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Abstract Group decision making, as meant in this chapter, is the following choice
problem which proceeds in a multiperson setting. There is a group of individuals
(decisionmakers, experts, . . . ) who provide their testimonies concerning an issue
in question. These testimonies are assumed here to be individual preference rela-
tions over some set of option (alternatives, variants, . . . ). The problem is to find a
solution, i.e. an alternative or a set of alternatives, from among the feasible ones,
which best reflects the preferences of the group of individuals as a whole. We will
survey main developments in group decision making under fuzziness. First, we will
briefly outline some basic inconsistencies and negative results of group decision
making and social choice, and show how they can be alleviated by some plausible
modifications of underlying assumptions, mainly by introducing fuzzy preference
relations and, to a lesser extent, a fuzzy majority. Then, we will concentrate on how
to derive solutions under individual fuzzy preference relations, and a fuzzy majority
equated with a fuzzy linguistic quantifier (e.g., most, almost all, . . . ) and dealt with
in terms of a fuzzy logic based calculus of linguistically quantified statements or via
the ordered weighted averaging (OWA) operators. We will briefly mention that one
of solution concepts proposed can be a prototype for a wide class of group decision
making choice functions. Then, we will discuss a related issue of how to define a
“soft” degree of consensus in the group under individual fuzzy preference relations
and a fuzzy majority. Finally, we will show how fuzzy preferences can help alleviate
some voting paradoxes.
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1 Introduction

In this section we will first discus the very essence of group decision making and
how fuzzy preferences and a fuzzy majority can help alleviate some inherent dif-
ficulties and make models more realistic. Then, we will briefly present some tools
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to be used, notably how to deal with linguistically quantified statements, and with a
linguistic quantifier driven aggregation.

1.1 Group Decision Making

The essence of decision making, one of the most crucial and omnipresent human ac-
tivities, is basically to find a best alternative (option, variant, . . . ) from among some
feasible (relevant, available, . . . ) ones. It has been a subject of intensive research,
notably formal, mathematical models have been devised to formalize the human
rational behavior. Initially, this rationality has been equated with the maximization
of some utility (value) function. Unfortunately, it has become more and more clear
that the human behavior is rarely consistent with the maximization of a (expected)
utility function, and some attempts to make decision making models more human
consistent have been made, notably via a plausible modification of assumptions on,
e.g., human preferences, axioms underlying the (expected) utility based approach,
etc. – cf. Aizerman [1], many contributions in Kacprzyk and Fedrizzi [24], Kacprzyk
and Roubens [51], Nurmi [34], etc. Potentials of fuzzy sets, in particular fuzzy
relations, have been recognized quite early as well, cf. Blin [10], Blin and Whin-
ston [11].

However, decision making in real world usually proceeds under multiple criteria,
decisionmakers, stages, etc. In this paper we basically consider the case of multi-
person decision making, more specifically group, practically from the perspective of
social choice, under some fuzification of preferences and majority. We assume that
there is a set of individuals who provide their testimonies assumed to be preferences
over the set of alternatives. The problem is to find a solution, i.e. an alternative (or a
set of alternatives) which is best acceptable by the group of individuals as a whole.
For a different point of departure, involving choice sets or utility functions, we may
refer the interested reader to, e.g., Kim [29], Salles [37], etc.

Since its very beginning group decision making has been plagued by negative
results. Their essence is that no “rational” choice procedure satisfies all “natural”,
or plausible, requirements; so, each choice procedure has at least one serious draw-
back. By far the best known negative result is the so-called Arrow’s impossibility
theorem (cf. Arrow [2] or Kelly [56]). Another well known negative results are due
to Gibbard and Satterthwaite, McKelvey, Schofield, etc. – cf. Nurmi [34]. Basi-
cally, all these negative results might be summarized as: no matter which group
choice procedure we employed, it would satisfy one set of plausible conditions
but not another set of equally plausible ones. Unfortunately, this general property
pertains to all possible choice procedures, so that attempts to develop new, more
sophisticated choice procedures do not seem very promising in this respect. Much
more promising seems to be to modify some basic assumptions underlying the
group decision making process. This line of reasoning is also basically assumed
here.

A notable research direction is here based on the introduction of an individual and
social fuzzy preference relation. Suppose that we have a set of n ≥ 2 alternatives,
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S = {s1, . . . , sn}, and a set of m ≥ 2 individuals, E = {1, . . . ,m}. Then, an
individual’s k ∈ E individual fuzzy preference relation in S × S assigns a value
in the unit interval for the preference of one alternative over another.

Normally, there are also some conditions to be satisfied, as, e.g., reflexivity, con-
nectivity, (max-min) transitivity, etc. One should however note that it is not clear
which of these “natural” properties of preference relations should be assumed. We
will briefly discuss this issue in Sect. 2, but the interested reader should consult, e.g.,
Salles [37]. Moreover, a deep discussion is given in, e.g., Fodor and Roubens’ [15],
and also in De Baets et al.’s paper in this volume.

In this paper we assume that the individual and social fuzzy preference relations
are defined in S × S, i.e. assign to each pair of alternatives a strength of preference
of one over another as a value from [0, 1]. Sometimes a better solution would be
to assume the values of the strength of preference belonging to some ordered set
(e.g. a set of linguistic values). This gives rise to some non-standard notions of
soft preferences, orderings, etc. The best source for information on these and other
related topics is Salles [37], and among the new approaches, the ones due to Her-
rera et al. [27, 28, 29, 30, 31, 32, 33] are particularly worth mentioning. The fuzzy
preferences will be employed only instrumentally, and we will not discuss them and
their properties in more detail.

Another basic element underlying group decision making is the concept of a ma-
jority – notice that a solution is to be an alternative (or alternatives) best acceptable
by the group as a whole, that is by (at least!) most of its members since in practically
no real nontrivial situation it would be accepted by all.

Some of the above mentioned problems, or negative result, with group decision
making are closely related to too strict a representation of majority (e.g., at least a
half, at least 2/3, . . . ). A natural line of reasoning is to somehow make that strict
concept of majority closer to its real human perception by making it more vague.
A good, often cited example in a biological context may be found in Loewer and
Laddaga [62]:

“ . . . It can correctly be said that there is a consensus among biologists that
Darwinian natural selection is an important cause of evolution though there
is currently no consensus concerning Gould’s hypothesis of speciation. This
means that there is a widespread agreement among biologists concerning the
first matter but disagreement concerning the second . . . ”

and it is clear that a rigid majority as, e.g., more than 75% would evidently not
reflect the essence of the above statement. However, it should be noted that there are
naturally situations when a strict majority is necessary, for obvious reasons, as in all
political elections.

A natural manifestations of such a “soft” majority are the so-called linguistic
quantifiers as, e.g., most, almost all, much more than a half, etc. Such linguistic
quantifiers can be, fortunately enough, dealt with by fuzzy-logic-based calculi of lin-
guistically quantified statements as proposed by Zadeh [86]. Moreover, Yager’s [84]
ordered weighted averaging (OWA) operators can be used for this purpose (cf. Yager
and Kacprzyk [85]), and also some other tools as, e.g., the Choquet integral.
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In this paper we will present how fuzzy preference relations and fuzzy majorities
can be employed for deriving solution of group decision making, and of degrees
of consensus. We also mention some approaches to the alleviation of some voting
paradoxes.

1.2 Fuzzy Linguistic Quantifiers and the Ordered Weighted
Averaging (OWA) Operators for a Linguistic Quantifier
Driven Aggregation

Our notation is standard. A fuzzy set A in X = {x}, will be characterized and
equated with its membership function μA : X −→ [0, 1] such that μA(x) ∈ [0, 1]
is the grade of membership of x ∈ X in A, from full membership to full nonmem-
bership, through all intermediate values. For a finite X = {x1, . . . , xn} we write
A = μA(x1)/x1 + · · · + μA(xn)/xn . Moreover, we denote a ∧ b = min(a, b) and
a ∨ b = max(a, b). Other, more specific notation will be introduced when needed.

A linguistically quantified statement, e.g. “most experts are convinced”, may be
generally written as

Qy’s are F (1)

where Q is a linguistic quantifier (e.g., most), Y = {y} is a set of objects (e.g.,
experts), and F is a property (e.g., convinced).

We may assign to the particular y’s (objects) a different importance (relevance,
competence, . . . ), B , which may be added to (1) yielding a linguistically quantified
statement with importance qualification generally written as

QBy ′s are F (2)

which may be exemplified by “most (Q) of the important (B) experts (y’s) are con-
vinced (F)”.

From our point of view, the main problem is to find the truth of such linguisti-
cally quantified statements, i.e. truth(Qy’s are F) or truth(QBy’s are F) knowing
truth(y is F), for each y ∈ Y . One can use different calculi but we will consider
Zadeh’s [86] and Yager’s [84] OWA operators based calculi only.

1.2.1 A Fuzzy-logic-based Calculus of Linguistically Quantified Statements

In Zadeh’s [86] method, a fuzzy linguistic quantifier Q is assumed to be a fuzzy set
defined in [0, 1]. For instance, Q = “most” may be given as

μQ(x) =
⎧

⎨

⎩

1 for x ≥ 0.8
2x − 0.6 for 0.3 < x < 0.8
0 for x ≤ 0.3

(3)
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which may be meant as that if at least 80% of some elements satisfy a property, then
most of them certainly (to degree 1) satisfy it, when less than 30% of them satisfy it,
then most of them certainly do not satisfy it (satisfy to degree 0), and between 30%
and 80% – the more of them satisfy it the higher the degree of satisfaction by most
of the elements.

This is a proportional fuzzy linguistic quantifier (e.g., most, almost all, etc.), and
we will deal with such quantifiers only since they are obviously more important for
modeling a fuzzy majority than the absolute quantifiers (e.g., about 5, much more
than 10, etc.).

Property F is defined as a fuzzy set in Y . For instance, if Y = {X,W, Z}
is the set of experts and F is a property “convinced”, then F = “convinced”
= 0.1/X + 0.6/W + 0.8/Z which means that expert X is convinced to degree 0.1,
W to degree 0.6 and Z to degree 0.8. If now Y = {y1, . . . , yp}, then it is assumed
that truth(yi is F) = μF (yi ), i = 1, . . . , p.

Then, we follow the two steps:

r = 1

p

p
∑

i=1

μF (yi ) (4)

truth(Qy’s are F) = μQ(r) (5)

In the case of importance qualification, B is defined as a fuzzy set in Y , and
μB(yi ) ∈ [0, 1] is a degree of importance of yi : from 1 for definitely important
to 0 for definitely unimportant, through all intermediate values. We rewrite first
“QBy’s are F” as “Q(B and F)y’s are B” which leads to the following counter-
parts of (4) and (5):

r ′ =
∑p

i=1[μB(yi ) ∧ μF (yi)]
∑p

i=1 μB(yi)
(6)

truth(QBY ′s are F) = μQ(r
′) (7)

Example 1. Let Y = “experts”= {X,Y, Z}, F = “convinced”= 0.1/X + 0.6/Y +
0.8/Z , Q = “most” be given by (3), B = “important” = 0.2/X + 0.5/Y + 0.6/Z .
Then: r = 0.5 and r ′ = 0.92, and truth(“most experts are convinced”)=0.4 and
truth(“most of the important experts are convinced”)=1.

The method presented is simple and efficient, and has proven to be useful in a
multitude of cases, also in this paper.
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1.2.2 Ordered Weighted Averaging (OWA) Operators

Yager [84] (see also Yager and Kacprzyk’s [85]) has proposed a special class of
aggregation operators, called the ordered weighted averaging (or OWA, for short)
operators, which seem to provide an even better and more general aggregation in the
sense of being able to simply and uniformly model a large class of fuzzy linguistic
quantifiers.

An OWA operator of dimension p is a mapping F : [0, 1]p → [0, 1] if associated
with F is a weighting vector W = [w1, . . . , wp]T such that: wi ∈ [0, 1], w1+· · ·+
wp = 1, and

F(x1, . . . , x p) = w1b1 + · · · +wpbp (8)

where bi is the i -th largest element among {x1, . . . , x p}. B is called an ordered
argument vector if each bi ∈ [0, 1], and j > i implies bi ≥ b j , i = 1, . . . , p.

Then

F(x1, . . . , x p) = W T B (9)

Example 2. Let W T = [0.2, 0.3, 0.1, 0.4], and calculate F(0.6, 1.0, 0.3, 0.5). Thus,
BT = [1.0, 0.6, 0.5, 0.3], and F(0.6, 1.0, 0.3, 0.5) = W T B = 0.55; and F(0.0, 0.7,
0.1, 0.2) = 0.21.

For us it is relevant how the OWA weights are found from the membership func-
tion of a fuzzy linguistic quantifier Q; an early approach given in Yager [84] may
be used here:

wk = μQ(k/p)− μQ((k − 1)/p) for k = 1, . . . , p (10)

Some examples of the wi ’s associated with the particular quantifiers are:

• If wp = 1, and wi = 0, for each i �= p, then this corresponds to Q = “all”;
• If wi = 1 for i = 1, and wi = 0, for each i �= 1, then this corresponds to

Q = “at least one”,
• If wi = 1/p, for each i = 1, 2, . . . , p, then this corresponds to the arithmetic

mean,

and the intermediate cases as, e.g., a half, most, much more than 75%, a few, almost
all, etc. may be obtained by a suitable choice of the wi ’s between the above two
extremes.

Thus, we will write

truth(Qy ′s are F) = OWAQ(truth (yi is F)) = W T B (11)

An important, yet difficult problem is the OWA operators with importance quali-
fication. Suppose that we have a vector of data (pieces of evidence)A = [a1, . . . , an],
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and a vector of importances V = [v1, . . . , vn ] such that vi ∈ [0, 1] is the impor-
tance of ai , i = 1, . . . , n, (v1 + · · · + vn �= 1, in general), and the OWA weights
W = [w1, . . . , wn]T corresponding to Q is determined via (10).

The case of an OWA operator with importance qualification, OWAV , is unfortu-
nately not trivial. In a popular Yager’s [84] approach to be used here, the problem
boils down to some redefinition of the OWA’s weightswi intowi . Then, (8) becomes

FV (a1, . . . , an) = W
T · B =

n
∑

j=1

w j b j (12)

We order first the pieces of evidence ai , i = 1, . . . , n, in descending order to
obtain B such that b j is the j -th largest element of {a1, . . . , an}. Next, we denote
by u j the importance of b j , i.e. of the ai which is the j -th largest; i, j = 1, . . . , n.
Finally, the new weights W are defined as

w j = μQ(

∑ j
k=1 uk

∑n
k=1 uk

)− μQ(

∑ j−1
k=1 uk

∑n
k=1 uk

) (13)

Example 3. Suppose that A = [a1, a2, a3, a4] = [0.7, 1, 0.5, 0.6], and V = [u1, u2,

u3, u4] = [1, 0.6, 0.5, 0.9]. Q = “most” is given by (3).
Then, B = [b1, b2, b3, b4] = [1, 0.7, 0.6, 0.5], and W = [0.04, 0.24, 0.41, 0.31],

and FI (A) =∑4
j=1 w j b j = 0.067 · 1+ 0.4 · 0.7+ 0.333 · 0.6+ 0.2 · 0.5= 0.6468.

We have now the necessary formal means to proceed to our discussion of group
decision making and consensus formation models under fuzzy preferences and a
fuzzy majority.

Finally, let us mention that OWA-like aggregation operators may be defined in
an ordinal setting, i.e. for non-numeric data (which are only ordered), and we will
refer the interested reader to, e.g., Delgado, Verdegay and Vila [17] or Herrera,
Herrera-Viedma and Verdegay [28], and some other of their later papers.

2 Group Decision Making under Fuzzy Preferences
and a Fuzzy Majority: General Remarks

Group decision making (equated here with social choice) proceeds in the following
setting. We have a set of n ≥ 2 alternatives, S = {s1, . . . , sn}, and a set of m ≥ 2
individuals, E = {1, . . . ,m}. Each individual k ∈ E provides his or her testimony
as to the alternatives in S, assumed to be individual fuzzy preference relations de-
fined over S (i.e. in S × S). Fuzzy preference relations are employed to reflect an
omnipresent fact that the preferences may be not clear-cut so that conventional non-
fuzzy preference relations may be not adequate (see, e.g., many articles in Kacprzyk
and Roubens [51] or Kacprzyk, Nurmi and Fedrizzi [27]).
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An individual fuzzy preference relation of individual k, Rk , is given by its mem-
bership function μRk : S × S −→ [0, 1] such that

μRk (si , s j ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1 if si is definitely preferred to s j

c ∈ (0.5, 1) if si is slightly preferred to s j

0.5 in the case of indifference
d ∈ (0, 0.5) if s j is slightly preferred to si

0 if s j is definitely preferred to si

(14)

We will also use a special type of an individual fuzzy preference relation, a fuzzy
tournament, but this will be explained later on.

If card S is small enough (as assumed here), an individual fuzzy preference re-
lation of individual k, Rk , may conveniently be represented by an n × n matrix
Rk = [rk

i j ], such that rk
i j = μRk (si , s j ); i, j = 1, . . . , n; k = 1, . . . ,m. Rk is com-

monly assumed (also here) to be reciprocal in that rk
i j + rk

j i = 1; moreover, it is also

normally assumed that rk
ii = 0, for all i, k; for a different, more justified convention,

cf. Garcı́a-Lapresta and Llamazares [16]. Notice that we do not mention here other
properties of (individual) fuzzy preference relations which are often discussed (cf.
Salles [37]) but which will not be relevant to our discussion. Moreover, we will not
use here a more sophisticated concept of a fuzzy preference systems proposed by
De Baets et al. which is presented in their paper in this volume. The reasoning is in
this case principally the same.

Basically, two lines of reasoning may be followed here (cf. Kacprzyk [36, 37, 38,
39, 19, 41]):

• a direct approach: {R1, . . . , Rm} −→ solution, that is, a solution is derived
directly (without any intermediate steps) just from the set of individual fuzzy
preference relations, and

• an indirect approach: {R1, . . . , Rm} −→ R −→ solution, that is, from the set
of individual fuzzy preference relations we form first a social fuzzy preference
relation, R (to be defined later), which is then used to find a solution.

A solution is here, unfortunately, not clearly understood – see, e.g., Nurmi [33,
69, 70, 71, 34] for diverse solution concepts. In this paper we will only sketch
the derivation of some more popular solution concepts, and this will show to the
reader not only the essence of the particular solution concept but how a fuzzi-
fication may be performed so that the reader can eventually fuzzify other crisp
solution concepts that may be found in the literature. More specifically, we will
show the derivation of some fuzzy cores and minimax sets for the direct approach,
and some fuzzy consensus winners for the indirect approach. In addition to fuzzy
preference relations, which are usually employed, we will also use a fuzzy major-
ity represented by a linguistic quantifier as proposed by Kacprzyk [36, 37, 38, 39,
19, 41].

First, we will consider the case of fuzzy preferences only, and then we will add a
fuzzy majority which is a more interesting case for our purposes.
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3 Group Decision Making under Fuzzy Preferences

In this section we will only assume that we have individual fuzzy preferences and a
non-fuzzy majority. We will present some solution concepts that are derived using
the above mentioned direct and indirect approach, i.e. directly from individual fuzzy
preference relations or via a social preference relation.

3.1 Solutions Based on Individual Fuzzy Preference Relations

Let us first consider solution concepts that do not require any preference aggregation
at all. One of the best solution concepts is that of a core or a set of undominated
alternatives. Suppose that the nonfuzzy required majority be r (e.g., at least 50%).

Definition 1. An alternative x ∈ S belongs to the core iff there is no other alternative
y ∈ S that defeats x by the required majority r .

We can extend the notion of a core to cover fuzzy individual preference relations
by defining the fuzzy α-core as follows (cf. Nurmi [33]):

Definition 2. An alternative si ∈ S belongs to the fuzzy α-core Sα iff there exists no
other alternative s j ∈ S such that r j i > α for at least r individuals.

It is easy to see that if the nonfuzzy core is nonempty, so is Sα for some
α ∈ (0, 1]. In other words, ∃α ∈ (0, 1]: core ⊂ Sα . Moreover, for any two values
α1, α2 ∈ (0, 1] such that α1 < α2, we have:

Sα1 ⊆ Sα2

The intuitive interpretation of the fuzzy α-core is obvious: an alternative is a
member of Sα iff a sufficient majority of voters does not feel strongly enough
against it.

Another nonfuzzy solution concept with much intuitive appeal is a minimax set.
In a nonfuzzy setting it is defined as follows:

Definition 3. For each x, y ∈ S denote the number of individuals preferring x to y
by n(x, y). Then define

v(x) = max
y

n(y, x)

and

n∗ = min
x

v(x)

Now the minimax set is

Q(n∗) = {x | v(x) = n∗}
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Thus, Q(n∗) consists of those alternatives that in pairwise comparison with any
other alternative are defeated by no more than n∗ votes. Obviously, if n∗ < m/2 ,
where m is the number of individuals, then Q(n∗) is singleton and x ∈ Q(n∗) is the
core if the simple majority rule is being applied.

Analogously, we can define a the minimax degree set Q(β) as follows. Given
si , s j ∈ S and let, for individuals k = 1, . . . ,m:

vk
D(x j ) = max

i
ri j

We now define

vD(x j ) = max
k

vk
D(x j )

Let min j vD(x j ) = β. Then

Q(β) = {x j | vD(x j ) = β}

For properties of the minimax degree set, we refer to Nurmi [33, 69, 70].
Another concept that is analogous to the nonfuzzy minimax set is a minimax

opposition set. Let ni j be the number of those individuals for whom ri j > r j i and
let v f (x j ) = maxi ni j . Denote by v̄ f the minimum of v f (x j ) with respect to j , i.e.

v̄ f = min jv f (x j )

Then: Q(v f ) = {x j | v f (x j ) = v̄ f }.
But, clearly, Q(v f ) = Q(n∗) since ri j > r j i implies that the individual prefers

alternative xi to x j . Similarly, the preference of xi over x j implies that ri j > r j i .
Consequently, the minimax opposition set does not take into account the intensity
of preferences as expressed in the individual preference relation matrices.

A more general solution concept, the α-minimax set (cf. Nurmi [33]) denoted
Qα(vαf ), is defined as follows. Let nα(xi , x j ) be the number of individuals for whom
ri j ≤ α for some value of α ∈ [0, 0.5). We now define ∀xi ∈ S : vαf (xi ) =
max j nα(xi , x j ) and v̄αf = mini v

α
f (xi ). Then

Qα(vαf ) = {xi | vαf (xi ) = v̄αf }

It can be shown that Qα(vαf ) ⊆ Q(n∗) (see [33]).

3.1.1 Fuzzy Tournaments

One purpose of studying fuzzy tournaments is to overcome the difficulties inherent
in the use of conventional solution concepts, namely the fact that the latter tend
to produce too large solution sets and are therefore not decisive enough. Another
purpose of our discussion is to apply analogues of the nonfuzzy solutions to contexts
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where the opinions of individuals can be represented by more general constructs
than just connected and transitive preference relations (cf., e.g., [51]).

Let us take a look at a few solution concepts of nonfuzzy tournaments, mostly
those proposed by Nurmi and Kacprzyk [35].

Definition 4. Given the alternative set S, a tournament P on S is a complete and
asymmetric relation on S.

In the context of group decision making P can be viewed as a strict preference
relation. When S is of small cardinality, P can be expressed as a matrix [pi j ], pi j ∈
{0, 1} so that pi j = 1 if the alternative represented by row i is preferred to that
represented by column j , and pi j = 0 if the alternative represented by column j is
preferred to that represented by row i .

Suppose that each individual has a complete, transitive and asymmetric prefer-
ence relation over S, and that the number of individuals is odd. Then a tournament
can be constructed through pairwise comparisons of alternatives. In the ensuing
tournament alternative si is preferred to s j iff the number of individuals preferring
the former to the latter is larger than the number of individual preferring s j to si .

Perhaps the best-known solution concept of tournaments is the Condorcet winner.

Definition 5. The Condorcet winner is an alternative which is preferred to all other
alternatives by a majority.

The main problem with this solution concept is that it does not always exist.

Definition 6. The Copeland winning set UCC consists of those alternatives that
have the largest number of 1s in their corresponding rows in the tournament matrix.

In other words, the Copeland winners defeat more alternatives than any other
alternatives do.

Definition 7. The uncovered set is defined by means of a binary relation of covering.
An alternative si covers another alternative s j iff si defeats s j and everything that
s j defeats. The uncovered set consists of those alternatives that are covered by no
alternatives.

Definition 8. The Banks set is the set of end-points of Banks chains. Starting from
any alternative si the Banks chain is constructed as follows. First one looks for an
alternative that defeats si . Suppose that such an alternative exists and is s j (if one
does not exist, then of course si is the Condorcet winner). Next one looks for another
alternative that defeats both si and s j , etc. Eventually, no alternative can be found
that would defeat all previous ones in the chain starting from si . The last alternative
which defeats all previous ones is the end-point of the Banks chain starting from si .
The Banks set is then the set of all those end points.

The following relationships hold between the above mentioned solutions (cf.
[34]):

• all solutions converge to the Condorcet winner when one exists,
• the uncovered set includes the Copeland winning set and the Banks set,
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• when S contains less than 7 elements, the uncovered set and the Banks set
coincide, and

• when the cardinality of S exceeds 12, the Banks set and the Copeland winning
set may be distinct; however, they both always belong to the uncovered set.

Given a group E of m individuals, a collective fuzzy tournament F = [ri j ] can
be obtained through pairwise comparisons of alternatives so that

ri j = card{k ∈ E | si Pks j }
m

where Pk is a nonfuzzy tournament representing the preferences of individual k.
Let us now define a strong fuzzy covering relation CS ⊂ S × S as follows

∀i, j, l ∈ {1, . . . , n} : si CSs j ⇔ ril ≥ r j l & ri j > r j i

Clearly, the strong fuzzy covering relation implies the nonfuzzy covering rela-
tion, but not vice versa. The set of CS-undominated alternatives is denoted by UCS .

Let us first define:

Definition 9. The weak fuzzy covering relation CW ⊂ S × S is defined as follows:

∀si , s j ∈ S :

si CW s j ⇔ ri j > r j i

& card{sl ∈ S : ril > r j l} ≥ card{sp ∈ S : r j p > rip}

Obviously, si CSs j implies si CW s j , but not conversely. Thus, the set of CW -
undominated alternatives, UCW , is always a subset of UCS . Moreover, the Copeland
winning set is always included in UCS , but not necessarily in UCW (see [35]).

If one is looking for a solution that is a plausible subset of the uncovered set, then
UCW is not appropriate since it is possible that UCC is not always a subset of the
uncovered set, let alone the Banks set.

Another solution concept, the α-uncovered set, is based on the individual fuzzy
preference tournament matrices. One first defines the fuzzy domination relation D
and an α-covering relation Cα ⊆ S × S as follows.

Definition 10. si Ds j iff at least 50% of the individuals prefer si to s j to a degree of
at least 0.5.

Definition 11. If si Cαs j , then si Ds j and si Dαsk , for all sk ∈ S for which s j Dαsk .

Definition 12. The α-uncovered set consists of those alternatives that are not α-
covered by any other alternative.

An obvious candidate for a plausible solution concept for fuzzy tournaments is
an α-uncovered set with the smallest value of α.

Other fuzzy solution concepts analogous to their nonfuzzy counterparts can be
defined (see Nurmi and Kacprzyk [35]). For example, the α-Banks set can be con-
structed by imposing the restriction that the majority of voters prefer the next alter-
native to the previous one in the Banks chain with intensity of at least α.
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3.2 Solutions Based on a Social Fuzzy Preference Relation

The derivation of these solution concepts requires first a derivation of a social fuzzy
preference relation.

Bezdek, Spillman and Spillman [8, 9] discuss the problem of finding the set of
undominated alternatives or other stable outcomes given a collective fuzzy prefer-
ence ordering over the alternative set; see also Nurmi [33].

We now define a couple of solution concepts for voting games with fuzzy collec-
tive preference relation.

Definition 13. The set Sα of α-consensus winners is defined as: si ∈ Sα iff ∀s j �=
si : ri j ≥ α, with 0.5 < α ≤ 1

Whenever Sα is nonempty, it is a singleton, but it does not always exist. Thus,
it may be useful to find other solution concepts that specify a nonempty alternative
sets even when Sα is empty. One possible candidate is a straightforward extension
of Kramer’s minimax set. We call it a set of minimax consensus winners, denote it
by SM and define as follows.

Definition 14. Let r̄ j = maxi ri j and r̄ = min j maxi ri j . Then si ∈ SM (the set of
minimax consensus winners) iff r̄i = r̄ .

Clearly SM is always nonempty, but not necessarily a singleton. As a solution set
it has the same interpretation as Kramer’s minimax set: it consists of those alterna-
tives which, when confronted with their toughest competitors, fare best, i.e. win by
the largest score (if r̄ ≤ 0.5) or lose by the smallest one (if r̄ > 0.5).

These solution concepts are based on the social preference relation matrix. Other
ones can be obtained in several ways. For instance, one may start from a preference
profile over a set of alternatives and construct the [ri j ] matrix as follows:

ri j =
{ 1

m

m
k=1ak

i j for i �= j
ri j = 0 for i = j

where ak
i j = 1 if si is strictly preferred to s j by voter k, and ak

i j = 0 otherwise.
There is nothing “fuzzy” in the above solutions. As the method of constructing

the social preference relation matrix suggests, the starting point can just be the or-
dinary preference profile as well.

4 Group Decision Making under Fuzzy Preferences
and a Fuzzy Majority

In this section we will consider some solution concepts of group decision making
but when we both have fuzzy preference relations and a fuzzy majority, We will also
follow here the two directions, i.e. by using the individual fuzzy preference relations
only (a direct approach), and by deriving first a social fuzzy preference relation, and
using it to derive solutions (an indirect approach).
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4.1 Direct Derivation of a Solution

We will first employ the direct approach, i.e. {R1, . . . , Rm} −→ solution to derive
two popular solution concepts: fuzzy cores and minimax sets.

4.1.1 Fuzzy Cores

The core is a very intuitively appealing and often used solution concept. Convention-
ally, the core is defined as a set of undominated alternatives, i.e. those not defeated
in pairwise comparisons by a required majority (strict!) r ≤ m, i.e.

C = {s j ∈ S : ¬∃si ∈ S such that rk
i j > 0.5 for at least r individuals} (15)

The first attempt at a fuzzification of the core is due to Nurmi [33] who has
extended it to the fuzzy α-core defined as

Cα = {s j ∈ S : ¬∃si ∈ S such that rk
i j > α ≥ 0.5 for at least r individuals} (16)

that is, as a set of alternatives not sufficiently (at least to degree α) defeated by the
required (still strict!) majority r ≤ m.

As we have already indicated, in many group decision making related situations
is may be more adequate to assume that the required majority is imprecisely spec-
ified as, e.g., given by a fuzzy linguistic quantifier as, say, most. This concept of a
fuzzy majority has been proposed by Kacprzyk [36, 37, 38, 39, 19, 41], and it has
turned out that it can be quite useful and adequate.

To employ a fuzzy majority to extend (fuzzify) the core, we start by denoting

hk
i j =

{

1 if rk
i j < 0.5

0 otherwise
(17)

where here and later on in this section, if not otherwise specified, i, j = 1, . . . , n
and k = 1, . . . ,m.

Thus, hk
i j just reflects if alternative s j defeats (in pairwise comparison) alternative

si (hk
i j = 1) or not (hk

i j = 0).
Then, we calculate

hk
j =

1

n − 1

n
∑

i=1,i �= j

hk
i j (18)

which is clearly the extent, from 0 to 1, to which individual k is not against alter-
native s j , where 0 standing for definitely against to 1 standing for definitely not
against, through all intermediate values.
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Next, we calculate

h j = 1

m

m
∑

k=1

hk
j (19)

which expresses to what extent, from 0 to 1 as in the case of (18), all the individuals
are not against alternative s j .

And, finally, we calculate

v
j
Q = μQ(h j ) (20)

is to what extent, from 0 to 1 as before, Q (say, most) individuals are not against
alternative s j .

The fuzzy Q-core is now defined (cf. Kacprzyk [36, 37, 38, 39, 19, 41]) as a fuzzy
set

CQ = v1
Q/s1 + · · · + vn

Q/sn (21)

i.e. as a fuzzy set of alternatives that are not defeated by Q (say, most) individuals.
Notice that in the above basic definition of a fuzzy Q-core we do not take into

consideration to what degrees those defeats of one alternative by another are. They
can be accounted for in a couple of plausible ways.

First and most straightforward is the introduction of a threshold into the degree
of defeat in (17), for instance by denoting

hk
i j (α) =

{

1 if rk
i j < α ≤ 0.5

0 otherwise
(22)

where, again, i, j = 1, . . . , n and k = 1, . . . ,m. Thus, hk
i j (α) just reflects if alter-

native s j sufficiently (i.e. at least to degree 1− α) defeats (in pairwise comparison)
alternative si or not.

We can also explicitly introduce the strength of defeat into (17). Namely, we can
introduce a function exemplified by

ĥk
i j =

{

2(0.5− rk
i j ) if rk

i j < 0.5
0 otherwise

(23)

where, again, i, j = 1, . . . , n and k = 1, . . . ,m. Thus, ĥk
i j just reflects how strongly

(from 0 to 1) alternative s j defeats (in pairwise comparison) alternative si .
Then, by following the same steps (18) – (21), we can derive an α/Q-fuzzy core

and an s/Q-fuzzy core.

Example 4. Suppose that we have four individuals, k = 1, 2, 3, 4, whose individual
fuzzy preference relations are:
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R1 =

j = 1 2 3 4
i = 1 0 0.3 0.7 0.1

2 0.7 0 0.6 0.6
3 0.3 0.4 0 0.2
4 0.9 0.4 0.8 0

R2 =

j = 1 2 3 4
i = 1 0 0.4 0.6 0.2

2 0.6 0 0.7 0.4
3 0.4 0.3 0 0.1
4 0.8 0.6 0.9 0

R3 =

j = 1 2 3 4
i = 1 0 0.5 0.7 0.1

2 0.5 0 0.8 0.4
3 0.3 0.2 0 0.2
4 1 0.6 0.8 0

R4 =

j = 1 2 3 4
i = 1 0 0.4 0.7 0.8

2 0.6 0 0.4 0.3
3 0.3 0.6 0 0.1
4 0.7 0.7 0.9 0

Suppose now that the fuzzy linguistic quantifier is Q = “most” defined by (3).
Then, say:

C“most”
∼= 0.06/s1 + 0.56/s2 + 1/s4

C0.3/“most”
∼= 0.56/s4

Cs/“most”
∼= 0.36/s4

to be meant as follows: in case of C“most” alternative s1 belongs to to the fuzzy Q-
core to the extent 0.06. s2 to the extent 0.56, and s4 to the extent 1, and analogously
for the C0.3/“most” and Cs/“most”. Notice that though the results obtained for the
particular cores are different, for obvious reasons, s4 is clearly the best choice which
is evident if we examine the given individual fuzzy preference relations.

Clearly, the fuzzy linguistic quantifier based aggregation of partial scores in the
above definitions of the fuzzy Q-core, α/Q-core and s/Q-core, may be replaced by
an ordered weighted averaging (OWA) operator based aggregation given by (10) and
(11). This was proposed by Fedrizzi, Kacprzyk and Nurmi [19], and then followed
by some other authors. The results obtained by using the OWA operators are similar
to those for the usual fuzzy linguistic quantifiers.

Finally, let us notice that the individuals and alternatives may be assigned vari-
able importance (competence) and relevance, respectively, and then the OWA based
aggregation with importance qualification may be used. This will not change how-
ever the essence of the fuzzy cores defined above, and will not be discussed here for
lack of space.

4.1.2 Minimax Sets

Another intuitively justified solution concept may be the minimax (opposition) set
which may be defined for our purposes as follows.

Let w(si , s j ) ∈ {1, 2, . . . ,m} be the number of individuals who prefer alternative
s j to alternative si , i.e. for whom rk

i j < 0.5.
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If now

v(si ) = max
j=1,...,n

w(si , s j ) (24)

and

v∗ = min
i=1,...,n

v(si ) (25)

then the minimax set is defined as

M(v∗) = {si ∈ S : v(si ) = v∗} (26)

i.e. as a (nonfuzzy) set of alternatives which in pairwise comparisons with any other
alternative are defeated by no more than v∗ individuals, hence by the least number
of individuals.

Nurmi [33] extends the minimax set, similarly in spirit to his extension of the
core (16), to the α-minimax set as follows. Let wα(si , s j ) ∈ {1, 2, . . . ,m} be the
number of individuals who prefer alternative s j to alternative si at least to degree
1− α, i.e. for whom rk

i j < α ≤ 0.5.
If now

vα(si ) = max
j=1,...,n

wα(si , s j ) (27)

and

v∗α = min
i=1,...,n

vα(si ) (28)

then the α-minimax set is defined as

Mα(v
∗
α) = {si ∈ S : vα(si ) = v∗α} (29)

i.e. as a (nonfuzzy) set of alternatives which in pairwise comparisons with any other
alternative are defeated (at least to degree 1 − α) by no more than v∗ individuals,
hence by the least number of individuals.

A fuzzy majority was introduced into the above definitions of minimax sets by
Kacprzyk [36, 37, 38, 39, 19] as follows.

We start with (17), i.e.

hk
i j =

{

1 if rk
i j < 0.5

0 otherwise
(30)
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and

hk
i =

1

n − 1

n
∑

j=1, j �=i

hk
i j (31)

is the extent, between 0 and 1, to which individual k is against alternative si .
Then

hi = 1

m

m
∑

k=1

hk
i (32)

is the extent, between 0 and 1, to which all the individuals are against alternative si .
Next

t Q
i = μQ(hi ) (33)

is the extent, from 0 to 1, to which Q (say, most) individuals are against alternative
si , and

t∗Q = min
i=1,...,n

t Q
i (34)

is the least defeat of any alternative by Q individuals.
Finally, the Q-minimax set is

MQ (t
∗
Q) = {si ∈ S : t Q

i = t∗Q} (35)

And analogously as for the α/Q-core and s/Q-core, we can explicitly introduce
the degree of defeat α < 0.5 and s into the definition of the Q-minimax set.

Example 5. For the same four individual fuzzy preference relations R1, . . . , R4 as
in Example 4, we obtain for instance:

M“most”(0) = {s4}
M0.3/“most”(0) = {s1, s2, s4}

Ms/“most” = {s1, s2, s4}

The OWA based aggregation can also be employed for the derivation of fuzzy
minimax sets given above. And, again, the results obtained by using the OWA based
aggregation are similar to those obtained by directly employing Zadeh’s [86] calcu-
lus of linguistically quantified statements.
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4.2 Indirect Derivation of a Solution – the Consensus Winner

Now we follow the scheme: {R1, . . . , Rm} −→ R −→ solution i.e. from the
individual fuzzy preference relations we determine first a social fuzzy preference
relation, R, which is similar in spirit to its individual counterpart but concerns the
whole group of individuals, and then find a solution from such a social fuzzy pref-
erence relation.

It is easy to notice that the above direct derivation scheme involves in fact two
problems:

• how to find a social fuzzy preference relation from the individual fuzzy prefer-
ence relations, i.e.

{R1, . . . , Rm} −→ R

• how to find a solution from the social fuzzy preference relation, i.e.

R −→ solution

In this paper we will not deal in more detail with the first step, i.e. {R1, . . . , Rm}
−→ R, and assume a (most) straightforward alternative that the social fuzzy pref-
erence relation R = [ri j ] is given by

ri j =
{ 1

m

∑m
k=1 ak

i j if i �= j
0 otherwise

(36)

where

ak
i j =

{

1 if rk
i j > 0.5

0 otherwise
(37)

Notice that R obtained via (36) need not be reciprocal, i.e. ri j �= 1 − r j i , but it
can be shown that ri j ≤ 1− r j i , for each i, j = 1, . . . , n.

We will discuss now the second step, i.e. R −→ solution, i.e. how to determine
a solution from a social fuzzy preference relation.

A solution concept of much intuitive appeal is here the consensus winner (cf.
Nurmi [33]) which will be extended under a social fuzzy preference relation and a
fuzzy majority.

We start with

gi j =
{

1 if ri j > 0.5
0 otherwise

(38)

which expresses whether alternative si defeats (in the whole group’s opinion!) alter-
native s j or not.
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Next

gi = 1

n − 1

n
∑

j=1, j �=i

gi j (39)

which is a mean degree to which alternative si is preferred, by the whole group, over
all the other alternatives.

Then

zi
Q = μQ(gi) (40)

is the extent to which alternative si is preferred, by the whole group, over Q (e.g.,
most) other alternatives.

Finally, we define the fuzzy Q-consensus winner as

WQ = z1
Q/s1 + · · · + zn

Q/sn (41)

i.e. as a fuzzy set of alternatives that are preferred, by the whole group, over Q other
alternatives.

And analogously as in the case of the core, we can introduce a threshold α ≥ 0.5
and s into (38) and obtain a fuzzy α/Q-consensus winner and a fuzzy s/Q-consensus
winner, respectively.

Example 6. For the same individual fuzzy preference relations as in Example 4, and
using (36) and (37), we obtain the following social fuzzy preference relation

R =

j = 1 2 3 4
i = 1 0 0 1 0.25

2 0.75 0 0.75 0.25
3 0 0.25 0 0
4 1 0.75 1 0

If now the fuzzy majority is given by Q = “most” defined by (3) and α = 0.8, then
we obtain

W“most′′ = 1
15/s1 + 11

15/s2 + 1/s4

W0.8/“most′′ = 1
15/s1 + 11

15/s4

Ws/“most′′ = 1
15/s1 + 1

15/s2 + 1/s4

which is to be read similarly as for the fuzzy cores in Example 4. Notice that here
once again alternative s4 is clearly the best choice which is obvious by examining
the social fuzzy preference relation.

One can also use here an OWA based aggregation defined by (10) and (11) as pro-
posed by proposed by Fedrizzi and Kacprzyk [19] and Kacprzyk and Fedrizzi [47].

This concludes our brief exposition of how to employ fuzzy linguistic quanti-
fiers to model the fuzzy majority in group decision making. We did not present
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some other solution concepts as, e.g., minimax consensus winners (cf. Nurmi [33],
Kacprzyk [38]) or those based on fuzzy tournaments which have been proposed by
Nurmi and Kacprzyk [35] and are mentioned earlier in this paper.

We will finish this section with a remark that in a number of recent papers by
Kacprzyk and Zadrożny [52, 53] it has been shown that the concept of Kacprzyk’s
[36, 37] fuzzy Q-core can be a general (prototypical) choice function in group deci-
sion making and voting, for instance those of: a “consensus solution”, Borda’s rule,
the minimax degree set, the plurality voting, the qualified plurality voting, the ap-
proval voting-like, the “consensus + approval voting”, Condorcet’s rule, the Pareto
rule, Copeland’s rule, Nurmi’s minimax set, Kacprzyk’s Q-minimax, the Condorcet
looser, the Pareto inferior alternatives, etc. This result, as interesting as it is, is how-
ever beyond the scope of this paper.

5 Degrees of Consensus under Fuzzy Preferences
and a Fuzzy Majority

In this section fuzzy linguistic quantifiers as representations of a fuzzy majority
will be employed to define a degree of consensus as proposed in Kacprzyk [19]),
and then advanced in Kacprzyk and Fedrizzi [21, 22], and Kacprzyk, Fedrizzi and
Nurmi [46, 47], see also Kacprzyk, Nurmi and Fedrizzi [27, 50] and Zadrożny [65].
This degree is meant to overcome some “rigidness” of the conventional concept of
consensus in which (full) consensus occurs only when “all the individuals agree as
to all the issues”. This may often be counterintuitive, and not consistent with a real
human perception of the very essence of consensus (see, e.g., the citation from a
biological context given in the beginning of the paper).

The new degree of consensus proposed can be therefore equal to 1, which stands
for full consensus, when, say, “most of the individuals agree as to almost all (of the
relevant) issues (alternatives, options)”.

Our point of departure is again a set of individual fuzzy preference relations
which are meant analogously as in Sect. 2 [see, e.g., (17)].

The degree of consensus is now derived in three steps:

• first, for each pair of individuals we derive a degree of agreement as to their
preferences between all the pairs of alternatives,

• second, we aggregate these degrees to obtain a degree of agreement of each pair
of individuals as to their preferences between Q1 (a linguistic quantifier as, e.g.,
“most”, “almost all”, “much more than 50%”, . . . ) pairs of relevant alternatives,
and

• third, we aggregate these degrees to obtain a degree of agreement of Q2 (a lin-
guistic quantifier similar to Q1) pairs of important individuals as to their prefer-
ences between Q1 pairs of relevant alternatives, and this is meant to be the degree
of consensus sought.
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Notice that we assume here, as opposed to Sect. 2, that both the individuals and
alternatives are assigned different degrees of importance and relevance. However,
this may be useful in the context of consensus reaching, and a basic case with the
same importance and relevance for all the individuals and alternatives will just be a
special case of the one adopted in this paper.

The above derivation process of a degree of consensus may be formalized by
using Zadeh’s [86] calculus of linguistically quantified statements and Yager’s [84]
OWA based aggregation.

We start with the degree of strict agreement between individuals k1 and k2 as to
their preferences between alternatives si and s j

vi j (k1, k2) =
{

1 if rk1
i j = rk2

i j
0 otherwise

(42)

where here and later on in this section, if not otherwise specified, k1 = 1, . . . ,m−1;
k2 = k1 + 1, . . . ,m; i = 1, . . . , n − 1; j = i + 1, . . . , n.

The relevance of alternatives is assumed to be given as a fuzzy set defined in the
set of alternatives S such that μB(si ) ∈ [0, 1] is a degree of relevance of alternative
si , from 0 for fully irrelevant to 1 for fully relevant, through all intermediate values.

The relevance of a pair of alternatives, (si , s j ) ∈ S × S, may be defined, say, as

bB
i j =

1

2
[μB(si )+ μB(s j )] (43)

which is clearly the most straightforward option; evidently, bB
i j = bB

j i , and bB
ii do

not matter; for each i, j .
And analogously, the importance of individuals, I , is defined as a fuzzy set in the

set of individuals such that μI (k) ∈ [0, 1] is a degree of importance of individual
k, from 0 for fully unimportant to 1 for fully important, through all intermediate
values.

Then, the importance of a pair of individuals, (k1, k2), bI
k1,k2

, may be defined in
various ways, e.g., analogously as (19), i.e.

bI
k1,k2

= 1

2
[μI (k1)+ μI (k2)] (44)

The degree of agreement between individuals k1 and k2 as to their preferences
between all the relevant pairs of alternatives is [cf. (6)]

vB(k1, k2) =
∑n−1

i=1
∑n

j=i+1[vi j (k1, k2) ∧ bB
i j ]

∑n−1
i=1

∑n
j=i+1 bB

i j

(45)

The degree of agreement between individuals k1 and k2 as to their preferences
between Q1 relevant pairs of alternatives is
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vB
Q1
(k1, k2) = μQ1[vB(k1, k2)] (46)

In turn, the degree of agreement of all the pairs of important individuals as to
their preferences between Q1 pairs of relevant alternatives is

v
I,B
Q1
= 2

m(m − 1)

∑m−1
k1=1

∑m
k2=k1+1[vB

Q1
(k1, k2) ∧ bI

k1,k2
]

∑m−1
k1=1

∑m
k2=k1+1 bI

k1,k2

(47)

and, finally, the degree of agreement of Q2 pairs of important individuals as to
their preferences between Q1 pairs of relevant alternatives, called the degree of
Q1/Q2/I/B-consensus, is

con(Q1, Q2, I, B) = μQ2(v
I,B
Q1

) (48)

Since the strict agreement (42) may be viewed too rigid, we can use the degree
of sufficient agreement (at least to degree α ∈ (0, 1]) of individuals k1 and k2 as to
their preferences between alternatives si and s j , defined by

vαi j (k1, k2) =
{

1 if | rk1
i j − rk2

i j |≤ 1− α ≤ 1
0 otherwise

(49)

where, k1 = 1, . . . ,m− 1; k2 = k1+ 1, . . . ,m; i = 1, . . . , n− 1; j = i + 1, . . . , n.
The degree of sufficient (at least to degree α) agreement between individuals k1

and k2 as to their preferences between all the relevant pairs of alternatives is

vαB(k1, k2) =
∑n−1

i=1
∑n

j=i+1[vαi j (k1, k2) ∧ bB
i j ]

∑n−1
i=1

∑n
j=i+1 bB

i j

(50)

The degree of sufficient (at least to degree α) agreement between the individuals
k1 and k2 as to their preferences between Q1 relevant pairs of alternatives is

v
B,α
Q1

(k1, k2) = μQ1 [vαB(k1, k2)] (51)

In turn, the degree of sufficient (at least to degree α) agreement of all the pairs
of important individuals as to their preferences between Q1 relevant pairs of alter-
natives is

v
I,B,α
Q1

= 2

m(m − 1)

∑m−1
k1=1

∑m
k2=k1+1[vBα

Q1
(k1, k2) ∧ bI

k1,k2
]

∑m−1
k1=1

∑m
k2=k1+1 bI

k1,k2

(52)

and, finally, the degree of sufficient (at least to degree α) agreement of Q2 pairs of
important individuals as to their preferences between Q1 relevant pairs of alterna-
tives, called the degree of α/Q1/Q2/I/B-consensus, is
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conα(Q1, Q2, I, B) = μQ2(v
I,B,α
Q1

) (53)

We can also explicitly introduce the strength of agreement into (42), and anal-
ogously define the degree of strong agreement of individuals k1 and k2 as to their
preferences between alternatives si and s j , e.g., as

vs
i j (k1, k2) = s(| rk1

i j − rk2
i j |) (54)

where s : [0, 1] −→ [0, 1] is some function representing the degree of strong
agreements as, e.g.,

s(x) =
⎧

⎨

⎩

1 for x ≤ 0.05
−10x + 1.5 for 0.05 < x < 0.15
0 for x ≥ 0.15

(55)

such that x ′ < x ′′ =⇒ s(x ′) ≥ s(x ′′), for each x ′, x ′′ ∈ [0, 1], and there is such an
x ∈ [0, 1] that s(x) = 1.

The degree of strong agreement between individuals k1 and k2 as to their prefer-
ences between all the pairs of alternatives is then

vs
B(k1, k2) =

∑n−1
i=1

∑n
j=i+1[vs

i j (k1, k2) ∧ bB
i j ]

∑n−1
i=1

∑n
j=i+1 bB

i j

(56)

The degree of strong agreement between individuals k1 and k2 as to their prefer-
ences between Q1 relevant pairs of alternatives is

v
B,s
Q1

(k1, k2) = μQ1[vs
B(k1, k2)] (57)

In turn, the degree of strong agreement of all the pairs of important individuals
as to their preferences between Q1 relevant pairs of alternatives is

v
I,B,s
Q1

= 2

m(m − 1)

∑m−1
k1=1

∑m
k2=k1+1[vB,s

Q1
(k1, k2) ∧ bI

k1,k2
]

∑m−1
k1=1

∑m
k2=k1+1 bI

k1,k2

(58)

and, finally, the degree of agreement of Q2 pairs of important individuals as to
their preferences between Q1 relevant pairs of alternatives, called the degree of
s/Q1/Q2/I/B-consensus, is

cons(Q1, Q2, I, B) = μQ2(v
I,B,s
Q1

) (59)

Example 7. Suppose that n = m = 3, Q1 = Q2 = “most” are given by (3),
α = 0.9, s(x) is defined by (55), and the individual preference relations are:
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R1 = [r1
i j ] =

j = 1 2 3
i = 1 0 0.1 0.6

2 0.9 0 0.7
3 0.4 0.3 0

R2 = [r2
i j ] =

j = 1 2 3
i = 1 0 0.1 0.7

2 0.9 0 0.7
3 0.3 0.3 0

R3 = [r3
i j ] =

j = 1 2 3
i = 1 0 0.2 0.6

2 0.8 0 0.7
3 0.4 0.3 0

If we assume the relevance of the alternatives to be B = {bB
i /si } = 1/s1 +

0.6/s2 + 0.2/s3, the importance of the individuals to be I = {bI
k/k} = 0.8/1 +

1/2 + 0.4/3, α = 0.9 and Q = “most′′ given by (3), then we obtain the following
degrees of consensus:

con(“most”, “most”, I, B) ∼= 0.35

con0.9(“most”, “most”, I, B) ∼= 0.06

cons(“most”, “most”, I, B) ∼= 0.06

And, similarly as for the group decision making solutions shown in Sect. 2,
the aggregation via Zadeh’s [86] calculus of linguistically quantified propositions
employed above may be replaced by the OWA based aggregation given by (10)
and (11). The procedure is analogous as that presented in Sect. 2, and will not be
repeated here.

For more information on these degrees of consensus, see, e.g., works by Kacprzyk,
Fedrizzi, Nurmi and Zadrożny [19, 19, 41, 21, 22, 23, 24, 46], etc.

6 Remarks on some Voting Paradoxes and their Alleviation

Voting paradoxes are an interesting and very relevant topic that has a considerable
theoretical and practical relevance. In this paper we will just give some simple ex-
amples of well known paradoxes and indicate some possibilities of how to alleviate
them by using some elements of fuzzy preferences and a fuzzy majority. The paper
is based on the works by Nurmi [74, 75], and Nurmi and Kacprzyk [77].

Table 1 presents an instance of Condorcet’s paradox where there are three voter
groups of equal size having preferences over alternatives A, B and C as indicated

Table 1 Condorcet’s paradox

Group I Group II Group III
A B C
B C A
C A B
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by the rank order indicated below each group. In fact, the groups need not be of
equal size. What is essential for the paradox is that any two of them constitutes a
majority. Clearly, a collective preference relation formed on the basis of comparing
alternatives in pairs and using majority rule, results in a cycle: A is preferred to B ,
B is preferred to C and C is preferred to A.

An instance of Borda’s paradox, in turn, is given in Table 2, where alternative
A would win by a plurality of votes and, yet, both B and C would beat A, should
pairwise majority comparisons be conducted.

A common feature in these classic paradoxes is an incompatibility of several in-
tuitively plausible requirements regarding social choices. In the case of Condorcet’s
paradox the result obtained by using majority rule on a set of complete and transitive
preferences is intransitive. In the case of Borda’s paradox, the winner in the plurality
sense is different from the winner in another sense, i.e. in the sense that requires the
winner to beat all the other alternatives in binary contests.

Let us try to solve the above paradoxes using some fuzzy tools. The solutions
presented are very much in the spirit of Sen’s idea of broadening the amount of in-
formation about individuals. In particular, we shall take our point of departure in the
notion of fuzzy individual preference relation. We consider the set E of individuals
and the set S of decision alternatives. Each individual i ∈ E is assumed to possess
a fuzzy preference relation Ri (x, y) over S. For each x, y ∈ S the value Ri (x, y)
indicates the degree in which x is preferred to y by i with 1 indicating the strongest
preference of x to y, 0.5 indifference between the two and value 0 the strongest
preference of y to x . Obviously, the assumption that the voters be endowed with
fuzzy preference relations is precisely the kind of broadening of the information
about individuals that Sen discusses. Some properties of fuzzy preference relations
are defined in the following [15, 81].

Definition 15. Connectedness. A fuzzy preference relation R is connected if an only
if R(x, y)+ R(y, x) ≥ 1,∀x, y ∈ S.

Definition 16. Reflexivity. A fuzzy preference relation R is reflexive if an only if
R(x, x) = 1,∀x ∈ S.

Definition 17. Max-min transitivity. A fuzzy connected and reflexive relation R is
max-min transitive if and only if R(x, z) ≥ min[R(x, y), R(y, z)],∀x, y, z ∈ S.

For the case of the Condorcet paradox, given the broadening of information con-
cerning voter preferences represented by fuzzy preference relations, we can solve it
very much in the spirit of its “father”, Marquis de Condorcet (cf. Nurmi [75]). A way
out of cyclical collective preferences is to look at the sizes of majorities supporting
various collective preferences. For example, if the number of voters preferring a to
b is 5 out of 9, while that of voters preferring b to c is 7 out of 9, then, according

Table 2 Borda’s paradox

voters 1–4 voters 5–7 voters 8,9
A B C
B C B
C A A



On Group Decision Making, Consensus Reaching, Voting and Voting Paradoxes 289

to Condorcet, the latter preference is stronger than the former. By cutting the cycle
of collective majority preferences at its weakest link, one ends up with a complete
and transitive relation. Clearly, with nonfuzzy preference relation this method works
only in cases where not all of the majorities supporting various links in the cycle are
of same size. With fuzzy preferences one can form the collective preference between
any x and y ∈ S using a variation of the average rule (cf. Intilligator [34]), i.e.

R(x, y) =
∑

i Ri (x, y)

m
(60)

where R(x, y) is the degree of collective fuzzy preference of x over y.
Now, supposing that a preference cycle is formed on the basis of collective fuzzy

preferences, one could simply ignore the link with weakest degree of preference
and thus possibly end up with a ranking. In general one can proceed by eliminating
weakest links in collective preference cycles until a ranking results.

The above method of successive elimination of weakest links in preference cycles
thus works with fuzzy and nonfuzzy preferences. When individual preferences are
fuzzy each voter is assumed to report his/her preferences so that the following matrix
can be formed:

Ri =

⎛

⎜

⎜

⎝

− r12 . . . r1n

r21 − . . . r2n

. . . . . . . . . . . .

rn1 rn2 . . . −

⎞

⎟

⎟

⎠

(61)

Here ri j indicates the degree in which i prefers the i -th alternative to the j -th
one. By averaging over the voters we obtain:

R̄ =

⎛

⎜

⎜

⎝

− r̄12 . . . r̄1n

r̄21 − . . . r̄2n

. . . . . . . . . . . .

r̄n1 r̄n2 . . . −

⎞

⎟

⎟

⎠

(62)

Apart from the successive elimination method one can use another straight-
forward method to resolve Condorcet’s paradox, once the R̄-matrix is given. It
proceeds as follows. One first computes the row sums of the matrix:

r̄i =
∑

j

r̄i j (63)

These represent the total fuzzy preference weight assigned to the i -th alternative
in all pairwise preference comparisons, when the weight in each comparison is the
average fuzzy preference value. Let now
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Table 3 Fuzzy Condorcet’s paradox

voter 1 voter 2 voter 3

A B C A B C A B C

A - .6 .8 A - .9 .3 A - .6 .3

B .4 - .6 B .1 - .7 B .4 - .1

C .2 .4 - C .7 .3 - C .7 .9 -

pi = r̄i
∑

i r̄i
. (64)

Clearly pi ≥ 0 and
∑

i pi = 1. Thus, pi has the natural interpretation of choice
probability. An obvious way to utilize this is to form the collective preference order-
ing on the basis of these choice probabilities. The result is necessarily a complete
and transitive relation. Hence we can use the information broadening provided by
fuzzy preferences to solve Condorcet’s paradox (cf. Table 3).

For illustration, consider the example of Table 1 again and assume that each
group consists of just one voter. Assume, furthermore, that the fuzzy preferences
underlying the preference rankings are as follows:

The R̄- matrix is now:

R̄ =
⎛

⎝

− .7 .5
.3 − .5
.5 .5 −

⎞

⎠

Now, PA = 0.4, PB = 0.3, PC = 0.3.
Obviously, the solution is based on somewhat different fuzzy preference relations

over the three alternatives. Should the preference relations be identical, we would
necessarily end up with identical choice probabilities.

With fuzzy individual preference relations we can resolve Borda’s paradox. To
do that, we simply apply the same procedure as in the resolution of Condorcet’s
paradox.

Let us take a look at a fuzzy Borda’s paradox for illustration. Assume that the
fuzzy preferences underlying Table 2 are those indicated in Table 4.

Table 4 A fuzzy Borda’s paradox

4 voters 3 voters 2 voters

A B C A B C A B C

A - .6 .8 A - .9 .3 A - .2 .1

B .4 - .6 B .1 - .7 B .8 - .3

C .2 .4 - C .7 .3 - C .9 .7 -
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The matrix of average preference degrees is then the following:

R̄ =
⎛

⎝

− .6 .5
.4 − .6
.5 .4 −

⎞

⎠

The choice probabilities of A, B and C are, thus, 0.37, 0.33, 0.30. We see that
the choice probability of A is the largest. In a sense, then, the method does not
solve Borda’s paradox in the same way as the Borda count does since also plurality
method ends up with A being chosen instead of the Condorcet winner alternative B .
Note, however, that fuzzy preference relations give a richer picture of voter prefer-
ences than the ordinary preference rankings. In particular, A is strongly preferred to
B and C by both the 4 and 3 voter groups. Hence, it is to be expected that its choice
probability is the largest.

For additional information on voting paradoxes and some ways to solve them
using fuzzy logic, we refer the reader to Nurmi and Kacprzyk [77].

7 Concluding Remarks

In this paper we have briefly presented the use of fuzzy preference relations and
fuzzy majorities in the derivation of group decision making (social choice) solution
concepts and degrees of consensus. First, we briefly discussed some more general
issues related to the role fuzzy preference relations and a fuzzy majority may play
as a tool to alleviate difficulties related to negative results in group decision making
exemplified by Arrow’s impossibility theorem. Though very important for a concep-
tual point of view, these analyses are of a lesser practical relevance to the user who
wishes to employ those fuzzy tools to constructively solve the problems considered.

Therefore, emphasis has been on the use of fuzzy preference relations and fuzzy
majorities to derive more realistic and human-consistent solutions of group decision
making. Reference has been given to other approaches and works in this area, as
well as to the authors’ previous, more foundational works in which an analysis of
basic issues underlying group decision making and consensus formation has been
included.

It is hoped that this work will provide the interested reader with some tools
to constructively solve group decision making and consensus formation problems
when both preferences and majorities are imprecisely specified or perceived, and
may be modeled by fuzzy relations and fuzzy sets.
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