

→M2 where  

b={255 (white) for gGF > µ, and 0 (black) for gGF ≤ µ}. (4) 

The µ=Σ k*(h(k)/M2 (for k∈Z) parameter defines the mean calculated for the pixels 
of the gGF image. Then, the binary image b is subjected to elementary filtration opera-
tions such as erosion, median filtration and edge detection.  

Let the e: M2 
→M2

 
function define erosion and ei(b): M2 

→M2 be the iterative ero-
sion repeated i times (ie). Under the assumption that SE is the structural element with 
the dimensions of 3x3, we can also define the median filtration operation. Let m: M2 

→M2  
be the median filtration with the SE mask. Also, let bL: M2 

→M2  define the lin-
ear filter using a Laplacian to detect the edges in the image. The Laplacian is repre-
sented by the L mask with the dimension of 3x3. Every filtration is defined using  
image algebra operators for binary images [4, 9].  

The definitions are as follows:  
Erosion and iterative erosion  

E={b-SE}, ei(b)={…((b-SE)-SE)-SE}. (5) 

Median m={b°
 

SE}. (6) 

Laplacian bL={b×L}. (7) 
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The research has shown that the best method to improve neoplastic lesion seg-
mentation is double erosion e2(b). As a result, the black image areas are magnified. 
Then, the image edges e2(b) are smoothed using median filtration. As a result of ap-
plying that filtration, we get an image defined by the following formula: m={e2(b) 
°SE}. Figure 4 (a) shows a binarised specimen liver image, while Figure 4 (b) shows a 
liver image after double erosion and median filtration.  

  

Fig. 4. The binary morphological filtering (a) The binary image (b) The image after double ero-
sion and median filtration 

 

Fig. 5. The example of neoplastic lesion segmentation in hepatic CT images 

As a result of using the linear filter bL={m×L}, we get a set comprising a sub-set 
representing a specific number of edges of neoplastic lesions bf={f1,f2,...,fK} 

 

and also 
the liver contour c. Thus bL={f1,f2,...,fK ,c}. The liver contour can be eliminated, since 
its coordinates have been calculated during the liver structure segmentation, as pre-
sented in paper [2]. The set of neoplastic lesion edges bf is superimposed on the origi-
nal CT image of the abdominal cavity and the liver, Fig. 5. Thus is the neoplastic  
lesion segmentation achieved. Figure 5 shows the example liver images with the seg-
mented neoplastic lesions.  
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3   Results  

For the analysis of CT images, the material from the Department of Image Diagnos-
tics of the Provincial Specialist Hospital in Gdansk, Poland, was used. The CT images 
were obtained with Somatom Emotion 6 (Siemens) scaner. To verify the suitability of 
the proposed algorithms, tests were run for two types of tumours: haemangiomas and 
hepatomas, and for images showing healthy livers. The tests were conducted on 60 
cases of various patients. Half of them contained single or multiple neoplastic lesions 
of various shapes and locations within the liver structure. Another thirty showed 
healthy livers. For every CT image, the neoplastic lesion segmentation was classified 
to one of the four basic classes cases:  

• TN - true negative,  
• FP - false positive,  
• FN - false negative and  
• TP - true positive [6].  

Table 1 shows the results of classifying the processed images in relation to the 
number of categories.  

Three ratios: sensitivity, specificity and accuracy, were calculated for the test data 
obtained. The sensitivity represents the number of patients who have neoplastic le-
sions: Sensitivity=TP/(TP+FN). Specificity defines the number of patients with no 
neoplastic lesions: Specificity=TN/( TN + FP). Accuracy is defined as: Accuracy=(TP 
+ TN)/ (TP + TN + FP + FN). 

Table 1. Test results for 60 CT images of the abdominal cavity and the liver 

Lesion Quantity TN-true  
negative 

FP-false  
positive 

FN-false  
negative 

TP-true  
positive 

Hemangioma 15 0 0 3 12 
Hepatoma 15 0 0 5 10 

Normal 
Liver 

30 25 5 0 0 

Total  
Number 

60 25 5 8 22 

 
The sensitivity of the method for test data placed at the level 0.733, its specificity to 

0.833, and accuracy to 0.783. The ratios obtained confirm that the method is highly 
suitable for image diagnostics of the liver. However, it should be noted that the value 
of the FT parameter was obtained for images in which the Falciform ligament which 
splits the liver into the right and left lobes was highly visible, which means that it could 
be interpreted as one of the possible foci. In the case of multiple neoplastic lesions 
whose foci had a diameter below 1 cm, FN values occurred for only some of them.  

4   Conclusion 

In the article was presented a new method of automatic segmentation of single and 
multiple neoplastic lesions in CT images for a computer system assisting the early  
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diagnostics of inflammation and neoplastic lesions of the liver. The segmentation of 
these lesions was achieved by first segmenting the liver from the CT image. Then, the 
histogram was transformed to enhance the neoplastic lesions in CT images. In order 
to segment the neoplastic lesions, the images were processed using binary-
morphological filtration operators with the application of a parametrised mean 
defining the distribution of grey levels of pixels in the image. The next step was to  
locate the edges of neoplastic lesions found inside the liver contour. To verify the 
suitability of the proposed method, tests were conducted for two types of tumours: 
haemangiomas and hepatomas, and also for images of healthy livers. The test data 
yielded the following ratio values: sensitivity 0.733, specificity 0.833 and accuracy 
0.783. In the future, research work will aim at developing a method which eliminates 
the Falciform ligament as a lesion, because the current method classifies this ligament 
as a false positive (FP). Another research objective will be to raise the sensitivity of 
the method to reduce the occurrence of FNs and thus to improve the results of the 
segmentation of multiple neoplastic lesions below 1 cm in diameter.  

All the foci diagnoses obtained will also be used as feature vectors in procedures 
for interpreting the images researched run by a system which is currently being de-
veloped to automatically analyse medical images. The analysis will facilitate deter-
mining not only the number and location of lesions detected, but will also be aimed 
at drawing medical conclusions about their occurrence and will help in formulating 
the diagnosis using tests conducted with other modalities as well as results of func-
tional tests.  
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Abstract. In this paper, we propose a robust method for the process of 
localization of a mobile robot through a vision system. The mobile robot is a 
compact system consisting of an embedded board and a fish-eye camera. The 
fish-eye camera looks upward to capture ceiling images. The camera provides a 
sequence of images for the process of detection and tracking ceiling features. 
These features are used like natural landmarks to detect the state of translation 
and rotation of the robot. Our method requires less computational power and 
resources for a robot, and thus can be used at home. The results produced in this 
study showed the advantages of our method in terms of both speed and 
accuracy.  

1   Introduction 

In recent years, intelligent mobile robots have been applied to a variety of fields. 
These robots are able to perform tasks traditionally done by human in industry, 
military, entertainment and home assistance. These include toy robots, guide robots, 
surveillance robots and household robots all of which are able to self-navigate in 
indoor and outdoor environments without human manipulation. A mobile robot must 
have the ability to accurately localize itself in a modified environment and build a 
map by itself for further manipulation. Most existing methods are based on laser 
range finders, sonar range finders and vision systems. The laser range finder detects 
obstacles and measures distances with high frequency data. However, laser sensors 
use an energy beam that can be dangerous. Therefore, adequate precautions must be 
taken to avoid damage to the eyes. The sonar range finder is useful for mobile robots 
to navigate and recognize their environment. This method allows robots to measure 
distance to objects. This method can be easily performed but requires a silent 
environment for manipulation without noise from other sources. The vision system 
obtains data on a given room or space. Then, the robot uses the data to navigate or 
                                                           
* Corresponding author. 
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localize in the given area. In some cases, the robots are able to interact with people 
through the vision-based human interaction.  

One of the most popular robots is the intelligent household mobile robot which 
works in an indoor environment. There are two main vision approaches applied to the 
mobile robot. Those are ceiling vision [1], [2], [8] and forward vision [4], [5], [6], [7], 
[8]. Forward Vision focuses on detecting objects located in front of the robot to find 
direction in a modified environment. Ceiling Vision finds the robot’s location in an 
indoor environment. Therefore, the robot is able to know where it is and how to 
accurately calculate the best path to its destination.  For household automatic mobile 
robots, previous research has sought to setup a landmark system and use it for self- 
localization in an indoor environment [1], [2]. Others attempted to detect objects in 
front of the robot to navigate in modified environment [3], [4], [5], [6], [7].  

In this paper, we introduce a new method of self-localization by constructing a 
natural landmark system based on the invariance of ceiling features on sequence 
images. The mobile robot is composed of a compact mainboard and a fish-eye 
camera. For environmental configuration, the mobile robot runs in the room while the 
fish-eye camera captures ceiling images and sends them to the robot’s processor. The 
process of localization generates grouping feature points from a sequence of ceiling 
images. A feature point is referred to as a corner detected from input images. Each 
group of feature points satisfying the threshold is defined as a ceiling landmark. 

This study is organized as follows. Section 2 discusses previous research. The 
localization algorithm is explained in section 3. Section 4 presents the results of our 
research.  Section 5 draws conclusions from our research and discusses potential 
research related to this paper for the future. 

2   Related Work 

Many researchers and engineers have worked on the landmark systems for intelligent 
mobile robots. To achieve this goal, feature detection is required beforehand. Several 
methods and solutions have been proposed for this work [9], [10], [11], [12], [13], 
[14]. However, these methods are expensive and require a great deal of resources. 

Some researchers have proposed autonomous environment mapping, localization 
and navigation for indoor mobile robots using monocular vision and multiple 2D 
pattern tracking [1], [2]. In this way, the camera is vertically oriented toward the 
ceiling and not necessarily calibrated. The environment map is a mosaic on a 2D 
pattern that is detected on the ceiling plane using natural landmarks. This algorithm 
enables the mobile robots to reproduce trajectories defined by key images 
representing virtual memory. The pattern tracker is a contour model that takes into 
account image gray scale level variations. It uses the condensation algorithm to 
efficiently track the 2D pattern on a cluttered background. 

Some researchers have presented the Monte Carlo Localization based on the 
condensation algorithm [6], [7]. In this method, a visual map of the ceiling is obtained 
by the use of mosaicing and the localization of the robot using simple scalar 
brightness measurement as sensor input. 

Se et al. have researched vision-based mobile robot localization and a mapping 
system. SIFT (Scale Invariant Feature Transform) obtains visual landmarks in 
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unmodified environments [4], [5]. By keeping SIFT landmarks in a database, the 
robot tracks the landmarks over time and builds a 3D map of its environment, while 
also using these 3D landmarks for localization. 

Jeong et al. [8] presented a method of setting a landmark system using Ceiling 
Vision - based on the Simultaneous Localization and Mapping techniques. This 
method collects the effective corners from ceiling images captured by a mobile robot 
using the Harris algorithm. Then, the Kalman filter algorithm is applied to these 
corners to create a 3D landmark system. This method has high fidelity but requires 
heavy computation and processing. Thus, the method is not suitable for a mobile 
robot equipped with low-cost components and computing power. 

To overcome the aforementioned limitations, this paper introduces a new method 
of localization for mobile robots to build ceiling landmark systems. This method uses 
a sequence of ceiling images for the fast detection of feature points. This makes it 
easier to identify feature points in each image by analyzing the robot’s rotation and 
translation. 

3   Ceiling Vision-Based Localization 

In this section, we explain the basic idea behind our vision-based approach for the 
localization of a mobile robot that operates in an indoor environment. The purpose of 
this is to extract ceiling features from the sequence images and detect the state of 
translation and rotation. At a translation state, the features on the ceiling are detected 
and used as natural landmarks. We use the Susan corner detection method [9] for 
detecting feature points. This method is one of the fastest algorithms in feature point 
detection, since it does not require complex calculation. Because the float could not 
be supported on the embedded board that we tested [Fig. 4], we chose the Susan 
method. The Susan method in feature point detection is not as good as others such as 
the Harris algorithm, but it detects points faster. With a cheap camera which may 
become soiled after long-term use, the quality of captured images will be not perfect. 
For these reasons, we present a method to optimize the calculation of translation and 
rotation detection without complex calculation. The robot has 2 types of movement 
(rotation and translation) that are not in a curved line as in Fig. 1. Thus, we separated 
the movements of the robot into 2 states (rotation and translation) needed for 
detection. 

 Translation: In translation action, the robot always moves forward or 
backward following a line, not a curve. Therefore, with the same object 
feature captured in two sequence images, there is some change on the y axis 
of the image coordinates but no change on the x axis. 

 Rotation: When the robot wants to change direction, the robot will rotate on 
an angle and then continue moving. Therefore, with the same object feature 
captured in a sequence of two images, they are always the same distance 
from the image center with only a different angle. 

We can accomplish curve action by repeatedly combining the two types of 
movement mentioned above. 
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Fig. 1. Robot movement analyzing 

3.1   Rotation Detection 

As shown in Fig. 2, with features detected from two sequence images, we detected the 
rotation angle of the mobile robot. The process can be described as follows: 

1. We found and matched features in the two images that have the same vector 
length. Then, we calculated the angles between the matched features. 

2. We calculated the mean value of the rotation angles. The mean angle 0 
indicates no rotation on the two images. 

 
 

 
 
 
 
 
 
 
 
 

Fig. 2. Feature Point detection and vectorial calculation in 2 rotation image frames 

Fig. 2 shows two vectors (the dark arrow and the light arrow). They are from 
image centers of the same ceiling features. Their lengths are the same (110 in the first 
and 111 in the second) but they have different angles (77 in the first and 51 in the 
second). The rotation angle is (26 = 77 - 51). 
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3.2   Translation Detection 

We analyzed the translation in multi frame images shown in Fig. 2 After the rotation 
detection step, we calibrated the features. Some algorithms calibrate the image before 
feature detection. This will create an image with a lot of noise which result in the poor 
performance of feature detection. We detected features in actual images and calibrated 
the feature points. This results in better performance and lessens processing time. The 
process is as follows:  

 

1. After feature points have been calibrated, we can match certain groups 
clustering features that appeared in the first image with ones in the second 
image. According to the results, one will notice a disparity between two 
different positions of the same feature group. The disparity provides us with 
information for translation. There is some change on the y axis of the image 
coordinates but no change on the x axis. If the change is less than a quarter of 
the image size on y, there is no problem in translation.  

 

Fig. 3. Feature Point detection and grouping in 2 translated image frames 

Fig. 3 shows the grouping result using Susan corner detection in two sequence 
images. The first pairs of numbers in parenthesis are on the x position and the second 
on the y position of the group center in the original image. 

4   Experimental Results 

The proposed method was tested with the Harris, Susan and Fast corner detection 
algorithms. We used an embedded board (Fig. 4), which has the following 
specifications: PXA270 CPU(32bit Xscale) 624 MHz, 32 MB SDRAM memory, 64 
MB Flash memory and a gray fish eye camera with 130o view angle and 320x240 
resolution for each image viewed after lens calibration. We tested this method with 
several ceiling images captured from several different indoor environments such as a 
laboratory, an apartment, and a lobby. This was carried out in two steps. The first was 
for the point feature detection process including the Harris, Susan, and Fast Corner 
detection algorithms.  Then, we compared the results as well as the elapsed time of 
each process in order to choose a suitable algorithm for our requirements. In the 
second step, we used the method proposed in this study to detect rotation and 
translation movement from sample sequence images in zigzag path tests. 
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Fig. 4. The PXA270 embedded board 

Fig. 5 is the ceiling map of the test room. We tested zigzag paths consisting of 
randomized rotation angles and translated distances. 

Fig. 5. The Experimental test room plan 

Start 
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Table 1 shows the translation and rotation calculated for each of the two sequence 
images using the Susan method to detect feature points. The table shows the distance 
between the two camera positions in pixel units, the angle of the rotation state, and the 
elapsed time for the detection process of each zigzag path that was tested. Table 2 
shows errors in translation and rotation detection between calculated results and the 
real states of zigzag paths. It includes the moving distance average/max error (cm), 
the rotation angle average/max error (degree) and the real movement (moving 
distance and rotated angle) in max errors. 

Table 1. This table represents the results from the detection process 

Path 1 Path 2 Path 3 Path 4 Path 5 
 Actual 

distance 
Calculation 

distance 
Actual 

distance 
Calculation 

distance 
Actual 

distance 
Calculation 

distance 
Actual 

distance 
Calculation 

distance 
Actual 

distance 
Calculation 

distance 

1 30cm 31.5 cm 40cm 43.75cm 50cm 52.5cm 45cm 45.5cm 63cm 64.75cm 

2 -50° -47° -90° -89° 30° 29° -25° -25° 15° 15° 

3 50cm 50.75cm 46cm 45.5cm 22cm 22.75cm 27cm 28cm 38cm 38.5cm 

4 20° 20° 35° 41° 40° 38° -43° -45° -45° -46° 

5 56cm 54.25cm 50cm 52.5cm 73cm 70cm 66cm 68.25cm 51cm 50.75cm 

6 -15° -13° 40° 40° -100° -85° 5° 5° -10° -10° 

7 92cm 94.5cm 75cm 75.25cm 48cm 49cm 30cm 28cm 10cm 10.5cm 

8 25° 24° -85° -82° -65° -63° 150° 147° 50° 48° 

9 24cm 22.75cm 88cm 91cm 18cm 17.5cm 93cm 94.5cm 83cm 82.25cm 

10 80° 79° 30° 28° 70° 67° -68° -65° 58° 57° 

11 14cm 14cm 30cm 31.5cm 82cm 64.75cm 52cm 49cm 105cm 98cm 

12 -25° -24° 15° 15° 130° 129° -34° -35° -18° -18° 

13 46cm 47.25cm 55cm 50.75cm 64cm 64.75cm 109cm 101.5cm 27cm 28cm 

14 65° 64° 80° 66° -33° -34° -60° -59° -120° -110° 

15 17cm 17.5cm 37cm 40.25cm 120cm 113.75Cm 40cm 42cm 150cm 131.25cm

Elapsed 
time  15.2sec  15.1sec  15.2sec  15.2sec  15.1sec 

Table 2. This table shows errors in the detection process between the calculated results and real 
states of tests of zigzag paths 

Real movement in max errors 
 

Moving 

Distance 

Avg. error 

Rotation angle

Avg. error 

Moving 

Distance 

Max. error 

Rotation angle

Max. error Moving 

distance  
Rotation angle 

Room 1 2.77cm 2.4° 18.75cm 15° 150cm 100° 

Room 2 2.84cm 2.4° 19.25cm 14° 125cm 120° 

Room 3 2.78cm 2.3° 17.5cm 12° 168cm 110° 

Room 4 2.77cm 2.5° 19.25cm 16° 142cm 95° 

Room 5 2.77cm 2.4° 18.75cm 15° 150cm 100° 
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5   Conclusion and Future Work 

The method proposed in this work was tested with a low cost embedded board 
running on the Linux embedded system and a gray fish eye camera to capture 
320x240 images. We captured many sequence images and run processes to detect the 
change of the position of the camera in direction and angle rotation. We also showed 
how to detect which features are not on the ceiling as well as how to use ceiling 
features to build 2D/3D land masks.  

In future research, we plan to integrate this method with an intelligent control 
robot. With intelligent control, the robot will build and update land masks 
automatically when transferred to other indoor environments. 
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Abstract. This paper presents an approach of multidisciplinary knowledge 
modeling and robust parameter decision-making. Firstly, a multidisciplinary 
knowledge model is established. Secondly, a multidisciplinary decision-making 
algorithm is presented to solve the model. Finally, the method is demonstrated 
by a design example, in which knowledge in mechanics, cybernetics and dy-
namics are addressed. The results prove that multidisciplinary knowledge mod-
eling is feasible, and the proposed method can be applied in multidisciplinary 
parameter decision-making process. 

Keywords: Parameter decision-making, Knowledge model, Multidisciplinary 
design. 

1   Introduction 

The development process of a complex product may be involved with "time dimen-
sion" concurrence and "space dimension" collaboration. The overall performance of 
a complex product generally depends on a number of specifications distributed in 
multi-teams from different disciplines. Many researchers paid attention to multidis-
ciplinary collaborative design approaches. Ahn and Kwon [1] presented an efficient 
reliability-based multidisciplinary design optimization (RBMDO) strategy. Rosen-
man et al. [2] put forward a 3D virtual world environment, which provides real-time 
multi-user collaboration for designers in different locations and allows for the differ-
ent design disciplines to model their view of a building as different representations. 
Lee and Jeong [3] described the development of a decomposition based design 
(DBD) method using optimal sensitivity information with respect to coupled or  
interdisciplinary design variables. Chen and Jin [4] analyzed characteristics of mul-
tidisciplinary collaborative design (MCD) of product and proposed a new MCD-
oriented product information model (MCDPM) that integrates physical structure, 
design semantic and collaboration management data. Kong et al. [5] developed an 
Internet-based collaboration system for a press-die design process for automobile 
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manufacturers with CORBA, Java, Java3D and a relational database system. Yin et 
al. [6] presented an approach to component-based distributed cooperative design 
over the Internet where an extended multi-tier model (Browser/Server) is used to 
implement the web-based remote design system. Wang et al. [7] developed of  
a distributed multidisciplinary design optimization (MDO) environment (called  
WebBlow) using a number of enabling technologies including software agents, Inter-
net/Web, and XML. Gantois and Morris [8] described a quite innovative multidisci-
plinary optimisation method based on robust design techniques. Giassi et al. [9] 
described a quite innovative multidisciplinary optimisation method based on robust 
design techniques: MORDACE (multidisciplinary optimisation and robust design 
approaches applied to concurrent engineering). Bai et al. [10] introduced the concept 
of the PLF (Product Layout Feature) and provided a solution to the problems of PLF 
modeling. As a result of the solution, collaborative design activities among multi-
teams from different disciplines can be consistently carried out on PLF models in the 
PDM environment. 

The problem with these researchers is that they focused on the coordination and 
optimization in concurrent and collaborative design. However, the most important 
problem for concurrent and collaborative design is that how to obtain the design 
knowledge from multidisciplinary domain and make decision for multidisciplinary 
parameters. 

A multidisciplinary knowledge modeling method to support robust parameter  
decision-making is introduced in this paper. It collects the design knowledge from 
multidisciplinary specification to construct a formulated model for concurrent and 
collaborative design. Then, an approach of robust parameter decision-making is pre-
sented and is illustrated by a bogie design example. 

2   Multidisciplinary Knowledge Model 

The overall performance of a complex product generally depends on a number of 
specifications distributed in various disciplines. Design knowledge for parameter 
decision-making can be expressed as a set of constraints, which can be divided into 
two classes: specification constraints and relation constraints. The former is design 
goals, including the requirements and limitations on product performance, shape size 
and so forth, which are determined by user requirements before starting design proc-
ess. The latter is relationships between specifications and design variables which can 
be obtained from design principles in each discipline. In traditional design, the infor-
mation in specification constraints are not made full use, only treated as evaluated 
criteria. 

Specification constraints are design goals, which are almost defined early during 
the design process, so the successful ratio for passing simulation can be improved 
with determining the design variable solution space by considering all the pro- 
uct specifications simultaneously, and selecting values in this consistency region.  
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Therefore, the fundamental task of parameter design is to determine solution space 
and detect potential conflicts to ensure all the constraints are satisfied, and then obtain 
the optimized parameter specifications. 

2.1   Uncertainties in Multidisciplinary Parameter Decision-Making 

In multidisciplinary parameter decision-making, two kinds of imprecise information 
can be defined: 1) stochastic noise and 2) parameter uncertainty. Stochastic noise such 
as machining errors can be described with probability functions. However, the pa-
rameter uncertainty, which varies as the design cycle proceeds, cannot easily be de-
scribed by the statistical robust theory. These parameters can only be estimated within 
known bounds in the early design phase and become fixed in the final stage. If the 
process is described with traditional robust theory, the probability function will be-
come thinner and thinner as the design proceeds. However, detailed information in 
each interval such as the probability function is difficult to obtain in concurrent and 
collaborative design. 

For parameter uncertainty, it has long been recognized as a topic worthy of investi-
gation within system theory and artificial intelligence. In this paper, the rough regions 
from which design variables could choose values are described by interval boxes, 
which are effective to use filtering algorithm to detect inconsistent conflicts with 
interval description manner. Moreover, interval box is the important part of the fol-
lowing robust parameter decision-making model. 

2.2   Multidisciplinary Parameter Decision-Making Model 

Before introducing the multidisciplinary parameter decision-making model, several 
important concepts will be defined. 

Uncertain Parameter: Some parameters cannot be known precisely early in the de-
sign period, but have known bounds. The uncertainties in these parameters decreases 
as the design proceeds and the bounds of the parameter will converge to a fixed value 
as the design is finalized. 

Design Variable: Design parameters (variables) are those variables which can be 
determined independently by the designers. 

Objective Variable: The design goal. Usually objective variables are definite before 
product development begins, but they may change for a complex product with a long 
development time. 

Solution: A solution is a certain design variable vector satisfying all of the con-
straints for the given specifications. 

Solution Space: A solution space consists of a set of design variable intervals. 
However, the solution space may not contain a solution. 

Parameter Decision-making Model: In multidisciplinary parameter design, con-
straints with explicit mathematical forms are used to verify and analyze the parameter 
uncertainties during the design process. 
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Robust: With parameter uncertainties in multidisciplinary parameter decision-
making model, if a design structure described by the model can satisfy the given 
specifications, the design structure is robust within the given bounds of the uncertain 
parameters. 

The multidisciplinary parameter decision-making model is formulated as:  
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where ( ) nt ∈z R  is a state variable vector of an n-dimensional continuous dynamical 

system, m∈x R  is an m-dimensional design variable vector; g and h are constraint 
vectors of equations and inequalities respectively, and f is an nth-order ordinary dif-
ferential equations (ODEs) vector describing the behavior of a dynamical system. g, h 
and f compose the set of constraints. L0 U0

0 0[ , ]z z  and L0 U0[ , ]x x  are the initial intervals. 
L U[ ( ) , ( ) ]t tz z and L U[ , ]x x  are consistent intervals filtered by the following robust 

parameter decision-making algorithm. If the domain of any variable in z or x vector is 
empty, it means that there exists conflicts in current design project and some specifi-
cations cannot meet the requirements. 

3   Robust Parameter Decision-Making Algorithm 

Some important concepts and notations are introduced first before discuss the robust 
parameter decision-making algorithm framework. 

1) G-interval and interval box 
An G-interval written as { , }= ∪ −∞ +∞G R , is an interval extended by real number 

set R. ,a b∀ ∈G , the interval [a, b] means { }x a x b∈ ≤ ≤G . I(G) represents the set 
that contains all real intervals on the G-interval. 

An interval box B is defined as a Cartesian product of n G-intervals: 

1 2 , ( ) 1,...,n i i n= × ×⋅⋅ ⋅× ∈ =B I I I I I G  (2) 

2) Interval extension 
Let : ng →R R  be a mapping, if when 
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a) 1 2, , , ( )n⋅ ⋅ ⋅ ∈I I I I G and 
b) 1 1 2 2, ,..., n nr r r∀ ∈ ∈ ∈I I I  are satisfied, there exists a relationship: 

1 2 1 2( , ,..., ) ( , ,..., )n ng r r r ∈G I I I  (3) 

then : ( ) ( )n →G I G I G is defined as the interval extension of the mapping g, which is 
not formally unique according to the definition. 

Two important steps are employed in the algorithm framework: approximation and 
narrowing, with which variable intervals in the constraints network could converge 
into steady interval boxes. These interval boxes contain solution space as a subset and 
are consistent with the given specifications. 

3) Approximation 
For every relation ρ on the real number set R, the approximation of ρ is denoted as 

apx(ρ), which is the smallest G-interval that contains the relation ρ. 
4) Narrowing 
Let ρ be a relation on the real number set R, the narrowing function of ρ is denoted 

as : ( ) ( )nρ →I G I G
r

, for every interval box u, 

( ) ( )apxρ ρ= ∩u u
r

 (4) 

where relation ρ can be either an interval box or a mapping. When ρ is a mapping, 
ρ ∩ u  is the intersection with u and the result of mapping ρ being carried out on u. 

For the approximation and narrowing functions, there exist some properties charac-
terizing their behaviors on G-interval: 

For interval boxes u, v, and a relation ρ, if , , ( )nρ ∈u v I G , such properties are  
satisfied: 

( )ρ ⊂u u
r

 (5) 

( )ρ ρ ρ∩ = ∩u u
r

 (6) 

( ) ( )ρ ρ⊂ ⇒ ⊂u v u v
r r

 (7) 

( ( )) ( )ρ ρ ρ=u u
r r r

 (8) 

Equation (5) shows the convergence of a narrowing function. After narrowing 
function is carried out, the narrowed interval box will be smaller than the initial inter-
val. Equation (6) implies the correctness that no valid design solutions will be discar-
ded. If some conflicts are detected in the design process, it is certain that no solutions 
exist in the current design space. Equation (7) can assure the monotonicity of narro-
wing functions. Equation (8) represents the uniqueness with which the approximation 
and narrowing functions are necessary to be executed once in the current state, which 
avoids the infinite computing iterations. 
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In this paper, an algorithm combined with genetic algorithm is put forward to re-
solve the design model. In order to use the algorithm to solve the design model, the 
formation of constraints must be uniformed to equalities, so the inequalities and ordi-
nary differential equations (ODEs) should be transformed. 

1) Transform of the inequalities 
Construct a temporary vector θ  for inequality constraint vector h, q∈θ R  and 

0≥θ , with the help of, inequalities can be transformed into equalities. 

( , ) 0 ( , ) 0≤ ⇒ + =h z X h z X θ  (9) 

2) Transform of ordinary differential equations 
Considering the ordinary differential equations (ODE) vector f in Eqs. (1), 

L0 U0

0 0 0

( , , ) ( )

(0) ,

n mt t R R= ∈ ∈⎧⎪
⎨ = ∈ ⎡ ⎤⎪ ⎣ ⎦⎩

&z f z x z x

z z z z
 (10) 

If f is not dependent on time t which is coincident with engineering design requi-
rement generally, Eqs. (10) could be rewritten as 

( , )=&z f z x  (11) 

whose solution is formulated as 

[ ]T

0 1 0 0( , , ) ( , , ),..., ( , , )mt z t z t=z x z x z x z  (12) 

Eq. (12) shows the relationship between one of the system state variables and the 
its associated design variables. But in engineering design, it is difficult to obtain the 
analytical solution of Eq. (12), therefore some numerical methods are adopted to deal 
with Eq. (12) and obtain a series of values of state variables at some discrete time 
points: 

1 '( , , )n n n h+ = +z z f z x  (13) 

where h is the iteration step size. Actually Euler method, Runge-Kutta method and so 
on can be used to evaluate the derivatives of f at a fixed time point t*, then Eqs. (10) 
can be transformed to a group of algebra equations as result. 

The robust parameter decision-making algorithm used to solve the model is descri-
bed as: 

Procedure ModelResolve( In {C=[g,h,f],x0,z0}; Out {x, z}) 
Begin 
  Transform inequality set h into equality set g1 

  Transform ODE set f into equality set g2 

  For t*=initial_time To final_time 
    = Call IntervalResolve({x0, z0},{g,g1,g2}) 
    IF([x,z]=NULL) Then exit //conflict and exit 
    EndIf 
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    x→ x0 
    For each state_variables zi 
      zi_max(t

*)=max_GA(x,t*,z0) 
      zi_min(t

*)=min_GA(x,t*,z0) 
    EndFor 
    Keep x, z_max(t*), z_min(t*) at the time point of t* 
    t*= t*+h    // h is the step length of iteration 
  EndFor 
End 
Procedure IntervalResolve(x, C(x)) 
Begin 
  Boolean changed // a flag to judge the changes of  
                     variable intervals 
    While changed = TRUE Do changed← FALSE 
      For j=1 TO p+q+n Do //aiming at all the  
                            constraints 
        For i=1 To q+m+n Do //aiming at all the  
                              variables in a constraint 
          Approximate and narrow the constraints Cj(j=  
          r,...,t,1≤ r≤ t≤ p+q+n) which xi should satisfy 
          Approximate and narrow the interval consistent  
          with the domain of (x1,...,xi-1,xi+1,...,xq+m+n) 
          If (the domain of xi is empty) 
            Then show conflict messages, Return NULL 
          EndIf 
          If (the interval of xi is changed) 
            Then changed = TRUE 
              Replace the old interval of xi with the  
              newly obtained interval 
          EndIf 
        EndFor 
      EndFor 
    EndWhile 
  Return x 
End 

The procedure of ModelResolve() is the main procedure to solve the model. The 
procedure of IntervalResolve() is used to solve the consistent space of design vari-
ables at every discrete time point t*. In this algorithm, it implements two functions 
max_GA() and min_GA() with genetic algorithm to compute the maximum and mini-
mum of state variables. Using genetic algorithm will improve the correctness of ap-
proximation and narrowing functions with sacrificing complexity of the algorithm.  

The aim of the above algorithm is to obtain the consistent space of design vari-
ables. Then, designers can use optimization method to obtain optimized solution in 
the consistent space. 

In the parameter decision-making algorithm, a conflict means that the given box 
has no solution, which means that the current design cannot satisfy all of the network 
constraints. The constraints network should then be revised until the consistency 
checking is satisfied. With these three conclusions, the algorithm can be used to check 
for conflicts, which provides valuable support to concurrent and collaborative design. 
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According the arithmetic, conflict can be predicted by the state of the consistency 
interval. If consistent space of a design variable is empty set, then there is conflict in 
the constraint network, and conflict information is presented. 

4   Example 

Following is an example of bogie, which is shown in Fig. 2, to illustrate how to de-
sign parameter based on multidisciplinary knowledge model. The bogie of a railway 
car is mainly composed of suspension, wheels and axle boxes, in which the design of 
dumping system including suspension spring and buffer spring is a key problem and 
involved with multidiscipline, such as mechanics, cybernetics and dynamics.  

 

 

Fig. 2. An example of the railway vehicle bogie 

The knowledge in bogie dumping system design is illustrated as follows. 
Step 1. Multidisciplinary knowledge model. 
1) Knowledge in mechanics can be expressed as 

3
max 1[ ] 8 / 0n mn nP D C d tempτ π− − =  (14) 

/ 0n n nm D d− =  (15) 

( ) ( ) 1[ 4 1 4 4 0.615 ] 0mn n n nC m m m −− − − + =  (16) 

4 3/(8 ) 0n n n nK Gd n D− =  (17) 

min ( 1) 0n n nH n d− + =  (18) 

( 1.5) 0n nN n− + =  (19) 
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0 min[ (1 ) / ] 0n n vn vd nH H P K K− + + =  (20) 

/ 0w w wm D d− =  (21) 

( ) ( ) 1[ 4 1 4 4 0.615 ] 0mw w w wC m m m −− − − + =  (22) 

4 3/(8 ) 0w w w wK Gd n D− =  (23) 

min ( 1) 0w w wH n d− + =  (24) 

( 1.5) 0w wN n− + =  (25) 

2 w nk K K= +  (26) 

5u bz=  (27) 

2) Knowledge in cybernetics can be expressed as 

( )c I DG s K T s T s= + +  (28) 

6 5z z=&  (29) 

6 3 1 6 5D IT z z z Kz T z= − − −&  (30) 

100K <  (31) 

, 30I DT T <  (32) 

3) Knowledge in dynamics can be expressed as 

1sz z=&  (33) 

2tz z=&  (34) 

1 1 1 2 1[ ( ) ( ) ]/s tz k z z c z z u m= − − − − +&  (35) 

2 1 1 2 2 2[ ( ) ( ) ( )] /s t tz k z z c z z u k r z m= − + − − + −&  (36) 
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0.02sin14r t=  (37) 

3rsz z=&  (38) 

4rtz z=&  (39) 

3 1 3 1[ ( ) ]/rs rt rsz k z z c z m= − − −&  (40) 

4 1 4 2 2[ ( ) ( )]/rs rt rt rtz k z z c z k r z m= − − + −&  (41) 

4) Knowledge in other disciplinary can be expressed as 

0.3sz g<&&  (42) 

0.02tz r− <  (43) 

0.05s tz z− <  (44) 

0.00027 0.030sz v≤ ⋅ +&  (45) 

3 7102.7 0.325 2.5sW z f= ⋅ ⋅ ≤  (46) 

1 2 1 2/ 2 ( )( )xD c k k m m= + +  (47) 

3
max n max8 / [ ]n n mn nP D C dτ π τ= ≤  (48) 

1 0 / 3.5 0n nh H D= − ≤  (49) 

2 0 / 3.5 0w wh H D= − ≤  (50) 

3
max w max8 / [ ]w w mw wP D C dτ π τ= ≤  (51) 

Step 2. Multidisciplinary parameter decision-making 
Based on the above knowledge from multidisciplinary, the parameter decision-

making model can be established by Eqs. (1). The initial intervals are shown as the 
second and third column in Table 1. The results of consistent interval are shown as 
the fourth and fifth column in Table 1.  
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Table 1. The design results of bogie dumping components 

Variable 
name 

Initial upper 
bound 

Initial lower 
bound 

Consistent 
upper bound 

Consistent 
lower bound 

Pmaxn 30000  20000  28787 20000 
Dn 0.15  0.1  0.15 0.142 
dn 0.03  0.025  0.029 0.025 

Cmn 1.57 1.2 1.30 1.22 
mn 6 3 6 5.12 
Kn 300000 250000 284470 265500 

Hminn 0.5 0.05 0.375 0.15 
nn 7 6 6.7 6.47 
Nn 9 5 9 7.7 
Pvn 18000 17000 18000 17130 
Kvd 0.7 0.5 0.7 0.5 
H0n 0.4 0.2 0.4 0.31 

Pmaxw 55000  49000 53500 49000 
Dw 0.25  0.22 0.25 0.22 
dw 0.050  0.038 0.045 0.038 

Cmw 1.57 1.2 1.39 1.23 
mw 6 3 5.87 4.99 
Kw 550000 400000 550000 478500 

Hminw 0.5 0.05 0.4354 0.2054 
nw 5 4 4.77 4.12 
Nw 6 5 6 5.55 
Pvw 40000 28000 36200 28620 
H0w 0.4 0.2 0.4 0.25 
k1 0.28 0.28 0.28 0.28 
Dx 0.3 0.2 0.3 0.2 
c 90 100 94.75 99.98 
K 1 10 1.17 10 
TI 1 10 1.23 9.66 
TD 1 10 1.44 9.98 

5   Conclusions 

In this paper, a knowledge-based parameter decision-making method for multidisci-
plinary design is presented. In the process of multidisciplinary knowledge modeling, 
knowledge from multidisciplinary specification is formulated as a set of constraints. 
Multidisciplinary knowledge model can be used to detect conflict and obtain consis-
tent solution space for multidisciplinary parameter design. A design example is 
proved that the proposed method is efficient. The method described in this paper was 
used to develop knowledge driven multidisciplinary design system, which is now 
running in a railway vehicle design project. 
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Abstract. In this paper, we obtain the main term of the average
stochastic complexity for certain complete bipartite graph-type spin
models in Bayesian estimation. We study the Kullback function of the
spin model by using a new method of eigenvalue analysis first and use a
recursive blowing up process for obtaining the maximum pole of the zeta
function which is defined by using the Kullback function. The papers
[1,2] showed that the maximum pole of the zeta function gives the main
term of the average stochastic complexity of the hierarchical learning
model.

1 Introduction

The spin model in statistical physics is also called the Boltzmann machine. In
mathematics, the spin model can be regarded as the Bayesian network or the
graphical model. So, the model is widely used in many fields. However, its many
theoretical problems have been unsolved so far. Clarifying its stochastic complex-
ity is one of those problems in the artificial intelligence. Stochastic complexities
are used in model selection methods well. Therefore, it is an important problem
to know the behavior of stochastic complexities. The fact that the spin model
is a non-regular statistical model makes the problem difficult. We cannot ana-
lyze it by using classic theories of regular statistical models, since their Fisher
matrix functions are singular. This is the reason why we may not apply model
selection methods such as AIC[3], TIC[4], HQ[5], NIC[6], BIC[7], MDL[8] to the
non-regular statistical model.

Recently, the papers [1,2] showed that the maximum pole of the zeta function
of hierarchical learning models gives the main term of their average stochastic
complexity. The results are for all non-regular statistical models which include
not only the spin model but also the layered neural network, the reduced rank
regression and the normal mixture model. It is known that the desingularization
of an arbitrary polynomial can be obtained by using a blowing up process (Hi-
ronaka’s Theorem [9]). Therefore, the maximum pole is obtained by a blowing
up process of its Kullback function.

However, in spite of such results, it is still difficult to obtain stochastic com-
plexities by the following two main reasons. (1) The desingularization of any

V. Torra, Y. Narukawa, and Y. Yoshida (Eds.): MDAI 2007, LNAI 4617, pp. 443–454, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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polynomial in general, although it is known as a finite process, is very difficult.
Furthermore, most of the Kullback functions of non-regular statistical models
are degenerate (over R) with respect to their Newton polyhedrons, singularities
of the Kullback functions are not isolated, and the Kullback functions are not
simple polynomials, i.e., they have parameters. Therefore, to obtain the desin-
gularization of the Kullback functions is a new problem even in mathematics,
since these singularities are very complicated and so most of them have not been
investigated so far. (2) Since the main purpose is for obtaining the maximum
pole, getting the desingularization is not enough for us. We need some techniques
for comparing poles. However, no theorems for comparing poles have developed
as far as we know.

Therefore, the exact main terms of the average stochastic complexities of
spin models were unknown, while upper bounds were reported in several pa-
pers [10,11]. In this paper, we clarify explicitly the main terms of the stochas-
tic complexities of certain complete bipartite graph-type spin models, by us-
ing a new method of eigenvalue analysis and a recursive blowing up process
(Theorem 4).

We already have obtained the exact main terms of the average stochastic
complexities for the three layered neural network in [12] and [13], and the reduced
rank regression in [14].

There are usually direct and inverse problems to be considered. The direct
problem is to solve the stochastic complexity with a known true density function.
The inverse problem is to find proper learning models and learning algorithms
under the condition of an unknown true density function. The inverse problem is
important for practical usage, but in order to solve the inverse problem, first the
direct problem has to be solved. So it is necessary and crucial to construct fun-
damental mathematical theories for solving the direct problem. Our standpoint
comes from that direct problem.

This paper consists of five sections. In Section 2, we summary Bayesian learn-
ing models [1,2]. Section 3 contains Hironaka’s Theorem [9]. In Section 4, our
main results are stated. In Section 5, we conclude our paper.

2 Bayesian Learning Models

Let xn := {xi}n
i=1 be n training samples randomly selected from a true prob-

ability density function q(x). Consider a learning model p(x|w), where w is a
parameter. We assume that the true probability density function q(x) is defined
by q(x) = p(x|w∗), where w∗ is constant.

Let Kn(w) =
1
n

n∑
i=1

log
p(xn|w∗)
p(xn|w)

.

The average stochastic complexity or the free energy is defined by

F (n) = −En{log
∫

exp(−nKn(w))ψ(w)dw}.
Let p(w|xn) be the a posteriori probability density function:
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p(w|xn) =
1
Zn
ψ(w)

n∏
i=1

p(xi|w), where ψ(w) is an a priori probability density

function on the parameter set W and Zn =
∫

W
ψ(w)

∏n
i=1 p(xi|w)dw.

So the average inference p(x|xn) of the Bayesian density function is given by
p(x|xn) =

∫
p(x|w)p(w|xn)dw.

Set K(q||p) =
∑

x

q(x) log
q(x)
p(x|xn)

. This function represents a measure func-

tion between the true density function q(x) and the predictive density function
p(x|xn). It always takes a positive value and satisfies K(q||p) = 0 if and only if
q(x) = p(x|xn).

The generalization error G(n) is its expectation value over training samples:

G(n) = En{
∑

x

p(x|w∗) log
p(x|w∗)
p(x|xn)

},
which satisfies G(n) = F (n+ 1)− F (n) if it has an asymptotic expansion.

Define the zeta function J(z) of a complex variable z for the learning model

by J(z) =
∫
K(w)zψ(w)dw, where K(w) is the Kullback function: K(w) =∑

x

p(x|w∗) log
p(x|w∗)
p(x|w)

. Then, for the maximum pole −λ of J(z) and its order

θ, we have
F (n) = λ logn− (θ − 1) log log n+O(1), (1)

where O(1) is a bounded function of n, and

G(n) ∼= λ/n− (θ − 1)/(n logn) as n→∞. (2)

Therefore, our aim is to obtain λ and θ in this paper.
We state Lemmas 2 and 3 in [14] below which are frequently used in this

paper. Define the norm of a matrix C = (cij) by ||C|| =
√∑

i,j |cij |2.

Lemma 1 ([14]). Let U be a neighborhood of w0 ∈ Rd, C(w) be an analytic
H ×H ′ matrix function from U , ψ(w) be a C∞ function from U with compact
support, and P , Q be any regular H×H, H ′×H ′ matrices, respectively. Then the
maximum pole of

∫
U ||C(w)||2zψ(w)dw is the same of

∫
U ||PC(w)Q||2zψ(w)dw.

3 Resolution of Singularities

In this section, we introduce Hironaka’s Theorem [9] on a resolution of singular-
ities and construction of blowing up. Blowing up is a main tool in a resolution
of singularities of an algebraic variety.

Theorem 1 (Hironaka [9])
Let f be a real analytic function in a neighborhood of w = (w1, · · · , wd) ∈ Rd

with f(w) = 0. There exists an open set V . w, a real analytic manifold U and
a proper analytic map μ from U to V such that



446 M. Aoyagi and S. Watanabe

(1) μ : U − E → V − f−1(0) is an isomorphism, where E = μ−1(f−1(0)),
(2) for each u ∈ U , there is a local analytic coordinate system (u1, · · · , un) such
that f(μ(u)) = ±us1

1 u
s2
2 · · ·usn

n , where s1, · · · , sn are non-negative integers.

Next we explain about blowing up along a manifold used in this paper [15].
Define a manifold M by gluing k open sets Ui

∼= Rd, i = 1, 2, · · · , k(d ≥ k) as
follows. Denote a coordinate system of Ui by (ξ1i, · · · , ξdi).

Define an equivalence relation (ξ1i, ξ2i, · · · , ξdi) ∼ (ξ1j , ξ2j , · · · , ξdj) at ξji �= 0
and ξij �= 0, by ξij = 1/ξji, ξjj = ξiiξji, ξhj = ξhi/ξji(1 ≤ h ≤ k, h �= i, j), ξ�j =
ξ�i(k + 1 ≤ � ≤ d), and set M =

∐k
i=1 Ui/ ∼. Also define π : M → Rd by

Ui . (ξ1i, · · · , ξni); �→ (ξiiξ1i, · · · , ξiiξi−1i, ξii, ξiiξi+1i, · · · , ξiiξki, ξk+1i, · · · , ξdi).
This map is well-defined and called blowing up along

X = {(w1, · · · , wk, wk+1, · · · , wd) ∈ Rd | w1 = · · · = wk = 0}.
The blowing map satisfies (1) π : M → Rd is proper and (2) π : M −

π−1(X) → Rd −X is isomorphic.

Fig. 1. Hironaka Theorem Fig. 2. A complete bipartite graph-
type spin model

4 Spin Models

For simplicity, we use the notation da instead of
∏H

i=1

∏H′

j=1 daij for a = (aij).
Let 2 ≤ M ∈ N and N ∈ N. Consider a complete bipartite graph-type spin

model

p(x, y|a) =
exp(
∑M

i=1

∑N
j=1 aijxiyj)

Z(a)
, Z(a) =

∑
xi=±1,yi=±1,

exp(
M∑
i=1

N∑
j=1

aijxiyj),

with x = (xj) ∈ {1,−1}M and y = (yj) ∈ {1,−1}N .
We have

p(x|a) =

∏N
j=1(
∏M

i=1 exp(aijxi) +
∏M

i=1 exp(−aijxi))
Z(a)

= {
N∏

j=1

(
M∏
i=1

(1 + xi tanh(aij)) +
M∏
i=1

(1− xi tanh(aij)))}
∏N

j=1

∏M
i=1 cosh(aij)
Z(a)

=

∏N
j=1

∏M
i=1 cosh(aij)
Z(a)

×
N∏

j=1

(2
∑

0≤p≤M/2

∑
i1<···<i2p

xi1xi2 · · ·xi2p tanh(ai1j) tanh(ai2j) · · · tanh(ai2pj)).
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Let B = (bij) = (tanh(aij)).

Denote BJ =
∏M

i=1

∏N
j=1 b

Jij
ij and xJ =

∏M
i=1 x

∑N
j=1 Jij

i , where J = (Jij) is an
M ×N matrix with Jij ∈ {0, 1}.

Then we have

p(x|a) =
2N
∏N

j=1

∏M
i=1 cosh(aij)

Z(a)

∑
J:
∑
M
i=1 Jij even for all j

BJxJ .

Let Z(b) =
Z(a)

2N
∏N

j=1

∏M
i=1 cosh(aij)

. Set I = {I ∈ {0, 1}M |∑M
i=1 Ii is even },

andBI =
∑

J:
∑M
i=1 Jij is even∑N

j=1 Jij=Ii mod 2

BJ for I ∈ I. Then we have p(x|a) =
1
Z(b)

∑
I∈I

BIxI

and Z(b) = 2NB0. Since
∑

0≤i≤M/2

(
M
2i

)
= ((1 + 1)M + (1− 1)M )/2 = 2M−1,

the number of all elements in I is 2M−1.
Assume that a true distribution is p(x|a∗) with a∗ = (a∗ij). Then the Kullback

function K(a) is∑
xi=±1

p(x|a∗)(log p(x|a∗)− log p(x|a)) =
∑

xi=±1

p(x|a∗)
∞∑

i=2

(−1)i

i
(
p(x|a)
p(x|a∗) − 1)i.

Since we consider a neighborhood of p(x|a)
p(x|a∗) = 1, we only need to obtain the

maximum pole of J(z) =
∫
Ψz

0 db, where

Ψ0 =
∑

xi=±1

(p(x|a)− p(x|a∗))2
p(x|a∗) =

∑
xi=±1

(
∑
I∈I BIxI

Z(b) −
∑
I∈I B∗IxI

Z(b∗) )2

p(x|a∗) .

By Lemma 5 in [1], we may replace Ψ0 by

Ψ1 =
∑

I∈{0,1}M
22N(

BI

Z(b)
− B∗I

Z(b∗)
)2 =

∑
I∈{0,1}M

(
BI

B0
− B

∗I

B∗0 )2.

Assume that the true distribution is p(x|a∗) with a∗ = 0. By using Lemma 1,
Ψ1 can be replaced by

Ψ(b) =
∑

I �=0∈I
(BI)2, (3)

and from now on, we consider the zeta function J(z) =
∫

V
Ψzdb, where V is a

sufficiently small neighborhood of 0.
Let I, I ′, I ′′ ∈ I. We set BI

N = BI and bIj =
∏M

i=1 b
Ii
ij . Also set

BN = (BI
N ) = (B(0,...,0)

N , B
(1,1,0,...,0)
N , B

(1,0,1,0,...,0)
N , . . .).

We have BI
N =
∑

I′+I′′=I mod 2 b
I′′

N B
I′

N−1.

Now consider the eigenvalues of the matrix CN = (cI,I′

N ) where cI,I′

N = bI
′′

N

with I ′ + I ′′ = I mod 2. Note that BN = CNBN−1. Let � = (�1, . . . , �2M−1) =
(�I) ∈ {−1, 1}2M−1

with �(0,...,0) = 1. � is an eigenvector, if and only if∑
I′∈I c

I,I′

N �I′ = �I
∑

I′∈I c
(0,...,0),I′

N �I′ = �I
∑

I′∈I b
I′

N�I′ . That is,
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� is an eigenvector ⇐⇒ if I + I ′ = I ′′ mod 2 (I + I ′ + I ′′ = 0 mod 2)
then �I′′ = �I�I′ ( �I�I′�I′′ = 1).

Denote the number of all elements in a set K by #K.

Theorem 2. Let K1,K2 ⊂ {1, . . . ,M}, 1 ∈ K2, K1 ∩K2 = φ, and K1 ∪K2 =
{1, . . . ,M}.

Set �I =
{−1, if #{i ∈ K1 : Ii = 1} is odd,

1, otherwise.
If K1 = φ, set � = (1, . . . , 1).

Then � = (�I) is an eigenvector of CN and its eigenvalue is
∑

I∈I �Ib
I
N .

Proof. Assume that I ′ + I ′′ + I ′′′ = 0 mod 2. If all #{i ∈ K1 : I ′i = 1},
#{i ∈ K1 : I ′′i = 1} and #{i ∈ K1 : I ′′′i = 1} are even, then �I′�I′′�I′′′ = 1.

If #{i ∈ K1 : I ′i = 1} and #{i ∈ K1 : I ′′i = 1} are odd, then #{i ∈ K1 : I ′′′i =
1} is even and �I′�I′′�I′′′ = 1 since I ′ + I ′′ + I ′′′ = 0 mod 2.

If #{i ∈ K1 : I ′i = 1} is odd, then #{i ∈ K1 : I ′′i = 1} or #{i ∈ K1 : I ′′′i = 1}
is odd, since I ′ + I ′′ + I ′′′ = 0 mod 2. ��
Since we have 2M−1 pairs of K1,K2 with 1 ∈ K2, K1 ∩ K2 = φ and K1 ∪
K2 = {1, . . . ,M}, those eigenvectors �’s span the whole space R2M−1

and are
orthogonal to each other.

Set 1 = (1, . . . , 1)t ∈ Z2M−1−1 (t denotes the transpose). Let D be the matrix

by arranging the eigenvectors �’s such that D =
(

1 1t

1 D′

)
and DD = 2M−1E,

where E is the unit matrix.

Since DD =
(

2M−1 1tD′

1 +D′1 11t +D′D′

)
= 2M−1E, we have D′1 = −1.

Theorem 3. Let C′
j = DCjD/2M−1 = DCjD

−1 =

⎛⎜⎜⎜⎝
s0j 0 0 · · · 0
0 s1j 0 · · · 0
...

...
...

...
...

0 0 0 · · · s2M−1−1,j

⎞⎟⎟⎟⎠
which is the diagonal matrix. We have the followings.

(1) Let dij =

⎧⎪⎪⎨⎪⎪⎩
1, if i = 1 or j = 1,

DI,J , if I = i
(1, 0, . . . , 0, 1, 0, . . . , 0)

and J = j
(1, 0, . . . , 0, 1, 0, . . . , 0).

Then DI,J =
∏

i∈I,j∈J dij for all I, J ∈ I.

(2) BN = CNBN−1 = CN · · ·C2B1 = DC′
N · · ·C′

2D
−1B1 =

DC′
N · · ·C′

11
2M−1

.

(3) We have 2M−1D′−1 = D′ − 11t.
(4) Let B̃1 = (BI

1 )I �=0, B̃N = (BI
N )I �=0 and S =

(
N∏

j=2

s0j)

⎛⎜⎝1 · · · 1
...

...
...

1 · · · 1

⎞⎟⎠+

⎛⎜⎜⎜⎜⎝
∏N

j=2 s1j 0 0 · · · 0
0

∏N
j=2 s2j 0 · · · 0

...
...

...
...

0 0 0 · · · ∏N
j=2 s2M−1−1,j

⎞⎟⎟⎟⎟⎠.
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We have

(detS)D′−1S−1D′−12M−1B̃N = (detS)B̃1 − (1 D′)

⎛⎜⎜⎜⎜⎝
∏

i�=0

∏N
j=2 sij∏

i�=1

∏N
j=2 sij

...∏
i�=2M−1−1

∏N
j=2 sij

⎞⎟⎟⎟⎟⎠.

(5) The corresponding element to I of (1 D′)

⎛⎜⎜⎜⎜⎝
∏

i�=0

∏N
j=2 sij∏

i�=1

∏N
j=2 sij

...∏
i�=2M−1−1

∏N
j=2 sij

⎞⎟⎟⎟⎟⎠ consists of

monomials cJ
∏M

i=1

∏N
j=2 b

Jij
ij , where cJ ∈ R, 0 ≤ Jij ∈ Z and

∑N
j=1 Jij = Ii

mod 2.

Proof. (5) is obtained by

(CN · · ·C2)−1 = D

⎛⎜⎜⎜⎜⎝
1/
∏N

j=2 s0j 0 · · · 0
0 1/

∏N
j=2 s1j · · · 0

...
...

0 0 · · · 1/
∏N

j=2 s2M−1j

⎞⎟⎟⎟⎟⎠D−1.

We prove only (4). Let H = 2M−1 − 1. We have

2M−1B̃N =
(
1 D′ )C′

N · · ·C′
2

(
1 1t

1 D′

)
B1

=
(
1 D′ )

⎛⎜⎜⎜⎜⎝
∏N

j=2 s0j 0 0 · · · 0
0

∏N
j=2 s1j 0 · · · 0

...
...

... · · ·
...

0 0 0 · · · ∏N
j=2 sH,j

⎞⎟⎟⎟⎟⎠
(

1 1t

1 D′

)
B1

=
(
1 D′ ){

⎛⎜⎜⎜⎜⎝
∏N

j=2 s0j∏N
j=2 s1j

...∏N
j=2 sH,j

⎞⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎝
∏N

j=2 s0j 0 0 · · · 0
0

∏N
j=2 s1j 0 · · · 0

...
...

... · · ·
...

0 0 0 · · · ∏N
j=2 sH,j

⎞⎟⎟⎟⎟⎠
(

1t

D′

)
B̃1}

=
(
1 D′ )

⎛⎜⎜⎜⎜⎝
∏N

j=2 s0j∏N
j=2 s1j

...∏N
j=2 sH,j

⎞⎟⎟⎟⎟⎠ + D′(−1 E
)
⎛⎜⎜⎜⎜⎝
∏N

j=2 s0j 0 0 · · · 0
0

∏N
j=2 s1j 0 · · · 0

...
...

... · · ·
...

0 0 0 · · · ∏N
j=2 sH,j

⎞⎟⎟⎟⎟⎠
(−1t

E

)
D′B̃1

=
(
1 D′ )

⎛⎜⎜⎜⎜⎝
∏N

j=2 s0j∏N
j=2 s1j

...∏N
j=2 sH,j

⎞⎟⎟⎟⎟⎠ + D′SD′B̃1.
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Therefore D′−12M−1B̃N =
(−1 E

)
⎛⎜⎜⎜⎜⎝
∏N

j=2 s0j∏N
j=2 s1j

...∏N
j=2 sH,j

⎞⎟⎟⎟⎟⎠ + SD′B̃1.

We have

S−1
i1j1

= (detS)−1

{∑H
i2=0,i2 �=i1

∏
0≤i≤H,i�=i1,i2

∏N
j=2 sij , if i1 = j1,

−∏0≤i≤H,i�=i1,j1

∏N
j=2 sij , if i1 �= j1,

and det S =
∑H

i2=0

∏
i�=i2

∏N
j=2 sij .

Let s =

⎛⎜⎜⎜⎜⎝
∏

i�=0

∏N
j=2 sij∏

i�=1

∏N
j=2 sij

...∏
i�=H

∏N
j=2 sij

⎞⎟⎟⎟⎟⎠ and s̃ =

⎛⎜⎜⎜⎜⎝
∏

i�=1

∏N
j=2 sij∏

i�=2

∏N
j=2 sij

...∏
i�=H

∏N
j=2 sij

⎞⎟⎟⎟⎟⎠.

Since (det S)S−1

⎛⎜⎜⎝
∏N

j=2 s1j −∏N
j=2 s0j

...∏N
j=2 sH,j −∏N

j=2 s0j

⎞⎟⎟⎠ =
∑H

i2=0

∏
i�=i2

∏N
j=2 sij1 − 2M−1s̃, we

have

(detS)D′−1S−1D′−12M−1B̃N = (detS)B̃1 −
H∑

i2=0

∏
i�=i2

N∏
j=2

sij1 − 2M−1D′−1s̃

= (detS)B̃1 −
H∑

i2=0

∏
i�=i2

N∏
j=2

sij1 − (D′ − 11t)̃s

= (detS)B̃1 −
∏
i�=0

N∏
j=2

sij1 − D′s̃ = (detS)B̃1 − (1 D′)s,

by using (3) 2M−1D′−1 = D′ − 11t. 
�

Theorem 4. The average stochastic complexity F (n) in (1) and the general-
ization error G(n) in (2) are given by using the following maximum pole −λ of
J(z) and its order θ.

(Case 1): If N = 1 then λ = M/4 and θ =
{

2, if M = 2,
1, if M ≥ 3.

(Case 2): If M = 2 then λ = 1/2 and θ =
{

2, if N = 1,
1, if N ≥ 2.

(Case 3): If M = 3 then λ =
{

3/4, if N = 1,
3/2, if N ≥ 2, and θ =

⎧⎨⎩
1, if N = 1,
3, if N = 2,
1, if N ≥ 3.

(Case 4): If M = 4 then λ =
{

1, if N = 1,
2, if N = 2, and θ = 1, if N = 1, 2.
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Proof. By Theorem 3 (4) and Lemma 1, we only need to consider the maximum

pole of J(z) =
∫ ||Ψ ′||2zdb, where Ψ ′ = (detS)B̃1 − (1 D′)

⎛⎜⎜⎜⎜⎝
∏

i�=0

∏N
j=2 sij∏

i�=1

∏N
j=2 sij

...∏
i�=H

∏N
j=2 sij

⎞⎟⎟⎟⎟⎠.

(Case 1): Since BI
1 =
∏

j∈I b1j, we have the poles −M
4

and −M − 1
2

.

(Case 2): The fact B11 =
∑N

k=1 b1kb2k(1 + · · · ) yields Case 2.
(Case 3): Assume that M = 3.

Let N ≥ 2. We have D′ =

⎛⎝ 1 −1 −1
−1 1 −1
−1 −1 1

⎞⎠,
⎧⎪⎪⎨⎪⎪⎩
s0j = 1 + b1jb2j + b1jb3j + b2jb3j ,
s1j = 1 + b1jb2j − b1jb3j − b2jb3j ,
s2j = 1− b1jb2j + b1jb3j − b2jb3j ,
s3j = 1− b1jb2j − b1jb3j + b2jb3j ,

and Ψ ′ = (detS)

⎛⎝ b11b21b11b31
b21b31

⎞⎠− (1, D′)

⎛⎜⎜⎜⎝
∏

i�=0

∏N
j=2 sij∏

i�=1

∏N
j=2 sij∏

i�=2

∏N
j=2 sij∏

i�=3

∏N
j=2 sij

⎞⎟⎟⎟⎠.

Construct blowing up of Ψ ′ along the submanifold {bij = 0, 1 ≤ i ≤ M, 1 ≤
j ≤ N}.

Let b11 = u, bij = ub′ij for (i, j) �= (1, 1).

Remark. By setting the general case as bi0j0 = b′i0j0 , bij = b′i0j0b
′
ij for

(i, j) �= (i0, j0), we have a manifold M by gluing MN open sets Ui0j0

with a coordinate system (b′11, b
′
12, · · · , b′MN ) (cf. Section 3). We don’t

need to consider all cases since we obtain the same poles in Ui0j0 as those
in U11.

We have Ψ ′′ = u2(detS)

⎛⎝ b′21
b′31
b′21b

′
31

⎞⎠ + 4u2

⎛⎜⎝
∑N

k=2 b
′
1kb

′
2k + u2f1∑N

k=2 b
′
1kb

′
3k + u2f2∑N

k=2 b
′
2kb

′
3k + u2f3

⎞⎟⎠, where f1,

f2 and f3 are polynomials of b′ij with at least two degree.

By putting
(
b′′21
b′′31

)
=
(
b′21
b′31

)
+ 4

(∑N
k=2 b

′
1kb

′
2k + u2f1∑N

k=2 b
′
1kb

′
3k + u2f2

)
/(detS), we have

Ψ ′′ =
u2

detS

×
⎛⎝ (detS)2b′′21

(detS)2b′′31
(b′′21 detS − 4

∑N
k=2 b

′
1kb

′
2k − 4u2f1)(b′′31 detS − 4

∑N
k=2 b

′
1kb

′
3k − 4u2f2)

⎞⎠
+u2

⎛⎝ 0
0

4
∑N

k=2 b
′
2kb

′
3k + 4u2f3

⎞⎠.
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By using Lemma 1 again, the maximum pole of
∫ ||Ψ ′′||2zu3Ndb is that of

J(z) =
∫ ||Ψ ′′′||2zu3Ndb, where Ψ ′′′ = u2

⎛⎝ b′′21b′′31
g1

⎞⎠, and

g1 = (
∑N

k=2 b
′
1kb

′
2k + u2f1)(

∑N
k=2 b

′
1kb

′
3k + u2f2) + detS

4 (
∑N

k=2 b
′
2kb

′
3k + u2f3).

Construct blowing up of Ψ ′′′ along the submanifold {b′′21 = 0, b′′31 = 0, b′3k =
0, 2 ≤ k ≤ N}. Then we have (I), (II) cases.
(I) Let b′32 = v, b′′21 = vb′′′21, b′′31 = vb′′′21, b′3k = vb′′3k, for 3 ≤ k ≤ N . Then Ψ ′′′ =

u2v

⎛⎝ b′′′21

b′′′31

g′1

⎞⎠, where g′1 = (
∑N

k=2 b
′
1kb

′
2k + u2f1)(b′12 +

∑N
k=3 b

′
1kb

′′
3k + u2f2/v) +

detS
4 (b′22 +

∑N
k=3 b

′
2kb

′′
3k + u2f3/v).

By Theorem 3 (5), we can set f2 = vf ′2 and f3 = vf ′3, where f ′2 and f ′3 are
polynomials.

We have (
∑N

k=2 b
′
1kb

′
2k)(b′12 +

∑N
k=3 b

′
1kb

′′
3k) + detS

4 (b′22 +
∑N

k=3 b
′
2kb

′′
3k)

= (b′2,2, b
′
2,3, · · · , b′2,N)

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝
b′1,2

b′1,3
...
b′1,N

⎞⎟⎟⎟⎠ (b′1,2, b
′
1,3, · · · , b′1,N) +

detS
4
E

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1
b′′3,3
...

b′′3,N

⎞⎟⎟⎟⎠ .

Since

⎛⎜⎜⎜⎝
b′1,2

b′1,3
...
b′1,N

⎞⎟⎟⎟⎠ (b′1,2, b
′
1,3, · · · , b′1,N ) + detS

4 E is regular, we can change vari-

ables from (b′2,2, b
′
2,3, · · · , b′2,N) to (b′′2,2, b

′′
2,3, · · · , b′′2,N) by (b′′2,2, b

′′
2,3, · · · , b′′2,N ) =

(b′2,2, b
′
2,3, · · · , b′2,N)

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝
b′1,2

b′1,3
...
b′1,N

⎞⎟⎟⎟⎠ (b′1,2, b
′
1,3, · · · , b′1,N) + detS

4 E

⎞⎟⎟⎟⎠. Moreover, let

b′′′22 = b′′2,2 + b′′2,3b
′′
3,3 + · · ·+ b′′2,Nb

′′
3,N .

Then, we have

Ψ ′′′ = u2v

⎛⎝ b′′′21

b′′′31

b′′′22 + u2f4

⎞⎠,
where f4 is a polynomial. Therefore, we have the poles −3N

4
,−N + 1

2
,−3

2
.

(II) Let b′′21 = v, b′′31 = vb′′′21, b
′
3k = vb′′3k, for 2 ≤ k ≤ N . Then we have the poles

−3N
4
,−N + 1

2
.
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(Case 4): Let M = 4. We have D′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 −1 1 1 1 −1
−1 1 1 −1 −1 1 −1
−1 1 −1 −1 1 −1 1
1 −1 −1 −1 −1 1 1
1 −1 1 −1 1 −1 −1
1 1 −1 1 −1 −1 −1
−1 −1 1 1 −1 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

s0j = 1 + b1jb2j + b1jb3j + b1jb4j + b2jb3j + b2jb4j + b3jb4j + b1jb2jb3jb4j ,

s1j = 1 + b2jb3j + b2jb4j + b3jb4j − b1j(b2j + b3j + b4j + b2jb3jb4j),
s2j = 1 + b1jb3j + b1jb4j + b3jb4j − b2j(b1j + b3j + b4j + b1jb3jb4j),
s3j = 1 + b1jb3j + b2jb4j + b1jb2jb3jb4j − (b1j + b3j)(b2j + b4j),
s4j = 1 + b1jb2j + b3jb4j + b1jb2jb3jb4j − (b1j + b2j)(b3j + b4j),
s5j = 1 + b1jb2j + b1jb4j + b2jb4j − b3j(b1j + b2j + b4j + b1jb2jb4j),
s6j = 1 + b1jb2j + b1jb3j + b2jb3j − b4j(b1j + b2j + b3j + b1jb2jb3j),
s7j = 1 + b1jb4j + b2jb3j + b1jb2jb3jb4j − (b1j + b4j)(b2j + b3j).

Let M = 4 and N = 2. Then we have

Ψ ′ = detS

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

b11b21
b11b31
b11b41
b21b31
b21b41
b31b41

b11b21b31b41

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−b12b22(8 + f1)
−b12b32(8 + f2)
−b12b42(8 + f3)
−b22b32(8 + f4)
−b22b42(8 + f5)
−b32b42(8 + f6)

b12b22b32b42(40 + f7)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where fi’s are polynomials of bij with at least two degree. As space is limited,

we will omit the proof in detail, but we have the poles −8
4
,−6

2
,−5

2
,−9

4
. ��

5 Conclusion

In this paper, we obtain the main term of the average stochastic complexity
for certain complete bipartite graph-type spin models in Bayesian estimation
(Theorem 4). We use a new method of eigenvalue analysis and a recursive blowing
up method in algebraic geometry and show that these are effective for solving
the problems in the artificial intelligence. Our future purpose is to improve our
methods and apply them to more general cases. Since eigenvalue analysis can be
applied to general cases, we seem to formulate a new direction for solving the
behavior of the spin model’s stochastic complexity.

The applications of our results are as follows. The explicit values of generaliza-
tion errors have been used to construct mathematical foundation for analyzing
and developing the precision of the MCMC method [16]. Moreover, these val-
ues have been compared to such as the generalization error of localized Bayes
estimation [17].
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A Study of Emotion Recognition and Its Applications 

Won-Joong Yoon and Kyu-Sik Park 

Dankook University 
Division of Information and Computer Science 

San 8, Hannam-Dong, Yongsan-Ku, Seoul Korea, 140-714 
{helloril,kspark}@dankook.ac.kr 

Abstract. In this paper, a speech emotion recognition system and its application 
for call-center system is proposed. In general, a speech captured by cellular-
phone contains noises due to the mobile network and speaker environment. In 
order to minimize the effect of these noises and so improve the system perform-
ance, we employ a simple MA filter at the feature domain. Two pattern classifi-
cation methods, k-NN and SVM with probability estimate, are compared to  
distinguish two emotional states- neutral and anger- for call-center application. 
The experimental results indicate that the proposed method provides very stable 
and successful emotional classification performance and it promises the feasi-
bility of the agent for mobile communication services. 

1   Introduction 

Most of speech emotion classification has two stages of a pattern recognition prob-
lem: feature extraction and classification based on the selected feature. Depending on 
the various combinations of these stages, several strategies are employed in the litera-
ture. Dellaert et al. [1] used 17 features and compared three classifiers: maximum 
likelihood Bayes classification, kernel regression and k-NN (Nearest Neighbor). They 
reached 60% - 65% accuracy with four emotion categories. Scherer [2] extracted 16 
features by the jack-knifing procedure and achieved an overall accuracy 40.4% for 
fourteen emotional states. As a first direct attempt for emotion recognition in call 
center application, G. Zhou et al. [3] used nonlinear Teager Energy Operator (TEO) 
feature for stressed/neutral classification and compared the feature performance with 
the traditional pitch and MFCC feature. Yacoub et. al. [4] focused on distinguishing 
anger versus neutral speech for call center applications and they achieved a maximum 
accuracy of 94%. However these papers did not report any analysis and results with 
an environmental and network noise effect in call center application. Other good 
works on general speech emotional classification can be found in [5-7]. 

In contrast to previous works, this paper focuses on the following issues of the 
emotion recognition problem.  

Firstly, the proposed system accepts query sound captured by a cellular phone in 
real-time using INTEL Dialogic D/4PCI board. In order to minimize the effect of 
mobile noises and so improve the system performance, we adopt a simple MA (Mov-
ing Average) filter which has relatively simple structure and low computational  
complexity.  
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Secondly, a SFS (Sequential Forward Selection) feature optimization method is 
implemented to further improve and stabilize the system performance. Aim to our 
implementation we choose SVM [8] as our classification algorithm and compared the 
performance with simple k-NN algorithm. 

Thirdly, for practical application, we considered call-center system that can recog-
nize two emotional states – neutral and anger with a classification probability about 
each emotional state. Call-center system allows automatic call routing of negative 
customer and provide a feedback to an operator for monitoring purposes. This agent 
will be quite promising in various mobile applications. 

This paper is organized as follows. Section 2 describes proposed mobile-based 
emotion recognition system. Section 3 explains the methods of noise-robust feature 
extraction and optimization. Section 4 compares experimental results of the proposed 
system and describes the applications. Finally, a conclusion is given in section 5. 

2   Proposed Mobile-Based Emotion Recognition System 

The emotion recognition engine consist 2 stages – speech signal acquisition, emotion 
pattern classification. A query speech signal is first picked up by the single micro-
phone of the cellular phone and then transmitted to the emotion recognition server. 
The transmitted signal is acquired in real-time by using INTEL dialogic D4PCI-U 
board in 8 kHz sampling rate, 16 bit, MONO. Then the queried speech is classified 
with confidence probability (for the case of SVM) and the classification result will be 
reported and transmitted to the mobile agent.  

Fig. 1 shows the block diagram of the proposed emotion classification engine.  
 

 

Fig. 1. Proposed emotion classification engine and the Call-center application 

Raw speech data set is randomly divided into two sets of data set – training set and 
test set. At the training phase, feature set is extracted from pre-processed speeches in 
training set. Then a feature optimization is applied with respect to pattern classifier. 
These feature set is used to build up emotional feature vector DB.  
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On the other hand, in the testing phase, a test input speech is picked up by a cellu-
lar phone and pre-processed as before, and the same indexed feature set from the 
feature optimization stage is extracted. Then the MA filter is applied to these feature 
vectors to minimize the effect of background noise. Finally, the pattern classifiers are 
tested for queried speech and the performance of the system is evaluated for Call-
center application.  

3   Feature Extraction and Optimization  

3.1 Pre-processing and Emotional Feature Extraction 

Speech pre-processing stage is required to build up the robust emotional features as 
shown in fig. 2.  
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Fig. 2. Speech pre-processing procedure 

The input speech signal is first band-pass filtered (BPF) with a passband 300Hz – 
2500 Hz. The reason for this BPF is clear if we compare the spectrogram of the origi-
nal clean speech and the speech acquired from the cellular-phone. Since the speech 
through the mobile network undergoes the two main distortions – bandwidth reduc-
tion to 300Hz -2500Hz and mobile noise, BPF allows extracting only the meaningful 
signal portion of the noisy speech. 

At the sampling rate of 8 kHz, the filtered signal is divided into 20ms frames with 
50% overlapped hamming window at the two adjacent frames. Then the end-point 
detection algorithm is applied to distinguish voiced and non-voiced segment from the 
input speech so that the emotional features are extracted only from the voiced portion 
of speech. In this paper, we used a Li. Gu’s [9] end-point detection algorithm. 

After the pre-processing, two types of emotional features are computed from every 
20 ms frame- one is the prosodic features such as pitch and energy, and the other is 
speech phoneme feature such as mel-frequency cepstral coefficients (MFCC). The 
means and standard deviations of these original features and their delta values are 
computed over each frame to form a total of 32-dimensional feature vector. Follow-
ings are short descriptions of the features used in this paper. 

For the pitch extraction, several algorithms are tested [10-12] and SHR[12] algo-
rithm is used in this paper. SHR (Subharmonic-to-Harmonic Ratio) transforms the 
speech signal into the FFT domain, and then decides two candidate pitches by detect-
ing the peak magnitude of the log spectrum. The final pitch is determined by compar-
ing SHR to a certain threshold.  

Short time energy of the speech signal provides a convenient representation that re-
flects amplitude variations. 

MFCC is the most widely used feature in speech recognition. It captures short-term 
perceptual features of human auditory system. In this paper, 6th order MFCC is used. 
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3.2   Feature Optimization 

Not all the 32-dimensional features in the previous section are used for emotional 
state classification purpose. Some features are highly correlated among themselves 
and some feature dimension reduction can be achieved using the feature redundancy. 
In order to reduce the computational burden and so speed up the search process, while 
maintaining a system performance, an efficient feature dimension reduction and selec-
tion method is desired. In ref. [13], a sequential forward selection (SFS) method is 
used to meet these needs. In this paper, we adopt the same SFS method for feature 
selection to reduce dimensionality of the features and to enhance the classification 
accuracy. Firstly, the best single feature is selected and then one feature is added at a 
time which in combination with the previously selected features to maximize the 
classification accuracy]. This process continues until all 32 dimensional features are 
selected. After completing the process, we pick up the best feature lines that maxi-
mize the classification accuracy.  

3.3   Noise Filtering Using MA Filter 

A speech captured by cellular-phone contains noises due to the mobile network and 
speaker environment. In order to minimize the effect of these noises and so improve 
the system performance, we employ a simple MA(Moving Average) filter that has 
relatively simple structure and low computational complexity.  

The key idea is to apply MA filter to the feature sequences on feature domain to 
smooth out spikes due to the mobile noises. In order to apply MA filter, we represent 

feature data by two dimensional matrix tdFM . Here, each row of tdFM  represents 

a feature vector and each column represents a time sequence. Then the features in 
column order are normalized to zero mean and unit variance in order to avoid numeri-
cal problems caused by small variances of the feature values. This normalized time 
sequence of features is further processed by MA filter as follows.  
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In this paper, the filter order M=5 was found to yield the best results for our ex-
periments. This simple feature post-processing step has a good positive influence on 
minimizing noise effect. We note that MA(2) filter is also applied to the features 
when we setup the emotional DB as shown in figure 1 and the reason for this is to 
minimize the differences in feature coefficients between the query and DB due to the 
MA filtering operation.  

4   Experimental Results 

4.1   Experimental Setup 

We used the database from the Yonsei University [14]. The original data set includes 
short utterances by fifteen semi-professional actor and actress and it consists of total 
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of 5400 utterances across 2 emotional states, i.e., neutral and anger in 8 kHz, 16 bit 
recording. Among them, 1000 utterances (500 utterances for each emotional state) 
were chosen as training set to define an optimal feature set by SFS optimization stage 
and to setup the emotional feature vector DB.  Another 500 utterances (250 utterances 
for each emotional state) are used as the test data set for system evaluation.  

Fig. 3 shows a block diagram of experimental setup. In order to compare the sys-
tem performance, two sets of experiment have been performed.  
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Fig. 3. Experimental setup for performance comparison of the proposed system 

One is the system (called “proposed system”) with a proposed method as in fig. 1 
and the other is the system (called “reference system”) without any noise reduction 
technique and the feature optimization method. Here the proposed system works as 
follows. Firstly, a test speech is acquired through actual cellular phone via INTEL 
dialogic D4PCI-U board in 8 kHz sampling rate, 16 bit, MONO. Secondly, emotional 
features are extracted according to the feature index from the SFS feature optimiza-
tion stage and then MA(5) filter is applied to feature vector in order to minimize the 
effect of mobile noises. Finally the k-NN, SVM pattern classifier is tested for the 
classification of queried speech and the performance of the system is evaluated.  

4.2   SFS Feature Optimization 

Fig. 4 describes the SFS feature optimization procedure to select best feature coeffi-
cients with k-NN and SVM classifiers. As we see, performance increases with the 
increase of features up to certain number of features, while it remains almost constant 
after that. Thus we can select first 10 features up to the boundary and ignore the rest 
of them. For both k-NN/SVM classifiers, we observed that pitch and MFCC feature is 
most significant in the classification result. As we intuitively know, the less number 
of feature set is always desirable.  
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Fig. 4. Feature optimization procedure  

4.3   Call-Center Application 

For a practical application, emotion classification engine for call-center is imple-
mented to distinguish two emotional states – neutral versus anger speech which is 
salient to call center application. This kind of system allows automatic call routing of 
negative customer and provide a feedback to an operator or a supervisor for monitor-
ing purposes.  

Table 1 compares the classification results between the proposed system and the 
reference system under the experimental setup as shown in fig. 3.  

Table 1. Performance comparison of proposed system 

Reference System Proposed System  
k-NN 

(32-Dims) 
SVM 

(32-Dims) 
k-NN 

(18-Dims) 
SVM 

(16-Dims) 
Classificatio

n 
Accuracy 

67.5% 72% 73.5% 86.5% 

 
As seen from Table 1, we see much improvement of classification performance in 

proposed system over the reference system. It actually can achieves more than 8% ~ 
14.5% improvement even with fewer number of feature set derived from SFS feature 
optimization. In terms of the classifier, SVM outperforms k-NN about 13%. In gen-
eral, SVM is very well known to have low computation complexity, and so it is better 
idea to use SVM than k-NN classifier in terms of both classification accuracy and 
computational complexity. 

Table 2 compares the classification performance between the proposed system and 
reference system in a form of a confusion matrix. Here (a) and (b) shows the classifi-
cation result with k-NN and SVM classifier respectively for the reference system. On 
the other hand, (c) and (d) describes the results for the proposed system. The numbers  
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Table 2. Comparison of classification results in a form of confusion matrix. (a) reference 
system with k-NN, (b) reference system with SVM, (c) proposed system with k-NN, (d) 
proposed system with SVM  

Reference System Proposed System 
(a) k-NN (b) SVM (c) k-NN (d) SVM 

 
 

Query Neutral Anger Neutral Anger Neutral Anger Neutral Anger 
Neutral 73 27 46 54 68 32 80 20 
Anger 38 62 2 98 21 79 7 93 

Average 
Accuracy 67.5% 72% 73.5% 86.5% 

 
of correct classification result lies in the diagonal term and misclassification statistics 
are listed in off –diagonal terms. 

As seen on Table 2, in reference system, k-NN classifier shows the misclassifica-
tion rate 27% in anger state and 38% in neutral state, while SVM classifier shows the 
misclassification rate 54% in neutral state, but the anger state is easily recognizable 
with only 2% error. For the case of the proposed system, in k-NN classifier, the mis-
classification rate 32% for neutral state and 21% for anger state, so we see some im-
provements in classification of anger category. On the other hand for the SVM classi-
fier, we see a significant improvement over the normal category where the misclassi-
fication rate decreases from 54% to 20%. From the Table 2, we observe that the neu-
tral state is quite susceptible to the noises, while the anger state is quite easily recog-
nizable even under the noise conditions.  

5   Conclusion 

In this paper, a speech emotion recognition system and its application for call-center 
system is proposed. The proposed system can recognize two emotional states - neutral 
and anger from the speech captured by a cellular-phone in real time. In order to alle-
viate noise effect due to the mobile network and speaker environment, we adopt a 
simple MA filter on the feature domain. SFS feature optimization is also utilized to 
improve and stabilize the system performance. The proposed system has been tested 
and compared with cellular phones in the real mobile environment and it shows a very 
stable and successful emotional classification performance and it promises the feasi-
bility of the agents for mobile communication services. Future work will involve the 
development of new emotional features and further analysis of the system for practi-
cal implementation.  
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Abstract. Misspelling and misconception resulting from similar pronunciation 
appears frequently in Chinese texts. Without double check-up, this situation is 
getting even worse with the help of Chinese input method editor. It is hoped 
that the quality of Chinese writing would be enhanced if an effective automatic 
error detection and correction mechanism embedded in text editor. Therefore, 
the burden of manpower to proofread shall be released. Until recently, 
researches on automatic error detection and correction of Chinese text have 
undergone many challenges and suffered from bad performance compared with 
that of Western text editor. In view of the prominent phenomenon in Chinese 
writing problem, this study proposes a learning model based on Chinese 
phonemic alphabet. The experimental results demonstrate this model is 
effective in finding out most of words spelled incorrectly, and furthermore this 
model improves detection and correction rate. 

Keywords: Error detection of Chinese text, Error correction of Chinese text, 
language model, Chinese phonemic alphabet. 

1   Introduction 

According to a survey about the employment preference of enterprises in 2005, it 
indicated that there were many misspellings in the résumés of applicants[20]. A 
misspelling refers to the correct word replaced by the word with similar shape or 
similar pronunciation. An earlier research indicates that misspellings of Chinese word 
mainly attribute to phonemic misuse. Furthermore, regardless of age, students usually 
will not accurately detect the correct word with similar or identical 
pronunciation.[18]. In recent years, the convenience of the Internet and the rapid 
improvement of Chinese character input methods have deteriorated the problem of 
misspelling caused by phonetics. In the past, the characters replaced by auxiliary 
words such as ei (ㄟ) (emphasis) or soundnification such as ker ker (ㄎㄎ) (laugh) do 
not make troubles for readers However, the pursuit of handiness and speed, using the 
word with similar or identical pronunciation as a substitute will not only perplex 
readers but also sometimes be perceived as ridiculous implication. For example, the 
phrase同聲勸'諫' (tung2 sheng1 chiuan4 jian4) is pronounced exactly the same as 同
聲勸'賤', while the last word makes their meaning totally opposite. What is meant by 
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the former phrase indicating the strong voices calling for righteous reformation; while 
the latter phrase means persuading someone for running dirty errands. For fun or for 
fame, the new created, novel words and phrases emerge at an unexpected speed in our 
daily life. In Japan, the publishing industry insists that it shall not allow misspelling 
existing in publication. To guarantee press quality, the industry endeavors to 
proofread each publication by human efforts. A report reveals that the general 
administration of press and publication of the People’s Republic of China regulates 
the error rate of the publication to be kept within one in ten thousand [5]. While the 
issue of misspelling detection and correction raises public attention in developed 
countries, it is rare to have similar studies in pan-Chinese research communities. The 
earliest study related to this issue begins in 1990s focusing only on error detection [2]. 
The correction mechanism was proposed in later study, yet the result was not 
encouraging. There was no further study since then. This study aims to elaborate on 
both detection and correction in Chinese text processing. It is hoped that the proposed 
issue will raise more discussions in the near future. 

2   Literature Review 

2.1   Automatic Detection and Correction in Text 

Research on automatic detection and correction of English text has focused on three 
difficult problems: (1) non-word error detection; (2) isolated-word error correction; 
and (3) context-dependent word correction. The two main techniques that have been 
explored for non-word error detection are n-gram analysis and dictionary lookup. N-
gram error detection technique is conducted by examining the validity of each n-gram 
(bi-gram, tri-gram, …etc.) from the input string based on frequency consideration. 
The beauty of adopting this method is its dictionary independent and its ability to 
extract unknown words. Non-word error detection mainly adopts dictionary-based or 
n-gram segmention technique to examine the validity of the input string. Isolated-
word error correction not only utilizes n-gram analysis and dictionary lookup but also 
adopts hybrid techniques such as minimum edit distance, similarity keys, rule-based 
procedures, probability estimates, and neural nets[17]. Context-dependent word 
correction utilizes Natural Language Processing (NLP) or statistical modeling. The 
typical NLP system consists of the procedures including parsing execution, lexical 
analysis, and semantic consideration. 

There exists disparate procedures of error detection and correction process between 
Chinese and English languages due to their difference of morphology and syntax. 
Chinese language has no delimiters to separate words in a sentence. An earlier 
research suffering from low precision and no correction in text composing of word 
segmentation and scoring represents the connection strength of the singleton 
combined with the right-hand and left-hand neighboring characters[2]. Zhang et 
al.[21] constructed a confusing set considering the similarity of the code of Chinese 
Wu-Bi (five strokes) input method. Utilizing a confusing set and a classifier based on 
two-word linkage, POS-tag linkage, semantic feature and linkage in a word archives 
detection and correction of errors in Chinese text. To correct suspicious words, 
candidates are provided by the list of common wrongly written/pronounced words 
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with similar input code and concurrent characters in the context. As to the error types 
in Chinese, Zhang et al.[22] classified errors as non-word errors including character 
substitution error, string substitution error, character insertion error and character 
deletion error and real word containing word substitution error, word insertion error 
and word deletion error. 

2.2   Unknown Word Detection 

One of the most common problems in processing Chinese characters is the 
identification of valid words. Because there are no delimiters to separate words, the 
process of word identification encounters great difficulties in detecting unknown 
words. Unknown words include abbreviation, proper names, derived words, 
compounds and numeric type compounds. Among all, compounds and proper names 
are most widely known. If context contains error words, the process of unknown word 
detection becomes more complicate. It is because unknown word detection relies on 
contextual information. Until now, there is still no satisfactory algorithm for 
identifying both unknown words and typographical errors simultaneously. As the 
matter of fact, detection of unknown words and typographical errors share the same 
detection process. If all the known words in an input text can be detected, then the rest 
of the character string exists probable unknown words. According to an examination 
of a testing corpus, 4572 occurrences out of 4632 unknown words were incorrectly 
segmented into sequences of shorter words, and each sequence contained at least one 
monosyllabic word [3]. In other words, the appearance of monosyllabic word may 
come from the rest of unknown words. Therefore, the process of detecting unknown 
words is equivalent to making a distinction between monosyllabic words and 
monosyllabic morphemes which are parts of unknown words. 

2.3   Language Model 

Researches on NLP have lasted for a half century in order to overcome language gap 
between human and computer. During a half century, one of three achievements is the 
statistical language model applied in many application systems, such as speech 
recognition [10]. The classic task of language modeling aims to predict the probability 
of a sentence made up of a sequence of words. Suppose that there is a given sentence 

S made of a sequence of T words. They are TWWW ,,, 21 K . The probability of 

sentence S can be written as equation (1): 
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However, it is impossible to calculate the probability of all sequences of words due to 
the high complexity of calculation. Therefore, N-gram model based on Markov 
assumption that only the prior local context, the last few words, affects the next word 
to estimate the probability of a sequence of words reasonably[12, 13]. Consequently, 
the equation (1) is rewritten as equivalent equation (2): 
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In equation (2), 1
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niW  is 1)2()1( −−−−− inini WWW K . The case of N-gram model that 

people usually use is for n=2, and this alternative is usually referred to as a bi-gram. 
N-gram model in general is to suggest using the relative frequency as a probability 

estimate. It denotes that the frequency of iinini WWWW 1)2()1( −−−−− K  in the training 

text is divided by the frequency of 1)2()1( −−−−− inini WWW K  in the training text as in 

equation (3). )( j
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2.3.1   Witten-Bell Smoothing 
Smoothing techniques are used to resolve data sparseness of the language model. The 
popular Witten-Bell Smoothing technique is widely used to enhance N-gram model. 
The key concept of Witten-Bell Smoothing is to use a count of n-grams seen at least 
once to re-estimate the count of the unseen n-grams[19]. N-gram model is adjusted as 
follows: 
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Witten-Bell Smoothing is defined recursively as a linear interpolation of the maximum-

likelihood estimate and the lower-order (n-1) gram model. 1
1
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λ  is a weight to 

incorporate n-gram with (n-1)-gram. This weight is calculated by equation (5). 
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Witten-Bell Smoothing considers a number of word types preceding a word. If word 

types are rare, 1
1

−
+−

i
niW

λ shall increase. On the contrary, the probability of lower order n-

gram is assigned more to the zero count n-grams. Because of the modifications of 
Witten-Bell Smoothing, the N-gram model is more appropriate. 
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3   System Architecture 

The system architecture of this research is divided into three main parts including 
error detection, error correction and database as shown in Fig. 2. The database 
contains language model, lexicon and confusing word set. Error detection phase 
includes word segmentation of Chinese Knowledge and Information Processing 
(CKIP), and the process of dubious word area formation. Error correction phrase 
subsumes lexical analysis and optimal word extraction. 

3.1   Error Detection 

Error detection in Fig.2 is divided into word segmentation, and dubious word area 
formation. When the procedure of error detection starts, this system connects to word 
segmentation system of CKIP and initializes the service, then the process of unknown 
word extraction is activated. On completion of the process of unknown word 
extraction, the segmentation result will be obtained. The detailed processing and steps 
of detection and extraction will also be recorded. Moreover, the result of extracted 
unknown word detection will be manipulated further. First, the result of extracted 
unknown word detection is to be grouped into sentences. Second, each sentence will 
be segmented into words. Third, each tag of words will be filtered out. Fourth, words 
containing question mark will be highlighted and their location in text is to be notated.  

3.1.1   Word Segmentations 
The technique of word segmentation is adopted to execute unknown word extraction. 
It takes advantage of unknown word detection to detect misspelling of text. 

3.1.1.1   Unknown Word Extraction. The word segmentation system of CKIP including 
100,000-entry lexicon with pos tags, word frequencies, pos tag bi-gram information, etc. 
is to extract unknown word, segment text into words and notate pos tags. Moreover, the 
word segmentation process considers morphology analysis and language model for 
unknown words and try to represent morphology of all kinds of unknown words as 
context free grammar to improve the extraction of the unknown word without 
significant statistical characteristics. Its steps of process are as follows: (1) Initial 
segmentation. (2) Unknown word detection. (3) Chinese name extraction. (4) Foreign 
name extraction. (5) Compounds extraction. (6) Bottom-up merging algorithm. (7) Re-
segmentation. After the unknown word extraction process, the result of unknown word 
extraction is produced not only the word segmentation and unknown word list, but also 
the detailed processing and steps of unknown word detection and extraction. 

3.1.1.2   Extract Unknown Word Detection Result. This research adopts the unknown 
word detection as error detection. For different types of unknown words and 
typographical errors, they may share the same detection process. During the detection 
of error word, an input text undergoes the maximum matching algorithm of initial 
segmentation to distinguish monosyllabic words from monosyllabic morphemes by 
contextual information, so misspelling of text could be found out. After the process of 
word segmentation, this system extracts the unknown word detection result from 
unknown word extraction result for further manipulating. 
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Fig. 1. System Architecture 

 

Fig. 2. Error Detection Procedures 

3.1.2   Dubious Word Area Formation 
Dubious Word Area Formation includes sentence separation, word separation, tags 
filter and dubious word location. After the process of unknown word detection, 
misspelling of input text could be found out. Furthermore, after the process of dubious 
word area formation, the location of misspelling could be exactly known, and then the 
misspelling could be manipulated. 

3.1.2.1   Sentence Separation, Word Separation, Tags Filter and Dubious Word 
Location. A text containing dubious word would be separated to manipulate the 
sentence containing dubious word and present dubious word to users. During sentence 
separation, the location of each sentence of the text would be recognized and numbered. 
After sentence separation, the process of word separation is executed to separate and 
number words of the sentence containing dubious words and then to filter the tag of 
each word. After sentence separation, word separation and tags filter, the text in figure 
containing dubious words would be marked and presented to users. 
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Fig. 3. Error Detection 

3.2   Error Correction 

The procedure of error correction is illustrated with Fig. 4. After the process of error 
diction, the location of dubious word could be known. Therefore, the dubious word 
and sentence could be easily extracted from text. Because the dubious word is 
probable error, the probable and correct words which are made of confusing word set 
and lexicon will compare with the context of sentence, and the maximum common 
strings will be extracted. And then the language model is used to select the optimal 
candidate word from the maximum common strings. The dubious word of sentence 
would be replaced by the optimal candidate word. The procedure of correction would 
be executed again and again until all dubious words are inspected. 

3.2.1   Lexical Analysis 
Lexical analysis includes the extraction of dubious sentence, word and candidate 
word, and word matching. After lexical analysis, the system would suggest candidate 
words. 

3.2.1.1   Extract Dubious Sentence and Word. The process of error detection reveals 
not only whether dubious words exist in the text or not, but also the location of 
dubious sentences and words. When dubious words exist in the text, because the 
locations of dubious words are recorded, the process of error correction would easily 
extract the dubious sentence and word out. For example, the inputting sentence of Fig. 
5 contains misspelling. The sentence of the text is the first sentence. Its location in the 
text is zero. The sentence is separated word by word. The misspelling in the sentence 
is the fifth word. Its location of the misspelling is four. According to its location, the 
character and word could be extracted from the detected document. 

3.2.1.2   Extract Candidate Word. Because the dubious words are possible misspelling, 
candidate words are used to correct the dubious words. The candidate words are made 
up of confusing word set established according to the identical or similar phonetic 
properties, and lexicon provided by Institute of Information Science of Academia 
Sinica. For example, the candidate words in Fig. 6 are extracted from confusing word 
set and lexicon to be inspected. 
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Fig. 4. Error Correction Procedure 

 

Fig. 5. Extract Dubious Sentence and Word 

3.2.1.3   Word Matching. Word matching is used to inspect whether the candidate 
words are suitable for the context of sentence. During the word matching, the candidate 
words would align the dubious words of the sentence and the comparing window would 
be reduced from the distance of the whole sentence to the longest distance over which 
the candidate words extent. And then the candidate words would compare with the 
words in the comparing window and the maximum common string would be extracted. 
For example, the sentence in Fig. 6 is in word matching. After word matching, because 
the longest word, Hai-Guan-Shu(海關署) does not match the words in the comparing 
window, it will be removed from the candidate words. The last suiting for the context of 
sentence would remain. 

 

Fig. 6. Word Matching 

3.2.2   Optimal Word Extraction 
Optimal word extraction is used to select the most appropriate one of the candidate 
words existing in the sentence. The method for selecting the optimal word is language 
model. It is because we can obtain the possibility of connectivity between words from 
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language model to select the most possible word in the sentence. This research makes 
use of the character-based bi-gram language model and Witten-Bell Smoothing. The 
procedure to select optimal word is as follows: 

1. The candidate words align the dubious words. 
2. Adjust the windows size to the longest distance over which the candidate words 

extent plus one. 
3. The candidate words replace the dubious word of the sentence. 
4. Calculate the possibility of connectivity between words in the window with 
equation 7. 
5. Choose the candidate word with the highest possibility as the optimal word.  

After the procedure of optimal word extraction, the optimal word would be inserted 
into the sentence. Users could view not only the dubious word but also the optimal 
word. Take the sentence in Fig. 6 for example. After optimal word extraction, the 
optimal word is extracted by language model from the candidate words, as Fig. 7 
illustrates that the optimal word is Guan-Shu (灌輸 ). After the detection and 
correction of misspelling, the result returns to users such as Fig. 8. 
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3.3   Language Model 

This Research adopts character-based bi-gram language model to gain the possibility 
of connectivity between words, and then the system could choose the optimal word 
because of the highest possibility of connectivity between words from language 
model. Furthermore, this research takes up the Witten-Bell Smoothing to resolve the 
data-sparseness problem. With the Witten-Bell Smoothing, the possibility of seen 
events could be reasonably distributed to the unseen events. Therefore the system 
could choose the optimal word more accurately. 

 

 

Fig. 7. Optimal Word Extraction 

3.4   Confusing Word Set 

The confusing word set is established according to the identical or similar phonetic 
properties. The task of confusing word set is to extract the probable correct word such 
as the pronounce of 灌 is similar to 貫. 
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Fig. 8. Error Correction Example 

3.5   Lexicon 

The task of lexicon is to provide the candidate words. Because Lexicon contains 
correct words, the correct word could be provided from the lexicon to users such as 
灌輸 (inculcate). 

4   Experiment 

4.1   Training Data Set 

The task of training data set in the experiment of this research is to construct language 
model. In view of the convenience to acquire data and professional description of 
news documents, the news documents are the first choice to become the training data 
set. In order to own multi-descriptions of news documents, the sources of news 
documents would be from many of domestic and well-known online news websites. 
The online news websites are as follows. (1)United Daily News http://www.udn.com. 
(2)Central News Agency http://www.cna.com.tw/. (3)Broadcasting Corporation of China 
http://www.bcc.com.tw/. (4)China Times http://news.chinatimes.com/ (5)Formosa Television News 
http://www.ftvn.com.tw/. (6)TVBS News http://www.tvbs.com.tw/tvbs_page/index/. (7) Great News 
http://www.gnews.com.tw. (8)Reuters http://www.reuters.com. (9)Central Daily News 
http://www.cdn.com.tw/. (10)Taiwan daily news http:// www.taiwandaily.net/. Available news 
corpus is filled by all kinds of news topics such as politician, society, international, 
cross-straits, business, living, health, entertainment, leisure and technology. The news 
data downloaded from all the news websites by crawler that would be preserved as 
plain texts and then remove their tags. In order to ensure the quality of news data, 
there are five preprocessing to be checked: 

1. Sum the occurrence counts of each single character word in all texts. 
2. Inspect the rarely used words of news documents according to the frequency 

list provided by national languages committee of minister of education. 
3. Inspect the particular formats. 
4. Remove or behold the news data according to whether the occurrence of rarely 

used words or the particular formats is reasonable or not. 
5. Select five hundred news documents at random to inspect their contents After 

completing the preprocessing, the fifty thousand news documents would be 
used to train language model. There are eighteen million, four hundred fifty 
thousand and seventy five words in news documents. 
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4.2   Confusing Word Set 

Confusing word set is made of the word with identical or similar phonetic properties. 
Zhuyin Fuhao is the national phonetic system of the Republic of China for learning 
the Chinese languages. The system uses 37 special symbols to represent the Mandarin 
sounds: 21 consonants and 16 vowels. However, learning multi-languages influence 
the variations of pronunciation. For example, first, the retroflex sounds from 
Putonghua are softened considerably or the retroflex "r" ending is very rarely heard. 
Second, the dentilabial disappears. Third, the eng is pronounced as ong[1, 8]. It is the 
properties of the first variation of pronunciation that zh-, zhi becomes z-, zi; ch- 
becomes c-; sh-, shi becomes s-, si. The misconception of f- and hu- is the property of 
the second variation of pronunciation. The misconception of eng and ong is the 
property of the third variation of pronunciation. Therefore, besides three variation of 
pronunciation, this research includes the words with identical pronunciation or all 
tones to construct the confusing word set[15]. The steps of construction are as 
follows. (1) Construct the phonetic table of words. (2) Construct the homophone 
table. (3) Construct the confusing word set according to the five variation of 
pronunciation. After the completion of steps of construction, there are seven hundred 
and eighty-three collections with identical or similar pronunciation. 

4.3   Lexicon 

This research adopts lexicon provided by institute of information science of Academia 
Sinica to produce the candidate words because the lexicon contains correct words. 
The lexicon includes many types of words such as common noun, proper noun, idiom, 
parlance, derivative, variant, combinatorial word, jargon and dialects of Proto-
Mandarin. Besides, there are words, their frequency and their pos-tag in the lexicon. 

5   Experiment Results 

The common misspellings from the books are used to evaluate the system[4, 6, 7, 9, 
11, 14, 16]. And the common misspelling must be verified by Chinese dictionary. One 
hundred and thirty-seven documents with the common misspellings were retrieved 
from the Internet. There are two evaluations in the experiment. The first evaluation is 
to compare the results of detection and correction of Microsoft Word with those of 
this system. It is because the procedures of Microsoft Word divided apparently into 
the detection and correction of misspelling are identical to the system. The documents 
with misspellings would be highlighted and suggested by candidate words. Therefore, 
during the evaluation of system, documents with common misspelling would be 
respectively inputted into the system and Microsoft word to detect and correct the 
misspelling. The results of detection and correction from the two systems would be 
preserved and compared with each other. The second evaluation is to compare the 
result of the correction of Chinese natural input method with those of the system. For 
the reason that one task of Chinese natural input method provides the word 
automatically when inputting the sound of a word. So, the sentence with misspelling 
would be inputted into Chinese natural input method to check if it can select words 
correctly or not. At last the results of correction would compare with each other. The 
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first evaluation is to input the texts of documents with misspelling into Microsoft 
Word, activate the function of detection and correction, and then compare the results. 
After inspecting the result of detection and correction, one hundred and eight 
documents were detected accurately by Microsoft Word. Twenty-nine documents 
were not detected accurately. Thirty-eight documents were corrected accurately. 
Seventy documents were not corrected accurately. So, the detection rate is 0.788 and 
the correction is 0.352. The identical documents were inputted into this system. One 
hundred and eleven-one documents were detected accurately by this system. Twenty-
six documents were not detected accurately. One hundred and three were corrected 
accurately. Eight documents were not corrected accurately. The evaluation of 
Microsoft Word and proposed model is as follows: 

Table 1. Detection and Correction Rate 

 Microsoft Word Proposed Model 
Detection Rate 108/137 ≅ 0.788 111/137 ≅ 0.810 
Correction Rate 38/108 ≅ 0.352 103/111 ≅ 0.928 

 
The second evaluation is to input the texts of documents with misspelling in Chinese 
natural input method, and compare the result. Eighty-nine documents were corrected 
accurately by Chinese natural input method. Forty-eight were not corrected 
accurately. The correction rate is 0.6496. One hundred and three documents were 
corrected by the system. Thirty-four documents were not corrected accurately. The 
correction rate is 0.7518. The evaluation of Chinese natural input method and 
proposed model is as follows: 

Table 2. Correction Rate 

 
Chinese natural input 

method 
Proposed Model 

Correction Rate 89/137 ≅ 0.6496 103/137 ≅ 0.7518 

 
The results of the two evaluations reveal that most of misspellings could be detected 
and corrected by this proposed model and the proposed model improves the detection 
and correction rate of the present models. 

6   Conclusion and Future Work 

This research focuses on the misspellings resulting from homophones and makes use 
of unknown word detection for error detection. It is because unknown word detection 
takes not only frequency of words into consideration but also morphemes of 
morphology. If only considering the frequency of words, the seldom used words will 
be neglected. Moreover, the characters appearing together frequently are not 
necessarily words. After the unknown word detection, the monosyllabic words and 
monosyllabic morphemes could be easily distinguished. This information could be 
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processed to recognize misspellings. The process of phonetic alphabets including 
homophone, tones to be undistinguished, and three characteristics resulting from 
learning multi-language is the foundation of error correction. The experiment result 
reveals that the proposed model could detect the misspellings and suggest the users 
the correct candidate words. So, users will easily examine their words in text to make 
sure whether there are misspellings in text or not. It is expected to release the local 
constrains of language model in our future work. Besides, it is a future undertaking 
for the adoption of a larger volume of balanced training data set to enhance the quality 
of language model and to meliorate the completion of morpheme. 
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Abstract. In this paper, we introduce a diamond episode of the form
s1 �→ E �→ s2, where s1 and s2 are events and E is a set of events. The
diamond episode s1 �→ E �→ s2 means that every event of E follows an
event s1 and is followed by an event s2. Then, by formulating the support
of diamond episodes, in this paper, we design the algorithm FreqDmd to
extract all of the frequent diamond episodes from a given event sequence.
Finally, by applying the algorithm FreqDmd to bacterial culture data,
we extract diamond episodes representing replacement of bacteria.

1 Introduction

It is one of the important tasks for data mining to discover frequent patterns
from time-related data. Agrawal and Srikant [3,9] have introduced one method
for such a task called sequential pattern mining to discover frequent subsequences
as patterns in a sequential database. The sequential pattern mining has been
developed by designing the efficient algorithms [8], in particular, with a non-
redundant form called a frequent closed subsequence [12,13].

Mannila et al. [7] have introduced another method for such a task called
episode mining to discover frequent episodes as patterns in an event sequence.
By combining a parallel episode as a set of events and a serial episode as a
sequence of events, the episodes are formulated as directed acyclic graphs of
events of which edges specify the temporal precedent-subsequent relation. The
episode mining has been developed by introducing the specific form of episodes
for every target area together with efficient algorithms [4,5,6].

While the subsequence just represents linearly ordered relations as patterns,
the episode can represent more complex relations. Also since the frequency of
the episode is formulated by a window that is a subsequence of an event se-
quence under a fixed time span, the episode mining is more appropriate than
the sequential pattern mining when considering the time span.
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By focusing on the direct causality in an event sequence, Katoh et al. [5,6]
have introduced a sectorial episode of the form E �→ e, where E is a parallel
episode and e is an event. A sectorial episode is a direct precedent-subsequent
relation between events. Then, they have designed an efficient algorithm Sect

to extract all of the sectorial episodes that are frequent and accurate and apply
the algorithm to bacterial culture data in order to extract sectorial episodes
representing changes for drug resistance. However, it remains open to formulate
an episode that represents an indirect precedent-subsequent relation beyond a
sectorial episode, and then to design an algorithm to extract such episodes.

Hence, in this paper, we introduce a diamond episode, which is an extension
of a sectorial episode, of the form s1 �→ E �→ s2, where s1 and s2 are events and
E is a parallel episode. We call s1 a source and s2 a sink . The diamond episode
s1 �→ E �→ s2 means that every event of E follows a source s1 and is followed by
a sink s2, so we can regard every event in E as a causation through the change
from a source s1 to a sink s2. Then, we formulate the support supp(s1 �→ E �→ s2)
of a diamond episode s1 �→ E �→ s2 as the ratio of the number of k-windows
(i.e., a window with width k) in which s1 �→ E �→ s2 occurs for the number of
all k-windows. For the minimum support σ such that 0 < σ < 1, we say that
s1 �→ E �→ s2 is frequent if supp(s1 �→ E �→ s2) ≥ σ.

In this paper, we show that the diamond episode preserves anti-monotonicity,
that is, for E1 ⊆ E2, if s1 �→ E2 �→ s2 is frequent then so is s1 �→ E1 �→ s2.
Hence, under fixing a source s1 and a sick s2, we can deal with a diamond episode
s1 �→ E �→ s2 as an itemset, by regarding a serial episode s1 �→ e �→ s2 with size
3 as an item for e ∈ E. Then, we design the algorithm FreqDmd to extract
all of the frequent diamond episodes from a given event sequence by using the
frequent itemset mining algorithm AprioriTid [1,2].

The algorithm FreqDmd first calls the algorithm BitSerl, which is a main
difference from the algorithm Sect [5]. The algorithm BitSerl constructs the
set of bit vectors representing the occurrences of all serial episodes with size 3,
that is, of the form s1 �→ e �→ s2 for an event e, by using the bit-wise conjunction
and disjunction, and the shift operator. Then, the algorithm FreqDmd extracts
the set of all frequent diamond episodes of the form s1 �→ E �→ s2 for a parallel
episode E, by regarding a serial episode s1 �→ e �→ s2 as an item e and by calling
the algorithm AprioriTid [1,2].

Since our diamond episode is a combination of parallel and serial episodes,
it is possible to extract all of the frequent diamond episodes by combining the
algorithms designed in [7]. It is a main advantage for our algorithm FreqDmd

to be efficient and appropriate for extracting frequent diamond episodes, because
the algorithm FreqDmd scans a given event sequence just once and regards a
serial episode as an itemset.

Finally, we apply the algorithm FreqDmd to bacterial culture data. Note
that, from the medical viewpoint, in order to extract frequent diamond episodes
concerned with replacement of bacteria, it is necessary to extract them based on
the same sample. Hence, in this paper, by fixing the sample, we connect data of
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every patient with some span, and then extract diamond episodes representing
the replacement of bacteria from them.

2 Diamond Episode

As similar as [7], we assume that an event has an associated time of occurrence
as a natural number. Formally, let E be a set of event types . Then, a pair (e, t) is
called an event , where e ∈ E and t is a natural number which is the (occurrence)
time of the event. In the following, for a set E ⊆ E of event types, we denote
{(e, t) | e ∈ E} by (E, t), and also call it by an event again. Furthermore, we
denote a set {e1, . . . , em} ⊆ E of event types by a string e1 · · · em.

An event sequence S on E is a triple (S, Ts, Te), where

S = 〈(E1, t1), . . . , (En, tn)〉
is an ordered sequence of events satisfying the following conditions.

1. Ei ⊆ E (1 ≤ i ≤ n),
2. ti < ti+1 (1 ≤ i ≤ n− 1), and
3. Ts ≤ ti < Te (1 ≤ i ≤ n).

In particular, Ts and Te are called the starting time and the ending time of S.
We denote Te − Ts by lS .

A window in an event sequence S = (S, Ts, Te) is an event sequence W =
(w, ts, te) such that ts < Te, te > Ts and w consists of all of the events (e, t) in
S where ts ≤ t < te. The time span te − ts is called the width of the window.
We call a window with width k in S a k-window , and denote the k-window
(w, t, t+ k) of S starting from t by w(S, t, k).

Note that we can regard a set E = e1 · · · em of event types as a parallel episode
and a sequence e1 �→ · · · �→ em of event types as a serial episode [7]. In this paper,
we newly introduce the following diamond episode, as an extension of a sectorial
episode [5,6].

Definition 1. Let s1 and s2 be event types and E ⊆ E be a parallel episode.
Then, a diamond episode is of the following form.

s1 �→ E �→ s2.

We call s1 a source and s2 a sink .

We call a parallel, a serial and a diamond episodes episodes simply.
Let S be an event sequence S = (S, Ts, Te) and e an event type. Then, we say

that e occurs in S if there exists an event (E, t) ∈ S such that e ∈ E. We denote
{t | (E, t) ∈ S∧e ∈ E} by T (e,S). Also we denote st(e,S) = min{t | t ∈ T (e,S)}
and et(e,S) = max{t | t ∈ T (e,S)}.
Definition 2. We say that a parallel episode E occurs in S if every e ∈ E
occurs in S. Also we say that a serial episode e1 �→ · · · �→ em occurs in S if every
ei occurs in S (1 ≤ i ≤ m) and st(ei,S) < et(ei+1,S) (1 ≤ i ≤ m− 1).

We say that a diamond episode s1 �→ E �→ s2 occurs in S if s and t occur in S,
and, for every e ∈ E, e occurs in S, st(s1,S) < et(e,S) and st(e,S) < et(s2,S).
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Let S be an event sequence and k a natural number. Then, we denote the set
of all k-windows by W (S, k). Also, for an episode X , we denote the set of all
k-windows such that X occurs in S by W (X,S, k).

Note that we can number all k-windows in W (S, k) from Ts−k to Te. We call
such a number i (Ts − k < i < Te) the label of the i-th k-window. For an event
sequence S and an episode X , we identify W (X,S, k) with the set of all labels
of k-windows in which X occurs in S.

Example 1. Let E = {a, b, c}. Then, Figure 1 describes an event sequence S =
(S, 4, 10) on E where:

S = 〈(abc, 4), (ab, 5), (a, 6), (ab, 7), (abc, 8), (ab, 9)〉.
Also an event sequence w = (〈(ab, 5), (a, 6), (ab, 7), (abc, 8), (ab, 9)〉, 5, 9) is a
5-window of S starting from 5, that is, w = w(S, 5, 4).

For the above event sequence S, it holds that T (c,S) = {4, 8}, st(c,S) = 4
and et(c,S) = 8. Also there exist 10 5-windows, of which starting time is from 1
to 9. Furthermore, for the above window w, diamond episodes a �→ ab �→ c and
b �→ abc �→ b occur in w, for example.

4 5 6 7 8 9
a a a a a a
b b b b b
c c

Fig. 1. An event sequence S in Example 1

Let S be an event sequence, X an episode and k a natural number. Then, the
frequency freqS,k(X) and the support suppS,k(X) of X in S w.r.t. k are defined
as follows.

freqS,k(X) = |W (X,S, k)|, suppS,k(X) =
freqS,k(X)
|W (S, k)| .

Definition 3. Let σ be the minimum support such that 0 < σ < 1. Then, we
say that an episode X is frequent if supp(X) ≥ σ.
Lemma 1 (Anti-monotonicity for diamond episodes). Let E1 and E2 be
parallel episodes such that E1 ⊆ E2, If s1 �→ E2 �→ s2 is frequent, then so is
s1 �→ E1 �→ s2.

Proof. It is sufficient to show that W (s1 �→ E2 �→ s2,S, k) ⊆ W (s1 �→ E1 �→
s2,S, k). Suppose that l ∈ W (s1 �→ E2 �→ s2,S, k) and let Wl be the l-th k-
window in S. Then, it holds that Wl = w(W (s1 �→ E2 �→ s2,S, k), l, k). For
every e ∈ E2, it holds that st(s1,Wl) < et(e,Wl) and st(e,Wl) < et(s2,Wl).
Since E1 ⊆ E2, it holds that st(s1,Wl) < et(e′,Wl) and st(e′,Wl) < et(s2,Wl)
for every e′ ∈ E1, so s1 �→ E1 �→ s2 occurs in Wl. Hence, it holds that l ∈
W (s1 �→ E1 �→ s2,S, k). ��
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3 Algorithm to Extract Diamond Episode

In this section, we design the algorithm to extract all of the frequent diamond
episodes from an event sequence S, the minimum support σ and the width k of
windows.

The algorithm BitSerl, described as Figure 2, computes a bit vector of the
occurrences of all serial episodes with size 3, by scanning an event sequence.
Here, for a bit vector v ∈ {0, 1}∗, |v| denotes the length of v, and vi denotes the
i-th bit of v for 1 ≤ i ≤ |v|, that is, v = v1 · · · v|v|. Then, sft(v) is v2 · · · v|v|0.
For v, w ∈ {0, 1}∗, v ◦w denotes the concatenation of v and w. Furthermore, for
v, w ∈ {0, 1}∗ such that |v| = |w|, v∧w and v∨w are bit-wise logical conjunction
and bit-wise logical disjunction, respectively. In particular, 0(k) denotes the zero
vector 0 · · · 0 with length k.

procedure BitSerl(S,Ts, Te, k, E)
/* 〈S, Ts, Te〉: event sequence, k: the width of windows, E : event types */
/* initialization, where B[e] = B[e][Ts] · · ·B[e][Te − 1] */
for t = Ts to Te − 1 do

foreach e ∈ E do B[e][t] ← 0;
/* transforming an event sequence to a set of bit vectors */
for t = Ts to Te − 1 do

foreach e ∈ E such that (E, t) ∈ S do B[e][t] ← 1;
/* constructing a bit vector of a serial episode a �→ b �→ c */
l ← Te − Ts + k − 1; T ← ∅;
foreach (a, b, c) ∈ E × E × E do begin /* |V [·]| = |W [·]| = l */

V [a] ← 0(k − 1) ◦ B[a]; V [b] ← 0(k − 1) ◦ B[b]; V [c] ← 0(k − 1) ◦ B[c];
W [c] ← V [c]; W [b �→ c] ← 0(l); W [a �→ b �→ c] ← 0(l);
for d = 1 to k − 1 do begin

W [a �→ b �→ c] ← sft(W [a �→ b �→ c]) ∨ (V [a] ∧ sft(W [b �→ c]);
W [b �→ c] ← sft(W [b �→ c]) ∨ (V [b] ∧ sft(W [c]));
W [c] ← sft(W [c]) ∨ V [c];

end /* for */
T ← T ∪ {W [a �→ b �→ c]};

end /* foreach */
return T ;

Fig. 2. The algorithm BitSerl

Lemma 2. Let S be an event sequence 〈S, Ts, Te〉. Then, a serial episode e1 �→
· · · �→ en occurs in a window w(S, t, k) if and only if one of the following two
statements holds.

1. A serial episode e1 �→ · · · �→ en occurs in a window w(S , t+ 1, k − 1).
2. An event e1 occurs in a window w(S , t, 1) and a serial episode e2 �→ · · · �→ en

occurs in a window w(S, t+ 1, k − 1).
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Proof. First, we show the if direction. If the statement 1 holds, then there exists
a sequence (a1, t1) . . . , (an, tn) ∈ S of events such that ei = ai (1 ≤ i ≤ n) and
t+ 1 ≤ t1 < · · · < tn < t+ k. Since t ≤ t+ 1, the statement holds. On the other
hand, if the statement 2 holds, then there exists a sequence (a1, t1) . . . , (an, tn) ∈
S of events such that ei = ai (1 ≤ i ≤ n), t ≤ t1 < t+ 1, and t+ 1 ≤ t2 < · · · <
tn < t+ k. Since t ≤ t1 < t+ 1 ≤ t2 < · · · < tn < t+ k, the statement holds.

Next, we show the only-if direction by contraposition, that is, if both of the
following statements hold, then a serial episode e1 �→ · · · �→ en (n ≥ 2) does not
occur in w(S, t, k).
1. (A) A serial episode e1 �→ · · · �→ en does not occur in w(S , t+ 1, k − 1).
2. (B) An event e1 does not occur in w(S , t, 1) or (C) a serial episode e2 �→
· · · �→ en does not occur in w(S , t+ 1, k − 1).

Suppose that both of the above statements hold but a serial episode e1 �→
· · · �→ en occurs in w(S , t, k). Then, there exists a sequence (a1, t1), . . . , (an, tn) ∈
S of events such that ei = ai (1 ≤ i ≤ n) and t ≤ t1 < · · · < tn < t+ k.

Suppose that the statement (B) holds. Then, it holds that either t1 < t
or t + 1 ≤ t1. Since t ≤ t1, it holds that t + 1 ≤ t1. Hence, it holds that
t+ 1 ≤ t1 < · · · < tn < t+ k, which contradicts the statement (A).

On the other hand, suppose that the statement (C) holds. If t+ 1 ≤ t2, then
it holds that t+ 1 ≤ t2 < · · · < tn < t+ k, which contradicts the statement (C),
so it holds that t2 < t+ 1. Since t ≤ t1, and ti is a natural number, it holds that
t1 ≤ t2 < t+ 1 ≤ t1 + 1, that is, t1 = t2, which contradicts that t1 < t2.

Hence, a serial episode e1 �→ · · · �→ en does not occur in w(S , t, k). ��
Theorem 1. The algorithm BitSerl is correct.

Proof. For a window w and an episode X , let occ be a function that occ(w,X) =
1 if E occurs in w; 0 otherwise. Since V [·] and W [·] are bit vectors with length
l, we denote V [·][i] = (V [·])i and W [·][i] = (W [·])i for 1 ≤ i ≤ l. Then, the
algorithm BitSerl initially sets V [·][i] and W [·][i] to the following forms:

V [e][i] = occ(w(S , i− (k − 1), 1), e) (e ∈ E),
W [a �→ b �→ c][i] = occ(w(S , i− (k − 1), 1), a �→ b �→ c),

W [b �→ c][i] = occ(w(S , i− (k − 1), 1), b �→ c),
W [c][i] = occ(w(S , i− (k − 1), 1), c).

Suppose that, before the d-th iteration of the for-loop, W [·][i] is the following
forms:

W [a �→ b �→ c][i] = occ(w(S , i− (k − 1), d), a �→ b �→ c),
W [b �→ c][i] = occ(w(S , i− (k − 1), d), b �→ c),

W [c][i] = occ(w(S , i− (k − 1), d), c).

By Lemma 2, it holds that occ(w(S, i−(k−1), d+1), a �→ b �→ c) = occ(w(S, i−
(k − 1 + 1), d + 1 − 1), a �→ b �→ c) ∨ (occ(w(S , i− (k − 1), 1), a) ∧ occ(w(S , i−
(k−1+1), d+1−1), b �→ c)) = W [a �→ b �→ c][i+1]∨ (V [a][i]∧W [b �→ c][i+1]).
Similarly, it holds that occ(w(S , i − (k − 1), d + 1), b �→ c) = W [b �→ c][i + 1] ∨
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(V [b][i] ∧W [c][i+ 1]) and occ(w(S , i− (k − 1), d+ 1), c) = W [c][i+ 1] ∨ V [c][i].
Here, W [·][i+1] is corresponding to the shift operation sft for the i-th bit. Thus,
after the d-th iteration of the for-loop, W [·][i] is the following forms:

W [a �→ b �→ c][i] = occ(w(S , i− (k − 1), d+ 1), a �→ b �→ c),
W [b �→ c][i] = occ(w(S , i− (k − 1), d+ 1), b �→ c),

W [c][i] = occ(w(S , i− (k − 1), d+ 1), c).

Hence, by repeating the for-loop k times, we can obtain the bit vector W [a �→
b �→ c] representing the occurrences of a serial episode a �→ b �→ c. ��
After constructing the set of bit vectors representing the occurrences of all se-
rial episodes with size 3 by the algorithm BitSerl, we design the algorithm
FreqDmd to extract all of the frequent diamond episodes under the minimum
support σ as Figure 3.

procedure FreqDmd(S, Ts, Te, k, E , σ) /* 〈S,Ts, Te〉: event sequence */
/* k: the width of windows, E : event types, σ: the minimum support */
T ← BitSerl(S,Ts, Te, E , k); D ← ∅;
foreach (s1, s2) ∈ E do begin

I ← ∅;
foreach W [s1 �→ e �→ s2] ∈ T do

U [e] ← W [s1 �→ e �→ s2]; I ← I ∪ {U [e]};
/* e is regarded as an item */

F ← AprioriTid(I,σ);
/* call AprioriTid [1,2], where F is the set of frequent itemsets */
foreach E ∈ F do D ← D ∪ {s1 �→ E �→ s2};

end /* foreach */
return D;

Fig. 3. The algorithm FreqDmd

The algorithm FreqDmd calls the frequent itemset mining algorithm Apri-

oriTid, introduced by Agrawal and Srikant [2], because we can regard a serial
episode s1 �→ e �→ s2 as an item under fixing a source s1 and a sink s2, by
Lemma 1. Then, in the algorithm FreqDmd, a serial episode s1 �→ e �→ s2 is
referred as an event e, and extracts the set of all frequent itemsets by using the
set I of bit vectors of the occurrences of s1 �→ e �→ s2, which is corresponding to
L1 in the algorithm AprioriTid [2].

Theorem 2. The algorithm FreqDmd extracts all of the frequent diamond
episodes from an event sequence by scanning it just once.

Proof. By Theorem 1, the algorithm BitSerl is correct. Then, by Lemma 1
and the correctness of AprioriTid, the algorithm FreqDmd is correct.
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Furthermore, the algorithm FreqDmd scans an event sequence just once in the
algorithm BitSerl. ��
Example 2. Consider the event sequence S in Example 1 (Figure 1).

Figure 4 describes the set I of bit vectors in the algorithm FreqDmd obtained
by applying the algorithm BitSerl to S under the window width is 5. Here,
(s1, s2) is a pair of a source s1 and a sink s2 andD is a serial episode s1 �→ e �→ s2
corresponding to U [e] =W [s1 �→ e �→ s2].

(s1, s2) D 0 1 2 3 4 5 6 7 8 9
(a, a) a �→ a �→ a 0 0 1 1 1 1 1 1 0 0

a �→ b �→ a 0 0 1 1 1 1 1 1 0 0
a �→ c �→ a 0 0 0 0 0 1 1 1 0 0

(b, a) b �→ a �→ a 0 0 1 1 1 1 1 1 0 0
b �→ b �→ a 0 0 1 1 1 1 1 1 0 0
b �→ c �→ a 0 0 0 0 0 1 1 1 0 0

(c, a) c �→ a �→ a 0 0 1 1 1 0 0 0 0 0
c �→ b �→ a 0 0 1 1 1 0 0 0 0 0
c �→ c �→ a 0 0 0 0 0 0 0 0 0 0

(a, b) a �→ a �→ b 0 0 0 1 1 1 1 1 0 0
a �→ b �→ b 0 0 0 1 1 1 1 1 0 0
a �→ c �→ b 0 0 0 0 0 1 1 1 0 0

(b, b) b �→ a �→ b 0 0 0 1 1 1 1 1 0 0
b �→ b �→ b 0 0 0 1 1 1 1 1 0 0
b �→ c �→ b 0 0 0 0 0 1 1 1 0 0

(s1, s2) D 0 1 2 3 4 5 6 7 8 9
(c, b) c �→ a �→ b 0 0 0 1 1 0 0 0 0 0

c �→ b �→ b 0 0 0 1 1 0 0 0 0 0
c �→ c �→ b 0 0 0 0 0 0 0 0 0 0

(a, c) a �→ a �→ c 0 0 0 0 1 1 1 0 0 0
a �→ b �→ c 0 0 0 0 1 1 1 0 0 0
a �→ c �→ c 0 0 0 0 0 0 0 0 0 0

(b, c) b �→ a �→ c 0 0 0 0 1 1 0 0 0 0
b �→ b �→ c 0 0 0 0 1 1 0 0 0 0
b �→ c �→ c 0 0 0 0 0 0 0 0 0 0

(c, c) c �→ a �→ c 0 0 0 0 1 0 0 0 0 0
c �→ b �→ c 0 0 0 0 1 0 0 0 0 0
c �→ c �→ c 0 0 0 0 0 0 0 0 0 0

Fig. 4. The set I of bit vectors for a source s1 and a sink s2 in the algorithm FreqDmd.
Here, D denotes a serial episode s1 �→ e �→ s2 corresponding to U [e] = W [s1 �→ e �→ s2]
in Example 2.

Then, Figure 5 describes all of the frequent diamond episodes from S under the
minimum support 50%. Note that we can realize the algorithm AprioriTid [1,2]
by repeating the bit-wise conjunction of bit vectors in the breadth-first manner
while satisfying the minimum support.

(s1, s2) F D

(a, a) {a, b, ab} a �→ a �→ a, a �→ b �→ a, a �→ ab �→ a
(b, a) {a, b, ab} b �→ a �→ a, b �→ b �→ a, b �→ ab �→ a

(a, b) {a, b, ab} a �→ a �→ b, a �→ b �→ b, a �→ ab �→ b
(b, b) {a, b, ab} b �→ a �→ b, b �→ b �→ b, b �→ ab �→ b

Fig. 5. All of the extracted frequent diamond episodes from S under the minimum
support 50% and the window width 5 in Example 2. Here, no frequent diamond episode
is extracted when (s1, s2) = (c, a), (c, b), (a, c), (b, c) and (c, c).
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4 Empirical Results

In this section, by applying the algorithm FreqDmd to bacterial culture data of
Osaka Prefectural General Medical Center from 1995 to 1998, which are complete
data in [10], we extract frequent diamond episodes concerned with replacement
of bacteria. Here, we regard a pair of “attribute=value” as an event type.

First, we fix the width of windows as 30 days. Since the database contains
the patient information not related to replacement of bacteria such as date,
gender, ward and engineer [10], it is necessary to focus the specified attributes.
Then, for a diamond episode of the form s1 �→ E �→ s2, we select the at-
tributes age, department, sample, fever, catheter, tracheo, intubation, drainage,
WBC (white blood cell) count, medication, Urea-WBC, Urea-Nitocide, Urea-
Occultblood, Urea-Protein, Urea-amount, the total amount of bacteria, and the
sensitivity of antibiotics as the event types in E, and the detected bacterium as
a source s1 and a sink s2, in whole 44 attributes.

From the medical viewpoint, in order to extract frequent diamond episodes
concerned with replacement of bacteria, it is necessary to extract them based on
the same sample. Hence, by fixing the sample, we connect data of every patient
with the span of 30 days, which is the width of windows.

Then, Figure 6 describes the number of windows and all of the frequent
episodes under the minimum support 0.2%. Here, the column “c-episodes” de-
notes the number of diamond episodes after selecting s1 �→ E1 �→ s2 from the
frequent diamond episodes that has no s1 �→ E2 �→ s2 such that E2 ⊂ E1

and supp(s1 �→ E1 �→ s2) = supp(s1 �→ E2 �→ s2). We call such a frequent
diamond episode a frequent closed diamond episode, as similar as a closed pat-
tern [11,12,13,14].

sample windows episodes c-episodes
catheter/others 94597 1180562 7226

respiratory organs 170633 25629974 163476

Fig. 6. The number of windows and all of the frequent and the frequent closed diamond
episodes under the minimum support 0.2%

Figure 7 describes the bacteria of a source and a sick in the frequent closed dia-
mond episodes. Note that if the sample is respiratory organs, then the bacterium
“Staphylococcus aureus” occurs at either a source or a sink in the frequent closed
diamond episode under the minimum support 0.2%.

Figure 8 and 9 describe the sensitivity of antibiotics (Ant) that is resistant (R),
intermediate (I) and susceptibility, for the samples of catheter/others and respi-
ratory organs, respectively, such that a source and a sick are different in Figure 7.
Here, antibiotics are benzilpenicillin (PcB), synthetic penicillins (PcS), augmentin
(Aug), anti-pseudomonas penicillin (PcAP), 1st generation cephems (Cep1), 2nd
generation cephems (Cep2), 3rd generation cephems (Cep3), anti-pseudomonas
cephems (CepAP), aminoglycosides (AG), macrolides (ML), tetracyclines (TC),
carbapenems (CBP), vancomycin (VCM) and RFP/FOM (RFPFOM).
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sample bacterium of a source bacterium of a sick c-episodes
catheter/others Staphylococcus aureus Staphylococcus aureus 6396

Bacteroides fragilis Bacteroides fragilis 596
Pseudomonas aeruginosa Pseudomonas aeruginosa 120
Escherichia coli Escherichia coli 18
Enterococcus faecalis Enterococcus faecalis 1
Staphylococcus aureus Pseudomonas aeruginosa 45
Bacteroides fragilis Enterococcus faecalis 22
Enterococcus faecalis Pseudomonas aeruginosa 22
Escherichia coli Staphylococcus aureus 4
Bacteroides fragilis Staphylococcus aureus 2

respiratory organs Staphylococcus aureus Staphylococcus aureus 140681
Pseudomonas aeruginosa Pseudomonas aeruginosa 10512
Staphylococcus aureus Pseudomonas aeruginosa 6586
Pseudomonas aeruginosa Staphylococcus aureus 5677
Staphylococcus aureus Enterobacter cloacae 10
Staphylococcus aureus Serratia marcescens 6
Enterobacter cloacae Staphylococcus aureus 3
Staphylococcus aureus Klebsiella pneumoniae 1

Fig. 7. The bacteria in a source and a sink in the frequent closed diamond episodes

bacterium of a source bacterium of a sick sensitivity
Staphylococcus aureus Pseudomonas aeruginosa 45 PcS=R(2), PcAP=S(1), Cep1=R(8),

AG=S(6), TC=R(1), CBP=S(14)

Bacteroides fragilis Enterococcus faecalis 22 PcB=R(2), PcB=S(1), PcAP=S(16),

Cep1=R(6), Cep3=S(4), AG=S(2),

ML=S(22), TC=S(22), CBP=S(22),

VCM=S(1)

Enterococcus faecalis Pseudomonas aeruginosa 22 PcB=R(1), Cep1=R(3),

Cep2=S(1), TC=S(7), CBP=S(11)

Escherichia coli Staphylococcus aureus 4 Cep3=S(2), TC=S(4), CBP=S(3)

Bacteroides fragilis Staphylococcus aureus 2 PcB=R(1)

Fig. 8. The sensitivity of antibiotics for the sample of catheter/others in Figure 7

Hence, we can observe that, if a pair of a source and a sink is different, then
so is sensitivity of antibiotics. In particular, for the case of a source “Bacteroides
fragilis” and a sick “Enterococcus faecalis” in Figure 8, all episodes contain the
sensitivity that ML=S, TC=S and CBP=S. On the other hand, for the case of a
source “Staphylococcus aureus” and a sick “Pseudomonas aeruginosa” and the
case of its alternation in Figure 9, episodes contain the sensitivity of both R and
S for antibiotics AG, TC and CBP, and the episodes for the former case contain
ML=S but the episodes for the latter case do not.
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bacterium of a source bacterium of a sick sensitivity
Staphylococcus aureus Pseudomonas aeruginosa 6586 PcB=R(974), PcS=R(4390),

Aug=R(964), PcAP=S(1508),

Cep1=R(3868), Cep2=R(567),

Cep3=S(289), CepAP=S(1236),

AG=R(139), AG=S(1868),

TC=R(1265), TC=S(111),

CBP=R(95), CBP=S(1994),

VCM=S(1968), RFPFOM=S(109)

Pseudomonas aeruginosa Staphylococcus aureus 5677 PcB=R(635), PcS=R(2639),

Aug=R(1118), PcAP=S(1334),

Cep1=R(2726), Cep2=R(382),

Cep3=S(270), CepAP=S(864),

AG=R(120), AG=S(1566),

ML=S(63), TC=R(1212),

TC=S(88), CBP=R(6),

CBP=S(1533),VCM=S(457),

RFPFOM=S(45)

Staphylococcus aureus Enterobacter cloacae 10 PcS=R(2), Cep1=R(1),

AG=S(1), CBP=S(4)

Staphylococcus aureus Serratia marcescens 6 AG=S(1), CBP=S(1)

Enterobacter cloacae Staphylococcus aureus 3 PcS=R(1)

Staphylococcus aureus Klebsiella pneumoniae 1 —

Fig. 9. The sensitivity of antibiotics for the sample of respiratory organs in Figure 7

We will report elsewhere the analysis of the extracted diamond episodes from
the medical viewpoints deeply.

5 Conclusion

In this paper, we have introduced a diamond episode of the form s1 �→ E �→ s2,
where s1 and s2 are events and E is a set of events. Then, by formulating the
support of diamond episodes, we have shown that the diamond episode preserves
anti-monotonicity. Also we have designed the algorithm BitSerl to construct
the set of bit vectors representing the occurrences of all serial episodes with
size 3, by using the bit-wise conjunction and disjunction, and the shift operator.
Then, we have designed the algorithm FreqDmd to extract all of the frequent
diamond episodes from a given event sequence. Finally, we have applied the algo-
rithm FreqDmd to bacterial culture data in order to extract frequent diamond
episodes representing replacement of bacteria.

It is main advantage for the algorithm FreqDmd to scan a given event se-
quence just once, as same as the algorithm AprioriTid [1,2] or Sect [5]. How-
ever, the algorithm FreqDmd is insufficient to give empirical results efficiently,
so it is a future work to improve the algorithm FreqDmd more efficiently.
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In the evaluation in Section 4, we have introduced a closed diamond episode,
because of reducing the number of extracted episodes. On the other hand, there
are many algorithm to extract frequent closed patterns such as Lcm [11] and
Charm [14] for frequent itemsets and Bide [12] and CloSpan [13] for frequent
sequences. Then, it is a future work to design an algorithm to extract frequent
closed diamond episodes directly, by combining Lcm or Charm instead of Apri-

oriTid in the algorithm FreqDmd.
In this paper, we have given empirical results for bacterial culture data. It is

an important future work to apply our algorithm FreqDmd to various data in
order to extract frequent diamond episodes.
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Abstract. We provide mathematical models to operate a toll plaza
with the time-dependent lane configuration policy. To formulate toll
operations in the problem we use the queueing theory and mathemati-
cal programming. The queueing theory is utilized to obtain the stability
condition which requires the mean arrival rate less than the mean service
rate in each lane and compute the mean waiting time in the queue. The
mathematical programming is used to determine the time-dependent lane
configuration to minimize the total waiting and operation costs. In order
to apply the introduced mathematical models in real world problem, we
provide a case study based on the actual traffic data collected and show
how the time-dependent lane configuration policy can be achieved in each
time period. By numerical evaluation we demonstrate the electronic toll
collection (ETC) is an intelligent transportation system which achieves
high throughput and maintains almost no wait time.

1 Introduction

Ever increasing traffic volume and corresponding congestion necessitate efficient
design and management of toll plaza operations. Constructing a toll plaza with
right capacity and then time-dependent optimal lane configuration against the
non-stationary and stochastic traffic volume can help prevent long waits during
the peak times at the toll plaza. Queueing theory, which is considered to best
describe the traffic situations at the toll plaza, has rarely been applied to toll
plaza operations. Some previous studies use M/M/1 queueing systems to model
the toll plaza problem, but the assumption on the exponential service time is
unrealistic in practice. Several papers have presented case studies or simulations
without general mathematical models to find good sub-optimal solutions for spe-
cific locations as illustrated in Section 2. This paper is differentiated from the
previous work by providing an M/G/1 queueing model, which is more realistic
and mathematically tractable, and it is then integrated with mathematical pro-
gramming models to determine the time-dependent optimal lane configurations
policy in each time period at the toll plaza.
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The rest of the paper is organized as follows. Section 2 provides related litera-
ture. Determination of the lower bounds for the number of lanes to open in each
payment type, the corresponding total capacity at the toll plaza, and measures
of performance based on the M/G/1 queueing process are given in Section 3.
The queueing and mathematical programming models are provided to obtain
time-dependent lane configuration policy minimizing total waiting and opera-
tion costs. Next, a case study is presented in Section 4 to show application of
the introduced methodologies in determining the time-dependent optimal lane
configuration policy based on the real traffic data collected. Lastly, concluding
remarks and future research directions are given in Section 5.

2 Literature Review

The optimization problem for the toll plaza operations are related to the queue-
ing studies because arrival and service processes are basically not deterministic
but stochastic in nature. Initial work on optimal control policies for M/G/1
queueing systems is in [1] and its extensions with balking and reneging are pre-
sented in [2] and [3]. Queueing systems with two servers are analyzed in [4].
General cases with more than two server queueing systems are examined in [5].
More extant literature on queueing studies is reviewed in [6].

Toll plaza operation is closely related to pricing issues. Controlling queue
length through the use of pricing strategy is presented in [7]. Public utility
pricing with uncertainty and congestion is investigated in [8]. Peak-load pricing
and capacity planning under the stochastic demand and supply are presented in
[9]. Peak-period congestion pricing with elastic demand is considered in [10].

Recently, there has been growing interest in utilizing ETC systems. The po-
tential advantages of ETC system through diverse applications of experimental
implementation is ascertained in [11]. The impact of ETC systems is quanti-
tatively investigated through the simulation study in [12]. Benefits in traffic
operations at a toll plaza with ETC systems are evaluated via a case study in
Florida, USA in [13]. A traffic operation model at ETC systems based on deter-
ministic assumptions is presented in [14]. M/M/1 queueing systems to compute
the upper bounds of mean queue length and mean wait time are used in [6]. In
this study a capacity planning model subject to a reliability constraint is devel-
oped and, subsequently, a work force model is presented. Benefit-cost evaluation
of the ETC system is presented in [15]. The best combination of ETC lanes and
toll discount to maximize welfare is examined in [16] .

This paper has been motivated by the fact that most previous studies do not
use the general service time distribution in the queueing model due to mathe-
matical complexity although it is more realistic in practice than the exponential
distribution. Another motivation is that there are several simulation and case
studies for particular locations, but a few provide general optimization models
in terms of the mathematical programming, and none of them has integrated
an M/G/1 queueing process in the optimization model for the toll operation
problem. We first begin an M/G/1 queueing model in the next section.
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3 Formulation

Queueing theory has been often used to model the vehicle traffics at the toll
plaza. In this section we first present main components of the queueing model
for toll operations. The main elements of the queueing model are arrival and
service processes, number of servers, queue discipline, etc.

There are many types of toll lanes in different cities, states, and countries.
Lanes at the toll plaza may be divided as follows: dedicated manual toll lanes,
dedicated automatic coin machine lanes (hereafter referred to as ACM lanes,
dedicated electronic toll collection (ETC) lanes with automatic vehicle identi-
fication technology, and any mix of the above mentioned dedicated lane types,
such as mixed ACM and ETC lanes, mixed ACM and manual lanes, and mixed
ETC and manual lanes [17].

As a representation of the real toll plaza system, a queueing model should be
formulated by making some assumptions on the probability distribution which
should be both sufficiently realistic and mathematically tractable. It is assumed
in this study that arrivals exhibit Poisson processes. Statistical test shows that
arrivals at the toll plaza follow the standard assumption of a Poisson process
with exponential interarrival times. This Poisson assumption is adopted many
times in the literature [18], [19].

Let ν be the mean total arrival rate at the toll plaza, and νi mean arrival rate
for lane type i, i = 1, 2, · · · , T . If we let θi be the mean proportion of motorists
using lane type i, we have the relationship νi = νθi for each i. Without losing
reality, we may be able to assume that arrival percentage per lane type is almost
uniformly distributed over all lanes. Therefore, the mean arrival rate per lane is
determined by dividing the mean arrival rate per lane type νi by the number
of lanes utilized for that type of collection χi, and we have νi/χi. To make
the problem mathematically tractable, we assume arrivals are distributed this
way [6].

Service time from the service start to completion does not include wait time
of the motorist in the queue. In other words, it means pure transaction time
paying the toll, excluding waiting time. Thus, the service time distribution is
not affected whether the congestion level is high or low at the toll plaza, and the
probability distribution of the service time is time-invariant between the peak
and the off-peak hours. If the service time has an exponential distribution, the
mathematics of the queueing model are most manageable. However, it is not
realistic and the probability distribution of the service time at the toll plaza
does not follow the nice exponential distribution since an exponential service
time distribution has a much larger variation than the one in the real situation.
Hence, instead of assuming the exponentially distributed service time, we assume
that service times have general distributions with the mean service time, 1/ηi,
and the variance of service time, τ2

i , for lane type i.
By assuming the Poisson arrival process where the mean arrival rate per lane

type is uniformly distributed across each lane and the general probability dis-
tribution for the service time with the mean and the variance, we can formulate
an M/G/1 queueing model. We first determine the capacity Ω to design the toll
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plaza. Ω should be big enough to handle all motorists at any time, but its upper
bound may be limited because of the geographical restrictions. The mean arrival
rate needs to be smaller than the mean service rate for each lane type in order
for the queueing system to be stable, that is, νi/ηi < χi for all i. Otherwise,
the queue will build up without bound. Let ξi denote the minimum value of χi

satisfying the inequality νi/ηi < χi, and ζi the upper bound for the number of
type i lanes to open. Therefore, the capacity Ω of the toll plaza should satisfy
the relationship

∑
i ξi ≤ Ω to efficiently process all vehicles.

If the mean arrival rates, the mean service times and the variance of the
service time are given, the mean waiting times in the queue can be computed
for the M/G/1 queueing process by using the Pollaczek−Khintchine formula
[20]. Γi, the mean waiting time of the vehicle in the queue for lane type i and, Γ ,
the total waiting time of all drivers at the toll plaza can be obtained as follows.

Γ =
∑

i

νiΓi =
∑

i

νi

(
νi(η2

i τ
2
i + 1)

2ηi(χiηi − νi)

)
(1)

Next we should concern optimal operations of the toll plaza. The objectives
of operating a toll plaza may be different depending on the time of a day and the
traffic situations. The objective may be minimizing the total waiting time at the
toll plaza during the rush hours by using full capacity because of the high traffic
volume. On the other hand, during the off-peak times the traffic volume may
be low and service standard might be well satisfied even with partial capacity
operations.

To find the optimal lane configuration at the toll plaza (χ∗1, χ
∗
2, · · · , χ∗T ) during

the rush hours given several constraints, we develop a following mathematical
programming model minimizing the total wait costs, C.
1) Objective Function: Let α denote the waiting cost per unit time. Then, the
total waiting cost of all motorists at the toll plaza per unit time is

∑
i ανiΓi. Our

goal is to find the optimal lane configuration, i.e., the number of lanes to open
for each payment type in order to minimize the total wait costs for all drivers.

Minimize C =
∑

i

ανi

(
νi(η2

i τ
2
i + 1)

2ηi(χiηi − νi)

)
(2)

2) Lower and Upper bounds Constraints : Lanes to open for each collection type
have lower and upper bounds, i.e., ξi and ζi. The lower bound ξi is determined
for each i as in the previous section, and the number of ACM and ETC lanes
available is limited by the upper bound, i.e., the number of lanes equipped with
ACM and ETC lane machines.

ξi ≤ χi ≤ ζi for all i (3)

3) Stability Constraints : Next, enough toll booths are required so that the arrival
rate to each lane should be less than the service rate for the system not to
have unlimited queues. This condition guarantees that the queueing system will
remain in the steady state with finite queues.

νi/ηi < χi for all i (4)
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4) Capacity Constraints : Sum of open lanes for all lane types cannot be greater
than the total available lanes. During the rush hours full capacity operation may
be desired to minimize the total wait costs while partial operation should be fine
during non-peak times as long as the service standard is met.∑

i

χi ≤ Ω (5)

5) Integer Constraints: Obviously, the number of lanes to open should be an
integer value. Non-negativity constraints are not needed because of the lower
bounds constraints.

χi = int for all i. (6)

Now let’s consider the situation during the off-peak hours. During the off-peak
times it may be needed to minimize the number of lanes to open for each lane
type as long as the service level ψi is satisfied in order to save operation costs. In
order to find the optimal lane configuration at the toll plaza during the off-peak
hours given several constraints, we also devise a mathematical programming
model to achieve this goal.
6) Objective Function: The operating cost is directly related with the number of
lanes open at the toll plaza. Let βi denote the operation cost of a type i lane
per unit time. Then, the total operating costs B at the toll plaza per unit time
become

∑
i βiχi. In this case, the objective function (2) should be replaced with

the following.

Minimize B =
∑

i

βiχi (7)

7) Service Level Constraints : We need to consider the requirement for the pre-
scribed service level Γi ≤ ψi for all i, and, hence, add the following one in
addition to the constraints (3)-(6).

νi(η2
i τ

2
i + 1)

2ηi(χiηi − νi)
≤ ψi for all i (8)

Inequality (8) states that mean waiting time for each lane should not be greater
than the prescribed service level ψi. For instance, the prescribed service standard
for the ACM lane could be set to 30 seconds.

4 Model Applications

This section presents a case study finding time-dependent optimal lane config-
uration. We apply the proposed methodology with real traffic data which have
been collected at the location of a potential toll plaza on the highway. The pur-
pose of this section is to provide procedures of finding time-dependent optimal
lane configuration to minimize waiting and operating costs.

After checking geographical feasibility, we find it is possible to design a toll plaza
whose capacityΩ could be up to 16 lanes for one direction. In this case we consider
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T = 3 dedicated lane types - ETC, ACM, and manual lanes - that may be repre-
sentative in many situations. Toll plaza officials are interested in determining χi

the appropriate number of lanes to open for each payment type i = E,A,M , dur-
ing each one hour period in order to minimize the total wait cost of the motorists
during the rush hours and in order to minimize operation cost during the off-peak
times, given that the predetermined service level, ψi, is satisfied.

First, we obtain ν, the mean total arrival rate of vehicles for each one hour
period, by measuring the traffic volume passing through a location of a potential
toll plaza on the highway. However, exact values of νE , νA, and νM may not be
readily available yet. As a result, we may obtain the proportions of motorists in
other nearby toll plazas, interpolate and extrapolate those proportions to esti-
mate values of θE , θA, and θM at this potential toll plaza and use the relationship
νi = νθi for i = E,A,M .

Figure 1 shows total mean arrival rate, ν, and mean arrival rates for each pay-
ment type, νE , νA, and νM . These rates may be location specific, but the increas-
ing and decreasing trend of the traffic volume during a day in Figure 1 may be
typical in many large cities in terms of the peak volume during the morning and
evening peak hours and the low volume during the off-peak times. From Figure 1
it is generally known that morning rush hours are from 6:00 to 9:00 and evening
rush hours are from 17:00 to 21:00. For instance, νE = 24.2 between 8:00 and 9:00
states that on average 24.2 vehicles per minute approach the toll plaza between
8:00 and 9:00 to make toll payments through the ETC lanes.

Actual data on service times have been collected from a nearby toll plaza
where the same ETC and ACM equipment is installed. We have mean service
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Fig. 1. Mean arrival rates, ν, νE, νA, νM , per minute
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rates ηE = 49.8, ηA = 10.2, ηM = 6.1 per minute, and standard deviations of
service times are τE = 0.01, τA = 0.06, τm = 0.12 minutes for each lane.

Next, we determine the appropriate capacity of the new toll plaza. Lower
bounds ξi are computed for each payment type over time as in the previous
section. We have

∑
i ξi = 12 between 7:00 and 8:00, when we have the peak

traffic volume during a day. Therefore, as long as the capacity of the toll plaza
is set to greater than or equal to 12 toll lanes, mean arrival rate will be smaller
than the mean service rate for each lane type and the new toll plaza may be able
to remain in a steady state with finite queues. Although the lower bound for
capacity of the toll plaza is only 12 during the peak time between 7:00 and 8:00,
toll plaza officials set the capacity equal to 16, the maximum feasible number
under the geographical restriction, considering the increasing trend of traffic
volume in the future and correspondingly decide the upper bounds for each lane
type.

Table 1. Lower and Upper Bounds

time ξE ζE ξA ζA ξM ζM time ξE ζE ξA ζA ξM ζM

24-1 1 4 1 6 2 3 12-13 1 4 2 6 4 8
1-2 1 4 1 6 2 3 13-14 1 4 2 6 4 8
2-3 1 4 1 6 2 3 14-15 1 4 2 6 4 8
3-4 1 4 1 6 3 4 15-16 1 4 2 6 5 8
4-5 1 4 1 6 3 5 16-17 1 4 2 6 5 8
5-6 1 4 1 6 4 5 17-18 1 4 2 6 6 11
6-7 1 4 2 6 6 11 18-19 1 4 3 6 7 11
7-8 1 4 3 6 8 11 19-20 1 4 2 6 6 11
8-9 1 4 3 6 7 11 20-21 1 4 2 6 5 11

9-10 1 4 2 6 5 8 21-22 1 4 1 6 4 5
10-11 1 4 2 6 4 8 22-23 1 4 1 6 3 4
11-12 1 4 2 6 4 8 23-24 1 4 1 6 2 3

Although we have ξE = 1 all the time in Table 1, toll plaza officials would
like to open at least two ETC lanes to encourage fast electronic toll payments to
motorists. ξA = 3 between 7:00 and 8:00 implies that we need to install ACM
equipment for at least three lanes. Once ACM equipment is installed, it may be
better to use all three ACM lanes even during off-peak times as long as they do not
have to be changed to other collection types since operating cost for ACM lanes is
not significant. We now would like to know the optimal number of lanes to open
for each lane type between these bounds to minimize waiting cost during the rush
hours and to minimize operation costs during the off-peak times. Like ACM lanes,
we mention that once the ETC machines are equipped, their operation costs are
not considerable compared to the labor cost in the manual lanes.

We conduct a survey from the motorists in manual and ACM lanes and the
results reveal that when the drivers at the toll plaza are in the queue up to 30
seconds, i.e., 0.5 minute, their perception of that waiting time in the queue is
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only a few seconds. However, after waiting time in the queue becomes over 30
seconds, motorist perception of that waiting time grows quickly. Therefore, we
set 30 second wait time as the prescribed service level. Toll plaza officials want
ETC users not to stop to pay the toll in order to guarantee fast transaction with
no waiting time although vehicles may have to decelerate as they approach the
toll plaza, and we set ψE = 2 second = 0.033 minute.

Now we use mathematical programming models explained in the previous sec-
tion to obtain the time-dependent optimal lane configuration. We utilize MAT-
LAB and Microsoft EXCEL to conduct this numerical evaluation. Table 2 pro-
vides results by solving the mathematical programming models. For instance, by
operating two ETC, three ACM and five manual lanes between 12:00 and 13:00
we can achieve minimum total waiting costs, which is directly proportional to
the sum of wait times of all motorists approaching the toll plaza between 12:00
and 13:00, and mean wait times in the queue for each lane type are 0, 0.05, and
0.37 minutes per driver, respectively. It is noted that it is optimal to open only
two ETC lanes, equal to the lower bound, throughout a day.

Table 2. Optimal Lane Configuration and Average Wait Times

time χ∗
E χ∗

A χ∗
M ΓE ΓA ΓM Γ time χ∗

E χ∗
A χ∗

M ΓE ΓA ΓM Γ

24-1 2 3 2 0 0.01 0.37 205 12-13 2 3 5 0 0.05 0.37 536
1-2 2 3 2 0 0.01 0.40 228 13-14 2 3 5 0 0.05 0.42 637
2-3 2 3 2 0 0.01 0.34 185 14-15 2 3 5 0 0.06 0.48 755
3-4 2 3 3 0 0.01 0.26 195 15-16 2 3 6 0 0.08 0.32 584
4-5 2 3 4 0 0.01 0.23 218 16-17 2 3 6 0 0.09 0.41 790
5-6 2 3 5 0 0.02 0.25 321 17-18 2 4 10 0 0.06 0.14 325
6-7 2 3 11 0 0.09 0.12 328 18-19 2 4 10 0 0.07 0.19 514
7-8 2 4 10 0.01 0.11 0.36 1149 19-20 2 3 11 0 0.11 0.14 415
8-9 2 4 10 0 0.07 0.19 512 20-21 2 3 11 0 0.06 0.10 250
9-10 2 3 6 0 0.10 0.35 685 21-22 2 3 5 0 0.03 0.24 310
10-11 2 3 5 0 0.07 0.49 783 22-23 2 3 4 0 0.02 0.22 216
11-12 2 3 5 0 0.05 0.40 601 23-24 2 3 3 0 0.01 0.17 107

We realize that during the off-peak hours it may not be required to operate all
the lanes, but prescribed service standard is quite satisfied. For example, although
only two ETC, three ACM, and two manual lanes are utilized between 2:00 and
3:00, which means only 7 lanes are used out of 16, mean waiting time in each lane
is still below the specified service levels. During this time period one ETC lane
and one ACM lane may be fine to satisfy the predetermined service level, but it
may not be attractive to further reduce the number of open lanes for ETC and
ACM lanes since their operation costs are trivial compared to the labor costs in
the manual lanes and they do not have to be changed to the manual lanes, either.

Table 2 reveals that the current 16 lane toll plaza system may have enough
capacity to hold the current traffic volume with some slack capacity. During the
rush hours in the morning and in the evening we can keep the mean waiting
times for each lane type below the prescribed service level with full capacity
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operation. In addition, service level is still well maintained during the off-peak
hours by using partial capacity.

5 Conclusion

We have presented mathematical models for the time-dependent optimal lane
configuration policy at the toll plaza. With the M/G/1 queueing process, which
is both realistic and mathematically manageable for the toll plaza operations, we
computed lower bounds on the number of required lanes to open for each pay-
ment type, and we could determine the total capacity of the toll plaza. Then,
in order to find time-dependent optimal lane configuration we comined the pro-
posed queueing process into mathematical programming in each time period. We
then illustrated how the introduced methodology could be applied in practice
for time-dependent optimal lane configuration policy with a case study based on
the actual traffic data collected. By numerical evaluation, we showed that ETC
system is powerful to reduce long waits and increase the throughput at the toll
plaza.

Although the author have used only three representative dedicated lane types
(ETC, ACM, and manual lanes) in the case study, the proposed methods and
results are extendable to the case when T > 3 with any other payment types
or any mix of dedicated lane types. By considering development in electronic
display technology for time-dependent lane configuration and evolution of com-
puter ability, we remark that implementation of the proposed methodology is
not difficult with small amount of computational efforts. To completely reflect
seasonal factors or other changes in traffic volume, we need to regularly update
the database of total traffic volume, proportion of lane users, etc.

The case study in Section 4 showed how the introduced mathematical models
could be applied in operating a toll plaza based on the current traffic volume.
However, the total traffic volume in many metropolitan areas may continuously
increase up to some level in the future. Hence, when designing a toll plaza,
we also need to forecast the increase of future traffic volume, e.g., the percent
increase per year, and examine corresponding effects on the mean wait times by
the sensitivity analysis. If the increase in future traffic volume is considerable,
the currently designed toll plaza may not be efficient or unable to handle the high
traffic volume during rush hours. In case expanding the toll plaza is not possible
due to geographical restrictions, we may need to devise a strategy, for example,
by transferring toll users from low-throughput to high throughput lanes in order
to resolve congestion. Calculation of the minimum required transfer amount
and numerical evaluation of that kind of strategy to see how effective it is in
reducing total wait times will be interesting and practical future research topics.
In addition, we need to consider how to implement the strategy, for example,
with some discount benefits or advertising.

Although we obtained the optimal lane configuration based on the histori-
cal average traffic volume data, real-time traffic volume or real-time proportion
of toll users may be considerably different from the historical average values,
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contingent on traffic accidents, weather conditions, sports events, etc. Thus, in
order to best use the introduced methodologies in the time-dependent optimal
lane configuration, we need to combine the historical and real-time traffic infor-
mation. When we have these unexpected changes of the total traffic volume or
proportion of toll users, how to dynamically reconfigure the toll plaza in real-time
to maintain not long wait time is another future research direction as introduced
with decision support system in [22].

Lastly, finding the optimal work force scheduling with full-time and part-time
workers to minimize operating cost based on stochastic traffic situations may
be an interesting but challenging future research topic. It may be required to
hold some additional toll collectors as a buffer against unexpected surge of the
toll demand. In that situation, forecasting the future traffic volume should be
crucial to minimize labor costs of buffer toll collectors. The optimal scheduling
of full-time and part-time toll collectors may be complex in practical situations
if it has to consider all aspects of meal time, break and rest, day off, etc.
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Garćıa-Lapresta, José Luis 92
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