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Foreword

Fuzzy Sets and Their Extensions: Representation,
Aggregation and Models
Intelligent Systems from Decision Making to Data Mining,
Web Intelligence and Computer Vision

Fuzzy sets are now more than 40 years old, and have come of age. However, the
development of fuzzy set theory at the theoretical level, and its successful applica-
tions to science and technology have often run in isolation. Only a little part of the
theoretical apparatus was effectively used in past applications. The most prominent
ones, namely fuzzy rule-based modeling and control engineering, were directly in-
spired from a seminal paper by Lotfi Zadeh in 1973, suggesting how to use expert
knowledge for synthetizing control laws, and from the first experiments published
by Abe Mamdani. Later in the eighties, when spectacular applications were blos-
soming in Japan, fuzzy rule-based systems were systematized and simplified by
Michio Sugeno and colleagues, and became a basic approach to non-linear system
modeling and control, soon hybridized with neural networks in the nineties. Thus
fuzzy systems significantly contributed to the raise of computational intelligence,
and a lot of learning techniques for the construction of (supposedly interpretable)
fuzzy models from data were developed under the flag of soft computing.

Even if this area was quite successful, it is patent that the role, in the success of
fuzzy logic, of new fuzzy set-related concepts developed quite at the same time in
the mathematical niche of the fuzzy set community was limited. To wit, the notion of
fuzzy rule is now much better understood, but fuzzy extensions of material implica-
tions have not been popular in systems engineering so far. Other notions, like aggre-
gation operations, fuzzy intervals, fuzzy preference relations, possibility measures
have also acquired strong theoretical underpinnings in the meantime. The end of the
nineties have also witnessed tremendous progress in the foundations of formal fuzzy
logic, due to the impulse given by reputed logicians like Petr Hajek and Daniele
Mundici. Yet they only had a limited impact on domains like databases and infor-
mation retrieval, risk analysis, artificial intelligence, mathematical programming,
and multiple criteria decision-making, where their use looks natural. One reason is
the lack of communication between mathematics and engineering in many cases.

From scanning its contents, this book looks like an outline of what could be
the next generation of fuzzy logic applications. Strikingly enough it does not deal
with systems engineering nor soft computing. Instead, new exciting topics are pro-
posed like data mining and web intelligence, as well as more traditional ones like
decision-making and computer vision, for which fuzzy set methods are available
for a long time, but the impact of fuzzy sets was clearly marginal so far. With
the tremendous gain in maturity of fuzzy set mathematics, observed in the last

v
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twenty years, no doubts that new generations of researchers, trained with the new
results, will propose new techniques for such application areas as appearing in this
book. The extensive series of chapters in this book, devoted to aggregation oper-
ators, their axiomatization, their construction and their identification from data is
very symptomatic of the renewal of research topics in fuzzy set theory.

The other part of the theoretical section of this book raises some questions.
Several chapters are typical of the new trends towards hybrid constructions, namely
fuzzy sets with rough sets, and fuzzy sets with random sets. The other two top-
ics, that is fuzzy sets of higher order and Atanassov’s intuitionistic fuzzy sets are
more problematic at this stage of their development. Type-two fuzzy sets as well
as interval-valued fuzzy sets are an old construct suggested by Zadeh already in the
seventies. They are natural concepts addressing the apparent paradox, faced by stan-
dard fuzzy sets, of modeling imprecise concepts using precise membership grades.
Of course, they fall under the usual objection of regression to infinity (why then
should the imprecise membership grades be modeled by type 1 fuzzy sets ?). But
this is not at all a valid practical objection. A first more actual difficulty is that type-2
fuzzy systems may involve many more tuning parameters than type-1 fuzzy systems.
So they may not be a very concise tool. Another more basic difficulty lies in the ex-
tension of fuzzy connectives via the extension principle, studied in the seventies by
Mizumoto and Tanaka (and Dubois and Prade !), that hides dependency phenomena.
If an interval-valued or type-2 fuzzy set represents uncertainty about membership
grades, they are uncertain type-1 fuzzy sets, not fuzzy sets with membership grades
in a more complex scale than the unit interval. So for instance even if the mem-
bership grade μA(x) is ill-known, we nevertheless know that μA(x)+ μc

A(x) = 1,
where Ac is the complement of A, hence min(μA(x), μc

A(x)) ≤ 0.5. But, ifμA(x) ∈
[a,b], computing the range of the membership grade of x in A ∪ Ac as

min([a, b], 1− [a, b]) = [min(a, 1− b),min(b, 1− a)]

using the extension principle on fuzzy connectives, cannot retrieve this upper bound,
as we may have min(b,1-a) > 0.5. This is one more example of the lack of truth-
functionality in the presence of uncertainty. This is clearly a limitation of the truth-
functional calculus of interval-valued fuzzy sets (and a fortiori, type-2 fuzzy sets)
one should be aware of. Interestingly, the interpretation of a fuzzy set as an ill-known
(random) crisp set leads to the same loss of truth-functionality, as explained in the
chapter by Lawry.

The case of intuitionistic fuzzy sets, advocated by Atanassov, in this book, has
been discussed elsewhere. They suffer from a lack of connection with current intu-
itionistic logic (despite the fact that some ideas were borrowed by their founder from
early intuitionism). Moreover, the algebraic operations proposed for them make
them formally equivalent to interval-valued fuzzy sets (hence they also suffer from
the difficulty pointed out in the previous paragraph). Yet, the idea of Atanassov,
namely evaluating degrees of membership and degrees of non-membership in a sep-
arate way, is very important, as it refers to the phenomenon of bipolarity. Indeed,
it has been observed by cognitive scientists that the human brain tends to process
positive and negative aspects of information separately. More work is needed to
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clarify the specific role of Atanassov membership/non-membership pairs, as distinct
from the older interval-valued fuzzy sets, and from what is nowadays referred to as
intuitionism.

The second part of the book will be very useful to charter the most promis-
ing future applications areas for fuzzy set theory. In the case of decision-making,
preference modeling will certainly benefit from the progress made in the theory of
fuzzy relations, because the natural concept of gradual preference is not really en-
countered in classical decision theory but for mere utility functions. The success of
fuzzy reference relations will depend on the development of measurement-theoretic
foundations for them, and the existence of tools that demonstrate their simplicity of
use and efficiency in solving issues crisp relations cannot address (like in voting the-
ories). Another challenge in fuzzy decision theory is its capability to found linguis-
tic approaches. Here, the difficulty is the same as in qualitative reasoning at large:
finding a compromise between mathematically well-behaved but poorly expressive
frameworks (as like the sign calculus), and more expressive mathematically-ill be-
haved settings (like absolute orders of magnitude). In particular, it is not clear that
linguistic variables grounded on non-measurable numerical scales (like using [0, 1]
to evaluate abstract notions like beauty) are the way to go. Several chapters offer the
state of the art in linguistic decision-making.

Data mining and web intelligence are clearly new topics where fuzzy sets have
a role to play. The first data-mining tools presupposed a Boolean world. Adapting
them to numerical attributes is problematic if crisp partitions of attribute ranges
are used. Fuzzy sets may address the issue of sensitivity to thresholds, even if this
advantage needs to be properly assessed. Nevertheless the concept of fuzzy associ-
ation rule and more generally fuzzy rule appears to be more flexible than its crisp
counterpart. The web is also an excellent opportunity to combine several fuzzy set
methods developed in the recent years: formal fuzzy logic for the description of
fuzzy ontologies, fuzzy preference modeling and aggregation techniques for search
engines, linguistic information processing in recommender systems and other kinds
of e-services. These topics are well documented in the book.

Lastly, the selection of papers in computer vision also witnesses how fuzzy tech-
niques have slowly but strongly entered the various tool-boxes of the field. That this
area could benefit from fuzzy sets was pointed out quite early by the late A. Rosen-
feld in the seventies, with continued efforts until recently. Filtering, thresholding
and segmentation techniques, colour processing and pixel classification methods,
among other subproblems include fuzzy ingredients as witnessed by various survey
chapters in this volume.

Systems and control engineers used to be the main advertisers of fuzzy sets till
the end of the twentieth century. This book suggests that the new century will see
fuzzy set theory becoming an important methodology for information science and
engineering at large.

March 1, 2007 Didier Dubois



Preface

Fuzzy Sets and Their Extensions: Representation,
Aggregation and Models
Intelligent Systems from Decision Making to Data Mining,
Web Intelligence and Computer Vision

This book has its origins in the invited talks presented at the “Second International
Workshop of Artificial Intelligence, Fuzzy Logic and Computer Vision”, held in
Pamplona, Spain (November 30 to December 2, 2005). These invited talks covered
the different tasks that we must take into consideration for “fuzzy logic based real
applications”, from fuzzy logic foundations (representation and aggregation opera-
tors) to information fusion and specific model constructions. Although model con-
struction depends on the kind of problem and presents a great variety of situations,
the Workshop paid special attention to computer vision applications, and it also
included some invited talks on decision-making, web intelligence and data mining.

During the conference we realized that there was scientific demand for a book of-
fering a good state-of-the-art collection of papers together with a wide-ranging view
of applications, in such a way that readers could find, in a single volume, the three
most important tasks to take into consideration for fuzzy logic real applications: rep-
resentation, aggregation procedures and a variety of models in different application
areas, considering the different semantics for fuzzy membership functions that exist
in the literature (similarity, preference and uncertainty).

The book has been conceived according to a fixed scheme, covering a wide view
of past, present and future research related to this field, together with a strict selec-
tion of prestigious authors as a guarantee for quality papers, but still maintaining a
standard anonymous peer-review for every paper (other researchers, also prestigious
in each topic, kindly accepted to collaborate in this project). We paid attention to
non-standard representations that extend fuzzy sets, aggregation procedures, and the
whole process of intelligent information management using fuzzy logic, focusing on
four important application areas: decision-making, data mining, web intelligence
and computer vision.

The present book brings together many of the mentioned invited talks at the “Sec-
ond International Workshop of Artificial Intelligence, Fuzzy Logic and Computer
Vision”, plus a collection of well recognized researcher contributions, with the aim
of presenting an extensive background on each topic. It collects a set of papers and
gives a triple perspective: papers for revision, papers prospecting these areas and
papers presenting interesting novel approaches.

Once all the papers had been revised and corrected, Prof. D. Dubois kindly ac-
cepted to write the Preface. The book contains 34 chapters divided into two parts:

ix
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Part I devoted to foundation issues (Sect. 1 and Sect. 2) and Part II to the four
application areas previously mentioned (Sects. 3, 4, 5 and 6).

More specifically, the first part is divided into two sections. Section 1 contains
four review papers introducing some non-standard representations that extend fuzzy
sets (type-2 fuzzy sets, Atanassov’s IFS, fuzzy rough sets and computing with words
under the fuzzy sets perspective). Section 2 contains six review and prospect pa-
pers that revise different aggregation issues from a theoretical and practical point of
view. The second part is divided into four sections. Section 3 is devoted to decision-
making, containing seven papers that show how fuzzy sets and their extensions are
an important tool for modeling choice problems (e.g., sensory evaluation, preference
representation, group decision making, consensus and voting systems). Section 4
collects eight papers that cover different aspects on the use of fuzzy sets and their
extensions in data mining, classification, association rules, non-supervised classifi-
cation, subgroup discovery, etc., giving an illustrative revision of the state of the art
in the subject. Section 5 is devoted to the emergent topic of web intelligence and
contains four papers that show the use of fuzzy set theory in certain problems that
we can tackle under this heading (information retrieval, web meta-search engines,
e-services and recommender systems). Section 6 is devoted to the use of fuzzy sets
and their extensions in the field of computer vision, presenting how these can be a
useful tool in this area (image thresholding, segmentation, fuzzy measures and color
processing).

We believe that this volume presents an up-to-date state of current research in the
use of fuzzy sets and their extensions in the whole process of intelligent information
management. It will be useful to non-expert readers, whatever their background,
who are keen to learn more about this area of research. It will also support those
specialists who wish to discover the latest results as well as the latest trends in the
mentioned areas.

Finally, we would like to express our most sincere gratitude to Springer-Verlag
and in particular to Prof. J. Kacprzyk (editor-in-chief of the series “Studies in Fuzzy-
ness and Soft Computing”), for having given us the opportunity to prepare the text
and for having supported and encouraged us throughout its preparation. We would
also like to acknowledge our gratitude to all those who have contributed to the
books by producing articles that we consider to be of the highest quality. We also
like to mention the somewhat obscure and altruistic, though absolutely essential,
task carried out by a group of referees (all the contributions have been reviewed
by two referees), who, through their comments, suggestions, and criticisms, have
contributed to raising the quality of this volume.

March 1, 2007 H. Bustince
F. Herrera

J. Montero
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and Sergio Alonso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567

6. Computer Vision

Fuzzy Measures in Image Processing
Tamalika Chaira . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587

Type II Fuzzy Image Segmentation
Hamid R. Tizhoosh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607



xiv Contents

Image Threshold Computation by Modelizing Knowledge/Unknowledge
by Means of Atanassov’s Intuitionistic Fuzzy Sets
Humberto Bustince, Miguel Pagola, Pedro Melo-Pinto,
Edurne Barrenechea and Pedro Couto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

Colour Image Comparison Using Vector Operators
Dietrich Van der Weken, Valérie De Witte, Mike Nachtegael,
Stefan Schulte and Etienne Kerre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639

A Fuzzy-based Automated Cells Detection System
for Color Pap Smear Tests -FACSDS-
Pilar Sobrevilla, Eduard Montseny and Enrique Lerma . . . . . . . . . . . . . . . . . . . 657



Contributors

Sergio Alonso
Department of Computer Science and
Artificial Intelligence
University of Granada, 18071 -
Granada, Spain
salonso@decsai.ugr.es

Ana del Amo
Mission Management Dept., Smiths
Aerospace, Grand Rapids, MI.,U.S.A.
Ana.Del.Amo@smiths-
aerospace.com

Krassimir T. Atanassov
CLBME - Bulgarian Academy
of Sciences P.O.Box 12, Sofia-1113,
Bulgaria krat@bas.bg,
krat@clbme.bas.bg

Bernard De Baets
Department of Applied Mathematics,
Biometrics and Process Control Ghent
University, Coupure links 653,
B-9000 Gent, Belgium
bernard.debaets@ugent.be

Edurne Barrenechea
Departamento de Automática y
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Type-2 Fuzzy Logic and the Modelling
of Uncertainty

Simon Coupland and Robert John

Abstract This chapter provides a review of the development of the field of type-2
fuzzy logic. We explore some underpinning philosophical arguments that support
the notion of type-2 fuzzy logic. We give the fundamental definitions of type-2 fuzzy
sets and basic logical operations. The key stages in development of the field are
reviewed and placed in a historical context. In addition, we report an example appli-
cation of type-2 fuzzy logic to mobile robot navigation, demonstrating the potential
of type-2 fuzzy systems to outperform type-1 fuzzy systems.

1 Introduction

Recently there has been significant growth in scientific interest in type-2 fuzzy logic.
Type-2 fuzzy logic is an extension of type-1 (regular) fuzzy logic where the member-
ship grade in a fuzzy set is itself measured as a fuzzy number. Much of this growth
in interest has only been concerned with type-2 interval fuzzy systems, a subset of
type-2 fuzzy systems, where the membership grade of a fuzzy set is given as an in-
terval set. We take the view that type-2 interval fuzzy logic is a compromise and that
(generalised) type-2 fuzzy sets have a great deal to offer. To demonstrate this point
this Chapter begins by discussing works of philosophy that relate to fuzzy logic. It
is clear from these works that type-2 fuzzy logic has a role to play in modelling un-
certainty. Section 3 gives the fundamental definitions of general and interval type-2
fuzzy set along with basic logic operations. Section 4 of this Chapter presents the
historical development of the field of type-2 fuzzy logic. It becomes clear that the
dominance in the literature of interval techniques has only come about recently. Sec-
tion 5 presents the application of type-1, type-2 interval and generalised type-2 fuzzy
logic to a mobile robot control application. This example application demonstrates
the potential of generalised type-2 fuzzy logic to give an improved performance
over type-2 interval fuzzy logic. Section 6 draws conclusions from this work.

2 Philosophy, Uncertainty and Fuzzy Logic

This Section explores some of the work in the field of Philosophy that relates to the
field of fuzzy logic.

H. Bustince et al., (eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation
and Models. C© Springer 2008 3
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2.1 Vagueness and Imprecision

The problems of uncertainty, imprecision and vagueness have been discussed for
many years. These problems have been major topics in philosophical circles with
much debate, in particular, about the nature of vagueness and the ability of tradi-
tional Boolean logic to cope with concepts and perceptions that are imprecise or
vague (Williamson [63] and Keefe [35]).

As early as 1923 the well known philosopher Russell discussed the notion of
Vagueness [55]. In this early work he discusses, for example, the word ‘red’. This
word has no precise meaning - it is vague. The average person would clearly asso-
ciate this word, for example, with the predominant colour of a London bus. How-
ever, as he points out, there are certain colours, as one moves through the colour
spectrum, which could not perhaps unequivocally be described as red. There would
be some uncertainty in associating the word red with that particular colour. There
are other colours - the yellow of New York taxi for example - which are clearly not
red. ‘Red’ is a vague term yet is one which is used every day in common language.
Another example Russell uses in his discussion of vagueness is that of baldness1. If
a man starts with a full head of hair and the hairs are removed one by one he will
eventually be bald. At what point does he become bald? There is no precise point,
no particular hair that defines the move from a position of not being bald to one
of baldness. Clearly baldness is an imprecise, vague concept. He also discusses the
idea that quantitative words used in science are (more or less) vague. For instance a
two kilogram bag of sugar will hardly ever be exactly two kilograms. Even if it were
perceived to be exactly two kilograms using the most modern measuring equipment
it is unlikely to be exactly two kilograms since the measurement obtained is limited
to the accuracy of that equipment. A two kilogram bag of sugar is in effect about
two kilograms. All measurements have this imprecision. As Russell says ‘It follows
that every proposition that can be framed has a certain degree of vagueness’ [55,
p. 99]. In other words all propositions are vague to some degree. His argument is
that the notion of Boolean AND and Boolean OR lose their real meaning when the
symbols used are vague (Other philosophers (e.g. [63]) dispute this and argue that
traditional Boolean logic can deal with these vague terms. The problem is one of
ignorance. Concepts such as red and not red have crisp boundaries - we just don’t
know where these boundaries lay. From the perspective of the arguments presented
here whether Russell or Williamson is right does not affect the arguments in favour
of type-2 fuzzy logic. If there is some unknown boundary between ‘red’ and ‘not
red’ for many applications concepts and perceptions like red need modelling.). His
definition of vagueness is: a representation is vague when the relation of the repre-
senting system to the represented system is not one-to-one but one-too-many. What

1 There are a number of puzzles considered by philosophers that are known as sorites. The bald-
ness problem is one such example. Another is the question of a heap. At what point does a pile of
grains of wheat make a heap? Is one grain a heap? two? a thousand? There is no particular grain
that makes a heap so this raises the question of whether a heap of wheat can exist? Clearly, human
beings understand the notion of a heap of wheat yet traditional logic is unable to cope with this
type of puzzle.
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is meant by this? Well, if the system that is being represented can, to some degree,
be related to more than one representation in another system then the representation
is vague. He also points out that of course the law of excluded middle2 does not
hold for imprecise or vague symbols but only for precise symbols. Black [1] also
discusses the problems of modelling vagueness. He differs from Russell in that he
proposes that traditional logic can be used by representing vagueness at an appro-
priate level of detail and suggests that Russell’s definition of vagueness confuses
vagueness with generality. He discusses vagueness of terms or symbols by using
borderline cases where its unclear whether the term can be used to describe the
case. When discussing scientific measurement he points out “. . . the indeterminacy
which is characteristic in vagueness is present also in all scientific measurement”
[1, p. 429] and “Vagueness is a feature of scientific as other discourse.” [1, p. 429].
An idea put forward by Black is the idea of a consistency profile or curve to enable
some analysis of the ambiguity of a word or symbol. He uses three notions - a
language, a situation when a user is trying to apply a symbol L to an object x and
the consistency of the application of L to x . These notions are used to determine a
curve that describes the consistency of application of L to x which is the number of
observers who would apply the symbol L to x divided by the number of observers
who would apply an alternative symbol (∼ L). The graph has on the vertical axis
this consistency measure and on the horizontal axis the x’s ranked according to the
consistency. He notes that the curve will be different for different symbols. Figure 1
is similar to the figure in Black [1, p. 443] and shows the consistency profile for a
vague symbol L and ∼ L. Figure 2 shows the profile for a more precise symbol.
To the fuzzy logic researcher of today these curves bear a strong resemblance to
the membership functions of type-1 fuzzy sets Zadeh [67] but, as will be seen later,
consistency profiles are different from membership functions.

Fig. 1 A consistency profile
for a vague symbol

1 2 3 4 5 6 7 8 9

Ranking in Series

Consistency

2 The law of excluded middle states that if we have two sets A and its complement A then the
union of A and A is the universal set X . In other words A ∪ A = X .
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Fig. 2 A consistency profile
for a precise symbol

1 2 3 4 5 6 7 8 9
Ranking in Series

Consistency

The notion of ‘loose concepts’ is presented in a seminal article by [2] where
the concept of ‘tallness’ is discussed at length. These loose concepts relate very
closely to the notion of vagueness. A loose concept according to Black is where
there is no sharp boundary where a concept C becomes not C . He gives the example
of a sharply bounded concept “short” by using the following formal definition for
short: “There is a certain height, h, such that a man of that height is short, while
a man of height h + δ is not short, no matter how small δ may be” Black [2,
p. 4] (clearly everyday use of short does not match this definition - short is another
word that is vague). Any concept not sharply bounded he calls a loose concept (or
vague concept) - short is therefore a loose concept. Goguen [15] considered inexact
concepts and how (type-1) fuzzy sets can be used to represent such concepts. He
introduces the notion of of a J−set (a type of fuzzy set). J denotes the closed unit
interval, the set{a ∈ Y |0 ≤ a ≤ 1}. The expression {a ∈ Y |P(a)} denotes the set
of all elements a of Y such that the proposition P is true of a. A J−set then is a
function S : X → J where J is the truth-set of S. It is interesting that Goguen briefly
mentions higher type J−sets (J−sets which contain other J−sets) which he points
out seem to measure the abstractness of a concept. This is a similar argument to the
one made about type-2 fuzzy sets.

More recently (Zadeh [72]), the modelling of perceptions has become an impor-
tant topic. Consider this quote:

“. . . the remarkable human capability to perform a wide variety of physical and mental tasks
without any measurements and any computations. Familiar examples of such tasks are park-
ing a car; driving in heavy traffic; playing golf; understanding speech, and summarizing a
story. Underlying this remarkable ability is the brain’s crucial ability to manipulate per-
ceptions - perceptions of size, distance, weight, speed, time, direction, smell, color, shape,
force, likelihood, truth and intent, amongst others”

Zadeh [72, pp. 106–107]

In this quote Zadeh has highlighted that the real world is imprecise in many ways.
The human being is capable of handling perceptions to carry out complex tasks that
cannot successfully be modelled by traditional mathematical techniques. The central
tenet of his work is that fuzzy logic can be used to model perceptions. Furthermore
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Zadeh, Mendel and Turksen appear to agree that model perceptions requires the use
of type-2 (possibly type-2 interval.) fuzzy sets.

The real world is not precise and the notions of vagueness, looseness, uncertainty,
imprecision, concepts and perceptions are central to the way human beings solve
problems. The discussions, briefly described here, have informed the debate about
the problems of modelling notions, concepts or perceptions that are somehow vague,
imprecise or uncertain.

2.2 Fuzzy Logic, Imprecision and Vagueness

Fuzzy sets (Zadeh [67]) have, over the past forty years, laid the basis for a successful
method of modelling uncertainty, vagueness and imprecision in a way that no other
technique has been able. The use of fuzzy sets in real computer systems is extensive,
particularly in consumer products and control applications.

Fuzzy logic (a logic based on fuzzy sets) is more mature than artificial neural
networks with which it is often bracketed and indeed the reality is that the applica-
tion of fuzzy logic is more pervasive. It is without doubt that fuzzy logic is now a
mainstream technique in everyday use across the world. The number of applications
is many, and growing, in a variety of areas, for example, heat exchange, warm water
pressure, aircraft flight control, robot control, car speed control, power systems, nu-
clear reactor control, fuzzy memory devices and the fuzzy computer, control of a ce-
ment kiln, focusing of a camcorder, climate control for buildings, shower control and
mobile robots (see for example Lee [37], Schwartz [58], Saffiotti [56], etc.). The use
of fuzzy logic is not limited to control. Successful applications, for example, have
been reported in train scheduling, system modelling, computing (OMRON [53]),
stock tracking on the Nikkei stock exchange (Schwatz [58]), information retrieval
(Nakamura and Iwai [52]) and the scheduling of community transport (John and
Bennett [27]). The fuzzy set approach to modelling is both intuitive and exciting.
That this relatively simple idea can be used to model quite complex situations is
extraordinary.

Zadeh [72] presents a powerful argument for the use of fuzzy logic for manip-
ulating perceptions. As has been discussed, his argument is that perceptions (for
example, perceptions of size, safety, health and comfort) cannot be modelled by
traditional mathematical techniques and that fuzzy logic is more suitable. The dis-
cussion about perception modelling is both new and exciting. We argue that type-2
fuzzy sets, since they have non-crisp fuzzy membership functions, can model these
perceptions more effectively than type-1 fuzzy sets where the membership grades
are crisp in nature.

So, we take the position that although fuzzy logic has many successful appli-
cations there are a number of problems with the ‘traditional’ fuzzy logic approach
that require a different set of fuzzy tools and techniques for modelling high levels
of uncertainty. In particular the argument presented here is that fuzzy logic, as it is
commonly used, is essentially precise in nature and that for many applications it is
unable to model knowledge from an expert adequately. We argue that the modelling
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Fig. 3 Relationships between
imprecision, data and fuzzy
technique

Traditional Mathematical
Modelling

NumbersCrisp

PRECISION DATA TECHNIQUE

Words

PerceptionsImprecise Type-2 Fuzzy Logic

Type-1 Fuzzy Logic

of imprecision can be enhanced by the use of type-2 fuzzy sets - providing a higher
level of imprecision. Indeed, the tenet of this work is that the success of fuzzy logic
can be built on by type-2 fuzzy sets and taken into the next generation of (type-2)
fuzzy systems. The use of type-2 fuzzy sets allows for a better representation of
uncertainty and imprecision in particular applications and domains. This argument
is presented with the use of a mobile robot control application.

The more imprecise or vague the data is, then type-2 fuzzy sets offer a significant
improvement on type-1 fuzzy sets. Figure 22 shows the view taken in this work of
the relationships between levels of imprecision, data and technique. As the level
of imprecision increases then type-2 fuzzy logic provides a powerful paradigm for
potentially tackling the problem. Problems that contain crisp, precise data do not,
in reality, exist. However some problems can be tackled effectively using mathe-
matical techniques where the assumption is that the data is precise. Other problems
(for example, in control) use imprecise terminology that can often be effectively
modelled using type-1 fuzzy sets. Perceptions, it is argued here, are at a higher level
of imprecision and type-2 fuzzy sets can effectively model this imprecision.

3 Key Definitions

This Section provides a core set of definitions that give the fundamental technical
detail of type-2 systems.

3.1 Definitions of Type-2 Fuzzy Sets

The concepts of generalized and interval type-2 fuzzy sets are now formally defined.
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Definition 1. A Generalised Type-2 Fuzzy Set
At each value of x, such that x ∈ X, in the generalised type-2 fuzzy set ˜A, i.e.,
μ
˜A(x) maps to a secondary membership function f (x), which map values in [0, 1]

to values in [0, 1]. Let the domain of the secondary membership function denoted by
Jx then;

˜A =
∫

x∈X

[∫

u∈Jx

fx (u)/u

]/

x (1)

Where Jx ⊆ [0, 1], x ∈ X, u ∈ [0, 1] and fx (u) ∈ [0, 1].

Adapted from Mendel And John [47]

Definition 2. A Type-2 Interval Fuzzy Set
At each value of x, such that x ∈ X, in the type-2 type-2 fuzzy set ˜A, i.e.,μ

˜A(x)maps
to a secondary membership function f (x), which map values in [0, 1] to values in
{0, 1}. Let the domain of the secondary membership function denoted by Jx then;

˜A =
∫

x∈X

[∫

u∈Jx

1/u

]/

x (2)

Where Jx ⊆ [0, 1], x ∈ X and u ∈ [0, 1].

Adapted from Mendel [45]

Definition 3. For discrete universes of discourse X and U, an embedded type-2
set ˜Ae has N elements, where ˜Ae contains exactly one element from Jx1, Jx2,

. . . , JxN , namely u1, u2, . . . , uN , each with its associated secondary grade, namely
fx1(u1), fx2(u2), . . . , fxN (uN ), i.e.,

˜Ae =
N
∑

i=1

[ fxi (ui )/ui ]/xi ui ∈ Jxi ⊆ U = [0, 1] (3)

Where ˜A j
e is the j th embedded set in ˜A and Mi is the number of points in the domain

of the i th secondary membership function of ˜A. Set ˜Ae is embedded in ˜A, and, there
are a total3 of

∏N
i=i Mi .

Adapted from Mendel and John (2002)

3.2 Definitions of Type-2 Fuzzy Logic Operators

The logical operations required for reasoning with type-2 fuzzy sets are now for-
mally defined

3 For continuous type-2 fuzzy sets, there are an uncountable number of embedded type-2 fuzzy
sets, and this concept is not very useful.
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Definition 4. The Join of Two Generalised Type-2 Fuzzy Sets
The join (	) operation finds the conjunction of two secondary membership functions
μ
˜A(x) and μ

˜B(x). Let μ
˜A(x) =

∑M
i=1 αi/vi and let μ

˜B(x) =
∑N

j=1 β j/w j . The
conjunction of μ

˜A(x) and μ
˜B(x) is given by

μ
˜A	˜B(x) =

M
∑

i=1

N
∑

j=1

(α∗i β j )/(vi ∨w j ) (4)

Adapted from Mizumoto and Tanaka [50]

where ∨ is a t-conorm, generally taken to be maximum and ∗ is a t-norm such as
minimum or product.

Definition 5. The Join of Two Type-2 Interval Fuzzy Sets
Let μ

˜A(x) =
∑M

i=1 1/vi and let μ
˜B(x) =

∑N
j=1 1/w j . The conjunction of μ

˜A(x)
and μ

˜B(x) is given by

μ
˜A	˜B(x) =

M
∑

i=1

N
∑

j=1

1/(vi ∨ w j ) (5)

Adapted from Mendel [45]

where again ∨ is a t-conorm, generally taken to be maximum and ∗ is a t-norm such
as minimum or product.

Definition 6. The Meet of Two Generalised Type-2 Fuzzy Sets
The meet (�) operation finds the disjunction of two secondary membership functions
μ
˜A(x) and μ

˜B(x). The disjunction of μ
˜A(x) and μ

˜B(x) is given by

μ
˜A�˜B(x) =

M
∑

i=1

N
∑

j=1

(α∗i β j )/(v
∗
i w j ) (6)

Adapted from Mizumoto and Tanaka [50]

where again ∗ is a t-norm.

Definition 7. The Meet of Two Type-2 Interval Fuzzy Sets
Let μ

˜A(x) =
∑M

i=1 1/vi and let μ
˜B(x) =

∑N
j=1 1/w j . The disjunction of μ

˜A(x)
and μ

˜B(x) is given by

μ
˜A	˜B(x) =

M
∑

i=1

N
∑

j=1

1/(v∗i w j ) (7)

Adapted from Mendel [45]

where again ∗ is a t-norm.
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Definition 8. The Centroid of a Generalised Type-2 Fuzzy Set
The generalized centroid (GC) gives a possiblistic distribution of the centroids of
a Generalised type-2 fuzzy set. Let ˜A be a discrete type-2 fuzzy set with L discrete
points in its domain. Let n be the number of embedded type-2 sets required to rep-
resent ˜A using the representation theorem [47]. The generalised centroid of ˜A may
be given as

GC
˜A =

n
∑

i=1

[�L
j=1μ˜Ai

e
(x j , u j )]

/
∑L

j=1 x j u j
∑L

j=1 x j
(8)

Adapted from Karnik and Mendel [34]

where μ
˜Ai

e
(x j , u j ), x j and u j follow from the definition of a type-2 embedded set

given in (3) and �L
j=1μ˜Ai

e
(x j , u j ) is the t-norm of all values of μ

˜Ai
e
(x j , u j ) from 1

to L.

Definition 9. The Centroid of a Type-2 Interval Fuzzy Set
The generalised centroid of a type-2 interval fuzzy set ˜A over the domain X is de-
fined as:

GC
˜A =

∫

θ1∈Jx1

. . .

∫

θ1∈JxN

1

/∑N
i=1 xiθi

∑N
i=1 θi

= [Cl ,Cr ] (9)

Adapted from Mendel [45]

where JxN is the secondary membership grade at N in the secondary membership
function Jx and x ∈ X. The type-reduced set C only needs two endpoints to define
it, Cl and Cr . Each of these points come from the centroid values of a set that
is embedded in ˜A. The iterative method [34] exploits the properties of the cen-
troid operation to find these two sets with a relatively low amount of computational
effort.

The following Section of this Chapter explores the development of the field of
type-2 fuzzy logic.

4 The Historical Development of Type-2 Fuzzy Logic

Type-2 fuzzy logic is a growing research topic. Figure 4 illustrates the growth in
academic activity in the field since its inception. In this Section the main themes
reported in literature are discussed in a historical context. Figure 5 depicts a time
line showing the historical development of type-2 methods. Each block on the time
line relates to a paragraph presented in this Section.
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Number of Type-2 Fuzzy Logic Publications Over Time
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4.1 Type-2 Fuzzy Sets Appear

Type-2 fuzzy sets were first defined and discussed in a trilogy of papers by Zadeh
[68, 69, 70]. These papers concentrated on the notion of a fuzzy set where the
memberships grades of a fuzzy set are measured with linguistic terms such as low,
medium and high. Logical operators for such sets were also given, although the
terms join and meet were not used. Zadeh only explored the use of the minimum and
maximum operators t-norm and t-conorm when investigating the logical operations.
Mizumoto and Tanaka [49, 50] and Dubois and Prade [12] both studied the logical
connectives of what became known as secondary membership functions. Mizumoto
and Tanaka were the first to use the terms join and meet for these logical connectives.
Both Dubois and Prade and Mizumoto and Tanaka studied the join and meet under
a variety of t-norm and t-conorm operators.

4.2 Type-2 Interval Fuzzy Sets are Promoted

Turksen [59, 60, 61], Schwartz [57], Bustince [3], Gorzalçany [16] and Klir and
Folger [36] promoted the use of type-2 fuzzy sets, at that time called interval val-
ued or IV fuzzy sets. Schwartz believes that type-2 interval fuzzy sets should be
employed when the linguistic uncertainty of a term cannot be sufficiently modelled
by the type-1 methods. Klir and Folger advocate the use of IV fuzzy sets when
the membership functions of type-1 fuzzy sets could not be agreed upon. These
arguments were explored in greater detail by Mendel [43]. Turksen put forward a
collection of logical operators for type-2 interval fuzzy sets noting that the expres-
sive power of type-2 fuzzy reasoning lies in the ability to retain the uncertainty
throughout the inferencing process.

4.3 Type-reduction is Defined

Karnik and Mendel [31, 32, 34] defined type-reduction, the technique used for de-
fuzzifing type-2 fuzzy sets, by applying the extension principle to a variety of type-1
defuzzifiers. The notion of an output processing stage of a type-2 fuzzy system was
developed in these papers.

4.4 Type-2 Fuzzy Logic Systems are Fully Defined

Karnik and Mendel [31, 34] gave a complete description of the fuzzy inferencing
process. This allowed work on the application of type-2 fuzzy logic to proceed.
Around this time John [23, 24, 25, 26] published a series of review papers on type-2
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fuzzy systems. Early applications of the technology also began to appear (see for
example John [22, 28] and Karnik and Mendel [33]). As Fig. 4 demonstrates, the
recent growth in type-2 fuzzy publications began around this time.

4.5 The First Textbook on the Subject of Type-2
Fuzzy Logic Appears

Following the consolidation of the definitions and existing literature by John and
Karnik and Mendel, the field was opened up to a wider potential audience with the
publication of the first type-2 textbook. Uncertain Rule-Based Fuzzy Logic System:
Introduction and New Directions was written by Mendel [45] and published in 2001.
This textbook references a great deal of the work on type-2 fuzzy logic that had been
published to date, bringing together many of Mendel’s earlier publications.

4.6 The Representation Theorem is Defined

Mendel and John [47] gave the representation theorem of type-2 fuzzy sets. By
representing a type-2 fuzzy set as a collection of simpler type-2 embedded sets it is
possible to define operations of type-2 fuzzy sets without the use of the extension
principle. The motivation behind this work was that by eliminating the need to learn
about the extension principle, the field would be more accessible to type-1 fuzzy
practitioners. However, the representation theorem has its own learning curve, and
is not significantly simpler to understand than the extension principle.

4.7 Issues of Computational Complexity Begin to be Explored

The complexity of join and meet operations and type-reduction of a type-2 fuzzy set
limit the applicability of type-2 methods. Although type-2 interval sets are simpler,
type-reduction is still a problem, due to inherent complexity and redundancies. The
iterative method (Karnik and Mendel [34]) and the Wu-Mendel [65, 66] approx-
imation were developed to make the type-reduction of type-2 interval fuzzy sets
more efficient. This has led to the majority of the publications in the field of type-2
only discussing type-2 interval methods. Indeed, many authors refer to type-2 inter-
val fuzzy set as type-2 fuzzy sets and add the qualifying term ‘generalised’ when
discussing actual type-2 fuzzy sets. The computational problems of join and meet
were effectively resolved by Karnik and Mendel [34]. This work is also discussed
by the author, along with some aspects of the geometric approach in Coupland et al.
[6, 8, 9]. Greenfield et al. [17] give an efficient method for approximating the the
type-reduced set of a type-2 fuzzy set using a stochastic approach.
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4.8 Computing with Words Appears

Zadeh [72, 71] made the claim that fuzzy logic, approximately at least, equates to
computing with words (CWW). In CWW numbers are replaced with words not only
when reasoning, but also when solving calculations. Zadeh’s examples use fuzzy
granules to model words. A fuzzy granule is actually the FOU of a type-2 interval
fuzzy set. Both Mendel [44, 46] and Turksen [62] point out that CWW requires
type-2 fuzzy sets, both opting to use the simpler type-2 interval representations.
Mendel [43] re-emphasised this point by demonstrating that human models of words
as obtained through a survey require at least interval representations. The authors’
opinion is that type-2 fuzzy logic does not constitute computing with words. Type-2
fuzzy sets can model perceptions. Linguistic terms are not only models of percep-
tion, they also may contain other characteristics, such as contextual dependence,
that fuzzy logic bears no relation to.

4.9 Control Applications

With the iterative method and the Wu-Mendel approximation allowing fast exe-
cution of type-2 fuzzy systems, control applications began to emerge. Melin and
Castillo [41, 42] used type-2 interval systems in the context of plant control. Hagras
[18] demonstrated that a type-2 interval fuzzy logic controller could outperform a
type-1 fuzzy controller under large uncertainties. Wu and Tan [64] applied type-2
interval systems to the control of a complex multi-variable liquid level process.
Figueroa et al. [13] used a type-2 interval control for non-autonomous robots in
the context of a robot football game. The authors’ have performed a comprehensive
study of both general and type-2 interval fuzzy controllers for an autonomous mo-
bile robot. Some aspects of these studies are presented in Sect. 5 of this work and
in Coupland [9]. Doctor et al. [11] used a type-2 interval system to model and adapt
to the behaviour of people in an intelligent dormitory room. Lynch et al. [39] are
continuing to build a type-2 interval control system for large marine diesel engines.
Melgarejo et al. [40] have developed a limited hardware implementation of a type-2
interval controller.

4.10 Medical Applications

Medical applications are one of the few areas where a generalised type-2 fuzzy logic
has been used in preference to type-2 interval fuzzy logic. This is largely because
such systems do not require fast execution times but do contain large uncertainties.
John et al. [28, 21] used a type-2 fuzzy system for the pre-processing of tibia ra-
diographic images. Garibaldi et al. [14, 54] have done extensive work on assessing
the health of a new born baby using knowledge of acid-base balance in the blood
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from the umbilical cord. Innocent and John [19] proposed the use of fuzzy cognitive
maps to aid the differential diagnosis of confusable diseases and suggest that type-2
cognitive maps may yield improved results. Di Lascio et al. [10] also used type-2
fuzzy sets to model differential diagnosis of diseases, modelling the compatibility
of the symptom to a disease as a linguistic term. John et al. [20, 29] used type-2
fuzzy sets to model the perception of clinical opinions of nursing staff as linguistic
terms.

4.11 Signal Processing

Signal processing, like control, has to date only used type-2 interval methods. Liang
and Mendel [38] implemented a fuzzy adaptive filter for the equalization of non-
linear time-varying channels. Mitchell [48] defined a similarity measure for use with
type-2 fuzzy sets which was used in a radiographic image classifier. Karnik and
Mendel [33] used a type-2 interval system to predict the next value in a chaotic time
series. Musikasuwan et al. [51] investigated how the learning capabilities of type-1
and type-2 interval systems differ according to the number of learning parameters
used. Both systems were designed to to predict a Mackey-Glass time series.

4.12 Summary

This Section has given the major developments that have taken place in the field
of type-2 fuzzy logic and places them in a historical context. Type-2 literature has
become predominately concerned with type-2 interval methods. The likely reason
for this is the elimination of the computational problems for type-2 interval methods.
The authors’ view is that generalised type-2 fuzzy logic has a great deal to offer as
will be demonstrated in the following section.

5 A Comparison of a Generalised and an Interval
Type-2 Fuzzy Logic Controller

There are currently no reported systems (except Coupland et al. [4] which reports
some aspects of this experiment) where generalised type-2 fuzzy logic has been
applied to a control application. Recent theoretical advances by Coupland et al.
[5, 6, 7, 8, 9] and Greenfield et al. [17] make such applications possible. This Section
describes the first such application which has been made possible with the intro-
duction of geometric type-2 fuzzy logic. We present a comparison of three fuzzy
logic controllers which are given the task of navigating around the curved obstacle
depicted in Fig. 6. The task of the FLC is essentially to minimise the deviation from
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Fig. 6 Mobile robot and
obstacle

0.5m

Start

RobotObstacle

Finish

Ideal Path

the ideal path between the start and finish lines. Each of the three controllers is based
on a different fuzzy technology:

• Controller 1 uses type-1 fuzzy logic;
• Controller 2 uses type-2 interval fuzzy logic, and
• Controller 3 uses hybrid type-2 fuzzy logic.

The type-1 controller was designed first and provides a basis for controllers 2 and 3.
The hybrid type-2 controller makes use of geometric type-2 fuzzy logic in order to
achieve the execution speeds requires by the robot control system.

The task of mobile robot navigation represents a significant challenge for a type-2
FLC. The control system has to operate in real time on limited hardware resources.
The environment which the robot has to operate in is challenging. The sensors on
the robot are operating in the real world and are prone to noise and error. Typically a
type-2 system will be applied in applications with high levels of uncertainty, as has
we have just described.

5.1 Results

The path each robot FLC took around the obstacle was tracked fifty times. These
tracked paths are depicted in Figs. 7, 8 and 9. The error for each point in this
tracked path relative to an ideal path was calculated. The RMSE for each tracked
run around the obstacle was then calculated. The mean, median, standard deviation
and coefficient of variance over the fifty runs was then calculated for each robot
FLC. These results are given in Table 1.

An initial visual comparison would suggest that the controller 3 performed most
consistently. Controller 2 had a wide but consistent spread. Controller 1 had spread

Fig. 7 Paths taken by
controller 1
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Fig. 8 Paths taken by
controller 2

Fig. 9 Paths taken by
controller 3

of paths somewhere between the two with a few paths quite far outside the main
spread. It is difficult to judge the error of the controllers visually, although the Con-
troller 3 path appear more tightly packed than the other two.

The results from the experiment did not display either normality or equality
of variance. Therefore the non-parametric Kruskal-Wallis test was used to assess
whether or not there are any differences between the controllers’ performance. The
test gave a H statistic value of 97.01 and a p value of < 0.0005, suggesting strong
evidence of differences between the controllers. The Kruskal-Wallis test works by
ranking the data by median value. Table 2 gives the median values and the average
ranking of the three controllers. No statistically significant conclusions can be drawn
from these rankings. However the median positions and mean rankings do point to
controller 3 having the best performance, followed by controller 2 and by controller
1. This performance ranking is identical to the ordering of the ¯RM SE of the FLC.
Looking at consistency of performance both the test for equal variances and the
values of σ RM SE suggest that controller 1 and controller 3 FLC were equally con-
sistent. Controller 2 had a less consistent performance. To summarise these points:

• The type-2 FLC performed consistently well.
• The interval type-2 FLC performed quite well, but was a little inconsistent.
• The type-1 FLC performed relatively badly, but was consistent in this level of

error.

Table 1 The mean, median, standard deviation and coefficient of variance of error for the six Robot
FLC over fifty runs. All numbers quoted to 4 decimal places

Controller Mean Error Median Error St Dev of Error Co Var of Error

1 13.5852 13.4185 1.0995 0.0809
2 12.5394 11.9779 2.0543 0.1638
3 9.8171 9.7783 1.0185 0.1038
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Table 2 The Median and Average Rank of the Three Controllers from the Kruskal-Wallis Test
Procedure

Controller 1 2 3

Median 13.392 11.961 9.802
Average Rank 113.3 84.2 29.0

These findings are supported by a visual inspection of taken and by a statistical
analysis of those paths.

6 Conclusion

This Chapter has reviewed the ideas at the core of type-2 fuzzy logic. In Sect. 2
we examined the philosophical arguments that show everyday reasoning uses on
vague and uncertain concepts and argued that type-2 fuzzy sets are better placed than
type-1 fuzzy sets to model such concepts. Definitions of generalised and interval
type-2 fuzzy sets and basic logical operations were given in Sect. 3. This give the
reader the technical detail required to begin working with type-2 fuzzy systems.
Section 4 presented the historical development of type-2 fuzzy logic, addressing
the main developments in the field and noting the emergence of different aspect
of the technology. This historical review shows that type-2 interval publications
only began to become predominant after the iterative procedure was introduced.
The iterative procedure made the time-critical type-2 interval applications possible.
The authors’ opinion is that interval techniques have not been promoted solely on
the basis of merit but, in part, due to their ease of application. Section 5 presented a
comparison of type-1, type-2 interval and generalised type-2 fuzzy logic controllers
for a mobile robot. This investigation showed that type-2 fuzzy logic controllers can
give a improved performance over both type-1 and type-2 interval fuzzy controllers.
We feel that the field of generalised type-2 fuzzy logic will be of great interest in
the coming years.
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My Personal View on Intuitionistic
Fuzzy Sets Theory

Krassimir T. Atanassov

Abstract In this chapter, some remarks are given on the history, theory, applications
and research on the extension of fuzzy sets model proposed by the author in 1983.

1 Introduction

This chapter1 discusses the origin, motivation and current state of research of one
of the extensions of Lotfi Zadeh’s fuzzy sets [41].

The author would like to ask the reader to let him use, whenever personal atti-
tude or opinion is involved, the first person singular, reserving the usual ‘we’ for
statements whose truth is not subjective.

The origin of my idea of intuitionistic fuzziness was a happenstance: as a math-
ematical game. I read the Russian translation of A. Kaufmann’s book [50]2 and
decided to add to the definition a second degree (degree of non-membership) and
studied the properties of a set with both degrees. Of course, I observed that the new
set is an extension of the ordinary fuzzy set, but I did not notice immediately that it
has essentially different properties. So the first research works on IFS followed step
by step the existing results in fuzzy sets theory. Of course, it is not very difficult to
extend formally some concepts. It is interesting to show that the respective extension
has specific properties, absent in the basic concept.

Only when I convinced myself that the so-constructed sets really have worthy
properties, I discussed them with my former lecturer from the time when I was a
student at the Mathematical Faculty of Sofia University - George Gargov (7 April
1947–9 Nov. 1996) - one of the most colourful Bulgarian mathematicians. He pro-
posed the name “Intuitionistic Fuzzy Set” (IFS) (see, e.g. [32]).

Let us have a fixed universe E and its subset A. The set

A∗ = {〈x, μA(x), νA(x)〉 | x ∈ E},

1 The present chapter uses elements of author’s research [9, 10, 11].
2 In early 80’s, only Russian translations of the books [14, 41, 50] were available in Bulgaria and
for this reason it was these books that influenced the development of the first steps of IFS theory.

H. Bustince et al., (eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation
and Models. C© Springer 2008 23
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where

0 ≤ μA(x)+ νA(x) ≤ 1 (1)

is called IFS and functions μA : E → [0, 1] and νA : E → [0, 1] represent degree
of membership (validity, etc.) and non-membership (non-validity, etc.). Now, we can
define also function πA : E → [0, 1] through

π(x) = 1− μ(x)− ν(x)

and it corresponds to degree of indeterminacy (uncertainty, etc.).
For brevity, we shall write below A instead of A∗, whenever this is possible.
Obviously, for every ordinary fuzzy set A: πA(x) = 0 for each x ∈ E and these

sets have the form {〈x, μA(x), 1− μA(x)〉|x ∈ E}.
It is clear that IFS can be different from ordinary fuzzy sets.
Throughout the past twenty-five years other extensions of fuzzy set theory have

been given. The most representative ones are the following: Type 2 fuzzy sets,
interval-valued fuzzy sets, vague sets, neutrosophic sets and fuzzy rough sets.

The concept of a type 2 fuzzy set was introduced in 1975 by Zadeh (see [41]) as
a generalization of an ordinary fuzzy set. Type 2 fuzzy sets are characterized by a
fuzzy membership function, that is, the membership value for each element of the
set, is itself a fuzzy set in [0, 1]. A particular case of type 2 fuzzy sets are interval
type 2 fuzzy sets, (see [39, 40]).

Interval-valued fuzzy sets, that is, sets such that the membership degree of each
element to the set is given by a closed subinterval of the interval [0, 1]. In [39, 40]
it turns out that an interval type 2 fuzzy set is the same as an IVFS in some special
conditions.

In [23] H. Bustince and P. Burillo proved the coincidence of vague sets with IFSs,
while in [30] K. Georgiev showed that on the one hand the neutrosophic sets have
been incorrectly defined and on the other, if they obtain a correct definition, they
will again coincide with the IFSs and they will not be IFS-extension, as their author
F. Smarandache asserts, e.g., in [46].

In [46] and [1], together with G. Gargov, we discussed the equipolence (in the
sense of [34]) of this concept with IFS. From our construction it is seen that each IFS
can be represented by an IVFS and each IVFS can be represented by an IFS. I write
these years to emphasize that then I believed IFS were defined prior to IVFS. Now,
I know (merely as a fact, without having seen the original texts) that IVFS are es-
sentially older. In 2003 this equivalence was mathematically proven by Deschrijver
and Kerre (see [26]). Therefore, from a mathematical point of view, the results that
we obtain for IVFSs are easily adaptable to IFSs and vice versa. Nevertheless we
need to point out that conceptually and semantically both types of sets are totally
different. This is made clear when applications of these sets are constructed (see
[31, 47, 48]).

Finally, I must mention that Cornelis et al. (see [27]), Samanta et al. (see [45]),
Rizvi et al. (see [43]) studied a possible combination of fuzzy rough sets and IFSs.
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2 IFS and Some other Fuzzy Set and IFS-extensions

As we noted above, IFSs are an extension of the standard fuzzy sets. All results
which hold for fuzzy sets have their interpretation here. Also, any research based on
fuzzy sets, can be described in terms of IFS.

First, we will discuss the relations between ordinary fuzzy sets and IFSs from
two aspects: geometrical and probabilistic. Initially, I would like to note that some
authors discuss the fact that in the case of ordinary fuzzy sets

μ ∨ ¬μ ≤ 1

as a manifest of the idea of intuitionism. Really, this inequality, in its algebraic
interpretation of “∨” by max , does not satisfy the Law for Excluded Middle (LEM).
But this is not the situation in a geometrical interpretation. Having in mind that in
fuzzy set theory ¬μ = 1− μ, we obtain that the geometrical interpretation is:

0 1

μ ¬μ

The situation in the IFS case is essentially different:

0 1

μA(x)

πA(x)

νA(x)

Now, the geometrical sums of both degrees can really be smaller than 1, i.e.,
LEM is not valid here. From probabilistic point of view, for case of the ordinary
fuzzy sets, if μ&¬μ = 0, then the probability

p(μ ∨ ¬μ) = p(μ)+ p(¬μ) = 1,

like in the geometrical case, while in IFS case we will have the inequality

p(μ ∨ ¬μ) ≤ 1.

It is important to note, that all of these constructions are only on the level of the
definition of the set (fuzzy set or IFS).

IFS have different geometrical interpretations. The first of them (see Fig. 1) is a
trivial modification of the fuzzy set one.

Its analogue is given in Fig. 2.
Another interpretation is shown on Fig. 3. The author’s opinion is that it played

very important role in IFS theory development.
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Fig. 1 First geometric
interpretation

E
0

1

μA

νA

Similarly to the fuzzy set theory, a large number of relations and operations over
IFSs are defined (see, e.g., [36]), but more interesting are the modal operators that
can be defined over the IFSs. They do not have analogues in fuzzy set theory.

For example, for every two IFSs A and B we can define:

A ⊂ B i f f (∀x ∈ E)(μA(x) ≤ μB(x)&νA(x) ≥ νB(x));
A = B i f f (∀x ∈ E)(μA(x) = μB(x)&νA(x) = νB(x));

A = {〈x, νA(x), μA(x)〉|x ∈ E};
A ∩ B = {〈x,min(μA(x), μB(x)),max(νA(x), νB(x))〉|x ∈ E};
A ∪ B = {〈x,max(μA(x), μB(x)),min(νA(x), νB(x))〉|x ∈ E};

A + B = {〈x, μA(x)+ μB(x)− μA(x).μB(x), νA(x).νB(x)〉 | x ∈ E};
A.B = {〈x, μA(x).μB(x), νA(x)+ νB(x)− νA(x).νB(x)〉 | x ∈ E};
A@B = {〈x, (μA(x)+ μB(x))

2 ,
(νA(x)+ νB(x))

2 〉|x ∈ E}.

Let A be a fixed IFS. The first form of operation “negation”, introduced in
1983, was

¬1 A = {〈x, νA(x), μA(x)〉 | x ∈ E}.

Fig. 2 Second geometric
interpretation E

0

1
1 − νA

μA
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Fig. 3 Third geometric
interpretation

(0,0)

(0,1)

(1,0)

E

x

•

•

μA(x)

νA(x)

One of my mistakes is that for a long time I made use of just the simplest form
of negation. In its case the equality

¬¬A = A (2)

holds, which may resemble classical logic. Now, a series of new negations were
constructed. The first four of them are defined in [14]:

¬2 A = {〈x, 1− sg(μA(x)), sg(μA(x))〉|x ∈ E},
¬3 A = {〈x, νA(x), μA(x)νA(x)+ μA(x)

2〉|x ∈ E},
¬4 A = {〈x, νA(x), 1− νA(x)〉|x ∈ E},

¬5 A = {〈x, sg(1− νA(x)), sg(1− νA(x))〉|x ∈ E},

where

sg(x) =
⎧

⎨

⎩

1 if x > 0

0 if x ≤ 0

sg(x) =
⎧

⎨

⎩

0 if x > 0

1 if x ≤ 0

The last four negations satisfy strongly intuitionistic properties.
In [12, 13] it is checked that ¬1 satisfies all three properties below, while the rest

negations satisfy only properties P1 and P3, where
Property P1: A → ¬¬A,
Property P2: ¬¬A → A,
Property P3: ¬¬¬A = ¬A.
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By analogy with [13] we can show that negations ¬2, ...,¬5 do not satisfy LEM
(P∨¬P , where P is a propositional form) and they satisfy some of its modifications
(e.g., ¬¬P ∨ ¬P). In [15] it is shown that the same negations do not satisfy De
Morgan’s Laws, but they satisfy some of their modifications.

Independently on or in relation with some negation, a lot of implications can
be defined over IFSs. Initially, in a series of papers they were introduced in the
frames of the intuitionistic fuzzy logic, but in [14] they obtained the following IFS-
analogues.

Let A and B be two fixed IFSs and let

Xi = {〈x, μA(x), νA(x)〉|x ∈ E} →i {〈x, μB(x), νB(x)〉|x ∈ E}.

We shall introduce the IFS-implications.

X1 = {〈x,max(νA(x),min(μA(x), μB(x))),min(μA(x), νB(x)))〉|x ∈ E},
X2 = {〈x, 1− sg(μA(x)− μB(x)), νB(x).sg(μA(x)− μB(x))〉|x ∈ E},
X3 = {〈x, 1−(1−μB(x)).sg(μA(x)−μB(x)), νB(x).sg(μA(x)−μB(x))〉|x ∈ E},
X4 = {〈x,max(νA(x), μB(x)),min(μA(x), νB(x))〉|x ∈ E},
X5 = {〈x,min(1, νA(x)+ μB(x)),max(0, μA(x)+ νB(x)− 1)〉|x ∈ E},
X6 = {〈x, νA(x)+ μA(x).μB(x), μA(x).νB(x)〉|x ∈ E},
X7 = {〈x,min(max(νA(x), μB(x)),max(μA(x), νA(x)),max(μB(x), νB(x))),

max(min(μA(x), νB(x)),min(μA(x), νA(x)),min(μB(x), νB(x)))〉|x ∈ E},
X8 = {〈x, 1− (1−min(νA(x), μB(x))).sg(μA(x)− μB(x)),max(μA(x), νB(x)).

sg(μA(x)− μB(x)).sg(νB(x)− νA(x))〉|x ∈ E},
X9 = {〈x, νA(x)+ μA(x)2μB(x), μA(x)νA(x)+ μA(x)2νB(x)〉|x ∈ E},
X10 = {〈x, μB(x).sg(1 − μA(x)) + sg(1 − μA(x)).(sg(1 − μB(x)) + νA(x).
sg(1− μB(x))), νB(x).sg(1− μA(x))+ μA(x).sg(1− μA(x)).sg(1− μB(x))〉
|x ∈ E},

X11 = {〈x, 1−(1−μB(x)).sg(μA(x)−μB(x)), νB(x).sg(μA(x)−μB(x)).sg(νB(x)
−νA(x))〉|x ∈ E},

X12 = {〈x,max(νA(x), μB(x)), 1−max(νA(x), μB(x))〉|x ∈ E},
X13 = {〈x, νA(x)+ μB(x)− νA(x).μB(x), μA(x).νB(x)〉|x ∈ E},
X14 = {〈x, 1− (1− μB(x)).sg(μA(x)− μB(x))− νB(x).sg(μA(x)− μB(x)).

sg(νB(x)− νA(x)), νB(x).sg(νB(x)− νA(x))〉|x ∈ E},
X15 = {〈x, 1− (1−min(νA(x), μB(x))).sg(sg(μA(x)− μB(x))+ sg(νB(x)

−νA(x)))−min(νA(x), μB(x)).sg(μA(x)− μB(x)).sg(d − νA(x)), 1−
(1−max(μA(x), νB(x))).sg(sg(μA(x)− μB(x))+ sg(νB(x)− νA(x)))

max(μA(x), νB(x)).sg(μA(x)− μB(x)).sg(νB(x)− νA(x))〉|x ∈ E},
X16 = {〈x,max(1− sg(μA(x)), μB(x)),min(sg(μA(x)), νB(x))〉|x ∈ E},
X17 = {〈x,max(νA(x), μB(x)),min(μA(x).νA(x)+ μA(x)2, νB(x))〉|x ∈ E},
X18 = {〈x,max(νA(x), μB(x)),min(1− νA(x), νB(x))〉|x ∈ E},
X19 = {〈x,max(1− sg(sg(μA(x))+ sg(1− νA(x))), μB(x)),min(sg(1− νA(x)),

νB(x))〉|x ∈ E},
X20 = {〈x,max(1− sg(μA(x)), 1− sg(1− sg(μB(x)))),min(sg(μA(x)), sg(1−

sg(μB(x))))〉|x ∈ E},
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X21 = {〈x,max(νA(x), μB(x)(μB(x)+ νB(x))),min(a(μA(x)+ νA(x)), νB(x)
(μB(x)2 + d + μB(x)νB(x)))〉|x ∈ E},

X22 = {〈x,max(νA(x), 1− νB(x)),min(1− νA(x), νB(x))〉|x ∈ E},
X23 = {〈x, 1−min(sg(1− νA(x)), sg(1− sg(1− νB(x)))),min(sg(1− νA(x)),

sg(1− sg(1− νB(x))))〉|x ∈ E},
X24 = {〈x, sg(μA(x)−μB(x)).sg(νB(x)−νA(x)), sg(μA(x)−μB(x)).sg(νB(x)−

νA(x))〉|x ∈ E},
X25 = {〈x,max(νA(x).sg(μA(x)).sg(1−νA(x)), μB(x).sg(νB(x)).sg(1−μB(x))),

min(μA(x).sg(1− νA(x)), νB(x).sg(1− μB(x)))〉|x ∈ E},

In [14] other 149 implications are introduced, but some of them coincide and one
of the actual problems is to determine the sugnificantly different implications. The
above ones are examples of them, but there at least 50 other that are different than
the rest.

For all 174 implications in [14] it is proved that in some sense they are extensions
of the classical first order logic implication, because, if

O = {〈x, 0, 1〉|x ∈ E},
E = {〈x, 1, 0〉|x ∈ E},

then for the i -th implication (1 ≤ i ≤ 25) equalities

O →i A = E,

A →i E = E,

E →i O = O

hold for every IFS A.
Now, I hope that the argument “the IFSs do not have intuitionistic behaviour”

will fail.
The simplest operators are

A = {〈x, μA(x), 1− μA(x)〉|x ∈ E};
♦A = {〈x, 1− νA(x), νA(x)〉|x ∈ E}.

They are analogous to the modal logic operators “necessity” and “possibility” (see
Fig. 4).

For a fuzzy set A (whose special case is, e.g., Takeuti and Titani’s sets), the modal

operators and ♦ would satisfy

A = A = ♦A,

while for a proper IFS A:

A ⊂ A ⊂ ♦A
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Fig. 4 Necessity and
Possibility

p

p

♦p

and

A �= A �= ♦A.

This example shows that IFSs are essential extensions of fuzzy sets.
In the framework of the IFSs theory we can extend these operators in a step by

step manner. The first group of extended modal operators are the following:

Dα(A) = {〈x, μA(x)+ α.πA(x), νA(x)+ (1− α).πA(x)〉|x ∈ E},
Fα,β(A) = {〈x, μA(x)+ α.πA(x), νA(x)+ β.πA(x)〉|x ∈ E}, where α + β ≤ 1,

Gα,β(A) = {〈x, α.μA(x), β.νA(x)〉|x ∈ E},
Hα,β(A) = {〈x, α.μA(x), νA(x)+ β.πA(x)〉|x ∈ E},

H ∗
α,β(A) = {〈x, α.μA(x), νA(x)+ β.(1− α.μA(x)− νA(x))〉|x ∈ E},

Jα,β(A) = {〈x, μA(x)+ α.πA(x), β.νA(x)〉|x ∈ E},
J ∗α,β(A) = {〈x, μA(x)+ α.(1− μA(x)− β.νA(x)), β.νA(x)〉|x ∈ E},

where α, β ∈ [0, 1] are fixed numbers. The geometrical interpretations of the seven
operators are given on Figs. 5–11.

These operators are extended to the operators

FB(A) = {〈x, μA(x)+ μB(x).πA(x), νA(x)+ νB(x).πA(x)〉 | x ∈ E},
G B(A) = {〈x, μB(x).μA(x), νB(x).νA(x)〉 | x ∈ E},

Fig. 5 Geometric
interpretation of Dα

fA(p)

f
A

(p)

fDα(A)(p)

f♦A(p)

α



My Personal View on Intuitionistic Fuzzy Sets Theory 31

Fig. 6 Geometric
interpretation of Fα,β

fA(p)

f
A

(p)

fDα(A)(p)

fFα,β(A)(p)

f♦A(p)

β

β

α

α + β ≤ 1

HB(A) = {〈x, μB(x).μA(x), νA(x)+ νB(x).πA(x)〉 | x ∈ E},
H ∗

B(A) = {〈x, μB(x).μA(x), νA(x)+ νB(x).(1− μB(x).

μA(x)− νA(x))〉 | x ∈ E},
JB(A) = {〈x, μA(x)+ μB(x).πA(x), νB(x).νA(x)〉 | x ∈ E},
J ∗B(A) = {〈x, μA(x)+ μB(x).(1− μA(x)− νB(x).νA(x)),

νB(x).νA(x)〉 | x ∈ E},

where B is a given IFS; and modified to operators

dα(A) = {〈x, νA(x)+ α.πA(x), μA(x)+ (1− α).πA(x)〉 | x ∈ E},
fα,β(A) = {〈x, νA(x)+ α.πA(x), μA(x)+ β.πA(x)〉 | x ∈ E}, where α + β ≤ 1,

gα,β(A) = {〈x, α.νA(x), β.μA(x)〉 | x ∈ E},
hα,β(A) = {〈x, α.νA(x), μA(x)+ β.πA(x)〉 | x ∈ E},

h∗α,β(A) = {〈x, α.νA(x), μA(x)+ β.(1− α.νA(x)− μA(x))〉 | x ∈ E},
jα,β(A) = {〈x, νA(x)+ α.πA(x), β.μA(x)〉 | x ∈ E},

j∗α,β(A) = {〈x, νA(x)+ α.(1 − νA(x)− β.μA(x)), β.μA(x)〉 | x ∈ E}

Fig. 7 Geometric
interpretation of Gα,β

fA(p)
β

α
fGα,β(A)(p)



32 K. T. Atanassov

Fig. 8 Geometric
interpretation of Hα,β

fA(p)

f
A
(p)

fHα,β(A)(p)

that can also be extended to the form of second group of operators:

fB(A) = {〈x, νA(x)+ μB(x).πA(x), μA(x)+ νB(x).πA(x)〉 | x ∈ E},
gB(A) = {〈x, μB(x).νA(x), νB(x).μA(x)〉 | x ∈ E},

h B(A) = {〈x, μB(x).νA(x), μA(x)+ νB(x).πA(x)〉 | x ∈ E},
h∗B(A) = {〈x, μB(x).νA(x), μA(x)+ νB(x).(1− μB(x).

νA(x)− νA(x))〉 | x ∈ E},
jB(A) = {〈x, νA(x)+ μB(x).πA(x), νB(x).μA(x)〉 | x ∈ E},
j∗B(A) = {〈x, νA(x)+ μB(x).(1− νA(x)− νB(x).μA(x)),

νB(x).μA(x)〉 | x ∈ E},

where B is a given IFS.
A series of new extensions of the modal operators were introduced in the last two

years.

In modal logic both operators and♦ are related to the following two equalities
that are valid for each IFS A, too:

¬A = ¬♦A,

♦¬A = ¬ A,

but no other connection between them has been observed. In the IFS-case, we can
see that operators Dα and Fα,β (α, β ∈ [0, 1] and α + β ≤ 1) are their direct
extensions, because:

A = D0(A) = F0,1(A),

♦A = D1(A) = F1,0(A).

Fig. 9 Geometric
interpretation of H ∗

α,β

fA(p)

f
A

(p)

fHα,β(A)(p)∗



My Personal View on Intuitionistic Fuzzy Sets Theory 33

Fig. 10 Geometric
interpretation of Jα,β

fA(p)
f♦A(p)

fJα,β(A)(p)

These equalities show a deeper interconnection between the two ordinary modal
logic operators.

Some examples using the modal operators are described in [20, 21].
Let s ≥ 2 be a fixed natural number. Following [36], the s-tuple (X1, . . . , Xs),

where X1, . . . , Xs ∈ S = {Dα, Fα,β,Gα,β , Hα,β, H ∗
α,β, Jα,β, J ∗α,β} will be called a

basic s-tuple of operators from S if every one of the operators of S can be repre-
sented by the operators of the s-tuple, using the above operations and the “compo-
sition” operation over operators.
Theorem 1 [36]: (D,G), (F,G), (H, J ), (H, J ∗), (H ∗, J ) and (H ∗, J ∗) are the
only basic 2-tuples of operators.
Corollary 1: The only basic 3-tuples of operators are:

(D, F,G), (D,G, H ), (D,G, H ∗), (D,G, J ), (D,G, J ∗),
(D, H, J ), (D, H, J ∗), (D, H ∗, J ), (D, H ∗, J ∗), (F,G, H ),

(F,G, H ∗), (F,G, J ), (F,G, J ∗), (F, H, J ), (F, H, J ∗),
(F, H ∗, J ), (F, H ∗, J ∗), (G, H, J ), (G, H, J ∗), (G, H ∗, J ),
(G, H ∗, J ∗), (H, H ∗, J ), (H, H ∗, J ∗), (H, J, J ∗), (H ∗, J, J ∗).

Corollary 2: (D, F, H, H ∗), (D, F, J, J ∗) are the only 4-tuples of operators that
are not basic 4-tuples of operators.
Corollary 3: All 5-tuples of operators are basic 5-tuples of operators.

Fig. 11 Geometric
interpretation of J ∗α,β

fA(p) f♦A(p)

fJα,β(A)(p)∗
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Two analogues of the topological operators can be defined over the IFSs, too:
operator “closure” C and operator “intersection” I :

C(A) = {〈x, sup
y∈E

μA(y), inf
y∈E

νA(y)〉|x ∈ E},

I (A) = {〈x, inf
y∈E

μA(y), sup
y∈E

νA(y)〉|x ∈ E}.

It is very interesting to note that the IFS-interpretations of both operators coin-
cide, respectively, with the IFS-interpretations of the logic quantifiers ∃ and ∀ (see,
e.g. [36]).

Let the IFS A over the universe E be called proper, if there exists at least one
x ∈ E for which πA(x) > 0.
Theorem 2 [36]: Let A, B be two proper IFSs for which there exist y, z ∈ E such
that μA(y) > 0 and νB(z) > 0. If C(A) ⊂ I (B), then there are real numbers
α, β, γ, δ ∈ [0, 1], such that Jα,β(A) ⊂ Hγ,δ(B).

Let

Pα,β(A) = {〈x,max(α,μA(x)),min(β, νA(x))〉|x ∈ E},
Qα,β(A) = {〈x,min(α,μA(x)),max(β, νA(x))〉|x ∈ E},

for α, β ∈ [0, 1] and α + β ≤ 1.
The degrees of membership and non-membership of the elements of a given uni-

verse to its subset can be directly changed by these operators.
Obviously, for every IFS A and for α, β ∈ [0, 1] and α + β ≤ 1:

Pα,β(A) = A ∪ {〈x, α, β〉|x ∈ E},
Qα,β(A) = A ∩ {〈x, α, β〉|x ∈ E},
Qα,β(A) ⊂ A ⊂ Pα,β(A).

Theorem 3 [36]: For every two IFSs A and B , C(A) ⊂ I (B), iff there exist two
real numbers α, β ∈ [0, 1] such that α + β ≤ 1 and Pα,β(A) ⊂ Qα,β(B).

Here, for a first time we shall introduce extensions of the last two theorems for
the extended modal operators from type OB(A), where A and B are IFSs and O ∈
{F,G, H, H ∗, J, J ∗, f, g, h, h∗, j, j∗}.
Theorem 4: Let A, B be two proper IFSs for which there exist y, z ∈ E such that
μA(y) > 0 and νB(z) > 0. If C(A) ⊂ I (B), then there are IFSs X and Y , such that
JX (A) ⊂ HY (B).
Theorem 5: For every two IFSs A and B , C(A) ⊂ I (B), iff there exists an IFS X
such that PX (A) ⊂ QX (B).

The two topological operators are generalized to the following four new ones
(see [7]):

Cμ(A) = {〈x, K , in f (1− K , νA(x))〉|x ∈ E};
Cν(A) = {〈x, μA(x), L〉|x ∈ E};
Iμ(A) = {〈x, k, νA(x)〉|x ∈ E};
Iν(A) = {〈x, in f (1− l, μA(x)), l〉|x ∈ E},

where K , L, k, l are defined above.
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The weight operator W is also defined over IFSs (see [16]) by

W (A) = {〈x,



y∈E
μA(y)

card(E)
,



y∈E

νA(y)

card(E)
〉|x ∈ E},

where card(E) is the number of the elements of the (finite) set E .
These operators have no analogues in fuzzy set theory and in the theories of the

other fuzzy set extensions.
It will be interesting to mention that IFSs can be represented in the form 〈A, B〉,

where A and B are ordinary fuzzy sets (see, e.g. [34, 23]). For this reason it may be
wrongfully considered that IFSs are trivial extensions of ordinary fuzzy sets. Against
such a claim we use the following argument. The statement above is analogous to
the assertion that the set of the complex numbers is a trivial extension of the set of
the real numbers.

All operators discussed above can be transformed for the IVFS case, too. On the
other hand, using IFS-form, we can work easier with interval data, than with IVFS-
form. Also, we can easily interpret interval data as points of the IFS-interpretation
triangle. For example, let us have the set of intervals [a1, b1], [a2, b2], ..., [an, bn].
Let A ≤ min ai < max bi ≤ B . Of course, A < B , because otherwise for all i :
ai = bi . Now, for interval [ai , bi ] we can construct numbers

μi = ai − A

B − A
,

νi = B − bi

B − A

that satisfy the condition 0 ≤ μi + νi ≤ 1 and have the geometrical interpretation
from Fig. 3. This idea is introduced for a first time in [2] and it is used in a series of
joint research of V. Kreinovich, M. Mukaidono, H. Nguyen, B. Wu, M. Koshelev,
B. Rachamreddy, H. Yasemis and the author (see, [36, 37, 35]3).

Obviously, it is more convenient to work with points than with intervals. If the
above points have the geometrical interpretation from Fig. 12, then by topological
operators C and I we can determine points U and V and the region in which all
above constructed points lie (see Fig. 13). If it is necessary, by operator W we can
find the point of the triangle that is the mass centre of this region.

Some colleagues have objections against the above assertion of mine, but in a
future paper I plan to comment in more details the differences and usefulness of the
IVFS and IFS.

Algorithms for separation of the different areas in the triangle are discussed
in [18].

More interesting is the case (see [10]) when interval data are elements of two (or
more) sets. Then we can obtain, e.g., IFS-geometrical interpretation from Fig. 14.

3 One of the referees shown me also the paper [29].
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Fig. 12 Puntual
representation of intervals

0,0 1,0

0,1

o
o

ooo
o

o
o

o

o

o
o

o

and using topological operators, defined over IFS, we can separate these sets to the
form from Fig. 15, using the algorithm from [18].

The concept of IVFS was extended in the sense of the IFS to “interval-valued
IFS”. An IVIFS A∗ (for brevity A) over E is an object of the form:

A = {〈x, MA(x), NA(x)〉 | x ∈ E},

where MA(x) ⊂ [0, 1] and NA(x) ⊂ [0, 1] are intervals and for all x ∈ E :

supMA(x)+ supNA(x) ≤ 1.

For the new sets it was shown that they have some essentially new properties
different than the ordinary IFS.

Similar is the situation with the L-fuzzy sets. Really, each IFS can be interpreted
as an L-fuzzy set, because the IFS-interpretation triangle can be interpreted as
a complete lattice. On the other hand, many kinds of L-fuzzy sets have IFS-
interpretation, while still many more cannot represent a given IFS. Following the
idea of the L-fuzzy sets, in 1984 Stefka Stoeva and the author introduced the con-
cept of “Intuitionistic L-Fuzzy Set. Later, in [24] Dogan C̆oker proved that Pawlak’s
fuzzy rough sets are intuitionistic L-fuzzy sets, while Guo-jun Wang and Ying-Yu

Fig. 13 Points U and V and
constructed region
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Fig. 14 IFS-geometrical
representation
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He in [4], as well as Ofer Arieli, Chris Cornelis, Etienne Kerre and Glad Deschrijver
in [1, 25, 26] discussed the nature of relations between L-fuzzy sets and IFSs.

In [36] there are IFSs over different universes and IFSs of type 2, for which (1)
is changed to

μA(x)
2 + νA(x)

2 ≤ 1.

It is clear that the latter inequality is a modification of the ordinary fuzzy set condi-
tion μA(x) ∈ [0, 1], as well as (1). Of course, we can continue in the direction of
increasing the powers. Therefore, for a natural number n ≥ 2 we can define IFSs of
type n, for which (1) is changed to

μA(x)
n + νA(x)

n ≤ 1.

This kind of extension of IFS is currently investigated by Peter Vassilev and the
author. Other results in this direction were obtained by Arieli O., C. Cornelis,
G. Deschrijver, E. Kerre, (see [1]), A. Pankowska and M. Wygdalak (see [42]) and
others.

We can easily see that for every natural number n ≥ 2, if a given set is an IFS of
type n, then it is an IFS of type n + 1, but the opposite is not always valid.

Fig. 15 Set representation of
Fig. 14

(0,1)

(0,0) (1,0)

A

B
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The IFSs of type n have more theoretical sense, but it is not rather applicable
for n ≥ 2. To put it in other words, the ordinary IFS are more useful than the IFSs
of type n, for n ≥ 2. However, the situation with L-fuzzy sets is the same, when
the lattice has a more complex form. Of course, each IFS can be interpreted as an
L-fuzzy set, whose lattice L has the form of the above triangle F . We can write

L∗ = {〈a, b〉 | a, b, a + b ∈ [0, 1]}.

The opposite interpretation is more interesting. If we have a fixed L-fuzzy set and if
L is a discrete complete lattice, such that L has exactly one minimal and exactly one
maximal element, we can put it in a triangle L∗, so that its minimal vertex coincides
with L∗-vertex 〈0, 1〉, and its maximal vertex coincides with L∗-vertex 〈1, 0〉. Now,
having in mind its discrete nature, we can find such a region of the lattice, and
respectively, of its L∗-interpretation, in which there are no lattice points, but there
are IFS-triangle points. Therefore, the IFS will be richer than the fixed L-fuzzy set.
If L is a compact set that can be topologically included in L∗, then both (IFS- and
L-fuzzy set) interpretations will have equivalent properties. The most complex case
is when lattice L has transfinite elements. In this case it is not clear whether we can
put them in L∗, but I doubt the chance for success is big. Therefore, in this case, it is
possible that the L-fuzzy set (with this special property of its lattice) will have more
properties that the IFSs.

Some other extensions of the IFSs are introduced by S. Rizvi, H.J. Naqvi and
D. Nadeem (see [43]), called “rough IFSs”, by P.K. Maji, R. Biswas and A.R. Roy
(see [38]), named “intuitionistic fuzzy soft sets” and by S. Samanta and T.K. Mondal
(see [45]), called “intuitionistic fuzzy rough sets” and “rough IFSs” and others.

The author thinks that one of the most useful extensions of the IFS are so
called “temporal IFS” (see Fig. 16) introduced in 1990 (see [5, 36]). All operations,
relations and operators over IFS can be transferred to them, too. They have the form

A(T ) = {〈x, μA(x, t), νA(x, t)〉|〈x, t〉 ∈ E × T },

where E is a universe, T is a non-empty set and
(a) A ⊂ E is a fixed set,
(b) μA(x, t)+ νA(x, t) ≤ 1 for every 〈x, t〉 ∈ E × T ,
(c) μA(x, t) and νA(x, t) are the degrees of membership and non-membership, re-
spectively, of the element x ∈ E at the time-moment t ∈ T .

The voting example could be much improved if we can test the social attitude to
the respective parties and to the government at some time. Using temporal IFSs we
can trace it in a longer period of time.

Similarly to fuzzy sets’, IFS theory has different aspects, too.
The algebraic research within IFS theory is aimed at defining intuitionistic fuzzy

subgroups, constructing the category I Fuz of IFS and other related categories. In-
tuitionistic fuzzy filters and ideals of lattices have also been introduced.

There are different aproaches to define IF numbers. P. Burillo, H. Bustince,
V. Mohedano and M. Nikolova have worked in this area. T. Buhaescu has inves-
tigated interval valued real numbers.
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Fig. 16 Representation of temporal IFS

Concepts of convexity and concavoconvexity for IFSs and temporal IFSs are
introduced. The concept of intuitionistic (fuzzy) measure is defined. So far, A. Ban
has introduced the limit of a sequence of IFSs. With the help of an abstract integral
he has described a family of intuitionistic fuzzy entropies, introduced earlier by
P. Burillo and H. Bustince. It is proved that certain intuitionistic fuzzy entropies
are intuitionistic fuzzy measures. On this theme there are papers of T. Gerstenkorn,
J. Manko, P. Burillo, H. Bustince, and others.

The notion of intuitionistic fuzzy metric space is presented by O. Ozbakir and
D. C̆oker. The solution concept for a semi linear equation with the fuzzy parameters
studied by K. Peeva and S. Melliani.

A lot of research is devoted to Intuitionistic Fuzzy Logic (IFL). There are a lot of
papers by G. Gargov, A. Ban, H. Bustince, E. Kerre, C. Cornelis, N. Nikolov, and
the author in which intuitionistic fuzzy propositional and predicate calculus, intu-
itionistic fuzzy modal and temporal logic have been discussed. Norms and metrics
over intuitionistic fuzzy logics and relations between the quantifiers and the modal
type of operators in intuitionistic fuzzy logics have been studied. Rules of inference
and the notion of intuitionistic fuzzy deductive closure are investigated.
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Intuitionistic fuzzy model of the axioms of the paraconsistent set theory NF1,
intuitionistic logic and others are presented. Intuitionistic fuzzy interpretation of the
conditional logic VW and Kun’s axiom are made. It is proved that the Hauber’s law
is an intuitionistic fuzzy tautology.

In the last ten years IFS were applied in different areas. The IF-approach to arti-
ficial intelligence includes treatment of decision making and machine learning, neu-
ral networks and pattern recognition, expert systems, database, machine reasoning,
logic programming and IF Prolog, Petri nets and generalized nets4.

In the last ten years IFS were used in the process of decision making. Eulalia
Szmidt and Janusz Kacprzyk, Humberto Bustince and Pedro Burillo, Adrian Ban
and Cecilia Temponi, Gabriella Pasi, Ronald Yager and the author obtained interest-
ing results in this direction. E. Szmidt and J. Kacprzyk extend the classical Bellman
and Zadeh’s general approach to decision making under fuzziness, originally termed
decision making in a fuzzy environment, to the case of IFS.

Intuitionistic fuzzy versions of one of the basic statistical nonparametrical meth-
ods and the k-NN method, are proposed by Ludmila Kouncheva, Stefan
Hadjitodorov, and others.

Currently, IFSs have applications in various areas. There are applications of IFSs
in medical diagnosis and in decision making in medicine, developed by Anthony
Shannon, Soon Ki-Kim, Eulalia Szmidt, Janusz Kacprzyk, Humberto Bustince,
Joseph Sorsich and others.

Plamen Angelov has solved some optimization problems by means of intuition-
istic fuzzy sets and has also worked on optimization in an intuitionistic fuzzy
environment.

There are many applications of IFS in chemistry. Some more interesting of them
are following: a method for simulation of complex technological system by use of
IF generalized nets, an IF generalized net approach for optimal scheduling of iron
ore delivering, discharge and blending yards creation and others.

IFS approach in credit risk assessment is proposed in a series of works by Dinko
Dimitrov.

Olympia Georgieva and Tania Pencheva have described the key process variable
and corrective actions of the waste water treatment plant with biosorption using the
theory of IFSs. There are also IF generalized nets models of the gravitational field,
in astronomy, sociology, biology, musicology, controllers, and others.

Intuitionistic fuzzy systems and IF abstract systems are defined and studied by
Valentina Radeva, Hristo Aladjov and the author.

A first step to describe a theory of the IF-graphs and temporal IF-graphs was
made by Anthony Shannon and the author. Application of IF-graphs and IF-relation
methods have also been developed.

Of course, the list of the authors and their research is essentially longer and it
will be an object of a new research, continuation of [41].

4 Perhaps, the first paper that discusses the idea of fusing of fuzziness and Petri nets, is [3], pub-
lished in 1985 in France.
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3 Conclusion, or About the IFS-future

Like all young theories, the theory of IFSs contains a lot of open problems. While
well-established theories contain famous problems with solutions that seem a matter
of distant future, a number of “technical” problems persist in new theories, perhaps
not so hard but requiring plenty of time and research effort. IFS theory is now at its
beginning, and most of its problems are of the second type - nevertheless, there are
some mathematical challenges of great interest to every researcher.

At the moment some students of mine are defining and studying the properties of
operations over IFSs that are analogous to the new implications and negations.

In near future a new extension of the IFSs will be described: granulated IFSs,
that are extension of L. Zadeh’s idea for granulation. The research on the IFSs from
n-th type (n ≥ 2) will be published soon.

In [36, 8, 10] the author provided a list of open problems.
Finally, I will repeat with additional assurance the last words of my paper [10]:
The author is an optimist for the future of the IFSs.
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XIII Congreso Español sobre Tecnologı́as y Lógica Fuzzy, ESTYLF’06 (In Spanish), Ciudad
Real (Spain), September 2006.

32. Heyting, A. Intuitionism. An Introduction. North-Holland, Amsterdam, 1956.
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Hybridization of Fuzzy and Rough Sets:
Present and Future

Eric C. C. Tsang, QingCai Chen, Suyun Zhao,
Daniel S. Yeung and Xizhao Wang

Abstract Though fuzzy set theory has been a very popular technique to represent
vagueness between sets and their elements, the approximation of a subset in a uni-
verse that contains finite objects was still not resolved until the Pawlak’s rough
set theory was introduced. The concept of rough sets was introduced by Pawlak
in 1982 as a formal tool for modeling and processing incomplete information in
information systems. Rough sets describe the approximation of an arbitrary subset
of a universe by two definable or observable subsets called lower and upper approx-
imations. Even though Pawlak’s rough set theory has been widely applied to solve
many real world problems, the problem of being not able to deal with real attribute
values had been spotted and found. This problem is originated in the crispness of
upper and lower approximation sets in traditional rough set theory (TRS). Under
the TRS philosophy, two nearly identical real attribute values are unreasonably
treated as two different values. TRS theory deals with this problem by discretizing
the original dataset, which may result in unacceptable information loss for a large
amount of applications. To solve the above problem, a natural way of combining
fuzzy sets and rough sets has been proposed. Since 1990’s, researchers had put a lot
of efforts on this area and two fuzzy rough set techniques that hybridize fuzzy and
rough sets had been proposed to extend the capabilities of both fuzzy sets and rough
sets. This chapter does not intend to cover all fuzzy rough set theories. Rather, it
firstly gives a brief introduction of the state of the art in this research area and then
goes into details to discuss two kinds of well developed hybridization approaches,
i.e., constructive and axiomatic approaches. The generalization for equivalence re-
lationships, the definitions of lower and upper approximation sets and the attribute
reduction techniques based on these two hybridization frameworks are introduced
in different sections. After that, to help readers apply the fuzzy rough set techniques,
this chapter also introduces some applications that have successfully applied fuzzy
rough set techniques. The final section of this chapter gives some remarks on the
merits and problems of each fuzzy rough hybridization technique and the possible
research directions in the future.

H. Bustince et al., (eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation
and Models. C© Springer 2008 45
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1 Introduction

Modelling imprecise and uncertain information is one of the main research topics
in the area of knowledge representation. Many approaches, such as fuzzy set theory
and rough set theory etc., have been proposed to address the problems of uncertainty.
Theories of fuzzy sets and rough sets are generalizations of classical set theory for
modeling uncertainty. Fuzzy set theory deals with the ill-definition of the boundary
of a class through a continuous generalization of set characteristic functions. Rough
set theory takes into consideration the indiscernibility between objects. They are
related but distinct and complementary with each other. Thus a natural question
concerning possible connection between rough sets and fuzzy sets is raised. From a
theoretical viewpoint, a new mathematical tool to deal with fuzziness and roughness
is expected.

It is well known that Pawlak’s rough set theory (traditional rough set theory)
has been widely applied to solve many real world problems. However, the prob-
lem of being not able to deal with real attribute values had been spotted and
found. This problem is originated in the crispness of upper and lower approx-
imation sets in traditional rough set theory (TRS). Under the TRS philosophy,
two nearly identical real attribute values are unreasonably treated as two differ-
ent values. For example, for 3 attribute values a(x) = 0.1, a(y) = 0.8 and
a(z) = 0.101, according to the definition of indiscernibility relation, the ob-
jects x, y and z are partitioned into different equivalence classes no matter how
close a(x) and a(z) is. It is obviously unreasonable. Fuzzy set theory models
the ambiguous membership between elements and classes. It treats the continu-
ous values as the member of fuzzy sets (linguistic terms) with a certain member-
ship. To a certain extent, the fuzzy sets and the corresponding membership de-
scribe the indiscernibility capability among values. Thus a natural way of com-
bining fuzzy sets and rough sets to deal with real problems with nominal values
is proposed. In other words, from a practical viewpoint a new methodology of
combining fuzzy sets and rough sets for knowledge discovery and data mining is
expected.

Since 1990’s, researchers had put a lot of efforts on this area and fuzzy rough
set techniques that hybridize fuzzy and rough sets had been proposed to extend
the capabilities of both fuzzy sets and rough sets. This chapter does not intend
to cover all fuzzy rough set theories. Rather, it firstly gives a brief introduction
of the state of the art in this research area and then goes into details to discuss
two kinds of well developed hybridization approaches, i.e., constructive and ax-
iomatic approaches. The generalization for equivalence relations, the definitions
of lower and upper approximations and the attribute reduction techniques based
on these two hybridization frameworks are introduced in different sections. In
order to help readers apply the fuzzy rough set techniques, this chapter also in-
troduces some successful applications of fuzzy rough set techniques. The final
section concludes this chapter and gives some possible research directions in the
future.
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2 Rough Sets

The traditional rough sets theory (TRS) was introduced by Pawlak in 1982 [19].
It has been proved to be a useful mathematical tool in describing and modeling
incomplete and insufficient information. It has been widely used in the areas of
Artificial Intelligence, Data Mining, Pattern Recognition, Fault Diagnostics, etc.

Firstly, we review some basic definitions[20] of TRS as follows.

Definition 1. Let U, called the universe, be a nonempty set of objects, A be a fam-
ily of attributes. The pair of (U, R) is called an approximation space (also called
information system).

Definition 2. For the universe U and any subset B of A, if I N D(B) = {(x, y) ∈
U ×U |∀b ∈ B, b(x) = b(y)}. then I N D(B) is called the indiscernibility relation.
Where b(x) is the value of attribute b for object x .

Actually, I N D(B) is a binary relation R ⊆ U ×U and it satisfies:

• Reflexivity, ∀x ∈ U , R(x, x)
• Symmetry, for x, y ∈ U , if R(x, y)then R(y, x)
• Transitivity, for x, y, z ∈ U , if R(x, y) and R(y, z), then R(x, z)

That is to say, the indiscernibility relation is an equivalence relation defined on U .
This equivalence relation partitions the universe U into disjoint subsets, each of
which is called an equivalence class and is represented as [x]R = {y ∈ U |R(x, y)}.
Definition 3. A concept X ⊆ Uis called definable if and only if it is a union of
equivalence classes of R [19].

Definition 4. Any concept X ⊆ Ucan be described by two definable sets apr
R

X
and apr R X of U. The apr

R
X and apr R X called the lower and upper approxima-

tions of X are defined as

apr
R

X = {x |xεU, [x]R ⊆ X}
apr R X = {x |x ∈ U, [x]R ∩ X �= φ}

It is obvious that if X ⊆ U is definable on R, then apr
R

X = apr R X . Otherwise,
the concept X is called “rough” and the nonempty set apr R X−apr

R
X is called the

boundary of X . There are several important properties of lower and upper approxi-
mations of X that are treated as axiomatic properties of rough sets [16]:

• P1. apr
R

U = U , apr Rφ = φ

• P2. apr
R
(X ∩ Y ) = apr

R
X ∩ apr

R
Y , apr R(X ∪ Y ) = apr R X ∪ apr RY

• P3. apr
R

XC = (apr R X)C , apr R XC = (apr
R

X)C

• P4. apr
R

X ⊆ X ⊆ apr R X
• P5. X = apr

R
(apr R X) , apr R(apr

R
X) = X

• P6. apr
R

X = apr
R
(apr

R
X) , apr R(apr R X) = apr R X
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Fig. 1 Illustration of set
approximation 1 2 3

4 5 6

7 8 Y

Z
X
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Here XC is the complement set of X . Rather than formally prove the above proper-
ties, we use Fig. 1 to interpret these properties. In Fig. 1, the universe U is repre-
sented by the whole zone and is partitioned into 12 equivalence classes by straight
lines, Z = X ∩ Y each subset is marked by its index and is denoted by Ui , i is
the corresponding index number. The lower approximation of a subset is the union
of rectangles that are fully contained by the subset and its upper approximation is
the union of the rectangles that contain a part of the subset. For example, according
to Fig. 1, since apr

R
X = apr

R
Y = apr

R
Z = U5, the first equation of P2 is

quite obvious in Fig. 1. For the second equation of P2, apr R X = (∪i=1,6Ui ) ∪U8,
apr RY = ∪i=2,9Ui , and apr R(X ∪ Y ) = ∪i=1,9Ui = (apr R X) ∪ (apr RY ). The
reader can easily interpret other properties using Fig. 1.

An important application of rough set techniques is attribute reduction. A reduc-
tion of the attribute set A is defined as a minimal subset P ⊆ A that preserves
the indescernibility relation of A. Here the “minimal” means that removing any
attribute in P will destroy the original indescernibility relation of A. In most cases,
there is more than one reduction for A. The intersection of all reductions for A is
called the core of the information system (U, A). By considering the combinational
scale of possible reductions for attribute set A and the complexity of verifying the
equivalence of two indiscernibility relations on a large scale universe U , one may
notice that the computing of reductions is not trivial. In fact, it is the bottleneck
of rough set applications and many publications had focused on finding efficient
algorithms for attribute reductions [1].

The TRS provides a useful tool for data mining and is especially suitable for
the data analysis of discrete attribute value space. On the other hand, because of
the property of indiscernibility relation mentioned above, it is difficult to directly
apply TRS techniques on continuous value space. Since fuzzy set theory is good at
describing the nominal values through fuzzy sets and membership, a natural way
of combining fuzzy sets and rough sets has been proposed and is described in the
following sections.

3 Fuzzy Rough Sets: Constructive and Axiomatic Approaches

Rough sets and fuzzy sets are complementary with each other in the sense that fuzzy
sets model the ambiguous memberships between elements and classes while rough
sets provide a way of approximating indefinable concept with a pair of definable
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sets within the universe. This observation motivated a lot of researchers to combine
fuzzy sets and rough sets together and various kinds of fuzzy rough set models
had been proposed in publications. From these publications, at least two kinds of
fuzzy rough sets are highlighted. One is the constructive approach that starts with
the fuzzy relations on the universe and the lower and upper approximation operators
are constructed via these fuzzy relations [7, 8, 28]. The constructive approach of
fuzzy rough sets is firstly proposed by Dubois and Prade [7, 8], and Radzikowska
and Kerre [21] provide a more general approach of constructing fuzzy rough sets.
The other is the axiomatic approach that treats the upper and lower approximations
as the primitive notions, and a set of axioms have been studied and applied to char-
acterize upper and lower approximations [15, 17, 18, 23, 24, 25, 27, 28, 30, 35].
When comparing with constructive approach, we know that the axiomatic approach
is found to provide a deep view about the mathematical aspects of fuzzy rough sets.
However, less has been known about its applications. To provide a clear introduction
of fuzzy rough sets, in this section we firstly present the fuzzy logical operators see
for example [15, 21], then we introduce each fuzzy rough set approach in detail.

3.1 Fuzzy Logical Operators

Definition 5. A, triangular norm or shortly t-norm, is any function T : [0, 1] ×
[0, 1] → [0, 1] that satisfies the following conditions:

• monotonicity: if x < α, y < β, then T (x, y) ≤ T (α, β)
• commutativity: T (x, y) = T (y, x)
• associativity: T (T (x, y), z) = T (x, T (y, z))
• boundary condition: T (x, 1) = x

The most popular continuous t-norms include

• The standard min operator (the largest t-norm [8])TM(x, y) = min{x, y};
• The algebraic product TP(x, y) = x · y ;
• The bounded intersection (also called the Lukasiewicz t-norm) TL(x, y) =

max{0, x + y − 1}.
Definition 6. A triangular conorm, or shortly t-conorm, is an increasing, commuta-
tive and associative function S : [0, 1]× [0, 1] → [0, 1] that satisfies the boundary
condition ∀x ∈ [0, 1], S(x, 0) = x.

Three well-known continuous t-conorms are listed below:

• The standard max operator (the smallest t-conorm)

SM (x, y) = max{x, y};

• The probabilistic sum SP (x, y) = x + y − x · y ;
• The bounded sum SL(x, y) = min{1, x + y}.
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Definition 7. A negator N is a decreasing function N : [0, 1] → [0, 1]that satisfies
N(0) = 1 and N(1) = 0. A negator N is called involutive iff N(N(x)) = x for all
x ∈ [0, 1]; it is called weakly involutive iff N(N(x)) ≥ x for all x ∈ [0, 1]. The
standard negator is defined as NS(x) = 1− x.

Definition 8. Given a negator N, a t-norm T and a t-conorm S are called dual with
respect to N iff De Morgan laws are satisfied, i.e. S(N(x), N(y)) = N(T (x, y))
and T (N(x), N(y)) = N(S(x, y)).

It is also known [15, 21] that given an involutive negator N and a t-conorm S, the
function TS(x, y) = N(S(N(x), N(y))), x, y ∈ [0, 1], is a t-norm such that T and
S are dual with respect to N. It is referred to as a t-norm dual to S with respect to N.

Let X : U → [0, 1] be a fuzzy set and F(U) be the fuzzy power set on U, i.e., the
collection of all fuzzy sets on U , for every X ∈ F(U), the symbol coN X is used to
denote the fuzzy complement of X determined by a negator N, i.e., for everyx ∈ U ,
(coN X)(x) = N(X (x)).

Definition 9. An implicator is a function I : [0, 1] × [0, 1] → [0, 1] satisfying
I (1, 0) = 0 and I (1, 1) = I (0, 1)= I (0, 0) = 1. An implicator I is called left
monotonic (right monotonic) iff for every x ∈ [0, 1], I (·, x) is decreasing (I (x, ·) is
increasing). If I is both left and right monotonic, then it is called a hybrid monotonic
implicator.

Three classes of implicators [21] are defined below. Let T, S, N be t-norm,
t-conorm and negator respectively. An implicator I (x, y) is called

• an S-implicator based on S and N iff I (x, y) = S(N(x), y);
• an R-implicator (residual implicator) based on continuous T iff for every x, y ∈

[0, 1], I (x, y) = sup{σ |σ ∈ [0, 1] , T (x, σ ) < y},
• an QL-implicator based on T, S and N iff for every x, y ∈ [0, 1],

I (x, y) = S(N(x), T (x, y)).

Some examples of S-implicator are

• the Lukasiewicz implicator based on SL and NS :

IL(x, y) = min{1, 1− x + y};

• the Kleene–Dienes implicator based on SM and NS :

IK D(x, y) = max{1− x, y};

• the Kleene–Dienes- Lukasiewicz implicator based on SP and NS :

I∗(x, y) = 1− x + x · y

Examples of R-implicators:

• the Lukasiewicz implicator IL , based on TL ;
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• the Gödel implicator based on TM : IG(x, y) =
{

1, x ≤ y
y, elsewhere

• the Gaines implicator based on TP : I(x, y) =
{

1, x ≤ y
y
/

x elsewhere

Examples of QL-implicators:

• the Kleene–Dienes implicator IK D

• the Early Zadeh implicator IZ (x, y) = min{1− x, min{x + y}}
All implicators given above belong to a more general implicator class, i.e. the border
implicators. Formally, an implicator I is called a border implicator iff for every
x ∈ [0, 1], I (1, x) = x .

3.2 Constructive Approach of Fuzzy Rough Sets

The fuzzy rough sets were firstly proposed by Dubois and Prade [7, 8], and then
Radzikowska and Kerre[21] provided general constructive approaches based on dif-
ferent kinds of fuzzy logical operators. This subsection will firstly introduce the
general definition of fuzzy rough approximation and the fuzzy rough sets. Then the
Dubois and Prade’s fuzzy rough sets model is given as an instance of the general
model.

While the Pawlak’s TRS is based on the equivalence relation, as an extension,
in the fuzzy rough sets the equivalence relation is replaced by a fuzzy equivalence
relation defined as follows[21].

Definition 10. A fuzzy binary relation R on universe U is called a fuzzy equivalence
relation if R satisfies the reflexivity (R(x, x) = 1), symmetry (R(x, y) = R(y, x))
and the sup-min transitivity (R(x, y) ≥ sup minz∈U {R(x, z), R(z, y)}).
The nonempty universe U and the fuzzy equivalence relation R defined on it com-
pose of the fuzzy approximation space (FAS)FAS = (U, R). The corresponding
equivalence class [x]R with x ∈ U is defined as a fuzzy set [x]R(y) = R(x, y) on U.
Based on fuzzy approximation space, the definition of fuzzy rough approximations
(FRA) is given below.

Definition 11. Given a border implicator I , t-norm T and the power set F(U) of
universe U, the fuzzy lower and upper approximations of a fuzzy set X ∈ F(U)

are defined as two fuzzy sets with respect to I , T and the fuzzy approximation space
FAS = (U, R) as

FAS I
(X)(x) = inf

y∈U
I (R(x, y), X (y)) (1)

FAS
T
(X)(x) = sup

y∈U
T (R(x, y), X (y))
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The fuzzy rough approximations FAS I
(X) and FAS

T
(X) are called I -lower and

T-upper fuzzy rough approximations of X inFAS ·
Definition 12. Given a FAS FAS = (U, R), a border implicator I and a t-norm T, a
pair of fuzzy sets (AL, AU ) (AL, AU ) ∈ F(U)× F(U) is called a (I, T)-fuzzy rough
set in FAS iff (AL, AU ) = (FAS I (X), FAS

T (X)) for some fuzzy sets X ∈ F(U).

As mentioned in papers [7, 8] that the Dubois and Prade’s fuzzy rough sets (DP-
FRS) can be thought as an instance of the general fuzzy rough sets for which the
border implicator I and the t-norm T are specified as the IK D and TM respectively.
In this case, the symbols for fuzzy rough sets can be simply denoted as a fuzzy sets
pair (R∗(X), R∗(X)) for fuzzy equivalence relation R and fuzzy set X ∈ F(U).
Here the R∗(X) and R∗(X) are defined as

R∗(X)(x) = inf
y∈U

max{1− R(x, y), X (y)} (2)

R∗(X)(x) = sup
y∈U

min{R(x, y), X (y)}

Some properties of the DP-FRS that may be comparable with the properties P1-P6
of TRS are listed below:

• FP1) R∗U = U, R∗φ = φ;
• FP2) R∗(X ∩ Y ) = R∗X ∩ R∗Y, R∗(X ∪ Y ) = R∗X ∪ R∗Y ;
• FP3) R∗XC = (R∗X)C , R∗XC = (R∗X)C , here Ac(x) = 1− A(x);
• FP4) R∗X ⊆ X ⊆ R∗X;
• FP5) R∗(U − {y})(x) = R∗(U − {x})(y), R∗x1(y) = R∗y1(x);
• FP6) R∗X ⊆ R∗(R∗X), R∗(R∗X) ⊆ R∗X.

Here X,Y ∈ F(U), x, y ∈ U and xγ (y) =
{

γ, y = x
0, y �= x

For the properties of the general fuzzy rough sets and fuzzy rough approximations,
we refer the readers to [21].

3.3 Axiomatic Approach of Fuzzy Rough Sets

By comparing with the constructive approach, we know that the axiomatic approach
aims to investigate the mathematical characteristics of fuzzy rough sets rather than
to develop methods for applications. The axiomatic approaches help us to gain much
more insights into the mathematical structures of fuzzy approximation operators. In
crisp rough set theory, the axiomatic approaches of approximation operators had
been studied in details [5, 6, 16, 18, 26, 29]. The most important axiomatic studies
were performed by Yao [31, 32, 33], Yao and Lin [34] in which various classes
of rough sets algebras are characterized by different sets of axioms. The research
of axiomatic approach has also been extended to approximation operators in fuzzy
environment. There are many research works on the axiomatization on fuzzy rough
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sets. Here we only review two kinds of axiomatic approaches of fuzzy rough sets.
One is proposed by Moris and Yakout [18], which is a pioneering work in studying
a set of axioms on fuzzy rough sets. The other is proposed by Wu et al. [27, 28], in
which various classes of fuzzy rough approximation operators is characterized by
different sets of axioms.

In the paper [18], the fuzzy approximation operators are characterized as follows.
Let X denote the universe of discourse, M denote the unit interval [0, 1]. The ax-
iomatic characterizations of fuzzy rough sets defined by fuzzy equivalence relation
are given below.

Definition 13. (fuzzy upper approximation operator) An operator Ā M X (from
M X to M X ) is said to be a fuzzy upper approximation operator on X if it satisfies
the following axioms for all μ ∈ M X , x, y ∈ X and all α ∈ M :

• ( Ā1) Āμ ≥ μ

• ( Ā2) Ā Āμ = Āμ
• ( Ā3) Ā(∨ j∈Jμ j ) = ∨ j∈J Āμ j

• ( Ā4)A(1y)(x) = A(1x)(y)
• ( Ā5) Ā(αTμ) = αT Āμ, T is a t-norm, α(x) = α for all x ∈ X .

Definition 14. (fuzzy upper approximation operator) An operator Ā on M X

(from M X to M X ) is said to be a fuzzy lower approximation operator on X if it
satisfies the following axioms for all μ ∈ M X , x, y ∈ X and all α ∈ M :

• (A1)Aμ ≤ μ

• (A2)A Aμ = Aμ
• (A3) Ā(∧ j∈Jμ j ) = ∧ j∈J Āμ j

• (A4)AϑT |1x , α| (x) = AϑT
∣

∣1y, α
∣

∣ (y)
• (A5)AϑT

∣

∣α,μ
∣

∣ = ϑT
∣

∣α, Aμ
∣

∣

Here ϑT |A, B| (x) = ϑT (A(x), B(x)).
However, fuzzy rough sets in [21] is restricted to fuzzy rough sets defined by

fuzzy T-similarity relations. Thiele [23, 24, 25] has investigated axiomatic charac-
terizations of fuzzy rough approximation operators and rough fuzzy approximation
operators within modal logic for fuzzy diamond and box operators. The important
axiomatic studies for fuzzy rough sets are done by Wu et al. [27, 28] who studied
generalized rough set approximation operators in fuzzy environment, They exam-
ined many axioms on various classes of fuzzy rough approximation operators. The
minimal axiom sets of fuzzy approximation operators guarantee the existence of
certain types of fuzzy or crisp relations producing the same operators.

The fuzzy rough approximation operators defined by Wu et al. are introduced in
the following.

In axiomatic approach, rough sets are axiomatized by abstract operators (the
lower and upper approximation operators). For the case of fuzzy rough sets, the
primitive notion is a pair of fuzzy sets operators L, H : F(W ) → F(U), where W
and U are two different universes. In their fuzzy rough sets, various classes of fuzzy
approximation operators are characterized by different sets of axioms. The minimal
axiom sets of fuzzy approximation operators guarantee the existence of certain types
of fuzzy or crisp relations producing the same operators.
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Definition 15. Let L, H : F(W ) → F(U) be two operators. They are referred to
as dual operators if for all A ∈ F(W ),

• (FL1)L(A) =∼ H (∼ A),
• (FU1)H (A) =∼ L(∼ A).

Definition 16. Let L, H : F(W )→ F(U) be a pair of dual operators. If L satisfies
axioms L(α̂ ∨ A) = α̂ ∨ L(A) and L(A ∧ B) = L(A) ∧ L(B) or equivalently, H
satisfies axioms H (α̂ ∧ A) = α̂ ∧ H (A) and H (A ∨ B) = H (A) ∨ H (B), here
â is just α, defined in Definition 13, then L and H are referred to as fuzzy rough
approximation operators.

Definition 17. Let L, H: F(W) → F(U) be a pair of dual operators. If L satisfies
axioms L(1W−{y}) ∈ F(U),∀y ∈ W, L(α̂ ∨ A) = α̂ ∨ L(A) and L(A ∧ B) =
L(A) ∧ L(B) or equivalently, H satisfies axioms H (1y) ∈ F(U),∀y ∈ W, H (α̂ ∧
A) = α̂ ∧ H (A) and H (A ∨ B) = H (A)∨ H (B), then L and H are referred to as
rough fuzzy approximation operators.

Where 1y denotes the fuzzy singleton with value 1 at y and 0 elsewhere. Simi-
larly, 1W−{y} denotes the fuzzy singleton with value 0 at y and 1 elsewhere.

For completeness, we summarize the main results of axiomatic characterizations
of the fuzzy rough approximation operators corresponding to the different fuzzy
binary relations in Theorem 1-Theorem 5 [28].

Theorem 1. Suppose that L, H : F(W ) → F(U) is a pair of dual fuzzy approxi-
mation operators, then there exists a serial fuzzy relation R from U to W such that
L(A) = R(A) and H (A) = R(A) for all A ∈ F(W ) iff L and H satisfy axioms:

• (FL3.1) L(φ) = φ,
• (FU3.1) H (W ) = U,
• (FLU3.1) L(A) ⊆ H (A), ∀A ∈ F(W ).

Theorem 2. Suppose that L, H : F(U) → F(U) is a pair of dual fuzzy rough
approximation operators, then there exists a reflexive fuzzy relation R on U such
that L(A) = R (A) and H(A) = R(A) for all A ∈ F(U) iff L and H satisfy axioms:

• (FL3.2) L(A) ⊆ A,∀A ∈ F(U),
• (FU3.2) A ⊆ H (A),∀A ∈ F(U).

Theorem 3. Suppose that L, H : F(U) → F(U) is a pair of dual fuzzy rough
approximation operators, then there exists a symmetric fuzzy relation R on U such
that L(A) = R (A) and H(A) = R(A) f or all A ∈ F(U) iff L and H satisfy axioms:

• (FL3.3) L(1U−{x})(y) = L(1U−{x})(x),∀(x, y) ∈ U ×U,∀A ∈ F(U),
• (FU3.3) H (1x)(y) = H (1y)(x),∀(x, y) ∈ U ×U .

Theorem 4. Suppose that L, H:F(U)→ F(U) is a pair of dual fuzzy rough approx-
imation operators, then there exists a transitive fuzzy relation R on U such that
L(A) = R(A) and H (A) = R(A) f or all A ∈ F(U) i f f Land H satisfy axioms:

• (FL3.4) L(A) ⊆ L(L(A)), ∀A ∈ F(U),
• (FU3.4) H (H (A)) ⊆ H (A) ∀A ∈ F(U).
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Theorem 5. Suppose that L, H : F(U) → F(U) is a pair of dual fuzzy rough
approximation operators, then there exists an Euclidean crisp relation R on U such
that L(A) = R(A) and H (A) = R(A) for all A ∈ F(U) i f f L and H satisfy
axioms:

• (FL3.5) H (L(A)) ⊆ L(A),∀A ∈ F(U),
• (FU3.5) H (A) ⊆ L(H (A)),∀A ∈ F(U).

The minimization and the independence of the axiom set for fuzzy approximation
operators have also been investigated. Minimal axiom sets corresponding to various
generalized fuzzy approximation operators are presented. For these cases, we refer
the readers to papers [30, 35].

4 Attribute Reduction of Fuzzy Rough Sets

Nowadays a large amount of data are collected in real world. There is a clear need
for reducing the large data in many applications such as pattern recognition, machine
learning etc. It is well known that rough set theory has been proved to be a useful tool
to deal with uncertainty and has been applied in data reduction, rule extraction and
granularity computation. However, it works only with nominal values. In real world
it is most often the case that there are both nominal and numerical values. To address
this problem many researchers have developed techniques for attributes reduction
with both nominal and numerical values using fuzzy rough sets. Roughly speaking,
there are two types of fuzzy RSAR (Rough Set Attributes Reduction) approach. One
is based on the notion of fuzzy lower approximation to enable attributes reduction.
The other is based on the fuzzy significance of attributes to reduce attributes. In the
following we will introduce these two types of methods of fuzzy RSAR.

4.1 Fuzzy RSAR Building on the Notion
of Fuzzy Lower Approximation

Recently, there are several approaches [2, 3,12, 13, 14, 22] of fuzzy RSAR, which
build on the notion of fuzzy lower approximation. A pioneering work of Fuzzy
RSAR is proposed in papers [12, 13, 14, 22]. A QUICKREDUCT algorithm to find
the close-to-minimal attributes reduction is given. The key idea of this method to
reduce attributes is to keep the dependency function after reduction invariant.

Before introducing the concept of dependency function, the notions of lower and
upper approximations, different with the ones proposed by Dubois and Prade [7, 28],
is given.

In subsection 3.2, the Dubois and Prade’s notions of fuzzy rough sets have been
given based on the fuzzy equivalence relation. From the literature [7], the fuzzy
lower and upper approximations based on the fuzzy partition U/P are given as
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m P X (Fi ) = inf
x∈U

max{1− mFi (x),m X (x)} (3)

m P X (Fi ) = sup
x∈U

min{mFi (x),m X (x)}

Where U/P is the collection of fuzzy sets m[x]R (y) = m X (x, y), y ∈ U which
makes a fuzzy partition of U . These fuzzy rough sets are just equivalent to the ones
in [7, 8]. The denotation Fi , called a fuzzy equivalence class, belongs to U/P . These
definitions diverge a little from the crisp lower and upper approximations, as the
membership of individual objects are not explicitly available [12]. As a result, the
lower and upper approximations are redefined in paper [12] as follows.

Definition 18. The fuzzy lower and upper approximations are defined as follows.

μP X (x) = sup
F∈U/P

min{μF (x), inf
y∈U

max{1− μF (y), μX (y)} (4)

μ P̄ X (x) = sup
F∈U/P

min{μF (x), sup
y∈U

min{μF (y), μX (y)}

We need to point out that the notions of lower and upper approximations proposed
by Dubois and Prade (formula FR3) and ones proposed by Jensen and Shen (for-
mula FR4) are both defined on the fuzzy partition. The former describes the relation
between the fuzzy equivalence class and fuzzy approximations while the latter de-
scribes the relation between the individual objects and the fuzzy approximations.

After redefining the fuzzy lower and upper approximations in paper [12], the
fuzzy positive region is introduced as follows.

Definition 19. The membership of an object x ∈ U, belonging to the fuzzy positive
region of Q relative to P can be defined by μP OSp(Q)(x) = sup

X∈U /Q
μX (x), here Q is

a fuzzy similarity relation as a decision attribute.

Using the above definition 19, the dependency function can be defined as follows.

γ ′P(Q) =
∣

∣μP OSp(Q)(x)
∣

∣

|U | =
∑

x∈UμP OSp(Q)(x)

|U |

Here
∣

∣μposP (Q)(x)
∣

∣ mean the cardinal of the fuzzy set having membership function
μposP (Q)(•)

By keeping the dependency function invariant after reduction, a QUICKREDUCT
algorithm found in paper [12] is given in Fig. 2. The algorithm is depicted below.

This algorithm has been tested with some practical data sets such as web catego-
rization and is claimed to perform well [12, 22]. However, the time complexity of
the algorithm in papers [12, 13, 14, 22] increases exponentially with the inputting at-
tributes because of the way of calculating the fuzzy equivalence classes. This makes
the algorithm infeasible on large dimensional problems. Therefore the concept of
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Fuzzy RSAR algorithm 1:

Input: U—the universe, C—the condition attributes set, D—the decision attributes set. γ ′B (D) is

the dependency function of B ⊆ C with respect to D.

Output: R—the close-to-minimal attributes reduct.

Step 1: Initialize R=φ, γ ′best = 0, γ ′prev = 0

Step 2: Do

T = R
γ ′prev = γ ′best
For each a ∈ (C − R)

If γ ′R∪{a}(D)>γ ′τ (D)

T = R ∪ {a}
γ ′best = γ ′τ (D)

R = T
Until γ ′best = γ ′prev

Step 3: Output R

Fig. 2 The QUICKREDUCT algorithm based on fuzzy lower approximation

fuzzy rough sets in papers [2, 3] is put forward on a compact computational domain,
which is then utilized to improve the computational efficiency.

The definition of fuzzy lower approximation on a compact domain is given as
follows.

Definition 20. Given an arbitrary fuzzy set μA(x) : U → [0,1], and Fik ∈ U/P
The fuzzy lower approximation on compact computational domain is defined by

μA(Fik) =
{

inf
x∈D A(Fik )

max{μFik
(x), μA(x)} ; DA(Fik) �= 0

1 ; DA(Fik ) = 0

Where DA(Fik ) ⊂ U is a compact computational domain for lower approximation
defined as DA(Fik ) = {x ∈ U

∣

∣μFik (x) �= 0 ∧ μA(x) �= 1}. Here ∧ is a logical
AND connective.

All these papers [2, 3, 12, 13, 14, 22] have never proposed a clear definition
of attributes reduction with fuzzy rough sets and the structure of reduction is never
discussed. Thus a method of attributes reduction with solid mathematical foundation
such as clear structure of reduction and precise reduction process with mathematical
support based on fuzzy rough sets is still expected.

4.2 Fuzzy RSAR Based on Fuzzy Attribute Significance

There are also some methods of fuzzy RSAR based on fuzzy attribute significance
[9, 10, 11]. These methods firstly propose one kind of information measure of
indiscernibility relation and then based on these information measures the fuzzy
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attributes significance, i.e. the information increment, is measurable. Subsequently,
the algorithm to find the reduction based on the fuzzy attribute significance is con-
structed. Owing to the fact that the concepts of fuzzy attribute significance are the
key concepts of these, we focus on the introduction of the notions which relate to
the notion of fuzzy attributes significance in this subsection.

In the fuzzy RSAR methods proposed by Hu and Yu [9, 10], a novel interpre-
tation of Yager’s entropy is proposed as the measure of the discernibility power of
attributes. The Yager’s entropy of an indiscernibility relation is defined as follows.

Definition 21. Given a finite set of objects X = {x1, x2, · · · , xn}, P is the probabil-
ity distribution on X and R is the fuzzy indiscernibility or equivalence relation on
X. The Yager’s entropy is defined as:

Hp(R) =
∑

x X
−P(x) log2(

∑

y∈Y
P(y)R(x, y))

Generally, we assume that P is uniformly distributed on X and p(x) = 1/|X |, X ∈
X[11]. Thus the Yager’s entropy can also be represented as:

HP(R) = −1

n

∑n

i=1
log2

∑n
j=1 R(xi , x j )

n
= −1

n

∑n

i=1
log2

|[xi ]R|
n

Where [xi ]R is one of the fuzzy equivalence classes of U/R.
Some extensions of Yager’ entropies, such as joint entropy, condition entropy

and relative entropy, are also proposed by Hu and Yu [9, 10] which are necessary to
introduce the fuzzy attribute significance.

Definition 22. Given a finite set of objects X = {x1, x2, · · · , xn}. Let R1 and R2
be two indiscernibility relations on X. P is the probability distribution on X and
p(x) = 1/|X |, x ∈ X.

(1) The joint entropy of R1 and R2 is defined as:

HP(R1 R2) = −1

n

∑n

i=1
log2

∣

∣[xi ]R1 ∩ [xi ]R2

∣

∣

n

(2) The conditional entropy of R2 with respect to R1 is defined as:

HP(R1 | R2) = −1

n

∑n

i=1
log2

∣

∣[xi ]R1 ∩ [xi ]R2

∣

∣

∣

∣[xi ]R2

∣

∣

(3) Let R = R1 È R2, then the relative entropy of R1 with respect to R2 is defined
as

HP(R1; R2) = HP(R2)− HP(R) = HP(R2)− HP(R1 ∪ R2)

= −1

n

n
∑

i=1

log2

∣

∣[xi ]R2

∣

∣

∣

∣[xi ]R1

∣

∣ ∪ ∣

∣[xi ]R2

∣

∣
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The fuzzy RSAR algorithm 2:

Input: U—the universe, C—the condition attributes set, D—the decision attributes set

Output: R—the close-to-minimal attributes reduct.

Step 1: Initialize R=φ
Step 2: a ∈ A, compute the equivalence relation.

Step 3: For each a∈(C−R)

Compute −Hi = SIG(a|R; D)

Add the significant attribute q to R:

R = R ∪ {q}
Step 4: For current q and R,

If SIG(q|R; D) ≥ 0, goto step 3; otherwise goto step 5.

Step 5: Output R.

Fig. 3 The fuzzy RSAR algorithm based on the fuzzy attributes significance

Then conditional entropy and relative entropy are used to measure the information
increment, which is the fuzzy attribute significance. The definition of fuzzy signifi-
cance of attributes in papers [9, 10] is defined as follows.

Definition 23. Given a fuzzy information system (U, A, V , f ), A = C ∪ d, where C
is the condition attributes set and d is the decision attribute.B ⊆ C, ∀a ∈ B. The
fuzzy significance of attribute a in attribute set B relative to d is defined as

SI G(a |B − a ; d) = HP(a |B − a; d) = HP(B − a; d)− HP(B; d)

= −HP((B − a) ∪ d)+ HP(B ∪ d)

= −1

n

n
∑

i=1

log2

∣

∣[xi ]d ∪ [xi ]B−a

∣

∣+ 1

n

n
∑

i=1

log2 |[xi ]d ∪ [xi ]B |

Here the subset of attributes corresponds to a fuzzy indiscernibility relation. For
example, the attribute set B corresponds to a fuzzy indiscernibility relation B .

The fuzzy RSAR algorithm based on fuzzy attributes significance is shown in
Fig. 3.

5 Application of Fuzzy Rough Sets: One Illustrative
Example of Fuzzy FRAR

Fuzzy rough sets have been applied in attributes reduction, rule extraction and
granularity computation, such as medical time series, case generation, stock price
mining, descriptive dimensionality reduction and so on. Attributes reduction is one
important application of fuzzy rough sets. In this section the method of fuzzy FRAR
proposed by Shen and Jensen [12, 13, 14, 22] is selected to demonstrate the pro-
cess of fuzzy attributes reduction. We have already mentioned the basic concepts of
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Table 1 A training set of attribute reduction

U A B C Q

FA1 FA2 FB1 FB2 FC1 FC2

1 0.8 0.2 0.6 0.4 1 0 No
1 0.8 0.2 0.6 0.4 1 0.6 No
2 0.8 0.2 0 0.6 0.2 0.8 Yes
3 0.6 0.4 0.8 0.2 0.6 0.4 No
4 0 0.4 0.6 0.4 0 1 Yes
5 0 0.6 0.6 0.4 0 1 Yes
6 0 0.6 0 1 0 1 No

attributes reduction and the algorithm of this method is given in Sect. 4.1. Here we
cite one example in [12] to demonstrate the process of fuzzy FRAR of Shen and
Jensen’s method.

Example 1. Table 1 is a fuzzy information system which is adopted from [8]. In
Table 1 U ={1, 2, 3, 4, 5, 6} is a set of fuzzified data. A, B and C are condition
attributes and Q is the decision attribute. {FA1, FA2}, {FB1, FB2}, {FC1, FC2},
which are the fuzzy sets defined on the universe U , describe the corresponding fuzzy
attributes A, B, C, respectively.

Firstly, we need to point out that the family � = {F1, F2, · · · , Fn} of normal fuzzy
sets defined on the universe of U can be viewed as a weak fuzzy partition if they
satisfy the following two conditions.

inf
x∈U

max
i
(μFi (x)) > 0

∀i, j, sup
x∈U

min
i
(μFi (x), μFj (x)) < 1

{F1, F2, · · · , Fn} can play the role of a collection of fuzzy equivalence classes [8].
For instance, the family of fuzzy sets {FA1, FA2} in Table 1 can be viewed as a

fuzzy partion of attribute A on U . Here {FA1, FA2} can play the role of a collection
of fuzzy equivalence classes. In Shen and Jensen method {FA1, FA2}, {FB1, FB2},
{FC1, FC2} are viewed as the collections of fuzzy equivalence classes of attributes
A, B, C on U , respectively.

The following are the detailed illustrative process to find the fuzzy attributes
reduct using Shen and Jensen’s method.

1. From the Table 1, the following fuzzy equivalence classes are obtained:
U/A = {F A1, F A2},U/B = {FB1, FB2},

U/C = {FC1, FC2},U/Q = {{1, 3, 6}, {2, 4, 5}}.
2. According to the definition of fuzzy lower approximation, the first step is to

compute the fuzzy lower approximation of the sets of A, B and C, respectively.
For simplicity, only the attribute A is considered here. For the first decision class
{1,3,6}, the fuzzy lower approximation requires μA{1,3,6}(x) to be calculated as:
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3.4

2.0

3.6

0.62.4

{}

{B} {C}{A}

{A,B} {B,C}

Fig. 4 Path taken by the QUICKREDUCT algorithm

μA{1,3,6}(x) = sup
F∈U /A

min{μF (x), inf
y∈U

max{1− μF (y), μA{1,3,6}(y)}}

Calculating the A - fuzzy lower approximation of {1,3,6} for every object gives:

μA{1,3,6}(1) = 0.2, μA{1,3,6}(2) = 0.2, μA{1,3,6}(3) = 0.4

μA{1,3,6}(4) = 0.4, μA{1,3,6}(5) = 0.4, μA{1,3,6}(6) = 0.4

3. The corresponding values for { 2,4,5} can also be determined in this way. Using
these values, the fuzzy positive region for each object can be calculated via using
μP OSA(Q)(x) = sup

X∈U/Q
.

The results are

μP OSA Q (1) = 0.2, μP OSA Q (2) = 0.2, μP OSA Q (3) = 0.4
μP OSA Q (4) = 0.4, μP OSA Q (5) = 0.4, μP OSA Q (6) = 0.4

4. It is coincident here that μP OSA Q (x) = μA{1,3,6}(x)

for this example. The next step is to calculate the degree of dependency of
Q on A:

γ ′A(Q) = 2/6

By calculating the dependency degree of B and C, we have:

γ ′B(Q) = 2.4/6,, γ ′C(Q) = 1.6/6.

From these results, it can be seen that the attribute B will cause the greatest increase
in dependency degree. This attribute is chosen and added to the potential reduct.
The process iterates and the two dependency degrees are calculated as follows.

γ ′{A,B}(Q) = 3.4/6, γ ′{B,C}(Q) = 3.2/6

Adding attribute A to the reduct candidate causes the largest increase in dependency
degree. So the new candidate becomes {A, B}. Lastly, the attribute C is added to the
reduct candidate and causes no increase in dependency degree:
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γ ′{A,B,c}(Q) = 3.4/6.

The algorithm stops and outputs the reduct: {A, B, C}.
The steps taken by the QUICKREDUCT algorithm can be seen in Fig. 4.

6 Conclusion and Future Work

Rough set theory deals with the approximation of sets under indiscernibility [19,
20]. Fuzzy set theory handles the vague concepts by allowing partial membership
[36]. They are different but complementary generalizations of classical set the-
ory. Recently, many researches have been proposed to hybridize rough set theory
and fuzzy set theory to fuzzy rough sets. Roughly speaking, there are two types
of well developed fuzzy rough set approaches. One is the constructive approach,
which generalizes the fuzzy relations on the universe and the lower and upper ap-
proximation operators are constructed via these fuzzy relations. The constructive
approach is suitable for the applications of rough sets. The other is the axiomatic
approach, which treats the lower and upper approximations as the primitive notions
and focuses on algebra systems of rough set theory. The axiomatic is appropriate for
studying the structure of rough set algebra. One important application of rough set
theory is that of attribute reduction in databases. Some studies have been reported
on the attributes reduction of fuzzy rough sets and found to have achieved good
performance in some applications. From the above introduction of fuzzy rough sets,
it is easy to see that fuzzy rough sets have a solid mathematical foundation and work
well in some applications. However, there are still some problems that need to be
addressed in the future. They are:

• The framework that works well in both constructive and axiomatic systems and
also performs well in real applications is expected. For example, a fuzzy rough
set model that has the formal structure of knowledge reduction and performs well
in real problems is expected.

• So far rough sets are only suitable for static data. A fuzzy rough set dealing with
problems that can be handled instantly is expected.

• There are many kinds of uncertain information in the real world, such as rough-
ness, fuzziness, randomness etc. A framework that hybridizes all these uncertain-
ties in a model is expected.
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An Overview of Computing with Words
using Label Semantics

Jonathan Lawry

Abstract This chapter will give an overview of the label semantics framework for
computing with words. Label semantics is an alternative methodology that models
linguistic labels in terms of label descriptions, appropriateness measures and mass
assignments. It has a clear operational semantics and is straightforward to integrate
with other uncertainty formalisms. In the chapter we will introduce the theory of
label semantics, discuss its compatibility with a functional calculus and show how it
can be used to infer both probabilistic and possibilistic information from linguistic
assertions.

1 Introduction to Computing with Words

The principle aim of the computing with words paradigm as proposed by Zadeh
[21] is to increase the use of natural language for information and knowledge pro-
cessing in computer systems. In practice this will require the development of a for-
mal representation framework based on some restricted subset of natural language.
Zadeh has suggested a form of precisiated natural language [18] based on the the-
ory of generalised constraints and linguistic variables. Label semantics, introduced
by Lawry [7, 8, 9, 10], provides an alternative representation for computing and
modelling with words, which takes a somewhat different perspective than Zadeh on
the processing of natural language information. This paper provides an overview
of computing with words based on label semantics and contrasts it with Zadeh’s
approach. In this section we briefly describe Zadeh’s methodology.

Zadeh’s approach is based fundamentally on the notion of a linguistic variable
[17, 18, 19] where a semantic rule links natural language labels to an underlying
graded vague concept as represented by a fuzzy set on the domain of discourse.

Definition 1. Linguistic Variable
A linguistic variable is a quintuple 〈L, T (L), S,Ω, M〉 in which L is the name of
the variable, Ω is a universe of discourse, T (L) is a term set of words to describe
elements of Ω , S is a set of syntactic rules for generating new elements of T (L)
from existing words and M a set of semantic rules which identify a fuzzy subset of
Ω for each word in T (L), corresponding to its fuzzy extension.

H. Bustince et al., (eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation
and Models. C© Springer 2008 65
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The term set T (L) is generated recursively from an initial set of labels by
application of the syntactic rules S which include both logical operators (∧,∨,¬
etc) and linguistic hedges such as quite, very etc. The semantic rules M are
based on the standard truth-functional fuzzy logic calculus so that given mappings
for the initial labels it then holds that ∀θ1, θ2 ∈ T (L) M(¬θ1) = 1 − M(θ1),
M(θ1 ∧ θ2)=min(M(θ1), M(θ2)) and M(θ1 ∨ θ2)=max(M(θ1), M(θ2)). Zadeh,
also defines semantic rules for linguistic hedges so that, for example, if θ ∈ T (L)
then M(very θ) = M(θ)2 and M(qui te θ) = M(θ)0.5. As with the logical con-
nectives, the semantic rules for hedges can then be applied recursively so that, for
example, M(veryn θ) = M(θ)2n where veryn denotes n occurrences of the hedge
very.

Words θ ∈ T (L) describe elements of the underlying universe Ω according to
a system of generalised constraints [22], whereby an expression ‘x is θ ’ referring
to some unknown element x ∈ Ω conveys the information that the value of x has
a possibility distribution M(θ) (see Zadeh [20]). In this context possibility distribu-
tions can be viewed an upper probability of x given θ [15].

Fuzzy logic can be criticised for the lack of a clear operational interpretation of
membership functions. In other words, it is difficult to understand the exact mean-
ing of the numerical values M(θ)(x). This weakens model transparency and makes
knowledge elicitation much more difficult. In fact there have been several attempts
to provide an operational semantics for fuzzy logic (see [2] for an overview), many
of which give interesting and useful interpretations of fuzzy sets. However, none of
them are compatible with a truth functional calculus. As part of our discussion of
labels semantics, in the following section we present a calculus which, though while
not truth-functional, is functional in a slightly weaker sense.

2 Label Semantics

In contrast to fuzzy sets and linguistic variables, label semantics encodes the mean-
ing of linguistic labels according to how they are used by a population of communi-
cating agents to convey information. From this perspective, the focus is on the deci-
sion making process an intelligent agent must go through in order to identify which
labels or expressions can actually be used to describe an object or value. In other
words, in order to make an assertion describing an object in terms of some set of
linguistic labels, an agent must first identify which of these labels are appropriate or
assertible in this context. Given the way that individuals learn language through an
ongoing process of interaction with the other communicating agents and with the en-
vironment, then we can expect there to be considerable uncertainty associated with
any decisions of this kind. Furthermore, there is a subtle assumption central to the
label semantic model, that such decisions regarding appropriateness or assertibility
are meaningful. For instance, the fuzzy logic view is that vague descriptions like
‘John is tall’ are generally only partially true and hence it is not meaningful to con-
sider which of a set of given labels can truthfully be used to described John’s height.
However, we contest that the efficacy of natural language as a means of conveying
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information between members of a population lies in shared conventions governing
the appropriate use of words which are, at least loosely, adhere to by individuals
within the population. We explore this idea in more detail in the following sub-
section.

2.1 The Epistemic Stance

It cannot be denied that in their use of linguistic labels humans posses a mechanism
for deciding whether or not to make assertions (e.g. John is tall) or to agree to
a classification (e.g. Yes, that is a tree). Further, although the concepts concerned
are vague this underlying decision process is fundamentally crisp (bivalent). For
instance, you are either willing to assert that x is a tree given your current knowl-
edge, or you are not. In other words, either tree is an appropriate label to describe x
or it is not. As humans we are continually faced with making such crisp decisions
regarding vague concepts as part of our every day use of language. Of course, we
may be uncertain about labels and even express these doubts (e.g. I’m not sure
whether you would call that a tree or a bush, or both) but the underlying decision
is crisp.

Given this decision problem, we suggest that it is useful for agents to adopt what
might be called an epistemic stance as follows:

Each individual agent in the population assumes the existence of a set of labelling conven-
tions, valid across the whole population, governing what linguistic labels and expression
can be appropriately used to describe particular instances.

Of course, such linguistic conventions do not need to be imposed by some outside
authority like the Oxford English Dictionary or the Academia Lengua Espanola, but
instead would emerge as a result of interactions between agents each adopting the
epistemic stance. Hence, label semantics does not attempt to link label symbols to
fuzzy set concept extensions but rather to quantify an agent’s subjective belief that a
label L is appropriate to describe an object x and hence whether or not it is reason-
able to assert that ‘x is L’. In this respect it is close to the ‘anti-representational’ view
of vague concepts proposed by Rohit Parikh [11] which focuses on the notion of as-
sertibility rather than that of truth; a view that is shared by Alice Kyburg [5]. There
is also some similarity between the label semantics view and the epistemic theory
of vague concepts as proposed by Williamson [16]. In this theory it is assumed that
there is a true but unknown (or only partially known) definition of a vague concept
and hence that the subsequent uncertainty regarding concept boundaries is purely
epistemic in nature. However, while in label semantics the uncertainty regarding the
appropriateness of labels is also assumed to be epistemic, there is not assumed to
be some objectively correct definition of a vague concept. Instead it is assumed that
the actual rules or conventions for label use emerge from the interaction between
individuals each adopting the epistemic stance.
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2.2 Appropriateness Measures

Label semantics proposes two fundamental and inter-related measures of the
appropriateness of labels as descriptions of an object or value. Given a finite set of
labels L A from which can be generated a set of expressions L E through recursive
applications of logical connectives, the measure of appropriateness of an expression
θ ∈ L E as a description of instance x is denoted by μθ (x) and quantifies the
agent’s subjective belief that θ can be used to describe x based on his/her (partial)
knowledge of the current labelling conventions of the population. From an alterna-
tive perspective, when faced with an object to describe, an agent may consider each
label in L A and attempt to identify the subset of labels that are appropriate to use.
Let this set be denoted by Dx . In the face of their uncertainty regarding labelling
conventions the agent will also be uncertain as to the composition of Dx , and in
label semantics this is quantified by a probability mass function mx : 2L A → [0, 1]
on subsets of labels. The relationship between these two measures will be described
below.

Unlike linguistic variables, which allow for the generation of new label symbols
using a syntactic rule, label semantics assumes a finite set of labels L A. These are
the basic or core labels to describe elements in an underlying domain of discourse
Ω . Based on L A, the set of label expressions L E is then generated by recursive
application of the standard logic connectives as follows:

Definition 2. Label Expressions
The set of label expressions of L A, L E, is defined recursively as follows:

• If L ∈ L A then L ∈ L E
• If θ, ϕ ∈ L E then ¬θ, θ ∧ ϕ, θ ∨ ϕ, θ → ϕ ∈ L E

So for example, if Ω is the set of all possible rgb values and L A is the set of basic
colour labels such as, red, yellow, green, blue, orange etc then L E contains those
compound expressions such as red & yellow, not blue nor orange etc. Typically
we assume that the overlapping vagueness of the labels L A means that for some
elements of Ω close to concept boundaries it is appropriate within language con-
ventions to use a number of labels. For instance, some colours can be appropriately
described both as red and as yellow.

Hence, in label semantics we preserve a clear distinction between the basic labels
L A and the compound label expressions L E generated from them. This distinction
is fundamentally important for the subsequent development of a calculus for mea-
sures of appropriateness. Also, note that while we allow logical combinations of
label expression, linguistic hedges are not included in the definition of L E . We
argue that the semantics of such hedges seem far from clear and the rather arbitrary
definitions given in [17, 18, 19] appear inadequate. Indeed, in our view, it is far from
apparent that there should be a simple functional relationship between the meaning
of a word and the meaning of a new word generated from it by applying a hedge.
In other words, we would claim that while hedges are a simple syntactic device for
generating new terms there is no equally simple semantic device for generating the
associated new meanings. Furthermore, it is unclear if hedges can really be applied
in a recursive manner. For example, we might describe John as very tall or even very
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very tall but repeat application of the same hedge soon renders the expression mean-
ingless. Also, there would seem to be significant restrictions on those expressions
to which a particular hedge can be applied. For example, we would never say very
quite tall or very (tall and medium). Hence, while label semantics permits hedges to
be used in the definition of labels in L A it is only as a syntactic device for naming
labels.

A mass assignment mx on sets of labels then quantifies the agent’s belief that any
particular subset of labels contains all and only the labels with which it is appropriate
to describe x .

Definition 3. Mass Assignment on Labels
∀x ∈ Ω a mass assignment on labels is a function mx : 2L A → [0, 1] such that
∑

S⊆L A mx (S) = 1

Now depending on labelling conventions there may be certain combinations of la-
bels which cannot all be appropriate to describe any object. For example, small and
large cannot both be appropriate. This restricts the possible values of Dx to the
following set of focal elements:

Definition 4. Set of Focal Elements
Given labels L A together with associated mass assignment mx : ∀x ∈ Ω , the set of
focal elements for L A is given by:

F = {S ⊆ L A : ∃x ∈ Ω, mx (S) > 0}

The appropriateness measure, μθ (x), and the mass mx are then related to each other
on the basis that asserting ‘x is θ ’ provides direct constraints on Dx . For example,
asserting ‘x is L1 ∧ L2’, for labels L1, L2 ∈ L A is taken as conveying the infor-
mation that both L1 and L2 are appropriate to describe x so that {L1, L2} ⊆ Dx .
Similarly, ‘x is ¬L’ implies that L is not appropriate to describe x so L /∈ Dx . In
general we can recursively define a mapping λ : L E → 22L A

from expressions
to sets of subsets of labels, such that the assertion ‘x is θ ’ directly implies the
constraint Dx ∈ λ (θ) and where λ (θ) is dependent on the logical structure of
θ . For example, if L A = {low, medium, high} then λ(medium ∧ ¬high) =
{{low,medium}, {medium}} corresponding to those sets of labels which include
medium but do not include high. Hence, the description Dx provides an alternative
to Zadeh’s linguistic variables in which the imprecise constraint ‘x is θ ’ on x , is
represented by the precise constraint Dx ∈ λ(θ), on Dx .

Definition 5. λ-mapping
λ : L E → 22L A

is defined recursively as follows: ∀θ, ϕ ∈ L E

• ∀Li ∈ L A λ(Li ) = {T ⊆ L A : Li ∈ T }
• λ(θ ∧ ϕ) = λ(θ) ∩ λ(ϕ)

• λ(θ ∨ ϕ) = λ(θ) ∪ λ(ϕ)

• λ(¬θ) = λ(θ)c

• λ(θ → ϕ) = λ(¬θ) ∪ λ(ϕ)
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Based on the λ mapping we then define μθ (x) as the sum of mx over those set of
labels in λ (θ).

Definition 6. Appropriateness Measure

∀θ ∈ L E, ∀x ∈ Ω μθ (x) =
∑

S∈λ(θ)
mx (S)

Note that in label semantics there is no requirement for the mass associated with
the empty set to be zero. Instead, mx(∅) quantifies the agent’s belief that none of
the labels are appropriate to describe x . We might observe that this phenomena oc-
curs frequently in natural language, especially when labelling perceptions generated
along some continuum. For example, we occasionally encounter colours for which
none of our available colour descriptors seem appropriate. Hence, the value mx (∅)
is an indicator of the describability of x in terms of the labels L A.

Given definition 6 it can be shown that appropriateness measures have the fol-
lowing general properties [9, 10]:

Theorem 1. General Properties of Appropriateness Measures ∀θ, ϕ ∈ L E then the
following properties hold:

• If θ |= ϕ then ∀x ∈ Ω μθ(x) ≤ μϕ(x)
• If θ ≡ ϕ then ∀x ∈ Ω μθ(x) = μϕ(x)
• If θ is a tautology then ∀x ∈ Ω μθ(x) = 1
• If θ is a contradiction then ∀x ∈ Ω μθ(x) = 0
• ∀x ∈ Ω μ¬θ (x) = 1− μθ(x)

Note that for implication μθ→ϕ(x) quantifies the agent’s belief that if θ is ap-
propriate to describe a given x then so is ϕ. In particular, for two basic labels
L, L ′ ∈ L A μL→L ′(x) is an aggregation of those set values for Dx for which
L ′ ∈ Dx whenever L ∈ Dx . Such judgements are especially relevant when the
values for mx are allocated so as to be consistent with an initial ordering on label
appropriateness; this is an idea that we will discuss further in the sequel.

2.3 Functionality of Appropriateness Measures

From definition 6 we see that in order to be able to evaluate the appropriateness
measure of any given expression θ ∈ L E as a label for x ∈Ω we must potentially
know the value of mx for all subsets of L A. Hence, we are, in principle, required
to specify of order 2|L A|−1 functions mx . For large basic label sets this is clearly
computationally infeasible. One solution to this problem would be to make addi-
tional assumptions about the definition of the mass assignment mx so that there
exists a functional relationship between the appropriateness measure for the basic
labels (i.e. μL(x) : L ∈ L A) and mx . This would result in a functional calculus for
appropriateness measures according to which the appropriateness of any compound
expression could be determined directly from the appropriateness of the basic labels
in the following sense:
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Definition 7. Functional Measures
A measure μ on L E ×Ω is said to be functional if ∀θ ∈ L E there exists a function
fθ : [0, 1]|L A| → [0, 1] such that ∀x ∈ Ω μθ(x) = fθ (μL(x) : L ∈ L A)

Now fuzzy logic is clearly functional in the sense of definition 7 but it also satisfies
the stronger property of truth-functionality. Truth-functionality defines the mapping
fθ to be a recursive combination of functions representing each connective, as de-
termined by the logical structure of the expression θ . More formally:

Definition 8. Truth-Functional Measures
A measure μ on L E × Ω is said to truth-functional if there exists mappings f¬ :
[0, 1] → [0, 1], f∧ : [0, 1]2 → [0, 1], f∨ : [0, 1]2 → [0, 1] and f→ : [0, 1]2 →
[0, 1] such that ∀θ, ϕ ∈ L E:

• ∀x ∈ Ω μ¬θ (x) = f¬(μθ (x))
• ∀x ∈ Ω μθ∧ϕ(x) = f∧(μθ (x), μϕ(x))
• ∀x ∈ Ω μθ∨ϕ(x) = f∨(μθ (x), μϕ(x))
• ∀x ∈ Ω μθ→ϕ(x) = f→(μθ (x), μϕ(x))

Now from theorem 1 it follows that appropriateness measures must satisfy the
laws of excluded middle and idempotence. Hence, by the following theorem due
to Dubois and Prade [1] they cannot be truth-functional except in the trivial case
where all appropriateness values are either 0 or 1.

Theorem 2. Dubois and Prade [1]
If μ is a truth-functional measure and satisfies both idempotence and the law of
excluded middle then ∀θ ∈ L E, ∀x ∈ Ω , μθ(x) ∈ {0, 1}.
However, theorem 2 does not apply to all functional measures, only those which
are truth-functional, hence it may still be possible to define a functional calculus
for appropriateness measures consistent with both definitions 6 and 7. To investi-
gate this possibility further we consider the relationship between appropriateness
measures of compound expressions and those of the basic labels, imposed by defi-
nition 6.

From definition 5 the lambda mapping for a basic label L ∈ L A is given by
λ(L) = {S ⊆ L A : L ∈ S} and hence the mass assignment mx must satisfy the
following constraint imposed by the appropriateness measures for the basic labels
μL(x) : L ∈ L A:

∀x ∈ Ω, ∀L ∈ L A μL (x) =
∑

S⊆L A:L∈S

mx (S)

This constraint, however, is not sufficient to identify a unique mass assignment mx

given values for μL(x) : L ∈ L A. Indeed, there are in general an infinite set of
mass assignments satisfying the above equation for a given set of basic label ap-
propriateness values. Hence, in this context, the assumption of a functional calculus
for appropriateness measures is equivalent to the assumption of a selection function
which identifies a unique assignment from this set [8, 10].
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Definition 9. Mass Selection Function
Let M be the set of all mass assignments on 2L A. Then a mass selection function
(msf) is a function  : [0, 1]|L A| →M such that if ∀x ∈ Ω (μL(x) : L ∈ L A) =
mx then

∀x ∈ Ω ∀L ∈ L A
∑

S⊆L A:L∈S

mx (S) = μL(x)

Now since the value of μθ(x) for any expression θ ∈ L E can be evaluated directly
from mx , then given a mass selection function  we have a functional method for
determining μθ(x) from the basic label appropriateness values, where fθ in defini-
tion 7 is given by:

fθ (μL(x) : L ∈ L A) =
∑

F∈λ(θ)
(μL(x) : L ∈ L A)(F)

In this paper we shall consider the consonant and the independent mass selection
functions as defined below:

Definition 10. Consonant Mass Selection Function
Given non-zero appropriateness measures on basic labels μLi : i=1, . . . , n ordered
such that μLi (x) ≥ μLi+1(x) for i = 1, . . . , n then the consonant mass selection
function identifies the mass assignment,

mx ({L1, . . . , Ln}) = μLn (x)

mx ({L1, . . . , Li }) = μLi (x)− μLi+1 (x) for i = 1, . . . , n

mx (∅) = 1− μL1 (x)

Definition 11. Independent Mass Selection Function
Given appropriateness measures on basic labels μL (x) : L ∈ L A then the indepen-
dent mass selection function identifies the mass assignment,

∀S ⊆ L A mx (S) =
∏

L∈S

μL (x)×
∏

L /∈S

(1− μL (x))

The consonant msf corresponds to the assumption that for each x ∈ Ω an agent
first identifies a total ordering on the appropriateness of labels. They then evaluate
their belief values mx about which labels are appropriate to describe x in such a
way so as to be consistent with this ordering. More formally, let �x denote the
appropriateness ordering on L A for element x so that L1 �x L2 means that L2 is at
least as appropriate as L1 for describing x . When evaluating mx(S) for S ⊆ L A the
agent then makes the assumption that the mass value is non-zero only if for every
label L ∈ S it also holds that L ′ ∈ S for every L ′ ∈ L A for which L �x L ′.

The independent msf simply assumes that when judging the appropriateness of
a label an agent does not take into account the level of appropriateness of any other
label. Although this may seem difficult to justify, it could be reasonable in cases
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where labels relate to different facets of the object. For example, the appropriateness
of the label thin might well be assumed to be independent of the appropriateness of
the label rich.

The following theorems show that the consonant and independent msf result in
familiar combination rules for conjunctions and disjunctions of basic labels (see
[7, 8, 9, 10]).

Theorem 3. If ∀x ∈ Ω , mx is determined from μL(x) : L ∈ L A according to the
consonant msf then for labels L1, . . . , Ln ∈ L A we have that ∀x ∈ Ω:

μL1∧L2∧...∧Ln (x) = min
(

μL1 (x) , . . . , μLn (x)
)

μL1∨L2∨...∨Ln (x) = max
(

μL1 (x) , . . . , μLn (x)
)

Theorem 4. If ∀x ∈ Ω , mx is determined from μL(x) : L ∈ L A according to the
independent msf then for labels L1, . . . , Ln ∈ L A we have that ∀x ∈ Ω:

μL1∧L2∧...∧Ln (x) =
n
∏

i=1

μLi (x)

μL1∨L2∨...∨Ln (x) =
∑

∅�=S⊆{L1,...,Ln}
(−1)|S|−1

∏

L∈S

μL (x)

Notice that for both theorem 3 and 4 the rule does not apply generally but only to
basic labels. This contrasts with fuzzy logic based on the min and max or the product
rule respectively where the combination rules can be applied to any expression in
a truth-functional manner. In fact a recent result due to Tang and Zheng [14] does
show that theorem 3 can be extended to cover all expression involving only ∧ and
∨ and no other connectives.

Theorem 5. Let L E∧,∨ ⊆ L E denote those expressions generated recursively from
L A using only the connectives ∧ and ∨. If ∀x ∈ Ω , mx is determined from μL(x) :
L ∈ L A according to the consonant msf then ∀θ, ϕ ∈ L E∧,∨, ∀x ∈ Ω it holds that:

μθ∧ϕ (x) = min
(

μθ (x) , μϕ (x)
)

and μθ∨ϕ (x) = max
(

μθ (x) , μϕ (x)
)

Example 1. Let Ω = [0, 1] and L A = {small(s),medium(m), large(l)}. As-
sume that the appropriateness measures for the basic labels are defined as trape-
zoidal functions of x as given in Fig. 1. Applying the consonant msf generates the
mass assignments shown in Fig. 2 for the focal elements F = {{s}, {s,m}, {m},
{m, l}, {l}}.

2.4 Label Semantics and Random Sets

In this section we explore connections between label semantics and random sets
and contrast these with the well known links between fuzzy sets and random sets.
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Fig. 1 Appropriateness
measures for labels small,
medium, and large
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Firstly, note that Dx can be viewed as a random set into the power set of labels. From
this perspective we have from definitions 5 and 6 that for basic labels L ∈ L A, the
appropriateness measure μL(x) corresponds to the single point coverage value of L
for random set Dx . That is:

μL(x) = P (L ∈ Dx ) =
∑

S:L∈S

mx (S)

Now this has some similarity to the random set interpretation of fuzzy sets, where a
fuzzy concept θ is modelled by a random set Rθ into the power set of the underlying
universe Ω . (See [3] and [4] by Goodman and Nguyen). The fuzzy set membership
function, M(θ), is then taken to be the single point coverage function for Rθ as
given by:

Fig. 2 Mass assignment
values mx for the focal
elements as generated from
the appropriateness measures
in Fig. 1 according to the
consonant msf
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M (θ) (x) = P (x ∈ Rθ )

Hence, a fundamental difference between the two approaches is that labels seman-
tics considers random sets defined on sets of labels, while the approach of Goodman
and Nguyen defines random sets on sets of values from the underlying universe Ω .
This apparently subtle distinction means that the resulting calculi are quite different.
In particular, the calculus for membership functions resulting from Goodman and
Nguyen’s approach is not functional, although combinations using min and product
can be justified in certain special cases. Also, from a purely practical viewpoint label
semantics allows for finite mathematics to be applied even when the underlying
universe Ω is infinite, provided that the basic label set L A is always assumed to be
finite. This considerably simplifies the resulting calculus making its application to
practical problems much more straightforward.

3 A Model of Assertions

In the previous sections we have introduced appropriateness measures and their
underlying mass assignments as a mechanism by which an agent can assess the
level of appropriateness of label expressions for describing some instance x ∈ Ω .
However, when faced with an object x about which an agent wishes to convey in-
formation to other individuals in the population he/she is faced with a much more
specific decision problem. What expression θ ∈ L E do they choose to assert in
order to describe x and how do they use their appropriateness measure to guide that
choice?

In principle an agent can assert any appropriate expression in L E . However, in
practice there is only a small subset of expressions which are really assertible. In
particular, an agent may tend not to assert expressions which are logically equivalent
to simpler expressions (i.e those involving fewer connectives). For example, neither
¬¬L nor (L ∧ L ′) ∨ (L ∧ ¬L ′) is likely to be asserted instead of L. Also there is
some evidence to suggest that as humans we tend to not use negative statements as
descriptions if at all possible. One is much more likely to describe the colour of this
paper as white rather than not red, even though both expressions are appropriate.
On the other hand we may use purely negative statements in situations where none
of our label descriptors are appropriate. This can certainly occur if we are labelling
elements of a continuum. For example, we may encounter colours for which none
of our colour descriptors are appropriate. Overall, this suggests that while purely
negative expressions may be assertible there is likely to be an a priori propensity to
use positive expressions.

We now introduce a model of the decision process by which an agent identifies
a particular assertion to describe an object, taking account of the measure of appro-
priateness as defined in the previous section. Let AS ⊆ L E denote the finite set of
permitted assertions. Let Ax be the assertion selected by the agent for describing
instance x . Now each set of appropriate labels Dx = F identifies a set of possible
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values for Ax corresponding to those expression θ ∈ AS for which F ∈ λ(θ) (i.e.
those expressions consistent with F). Hence, the mass assignment mx on 2L A natu-
rally generates a mass assignment on sets of possible assertions (2AS) as follows:

Definition 12. Mass Assignment on Assertions
mA

x : 2AS → [0, 1] is defined such that: if ∀G ⊆ AS

mA
x (G) =

∑

F∈F :C(F)=G

mx (F)

where C : F → 2AS and:

∀F ∈ F C (F) = {θ ∈ AS : F ∈ λ (θ)}

Hence, C (F) identifies those assertions which are consistent with the knowledge
that F is the set of appropriate labels.

Providing AS is sufficiently large so that ∀F ∈ F , ∃θ ∈ AS such that F ∈ λ(θ) (i.e.
so that mA

x (∅) = 0), then from definition 12 we can define a belief and plausibility
measure on Ax in the normal manner, so that:

∀S ⊆ AS Bel (Ax ∈ S|x) = BelAx (S) =
∑

G⊆S

mA
x (G)

Pl (Ax ∈ S|x) = PlAx (S) =
∑

G:G∩S �=∅
mA

x (G)

This plausibility measure on assertions can be related directly to appropriateness
measures according to the following theorem:

Theorem 6.

∀θ ∈ AS PlAx ({θ}) = μθ (x)
Proof.

PlAx ({θ}) =
∑

G:θ∈G

mA
x (G) =

∑

F:F∈λ(θ)
mx (F) = μθ (x)

Notice, that BelAx (θ) = mA
x ({θ}) which corresponds to the level of belief that θ

is the only assertible expression which is appropriate to describe x . Now given
the mass assignment mA

x and a prior distribution on the assertible expressions AS
we can define a probability distribution for Ax in accordance with Shafer [12] as
follows:
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Definition 13. Probability of an Assertion

∀x ∈ Ω, ∀θ ∈ AS P (Ax = θ |x) = PA
x (θ) = P (θ)

∑

S⊆AS:θ∈S

mA
x (S)

P(S)

= P (θ)
∑

F∈F :F∈λ(θ)

mx (F)

P (θ ∈ AS : F ∈ λ(θ))

Notice that in the case that the prior probability P on AS is uniform then PA
x is the

pignistic distribution of BelAx as defined by Smets [13]. Also, from Shafer [12] and
theorem 6, we know that:

∀θ ∈ AS mA
x ({θ}) ≤ PA

x (θ) ≤ μθ (x)

In the following we investigate the form of PA
x for different AS. In order to do this

we recall the definition of logical atoms and describe how they are related to the
focal set F .

Definition 14. Logical Atoms

• Let AT T be the logical atoms of L E corresponding to those expressions for
which:

α =
∧

L∈L A

±L

where +L denotes L and −L denote ¬L.
• For each focal element F ∈ F there is an atom αF ∈ AT T equivalent to the

statement Dx = F defined as follows:

αF =
(

∧

L!∈!F

L

)

∧
(

∧

L∈L A−F

¬L

)

Theorem 7. If AS = {αF : F ∈ F} then ∀αF ∈ AS, PA
x (αF ) = mx (F)

Proof.

∀F ∈ F C (F) = {αF } ⇒ mA
x ({αF }) = mx (F) therefore

PA
x (αF ) = P (αF )

mx ({αF })
P (αF )

= mA
x ({αF }) = mx (F)

Theorem 8. If AS = L A then PA
x (L) = P (L)

∑

F :L∈F
mx (F)
P(F)

Proof. Follows trivially since ∀F ∈ F C (F) = F
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Theorem 8 effectively corresponds to the basic model of assertibility as presented
in Lawry’s earlier work on computing with words, including for example [6].

Theorem 9. If AS = L A ∪ {¬L : L ∈ L A} then assuming a uniform prior distri-
bution on AS it holds that:

PA
x (L) = μL (x)

|L A| and PA
x (¬L) = μ¬L (x)

|L A|

Proof.

∀F ∈ F C (F) = F ∪ {¬L : L ∈ L A − F} ⇒
PA

x (L) =
∑

F :L∈F

mx (F)

|F ∪ {¬L : L ∈ L A − F}| =
∑

F :L∈F

mx (F)

|L A|

=
∑

F :L∈F mx(F)

|L A| = μL (x)

|L|

Similarly for PA
x (¬L).

Theorem 10. If AS = L A ∪ {αF : F ∈ F} then

∀F ∈ F PA
x (αF ) =

(

P (αF )

P (F)+ P (αF )

)

mx (F) and

∀L ∈ L A PA
x (L) = P (L)

∑

F :L∈F

mx (F)

P(F)+ P(αF )

Proof. Follows trivially since C(F) = F ∪ {αF }

Example 2. Let L A = {small(s),medium(m), large(l)} and for x ∈ Ω let mx({s,
m}) = 0.6,mx({m}) = 0.4 then consider the following cases:

• Case 1: Take AS = {s,m, l, s ∧ ¬m ∧ ¬l, s ∧ m ∧ ¬l,m ∧ ¬s ∧ ¬l,m ∧
l ∧ ¬s, l ∧ ¬m ∧ ¬s} together with a uniform prior probability distribution on
assertions then:

C ({s,m}) = {s,m, s ∧ m ∧ ¬l} , C ({m}) = {m,m ∧ ¬s ∧ ¬l} therefore

PA
x (s ∧ m ∧ ¬l) = mx ({s,m})

3
= 0.6

3
= 0.2

PA
x (m ∧ ¬s ∧ ¬l) = mx ({m})

2
= 0.4

2
= 0.2

PA
x (s) = mx ({s,m})

3
= 0.6

3
= 0.2

PA
x ({m}) = mx {s,m}

3
+ mx ({m})

2
= 0.2+ 0.2 = 0.4
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Figures 3 and 4 show values for PA
x in this case as a function of x , for the labels

and logical atoms respectively where the basic labels are defined according to the
appropriateness measures shown in Fig. 1.

• Case 2: Take AS = {s,m, l,¬s,¬m,¬l} together with a uniform prior probabil-
ity distribution on assertions then:

C ({s,m}) = {s,m,¬l} , C ({m}) = {m,¬s,¬l} therefore

PA
x (s) = mx ({s,m})

3
= μs (x)

3
= 0.6

3
= 0.2

PA
x (¬s) = mx ({m})

3
= 0.4

3
= μ¬s(x)

3
= 0.1333

PA
x (m) = mx (s,m)

3
+ mx (m)

3
= 1

3
= μm(x)

3
= 0.3333

PA
x (¬m) = 0 = μ¬m(x)

3
PA

x (l) = 0

PA
x {¬l} = 1

3
= 0.3333

Figures 5 and 6 show values for PA
x in this case as a function of x , for the labels

and negated labels respectively where the basic labels are defined according to
the appropriateness measures shown in Fig. 1.

Fig. 3 The probability
distribution PA

x in case 1, for
the labels small, medium, and
large as defined in Fig. 1
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Fig. 4 The probability
distribution PA

x in case 1,
for the atoms
α{s} = s ∧ ¬m ∧ ¬l,
α{s,m} = s ∧ m ∧ ¬l,
α{m} = m ∧ ¬s ∧ ¬l,
α{m,l} = m ∧ l ∧ ¬s, and
α{l} = l ∧ ¬s ∧ ¬m
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Px (α{s,m})
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A

Px (α{s})
A

Px (α{m})
A

Px (α{l})
A

Px (α{m,l})
A

• Case 3: Take AS = {s,m, l} together with a uniform prior probability distribution
on assertions then:

C ({s,m}) = {s,m} , C ({m}) = {m} therefore

PA
x (s) = mx ({s,m})

2
= 0.6

2
= 0.3

PA
x (m) = mx ({s,m})

2
+ mx ({m}) = 0.3+ 0.4 = 0.7

Fig. 5 The probability
distribution PA

x in case 2, for
the labels small, medium, and
large as defined in Fig. 1
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Fig. 6 The probability
distribution PA

x in case 2, for
the negated labels ¬s, ¬m
and ¬l
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Figures 7 and shows the values for PA
x in this case as a function of x , for the

labels defined according to the appropriateness measures shown in Fig. 1.

In example 2 we have assumed a uniform prior distribution on AS. However, this
is somewhat unrealistic in view of the discussion at the beginning of this section. For
instance, if in communications positive assertions are favoured over negative then
we would expect to have a prior P for which P(L) > P(¬L). Also, if one of the
aims of an agent is to be as informative as possible then they would tend, a priori,

Fig. 7 The probability
distribution PA

x in case 3, for
the labels s, m and l
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to favour more precise over more general expressions. In this case, for θ, ϕ ∈ AS
such that θ |= ϕ we would expect that P(θ) ≥ P(ϕ). In the case that a precise prior
probability distribution is specified then an agent could be expected to select his/her
assertion from the pareto set of maximally probable assertions as given by:

{

θ ∈ AS : ∀ϕ ∈ AS, PA
x (ϕ) ≤ PA

x (θ)

}

If necessary, further restrictions might then be imposed in order to select a unique
assertion, perhaps, for example, by minimizing the number of connectives or by
some other interpretability criterion.

On the other hand, the constraints described above are unlikely to be sufficient
to identify a unique prior distribution on AS. This suggests that an imprecise prob-
ability model may be more appropriate. In this case, one approach would be to
define the above pareto set in terms of upper probabilities. For example, if the prior
P is allowed to range across all potential distributions on AS then, according to
theorem 6, this would correspond to:

{

θ ∈ AS : ∀ϕ ∈ AS, μϕ (x) ≤ μθ (x)
}

4 Information from Linguistic Expressions

One of the principle roles of vague linguistic descriptors in communication is to con-
vey useful information in a robust and flexible way. If we learn that ‘John is tall’ then
this tells us something about John’s height, which would then be useful to us if we
were ask to try to identify John from a crowd of people, each with different heights.
Generally, such descriptions across a range of attributes provide useful guides in
complex search problems [11]. But what is the nature of the information conveyed
in assertions of this kind and how can we model the associated uncertainty? In this
section we investigate the problem from a label semantics perspective.

Consider a scenario in which, agent A makes the assertion ‘x is θ ’ to agent B .
We now consider several models of the information conveyed to B by this assertion
which are consistent with the label semantics framework. The study is simplified by
making the following assumptions:

• B assumes A is telling the truth.
• B assumes A uses the expression θ in the same way as him/her. (i.e. both A and

B have the same appropriateness measure μθ(x))

While these assumptions might be questioned they do allow us to focus specifi-
cally on the linguistic uncertainty in the information that A conveys to B . Also, B
might justify the second assumption to him or herself along the lines that he/she
believes their current model of the conventions of language use (as modelled by
their appropriateness measure), which have been learnt from experience, is a rea-
sonable approximation of the ‘actual’ conventions employed across the population.
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Evidence for this might be based on B’s impression that he/she has both understood
other agents and been understood by them in pervious exchanges of this kind.

4.1 Bayesian Models

Here we present two Bayesian models of B’s uncertainty based on subtly different
interpretations of the assertion ‘x is θ ’. Both models require that B holds prior be-
liefs regarding the underlying universe Ω in this case represented by a prior density
function f 1.

(i) B interprets A’s assertion to mean that θ is appropriate to describe x . Let
P(θ |x) denote B’s subjective probability that θ is appropriate given x , corre-
sponding to μθ (x) in label semantics. Applying Bayes’ theorem B then obtains
a posterior density function on Ω given by:

∀x ∈ Ω f (x |θ) = P(θ |x) f (x)
∫

Ω
P(θ |x) f (x)dx

= μθ(x) f (x)
∫

Ω
μθ(x) f (x)dx

(ii) B interprets A’s assertion to mean that θ is assertible as a description of x . In
order for B to evaluate a posterior density in this case, he/she must assume that
B shares their view on what expressions are assertible (i.e they must have the
same AS) and also have the same prior distribution on assertible expressions.
In summary, A and B should have the same probability distribution PA

x . In this
case:

∀x ∈ Ω f (x |θ) = PA
x (θ) f (x)

∫

Ω
PA

x (θ) f (x)dx

4.2 Possibilistic Models

In this sub-section we present a possibilistic model of B’s uncertainty based on a
looser interpretation of A’s assertion. Specifically, B interprets ‘x is θ ’ to mean
simply that θ is highly appropriate as a description of x . This is formalised by the
constraint μθ(x) ≥ α for some unknown threshold value α between 0 and 1. This
restricts x to a set of possible values with appropriateness of θ at least α (i.e. θα =
{x ∈ Ω : μθ(x) ≥ α}). However, since α is unknown we define a measure of the
possibility of x as the maximal value of α for which the constraint holds:

π(x |θ) = sup {α ∈ [0, 1] : x ∈ θα} = μθ (x)

1 We assume here that Ω is a compact interval of the real line.
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Fig. 8 The posterior
distribution obtained using
Bayesian method (i)
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A subtle variation of this model can be obtain if B interprets A’s assertion as θ is
highly assertible, formally represented by the constraint PA

x (x) ≥ α. In this case
the set of possible values is given by θAα = {x ∈ Ω : PA

x (x) ≥ α} resulting in the
following possibility distribution:

πA(x |θ) = sup
{

α ∈ [0, 1] : x ∈ θAα
}

= PA
x (θ)

Fig. 9 The posterior
distribution obtained using
Bayesian method (ii)
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Fig. 10 Possibility measures
π(x|medium) = μmedium(x)
and πA(x|medium) =
PA

x (medium)
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Now trivially from theorem 6 we have that πA(x |θ) ≤ π(x |θ) so that the first
model clearly generates the most general distribution. This also suggests that in
cases where B is not prepared to make assumptions concerning A’s prior distribution
on assertions, then the distribution π(x |θ) provides a good possibilistic model of
his/her uncertainty.

Example 3. Consider the labels L A = {small,medium, large} defined as in Fig. 1,
to describe elements in Ω = [0, 1]. Suppose A asserts that ‘x is medium’ and sup-
pose that B has a prior distribution f on Ω corresponding to a normal distribution
N (0.5, 0.25) normalised so as to give a density of 1 on [0, 1]. Figure 8 then shows
B’s posterior density based on Bayesian method (i) where the assertion is interpreted
as meaning that medium is appropriate to describe x . Figure 9 shows B’s posterior
density based on Bayesian method (ii) where the assertion is interpreted as meaning
that medium is assertible given x . This is based on case 3 of example 2 where
AS = {small,medium, large} and where there is a uniform prior distribution on
assertions. The two types of possibility measure conditional on the assertion ‘x is
medium’ are then also shown in Fig. 10.

5 Conclusions

In this paper we have presented an overview of label semantics as a formal frame-
work for modelling and computing with words. In contrast to Zadeh’s methodology
this approach is based on measures of an agent’s subjective belief that a linguistic
expression is appropriate to describe a particular object or value. Central to label
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semantics is the epistemic stance according to which individual agents believe in the
existence of a set of linguistic conventions, shared across the population, governing
what labels are appropriate to use in a given context. In this framework appro-
priateness measures can be functional but never truth-functional, and certain well
known operators can be applied for combining basic labels both conjunctively and
disjunctively.

A model of the uncertainty associated with selecting a unique assertion for de-
scribing an object, has been proposed and a number of special cases have been
investigated. These correspond to different a priori assumptions about what expres-
sion are assertible. In context it is shown that the appropriateness measure of an
expression is an upper probability that it will be asserted.

Finally, we have considered label semantics based models of the information
that is conveyed by linguistic assertions of the form ‘x is θ ’. In particular, we
have proposed both Bayesian and possibilistic posterior distributions resulting from
conditioning on such assertions. These arise from different interpretations of the
assertion within the label semantics framework.
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On the Construction of Models Based on Fuzzy
Measures and Integrals

Vicenç Torra

Abstract In this chapter, we review some families of fuzzy measures and their use
in fuzzy integrals. We will also review the determination of fuzzy measures from
examples in the case of the Choquet integral.

1 Introduction

Aggregation operators [2, 23] are functions that are used to combine data from in-
formation sources. Such information sources can be of any nature, either experts,
sensors or agents (in a multi-agent system). Aggregation operators combine the data
these sources supply to give a data of better quality.

Therefore, the data supplied by the sources is the basic object for aggregation
operators, and it is the basis for computing the output. Nevertheless, another element
plays a central role: the parameters of such operators. Most aggregation operators
permit to consider some information about the importance of the sources. For exam-
ple, in the case of the weighted mean, the weighting vector plays this role. Weights
permit to establish which are the sources that are more reliable, or which is the
expert with a higher degree of expertise.

Such information about the reliability or importance of the sources corresponds
in some sense to the so-called background knowledge, using the jargon in artificial
intelligence. That is, the weights are typically used to represent some knowledge on
the sources that is already known at the time of implementing the system.

In the case of fuzzy integrals, fuzzy measures play this role. Fuzzy integrals are
versatile tools for data aggregation. Formally speaking, fuzzy integrals integrate
a function with respect to a fuzzy measure. The function is a mapping between
the sources and the value that such sources supply. The fuzzy measure is used to
represent the prior information on the sources.

In this chapter we will present a review on fuzzy measures for using them in
fuzzy integrals. The structure of the paper is as follows. First, in Sect. 2 we will
review some fuzzy integrals. Then, in Sect. 3, we will consider a few families of
such fuzzy measures. Then, in Sect. 4 we will describe the problem of measure
determination from examples. The paper finishes with some conclusions.

H. Bustince et al., (eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation
and Models. C© Springer 2008 89
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2 Fuzzy Integrals

The use of fuzzy integrals for aggregation needs some formalization. First, we need
to define the set of information sources, let it be X = {x1, . . . , xN }. Then, we need
to express the datum (a number) supplied by source xi . This is represented with a
function f from X into R. Then, the aggregation of the data supplied by sources X
can be computed as the integral of the function f with respect to a fuzzy measure.

A fuzzy measure is a set function on X . It assigns a value in [0, 1] to each sub-
set A of X . Fuzzy measures are monotonic with respect to set inclusion. They are
formally defined as follows:

Definition 1. [16, 17] A fuzzy measure μ is a set function μ : ℘(X) → [0, 1] that
satisfies:

• μ(∅) = 0, μ(X) = 1
• A ⊆ B implies μ(A) ≤ μ(B)

In this definition, boundary conditions are given first, and, then, monotonicity with
respect to set inclusion.

Fuzzy measures are used to represent the importance or relevance of a set, and
play a role similar to the one of weights in the weighted mean. Several families of
fuzzy measures are described in the next section.

The most widely used fuzzy integrals are the Choquet and the Sugeno integrals.
They are defined as follows:

Definition 2. [3] The Choquet integral of a function f : X → R
+ with respect to a

fuzzy measure μ is defined by:

(C)

∫

f dμ =
N
∑

i=1

[ f (xs(i))− f (xs(i−1))]μ(As(i)) (1)

where f (xs(i)) indicates that the indices have been permuted so that 0 ≤ f (xs(1))

≤ · · · ≤ f (xs(N)) ≤ 1, where f (xs(0)) = 0 and where As(i) = {xs(i), . . . , xs(N)}.
There exists a previous definition (see [24]) but for additive measures.

Definition 3. [16, 17] The Sugeno integral of a function f : X → [0, 1] with
respect to a fuzzy measure μ is defined by:

(S)
∫

f dμ = max
i=1,N

min( f (xs(i)), μ(As(i))) (2)

Here, s and As(i) are defined as above.

Other fuzzy integrals have been defined in the literature. We can distinguish
among them the ones that generalize Choquet and Sugeno integrals. Generaliza-
tion is in the sense that a given particularization can reduce the integral to the for-
mer ones. The twofold integral defined below is an example of such expressions.
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The t-conorm integral [12] and the general fuzzy integral [1] are other examples of
fuzzy integrals.

Definition 4. [21, 13] The twofold integral of a function f : X → [0, 1] with respect
to fuzzy measures μS and μC is defined by:

T IμS,μC ( f ) =
n
∑

i=1

(

(

i
∨

j=1

f (xs( j )) ∧ μS(As( j ))
)(

μC (As(i))− μC(As(i+1))
)

)

(3)

Here, s and As(i) are defined as above. Naturally, As(n+1) = ∅.

When μC = μ∗, the twofold integral reduces to the Sugeno integral and when
μS = μ∗, the twofold integral reduces to the Choquet integral. Here, μ∗ represents
ignorance and is defined by μ(∅) = 0 and μ∗(A) = 1 when A �= ∅.

3 Fuzzy Measures

There exist several families of fuzzy measures. The most remarkable ones are the
additive measures. They correspond to probability measures. A fuzzy measure is
additive when μ(A ∪ B) = μ(A)+ μ(B) for A ∩ B = ∅.

An important result that links the Choquet integral with the weighted mean is
that the Choquet integral with respect to an additive fuzzy measure corresponds to
a weighted mean with weights μ({xi}).

Before presenting some of the families of fuzzy measures, we review the defini-
tion of the Möbius transform:

Definition 5. [15] The Möbius transform m of a fuzzy measure μ is defined for all
subsets A of X by:

mμ(A) :=
∑

B⊆A

(−1)|A|−|B|μ(B) (4)

Then, given a Möbius transform m, the set function μ defined for all A ⊆ X by:

μ(A) =
∑

B⊆A

m(B)

is a fuzzy measure (the fuzzy measure with Möbius transform m).
It can be proven that for additive fuzzy measures, the Möbius transform m of a

fuzzy measure μ satisfies m(A) = 0 for all |A| ≥ 2.
The so-called k-additive fuzzy measures can be seen as a generalization of addi-

tive fuzzy measures. They are so in the sense that instead of having m(A) = 0 for
all |A| > 1, they have m(A) = 0 for all |A| > k.
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Definition 6. [8] μ is a k-order additive fuzzy measure if its Möbius transform m
is such that m(A) = 0 for all S ⊆ X such that |S| > k and there exists at least one
S ⊆ X with |S| = k such that m(S) �= 0.

This family of measures has the property that cover all the space of fuzzy mea-
sures. That is, for any fuzzy measure μ, there is a k such that μ is a k-order additive
fuzzy measure.

k-additive fuzzy measures permit to express additive interactions for sets of
up to k sources (e.g. interaction of k criteria in multi-criteria decision making
applications).

Another family of measures are the symmetric fuzzy measures. They are mea-
sures where μ(A) only depends on the cardinality of the set. Such measures are
defined by:

Definition 7. A fuzzy measure μ is symmetric when for all A, B ⊆ X we have that:

if |A| = |B| then μ(A) = μ(B)

An important result for such measures is that we can express them in terms of a
weighting vector w = (w1, . . . , w|X |) as follows:

μ(A) =
|A|
∑

i=1

wi (5)

Naturally, wi are positive and add to one (as μ(X) = 1).
The Choquet integral with respect to a symmetric fuzzy measure corresponds to

the OWA operator [26], and the Sugeno integral with respect to a symmetric fuzzy
measure corresponds to the WMax operator (introduced in [4]).

Belief and plausibility measures are another example of fuzzy measures. They
are formally defined as fuzzy measures that satisfy an additional condition. A fuzzy
measure Bel is a belief measure if the following condition is satisfied:

Bel(A1 ∪ ... ∪ An) ≥
∑

j

Bel(A j )−
∑

j<k

Bel(A j ∩ Ak)+ ...+

(−1)n+1 Bel(A1 ∩ ... ∩ An) (6)

Instead, a fuzzy measure Pl is a plausibility if it satisfies:

Pl(A1 ∩ ... ∩ An) ≤
∑

j

Pl(A j )−
∑

j<k

Pl(A j ∪ Ak)+ ...+

(−1)n+1 Pl(A1 ∪ ... ∪ An) (7)

Equivalently, we can say that a fuzzy measure is a belief function when its
Möbius transform is always positive. For these measures the Möbius transform is
known as a basic probability assignment.
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Another example of fuzzy measures are the so-called distorted probabilities.
They are measures that can be expressed in terms of a probability and a function
applied to it that distorts the probability. Formally speaking, the are defined as shown
below:

Definition 8. [6, 7] A fuzzy measure μ is a distorted probability if it is repre-
sented by a probability distribution P on (X, ℘ (X)) and a function f that is non-
decreasing with respect to a probability P.

The Choquet integral with respect to a distorted probability results into the
WOWA operator. The WOWA operator was introduced in [18].

Distorted probabilities were generalized into m-dimensional distorted probabil-
ities. They are measures that can be decomposable into a set of probabilities and a
function to combine them.

Definition 9. [14] μ is an at most m-dimensional distorted probability if there exists
a function f on [0, 1]m, a partition P := {X1, X2, · · · , Xm} of X, and probabilities
Pi on (Xi , ℘ (Xi )) such that

μ(A) = f (P1(A ∩ X1), P2(A ∩ X2), · · · , Pm(A ∩ Xm)) (8)

where f is strictly increasing with respect to the i-th axis for all i = 1, 2, . . . ,m.
An at most m-dimensional distorted probabilityμ is said to be an m-dimensional

distorted probability if it is not an at most m − 1 dimensional one.

This family of measures is similar to k-order additive ones because it also covers
all the space of fuzzy measures. Note that any fuzzy measure can be expresssed
using the partition Xi = {xi } for all i in {1, . . . , |X |}.

Another generalization of additive fuzzy measures is obtained replacing addition
by another operator. This is the case of ⊥-decomposable fuzzy measures where the
addition is replaced by a t-conorm. A t-conorm (see e.g., [9]) is a binary operator
(⊥ : [0, 1] × [0, 1] → [0, 1]) extensively used in fuzzy logic that satisfies: (i)
symmetry (⊥(x, y) = ⊥(y, x)); (ii) associativity (⊥(⊥(x, y), z) = ⊥(x,⊥(y, z)));
(iii) monotonicity (⊥(x, y) ≤ ⊥(x ′, y ′) if x ≤ x ′ and y ≤ y ′); and (iv) that its
neutral element is 0 (⊥(x, 0) = x for all x).

The maximum, and the bounded sum (⊥(x, y) = min(1, x + y)) are examples
of t-conorms.

Definition 10. (see e.g., [5, 25]) μ is a ⊥-decomposable fuzzy measure if for all
A, B ⊆ X with A ∩ B = ∅ we can express it as:

μ(A ∪ B) = μ(A)⊥μ(B)

for a given t-conorm⊥.

Sugeno λ-measures are an example of ⊥-decomposable fuzzy measures. Such
measures are defined as follows:

Definition 11. [17] μ is a Sugeno λ-measure if for some fixed λ > −1 we
have that:
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μ(A ∪ B) = μ(A)+ μ(B)+ λμ(A)μ(B) (9)

for all A ∩ B = ∅
Hierarchically ⊥-decomposable fuzzy measures [19] are a generalization of ⊥-

decomposable fuzzy measures. The generalization starts from a hierarchy of the
elements in X . Then, a t-conorm is assigned to each node, and such t-conorm is
used to combine the measures of subsets.

The generalization comes from the fact that in a⊥-decomposable fuzzy measure,
a single t-conorm is used for all combination of pairs of measures μ(A) and μ(B).
Instead, in a hierarchically decomposable one different t-conorms might be used for
combining different subsets.

4 Parameter Determination

We consider in this section the problem of parameter determination for the Choquet
integral. There are different approaches for solving this problem. One of them is
based on learning parameters from examples. That is, we have a set of examples or
cases. Each example consists on the values that the information sources give and
the expected output of the aggregation for such inputs. So, formally speaking, for
a set of sources x1, . . . , xN a set of M examples consists on the inputs f j (xi ) for
j = 1, . . . , M and i = 1, . . . , N and an outcome o j for j = 1, . . . , M .

Then, the goal is to obtain a fuzzy measure μ such that

C Iμ( f j (x1), . . . , f j (xN ))

is as much similar as possible to o j for all j = 1, . . . , M . Usually, the goodness of
the solution is evaluated using the Euclidean distance.

The most general case is to consider fuzzy measures with no additional con-
straints (we call such measures unconstrained fuzzy measures). That is, only satis-
fying the axioms on boundary conditions and on monotonicity.

Up to our knowledge, this problem was first considered by Mori and Murofushi
in [11, 23]. They showed that this is a quadratic problem with linear constraints.

To solve the problem we need to represent the objective function and the con-
straints. Software exists that solve quadratic problems given the constraints. The
formulation of the objective function and the constraints can either be using μ(A)
for all non empty sets A ⊆ X or using the Möbius transform ofμ. Both formulations
are equivalent. We use the formulation based on the Möbius because it permits to
represent in a simple way some constrained fuzzy measures.

We now outline some results related with the process of learning some con-
strained fuzzy measures for a Choquet integral:

Additive fuzzy measures: This problem can be solved easily adding m(A) = 0
for all |A| > 1 to the optimization problem for unconstrained fuzzy measures.
Alternatively, we can remove the corresponding variables from the model. Note
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that the learning of additive fuzzy measures for a Choquet integral corresponds to
the learning of a weighting vector in a weighted mean. Naturally, this latter prob-
lem is much easier solved from a computational point of view than the original
one with the Choquet integral.

k-order additive fuzzy measures: This situation corresponds to the quadratic
problem with linear constraints requiring m(A) = 0 for all A with a cardinality
larger than k. As for the case of the additive fuzzy measures, we can just rewrite
the constraints and the objective function removing such variables.

Symmetric fuzzy measures: Such measures can also be determined using a
quadratic problem with linear constraints. Symmetry of the measure implies that
the Möbius transform only depends on the cardinality of the measure. For this
kind of measures, we can reformulate the problem so that only the (w1, . . . , w|X |)
in (5) are considered. Note that these wi are positive and they add to one. This
is again a quadratic problem with linear constraints. The determination of a sym-
metric fuzzy measure for the Choquet integral corresponds to the determination
of the weights for the OWA operator. Again, solving the problem for the OWA
is much easier from a computational point of view than the general one for the
Choquet integral.

Belief measures: This corresponds to the general optimization problem adding
that the Möbius is always positive. So, we add a constraint for each subset A of
X .

Distorted probabilities: The determination of distorted probabilities cannot be
formulated with a quadratic problem with linear constraints. A method based on
the gradient descent has been used for this problem. The method bootstraps from
the optimal solution of the weighted mean and the OWA. This method that is
described in [20, 22] returns both the probability distribution and the distortion
function. Note that this problem is equivalent to determine the weights for the
WOWA operator.

m-dimensional distorted probabilities: The optimization problem for learning
such fuzzy measures leads to a complex optimization problem. The only approach
considered so far is based on the gradient descent, as in the case of distorted
probabilities. See [14] for details.

Additional details for such methods for parameter determination are explained
in [23]. See also the chapter by Beliakov and Calvo in this monograph. They give
details on methods for parameter determination. Among other operators, they also
consider the case of the Choquet integral. Other fuzzy measures, not considered in
this chapter, are also analyzed as e.g. Sugeno λ-measures.

5 Conclusions and Future Work

In this paper we have reviewed a few families of fuzzy measures. Fuzzy integrals
are useful aggregation operators. Nevertheless, the requirement of 2|X | − 2 parame-
ters makes their application difficult. So, fuzzy measures with a reduced number of
parameters are useful in real applications. Research in this area will go on.
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Additionally, families that permit to cover all the space of measures varying a
parameter permit to ease the process of finding a compromise between generality
and simplicity, or between 2|x |−2 parameters or only |X |. New families of measures
will be developed satisfying this property.

Additionally, it is necessary to develop new algorithms to determine the mea-
sures, either from examples or helping an expert to define them. Such algorithms
depend not only on the type of the measure but also on the fuzzy integral used.
Research on the other types of fuzzy integrals (Sugeno, twofold [10], etc.) is also
needed.
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techniques d’aide à la décision, Thèse d’Etat, Univ. de Grenoble, 1983.
5. Dubois, D., Prade, H., (1982), A class of fuzzy measures based on triangular norms - A general

framework for the combination of uncertain information, Int. J. of General Systems, 8, 43–61.
6. Edwards, W., (1953), Probability-Preferences in Gambling, American Journal of Psychology

66, 349–364.
7. Edwards, W., (1962), Subjective probabilities inferred from decisions, Psychological review

69, 109–135.
8. Grabisch, M., (1997), k-order additive discrete fuzzy measures and their representation, Fuzzy

sets and systems 92:2, 167–189.
9. Klement, E. P., Mesiar, R., Pap, E., (2000), Triangular Norms, Kluwer Academic Publisher.

10. Imai, H., Torra, V., (2003), On a modeling of decision making with a twofold integral, Proc.
EUSFLAT 2003, 714–717.

11. Mori, T., Murofushi, T., (1989), An analysis of evaluation model using fuzzy measure and the
Choquet integral, Proc. of the 5th Fuzzy System Symposium, 207–212, in Japanese.

12. Murofushi, T., Sugeno, M., (1991), Fuzzy t-conorm integral with respect to fuzzy measures:
Generalization of Sugeno integral and Choquet integral, Fuzzy Sets and Systems, 42, 57–71.

13. Narukawa, Y., Torra, V., (2004), Twofold integral and Multi-step Choquet integral, Kyber-
netika, 40:1 39–50.

14. Narukawa, Y., Torra, V., (2005), Fuzzy measure and probability distributions: distorted prob-
abilities, IEEE Trans. on Fuzzy Systems, 13:5, 617–629.

15. Rota, G.-C., (1964), On the Foundations of Combinatorial Theory. I. Theory of Möbius Func-
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Interpolatory Type Construction of General
Aggregation Operators

Gleb Beliakov and Tomasa Calvo

Abstract In this chapter we examine a number of methods to construct aggregation
operators of interpolatory type for specific applications. The construction is based
on the desired values of the aggregation operator at certain prototypical points, and
on other desired properties, such as conjunctive, disjunctive or averaging behaviour,
symmetry and marginals.

1 Introduction

Construction of aggregation operators is an important practical issue when building
fuzzy systems. There exist a large number of families of aggregation operators, with
a wide range of properties, and the choice of the operator suitable for a particular
system is not simple. Overviews of the most important families of aggregation op-
erators can be found in [11, 14].

Construction methods typically depart from the existing classes of operators, or
from certain theoretical properties (such as functional equations [11]). In this article
we consider alternative constructions which are based on the desired values of the
operator at certain points (or subsets).

The main idea is to obtain the values of an aggregation operator at certain mean-
ingful points (that would be easily assessable by the decision maker), and determine
the aggregation operator on the whole of its domain by interpolation, or approxima-
tion. The reason behind is that it is extremely difficult, if not impossible, to extract
such specific information as an algebraic form, or a full set of desired mathematical
properties form the experts in the field when building a particular fuzzy system. On
the other hand, it is much easier to obtain the numerical values of the aggregation
operator for specific inputs. When working with the experts, this amounts to pre-
senting them with a number of particular cases and asking for their judgement in
each case – a rather simple and straightforward procedure [47]. Alternatively, it is
often possible to observe and record the decision patterns of the experts and extract
information from there. Finally, one can automate this process in online decision
support or e-commerce systems and obtain the data by recording users’ actions.

Besides the raw data, it is often possible to use certain general properties of the
desired aggregation operator, such as commutativity, idempotency, and conjunctive

H. Bustince et al., (eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation
and Models. C© Springer 2008 99
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or disjunctive behaviour. These properties can be directly interpreted by the experts,
but they are not sufficient by themselves to construct a specific family of aggregation
operators. However, when they are used with the data, they help to construct a much
tighter approximation to the desired aggregation function.

The methods discussed in this article will be referred to as pointwise, or inter-
polatory type constructions. These methods do not recover any specific algebraic
formula, but produce an algorithm, capable of calculating the value of the aggrega-
tion operator for any input arguments. It is similar to black-box type constructions
when using, e.g., neural networks, although the presented methods must also ensure
consistency with the fundamental properties of aggregation operators. While such
algorithms may not be suitable for manual calculations, for computer systems they
are as good as having an algebraic formula in terms of efficiency and correctness of
results.

This approach has recently attracted attention of a number of researchers. For in-
stance, in [32, 36] the authors consider construction of aggregation operators based
on their marginal values and diagonal sections. M. Grabisch [26] proposed piece-
wise linear interpolatory method for unipolar and bipolar operators, which recovers
Choquet and Sugeno integrals. In statistical literature an issue of identifying copulas
(which can be viewed as special cases of aggregation operators) was dealt with in
[41], and recently in [20].

In this article we consider pointwise constructions of several important families
of aggregation operators and also of general aggregation operators. In the first case
we will rely on univariate generating functions which define n-variate aggregation
operators by means of certain equations. We examine in detail associative aggre-
gation operators (triangular norms, triangular conorms, uninorms and nullnorms)
and other generated operators such as quasi-arithmetic means (Sect. 7). In the case
of general aggregation operators, we examine tensor product monotone splines
(Sect. 4) and optimal Lipschitz interpolation (Sect. 5).

2 Preliminaries

Overviews of aggregation operators and their properties are given in [11, 14, 15],
and also in this volume [28]. We list only the relevant definitions.

Definition 1. An aggregation operator is a function F :
⋃

n∈N

[0, 1]n → [0, 1] such

that:

(i) F(x1, . . . , xn) ≤ F(y1, . . . , yn) whenever xi ≤ yi for all i ∈ {1, . . . , n}.
(ii) F(t) = t for all t ∈ [0, 1].

(iii) F(0, . . . , 0
︸ ︷︷ ︸

n−t imes

) = 0 and F(1, . . . , 1
︸ ︷︷ ︸

n−t imes

) = 1

Each aggregation operator F can be represented by a family of n-ary operators
fn : [0, 1]n → [0, 1] given by fn = F |[0,1]n for n = 1, 2, 3, . . .. It is possible use
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such a representation to formulate the properties of aggregation operators: a given
property holds for F if and only if it holds for all fn, n = 2, 3, . . .

Let t, e, a ∈ [0, 1]. e(t, i) will denote a vector whose components are all e except
the i -th component: e(t, i) = (e, . . . , e, t, e, . . . , e). a(x, i) will denote a vector
whose i -th component is a: a(x, i) = (x1, . . . , xi−1, a, xi+1, . . . , xn).

• An aggregation operator F is called averaging if all fn are bounded by

min(x) = min
i=1,...,n

xi ≤ fn(x) ≤ max
i=1,...,n

xi = max(x).

• An aggregation operator is called idempotent if fn(t, t, . . . , t) = t for any
t ∈ [0, 1] and any n ∈ lN. Note that since aggregation operators are monotone,
idempotency is equivalent to the averaging behaviour.

• An aggregation operator F is called conjunctive if all fn are bounded by

fn(x) ≤ min(x).

• An aggregation operator F is called disjunctive if all fn are bounded by

max(x) ≤ fn(x).

• An aggregation operator fn is called symmetric (commutative) if fn(x) =
fn(x P) for any x ∈ [0, 1]n and any P , where x P is a permutation of the compo-
nents of x .

• A binary aggregation operator has a neutral element e ∈ [0, 1] if ∀t ∈ [0, 1],
f2(t, e) = f2(e, t) = t . In the general case, F has a neutral element e if for any
n > 2

fn(x1, . . . , xi−1, e, xi+1, . . . , xn) = fn−1(x1, . . . , xi−1, xi+1, . . . , xn)

for e at any position within the vector x . Applying this formula iteratively, one
obtains

∀t ∈ [0, 1], i ∈ {1, . . . , n} : fn(e(t, i)) = t . (1)

• An aggregation operator F has an annihilator a ∈ [0, 1] if ∀n,∀x ∈ I n :
fn(a(x, i)) = a for all i ∈ {1, . . . , n}.

Throughout this paper the set of empirical data (dataset) will be denoted by
D = {(xk, yk)}Kk=1. It consists of K input-output tuples, xk ∈ [0, 1]n, yk ∈ [0, 1].
We concentrate on pointwise construction of n-ary aggregation operators fn(x)
from the dataset D, possibly subject to some additional properties identified by the
experts. Thus we require from the function fn the following minimal set of condi-
tions: to be monotone increasing in each argument and satisfy fn(0, 0, . . . , 0) = 0
and fn(1, 1, . . . , 1) = 1. Let us denote the set of all monotone increasing functions
of n arguments by Mon. The generic mathematical problem we solve is
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Problem 1
To find fn(x) ∈ Mon, fn(xk) = yk, k = 1, . . . , K , such that fn(0, . . . , 0) = 0

and fn(1, . . . , 1) = 1.

Sometimes it will be impossible to find an exact solution to Problem 1 by a given
method, perhaps due to inaccuracies in the data. In this case we will look for a
solution that fits the data best by minimizing

(

K
∑

k=1

| fn(x
k)− yk |p

)1/p

, p ≥ 1, (2)

subject to fn(x) ∈ Mon, fn(0, . . . , 0) = 0, fn(1, . . . , 1) = 1 (plus other specific
properties). We concentrate on the cases p = 2 (constrained least squares regres-
sion) and p = 1 (constrained least absolute deviation problem). The latter case is
less sensitive to outliers and may present computational advantages.

There are few general methods of monotone multivariate interpolation that can
be used for scattered data, i.e., when the data abscissae xk, k = 1, . . . , K are not
structured (e.g., lie on a rectangular grid). Scattered data are typical when the data
comes from observations, therefore we concentrate on that case. We consider two
groups of methods.

Methods in the first group reduce the approximation problem to the univariate
case, in which monotone approximation methods are abundant. Methods that rely
on approximation of additive generators and tensor product schemata belong to this
group. Methods in the second group deal with the multivariate problem directly.

3 Associative and Generated Aggregation Operators

Methods in this group rely on the existence of a univariate function with cer-
tain properties, which generates multivariate aggregation operators through various
equations. The approach is to identify the generating function, and then to construct
the aggregation operator itself. The results in this section are taken from [4, 6, 9].

3.1 Triangular Norms and Conorms

Triangular norms and conorms (t-norms and t-conorms) are associative and commu-
tative aggregation operators with the neutral element e = 1 and e = 0 respectively.
A comprehensive overview of these operators is given in [35], see also [11, 33].
Since t-norms and t-conorms are dual to each other (T (x, y) = 1−C(1−x, 1−y)), it
will be sufficient to deal with t-norms only, as the results for t-conorms are obtained
by duality. We concentrate on continuous t-norms. An important class of t-norms is
called Archimedian t-norms. These are the ones satisfying
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∀(x, y) ∈ [0, 1] ∃n ∈ lN : fn(x, . . . , x) < y.

For the purposes of approximation it is sufficient to study Archimedian t-norms,
because every continuous non-Archimedian t-norm can be approximated arbitrary
well with continuous Archimedian t-norms [31, 30].

Continuous Archimedian t-norms T possess continuous additive generators g :
[0, 1] → [0,∞], such that

T (x1, x2, . . . , xn) = g(−1)

(

n
∑

i=1

g(xi )

)

, (3)

where the pseudoinverse is defined by

g(−1)(t) =
{

g−1(t) if t ≤ g(0),

0 otherwise.

Additive generators g are strictly monotone decreasing, and satisfy g(1) = 0 and
either g(0) = ∞ (strict t-norms) or g(0) = a < ∞ (nilpotent t-norms). They are
defined up to an arbitrary positive multiplier, so with no loss of generality we put
g(0) = 1 for nilpotent t-norms and g(ε) = 1 for strict t-norms, where ε will be
defined later.

It is possible to fit continuous Archimedian t-norms to data by approximating
their additive generators on [0, 1]. This is because the convergence of a sequence of
additive generators on [0, 1] is equivalent to the convergence of the corresponding
t-norms [30, 31, 35]. Since neither the shape of g, nor its algebraic form is fixed,
we will represent g with a spline S, given as a linear combination of some basis
functions B j

S(t) =
J
∑

j=1

c j B j (t). (4)

We will use linear splines (i.e. piecewise linear continuous functions) since there
are no requirements on smoothness of the additive generator. Of course, if smooth-
ness is desired, splines of higher order can be used. The knots of the spline (where
the linear pieces are joined together) will not be bound to the data, but chosen a
priori. Such splines are called regression splines. Our goal is to determine spline co-
efficients c j . In a suitably chosen basis B j , the condition of monotonicity translates
in simple negativity requirement [3, 2] (such a basis consists of linear combinations
of standard B-splines).

Consider (3). For an observation k write

g(xk
1)+ g(xk

2)+ . . .+ g(xk
n) ≈ g(yk). (5)

K such equations must be satisfied in the least squares sense to fit the generator to
the data. We note the difference between the classical approximation problem and
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the problem of fitting additive generators. In the classical setting the target values
yk are given. In our case we have a set of equations (5) which have the unknown
function g on both sides of the equation.

Replacing g with spline S we obtain

n
∑

i=1

(
J
∑

j=1

c j B j (x
k
i )
)

−
J
∑

j=1

c j B j (y
k) ≈ 0, k = 1, . . . , K . (6)

By rearranging the terms, (6) becomes

J
∑

j=1

c j

(
n
∑

i=1

B j (x
k
i )− B j (y

k)
)

≈ 0, k = 1, . . . , K . (7)

In order to find the unknown coefficients c j we need to solve the system of linear
equations (7), subject to restrictions of monotonicity (c j ≤ 0) and

J
∑

j=1

c j B j (1) = 0, (8)

J
∑

j=1

c j B j (0) = 1 or
J
∑

j=1

c j B j (ε) = 1, (9)

depending on whether we want a nilpotent or a strict t-norm.
Problem (7)-(9) is called the linear least squares problem with equality and in-

equality constraints (LSEI). It was studied in detail in [23, 24, 26], and one of the
methods of its solution is based on active set methods used in quadratic program-
ming. One implementation is available from http://www.netlib.org as Algo-
rithm 587. The problem is formulated as a system of equations and inequalities

Ax ≈ b,Cx = c,Dx ≥ d, (10)

where the first system is satisfied in the least squares sense, and the other two sys-
tems are satisfied exactly.

In our case, D = −I, d = 0, matrix C is defined by (8)-(9), b = 0, and the entries
of A are given by

Akj =
n
∑

i=1

B j (x
k
i )− B j (y

k).

Solution of (10) yields the regression spline (11), which approximates the addi-
tive generator and defines the operator through (3). We should note that in principle,
we can use any set of basis functions B j in (11), not necessarily B-splines, (e.g.,
generalized polynomials), and problem (7) will remain unchanged. However the
condition of monotonicity will take a more complicated form. The advantage of
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using B-spline basis is the simplicity of such condition, expressed as non-positivity
of spline coefficients c.

One important subclass of Archimedian t-norms, Archimedian copulas [35, 40],
can be specified by introducing further constraints on the coefficients c j , namely
c j+1− c j ≥ 0, j = 1, . . . , J − 1. These constraints force the spline S to be convex,
and this is precisely what is needed to characterize Archimedian copulas.

As far as the value of ε > 0 in condition (9) in concerned, we use the following
method. We need to model the asymptotic behaviour of g near 0 for strict t-norms.
To model this behaviour we use “well-founded” generators [31],

g(x) =
{

1
x + S(ε)− 1

ε
if x ≤ ε;

S(x) if x > ε.
(11)

We choose ε in such a way that ε < mink=1,...,K ,i=1,...,n{xk
i , yk}|xk

i , yk > 0, i.e.
smaller than the smallest observed nonzero data value. In this case we have freedom
of choosing g on the interval [0, ε], as these values of g are never used in any
computations with the data set. It is natural to fix a value of 1 at ε as in (9), but other
choices are also suitable.

Example 1. Let us take a (synthetic) data set D of K = 20 tuples (xk, yk), xk ∈
[0, 1]3, yk ∈ [0, 1], and fit an additive generator of a strict triangular norm. Figure 1
shows a linear spline approximation to the model additive generator of the Dombi
t-norm, used to generate the data,

gD
λ =

(

1− x

x

)λ

, with λ = 0.2.

ε 0.2
0

0.5

1

1.5

2

0.4 0.6 0.8 x

Fig. 1 The additive generator of the Dombi t-norm (dashed line) and its linear spline approxima-
tion (thin solid line)
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3.2 Uninorms and Nullnorms

Uninorms are a generalization of t-norms and t-conorms, obtained by allowing the
neutral element e : U(x, e) = x reside anywhere in [0, 1] [46]. Like t-norms,
these functions are monotone, commutative and associative. On [0, e]n the uni-
norm coincides with some (scaled) t-norm, and on [e, 1]n it coincides with some
(scaled) t-conorm. In the rest of the domain min(x1, . . . , xn) ≤ U(x1, . . . , xn) ≤
max(x1, . . . , xn), and it can be either conjunctive (U(0, 1, . . . , 1) = 0) or disjunc-
tive (U(1, 0, . . . , 0) = 1).

We consider continuous representable uninorms [24, 34], that have an associ-
ated continuous additive generator g : [0, 1] → [−∞,∞], g(0) = −∞, g(1) =
∞, g(e) = 0, such that

U(x1, x2, . . . , xn) = g−1

(

n
∑

i=1

g(xi)

)

. (12)

The generator g is strictly increasing, and the representable uninorm is linked to
a pair of strict Archimedian t-norm and t-conorm. Continuity of U on [0, 1]2 \
{(1, 0), (0, 1)} and strict monotonicity on ]0, 1[2 is equivalent to the existence of
a strictly increasing additive generator [35].

The approach is similar to the case of t-norms and involves fitting additive gen-
erators. Consider first the case of a known (or fixed) neutral element e. We translate
(12) into (5) for all data points (k = 1, . . . , K ). By representing g with spline (11),
we obtain (7). In addition we have the restrictions of monotonicity (c j > 0), and
boundary conditions

J
∑

j=1

c j B j (e) = 0,
J
∑

j=1

c j B j (ε) = −1, (13)

where ε is determined as in the case of t-norms. We use well-founded t-norms rep-
resentation (11) to model asymptotic behaviour of g near 0 and 1.

In the case of unknown e (so it must also be found from the data), we solve the
least squares problem with respect to both e and c j . This is a bilevel optimization
problem: at the outer level it is a nonlinear problem with respect to e, at the inner
level, it is a linear constrained least squares problem

min
e

⎡

⎣min
c j

K
∑

k=1

(

n
∑

i=1

S(xk
i )− S(yk)

)2

s.t. (13) and c j > 0

⎤

⎦ . (14)

The nonlinear problem may have multiple locally optimal solutions, so we use
one of the global optimization methods (e.g., combination of grid search and local
descent). At each iteration of the global method, we solve the problem with a fixed
e, which is LSEI.
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Example 2. Consider another synthetic data set D of K = 60 tuples (xk, yk), xk ∈
[0, 1]2, yk ∈ [0, 1], in which the values yk = U(xk) are obtained by using 3 − �

operator

U(x1, x2, . . . , xn) =
∏

xi
∏

xi +
∏

(1− xi )
,

with the convention 0/0=0 (for a conjunctive uninorm), and an additive generator
g(x) = log( x

1−x ). We fit its additive generator together with the value e as in (14).
Figure 2 shows a linear spline approximation to the additive generator. The method
correctly identified the value e = 0.5 (the computed value was e = 0.498).

Nullnorms, introduced in [14], are monotone, commutative and associative func-
tions [0, 1]2 → [0, 1], with boundary conditions N(0, x) = x for x ∈ [0, a] and
N(1, x) = x for x ∈ [a, 1]. The value a ∈ [0, 1] is called the annihilator, so that
N(a, x) = a for x ∈ [0, 1]. The above conditions result in that a nullnorm is a
(scaled) t-norm on [a, 1]× [a, 1], a t-conorm on [0, a]× [0, a], and takes a constant
value a elsewhere on the unit square.

Similarly to uninorms, let us consider a class of nullnorms linked to a pair of
Archimedian t-norm and t-conorm. We also consider the pair of their respective
additive generators gt and gc. Such nullnorm can be represented as

N(x, y) =

⎧

⎪

⎨

⎪

⎩

g(−1)
c (gc(x)+ gc(y)) , if x, y < a

g(−1)
t (gt (x)+ gt(y)) , if x, y > a

a, if either x ≥ a, y ≤ a, or x ≤ a, y ≥ a.

Note that the situation with nullnorms is different from that with uninorms, where
the form of U(x, y) on ]e, 1]× [0, e[ and [0, e[×]e, 1] does depend on the additive
generator (and hence the additive generator of a representable uninorm must

0

–1

–0.5

0

0.5

1

0.2 0.4
x

0.6 0.8 1

Fig. 2 The additive generator of the 3−� operator (dashed line) and its linear spline approxima-
tion (thin solid line)
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satisfy g(0) = −∞, g(1) = ∞, among other conditions). In the case of nullnorms,
N(x, y) is uniquely defined on the above mentioned part of its domain, and no extra
conditions on gt , gc are necessary. Hence the participating t-norm and t-conorm
can be either strict or nilpotent. So we are effectively dealing with two independent
functions on disjoint parts of the domain. We can immediately translate the results
on convergence of t-norms and their additive generators [30, 31] to nullnorms (by
applying them separately on each part of the domain).

Let us now fit such nullnorm to the data by fitting its pair additive generators.
Consider the case of a fixed a. Split the data into three groups: the data on [0, a]n,
the data on ]a, 1]n and the data elsewhere. The third group of data points does not
participate in fitting the generators, since for these data the value of N is the constant
a, so we discard this group. Now use two linear splines S1, S2 that will approximate
two additive generators (gc on [0, a] and gt on [a, 1]) and fit the splines indepen-
dently of each other using the same technique as for t-norm/t-conorm in Sect. 3.1.

If the annihilator a is not specified but has to be found from the data as well, we
proceed as in the case of uninorms, by minimizing the error of approximation with
respect to a. This is a nonlinear optimization problem, and we solve it using any
global optimization method, at each iteration fitting the generators with a fixed a.
Of course, the third group of data we discarded previously must also participate in
the calculation of error as a function of a (but not in fitting the generators).

3.3 Other Generated Aggregation Operators

Consider now another class of aggregation operators similar to representable uni-
norms [38]. Let g : [0, 1] → [a, b], −∞ < a < b < ∞ be a monotone increasing
function with zero e ∈ [0, 1]. Define

fn(x1, . . . , xn) = g(−1) (g(x1)+ . . .+ g(xn)) , (15)

where g(−1) denotes the pseudoinverse.
The function (15) is continuous on [0, 1]n , but it is not associative. Further, on

[e, 1]n it coincides with a (scaled) nilpotent t-conorm and on [0, e]n it coincides
with a (scaled) nilpotent t-norm. As with uninorms, e is its neutral element, and
when e = 1 or e = 0 we obtain t-norms and t-conorms as limiting cases. The
following example is taken from [11, 38].

Let g(t) = t− 1
2 . Then F is an ordinal sum of Lukasiewicz t-norm and t-conorm,

given by

F(x) = max(0,min(1,
1

2
+

n
∑

i=1

(xi − 1

2
)))

Identification of the generating function g is similar to that of representable uni-
norms, with the only difference that condition (13) becomes
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J
∑

j=1

c j B j (e) = 0,
J
∑

j=1

c j B j (0) = −1,

and no asymptotic behaviour as in (11) is needed. Identification of the neutral ele-
ment is performed as in (14).

3.4 Generalized Means

Consider the case of quasi-arithmetic means, given by [16, 11]

M(x1, x2, . . . , xn) = g(−1)

(

n
∑

i=1

1

n
g(xi)

)

. (16)

g denotes a monotone increasing function [0, 1] → [0, 1]. As with t-norms, we will
find g from the data by fitting the equations

1

n

(

g(xk
1)+ g(xk

2)+ . . .+ g(xk
n)
)

≈ g(yk), k = 1, . . . , K . (17)

By representing generator g with a linear spline (11), we obtain a system of
equations and inequalities similar to (7)–(9), namely

J
∑

j=1

c j

(1

n

n
∑

i=1

B j (x
k
i )− B j (y

k)
)

≈ 0 , k = 1, . . . , K , (18)

J
∑

j=1

c j B j (0) = 0,
J
∑

j=1

c j B j (1) = 1, (19)

subject to c j ≥ 0. Once again we obtain LSEI problem (10), with the components
of matrices and vectors defined in (18)–(19). The case of weighted quasi-arithmetic
means is considered in detail in this volume in [10].

4 Tensor Product Schemata

4.1 General Aggregation Operators

In tensor product schemata a multivariate function is approximated by a tensor prod-
uct of univariate functions. A method of tensor product monotone regression splines
applied to aggregation operators was described in [3, 2, 4, 13]. It consists in fitting



110 G. Beliakov, T. Calvo

the dataset D with a tensor product spline

S(x1, . . . , xn) =
J1
∑

j1=1

J2
∑

j2=1

. . .

Jn
∑

jn=1

c j1 j2... jn B j1(x1)B j2(x2) . . . B jn(xn).

The univariate basis functions are chosen to be linear combinations of standard
B-splines, as in [3], which ensures that the conditions of monotonicity of S are
expressed as non-negativity of spline coefficients c j1 j2... jn .

The computation of spline coefficients (there are J1 × J2 × . . . × Jn of them,
where Ji is the number of basis functions in respect to each variable) is performed
by solving a quadratic programming problem

minimize
K
∑

k=1

⎛

⎝

J1
∑

j1=1

. . .

Jn
∑

jn=1

c j1 j2... jn B j1(x
k
1) . . . B jn(x

k
n)− yk

⎞

⎠

2

, (20)

subject to

J1
∑

j1=1

. . .

Jn
∑

jn=1

c j1 j2... jn ≥ 0,

and

S(0, . . . , 0) =
J1
∑

j1=1

. . .

Jn
∑

jn=1

c j1 j2... jn B j1(0) . . . B jn(0) = 0,

S(1, . . . , 1) =
J1
∑

j1=1

. . .

Jn
∑

jn=1

c j1 j2... jn B j1(1) . . . B jn(1) = 1.

This is a problem of type LSEI (10), however it involves very sparse matri-
ces. For solving QP with sparse matrices we recommend OOQP sparse solver [19]
(http://www.cs.wisc.edu/∼swright/ooqp/).

In practice it is sufficient to use linear splines with 3-5 basis functions (Ji =
3, 4, 5), which gives good quality approximation for 2-5 variables. For more vari-
ables the method becomes impractical because the number of spline coefficients
(and hence the sizes of all matrices) grows exponentially with n. On one hand it
requires a large number of data, which is usually not available, on the other hand the
required computing time also becomes too large.

Example 3. Consider a real data set D of 22 input-output pairs from [47], and its
approximation with a bivariate tensor-product monotone spline J1 = J2 = 4. The
resulting aggregation operator is plotted on Fig. 3.

Other tensor product monotone interpolation methods [17, 18, 19] can be applied
to aggregation operators, although in most cases these methods are limited to two
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Fig. 3 Tensor-product spline
approximation of the data
from [47], denoted with
circles
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variables. There are also alternative methods for approximation of scattered data
based on triangulations [27, 44], in these methods the basis functions are determined
by the data. However preservation of monotonicity becomes rather complicated, and
the available methods are only suitable for bi-variate case.

4.2 Operators with Specific Properties

It is important to incorporate other problem specific information into the construc-
tion of aggregation operators. Such information may be given in terms of boundary
conditions, conjunctive, disjunctive or averaging behaviour, symmetry and so on. In
this section we describe the method from [4, 2], which accommodates these condi-
tions for tensor product monotone splines.

Conditions fn(t, 0, . . . , 0) = t and fn(t, 1, . . . , 1) = t are associated with
the neutral element, and arise naturally in many applications. It is shown that
for linear tensor product spline, it is sufficient to use the interpolation conditions
S(t j , 0, . . . , 0) = t j or S(t j , 1, . . . , 1) = t j for j = 1, . . . , J1 respectively, where
t j denote the knots of the spline. Similar conditions are imposed for other variables.
These conditions are incorporated easily into the problem (20), (or (10)) as linear
equalities.

Condition of idempotency fn(t, . . . , t) = t is equivalent to the averaging be-
haviour of the aggregation operator. This condition can be enforced also by using a
number of interpolation conditions S(t j , t j , . . . , t j ) = t j , j = 1, . . . , M, but now t j
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are not the knots of the splines. The values of t j can be chosen with relative freedom
with M ≥ n + 1, see [2, 4].

Condition of symmetry is imposed by restricting the domain of the approximat-
ing function to the simplex defined by x1 ≥ x2 ≥ . . . ≥ xn , xi ∈ [0, 1], and then
extending fn to the rest of the domain by symmetry. In practical terms, it requires
converting the dataset into D() = {(zk, yk)}, where vectors zk = xk

() have their
components arranged in decreasing order. When this dataset is used, the number of
tensor products and spline coefficients is reduced by the factor of 1/n!.

5 Optimal Lipschitz Interpolation

The method of monotone Lipschitz interpolation belongs to the second group of
methods, in which the multivariate interpolation problem is tackled directly. This
method is described in detail in [6, 7], and it was applied to aggregation operators
in [8].

We will denote by Li p(M, || · ||) the set of all Lipschitz continuous functions on
[0, 1]n with the Lipschitz constant in the norm || · || smaller or equal to M:

Li p(M, ||·||) = { f : [0, 1]n → [0, 1]| ∀x, y ∈ [0, 1]n, | f (x)− f (y)| ≤ M||x−y||}.

Lipschitz-continuous aggregation operators are very important for applications,
because they provide output values stable with respect to small changes of the ar-
guments. Small changes in the arguments may be due to inaccuracies in the data,
and one would expect that such inaccuracies do not affect drastically the behavior
of the system. The concept of p-stable aggregation operators was proposed in [16].
These are precisely Lipschitz continuous operators whose Lipschitz constant M in
l p norm is one. Specific cases include 1-Lipschitz aggregation operators ( p = 1)
and kernel aggregation operators (p = ∞). Quasi-copulas arise as a special case of
1-Lipschitz operators, when the neutral element e = 1.

5.1 Optimal Interpolation

Consider a dataset D and the requirement that the interpolating function is Lipschitz
and monotone, fn ∈ Li p(M) ∩ Mon, and also satisfies the boundary conditions
fn(0, . . . , 0) = 0, fn(1, . . . , 1) = 1. There are many functions from this class that
interpolate the data. The information about the function fn as given above is not
sufficient to find fn , but it identifies a closed set S of functions consistent with
this information. Whatever the algorithm used to determine fn , its error cannot be
smaller that the distance between the center of S and its farthest element, referred
to as the radius of information [43]. The radius of information is the intrinsic error
of the problem.
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An optimal algorithm is the one whose error is the same as the intrinsic error of
the approximation problem. Central algorithm is the algorithm whose solution is the
center of the set S, and it is always optimal [43]. However, the center of S may lie
outside S, in which case the central algorithm does not provide a solution consistent
with the specified properties.

In the case of monotone Lipschitz functions, the centre of S is inside, and the
central algorithm delivers an optimal solution consistent with the requirements. This
solution minimizes the worst case error, i.e., solves the problem

min
g∈F

max
fn∈F

max
x∈[0,1]n

| fn(x)− g(x)|

subject to g(xk) = fn(x
k) = yk, k = 1, . . . , K ,

where F = Li p(M) ∩ Mon.
In [6] an explicit solution to this problem is given. For each x ∈ [0, 1]n tight

upper and lower bounds on fn are identified: σl(x) ≤ fn(x) ≤ σu(x),

σu(x) = min
k
{yk + M||(x − xk)+||},

σl(x) = max
k
{yk − M||(xk − x)+||}, (21)

where z+ denotes the positive part of vector z: z+ = (z̄1, . . . , z̄n), with

z̄i = max{zi , 0}.

If the data set is infinite, say, D = {(t, v(t))|t ∈ � ⊂ [0, 1]n, v : � → [0, 1]}
then the bounds translate into

σu(x) = inf
t∈�
{v(t) + M||(x − t)+||},

σl(x) = sup
t∈�
{v(t)− M||(t − x)+||}. (22)

The central optimal algorithm delivers an optimal interpolant

g(x) = 1

2
(σl(x)+ σu(x)). (23)

The functions σl(x),σu(x) and g(x) ∈ Li p(M, || · ||) ∩ Mon.
Thus construction of a general aggregation operator from the dataset D in-

volves application of (21),(23), which is straightforward. Note that if no empir-
ical data is present (i.e., when the dataset contains only two compulsory data
((0, . . . , 0), 0), ((1, . . . , 1), 1)), we obtain general bounds on p-stable aggregation
operators given by Yager t-norm and t-conorm

σl(x) = TY (x) = max{0, 1− ||1− x ||p},
σu(x) = SY (x) = min{1, ||x ||p}.
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5.2 Application-specific Properties

Our next goal is to incorporate other problem-specific information into construc-
tion of optimal aggregation operators. This information may come in form of the
following generic conditions.

• Symmetry;
• Conjunctive and disjunctive behavior;
• Idempotency;
• Neutral element and annihilator;
• Given marginals;
• Given diagonal and opposite diagonal;
• Various combinations of the above.

Symmetry can be enforced in the same way as at the end of Sect. 4. Conjunctive
and disjunctive behaviour imply additional bounds fn(x) ≤ min(x) or max(x) ≤
fn(x), and idempotency implies two bounds min(x) ≤ fn(x) ≤ max(x). These
bounds are in addition to σl , σu ; this can be formally expressed as

A(x) ≤ fn(x) ≤ A(x),

A(x) = max{σl(x), Bl(x)}, A(x) = min{σu(x), Bu(x)}, (24)

where Bl, Bu are the additional lower and upper bounds arising from application-
specific requirements. The optimal aggregation operator is then computed as

g(x) = 1

2
(A(x)+ A(x)). (25)

Thus incorporation of the additional properties of aggregation operators amounts
to properly defining the extra bounds Bl , Bu , and then applying (24),(25). In the
above mentioned cases we have

• Conjunctive behaviour: Bl(x) = 0, Bu(x) = min(x) ;
• Disjunctive behavior: Bl(x) = max(x), Bu(x) = 1;
• Idempotency: Bl(x) = min(x), Bu(x) = max(x).

In some applications the conjunctive, disjunctive or averaging behaviour must
be restricted to a certain part of the domain. For example, in [45] Yager introduces
the concept of “noble” reinforcement in the context of online recommender systems
(such systems recommend certain products to internet customers based on their pref-
erences and/or past purchases). Here it is important to use a symmetric disjunctive
aggregation operator which positively reinforces only high values of the arguments.
We wish to avoid a situation in which a number of weak “justifications” provide a
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strong recommendation when combined. Yager proposes to restrict the aggregation
operator to maximum for low vales of the arguments.

Such restrictions for Lipschitz aggregation operators were dealt with in [9], and
they rely on using (22) for various choices of the domain �.

Consider now the case of a given neutral element e, for which we examine con-
dition (1) for all i = 1, . . . , n. The bounds implied by this condition are

∀x ∈ [0, 1]n : Bl(x) ≤ fn(x) ≤ Bu(x),

where Bu(x) = min
i=1,...,n

Bi
u(x), (26)

Bl(x) = max
i=1,...,n

Bi
l (x),

where for a fixed i the bounds are

Bi
u(x) = min

t∈[0,1]
(t + M||(x − e(t, i))+||),

Bi
l (x) = max

t∈[0,1]
(t − M||(e(t, i)− x)+||). (27)

The minimum and maximum in (27) have been found explicitly in [11].
Consider an aggregation operator which has an annihilator a ∈ [0, 1]. The ex-

istence of an annihilator does not imply conjunctive or disjunctive behaviour on
any part of the domain, but together with monotonicity, it implies f (x) = a on
[a, 1]× [0, a] and [0, a]× [a, 1] (and their multivariate extensions).

Such restrictions are easily incorporated into the bounds by using

max
i=1,...,n

Bi
l (x) ≤ fn(x) ≤ min

i=1,...,n
Bi

u(x), (28)

Bi
l (x) = a − M(a − xi )+,

Bi
u(x) = a + M(xi − a)+.

Let us denote by δ(t) = fn(t, t, . . . , t) the diagonal section of the n-ary aggre-
gation operator fn . If fn ∈ Li p(M) ∩ Mon, then δ ∈ Li p(Mn1/p). Also δ(t) is
nondecreasing, and δ(0) = 0, δ(1) = 1. We denote by ω(t) = f (t, 1− t) the oppo-
site diagonal section of a binary aggregation operator. We note that ω ∈ Li p(M). In
the following we assume that the functions δ(t), ω(t) are given and they have the re-
quired Lipschitz properties. The goal is to determine the upper and lower bounds on
Lipschitz aggregation operators with these diagonal and opposite diagonal sections.

In the special cases of bivariate 1-Lipschitz aggregation operators and quasicop-
ulas, these bounds were studied in [32]. The general case is treated in [11]. From
(21) it follows that

Bu(x) = min
t∈[0,1]

(δ(t)+ M||((x1 − t)+, . . . , (xn − t)+)||),
Bl(x) = max

t∈[0,1]
(δ(t)− M||((t − x1)+, . . . , (t − xn)+)||). (29)
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Computation of the functions Bl, Bu requires solving a univariate optimization
problem in (29). The objective function is not necessarily convex (hence a possibil-
ity of several locally optimal solutions), however it is Lipschitz, with the Lipschitz
constant Mn1/p , therefore we can apply Pijavsky-Shubert method [32] to calculate
the global optimum.

For binary aggregation operators with given opposite diagonalω(t) = f2(t, 1−t)
the bounds are computed as

Bu(x) = min
t∈[0,1]

(ω(t) + M||((x1 − t)+, (t − (1− x2))+)||),
Bl(x) = max

t∈[0,1]
(ω(t) − M||((t − x1)+, (1− x2 − t)+)||). (30)

We notice that ω ∈ Li p(M) and so is the second term in the expression, hence
the objective function is in Li p(2M). We apply Pijavski-Shubert method with this
Lipschitz parameter to calculate thevalues of the bounds for any x . The special case
of 1-Lipschitz aggregation operators was treated in [32].

Example 4. The optimal aggregation operator with a given diagonal section δ(t) =
min(2t2, 1), and no empirical data, is presented on Fig. 4. Note that each value has
to be computed by solving a global optimization problem (29). The plot on Fig. 4 is
done by computing the values of fn on a 50× 50 mesh, performed in < 1sec on a
Pentium IV processor.

Example 5. The optimal aggregation operator with the opposite diagonal section
ω(t) = t (1− t) and neutral element e = 1 is presented on Fig. 4 (right).

5.3 Operators with Given Marginals

We consider the problem of obtaining the operator F when certain functions are
required to be its marginals. For some special cases of 1-Lipschitz aggregation oper-

0.2
0.4

0.6
0.8
1

1

0.8

0.6

0.4

0.2

1

0.8

0.6

0.4

0.4

00
0.2

0.4
0.6

0.8
1

0 0.2 0.4 0.6 0.8 100
0 0.2 0.4 0.6 0.8 1

Fig. 4 The optimal binary aggregation operators with a given diagonal section (left), and a given
opposite diagonal section and neutral element (right)
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ators this problem was treated in [36], the general case is presented below. Consider
construction of a Lipschitz aggregation operator f2 based on a given marginal γ ,
defined on some closed subset �, for example � = {x = (x1, x2)|0 ≤ x1 ≤ 1, x2 =
0}. Let γ ∈ Li p(Mγ ). Then obviously the Lipschitz constant of f , M ≥ Mγ . From
(22) we obtain

Bu(x) = min
t∈[0,1]

(γ (t)+ M||((x1 − t)+, x2)||)
= min

t∈[0,x1]
(γ (t)+ M||((x1 − t), x2)||), (31)

Bl(x) = max
t∈[0,1]

(γ (t)− M||((t − x1)+, 0)||) = γ (x1).

If the marginal is given on � = {x = (x1, x2)|0 ≤ x1 ≤ 1, x2 = 1}, then the
bounds are

Bu(x) = min
t∈[0,1]

(γ (t)+ M||((x1 − t)+, 0)||) = γ (x1),

Bl(x) = max
t∈[0,1]

(γ (t)− M||((t − x1)+, 1− x2)||) (32)

= max
t∈[x1,1]

(γ (t)− M||((t − x1), 1− x2)||).

To solve the optimization problem in each case we apply Pijavski-Shubert
method with the Lipschitz parameter M .

For the general multivariate case the equations are as follows. Let γi (t), i =
1, . . . , n be a function from Li p(Mγ ) representing the i -th marginal

∀x ∈ �i : fn(x) = γi (xi ),�i = {x ∈ [0, 1]n|xi ∈ [0, 1], x j = 0, j �= i}

The bounds due to the i -th marginal are

Bi
u(x) = min

t∈[0,xi ]
(γi (t)+ M||(x1, . . . , xi−1, (xi − t)+, xi+1, . . . , xn)||)

Bi
l (x) = γi (xi ),

and altogether we have Bl(x) = max
i=1,...,n

Bi
l (x), Bu(x) = min

i=1,...,n
Bi

u(x).

The same technique is used for construction of n-variate aggregation operator
from m-variate marginals, as exemplified below. Let γ : [0, 1]m → [0, 1] denote a
marginal of fn : ∀x ∈ � : fn(x) = γ (y), with

� = {x ∈ [0, 1]n|x1, . . . , xm ∈ [0, 1], xm+1 = . . . = xn = 0}

and yi = xi , i = 1, . . . ,m. Then the upper and lower bounds on fn(x), x ∈ [0, 1]n \
� are

Bu(x) = min
z∈[0,x1]×...×[0,xm]

(γ (z)+ M||((x1 − z1)+, . . . , (xm−zm)+, xm+1, . . . , xn)||),
Bl(x) = γ (x1, . . . , xm).



118 G. Beliakov, T. Calvo

Computation of the minimum in the expression for Bu involves a nonconvex
m-dimensional constrained optimization problem. There is a possibility of multiple
locally optimal solutions, and the use of local descent algorithms will not deliver
correct values. These algorithms are typically stuck in suboptimal solutions, which
may be different for different x , therefore the resulting bounds may be discontin-
uous. The proper way of calculating Bu is using deterministic global optimization
methods. One such method, a multivariate generalization of Pijavski-Shubert al-
gorithm known as the cutting angle method, is described in [5]. One should be
aware that deterministic global optimization methods work reliably only in small
dimension, m < 10. We do not expect m to be greater than 3 in applications.

6 Conclusion

We outlined a number of approaches to pointwise construction of aggregation op-
erators from empirical data. Some approaches involve identification of univariate
generating functions whereas others deal with the multivariate case directly. The
resulting constructions are numerically as efficient as having explicit algebraic for-
mulae, however they provide a much greater flexibility, and do not require do-
main experts to come up with explicit formulae but rather specific cases. This
greatly simplifies knowledge engineering process. At the same time it allows routine
automatic construction of suitable aggregation operators from databases, tailoring
aggregation procedures to specific cases (e.g., groups of customers), and also evolv-
ing them with time as more data becomes available. When new data are added, most
methods require re-calculation of the entire set of fitted parameters; in contrast, the
optimal interpolation methods from Sect. 5 are incremental.

An important feature of all mentioned approaches is preservation of semanti-
cally important application-specific properties. Many such properties can be stated
in the form of interpolation conditions (finite or infinite number of such conditions).
Incorporation of these conditions is an important part of the construction process.

A software package which implements a number of the mentioned techniques is
available from http://www.deakin.edu.au/∼gleb/aotool.html.
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A Review of Aggregation Functions

Radko Mesiar, Anna Kolesárová, Tomasa Calvo and Magda Komornı́ková

Abstract Several local and global properties of (extended) aggregation functions
are discussed and their relationships are examined. Some special classes of aver-
aging, conjunctive and disjunctive aggregation functions are reviewed. A special
attention is paid to the weighted aggregation functions, including some construction
methods.

1 Introduction

Aggregation of a finite number of observed values from a scale I into a single output
value from the same scale is an indispensable tool in each discipline based on data
processing. The variability of spheres dealing with aggregation (fusion) techniques
is so rich that we frequently meet the same results and techniques under different
names. Nowadays, when aggregation theory becomes a well established field of
mathematics, it is the time to unify the notations and terminology. This is one of
the aims of the monograph on aggregation [26] which is currently under preparation
by Grabisch, Marichal, Mesiar and Pap. Therefore in this chapter we will use the
notations and terminology from [26]. The main aim of this chapter is to bring a
review of some recent results in aggregation. To achieve the readability, we will also
recall some older results whenever necessary. Note that comprehensive state-of-art
overviews on aggregation can be found in [21] (dated to 1985) and in [7] (dated to
2002). The chapter is organized as follows. In the next section, basic notions, nota-
tions and properties are given, including the classification of aggregation functions.
In Sect. 3, averaging aggregation functions are discussed. Section 4 is devoted to
conjunctive aggregation functions, and by duality, also to disjunctive aggregation
functions. Weighted aggregation functions are discussed in Sect. 5. Finally, some
conclusions are given.

Note that though aggregation can be discussed on an arbitrary scale I (equipped
with linear order), we restrict our considerations to the real intervals. Moreover, a
major attention will be put to the case I = [0, 1].

H. Bustince et al., (eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation
and Models. C© Springer 2008 121
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2 Basic Notions, Notations and Properties

Unless otherwise stated, the letter I will denote a subinterval of the extended real
line, I = [a, b] ⊆ [−∞,∞]. Aggregation on I for a fixed number n of inputs
always means a processing of input data by a special n–ary function defined on
I n . Similarly, aggregation on I for an arbitrary (but fixed) finite number of inputs
can be seen as a data processing by a system of such functions. One of the crucial
problems in that case is the relationship of the functions from the system differing
in the number of inputs.

Note that to shorten some expressions, we will write x instead of (x1, . . . , xn).

Definition 1. (i) An n–ary aggregation function is a function A(n) : I n → I that
is non–decreasing in each place and fulfills the following boundary conditions

inf
x∈I n

A(n)(x) = inf I and sup
x∈I n

A(n)(x) = sup I.

(ii) An extended aggregation function is a function A :
⋃

n∈N

I n → I such that for

all n > 1, A(n) = A|I n is an n–ary aggregation function and A(1) is the identity
on I .

We first recall several examples of extended aggregation functions on I :

• The sum 
,


(x1, . . . , xn) =
n
∑

i=1

xi ,

in the case of an interval I with the left–end point −∞ or 0, the right–end point
0 or∞, and with the convention (−∞)+∞ = −∞ if necessary.

• The product Π ,

Π(x1, . . . , xn) =
n
∏

i=1

xi ,

if I is an interval with the left–end point 0 or 1, the right–end point 1 or ∞ and
with the convention 0 .∞= 0 if necessary.

• The arithmetic mean M ,

M(x1, . . . , xn) = 1

n

n
∑

i=1

xi ,

on an arbitrary interval I , and if I = [−∞,∞], the convention (−∞) +∞ =
−∞ is adopted.
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• The geometric mean G,

G(x1, . . . , xn) =
(

n
∏

i=1

xi

)1/n

,

where I ⊆ [0,∞], and 0 .∞= 0 by convention.
• The minimum Min,

Min(x1, . . . , xn) = min{x1, . . . , xn} =
n
∧

i=1

xi .

• The maximum Max ,

Max(x1, . . . , xn) = max{x1, . . . , xn} =
n
∨

i=1

xi .

In all above mentioned extended aggregation functions there is some relationship
between aggregation functions A(n) and A(m) for all n, m ∈ N. This is not guaran-
teed by Definition 1, in general. Before discussing this problem in more details,
we recall some basic properties of (n–ary/extended) aggregation functions. Un-
less otherwise specified, a property of a discussed extended aggregation function
A :

⋃

n∈N

I n → I means that each n–ary aggregation function A(n) : I n → I

possesses the mentioned property. Therefore we will define the next properties for
n–ary aggregation functions only.

Definition 2. For a fixed n ∈ N \ {1}, let A(n) : I n → I be an n–ary aggregation
function on I . Then A(n) is called:

(i) symmetric (anonymous) if for each permutation σ : {1, . . . , n} → {1, . . . , n}
and each x ∈ I n

A(n)(x) = A(n)(xσ(1), . . . , xσ(n)) ;

(ii) idempotent (unanimous) if for each c ∈ I

A(n)(c, . . . , c) = c ;

(iii) strictly monotone if for all xi , yi ∈ I , i ∈ {1, . . . , n} such that xi ≤ yi and
(x1, . . . , xn) �= (y1, . . . , yn) it follows that

A(n)(x1, . . . , xn) < A(n)(y1, . . . , yn) ;

(iv) continuous if for each x0 ∈ I n,

lim
x→x0

A(n)(x) = A(n)(x0),

i.e., if A(n) is a continuous function of n variables in the usual sense;
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(v) 1–Lipschitz, if for all (x1, . . . , xn), (y1, . . . , yn) ∈ I n,

|A(n)(x1, . . . , xn)− A(n)(y1, . . . , yn)| ≤
n
∑

i=1

|xi − yi |;

(vi) bisymmetric if for all n × n matrices X = (xi j ), with entries xi j ∈ I for all
i, j ∈ {1, . . . , n},

A(n)
(

A(n)(x11, . . . , x1n), . . . , A(n)(xn1, . . . , xnn)
)

= A(n)
(

A(n)(x11, . . . , xn1), . . . , A(n)(x1n, . . . , xnn)
)

.

We can equivalently say that, for example, an n–ary aggregation function A(n) is
symmetric if and only if for all x ∈ I n it holds

A(n)(x) = A(n)(x2, x1, x3, . . . , xn) = A(n)(x2, . . . , xn, x1).

Similarly, the idempotency of A(n) is equivalent to the property

Min(n) ≤ A(n) ≤ Max (n).

Definition 3. For a fixed n ∈ N \ {1}, let A(n) : I n → I be an n–ary aggregation
function on I .

(i) An element e ∈ I is called neutral element of A(n) if for each i ∈ {1, . . . , n}
and each xi ∈ I it holds that

A(n)(e, . . . , e, xi , e, . . . , e) = xi .

(ii) An element a ∈ I is called annihilator of A(n) if for all (x1, . . . , xn) ∈ I n it
holds that
if xi = a for some i ∈ {1, . . . , n} then A(n)(x1, . . . , xn) = a.

For extended aggregation functions we can also introduce stronger versions of
idempotency, neutral element and bisymmetry.

Definition 4. Let A :
⋃

n∈N

I n → I be an extended aggregation function. Then

(i) A is strongly idempotent whenever

A(x, . . . , x
︸ ︷︷ ︸

k−t imes

) = A(x)

for all k ∈ N and x ∈ ⋃

n∈N

I n.
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(ii) An element e ∈ I is said to be a strong neutral element of A if for each n ∈ N,
each x ∈ ⋃

n∈N

I n and i ∈ {1, . . . , n + 1} it holds

A(x) = A(x1, . . . , xi−1, e, xi , . . . , xn).

(iii) A is strongly bisymmetric if for any n × m matrix X = (x i j ) with all entries
xi j ∈ I , it holds

A(n)(A(m)(x 1.), . . . , A(m)(x n.)) = A(m)(A(n)(x .1), . . . , A(n)(x .m)),

where for all i ∈ {1, . . . , n}, j ∈ {1, . . . ,m},

x i. = (x i1, . . . , x im) and x . j = (x 1 j , . . . , x nj ).

Classical properties linking different input arities of extended aggregation func-
tions are:

• associativity, that is, for each n, m ∈ N, x ∈ I n , y ∈ I m

A(n+m)(x, y) = A(2)(A(n)(x), A(m)(y)) ;

• decomposability, that is, for all integers 0 ≤ k ≤ n, n ∈ N, and all x ∈ I n

A(n)(x1, . . . , xk, xk+1, . . . , xn)

= A(n)(A(k)(x1, . . . , xk)
︸ ︷︷ ︸

k−t imes

, A(n−k)(xk+1, . . . , xn)
︸ ︷︷ ︸

(n−k)−t imes

).

The associativity of an extended aggregation function A is equivalent to the standard
associativity of the corresponding binary aggregation function A(2),

A(2)(x, A(2)(y, z)) = A(2)(A(2)(x, y), z)

for all x, y, z ∈ I , and A(n) for n > 2, being the genuine n–ary extension of A(2)

given by

A(n)(x1, . . . , xn) = A(2)
(

A(n−1)(x1, . . . , xn−1), xn

)

defined by induction. Evidently, using this way, any binary aggregation function
A(2) can be extended to an extended aggregation function A(2) = A. More generally,
a huge class of extended aggregation functions can be constructed from a system
A = (A(2)

n )n∈N of binary aggregation functions by induction. We define AA = A as
follows:

A(1)(x1) = x1,

A(2)(x1, x2) = A(2)
1 (x1, x2),
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...

A(n)(x1, . . . , xn) = A(2)
n−1

(

A(n−1)(x1, . . . , xn−1), xn
)

...

Extended aggregation functions AA = A were called recursive by Montero, see e.g.
[36], compare also [18]. Evidently, each associative extended aggregation function
is recursive but not vice–versa.

From the examples introduced above, the sum 
 is symmetric, associative and
bisymmetric. If 0 ∈ I , then 0 is the strong neutral element of 
, if −∞ ∈ I then
this element is the annihilator of 
, and if +∞ ∈ I and −∞ /∈ I then +∞ is the
annihilator of 
. The extended aggregation function 
 is 1–Lipschitz and strictly
monotone if I ⊂ R, continuous if I �= [−∞,∞].

The arithmetic mean M is recursive, symmetric, strongly idempotent and bisym-
metric on any interval I . It is 1–Lipschitz and strictly monotone if I ⊂ R and
continuous if I �= [−∞,∞]. It has an annihilator a only if I is an unbounded
interval, namely, a = −∞ if −∞ ∈ I ; a = ∞, if∞ ∈ I and −∞ /∈ I .

Let the extended aggregation function A :
⋃

n∈N

I n → I be given by

A(x1, . . . , xn) = min

(

x1,

n
∏

i=2

xi

)

whenever n > 1. Evidently, e = 1 is the neutral element of A, but it is not a strong
neutral element. Indeed, if we take (x1, x2) = (0.5, 0.5) then, for i = 1 we have
A(1, x1, x2) = 0.25, for i = 2 and i = 3 we have A(x1, 1, x2) = A(x1, x2, 1) =
0.5. Observe that A is a quasi–copula, see Sect. 4, i.e., A is 1-Lipschitz.

To simplify notation, if no confusion can arise, n–ary aggregation functions A(n)

will simply be denoted by A without stressing their arity.
The basic classification of aggregation functions takes into account the main

fields of applications. Following Dubois and Prade [22], we will distinguish four
classes of (n–ary/extended) aggregation functions:

• conjunctive aggregation functions: aggregation functions A ≤ Min;
• averaging aggregation functions: aggregation functions A, Min ≤ A ≤ Max ,

or, equivalently, idempotent aggregation functions;
• disjunctive aggregation functions: aggregation functions A ≥ Max ;
• mixed aggregation functions: aggregation functions which do not belong to any

of other three classes.

Observe that the interval I may be crucial for the classification of a discussed aggre-
gation function. For example, the product Π is a conjunctive aggregation function
on [0, 1], disjunctive on [1,∞] and mixed on [0,∞].

For any decreasing one–to–one mapping ϕ : I → I , A :
⋃

n∈N

I n → I is a

conjunctive (disjunctive) extended aggregation function if and only if the function
Aϕ :

⋃

n∈N

I n → I given by
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Aϕ(x1, . . . , xn) = ϕ−1 (A(ϕ(x1), . . . , ϕ(xn))

is a disjunctive (conjunctive) extended aggregation function. This duality allows
to investigate, construct and discuss conjunctive aggregation functions only, and to
transfer all the results by this duality to the disjunctive aggregation functions.

3 Averaging Aggregation Functions

We first recall the basic averaging aggregation functions, for more details we rec-
ommend [7]:

• The arithmetic mean M ,

M(x1, . . . , xn) = 1

n

n
∑

i=1

xi .

• Quasi–arithmetic means M f , where f : I → [−∞,∞] is a continuous strictly
monotone function and

M f (x1, . . . , xn) = f −1(M( f (x1), . . . , f (xn)),

as, for example, the geometric, harmonic and quadratic means.

• Weighted arithmetic means Mw, where w = (w1, . . . , wn), wi ≥ 0,
n
∑

i=1
wi = 1

and

Mw(x1, . . . , xn) =
n
∑

i=1

wi xi ,

see also Sect. 5.
• Weighted quasi–arithmetic means M f,w,

M f,w(x1, . . . , xn) = f −1

(

n
∑

i=1

wi f (xi )

)

.

• OWA (ordered weighted average) operator M ′
w,

M ′
w(x1, . . . , xn) = Mw(x ′1, . . . , x ′n) =

n
∑

i=1

wi x ′i ,

where x ′i is the i–th order statistics from the sample (x1, . . . , xn).
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• OWQA (ordered weighted quasi–arithmetic) operator M ′
f,w,

M ′
f,w(x1, . . . , xn) = M f,w(x ′1, . . . , x ′n) = f −1

(

n
∑

i=1

wi f (x ′i )

)

.

• Idempotent uninorms, [15].
• Idempotent nullnorms, i.e., a–medians, given for a fixed a ∈ I by

Meda(x1, . . . , xn) = med(x1, a, x2, a, x3, a, . . . , a, xn).

• Fuzzy integrals, [29, 47].

Recall that for any 2–copula C : [0, 1]2 → [0, 1] (for the definition of a copula
see the next section) and for any fuzzy measure m : P({1, . . . , n}) → [0, 1], i.e.,
a non–decreasing set function such that m(∅) = 0 and m({1, . . . , n}) = 1, we can
define a fuzzy integral FC,m : [0, 1]n → [0, 1] by

FC,m(x1, . . . , xn) =
n
∑

i=1

(

C
(

x ′i ,m({ j | x j ≥ x ′i })
)− C

(

x ′i−1,m({ j | x j ≥ x ′i })
))

,

with the convention x ′0 = 0, where x ′i is the i–th order statistics from the sample
(x1, . . . , xn). Then FΠ,m is the Choquet integral [12, 19, 38] and FMin,m is the
Sugeno integral [43, 38]. Also observe that if m is additive then FΠ,m = Mw
is the weighted arithmetic mean with the weights given by wi = m({i}). Sim-
ilarly, if m is symmetric, i.e., m(A) = h

( card A
n

)

for some increasing function
h : [0, 1] → [0, 1], then FΠ,m is the OWA operator M ′

w with the weights

wi = h
( i

n

)− h
(

i−1
n

)

.

Note that averaging aggregation functions are closed under composition, i.e., for
any averaging (extended) aggregation functions A, A1, . . . , An on I , also the func-
tion D = A(A1, . . . , An) :

⋃

n∈N

I n → I, given by D(x) = A(A1(x), . . . , An(x)), is

an averaging extended aggregation function.
An interesting class of averaging aggregation functions are the internal aggrega-

tion functions characterized by A(x1, . . . , xn) ∈ {x1, . . . , xn}. Continuous internal
aggregation functions are exactly lattice polynomials, whose prescription formula
contains inputs x1, . . . , xn , symbols for join ∨ and meet ∧, i.e., Max and Min
in infix form, and parentheses. Independently of the interval I , they have the same
formula, and on any open interval I they are the only aggregation functions invariant
under any increasing I → I one–to–one transformation ϕ. On [0, 1], they are in a
one–to–one correspondence with {0, 1}– valued fuzzy measures (and then we can
apply any fuzzy integral based on a copula C , e.g., the Choquet or Sugeno integrals).
As an example we give all 18 ternary aggregation functions which are internal and
continuous on any interval I :
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A(3)(x1, x2, x3) =

x1; x2; x3;
x1 ∧ x2; x1 ∧ x3; x2 ∧ x3;
x1 ∨ x2; x1 ∨ x3; x2 ∨ x3;
x1 ∧ (x2 ∨ x3); x2 ∧ (x1 ∨ x3); xx ∧ (x1 ∨ x2);
x1 ∨ (x2 ∧ x3); x2 ∨ (x1 ∧ x3); x3 ∨ (x1 ∧ x2);
x1 ∧ x2 ∧ x3 = x ′1; (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3) = x ′2; x1 ∨ x2 ∨ x3 = x ′3 .

Another interesting and still not completely described family of averaging ex-
tended aggregation functions are the mixture operators Mg :

⋃

n∈N

I n → I given by

Mg(x1, . . . , xn) =

n
∑

i=1
g(xi) xi

n
∑

i=1
g(xi )

,

where g : I → [0,∞[ is a given weighting function [33, 46]. Evidently, mixture op-
erators are idempotent and they generalize the arithmetic mean M , since M = Mg

for any constant weighting function g. Mixture operators are extended aggregation
functions if and only if they are monotone, which is not a general case. For example,
let I = [0, b] and let g : I → ]0,∞[ be given by g(x) = x + 1. Then Mg is an
averaging extended aggregation function only if b ∈]0, 1]. Till now, only some suffi-
cient conditions ensuring the monotonicity of mixture operators Mg are known, as,
for example, for a non–decreasing differentiable function g the next two conditions:

(i) g(x) ≥ g′(x) l(I ) for all x ∈ I , where l(I ) is the length of the interval I ;
(ii) g(x) ≥ g′(x) (x − inf I ) for all x ∈ I .

Also other generalizations of mixture operators are interesting, as, for example, the
quasi–mixture operators Mg

f , defined by

Mg
f (x1, . . . , xn) = f −1

⎛

⎜

⎜

⎝

n
∑

i=1
g(xi) f (xi)

n
∑

i=1
g(xi)

⎞

⎟

⎟

⎠

,

generalized mixture operators Mg, where g = (g1, . . . , gn) is a vector of weighting
functions, defined by

Mg(x1, . . . , xn) =

n
∑

i=1
gi (xi ) xi

n
∑

i=1
gi(xi )

,
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and ordered generalized mixture operators M ′g,

M ′g(x1, . . . , xn) = Mg(x ′1, . . . , x ′n).

These operators can be seen as generalizations of the quasi–arithmetic means,
weighted arithmetic means and OWA operators, respectively. In general, the mono-
tonicity of such operators is not still clarified. Observe that these types of operators
were already studied by Bajraktarevič, [3], especially the conditions under which
two different couples ( f1, g1) and ( f2, g2) induce the same quasi–mixture operators,
i.e., when Mg1

f1
= Mg2

f2
.

An interesting composition method of aggregation functions was recently pro-
posed in [11]. For any extended aggregation functions A, B and a binary aggregation
function C on I , we define D = AB,C :

⋃

n∈N

I n → I by

D(x1, . . . , xn) = A(C(x1, B(x1, . . . , xn)), . . . ,C(xn, B(x1, . . . , xn))).

Evidently, if all A, B, C are idempotent then D is also idempotent. As a special
case of this method, consider C = Min(2), A = FΠ,m1 , i.e., the Choquet integral
with respect to a fuzzy measure m1 on {1, . . . , n}, and B = FMin,m2 , i.e., the Sugeno
integral with respect to a fuzzy measure m2 on {1, . . . , n}. Then D = AB,C is the
two–fold integral introduced by Narukawa and Torra in [48]. Observe that for m1
equal to the strongest fuzzy measure m∗ given by

m∗(E) =
{

0 if E = ∅,
1 otherwise,

we get AB,C = FMin,m2 . Similarly, if m2 = m∗, then AB,C = FΠ,m1 . Thus the two–
fold integral is an averaging aggregation function generalizing both the Choquet and
Sugeno integrals.

4 Conjunctive Aggregation Functions

In this section we restrict our considerations to the interval I = [0, 1] only. As the
conjunctive aggregation functions are bounded from above by Min, the weakest
extended aggregation function Aw :

⋃

n∈N

[0, 1]n → [0, 1] given by

Aw(x1, . . . , xn) =
⎧

⎨

⎩

1 if
n
∏

i=1
xi = 1,

0 otherwise,

is also the weakest conjunctive extended aggregation function, and, obviously,
Min is the strongest one. Evidently, a = 0 is the annihilator of any conjunctive
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aggregation function A. Depending on the field of applications, often some kind of
neutrality for the element e = 1 is required [4, 14].

Definition 5. An (n–ary) aggregation function A on [0, 1] is called a (an n–) semi-
copula whenever e = 1 is its neutral element. An extended aggregation function A
on [0, 1] with the strong neutral element e = 1 is called a conjunctor.

Recall some distinguished classes of conjunctive aggregation functions.

• Triangular norms (t-norms for short) [41, 28] are associative symmetric conjunc-
tors.

• Quasi–copulas [2, 27] are 1–Lipschitz conjunctive aggregation functions.
Observe that each quasi–copula is necessarily a semicopula.

• Copulas [42, 37] are n–increasing semicopulas, where the n–increasing property
means the non–negativity of all mixed n–th differences. For n = 2 this means
that A : [0, 1]2 → [0, 1] is 2–increasing if and only if for all (x1, x2), (y1, y2) ∈
[0, 1]2 such that x1 ≤ y1 and x2 ≤ y2, it holds

(A(y1, y2)− A(y1, x2))− (A(x1, y2)− A(x1, x2)) ≥ 0.

Each copula is 1–Lipschitz, and thus a quasi–copula.

Observe that conjunctive aggregation functions, semicopulas, conjunctors, quasi–
copulas and copulas are convex classes, which is not the case of triangular norms.
Because of the existence of exhaustive monographs on t-norms [28] and copulas
[37] we will not discuss these classes in detail. However, there are some new inter-
esting results worth mentioning.

Recall that each 1–Lipschitz t-norm is an associative copula (as a binary function)
and vice–versa. Thus each associative copula is an ordinal sum [28] of Archimedean
1–Lipschitz t-norms. These later are characterized by the convexity of their additive
generator, that is, a strictly decreasing continuous function t : [0, 1] → [0,∞],
t (1) = 0.

A related problem concerning k–Lipschitz Archimedean t-norms, k > 1, was
stated as an open problem in [1]. Mesiarová has recently characterized [35] k–
Lipschitz Archimedean t-norms by the k–convexity of their additive generators.
The k–convexity of an additive generator t means that for all 0 < x < y < 1
and ε ∈ ]0,min(1− y, 1− k x)] it holds

t (x + k ε)− t (x) ≤ t (y + ε)− t (y).

Evidently, the 1–convexity reduces to the standard convexity.
The weakest 1–Lipschitz conjunctor is the Łukasiewicz t-norm TL , in the frame-

work of copulas also called the lower Fréchet–Hoeffding bound, which in the binary
form is given by TL(x, y) = max(x + y − 1, 0), (x, y) ∈ [0, 1]2.

Note that the class of all k–Lipschitz t-norms for k > 1 has no weakest element,
though there are several minimal k–Lipschitz t-norms. The weakest k–Lipschitz
conjunctor in the binary form is given by Ck(x, y) = max(x+k y−k, k x+y−k, 0).
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For each ternary conjunctive aggregation function C : [0, 1]3 → [0, 1] we can
introduce three binary functions C12, C23, C13 : [0, 1]2 → [0, 1] given by

C12(x, y) = C(x, y, 1), C23(x, y) = C(1, x, y), C13(x, y) = C(x, 1, y).

All functions C12, C23, C13 are conjunctive. Evidently, if C is the ternary form of
some conjunctor, then C12 = C23 = C13. In general these equalities fail even for
semicopulas (quasi–copulas, copulas). An interesting problem is also the reverse
compatibility problem, namely, under which conditions binary functions A, B , D of
some type are the marginal functions of a ternary conjunctive aggregation function
C of the same type. In the case of t-norms it is evident that A = B = D are
necessarily the binary forms and C is the ternary form of the same t-norm. In the
case of semicopulas (quasi–copulas), for any A, B , D there is a ternary semicopula
(quasi–copula) C , not necessarily unique, such that C12 = A, C23 = B , C13 = D,
for example, C : [0, 1]3 → [0, 1] given by

C(x, y, z) = Min(A(x, y), B(y, z), D(x, z)) . (1)

However, for 2–copulas A, B , D the ternary operation C given by (1) need not be a
copula, in general. This is, e.g., in the case A = B = D = TL , when C is a 3–quasi–
copula but not a 3–copula. For any 2–copulas A, B , let A∗B = D : [0, 1]2 → [0, 1]
be given by

D(x, y) =
1
∫

0

∂A(x, t)

∂ t

∂B(t, y)

∂ t
dt .

Then D is also a 2–copula [13], and C : [0, 1]3 → [0, 1] given by

C(x, y, z) =
y

∫

0

∂A(x, t)

∂ t

∂B(t, z)

∂ t
dt

is a 3–copula and moreover, C12 = A, C23 = B , C13 = D, compare also [31].
For example, if A = B = TL then A ∗ B = Min(2) and (TL , TL, D) are marginal
2–copulas of a 3–copula C : [0, 1]2 → [0, 1] if and only if D = TL ∗ TL = Min(2)

and C(x, y, z) = max (min(x, z)+ y − 1, 0).

Let C =
(

C(2)
n

)

n∈N
be a system of binary conjunctive aggregation functions.

Then the recursive extended aggregation function C = CC ,

C(n)(x1, . . . , xn) = C(2)
n−1

(

C(n−1)(x1, . . . , xn−1), xn

)

= C(2)
n−1

(

. . .C(2)
2

(

C(2)
1 (x1, x2), x3

)

, . . . , xn

)
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is conjunctive. If all C(2)
n , n ∈ N, are semicopulas (quasi–copulas) then C is an

extended semicopula (quasi–copula). In the case of copulas, it is an open problem
under which conditions C(n) is a copula and C is an extended copula. In the case

when C = C(2)
1 , i.e., C(2)

n = C(2)
1 for all n ∈ N, and C(2)

1 : [0, 1]2 → [0, 1] is an
Archimedean 2–copula, then C is an extended copula, that is, an n–copula for each
n ∈ N, if and only if C is generated by a decreasing bijection t : [0, 1] → [0,∞]
whose inverse t−1 : [0,∞] → [0, 1] is totally monotone, that is, whose all deriva-
tives at each point from ]0,∞[ exist and are non–negative [37]. Each such copula is
necessarily bounded by the product, C ≥ Π , which is an important example of an
extended copula, reflecting the independence of random variables. To see a negative
example, let C(2)

1 = Π(2) and C(2)
n = Min(2) for all n > 1. Then C is an extended

quasi–copula but not an extended copula. Also note that not each extended copula is
recursive. For example, the extended aggregation function C :

⋃

n∈N

[0, 1]n → [0, 1]

given by

C(x1, . . . , xn) = x1 Min(x2, . . . , xn), n ≥ 2,

is an extended copula which is not recursive.
Finally, we introduce a useful proposition.

Proposition 1. Let F be a class of (n–ary/extended) aggregation functions on [0, 1]
and let HF be the set of all binary aggregation functions D : [0, 1]2 → [0, 1] such
that for all A, B ∈ F also C = D(A, B) given by C(x) = D(A(x), B(x)), is an
element of F . Then

(i) For the class F = A of all (n–ary/extended) aggregation functions on [0, 1] it
holds HA = A(2), that is, D can be an arbitrary binary aggregation function.

(ii) For the class F = B of all conjunctive (n–ary/extended) aggregation functions
we have HB = {D ∈ A(2) | D ≤ Max (2)}.

(iii) For the class F = S of all (n–ary/extended) semicopulas we have

HS = {D ∈ A(2) | D is idempotent}.

(iv) For the class F = Q of all quasi–copulas we have

HQ = {D ∈ A(2) | ‖D‖∞ = 1}.

Note that the Chebyshev norm of a binary aggregation function D is given by

‖D‖∞ = sup

( |D(x, y)− D(u, v)|
max(|x − u|, |y − v|)

)

,

where the supremum is taken over all (x, y), (u, v) ∈ [0, 1]2, (x, y) �= (u, v).
(v) For the class F = C of all copulas we have
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HC = {D ∈ A(2) | D is a weighted mean}.

(vi) For the class F = T of all t-norms we have

HT = {PF , PL },

where PF (x, y) = x and PL(x, y) = y for all (x, y) ∈ [0, 1]2.
Evidently,

HT ⊂ HC ⊂ HQ ⊂ HS ⊂ HB ⊂ HA.

By duality, similar notions can be introduced and similar results can be obtained
for disjunctive aggregation functions. For an (n-ary/extended) aggregation function
A on I = [0, 1], the standard duality, here called simply duality, is related to the
order reversing bijection n : [0, 1] → [0, 1], n(x) = 1 − x , the so–called standard
negation on [0, 1]. Then an (n-ary/extended) aggregation function Ad on [0, 1] is
called the dual of A, if for all x it holds Ad(x) = 1− A(1− x).

For example, duals of t–norms are t–conorms, that is, associative symmetric ag-
gregation functions with 0 as the strong neutral element. For binary 1–Lipschitz
aggregation functions another type of duality was introduced, see [32], compare also
[45]. For an aggregation function A : [0, 1]2 → [0, 1] its reverse A∗ : [0, 1]2 →
[0, 1] is given by A∗(x, y) = x+ y− A(x, y). Evidently (A∗)∗ = A. An interesting
problem is under which conditions A∗ = Ad , i.e., for which binary 1–Lipschitz
aggregation functions it holds

A(x, y) = x + y − 1+ A(1− x, 1− y) for all (x, y) ∈ [0, 1]2. (2)

Restricting our considerations to the associative aggregation functions we end up
with the famous Frank functional equation [25] and the only solutions to (2) are
Frank’s t–norms and the symmetric ordinal sums of Frank’s t–norms, see [30].

5 Weighted Aggregation Functions

This section is devoted to a proposal how to introduce weights (importances) into
aggregation. For an input vector x = (x1, . . . , xn), the corresponding weights
w1, . . . , wn can be understood as cardinalities of single inputs x1, . . . , xn , respec-
tively. We will deal with weighting vectors w = (w1, . . . , wn), wi ∈ [0,∞[ , i ∈
{1, . . . , n}, and

n
∑

i=1
wi > 0. If

n
∑

i=1
wi = 1, w will be called a normal weighting

vector.
For an extended aggregation function A :

⋃

n∈N

I n → I , and a weighting vector

w = (w1, . . . , wn) (for some n ∈ N), we will discuss an n–ary aggregation function
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Aw : I n → I , which will be called a weighted aggregation function. We expect the
next quite natural properties of weighted aggregation functions, compare also [5].

(W1) If w = (1, . . . , 1) = 1 then

A1(x1, . . . , xn) = A(x1, . . . , xn)

for all (x1, . . . , xn) ∈ I n .

(W2) For any (x1, . . . , xn) ∈ I n and any w = (w1, . . . , wn),

Aw(x1, . . . , xn) = Aw∗(xm1, . . . , xmk ),

where {m1, . . . ,mk} = {i ∈ {1, . . . , n} | wi > 0}, m1 < . . . < mk , w∗ =
(wm1, . . . , wmk ).

(W3) If w is a normal weighting vector then Aw is an idempotent aggregation
function.

Observe that (W1) simply embeds the aggregation function A into weighted aggre-
gation functions. Further, due to (W2), a zero weight wi in a weighting vector w
means that we can omit the corresponding score xi (and the weight wi = 0) from
aggregation. Finally, the property (W3) expresses the standard boundary condition
for extended aggregation functions, namely, that the aggregation of a unique input

x results in x , A(x) = x . Then Aw(x1, . . . , xn) with
n
∑

i=1
wi = 1 can be seen as

the aggregation of x with cardinality
n
∑

i=1
wi = 1, i.e., Aw(x, . . . , x) = A(x) = x ,

which is exactly the idempotency of the function Aw.
The standard summation on [0,+∞] can be understood as a typical aggregation

on [0,+∞]. For a given weighting vector w = (w1, . . . , wn), the weighted sum
n
∑

i=1
wi xi is simply the sum of inputs xi transformed by means of weights wi into

new inputs yi = wi xi . Note that the common multiplication of reals applied in the
next transformation can be straightforwardly deduced from the original summation
(and the standard order of real numbers), i.e., for w ≥ 0, x ∈ [0,+∞]

w · x = sup
(

y ∈ [0,+∞] | ∃ i, j ∈ N, i
j < w and u ∈ [0,+∞] such that

j
∑

k=1
u < x and y =

i
∑

k=1
u

)

Recall that the weighted sum
n
∑

i=1
wi xi for weights wi such that

n
∑

i=1
wi = 1 is just

the weighted arithmetic mean. The above discussed approach can be applied to any
continuous symmetric associative aggregation function defined on I = [0, c] with
neutral element 0, as, for example, to any continuous t–conorm S. The weighted
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t–conorm Sw : [0, 1]n → [0, 1], where n = dim w, is simply defined as

Sw(x1, . . . , xn) = S(w1 " x1, . . . , wn " xn) (3)

where the transformed input data wi " xi are obtained from the weights wi and the
original inputs xi by means of a binary operation" : [0,+∞[×[0, 1]→ [0, 1],

w " x = sup (y ∈ [0, 1] | ∃ i, j ∈ N, i
j < w and u ∈ [0, 1] such that

S(u, . . . , u
︸ ︷︷ ︸

j−t imes

) < x and y = S(u, . . . , u
︸ ︷︷ ︸

i−t imes

)).

Evidently, (4) is an appropriate modification of (3). Note that 0 " x = 0 and
1"x = x for all x ∈ [0, 1]. In the case when S has unit multipliers, i.e., S(x, y) = 1

for some x, y ∈ [0, 1[ we should require
n
∑

i=1
wi ≥ 1 to keep the boundary condi-

tion Sw(1, . . . , 1) = 1. Obviously, the weighted t–conorm Sw for any continuous
t–conorm S fulfills axioms (W1), (W2), (W3). More details about weighted
t–conorms can be found in [6], including several examples. Recall some facts:

• Maxw(x1, . . . , xn) = max(xi | wi > 0), (due to w " x = x if w > 0);
• Sw is lower semi–continuous (left continuous);
• Sw (with some nontrivial wi /∈ {0, 1}) is continuous if and only if either S =

Max or S is a continuous Archimedean t–conorm;
• If S is continuous Archimedean t–conorm with an additive generator g : [0, 1] →

[0,+∞], and w is a normal weighting vector, then Sw(x1, . . . , xn) = g−1
(

n
∑

i=1
wi g(xi)

)

, i.e., Sw is a weighted quasi–arithmetic mean (because w " x =
g−1(w ·g(x)) forw ∈ [0, 1]). It is either cancelative (if S is a nilpotent t–conorm;
e.g., the Yager t–conorm for p = 2, see [28], leads to the weighted quadratic
mean) or it has annihilator a = 1 (if S is a strict t–conorm).

Dual operators to t–conorms are t–norms [28]. Weighted t–norms can be defined
in the spirit of (3) and (4), or, equivalently, by the duality, i.e.,

Tw(x1, . . . , xn) = 1− Sw(1− x1, . . . , 1 − xn), (4)

where T is an arbitrary continuous t–norm and S = T d is the corresponding dual t–
conorm. Observe that (4) can be formally generalized exploiting an arbitrary strong
negation N , i.e., a decreasing involutive mapping N : [0, 1] → [0, 1], and putting
Tw(x1, . . . , xn) = N(Sw(N(x1), . . . , N(xn))). However, independently of N , we
will obtain the same weighted t–norm as by (4) whenever the same t–norm is ob-
tained by the corresponding dualities.

Note that axioms (W1), (W2) and (W3) are also fulfilled for weighted t–norms.
Similarly as in the case of weighted t–conorms we have the following facts:
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• Minw(x1, . . . , xn) = min(xi | wi > 0);
• Tw is upper semi–continuous (right continuous);
• Tw (with some nontrivialwi /∈ {0, 1}) is continuous if and only if either T = min

or T is a continuous Archimedean t–norm;
• If T is a continuous Archimedean t–norm with an additive generator f : [0, 1] →

[0,+∞], and w is a normal weighting vector, then

Tw(x1, . . . , xn) = f −1

(

n
∑

i=1

wi f (xi )

)

,

i.e., Tw is a weighted quasi–arithmetic mean. It is cancelative whenever T is
nilpotent and it has annihilator 0 whenever T is a strict t–norm.

For example, for the product t–norm Π , the relevant normal weighted function Πw
is just the weighted geometric mean.

Observe that if
n
∑

i=1
wi = n, then for a continuous Archimedean t–norm T gen-

erated by an additive generator f the corresponding weighted operator is given by

Tw(x1, . . . , xn) = f (−1)
(

n
∑

i=1
wi f (xi )

)

what is just a weighted generated t–norm

as proposed by Dubois and Prade in [21].
Several aggregation functions can be built by means of t–norms and t–conorms,

for example, nullnorms, uninorms, Γ –operators, etc. Their weighted versions are
then built from the corresponding weighted t–norms and t–conorms. For more de-
tails we recommend [10].

The basic idea of quantitative weights as cardinalities can be straightforwardly
illustrated on the example of the weighted mean arising from the arithmetic mean.
In statistics, starting with integer weights ni , which are simply frequencies of obser-
vations xi , the weighted mean is

Mn(x1, . . . , xn) =

n
∑

i=1
ni xi

n
∑

i=1
ni

,

where n = (n1, . . . , nn). Because of the strong idempotency of the standard arith-
metic mean, Mn can be easily generalized into the form

Mw(x1, . . . , xn) =
n
∑

i=1

wi xi , wi ≥ 0,
n
∑

i=1

wi = 1.

The previous property of the standard arithmetic mean we can apply on any symmet-
ric strongly idempotent extended aggregation function A. The strong idempotency
of a symmetric extended aggregation function A allows to introduce integer and
rational quantitative weights – simply looking at them as cardinalities. In fact, we
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repeat the standard approach applied to the arithmetic mean as mentioned above. In-
deed, for inputs x1, . . . , xn ∈ I and integer weights w = (w1, . . . , wn) ∈ (N∪{0})n ,
we put

Aw(x1, . . . , xn) = A(x1, . . . , x1
︸ ︷︷ ︸

w1−t imes

, x2, . . . , x2
︸ ︷︷ ︸

w2−t imes

, . . . , xn, . . . , xn
︸ ︷︷ ︸

wn−t imes

). (5)

Obviously, if k = (k, . . . , k), k ∈ N, is a constant weighting vector, the symmetry
and the strong idempotency of A result in Ak(x) = A(x). This fact allows to define
consistently the weighted aggregation in the case of rational weights wi ∈ Q

+. In
that case we find such an integer k ∈ N that k wi ∈ N∪ {0} for all i = 1, . . . , n, and
we put

Aw(x) = Akw(x). (6)

The resulting fused value in (4) does not depend on the actual choice of k ∈ N.
Further, because of (4) and (3), Aw = A pw for each positive rational p and each
rational weighting vector w ∈ (Q+)n, w �= (0, . . . , 0). Therefore we can deal with
normed (rational) weighting vectors only, that is, we may suppose that

∑

i
wi = 1.

The last problem we need to solve, is the case when also irrational weights wi are
admitted.

Definition 6. Let A :
⋃

n∈N

I n → I be a symmetric strongly idempotent extended

aggregation function. For any non–zero weighting vector w = (w1, . . . , wn) ∈
[0,∞[ n, the corresponding n–ary weighted function Aw : I n → I is defined as
follows:

(i) If all weights wi are rational, we apply formulas (4) and (3).
(ii) If there is some irrational weight wi , denote w∗ = (w∗1, . . . , w

∗
n) the corre-

sponding normed weighting vector, that is, w =
(

∑

i
wi

)

w∗.

For any m ∈ N, i ∈ {1, . . . , n}, let

w
(m)
i = min

(

j

m !
| j ∈ N ∪ {0}, j

m !
≥ w∗i

)

,

and w(m) = (w
(m)
1 , . . . , w

(m)
n ).

Then w
(m)
i ∈ Q

+ and
∑

i
w
(m)
i ≥ 1 for all m ∈ N (and if already all weights

w∗i ∈ Q
+, then also w

(m)
i = w∗i for all i and all sufficiently large m) and we define

Aw(x) = lim inf
m→∞ Aw(m) (x) for all x ∈ I n . (7)

The following result can be straightforwardly checked from Definition 6.
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Proposition 2. Let # = (w(n))∞n=1 be a weighting triangle, i.e., for each n ∈ N,
let w(n) = (w1,n, . . . , wn,n) be a non–zero weighting vector. Under the nota-
tions and requirements in Definition 6, define the function A# :

⋃

n∈N

I n → I ,

A#(x) = Aw(n) (x), whenever x ∈ I n. Then A# is a well defined idempotent ex-
tended aggregation function.

Note that the approach allowing to introduce integer (rational) weights as given
in formulas (3) and (4) was already applied to decomposable idempotent symmetric
extended aggregation functions, see [24]. However, our results cover a wider class
of symmetric strongly idempotent extended aggregation functions. For example, let
g : [0, 1]→ [0, 1] be given by g(x) = 2 x−x2. Define the function A :

⋃

n∈N

I n → I

by

A(x1, . . . , xn) =
n
∑

i=1

(

g

(

i

n

)

− g

(

i − 1

n

))

x ′i ,

where x ′i is the i–th order statistics from the sample (x1, . . . , xn). Then A, which is
an extended OWA operator, is a symmetric strongly idempotent extended aggrega-
tion function which is not decomposable. Further observe that the limit in formula
(7) need not exist, in general.

The idea of qualitative weights incorporation into aggregation is linked to the
transformation of the inputs by means of the corresponding weights from [0, 1]
(as parameters expressing the importance of the corresponding input coordinates/
criteria),

Aw(x) = A(h(w1, x1), . . . , h(wn, xn)), (8)

where h : [0, 1] × I → [0, 1] is an appropriate binary function. This idea was
already applied, e.g., in expert systems, and for I = [0, 1] it was introduced by
Yager in [51], where h is a function called a RET operator. More details about RET
operators can also be found in [44].

To ensure (W1), the following property of h is required:
(RET1) h(1, x) = x for all x ∈ I .
Similarly, to ensure (W2), A is supposed to have a neutral element e and then
(RET2) h(0, x) = e for all x ∈ I.
Further, to ensure the monotonicity of Aw, one requires
(RET3) h(w, ·) is non-decreasing for all w ∈ [0, 1].
Finally, to ensure the boundary conditions of aggregation functions, one requires
(RET4) h(·, b) is non-decreasing for all b ≥ e;
(RET5) h(·, b) is non-increasing for all b ≤ e.

Proposition 3. Let A :
⋃

n∈N

I n → I be an extended aggregation function with neu-

tral element e and let h : [0, 1]× I → I fulfil properties (RET1)–(RET5). For any
weighting vector w ∈ [0, 1]n, maxwi = 1, define the function Aw by (1). Then Aw
is an n-ary aggregation function satisfying axioms (W1), (W2) and (W3).
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We only recall a typical example of a RET operator given by

h : h(w, x) = (x − e)w + e.

If e = 0 and I = [0, 1], any binary semicopula fulfills (RET1)–(RET5), while for
e = 1, any fuzzy implication satisfying the neutrality principle, which corresponds
to (RET1), see, e.g. [28], can be applied.

In some special cases, h can also be defined for weights exceeding 1, that is, h
maps [0,∞[×I into I. For example, recall the introduction of weights for continu-
ous t–norms and t–conorms. Take, e.g., a strict t-norm T with an additive generator
f : [0, 1] → [0,∞]. Then h(w, x) = f −1 (w f (x)) , and for an arbitrary weighting
vector w (the only constraint is

∑

wi > 0) we can put Tw(x) = f −1
(∑

wi f (xi )
)

.

Recall that special classes of anonymous (i.e., symmetric) aggregation functions
with neutral elements appropriate for qualitative weights incorporation are triangu-
lar norms, triangular conorms, uninorms.

Projections to a distinguished subspace of some metric space are often applied
operators which are usually related to some (constraint) optimization problem. The
crucial role is played here by the underlying metric, and in fact, we are always
looking for the best approximation of a discussed point by some point from the
considered subspace. A similar philosophy can be found in defuzzification methods
[20, 50], where a fuzzy quantity is characterized by a unique real number. Based
on the just mentioned ideas, we introduce a metric–like function on the space of all
possible scores (finitely dimensional inputs from some real interval or ordinal scale).
Next we transform our metric–like function into a fuzzy relation. This approach is
already standard in the domain of T –equivalence relations where the transformation
was done, see, e.g., [17, 39, 40]. For a fixed score (x1, x2, . . . , xn), we will look for
an appropriate “projection” to the subspace of all unanymous scores (r, r, . . . , r),
r ∈ I , applying some defuzzification method. Thus, in fact, we will define a function
with inputs and outputs from some real interval I . In the special case of the M O M
defuzzification method we will rediscover a generalization of the penalty method
introduced by Yager and Rybalov [52], see also [9].

For a fixed real interval I and n ∈ N we introduce a dissimilarity function D :
I n × I n → [0,∞[ by

D(x, y) =
n
∑

i=1

Di (xi , yi ), (9)

where all Di : I 2 → [0,∞[ are particular one-dimensional dissimilarity functions,
Di (x, y) = Ki ( fi (x)− fi (y)), with Ki : ]−∞,∞[→ ]−∞,∞[ a convex function
with the unique minimum Ki (0) = 0, and fi : I → ] −∞,∞[, a strictly mono-
tone continuous real function. For more details see [34]. Note that if Ki are even
functions then D is a metric on I n .

Definition 7. For a given dissimilarity D, the function U : I n → [0, 1]I which
assigns to a score x the fuzzy subset Ux of I with the membership function
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Ux(r) = 1

1+ D(x, r)
, (10)

where r = (r, . . . , r), will be called a D–fuzzy utility function.

Proposition 4. Each D–fuzzy utility function U assigns to each score x ∈ I n a
continuous quasi-convex fuzzy quantity Ux, i.e., for all r, s ∈ I , λ ∈ [0, 1],

Ux(λ · r + (1− λ)s) ≥ min(Ux(r),Ux(s)),

and thus for any α ∈]0, 1] the α–cut Uα
x = {r ∈ I | Ux(r) ≥ α} is a closed

subinterval of I in the standard topology.

For each defuzzification method DE F acting on quasi–convex (continuous) fuzzy
quantities, we can assign to each score x a characteristic DE F(Ux). Supposing that
for any fuzzy quantity Q, DE F(Q) ∈ supp(Q), DE F(U) is an I n → I func-
tion. In general, this function must be neither idempotent nor non–decreasing. Note
that in [34], the conditions on DE F ensuring the idempotency and monotonicity
of the aggregation function DE F(U) are discussed. Observe that the M O M de-
fuzzification method (Mean of Maxima) satisfies these conditions and thus we will
illustrate our approach on the M O M defuzzification. Note that M O M(U)(x) =
1
2

(

inf Uα∗
x + sup Uα∗

x

)

, where α∗ = sup{α ∈ ]0, 1] |Uα
x �= ∅}.

Definition 8. For a given dissimilarity D, the M O M-based operator M O M(U)

will be denoted by AD.

As already mentioned above, for any dissimilarity D, AD is an idempotent aggre-
gation function.

Example 1.

(i) For D(x, y) =
n
∑

i=1
( f (xi )− f (yi ))

2, we have AD(x) = f −1
(

1
n

n
∑

i=1
f (xi )

)

,

i.e., AD is a quasi–arithmetic mean.

(ii) For D(x, y) =
n
∑

i=1
| xi − yi |, we have AD(x) = med(x1, . . . , xn), i.e., the

median operator.
(iii) For n = 2, D(x, y) =| x1− y1 | +(x2− y2)

2, we have AD(x) = med(x1, x2−
1/2, x2 + 1/2).

(iv) For D(x, y) =
n
∑

i=1
Dc(xi , yi ), where Dc(x, y) =

{

c(y − x), if x ≤ y
x − y, else

, AD

is the α–quantil (order statistics) with α = 1
(1+c) .

(v) For D(x, y) = n
max
i=1

| xi − yi | we have AD(x) =
min

i
xi+max

i
xi

2 , i.e., AD is a

special OWA operator.
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Dissimilarity based approach to aggregation functions allows a straightforward in-
corporation of weights. For a weighting vector w = (w1, . . . , wn), the weighted

dissimilarity Dw will be given by Dw(x, y) =
n
∑

i=1
wi Di (xi , yi ) and then we will

apply Definition 8 to obtain the corresponding weighted aggregation function. In the
case of standard aggregation functions we have obtained in Example 1 (i) and (ii),
the standard weighted quasi–arithmetic mean and the weighted median are obtained,
respectively. The weighted aggregation function corresponding to Example 1 (iii) is
given by ADw(x) = med(x1, x2 − w1

2w2
, x2 + w1

2w2
).

Finally, following the ideas of Yager [49], we propose to introduce OWAF (or-
dered weighted aggregation functions) as follows.

Definition 9. Let Aw : I n → I be a weighted aggregation function. Then the opera-
tor A′w : I n → I given by A′w(x) = Aw(xσ(1), . . . , xσ(n)), where σ : {1, . . . , n} →
{1, . . . , n} is a permutation for which xσ(1) ≤ . . . ≤ xσ(n), will be called an
OWAF.

Evidently, starting from a weighted arithmetic mean Mw, Definition 9 yields
the OWA operator M ′

w. Note that the ordered weighted t–norm T ′(0,1,1)(x, y, z) =
β · γ and its dual ordered weighted t–conorm S′(1,1,0)(x, y, z) = α + β − αβ,
α = min(x, y, z), β =med(x, y, z), γ = max(x, y, z), were found to be important
in the study of fuzzy preference structures [16].

6 Conclusion

We have discussed some aspects of the theory of aggregation functions, including
the review of some properties and classes of aggregation functions, and some con-
struction methods. Especially, we have splitted the properties of extended aggrega-
tion functions into local properties, i.e., the properties of relevant n–ary aggregation
functions for each fixed n, and into global properties which are often called “strong”.
Global properties properties constraint different arities functions involved in each
extended aggregation function and thus, in the next development of the theory of
aggregation functions they should be investigated in more detail. We expect interest-
ing generalizations based on modifications of these standard approaches in the near
future. For example, copulas are due to their probabilistic nature strongly connected
with the standard operations, especially with the sum. Switching to the possibilistic
background which is related to the maximum, we end up with semicopulas. How-
ever, there are many appropriate pseudo–additions (t–conorms) varying between the
sum and maximum.
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Identification of Weights
in Aggregation Operators

Tomasa Calvo and Gleb Beliakov

Abstract This chapter provides a review of various techniques for identification of
weights in generalized mean and ordered weighted averaging aggregation operators,
as well as identification of fuzzy measures in Choquet integral based operators. Our
main focus is on using empirical data to compute the weights. We present a number
of practical algorithms to identify the best aggregation operator that fits the data.

1 Introduction

Aggregation of several input values into a single output value is an indispensable
tool in many disciplines. The arithmetic mean is probably the most commonly used
aggregation operator, which simply averages the input values. Weighted arithmetic
means are also commonly used when the inputs have associated weights, which
usually reflect the relative importance of the inputs. There is also a wide range of
other averaging aggregation operators, which provide great flexibility to the model-
ing process, among which Ordered Weighted Averaging (OWA), generalized means
and Choquet integral based aggregation operators play an especially important role.

All weighted aggregation operators are defined with the help of an associated
vector of weights (or, more generally, a weighting triangle which contains the
weights of all n-ary aggregation operators, n = 2, 3, . . .). Furthermore, Choquet
integral based operators also require coefficients of an appropriate fuzzy measure,
which number 2n−2. The weights (coefficients) are problem specific, and typically
have a direct interpretation in terms of the underlying task.

When it is possible to gather some data about the desired (or observed) perfor-
mance of a system, which typically consists of pairs input-output, a key approach to
identifying the most suitable aggregation operator is to calculate the weights from
the data by using some kind of regression procedure. One has to be aware, how-
ever, that the weights are not fully independent (for instance they typically sum to
one), and that the semantics of the problem may impose further quite complicated
relationships. This implies that proper procedures for weight identification must
accommodate a number of restrictions (constraints).

In this chapter we review a number of methods for weights identification based on
empirical data, which are applicable to a wide range of aggregation operators. Our
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and Models. C© Springer 2008 145
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main focus is on those methods that are based on classical constrained optimization
problems, namely quadratic and linear programming problems. The main reason is
that such methods guarantee the best solution and are by far more efficient than
popular modern heuristics used in nonlinear programming.

2 Preliminaries

A recent comprehensive overview of aggregation operators is given in [11], from
which we took some relevant definitions, see also [14, 15] and [28].

Definition 1. An aggregation operator is a function F :
⋃

n∈N

[0, 1]n → [0, 1] such

that:

(i) F(x1, . . . , xn) ≤ F(y1, . . . , yn) whenever xi ≤ yi for all i ∈ {1, . . . , n}.
(ii) F(t) = t for all t ∈ [0, 1].

(iii) F(0, . . . , 0
︸ ︷︷ ︸

n−t imes

) = 0 and F(1, . . . , 1
︸ ︷︷ ︸

n−t imes

) = 1

Each aggregation operator F can be represented by a family of n-ary operators
fn : [0, 1]n → [0, 1] given by fn(x1, . . . , xn) = F(x1, . . . , xn).

An aggregation operator F is called averaging if it is bounded by

min(x) = min
i=1,...,n

xi ≤ F(x) ≤ max
i=1,...,n

xi = max(x).

An aggregation operator is called idempotent if F(t, t, . . . , t) = t for any
t ∈ [0, 1]. Note that since aggregation operators are monotone, idempotency is
equivalent to the averaging behaviour.

An aggregation operator is called symmetric (commutative) if F(x) = F(xP)

for any x ∈ [0, 1]n and any permutation P of {1, . . . , n}.
An aggregation operator F has a weighting triangle # = (win), if for each fn

the vector of weights is wn = (w1n, w2n, . . . , wnn) ∈ [0, 1]n with
∑n

i=1 win = 1.
Throughout this paper the set of empirical data (dataset) will be denoted by D =

{(xk, yk)}Kk=1. It consists of K input-output tuples, xk ∈ [0, 1]n, yk ∈ [0, 1]. The
aim of the methods presented in this chapter is to identify the weighting vectors wn

of aggregation operators of given classes by fitting the weights to the data, i.e., by
minimizing the difference between the predicted and observed values

(

K
∑

k=1

| fn(x
k)− yk |p

)1/p

, p ≥ 1, (1)

subject to fn being an aggregation operator from some class.
If we choose p = 2, we obtain the least squares problem, and if we choose p = 1

we obtain the least absolute deviation problem. The latter problem is frequently used
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in robust regression, since the optimal solution is less sensitive to outliers. Another
possible choice is p = ∞, i.e., minimize the maximal difference

max
k=1,...,K

| fn(x
k)− yk |.

The two cases p = 1 and p = ∞ sometimes present computational advantages,
because the corresponding minimization problems can be solved by using linear
programming (LP) methods. In the first case we use auxiliary variables vk−, vk+ :
vk+− vk− = fn(xk)− yk , in which case vk++ vk− = | fn(xk)− yk|. In the second case
we minimize ε, subject to ε ≥ fn(xk)− yk and ε ≥ −( fn(xk)− yk), k = 1, . . . , K
along with other required constraints. In the case p = 2 we can use quadratic pro-
gramming (QP) methods. A detailed overview of these and some other techniques
for treating these cases can be found in [26, 39]. There are a number of specially
adapted versions of the simplex method for numerical solution [2], and free program
code is available at http://www.netlib.org/.

What distinguishes the methods described below is the type of constraints that
appear in the minimization problem (1). These constraints depend on the class of
aggregation operator, and also on some other properties that may be imposed to
satisfy problem requirements.

In some cases it is possible to make a further step and identify not only weighting
vectors wn for some n, but the whole weighting triangle #, even if the data are
of a fixed dimension. Of course, this is based on a given relationship between the
weighting vectors. We will explore this relationship in Sect. 7.

3 Weighted Means

Definition 2. An aggregation operator is a weighted arithmetic mean if, for each
n ∈ lN, it can be written as

fn(x) =
n
∑

i=1

win xi

where wn = (w1n, . . . , wnn) ∈ [0, 1]n verifies
∑n

i=1 win = 1.

Definition 3. An aggregation operator is a weighted quasi-arithmetic mean if, for
each n ∈ lN, it can be written as

fn(x) = g−1

(

n
∑

i=1

win g(xi)

)

where g : [0, 1] → [−∞,+∞] is a continuous strictly monotone function and
wn = (w1n, . . . , wnn) ∈ [0, 1]n verifies

∑n
i=1 win = 1.



148 T. Calvo, G. Beliakov

By taking g(t) = t we obtain weighted arithmetic means, and by taking g(t) =
log(t) we obtain weighted geometric mean

fn(x) =
n
∏

i=1

xwin
i .

If g(t) = tq , q �= 0, we obtain root-power operators, or weighted quasi-linear
means. A distinguished member is the harmonic mean (q = −1). A detailed discus-
sion is given in [1, 16, 11].

We note that the generating function g is defined up to an arbitrary linear trans-
formation, i.e., the function g̃(t) = Ag(t) + B defines the same weighted quasi-
arithmetic mean as g.

The simplest case is identification of weights of arithmetic means. Here we solve
the following minimization problem (for a fixed n)

minimize
K
∑

k=1

|
n
∑

i=1

win xk
i − yk |p, (2)

subject to win ≥ 0 and
∑n

i=1 win = 1. For p = 2 it is a quadratic program-
ming problem, and for p = 1 and p = ∞ the problem is reduced to linear pro-
gramming, as described earlier. The quadratic programming problem is efficiently
solved by using LSEI formulation (Least Squares with Equality and Inequality con-
straints), see [26, 23, 24], and Algorithm 587 from http://www.netlib.org.
This method is based on the active set approach, which is described in detail in
[36, 37].

A particular attention is needed for the case when the quadratic (resp. linear)
programming problems have singular matrices. Such cases appear when there are
few data, or when the input values are linearly dependent. While modern quadratic
and linear programming methods accommodate for such cases, the minimization
problem will typically have multiple solutions. An additional criterion is then used
to select one of these solutions, and typically this criterion relates to the dispersion
of weights, or the entropy [36]. The measure of weights dispersion is defined as

Disp(w) = −
n
∑

i=1

wi logwi , (3)

with the convention 0 log 0=0, and it measures the degree to which F takes into
account all information in the aggregation. For example, among the two optimal
solutions w1 = (0, 1) and w2 = (0.5, 0.5) the second one is preferable, since the
corresponding weighted mean operator uses information from two sources rather
than a single source, and is consequently less sensitive to input inaccuracies. Torra
[36] proposes to solve an auxiliary univariate optimization problem to maximize
weights dispersion, subject to a given value of (3).
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Consider now the case of quasi-arithmetic means, when a given generating func-
tion g(t) is not affine. The optimization problem (1) becomes non-linear, however
it can be reduced to the previously discussed constrained linear regression problem
by a simple mathematical trick. Instead of (1) consider minimization of

(

K
∑

k=1

|g( fn(x
k))− g(yk)|p

)1/p

, p ≥ 1, (4)

subject to the same conditions. In the case of quasi-arithmetic means it converts to

minimize
K
∑

k=1

|
n
∑

i=1

win g(xk
i )− g(yk)|p, (5)

subject to win ≥ 0 and
∑n

i=1 win = 1. This approach was discussed in detail in
[36, 4, 9, 7].

Note that for the purposes of numerical solution, one can simply apply the solu-
tion to problem (2) to the data set gD = {(g(xk), g(yk))}Kk=1. Of course, in general
solutions to problems (1) and (4) are different, but if the errors in the data are small,
they will be close to each other. Further, if the solution to (1) is needed, the solu-
tion to (4) can be used as a good starting point in a local nonlinear optimization
method.

4 Ordered Weighted Averaging

Definition 4. An aggregation operator is an Ordered Weighted Averaging operator
(OWA) ([41, 42]) if, for each n ∈ lN, it can be written as

fn(x) =
n
∑

i=1

win x(i)

where wn = (w1n, . . . , wnn) ∈ [0, 1]n verifies
∑n

i=1 win = 1 and (x(1), . . . , x(n))
is a vector obtained from x by arranging its components in a non-increasing order.

Definition 5. An aggregation operator is a generalized Ordered Weighted Averaging
(GOWA) operator ([11, 43]) if, for each n ∈ lN, it can be written as

fn(x) = g−1

(

n
∑

i=1

win g(x(i))

)

where g : [0, 1] → [−∞,+∞] is a continuous strictly monotone function, and
wn, x() are as in Definition 4. Such an operator is also called Ordered Weighted
Quasi-Arithmetic mean (OWQA) in [11].
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In [43] Yager proposed using g(t) = tq as a generalization of OWA operators,

fn(x1, . . . xn) =
(

n
∑

i=1

win xq
(i)

)1/q

, (6)

which is similar to weighted quasi-linear means, but involves re-ordering of the
components of x . The attitudinal character of the GOWA operator (or the measure
of orness) is defined in [43] as

AC(w; p) =
(

n
∑

i=1

win

(

n − i

n − 1

)q
)1/q

= 1

n − 1

(

n
∑

i=1

win (n − i)q
)1/q

. (7)

The values close to 0 correspond to min-like aggregation and values close to 1 cor-
respond to max-like aggregation. For a general generating function g, this measure
is defined as

AC(w; g) = g−1

(

n
∑

i=1

win g

(

n − i

n − 1

)

)

. (8)

Torra [34] has generalized OWA operators in a different way, by using the second
vector of weights that correspond to the individual inputs (WOWA operators). Con-
sider two weighting vectors w, p ∈ [0, 1]n,

∑

wi = 1,
∑

pi = 1. WOWA operator
is a mapping

fn(x) =
n
∑

i=1

ωi x P(i),

where P is a permutation of {1, . . . , n} such that xP(i−1) ≥ x P(i), and the weights
ωi are defined as

ωi = W

⎛

⎝

∑

j≤i

pP( j )

⎞

⎠−W

⎛

⎝

∑

j<i

pP( j )

⎞

⎠ .

W is a monotone increasing function interpolating the points (i/n,
∑

j≤i w j ) and
(0, 0). W is required to be linear if these points lie on a straight line.

The problem of identification of weights of OWA operators was studied by sev-
eral authors [17, 18, 40, 45]. A common feature of all methods is to eliminate
nonlinearity due to reordering of the components of x by restricting the domain
of the aggregation operator to the simplex S ⊂ [0, 1]n defined by the inequalities
x1 ≥ x2 ≥ . . . ≥ xn . On that domain OWA operator is a linear function. Once the
coefficients of this function are found, OWA operator can be computed on the whole
[0, 1]n by using its symmetry. Algorithmically, it amounts to using an auxiliary data
set D() = {(zk, yk)}, where vectors zk = xk

()
. Thus identification of weights of
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OWA is a very similar problem to identification of weights of arithmetic means.
Depending on the parameter p being used, we solve it by using either quadratic or
linear programming techniques.

Filev and Yager [17] proposed a nonlinear change in variables to obtain unre-
stricted minimization problem, which they propose to solve using nonlinear local
optimization methods. Unfortunately the resulting nonlinear optimization problem
is difficult due to a large number of local minimizers, and the traditional optimiza-
tion methods are stuck in the local minima.

The approach relying on quadratic programming was used in [44, 36, 37, 4, 7],
and it was shown to be numerically efficient and stable with respect to rank defi-
ciency (e.g., when K < n, or the data are linearly dependent).

Often an additional requirement is needed: a desired value of the measure of
orness AC = α. This requirement can be easily incorporated into QP or LP problem
as an additional linear equality constraint.

For generalized OWA operators with a given generating function g, the approach
is similar to the one used for quasi-arithmetic means:

minimize
K
∑

k=1

|
n
∑

i=1

win g(xk
(i))− g(yk)|p, (9)

subject to win ≥ 0,
∑n

i=1 win = 1, and possibly g(AC) = ∑n
i=1 win g

(

n−i
n−1

)

=
g(α). More details about this method are found in [36, 4, 9, 7].

The method proposed in [18, 31] identifies OWA operator weights with the max-
imal entropy, subject to a given measure of orness. This method does not use empir-
ical data, and aims at generating the weights with maximal dispersion, as discussed
in the previous section. Maximization of weights dispersion is also useful for data
driven weights identification, if there are multiple optimal solutions. Then the solu-
tion maximizing Disp(w) is chosen, as discussed in [36].

Identification of weights of WOWA operators is more complicated due to non-
linearities that appear in the definitions of weights ωi . This problem can be formu-
lated as

minimize
K
∑

k=1

(

n
∑

i=1

ωi (p, w, P)xk
P(i) − yk

)2

,

and the minimum with respect to p, w can be found using nonlinear optimization
methods. A cheaper alternative is to obtain the weights ωi (P), after recognizing
them as coefficients of a fuzzy measure, and WOWA operator as Choquet integral
[35] (see Sect. 6).
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5 Identification of the Generating Function

In this section we present the methods aiming at identifying not only the weights
of quasi-arithmetic means and generalized OWA operators, but also the unknown
generating function g. Previously we discussed the case of a fixed g(t) in both
classes of aggregation operators, and have shown that the optimal weights can be
found by solving problem (5) or (9).

Now consider the function g from some parametric family, but with unknown
parameter q , such as g(t) = tq . We denote such a family by g(t; q). We convert the
optimization problem with respect to both q and w into a bi-level problem

min
q

min
w

K
∑

k=1

|
n
∑

i=1

win g(xk
i ; q)− g(yk; q)|p, (10)

where at the inner level we solve problem (5) (or (9) respectively) with a fixed
q . While the outer problem is nonlinear, it involves a single variable q , and thus its
global optimum can be found iteratively by using some global optimization method,
such as Pijavski algorithm [32]. However we need to ensure the efficiency of each
iteration, i.e., use efficient algorithms for solving the inner problem.

A different situation arises when the parametric form of g(t) is not given. The
approach proposed in [4, 6, 9] is based on approximation of g with a monotone
spline (in particular linear spline), as

g(t) =
J
∑

j=1

c j B j (t), (11)

where B j are appropriately chosen basis functions, and c j are spline coefficients.
The monotonicity of g is ensured by imposing linear restrictions on spline coeffi-
cients, in particular non-negativity, as in [3]. Further, since the generating function
is defined up to an arbitrary linear transformation, one has to fix a particular g by
specifying two interpolation conditions, like g(a) = 0, g(b) = 1, a, b ∈ (0, 1), and
if necessary, properly model asymptotic behaviour if g(0) or g(1) are infinite, see
[6, 9].

After rearranging the terms of the sum, the problem of identification becomes [7]

min
c,w

⎛

⎝

K
∑

k=1

∣

∣

∣

∣

∣

∣

J
∑

j=1

c j

[

n
∑

i=1

win B j (x
k
i )− B j (y

k)

]

∣

∣

∣

∣

∣

∣

p⎞

⎠

1/p

. (12)

For a fixed c (i.e., fixed g(x)) we have either a quadratic or linear programming
problem to find w, and for a fixed w, we have a quadratic or linear programming
problem to find c. However if we consider both c, w as variables, we obtain a diffi-
cult global optimization problem. We convert it into a bi-level optimization problem
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min
c

min
w

⎛

⎝

K
∑

k=1

∣

∣

∣

∣

∣

∣

J
∑

j=1

c j

[

n
∑

i=1

win B j (x
k
i )− B j (y

k)

]

∣

∣

∣

∣

∣

∣

p⎞

⎠

1/p

,

where at the inner level we have a QP or LP problem and at the outer level we
have a nonlinear problem with multiple local minima. When the number of spline
coefficients J is not very large (< 10), this problem can be efficiently solved by
using deterministic Cutting Angle method of global optimization [5]. If the number
of variables is small and J is large, then reversing the order of minimization (i.e.,
using minw minc) is more efficient.

6 Choquet Integral Based Aggregation

Choquet integral is frequently used as an aggregation tool [10, 11, 22]. The Choquet
integral based aggregation operator is defined as

Cv(x1, . . . , xn) =
n
∑

i=1

x(i)[v(Hi)− v(Hi+1)], (13)

where v : 2N → I is a fuzzy measure on the set N = {1, 2, . . . , n}, which is
a monotonic (i.e. v(S) ≤ v(T ) whenever S ⊆ T ) set function satisfying v(∅) =
0, v(N) = 1; x(1) ≤ . . . ≤ x(n), Hi = {(i), . . . , (n)}, and Hn+1 = ∅ by convention.
Equation (13) can also be written as [20, 21], p. 110,

Cv(x1, . . . , xn) =
n
∑

i=1

[

x(i) − x(i−1)
]

v(Hi). (14)

where x(0) = 0 by convention. In this notation, Cv is a linear function of the coeffi-
cients of the fuzzy measure v(Hi ). Note that the order in which the components of
x() are arranged is different to the order used in Sect. 4, this is done for consistency
with the literature on OWA and Choquet integral based operators.

In multicriteria decision making, Choquet aggregation explicitly models the im-
portance of not only individual criteria, but of their subsets, as well as various inter-
actions between the criteria. In the context of learning aggregation operators from
data, identification of Choquet aggregation operator is equivalent to identification of
the fuzzy measure v(T ), described by 2n coefficients. This problem was addressed
in [8, 9, 13, 22].

Note that if fuzzy measure is symmetric, Choquet integral based aggregation be-
comes an OWA operator, and if the fuzzy measure is additive, we obtain a weighted
arithmetic mean.

Identification of the 2n − 2 coefficients (two are given explicitly as v(∅) = 0,
v(N) = 1) involves a quadratic (p = 2) or linear (p = 1,∞) programming problem
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minimize
K
∑

k=1

|Cv(x
k
1 , . . . , xk

n )− yk |p,

subject to the conditions of monotonicity of the fuzzy measure (they translate
into a number of linear constraints). In this problem the main difficulty is the
large number of unknowns, and typically a much smaller number of data. As
we mentioned, modern LP and QP methods handle well the resulting degener-
ate systems of equations, however for n ≥ 10 one also has to take into ac-
count the sparse structure of such systems. Most LP solvers handle sparse sys-
tems, and are very efficient, for QP we recommend OOQP sparse solver [19]
(http://www.cs.wisc.edu/∼swright/ooqp/).

There are also other requirements that can be imposed on the fuzzy measure from
the problem specifications. For example, if it is known that certain variables are sub-
additive, super-additive or substitutive, then the following additional constraints are
added [8]. For sub-additive criteria we add

v(T ∪ {i, j}) ≤ v(T ∪ {i})+ v(T ∪ { j})− v(T ), ∀T ⊆ N \ {i, j}. (15)

For substitutive criteria we add

∀T ⊆ N \ {i, j} : v(T ∪ {i, j}) ≤ v(T ∪ {i})+ (1− νi j )v(T ∪ { j}),
v(T ∪ {i, j}) ≤ v(T ∪ { j})+ (1− νi j )v(T ∪ {i}), (16)

where νi j ∈ [0, 1] is the degree of substitutivity. When νi j = 1, we obtain the
equalities v(T ∪{i, j}) = v(T ∪{i}) = v(T ∪{ j}), i.e., fully substitutive (identical)
criteria.

As a way of reducing the complexity of the fuzzy measure (the number of coeffi-
cients), Grabisch [20] introduces the concept of k-additive fuzzy measures (see also
[21, 30]). A fuzzy measure v is k-additive whenever its Möbius transform vanishes
on sets containing more than k elements, that is, if card(E) > k, then

μ(E) =
∑

F⊂E

(−1)card(E\F)v(F) = 0.

This condition also translates into a system of linear inequalities, which can be
added to the LP or QP for fuzzy measure identification. There are also other possible
restrictions on the fuzzy measure v, like given values of Shapley index (or its gener-
alizations, like interaction indices [20]), which also translate into linear inequalities
involving components of v.

Another way of reducing the complexity of a fuzzy measure is to use λ-fuzzy
measures, introduced in [33]. These fuzzy measures satisfy the following conditions
∀F, E ⊆ N, F ∩ E = ∅:

v(F ∪ E) = v(F)+ v(E)+ λv(F)v(E) (17)
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where λ ∈ (−1,∞). Under these conditions, all the coefficients v(F) are immedi-
ately computed from n independent coefficients v({i}), i = 1, . . . , n. We also have
an explicit formula for a family of disjoint subsets of N

vλ

(

m
⋃

i=1

{i}
)

= 1

λ

(

m
∏

i=1

(1+ λv({i}))− 1

)

.

The coefficient λ is determined from the boundary condition vλ(N)=1, which gives

λ+ 1 =
n
∏

i=1

(1+ λv({i})),

which can be solved on (−1, 0) or (0,∞) numerically (note that λ = 0 is always a
solution).

The price for the reduction of the number of variables in λ-fuzzy measures is
that the resulting optimization problem is nonlinear, and we cannot apply QP or LP
methods as earlier. Most research in this area concentrated on genetic algorithms,
and we refer the interested reader to the articles [12, 25, 27, 38].

Yager proposes in [43] a generalized Choquet aggregation operator

Cv,q(x1, . . . , xn) =
(

n
∑

i=1

xq
(i)[v(Hi )− v(Hi+1)]

)1/q

. (18)

It is not difficult to see that this implies

Cv,q(x1, . . . , xn) =
(

n
∑

i=1

[

xq
(i) − xq

(i−1)

]

v(Hi )

)1/q

. (19)

The sum in the brackets is again a linear function of the fuzzy measure co-
efficients. Thus we can apply the methods of fuzzy measure identification stud-
ied in [8, 9, 22], with one distinction that the data are linearized (i.e., taking
{(xk

(i))
q , (yk)q}). The problem becomes a quadratic or linear programming problem

for a fixed q , and it is solved as a bi-level optimization problem if q also has to be
identified from the data.

7 Generated Aggregation Operators

We now consider a situation where not only a particular vector of weights wn for
a fixed n needs to be identified, but the whole weighting triangle (i.e., all weight
vectors wn, n = 2, 3, . . .). We note that there will be no sufficiently many data
to identify all weighting vectors independently, instead we want to exploit certain
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relations between aggregation operators of different dimensions but from a single
family. For this purpose we consider identification of generating functions that can
generate the whole weighting triangle. The following section summarizes the results
presented in [9, 29].

Let us use the following notation: N = {1, . . . , n} and A = {(n, E)|n ∈
N, E ⊆ N}.
Definition 6. A mapping M : A→ [0, 1] is called a universal fuzzy measure when-
ever for each fixed n ∈ N, v = M(n, ·) is a fuzzy measure, that is

1. M(n,∅) = 0,M(n, N) = 1,
2. M(n, E) ≤ M(n, F) for all E ⊆ F ⊆ N.

For a given universal fuzzy measure M, an aggregation operator can be built by
means of any fuzzy integral [10]. We restrict our attention to the Choquet integral,
and thus

fn(x1, x2, . . . , xn) =
n
∑

i=1

(

x(i) − x(i−1)
)

M(n, E(i)), (20)

where x(1) ≤ . . . ≤ x(n), E(i) = {(i), . . . , (n)} and x(0) = 0 by convention. Let us
also use notation x() = (x(1), x(2), . . . , x(n)).

It is possible to construct symmetric and additive universal fuzzy measures with
the help of a one-dimensional generator g : [0, 1] → [0, 1], a non-decreasing func-
tion with g(0) = 0, g(1) = 1 [29], namely

Mg
symm(n, E) = g

(

card(E)

n

)

, (21)

and

Mg
add(n, E) =

∑

i∈E

(

g

(

i

n

)

− g

(

i − 1

n

))

. (22)

The corresponding Choquet integral based aggregation operators are given as
follows. In the case of symmetric universal fuzzy measure it is

fn(x1, x2, . . . , xn) =
n
∑

i=1

x(i)

(

g

(

i

n

)

− g

(

i − 1

n

))

=
n
∑

i=1

win x(i) (23)

i.e., it is the OWA operator with the weights

win = g

(

i

n

)

− g

(

i − 1

n

)

. (24)

In the case of an additive fuzzy measure it is
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fn(x1, x2, . . . , xn) =
n
∑

i=1

xi

(

g

(

i

n

)

− g

(

i − 1

n

))

=
n
∑

i=1

win xi (25)

which is a weighted arithmetic mean with the weights as above. The only univer-
sal fuzzy measure which is both symmetric and additive is linked to the identity
generator g(x) = x , in which case fn is the arithmetic mean.

The convexity of g on [0, 1] is the necessary condition for a symmetric universal
fuzzy measure Mg to be a belief measure (i.e., each Mg(n, ·) is a belief measure),
while the concavity of g on [0, 1] is the necessary condition for Mg to be a plausi-
bility measure (i.e., each Mg(n, ·) is a plausibility measure).

Thus one can build Choquet integral based general aggregation operators with
the help of a one-dimensional generator g, by defining universal fuzzy measures
using (21) (symmetric measure) and (22) (additive measure). It is now our task
to determine not only particular vectors of weights for fixed n, but the generating
function g itself, which will allow us to identify the weights for any given n.

Consider the data set D and a symmetric Choquet integral based aggregation
operator (23),(24). No constraints on the generator g besides monotonicity and
boundary conditions g(0) = 0, g(1) = 1 are given. Let us represent g with a linear
spline (11). Now write (1), (23) as

fn(x
k
1 , . . . , xk

n ) =
n
∑

i=1

xk
(i)

(

g

(

i

n

)

− g

(

i − 1

n

))

=
n
∑

i=1

xk
(i)

⎛

⎝

J
∑

j=1

c j

[

B j

(

i

n

)

− B j

(

i − 1

n

)]

⎞

⎠

=
J
∑

j=1

c j

(

n
∑

i=1

xk
(i)

[

B j

(

i

n

)

− B j

(

i − 1

n

)]

)

≈ yk .

Similarly, we obtain for an additive Choquet integral based aggregation opera-
tor (25)

fn(x
k
1 , . . . , xk

n ) =
J
∑

j=1

c j

(

n
∑

i=1

xk
i

[

B j

(

i

n

)

− B j

(

i − 1

n

)]

)

≈ yk,

Thus we obtain the following optimization problem

minimize ||Ac− y||pp

subject to non-negativity of the components of c. The components of the matrix A
are given as
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Akj =
n
∑

i=1

xk
(i)

[

B j

(

i

n

)

− B j

(

i − 1

n

)]

,

or

Akj =
n
∑

i=1

xk
i

[

B j

(

i

n

)

− B j

(

i − 1

n

)]

,

respectively. Note that for p=2 we obtain a QP, and for p=1,∞ we obtain an LP
problem.

It is also possible to place other restrictions on the generated fuzzy measure Mg

to make it either belief or plausibility measure. It amounts to forcing the spline S to
be concave or convex, which translates into further linear constraints on c j , namely
c j − c j−1 ≤ 0, or c j − c j−1 ≥ 0, j = 2, . . . , J .

For symmetric k-additive universal fuzzy measures we have the following char-
acterization of the generating function g.

Proposition 1. [29] Let Mg be a symmetric universal fuzzy measure generated by a
monotone generator g : [0, 1] → [0, 1], Mg(n, E) = g(card(E)/n). Then:
i) Mg is 2-additive if and only if g(x) = ax2 + (1− a)x for some a ∈ [−1, 1];
ii) Mg is 3-additive if and only if g(x) = ax3 + bx2 + (1 − a − b)x for some
a ∈ [−2, 4] and b such that
- if a ∈ [−2, 1] then b ∈ [−2a − 1, 1− a], and
- if a ∈ [1, 4] then b ∈ [−3a/2−√3a(4− a)/4,−3a/2+√3a(4− a)/4] .

From the properties of g we are able to characterize the subsets in the space
of parameters a, b on which the measure Mg is either belief or plausibility mea-
sure. Recall that the convexity of g (respectively concavity of g), are the necessary
conditions. It can be shown that for quadratic functions these are also sufficient
conditions. In the case of a cubic generator g, for sufficiency we additionally need
non-negativity of its third derivative. Hence, in the case of 2-additive symmetric
fuzzy measure, it is a belief measure if and only if a ∈ [0, 1], and it is a plausibility
measure if and only if a ∈ [−1, 0]. For 3-additive case, Mg is a belief measure if
and only if a, b satisfy a + b ≤ 1, b ≥ 0, a ≥ 0, b ≥ −3a. It is a plausibility
measure if and only if the parameters satisfy 2a+ b ≥ −1, b ≤ 0, a ≥ 0, b ≤ −3a.

This explicit characterization of the generators g of 2- (3-) additive symmetric
universal fuzzy measures simplifies the problem of fitting these generators to the
data. The algebraic form of g is now fixed, and one (two) linear parameters must be
found from the data using linear regression. The additivity of the Choquet integral
with respect to fuzzy measures allows one to simplify computations. If g(x) =
ax2 + (1− a)x for some a ∈ [−1, 1], then

fn(x1, x2, . . . , xn) = a A2(x1, x2, . . . , xn)+ (1− a)A1(x1, x2, . . . , xn),

where A1 is the standard arithmetic mean and A2 is an OWA operator with the

weights
(

1
n2 ,

3
n2 , . . . ,

2n−1
n2

)

. Thus we have
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fn(x
k
1 , . . . , xk

n ) =
n
∑

i=1

(

a
2i − 1

n2
+ 1− a

n

)

xk
(i)

= a

[

1

n

n
∑

i=1

(

2i − 1

n
− 1

)

xk
(i)

]

+
[

n
∑

i=1

xk
(i)

n

]

= Sk
1 a + Sk

2 ≈ yk, k = 1, . . . , K ,

which is a trivial univariate regression problem, subject to a ∈ [−1, 1]. The values
of Sk

1 and Sk
2 are the expressions in the square brackets. The explicit solution is

a = max{−1,min{1,
∑K

k=1

(

yk − Sk
2

)

Sk
1

∑K
k=1

(

Sk
1

)2 }}.

For 3-additive symmetric universal fuzzy measure the domain for parameters
a, b is a convex compact set consisting of a triangle determined by the vertices
(-2,3),(1,0),(1,-3) and an ellipse determined by the curve 3a2− 3a+ 3ab+ b2 = 0.
Let us call this set D. To determine these parameters one solves

fn(x
k
1 , . . . , xk

n ) =
n
∑

i=1

(

a
3i2 − 3i + 1

n3
+ b

2i − 1

n2
+ (1− a − b)

1

n

)

xk
(i)

= a
n
∑

i=1

3i2 − 3i + 1− n2

n3
xk
(i)

+ b
n
∑

i=1

2i − 1− n

n2
k

xk
(i) +

n
∑

i=1

x(i)
n

= Pk
1 a + Pk

2 b + Pk
3 ≈ yk, k = 1, . . . , K , (26)

with the values of Pk
1 , Pk

2 and Pk
3 determined by the corresponding sums.

The domain of a, b is too complicated to write down an explicit solution, but
since it is convex, one can find a, b using the following method. First solve the
linearly constrained least squares problem (26), subject to

a + b ≤ 1,

2a + b ≥ −1. (27)

Notice that D is a subset of the set determined by (27). If the solution of this LSEI
problem (â, b̂) ∈ D, then we stop, otherwise the solution must be on the boundary
of the right part of the ellipse determined by 3a2 − 3a + 3ab+ b2 = 0, a > 1. The
Lagrangian is therefore
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L(a, b, λ) =
K
∑

k=1

(

Pk
1 a + Pk

2 b + Pk
3 − yk

)2 + λ(3a2 − 3a + 3ab+ b2). (28)

Minimization of the convex quadratic function (28) yields the optimal solution.

8 Conclusion

We have summarized a number of methods for identification of weights in aggrega-
tion operators from empirical data. We considered various classes of aggregation
operators: weighted means, OWA, Choquet integral-based aggregation, and also
their generalizations – quasi-arithmetic means, GOWA and WOWA operators. In
all cases it was possible to formulate weights identification problems as classical
quadratic or linear programming problems, and apply very efficient QP and LP al-
gorithms. The methods presented in this chapter have been implemented in AOTool
software package available from http://www.deakin.edu.au/∼gleb.
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Linguistic Aggregation Operators: An Overview

Zeshui Xu

Abstract Linguistic aggregation operators are a powerful tool to aggregate linguis-
tic information, which have been studied and applied in a wide variety of areas,
including engineering, decision making, artificial intelligence, data mining, and soft
computing. In this chapter, we provide a comprehensive survey of the existing main
linguistic aggregation operators, and briefly discuss their characteristics and appli-
cations. Finally, we roughly classify all these linguistic aggregation operators and
conclude with a discussion of some interesting further research directions.

1 Introduction

In the real-life world, there are many situations, such as selecting applications for
different kinds of scholarships and selecting projects for different kinds of funding
policies [31], and evaluating the “speed”, “comfort” or “design” for different kinds
of cars [3], in which the information cannot be assessed precisely in a quantitative
form but may be in a qualitative one [13]. As was pointed out in [6], this may arise
for different reasons: 1) the information may be unquantifiable due to its nature;
and 2) the precise quantitative information may not be stated because either it is
unavailable or the cost of its computation is too high and an “approximate value”
may be tolerated. Thus, in such situations, a more realistic approach may be to use
linguistic assessments instead of numerical values by means of linguistic variables,
that is, variables whose values are not numbers but words or sentences in a natural or
artificial language [62]. For example, when evaluating the “comfort” or “design” of
a car, linguistic labels like “good”, “fair”, “poor” are usually be used, and evaluating
a car’s speed, linguistic labels like “very fast”, “fast”, “slow” can be used [3, 34].

When a problem is solved using linguistic information, it implies the need
for computing with words [62]. Linguistic aggregation operators are a powerful
tool to deal with this issue. Over the last decades, various linguistic aggrega-
tion operators have been proposed, including the linguistic max and min opera-
tors [53, 55, 56, 57, 58, 61], linguistic median operator [57, 58, 61], linguistic
weighted median operator [57, 58, 61], linguistic max-min weighted averaging op-
erator [56], extension principle-based linguistic aggregation operator [2, 4, 5, 7,
33], symbol-based linguistic aggregation operator [11], 2-tuple arithmetic mean

H. Bustince et al., (eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation
and Models. C© Springer 2008 163
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operator [21], 2-tuple weighted averaging operator [21], 2-tuple OWA operator [21],
linguistic weighted OWA operator [39], linguistic averaging operator [41, 44, 50],
linguistic weighted disjunction operator [12], linguistic weighted conjunction
operator [12], linguistic weighted averaging operator [43, 44, 50], ordinal OWA
operator [3, 55, 56], ordinal linguistic aggregation operator [11], ordinal hybrid ag-
gregation operator [43], linguistic OWA operator [9, 13, 16, 18, 19, 20, 40, 43,
47, 50], inverse-linguistic OWA operator [12, 20], linguistic hybrid aggregation
operator [51], induced linguistic OWA operator [50], uncertain linguistic averag-
ing operator [42, 50], uncertain linguistic weighted averaging operator [50], un-
certain linguistic OWA operator [42, 50], induced uncertain linguistic OWA opera-
tor [49, 50], uncertain linguistic hybrid aggregation operator [42], etc. To date, these
linguistic aggregation operators have been studied and applied in a wide variety of
areas, such as engineering [35, 43], decision making [3, 6, 10, 11, 12, 13, 15, 16,
17, 18, 19, 22, 23, 24, 25, 29, 40, 41, 42, 43, 44, 45, 46, 48, 49, 51, 56], information
retrieval [4, 8, 27, 28, 30], marketing [20, 60], scheduling [1], biotechnology [5],
materials selection [7], software system [33], personnel management [20], edu-
cational grading system [32], supply chain management and maintenance service
[43], etc.

In this chapter, we provide a comprehensive survey of linguistic aggregation op-
erators. To do so, the remainder of this chapter is structured as follows. Section 2
reviews the existing main linguistic aggregation operators, and briefly discusses
their characteristics and applications. In the concluding remarks, we roughly clas-
sify all these linguistic aggregation operators and finish with a discussion of some
interesting further research directions.

2 A Review of Linguistic Aggregation Operators

In many real-world problems, the information about the satisfaction associated with
an outcome and a state of nature may be at best expressed in terms of linguistic
labels [4, 37, 38]. For convenience of description, let S = {s0, s1, . . . , sg} be a finite
and totally ordered discrete linguistic label set, whose cardinality value is odd, such
as 7 and 9, where g is a positive integer, si represents a possible value for a linguistic
variable, and it requires that [16]:

1) The set is ordered: si ≥ s j iff i ≥ j ;
2) The negation operator is defined: neg (si ) = s j such that j = g − i .

The cardinality of S must be small enough so as not to impose useless precision
on the experts and it must be rich enough in order to allow a discrimination of
the performances of each object in a limited number of grades [3], the limit of
cardinality is 11 or not more than 13. For example, a set of seven linguistic labels S
could be [13]:

S = {s0 = none, s1 = very low, s2 = low, s3 = medium,

s4 = high, s5 = very high, s6 = per f ect}
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In many areas, such as engineering, decision making, data mining, artificial intelli-
gence, medical diagnosis and fuzzy logic control, etc., linguistic information aggre-
gation is an essential process, which has received great attention from researchers in
the last decades. Various linguistic aggregation operators have also been developed.
In the following, we give an overview of the existing main linguistic aggregation
operators.

2.1 Linguistic Aggregation Operators Based on Linear Ordering

Let {a1, a2, . . . , an} be a collection of linguistic arguments in S. In [55, 56, 57,
58, 61], Yager et al. introduced the linguistic max (LM1) and linguistic min (LM2)
operators, respectively:

L M1(a1, a2, . . . , an) = max
j
{a j }, L M2(a1, a2, . . . , an) = min

j
{a j } (1)

Yager et al. [57, 58, 61] developed the linguistic median (LM3) operator:

L M3(a1, a2, . . . , an) =
{

b(n+1)2 i f n is odd,
bn2 i f n is even.

(2)

where b j is the j th largest of the linguistic arguments in {a1, a2, . . . , an}.
These three operators are the simplest linguistic aggregation operators, which

are usually used to develop some other operators for aggregating linguistic informa-
tion. Yager et al. [57, 58, 61] further considered the problem of weighted median
aggregation as below:

Suppose that {(w1, a1), (w2, a2), . . . , (wn, an)} is a collection of pairs, where
ai is a linguistic label and wi is its associated weight, with the condition wi ∈
[0, 1],

∑n
i=1 wi = 1, and assume that the ai are reordered such that b j is the j th

largest of the ai . Then {(u1, b1), (u2, b2), . . . , (un, bn)} is the ordered collection of
{(w1, a1), (w2, a2), . . . , (wn, an)}, where u j is the weight that is associated with the
ai that becomes b j . For example, if b j = a5, then u j = w5. Let Ti =

∑i
j=1 u j , if

LW M((u1, b1), (u2, b2), . . . , (un, bn)) = bk (3)

then LWM is called a linguistic weighted median (LWM) operator, where k satisfies
Tk−1 < 0.5 and Tk ≥ 0.5. The linguistic weighted median is the ordered value
of the arguments for which the sum of the weights first crosses the value of 0.5,
and k is called a cross over value. Yager [58] showed that the LWM operator is of
idempotency, commutativity and monotonicity.

Yager [54] introduced the ordered weighted averaging (OWA) operator to provide
a method for aggregating several numerical inputs that lie between the max and min
operators. The fundamental aspect of the OWA operator is the re-ordering step.
Using an ordinal form of the OWA operator, Yager [55] defined the following:
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Definition 1. [55] A mapping O OW A : Sn → S is called an ordinal OWA
(OOWA) operator of dimension n if it has an associated weighting vector w =
(w1, w2, . . . , wn), such that 1) w j ∈ S; 2)w j ≥ wi i f j > i ; and 3) max

j
{w j } =

sg Furthermore,.

OOWA(a1, a2, . . . , an) = max
j
{w j ∧ b j } (4)

where b j is the j th largest of the a j .

Especially, if w = (sg, sg, . . . , sg), where wi = sg , for all i , then the OOWA
operator is reduced to the LM1 operator; if w = (s0, . . . , s0, sg), where wi = s0,
for all i �= n, wn = sg , then the OOWA operator is reduced to the LM2 operator;
if w = (sα, . . . , sα, sg), where wi = sα , for all i �= n, wn = sg , then the OOWA
operator is reduced to the following:

O OW A(a1, a2, . . . , an) = (sα ∧max
j
{a j }) ∨min

j
(a j ) (5)

which is called a linguistic max-min weighted averaging (LMMA) operator. This
operator is analogous to the Hurwicz type criteria used in the numeric case,
β max

j
(a j )+ (1− β)min

j
(a j ), where β ∈ [0,1].

The OOWA operators enjoys many useful properties. In particular, it is symmet-
ric, idempotent and monotonic function [55, 56]. Ovchinnikov [36] investigated the
invariance properties of the OOWA operator. Bordogna et al. [3] proposed a model
based on the OOWA operator for group decision making in a linguistic context, and
presented a human-consistent definition that can be useful in a consensus reaching
phase and a procedure for its computation. Yager [56] developed a structure making
use of the OOWA operator for the evaluation of decisions under ignorance in situ-
ations in which the payoff matrix contains linguistic information. In this structure,
the decision maker’s dispositional attitude is represented by the weighting vector.
He also provided two measures for classifying the OOWA weighting vectors used
in the aggregations. Yager et al. [60] developed an OOWA operator-based approach
to aggregating market research data based on fuzzy reasoning. This approach uses
operations from fuzzy logic to construct the models and the principal of minimal
entropy to choose between competing models. They implemented this approach in
a test case using economic attitudinal variables to predict the purchase of major
consumer products.

Herrera and Herrera-Viedma [12] provided the linguistic weighted disjunction
and conjunction operators.

Definition 2. [12] Let {a1, a2, . . . , an} be a set of linguistic labels to be aggregated,
c = (c1, c2, . . . , cn) be the associated weighting vector, a j , c j ∈ S, for all j, then a
linguistic weighted disjunction (LWD) operator is defined as:

LWD((c1, a1), (c2, a2), . . . , (cn, an)) = max
j

min{c j , a j } (6)



Linguistic Aggregation Operators: An Overview 167

Definition 3. [12] Let {a1, a2, . . . , an} be a set of linguistic labels to be aggregated,
c = (c1, c2, . . . , cn) be the associated weighting vector, a j , c j ∈ S, for all j, then a
linguistic weighted conjunction (LWC) operator is defined as:

LWC((c1, a1), (c2, a2), . . . , (cn, an)) = min
j

max{neg(c j ), a j } (7)

Herrera-Viedma [27] applied the LWD and LWC operators to develop a linguistic
model for an information retrieval system (IRS), and presented an ordinal fuzzy
linguistic approach and studied its use for modeling the imprecision and subjectivity
that appear in the user-IRS interaction.

Xu [43] developed an ordinal hybrid aggregation operator that reflects the impor-
tance degrees of both the linguistic argument and its ordered position:

Definition 4. [43] An ordinal hybrid aggregation (OHA) operator is mapping
O H A : Sn → S, which has associated with it a linguistic weighting vector
w = (w1, w2, . . . , wn), with w j ∈ S, such that

O H A(a1, a2, . . . , an) = max
j

min{w j , b j } (8)

where b j is the j th largest of the linguistic weighted arguments āi (āi =min{ωi , ai },
i = 1, 2, . . . , n), ω = (ω1, ω2, . . . , ωn) is the linguistic weight vector of the ai , with
ωi ∈ S.

Especially, if w = (sg, sg, . . . , sg), where wi = sg , for all i , then

O H A(a1, a2, . . . , an) = max
j

min{w j , b j } = max
i
{āi } = max

i
min{ωi , ai } (9)

thus, in this case, the OHA operator is reduced to the LWD operator.
If ω = (sg, sg, . . . , sg), where ωi = sg , for all i , then

āi = min{ωi , ai } = ai , i = 1, 2, . . . , n (10)

in this case, the OHA operator is reduced to the OOWA operator.

2.2 Linguistic Aggregation Operators Based on the Extension
Principle and Symbols

In [2, 4, 5, 7, 10, 33], Bonissone et al. studied the linguistic aggregation operators
based on the extension principle. Herrera and Martı́nez [21] described an extension
principle-based linguistic aggregation operator as follows:

Definition 5. [21] An extension principle-based linguistic aggregation operator acts
according to
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Sn F̃→ F(R)
app1(·)→ S (11)

where Sn symbolizes the n Cartesian product of S, F̃ is an aggregation operator
based on the extension principle, F(R) is the set of fuzzy sets over the set of real
numbers R, app1 : F(R)→ S is a linguistic approximation function that returns a
label from S whose meaning is the closest to the obtained unlabeled fuzzy number
and S is the initial linguistic label set.

Chang and Chen [5] gave a decision algorithm based on the extension principle-
based linguistic aggregation operator to solve the technology transfer strategy se-
lection problem in the area of biotechnology management. The algorithm is based
on the concepts of fuzzy set theory and the hierarchical structure analysis. The lin-
guistic variables and fuzzy numbers were used to aggregate the decision makers’
subjective assessments about criteria weightings and appropriateness of alternative
transfer strategies versus selection criteria to obtain the final scores called fuzzy
appropriateness indices. Chen [7] utilized the extension principle-based linguistic
aggregation operator to solve the tool steel materials selection problem under fuzzy
environment where the importance weights of different criteria and the ratings of
various alternatives under different criteria are assessed in linguistic terms repre-
sented by fuzzy numbers. Lee [33] used the extension principle-based linguistic
aggregation operator to build a structure model of risk in software development
and proposed two algorithms to tackle the rate of aggregative risk in a fuzzy en-
vironment by fuzzy sets theory during any phase of the life cycle. Adamopoulos
and Pappis [1] proposed a fuzzy approach by using the extension principle-based
linguistic aggregation operator to solve a single machine scheduling problem. In
this approach, the system’s variables are defined using linguistic terms. Each of
these variables may take values described via fuzzy triangular numbers. Law [32]
built a structure model of a fuzzy educational grading system with the extension
principle-based linguistic aggregation operator, and proposed an algorithm with it.
They also discussed a method to build the membership functions of several linguistic
values with different weights.

Delgado et al. [11] developed a symbol-based linguistic aggregation operator that
makes computations on the indexes of the linguistic labels, which can be interpreted
as [21, 24]:

Sn C→[0, g]
app2(·)→ {0, . . . , g} → S (12)

where C is a symbol-based linguistic aggregation operation, and app2(·) is an ap-
proximation function used to obtain an index {0, . . . , g} associated to a linguistic
label in S = {s0, s1, . . . , sg} from a value in [0, g]. For example, C is the con-
vex combination of linguistic labels defined in [11], and app2(·) is the usual round
operation.

Herrera and Verdegay [26] presented a linguistic OWA operator, which is based
on the OWA operator [54], and on the convex combination of linguistic labels [11].

Definition 6. [26] Let A = {a1, a2, . . . , an} be a set of linguistic labels to be aggre-
gated, then a linguistic OWA (LOWA1) operator is defined as:
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L OW A1(a1, a2, . . . , an) = w · BT = Cn{wk, bk, k = 1, 2, . . . , n}
= w1 ⊗ b1 ⊕ (1− w1)⊗ Cn−1{γh, bh, h = 2, . . . , n} (13)

where w = (w1, w2, . . . , wn) is a weighting vector, such that wi ∈ [0, 1],
∑n

i=1 wi = 1, γh = wh

/

n
∑

k=2
wk, h = 2, . . . , n, and B = (b1, b2, . . . , bm) is a vec-

tor associated to A, such that

B = σ(A) = (aσ(1), aσ(2), . . . , aσ(n)) (14)

where aσ( j ) ≤ aσ(i), for all i ≤ j , with σ being a permutation over the set of
linguistic labels A.Cn is the convex combination operator of n linguistic labels and
if n = 2, then it is defined as:

C2{wi , bi , i = 1, 2} = w1 ⊗ s j ⊕ (1− w1)⊗ si = sk, s j , si ∈ S( j ≥ i) (15)

such that k = min{g, i + round(w1 · ( j − i))}, where round is the usual round
operation, and b1 = s j , b2 = si . If w j = 1 and wi = 0 with i �= j , for all i , then
the convex combination is defined as:

Cn{wi , bi , i = 1, 2, . . . , n} = b j (16)

Many approaches have been developed for determining the weighting vector w =
(w1, w2, . . . , wn), see Xu [47] for a detailed overview on this field.

Herrera et al. [9, 13, 16, 17, 18, 19] utilized the LOWA1 operator to develop
various approaches to group decision making under linguistic assessments, and pre-
sented some consensus models for the consensus reaching process in heterogeneous
linguistic group decision making problems. Herrera et al. [20] established a linguis-
tic decision model based on the LOWA1 operator for promotion mix management
solved with genetic algorithms, and demonstrated the usefulness of the model by
solving a real problem from the business world. Herrera-Viedma and Peis [30] pre-
sented a fuzzy linguistic evaluation method based on the LOWA1 operator to charac-
terize the information contained in SGML (standard generalized markup language)-
based documents. The method generates linguistic recommendations from linguistic
evaluation judgments provided by different recommenders on meaningful elements
of document type definition (DTD).

Herrera and Herrera-Viedma [12] presented an extension of the LOWA1 operator,
called the inverse-LOWA1 operator:

Definition 7. [12] An inverse-LOWA1 operator is a type of linguistic OWA operator,
in which B = σ I (A) = {aσ(1), aσ(2) . . . , aσ(n)}, where aσ(i) ≤ aσ( j ), for all i ≤ j.
If m = 2, then it is defined as:

C2{wi , bi , i = 1, 2} = w1 ⊗ s j ⊕ (1− w1)⊗ si = sk, s j , si ∈ S( j ≤ i) (17)

such that k = min{g, i + round(w1 · ( j − i))}.
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Based on the LOWA1 and inverse-LOWA1 operators, Herrera and Herrera-
Viedma [12] defined a linguistic weighted averaging operator using the concept
of fuzzy majority represented by fuzzy linguistic quantifiers and two families of
linguistic connectives. Let us first review the following two families of linguistic
connectives [12]:

1) Linguistic conjunction operators LC→:

i) The classical linguistic min operator

LC→1 (c, a) = min(c, a) (18)

ii) The nipotent linguistic min operator:

LC→2 (c, a) =
{

min(c, a) i f c > neg(a),
0 otherwi se.

(19)

iii) The weakest linguistic conjunction:

LC→3 (c, a) =
{

min(c, a) i f max(c, a) = sg,

0 otherwi se.
(20)

2) Linguistic implication operators L I→:

i) Kleene-Dienes’s linguistic implication operator:

L I→1 (c, a) = max(neg(c), a) (21)

ii) Gödel’s linguistic implication operator:

L I→2 (c, a) =
{

sg i f c ≤ a,
a otherwi se.

(22)

iii) Fodor’s linguistic implication operator:

L I→3 (c, a) =
{

sg i f c ≤ a,
max(neg(c), a) otherwi se.

(23)

Definition 8. [12] Let {a1, a2, . . . , an} be a set of linguistic labels to be aggregated,
c = (c1, c2, . . . , cn) be the associated weighting vector, a j , c j ∈ S, for all j , then
a linguistic weighted averaging (LWA1) operator is defined as:

LW A1((c1, a1), (c2, a2), . . . , (cn, an)) = f (z(c1, a1), g(c2, a2), . . . , (cn, an))

(24)

where f is a L OWA1 operator (or inverse-LOWA1 operator) and h is an importance
transaction function, such that z ∈ LC→, if f is a LOWA1 operator; and z ∈ L I→,
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if LW A1 is an inverse-LOWA1 operator, where LC→ = {LC→1 , LC→2 , LC→3 }
and L I→ = {L I→1 , L I→2 , L I→3 }.

Torra [38] defined a weighted OWA operator that combines the advantages of the
OWA operator and the ones of the weighted mean. In order to aggregate linguistic
information, he extended the operator to linguistic environments and defined a lin-
guistic weighted OWA operator:

Definition 9. [38] Let {a1, a2, . . . , an} be a set of linguistic labels to be aggregated,
p = (p1, p2, . . . , pn) and w = (w1, w2, . . . , wn) be the weighting vectors of di-
mension n, such that wi ∈ [0, 1],

∑n
i=1 wi = 1; pi ∈ [0, 1],

∑n
i=1 pi = 1, in this

case, a mapping LWOWA:Sn → S is called a linguistic weighted OWA (LWOWA)
operator of dimension n, if

LW OW A(a1, a2, . . . , an) = Cn{ωk, bk, k = 1, 2, . . . , n}

= ω1 ⊗ b1 ⊕ (1− ω1)⊗ Cn−1{ωh

/

n
∑

k=2

ωk, bh, h = 2, . . . , n} (25)

where (b1, b2, . . . , bm) = (aσ(1), aσ(2), . . . , aσ(n)) with σ being a permutation over
the set of linguistic labels {a1, a2, . . . , an} such that aσ( j ) ≤ aσ(i), for all i ≤ j.
The convex combination C is defined according to Definition 6, and the weight ωi

is defined as ωi = w∗(
∑

j≤i pσ( j )) − w∗(
∑

j<i pσ( j )), where w∗ is a monotone

increasing function that interpolates the points (i
/

n,
∑

j≤i w j ) together with the
point (0, 0),w∗ is required to straight line when the points can be interpolated in
this way.

2.3 Linguistic Aggregation Operators Based on Linguistic 2-tuples

An important limitation for the extension principle-based linguistic aggregation op-
erator and symbol-based linguistic aggregation operator appears because the com-
putational techniques used present a common drawback, the “loss of information”,
that implies a lack of precision in the final results [21]. To overcome this drawback,
Herrera and Martı́nez [21] developed a fuzzy linguistic representation model, which
represents the linguistic information with a pair of values called 2-tuple, (s, α),
where s is a linguistic label and α is a numerical value that represents the value
of the symbolic translation.

Definition 10. [21] Let β be the result of an aggregation of the indexes of a set
of labels assessed in the linguistic label set S = {s0, s1, . . . , sg}, i.e., the result
of a symbolic aggregation operation. β ∈ [0, g], being g + 1 the cardinality of
S. Let i = round(β) and α = β − i be two values, such that, i ∈ [0, g] and
α ∈ [−0.5, 0.5), then α is called a symbolic translation.

Herrera and Martı́nez [22] pointed out that the symbolic translation of a linguistic
label, si , is a numerical value assessed in [−0.5, 0.5) that supports the “difference
of information” between a counting of information β ∈ [0, g] obtained after a sym-
bolic aggregation operation and the closest value in {0, . . . , g} that indicates the
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index of the closest linguistic label in S(i = round(β)). The equivalent 2-tuple
representation of linguistic label si is obtained by means of the function θ as:

θ : S → (S × [−0.5, 0.5)), θ(si ) = (si , 0)
/

si ∈ S (26)

The 2-tuple (si , α) that expresses the equivalent information to β is obtained with
the following function:

 : [0, g]→ S × [−0.5, 0.5), (β) =
{

si i = round(β),
α = β − i α ∈ [−0.5, 0.5).

(27)

with round is the usual round operation, si has the closest index label to “β” and
“α” is the value of the symbolic translation. There is always a function −1, such
that, from a 2-tuple it returns its equivalent numerical value β ∈ [0, g], that is [22],
−1 : S × [−0.5, 0.5)→ [0, g] and −1(si , α) = i + α = β.

Herrera and Martı́nez [21] further introduced some 2-tupe aggregation operators
as follows:

1) 2-tuple negation operator. The negation operator over a 2-tuple can be defined
as: neg(si , α) = (g − (−1(si , α))).

2) 2-tuple weighted averaging operator. Let {(r1, α1), (r2, α2), . . . , (rn, αn)} be a
set of 2-tuples andw = (w1, w2, . . . , wn) be their weight vector,wi ∈ [0, 1],

∑n
i=1

wi = 1, then a 2-tuple weighted averaging (TWA) operator is defined as:

T W A((r1, α1), (r2, α2), . . . , (rn , αn)) = (

n
∑

i=1

wi ·−1(ri , αi )) = (

n
∑

i=1

wiβi )

(28)
Especially, if w = (1 /n , 1 /n , . . . , 1 /n ), then the TWA operator is reduced to a
2-tuple arithmetic mean (TAM) operator.

3) 2-tuple OWA operator. Let {(r1, α1), (r2, α2), . . . , (rn, αn)} be a set of 2-tuples
and w = (w1, w2, . . . , wn) be an associated weighting vector that satisfies wi ∈
[0, 1],

∑n
i=1 wi = 1, then 2-tuple OWA (TOWA) operator is given as:

T OW A((r1, α1), (r2, α2), . . . , (rn, αn)) = (

n
∑

j=1

w jβ
∗
j ) (29)

where β∗j is the j th largest of the βi values.
Herrera and Martı́nez [24] utilized the 2-tuple arithmetic mean operator to de-

velop a computational model to identify an appropriate transfer strategy in biotech-
nology, this application showed that the 2-tuple linguistic computational model is a
more adequate model for dealing with linguistic information in processes of com-
puting with words than classical ones. Martı́nez et al. [35] utilized the 2-tuple lin-
guistic weighted average operator to propose a linguistic evaluation process based
on multi-expert multi-criteria decision model that will be able to deal with multi-
granular linguistic information without loss of information in order to evaluate
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different design options for an engineering system according to safety and cost
criteria. Herrera and Martı́nez [23] developed a linguistic decision model using the
2-tuple arithmetic mean operator to deal with multigranular linguistic contexts and
applied it to a multi-expert decision making problem. Delgado et al. [8] presented
a distributed intelligent agent model where the communication of the evaluation of
the retrieved information among the agents is carried out by using the 2-tuple arith-
metic mean operator and 2-tuple weighted averaging operator as a way to endow the
retrieval process with a high flexibility, uniformity and precision.

2.4 Linguistic Aggregation Operators Computing
with Words Directly

In [43, 46], we defined the linguistic label set S by another form S
′ = {sα|α =

−t, . . . , t}, where t is a positive integer, and sα has the following characteristics: 1)
sα < sβ iff α < β; and 2) There is the negation operator: neg(sα) = s−α , especially,
neg(s0) = s0.

Obviously, the mid linguistic label s0 represents an assessment of “indiffer-
ence”, and with the rest of the linguistic labels being placed symmetrically around
it. Xu [46] extended the discrete linguistic label set S to a continuous label set
S̄ = {sα|α ∈ [−q, q]} in order to preserve all the given information, where q(q > t)
is a sufficiently large positive integer. If sα ∈ S, then sα is termed an original lin-
guistic label, otherwise, sα is termed a virtual linguistic label. In general, the virtual
linguistic labels can only appear in calculations.

Definition 11. [43] Let sα, sβ ∈ S̄, λ ∈ [0, 1], then their operational laws can be
defined as follows: 1) sα ⊕ sβ = sα+β ; and 2) λsα = sλα.

Comparing to the commonly used linguistic label set S = {s0, s1, . . . , sg} pre-
sented earlier in this paper, the representation of S

′ = {sα|α = −t, . . . , t} has its
own advantages. For example, we consider two linguistic labels s−2 = poor and
s2 = good in the linguistic label set:

S
′ = {s−4 = extremely poor, s−3 = very poor, s−2 = poor,

s−1 = slightly poor, s0 = f air, s1 = slightly good,
s2 = good, s3 = very good, s4 = extremely good}

By the operational laws in Definition 11, we have s−2 ⊕ s2 = s0, where s0 = f air.
However, if we consider two linguistic labels s2 = low and s4 = high in the
linguistic label set:

S = {s0 = none, s1 = very low, s2 = low, s3 = medium,

s4 = high, s5 = very high, s6 = per f ect}

then we have s2 ⊕ s4 = s6, where s6 = per f ect . Obviously, the representation
of the linguistic label set S

′
should be more in accord with actual situations than S

when using the operational laws given in Definition 11.



174 Z. Xu

Based on Definition 11, Xu [41, 43, 44, 50, 51] developed various linguistic
aggregation operators, which compute with words directly:

Definition 12. [50] Let LW A2 : S̄n → S̄. If

LW A2(sα1, sα2 , . . . , sαn ) = w1sα1 ⊕ w2sα2 ⊕ · · · ⊕ wnsαn = s ˙̄α (30)

where ˙̄α = ∑n
j=1 w jα j , w = (w1, w2, . . . , wn) is the weighting vector of the lin-

guistic label sαi , and wi ∈ [0, 1],
∑n

i=1 wi = 1, then LW A2 is called a linguistic
weighted averaging (LWA2) operator. The LWA2 operator is an extension of the
weighted averaging (WA) operator [53].

Especially, if w = (1 /n , 1 /n , . . . , 1 /n ), then the LWA2 operator is reduced to
a linguistic averaging (LA) operator.

The fundamental aspect of the LWA2 operator is that it computes the aggregated
linguistic labels taking into account the importance of the sources of information.

Definition 13. [50] Let L OW A2 : (S̄
′
)n → S̄

′
, which has associated with it a

weighting vector ω = (ω1, ω2, . . . , ωn), with ωi ∈ [0, 1],
∑n

j=1 ω j = 1, such that

L OW A2(sα1 , sα2 , . . . , sαn ) = ω1sβ1 ⊕ ω2sβ2 ⊕ · · · ⊕ ωnsβn = sβ̄ (31)

where β̄ = ∑n
j=1 w jβ j , sβ j is the j th largest of the sα j , then L OW A2 is called a

linguistic OWA (LOWA2) operator.
Especially, if ω = (1, 0, . . . , 0), where ω1 = 1, ωi = 0, i = 2, . . . , n, then

the LOWA2 operator is reduced to the LM1 operator; if w = (0, . . . , 0, 1), where
ωi = 0, i = 2, . . . , n − 1, ωn = 1, then the LOWA2 operator is reduced to the LM2
operator; if ω = (1 /n , 1 /n , . . . , 1 /n ), then the LOWA2 operator is reduced to the
LA operator. The fundamental aspect of the LOWA2 operator is the reordering of
the linguistic arguments to be aggregated, based on their values.

The LOWA2 operator is an extension of the OWA operator [54], and has some de-
sirable properties similar to the OWA operator, such as monotonicity, idempotency,
commutativity, and lies between the linguistic min and max operators. Xu [43] de-
veloped a LOWA2 operator-based approach to multiple attribute decision making
under linguistic environment and applied it to the firepower schedule selection in
the defensive battle.

From Definitions 12 and 13, we know that the LWA2 operator weights the lin-
guistic argument, while the LOWA2 operator weights the ordered position of the
linguistic argument instead of weighting the argument itself. Therefore, the weights
represent different aspects in both the LWA2 and LOWA2 operators. To overcome
this drawback, Xu [51] proposed a linguistic hybrid aggregation operator.

Definition 14. [51] A linguistic hybrid aggregation (LHA) operator is a mapping
L H A : S̄n → S̄, which has an associated vector w = (w1, w2, . . . , wn) with

wi ∈ [0, 1],
∑n

i=1 wi = 1, such that

L H A(sα1, sα2, . . . , sαn ) = w1sβ1 ⊕ w2sβ2 ⊕ · · · ⊕ wnsβn (32)
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where sβ j is the j th largest of the linguistic weighted arguments s̄αi (s̄αi = nωi sαi ,

i = 1, 2, . . . , n), ω = (ω1, ω2, . . . , ωn) is the weight vector of the sαi (i =
1, 2, . . . , n) with ωi ∈ [0, 1],

∑n
i=1 ωi = 1, and n is the balancing coefficient, which

plays a role of balance (in such a case, if the vector (ω1, ω2, . . . , ωn) approaches
(1 /n , 1 /n , . . . , 1 /n ), then the vector (nω1sα1, nω2sα2, . . . , nωnsαn ) approaches
(sα1 , sα2, . . . , sαn )).

Especially, if w = (1 /n , 1 /n , . . . , 1 /n ), then the LHA operator is reduced to
the LWA2 operator; if ω = (1 /n , 1 /n , . . . , 1 /n ), then the LHA operator is reduced
to the LOWA2 operator.

It is clear that the LHA operator generalizes both the LWA2 and LOWA2 opera-
tors, and reflects the importance degrees of both the given linguistic argument and
its ordered position. Xu [51] proposed a practical approach, based on the linguis-
tic hybrid aggregation operator, to multiple attribute group decision making with
linguistic information, and applied the developed approach to the problem of evalu-
ating university faculty for tenure and promotion.

In [59], Yager and Filev introduced the concept of induced OWA (IOWA) oper-
ator, which takes as its argument pairs, called OWA pairs, in which one component
is used to induce an ordering over the second components which are then aggre-
gated. The IOWA operators, however, can only be used in situations in which the
aggregated arguments are the exact numerical values. Xu [50] introduced an in-
duced linguistic OWA (ILOWA) operator, which can be used to aggregate linguistic
arguments and is defined as follows:

I L OW A
(〈

u1, sα1

〉

,
〈

u2, sα2

〉

. . . ,
〈

un, sαn

〉) = w1sγ1 ⊕ w2sγ2 ⊕ · · · ⊕ wnsγn = sγ̄
(33)

where γ̄ = ∑n
i=1 wiγi , w = (w1, w2, . . . , wn) is a weighting vector, such that

wi ∈ [0, 1],
∑n

i=1 wi = 1, sγ j is the sαi value of the OWA pair
〈

ui , sαi

〉

having
the j th largest ui , and ui in

〈

ui , sαi

〉

is referred to as the order inducing vari-
able and si as the linguistic label. Especially, if w = (1 /n , 1 /n , . . . , 1 /n ), then
the ILOWA operator is reduced to the LA operator; if ui = sαi , for all i , then
the LOWA operator is reduced to the LOWA2 operator; if ui = No.i , for all i ,
where No.i is the ordered position of the si , then the ILOWA operator is reduced to
the LWA2 operator.

However, if there is a tie between
〈

ui , sαi

〉

and
〈

u j , sα j

〉

with respect to order
inducing variables. In this case, we can follow the policy presented by Yager and
Filev [59], that is, we replace the arguments of the tied objects by the average of the
arguments of the tied objects, i.e., we replace the argument component of each of
〈

ui , sαi

〉

and
〈

u j , sα j

〉

by their average (sαi ⊕ sα j )
/

2 . If k items are tied, we replace
these by k replica’s of their average.

Sometimes, however, the input linguistic arguments may not match any of the
original linguistic labels, and they may be located between two of them. For exam-
ple, when evaluating the “design” of a car, an expert may provide his/her opinion
with “between ‘fair’ and ‘good’ ”. To solve this issue, Xu [42, 43] introduced the
concept of uncertain linguistic variable and defined some operational laws of uncer-
tain linguistic variables.
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Let s̃ = [sα, sβ ], where sα, sβ ∈ S̄, sα and sβ are the lower and upper limits,
respectively, then s̃ is called an uncertain linguistic variable. For convenience, we
let S̃ be the set of all the uncertain linguistic variables.

For any three uncertain linguistic variables s̃ = [sα, sβ ], s̃1 = [sα1, sβ1 ], and
s̃2 = [sα2, sβ2 ] ∈ S̃, their operational laws can be as follows:

1) s̃1 ⊕ s̃2 = [sα1, sβ1 ]⊕ [sα2, sβ2 ] = [sα1 ⊕ sα2 , sβ1 ⊕ sβ2 ];
2) λs̃ = [λsα, λsβ ], λ ∈ [0, 1].

In order to compare any two uncertain linguistic values s̃1 = [sα1, sβ1 ] and s̃2 =
[sα2, sβ2 ], Xu [42] introduced a simple formula:

p(s̃1 ≥ s̃2) = min{max((β1 − α2)
/

(ls̃1 + ls̃2), 0), 1} (34)

where ls̃1 = β1 − α1, ls̃2 = β2 − α2.p(s̃1 ≥ s̃2) is called the degree of possibility of
s̃1 ≥ s̃2.p(s̃1 ≥ s̃2) has the following useful properties:

0 ≤ p(s̃1 ≥ s̃2) ≤ 1, p(s̃1 ≥ s̃2)+ p(s̃2 ≥ s̃1) = 1, p(s̃1 ≥ s̃1) = 0.5 (35)

Xu [42, 43, 50] further developed some operators for aggregating uncertain linguis-
tic information:

Definition 15. [50] Let U LW A : S̃n → S̃, if

U LW A (s̃1, s̃2, . . . , s̃n) = w1s̃1 ⊕ w2s̃2 ⊕ · · · ⊕ wns̃n (36)

wherew = (w1, w2, . . . , wn) is the weighting vector of the s̃i , andwi ∈ [0, 1],
∑n

i=1
wi = 1, then U LW A is called an uncertain linguistic weighted averaging (ULWA)
operator. Especially, if w = (1 /n , 1 /n , . . . , 1 /n ), then the ULWA operator is re-
duced to an uncertain linguistic averaging (ULA) operator.

Definition 16. [50] An ULOWA operator of dimension n is a mapping U L OW A :
S̃n → S̃ that has an associated weighting vector w = (w1, w2, . . . , wn) with wi ∈
[0, 1],

∑n
i=1 wi = 1, and is defined to aggregate a collection of uncertain linguistic

variables s̃1, s̃2, . . . , s̃n according to the following expression:

U L OW A (s̃1, s̃2, . . . , s̃n) = w1s̃σ1 ⊕ w2s̃σ2 ⊕ · · · ⊕ wn s̃σn (37)

where s̃σ j is the j th largest of the s̃i . Especially, if w = (1 /n , 1 /n , . . . , 1 /n ), then
the ULOWA operator is reduced to the ULA operator.

To rank these uncertain linguistic arguments s̃i (i = 1, 2, . . . , n) we first compare
each argument s̃i with all arguments s̃i (i = 1, 2, . . . , n) by using (27), and let pi j =
p(s̃i ≥ s̃ j ), then we can construct a complementary matrix [52]:P = (pi j )n×n ,
where pi j ≥ 0, pi j + p j i = 1, pii = 1

/

2, i, j = 1, 2, . . . , n. Summing all elements
in each line of matrix P , we have pi =

∑n
j=1 pi j , i = 1, 2, . . . , n. Then we can

rank the uncertain linguistic variables s̃i (i = 1, 2, . . . , n) in descending order in
accordance with the values of pi (i = 1, 2, . . . , n).
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Definition 17. [42] An uncertain linguistic hybrid aggregation (ULHA) operator is
a mapping U L H A : S̃n → S̃, which has an associated vector w = (w1, w2, . . . ,

wn) with wi ∈ [0, 1],
∑n

i=1 wi = 1, such that

U L H A(s̃1, s̃2, . . . , s̃n) = w1s̃β1 ⊕ w2s̃β2 ⊕ · · · ⊕ wn s̃βn (38)

where s̃β j is the j th largest of the uncertain linguistic weighted arguments s̃
′
i (s̃

′
i =

nωi s̃i , i = 1, 2, . . . , n), ω = (ω1, ω2, . . . , ωn) is the weight vector of the s̃i (i =
1, 2, . . . , n ) with ωi ∈ [0, 1],

∑n
i=1 wi = 1, and n is the balancing coefficient,

which plays a role of balance.
Especially, if w = (1 /n , 1 /n , . . . , 1 /n ), then the ULHA operator is reduced

to the ULWA operator; if ω = (1/, n1 /n , . . . , 1 /n ), then the ULHA operator is
reduced to the ULOWA operator.

Xu [43] applied the ULOWA operator and the ULHA operator to the partner se-
lection of an enterprise in the field of supply chain management and the maintenance
service of product.

Similar to (33), Xu [50] defined an induced uncertain LOWA (IULOWA) opera-
tor as follows:

IU L OW A (〈u1, s̃1〉 , 〈u2, s̃2〉 . . . , 〈un, s̃n〉) = w1s̃σ1 ⊕w2s̃σ2 ⊕ · · · ⊕wn s̃σn (39)

wherew=(w1, w2, . . . , wn) is a weighting vector, such that wi ∈ [0, 1],
∑n

i=1 wi =
1, s̃σ j is the s̃i value of the pair 〈ui , s̃i 〉 having the j th largest μi , and μi in 〈ui , s̃i 〉 is
referred to as the order inducing variable and s̃i as the uncertain linguistic argument
variable.

Especially, if ui = s̃i , for all i , then the IULOWA operator is reduced to
the ULOWA operator; if ui = No.i , for all i , where No.i is the ordered posi-
tion of the si , then the IULOWA operator is reduced to the ULWA operator; if
w = (1 /n , 1 /n , . . . , 1 /n ), then the IULOWA operator is reduced to the ULA
operator.

However, if there is a tie between 〈ui , s̃i 〉 and
〈

u j , s̃ j
〉

with respect to order in-
ducing variables. In this case, we can replace the argument component of each of
〈ui , s̃i 〉 and

〈

u j , s̃ j
〉

by their average (s̃i ⊕ s̃ j )
/

2 . If k items are tied, we replace
these by k replica’s of their average.

3 Concluding Remarks

In this chapter, we have provided a detailed overview of the existing operators for
aggregating linguistic information, and briefly discussed their characteristics and
relationships. We have also made a comprehensive survey of their applications in
a wide variety of areas. Based on their characteristics, all the linguistic aggrega-
tion operators can be roughly classified into the following five categories: 1) The
linguistic aggregation operators based on linear ordering [3, 12, 43, 53, 55, 56,
57, 58, 61], which make computations by using max (∨), min (∧), and negation;
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2) The extension principle-based linguistic aggregation operators [2, 4, 5, 7, 10, 33],
which make operations on the fuzzy numbers that support the semantics of the
linguistic labels; 3) The linguistic aggregation operators based on symbols [11,
13, 16, 17, 18, 19, 20, 23, 26, 30, 38], which make computations on the in-
dexes of the linguistic labels; 4) The linguistic aggregation operators based on
linguistic 2-tuples [21, 22, 23, 24, 25], which represent the linguistic information
with a pair of values called 2-tuple, composed by a linguistic term and a num-
ber; and 5) The linguistic aggregation operators, which compute with words di-
rectly [40, 41, 42, 43, 44, 45, 46, 48, 50, 51].

The operators in 1)∼3) develop some approximation processes to express the
results in the initial expression domains, which produce the consequent loss of in-
formation and hence the lack of precision, while those in 4) and 5) allow a contin-
uous representation of the linguistic information on its domain, and thus, they can
represent any counting of information obtained in a aggregation process without any
loss of information [21].

Although many efforts and progresses have been made in the field of linguistic
information aggregation, there are some promising research problems that needs to
be answered in the future: 1) The existing linguistic labels in a linguistic label set
are uniformly and symmetrically distributed. However, in some situations, the un-
balanced linguistic information appears due to the nature of the linguistic variables
used in the problems. Therefore, to develop unbalanced linguistic label sets and
some operators for aggregating unbalanced linguistic labels is an important future
research field [14]; and 2) The increasing complexity and uncertainty of real-world
problems may lead to the situations where the input linguistic argument informa-
tion is incomplete or dynamic (such as negotiation processes, the high technology
project investment of venture capital firms, supply chain management, etc.). Thus,
to develop incomplete or dynamic linguistic aggregation operators is an interesting
and important research topic, which is worth paying attention to.

In addition, we need to further extend the applications of the developed linguistic
aggregation operators to other fields, such as neural network, intelligent control,
pattern recognition, computer vision, image/signal processing, personnel dynamic
assessments, bioinformatics, etc.

Acknowledgment This work was supported by the National Natural Science Foundation of China
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Aggregation Operators in Interval-valued Fuzzy
and Atanassov’s Intuitionistic Fuzzy Set Theory

Glad Deschrijver and Etienne Kerre

Abstract In this chapter we give an overview of some recent advances on aggre-
gation operators on LI , where LI is the underlying lattice of interval-valued fuzzy
set theory (which is equivalent to Atanassov’s intuitionistic fuzzy set theory). We
discuss some special classes of t-norms on LI and their properties. We show that
the t-representable t-norms, which are constructed as a pair of t-norms on [0, 1], are
not the t-norms with the most interesting properties. We study additive generators
of t-norms on LI , uninorms on LI and generators of uninorms on LI . We give the
general definition and some special classes of aggregation operators on LI . Finally
we discuss the generalization of Yager’s OWA operators to interval-valued fuzzy set
theory.

1 Introduction

Interval-valued fuzzy set theory [25, 39] is an extension of fuzzy set theory in
which to each element of the universe a closed subinterval of the unit interval is as-
signed which approximates the unknown membership degree. Another extension of
fuzzy set theory is intuitionistic fuzzy set theory introduced by Atanassov [1, 2, 3].
Atanassov’s intuitionistic fuzzy sets assign to each element of the universe not only
a membership degree, but also a non-membership degree which is less than or equal
to 1 minus the membership degree (in fuzzy set theory the non-membership de-
gree is always equal to 1 minus the membership degree). In [15] it is shown that
Atanassov’s intuitionistic fuzzy set theory is equivalent to interval-valued fuzzy set
theory and that both are equivalent to L-fuzzy set theory in the sense of Goguen
[24] w.r.t. a special lattice LI . Another equivalent notion is the notion of vague sets
[5, 23].

Fuzzy sets are limited in their expressivity because they can only model vague
information (gradations in the notion of membership). On the other hand, interval-
valued fuzzy sets are also capable of dealing with uncertainty (lack of informa-
tion): they approximate the exact, but incompletely known, membership degree by
an interval. Furthermore, the computational complexity is not excessively higher
than when ordinary fuzzy sets are used. In this paper we deal with the issue of

H. Bustince et al., (eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation
and Models. C© Springer 2008 183
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aggregating uncertain values modelled by interval-valued fuzzy sets; in particular
we present several operators that can be used for this kind of aggregation.

Definition 1. Define LI = (L I ,≤L I ) by

L I = {[x1, x2] | (x1, x2) ∈ [0, 1]2 and x1 ≤ x2},
[x1, x2] ≤L I [y1, y2] ⇐⇒ (x1 ≤ y1 and x2 ≤ y2),

for all [x1, x2], [y1, y2] in L I .

The structure LI is a complete lattice (see Lemma 2.1 in [15]).

Definition 2. [25, 39] An interval-valued fuzzy set on U is a mapping A : U → L I .

Definition 3. [1, 2, 3] An intuitionistic fuzzy set (in the sense of Atanassov) on U is
a set

A = {(u, μA(u), νA(u)) | u ∈ U},

where μA(u) ∈ [0, 1] denotes the membership degree and νA(u) ∈ [0, 1] the non-
membership degree of u in A and where for all u ∈ U, μA(u)+ νA(u) ≤ 1.

An intuitionistic fuzzy set A (in the sense of Atanassov) on U can be represented
by the LI -fuzzy set A given by

A : U → L I :
u *→ [μA(u), 1 − νA(u)], ∀u ∈ U

In Fig. 1 the set L I is shown. Note that to each element x = [x1, x2] of L I

corresponds a point (x1, x2) ∈ R
2.

In the sequel, if x ∈ L I , then we denote its bounds by x1 and x2, i.e. x =
[x1, x2]. The smallest and the largest element of LI are given by 0LI = [0, 0] and
1LI = [1, 1]. Note that, for x, y in L I , x <L I y is equivalent to x ≤L I y and x �= y,
i.e. either x1 < y1 and x2 ≤ y2, or x1 ≤ y1 and x2 < y2. We denote by x ,L I y:
x1 < y1 and x2 < y2. We define for further usage the sets

Fig. 1 The grey area is a
representation of L I

[1,1]
[0,1]

[0,0]

x = [x1,x2

x2

x1

x1

x2]
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D = {[x, x] | x ∈ [0, 1]},
L̄ I = {[x1, x2] | (x1, x2) ∈ [−∞,+∞]2 and x1 ≤ x2},
L̄ I
+ = {[x1, x2] | (x1, x2) ∈ [0,+∞]2 and x1 ≤ x2},

L̄ I
∞,+ = {[x1, x2] | (x1, x2) ∈ [0,+∞]2 and x1 ≤ x2},

D̄∞,+ = {[x, x] | x ∈ [0,+∞]}.

Let n ∈ N \ {0}, F be an n-ary mapping on L I and f an n-ary mapping on [0, 1].
We say that F is a natural extension of f to LI if F([x1, x1], . . . , [xn, xn]) =
[ f (x1, . . . , xn), f (x1, . . . , xn)], for all x1, . . . , xn in [0, 1].

2 Aggregation Operators on LI

We denote from now on by N
∗ the set N \ {0}. In fuzzy set theory, aggregation

operators are defined as follows (see e.g. [6, 27, 32]).

Definition 4. An aggregation operator A on ([0, 1],≤) is a mapping A :
⋃

n∈N∗ [0, 1]n

→ [0, 1] with the following properties:

(a1) A(x) = x, for all x ∈ [0, 1];
(a2) if xi ≤ yi for all i ∈ {1, 2, . . . , n}, then A(x1, . . . , xn) ≤ A(y1, . . . , yn), for

all n ∈ N
∗ and for all (x1, . . . , xn), (y1, . . . , yn) in [0, 1]n;

(a3) A
(

0, . . . , 0
︸ ︷︷ ︸

n times

)

= 0, for all n ∈ N
∗;

(a4) A
(

1, . . . , 1
︸ ︷︷ ︸

n times

)

= 1, for all n ∈ N
∗.

We extend this definition to LI as follows.

Definition 5. [17] An aggregation operator A on LI is a mapping A :
⋃

n∈N∗(L
I )n

→ L I with the following properties:

(A1) A(x) = x, for all x ∈ L I ;
(A2) if xi ≤L I yi for all i ∈ {1, 2, . . . , n}, then A(x1, . . . , xn) ≤L I A(y1, . . . , yn),

for all n ∈ N
∗ and for all (x1, . . . , xn), (y1, . . . , yn) in (L I )n;

(A3) A
(

0LI , . . . , 0LI
︸ ︷︷ ︸

n times

)

= 0LI , for all n ∈ N
∗;

(A4) A
(

1LI , . . . , 1LI
︸ ︷︷ ︸

n times

)

= 1LI , for all n ∈ N
∗.

Definition 6. A negation on LI is a decreasing mapping N : L I → L I for which
N (0LI ) = 1LI and N (1LI ) = 0LI . If N (N (x)) = x, for all x ∈ L I , then N is
called involutive.
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The mappingNs defined by Ns(x) = [1−x2, 1−x1], for all x ∈ L I , is an involutive
negation, called the standard negation on LI , which is a natural extension of the
standard negation Ns on ([0, 1],≤) defined by Ns(x) = 1− x , for all x ∈ [0, 1].

Let A be an aggregation operator on LI and N an involutive negation on LI . The
mapping A∗ :

⋃

n∈N∗(L
I )n → L I defined by

A∗(x1, . . . , xn) = N (A(N (x1), . . . ,N (xn))),

for all n ∈ N
∗ and x1, . . . , xn ∈ L I , is an aggregation operator on LI , called the

dual aggregation operator of A w.r.t. N .
Aggregation operators on LI can be constructed in the following way. Let A1 and

A2 be aggregation operators on ([0, 1],≤). Define the mappingA :
⋃

n∈N∗(L
I )n →

L I by

A(x1, . . . , xn) = [A1((x1)1, . . . , (xn)1), A2((x1)2, . . . , (xn)2)],

for all n ∈ N
∗ and x1 = [(x1)1, (x1)2], . . . , xn = [(xn)1, (xn)2] in L I . Then

A(x1, . . . , xn) ∈ L I if and only if A1 ≤ A2. Clearly, A is an aggregation operator
on LI if and only if A1 and A2 are aggregation operators on ([0, 1],≤). We call A
a representable aggregation operator [17].

Not all aggregation operators on LI can be constructed in this way [17]. Consider
for instance the mapping A :

⋃

n∈N∗(L
I )n → L I defined by, for any aggregation

operator A on ([0, 1],≤), for all n ∈ N
∗ and x1, . . . , xn in L I ,

A(x1, . . . , xn) =
[

A((x1)1, . . . , (xn)1),max
(

A((x1)1, (x2)2, . . . , (xn)2),

A((x1)2, (x2)1, (x3)2, . . . , (xn)2), . . . , A((x1)2, . . . , (xn−1)2, (xn)1)
)]

if n > 1, and A(x1) = [A((x1)1), A((x1)2)] if n = 1. Then A is an aggre-
gation operator on LI . Let now A be an aggregation operator on ([0, 1],≤) for
which A(0, 1) = A(1, 0) = 0, x1 = [1, 1], x ′1 = [0, 1] and x2 = [0, 1], then
(A(x1, x2))2 = 1 �= (A(x ′1, x2))2 = 0. Hence no aggregation operators A1 and
A2 on ([0, 1],≤) can be found such that A(x1, x2) = [A1((x1)1, (x2)1), A2((x1)2,

(x2)2)], since otherwise (A(x1, x2))2 would be independent of (x1)1.

Definition 7. [17] Let n ∈ N \ {0, 1}. An n-ary aggregation operator A on LI is a
mapping A : (L I )n → L I with the following properties:

(A1’) if xi ≤L I yi for all i ∈ {1, 2, . . . , n}, then A(x1, . . . , xn) ≤L I

A(y1, . . . , yn), for all (x1, . . . , xn), (y1, . . . , yn) in (L I )n;

(A2’) A
(

0LI , . . . , 0LI
︸ ︷︷ ︸

n times

)

= 0LI ;



Aggregation Operators in IVF and AIF Set Theory 187

(A3’) A
(

1LI , . . . , 1LI
︸ ︷︷ ︸

n times

)

= 1LI .

If A is an aggregation operator on LI and n ∈ N \ {0, 1}, then the mapping An :
(L I )n → L I defined by An(x1, . . . , xn) = A(x1, . . . , xn), for all (x1, . . . , xn) ∈
(L I )n is an n-ary aggregation operator onLI . Conversely, if for all n ∈ N\{0, 1},An

is an n-ary aggregation operator on LI , then the mapping A :
⋃

n∈N∗(L
I )n → L I

defined by A(x1, . . . , xn) = An(x1, . . . , xn), for all (x1, . . . , xn) ∈ (L I )n , for all
n ∈ N

∗, and A(x) = x , for all x ∈ L I , is an aggregation operator on LI .

Example 1. [17] Some examples of binary aggregation operators on LI are, for x, y
in L I :

(i) AA1,A2(x, y) = [A1(x1, y1),max(A2(x1, y2), A2(y1, x2))],
(ii) A∗A1,A2

(x, y) = [min(A1(x1, y2), A1(y1, x2)), A2(x2, y2)],
(iii) A∗∗A1,A2

(x, y) = [min(A1(x1, y2), A1(y1, x2)),max(A2(x1, y2), A2(y1, x2))],
(iv) AA1,A2,A3,A4(x, y)= [A3(A1(x1,y2), A1(y1,x2)), A4(A2(x1,y2), A2(y1,x2))],

where A1, A2, A3 and A4 are aggregation operators on ([0, 1],≤) satisfying
A1 ≤ A2 and A3 ≤ A4.

3 Triangular Norms and Conorms on LI

Definition 8.

• A t-norm on LI is a commutative, associative, increasing mapping T : (L I )2 →
L I which satisfies T (1LI , x) = x, for all x ∈ L I .

• A t-conorm onLI is a commutative, associative, increasing mappingS : (L I )2 →
L I which satisfies S(0LI , x) = x, for all x ∈ L I .

Let T be a t-norm on LI , then we denote x (n)T = T (x, x (n−1)T ), for n ∈ N \
{0, 1} and x (1)T = x . We say that a t-norm T onLI satisfies the residuation principle
if and only if, for all x, y, z in L I ,

T (x, y) ≤L I z ⇐⇒ y ≤L I IT (x, z) = sup{γ | γ ∈ L I and T (x, γ ) ≤L I z}.

Clearly a t-norm T on LI is a binary aggregation operator on LI . Note that a
t-norm on LI displays downward reinforcement, i.e. T (x, y) ≤L I inf(x, y), for all
x, y in L I . On the other hand, a t-conorm on LI displays upward reinforcement
since S(x, y) ≥L I sup(x, y), for all x, y in L I (see [45] for more information on
reinforcement operators on the unit interval).

For t-norms on LI , we consider the following special classes [13, 14]. Let α ∈
[0, 1] and let T and T ′ be t-norms on ([0, 1],≤) such that T (x, y) ≤ T ′(x, y), for
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all x, y in [0, 1]. Then the t-norms TT ,T ′ , TT , TT ,α and T ′T are defined by, for all x, y
in L I ,

• TT ,T ′(x, y) = [T (x1, y1), T ′(x2, y2)] (t-representable t-norms);
• TT (x, y) = [T (x1, y1),max(T (x1, y2), T (x2, y1))] (pseudo-t-representable

t-norms);
• TT ,α(x, y) = [T (x1, y1),max(T (α, T (x2, y2)), T (x1, y2), T (x2, y1))] (general-

ized pseudo-t-representable t-norms);
• T ′T (x, y) = [min(T (x1, y2), T (x2, y1)), T (x2, y2)].

Clearly, for any α ∈ [0, 1] and any t-norm T on ([0, 1],≤), TT ,T , TT , TT ,α and T ′T
are natural extensions of T to LI .

Example 2. [13] Some examples of these operators are, for x, y in L I ,

• TW (x, y) = [max(0, x1 + y1 − 1),max(0, x1 + y2 − 1, x2 + y1 − 1)], which
is a pseudo-t-representable t-norm on LI , called the Łukasiewicz t-norm on LI ,
with representant the Łukasiewicz t-norm TW on ([0, 1],≤) given by TW (x, y) =
max(0, x + y − 1), for all x, y in [0, 1];

• SW (x, y) = [min(1, x1 + y2, x2 + y1),min(1, x2+ y2)] is a natural extension of
the Łukasiewicz t-conorm SW on ([0, 1],≤) given by, SW (x, y) = min(1, x+ y),
for all x, y in [0, 1]. Furthermore, SW (x, y) = Ns(TW (Ns(x),Ns(y))), for all
x, y in L I .

4 Archimedean t-norms on LI

In fuzzy set theory the class of Archimedean t-norms play an important role: con-
tinuous t-norms can be fully characterized by means of Archimedean t-norms, the
Archimedean property is closely related to additive and multiplicative generators,
etc. In particular a t-norm T on ([0, 1],≤) is a continuous Archimedean t-norm
if and only if there exists a continuous, strictly decreasing mapping f : [0, 1] →
[0,+∞] with f (1) = 0 such that T (x, y) = f −1(min( f (0), f (x)+ f (y))), for all
x, y in [0, 1] [29, 31, 34]. The mapping f is called an additive generator of T . Gen-
erators play an important role in aggregation (see e.g. [7, 21, 26, 32]). Therefore, in
this section we will investigate Archimedean t-norms on LI and in the next section
we will discuss additive generators of t-norms on LI (see [9] for more information
on multiplicative generators).

In order to define Archimedean t-norms, we need a metric on L I . Well-known
metrics include the Euclidean distance and the Hamming distance. In the two-
dimensional space R

2 they are defined as follows:

• the Euclidean distance between two points x = (x1, x2) and y = (y1, y2) in R
2

is given by d E (x, y) =
√

(x1 − y1)2 + (x2 − y2)2 ,
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• the Hamming distance between two points x = (x1, x2) and y = (y1, y2) in R
2

is given by d H (x, y) = |x1 − y1| + |x2 − y2|.

If we restrict these distances to L I then we obtain the metric spaces (L I , d E ) and
(L I , d H ).

Archimedean t-norms on the unit interval are defined as follows. A t-norm T
on ([0, 1],≤) is Archimedean if for all x, y in ]0, 1[, there exists an n ∈ N

∗
such that x (n)T < y. We say that T has the limit property if for all x ∈ [0, 1],
limn→+∞ x (n)T = 0. An element x ∈ [0, 1] is called a zero-divisor of T if there
exists an y ∈ [0, 1] such that T (x, y) = 0.

For t-norms on the unit interval we have the following characterizations of the
Archimedean property.

Theorem 1. [29, 30] A t-norm T on ([0, 1],≤) is Archimedean if and only if it
satisfies the limit property.

Theorem 2. [29, 30] Let T be a continuous t-norm on ([0, 1],≤). Then T is
Archimedean if and only if T (x, x) < x, for all x ∈ [0, 1].

We extend the previous definitions to LI . There are several possible extensions of
the Archimedean property, which we call Archimedean, weakly Archimedean and
strong Archimedean property. Throughout this section we will use the sets L I

1 =
{x | x ∈ L I and x1 ∈ [0, 1]} and L I

12 = {x | x ∈ L I and x1 > 0 and x2 < 1}.
Definition 9. [11] Let T be a t-norm on LI . We say that

• T is Archimedean if

(∀(x, y) ∈ (L I
1)

2)(∃n ∈ N
∗)(x (n)T <L I y);

• T is strong Archimedean if

(∀(x, y) ∈ (L I \ {0LI , 1LI })2)(∃n ∈ N
∗)(x (n)T <L I y);

• T is weakly Archimedean if

(∀(x, y) ∈ (L I
12)

2)(∃n ∈ N
∗)(x (n)T <L I y).

Obviously, if a t-norm T on LI is Archimedean, then it is weakly Archimedean,
and if T is strong Archimedean, then it is Archimedean. The converse implications
do not hold (see [11] for counterexamples).

In [4] the Archimedean property is introduced for t-norms on a general bounded
poset. If we apply their definition to LI , then we obtain the following condition for
a t-norm T on LI :

(∀(x, y) ∈ (L I )2)((∀n ∈ N
∗)(x (n)T ≥L I y)⇒ (x = 1LI or y = 0LI )). (1)

On the unit interval the Archimedean property is equivalent to the counterpart of
(1) on the unit interval. Although the definition of the strong Archimedean property
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on LI is similar to the definition of the Archimedean property on the unit interval, on
LI property (1) is not equivalent to the strong Archimedean property: the following
theorem shows that the Archimedean property defined using (1) corresponds to our
definition of the Archimedean property given in Definition 9.

Theorem 3. [11] Let T be a t-norm on LI . Then T is Archimedean (in the sense of
Definition 9) if and only if T satisfies (1).

Definition 10. [11] Let T be a t-norm on LI . We say that

• T has the limit property if for all x ∈ L I \ {0LI , 1LI }, lim
n→+∞ x (n)T = 0LI ;

• T has the weak limit property if for all x ∈ L I
12, lim

n→+∞ x (n)T = 0LI .

Now we extend Theorem 1 to LI .

Theorem 4. [11] Let T be a t-norm on LI . Then the following are equivalent:

(A1) T is Archimedean;
(A2) (∀(x, y) ∈ (L I

1)
2)(∃n ∈ N

∗)(x (n)T ,L I y);
(A3) T satisfies the limit property;
(A4) (∀x ∈ L I

1)( lim
n→+∞ x (n)T = 0LI ).

Theorem 5. [11] Let T be a t-norm on LI . Then the following are equivalent:

(wA1) T is weakly Archimedean;
(wA2) (∀(x, y) ∈ (L I

12)
2)(∃n ∈ N

∗)(x (n)T ,L I y);
(wA3) T satisfies the weak limit property.

Theorem 6. [11] Let T be a continuous t-norm on LI . Then T satisfies the Archi-
medean property if and only if T (x, x) <L I x , for all x ∈ L I \ {0LI , 1LI }.

In Table 1 it is shown under which conditions the different classes of t-norms
that we considered before satisfy the different types of the Archimedean property.
Clearly, the only class which satisfies the Archimedean property is the class of
pseudo-t-representable t-norms from which the t-representable t-norms are excluded.

Table 1 The Archimedean property for the different classes of t-norms

Weakly
Archimedean

Archimedean Strong Archimedean

TT,T ′ iff T and T ′ are
Archimedean

no no

TT,t (t < 1) iff T is Archimedean iff T is Archimedean iff T is Archimedean and
has zero-divisors

T ′T iff T is Archimedean no no
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For t-norms on the unit interval we have the following characterization (see [22]):
a t-norm T is continuous, Archimedean and nilpotent if and only if there exists a
permutation ϕ of [0, 1] such that T is the ϕ-transform of the Łukasiewicz t-norm,
i.e. T = ϕ−1 ◦ TW ◦ (ϕ × ϕ), where× denotes the product operation [18].

For t-norms on LI we have a similar representation. Therefore we introduce the
following property:

(∃(x, y) ∈ (L I )2)(x1 > 0 and y1 > 0 and T (x, y) = 0LI ). (2)

Note that for continuous t-norms T on ([0, 1],≤) nilpotency is equivalent to the
property that there exist x, y in [0, 1] such that T (x, y) = 0. So the following the-
orem can be seen as a natural extension of the previously mentioned representation
theorem for t-norms on ([0, 1],≤).
Theorem 7. [13] Consider a mapping T : (L I )2 → L I . Then the following state-
ments are equivalent:

(i) T is a continuous Archimedean t-norm on LI satisfying the residuation prin-
ciple, formula (2), IT (D, D) ⊆ D and T ([0, 1], [0, 1]) = 0LI ;

(ii) there exists a continuous increasing permutation Φ of L I with increasing in-
verse such that

T = Φ−1 ◦ TW ◦ (Φ ×Φ).

Theorem 7 and Table 1 show that the pseudo-t-representable t-norms on LI have
more interesting properties than the t-representable t-norms.

5 Generators of t-norms on LI

In [10] the following arithmetic operations on L̄ I are introduced.

Definition 11. The addition and the substraction of two elements x and y of L̄ I are
given by,

x ⊕LI y = [min(x1 + y2, x2 + y1), x2 + y2];
x .LI y = [x1 − y2,max(x1 − y1, x2 − y2)].

Note that it does not necessarily hold that x ⊕LI y ∈ L I or x .LI y ∈ L I , for
any x, y in L I . This is not a big issue, since it also does not hold that x + y ∈ [0, 1]
or x − y ∈ [0, 1], for all x, y in [0, 1]. On the other hand, x ⊕LI y ∈ L̄ I and
x .LI y ∈ L̄ I , for all x, y in L̄ I . Moreover⊕LI and .LI are natural extensions of
the classical addition and substraction on R.

The reason for defining these operations in this way is that they allow us to write
the Łukasiewicz t-norm and some related operations using a similar algebraic for-
mula as their counterparts on the unit interval. Indeed, we find, for all x, y in L I ,
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Ns(x) = 1LI .LI x,

TW (x, y) = sup(0LI , x .LI (1LI .LI y)),

SW (x, y) = inf(1LI , x ⊕LI y),

ITW (x, y) = inf(1LI , y ⊕LI (1LI .LI x)).

On the other hand, for all x, y in L I ,

T ′TW
(x, y) = sup(0LI , (x ⊕LI y).LI 1LI ) = sup(0LI , x ⊕LI (y .LI 1LI )).

Some other natural extensions of t-norms, t-conorms and implications on
([0, 1], ≤) can be written using a similar algebraic formula as their counterparts
on the unit interval (see [10, 12] for more details).

We extend⊕LI to L̄ I ∪ L̄ I∞,+ as follows: if x, y ∈ L̄ I ∪ L̄ I∞,+, then x ⊕LI y =
[min(x1 + y2, x2 + y1), x2 + y2], where any of x1, x2, y1 and y2 can be +∞. For
instance, if x ∈ L̄ I and y = [y1,+∞], where y1 ∈ [0,+∞[, then x ⊕LI y =
[x2 + y1,+∞]. In a similar way,.LI is extended to L̄ I ∪ L̄ I∞,+.

Definition 12. [22, 28, 29] A mapping f : [0, 1] → [0,+∞] satisfying the follow-
ing conditions:

(ag.1) f is strictly decreasing;
(ag.2) f (1) = 0;
(ag.3) f is right-continuous in 0;
(ag.4) f (x)+ f (y) ∈ rng( f ) ∪ [ f (0),+∞], for all x, y in [0, 1];

is called an additive generator on [0, 1].

Definition 13. [28, 29] Let f : [0, 1] → [0,+∞] be a strictly decreasing func-
tion. The pseudo-inverse f (−1) : [0,+∞] → [0, 1] of f is defined by, for all
y ∈ [0,+∞],

f (−1)(y) = sup({0} ∪ {x | x ∈ [0, 1] and f (x) > y}.

We extend these definitions to L I as follows.

Definition 14. [9] Let f : L I → L̄ I∞,+ be a strictly decreasing function. The
pseudo-inverse f (−1) : L̄ I∞,+ → L I of f is defined by, for all y ∈ L̄ I∞,+,

f (−1)(y) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

sup{x | x ∈ L I and f (x)/L I y}, if y ,L I f (0LI );
sup({0LI } ∪ {x | x ∈ L I and ( f (x))1 > y1

and ( f (x))2 ≥ ( f (0LI ))2}), if y2 ≥ ( f (0LI ))2;
sup({0LI } ∪ {x | x ∈ L I and ( f (x))2 > y2

and ( f (x))1 ≥ ( f (0LI ))1}), if y1 ≥ ( f (0LI ))1.
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Definition 15. [9] A mapping f : L I → L̄ I∞,+ satisfying the following conditions:

(AG.1) f is strictly decreasing;
(AG.2) f(1LI ) = 0LI ;
(AG.3) f is right-continuous in 0LI ;
(AG.4) f(x)⊕LI f(y) ∈ R(f), for all x, y in L I , where R(f) = rng(f)

∪ {x | x ∈ L̄ I∞,+ and [x1, (f(0LI ))2] ∈ rng(f) and x2 ≥ (f(0LI ))2}
∪ {x | x ∈ L̄ I∞,+ and [(f(0LI ))1, x2] ∈ rng(f) and x1 ≥ (f(0LI ))1}
∪ {x | x ∈ L̄ I∞,+ and x ≥L I f(0LI )};

(AG.5) f(−1)(f(x)) = x, for all x ∈ L I ;

is called an additive generator on LI .

In [9] it is shown that condition (AG.5) is necessary in the above definition in
order to be able to use additive generators on LI for the representation of t-norms
on LI .

Theorem 8. [9] Let f be an additive generator on ([0, 1],≤) and let f : L I →
L̄ I∞,+ the mapping defined by, for all x ∈ L I ,

f(x) = [ f (x2), f (x1)]. (3)

Then, for all y ∈ L̄ I∞,+, f(−1)(y) = [ f (−1)(y2), f (−1)(y1)].

Definition 16. [9] Let f be an additive generator on LI . If there exists an additive
generator f on [0, 1] such that (3) holds, for all x ∈ L I , then f is called repre-
sentable and f is called the representant of f.

Theorem 9. [9] A mapping f : L I → L̄ I∞,+ is a continuous additive generator
on LI for which f(D) ⊆ D̄∞,+ if and only if there exists a continuous additive
generator f on ([0, 1],≤) such that (3) holds for all x ∈ L I .

Definition 17. [9] An additive generator f on LI is called an additive generator of
a t-norm T on LI if and only if, for all x, y ∈ L I ,

T (x, y) = f(−1)(f(x)⊕LI f(y)). (4)

Theorem 10. [9] Let f be an additive generator on LI . Define the mapping T :
(L I )2 → L I by (4) for all x, y ∈ L I . Then T is a t-norm on LI .

Theorem 11. [9] Let f be a representable additive generator on LI . Then the map-
ping T : (L I )2 → L I defined by (4) for all x, y ∈ L I , is a pseudo-t-representable
t-norm on L I .

Theorem 12. [9] Let T be a pseudo-t-representable t-norm on LI with representant
T . Then T has an additive generator f for which f(D) ⊆ D̄∞,+, if and only if T
has an additive generator. Furthermore, if f is an additive generator of T , then the
mapping f : L I → L̄ I+ defined by (4) for all x ∈ L I , is an additive generator of T .
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Example 3. The mapping fW : [0, 1] → [0,+∞] defined by fW (x) = 1− x , for all
x ∈ [0, 1] is an additive generator of TW [28, 29]. Let fW be the additive generator
on LI defined by fW (x) = 1LI .LI x = [1 − x2, 1 − x1], for all x ∈ L I , then
f (−1)
W (y) = [max(0, 1 − y2),max(0, 1 − y1)], for all y ∈ L̄ I+. We obtain, for all

x, y in L I , that f
(−1)
W (fW (x)⊕LI fW (y)) = TW (x, y). So fW is an additive generator

of TW . Hence the continuous additive generator fW of the Łukasiewicz t-norm on
[0, 1] has a natural extension fW to LI which is a continuous additive generator of
the Łukasiewicz t-norm on LI .

From Theorem 9 and Theorem 11 it follows that only pseudo-t-representable t-
norms can have a continuous additive generator on LI which is a natural extension
of a generator on [0, 1].

6 Uninorms on LI

Compensation behavior (this means that the aggregated value lies between the high-
est and the lowest of the given values) seems to be a crucial property in many appli-
cations in which data is aggregated (see e.g. [46]). However, t-norms and t-conorms
do not satisfy this property. For this reason, Yager et al. [20, 44] introduced uni-
norms on ([0, 1],≤) as a generalization of both t-norms and t-conorms. This notion
is extended to LI as follows.

Definition 18. [16] A uninorm onLI is a commutative, associative, increasing map-
ping U : (L I )2 → L I for which there exists an e ∈ L I such that U(e, x) = x, for
all x ∈ L I . The element e is called the neutral element of U .

If e = 0LI , then U is a t-conorm on LI , if e = 1LI , then we have a t-norm on LI .
The neutral element e of a uninorm U can be considered as the score that we would
give to an argument which should not have any influence in the aggregation. It can
be seen as a null vote.

Yager and Rybalov [45] show that uninorms on ([0, 1],≤) display both down-
ward and upward reinforcement if e ∈ [0, 1]. For uninorms on LI a similar property
holds. Let e ∈ D \ {0LI , 1LI } and define E = {x | x ∈ L I and x ≤L I e}
and E ′ = {x | x ∈ L I and x ≥L I e}. Then the mappings Φe : L I → E and
�e : L I → E ′ defined by, for all x ∈ L I ,

Φe(x) = [e1x1, e1x2],

�e(x) = [e1 + x1 − e1x1, e1 + x2 − e1x2],

are increasing bijections from L I to respectively E and E ′ which have an increasing
inverse. If e ∈ L I \ D, then there does not exist an increasing bijection from L I to
E or E ′ with an increasing inverse [16].

Theorem 13. [16] Let U be a uninorm on LI with neutral element e ∈ D \
{0LI , 1LI }. Then there exist a t-norm TU and a t-conorm SU on LI such that
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(i) (∀(x, y) ∈ E2)(U(x, y) = Φe(TU (Φ−1
e (x),Φ−1

e (y)))),
(ii) (∀(x, y) ∈ E ′2)(U(x, y) = �e(SU (�−1

e (x),�−1
e (y)))).

From Theorem 13 it follows that U displays downward reinforcement for x, y in
E and upward reinforcement for x, y in E ′.

A uninorm U on LI displays compensation behavior for x ∈ E and y ∈ E ′ or for
x ∈ E ′ and y ∈ E . Indeed, if x ∈ E and y ∈ E ′, then inf(x, y) = x = U(x, e) ≤L I

U(x, y) ≤L I U(e, y) = y = sup(x, y).
In [20, 8, 19] a special class of uninorms on the unit interval is introduced: a

uninorm on ([0, 1],≤) is called representable if there exists a strictly increasing
continuous mapping h : [0, 1] → R̄ with h(0) = −∞, h(e) = 0 and h(1) = +∞
such that

U(x1, y1) = h−1(h(x1)+ h(y1)), ∀(x1, y1) ∈ [0, 1]2 \ {(0, 1), (1, 0)} .
The mapping h is called a generator of U . They proved that a uninorm U is rep-
resentable if and only if U is strictly decreasing and continuous in the open unit
square and it is self-dual w.r.t. an involutive negation that has the neutral element
of U as fixed point. In [16] this necessary and sufficient condition is used to define
representable uninorms on LI .

Definition 19. [16] A uninorm U on LI with neutral element e is called repre-
sentable if

(i) U is strictly decreasing and continuous in (L I \ {0LI , 1LI })2;
(ii) there exists an involutive negationNU on LI with fixed point e, i.e. NU (e) = e,

such that
(

∀(x, y) ∈ (L I )2 \ {(0LI , 1LI ), (1LI , 0LI )}
)

(

U(x, y) = NU (U(NU (x),NU (y)))
)

.

We consider an additional condition for a uninorm U on LI :

(∀x ∈ L I \ {0LI , 1LI })(∀Z | ∅ ⊂ Z ⊆ L I )
(

sup Z <L I 1LI ⇒ sup
z∈Z

U(x, z) = U(x, sup Z)

)

(5)

It is shown in [16] that a similar condition for uninorms U on the unit interval is
equivalent to the left-continuity of U in [0, 1]2, and therefore holds for all repre-
sentable uninorms on ([0, 1],≤).

From Theorem 4.2, Lemma 6.5 and Theorem 6.7 in [16] it easily follows that the
following holds.

Theorem 14. Let U be a representable uninorm on LI with neutral element e ∈
L I \ {0LI , 1LI }, satisfying (5) and U(D, D) ⊆ D. Then there exists a representable
uninorm U on ([0, 1],≤) such that, for all (x, y) ∈ (L I \ {0LI , 1LI })2,
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U(x, y) = [U(x1, y1),U(x2, y2)].

From Theorem 14 it follows that a representable uninorm U on LI which satis-
fies (5) and U(D, D) ⊆ D can be represented by means of a strictly increasing
continuous mapping h : [0, 1] → R̄ for which h(0) = −∞, h(e) = 0 and
h(1) = +∞: for all x, y in L I such that neither (x, y) or (y, x) is an element
of ({0LI } × {[a, 1] | a ∈ [0, 1]}) ∪ ({[0, b] | b ∈ [0, 1]} × {1LI }),

U(x, y) = [h−1(h(x1)+ h(y1)), h−1(h(x2)+ h(y2))].

7 OWA Operators on Interval-valued Fuzzy Sets

The OWA (ordered weighted average) operator was introduced by Yager [42] as a
method for aggregating a set of M crisp input values ai ∈ R, i ∈ {1, 2, . . . , M}. Let

a(i) = a j , if a j is the i -th largest value. (6)

Let (w1, . . . , wM ) ∈ [0, 1]M be a vector of weights, for which
∑M

i=1 wi = 1. Then
the mapping f : R

M → R defined as

f (a1, . . . , aM ) =
M
∑

i=1

wi a(i),

is called an OWA operator.
This operator can be extended to a fuzzy OWA operator, which can be used to

aggregate M continuous fuzzy sets Ai , i ∈ {1, . . . , M}, on the real line [36, 37, 38,
40]. The corresponding “ordered” fuzzy sets A(i) are defined by applying Zadeh’s
extension principle to (6): for all b ∈ R,

A(i)(b) = max
{

min
(

A1(a1), A2(a2), . . . , AM (aM )
)

| (a1, . . . , aM ) ∈ R
M and b = a(i)

}

. (7)

Define for each α ∈ ]0, 1], the α-cut of a fuzzy set A on R as Aα = {x | x ∈
R and A(x) ≥ α}, and define A0 = {x | x ∈ R and A(x) > 0}. Then, since
A j is continuous for all j ∈ {1, . . . , M}, b ∈ (A(i))α if and only if there exist
(a1, . . . , aM ) ∈ R

M such that b = a(i) and a j ∈ (A j )α for all j ∈ {1, . . . , M}. If
for all j ∈ {1, . . . , M}, (A j )α = [A j , A j ] ⊆ R, then (A(i))α = [A(i), A(i)], i.e.
the lower bound of (A(i))α is equal to the i -th largest lower bound of the (A j )α ,
j ∈ {1, . . . , M}, and similarly for the upper bound.

A fuzzy OWA operator F is then defined by F(A1, . . . , AM ) = ∑M
i=1 wi A(i),

where the addition of fuzzy sets and the multiplication with a real number is calcu-
lated pointwise. Note that for any M-tuple (A1, . . . , AM ) of continuous fuzzy sets
on R, F(A1, . . . , AM ) is a fuzzy set on R.
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In [35] this operator is extended to an interval-valued fuzzy OWA operator.
Given M continuous interval-valued fuzzy sets Ai : R → L I , i ∈ {1, 2, . . . , M},
we have to define the corresponding “ordered” interval-valued fuzzy sets A(i),
i ∈ {1, 2, . . . , M}. The simplest approach would be to separately calculate for all
b ∈ R,

f w(i)(b) = max
{

min
(

(A1(a1))1, (A2(a2))1, . . . , (AM (aM ))1
)

| (a1, . . . , aM ) ∈ R
M and b = a(i)

}

, (8)

gw(i)(b) = max
{

min
(

(A1(a1))2, (A2(a2))2, . . . , (AM (aM ))2
)

| (a1, . . . , aM ) ∈ R
M and b = a(i)

}

, (9)

i.e. we apply (7) separately to the lower and the upper bounds of Ai , i ∈ {1, . . . , M}.
In [35] it is shown that for any M-tuple (A1, . . . , AM ) of continuous interval-valued
fuzzy sets, the mappings f w(i) and gw(i) obtained by using (8) and (9) are weakly
coupled, i.e. they satisfy the inequalities 0 ≤ f w(i)(b) ≤ gw(i)(b) ≤ 1, for all b ∈ R.

Hence the mapping A(i) : R → L I defined by, for all b ∈ R,

A(i)(b) = [ f w(i)(b), gw(i)(b)],

is an interval-valued fuzzy set.
In some circumstances we may require that for each b ∈ R, f(i)(b) and g(i)(b)

are strongly coupled, i.e. they depend on the lower and upper bounds of the
same input interval-valued fuzzy set A j with j ∈ {1, . . . , M}. Consider the set
{{a(1)1 , . . . , a(1)M }, {x (2)1 , . . . , x (2)M }, . . . , {x (k)1 , . . . , x (k)M }, . . .

}

of different M-tuples

for which b = x (k)(i) , k ∈ {1, 2, . . .}. Define for any k ∈ {1, 2, . . .},

f (k)(i) (b) = min((A1(a
(k)
1 ))1, . . . , (AM (a(k)M ))1),

g(k)
(i) (b) = min((A1(a

(k)
1 ))2, . . . , (AM (a(k)M ))2).

Then f w(i)(b) = maxk( f (k)(i) (b)) and gw(i)(b) = maxk(g
(k)
(i) (b)). In order to obtain

strongly coupled results, we have to find an index ks such that

f s
(i)(b) = f (ks )

(i) (b), gs
(i)(b) = g(ks )

(i) (b).

In [35] the following criteria for choosing ks are discussed.

• Maximize f (k)(i) (b). Then ks is the index for which f (ks )
(i) (b) = maxk

(

f (k)(i) (b)
)

.
This criterion may be regarded as “pessimistic”, since it only takes into account
the lower bounds of the intervals. Note that in this case f s

(i)(b) = f w(i)(b) and the
upper bound function gs

(i) is completely determined by the lower bound function
f s
(i): for any b ∈ R, f s

(i)(b) is obtained by applying (7) to the lower bounds of
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Ai , i ∈ {1, . . . , M}; and if f s
(i)(b) = f (ks )

(i) (b) for some index ks , then gs
(i)(b) =

g(ks )
(i) (b).

• Maximize g(k)(i) (b). Then ks is the index for which g(ks )
(i) (b) = maxk

(

g(k)(i) (b)
)

. This
criterion may be regarded as “optimistic”, since it only takes into account the up-
per bounds of the intervals. Note that in this case gs

(i)(b) = gw(i)(b) and the lower
bound function f s

(i) is completely determined by the upper bound function gs
(i).

• Maximize the sum f (k)(i) (b)+ g(k)(i) (b). Then ks is the index for which f (ks )
(i) (b)+

g(ks )
(i) (b) = maxk

(

f (k)(i) (b)+ g(k)(i) (b)
)

. This criterion may be regarded as “neutral”,
since it gives equal weight to both the lower and the upper bounds of the intervals.

Now we can define the interval-valued fuzzy OWA operator, which is an ex-
tension of the fuzzy OWA operator, as follows: for any M-tuple (A1, . . . , AM ) of
continuous interval-valued fuzzy sets,

F(A1, . . . , AM ) =
M
∑

i=1

wi A(i),

where the addition of interval-valued fuzzy sets and the multiplication with a real
number is performed componentwise, i.e. for all x ∈ R,

(F(A1, . . . , AM )(x))1 =
M
∑

i=1

wi (A(i)(x))1,

and similarly for the second component. Note that for any M-tuple {A1, . . . , AM }
of continuous interval-valued fuzzy sets on R, F(A1, . . . , AM ) is an interval-valued
fuzzy set on R.

For examples and applications of interval-valued fuzzy OWA operators, we refer
to [35].

8 Aggregation of Interval-valued Fuzzy Values Based
on S-OWA Operators

Yager [42] introduced a measure on the OWA weights characterizing an OWA op-
erator on ([0, 1],≤), namely the orness, as follows:

orness(w1, . . . , wM ) = 1

M − 1

M
∑

i=1

(M − i)wi .

The dual measure, the andness, is defined as andness(w1, . . . , wM ) = 1−orness(w1,

. . . , wM ). The orness and andness may be seen as the degree to which the operator
obtained by the OWA weights represents, respectively, max (“or”) and min (“and”).
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E.g. orness(1, 0, . . . , 0) = 1, and using these weights we obtain the OWA operator
F(a1, . . . , aM ) = a(1) = max(a1, . . . , aM ).

Yager and Filev [43] introduced two families of OWA-operators: the ‘orlike’ and
the ‘andlike’ S-OWA operators. The ‘orlike’ S-OWA operators, denoted FS O , are
defined by a family of OWA weights such that

wi =
{

1
M (1− α) + α, if i = 1,
1
M (1− α), else,

where α ∈ [0, 1]. Then, for all (a1, . . . , aM ) ∈ [0, 1]M ,

FS O(a1, . . . , aM ) = α max(a1, . . . , aM )+ 1

M
(1− α)

M
∑

i=1

ai .

The orness measure of this aggregation operator is given by orness(FS O) =
1
2 (α + 1). Note that for all α ∈ [0, 1], orness(FS O) ∈ [0.5, 1].

The ‘andlike’ S-OWA operators, denoted FS A, are defined by a family of OWA
weights such that

wi =
{

1
M (1− β)+ β, if i = M;
1
M (1− β), else,

where β ∈ [0, 1]. Then, for all (a1, . . . , aM ) ∈ [0, 1]M ,

FS A(a1, . . . , aM ) = β min(a1, . . . , aM )+ 1

M
(1− β)

M
∑

i=1

ai .

The orness measure of this aggregation operator is given by orness(FS A) = 1
2 (1 −

β). Note that for all β ∈ [0, 1], orness(FS A) ∈ [0, 0.5].
Wang et al. [41] defined the andlike S-OWA aggregation FS A(a1, . . . , aM ) of M

elements ai (i ∈ {1, . . . , M}) of L I as follows:

FS A(a1, . . . , aM ) = [FS A((a1)1, . . . , (aM )1), FS A((a1)2, . . . , (aM )2)],

where FS A is an andlike S-OWA aggregation operator on ([0, 1],≤). They also
define the andlike S-OWA aggregation of M interval-valued fuzzy sets Ai (i ∈
{1, . . . , M}) on R as follows: for any x ∈ R,

FS A(A1, . . . , AM )(x) = [FS A((A1(x))1, . . . , (AM (x))1),

FS A((A1(x))2, . . . , (AM (x))2)].

The orlike S-OWA aggregation FS O of M elements of L I and the orlike S-OWA
aggregation of M interval-valued fuzzy sets are defined in a similar way.
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Clearly, the andlike and orlike S-OWA aggregation of elements of L I are repre-
sentable aggregation operators on LI .

8.1 Importance Weighted S-OWA Aggregation

In many instances of multi-criteria aggregation, the criteria differ in importance
to the decision maker. We assume that the importance measure is modelled by
a vector V = (v1, . . . , vM ) such that vi ∈ [0, 1], for all i ∈ {1, . . . , M}, and
max(v1, . . . , vM ) = 1.

Larsen [33] presented importance weighted OWA aggregation as follows: let F
be an OWA operator with weights (w1, . . . , wM ), then the importance weighted
OWA aggregation of M elements ai of [0, 1] is given by

F V (a1, . . . , aM ) = F(b1, . . . , bM ) =
M
∑

i=1

wi b(i),

where bi = γ + vi (ai − γ ), where γ denotes the andness of F .
Wang et al. [41] extended the notion of importance weighted OWA aggregation

to LI as follows.

Definition 20. Let a1, . . . , aM be elements of L I . Given a value of orness λ, with
λ ∈ [0, 0.5], and let FS A be the andlike S-OWA operator on ([0, 1],≤) with or-
ness λ. Then the importance weighted andlike S-OWA operator is defined as,

FV
S A(a1, . . . , aM ) = FS A(b1, . . . , bM ) =

M
∑

i=1

wi b(i),

where bi = 1− λ+ vi (S(ai )− 1+ λ), where S : L I → [0, 1] is the score function
defined by S(x) = x1 + x2, for all x ∈ L I .

The importance weighted orlike S-OWA operator is defined in a similar way. An
application of these operators to fuzzy multi-criteria decision making can be found
in [41].

9 Conclusion and Future Work

In this paper we have discussed aggregation operators in interval-valued fuzzy and
Atanassov’s intuitionistic fuzzy set theory. We have given an overview of the al-
ready obtained results on these operators. First we have discussed some properties
of t-norms on the underlying lattice LI of interval-valued fuzzy set theory and we
investigated their additive and multiplicative generators.
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Another class of aggregation operators we discussed are uninorms, in particular
the class of representable uninorms is studied. We have shown that representable
uninorms can be represented by means of a generator of a uninorm on the unit
interval. In the future we will introduce generators of uninorms on LI which are
mappings on L I instead of on [0, 1].

The OWA operators introduced by Yager can be extended to interval-valued
fuzzy sets. Mitchell [35] introduced two kinds of interval-valued fuzzy OWA op-
erators: the first kind is simply a t-representable extension of the fuzzy OWA oper-
ator introduced by the same author, in the second kind the two components of the
interval-valued fuzzy OWA are related to each other. Wang [41] extended a spe-
cial class of OWA operators introduced by Yager and Filev, the so-called S-OWA
operators to interval-valued fuzzy sets. Their approach yields also t-representable
aggregation operators.

In the future we will extend other aggregation operators to interval-valued fuzzy
set theory. We will also try to find non-t-representable extensions and investigate
whether these extensions have better properties than the t-representable ones. We
will also study in general how the type of representability (t-representable, pseudo-
t-representable, . . . ) influences which properties satisfied by an aggregation operator
on the unit interval is inherited by its extension to LI .
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6. T. Calvo, A. Kolesárová, M. Komornı́ková, and R. Mesiar. Aggregation operators: properties,

classes and construction methods. In T. Calvo, G. Mayor, and R. Mesiar, editors, Aggregation
Operators: New Trends and Applications, pp. 3–104. Physica-Verlag, Heidelberg/New York,
2002.

7. T. Calvo and R. Mesiar. Continuous generated associative aggregation operators. Fuzzy Sets
and Systems, 126(2):191–197, 2002.

8. B. De Baets and J. Fodor. On the structure of uninorms and their residual implicators. In
S. Gottwald and E. P. Klement, editors, Proceedings of the 18th Linz Seminar on Fuzzy Set
Theory: Enriched Lattice Structures for Many-Valued and Fuzzy Logics, pp. 81–87, 1997.

9. G. Deschrijver. Additive and multiplicative generators in interval-valued fuzzy set theory.
IEEE Transactions on Fuzzy Systems. in press.

10. G. Deschrijver. Algebraic operators in interval-valued fuzzy set theory. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems. submitted.

11. G. Deschrijver. The Archimedean property for t-norms in interval-valued fuzzy set theory.
Fuzzy Sets and Systems. in press.

12. G. Deschrijver. Generators of t-norms in interval-valued fuzzy set theory. In Proceedings
of the 4th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT
2005), pp. 253–258, 2005.



202 G. Deschrijver, E. Kerre

13. G. Deschrijver, C. Cornelis, and E. E. Kerre. On the representation of intuitionistic fuzzy
t-norms and t-conorms. IEEE Transactions on Fuzzy Systems, 12(1):45–61, 2004.

14. G. Deschrijver and E. E. Kerre. Classes of intuitionistic fuzzy t-norms satisfying the residua-
tion principle. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
11(6):691–709, 2003.

15. G. Deschrijver and E. E. Kerre. On the relationship between some extensions of fuzzy set
theory. Fuzzy Sets and Systems, 133(2):227–235, 2003.

16. G. Deschrijver and E. E. Kerre. Uninorms in L∗-fuzzy set theory. Fuzzy Sets and Systems,
148(2):243–262, 2004.

17. G. Deschrijver and E. E. Kerre. Implicators based on binary aggregation operators in interval-
valued fuzzy set theory. Fuzzy Sets and Systems, 153(2):229–248, 2005.

18. M. Eisenberg. Axiomatic theory of sets and classes. Holt, Rinehart and Winston, Inc., New
York, 1971.

19. J. Fodor and B. De Baets. On uninorms and their residual implicators. In P. Sinčák, J. Vaščák,
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Fuzzy Preference Modelling:
Fundamentals and Recent Advances

János Fodor∗ and Bernard de Baets

Abstract The construction of fuzzy strict preference, indifference and incompa-
rability relations from a fuzzy large preference relation is usually cast into an ax-
iomatic framework based on t-norms. In this contribution, we show that this con-
struction is essentially characterized by the choice of an indifference generator, a
symmetrical mapping located between the Łukasiewicz t-norm and the minimum
operator. Interesting constructions are obtained by choosing as indifference gener-
ator a commutative quasi-copula, an ordinal sum of Frank t-norms or a particular
Frank t-norm.

1 Introduction

The study of fuzzy preference structures has a longstanding tradition and is char-
acterized by a peculiar historical development [3]. Roughly speaking, three phases
can be distinguished. In the first phase, different proposals for constructing strict
preference and indifference relations emerge. In the second one, this construction is
approached in an axiomatic way, by imposing conditions on the fuzzy strict pref-
erence, indifference and incomparability relations, leading to functional equations
identifying suitable strict preference, indifference and incomparability generators.
Surprisingly, the definition of a fuzzy preference structure was only given in the third
phase, leading to the study of additive fuzzy preference structures. We show that a
given additive fuzzy preference structure is not necessarily the result of applying
monotone generators to a large preference relation. In order to cover all additive
fuzzy preference structures, we therefore start all over again, looking for the most
general strict preference, indifference and incomparability generators. We pinpoint
the central role of the indifference generator and clarify that the monotonicity of
a generator triplet is totally determined by using a commutative quasi-copula as
indifference generator.
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2 Boolean Preference Structures

Preference modelling is a fundamental step of (multi criteria) decision making,
operations research, social choice and voting procedures, and has been studied ex-
tensively for several years. Its most basic concept is that of a preference struc-
ture. Consider a set of alternatives A and suppose that a decision maker wants to
judge these alternatives by pairwise comparison. Given two alternatives, the deci-
sion maker can act in one of the following three ways:

(i) he/she clearly prefers one to the other;
(ii) the two alternatives are indifferent to him/her;

(iii) he/she is unable to compare the two alternatives.

According to these cases, three binary relations can be defined in A: the strict pref-
erence relation P , the indifference relation I and the incomparability relation
J . For any (a, b) ∈ A2, we classify:

(a, b) ∈ P ⇔ he/she prefers a to b;

(a, b) ∈ I ⇔ a and b are indifferent to him/her;

(a, b) ∈ J ⇔ he/she is unable to compare a and b.

One easily verifies that the triplet (P, I, J ) defined above satisfies the conditions
formulated in the following definition of a preference structure. For a binary relation
R in A, we denote its converse by Rt and its complement by co R.

Definition 1. [11] A preference structure on A is a triplet (P, I, J ) of binary re-
lations in A that satisfy:

(B1) P is irreflexive, I is reflexive and J is irreflexive;
(B2) P is asymmetrical, I is symmetrical and J is symmetrical;
(B3) P ∩ I = ∅, P ∩ J = ∅ and I ∩ J = ∅;
(B4) P ∪ Pt ∪ I ∪ J = A2.

This definition is exhaustive: it lists all properties of the components P , I and J
of a preference structure. The asymmetry of P can also be written as P ∩ Pt = ∅.
Condition (B4) is called the completeness condition and can be expressed equiva-
lently (up to symmetry) in the following alternative ways: co (P ∪ I ) = Pt ∪ J ,
co (P ∪ Pt ) = I ∪ J , co (P ∪ Pt ∪ I ) = J , co (P ∪ Pt ∪ J ) = I and
co (Pt ∪ I ∪ J ) = P .

It is possible to associate a single reflexive relation to any preference structure so
that it completely characterizes this structure. A preference structure (P, I, J ) on
A is characterized by the reflexive binary relation R = P ∪ I , its large preference
relation, in the following way:

(P, I, J ) = (R ∩ co Rt , R ∩ Rt , co R ∩ co Rt ).
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Conversely, a triplet (P, I, J ) constructed in this way from a reflexive binary rela-
tion R in A is a preference structure on A. The interpretation of the large preference
relation is

(a, b) ∈ R ⇔ b is considered at most as good as a.

The above definition of a preference structure can be written in the following
minimal way, identifying a relation with its characteristic mapping [4]: I is reflexive
and symmetrical, and for any (a, b) ∈ A2:

P(a, b)+ Pt (a, b)+ I (a, b)+ J (a, b) = 1.

Classical preference structures can therefore also be considered as Boolean prefer-
ence structures, employing 1 and 0 for describing presence or absence of strict pref-
erences, indifferences and incomparabilities. Complement, intersection and union
then correspond to Boolean negation, conjunction (i.e. minimum) and disjunction
(i.e. maximum) on characteristic mappings.

3 Beyond Booleanity

As preference structures are based on classical set theory and are therefore restricted
to two-valued relations, they do not allow to express degrees of strict preference,
indifference or incomparability. This is seen as an important drawback to their prac-
tical use, leading researchers already at an early stage to the theory of fuzzy sets, and
in particular to the calculus of fuzzy relations. In that case, preference degrees are
expressed on the continuous scale [0, 1] and operations from fuzzy logic are used for
manipulating these degrees. The notion of a binary fuzzy relation R in A appears
first in the seminal paper of Zadeh [37] and is simply defined as an A2 → [0, 1]
mapping.

In that context, it is essential to have access to suitable operators for combining
the degrees of preference. In this paper, we are mainly interested in two classes of
operators: the class of t-norms [16] and the class of (quasi-)copulas [7, 10].

Definition 2. A binary operation T : [0, 1]2 → [0, 1] is called a t-norm if it
satisfies:

(i) Neutral element 1: (∀x ∈ [0, 1])(T (x, 1) = T (1, x) = x).
(ii) Monotonicity: T is increasing in each variable.

(iii) Commutativity: (∀(x, y) ∈ [0, 1]2)(T (x, y) = T (y, x)).
(iv) Associativity: (∀(x, y, z) ∈ [0, 1]3)(T (x, T (y, z)) = T (T (x, y), z)).

T-conorms are the dual operations of t-norms, in the sense that for a given t-norm
T , the operation S : [0, 1]2 → [0, 1] defined by

S(x, y) = 1− T (1− x, 1− y) ,
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is a t-conorm. Formally, the only difference between t-conorms and t-norms is that
the former have neutral element 0, while the latter have neutral element 1.

Definition 3. A binary operation C : [0, 1]2 → [0, 1] is called a quasi-copula if it
satisfies:

(i) Neutral element 1: (∀x ∈ [0, 1])(C(x, 1) = C(1, x) = x) .
(i’) Absorbing element 0: (∀x ∈ [0, 1])(C(x, 0) = C(0, x) = 0) .
(ii) Monotonicity: C is increasing in each variable.

(iii) 1-Lipschitz property: (∀(x1, x2, y1, y2) ∈ [0, 1]4)

(|C(x1, y1)− C(x2, y2)| ≤ |x1 − x2| + |y1 − y2|) .

If instead of (iii), C satisfies

(iv) Moderate growth: (∀(x1, x2, y1, y2) ∈ [0, 1]4)

((x1 ≤ x2 ∧ y1 ≤ y2)⇒ C(x1, y1)+ C(x2, y2) ≥ C(x1, y2)+ C(x2, y1)) ,

then it is called a copula.

Note that in case of a quasi-copula condition (i’) is superfluous. For a copula,
condition (ii) can be omitted (as it follows from (iv) and (i’)). As implied by the
terminology used, any copula is a quasi-copula, and therefore has the 1-Lipschitz
property; the opposite is, of course, not true. It is well known that a copula is
a t-norm if and only if it is associative; conversely, a t-norm is a copula if and
only if it is 1-Lipschitz. Finally, note that for any quasi-copula C it holds that
TL ≤ C ≤ TM, where TL(x, y) = max(x + y− 1, 0) is the Łukasiewicz t-norm and
TM(x, y) = min(x, y) is the minimum operator.

We consider a continuous De Morgan triplet (T, S, N) on [0, 1], consisting of
a continuous t-norm T , a strong negation N (i.e. a decreasing permutation of [0, 1])
and the N-dual t-conorm S defined by

S(x, y) = N(T (N(x), N(y))) .

Note that a strong negation is uniquely determined by the corresponding automor-
phism φ of the unit interval, Nφ(x) := φ−1(1− φ(x)).

Further on, the complement of a fuzzy set A is denoted by coN (A); the intersec-
tion (resp. union) of two fuzzy sets A and B is denoted by A ∩T B (resp. A ∪S B).

A fuzzy preference structure (FPS) on A is a triplet (P, I, J ) of binary fuzzy
relations in A satisfying:

(F1) P is irreflexive, I is reflexive and J is irreflexive;
(F2) P is T -asymmetrical (i.e. P ∩T Pt = ∅), I and J are symmetrical;
(F3) P ∩T I = ∅, P ∩T J = ∅ and I ∩T J = ∅;
(F4) a completeness conditions, such as coN (P ∪S I ) = Pt ∪S J ,

coN (P ∪S Pt ∪S I ) = J or P ∪S Pt ∪S I ∪S J = A2.
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Invoking the assignment principle: for any pair of alternatives (a, b) the deci-
sion maker is allowed to assign at least one of the degrees P(a, b), P(b, a), I (a, b)
and J (a, b) freely in the unit interval, shows that only a nilpotent
t-norm T is acceptable, i.e. a φ′-transform of the Łukasiewicz t-norm: T (x, y) :=
φ′−1(max(φ′(x)+φ′(y)−1, 0)) [12]. For the sake of simplicity, we consider φ = φ′.
Consequently, we will be working with a Łukasiewicz triplet (T∞φ , S∞φ , Nφ). The
latter notation is used to indicate that the Łukasiewicz t-norm belongs to the Frank
t-norm family (T s)s∈[0,∞] (which is also a family of copulas) and corresponds to
the parameter value s = ∞ (note that the minimum operator and the algebraic
product correspond to the parameter values s = 0 and s = 1, respectively). More-
over, in that case, the completeness conditions coφ (P ∪∞φ I ) = Pt ∪∞φ J and
coφ (P ∪∞φ Pt ) = I ∪∞φ J become equivalent and turn out to be stronger than

the other completeness conditions, with P ∪∞φ Pt ∪∞φ I ∪∞φ J = A2 as weakest
condition [12]. Restricting to the strongest completeness condition(s), we then
obtain the following definition. Given a [0, 1]-automorphism φ, a φ-FPS (P, I, J )
on A is a triplet of binary fuzzy relations in A satisfying:

(F1) P is irreflexive, I is reflexive and J is irreflexive;
(F2) P is T∞φ -asymmetrical (i.e. P ∩∞φ Pt = ∅), I and J are symmetrical;
(F3) P ∩∞φ I = ∅, P ∩∞φ J = ∅ and I ∩∞φ J = ∅;
(F4) coφ (P ∪∞φ I ) = Pt ∪∞φ J .

Moreover, a minimal formulation of this definition, similar to the classical one, ex-
ists: a triplet (P, I, J ) of binary fuzzy relations in A is a φ-FPS on A if and only if
I is reflexive and symmetrical, and for any (a, b) ∈ A2:

φ(P(a, b))+ φ(Pt (a, b))+ φ(I (a, b))+ φ(J (a, b)) = 1.

In view of the above equality, fuzzy preference structures are also called additive
fuzzy preference structures.

4 Axiomatic Constructions

Again choosing a continuous de Morgan triplet (T, S, N), we could transport the
classical construction formalism to the fuzzy case and define, given a reflexive bi-
nary fuzzy relation R in A:

(P, I, J ) = (R ∩T coN Rt , R ∩T Rt , coN R ∩T coN Rt ).

At the same time, we want to keep R as the fuzzy large preference relation of the
triplet (P, I, J ), i.e. R = P ∪S I and coN R = Pt ∪S J . Fodor and Roubens
observed that the latter is not possible in general, and proposed four axioms for
defining fuzzy strict preference, indifference and incomparability relations [5, 6].
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According to the first axiom, the independence of irrelevant alternatives, there ex-
ist three [0, 1]2 → [0, 1] mappings p, i , j such that P(a, b) = p(R(a, b), R(b, a)),
I (a, b) = i(R(a, b), R(b, a)) and J (a, b) = j (R(a, b), R(b, a)). The second and
third axiom state that the mappings p(x, N(y)), i(x, y) and j (N(x), N(y)) are in-
creasing in both x and y, and that i and j are symmetrical. The fourth and main
axiom requires that P ∪S I = R and Pt ∪S J = coN R, or explicitly, for any
(x, y) ∈ [0, 1]2:

S(p(x, y), i(x, y))= x

S(p(x, y), j (x, y))= N(y).

The latter axiom implies that coN (P ∪S I ) = Pt ∪S J , i.e. the first completeness
condition.

Theorem 1. [5, 6] If (T, S, N) and (p, i, j) satisfy the above axioms, then there
exists a [0, 1]-automorphism φ such that

(T, S, N) = (T∞φ , S∞φ , Nφ)

and, for any (x, y) ∈ [0, 1]2:

T∞φ (x, Nφ(y)) ≤ p(x, y) ≤ T 0(x, Nφ(y))

T∞φ (x, y) ≤ i(x, y) ≤ T 0(x, y)

T∞φ (Nφ(x), Nφ(y)) ≤ j (x, y) ≤ T 0(Nφ(x), Nφ(y)).

Moreover, for any reflexive binary fuzzy relation R in A, the triplet (P, I, J ) of
binary fuzzy relations in A defined by

P(a, b) = p(R(a, b), R(b, a))

I (a, b) = i(R(a, b), R(b, a))

J (a, b) = j (R(a, b), R(b, a))

is a φ-FPS on A such that R = P ∪∞φ I and coφ R = Pt ∪∞φ J .

Although in general the function i is of two variables, and there is no need to
extend it for more than two arguments, it might be a t-norm. The following theorem
states that the only construction methods of the above type based on continuous
t-norms are the ones using two Frank t-norms with reciprocal parameters.

Theorem 2. [5, 6] Consider a [0, 1]-automorphism φ and two continuous t-norms
T1 and T2. Define p and i by p(x, y) = T1(x, Nφ(y)) and i(x, y) = T2(x, y).
Then (p, i, j) satisfies the above axioms if and only if there exists a parameter s ∈
[0,∞] such that T1 = T 1/s

φ and T2 = T s
φ . In this case, we have that j (x, y) =

i(Nφ(x), Nφ(y)).

Summarizing, we have that for any reflexive binary fuzzy relation R in A the
triplets
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(Ps , Is , Js) := (R ∩
1
s
φ coφRt , R ∩s

φ Rt , coφ R ∩s
φ coφ Rt ),

with s ∈ [0,∞], are the only t-norm-based constructions of fuzzy preference struc-
tures that satisfy R = P ∪∞φ I and coφ R = Pt ∪∞φ J . Consequently, R is again
called the large preference relation. Note that

φ(R(a, b)) = φ(P(a, b))+ φ(I (a, b)).

In fact, in [6] it was only shown that ordinal sums of Frank t-norms should be used.
For the sake of simplicity, only the ordinally irreducible ones were considered. How-
ever, we can prove that this is the only option.

Finally, we deal with the reconstruction of a φ-FPS from its large preference
relation. As expected, an additional condition is required. A φ-FPS (P, I, J ) on A
is called:

(i) an (s, φ)-FPS, with s ∈ {0, 1,∞}, if P ∩s
φ Pt = I ∩

1
s
φ J ;

(ii) an (s, φ)-FPS, with s ∈ ]0, 1[∪ ]1,∞[, if

sφ(P∩s
φ Pt ) + s−φ(I∩

1/s
φ J ) = 2.

One can verify that the triplet (Ps , Is , Js) constructed above is an (s, φ)-FPS.
Moreover, any (s, φ)-FPS can be reconstructed from its large preference rela-
tion by means of the corresponding construction. The characterizing condition
of a (0, φ)-FPS, resp. (∞, φ)-FPS, can also be written as P ∩0 Pt = ∅, i.e.
min(P(a, b), P(b, a)) = 0 for any (a, b), resp. I ∩0 J = ∅, i.e. min(I (a, b),
J (a, b)) = 0 for any (a, b).

5 Local Characteristic Behaviour and Non-monotonicity

An important question now arises: to what extent is the class of φ-FPS covered by
the classes of (s, φ)-FPS, s ∈ [0,∞]? We will show next that this covering is, at
least locally, total. To that end, we need some additional propositions.

Proposition 1. [2] Consider (a, b, c, d) ∈ [0, 1]4 such that a+b+ c+d = 1 and
s ∈ ]0, 1[∪ ]1,∞[, then it holds that

sT s (a,b) + s−T 1/s (c,d) = 2

if and only if

sa + sb + s = s1−c + s1−d + 1.
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Proposition 2. [2] Consider (a, b, c, d) ∈ [0, 1]4 such that a + b + c + d = 1.
Let u = a + c and v = b + c, then it holds that

(a, b, c, d) = (T 1/s(u, 1− v), T 1/s(1− u, v), T s(u, v), T s(1− u, 1 − v)),

where

(i) s = 0 if min(a, b) = 0;
(ii) s = ∞ if min(c, d) = 0;

(iii) s = 1 if ab = cd;
(iv) s is the unique solution in ]0, 1[∪ ]1,∞[ of the equation

sa + sb + s = s1−c + s1−d + 1

if none of the above holds.

The fact that under the given conditions the latter equation has a unique solution is
shown in [2]. Note that the first three cases in the foregoing theorem are not mutu-
ally exclusive. We now obtain the following conclusive characterization of additive
fuzzy preference structures.

Theorem 3. [1] Consider a [0, 1]-automorphismφ and a φ-FPS (P, I, J ) on A. For
any two alternatives a and b in A there exists sa,b ∈ [0,∞] such that the restriction
of (P, I, J ) to {a, b}2 is an (sa,b, φ)-FPS on {a, b}.

Hence, to any φ-FPS on A corresponds a (not necessarily unique) symmetrical
matrix of Frank parameters. This theorem also has strong implications on the system
of functional equations corresponding to the axioms of Fodor and Roubens. Indeed,
the most general solution for i , for instance, is given by i(x, y) = T s(x,y)

φ (x, y),

where s is a symmetrical [0, 1]2 → [0,∞] mapping assuring that i is increasing.
This is, for instance, the case when s is decreasing.

There is, however, no reason why the mapping i should be increasing. Consider
the set of alternatives A = {a, b, c, d} such that

(i) P(a, b) = P(b, a) = 0.4, I (a, b) = 0.2 and J (a, b) = 0;
(ii) P(c, d) = P(d, c) = 0.2, I (c, d) = 0.3 and J (c, d) = 0.3.

The first case implies that i(0.6, 0.6) = 0.2, while the second case implies that
i(0.5, 0.5) = 0.3. Clearly, the mapping i generating the fuzzy indifference relation
cannot be increasing.

6 Generator Triplets

The above observations have motivated us to reconsider the construction of additive
fuzzy preference structures, not by rephrasing the conclusions resulting from an
axiomatic study, but by starting from the minimal definition of an additive fuzzy
preference structure. For the sake of brevity, we consider the case φ(x) = x .
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Definition 4. A triplet (p, i, j) of [0, 1]2 → [0, 1] mappings is called a generator
triplet compatible with a continuous t-conorm S and a strong negator N if and only
if for any reflexive binary fuzzy relation R on a set of alternatives A it holds that the
triplet (P, I, J ) of binary fuzzy relations on A defined by:

P(a, b) = p(R(a, b), R(b, a))

I (a, b) = i(R(a, b), R(b, a))

J (a, b) = j (R(a, b), R(b, a))

is a FPS on A such that P ∪S I = R and Pt ∪S J = coN R.

The above conditions P ∪S I = R and Pt ∪S J = coN R require the recon-
structability of the fuzzy large preference relation R from the fuzzy preference
structure it generates. The following theorem expresses that for that purpose only
nilpotent t-conorms can be used.

Theorem 4. If (p, i, j) is a generator triplet compatible with a continuous t-conorm
S and a strong negator N = Nφ , then S = S∞ψ , i.e. S is nilpotent.

Let us again consider the case ψ(x) = x . The above theorem implies that we
can omit the specification ‘compatible with a continuous t-conorm S and strong
negation N’ and simply talk about generator triplets. The minimal definition of a
fuzzy preference structure then immediately leads to the following proposition.

Proposition 3. A triplet (p, i, j) is a generator triplet if and only if, for any (x, y) ∈
[0, 1]2:

(i) i(1, 1) = 1;
(ii) i(x, y) = i(y, x);

(iii) p(x, y)+ p(y, x)+ i(x, y)+ j (x, y) = 1;
(iv) p(x, y)+ i(x, y) = x .

From this proposition it follows that a generator triplet is uniquely determined
by, for instance, the generator i . Indeed, for any generator triplet (p, i, j) it holds
that

p(x, y) = x − i(x, y)

j (x, y) = i(x, y)− (x + y − 1).

The fact that p and j take values in [0, 1] implies that T∞ ≤ i ≤ T 0. Moreover,
from any symmetrical i such that T∞ ≤ i ≤ T 0 a generator triplet can be built. It is
therefore not surprising that additional properties of generator triplets (p, i, j) are
completely determined by additional properties of i . In fact, in practice it would
be sufficient to talk about a single generator i . We could simply talk about the
generator of the FPS. Note that the symmetry of i implies the symmetry of j .

Firstly, we try to characterize generator triplets fitting into the axiomatic frame-
work of Fodor and Roubens.
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Definition 5. A generator triplet (p, i, j) is called monotone if:

(i) p is increasing in the first and decreasing in the second argument;
(ii) i is increasing in both arguments;

(iii) j is decreasing in both arguments.

Inspired by a recent paper [9], we can show that monotone generator triplets are
characterized by a 1-Lipschitz indifference generator, i.e. by a commutative quasi-
copula.

Theorem 5. A generator triplet (p, i, j) is monotone if and only if i is a commuta-
tive quasi-copula.

The following theorem shows that when i is a symmetrical ordinal sum of Frank
t-norms, j (1− x, 1− y) is also a t-norm, and p(x, 1− y) is symmetrical. Note that
by symmetrical ordinal sum we mean the following: if (a, b, T ) is a summand, then
also (1− b, 1− a, T ) is a summand.

The associativity of p(x, 1 − y), however, can only be guaranteed in case of an
ordinally irreducible i , i.e. a Frank t-norm.

Theorem 6. Consider a generator triplet (p, i, j) such that i is a t-norm, then the
following statements are equivalent:

(i) the mapping j (1− x, 1− y) is a t-norm;
(ii) the mapping p(x, 1− y) is symmetrical;

(iii) i is a symmetrical ordinal sum of Frank t-norms.

Theorem 7. Consider a generator triplet (p, i, j) such that i is a t-norm, then the
following statements are equivalent:

(i) the mapping p(x, 1− y) is a t-norm;
(ii) i is a Frank t-norm.

In the latter case, i.e. when i is a Frank t-norm, say i = T s , s ∈ [0,∞], it holds
that

p(x, y) = T 1/s(x, 1− y)

j (x, y) = T s(1− x, 1− y).

This result closes the loop, and brings us back to the conclusions drawn from the
axiomatic study of Fodor and Roubens expressed in Theorem 2.
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7 Conclusion

We have reconsidered the construction of additive fuzzy preference structures. Gen-
erator triplets facilitate the construction of an additive fuzzy preference structure
from a fuzzy large preference relation. A generator triplet is uniquely determined
by its indifference generator. Specific indifference generators allow to characterize
particular generator triplets, such as monotone triplets and t-norm triplets. However,
not all additive fuzzy preference structures can be obtained by applying some mono-
tone triplet to a large preference relation. This raises a number of questions: (i) As
the notion of a large preference relation cannot be stated more generally, should
we restrict the class of additive fuzzy preference structures? (ii) Should we devise
algorithms to approximate a given additive fuzzy preference structure by a mono-
tonically generated one? (iii) Or more philosophically, is indifference (similarity)
really a monotone function of the large preference?
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9. A. Kolesárová and J. Mordelová, 1-Lipschitz and kernel aggregation operators, Proc. Inter-

nat. Summer School on Aggregation Operators and their Applications (Oviedo, Spain), 2001,
pp. 71–75.

10. R. Nelsen, An Introduction to Copulas, Lecture Notes in Statistics, Vol. 139, Springer-Verlag,
New York, 1998.

11. M. Roubens and Ph. Vincke, Preference modeling, Lecture Notes in Economics and Mathe-
matical Systems 250, Springer-Verlag, Berlin, 1985.

12. B. Van de Walle, B. De Baets and E. Kerre, Characterizable fuzzy preference structures,
Annals of Operations Research, Special Issue “Preference modelling” (D. Bouyssou and
Ph. Vincke, eds.), 80 (1998), 105–136.

13. L. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338–353.



Preferences and Consistency Issues
in Group Decision Making

Francisco Chiclana, Enrique Herrera-Viedma, Sergio Alonso
and Ricardo Alberto Marques Pereira

Abstract A group selection of one alternative from a set of feasible ones should be
based on the preferences of individuals in the group. Decision making procedures
are usually based on pair comparisons, in the sense that processes are linked to some
degree of credibility of preference. The main advantage of pairwise comparison is
that of focusing exclusively on two alternatives at a time and on how they are re-
lated. However, it generates more information that needed and therefore inconsistent
information may be generated. This paper addresses both preference representation
and consistency of preferences issues in group decision making.

Different preference representation formats individuals can use to model or
present their preferences on a set of alternatives in a group decision making situ-
ation are reviewed. The results regarding the relationships between these preference
representation formats mean that the fuzzy preference relation “is preferred to” rep-
resenting the strength of preference of one alternative over another in the scale [0, 1]
can be used as the base element to integrate these different preference representation
formats in group decision making situations.

Due to the complexity of most decision making problems, individuals’ prefer-
ences may not satisfy formal properties that fuzzy preference relations are required
to verify. Consistency is one of them, and it is associated with the transitivity prop-
erty. Many properties have been suggested to model transitivity of fuzzy preference
relations. As aforementioned, this paper provides an overview of the main results
published in this area.

1 Introduction

Group Decision-Making (GDM) consists of multiple individuals interacting to reach
a decision. Each decision maker (expert) may have unique motivations or goals
and may approach the decision process from a different angle, but have a common
interest in reaching eventual agreement on selecting the ‘best’ option(s) [11, 32].

Decisions depend, at least in part, on preferences [14]. Indeed, the following
quotation from Fishburn [13] fully justifies the above in the context of GDM:

H. Bustince et al., (eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation
and Models. C© Springer 2008 219
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DEMOCRATIC THEORY is based on the premise that the resolution of a matter of social policy,
group choice or collective action should be based on the desires or preferences of the indi-
viduals in the society, group or collective

In order to reach a decision, experts have to express their preferences by means
of a set of evaluations over a set of alternatives. It has been common practice in
research to model GDM problems in which all the experts express their preferences
using the same preference representation format. However, in real practice this is not
always possible because each expert has his/her unique characteristics with regard
to knowledge, skills, experience and personality, which implies that different ex-
perts may express their evaluations by means of different preference representation
formats. In fact, this is an issue that recently has attracted the attention of many re-
searchers in the area of GDM, and as a result different approaches to integrating dif-
ferent preference representation formats have been proposed [5, 6, 7, 12, 15, 49, 50].

In many situations decision processes are based on preference relations, in the
sense that processes are linked to some degree of preference of any alternative over
another. The main advantage of pairwise comparison is that of focusing exclusively
on two alternatives at a time and on how they are related. However, it generates more
information that needed and therefore inconsistent information may be generated.

This paper addresses both preference representation formats and the consistency
of preferences issues in group decision making. A review of the main results on
integration of preference representation structures will be given in Sect. 2, while
the problem of consistency when working with fuzzy preference relations will be
reviewed in Sect. 3. In Sect. 4 we make note the existence of a conflict between the
definition of a consistent multiplicative preference relation and the scale proposed to
provide a such preference relation. Obviously, the same problem exists when dealing
with fuzzy preference relations. In order to overcome this problem, In Sect. 5 we
propose a set of conditions to be verified by a function in order to model consistency
of fuzzy preferences. Finally, in Sect. 6 we draw our conclusions.

2 Preference Representation Formats: Integration

Experts may provide preferences on a set of alternatives, X = {x1, x2, . . . , xn}
(n ≥ 2), by using many different representation formats. Among these formats we
have:

A preference ordering of the alternatives

In this case, an expert, ek , gives his preferences on X as an individual preference
ordering, Ok = {ok(1), ..., ok(n)}, where ok(·) is a permutation function over the
index set, {1, ..., n}, for the expert, ek, [5, 42]. Therefore, according to this point of
view , an ordered vector of alternatives, from best to worst, is given.
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A utility function

In this case, an expert, ek , gives his preferences on X as a set of n utility values,
Uk = {uk

i , i = 1, ..., n}, uk
i ∈ [0, 1], where uk

i represents the utility evaluation
given by the expert ek to the alternative xi [30, 47].

A preference relation

In the classical preference modelling, given two alternatives, an expert judges them
in one of the following ways: (i) one alternative is preferred to another; (ii) the two
alternatives are indifferent to him/her; (iii) he/she is unable to compare them.

According to these cases, three binary relations can be defined: (i) the strict
preference relation P: (x, y) ∈ P if and only if the expert prefers x to y; (ii) the
indifference relation I : (x, y) ∈ I if and only if the expert is indifferent between
x and y; (iii) the incomparability relation J : (x, y) ∈ J if and only if the expert
unable to compare x and y.

Fishburn in [14] defines indifference as the absence of strict preference. He
also points out that indifference might arise in three different ways: (a) when an
expert truly feels that there is no real difference, in a preference sense, between
the alternatives; (b) when the expert is uncertain as to his/her preference between
the alternatives because ‘he might find their comparison difficult and may decline
to commit himself[/herself] to a strict preference judgement while not being sure
that he[/she] regards [them] equally desirable (or undesirable)’; (c) or when both
alternative are considered incomparable on a preference basis by the expert. It is
obvious from the third case that Fishburn treats the incomparability relation as an
indifference relation, i.e., J is empty (there is no incomparability).

A preference structure on a set of alternatives X is defined as a triplet (P, I, J )
of binary relation in X that satisfy [38, 39]:

1. P is irreflexive and asymmetrical
2. I is reflexive and symmetrical
3. J is irreflexive and symmetrical
4. P ∩ I = P ∩ J = I ∩ J = ∅
5. P ∪ Pt ∪ I ∪ J = A2

where Pt is the transpose (or inverse) of P: (x, y) ∈ P ⇔ (y, x) ∈ Pt . Condition
5 is called the completeness condition.

In [38] it is proved that a preference structure (P, I, J ) on a se of alternatives X
can be characterised by the single reflexive relation R = P ∪ I : (x, y) ∈ R if and
only if “x is as good as y”. R is called the large preference relation of (P, I, J ). Con-
versely, given any reflexive binary relation R in X , a preference structure (P, I, J )
can be constructed on it as follows: P = R ∩ (Rt )c, I = R ∩ Rt , J = Rc ∩ (Rt )c,

where Rc is the complement of R: (x, y) ∈ R ⇔ (y, x) /∈ Rc.
When using numerical representations of preferences on a set of alternatives X ,

we have [13]:
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ri j = 1 ⇔ the expert prefers xi to x j ⇔ xi 1 x j

ri j = 0 ⇔ the expert prefers x j to xi ⇔ x j 1 xi

Clearly, this can be extended by adding the indifference case:

ri j = 0.5 ⇔ the expert is indifferent between xi and x j ⇔ xi ∼ x j

However, if xi is preferred to x j and x j to xk , the question whether the “degree or
strength of preference” of xi over x j exceeds, equals, or is less than the “degree or
strength of preference” of x j over xk cannot be answered by the classical preference
modelling. The implementation of the degree of preference between alternatives
may be essential in many situations. Take for example the case of 3 alternatives
{x, y, z} and 2 experts. If one of the experts prefers x to y to z, and the other prefers
z to y to x then using the above values it may be difficult or impossible to decide
which alternative is the best. This may be not the case if intensities of preferences
are allowed in the above model. As Fishburn points out in [13], if alternative y is
closer to the best alternative than to the worst one for both experts then it might seem
appropriate to “elect” it as the social choice, while if it is closer to the worst than to
the best, then it might be excluded from the choice set. Intensity of preferences can
be implemented when modelling preferences by using fuzzy preference relations
[51] or multiplicative preference relations [40].

A fuzzy preference relation R on a set of alternatives X is a fuzzy set on the product
set X × X , that is characterized by a membership function

μR : X × X −→ [0, 1].

When cardinality of X is small, the preference relation may be conveniently repre-
sented by the n × n matrix R = (ri j ) being ri j = μR(xi , x j ) ∀i, j ∈ {1, . . . , n}.
The element ri j ∈ R is usually interpreted as the preference degree of the alternative
xi over x j , as follows [46]: ri j = 1/2 indicates indifference between xi and x j

(xi ∼ x j ), ri j > 1/2 represents an uncertain preference of xi over x j (xi 1 x j ) with
ri j = 1 when xi is definitely (certainly) preferred to x j . In this case, the preference
matrix, R, is usually assumed additive reciprocal, i.e.,

ri j + r j i = 1 ∀i, j ∈ {1, . . . , n}.

A multiplicative preference relation A on a set of alternatives X is represented by
a matrix A ⊂ X x X, A = (ai j ), being ai j interpreted as the ratio of the preference
intensity of alternative xi to that of x j , i.e., it is interpreted as xi is ai j times as
good as x j . Saaty suggests measuring ai j using a ratio-scale, and precisely the 1
to 9 scale: ai j = 1 indicates indifference between xi and x j , ai j = 9 indicates
that xi is absolutely preferred to x j , and ai j ∈ {1, . . . , 9} indicates intermediate
preference evaluations. In this case, the preference relation, A, is usually assumed
multiplicative reciprocal, i.e.,
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ai j · a j i = 1 ∀i, j ∈ {1, . . . , n}.

In the context of GDM with heterogeneous information, an interesting question
to answer is that of the relationship between the different preference representation
formats.

Preference Orderings and Utility Functions→ Binary Preference Relations

Clearly, from a preference ordering on X we can derive a binary preference relation

xi 2 x j ⇔ o(i) ≤ o( j) ∀i, j = 1, . . . , n,

Also, given an utility function on X, a preference ordering, and consequently a
classical preference relation, can easily be derived as follows

o(i) ≤ o( j)⇔ u(xi) ≥ u(x j ) ∀i, j = 1, . . . , n,

Binary Preference Relations→ Preference Orderings and Utility Functions

Given a binary preference relation, it is not always possible to assure the existence of
a unique preference ordering or an utility function verifying the above equivalence.
In order to get a positive answer additional conditions have to be imposed to the
preference relation.

Given the binary preference relation is preferred to (1) on a countable set X,with
is indifferent to (∼) defined as x ∼ y if neither x 1 y nor y 1 x , a fundamental
result is that there exists an utility function u : X → R such that

x 1 y ⇔ u(x) > u(y)

if and only if 1 on X is a weak order, i.e., it is transitive (x 1 y ∧ y 1 z ⇒ x 1 z),
irreflexive (we never have x 1 x) and∼ is transitive (x ∼ y∧ y ∼ z ⇒ x ∼ z) [15].
The utility function u is said to represent the preference relation 1 . Obviously, in
this case, any (positive) monotonic transformation of the utility function u is also a
utility function representing the same preference relation because such a transfor-
mation preserves the ranking order of the original utility numbers. So, if we begin
with the utility function u and then use the (positive) monotonic transformation f
to get a new function v defined as v(x) = f (u(x)), then v is also a utility function
representing the same preference relation as u.

Fuzzy Preference Relations→ Preference Orderings and Utility Functions

Given a fuzzy preference relation on a finite set of alternatives X , not necessarily
reciprocal, Wang proved in [48] that if the following acyclic property was verified

∀i1, i2, . . . , im ∈ {1, 2, . . . , n} :
ri1 i2 > ri2 i1 , ri2 i3 > ri3 i2 , . . . , rim im−1 > rim−1 im ⇒ ri1 im > rim i1
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then a total order can be produced in X , i.e, given any two arbitrary alternatives
xi and x j in X , one of the following relations holds: xi 1 x j , x j 1 xi , xi ∼ x j .

A similar result was obtained in [2] when the fuzzy preference relation is reciprocal
and is weakly transitive (ri j > 0.5 ∧ r jk > 0.5 ⇒ rik > 0.5).

With fuzzy preference relations, Orlovsky [26] proposed a rational criterion to
produce a total order on X based on the strict preference relation Rs = (r s

i j ) with
r s

i j = max{ri j−r j i , 0} and the concept of non-dominance. Conditions that guarantee
the existence of un-fuzzy non-dominated alternatives were obtained by Montero and
Tejada (see [35, 36]) and by Kołodziejczyk [29]. A quantifier non-dominance degree
that extended Orlovsky’s non-dominance degree was proposed by Chiclana et al.
in [4].

Preference Orderings and Utility Functions→ Fuzzy Preference Relations

In [5, 6, 22] the following results were obtained:

Proposition 1. Let X be a set of alternatives and λk
i represents an evaluation asso-

ciated to alternative xi , indicating the performance of that alternative according to
a point of view (expert or criteria) ek . Then, the intensity of preference of alternative
xi over alternative x j , r k

i j , for ek is given by the following transformation function

rk
i j = ϕ(λk

i , λ
k
j ) =

1

2
· [1+ ψ(λk

i , λ
k
j )− ψ(λk

j , λ
k
i )],

where ψ is a function verifying

1. ψ(z, z) = 1
2 , ∀z ∈ R.

2. ψ is non decreasing in the first argument and non increasing in the second ar-
gument.

Utility Values and Fuzzy Preference Relations

Corollary 1. If λk
i = uk

i and

ψ(z, y) =

⎧

⎪

⎨

⎪

⎩

s(z)

s(z)+ s(y)
if (z, y) �= (0, 0)

1

2
if (z, y) = (0, 0)

where s : [0, 1] :→ R
+ is a non decreasing and continuous function, verifying

s(0) = 0, then ϕ transforms utility values given on the basis of a ratio scale into

fuzzy preference relations. In particular, if ψ(x, y) = x2

x2+y2 , then

rk
i j = f 1

(

uk
i , uk

j

)

=
(

uk
i

)2

(

uk
i

)2 +
(

uk
j

)2
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Preference Orderings and Fuzzy Preference Relations

Corollary 2. If λk
i = ok(i), and ψ(λk

i , λ
k
j ) = F(λk

j − λk
i ), where F is any non

decreasing function, then ϕ transforms preference orderings into fuzzy preference
relations.

In particular, if ψ(x, y) = y−x
2(n−1) , then

rk
i j = f 2

(

ok
i , ok

j

)

= 1

2

(

1+
ok

j − ok
i

n − 1

)

Multiplicative Preference Relations and Fuzzy Preference Relations

Proposition 2. Let X be a set of alternatives, and associated with it a multiplicative

preference relation Ak =
(

ak
i j

)

. Then, the corresponding additive fuzzy preference

relation, Rk =
(

rk
i j

)

, associated with Ak is given as follows:

rk
i j = g

(

ak
i j

)

= 1

2

(

1+ log9 ak
i j

)

These results may justify the choice of fuzzy preference relations as the base ele-
ment to integrate these different preference representation formats in GDM context.
In the following section we deal with issue of consistency of preferences.

3 Consistency of Preferences

There are three fundamental and hierarchical levels of rationality assumptions when
dealing with preference relations [18]:

• The first level of rationality requires indifference between any alternative and
itself.

• The second one assumes the property of reciprocity in the pairwise comparison
between any two alternatives.

• Finally, the third one is associated with the transitivity in the pairwise comparison
among any three alternatives.

The mathematical modelling of all these rationality assumptions obviously de-
pends on the scales used for providing the preference values [9, 16, 26, 40, 46].

A preference relation verifying the third level of rationality is usually called a
consistent preference relation and any property that guarantees the transitivity of
the preferences is called a consistency property. The lack of consistency in decision
making can lead to inconsistent conclusions; that is why it is important, in fact
crucial, to study conditions under which consistency is satisfied [16, 26, 40].
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In a crisp context, where an expert provides his/her opinion on the set of alter-
natives X by means of a binary preference relation, R, the concept of consistency
it has traditionally been defined in terms of acyclicity [43], that is the absence of
sequences such as x1, x2, . . . , xk(xk+1 = x1) with x j Rx j+1∀ j = 1, . . . , k. Clearly,
this condition as said before is closely related to the transitivity of the binary relation
and its corresponding binary indifference relation.

In a fuzzy context, where an expert expresses his/her opinions using fuzzy pref-
erence relations, R, or multiplicative preference relations, in the case of Saaty’s
method, A, the traditional requirement to characterise consistency has followed the
way of extending the classical requirements of binary preference relations. Thus, in
these cases consistency is also based on the notion of transitivity, in the sense that
if alternative xi is preferred to alternative x j and this one to xk then alternative xi

should be preferred to xk . The main difference in these cases with respect to the
classical one is that transitivity has been modelled in many different ways due to the
role the intensities of preference have [16, 19, 20, 21, 26, 40, 46, 52].

Due to the hierarchical structure of the three rationality assumptions for a prefer-
ence relation, the verification of a particular level of rationality should be a necessary
condition in order to verify the next level of rationality. This means that the third
level of rationality, transitivity of preferences, should imply or be compatible with
the second level of rationality, reciprocity of preferences, and the second level with
the first one, indifference of any alternative with itself.

This necessary compatibility between the rationality assumptions can be used as
a criterion for considering a particular condition modelling any one of the rationality
levels as adequate or inadequate. In the case of fuzzy (multiplicative) preference
relations, the indifference between any alternative, xi , and itself is modelled by
associating the preference value rii = 0.5 (aii = 1). The reciprocity of fuzzy
(multiplicative) preferences is modelled using the property ri j + r j i = 1, ∀i, j
(ai j · a j i = 1, ∀i, j ). A necessary condition for a preference relation to verify reci-
procity should be that indifference between any alternative and itself holds. Because
reciprocity property implies the indifference of preferences, we conclude that both
properties are compatible.

In the case of multiplicative preference relations Saaty means by consistency
what he calls cardinal transitivity in the strength of preferences, which is a stronger
condition than the traditional requirement of the transitivity of preferences [40]:

Definition 1. A reciprocal multiplicative preference relation A = (ai j ) is consistent
if ai j · a jk = aik ∀i, j, k = 1, . . . , n.

Inconsistency for Saaty is a violation of proportionality which may not entail
violation of transitivity [40]. Furthermore, consistency implies reciprocity, and
therefore, they are both compatible.

In [40] Saaty shows that a reciprocal multiplicative preference relation is consis-
tent if and only if its maximum or principal eigenvalue λmax is equal to the number
of alternatives n. Under this consistency property, Saaty proves that there exists a
set of priorities (utilities) {λ1, λ2, . . . , λn} such that ai j = λi

λ j
. Moreover, this set of

values is unique up to positive linear transformation f (λi ) = β · λi with β > 0.
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Thus, if a multiplicative preference relation is consistent then it can be represented
by a unique (up to positive linear transformations) utility function.

For fuzzy preference relations, there exist many properties or conditions that have
been suggested as rational conditions to be verified by a consistent relation. Among
these, we can citethe following:

1. Triangle condition [30]: ri j + r jk ≥ rik ∀i, j, k.
This condition can be geometrically interpreted considering alternatives xi , x j ,

xk as the vertices of a triangle with length sides ri j , r jk and rik [30], and there-
fore the length corresponding to the vertices xi , xk should not exceed the sum of
the lengths corresponding to the vertices xi , x j and x j , xk .

2. Weak transitivity [46]: ri j ≥ 0.5, r jk ≥ 0.5 ⇒ rik ≥ 0.5 ∀i, j, k.
The interpretation of this condition is the following: If xi is preferred to x j and
x j is preferred to xk , then xi should be preferred to xk . This kind of transitivity
is the usual transitivity condition (xi is preferred to alternative x j and this one to
xk then alternative xi should be preferred to xk) a logical and consistent person
should use if he/she does not want to express inconsistent opinions, and there-
fore it is the minimum requirement condition that a consistent fuzzy preference
relation should verify.

3. Max-min transitivity [9, 52]: rik ≥ min(ri j , r jk) ∀i, j, k.
The idea represented here is that the preference value obtained by a direct com-
parison between two alternatives should be equal to or greater than the minimum
partial values obtained when comparing both alternatives with an intermediate
one. This kind of transitivity has been the traditional requirement to characterise
consistency in the case of fuzzy preference relations [52], although it is a very
strong concept that it could not be verified even when a fuzzy preference relation
is considered perfectly consistent from a practical point of view. For example, let
us consider a set of three alternatives X = {x1, x2, x3}, such that x1 ≺ x2 ≺ x3.
Suppose that the opinions about these alternatives are given by the following
fuzzy preference relation

R =
⎛

⎝

0.5 0.1 0
0.9 0.5 0.4
1 0.6 0.5

⎞

⎠ .

On the one hand, this matrix reflects the fact that x1 ≺ x2 ≺ x3; it verifies weak
transitivity and the triangle condition. On the other hand, it does not verifies
max-min transitivity because r13 < min{r12, r23}.

4. Max-max transitivity [9, 52]: rik ≥ max(ri j , r jk) ∀i, j, k.
This concept represents the idea that the preference value obtained by a direct
comparison between two alternatives should be equal to or greater than the max-
imum partial values obtained when comparing both alternatives using an inter-
mediate one. This is a stronger concept than max-min transitivity and therefore
if a fuzzy preference relation does not verify the latter neither verifies the former.

5. Restricted max-min transitivity [46]: ri j ≥ 0.5, r jk ≥ 0.5 ⇒ rik ≥ min(ri j , r jk)

∀i, j, k.
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When a fuzzy preference relation verifies this condition it is modelled the con-
cept that when an alternative xi is preferred to x j with a value pi j and x j is
preferred to xk with a value ri j , then xi should be preferred to xk with at least
an intensity of preference rik equal to the minimum of the above values. The
inequality should becomes equality only when there exist indifference between
at least two of the three alternatives. A consistent fuzzy preference relation has
to verify this condition, which goes a step further than weak transitivity because
add an extra requirement about the degrees of preferences involved. This transi-
tivity condition is therefore stronger than weak transitivity but it is milder than
max-min transitivity. It is easy to prove that the above fuzzy preference relation
R verifies restricted max-min transitivity.

6. Restricted max-max transitivity [46]: ri j ≥ 0.5, r jk ≥ 0.5 ⇒ rik ≥ max(ri j , r jk)

∀i, j, k.
In this case it is modelled the concept that when an alternative xi is preferred to
x j with a value ri j and x j is preferred to xk with a value ri j , then xi should be
preferred to xk with at least an intensity of preference rik equal to the maximum
of the above values. As in the previous case, the the equality should hold only
when there exist indifference between at least two of the three alternatives, in
which case, restricted max-max transitivity and restricted max-min transitivity
coincide. It is clear that this concept is, on the one hand, stronger than restricted
max-min transitivity and, on the other hand, milder than max-max transitivity.
This concept has been considered by Tanino [46] as a compulsory condition to
be verified by a consistent fuzzy preference relation. It is easy to prove that the
fuzzy reciprocal preference relation R, given above, verifies restricted max-max
transitivity.

7. Multiplicative transitivity [46]:
r j i
ri j
· rkj

r jk
= rki

rik
∀i, j, k.

Tanino in [46] introduced this concept of transitivity only in the case of being
ri j > 0 ∀i, j , and interpreting ri j /r j i as a ratio of the preference intensity for
xi to that of x j , i.e., xi is ri j /r j i times as good as x j . Multiplicative transitivity
includes restricted max-max transitivity [45, 46], and rewritten as ri j · r jk · rki =
rik · rkj · r j i ∀i, j, k. In the case of a reciprocal fuzzy preference relation this
expression can be expressed in the following form:

∀i, j, k :
ri j · r jk · (1− rik ) = rik · rkj · r j i ⇔
ri j · r jk − ri j · r jk · rik = rik · rkj · r j i ⇔
rik · rkj · r j i + ri j · r jk · rik = ri j · r jk ⇔
rik · (rkj · r j i + ri j · r jk) = ri j · r jk ⇔
rik = ri j · r jk

ri j · r jk + r j i · r jk
⇔

rik = ri j · r jk

ri j · r jk + (1− ri j ) · (1− r jk)

This expression is a well known andlike uninorm which is self-dual with re-
spect to the negator operator N(x) = 1 − x (for more details see [17, 28]).
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This type of transitivity has also been studied by De Baets et al. in [8] within
a general framework of transitivity of reciprocal fuzzy preference relations, the
cycle-transitivity, under the name of ‘isostochastic transitivity’. This is also a
symmetric sum in the sense of Silvert [44] that has been applied for information
combination in approximate reasoning (see [10] and cites within it).

8. Additive transitivity [45, 46]: (ri j − 0.5)+ (r jk − 0.5) = (rik − 0.5) ∀i, j, k, or
equivalently ri j + r jk + rki = 3

2 ∀i, j, k.
This kind of transitivity has the following interpretation: suppose we want to
establish a ranking between three alternatives xi , x j and xk , and that the infor-
mation available about these alternatives suggests that we are in an indifference
situation, i.e. xi ∼ x j ∼ xk . When giving preferences this situation would be
represented by ri j = r jk = rik = 0.5. Suppose now that we have a piece of
information that says xi ≺ x j , i.e. ri j < 0.5. This means that r jk or rik have
to change, otherwise there would be a contradiction, because we would have
xi ≺ x j ∼ xk ∼ xi . If we suppose that r jk = 0.5 then we have the situation:
x j is preferred to xi and there is no difference in preferring x j to xk . We must
then conclude that xk has to be preferred to xi . Furthermore, as x j ∼ xk then
ri j = rik , and so (ri j − 0.5)+ (r jk − 0.5) = (ri j − 0.5) = (rik − 0.5). We have
the same conclusion if rik = 0.5. In the case of r jk < 0.5, then we have that xk is
preferred to x j and this to xi , so xk should be preferred to xi . On the other hand,
the value rik has to be equal to or lower than ri j , being equal only in the case
of r jk = 0.5 as we have already shown. Interpreting the value r j i − 0.5 as the
intensity of strict preference of alternative x j over xi , then it seems reasonable to
suppose that the intensity of preference of xi over xk should be equal to the sum
of the intensities of preferences when using an intermediate alternative x j , that
is, rik − 0.5 = (ri j − 0.5)+ (r jk − 0.5). The same reasoning can be applied in
the case of r jk > 0.5 [26, 45, 46]. The fuzzy preference relation R, given above,
verifies additive transitivity.

The following diagram shows all logical relationships between the defined tran-
sitivity conditions. We note that there is no relationship between weak-transitivity
and triangle condition [30],

(7)
⇓

(1)⇐ (8)⇒ (6)⇒ (5)⇒ (2)
⇑ ⇑
(4)⇒ (3)

In the following, we will show that max-max transitivity is not compatible with the
reciprocity property. If a fuzzy preference relation verifies max-max transitivity and
reciprocity then rik ≥ max{ri j , r jk} ∀i, j, k and ri j = 1−r j i} ∀i, j , which implies:

1− rik ≤ 1−max{ri j , r jk} ∀i, j, k ⇒ rki ≤ min{rkj , r j i } ∀i, j, k
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which contradicts max-max transitivity. The same conclusion can be obtained
regarding max-min transitivity. Therefore both properties are not adequate prop-
erties to model the transitivity for fuzzy preference relations.

If we examine the relationship between restricted max-max transitivity and reci-
procity, then we conclude that the fuzzy preference relation also has to verify the
complementary restricted min-min transitivity, that is,

∀i, j, k : min{ri j , r jk} ≤ 0.5 ⇒ rik ≥ min{ri j , r jk}.

However, nor restricted max-max transitivity nor restricted min-min transitivity im-
ply reciprocity. For example, the following fuzzy preference relation

R =
⎛

⎝

0.5 0.6 0.8
0.4 0.5 0.7
0.1 0.3 0.5

⎞

⎠

verifies both restricted transitivity properties but it is not reciprocal. This does not
imply that they are incompatible with the reciprocity property. In fact, a fuzzy pref-
erence relation can be reciprocal and still verify both restricted transitivity proper-
ties, as the one we would have obtained by changing the values r13 for 0.9 or the
value r31 for 0.2.

If we examine the compatibility between the additive consistency property and
reciprocity then we conclude that the first one implies the second one. Firstly, we
show that additive consistency property implies indifference of preferences. Indeed,
when i = j = k additive consistency property reduces to rii + rii + rii = 1.5 ∀i
which implies rii = 0.5 ∀i . Secondly, we show that additive consistency property
implies reciprocity property. If k = i then additive consistency reduces to ri j +r j i+
rii = 1.5 ∀i, j and because we already have that rii = 0.5 ∀i then ri j + r j i = 1
∀i, j .

As shown in [26], additive transitivity for fuzzy preference relations can be seen
as the parallel concept of Saaty’s consistency property for multiplicative preference
relations [41]:

Proposition 3. Let A = (ai j ) be a consistent multiplicative preference relation, then
the corresponding reciprocal fuzzy preference relation, R = g(A) verifies additive
transitivity property.

In such a way, the following definition of a consistent fuzzy preference relation
may be given:

Definition 2. A reciprocal fuzzy preference relation R = (ri j ) is additive consistent
if ri j + r jk + rki = 3

2 ∀ i, j, k = 1, . . . , n.

In [26], Herrera-Viedma et. al. gave a characterisation of the consistency prop-
erty defined by the additive transitivity property of a fuzzy preference relation
Rk = (rk

i j ). Using this characterization method, a procedure was given to construct
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a consistent fuzzy preference relation ˜Rk from a non-consistent fuzzy preference
relation Rk . As in the case of multiplicative preference relations, if a fuzzy prefer-
ence relation is additive transitivity then it can be represented by a unique (up to
positive linear transformations) utility function. Additive transitivity has been used
to obtain more consistent fuzzy preference relation from a given one (see [31]) and
as shown in [1, 24, 25] it is also a valuable concept for incomplete fuzzy preference
relations as it reduces experts’ uncertainty when choosing values to estimate their
unknown ones, which is not the case if other types of transitivity conditions were to
be used.

4 Conflict Between Additive and Multiplicative
Consistency Properties and Scales

There are many reasons that point in the direction of considering additive consis-
tency as an adequate property to model transitivity of fuzzy preferences. However, a
conflict between the additive consistency property and the scale used for providing
the preference values, i.e., the closed interval [0, 1], can appear. To show this, we
will use a simple example.

Let us suppose a set of three alternatives {x1, x2, x3} for which we have the fol-
lowing information: alternative x1 is considerably more important than alternative
x2 and this one is demonstrably or very considerably more important than alter-
native x3. Suppose that these statements are modelled using the following values
r12 = 0.75 and r23 = 9 respectively. If we want to maintain the additive con-
sistency property then we would obtain a negative value r13 = 1.5 − r12 − r23
= −0.15.

This conflict between the additive consistency property and the scale used for
providing preference values suggests that a modification of this property where it
acts incoherently has to be made. Because restricted max-max transitivity is the
minimum condition required for a reciprocal fuzzy preference relation to be con-
sidered consistent, then the modification to introduce in the additive consistency
property should maintain restricted max-max transitivity and, by reciprocity, the
complementary restricted min-min transitivity.

Obviously, the same problem exists when dealing with multiplicative preference
relations.The following simple example will show that there exists a conflict be-
tween the scales used to associate multiplicative preference values to judgements
and the definition of consistency given by Saaty. Let us suppose a set of three alter-
natives {x1, x2, x3} on which an expert provides the following judgements: alterna-
tive x1 is considerably more important than alternative x2 and this one demonstrably
or overwhelming more important than alternative x3. In such a case, using Saaty’s
1–9 scale, we would have the values a12 = 5 and a23 = 7.

On the one hand, if we want to maintain the multiplicative consistency prop-
erty then, according to Saaty [40], we would have to assign the value a13 = a12·
a23 = 35, and the only solution would be using the following consistent reciprocal
multiplicative preference relation
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A =
⎛

⎝

1 5 35
1/3 1 7

1/35 1/5 1

⎞

⎠ .

Therefore, to avoid such a type of conflict we could proceed by choosing a dif-
ferent scale for providing judgements or by modifying the above definition. With
respect to the first question, the use of any other scale of the form [1/a, a], a ∈ R

+,
would not make this conflict disappear, which means that the the only possible solu-
tion to overcome this conflict would consist of using the scale of pairwise compari-
son from 0 to+∞. However, as Saaty points out in [40], this may not be useful at all
because it assumes that the human judgement is capable of comparing the relative
dominance of any two objects, which is not the case.

On the other hand, we note that if a13 ∈ [7, 9] transitivity still holds. We analyze
this fact by means of the measure of consistency proposed by Saaty. In [40] Saaty
shows that a reciprocal multiplicative preference relation is consistent if and only if
its maximum or principal eigenvalue λmax is equal to the number of alternatives n.
However, because perfect consistency is difficult to obtain in practice, especially
when measuring preferences on a set with a large number of alternatives, Saaty
defined a consistency index (C I = λmax−n) that reflects the deviation from consis-
tency of all the ai j of a particular reciprocal multiplicative preference relation from
the estimated ratio of priorities wi/w j .

A measure of inconsistency independent of the order of the reciprocal multiplica-
tive preference relation is defined as the consistency ratio (CR). This is obtained by
taking the ratio of CI to the random index (RI), which is an average consistency
index of a sample set of randomly generated reciprocal matrices from the scale 1
to 9 (size 500 up to 11 by 11 matrices, and size 100 for squares matrices of orders
12, 13, 14 and 15). For this consistency measure, he proposed a threshold of 0.10 to
accept the reciprocal multiplicative preference relation as consistent. When the CR
is greater than 0.10 then, in order to improve consistency, those judgements with a
greater difference ai j and wi/w j , are usually modified and a new priority vector is
derived.

In our previous example we observe that the conflict between the multiplicative
consistency property and the scale used by Saaty arises because if we impose consis-
tency then we get values outside the range [1/9, 9]. If we restrict the possible values
of a13 to be in [1/9, 9], then it is clear than in this case alternative x1 should be
considered as overwhelming more important than alternative x3, and thus the value
of a13 should be greater or equal to 7. If a13 = 7 we get a CR value of 0.25412, with
a13 = 8 a CR value of 0.212892 and with a13 = 9 a CR value of 0.179714, all of
them greater than the minimum 0.10 for considering any reciprocal multiplicative
preference relation consistent in this situation.

All these considerations mean that if we do not change the scale used to associate
preference values to judgement or want to have a homogeneous scale when working
in a group decision context, then the above definitions of consistency of preference
relations should be modified.
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In the next section, we set out the properties to be verified by a f : [0, 1] ×
[0, 1] → [0, 1] so that it can be used to obtained rik from the pair of values

(

ri j , r jk
)

,
that is, rik = f

(

ri j , r jk
)

.

5 Consistency Function of Preferences: Conditions to Verify

The assumption of experts being able to quantify their preferences in the domain
[0,1] instead of {0, 1} or a set with finite cardinality, as it may be a set of linguis-
tic labels [4, 27, 33, 34], underlies unlimited computational abilities and resources
from the experts. Taking these unlimited computational abilities and resources into
account we may formulate that an expert’s preferences are consistent when for any
three alternatives xi , x j , xk their preference values are related in the exact form

rik = f (ri j , r jk)

being f a function f : [0, 1]× [0, 1]→ [0, 1]. In what follows we will set out a set
of conditions or properties to be verified by such a function f .

The above equality can be interpreted as the equation to solve in a a situation
when we do want to compare the alternatives xi and xk , but cannot do it directly, but
we have an alternative x j of which we know the exact values of ri j and r jk . In this
situation, we can establish a broad comparison between alternatives xi and xk on the
basis of the values ri j and r jk . Indeed, we can distinguish the following cases:

Case 1. ri j = 0.5 (r jk = 0.5) which means that xi ∼ x j (x j ∼ xk) and as a
consequence the strength of preference between xi and xk should be the same as the
one between x j and xk . We then have: rik = r jk (rik = r jk).

Case 2. ri j > 0.5 and r jk > 0.5. In this case, alternative xi is preferred to alternative
x j (xi 1 x j ) and alternative x j is preferred to alternative xk (x j 1 xk). We then have
that xi 1 x j 1 xk which implies xi 1 xk and therefore rik > 0.5. Furthermore, in
these cases restricted max-max transitivity should be imposed, which means that xi

should be preferred to xk with a degree of intensity at least equal to the maximum of
the intensities ri j and r jk : rik ≥ max{ri j , r jk}, where the equality holds only when
there exists indifference between at least one of the alternatives and x j , i.e., ri j = 0.5
or r jk = 0.5, as we have said in case 1. As a result, in this case rik > max{ri j , r jk}
should be verified.

Case 3. When ri j < 0.5 and r jk < 0.5, a similar argument to the one of case 2 leads
to rik < min{ri j , r jk}.
Case 4. One reference value is greater than 0.5 and the other is lower than 0.5.
Suppose that ri j > 0.5 and r jk < 0.5. This is equivalent to ri j > 0.5 and rkj = 1−
r jk > 0.5, that is: xi 1 x j and xk 1 x j . The comparison of alternatives xi and x j is
done by comparing the intensities of preferences of them over the alternative x j . An
indifference situation between xi and xk would exist only when both alternatives are
preferred over x j with the same intensity, while the alternative with greater intensity
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of preference over x j should be preferred to the other one. This is summarized in
the following way:

⎧

⎨

⎩

xi ∼ xk if ri j = rkj ⇔ ri j + r jk = 1
xi 1 xk if ri j > rkj ⇔ ri j + r jk > 1
xi ≺ xk if ri j < rkj ⇔ ri j + r jk < 1

⎫

⎬

⎭

⇔
⎧

⎨

⎩

rik = 0.5 if ri j + r jk = 1
rik > 0.5 if ri j + r jk > 1
rik < 0.5 if ri j + r jk < 1

⎫

⎬

⎭

It is obvious that the greater the value |ri j + r jk − 1| the greater |rik − 0.5|.
The following modification of the additive consistency property where it acts

incoherently meet the above conditions:

f (x, y) =

⎧

⎪

⎨

⎪

⎩

min{x, y} x, y ∈ [0, 0.5]

max{x, y} x, y ∈ [0.5, 1]

x + y − 0.5 otherwise

However, this function is not associative which is a necessary requirement for a
function to be considered consistent in this context. Indeed, we have hat:

rik = f (ri j , r jk) = f
(

ri j , f (ril , rlk )
) ; rik = f (ril , rlk) = f

(

f (ri j , r j l), rlk
)

and therefore it is true that:

f
(

f (ri j , r j l), rlk
) = f

(

ri j , f (ril , rlk )
)

In terms of function f , case 1 implies f (0.5, x) = f (x, 0.5) = x ∀x ∈ [0, 1],
which means that function f has neutral element 0.5. In particular, f (0.5, 0.5) =
0.5 which means that the neutral element of f is idempotent. This property in
conjunction with case 2 mean that function f behaves in [0.5, 1] × [0.5, 1] as
a t-conorm, while in conjunction with case 3 mean that function f behaves in
[0, 0.5] × [0, 0.5] as a t-norm. Clearly, other properties desirable to be verified by
such a function f include that of being continuous except maybe in the points (0, 1)
and (1,0); increasing with respect to both arguments x and y; and commutative.

We make note that uninorm operators present all the above properties, which
may suggest that function f may belong to the class of uninorms operators. As said
in Sect. 3, multiplicative transitivity is a uninorm, and therefore it may be taken
as the condition to be verified for a fuzzy preference relation to be considered as
consistent.

6 Conclusions

In a GDM problem experts may provide their preferences by means of different
preference representation formats. The integration of heterogeneous information is
therefore an important issue to be addresses in these situations. A review of the main
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results regarding the relationships between the numerical representation formats was
provided, and it was suggested that the fuzzy preference relation “is preferred to”
representing the strength of preference of one alternative over another in the scale
[0, 1] could be used as the base element to integrate these different preference rep-
resentation formats in group decision making situations.

Once preferences are provided by the expert, the problem of measuring the con-
sistency of these preferences becomes crucial to get ‘good’ solutions. While for
crisp and multiplicative preference relations there might exist an agreement on the
properties to be satisfied in order to be considered consistent, this is not the case
for fuzzy preference relations. Indeed, for a fuzzy preference relation to be con-
sidered consistent, many different properties have been suggested. Most of these
properties are related in some way to the traditional concept of transitivity. One of
this properties is the additive transitivity property, which is equivalent to Saaty’s
consistency property for multiplicative preference relations. However, both consis-
tency properties are in conflict with the corresponding scale used for providing the
preferences. I order to overcome this conflict, a set of conditions have been set for
reciprocal fuzzy preference relations to be considered ‘fully consistent.’ These set
of conditions suggest that consistency might be represented by a uninorm operator.
One of the suggested properties to model consistency for fuzzy preference relations,
the multiplicative consistency, introduced by Tanino in 1988, is an example of a such
operator.
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Fuzzy Set Extensions of the Dominance-Based
Rough Set Approach

Salvatore Greco, Benedetto Matarazzo and Roman Słowiński

Abstract Rough set theory has been proposed by Pawlak in the early 80s to deal
with inconsistency problems following from information granulation. It operates
on an information table composed of a set U of objects described by a set Q of
condition and decision attributes. Decision attributes make a partition of U into
decision classes. Basic concepts of rough set theory are: indiscernibility relation on
U , lower and upper (rough) approximations of decision classes, dependence and
reduction of attributes from Q, and decision rules induced from rough approxi-
mations of decision classes. The original rough set idea was failing, however, to
handle preferential ordering of domains of attributes (scales of criteria), as well
as preferential ordering of decision classes. In order to deal with multiple criteria
decision problems a number of methodological changes to the original rough set
theory were necessary. The main change is the substitution of the indiscernibility
relation by a dominance relation, which permits approximation of ordered sets. In
multiple criteria decision context, the information table is composed of decision
examples given by a decision maker. The Dominance-based Rough Set Approach
(DRSA) applied to this information table results with a set of decision rules, being a
preference model of the decision maker. It is more general than the classical multiple
attribute utility model or outranking model, and it is more understandable because
of its natural syntax. In this chapter, after recalling the classical rough set approach
and DRSA, we review their fuzzy set extensions. Moreover, we characterize the
dominance-based rough approximation of a fuzzy set, and we show that the clas-
sical rough approximation of a crisp set is its particular case. In this sense, DRSA
is also relevant in the case where preferences are not considered, but just a kind of
monotonicity relating values of different attributes is meaningful for the analysis of
data at hand. In general terms, monotonicity concerns relationship between different
aspects of a phenomenon described by data: for example, the larger the house, the
higher its price or the closer the house to the city centre, the higher its price. In this
perspective, DRSA gives a very general framework for reasoning about data using
only monotonicity relationships.

H. Bustince et al., (eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation
and Models. C© Springer 2008 239
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1 Introduction

Rough set theory [19, 20] relies on the idea that some knowledge (data, informa-
tion) is available about objects of a universe of discourse U . Thus, a subset of U is
defined on the base of the available knowledge about the objects and not on the base
of information about membership or non-membership of the objects to the subset.
For example, knowledge about patients suffering from a certain disease may con-
tain information about body temperature, blood pressure, etc. All patients described
by the same information are indiscernible in view of the available knowledge, and
form groups of similar objects. These groups are called elementary sets, and can
be considered as elementary building blocks of the available knowledge about pa-
tients. Elementary sets can be combined into compound concepts. For example,
elementary sets of patients can be used to represent a set of patients suffering from a
certain disease. Any union of elementary sets is called crisp set, while other sets are
referred to as rough set. Each rough set has boundary line objects, i.e. objects which,
in view of the available knowledge, cannot be classified with certainty as members
of the set or of its complement. Therefore, in the rough set approach, any set is
associated with a pair of crisp sets, called the lower and the upper approximation.
Intuitively, the lower approximation consists of all objects which certainly belong
to the set and the upper approximation contains all objects which possibly belong to
the set. The difference between the upper and the lower approximation constitutes
the boundary region of the rough set. Analogously, for a partition of universe U into
classes, one may consider rough approximation of the partition. It appeared to be
particularly useful for analysis of classification problems, being the most common
decision problems.

For algorithmic reasons, the rough set approach operates on an information table
composed of a set U of objects (actions) described by a set Q of attributes. If in the
set Q disjoint sets (C and D) of condition and decision attributes are distinguished,
then the information table is called decision table. It is often assumed, without loss
of generality, that set D is a singleton {d}, and thus decision attribute d makes a
partition of set U into decision classes. Data collected in such a decision table corre-
spond to a multiple attribute classification problem. The classical rough set approach
is naturally adapted to analysis of this type of decision problems, because the set of
objects can be identified with examples of classification and it is possible to extract
all the essential knowledge contained in the decision table using indiscernibility
or similarity relations. However, as pointed out by Greco, Matarazzo and Słowiński
(see e.g. [9, 12, 13, 22]), the classical rough set approach cannot extract all the essen-
tial knowledge contained in the decision table of multiple criteria classification (also
called sorting) problems, i.e. problems of assigning a set of actions described by a
set of criteria to one of predefined and ordered decision classes. Notwithstanding, in
many real problems it is important to take into account the ordinal properties of the
considered attributes.

For example, in bankruptcy risk evaluation, if the debt index (total debt/total
activity) of company A has a modest value, while the same index of company B
has a significant value, then, within the classical rough set approach, the two firms
are just discernible, but no preference is given to one of them with reference to
the attribute “debt ratio”. In reality, from the point of view of the bankruptcy risk
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evaluation, it would be advisable to consider firm A better than firm B , and not
simply different (discernible). Therefore, the attribute “debt ratio” is a criterion.
Let us observe that the rough set approach based on the use of indiscernibility or
similarity relation is not able to capture a particular kind of inconsistency which
may occur when in the decision table there is at least one criterion. For instance, in
the bankruptcy risk evaluation, which is a classification (sorting) problem, if firm
A is better than firm B with respect to all the considered criteria (e.g. debt ratio,
return on equity, etc.) but firm A is assigned to a class of a higher risk than firm B ,
then there is an inconsistency which cannot be captured by the classical rough set
approach, because these firms are discernible. In order to detect this inconsistency,
the rough approximation should handle the ordinal properties of criteria. This can
be made by replacing the indiscernibility or similarity relation by the dominance
relation, which is a very natural concept within multiple criteria decision analysis.

On the basis of these considerations, Greco, Matarazzo and Słowiński (see e.g.
[9, 12, 13, 22]) have proposed a new rough set approach to multiple criteria classifi-
cation problems, called the Dominance-based Rough Set Approach (DRSA). Even
if DRSA has been proposed to deal with ordinal properties of data related to prefer-
ences in decision problems, the concept of dominance-based rough approximation
can be used in a much more general context [14]. This is because the monotonic-
ity, which is crucial for DRSA, is also meaningful for problems where preferences
are not considered. Generally, monotonicity concerns relationship between different
aspects of a phenomenon described by data. More specifically, it concerns mutual
trends between different variables like distance and gravity in physics, or inflation
rate and interest rate in economics. Whenever we discover a relationship between
different aspects of a phenomenon, this relationship can be represented by a mono-
tonicity with respect to some specific measures of these aspects. So, in general,
monotonicity is a property translating in a formal language a primitive intuition
of interaction between different concepts of our knowledge. Within classical rough
set approach, the idea of mononicity is not evident, although it is also present there.
Because of very coarse representation of considered concepts, monotonicity is taken
into account in the sense of presence or absence of particular aspects characterizing
the concepts. Thus, the classical rough set approach involves the idea of monotonic-
ity related to a scale with only two values: “presence” and “absence”. Monotonicity
gains importance when a finer representation of the concepts is considered. A repre-
sentation is finer when, for each aspect characterizing concepts, not only its presence
or its absence is taken into account, but also the degree of its presence or absence is
considered relevant. Due to graduality, the idea of monotonicity can be exploited in
the whole range of its potential.

Graduality is typical for fuzzy set philosophy [37] and, therefore, a joint con-
sideration of rough sets and fuzzy sets is worthwhile. In fact, rough sets and fuzzy
sets capture the two basic complementary aspects of monotonicity: rough sets deal
with relationships between different concepts and fuzzy sets deal with expression
of different dimensions in which the concepts are considered. For this reason, many
approaches have been proposed to combine fuzzy sets with rough sets (see for ex-
ample [1, 3, 21, 4]). The main preoccupation in almost all the studies combining
rough sets with fuzzy sets was related to a fuzzy extension of Pawlak’s definition of
lower and upper approximations using fuzzy connectives [5, 16]. DRSA can also be
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combined with fuzzy sets along this line, obtaining a rough set model permitting to
deal with fuzziness in preference representation [6, 9, 11]. Let us remark, however,
that in fact there is no rule for the choice of the “right” connective, so this choice
is always arbitrary to some extent. Moreover, there is another drawback for fuzzy
extensions of rough sets involving fuzzy connectives: they are based on cardinal
properties of membership degrees. In consequence, the result of these extensions is
sensitive to order preserving transformation of membership degrees.

For example, consider the t-conorm of Łukasiewicz as fuzzy connective; it may
be used in the definition of both fuzzy lower approximation (to build fuzzy im-
plication) and fuzzy upper approximation (as a fuzzy counterpart of a union). The
t-conorm of Łukasiewicz is defined as:

T ∗(α, β) = min{α + β, 1}, α, β ∈ [0, 1]

T ∗(α, β) can be interpreted as follows. If α = μX (z) represents the membership of
z in set X and β = μY (z) represents the membership of z in set Y , then T ∗(α, β)
expresses the membership of z in set X ∪ Y . Given two fuzzy propositions p and
q , putting v(p) = α and v(q) = β, T ∗(α, β) can be interpreted also as v(p ∨ q),
the truth value of the proposition p ∨ q . Let us consider the following values of
arguments:

α = 0.5, β = 0.3, γ = 0.2, δ = 0.1

and their order preserving transformation:

α′ = 0.4, β ′ = 0.3, γ ′ = 0.2, δ′ = 0.05.

The values of the t-conorm are in the two cases as follows:

T ∗(α, δ) = 0.6, T ∗(β, γ ) = 0.5, T ∗(α′, δ′) = 0.45, T ∗(β ′, γ ′) = 0.5.

One can see that the order of the results has changed after the order preserving
transformation of the arguments. This means that the Łukasiewicz t-conorm takes
into account not only the ordinal properties of the membership degrees, but also their
cardinal properties. A natural question arises: is it reasonable to expect from the
membership degree a cardinal content instead of ordinal only? Or, in other words,
is it realistic to claim that a human is able to say in a meaningful way not only that

a) “object x belongs to fuzzy set X more likely than object y”

(or “proposition p is more credible than proposition q”),
but even something like

b) “object x belongs to fuzzy set X two times
more likely than object y”

(or “proposition p is two times more credible than proposition q”)?
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It is safer, of course, to consider information of type a), because information
of type b) is rather meaningless for a human (see [17]). The above doubt about
the cardinal content of the fuzzy membership degree shows the need for method-
ologies which consider the imprecision in perception typical for fuzzy sets but
avoid as much as possible meaningless transformation of information through fuzzy
connectives.

The DRSA approach we are proposing for a fuzzy extension of rough sets takes
into account the above request. It avoids arbitrary choice of fuzzy connectives and
not meaningful operations on membership degrees. This approach belongs to the
minority of fuzzy extensions of the rough set concept that do not involve fuzzy con-
nectives and cardinal interpretation of membership degrees. Within this minority, it
is related to the approach of Nakamura and Gao [18] using α-cuts on fuzzy similar-
ity relation between objects. The DRSA approach to fuzzy extension of rough sets
proposes a methodology of fuzzy rough approximation that infers the most cautious
conclusion from available imprecise information. In particular, we observe that any
approximation of knowledge about Y using knowledge about X is based on positive
or negative relationships between premises and conclusions, i.e.:

i) “the more x is X , the more it is Y ” (positive relationship),
ii) “the more x is X , the less it is Y ” (negative relationship).

The following simple relationships illustrate i) and i i):

• “the larger the market share of a company, the greater its profit”
(positive relationship) and

• “the greater the debt of a company, the smaller its profit”
(negative relationship).

These relationships have been already considered within fuzzy set theory under
the name of gradual decision rules [2]. Recently, Greco, Inuiguchi and Słowiński
[7, 8] proposed a rough set approach for induction of gradual decision rules handling
ambiguity of information through fuzzy rough approximations. Examples of these
decision rules are: “if a car is speedy with credibility at least 0.8 and it has high fuel
consumption with credibility at most 0.7, then it is a good car with a credibility at
least 0.9”, and “if a car is speedy with credibility at most 0.5 and it has high fuel
consumption with credibility at least 0.8, then it is a good car with a credibility at
most 0.6”. Remark that the syntax of gradual decision rules is based on monotonic
relationship between degrees of credibility that can also be found in dominance-
based decision rules induced from preference-ordered data. This explains why one
can build a fuzzy rough approximation using DRSA. In this perspective, DRSA
can be extended to analyze any relationship of monotonicity in reasoning about
data. This extension results in knowledge representation model composed of a set
of gradual decision rules. The general character of fuzzy rough approximation based
on DRSA is confirmed by the fact that the classical rough set approach can be seen
as one its special cases. On one hand this allows a deeper insight into fundamental
properties of the classical rough set approach and, on the other hand, it permits a
further generalization of the rough set approach.
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This chapter is organized as follows. Sect. 2 introduces classical rough set ap-
proach and its fuzzy set extensions based on fuzzy connectives. Sect. 3 presents
Dominance-based Rough Set Approach. Sect. 4 describes fuzzy extensions of
DRSA based on fuzzy connectives. Sect. 5 presents rough approximation of a fuzzy
set based on the property of monotonicity. In Sect. 6, the monotonic fuzzy rough set
is compared with the classical rough set, showing that the latter is a particular case
of the former. Sect. 7 contains conclusions.

2 Classical Rough Set Approach and its Fuzzy Set Extensions

Formally, an information table is the 4-tuple S =< U, Q, V , f >, where U is
a finite set of objects (universe), Q = {q1, q2, ..., qm} is a finite set of attributes,
Vq is the domain of the attribute q , V = ⋃

q∈Q Vq and f : U × Q → V is a
total function such that f (x, q) ∈ Vq for each x ∈ U and q ∈ Q, called infor-
mation function. If in the set Q disjoint sets (C and D) of condition and decision
attributes are distinguished, then the information table is called decision table. It
is often assumed, without loss of generality, that set D is a singleton {d}, and thus
decision attribute d defines a classification (partition) of set U into decision classes.
Therefore, each object x from U is described by a vector (string)

DesQ (x) = [ f (x, q1), f (x, q2), ..., f (x, qm)],

called description of x in terms of the evaluations on the attributes from Q; it rep-
resents the available information (qualitative or quantitative) about x . Obviously,
x ∈ U can be described in terms of any non-empty subset P ⊆ Q.

With every (non-empty) subset of attributes P there is associated an indiscerni-
bility relation on U , denoted by IP :

IP = {(x, y) ∈ U ×U : f (x, q) = f (y, q),∀q ∈ P}.

If (x, y) ∈ IP , it is said that objects x and y are P-indiscernible. Clearly, the in-
discernibility relation thus defined is an equivalence relation (reflexive, symmetric
and transitive). The family of all the equivalence classes of relation IP is denoted by
U |IP , and the equivalence class containing object x ∈ U , by IP (x). The equivalence
classes of relation IP are called P-elementary sets. Let S be an information table,
X a non-empty subset of U and ∅ �= P ⊆ Q. The P-lower approximation and the
P-upper approximation of X in S are defined, respectively, as:

P(X) = {x ∈ U : IP(x) ⊆ X},
P(X) = {x ∈ U : IP(x) ∩ X �= ∅}.
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The elements of P(X) are all and only those objects x ∈ U which belong to
the equivalence classes generated by the indiscernibility relation IP , contained in
X ; the elements of P(X) are all and only those objects x ∈ U which belong to
the equivalence classes generated by the indiscernibility relation IP , containing at
least one object x belonging to X . In other words, P(X) is the largest union of
the P-elementary sets included in X , while P(X) is the smallest union of the P-
elementary sets containing X . The P-boundary of X in S, denoted by Bn P(X), is
Bn P(X) = P(X)− P(X). The following inclusion property holds:

P(X) ⊆ X ⊆ P(X).

Therefore, if object x belongs to P(X), it is certainly an element of X , while if
x belongs to P(X), it is only possibly an element of X . Bn P(X) constitutes the
“doubtful region” of X : nothing can be said with certainty about the membership of
its elements in set X . The following relation, called complementarity property, is
satisfied:

P(X) = U − P(U − X), P(X) = U − P(U − X).

Another important property of rough approximation is the following: for all P ⊆
R ⊆ C and for all X ⊆ U :

P(X) ⊆ R(X), P(X) ⊆ R(X).

This property of monotonicity with respect to sets of attributes says that enlarg-
ing the set of attributes, i.e. using more information, one can get better approxi-
mations characterized by not smaller lower approximations and not larger upper
approximations. If the P-boundary of X is empty, Bn P(X) = ∅, then set X is
an ordinary (crisp) set with respect to P , that is, it may be expressed as a union
of some P-elementary sets; otherwise, if Bn P(X) �= ∅, set X is an approximate
(rough) set with respect to P and may be characterized by means of the lower
and upper approximations, P(X) and P(X). The family of all sets X ⊆ U having
the same P-lower and P-upper approximations is called a rough set. The defini-
tion of approximations of a subset X ⊆ U can be extended to a classification,
i.e. a partition Y = {Y1,Y2, ...,Yn} of U . Subsets Yi , i = 1, ..., n, are disjunc-
tive classes of Y. By P-lower (P-upper) approximation of Y in S we mean sets
P(Y) = {P(Y1), P(Y2), ..., P(Yn)} and P(Y) = {P(Y1), P(Y2), ..., P(Yn)}, re-
spectively. Using rough approximation of a classification one can induce certain,
or approximate knowledge from the decision table, represented in terms of decision
rules, i.e. logical statements (consequence relations) of the type “if..., then...”, where
the antecedent (condition part) specifies values assumed by one or more condition
attributes and the consequence (decision part) specifies an assignment to one or
more decision classes. Therefore, the general syntax of a rule is the following:

“if f (x, q1) is equal to rq1 and f (x, q2) is equal to rq2 and ...
f (x, qp) is equal to rqp , then x belongs to Y j1 or Y j2 or ... Y jk ”,



246 S. Greco et al.

where {q1, q2, ..., qp} ⊆ C , (rq1, rq2 , ..., rqp) ∈ Vq1 × Vq2 × ... × Vqp and
Y j1,Y j2, ...,Y jk are decision classes of the considered classification (D-elemen-tary
sets). If the consequence is univocal, i.e. k=1, then the rule is certain, otherwise it is
approximate.

A further step towards generalization of the rough approximations consists in
considering fuzzy reflexive binary relation R(x, y) defined on U , that is a relation of
fuzzy similarity. To make this generalization, we need negation and some classical
connectives of fuzzy logic. The following definitions of fuzzy logic are useful (see,
e.g., [5, 16]). For each proposition p, we consider its truth value v(p) ranging from
v(p) = 0 (p is definitely false) to v(p) = 1 (p is definitely true); and for all
intermediate values, the greater v(p), the more credible is the truth of p. A negation
is a non-increasing function N : [0, 1] → [0, 1] such that N(0) = 1 and N(1) = 0.
Given proposition p, N(v(p)) states the credibility of the negation of p. A t-norm
T and a t-conorm T ∗ are two functions T : [0, 1]× [0, 1]→ [0, 1] and T ∗ : [0, 1]×
[0, 1] → [0, 1], such that given two propositions, p and q , T (v(p), v(q)) represents
the credibility of the conjunction of p and q , and T ∗(v(p), v(q)) represents the
credibility of the disjunction of p and q . t-norm T and t-conorm T ∗ must satisfy the
following properties:

T (α, β) = T (β, α) and T ∗(α, β) = T ∗(β, α), for all α, β ∈ [0, 1],

T (α, β) ≤ T (γ, δ) and T ∗(α, β) ≤ T ∗(γ, δ), for all α, β, γ, δ ∈ [0, 1]

such that α ≤ γ and β ≤ δ,

T (α, T (β, γ )) = T (T (α, β), γ ) and T ∗(α, T ∗(β, γ )) = T ∗(T ∗(α, β), γ ),

for all α, β, γ ∈ [0, 1],

T (1, α) = α and T ∗(0, α) = α, for all α ∈ [0, 1].

A negation is strict iff it is strictly decreasing and continuous. A negation N is
involutive iff, for all α ∈ [0, 1], N(N(α)) = α. (T, T ∗, N) is a De Morgan triplet iff
N(T ∗(α, β)) = T (N(α), N(β)), where N is a strict negation. A fuzzy implication
is a function I : [0, 1] × [0, 1] → [0, 1] such that given two propositions, p and
q , I (v(p), v(q)) represents the credibility of the implication of q by p. A fuzzy
implication must satisfy the following properties ([5]):

I (α, β) ≥ I (γ, β) for all α, β, γ ∈ [0, 1], such that α ≤ γ,

I (α, β) ≥ I (α, γ ) for all α, β, γ ∈ [0, 1], such that β ≥ γ,

I (0, α) = 1, I (α, 1) = 1 for all α ∈ [0, 1],
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I (1, 0) = 0.

An implication I→N,T ∗ is a T ∗-implication if there is a t-conorm T ∗ and a strong
negation N such that I→N,T ∗(α, β) = T ∗(N(α), β). A fuzzy similarity on the uni-
verse U is a fuzzy binary relation (i.e. function R : U × U → [0, 1]) reflexive
(R(x, x) = 1 for all x ∈ U ), symmetric (R(x, y) = R(y, x) for all x, y ∈ U )
and transitive (given t-norm T , T (R(x, y), R(y, z)) = R(x, z) for all x, y, z ∈ U ).
Greco, Matarazzo and Słowiński [9, 10] considered fuzzy similarity being a reflex-
ive fuzzy relation but not necessarily symmetric and transitive. Greco, Matarazzo
and Słowiński [9] proposed the following definition of rough approximation based
on fuzzy similarity. The lower and upper approximations of a fuzzy set X on U
having membership function μX : U → [0, 1], are fuzzy sets R(X) and R(X) in
U with membership functions μ(x, R(X)) and μ(x, R(X)), specifying for every
x ∈ U its degree of membership to R(X) and R(X). These degrees are equivalent,
respectively, to the credibility of the following statements: “for every y ∈ U , x is
not similar to y or y belongs to X” (since “p implies q” is logically equivalent to
“not p or q”, where p = “for every y ∈ U , x is similar to y” and q = “y belongs to
X”), and “there exists at least one y ∈ U such that x is similar to y and y belongs
to X”. Formally, these two membership functions are defined as:

μ(x, R(X)) = Ty∈U
(

T ∗(N(R(x, y)), μX (y))
)

,

μ(x, R(X)) = T ∗y∈U (T (R(x, y), μX (y))) . (i)

Let us remark that using the definition of T ∗-implication (i.e.I→N,T ∗(α, β) =
T ∗(N(α), β)) ∀α, β ∈ [0, 1]), it is possible to rewrite the definition of μ(x, R(X))
and μ(x, R(X)) in the following way:

μ(x, R(X)) = Ty∈U
(

I→N,T ∗(R(x, y), μX (y))
)

,

μ(x, R(X)) = T ∗y∈U

(

N(I→N,T ∗(R(x, y), N(μX (y))))
)

.

Therefore, μ(x, R(X)) can be interpreted as the credibility of the statement “for
each y ∈ U , the similarity of x to y implies that y belongs to X”, while μ(x, R(X))
can be interpreted as the credibility of the statement “for at least one y ∈ U , the
similarity of x to y does not imply that y does not belongs to X”. Let us observe that
the above definition can also be given using a general fuzzy implication I instead of
a T ∗-implication in the lower approximation μ(x, R(X)), while keeping definition
(i) for the upper approximation μ(x, R(X)), i.e.

μ(x, R(X)) = Ty∈U (I (R(x, y), μX (y))) ,

μ(x, R(X)) = T ∗y∈U (T (R(x, y), μX (y))) .
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Another possible definition of fuzzy rough approximation has been proposed by
Dubois and Prade [1, 3] (see also [21]):

μ(x, R(X)) = in fy∈U (I (R(x, y), μX (y))) ,

μ(x, R(X)) = supy∈U (T (R(x, y), μX (y))) .

Let us observe that if set U is finite (and thus infimum over U becomes mini-
mum over U , and supremum over U becomes maximum over U ) and we consider
T (α, β) = min(α, β), T ∗(α, β) = max(α, β), our fuzzy rough approximations
coincide with that of Dubois and Prade for T ∗-implication, and boil down to

μ(x, R(X)) = miny∈U (max(N(R(x, y)), μX (y))) ,

μ(x, R(X)) = maxy∈U (min(R(x, y), μX (y))) .

It may be demonstrated, in particular, that the following properties of inclusion
and complementarity hold:

1) μ(x, R(X)) ≤ μX (x) ≤ μ(x, R(X)), for all x ∈ U ,
2) if (T, T∗, N) is a De Morgan triplet, N is involutive and the considered implica-

tion is a T ∗-implication, then

μ(x, R(X)) = N(μ(x, R(U − X))), μ(x, R(X)) = N(μ(x, R(U − X))).

where U − X represents the fuzzy set whose membership function, ∀x ∈ U , has
the form μU−X (x) = N(μ(x)).

The above results refer to fuzzy sets and can be read as follows: 1) means that X
includes its lower approximation and is included in its upper approximation (inclu-
sion property); 2) means that the lower approximation of X is the complement of the
upper approximation of its complementary set (complementarity property). Given
set C of condition attributes, let us consider a fuzzy binary relation Rq for each
attribute q ∈ C , i.e. function Rq : U × U → [0, 1], where, ∀x, y ∈ U, Rq (x, y)
represents the intensity or degree of similarity of x to y with respect to attribute q .
More precisely, for q ∈ C and ∀x, y, w, z ∈ U :

• Rq(x, y) = 0 means that x is not similar at all to y,
• Rq(x, y) = 1 means that x is absolutely similar to y, (Rq(x, x) = 1),
• Rq(x, y) ≥ Rq(w, z) means that the similarity of x to y is at least as credible as

the similarity of w to z.

To model the comprehensive similarity of x to y, x, y ∈ U with respect to a
subset of condition attributes P = {q1, q2, ..., qp} ⊆ C , denoted by RP (x, y), one
can use function ΨP : [0, 1]p → [0, 1], non-decreasing in each of its arguments,
verifying ΨP(0, ..., 0) = 0 and �P(1, ..., 1) = 1, such that, for all x, y ∈ U ,
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RP(x, y) = ΨP (R1(x, y), ..., Rp(x, y)).

Let us observe that in the above definition we considered function ΨP for each
P ⊆ C . The following invariance property (invariance with respect to similarity
on attributes where maximal value is attained) relating functions ΨP1 and ΨP2 , ∅ �=
P1 ⊆ P2 ⊆ C with P1 = {q1, q2, ..., qp−k}, P2 = {q1, q2, ..., qp}, k > 0, seems
very reasonable,

ΨP1(α1, ..., αp−k, 1, ..., 1) = ΨP2(α1, ..., αp−k). (i i)

This property says that, if for x, y ∈ U the similarity with respect to attributes
from P1 − P2 is maximal, that is Rq(x, y) = 1 for q = p − k + 1, ..., p, then
the comprehensive similarity with respect to P2 is equivalent to the similarity with
respect to P1, i.e.

RP1(x, y) = RP2(x, y).

A possible formulation of function ΨP is the following. We consider the cred-
ibility of the statement “x is similar to y with respect to q1, and x is similar to y
with respect to q2, and ... x is similar to y with respect to qp”. Using a t-norm, this
credibility is calculated as:

RP (x, y) = Tq∈P
(

Rq (x, y)
)

,

i.e. for all (α1, ..., αp) ∈ [0, 1]p, ΨP(α1, ..., αp) = T p
q=1αq . This formulation of

comprehensive similarity RP satisfies the property of invariance. If invariance prop-
erty is satisfied, then the following property of monotonicity of approximations with
respect to sets of attributes also holds: for all P1 ⊆ P2 ⊆ C , for all fuzzy sets X on
U and for all x ∈ U

μ(x, R P1
(X)) ≥ μ(x, R P2

(X)), μ(x, R P1(X)) ≤ μ(x, R P2(X)).

Using fuzzy rough approximation of a classification one can induce decision
rules from the decision table, having the following general syntax:

“if f (x, q1) is similar to rq1 and f (x, q2) is similar to rq1 and ... f (x, qp) is similar
to rqp , then x belongs to Y j1 or Y j2 or ... Y jk ”, with a credibility α,

where q1, q2, ..., qp ⊆ C , (rq1, rq2, ..., rqp) ∈ Vq1 × Vq2 × ...× Vqp , Y j1 , Y j2 , ... Y jk
are some decision classes of the considered classification and α ∈ [0, 1].
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3 Dominance-Based Rough Set Approach

In this section we present the main concepts of the Dominance-based Rough Set
approach (DRSA) (for a more complete presentation see, for example, [9, 12, 13, 22].

We are considering condition attributes with domains (scales) ordered accord-
ing to decreasing or increasing preference – such attributes are called criteria. For
criterion q ∈ Q, 2q is a weak preference relation on U such that x 2q y means
“x is at least as good as y with respect to criterion q”. We suppose that 2q is a
complete preorder, i.e. a strongly complete and transitive binary relation, defined on
U on the basis of evaluations f (·, q). We assume, without loss of generality, that the
preference is increasing with the value of f (·, q) for every criterion q ∈ C .

Furthermore, we assume that the set of decision attributes D is a singleton {d}.
Decision attribute d makes a partition of U into a finite number of decision classes,
Cl = {Clt , t ∈ T }, T = {1, ..., n}, such that each x ∈ U belongs to one and
only one class Clt ∈Cl. We suppose that the classes are preference-ordered, i.e.
for all r , s ∈ T , such that r > s, the objects from Clr are preferred to the ob-
jects from Cls . More formally, if 2 is a comprehensive weak preference relation
on U , i.e. if for all x ,y ∈ U , x2y means “x is at least as good as y”, we suppose:
[x∈Clr , y∈Cls, r>s] ⇒ [x2y and not y2x]. The above assumptions are typical
for consideration of a multiple criteria classification problem (also called multiple
criteria sorting problem).

The sets to be approximated are called upward union and downward union of
classes, respectively:

Cl≥t =
⋃

s≥t

Cls , Cl≤t =
⋃

s≤t

Cls , t = 1, ..., n.

The statement x ∈ Cl≥t means “x belongs to at least class Clt ”, while x ∈ Cl≤t
means “x belongs to at most class Clt ”. Let us remark that Cl≥1 = Cl≤n = U ,
Cl≥n = Cln and Cl≤1 = Cl1. Furthermore, for t = 2,...,n, we have:

Cl≤t−1 = U − Cl≥t and Cl≥t = U − Cl≤t−1 .

The key idea of the rough set approach is representation (approximation) of
knowledge generated by decision attributes, by “granules of knowledge” generated
by condition attributes.

In DRSA, where condition attributes are criteria and decision classes are prefer-
ence ordered, the represented knowledge is a collection of upward and downward
unions of classes and the “granules of knowledge” are sets of objects defined using
a dominance relation.

We say that x dominates y with respect to P ⊆ C (shortly, x P-dominates y),
denoted by xDP y, if for every criterion q ∈ P , f (x, q) ≥ f (y, q). The relation of
P-dominance is reflexive and transitive, that is it is a partial preorder.

Given a set of criteria P ⊆ C and x ∈ U , the “granules of knowledge” used for
approximation in DRSA are:
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• a set of objects dominating x , called P-dominating set,
D+P (x)={y ∈ U : yDP x},

• a set of objects dominated by x , called P-dominated set,
D−P (x)={y ∈ U : xDP y}.
Let us recall that the dominance principle (or Pareto principle) requires that an

object x dominating object y on all considered criteria (i.e. x having evaluations at
least as good as y on all considered criteria) should also dominate y on the decision
(i.e. x should be assigned to at least as good decision class as y). This principle
is the only objective principle that is widely agreed upon in the multiple criteria
comparisons of objects.

The P-lower approximation of Cl≥t , denoted by P Cl≥t , and the P-upper ap-
proximation of Cl≥t , denoted by P( Cl≥t ), are defined as follows (t = 1,...,n):

P( Cl≥t ) = {x ∈ U : D+P (x) ⊆ Cl≥t },
P( Cl≥t ) = {x ∈ U : D−P (x) ∩ Cl≥t �= ∅}.

Analogously, one can define the P-lower approximation and the P-upper ap-
proximation of Cl≤t as follows (t = 1,...,n):

P( Cl≤t ) = {x ∈ U : D−P (x) ⊆ Cl≤t },
P( Cl≤t ) = {x ∈ U : D+P (x) ∩ Cl≤t �= ∅}.

The P-lower and P-upper approximations so defined satisfy the following inclu-
sion properties for each t ∈{1,. . . , n} and for all P ⊆ C:

P( Cl≥t ) ⊆ Cl≥t ⊆ P( Cl≥t ), P( Cl≤t ) ⊆ Cl≤t ⊆ P( Cl≤t ).

The P−lower and P−upper approximations of Cl≥t and Cl≤t have an important
complementarity property, according to which,

P( Cl≥t ) = U–P(Cl≤t−1) and P( Cl≥t ) = U–P(Cl≤t−1), t = 2,...,n,

P( Cl≤t ) = U–P(Cl≥t+1) and P( Cl≤t ) = U–P(Cl≥t+1), t = 1,...,n − 1.

The P-boundary of Cl≥t and Cl≤t , denoted by BnP(Cl≥t ) and BnP(Cl≤t ), respec-
tively, are defined as follows (t=1,..., n):

BnP(Cl≥t ) = P( Cl≥t )–P( Cl≥t ), BnP(Cl≤t ) = P( Cl≤t )–P( Cl≤t ).

The dominance-based rough approximations of upward and downward unions of
classes can serve to induce “if..., then...” decision rules. It is meaningful to consider
the following five types of decision rules:
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1) Certain D≥-decision rules: if xq1 2q1 rq1 and xq2 2q2 rq2 and . . . xqp 2qp

rqp , then x ∈ Cl≥t , where for each wq ,zq ∈ Xq , “wq 2q zq” means “wq is
at least as good as zq ”.

2) Possible D≥-decision rules: if xq1 2q1 rq1 and xq2 2q2 rq2 and . . . xqp 2qp

rqp , then x possibly belongs to Cl≥t .
3) Certain D≤-decision rules: if xq1 �q1 rq1 and xq2 �q2 rq2 and . . . xqp �qp

rqp , then x ∈ Cl≤t , where for each wq ,zq ∈ Xq , “wq �q zq” means “wq is
at most as good as zq”.

4) Possible D≤-decision rules: if xq1 �q1 rq1 and xq2 �q2 rq2 and . . . xqp �qp

rqp , then x possibly belongs to Cl≤t .
5) Approximate D≥≤-decision rules: if xq1 2q1 rq1 and . . . xqk 2qk rqk and

xq(k+1) �q(k+1) rq(k+1) and . . . xqp �qp rqp , then x ∈ Cl≥s ∩Cl≤t , where s < t .

The rules of type 1) and 3) represent certain knowledge extracted from the deci-
sion table, while the rules of type 2) and 4) represent possible knowledge. Rules of
type 5) represent doubtful knowledge.

4 Fuzzy Set Extensions of the Dominance-Based
Rough Set Approach

The concept of dominance can be refined by introducing gradedness through the use
of fuzzy sets. Let 2q be a fuzzy weak preference relation on U with respect to cri-
terion q ∈ C , i.e.2q : U ×U → [0, 1], such that 2q(x, y) represents the credibility
of the proposition “x is at least as good as y with respect to criterion q”. Suppose
that 2q is a fuzzy partial T -preorder, i.e. that it is reflexive (2q(x, x) = 1 for each
x ∈ U ) and T -transitive (T (2q(x, y),2q(y, z)) ≤2q(x, z), for each x, y, z ∈ U )
(see Fodor and Roubens 1992). Using the fuzzy weak preference (outranking) re-
lations 2q , q ∈ C , a fuzzy dominance relation on U (denotation DP (x, y)) can be
defined for all P ⊆ C as follows:

DP (x, y) = Tq∈P
(2q (x, y)

)

.

Given (x, y) ∈ U × U , DP (x, y) represents the credibility of the proposition
“x is at least as good as y with respect to each criterion q from P”. Since the
fuzzy weak preference relations 2q are supposed to be partial T -preorders, then
also the fuzzy dominance relation DP is a partial T -preorder. Furthermore, let
Cl = {Clt , t ∈ T }, T = {1, ..., n}, be a set of fuzzy classes in U , such that for
each x ∈ U , Clt (x) represents the membership function of x to Clt . We sup-
pose, as before, that the classes of Cl are increasingly ordered, i.e. that for all
r, s ∈ T , such that r > s, the objects from Clr have a better comprehensive
evaluation than the objects from Cls . On the basis of the membership functions
of the fuzzy class Clt , we can define fuzzy membership functions of two other
sets:
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1) the upward cumulated fuzzy set Cl≥t , whose membership function Cl≥t (x) rep-
resents the credibility of the proposition “x is at least as good as the objects in
Clt ”

Cl≥t (x) =
{

1 if ∃s ∈ T : Cls(x) > 0 and s > t
Clt (x) otherwise

}

2) the downward cumulated fuzzy set Cl≤t , whose membership function Cl≤t (x)
represents the credibility of the proposition “x is at most as good as the objects
in Clt ”

Cl≤t (x) =
{

1 if ∃s ∈ T : Cls(x) > 0 and s < t
Clt (x) otherwise

}

The P-lower and the P-upper approximations of Cl≥t with respect to P ⊆ C
are fuzzy sets in U , whose membership functions, denoted by P[Cl≥t (x)] and
P[Cl≥t (x)], are defined as:

P[Cl≥t (x)] = Ty∈U (T
∗(N(DP (y, x)),Cl≥t (y))),

P[Cl≥t (x)] = T ∗y∈U (T (DP(x, y),Cl≥t (y))).

P[Cl≥t (x)] represents the credibility of the proposition “for all y ∈ U , y does not
dominate x with respect to criteria from P or y belongs to Cl≥t ”, while P[Cl≥t (x)]
represents the credibility of the proposition “there is at least one y ∈ U dominated
by x with respect to criteria from P which belongs to Cl≥t ”.

The P-lower and P-upper approximations of Cl≤t with respect to P ⊆ C , de-
noted by P[Cl≤t (x)] and P[Cl≤t (x)], can be defined, analogously, as:

P[Cl≤t (x)] = Ty∈U (T
∗(N(DP (x, y)),Cl≤t (y))),

P[Cl≤t (x)] = T ∗y∈U (T (DP(y, x),Cl≤t (y))).

P[Cl≤t (x)] represents the credibility of the proposition “for all y ∈ U , x does not
dominate y with respect to criteria from P or y belongs to Cl≤t ”, while P[Cl≤t (x)]
represents the credibility of the proposition “there is at least one y ∈ U dominating
x with respect to criteria from P which belongs to Cl≤t ”.

Let us remark that using the definition of the T ∗-implication, it is possible to
rewrite the definition of P[Cl≥t (x)], P[Cl≥t (x)], P[Cl≤t (x)] and P[Cl≤t (x)] in the
following way:

P[Cl≥t (x)] = Ty∈U (I
→
T ∗,N (DP(y, x),Cl≥t (y))),
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P[Cl≥t (x)] = T ∗y∈U (N(I→T ∗,N (DP (x, y), N(Cl≥t (y)))),

P[Cl≤t (x)] = Ty∈U (I
→
T ∗,N (DP(x, y),Cl≤t (y))),

P[Cl≤t (x)] = T ∗y∈U (N(I→T ∗,N (DP (y, x), N(Cl≤t (y)))).

The following results can be proved:

1) for each x ∈ U and for each t ∈ T ,
P[Cl≥t (x)] ≤ Cl≥t (x) ≤ P[Cl≥t (x)], P[Cl≤t (x)] ≤ Cl≤t (x) ≤ P[Cl≤t (x)],

2) if (T, T ∗, N) constitute a De Morgan triplet, if negation N is involutive and if
N[Cl≥t (x)] = Cl≥t−1(x) for each x ∈ U and t = 2, ..., n − 1, then

P[Cl≥t (x)] = N(P [Cl≤t−1(x)]), P[Cl≥t (x)] = N(P[Cl≤t−1(x)]), t = 2, ..., n

P[Cl≤t (x)] = N(P[Cl≥t+1(x)]), P[Cl≤t (x)] = N(P [Cl≥t+1(x)]), t = 1, ..., n−1

3) for all P ⊆ R ⊆ C , for all x ∈ U and for each t ∈ T ,

P[Cl≥t (x)] ≤ R[Cl≥t (x)], P[Cl≥t (x)] ≥ R[Cl≥t (x)],

P[Cl≤t (x)] ≤ R[Cl≤t (x)], P[Cl≤t (x)] ≥ R[Cl≤t (x)].

Results 1) to 3) can be read as fuzzy counterparts of the following results well-
known within the classical rough set approach: 1) (inclusion property) says that Cl≥t
and Cl≤t include their P-lower approximation and are included in their P-upper
approximation; 2) (complementarity property) says that the P-lower (P-upper) ap-
proximation of Cl≥t is the complement of the P-upper (P-lower) approximation
of its complementary set Cl≤t−1, (analogous property holds for Cl≤t and Cl≥t+1; 3)
(monotonicity with respect to sets of attributes) says that enlarging the set of criteria
the membership to the lower approximation does not decrease and the membership
to the upper approximation does not increase.

Greco, Inuiguchi and Słowiński [6] proposed, moreover, the following fuzzy
rough approximation based on dominance, which goes in line of the fuzzy rough
approximation by Dubois and Prade [1, 3], concerning classical rough sets (see
Sect. 2):

P[Cl≥t (x)] = in fy∈U (I (DP (y, x),Cl≥t (y))),

P[Cl≥t (x)] = supy∈U (T (DP (x, y),Cl≥t (y))),
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P[Cl≤t (x)] = in fy∈U (I (DP (x, y),Cl≤t (y))),

P[Cl≤t (x)] = supy∈U (T (DP(y, x),Cl≤t (y))).

Using fuzzy rough approximations based on DRSA, one can induce decision
rules having the same syntax as the decision rules obtained from crisp DRSA. In
this case, however, each decision rule has a fuzzy credibility.

5 Dominance-Based Rough Approximation of a Fuzzy Set

In this section we show how the dominance-based rough set approach can be used
for rough approximation of fuzzy sets.

A fuzzy information base is the 3-tuple B =< U, F, ϕ >, where U is a finite set
of objects (universe), F={ f1, f2,..., fm} is a finite set of features, and ϕ : U × F →
[0, 1] is a function such that ϕ(x, fh) ∈ [0, 1] expresses the credibility that object x
has feature fh . Each object x from U is described by a vector

DesF (x)=[ϕ(x , f1), . . . , ϕ(x , fm)]

called description of x in terms of the evaluations of the features from F ; it repre-
sents the available information about x . Obviously, x ∈ U can be described in terms
of any non-empty subset E ⊆ F and in this case we have

DesE (x)= [ϕ(x , fh), fh ∈ F].

For any E ⊆ F , we can define the dominance relation DE as follows: for any
x ,y ∈ U , x dominates y with respect to E (denotation x DE y) if for any fh ∈ E

ϕ(x, fh) ≥ ϕ(y, fh).

Given E ⊆ F and x ∈ U , let

D+E (x) = {y ∈ U : y DE x}, D−E (x) = {y ∈ U : x DE y}.

Let us consider a fuzzy set X in U , with its membership function μX : U →
[0, 1]. For each cutting level α ∈ [0, 1] and for ∗ ∈ {≥,>}, we can define the
E-lower and the E-upper approximation of X∗α={y ∈ U : μX (y) ∗ α} with respect
to E ⊆ F (denotation E(X∗α) and E(X∗α), respectively), as:

E(X∗α) = {x ∈ U : D+E (x) ⊆ X∗α} =⋃

x∈U {D+E (x) : D+E (x) ⊆ X∗α},

E(X∗α) = {x ∈ U : D−E (x) ∩ X∗α �= ∅} =⋃

x∈U {D+E (x) : D−E (x) ∩ X∗α �= ∅}.
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Analogously, for each cutting level α∈[0,1] and for 6 ∈{≤,<}, we define the
E-lower and the E-upper approximation of X6α={y ∈ U : μX (y)6α}, with respect
to E ⊆ F (denotation E(X6α) and E(X6α), respectively), as:

E(X6α) = {x ∈ U : D−E (x) ⊆ X6α} =⋃

x∈U {D−E (x) : D−E (x) ⊆ X6α},

E(X6α) = {x ∈ U : D+E (x) ∩ X6α �= ∅} =⋃

x∈U {D−E (x) : D+E (x) ∩ X6α �= ∅}.

Let us remark that we can rewrite the rough approximations E(X≥α), E(X≥α),
E(X≤α) and E(X≤α) as follows:

E(X≥α) = {x ∈ U : ∀w ∈ U, wDE x ⇒ w ∈ X≥α},
E(X≥α) = {x ∈ U : ∃w ∈ U such that wDE x and w ∈ X≥α},
E(X≤α) = {x ∈ U : ∀w ∈ U, x DEw⇒ w ∈ X≤α},
E(X≤α) = {x ∈ U : ∃w ∈ U such that x DEw and w ∈ X≤α}.

Rough approximations E(X>α), E(X>α), E(X<α) and E(X<α) can be rewritten
analogously by the simple substitution of “≥” with “>” and “≤ “with “<”.

Let us remark that in the above approximations, even if X≥α= Y≤α, their ap-
proximations are, in general, different due to the different directions of cutting the
membership functions of X and Y . Of course, a similar remark holds also for X<α

and Y>α. Considerations of the directions in the cuts X≤α, X<α and X≥α , X>α are
important in the definition of the rough approximations of unions and intersection
of cuts.

The rough approximations E(X≥α), E(X≥α), E(X≤α), E(X≤α) and E(X>α),
E(X>α), E(X<α), E(X<α) satisfy the following inclusion properties: for any 0 ≤
α ≤ 1

E(X≥α) ⊆ X≥α ⊆ E(X≥α), E(X≤α) ⊆ X≤α ⊆ E(X≤α),

E(X>α) ⊆ X>α E(X>α), E(X<α) ⊆ X<α ⊆ E(X<α).

Furthermore, the following complementary properties hold: for any 0 ≤ α ≤ 1

E(X≥α) = U − E(X<α), E(X≤α) = U − E(X>α),

E(X>α) = U − E(X≤α), E(X<α) = U − E(X≥α).

The following property of monotonicity with respect to sets of features also holds:
for any E1 ⊆ E2 ⊆ F and for any 0 ≤ α ≤ 1

E1(X
≥α) ⊆ E2(X

≥α), E1(X
>α) ⊆ E2(X

>α),
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E1(X
≤α) ⊆ E2(X

≤α), E1(X
<α) ⊆ E2(X

<α),

E1(X
≥α) ⊇ E2(X

≥α), E1(X
>α) ⊇ E2(X

>α),

E1(X
≤α) ⊇ E2(X

≤α), E1(X
<α) ⊇ E2(X

<α).

We consider also fuzzy rough approximations X ↑
E , X ↓

E , X
↑
E , X

↓
E , which are

fuzzy sets with membership functions defined, respectively, as follows: for any
y ∈ U ,

μ
X ↑

E
(y) = max{α ∈ [0, 1] : y ∈ E(X≥α)},

μ
X ↓

E
(y) = min{α ∈ [0, 1] : y ∈ E(X≤α)},

μ
X
↑
E
(y) = max{α ∈ [0, 1] : y ∈ E(X≥α)},

μ
X
↓

E
(y) = min{α ∈ [0, 1] : y ∈ E(X≤α)}.

μ
X ↑

E
(y) is defined as the upward lower fuzzy rough approximation of X with

respect to E and can be interpreted in the following way. For any α, β ∈ [0, 1] we
have that α < β implies X≥α ⊇ X≥β . Therefore, the greater the cutting level
α, the smaller X≥α and, consequently, the smaller also its lower approximation
E(X≥α). Thus, for each y ∈ U and for each fuzzy set X , there is a threshold
k(y), 0 ≤ k(y) ≤ μX (y), such that y ∈ E(X≥α) if α ≤ k(y), and y /∈ E(X≥α) if
α > k(y). Since k(y) = μ

X ↑
E
(y), this explains the interest of μ

X ↑
E
(y). Analogous

interpretation holds for μ
X
↑
E
(y) defined as the upward upper fuzzy rough approxi-

mation of X with respect to E .
μ

X ↓
E
(y) is defined as the downward lower fuzzy rough approximation of X with

respect to E and can be interpreted as follows. For any α, β ∈ [0, 1] we have that
α < β implies X≤α ⊆ X≤β . Therefore, the greater the cutting level α, the greater
X≤α and, consequently, its lower approximation E(X≥α). Thus, for each y ∈ U
and for each fuzzy set X , there is a threshold h(y), μX (y) ≤ h(y) ≤ 1, such
that y ∈ E(X≤α) if α ≥ h(y), and y /∈ E(X≤α) if α < h(y). We have that
h(y) = μ

X ↓
E
(y). Analogous interpretation holds for μ

X
↓

E
(y) defined as the upward

upper fuzzy rough approximation of X with respect to E .
The upward and downward lower and upper fuzzy rough approximations can

also be rewritten in the following equivalent formulation, which has been proposed
and investigated by Greco, Inuiguchi and Słowiński [8]:

μ
X ↑

E
(y) = min{μX (z) : z ∈ D+E (y)}, μ

X
↑
E
(y) = max{μX (z) : z ∈ D−E (y)},

μ
X ↓

E
(y) = max{μX (z) : z ∈ D−E (y)}, μ

X
↓

E
(y) = min{μX (z) : z ∈ D+E (y)}.
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The fuzzy rough approximationsμ
X ↑

E
(y), μ

X
↑
E
(y), μ

X ↓
E
(y) and μ

X
↓

E
(y), satisfy

the following inclusion properties: for any y ∈ U ,

μ
X ↑

E
(y) ≤ μX (y) ≤ μ

X
↑
E
(y), μ

X ↓
E
(y) ≤ μX (y) ≤ μ

X
↓
E
(y).

Furthermore, the following complementary properties hold: for any y ∈ U

μ
X ↑

E
(y) = μ

X
↓
E
(y), μ

X ↓
E
(y) = μ

X
↑
E
(y).

The following property of monotonicity with respect to sets of features also holds:
for any E1 ⊆ E2 ⊆ F and for any 0 ≤ α ≤ 1

μ
X ↑

E1

(y) ≤ μ
X ↑

E2

(y), μ
X ↓

E1

(y) ≥ μ
X ↓

E2

(y),

μ
X
↑
E1

(y) ≥ μ
X
↑
E2

(y), μ
X
↓
E1

(y) ≤ μ
X
↓
E2

(y).

Using this way of fuzzy rough approximations based on DRSA, one can induce
knowledge contained in the decision table in terms of decision rules with the fol-
lowing syntax:

“ if object y has feature fi1 in degree at least hi1 and has feature fi2
in degree at least hi2, ..., and has feature fim in degree at least him ,
then object y belongs to set X in degree at least α”,

with fi1, fi2, ..., fim ∈ F and hi1, hi2, ..., him , α ∈ [0, 1].

6 Monotonic Rough Approximation of a Fuzzy Set Versus
Classical Rough Set

What is the relationship between classical rough set and DRSA approximation of a
fuzzy set? Greco, Matarazzo and Słowiński [14] proved that the former is a particu-
lar case of the latter. In the following we demonstrate this relationship.

Any information table can be expressed in terms of a specific type of an informa-
tion base. An information base is called Boolean if ϕ : U×F → {0, 1}. A partition
F={F1,. . . ,Fr } of F , with card(Fk) ≥2 for all k=1, . . . , r , is called canonical if, for
each x ∈ U and for each Fk ⊆ F , k = 1, . . . , r , there exists only one f j ∈ Fk for
which ϕ(x, f j ) = 1 (and thus, for all fi ∈ Fk − { f j }, ϕ(x, fi )= 0). The condition
card(Fk) ≥2 for all k = 1, . . . , r , is necessary because, otherwise, we would have
at least one element of the partition Fk = { f ′} such that ϕ(x, f ′) = 1 for all x ∈ U ,
and this would mean that feature f ′ gives no information and can be removed.
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Now, we can see that any information table S=< U, Q, V , f > can be inter-
preted as a Boolean information base B=< U, F, ϕ > such that to each v ∈ Vq

corresponds one feature fqv ∈ F for which ϕ(x, fqv) = 1 if f (x, q) = v, and
ϕ(x, fqv) = 0 otherwise. Let us remark that F={F1,. . . ,Fm}, with Fq = { fqv, v ∈
Vq}, q ∈ Q, is a canonical partition of F . In other words, this means that each
information system can be viewed as an information base where each possible value
v ∈ V of attribute q corresponds to a specific feature fqv . Let us remark that the
vice versa is not true, i.e. there are Boolean information bases which cannot be
transformed into information systems because their set of attributes does not admit
any canonical partition, as shown by the following example.

Example 1. Let us consider a Boolean information base B, such that U = {x1, x2, x3},
F={ f1, f2} and function ϕ is defined by Table 1. One can see that F={{ f1, f2}} is
not a canonical partition because ϕ(x3, f1)=ϕ(x3, f2)=1, while canonical partition F
does not allow that for an object x ∈ U , ϕ(x , f1)=ϕ(x , f2)=1. Let us remark that
also for the Boolean information base B’, such that U={x1,x2,x4}, F={ f1, f2} and
function ϕ is defined by Table 2, F={{ f1, f2}} is not a canonical partition because
ϕ(x4, f1)=ϕ(x4, f2)=0, while canonical partition F does not allow that for an object
x ∈ U , ϕ(x , f1)=ϕ(x , f2)=0.

Table 1 Information base B
f1 f2

x1 0 1
x2 1 0
x4 1 1

Table 2 Information base B’
f1 f2

x1 0 1
x2 1 0
x4 0 0

♦
The above means that the rough approximation in the context of a Boolean in-

formation base is more general than the rough set approximation in the context
of an information system. Of course, the rough approximation in the context of a
fuzzy information system is even more general than that in the context of a Boolean
information base.

The equivalence between rough approximations in the context of a fuzzy infor-
mation base and the classical definition of rough approximations in the context of an
information system can be stated as follows. Let us consider an information system
and the corresponding Boolean information base; for each P ⊆ Q, let E P be the set
of all the features corresponding to values v of attributes in P . Let X be a crisp set in
U (i.e. μX : U → {0, 1} and, therefore, for any y ∈ U , μX (y) = 1 or μX (y) = 0).
Then, we have:
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E P(X≥1) = P(X≥1), E P (X≥1) = P(X≥1),

E P (X≤0) = P(U − X≥1), E P (X≤0) = P(U − X≥1).

This result proves that the rough approximation of a crisp set X within a Boolean
information base admitting a canonical partition is equivalent to the classical rough
approximation of set X within the corresponding information system. Therefore,
the classical rough approximation is a particular case of the rough approximation
within a fuzzy information system.

7 Conclusions and Further Research Directions

In this chapter, after a brief review of the classical rough set approach and its fuzzy
set extensions, we presented fuzzy set extensions of the Dominance-based Rough
Set Approach (DRSA) and dominance-based rough approximations of fuzzy sets.
The fuzzy set extensions of DRSA are based on fuzzy connectives, which is char-
acteristic for almost all fuzzy rough set approaches. The dominance-based rough
approximations of fuzzy sets infer, instead, the most cautious conclusions from
available imprecise information, without using fuzzy connectives which are always
arbitrary to some extent. Another advantage of dominance-based rough approxima-
tions of fuzzy sets is that they use only ordinal properties of membership degrees.
Knowledge induced from dominance-based rough approximations of fuzzy sets is
represented in terms of gradual decision rules. The dominance-based rough approx-
imations of fuzzy sets generalize the classical rough approximations of crisp sets, as
proved by showing that the classical rough set approach is one of its particular cases.
We believe that, due to considering ordinal character of the graduality of fuzzy sets,
without using any fuzzy connectives, dominance-based rough approximations of
fuzzy sets give a new insight into both rough sets and fuzzy sets, and enable further
generalizations of both of them. The recently proposed DRSA for fuzzy case-based
reasoning is an example of this capacity [15].
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On Group Decision Making, Consensus
Reaching, Voting and Voting Paradoxes under
Fuzzy Preferences and a Fuzzy Majority:
A Survey and some Perspectives

Janusz Kacprzyk, Sławomir Zadrożny, Mario Fedrizzi and Hannu Nurmi

Abstract Group decision making, as meant in this chapter, is the following choice
problem which proceeds in a multiperson setting. There is a group of individuals
(decisionmakers, experts, . . . ) who provide their testimonies concerning an issue
in question. These testimonies are assumed here to be individual preference rela-
tions over some set of option (alternatives, variants, . . . ). The problem is to find a
solution, i.e. an alternative or a set of alternatives, from among the feasible ones,
which best reflects the preferences of the group of individuals as a whole. We will
survey main developments in group decision making under fuzziness. First, we will
briefly outline some basic inconsistencies and negative results of group decision
making and social choice, and show how they can be alleviated by some plausible
modifications of underlying assumptions, mainly by introducing fuzzy preference
relations and, to a lesser extent, a fuzzy majority. Then, we will concentrate on how
to derive solutions under individual fuzzy preference relations, and a fuzzy majority
equated with a fuzzy linguistic quantifier (e.g., most, almost all, . . . ) and dealt with
in terms of a fuzzy logic based calculus of linguistically quantified statements or via
the ordered weighted averaging (OWA) operators. We will briefly mention that one
of solution concepts proposed can be a prototype for a wide class of group decision
making choice functions. Then, we will discuss a related issue of how to define a
“soft” degree of consensus in the group under individual fuzzy preference relations
and a fuzzy majority. Finally, we will show how fuzzy preferences can help alleviate
some voting paradoxes.

Key words: Fuzzy logic · Linguistic quantifier · Fuzzy preference relation · Fuzzy
majority · Group decision making · Social choice · Consensus

1 Introduction

In this section we will first discus the very essence of group decision making and
how fuzzy preferences and a fuzzy majority can help alleviate some inherent dif-
ficulties and make models more realistic. Then, we will briefly present some tools

H. Bustince et al., (eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation
and Models. C© Springer 2008 263
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to be used, notably how to deal with linguistically quantified statements, and with a
linguistic quantifier driven aggregation.

1.1 Group Decision Making

The essence of decision making, one of the most crucial and omnipresent human ac-
tivities, is basically to find a best alternative (option, variant, . . . ) from among some
feasible (relevant, available, . . . ) ones. It has been a subject of intensive research,
notably formal, mathematical models have been devised to formalize the human
rational behavior. Initially, this rationality has been equated with the maximization
of some utility (value) function. Unfortunately, it has become more and more clear
that the human behavior is rarely consistent with the maximization of a (expected)
utility function, and some attempts to make decision making models more human
consistent have been made, notably via a plausible modification of assumptions on,
e.g., human preferences, axioms underlying the (expected) utility based approach,
etc. – cf. Aizerman [1], many contributions in Kacprzyk and Fedrizzi [24], Kacprzyk
and Roubens [51], Nurmi [34], etc. Potentials of fuzzy sets, in particular fuzzy
relations, have been recognized quite early as well, cf. Blin [10], Blin and Whin-
ston [11].

However, decision making in real world usually proceeds under multiple criteria,
decisionmakers, stages, etc. In this paper we basically consider the case of multi-
person decision making, more specifically group, practically from the perspective of
social choice, under some fuzification of preferences and majority. We assume that
there is a set of individuals who provide their testimonies assumed to be preferences
over the set of alternatives. The problem is to find a solution, i.e. an alternative (or a
set of alternatives) which is best acceptable by the group of individuals as a whole.
For a different point of departure, involving choice sets or utility functions, we may
refer the interested reader to, e.g., Kim [29], Salles [37], etc.

Since its very beginning group decision making has been plagued by negative
results. Their essence is that no “rational” choice procedure satisfies all “natural”,
or plausible, requirements; so, each choice procedure has at least one serious draw-
back. By far the best known negative result is the so-called Arrow’s impossibility
theorem (cf. Arrow [2] or Kelly [56]). Another well known negative results are due
to Gibbard and Satterthwaite, McKelvey, Schofield, etc. – cf. Nurmi [34]. Basi-
cally, all these negative results might be summarized as: no matter which group
choice procedure we employed, it would satisfy one set of plausible conditions
but not another set of equally plausible ones. Unfortunately, this general property
pertains to all possible choice procedures, so that attempts to develop new, more
sophisticated choice procedures do not seem very promising in this respect. Much
more promising seems to be to modify some basic assumptions underlying the
group decision making process. This line of reasoning is also basically assumed
here.

A notable research direction is here based on the introduction of an individual and
social fuzzy preference relation. Suppose that we have a set of n ≥ 2 alternatives,
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S = {s1, . . . , sn}, and a set of m ≥ 2 individuals, E = {1, . . . ,m}. Then, an
individual’s k ∈ E individual fuzzy preference relation in S × S assigns a value
in the unit interval for the preference of one alternative over another.

Normally, there are also some conditions to be satisfied, as, e.g., reflexivity, con-
nectivity, (max-min) transitivity, etc. One should however note that it is not clear
which of these “natural” properties of preference relations should be assumed. We
will briefly discuss this issue in Sect. 2, but the interested reader should consult, e.g.,
Salles [37]. Moreover, a deep discussion is given in, e.g., Fodor and Roubens’ [15],
and also in De Baets et al.’s paper in this volume.

In this paper we assume that the individual and social fuzzy preference relations
are defined in S × S, i.e. assign to each pair of alternatives a strength of preference
of one over another as a value from [0, 1]. Sometimes a better solution would be
to assume the values of the strength of preference belonging to some ordered set
(e.g. a set of linguistic values). This gives rise to some non-standard notions of
soft preferences, orderings, etc. The best source for information on these and other
related topics is Salles [37], and among the new approaches, the ones due to Her-
rera et al. [27, 28, 29, 30, 31, 32, 33] are particularly worth mentioning. The fuzzy
preferences will be employed only instrumentally, and we will not discuss them and
their properties in more detail.

Another basic element underlying group decision making is the concept of a ma-
jority – notice that a solution is to be an alternative (or alternatives) best acceptable
by the group as a whole, that is by (at least!) most of its members since in practically
no real nontrivial situation it would be accepted by all.

Some of the above mentioned problems, or negative result, with group decision
making are closely related to too strict a representation of majority (e.g., at least a
half, at least 2/3, . . . ). A natural line of reasoning is to somehow make that strict
concept of majority closer to its real human perception by making it more vague.
A good, often cited example in a biological context may be found in Loewer and
Laddaga [62]:

“ . . . It can correctly be said that there is a consensus among biologists that
Darwinian natural selection is an important cause of evolution though there
is currently no consensus concerning Gould’s hypothesis of speciation. This
means that there is a widespread agreement among biologists concerning the
first matter but disagreement concerning the second . . . ”

and it is clear that a rigid majority as, e.g., more than 75% would evidently not
reflect the essence of the above statement. However, it should be noted that there are
naturally situations when a strict majority is necessary, for obvious reasons, as in all
political elections.

A natural manifestations of such a “soft” majority are the so-called linguistic
quantifiers as, e.g., most, almost all, much more than a half, etc. Such linguistic
quantifiers can be, fortunately enough, dealt with by fuzzy-logic-based calculi of lin-
guistically quantified statements as proposed by Zadeh [86]. Moreover, Yager’s [84]
ordered weighted averaging (OWA) operators can be used for this purpose (cf. Yager
and Kacprzyk [85]), and also some other tools as, e.g., the Choquet integral.
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In this paper we will present how fuzzy preference relations and fuzzy majorities
can be employed for deriving solution of group decision making, and of degrees
of consensus. We also mention some approaches to the alleviation of some voting
paradoxes.

1.2 Fuzzy Linguistic Quantifiers and the Ordered Weighted
Averaging (OWA) Operators for a Linguistic Quantifier
Driven Aggregation

Our notation is standard. A fuzzy set A in X = {x}, will be characterized and
equated with its membership function μA : X −→ [0, 1] such that μA(x) ∈ [0, 1]
is the grade of membership of x ∈ X in A, from full membership to full nonmem-
bership, through all intermediate values. For a finite X = {x1, . . . , xn} we write
A = μA(x1)/x1 + · · · + μA(xn)/xn . Moreover, we denote a ∧ b = min(a, b) and
a ∨ b = max(a, b). Other, more specific notation will be introduced when needed.

A linguistically quantified statement, e.g. “most experts are convinced”, may be
generally written as

Qy’s are F (1)

where Q is a linguistic quantifier (e.g., most), Y = {y} is a set of objects (e.g.,
experts), and F is a property (e.g., convinced).

We may assign to the particular y’s (objects) a different importance (relevance,
competence, . . . ), B , which may be added to (1) yielding a linguistically quantified
statement with importance qualification generally written as

QBy ′s are F (2)

which may be exemplified by “most (Q) of the important (B) experts (y’s) are con-
vinced (F)”.

From our point of view, the main problem is to find the truth of such linguisti-
cally quantified statements, i.e. truth(Qy’s are F) or truth(QBy’s are F) knowing
truth(y is F), for each y ∈ Y . One can use different calculi but we will consider
Zadeh’s [86] and Yager’s [84] OWA operators based calculi only.

1.2.1 A Fuzzy-logic-based Calculus of Linguistically Quantified Statements

In Zadeh’s [86] method, a fuzzy linguistic quantifier Q is assumed to be a fuzzy set
defined in [0, 1]. For instance, Q = “most” may be given as

μQ(x) =
⎧

⎨

⎩

1 for x ≥ 0.8
2x − 0.6 for 0.3 < x < 0.8
0 for x ≤ 0.3

(3)
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which may be meant as that if at least 80% of some elements satisfy a property, then
most of them certainly (to degree 1) satisfy it, when less than 30% of them satisfy it,
then most of them certainly do not satisfy it (satisfy to degree 0), and between 30%
and 80% – the more of them satisfy it the higher the degree of satisfaction by most
of the elements.

This is a proportional fuzzy linguistic quantifier (e.g., most, almost all, etc.), and
we will deal with such quantifiers only since they are obviously more important for
modeling a fuzzy majority than the absolute quantifiers (e.g., about 5, much more
than 10, etc.).

Property F is defined as a fuzzy set in Y . For instance, if Y = {X,W, Z}
is the set of experts and F is a property “convinced”, then F = “convinced”
= 0.1/X + 0.6/W + 0.8/Z which means that expert X is convinced to degree 0.1,
W to degree 0.6 and Z to degree 0.8. If now Y = {y1, . . . , yp}, then it is assumed
that truth(yi is F) = μF (yi ), i = 1, . . . , p.

Then, we follow the two steps:

r = 1

p

p
∑

i=1

μF (yi ) (4)

truth(Qy’s are F) = μQ(r) (5)

In the case of importance qualification, B is defined as a fuzzy set in Y , and
μB(yi ) ∈ [0, 1] is a degree of importance of yi : from 1 for definitely important
to 0 for definitely unimportant, through all intermediate values. We rewrite first
“QBy’s are F” as “Q(B and F)y’s are B” which leads to the following counter-
parts of (4) and (5):

r ′ =
∑p

i=1[μB(yi ) ∧ μF (yi)]
∑p

i=1 μB(yi)
(6)

truth(QBY ′s are F) = μQ(r
′) (7)

Example 1. Let Y = “experts”= {X,Y, Z}, F = “convinced”= 0.1/X + 0.6/Y +
0.8/Z , Q = “most” be given by (3), B = “important” = 0.2/X + 0.5/Y + 0.6/Z .
Then: r = 0.5 and r ′ = 0.92, and truth(“most experts are convinced”)=0.4 and
truth(“most of the important experts are convinced”)=1.

The method presented is simple and efficient, and has proven to be useful in a
multitude of cases, also in this paper.
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1.2.2 Ordered Weighted Averaging (OWA) Operators

Yager [84] (see also Yager and Kacprzyk’s [85]) has proposed a special class of
aggregation operators, called the ordered weighted averaging (or OWA, for short)
operators, which seem to provide an even better and more general aggregation in the
sense of being able to simply and uniformly model a large class of fuzzy linguistic
quantifiers.

An OWA operator of dimension p is a mapping F : [0, 1]p → [0, 1] if associated
with F is a weighting vector W = [w1, . . . , wp]T such that: wi ∈ [0, 1], w1+· · ·+
wp = 1, and

F(x1, . . . , x p) = w1b1 + · · · +wpbp (8)

where bi is the i -th largest element among {x1, . . . , x p}. B is called an ordered
argument vector if each bi ∈ [0, 1], and j > i implies bi ≥ b j , i = 1, . . . , p.

Then

F(x1, . . . , x p) = W T B (9)

Example 2. Let W T = [0.2, 0.3, 0.1, 0.4], and calculate F(0.6, 1.0, 0.3, 0.5). Thus,
BT = [1.0, 0.6, 0.5, 0.3], and F(0.6, 1.0, 0.3, 0.5) = W T B = 0.55; and F(0.0, 0.7,
0.1, 0.2) = 0.21.

For us it is relevant how the OWA weights are found from the membership func-
tion of a fuzzy linguistic quantifier Q; an early approach given in Yager [84] may
be used here:

wk = μQ(k/p)− μQ((k − 1)/p) for k = 1, . . . , p (10)

Some examples of the wi ’s associated with the particular quantifiers are:

• If wp = 1, and wi = 0, for each i �= p, then this corresponds to Q = “all”;
• If wi = 1 for i = 1, and wi = 0, for each i �= 1, then this corresponds to

Q = “at least one”,
• If wi = 1/p, for each i = 1, 2, . . . , p, then this corresponds to the arithmetic

mean,

and the intermediate cases as, e.g., a half, most, much more than 75%, a few, almost
all, etc. may be obtained by a suitable choice of the wi ’s between the above two
extremes.

Thus, we will write

truth(Qy ′s are F) = OWAQ(truth (yi is F)) = W T B (11)

An important, yet difficult problem is the OWA operators with importance quali-
fication. Suppose that we have a vector of data (pieces of evidence)A = [a1, . . . , an],
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and a vector of importances V = [v1, . . . , vn ] such that vi ∈ [0, 1] is the impor-
tance of ai , i = 1, . . . , n, (v1 + · · · + vn �= 1, in general), and the OWA weights
W = [w1, . . . , wn]T corresponding to Q is determined via (10).

The case of an OWA operator with importance qualification, OWAV , is unfortu-
nately not trivial. In a popular Yager’s [84] approach to be used here, the problem
boils down to some redefinition of the OWA’s weightswi intowi . Then, (8) becomes

FV (a1, . . . , an) = W
T · B =

n
∑

j=1

w j b j (12)

We order first the pieces of evidence ai , i = 1, . . . , n, in descending order to
obtain B such that b j is the j -th largest element of {a1, . . . , an}. Next, we denote
by u j the importance of b j , i.e. of the ai which is the j -th largest; i, j = 1, . . . , n.
Finally, the new weights W are defined as

w j = μQ(

∑ j
k=1 uk

∑n
k=1 uk

)− μQ(

∑ j−1
k=1 uk

∑n
k=1 uk

) (13)

Example 3. Suppose that A = [a1, a2, a3, a4] = [0.7, 1, 0.5, 0.6], and V = [u1, u2,

u3, u4] = [1, 0.6, 0.5, 0.9]. Q = “most” is given by (3).
Then, B = [b1, b2, b3, b4] = [1, 0.7, 0.6, 0.5], and W = [0.04, 0.24, 0.41, 0.31],

and FI (A) =∑4
j=1 w j b j = 0.067 · 1+ 0.4 · 0.7+ 0.333 · 0.6+ 0.2 · 0.5= 0.6468.

We have now the necessary formal means to proceed to our discussion of group
decision making and consensus formation models under fuzzy preferences and a
fuzzy majority.

Finally, let us mention that OWA-like aggregation operators may be defined in
an ordinal setting, i.e. for non-numeric data (which are only ordered), and we will
refer the interested reader to, e.g., Delgado, Verdegay and Vila [17] or Herrera,
Herrera-Viedma and Verdegay [28], and some other of their later papers.

2 Group Decision Making under Fuzzy Preferences
and a Fuzzy Majority: General Remarks

Group decision making (equated here with social choice) proceeds in the following
setting. We have a set of n ≥ 2 alternatives, S = {s1, . . . , sn}, and a set of m ≥ 2
individuals, E = {1, . . . ,m}. Each individual k ∈ E provides his or her testimony
as to the alternatives in S, assumed to be individual fuzzy preference relations de-
fined over S (i.e. in S × S). Fuzzy preference relations are employed to reflect an
omnipresent fact that the preferences may be not clear-cut so that conventional non-
fuzzy preference relations may be not adequate (see, e.g., many articles in Kacprzyk
and Roubens [51] or Kacprzyk, Nurmi and Fedrizzi [27]).
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An individual fuzzy preference relation of individual k, Rk , is given by its mem-
bership function μRk : S × S −→ [0, 1] such that

μRk (si , s j ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1 if si is definitely preferred to s j

c ∈ (0.5, 1) if si is slightly preferred to s j

0.5 in the case of indifference
d ∈ (0, 0.5) if s j is slightly preferred to si

0 if s j is definitely preferred to si

(14)

We will also use a special type of an individual fuzzy preference relation, a fuzzy
tournament, but this will be explained later on.

If card S is small enough (as assumed here), an individual fuzzy preference re-
lation of individual k, Rk , may conveniently be represented by an n × n matrix
Rk = [rk

i j ], such that rk
i j = μRk (si , s j ); i, j = 1, . . . , n; k = 1, . . . ,m. Rk is com-

monly assumed (also here) to be reciprocal in that rk
i j + rk

j i = 1; moreover, it is also

normally assumed that rk
ii = 0, for all i, k; for a different, more justified convention,

cf. Garcı́a-Lapresta and Llamazares [16]. Notice that we do not mention here other
properties of (individual) fuzzy preference relations which are often discussed (cf.
Salles [37]) but which will not be relevant to our discussion. Moreover, we will not
use here a more sophisticated concept of a fuzzy preference systems proposed by
De Baets et al. which is presented in their paper in this volume. The reasoning is in
this case principally the same.

Basically, two lines of reasoning may be followed here (cf. Kacprzyk [36, 37, 38,
39, 19, 41]):

• a direct approach: {R1, . . . , Rm} −→ solution, that is, a solution is derived
directly (without any intermediate steps) just from the set of individual fuzzy
preference relations, and

• an indirect approach: {R1, . . . , Rm} −→ R −→ solution, that is, from the set
of individual fuzzy preference relations we form first a social fuzzy preference
relation, R (to be defined later), which is then used to find a solution.

A solution is here, unfortunately, not clearly understood – see, e.g., Nurmi [33,
69, 70, 71, 34] for diverse solution concepts. In this paper we will only sketch
the derivation of some more popular solution concepts, and this will show to the
reader not only the essence of the particular solution concept but how a fuzzi-
fication may be performed so that the reader can eventually fuzzify other crisp
solution concepts that may be found in the literature. More specifically, we will
show the derivation of some fuzzy cores and minimax sets for the direct approach,
and some fuzzy consensus winners for the indirect approach. In addition to fuzzy
preference relations, which are usually employed, we will also use a fuzzy major-
ity represented by a linguistic quantifier as proposed by Kacprzyk [36, 37, 38, 39,
19, 41].

First, we will consider the case of fuzzy preferences only, and then we will add a
fuzzy majority which is a more interesting case for our purposes.
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3 Group Decision Making under Fuzzy Preferences

In this section we will only assume that we have individual fuzzy preferences and a
non-fuzzy majority. We will present some solution concepts that are derived using
the above mentioned direct and indirect approach, i.e. directly from individual fuzzy
preference relations or via a social preference relation.

3.1 Solutions Based on Individual Fuzzy Preference Relations

Let us first consider solution concepts that do not require any preference aggregation
at all. One of the best solution concepts is that of a core or a set of undominated
alternatives. Suppose that the nonfuzzy required majority be r (e.g., at least 50%).

Definition 1. An alternative x ∈ S belongs to the core iff there is no other alternative
y ∈ S that defeats x by the required majority r .

We can extend the notion of a core to cover fuzzy individual preference relations
by defining the fuzzy α-core as follows (cf. Nurmi [33]):

Definition 2. An alternative si ∈ S belongs to the fuzzy α-core Sα iff there exists no
other alternative s j ∈ S such that r j i > α for at least r individuals.

It is easy to see that if the nonfuzzy core is nonempty, so is Sα for some
α ∈ (0, 1]. In other words, ∃α ∈ (0, 1]: core ⊂ Sα . Moreover, for any two values
α1, α2 ∈ (0, 1] such that α1 < α2, we have:

Sα1 ⊆ Sα2

The intuitive interpretation of the fuzzy α-core is obvious: an alternative is a
member of Sα iff a sufficient majority of voters does not feel strongly enough
against it.

Another nonfuzzy solution concept with much intuitive appeal is a minimax set.
In a nonfuzzy setting it is defined as follows:

Definition 3. For each x, y ∈ S denote the number of individuals preferring x to y
by n(x, y). Then define

v(x) = max
y

n(y, x)

and

n∗ = min
x

v(x)

Now the minimax set is

Q(n∗) = {x | v(x) = n∗}
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Thus, Q(n∗) consists of those alternatives that in pairwise comparison with any
other alternative are defeated by no more than n∗ votes. Obviously, if n∗ < m/2 ,
where m is the number of individuals, then Q(n∗) is singleton and x ∈ Q(n∗) is the
core if the simple majority rule is being applied.

Analogously, we can define a the minimax degree set Q(β) as follows. Given
si , s j ∈ S and let, for individuals k = 1, . . . ,m:

vk
D(x j ) = max

i
ri j

We now define

vD(x j ) = max
k

vk
D(x j )

Let min j vD(x j ) = β. Then

Q(β) = {x j | vD(x j ) = β}

For properties of the minimax degree set, we refer to Nurmi [33, 69, 70].
Another concept that is analogous to the nonfuzzy minimax set is a minimax

opposition set. Let ni j be the number of those individuals for whom ri j > r j i and
let v f (x j ) = maxi ni j . Denote by v̄ f the minimum of v f (x j ) with respect to j , i.e.

v̄ f = min jv f (x j )

Then: Q(v f ) = {x j | v f (x j ) = v̄ f }.
But, clearly, Q(v f ) = Q(n∗) since ri j > r j i implies that the individual prefers

alternative xi to x j . Similarly, the preference of xi over x j implies that ri j > r j i .
Consequently, the minimax opposition set does not take into account the intensity
of preferences as expressed in the individual preference relation matrices.

A more general solution concept, the α-minimax set (cf. Nurmi [33]) denoted
Qα(vαf ), is defined as follows. Let nα(xi , x j ) be the number of individuals for whom
ri j ≤ α for some value of α ∈ [0, 0.5). We now define ∀xi ∈ S : vαf (xi ) =
max j nα(xi , x j ) and v̄αf = mini v

α
f (xi ). Then

Qα(vαf ) = {xi | vαf (xi ) = v̄αf }

It can be shown that Qα(vαf ) ⊆ Q(n∗) (see [33]).

3.1.1 Fuzzy Tournaments

One purpose of studying fuzzy tournaments is to overcome the difficulties inherent
in the use of conventional solution concepts, namely the fact that the latter tend
to produce too large solution sets and are therefore not decisive enough. Another
purpose of our discussion is to apply analogues of the nonfuzzy solutions to contexts



On Group Decision Making, Consensus Reaching, Voting and Voting Paradoxes 273

where the opinions of individuals can be represented by more general constructs
than just connected and transitive preference relations (cf., e.g., [51]).

Let us take a look at a few solution concepts of nonfuzzy tournaments, mostly
those proposed by Nurmi and Kacprzyk [35].

Definition 4. Given the alternative set S, a tournament P on S is a complete and
asymmetric relation on S.

In the context of group decision making P can be viewed as a strict preference
relation. When S is of small cardinality, P can be expressed as a matrix [pi j ], pi j ∈
{0, 1} so that pi j = 1 if the alternative represented by row i is preferred to that
represented by column j , and pi j = 0 if the alternative represented by column j is
preferred to that represented by row i .

Suppose that each individual has a complete, transitive and asymmetric prefer-
ence relation over S, and that the number of individuals is odd. Then a tournament
can be constructed through pairwise comparisons of alternatives. In the ensuing
tournament alternative si is preferred to s j iff the number of individuals preferring
the former to the latter is larger than the number of individual preferring s j to si .

Perhaps the best-known solution concept of tournaments is the Condorcet winner.

Definition 5. The Condorcet winner is an alternative which is preferred to all other
alternatives by a majority.

The main problem with this solution concept is that it does not always exist.

Definition 6. The Copeland winning set UCC consists of those alternatives that
have the largest number of 1s in their corresponding rows in the tournament matrix.

In other words, the Copeland winners defeat more alternatives than any other
alternatives do.

Definition 7. The uncovered set is defined by means of a binary relation of covering.
An alternative si covers another alternative s j iff si defeats s j and everything that
s j defeats. The uncovered set consists of those alternatives that are covered by no
alternatives.

Definition 8. The Banks set is the set of end-points of Banks chains. Starting from
any alternative si the Banks chain is constructed as follows. First one looks for an
alternative that defeats si . Suppose that such an alternative exists and is s j (if one
does not exist, then of course si is the Condorcet winner). Next one looks for another
alternative that defeats both si and s j , etc. Eventually, no alternative can be found
that would defeat all previous ones in the chain starting from si . The last alternative
which defeats all previous ones is the end-point of the Banks chain starting from si .
The Banks set is then the set of all those end points.

The following relationships hold between the above mentioned solutions (cf.
[34]):

• all solutions converge to the Condorcet winner when one exists,
• the uncovered set includes the Copeland winning set and the Banks set,
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• when S contains less than 7 elements, the uncovered set and the Banks set
coincide, and

• when the cardinality of S exceeds 12, the Banks set and the Copeland winning
set may be distinct; however, they both always belong to the uncovered set.

Given a group E of m individuals, a collective fuzzy tournament F = [ri j ] can
be obtained through pairwise comparisons of alternatives so that

ri j = card{k ∈ E | si Pks j }
m

where Pk is a nonfuzzy tournament representing the preferences of individual k.
Let us now define a strong fuzzy covering relation CS ⊂ S × S as follows

∀i, j, l ∈ {1, . . . , n} : si CSs j ⇔ ril ≥ r j l & ri j > r j i

Clearly, the strong fuzzy covering relation implies the nonfuzzy covering rela-
tion, but not vice versa. The set of CS-undominated alternatives is denoted by UCS .

Let us first define:

Definition 9. The weak fuzzy covering relation CW ⊂ S × S is defined as follows:

∀si , s j ∈ S :

si CW s j ⇔ ri j > r j i

& card{sl ∈ S : ril > r j l} ≥ card{sp ∈ S : r j p > rip}

Obviously, si CSs j implies si CW s j , but not conversely. Thus, the set of CW -
undominated alternatives, UCW , is always a subset of UCS . Moreover, the Copeland
winning set is always included in UCS , but not necessarily in UCW (see [35]).

If one is looking for a solution that is a plausible subset of the uncovered set, then
UCW is not appropriate since it is possible that UCC is not always a subset of the
uncovered set, let alone the Banks set.

Another solution concept, the α-uncovered set, is based on the individual fuzzy
preference tournament matrices. One first defines the fuzzy domination relation D
and an α-covering relation Cα ⊆ S × S as follows.

Definition 10. si Ds j iff at least 50% of the individuals prefer si to s j to a degree of
at least 0.5.

Definition 11. If si Cαs j , then si Ds j and si Dαsk , for all sk ∈ S for which s j Dαsk .

Definition 12. The α-uncovered set consists of those alternatives that are not α-
covered by any other alternative.

An obvious candidate for a plausible solution concept for fuzzy tournaments is
an α-uncovered set with the smallest value of α.

Other fuzzy solution concepts analogous to their nonfuzzy counterparts can be
defined (see Nurmi and Kacprzyk [35]). For example, the α-Banks set can be con-
structed by imposing the restriction that the majority of voters prefer the next alter-
native to the previous one in the Banks chain with intensity of at least α.
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3.2 Solutions Based on a Social Fuzzy Preference Relation

The derivation of these solution concepts requires first a derivation of a social fuzzy
preference relation.

Bezdek, Spillman and Spillman [8, 9] discuss the problem of finding the set of
undominated alternatives or other stable outcomes given a collective fuzzy prefer-
ence ordering over the alternative set; see also Nurmi [33].

We now define a couple of solution concepts for voting games with fuzzy collec-
tive preference relation.

Definition 13. The set Sα of α-consensus winners is defined as: si ∈ Sα iff ∀s j �=
si : ri j ≥ α, with 0.5 < α ≤ 1

Whenever Sα is nonempty, it is a singleton, but it does not always exist. Thus,
it may be useful to find other solution concepts that specify a nonempty alternative
sets even when Sα is empty. One possible candidate is a straightforward extension
of Kramer’s minimax set. We call it a set of minimax consensus winners, denote it
by SM and define as follows.

Definition 14. Let r̄ j = maxi ri j and r̄ = min j maxi ri j . Then si ∈ SM (the set of
minimax consensus winners) iff r̄i = r̄ .

Clearly SM is always nonempty, but not necessarily a singleton. As a solution set
it has the same interpretation as Kramer’s minimax set: it consists of those alterna-
tives which, when confronted with their toughest competitors, fare best, i.e. win by
the largest score (if r̄ ≤ 0.5) or lose by the smallest one (if r̄ > 0.5).

These solution concepts are based on the social preference relation matrix. Other
ones can be obtained in several ways. For instance, one may start from a preference
profile over a set of alternatives and construct the [ri j ] matrix as follows:

ri j =
{ 1

m

m
k=1ak

i j for i �= j
ri j = 0 for i = j

where ak
i j = 1 if si is strictly preferred to s j by voter k, and ak

i j = 0 otherwise.
There is nothing “fuzzy” in the above solutions. As the method of constructing

the social preference relation matrix suggests, the starting point can just be the or-
dinary preference profile as well.

4 Group Decision Making under Fuzzy Preferences
and a Fuzzy Majority

In this section we will consider some solution concepts of group decision making
but when we both have fuzzy preference relations and a fuzzy majority, We will also
follow here the two directions, i.e. by using the individual fuzzy preference relations
only (a direct approach), and by deriving first a social fuzzy preference relation, and
using it to derive solutions (an indirect approach).
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4.1 Direct Derivation of a Solution

We will first employ the direct approach, i.e. {R1, . . . , Rm} −→ solution to derive
two popular solution concepts: fuzzy cores and minimax sets.

4.1.1 Fuzzy Cores

The core is a very intuitively appealing and often used solution concept. Convention-
ally, the core is defined as a set of undominated alternatives, i.e. those not defeated
in pairwise comparisons by a required majority (strict!) r ≤ m, i.e.

C = {s j ∈ S : ¬∃si ∈ S such that rk
i j > 0.5 for at least r individuals} (15)

The first attempt at a fuzzification of the core is due to Nurmi [33] who has
extended it to the fuzzy α-core defined as

Cα = {s j ∈ S : ¬∃si ∈ S such that rk
i j > α ≥ 0.5 for at least r individuals} (16)

that is, as a set of alternatives not sufficiently (at least to degree α) defeated by the
required (still strict!) majority r ≤ m.

As we have already indicated, in many group decision making related situations
is may be more adequate to assume that the required majority is imprecisely spec-
ified as, e.g., given by a fuzzy linguistic quantifier as, say, most. This concept of a
fuzzy majority has been proposed by Kacprzyk [36, 37, 38, 39, 19, 41], and it has
turned out that it can be quite useful and adequate.

To employ a fuzzy majority to extend (fuzzify) the core, we start by denoting

hk
i j =

{

1 if rk
i j < 0.5

0 otherwise
(17)

where here and later on in this section, if not otherwise specified, i, j = 1, . . . , n
and k = 1, . . . ,m.

Thus, hk
i j just reflects if alternative s j defeats (in pairwise comparison) alternative

si (hk
i j = 1) or not (hk

i j = 0).
Then, we calculate

hk
j =

1

n − 1

n
∑

i=1,i �= j

hk
i j (18)

which is clearly the extent, from 0 to 1, to which individual k is not against alter-
native s j , where 0 standing for definitely against to 1 standing for definitely not
against, through all intermediate values.
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Next, we calculate

h j = 1

m

m
∑

k=1

hk
j (19)

which expresses to what extent, from 0 to 1 as in the case of (18), all the individuals
are not against alternative s j .

And, finally, we calculate

v
j
Q = μQ(h j ) (20)

is to what extent, from 0 to 1 as before, Q (say, most) individuals are not against
alternative s j .

The fuzzy Q-core is now defined (cf. Kacprzyk [36, 37, 38, 39, 19, 41]) as a fuzzy
set

CQ = v1
Q/s1 + · · · + vn

Q/sn (21)

i.e. as a fuzzy set of alternatives that are not defeated by Q (say, most) individuals.
Notice that in the above basic definition of a fuzzy Q-core we do not take into

consideration to what degrees those defeats of one alternative by another are. They
can be accounted for in a couple of plausible ways.

First and most straightforward is the introduction of a threshold into the degree
of defeat in (17), for instance by denoting

hk
i j (α) =

{

1 if rk
i j < α ≤ 0.5

0 otherwise
(22)

where, again, i, j = 1, . . . , n and k = 1, . . . ,m. Thus, hk
i j (α) just reflects if alter-

native s j sufficiently (i.e. at least to degree 1− α) defeats (in pairwise comparison)
alternative si or not.

We can also explicitly introduce the strength of defeat into (17). Namely, we can
introduce a function exemplified by

ĥk
i j =

{

2(0.5− rk
i j ) if rk

i j < 0.5
0 otherwise

(23)

where, again, i, j = 1, . . . , n and k = 1, . . . ,m. Thus, ĥk
i j just reflects how strongly

(from 0 to 1) alternative s j defeats (in pairwise comparison) alternative si .
Then, by following the same steps (18) – (21), we can derive an α/Q-fuzzy core

and an s/Q-fuzzy core.

Example 4. Suppose that we have four individuals, k = 1, 2, 3, 4, whose individual
fuzzy preference relations are:
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R1 =

j = 1 2 3 4
i = 1 0 0.3 0.7 0.1

2 0.7 0 0.6 0.6
3 0.3 0.4 0 0.2
4 0.9 0.4 0.8 0

R2 =

j = 1 2 3 4
i = 1 0 0.4 0.6 0.2

2 0.6 0 0.7 0.4
3 0.4 0.3 0 0.1
4 0.8 0.6 0.9 0

R3 =

j = 1 2 3 4
i = 1 0 0.5 0.7 0.1

2 0.5 0 0.8 0.4
3 0.3 0.2 0 0.2
4 1 0.6 0.8 0

R4 =

j = 1 2 3 4
i = 1 0 0.4 0.7 0.8

2 0.6 0 0.4 0.3
3 0.3 0.6 0 0.1
4 0.7 0.7 0.9 0

Suppose now that the fuzzy linguistic quantifier is Q = “most” defined by (3).
Then, say:

C“most”
∼= 0.06/s1 + 0.56/s2 + 1/s4

C0.3/“most”
∼= 0.56/s4

Cs/“most”
∼= 0.36/s4

to be meant as follows: in case of C“most” alternative s1 belongs to to the fuzzy Q-
core to the extent 0.06. s2 to the extent 0.56, and s4 to the extent 1, and analogously
for the C0.3/“most” and Cs/“most”. Notice that though the results obtained for the
particular cores are different, for obvious reasons, s4 is clearly the best choice which
is evident if we examine the given individual fuzzy preference relations.

Clearly, the fuzzy linguistic quantifier based aggregation of partial scores in the
above definitions of the fuzzy Q-core, α/Q-core and s/Q-core, may be replaced by
an ordered weighted averaging (OWA) operator based aggregation given by (10) and
(11). This was proposed by Fedrizzi, Kacprzyk and Nurmi [19], and then followed
by some other authors. The results obtained by using the OWA operators are similar
to those for the usual fuzzy linguistic quantifiers.

Finally, let us notice that the individuals and alternatives may be assigned vari-
able importance (competence) and relevance, respectively, and then the OWA based
aggregation with importance qualification may be used. This will not change how-
ever the essence of the fuzzy cores defined above, and will not be discussed here for
lack of space.

4.1.2 Minimax Sets

Another intuitively justified solution concept may be the minimax (opposition) set
which may be defined for our purposes as follows.

Let w(si , s j ) ∈ {1, 2, . . . ,m} be the number of individuals who prefer alternative
s j to alternative si , i.e. for whom rk

i j < 0.5.
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If now

v(si ) = max
j=1,...,n

w(si , s j ) (24)

and

v∗ = min
i=1,...,n

v(si ) (25)

then the minimax set is defined as

M(v∗) = {si ∈ S : v(si ) = v∗} (26)

i.e. as a (nonfuzzy) set of alternatives which in pairwise comparisons with any other
alternative are defeated by no more than v∗ individuals, hence by the least number
of individuals.

Nurmi [33] extends the minimax set, similarly in spirit to his extension of the
core (16), to the α-minimax set as follows. Let wα(si , s j ) ∈ {1, 2, . . . ,m} be the
number of individuals who prefer alternative s j to alternative si at least to degree
1− α, i.e. for whom rk

i j < α ≤ 0.5.
If now

vα(si ) = max
j=1,...,n

wα(si , s j ) (27)

and

v∗α = min
i=1,...,n

vα(si ) (28)

then the α-minimax set is defined as

Mα(v
∗
α) = {si ∈ S : vα(si ) = v∗α} (29)

i.e. as a (nonfuzzy) set of alternatives which in pairwise comparisons with any other
alternative are defeated (at least to degree 1 − α) by no more than v∗ individuals,
hence by the least number of individuals.

A fuzzy majority was introduced into the above definitions of minimax sets by
Kacprzyk [36, 37, 38, 39, 19] as follows.

We start with (17), i.e.

hk
i j =

{

1 if rk
i j < 0.5

0 otherwise
(30)
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and

hk
i =

1

n − 1

n
∑

j=1, j �=i

hk
i j (31)

is the extent, between 0 and 1, to which individual k is against alternative si .
Then

hi = 1

m

m
∑

k=1

hk
i (32)

is the extent, between 0 and 1, to which all the individuals are against alternative si .
Next

t Q
i = μQ(hi ) (33)

is the extent, from 0 to 1, to which Q (say, most) individuals are against alternative
si , and

t∗Q = min
i=1,...,n

t Q
i (34)

is the least defeat of any alternative by Q individuals.
Finally, the Q-minimax set is

MQ (t
∗
Q) = {si ∈ S : t Q

i = t∗Q} (35)

And analogously as for the α/Q-core and s/Q-core, we can explicitly introduce
the degree of defeat α < 0.5 and s into the definition of the Q-minimax set.

Example 5. For the same four individual fuzzy preference relations R1, . . . , R4 as
in Example 4, we obtain for instance:

M“most”(0) = {s4}
M0.3/“most”(0) = {s1, s2, s4}

Ms/“most” = {s1, s2, s4}

The OWA based aggregation can also be employed for the derivation of fuzzy
minimax sets given above. And, again, the results obtained by using the OWA based
aggregation are similar to those obtained by directly employing Zadeh’s [86] calcu-
lus of linguistically quantified statements.
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4.2 Indirect Derivation of a Solution – the Consensus Winner

Now we follow the scheme: {R1, . . . , Rm} −→ R −→ solution i.e. from the
individual fuzzy preference relations we determine first a social fuzzy preference
relation, R, which is similar in spirit to its individual counterpart but concerns the
whole group of individuals, and then find a solution from such a social fuzzy pref-
erence relation.

It is easy to notice that the above direct derivation scheme involves in fact two
problems:

• how to find a social fuzzy preference relation from the individual fuzzy prefer-
ence relations, i.e.

{R1, . . . , Rm} −→ R

• how to find a solution from the social fuzzy preference relation, i.e.

R −→ solution

In this paper we will not deal in more detail with the first step, i.e. {R1, . . . , Rm}
−→ R, and assume a (most) straightforward alternative that the social fuzzy pref-
erence relation R = [ri j ] is given by

ri j =
{ 1

m

∑m
k=1 ak

i j if i �= j
0 otherwise

(36)

where

ak
i j =

{

1 if rk
i j > 0.5

0 otherwise
(37)

Notice that R obtained via (36) need not be reciprocal, i.e. ri j �= 1 − r j i , but it
can be shown that ri j ≤ 1− r j i , for each i, j = 1, . . . , n.

We will discuss now the second step, i.e. R −→ solution, i.e. how to determine
a solution from a social fuzzy preference relation.

A solution concept of much intuitive appeal is here the consensus winner (cf.
Nurmi [33]) which will be extended under a social fuzzy preference relation and a
fuzzy majority.

We start with

gi j =
{

1 if ri j > 0.5
0 otherwise

(38)

which expresses whether alternative si defeats (in the whole group’s opinion!) alter-
native s j or not.
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Next

gi = 1

n − 1

n
∑

j=1, j �=i

gi j (39)

which is a mean degree to which alternative si is preferred, by the whole group, over
all the other alternatives.

Then

zi
Q = μQ(gi) (40)

is the extent to which alternative si is preferred, by the whole group, over Q (e.g.,
most) other alternatives.

Finally, we define the fuzzy Q-consensus winner as

WQ = z1
Q/s1 + · · · + zn

Q/sn (41)

i.e. as a fuzzy set of alternatives that are preferred, by the whole group, over Q other
alternatives.

And analogously as in the case of the core, we can introduce a threshold α ≥ 0.5
and s into (38) and obtain a fuzzy α/Q-consensus winner and a fuzzy s/Q-consensus
winner, respectively.

Example 6. For the same individual fuzzy preference relations as in Example 4, and
using (36) and (37), we obtain the following social fuzzy preference relation

R =

j = 1 2 3 4
i = 1 0 0 1 0.25

2 0.75 0 0.75 0.25
3 0 0.25 0 0
4 1 0.75 1 0

If now the fuzzy majority is given by Q = “most” defined by (3) and α = 0.8, then
we obtain

W“most′′ = 1
15/s1 + 11

15/s2 + 1/s4

W0.8/“most′′ = 1
15/s1 + 11

15/s4

Ws/“most′′ = 1
15/s1 + 1

15/s2 + 1/s4

which is to be read similarly as for the fuzzy cores in Example 4. Notice that here
once again alternative s4 is clearly the best choice which is obvious by examining
the social fuzzy preference relation.

One can also use here an OWA based aggregation defined by (10) and (11) as pro-
posed by proposed by Fedrizzi and Kacprzyk [19] and Kacprzyk and Fedrizzi [47].

This concludes our brief exposition of how to employ fuzzy linguistic quanti-
fiers to model the fuzzy majority in group decision making. We did not present
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some other solution concepts as, e.g., minimax consensus winners (cf. Nurmi [33],
Kacprzyk [38]) or those based on fuzzy tournaments which have been proposed by
Nurmi and Kacprzyk [35] and are mentioned earlier in this paper.

We will finish this section with a remark that in a number of recent papers by
Kacprzyk and Zadrożny [52, 53] it has been shown that the concept of Kacprzyk’s
[36, 37] fuzzy Q-core can be a general (prototypical) choice function in group deci-
sion making and voting, for instance those of: a “consensus solution”, Borda’s rule,
the minimax degree set, the plurality voting, the qualified plurality voting, the ap-
proval voting-like, the “consensus + approval voting”, Condorcet’s rule, the Pareto
rule, Copeland’s rule, Nurmi’s minimax set, Kacprzyk’s Q-minimax, the Condorcet
looser, the Pareto inferior alternatives, etc. This result, as interesting as it is, is how-
ever beyond the scope of this paper.

5 Degrees of Consensus under Fuzzy Preferences
and a Fuzzy Majority

In this section fuzzy linguistic quantifiers as representations of a fuzzy majority
will be employed to define a degree of consensus as proposed in Kacprzyk [19]),
and then advanced in Kacprzyk and Fedrizzi [21, 22], and Kacprzyk, Fedrizzi and
Nurmi [46, 47], see also Kacprzyk, Nurmi and Fedrizzi [27, 50] and Zadrożny [65].
This degree is meant to overcome some “rigidness” of the conventional concept of
consensus in which (full) consensus occurs only when “all the individuals agree as
to all the issues”. This may often be counterintuitive, and not consistent with a real
human perception of the very essence of consensus (see, e.g., the citation from a
biological context given in the beginning of the paper).

The new degree of consensus proposed can be therefore equal to 1, which stands
for full consensus, when, say, “most of the individuals agree as to almost all (of the
relevant) issues (alternatives, options)”.

Our point of departure is again a set of individual fuzzy preference relations
which are meant analogously as in Sect. 2 [see, e.g., (17)].

The degree of consensus is now derived in three steps:

• first, for each pair of individuals we derive a degree of agreement as to their
preferences between all the pairs of alternatives,

• second, we aggregate these degrees to obtain a degree of agreement of each pair
of individuals as to their preferences between Q1 (a linguistic quantifier as, e.g.,
“most”, “almost all”, “much more than 50%”, . . . ) pairs of relevant alternatives,
and

• third, we aggregate these degrees to obtain a degree of agreement of Q2 (a lin-
guistic quantifier similar to Q1) pairs of important individuals as to their prefer-
ences between Q1 pairs of relevant alternatives, and this is meant to be the degree
of consensus sought.
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Notice that we assume here, as opposed to Sect. 2, that both the individuals and
alternatives are assigned different degrees of importance and relevance. However,
this may be useful in the context of consensus reaching, and a basic case with the
same importance and relevance for all the individuals and alternatives will just be a
special case of the one adopted in this paper.

The above derivation process of a degree of consensus may be formalized by
using Zadeh’s [86] calculus of linguistically quantified statements and Yager’s [84]
OWA based aggregation.

We start with the degree of strict agreement between individuals k1 and k2 as to
their preferences between alternatives si and s j

vi j (k1, k2) =
{

1 if rk1
i j = rk2

i j
0 otherwise

(42)

where here and later on in this section, if not otherwise specified, k1 = 1, . . . ,m−1;
k2 = k1 + 1, . . . ,m; i = 1, . . . , n − 1; j = i + 1, . . . , n.

The relevance of alternatives is assumed to be given as a fuzzy set defined in the
set of alternatives S such that μB(si ) ∈ [0, 1] is a degree of relevance of alternative
si , from 0 for fully irrelevant to 1 for fully relevant, through all intermediate values.

The relevance of a pair of alternatives, (si , s j ) ∈ S × S, may be defined, say, as

bB
i j =

1

2
[μB(si )+ μB(s j )] (43)

which is clearly the most straightforward option; evidently, bB
i j = bB

j i , and bB
ii do

not matter; for each i, j .
And analogously, the importance of individuals, I , is defined as a fuzzy set in the

set of individuals such that μI (k) ∈ [0, 1] is a degree of importance of individual
k, from 0 for fully unimportant to 1 for fully important, through all intermediate
values.

Then, the importance of a pair of individuals, (k1, k2), bI
k1,k2

, may be defined in
various ways, e.g., analogously as (19), i.e.

bI
k1,k2

= 1

2
[μI (k1)+ μI (k2)] (44)

The degree of agreement between individuals k1 and k2 as to their preferences
between all the relevant pairs of alternatives is [cf. (6)]

vB(k1, k2) =
∑n−1

i=1
∑n

j=i+1[vi j (k1, k2) ∧ bB
i j ]

∑n−1
i=1

∑n
j=i+1 bB

i j

(45)

The degree of agreement between individuals k1 and k2 as to their preferences
between Q1 relevant pairs of alternatives is



On Group Decision Making, Consensus Reaching, Voting and Voting Paradoxes 285

vB
Q1
(k1, k2) = μQ1[vB(k1, k2)] (46)

In turn, the degree of agreement of all the pairs of important individuals as to
their preferences between Q1 pairs of relevant alternatives is

v
I,B
Q1
= 2

m(m − 1)

∑m−1
k1=1

∑m
k2=k1+1[vB

Q1
(k1, k2) ∧ bI

k1,k2
]

∑m−1
k1=1

∑m
k2=k1+1 bI

k1,k2

(47)

and, finally, the degree of agreement of Q2 pairs of important individuals as to
their preferences between Q1 pairs of relevant alternatives, called the degree of
Q1/Q2/I/B-consensus, is

con(Q1, Q2, I, B) = μQ2(v
I,B
Q1

) (48)

Since the strict agreement (42) may be viewed too rigid, we can use the degree
of sufficient agreement (at least to degree α ∈ (0, 1]) of individuals k1 and k2 as to
their preferences between alternatives si and s j , defined by

vαi j (k1, k2) =
{

1 if | rk1
i j − rk2

i j |≤ 1− α ≤ 1
0 otherwise

(49)

where, k1 = 1, . . . ,m− 1; k2 = k1+ 1, . . . ,m; i = 1, . . . , n− 1; j = i + 1, . . . , n.
The degree of sufficient (at least to degree α) agreement between individuals k1

and k2 as to their preferences between all the relevant pairs of alternatives is

vαB(k1, k2) =
∑n−1

i=1
∑n

j=i+1[vαi j (k1, k2) ∧ bB
i j ]

∑n−1
i=1

∑n
j=i+1 bB

i j

(50)

The degree of sufficient (at least to degree α) agreement between the individuals
k1 and k2 as to their preferences between Q1 relevant pairs of alternatives is

v
B,α
Q1

(k1, k2) = μQ1 [vαB(k1, k2)] (51)

In turn, the degree of sufficient (at least to degree α) agreement of all the pairs
of important individuals as to their preferences between Q1 relevant pairs of alter-
natives is

v
I,B,α
Q1

= 2

m(m − 1)

∑m−1
k1=1

∑m
k2=k1+1[vBα

Q1
(k1, k2) ∧ bI

k1,k2
]

∑m−1
k1=1

∑m
k2=k1+1 bI

k1,k2

(52)

and, finally, the degree of sufficient (at least to degree α) agreement of Q2 pairs of
important individuals as to their preferences between Q1 relevant pairs of alterna-
tives, called the degree of α/Q1/Q2/I/B-consensus, is
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conα(Q1, Q2, I, B) = μQ2(v
I,B,α
Q1

) (53)

We can also explicitly introduce the strength of agreement into (42), and anal-
ogously define the degree of strong agreement of individuals k1 and k2 as to their
preferences between alternatives si and s j , e.g., as

vs
i j (k1, k2) = s(| rk1

i j − rk2
i j |) (54)

where s : [0, 1] −→ [0, 1] is some function representing the degree of strong
agreements as, e.g.,

s(x) =
⎧

⎨

⎩

1 for x ≤ 0.05
−10x + 1.5 for 0.05 < x < 0.15
0 for x ≥ 0.15

(55)

such that x ′ < x ′′ =⇒ s(x ′) ≥ s(x ′′), for each x ′, x ′′ ∈ [0, 1], and there is such an
x ∈ [0, 1] that s(x) = 1.

The degree of strong agreement between individuals k1 and k2 as to their prefer-
ences between all the pairs of alternatives is then

vs
B(k1, k2) =

∑n−1
i=1

∑n
j=i+1[vs

i j (k1, k2) ∧ bB
i j ]

∑n−1
i=1

∑n
j=i+1 bB

i j

(56)

The degree of strong agreement between individuals k1 and k2 as to their prefer-
ences between Q1 relevant pairs of alternatives is

v
B,s
Q1

(k1, k2) = μQ1[vs
B(k1, k2)] (57)

In turn, the degree of strong agreement of all the pairs of important individuals
as to their preferences between Q1 relevant pairs of alternatives is

v
I,B,s
Q1

= 2

m(m − 1)

∑m−1
k1=1

∑m
k2=k1+1[vB,s

Q1
(k1, k2) ∧ bI

k1,k2
]

∑m−1
k1=1

∑m
k2=k1+1 bI

k1,k2

(58)

and, finally, the degree of agreement of Q2 pairs of important individuals as to
their preferences between Q1 relevant pairs of alternatives, called the degree of
s/Q1/Q2/I/B-consensus, is

cons(Q1, Q2, I, B) = μQ2(v
I,B,s
Q1

) (59)

Example 7. Suppose that n = m = 3, Q1 = Q2 = “most” are given by (3),
α = 0.9, s(x) is defined by (55), and the individual preference relations are:
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R1 = [r1
i j ] =

j = 1 2 3
i = 1 0 0.1 0.6

2 0.9 0 0.7
3 0.4 0.3 0

R2 = [r2
i j ] =

j = 1 2 3
i = 1 0 0.1 0.7

2 0.9 0 0.7
3 0.3 0.3 0

R3 = [r3
i j ] =

j = 1 2 3
i = 1 0 0.2 0.6

2 0.8 0 0.7
3 0.4 0.3 0

If we assume the relevance of the alternatives to be B = {bB
i /si } = 1/s1 +

0.6/s2 + 0.2/s3, the importance of the individuals to be I = {bI
k/k} = 0.8/1 +

1/2 + 0.4/3, α = 0.9 and Q = “most′′ given by (3), then we obtain the following
degrees of consensus:

con(“most”, “most”, I, B) ∼= 0.35

con0.9(“most”, “most”, I, B) ∼= 0.06

cons(“most”, “most”, I, B) ∼= 0.06

And, similarly as for the group decision making solutions shown in Sect. 2,
the aggregation via Zadeh’s [86] calculus of linguistically quantified propositions
employed above may be replaced by the OWA based aggregation given by (10)
and (11). The procedure is analogous as that presented in Sect. 2, and will not be
repeated here.

For more information on these degrees of consensus, see, e.g., works by Kacprzyk,
Fedrizzi, Nurmi and Zadrożny [19, 19, 41, 21, 22, 23, 24, 46], etc.

6 Remarks on some Voting Paradoxes and their Alleviation

Voting paradoxes are an interesting and very relevant topic that has a considerable
theoretical and practical relevance. In this paper we will just give some simple ex-
amples of well known paradoxes and indicate some possibilities of how to alleviate
them by using some elements of fuzzy preferences and a fuzzy majority. The paper
is based on the works by Nurmi [74, 75], and Nurmi and Kacprzyk [77].

Table 1 presents an instance of Condorcet’s paradox where there are three voter
groups of equal size having preferences over alternatives A, B and C as indicated

Table 1 Condorcet’s paradox

Group I Group II Group III
A B C
B C A
C A B
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by the rank order indicated below each group. In fact, the groups need not be of
equal size. What is essential for the paradox is that any two of them constitutes a
majority. Clearly, a collective preference relation formed on the basis of comparing
alternatives in pairs and using majority rule, results in a cycle: A is preferred to B ,
B is preferred to C and C is preferred to A.

An instance of Borda’s paradox, in turn, is given in Table 2, where alternative
A would win by a plurality of votes and, yet, both B and C would beat A, should
pairwise majority comparisons be conducted.

A common feature in these classic paradoxes is an incompatibility of several in-
tuitively plausible requirements regarding social choices. In the case of Condorcet’s
paradox the result obtained by using majority rule on a set of complete and transitive
preferences is intransitive. In the case of Borda’s paradox, the winner in the plurality
sense is different from the winner in another sense, i.e. in the sense that requires the
winner to beat all the other alternatives in binary contests.

Let us try to solve the above paradoxes using some fuzzy tools. The solutions
presented are very much in the spirit of Sen’s idea of broadening the amount of in-
formation about individuals. In particular, we shall take our point of departure in the
notion of fuzzy individual preference relation. We consider the set E of individuals
and the set S of decision alternatives. Each individual i ∈ E is assumed to possess
a fuzzy preference relation Ri (x, y) over S. For each x, y ∈ S the value Ri (x, y)
indicates the degree in which x is preferred to y by i with 1 indicating the strongest
preference of x to y, 0.5 indifference between the two and value 0 the strongest
preference of y to x . Obviously, the assumption that the voters be endowed with
fuzzy preference relations is precisely the kind of broadening of the information
about individuals that Sen discusses. Some properties of fuzzy preference relations
are defined in the following [15, 81].

Definition 15. Connectedness. A fuzzy preference relation R is connected if an only
if R(x, y)+ R(y, x) ≥ 1,∀x, y ∈ S.

Definition 16. Reflexivity. A fuzzy preference relation R is reflexive if an only if
R(x, x) = 1,∀x ∈ S.

Definition 17. Max-min transitivity. A fuzzy connected and reflexive relation R is
max-min transitive if and only if R(x, z) ≥ min[R(x, y), R(y, z)],∀x, y, z ∈ S.

For the case of the Condorcet paradox, given the broadening of information con-
cerning voter preferences represented by fuzzy preference relations, we can solve it
very much in the spirit of its “father”, Marquis de Condorcet (cf. Nurmi [75]). A way
out of cyclical collective preferences is to look at the sizes of majorities supporting
various collective preferences. For example, if the number of voters preferring a to
b is 5 out of 9, while that of voters preferring b to c is 7 out of 9, then, according

Table 2 Borda’s paradox

voters 1–4 voters 5–7 voters 8,9
A B C
B C B
C A A
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to Condorcet, the latter preference is stronger than the former. By cutting the cycle
of collective majority preferences at its weakest link, one ends up with a complete
and transitive relation. Clearly, with nonfuzzy preference relation this method works
only in cases where not all of the majorities supporting various links in the cycle are
of same size. With fuzzy preferences one can form the collective preference between
any x and y ∈ S using a variation of the average rule (cf. Intilligator [34]), i.e.

R(x, y) =
∑

i Ri (x, y)

m
(60)

where R(x, y) is the degree of collective fuzzy preference of x over y.
Now, supposing that a preference cycle is formed on the basis of collective fuzzy

preferences, one could simply ignore the link with weakest degree of preference
and thus possibly end up with a ranking. In general one can proceed by eliminating
weakest links in collective preference cycles until a ranking results.

The above method of successive elimination of weakest links in preference cycles
thus works with fuzzy and nonfuzzy preferences. When individual preferences are
fuzzy each voter is assumed to report his/her preferences so that the following matrix
can be formed:

Ri =

⎛

⎜

⎜

⎝

− r12 . . . r1n

r21 − . . . r2n

. . . . . . . . . . . .

rn1 rn2 . . . −

⎞

⎟

⎟

⎠

(61)

Here ri j indicates the degree in which i prefers the i -th alternative to the j -th
one. By averaging over the voters we obtain:

R̄ =

⎛

⎜

⎜

⎝

− r̄12 . . . r̄1n

r̄21 − . . . r̄2n

. . . . . . . . . . . .

r̄n1 r̄n2 . . . −

⎞

⎟

⎟

⎠

(62)

Apart from the successive elimination method one can use another straight-
forward method to resolve Condorcet’s paradox, once the R̄-matrix is given. It
proceeds as follows. One first computes the row sums of the matrix:

r̄i =
∑

j

r̄i j (63)

These represent the total fuzzy preference weight assigned to the i -th alternative
in all pairwise preference comparisons, when the weight in each comparison is the
average fuzzy preference value. Let now
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Table 3 Fuzzy Condorcet’s paradox

voter 1 voter 2 voter 3

A B C A B C A B C

A - .6 .8 A - .9 .3 A - .6 .3

B .4 - .6 B .1 - .7 B .4 - .1

C .2 .4 - C .7 .3 - C .7 .9 -

pi = r̄i
∑

i r̄i
. (64)

Clearly pi ≥ 0 and
∑

i pi = 1. Thus, pi has the natural interpretation of choice
probability. An obvious way to utilize this is to form the collective preference order-
ing on the basis of these choice probabilities. The result is necessarily a complete
and transitive relation. Hence we can use the information broadening provided by
fuzzy preferences to solve Condorcet’s paradox (cf. Table 3).

For illustration, consider the example of Table 1 again and assume that each
group consists of just one voter. Assume, furthermore, that the fuzzy preferences
underlying the preference rankings are as follows:

The R̄- matrix is now:

R̄ =
⎛

⎝

− .7 .5
.3 − .5
.5 .5 −

⎞

⎠

Now, PA = 0.4, PB = 0.3, PC = 0.3.
Obviously, the solution is based on somewhat different fuzzy preference relations

over the three alternatives. Should the preference relations be identical, we would
necessarily end up with identical choice probabilities.

With fuzzy individual preference relations we can resolve Borda’s paradox. To
do that, we simply apply the same procedure as in the resolution of Condorcet’s
paradox.

Let us take a look at a fuzzy Borda’s paradox for illustration. Assume that the
fuzzy preferences underlying Table 2 are those indicated in Table 4.

Table 4 A fuzzy Borda’s paradox

4 voters 3 voters 2 voters

A B C A B C A B C

A - .6 .8 A - .9 .3 A - .2 .1

B .4 - .6 B .1 - .7 B .8 - .3

C .2 .4 - C .7 .3 - C .9 .7 -
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The matrix of average preference degrees is then the following:

R̄ =
⎛

⎝

− .6 .5
.4 − .6
.5 .4 −

⎞

⎠

The choice probabilities of A, B and C are, thus, 0.37, 0.33, 0.30. We see that
the choice probability of A is the largest. In a sense, then, the method does not
solve Borda’s paradox in the same way as the Borda count does since also plurality
method ends up with A being chosen instead of the Condorcet winner alternative B .
Note, however, that fuzzy preference relations give a richer picture of voter prefer-
ences than the ordinary preference rankings. In particular, A is strongly preferred to
B and C by both the 4 and 3 voter groups. Hence, it is to be expected that its choice
probability is the largest.

For additional information on voting paradoxes and some ways to solve them
using fuzzy logic, we refer the reader to Nurmi and Kacprzyk [77].

7 Concluding Remarks

In this paper we have briefly presented the use of fuzzy preference relations and
fuzzy majorities in the derivation of group decision making (social choice) solution
concepts and degrees of consensus. First, we briefly discussed some more general
issues related to the role fuzzy preference relations and a fuzzy majority may play
as a tool to alleviate difficulties related to negative results in group decision making
exemplified by Arrow’s impossibility theorem. Though very important for a concep-
tual point of view, these analyses are of a lesser practical relevance to the user who
wishes to employ those fuzzy tools to constructively solve the problems considered.

Therefore, emphasis has been on the use of fuzzy preference relations and fuzzy
majorities to derive more realistic and human-consistent solutions of group decision
making. Reference has been given to other approaches and works in this area, as
well as to the authors’ previous, more foundational works in which an analysis of
basic issues underlying group decision making and consensus formation has been
included.

It is hoped that this work will provide the interested reader with some tools
to constructively solve group decision making and consensus formation problems
when both preferences and majorities are imprecisely specified or perceived, and
may be modeled by fuzzy relations and fuzzy sets.
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(Ed.): Fuzzy Sets in Decision Analysis, Operations Research and Statistics, Kluwer, Boston,
pp. 103–136.

49. Kacprzyk, J., Nurmi, H. and Fedrizzi, M., Eds. (1996). Consensus under Fuzziness, Kluwer,
Boston.



294 J. Kacprzyk et al.

50. Kacprzyk, J., Nurmi H. and Fedrizzi, M. (1999) Group decision making and a measure
of consensus under fuzzy preferences and a fuzzy linguistic majority, In L.A. Zadeh and
J. Kacprzyk (Eds.): Computing with Words in Information/Intelligent Systems. Part 2. Foun-
dations, Physica–Verlag (Springer–Verlag), Heidelberg and New York, pp. 233-243.

51. Kacprzyk, J. and Roubens, M., Eds. (1988). Non-Conventional Preference Relations in Deci-
sion Making, Springer–Verlag, Heidelberg.
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Extension of Some Voting Systems to the Field
of Gradual Preferences

Bonifacio Llamazares and José Luis Garcı́a-Lapresta

Abstract In the classical theory of social choice, there exist many voting proce-
dures for determining a collective preference on a set of alternatives. The simplest
situation happens when a group of individuals has to choose between two alterna-
tives. In this context, some voting procedures such as simple and absolute special
majorities are frequently used. However, these voting procedures do not take into
account the intensity with which individuals prefer one alternative to the other.
In order to consider this situation, one possibility is to allow individuals showing
their preferences through values located between 0 and 1. In this case, the collective
preference can be obtained by means of an aggregation operator. One of the most
important matter in this context is how to choose such aggregation operator. When
we consider the class of OWA operators, it is necessary to determine the associated
weights. In this contribution we survey several methods for obtaining the OWA op-
erator weights. We pay special attention to the way the weights are chosen, regarding
the concrete voting system we want to obtain when individuals do not grade their
preferences between the alternatives.

1 Introduction

When a group of agents have to choose between two alternatives taking into account
the individual opinions, there exist two main features for reaching this decision:
how the agents show their preferences and how to aggregate the information they
provide. With respect to the first aspect, individuals can declare their opinions in
a dichotomous manner by showing which alternative is the best or by declaring
indifference between these alternatives (this is the common way in classic vot-
ing systems); another possibility consists on allowing individuals to show gradual
preferences in someway. In this sense, valued and fuzzy preferences consider nu-
merical values for declaring intensities of preference (see Nurmi [57], Tanino [63],
Fodor and Roubens [25], De Baets and Fodor [12], Garcı́a-Lapresta and Llamazares
[29, 30], Llamazares and Garcı́a-Lapresta [44], Llamazares [41, 43] and Fodor and
De Baets [23], among others). After Zadeh [83], linguistic preferences have been
very used in the Decision Theory framework (see Delgado et al. [14, 15], Yager [76],

H. Bustince et al., (eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation
and Models. C© Springer 2008 297
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Herrera et al. [36, 37, 38], Bordogna et al. [5], Herrera and Herrera-Viedma [35])
and in voting systems (see Garcı́a-Lapresta [28] and Garcı́a-Lapresta et al. [31]).

It is worth emphasizing that the outcome of a vote depends not only on the
aggregation procedure, but on the way the individuals show their opinions. In
fact, individuals usually feel different intensities of preference when they com-
pare pairs of alternatives. However, in the classic voting procedures they can not
declare these intensities, and different modalities of preference and identified in
a unique way—for instance, as if they feel extreme preference. So, individual
opinions are truncated and misrepresented. In order to avoid this drawback, an
interesting problem is to extend classic voting systems in such a way that they
could aggregate intensities of preference. A possibility is to consider the follow-
ing procedure: Once individuals show their preferences through a value between
0 and 1, we obtain the collective intensity of preference by means of an OWA
operator. From this value and through a kind of strong α-cut, where α ∈ [ 1

2 , 1),
we can decide if an alternative is chosen or if both alternatives are collectively
indifferent.

When individuals do not grade their preferences, the previous procedure allows
us to obtain a voting system in the classic way. Hence, once fixed α, it is possible to
know what class of voting systems underlies in the aggregation process according to
the used OWA operator. In this sense, we show that we can determine —by means
of the aforementioned procedure—the OWA operators which generalize simple, ab-
solute, Pareto, unanimous and absolute special majorities. Moreover, because there
exist multiple OWA operators generating a specific classic voting system, we also
propose a way for choosing the best-suited OWA operator. On the other hand, it
is worth emphasizing that the induced extensions maintain some good properties
of the genuine voting procedures such as symmetry, self-duality, monotonicity and
unanimity.

Although in this chapter we focus on OWA operators, it is worth emphasizing
that the previous procedure has been already used to characterize some classes of
aggregation operators which extend some voting systems. So, Garcı́a-Lapresta and
Llamazares [30] generalize two classes of majorities based on difference of votes by
using quasiarithmetic means and window (olympic) OWA operators as aggregation
operators.

The chapter is organized as follows. Section 2 is devoted to crisp aggregation
operators, their properties and some classic voting systems that can be defined with
them. Moreover, we point out some drawbacks of some usual voting systems. In
Sect. 3, we deal with general aggregation operators and particularly with OWAs.
We also survey some methods appeared in the literature in order to determine the
OWA operator weights. In Sect. 4, we extend several classic voting systems through
OWA operators in the case that individuals show intensities of preference by means
of numerical values within the unit interval, and we provide some characterization
results. Moreover, we propose a method for choosing the best-suited OWA operators
which extend some voting systems. We also obtain the crisp aggregation operators
associated with these best-suited OWAs. Finally, some conclusions are included in
Sect. 5.
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2 Crisp Aggregation Operators

The simplest situation in the collective decision making procedures happens when
a group of individuals has to choose between two alternatives x and y. When indi-
viduals do not grade their preferences, some authors, such as May [49] and Fishburn
[21], have used an index d in order to distinguish among the three possible cases
of ordinary preference and indifference between x and y :

d =

⎧

⎪

⎨

⎪

⎩

1, if x is preferred to y,

0, if x is indifferent to y,

−1, if y is preferred to x .

In order to extend classical voting systems to the field of gradual preferences we
define an equivalent index r = (d + 1)/2. In this way, we have:

r =

⎧

⎪

⎨

⎪

⎩

1, if x is preferred to y,
1
2 , if x is indifferent to y,

0, if y is preferred to x .

We consider m voters, m ≥ 2, who show their preferences between x and y. A
crisp profile is a vector r = (r1, . . . , rm) ∈ {0, 1

2 , 1}m which describes the voters’
preferences between x and y. For each crisp profile, the collective preference will
be obtained by means of a crisp aggregation operator.

Definition 1. A crisp aggregation operator (CAO) is a mapping H : {0, 1
2 , 1}m −→

{0, 1
2 , 1}.

The interpretation of collective preference is consistent with the foregoing inter-
pretation for individual preferences. So, H (r) shows us if an alternative is collec-
tively preferred to the other or the alternatives are collectively indifferent, according
to whether H (r) is 1 (x defeats y), 0 (y defeats x) or 1

2 (x and y tie).
We now consider some properties of CAOs that are well known in the litera-

ture: Symmetry, self-duality, monotonicity and unanimity. Symmetry, also re-
ferred to as anonymity and equality, means that the collective preference depends
only on the set of individual preferences, but not on which individuals have these
preferences; i.e., all voters are treated equally. Self-duality, also referred to as neu-
trality (May [49]), says that if everyone reverses his/her preferences between both
alternatives, then the collective preference is also reversed; i.e., the alternatives are
treated equally. Monotonicity means that if the individual support for an alternative
increases, then the outcome for this alternative can not be worse than in the first
case. And unanimity says that the collective preference coincides with individual
preferences when these are the same. A characterization of the CAOs which simul-
taneously satisfy the three first properties can be found in Fishburn [21, p. 56].

On the sequel we will use the following notation: Given a ∈ R, we denote by [a]
the integer part of a, i.e., the largest integer smaller than or equal to a. Given r, s ∈
{0, 1

2 , 1}m and σ a permutation on {1, . . . ,m}, we denote rσ = (rσ(1), . . . , rσ(m));
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1 = (1, . . . , 1); t 1 = (t, . . . , t); r ≥ s will mean ri ≥ si for all i ∈ {1, . . . ,m};
and r > s will denote r ≥ s and r �= s.

Definition 2. Let H be a CAO.

1. H is symmetric if for all crisp profile r and all permutation σ of {1, . . . ,m} it
holds

H (rσ ) = H (r).

2. H is self-dual if for all crisp profile r it holds

H (1− r) = 1− H (r).

3. H is monotonic if for all pair of crisp profiles r and s it holds

r ≥ s ⇒ H (r) ≥ H (s).

4. H is unanimous if for all t ∈ {0, 1
2 , 1} it holds

H (t 1) = t .

Starting from the previous properties we can obtain some interesting conse-
quences. We will use the following notation: the cardinal of a set will be denoted
by # ; given a crisp profile r, we denote

nx (r) = # {i | ri = 1}, ny(r) = # {i | ri = 0};

i.e., nx (r) is the number of individuals who prefer x to y, while ny(r) is the number
of individuals who prefer y to x .

For each crisp profile r, if H is a symmetric CAO, then H (r) depends only on
nx (r) and ny(r). If H is a self-dual CAO, then it is characterized by the set

H−1({1}) = {r ∈ {0, 1
2 , 1}m | H (r) = 1},

since

H−1({0}) = {r ∈ {0, 1
2 , 1}m | 1− r ∈ H−1({1})},

H−1({ 1
2 }) = {0, 1

2 , 1}m \ (H−1({1}) ∪ H−1({0})) .

Therefore, any self-dual CAO can be defined by means of the crisp profiles where
the CAO takes the value 1. Based on this approach, we now show some of the most
popular voting systems.
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Definition 3.

1. The simple majority, HS, is the self-dual CAO defined by

H (r) = 1 ⇔ nx (r) > ny(r).

2. The absolute majority, HA, is the self-dual CAO defined by

H (r) = 1 ⇔ nx (r) >
m

2
.

3. The Pareto majority, HP, is the self-dual CAO defined by

H (r) = 1 ⇔ nx (r) > 0 and ny(r) = 0.

4. The unanimous majority, HU , is the self-dual CAO defined by

H (r) = 1 ⇔ nx (r) = m.

5. Given β ∈ [ 1
2 , 1), the absolute special majority Qβ is the self-dual CAO defined

by

H (r) = 1 ⇔ nx (r) > βm.

Notice that all the previous voting systems have been defined by means of only
nx (r), ny(r) and m. Then, their associated CAOs are symmetric.

Simple majority has been widely studied in the literature. It is worth emphasizing
that the first axiomatic characterization of it was given by May [49]. Other charac-
terizations of simple majority can be found in Fishburn [21, 22], Campbell [8, 9],
Maskin [48], Campbell and Kelly [10, 11], Aşan and Sanver [1], Woeginger [68],
Miroiu [51], Yi [82] and Llamazares [42].

In relation to absolute majority, it has been characterized by Fishburn [21, p. 60],
while Pareto majority has been characterized by Sen [60, p. 76]. On the other hand,
unanimous majority has been characterized by Woeginger [68] and Llamazares [42].

Clearly, absolute special majorities are located between absolute majority, for
β = 1/2, and unanimous majority, for β ≥ (m − 1)/m. They have been stud-
ied by Fishburn [21, p. 67] (without self-duality assumption) and Ferejohn and
Grether [18].

It is worth mentioning that the choice of a voting system is not trivial because all
of them have several drawbacks. In order to explain this matter, we consider 1001
voters. The ordered pair (nx (r), ny(r)) represents the result of a ballot (obviously,
1001− nx(r)− ny(r) is the number of voters who are indifferent between x and y).
Suppose that the result of a ballot is (1, 0). In this case, under simple majority
voting, x wins. So, in simple majority an alternative can be elected with very poor
support. Moreover, in this situation —in fact, this happens when the result is (n +
1, n) or (n, n+1), for some n ≥ 0 such that 2n+1 ≤ m — the winning alternative
can change when a single turncoat alters his preference between x and y.
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In order to avoid the problem of minimum support, we would be able to use
absolute majority. In this case, the problem of minimum support disappears but we
continue to have a problem of stability when the result of the ballot is (501, 500) or
(500, 501). Furthermore, a new drawback appears because under absolute majority
the winning alternative needs a hight quantity of votes. Consequently, there is a loss
of decisiveness and, in many instances, there is no winning alternative. On the other
hand, if we use absolute majority so that the winning alternative has a wide support,
it is paradoxical that x wins if the result of the ballot is (501, 500) but not when the
result is (500, 0).

Pareto majority shares with simple and absolute majorities similar drawbacks.
Since x wins when the result of a ballot is (1, 0), there are problems of minimum
support and stability. Moreover, there exists a winning alternative only if the result
of the ballot is (n, 0) or (0, n), with n ≥ 1; therefore, there is a problem of deci-
siveness. For its part, unanimous majority has a large problem of decisiveness: It is
the less decisive among self-dual, monotonic and no constant CAOs.

In relation to absolute special majorities, they have a problem of decisiveness
because the winning alternative needs at least [1001 β]+ 1 votes even the other al-
ternative lacks support. Moreover, this loss of decisiveness increases as β increases.

The previous analysis shows that decisiveness and stability are conflicting con-
cepts. Therefore, it seems very interesting to look for a balance between them. In
order to achieve this objective, it is necessary to formalize these concepts.

The notion of decisiveness was used by Ferejohn and Grether [18], under the
strongness name, for analyzing absolute special majorities.

Definition 4. Given two CAOs H1 and H2, we say that H1 is as decisive as H2 if
for all r ∈ {0, 1

2 , 1}m it holds

H2(r) = 1 ⇒ H1(r) = 1, H2(r) = 0 ⇒ H1(r) = 0.

Obviously, if H1 is as decisive as H2, then H1=H2 or there exists some profile
r ∈ {0, 1

2 , 1}m such that H2(r) = 1
2 and H1(r) �= 1

2 , i.e., H1 is more decisive
than H2.

When we come to define the notion of stability, it is necessary to bear in mind
that for any no constant CAO there exist crisp profiles where an alternative stops
winning when a single voter changes his/her preference. Consequently, we consider
that a CAO is stable of grade q (q-stable) when given any profile where there ex-
ists a winning alternative, q voters can change their preferences without the other
alternative becomes the winner. Since the case where an alternative can never win
lacks interest, we also ask in the definition of q-stability that there be profiles where
the change in the opinion of q + 1 individuals produces the switch of the winning
alternative.

Definition 5. Given q ∈ {0, 1, . . . ,m − 1}, a CAO H is q-stable if it satisfies the
following conditions:

1. For all r, s ∈ {0, 1
2 , 1}m such that # {i | ri �= si } ≤ q,
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H (r) = 1 ⇒ H (s) ≥ 1
2 , H (r) = −1 ⇒ H (s) ≤ 1

2 .

2. There exist r, s ∈ {0, 1
2 , 1}m such that # {i | ri �= si } = q + 1 satisfying

H (r) = 1 and H (s) = 0.

We note that Theorem 7 in the Subsection 4.2 shows what is the best voting
system regarding a balance between decisiveness and stability.

3 Aggregation Operators

In order that voters can show different levels of intensity between the alternatives,
we consider ri ∈ [0, 1] instead of ri ∈ {0, 1

2 , 1}. In this way, ri denotes the intensity
with which voter i prefers x to y. Under this assumption, it is usual to suppose that
the preferences are reciprocal, i.e., 1 − ri is the intensity with which individual i
prefers y to x (on this see Bezdek et al. [4], Nurmi [57], Tanino [63], Nakamura
[55], Świtalski [61, 62], Garcı́a-Lapresta and Llamazares [29] and De Baets et al.
[13], among others).

Similarly to the crisp case, a profile is a vector r = (r1, . . . , rm) ∈ [0, 1]m which
describes the voters’ preferences between x and y. For each profile, the collective
preference will be obtained by means of an aggregation operator. These functions
have been widely studied in the literature (see e.g. Dubois and Prade [17], Mizumoto
[52, 53], Dubois and Koning [16], Yager [74], Fodor and Roubens [25], Grabisch
et al. [34], Marichal [46], Calvo et al. [6], Xu and Da [72], Beliakov and Calvo [3],
Mesiar et al. [50] and Torra [66], among other contributions).

Definition 6. An aggregation operator is a mapping F : [0, 1]m −→ [0, 1].

The properties introduced in Definition 2 for CAO’s are also valid for aggregation
operators, by considering general profiles instead of crisp profiles, and they have a
similar interpretation. Moreover, we present an additional property for aggregation
operators: strict monotonicity. This property means that the collective intensity of
preference increases if no individual intensity decreases and some individual inten-
sity increases.

Definition 7. An aggregation operator F is strictly monotonic if for every pair of
different profiles r, s ∈ [0, 1]m it holds

r > s ⇒ F(r) > F(s).

Although there exist numerous classes of aggregation operators, on the sequel we
only focus our study on OWA operators. Nevertheless, other aggregation operators
such as quasiarithmetic means have been also considered in this context by Garcı́a-
Lapresta and Llamazares [29, 30] and Llamazares and Garcı́a-Lapresta [44].

On the other hand, since discrete Sugeno and Choquet integrals have been widely
used as aggregation operators in multi-criteria decision making problems, we next
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do some considerations. Kandel and Byatt [39] have proven that the discrete Sugeno
integral can be expressed in terms of the median. Moreover, it satisfies a similar
property to stability under positive linear transformations, but for ordinal values.
For these reasons, as Grabisch [33] points out, the discrete Sugeno integral seems to
be more suitable for ordinal aggregation.

In relation to discrete Choquet integral, it is well-known that these aggregation
functions generalize OWA operators (see e.g. Murofushi and Sugeno [54] and Fodor
et al. [24]). Furthermore Grabisch [32] has proven that the class of OWA operators
coincides with the class of symmetric discrete Choquet integrals. Therefore, since
symmetry is an essential property in Social Choice Theory, it is sufficient to consider
OWA operators.

3.1 OWA Operators

Yager [28] introduced the OWA operators as a tool for aggregation procedures in
multi-criteria decision making. An OWA operator is similar to a weighted mean,
but with the values of the variables previously ordered in a decreasing way. Thus,
contrary to the weighted means, the weights are not associated with concrete vari-
ables and, therefore, they are symmetric. Moreover, they verify other interesting
properties, such as monotonicity, unanimity, continuity and compensativeness, i.e.,
the value of an OWA operator is always located between the minimum and the
maximum values of the variables. On the other hand, OWA operators generalize
the maximum and the minimum operators, the arithmetic mean, the median and the
k-order statistic. For these reasons, OWA operators have been widely used in the
literature (see, for instance, Yager and Kacprzyk [81] and Calvo et al. [7]).

OWA operators have been characterized by Fodor et al. [24], Ovchinnikov [59],
Marichal and Mathonet [47]. On the other hand, there exist numerous generaliza-
tions of OWA operators: for instance, the quasi-OWA operators (Fodor et al. [24]),
the Weighted Ordered Weighted Averaging (WOWA) Operators (Torra [64]), the
Weighted Order Statistic Averaging (WOSA) operators (Ovchinnikov [59]), the In-
duced Ordered Weighted Averaging (IOWA) operators (Yager and Filev [80]), and
the Heavy Ordered Weighted Averaging (HOWA) operators (Yager [78]).

OWA operators are usually defined as functions whose domain is Rm . However,
since individual intensities of preference vary between 0 and 1, we have restricted
their domain to [0, 1]m .

Definition 8. Let w = (w1, . . . , wm) ∈ [0, 1]m satisfying
∑m

i=1 wi = 1. The OWA
operator associated with w is the aggregation operator Fw defined by

Fw(r) =
m
∑

i=1

wi rσ(i),

where σ is a permutation of {1, . . . ,m} such that rσ(1) ≥ · · · ≥ rσ(m).
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OWA operators are symmetric, monotonic and unanimous aggregation opera-
tors. Self-dual OWA operators have been characterized by Marichal [46, p. 103]
and Garcı́a-Lapresta and Llamazares [30], while characterizations of strictly mono-
tonic OWA operators can be found in Marichal [46, p. 103] and Llamazares
[43].

Proposition 1. If Fw is an OWA operator, then:

1. Fw is self-dual if and only if wm+1−i = wi for every i ∈ {1, . . . , [ m
2 ]}.

2. Fw is strictly monotonic if and only if wi > 0 for every i ∈ {1, . . . ,m}.

We will denote by W the set of weighting vectors associated with self-dual OWA
operators, i.e.,

W =
{

w ∈ [0, 1]m |
m
∑

i=1
wi = 1 and wm+1−i = wi for all i ∈ {1, . . . , [ m

2 ]}
}

.

One of the most important issues in the field of OWA operators is the determi-
nation of the associated weights. In order to solve this problem, several methods
have appeared in the literature: quantifier guided aggregation (Yager [28, 29, 77]),
exponential smoothing (Filev and Yager [20]), learning approach (Yager and Filev
[80], Torra [65]), genetic algorithms (Nettleton and Torra [56]), linear objective-
programming model under partial weight information (Xu and Da [71]), paramet-
ric geometric approach (Liu and Chen [40]), normal distribution based method
(Xu [69]) and argument-dependent approach (Xu [70]; see Beliakov and Calvo [2]
as well). Another important class of these methods is based on the orness measure.
This concept was introduced by Yager [28] for characterizing the degree with which
the aggregation is like an or operation. The orness of an OWA operator ranges
between 0 and 1. Moreover, it takes the value 0 if and only if the OWA opera-
tor is the minimum, and it only takes the value 1 when the OWA operator is the
maximum.

Definition 9. The orness measure of an OWA operator Fw is defined by

orness (w) = 1

m − 1

m
∑

i=1

(m − i) wi .

O’Hagan [58] was the first to suggest the use of the vector which maximizes the
entropy of the OWA weights for a given level of orness. His approach is based on
the solution of the following constrained optimization problem:
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max −
m
∑

i=1

wi ln(wi ),

s.t. orness (w) = α, 0 ≤ α ≤ 1,

wi ≥ 0, i = 1, . . . ,m,

m
∑

i=1

wi = 1.

(1)

The analytic properties of these maximal entropy OWA operators were studied
by Filev and Yager [19]. Fullér and Majlender [26] transferred problem (1) to a
polynomial equation, which is solved for determining the optimal weighting vector.
To avoid the resolution of a nonlinear optimization problem, Yager [79] introduces
a simpler procedure which tries to keep the spirit of maximizing the entropy for
a given level of orness. Similar approaches (through a fixed level of orness) have
also been proposed and solved analytically by Fullér and Majlender [27], Wang
and Parkan [67] and Majlender [45]. The first authors suggest to select the vector
which minimizes the variance of the weighting vector in order to obtain the minimal
variability OWA weights. Thus, if we denote by Wα the set of constraints of problem
(1), they propose and solve the following mathematical programming problem:

min
1

m

m
∑

i=1

w2
i −

1

m2
,

s.t. w ∈ Wα.

(2)

Wang and Parkan [67] suggest to minimize the disparities between adjacent
weights. For this, they bring up the following constrained optimization problem:

min max
i∈{1,...,m−1}

|wi −wi+1|,

s.t. w ∈ Wα.

(3)

For his part, Majlender [45] determines a parametric class of OWA operators
having maximal Rényi entropy OWA weights. Given θ ∈ R, the parametric model
proposed and solved by this author is the following:

max log2

(

m
∑

i=1

wθ
i

)1/(1−θ)
,

s.t. w ∈ Wα.

(4)

However, in these models, the aggregation procedure is only taken into account
when the level of orness is previously fixed, and the weights are determined through
properties that only concern them (for instance, to maximize the entropy, to min-
imize the variance, etc.). Moreover, in order to guarantee an egalitarian treatment
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between the alternatives, we consider self-dual OWA operators whose level of or-
ness is 0.5. Therefore, in our case, the methodologies based on fixing a given level
of orness lack sense because the arithmetic mean is always the solution.

Because of the previous reasons, we propose the choice of OWA operator weights
to take into account the class of majority rule that we want to obtain when individ-
uals do not grade their preferences between the alternatives. For this purpose, the
procedure to follow is described in the following subsection.

3.2 Obtaining CAOs from Aggregation Operators

When individuals have crisp preferences, every aggregation operator F can be re-
stricted to crisp profiles:

F |{0, 1
2 ,1}m : {0, 1

2 , 1}m −→ [0, 1].

If we wish to obtain a CAO from F , then it will be necessary to obtain collective
intensities of preference within {0, 1

2 , 1} instead of [0, 1]. It is possible to get these
values by means of a procedure based on the α-cuts of F .

Definition 10. Let F be an aggregation operator and α ∈ [ 1
2 , 1). The α–CAO as-

sociated with F is the CAO Fα defined by

Fα(r) =

⎧

⎪

⎨

⎪

⎩

1, if F(r) > α,

1
2 , if 1− α ≤ F(r) ≤ α,

0, if F(r) < 1− α.

Thus, when individuals have crisp preferences, we can generate different CAOs
from an aggregation operator F , by considering appropriate values of the parameter
α ∈ [ 1

2 , 1). Moreover, these CAOs, Fα , are symmetric, self-dual, monotonic and
unanimous whenever the original aggregation operator F satisfies these properties.

4 Generating Voting Systems from OWA Operators

In Definition 10 we provide a procedure which generates CAOs from an aggregation
operator by means of a parameter α ∈ [ 1

2 , 1). Now, we will use this procedure for
obtaining the voting systems appearing in Definition 3. In this way, the following
subsection is devoted to characterizing the OWA operators that allow us to general-
ize the mentioned voting systems. However, although we can obtain a specific CAO
by means of a wide variety of OWA operators, not all of them are suitable, as we
show in Subsection 4.2. For this reason, we also propose a procedure to determine
the best-suited OWA operators.
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Since the considered CAOs are self-dual, we only take into account self-dual
OWA operators in order to guarantee that the obtained α-CAOs be self-dual too.
The results contained in this section can be found in Llamazares [41, 43].

4.1 Characterization Results

In the following theorems we characterize the OWA operators for which we can
generate simple, absolute, Pareto, unanimous and absolute special majorities.

Theorem 1. Let Fw be a self-dual OWA operator and α ∈ [ 1
2 , 1). Then the follow-

ing statements are equivalent:

1. Fw
α = HS.

2. Fw is strictly monotonic and α <
1+min{w1, . . . , wm}

2
.

Theorem 2. Let Fw be a self-dual OWA operator and α ∈ [ 1
2 , 1). Then the follow-

ing statements are equivalent:

1. Fw
α = HA.

2. a. If m is odd: wm+1
2

> 1
3 and

3−wm+1
2

4
≤ α <

1+wm+1
2

2
.

b. If m is even: wm
2
> 1

4 and 3
4 ≤ α < 1

2 + wm
2

.

Theorem 3. Let Fw be a self-dual OWA operator and α ∈ [ 1
2 , 1). Then the follow-

ing statements are equivalent:

1. Fw
α = HP.

2. w1 >
1
3 and 1− w1 ≤ α <

1+w1

2
.

Theorem 4. Let Fw be a self-dual OWA operator and α, β ∈ [ 1
2 , 1), with [βm] >

m
2 . Then the following statements are equivalent:

1. Fw
α = Qβ .

2. wm−[βm] >

m−[βm]−1
∑

i=1

wi and 1− 1
2

m−[βm]
∑

i=1

wi ≤ α < 1−
m−[βm]−1

∑

i=1

wi .

As a particular case of this result (for [β m] = m − 1), we can obtain a charac-
terization of self-dual OWA operators which generalize unanimous majority.

Corollary 1. Let Fw be a self-dual OWA operator and α ∈ [ 1
2 , 1). Then the follow-

ing statements are equivalent:
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1. Fw
α = HU .

2. w1 > 0 and α ≥ 1− w1

2
.

4.2 Choosing the Best-suited OWA Operators

As we have seen in Theorems 1, 2, 3, 4 and Corollary 1, there exist a lot of self-dual
OWA operators which generate the same CAO. However, such as we will see in the
following example, not all of them are suitable for a specific voting system.

Example 1. Consider m = 5, α = 0.504 and w = (0.01, 0.01, 0.96, 0.01, 0.01).
By Theorem 1, Fw

α = HS. However, these weights are close to that of the vector
w′ = (0, 0, 1, 0, 0), and in this case, by Theorem 2, Fw′

α = HA for every α ∈ [ 1
2 , 1)

(in fact, with a suitable value of α, we would be able to choose the weights of w
as close as we want to that of w′). Therefore, although Fw

α = HS, the choice of w
and α does not seem the best for representing simple majority.

In order to avoid the previous situation, we take into account that for each self-
dual OWA operator Fw and for each symmetric, monotonic and self-dual CAO
H , the set {α ∈ [ 1

2 , 1) | Fw
α = H } is an interval with endpoints α(w, H ) and

α(w, H ) (it can be empty). In this way, we propose to choose the self-dual OWA
operators that maximize the measure of interval, i.e., the value α(w, H )−α(w, H ).
In the following theorem we show the weighting vectors that satisfy this condition
for simple, absolute, Pareto and absolute special majorities.

Theorem 5. Let H be a symmetric, monotonic and self-dual CAO and w∗ be the
weighting vector solution of the problem

max
w∈W

α(w, H )− α(w, H ).

Then:

1. If H = HS, then Fw∗ is the arithmetic mean and

Fw∗
α = HS ⇔ 1

2
≤ α <

m + 1

2m
.

2. If H = HA, then Fw∗ is the median. Moreover:

(1) If m is odd, then Fw∗
α = HA for every α ∈ [ 1

2 , 1).
(2) If m is even, then Fw∗

α = HA ⇔ 3
4 ≤ α < 1.

3. If H = Qβ , with [βm] > m
2 , then

w∗i =
{

1
2 , if i = m − [βm], [βm]+ 1,

0, otherwise,

and Fw∗
α = Qβ ⇔ 3

4 ≤ α < 1.
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4. If H = HP, then

w∗i =
{

1
2 , if i = 1,m,

0, otherwise,

and Fw∗
α = HP ⇔ 1

2 ≤ α < 3
4 .

The obtained OWA operators are the arithmetic mean, the median and the average
of the j -th and the (m+1− j)-th order statistics. Because they are the most suitable
for generating some of the most important classes of voting systems, it would be
interesting to know the α–CAOs associated with these OWA operators.

Since the arithmetic mean is a specific case of quasiarithmetic means, we can
consider the result given by Garcı́a-Lapresta and Llamazares [30, Proposition 4]
for majorities based on difference of votes in the framework of quasiarithmetic
means.

Theorem 6. If Fw is the arithmetic mean, α ∈ [ 1
2 , 1) and k = [m(2α − 1)], then

Fw
α coincides with Mk, the self-dual CAO defined by

Mk(r) = 1 ⇔ nx(r) > ny(r)+ k.

The resultant CAOs are based on difference of votes: an alternative wins when
the difference between the number of votes obtained by this alternative and that
obtained by the other is greater than the quantity [m(2α − 1)]. These voting sys-
tems were introduced in Garcı́a-Lapresta and Llamazares [30] and they have been
recently analyzed by Llamazares [42] within the Social Choice approach. As well
as the good properties appearing in the previous mentioned papers, it is worth em-
phasizing that they are the best voting systems that we look for at the end of Sect. 2
in order to achieve a balance between decisiveness and stability.

Theorem 7. Given k ∈ {0, 1, . . . ,m−1} and k ′ ∈ {k, . . . ,m−1}, the Mk majority
is the most decisive symmetric, self-dual, monotonic and k ′-stable CAO.

In relation to the median, by 2.a) of Theorem 5, we have that Fw
α = HA for

all α ∈ [ 1
2 , 1) when m is odd. When m is even, the median is the average of the

m/2-th and the (m/2+ 1)-th order statistics. Therefore, we can obtain the α–CAOs
associated with it as a particular case of the following result.

Theorem 8. Let j ∈ {1, . . . , [ m
2 ]} and Fw be the OWA operator defined by

wi =
{

1
2 , if i = j,m + 1− j,

0, otherwise.

Then the following statements are satisfied:

1. If 1
2 ≤ α < 3

4 , then Fw
α coincides with the self-dual CAO H defined by

H (r) = 1 ⇔ nx (r) ≥ j and ny(r) < j.
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2. If 3
4 ≤ α < 1, then Fw

α = Qβ for 1− j
m ≤ β < 1− j−1

m .

It is worth emphasizing that when j = 1, i.e., when the OWA operator is the
average of the maximum and the minimum, the obtained α–CAOs are Pareto and
unanimous majorities:

Fw
α =

{

HP, if 1
2 ≤ α < 3

4 ,

HU , if 3
4 ≤ α < 1.

5 Concluding Remarks

In this chapter we have considered voting situations where individuals only compare
two alternatives. Although individuals usually feel different modalities of prefer-
ence when they compare the feasible alternatives, classic voting systems require
that voters show crisp preferences. Therefore, individuals are forced to identify very
different circumstances. Consequently, the outcomes provided by the classic voting
procedures could be no faithful with individual opinions and they could lead to
inappropriate decisions.

We assume that individuals can show their intensities of preference by means
of numerical values within the unit interval. In order to aggregate these intensi-
ties, we have considered aggregation operators. More concretely, we have focused
our attention on OWA operators and we have presented some characterizations that
determine which weighting vectors of self-dual OWA operators and which α-cuts
allow to generate the genuine considered voting systems (simple, absolute, Pareto,
unanimous and absolute special majorities), when individual preferences are crisp.
In this sense, by satisfying the obtained conditions we can extend the mentioned
classic voting systems to the case of individuals show their intensities of preference
through numerical values within the unit interval.

Among the variety of self-dual OWA operators generating a specific classic vot-
ing system, we have found those weighting vectors which can be considered as
the best-suited for extending the aforementioned classic voting systems. It is worth
emphasizing that the founded OWA operators allow us to obtain new voting sys-
tems, some of them satisfying very interesting properties. For instance, through
the arithmetic mean we can obtain majorities based on difference of votes which
achieve a balance between decisiveness and stability. Therefore, the extension of
classical voting systems to the field of gradual preferences allows us to find new
voting systems which are the solution of some posed problems within the classic
voting theory.
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A Linguistic Decision Based Model Applied
to Olive Oil Sensory Evaluation

Luis Martı́nez, Luis G. Pérez and Jun Liu

Abstract The evaluation is a process that analyzes elements to achieve different
objectives such as quality inspection, design, marketing exploitation and other fields
in industrial companies. In many of these fields the items, products, designs, etc.,
are evaluated according to the knowledge acquired via human senses (sight, taste,
touch, smell and hearing), in such cases, the process is called Sensory Evaluation.
In this type of evaluation process, an important problem arises as it is the modelling
and management of uncertain knowledge, because the information acquired by our
senses throughout human perceptions involves uncertainty, vagueness and impre-
cision. The Fuzzy Linguistic Approach [34] has showed its ability to deal with
uncertainty, ambiguity, imprecision and vagueness, so it seems logic and suitable
the use of the Fuzzy Linguistic Approach to model the information provided by the
experts in sensory evaluation processes.

The decision analysis has been usually used in evaluation processes because it
is a formal methodology that can help to achieve the evaluation objectives. In this
chapter we present a linguistic evaluation model for sensory evaluation based on
the decision analysis scheme that will use the Fuzzy Linguistic Approach and the
2-tuple fuzzy linguistic representation to model and manage the uncertainty and
vagueness of the information acquired through the human perceptions in the sensory
evaluation process. This model will be applied to some sensory evaluation processes
of the Olive Oil.

1 Introduction

The evaluation is a complex cognitive process that involves different mechanisms
in which it is necessary to define the elements to evaluate, fix the evaluation frame-
work, gather the information and obtain an evaluation assessment by means of an
evaluation process. The aim of any evaluation process is to obtain information about
the worth of an item (product, service, material, etc.), a complete description about
different aspects, indicators, criteria in order to improve it or to compare with other
items to know which ones are the best. The information gathered in this kind of pro-
cesses is usually provided by a group of individuals, called panel of experts, where

H. Bustince et al., (eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation
and Models. C© Springer 2008 317
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each expert expresses their opinions about the item according to their knowledge
and their own perceptions.

In this chapter our interest is focused on Sensory Evaluation processes[11, 29, 30]
that is an evaluation discipline whose information, provided by a panel of experts, is
perceived by the human senses of sight, smell, taste, touch and hearing. The sensory
evaluation is widely used in:

• Quality inspection of food and textile products [1, 12, 13, 37] to determine sys-
tematically their characteristics by means of a group of experts.

• Marketing studies [22, 27] for understanding consumers behaviors and exploiting
new markets.

• Engineering processes [7, 32] to integrate the data provided by the individuals in
their design.

• Etc.

The sensory evaluation is based on the knowledge acquired in a sensory way by
a panel of experts that take part in the evaluation process. A suitable mathematical
formulation is not easy in this type of problems because human perceptions are
subjective and not objective, therefore the assessments provided by the individuals
are vague and uncertain. Initially classical computational techniques used in sensory
evaluation were based on statistics and factorial analysis, but these methods are not
efficient for solving sensory evaluation problems because uncertainties in this type
of problems have a non-probabilistic character since they are related to imprecision
and vagueness of meanings. In such a case, linguistic descriptors are direct provided
by the experts to express their knowledge about the evaluated element. The Fuzzy
Linguistic Approach [34] provides a systematic way to represent linguistic variables
in an evaluation procedure. The use of linguistic variables implies processes of com-
puting with words [20, 21, 33, 36] such as their fusion, aggregation, comparison, etc.

The evaluation process follows a methodology in order to achieve its objectives.
The use of decision analysis approach has been successfully applied to evaluation
problems in the literature [2, 8, 19, 25]. In decision theory before making a decision
is carried out a decision analysis approach that allows people to make decisions
more consistently, i.e., it helps people to deal with difficult decisions. The decision
analysis is a suitable approach for evaluation processes because it helps to analyze
the alternatives, aspects, indicators of the element/s under study that it is the objec-
tive of the evaluation processes. In the literature different linguistic decision making
models can be found [6, 14, 24, 15].

The aim of this paper is to propose a linguistic sensory evaluation model based on
a decision analysis scheme that uses the Fuzzy Linguistic Approach to represent the
experts’ assessments, and the 2-tuple fuzzy representation model [16] to provide
a computational model to manage the processes of computing with words. And
eventually to apply it to some sensory evaluation processes of the olive oil.

This paper is structured as follows, in Sect. 2 we present and review in short
the necessary concepts and processes to develop the linguistic sensory evaluation.
In Sect. 3 we present our proposal of linguistic sensory evaluation model, and in
Sect. 4 we expound an application of this evaluation model. Finally, this paper is
concluded in Sect. 5.
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2 Preliminaries

Our evaluation model is based on the scheme of the Decision Analysis we shall
present in this section. Moreover, we shall make a brief review of the Fuzzy Lin-
guistic Approach and the Linguistic 2-tuple Representation Model that will be used
to facilitate the computation of the lingusitic information in the evaluation process.

2.1 Decision Analysis Steps

The Decision Analysis is a discipline, which belongs to Decision Making Theory,
whose purpose is to help the decision makers to reach a consistent decision in a
decision making problem. The evaluation process can be modelled as different types
of decision making problems.

In this chapter we model the evaluation process as a Multi-Expert Decision Mak-
ing (MEDM) problem. In this type of decision problem, decision makers express
their opinions about a set alternatives, in order to facilitate the selection of the best
one(s). A classical decision analysis scheme is composed by the following phases
(see Fig. 1):

• Identify decision and objectives.
• Identify alternatives.
• Model: For example, a decision problem is modelled as a MEDM [18] model that

deals with a type of information.
• Gathering information: decision makers provide their information.
• Rating alternatives: This phase is also known as “aggregation phase” [28] due to

the fact in this phase, the individual preferences are aggregated in order to obtain
a collective value for each alternative.

• Choosing best alternatives: or “exploitation phase” [28] selects the solution from
the set of alternatives applying a choice degree [3, 26] to the collective values
computed in the previous phase.

• Sensitive analysis: in this step the information obtained is analyzed in order to
know if it is good enough to make a decision, or otherwise, to go back to initial
phases to improve the quantity or/and the quality of the information obtained.

• Make a decision.

Identify Decision
and Objectives

Identify
alternatives Model

Gathering
information

Rating
alternatives

Choosing best
alternatives

Sensitive
analysis

If further analysis
needed?

Make a
decision

No

Fig. 1 Decision analysis scheme
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The application of the decision analysis to an evaluation process does not imply
the eight phases. The essential phases regarding an evaluation problem are dashed
in a rectangle of the Fig. 1.

Additionally the use of Linguistic information adds two processes in the model
and rating phases, such as:

1. The choice of the syntax and semantics of the linguistic terms that the experts
will use to express their assessments about an evaluated element.

2. To select a linguistic computational technique for rating alternatives in order to
deal with the assessments provided by the experts.

These processes are fixed regarding our proposal in the next subsections.

2.2 Fuzzy Linguistic Approach

Although we usually work in quantitative settings where the information is ex-
pressed by numerical values, sometimes we shall need to describe activities of the
real world that cannot be assessed in a quantitative form, but rather in a qualitative
one, i.e., with vague or imprecise knowledge. In that case, a better approach may
be to use linguistic assessments instead of numerical values. The variables which
participate in these problems are assessed by means of linguistic terms [34]. This
approach is adequate in situations where the information may be unquantifiable due
to its nature, and thus, it may be stated only in linguistic terms (e.g., when evaluating
the “comfort” or “design” of a car, terms like “bad”, “poor”, “tolerable”, “average”,
“good” can be used [23]. For instance, when attempting to qualify phenomena re-
lated to human perception, such as in sensory evaluation, we are often led to use
words in natural language.

Even though, the linguistic approach is less precise than the numerical one, it
provides some advantages as, the linguistic assessments are better understood by
human beings than numerical ones or that with this approach we also diminished
the effects of noise since, as it is known the more refined assessment scale is, the
more sensitive to noise and consequently the more error facedown it becomes.

In short, the linguistic approach is appropriated for many problems, since it al-
lows a more direct and adequate representation when we are unable to express it
with precision. Hence, the burden of qualifying a qualitative concept is eliminated.

The fuzzy linguistic approach represents qualitative aspects as linguistic values
by means of linguistic variables:

Definition 1. [34]. A linguistic variable is characterized by a quintuple (H,T(H),U,
G,M) in which H is the name of the variable; T(H) (or simply T) denotes the term
set of H, i.e., the set of names of linguistic values of H, with each value being a
fuzzy variable denoted generically by X and ranging across a universe of discourse
U which is associated with the base variable u; G is a syntactic rule (which usually
takes the form of a grammar) for generating the names of values of H; and M is
a semantic rule for associating its meaning with each H, M(X), which is a fuzzy
subset of U.
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We have to choose the appropriate linguistic descriptors for the term set and their
semantics. In order to accomplish this objective, an important aspect to analyze is
the “granularity of uncertainty”, i.e., the level of discrimination among different
counts of uncertainty. The universe of the discourse over which the term set is de-
fined can be arbitrary, in this paper we shall use linguistic term sets in the interval
[0, 1]. In [4] the use of term sets with an odd cardinal was studied, representing the
mid term by an assessment of “approximately 0.5”, with the rest of the terms being
placed symmetrically around it and with typical values of cardinality , such as 7 or 9.

One possibility of generating the linguistic term set consists of directly supplying
the term set by considering all terms distributed on scale on which total order is
defined [34]. For example, a set of seven terms S, could be given as follows:

S = {s0 : none, s1 : verylow, s2 : low, s3 : medium, s4 : high, s5 : veryhigh,

s6 : per f ect}
Usually, in these cases, it is required that in the linguistic term set there exist:

1. A negation operator Neg(si ) = s j such that j = g-i (g+1 is the cardinality).
2. A max operator: max(si , s j ) = si i f si ≥ s j .
3. A min operator: min(si , s j ) = si i f si ≤ s j

The semantics of the terms is given by fuzzy numbers. A computationally effi-
cient way to characterize a fuzzy number is to use a representation based on param-
eters of its membership function [4]. The linguistic assessments given by the users
are just approximate ones, some authors consider that linear trapezoidal membership
functions are good enough to capture the vagueness of those linguistic assessments.
The parametric representation is achieved by the 4-tuple (a, b, d, c), where b and d
indicate the interval in which the membership value is 1, with a and c indicating the
left and right limits of the definition domain of the trapezoidal membership function
[4]. A particular case of this type of representation are the linguistic assessments
whose membership functions are triangular, i.e., b = d , then we represent this type
of membership functions by a 3-tuple (a, b, c). An example may be the following:

P = (.83, 1, 1) V H = (.67, .83, 1) H = (.5, .67, .83) M = (.33, .5, .67)
L = (.17, .33, .5) V L = (0, .17, .33) N = (0, 0, .17),

which is graphically showed in Fig. 2.
The use of linguistic variables implies processes of computing with words such

as their fusion, aggregation, comparison, etc. To perform these computations there
are different models in the literature:

• The linguistic computational model based on the Extension Principle, which al-
low us to aggregate and compare linguistic terms through computations on the
associated membership functions [8].

• The symbolic method [10]. This symbolic model makes direct computations on
labels, using the ordinal structure of the linguistic term sets.

• The 2-tuple fuzzy linguistic computational model [16]. It uses the 2-tuple fuzzy
linguistic representation model and its characteristics to make linguistic compu-
tations, obtaining as results linguistic 2-tuples. A linguistic 2-tuple is defined by
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0

N VL VH PL M H

0.17 0.33 0.5 0.67 0.83 1

Fig. 2 A set of seven terms with its semantic

a pair of values, where the first one is a linguistic label and the second one is a
real number that represents the value of the symbolic translation.

In the following subsection we shall review the 2-tuple model due to the fact, that
it will be the computational model used in our evaluation process.

2.3 The 2-Tuple Fuzzy Linguistic Representation Model

This model has been presented in [16] and has showed itself as useful to deal with
evaluation problems similar to the one we are facing in this paper [18, 18].

This linguistic model takes as basis the symbolic aggregation model [10] and in
addition defines the concept of Symbolic Translation and uses it to represent the
linguistic information by means of a pair of values called linguistic 2-tuple, (s, α),
where s is a linguistic term and α is a numeric value representing the symbolic
translation.

Definition 2. Let β be the result of an aggregation of the indexes of a set of labels
assessed in a linguistic term set S = {s0, ..., sg}, i.e., the result of a symbolic aggre-
gation operation. β ∈ [0, g], being g + 1 the cardinality of S. Let i = round(β)
and α = β− i be two values, such that, i ∈ [0, g] and α ∈ [−.5, .5) then α is called
a Symbolic Translation.

Definition 3. [16] Let S = {s0, ..., sg} be a linguistic term set and β ∈ [0, g] a value
supporting the result of a symbolic aggregation operation, then the 2-tuple that ex-
presses the equivalent information to β is obtained with the following function:

 : [0, g] −→ S × [−0.5, 0.5)
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0 1 2 3 42.8

–0.2

5 6

Fig. 3 Example of symbolic translation

(β) =
{

si i = round(β)
α = β − i α ∈ [−.5, .5) (1)

where round is the usual round operation, si has the closest index label to “β” and
“α” is the value of the symbolic translation.

Example 1. Let’s suppose a symbolic aggregation operation over labels assessed in
S = {s0, s1, s2, s3, s4, s5, s6} that obtains a result of β = 2.8, then the representation
of this information by means of a 2-tuple will be:

(2.8) = (s3,−0.2)

Graphically, it is represented in Fig. 3.
Proposition 1. [16] Let S = {s0, ..., sg} be a linguistic term set and (si , α) be a
2-tuple. There is a −1 function, such that, from a 2-tuple it returns its equivalent
numerical value β ∈ [0, g] ⊂ R.

Proof.

It is trivial, we consider the following function:

−1 : S × [−.5, .5) −→ [0, g] (2)

−1(si , α) = i + α = β

Remark 1: From definitions 2 and 3 and from proposition 1, it is obvious that the
conversion of a linguistic term into a linguistic 2-tuple consist of adding a value 0
as symbolic translation:

si ∈ S =⇒ (si , 0)

This representation model has associated a computational model that was presented
in [16]:

1. Aggregation of 2-tuples: The aggregation of linguistic 2-tuples consists of ob-
taining a value that summarizes a set of values, therefore, the result of the ag-
gregation of a set of 2-tuples must be a linguistic 2-tuple. In [16] we can find
several 2-tuple aggregation operators based on classical ones. Here we review
the 2-tuple arithmetic mean and the 2-tuple weighted average operators, because
we shall use them in our evaluation model:

Definition 4. Let x = {(r1, α1) , · · · , (rn, αn)} be a set of 2-tuples, the extended
Arithmetic Mean AM∗ using the linguistic 2-tuples is computed as,
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AM∗ ((r1, α1) , . . . , (rn, αn)) = 

(

n
∑

i=1

1

n
−1 (ri , αi )

)

= 

(

1

n

n
∑

i=1

βi

)

(3)

Example 2. Let S = {s0, s1, s2, s3, s4, s5, s6} a linguistic term set and x =
{(s2, 0.3) , (s5,−0.2) , (s3, 0)} the set of 2-tuples we shall aggregate. The 2-tuple
obtained after applying AM∗ is:

AM∗ ((s2, 0.3) , (s5,−0.2) , (s3, 0)) = 

(

1

3

3
∑

i=1

−1 (ri , αi )

)

=

= 

(

1

3
(2.3+ 4.8+ 3)

)

= 

(

1

3
· 10.1

)

= (3.36) = (s3, 0.36)

Definition 5.Let x = {(r1, α1) , · · · , (rn, αn)} be a set of 2-tuples and W =
{w1, · · · , wn} its associated weights. The 2-tuples weighted mean, W AM∗, is
computed as:

W AM∗ ((r1, α1) , . . . , (rn, αn)) = 

(

∑n
i=1 

−1 (ri , αi ) ·wi
∑n

i=1 wi

)

= (4)

= 

(∑n
i=1 βi ·wi
∑n

i=1 wi

)

Example 3. Let S = {s0, s1, s2, s3, s4, s5, s6} a linguistic term set, x = {(s2, 0.3) ,
(s5,−0.2) , (s3, 0)} the set of 2-tuples we shall aggregate andw = {.0.2, 0.3, 0.5}
the associated weights. The 2-tuple obtained after applying W AM∗ is:

W AM∗ ((s2, 0.3) , (s5,−0.2) , (s3, 0)) = 

(

∑3
i=1 

−1 (ri , αi ) · wi
∑3

i=1 wi

)

=



(

2.3 · 0.2+ 4.8 · 0.3+ 3 · 0.5
0.2+ 0.3+ 0.5

)

= (3.4) = (s3, 0.4)

More linguistic 2-tuple aggregation operators were defined in [16].

2. Comparison of 2-tuples: The comparison of information represented by
2-tuples is carried out according to an ordinary lexico-graphic order.

• if k < l then (sk, α1) is smaller than (sl , α2)

• if k = l then

a) if α1 = α2 then (sk, α1), (sl , α2) represents the same information
b) if α1 < α2 then (sk, α1) is smaller than (sl , α2)

c) if α1 > α2 then (sk, α1) is bigger than (sl , α2)

3. Negation Operator of a 2-tuple: The negation operator over 2-tuples is defined
as:
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Neg (si , α) = 
(

g −−1 (si , α)

)

(5)

here g + 1 is the cardinality of S, si ∈ S = {

s0, . . . , sg
}

.

3 Linguistic Sensory Evaluation Model Based
on Decision Analysis

We must keep in mind that the evaluation is used to measure, analyze and inter-
pret the characteristics of the evaluated items according to the knowledge provided
by a panel of experts. Classical evaluation methods need to define and know these
requirements in an accurate way. However, in sensory evaluation problems the in-
formation provided by the experts has been perceived by the senses of sight, touch,
smell, taste and hearing, and therefore, those requirements are subjective and in-
volves uncertainty, vagueness and imprecision.

Our aim is to propose a Sensory Evaluation model based on the linguistic de-
cision analysis whose mathematical formalism will be the linguistic 2-tuple model
that improves the modelling of the uncertain information provided by the experts
and improves the mathematical formalism to operate with this type of information
in order to obtain accurate and reliable evaluation results. This proposal consists of
the following evaluation phases that are graphically showed in Fig. 4.

• Identify Evaluated Objects. This phase is not formalized in this chapter because
it is problem-dependent and each problem identifies its objects of interest.

• Model: this phase defines the evaluation framework that establishes the evalua-
tion context in which the information is assessed and the problem solved.

• Gathering information: the experts express their sensory knowledge about the
objects by means of linguistic assessments.

• Rating objects: we propose to use the 2-tuple computational model to obtain
a rate for every object. In order to accomplish this step, suitable aggregation
operators must be chosen.

• Evaluation results: it consists of analyzing the results obtained in the previous
phase with the purpose of achieving the evaluation process. These results can be
used in different ways, such as:

Identify Evaluated
Objects

Model (Evaluation Framework):
Problem Structure
Linguistic Domain

Descriptors
Semantics

Linguistic Preferences

Evaluation
Results

Gathering
Information

Rating Objects
Computing Model

2−tuple

Fig. 4 A linguistic sensory evaluation scheme based on decision analysis
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– To learn which element is better considered by the experts.
– To obtain a global value of an object that can be rated in a product scale to

know its quality within its area.
– To know which features are better in the evaluated element.
– To compare several elements to study which aspects make better one element

than another.
– To identify which aspects of an element should be improve in order to enhance

its quality.
– Etc.

In the following subsections we shall present in further detail the main phases of
our sensory evaluation model.

3.1 Model

This phase models the evaluation problem defining its evaluation framework, such
that, the problem structure is defined and the linguistic descriptors and semantics
that will be used by the experts to provide the information about the sensory features
of the evaluated objects are chosen.

First of all, we must analyze which sensory features will be evaluated that depend
on the evaluated object and which linguistic term set will be used to assess those
features. The linguistic term set will be chosen according to:

1. The accuracy of the evaluations: since our senses could recognize and assess
some features better than others, the granularity of the linguistic term set that
describe those features must be chosen according to the accuracy of our percep-
tions.

2. The experience of the experts: Some of the senses need to be trained and, besides,
they usually evolve as much as we used them. Therefore,the granularity of the
linguistic term set used by an expert should be also chosen according to the
expert’s experience.

In this chapter we deal with an evaluation framework such that the different ex-
perts provide their sensory perceptions about item features by means of a linguistic
label assessed in a fixed term set according to the above conditions. In such a case all
the experts provide their sensory subjective preferences using one linguistic term set.

E = {e1, ..., en}, group of experts

S = {s0, ...., sg}, linguistic term set

ei expresses his/her preferences in S

over a group of sensory features F = { f1, ..., fh}
for a set of items, X = {x1, ..., xm}.

This context facilitates the computational processes of the evaluation problem be-
cause it is easy to define for the experts.
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3.2 Gathering information

Due to the fact that the linguistic decision analysis used in this paper is based on the
MEDM problems the experts provide their knowledge by means of utility vectors
that contain a linguistic assessment for each evaluated feature.

{e1, ..., en}, group of experts

O = {o1, ...., om}, set of evaluated objects

F = { f1, ...., fh}, set of evaluated features for each object

S = {s0, ...., sg}, Linguistic term set

ei provides his/her preferences in S by means of a utility vector:

Ui = {ui
11, ...., ui

1h, ui
21, ..., ui

2h, ..., ui
m1, ..., ui

mh}

where ui
jk ∈ S is the assessment provided to the feature fk of the object o j by the

expert ei .

Consequently in the gathering process every expert ei will provide his/her utility
vector Ui expressed by linguistic labels in the linguistic term set S fixed in the eval-
uation framework. Due to the fact that the evaluation model will use the linguistic
2-tuple computational model, the linguistic preferences provided by the experts will
be transformed into linguistic 2-tuples according to the Remark 1.

3.3 Rating objects

In this phase the linguistic utility vectors provided by the experts and transformed
into linguistic 2-tuples will be used in processes of Computing with Words in order
to rate each evaluated object. To do so, the information gathered will be aggregated.
Depending on the evaluation problem can be used different types of aggregation
operators:

1. Linguistic Aggregation operators of Non-Weighted information. These operators
aggregate the linguistic information provided by different sources with equal
importance, i.e., all sources are equally important in the aggregation process.
Examples of linguistic aggregation operators of non-weighted information can
be found in [10, 31].

2. Linguistic Aggregation operators of Weighted information. These operators ag-
gregate the information provided by different sources which are not equally
important. Different proposals of this type of operators have been proposed in
[5, 34].

Keeping in mind that the aim of this proposal is the use of a consistent math-
ematical formalism, as it is the linguistic 2-tuple computational model, to operate
with the uncertain information provided by the experts it must be remarked that
several aggregation operators of both types have been introduced for this linguistic
computational model [16].
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The rating process of this proposal consists of two steps:

1. Computing collective evaluations for each feature: in the gathering process each
expert, ei provides his/her preferences for every feature fk of the object o j by
means of a utility assessment, ui

jk . Then, the rating process in first place will
compute a collective value for each feature, u jk , using an aggregation operator,
AG, on the assessments provided by the experts:

u jk = AG(u1
j k, ...., un

jk) (6)

2. Computing a collective evaluation for each object: the final aim of the rating
process is to obtain a global evaluation, u j , of each evaluated object according
to all the experts and features that take part in the evaluation process. To do so,
this process will aggregate the collective features values u jk for each object, o j :

u j = AG(u j1, ...., u jh) (7)

The aggregation operators will depend on each evaluation problem taking into
account if all experts or features are equally important or there are experts or
features more important than the others.
The collective evaluation obtained will be the score obtained by the evaluated
object in the sensory evaluation problem.

4 Evaluating Different Samples of Olive Oil
to Obtain a Particular Flavor

Nowadays, the quality of the olive oil plays a key role in its production and final
price. This quality depends on several aspects such as the condition of olives when
enter the factory, the extraction processes and their sedimentation, or their storage.

The evaluation of the quality of the olive oil is not an easy task and is usually
accomplished by Olive Oil Tasting Panel, in which there are between 8 and 12
connoisseurs, which will evaluate, by means of their perceptions acquired via their
senses, the features that describe the samples of Olive Oil.

The combination of smell and taste is known as flavor and defines the organolep-
tic properties of the olive oil. So, we could talk about an olive oil with apple scent
and sweet taste or an olive oil slightly pungent with almond scent.

These organoleptic properties, with acidity grade of the olive oil, are essential
to obtain their quality. The acidity grade measures the level of free fatty acid, and
therefore, an olive oil with a high acidity grade has more free fatty acid and is less
healthy than an olive oil with a low acidity grade. Both aspects, the organoleptic
properties and the acidity grade, establish the quality of the olive oil.

While it is easy to obtain the acidity grade of a sample of olive oil by means
of chemical processes, the organoleptic properties need to be evaluated by the
Tasting Panel that will use their perceptions to catch different aspects of its flavor
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such as fruity, bitter, pungent, etc. Besides, we must realize that although the most
usual way utilized to express these perceptions is by means of numerical values,
it is not the most suitable because this information has been acquired by means
of perceptions, which usually involves uncertainty, vagueness and imprecision. In
http://www.oliveoilsource.com/tasteform1.pdf we can find an example of a tasting
sheet used by the panels of experts.

The companies in the olive oil market usually need to keep the flavor of their
olive oil brands through time because its flavor is an essential characteristic of the
brands. However, because it is impossible to obtain the quantity of the same kind of
olives for the total production of an olive oil brand, they have to mix batches of olive
oil in order to reproduce the same flavor. In these processes, the sensory evaluation
plays a critical role because before starting any mixing process they need to know
which batch of olive oil is suitable for being mixed, which organoleptic properties
need to be improved or which ones need to be diminished. In these example, we
shall show an example of how to evaluate four samples of olive oil, in order to
find out the values of the organoleptic properties of sweetness and pungency. These
values will be used in order to decide which batches should be mixed to obtain the
flavor that the company is looking for.

Evaluation Framework

An Olive Oil Tasting Panel of eight connoisseurs E = {e1, ..., e8} will evaluate
the sensory feature sweetness of four samples of Olive Oil O = {o1, ...., o4} and
two sensory features F = {sweetness, pungency}. The panel will evaluate these
sensory features independently in order to know the value of these features. To do
so, two linguistic term set S and S′ of nine terms and seven terms respectively were
chosen according to conditions presented in subsection 3.1 to assess the sweetness
and pungency respectively. Their syntax and semantics are the following ones (see
Figs. 5 and 6).

s8 = V ery sweet = (.88, 1, 1) s7 = Rather sweet = (.75, .88, 1)
s6 = Sweet = (.62, .75, .88) s5 = A bit sweet = (.5, .62, .75)
s4 = Average = (.38, .5, .62) s3 = A bit bit ter = (.25, .38, .5)
s2 = Bitter = (.12, .25, .38) s1 = Rather bit ter = (0, .12, .25)
s0 = V ery bitter = (0, 0, .12)

0 10.50.250.12 0.38 0.62 0.75 0.88

Average Very sweetA bit sweet Sweet Rather sweetVery bitter Bitter A bit bitterRather bitter

Fig. 5 A set of nine terms with its semantic chosen to evaluate the sweetness
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s′6 = V ery pungent = (.83, 1, 1) s′5 = Pungent = (.66, .83, .1)
s′4 = A bit pungent = (.5, .66, .83) s′3 = Average = (.33, .5, .66)
s′2 = A bit bland = (.17, .33, .5) s′1 = Bland = (.0, .17, .33)
s′0 = V ery bland = (0, 0, .17)

0 10.5

Average Very PungentA bit pungent PungentVery bland A bit blandBland

0.17 0.33 0.66 0.83

Fig. 6 A set of nine terms with its semantic chosen to evaluate the pungency

Gathering Process

The preferences of our Tasting Panel for sweetness and pungency are showed in
Table 1 and Table 2 respectively.

Now, we shall transform their preferences into 2-tuple representation model
(Table 3 and Table 4) to manage easily this information.

Rating Objects

In this phase we shall carry out the following steps:

Table 1 Olive Oil Tasting Panel’s utility vectors for the feature sweetness

e1 e2 e3 e4 e5 e6 e7 e8

o1 s4 s2 s5 s3 s4 s5 s2 s7
o2 s4 s3 s4 s2 s2 s4 s5 s3
o3 s3 s3 s5 s4 s3 s2 s4 s2
o4 s5 s4 s4 s5 s6 s3 s7 s3

Table 2 Olive Oil Tasting Panel’s utility vectors for the feature pungency

e1 e2 e3 e4 e5 e6 e7 e8

o1 s′4 s′3 s′4 s′5 s′6 s′4 s′4 s′7
o2 s′5 s′5 s′6 s′3 s′1 s′2 s′5 s′2
o3 s′3 s′4 s′5 s′3 s′2 s′3 s′3 s′3
o4 s′4 s′3 s′5 s′4 s′5 s′4 s′7 s′2
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Table 3 Olive Oil Tasting Panel’s utility vectors for the feature sweetness over the 2-tuple
representation model

e1 e2 e3 e4 e5 e6 e7 e8

o1 (s3, 0) (s3, 0) (s6, 0) (s4, 0) (s6, 0) (s6, 0) (s4, 0) (s7, 0)
o2 (s4, 0) (s3, 0) (s4, 0) (s2, 0) (s2, 0) (s4, 0) (s5, 0) (s3, 0)
o3 (s3, 0) (s3, 0) (s5, 0) (s4, 0) (s3, 0) (s3, 0) (s4, 0) (s2, 0)
o4 (s4, 0) (s3, 0) (s4, 0) (s4, 0) (s5, 0) (s3, 0) (s7, 0) (s3, 0)

Table 4 Olive Oil Tasting Panel’s utility vectors for the feature pungency over the 2-tuple
representation model

e1 e2 e3 e4 e5 e6 e7 e8

o1 (s′4, 0) (s′3, 0) (s′4, 0) (s′5, 0) (s′6, 0) (s′4, 0) (s′4, 0) (s′7, 0)
o2 (s′5, 0) (s′5, 0) (s′6, 0) (s′3, 0) (s′1, 0) (s′2, 0) (s′5, 0) (s′2, 0)
o3 (s′3, 0) (s′4, 0) (s′5, 0) (s′3, 0) (s′2, 0) (s′3, 0) (s′3, 0) (s′3, 0)
o4 (s′4, 0) (s′3, 0) (s′5, 0) (s′4, 0) (s′5, 0) (s′4, 0) (s′7, 0) (s′2, 0)

1. Computing collective values for each feature: In order to simplify the example
we have considered that all the experts are equally important. Therefore, we have
used the arithmetic mean for 2-tuples for aggregating the information provided
by the experts (Tables 5 and 6) obtaining a collective value for sweetness and
pungency for each sample according to all the connoisseurs:

2. Computing a collective evaluation for each object: In this example the objective
is to obtain the evaluation of different organoleptic features independently of
each other to classify the different olive oil batches. So it is not necessary to
obtain a global evaluation of each olive batch according to the two properties
analyzed. However it is important to point out that if it would be necessary to
obtain this global evaluation value we should use an aggregation method able
to manage linguistic information assessed in different linguistic term sets as the
methods showed in [18, 18].

Evaluation Results

The purpose of this evaluation process was to find out the values of different samples
of olive oil regarding their sweetness and pungency properties . If we analyze the
aforesaid results (Tables 5 and 6), the sample o1 obtains the highest score for both

Table 5 Olive Oil Tasting Panel’s collective utility vector for the sweetness

o1 o2 o3 o4

(s5 = A b sw,−.125) (s3 = A b bit, .375) (s3 = A b bit, .375) (s4 = Av, .25)

Table 6 Olive Oil Tasting Panel’s collective utility vector for the pungency

o1 o2 o3 o4

(s′5 = Pungent,−.375) (s′4 = A b Pun,−.375) (s′3 = Av, .25) (s′4 = A b Pun., .25)
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features. The first one, the sweetness, is assessed with A bit sweet and therefore it
is above the average. The second one, its pungency, is Pungent and it is above the
average as well.

5 Concluding Remarks

When we face a sensory evaluation problem we must realize that we are go-
ing to work with knowledge that has been acquired via the human senses sight,
taste, touch, smell and hearing. This knowledge is better expressed using words
instead of numbers, because humans cannot measure exactly with their senses
and words gather accurately the uncertainty related to this way of acquisition of
knowledge.

In this paper, we have proposed a sensory evaluation model based on the lin-
guistic decision analysis since it has been applied successfully to similar evaluation
problems and we have used the 2-tuple computational model in order to exploit
the information because of the advantages that 2-tuple model offers regarding other
linguistic computational models.

Finally we have showed an example of how to apply this model to a specific
sensory evaluation problem, the evaluation of virgin olive oil, in order to expose the
advantages of its use.

Acknowledgment This work is supported by Research Project MTM2005-08982-C04-03.
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Atanassov’s Intuitionistic Fuzzy Sets
as a Promising Tool for Extended Fuzzy
Decision Making Models

Eulalia Szmidt and Janusz Kacprzyk

Abstract Since decision making is omnipresent in any human activity, it is quite
clear that not much later after the concept of a fuzzy set was introduced as a tool for
a description and handling of imprecise concepts, a next rational step was an attempt
to devise a general framework for dealing with decision making under fuzziness.
Since intuitionistic fuzzy sets (in the sense of Atanassov, to be called A-IFSs, for
short) provide a richer apparatus to grasp imprecision than the conventional fuzzy
sets, they seem to be a promising tool for extended decision making models. We will
present some of the extended models and try to show why A-IFSs make it possible
to avoid some more common cognitive biases, the decision makers are prone to do,
which call into question the correctness of a decision.

1 Introduction

Decision making is one of key “meta-problems” in science, hence it has been a
subject of an extensive research effort for decades or even centuries that has resulted
in a multitude of models and approaches with roots in diverse areas ranging from
social sciences, through cognitive science, mathematical sciences to information
technology.

One of main difficulties plaguing the conventional formal models is that they are
to be based on exact and certain information. They have been extended to deal with
uncertainty, and finally - to capture imprecise descriptions, relations, etc. - fuzzy
models have been proposed, based on Zadeh’s theory of fuzzy sets.

As many extensions to the conventional theory of fuzzy sets have appeared over
the years, traditional fuzzy decision making models have been extended to include
those extended fuzzy type descriptions.

Among those extensions, Atanassov’s theory of intuitionistic fuzzy sets [5] plays
an important role, and has gained popularity in recent 1. Basically, it introduces, for

1 Recently there is a debate on the suitability of the name “intuitionistic fuzzy sets” (cf. Dubois,
Gottwald, Hájek, Kacprzyk, Prade [13] but this is beyond the scope of this paper and we will not
be dealing with this). To maintain the consistency with the convention adopted in this volume we
will call the intuitionistic fuzzy sets as introduced by Atanassov, A-IFSs, for short).

H. Bustince et al., (eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation
and Models. C© Springer 2008 335
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each element of a universe of discourse, a degree of membership and a degree of
non-membership, both from [0, 1], but which do not sum up to 1 as in the conven-
tional fuzzy sets. Such an extended definition can help more adequately represent
situations when, for instance, decision makers abstain from expressing their testi-
monies, some assessments can not be classified but also can not be discarded, etc.
Therefore, A-IFSs provide a richer apparatus to grasp imprecision than the conven-
tional fuzzy sets.

In this paper we will show how one can use elements of the theory of A-IFSs
to extend some basic traditional fuzzy decision making models that have been pro-
posed so far.

We start with a review of basic elements of the theory of A-IFSs, in Atanassov’s
sense but presented in a way limiting our attention to elements to be needed later
on. We will emphasize the features of A-IFSs which make it possible to avoid some
cognitive biases that can make traditional decision making procedures questionable
or make their results of a limited usefulness.

Basically, since the purpose of this article is primarily to set foundations of a
wide array of A-IFSs based decision making problems that could be derived as
extensions of the traditional fuzzy sets based ones, we will primarily discuss the
classic Bellman and Zadeh’s [7] general framework of decision making in a fuzzy
environment. It is a point of departure for almost all fuzzy decision making, opti-
mization, control, etc. models.

Then, we will consider the use of A-IFSs to represent imprecise preferences
by referring to some seminal works by Zadeh, Fodor, De Baets, Roubens, etc.
These preference representations will then be used to extend some classic group
decision making models under fuzzy preferences and a fuzzy majority proposed
by Kacprzyk, Fedrizzi, Nurmi, etc. A related issue of how to measure a degree of
consensus in a group of experts will also be dealt with.

In the above analysis we will take as points of departure both the A-IF extensions
of various elements of those models (e.g. preferences), and some derived charac-
teristic features that result from the concept of a similarity of (distance between)
A-IFSs.

Throughout the paper we will emphasize proper interpretations of A-IF elements
to show that they can provide a new quality that cannot be attained by using con-
ventional fuzzy sets.

We will finally indicate some more promising areas for a further research

2 A-IFS Theory (Atanassov [3, 5])

Let us start with basic concepts related to fuzzy sets.

Definition 1. A fuzzy set A
′
in X = {x} (where x stands for a generic element of X)

is given by (cf. Zadeh [63]):

A
′ = {< x, μA(x) > |x ∈ X} (1)
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where μA : X → [0, 1] is the membership function of the fuzzy set A
′
; μA(x) ∈

[0, 1].

The theory of A-IFSs is based both on extensions of corresponding definitions
of fuzzy sets objects and definitions of new objects and their properties (Atanassov
[3, 4, 5]).

Definition 2. An A-IFS A in X is given by (Atanassov [3, 5]):

A = {< x, μA(x), νA(x) > |x ∈ X} (2)

where

μA : X → [0, 1]

νA : X → [0, 1]

with the condition

0<μA(x)+ νA(x)<1 ∀x ∈ X

The numbers μA(x), νA(x) ∈ [0, 1] denote a degree of membership and non-
membership of x to A, respectively.

Obviously, each fuzzy set A
′

corresponds to the following A-IFS:

A = {< x, μA(x), 1− μA(x) > |x ∈ X} (3)

For each A-IFS in X , we will call

πA(x) = 1− μA(x)− νA(x) (4)

the intuitionistic fuzzy index (or a hesitation margin) of x in A. The intuitionis-
tic fuzzy index expresses a lack of knowledge of whether x belongs to A or not
(Atanassov [4, 5]).

It is obvious that

0<πA(x)<1 f or each x ∈ X

For each fuzzy set A
′

in X , evidently,

πA(x) = 1− μA(x)− [1− μA(x)] = 0, f or each x ∈ X

For definitions of basic concepts, operations, etc. on A-IFSs, cf. Atanassov [5].
The application of A-IFSs instead of fuzzy sets means the introduction of an-

other dimension into a set description. Such a generalization of fuzzy sets gives
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us an additional possibility to represent imperfect knowledge that may lead to the
description of many real problems in a more adequate way.

A-IFSs based models may be adequate mainly in the situations when we face
human testimonies, opinions, etc. involving answers of three types:

• yes,
• no,
• abstaining, i.e. which can not be classified (because of different reasons, eg. “I do

not know”, “I am not sure”, “I do not want to answer”, “I am not satisfied with
any of the options” etc.).

Voting can be a good example as the human voters may be divided into three
groups of those who: vote for, vote against and abstain. For some analysis of the very
nature of abstention, which is of a key importance for our purposes, see Kang [28].

Applications of A-IFSs to group decision making, negotiations, etc. are presented
in (Szmidt and Kacprzyk [42, 43, 45, 48, 52, 53, 54, 59]). Albeit voting, group
decision making or negotiations are the representative examples in which inherent
features of the A-IF models are especially desirable, also in other situations when
a decision is to be made, A-IFSs may show their power that is a result of the two
reasons:

• A-IFSs make a decision maker concentrate his/her attention not only on advan-
tages (expressed via memberships of the considered options) but also on disad-
vantages of the options. This feature of A-IFSs should be stressed because one of
cognitive and personal biases in decision making pointed out by psychologists is
wishful thinking and optimism – people tend to want to see things in a positive
light (neglecting the negatives of the options) what can distort their perception
and thinking (Sutherland [39]). A-IF models just at the stage of collecting the
data prevent from making the mistake.

• A-IFSs make it possible to additionally (to fuzzy sets) capture a lack of knowl-
edge on an imprecise description itself, e.g. a lack of knowledge concerning
the considered options. Clearly, a similar facility can be attributed to the use of
interval-valued fuzzy sets (Atanassov and Gargov first noticed in 1989 that the
both types of the sets are equipollent [6]) but, from the cognitive bias related point
of view assumed here, one can say that interval-valued fuzzy sets, in a sense, just
support the cognitive bias mentioned above – a decision maker considers only
the membership values (representing advantages) of the considered options. In
effect only a lack of knowledge on membership values is taken into account.
Non-membership values of the options (representing disadvantages) are not con-
sidered by a decision maker. Of course, formally non-membership values can be
calculated but for a decision maker they are somewhere at the background and do
not need to be considered. In effect non-membership values are not considered –
as the psychologists noticed, people tend to be willing to gather facts that support
certain conclusions but disregard other facts that support different conclusions
(Sutherland [39]). The very essence and structure of A-IF decision models may
protect us against the cognitive bias.
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Clearly, a question arises how to assign the membership and non-membership
values. This is a problem as old as fuzzy sets theory itself, and many procedures have
been proposed. For A-IFSs, an approach based on questionnaires and histograms
can be found in Szmidt and Baldwin [40, 41].

3 Decision Making Under Fuzziness – Bellman
and Zadeh’s Approach

In this section we briefly present the seminal Bellman and Zadeh general approach
to decision making under fuzziness, originally termed decision making in a fuzzy
environment, a simple yet extremely powerful framework within which virtually all
fuzzy models related to decision making, optimization and control have been dealt
with. Next, imprecision (fuzziness) of the environment within which the decision
making (or control) process proceeds is enlarged by using A-IFSs having additional
degree of freedom. In effect A-IF environment (intuitionistic fuzziness), which con-
sists of A-IF goals, A-IF constraints, and A-IF decisions, is introduced and a general
approach to decision making under such condition is presented.

3.1 Decision Making in a Fuzzy Environment

In Bellman and Zadeh’s [7] setting the imprecision (fuzziness) of the environment
within which the decision making (or control) process proceeds is modeled by the
introduction of the so called fuzzy environment which consists of fuzzy goals, fuzzy
constrains, and fuzzy decision.

A formal definition of these elements of the fuzzy environment starts with the
assumption of some set of possible options (or alternatives, choices decisions)
denoted by X = {x} where x means a generic element of X . The set X contains
all the possible (relevant, feasible) values, courses of actions, etc. in the situation
considered.

The fuzzy goal is now defined as a fuzzy set G in the set of options X = {x},
characterized by its membership functionμG : X → [0, 1] such thatμG(x) ∈ [0, 1]
specifies the grade of membership of a particular option x ∈ X in G.

The fuzzy constraint is similarly defined as a fuzzy set C in the set of options
X = {x}, characterized by its membership function μC : X → [0, 1] such that
μC(x) ∈ [0, 1] specifies the grade of membership of a particular option x ∈ X
in C .

The above mentioned identity of handling a fuzzy goal G in X = {x} and a fuzzy
constraint C in X = {x} suggests the following general formulation of the decision
making problem in a fuzzy environment:

Attain G and satisfy C (5)
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which should be meant as to determine a decision (an option or a set of options)
which simultaneously fulfills the fuzzy goal and fuzzy constraint; evidently such a
decision should belong to those available, or perhaps to those relevant or feasible.

In a formal way, if G is a fuzzy goal and C is a fuzzy constraint, both defined as
fuzzy sets in the set of options X = {x}, the fuzzy decision D is a fuzzy set defined
also in the set of options X resulting from an aggregation ∗ : [0, 1]× [0, 1]→ [0, 1]
of G and C , that is

D = G ∗ C (6)

or, in terms of membership functions,

μD(x) = μG(x) ∗ μC(x) f or each x ∈ X (7)

The aggregation “*” is evidently some operation on two fuzzy sets. Therefore,
there immediately arises a question as to which one is appropriate. Basically, if we
take as a point of departure the general formulation of the decision making prob-
lem, i.e. “attain G and satisfy C”, this operation should correspond to the “and”
connective in the definition of the intersection of two fuzzy sets (cf. Kacprzyk [20]).

Let us start with the most important type of the fuzzy decision that is related to
Zadeh’s standard definition [63] of the intersection of two fuzzy sets.

The min-type fuzzy decision is defined as

D = G ∩ C (8)

or, in terms of the membership functions,

μD(x) = μG(x) ∧ μC (x) for each x ∈ X (9)

where “∧” is the minimum operation, i.e. a ∧ b = min(a, b).

Example 1. (cf. Kacprzyk, [20]) Suppose that the fuzzy goal is “ x should be much
larger than 5”, and the fuzzy constraint C is “x should be about 6”, as in Fig. 1.

The (membership function of) min-type fuzzy decision is given in bold line, and
should be interpreted as follows. The set of possible options is the interval [5, 10]

Fig. 1 Fuzzy goal, fuzzy
constraint, fuzzy decision,
and the optimal (maximizing)
decision

μ D(x) μ C(x)

1

1

2 3 4 5 6 7 8 9 10 11 X x

μ G(x)

μ D(x)

x '
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because μD > 0, for 5<x<10. The other options, i.e. x < 5 and x > 10 are
impossible since μD(x) = 0. However, not all the options belonging to the interval
[5, 10] are equally satisfactory (or preferable). The value of μD(x) ∈ [0, 1] may be
meant as the degree of satisfaction from the choice of a particular x ∈ X , from 0 for
full dissatisfaction to 1 for full satisfaction, through all intermediate values; thus,
the higher the value of μD(x), the higher the satisfaction from x .

We have therefore a concept of a fuzzy decision. The above interpretation of the
fuzzy decision’s membership function μD(x) as the degree to which a particular
option x is satisfactory as a solution to the problem (5) immediately suggests that
the best (nonfuzzy) choice in this case would be the one corresponding to the highest
value of μD(x).

The maximizing decision is defined as an x∗ ∈ X such that

μD(x
∗) = max

x∈X
μD(x) (10)

and an example may be found in Fig. 1 where x∗ = 7.5.
We should, however be aware that the determination of a nonfuzzy (maximiz-

ing) decision from a fuzzy decision is basically the problem of defuzzification, and
the simple defuzzification of the type (10) is clearly not a perfect solution, and its
simplicity is the only advantage.

3.2 Decision Making in an A-IF Environment

It is clear that we can expect that A-IFSs, having another degree of freedom in
comparison with fuzzy sets, may model decision making processes in a more hu-
man consistent and flexible way. So another rational step is an attempt to devise a
general framework for dealing with decision making and control under intuitionistic
fuzziness. The same way of reasoning as proposed by Bellman and Zadeh in a fuzzy
environment is also the core of the approach proposed in this Section but concerns
decision making in an A-IF environment.

In the classic Bellman and Zadeh’s approach a satisfaction level or any value is
given by a membership function μ whereas when using A-IFSs, a satisfaction level
is described by a number from an interval [μ,μ + π] where π is the intuitionistic
fuzzy index. It is because our preferences can vary with external conditions. For
example, the same queue length in a bank can be assessed as too long to wait in
(when the weather is beautiful, we want to go for a walk and there are still several
more days ahead to go the bank) or rather short one – when it is the day we must do
business in our bank (for more example when A-IFSs are useful for describing real
world phenomena, a cf. Szmidt and Kacprzyk [43].

Certainly, the general formulation of the decision making problem in an A-IF
environment is the same as in a case of a fuzzy environment, i.e.: “attain G and
satisfy C”. But now both a goal and a constraint are given by two functions, so the
formula
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D = G ∗ C (11)

in terms of A-IFSs must be described by two functions.
The counterpart of the min-type fuzzy decision (8) in the case of A-IFSs is de-

fined as

D = G ∩ C (12)

or, in terms of the membership and non-membership functions [3, 5],

μD(x) = μG(x) ∧ μC (x) and νD(x) = νG(x) ∨ νC(x); f or each x ∈ X (13)

The same considerations as for fuzzy sets (cf. Sect. 3) lead to the maximizing
decision defined as x∗ ∈ X such that

μD(x
∗) = max

x∈X
μD(x) and νD(x

∗) = min
x∈X

νD(x) (14)

Unfortunately, for A-IF cases the (14) have no solution. It can be easily proved
that for fuzzy problems only (in a case of linear fuzzy goals and linear fuzzy con-
straints) an optimal decision x∗ exists. For A-IF cases we have

μD(x) = max
x∈X

μD(x) and νD(x) = min
x∈X

νD(x) (15)

Example 2. Suppose that the fuzzy goal is “x should be much larger than 5”, (like
in Example 1) but let us also assume that owing to additional (external) conditions,
our preferences (goal) vary. The varying preferences are expressed by intuitionistic
fuzzy indices in Fig. 2.

Now the goal (A-IF fuzzy goal) is described by two functions: membership func-
tion μG(x) and the intuitionistic fuzzy index πG(x). If the value of x attained is at

Fig. 2 A-IF goal G, “x
should be much larger
than 5”

intuitionistic
fuzzy goal

1

1

2 3 4 5 6 7 8 9 10
x

μ G(x) + π G(x)

μ G(x)
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least 9, then μG(x) is equal to 1 which means that we are for sure fully satisfied
with the x attained. But even for x greater than 7.5 it is possible (but not sure) that
our level of satisfaction is equal to 1, as μG(x)+ πG(x) is equal to 1 in the interval
[7.5, 9]. On the other hand, if the x attained does not exceed 4.5, then we are for
sure fully dissatisfied with such a value of x , or in other words, such a value is
impossible. For x belonging to the interval [4.5, 6], our level of satisfaction can be
(but not for sure as in the interval μG(x) is equal to 0) greater than zero because
the intuitionistic fuzzy index πG(x) is greater than zero here. For x greater than 6,
μG(x) is greater than zero, so our level of satisfaction is for sure greater than zero.

Let our A-IF constraint C be “x should be about 6”, as in Fig. 3.
A constraint in an A-IF environment, just the same as it was in the case of an

A-IF goal, can vary. It is easy to imagine that demand for a product changes. We
can foresee it to some extent but when faced with a concrete decision how much
to produce, we are able to make a rough decision only. It is illustrated in Fig. 3.
We are sure that for x from interval [5.5, 6.5], the level of satisfaction for the con-
strain is equal to 1. But because of the lack of knowledge expressed by πC (x),
also for x belonging to intervals [5, 5.5) and (6.5, 7] the level of satisfaction can
be equal to 1. It means that for the above intervals the only sure (safe) informa-
tion is the lower level of satisfaction given by μC(x) (as our level of satisfaction
is described by a number from the interval [μC(x), μC (x)+ πC(x)]). For x less
than 2 or greater than 10 the level of satisfaction is equal to 0 (too low a production
level is unprofitable, too big a level requires an expensive storage space). For x
belonging to [2, 2.5) or (9.5, 10] our level of satisfaction can be greater than 0
because of intuitionistic fuzzy index πC(x) but it is not sure as μC(x) is equal
to 0 here. For the interval [2.5, 5) the higher x the higher the level of satisfac-
tion. For the interval (7, 9.5] the higher x the lower the level of satisfaction. The
level of satisfaction is obviously given for every x as a number from the interval
[μC(x), μC(x)+ πC (x)].

Certainly, both for the A-IF goal G and constraint C it is easy to find for each
x ∈ X non-membership functions. Namely

Fig. 3 A-IF constraint C ,“x
should be about 6”

intuitionistic
fuzzy constraint

1

1

2 3 4 5 6 7 8 9 10
x

μ C (x) + π C (x)

μ C(x)
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Fig. 4 A-IF decision intuitionistic
fuzzy decision
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νG(x) = 1− (μG(x)+ πG(x)) and νC(x) = 1− (μC(x)+ πC (x)) (16)

and knowing the above values it is possible to use formulas (13).
The min-type fuzzy decision is given (cf. (13)) in bold lines in Fig. 4.
We have therefore a concept of an A-IF decision, that is a solution to the decision

making problem considered (attain G and satisfy C). In fact we are interested in
the area ABC D only because in this region membership functions are greater than
non-membership functions. The interested region is for x belonging to the interval
[6.5, 8.5]. But in practice, however, if we wish to implement such a solution we
need to find a crisp solution for which equations (15) are helpful. For our exam-
ple x is equal to 7.25, x is equal to 7.75. Acceptable solutions lie in the interval
[xmin, xmax] = [6.5, 8.25] - here a tradeoff between wanted values of μD and νD

occurs.
Note that in Fig. 4, μD(x) < 1 and νD > 0 which means that there is no option

which fully satisfies or could under some conditions satisfy (for νD(x) = 0 it would
be a chance that values πD(x) > 0 could increase μD(x)) both the fuzzy goal and
fuzzy constraint. In other words, there is a discrepancy or conflict between the goal
and the constraint.

In fact determination of a non-fuzzy decision is basically the problem of defuzzi-

fication, and the simplest defuzzification of the type
∼
x= 0.5(x + x) is for linear

goals and constrains a solution. For the considered example
∼
x= 7.5.

4 Group Decision Making and Soft Measures of Consensus

We assume that there is a set of individuals who provide their testimonies assumed
to be preferences over the set of alternatives. The problem is to find a solution, i.e.
an alternative (or a set of alternatives) which is best acceptable by the group of indi-
viduals as a whole. For a different point of departure, involving choice sets or utility
functions, we may refer the interested reader to, e.g., Kim [29], Salles [37], etc.
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An important research direction, that may help overcome difficulties and negative
results, is based on an individual and social fuzzy preference relation. Suppose that
we have a set of n ≥ 2 alternatives, S = {s1, . . . , sn} (we use S for the set of
alternatives to be consistent with many papers on this topic, including those cited
later on), and a set of m ≥ 2 individuals, I = {1, . . . ,m}. Then, an individual’s
k ∈ I individual fuzzy preference relation in S×S assigns a value in the unit interval
for the preference of one alternative over another. Though normally some conditions
are to be satisfied, as, e.g., reflexivity, connectivity, (max-min) transitivity, etc., it
is not clear which of these “natural” properties of preference relations should be
assumed (cf. Salles [37]); a deep discussion is in, e.g., Fodor and Roubens’ [15],
and in De Baets et al.’s paper in this volume.

Here we assume that the individual and social fuzzy preference relations are
defined in S × S, i.e. assign to each pair of alternatives a strength of preference of
one over another as a value from [0, 1]. The fuzzy, and then A-IF, preferences will
be employed only instrumentally, and we will not discuss them and their properties
in more detail.

Another basic element is here the concept of a majority – notice that a solution is
to be an alternative(or alternatives) best acceptable by the group as a whole, that is
by (at least!) most of its members since in practically no real nontrivial situation it
would be accepted by all. Some problems and negative results with group decision
making are closely related to too strict a representation of majority (e.g., at least a
half, at least 2/3, . . . ). A natural line of reasoning is to make that strict concept of
majority closer to its real human perception by making it vague. A good, often cited
example in a biological context may be found in Loewer and Laddaga [32]:

“ . . . It can correctly be said that there is a consensus among biologists that Darwinian
natural selection is an important cause of evolution though there is currently no consensus
concerning Gould’s hypothesis of speciation. This means that there is a widespread agree-
ment among biologists concerning the first matter but disagreement concerning the second
. . . ”

and it is clear that a rigid majority as, e.g., more than 75% would evidently not
reflect the essence of this statement. However, a strict majority may be necessary as
in all political elections. In this section we will mention a fuzzy majority but will
not use it in the concept of our A-IF extensions.

We have a set of n ≥ 2 alternatives, S = {s1, . . . , sn}, and a set of m ≥ 2
individuals, I = {1, . . . ,m}. Each individual k ∈ E provides his or her testimony as
to the alternatives in S, assumed to be individual fuzzy preference relations defined
over S (i.e. in S × S) (cf., e.g., Kacprzyk, Nurmi and Fedrizzi [27]).

An individual fuzzy preference relation of individual k, Rk , is given by its mem-
bership function μRk : S × S −→ [0, 1] such that

μRk (si , s j ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1 if si is definitely preferred to s j

c ∈ (0.5, 1) if si is slightly preferred to s j

0.5 in the case of indifference
d ∈ (0, 0.5) if s j is slightly preferred to si

0 if s j is definitely preferred to si

(17)
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If card S is small enough (as assumed here), an individual fuzzy preference re-
lation of individual k, Rk , may conveniently be represented by an n × n matrix
Rk = [rk

i j ], such that rk
i j = μRk (si , s j ); i, j = 1, . . . , n; k = 1, . . . ,m. Rk is

commonly assumed (also here) to be reciprocal in that rk
i j + rk

j i = 1; moreover,

it is also normally assumed that rk
ii = 0, for all i, k; for a different, more justi-

fied convention, cf. Garcı́a-Lapresta and Llamazares [16]. Moreover, we will not
use here a more sophisticated concept of a fuzzy preference systems proposed by
De Baets et al. which is presented in their paper in this volume. The reasoning is in
this case principally the same.

Two lines of reasoning may be followed here (cf. Kacprzyk [17, 18, 19]):

• a direct approach: {R1, . . . , Rm} −→ solution, that is, a solution is derived
directly (without any intermediate steps) just from the set of individual fuzzy
preference relations, and

• an indirect approach: {R1, . . . , Rm} −→ R −→ solution, that is, from the set
of individual fuzzy preference relations we form first a social fuzzy preference
relation, R (to be defined later), which is then used to find a solution.

A solution is here, unfortunately, not clearly understood – see, e.g., Nurmi [33,
34] for diverse solution concepts. In this paper we will only sketch the derivation
of some more popular solution concepts. Then, we will mention some possible ap-
proaches in the application of A-IF preference relations.

One of the best solution concepts is that of a core or a set of undominated alter-
natives. Suppose that the nonfuzzy required majority be r (e.g., at least 50%).

Then, An alternative si ∈ S belongs to the core iff there is no other alternative
y ∈ S that defeats x by the required majority r .

We can extend the notion of a core to cover fuzzy individual preference relations
by defining the fuzzy α-core as follows (cf. Nurmi [33]): an alternative si ∈ S be-
longs to the fuzzy α-core Sα iff there exists no other alternative s j ∈ S such that
r j i > α for at least r individuals, i.e. iff a sufficient majority of voters does not feel
strongly enough against it.

Another nonfuzzy solution concept with much intuitive appeal is a minimax set
defined as follows: for each x, y ∈ S denote the number of individuals preferring x
to y by n(x, y). Then define

v(x) = max
y

n(y, x) and n∗ = min
x

v(x)

and the minimax set is

Q(n∗) = {x | v(x) = n∗}

so that Q(n∗) contains those alternatives that in pairwise comparison with any other
alternative are defeated by no more than n∗ votes.

Analogously, we can define a the minimax degree set Q(β) as follows. Given
si , s j ∈ S and let, for individuals k = 1, . . . ,m, and vk

D(x j ) = maxi ri j , and
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vD(x j ) = maxk v
k
D(x j ), and if min j vD(x j ) = β, then Q(β) = {x j | vD(x j ) = β}

(cf. Nurmi [33]).
Another concept is a minimax opposition set. Let ni j be the number of those

individuals for whom ri j > r j i and let v f (x j ) = maxi ni j . Denote by v̄ f the
minimum of v f (x j ) with respect to j , i.e. v̄ f = min jv f (x j ), and then Q(v f ) =
{x j | v f (x j ) = v̄ f }.

A more general solution concept, the α-minimax set (cf. Nurmi [33]) denoted
Qα(vαf ), is defined as follows. Let nα(xi , x j ) be the number of individuals for
whom ri j<α for some value of α ∈ [0, 0.5). We now define ∀xi ∈ S : vαf (xi ) =
max j nα(xi , x j ) and v̄αf = mini v

α
f (xi ). Then

Qα(vαf ) = {xi | vαf (xi ) = v̄αf }

For some other solution concepts, mainly those based on fuzzy tournaments, see
Nurmi and Kacprzyk [35].

Among solution concepts derived via an indirect approach, i.e. from a social
fuzzy preference relation, first, the set Sα of α-consensus winners is defined as:
si ∈ Sα iff ∀s j �= si : ri j ≥ α, with 0.5 < α<1.

Whenever Sα is nonempty, it is a singleton, but it does not always exist.
Thus, it may be useful to find other solution concepts that specify nonempty

alternative sets even when Sα is empty. For, instance, Kramer’s minimax set is a set
of minimax consensus winners, SM . Let r̄ j = maxi ri j and r̄ = min j maxi ri j . Then
si ∈ SM (the set of minimax consensus winners) iff r̄i = r̄ . Clearly SM is always
nonempty, but not necessarily a singleton. It contains those alternatives which, when
confronted with their toughest competitors, fare best, i.e. win by the largest score (if
r̄<0.5) or lose by the smallest one (if r̄ > 0.5).

Consensus is a prerequisite for an effective and efficient group decision making.
Degrees of consensus for fuzzy preference have been first considered by Bezdek,
Spillman and Spillman [8, 9], and their approach is quite closely related to the A-IF
extensions proposed by the authors in [51].

Soft degrees of consensus based on fuzzy linguistic quantifiers as representations
of a fuzzy majority proposed in Kacprzyk [19]), and then advanced in Kacprzyk
and Fedrizzi [21, 22, 23, 24], and Kacprzyk, Fedrizzi and Nurmi [25, 26], see
also Kacprzyk, Nurmi and Fedrizzi [27], and Zadrożny [65], give much more in-
sight into the very essence of consensus but due to the necessity of handling fuzzy
quantifiers, have not been extended to A-IFSs and will not be considered in this
paper.

Now we will present examples of A-IF extensions using mainly A-IF preference
relations. Our analysis will be based on our works that are main contributions in
this field. Notably, in Szmidt and Kacprzyk [42, 43, 45, 46, 48, 49, 51, 52] new
A-IF models have been proposed to solve some group decision problems, and to
determine soft measures of consensus.

The degree of consensus is derived in three steps:

1. for each pair of individuals we derive a degree of agreement as to their prefer-
ences between all the pairs of alternatives,
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2. we aggregate these degrees to obtain a degree of agreement of each pair of indi-
viduals as to their preferences between Q1 (a linguistic quantifier as, e.g., “most”,
“almost all”, “much more than 50%”, . . . ) pairs of relevant alternatives, and

3. we aggregate these degrees to obtain a degree of agreement of Q2 (a linguistic
quantifier similar to Q1) pairs of important individuals as to their preferences
between Q1 pairs of relevant alternatives, and this is meant to be the degree of
consensus sought.

We assume that both the individuals and alternatives are assigned different de-
grees of importance and relevance. In the process of the derivation of a degree of
consensus a crucial role is played by a fuzzy majority, equated with a fuzzy lin-
guistic quantifier, i.e. Q1 and Q2. For instance, Q = “most” may be given as (cf.
Kacprzyk [20]):

Q“most”(x) =
⎧

⎨

⎩

1 for x > 0.8
2x − 0.6 for 0.3<x<0.8
0 for x < 0.3

(18)

and this form of “most” will be used throughout this chapter.
We will employ Zadeh’s [64] calculus of linguistically quantified statements.
The relevance of options is given as a fuzzy set defined in the set of alternatives S

such that μB(si ) ∈ [0, 1] is a degree of relevance of option si , from 0 for fully irrel-
evant to 1 for fully relevant, through all intermediate values, and the more relevant
the option the higher this degree. The relevance of a pair of options, (si , s j ) ∈ S×S,
may be defined, say, as

bk
i j =

1

2
[μB(si )+ μB(s j )] (19)

And analogously, the importance of individuals, I , is defined as a fuzzy set in the
set of individuals such that μI (k) ∈ [0, 1] is a degree of importance of individual
k, from 0 for fully unimportant to 1 for fully important, through all intermediate
values. Then, the importance of a pair of individuals, (k1, k2), bI

k1,k2
, may be defined

in various ways, e.g., analogously as (19), i.e.

bI
k1,k2

= 1

2
[μI (k1)+ μI (k2)] (20)

The three step procedure of finding consensus is a starting point for employing
A-IFSs instead of fuzzy sets for modelling individual preference relations.

In the A-IF approach (cf. Szmidt and Kacprzyk [42, 43, 45, 46, 48, 49], [51, 52],
each individual k provides his or her (individual) A-IF preference relation, giving
not only Rk (given, as previously, by its membership function μRk ) but also

• νRk – a non-membership function, νk : S× S → [0, 1], conveniently represented
by a matrix [νk

i j (si , s j )]; i, j = 1, . . . , n; k = 1, . . . ,m, and
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Table 1 The meaning of A-IF parameters when individuals pairwisely compare options

μi, j πi, j νi, j

advantages lack of knowledge drawbacks
(i-th option better) (?) (j-th option better)

• �k – a so-called intuitionistic fuzzy index, πk : S × S → [0, 1], conveniently
represented by a matrix [πk

i j (si , s j )]; i, j = 1, . . . , n; k = 1, . . . ,m.

meants as in Table 1.
For each compared pair of options (i, j):

• a degree of membership μi, j means the value we assign to all the advantages of
i -th option or to all the drawbacks of j -th option,

• a degree of non-membership νi, j means the value we assign to all the drawbacks
of i -th option or to all the advantages of j -th option,

• an intuitionistic fuzzy index πi, j means the area concerning both compared op-
tions where we have not enough information (or do not wish to express it) to say
which option is better.

Using the above A-IF preferences, we have applied the approaches adapted from
the fuzzy approach (cf. Kacprzyk [18], Kacprzyk, Fedrizzi and Nurmi [25]) but due
to a wide array of the applied methods, we can only refer the reader to [42, 43, 45,
46, 48, 49, 51].

Taking advantage of the power of A-IFSs, we also proposed a different ap-
proach to the analysis of extent of the agreement in the group of experts, than in
Kacprzyk [18], Kacprzyk, Fedrizzi and Nurmi [25] using the concept of a distance
between A-IF preferences to evaluate how far the group is from full agreement (con-
sensus) [52]. An extent of a group agreement was given by a number from interval
[0, 1], where 0 means consensus (in a traditional sense), 1 means dissensus. Notice
that this is close in spirit to Bezdek, Spillman and Spilman [8, 9].

An advantage of using distances is due to the fact that we can avoid some formal
difficulties while aggregating A-IF preferences (cf. Szmidt and Kacprzyk [44, 47,
60] for effective methods of calculating distances). The disadvantage is that in a case
of A-IFSs a small distance between options does not automatically guarantee their
similarity (in Szmidt and Kacprzyk [57] an illustraiting example is given). The use
of the entropy (cf. Szmidt and Kacprzyk [50]) in addition to distances makes it pos-
sible to get even more insight (cf. Szmidt and Kacprzyk [55]) as both the distances
and entropy should be analysed separately. To avoid the necessity of analyzing the
distances and entropy separately, we proposed one measure – similarity (cf. Szmidt
and Kacprzyk [56, 57, 59]) that may be viewed to give an additional quality and a
more global view.

It is noteworthy that the distances used in the definition of similarity take into
account all three functions (membership, non-membership and hesitation margin)
characterizing A-IFSs. A motivation for using all three functions and poor effects of
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omitting one of them (from the point of view of decision making) is given in Szmidt
and Kacprzyk [60, 61]).

The extent of similarity for two experts k1, k2 considering n options (proposed in
[57]) can be given as

Simk1,k2 = 1

A

n−1
∑

i=1

n
∑

j=i+1

Simk1,k2 (i, j) =

= 1

A
[
n−1
∑

i=1

n
∑

j=i+1

(| μi j (k1)− μi j (k2) | + | νi j (k1)− νi j (k2) | +

+ | πi j (k1)− πi j (k2) |)]/[
n−1
∑

i=1

n
∑

j=i+1

(| μi j (k1)− νi j (k2) | +

+ | νi j (k1)− μi j (k2) | + | πi j (k1)− πi j (k2) |)] (21)

where A = 1
2C2

n
= 1

n(n−1) .

Some other measures of similarity are proposed in [56, 57, 59]).
When we have m experts, we examine a similarity of their preferences pairwisely,

e.g. given by (21) and next, we find an agreement of all experts

Sim = 1

m(m − 1)

m−1
∑

p=1

m
∑

r=p+1

Simkp,kr (22)

where Simkp,kr is given e.g. by (21).
Using the above concept of similarity measure to analyse the extent of agree-

ment between experts consists in saying if all of the considered pairs of expert’s
preferences are

• just the same (i.e. full agreement meaning consensus in a traditional sense - the
proposed measure of similarity is equal to 0),

• quite opposite (i.e. full disagreement - similarity tends to infinity),
• different to some extent (what means that a distance from consensus is from the

open interval (0, 1))
• to the same extent similar as dissimilar - the proposed measure of similarity is

equal to 1.

The concept of similarity was also used while supporting medical diagnosis (cf.
Szmidt and Kacprzyk [53, 58]) which, as has been already mentioned earlier, makes
it possible to avoid drawing the conclusions about a strong similarity between A-
IFSs on the basis of small distances between these sets.

A measure of similarity between A-IFSs turned out to be useful as well while
proposing a new solution to a multi-criteria decision making problem [62]. More
specifically, having a set M of options fulfilling a set of criteria C , we wished to
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rank the options satisfying: C j , and Ck , . . . , and Cp or Cs whereas each criterion is
fulfilled to some extent μ and is not fulfilled to some extent ν (when 0< μ + ν< 1).

The solution of this problem was proposed by Chen and Tan [12] but it does
not always give a proper answer as indicated by Liu [31]. Applying a measures
of similarity between A-IFSs made it possible to overcome some deficiencies. We
evaluated options comparing them to the positive-ideal solution and negative-ideal
solution. The best considered option should be as close as possible to the positive-
ideal solution and as far as possible to the negative-ideal solution. In our previous
works (cf. e.g, [57]) we have shown that looking for the solution (the best option)
taking into account only positive-ideal solution can be misleading.

5 Case-Based Reasoning (CBR)

Finally, we will mention in this section a potential use of A-IFSs in case based
reasoning. This may be a promising direction in broadly perceived decision making
under imprecision, and such an idea was proposed in a recent paper by Szmidt and
Kacprzyk [61].

Case-based reasoning (cf. Schank [38], Aamodt and Plaza [1]) is a problem solv-
ing paradigm that in many respects is fundamentally different from other major
approaches. Instead of making use solely from general knowledge of a problem
domain, CBR is able to utilize the specific knowledge of previously experienced,
concrete problem situations called cases. A new problem is solved by finding a
similar past case, and reusing it in the new problem situation.

Central tasks that all case-based reasoning methods have to deal with are to iden-
tify the current problem situation, find a past case similar to the new one, use that
case to suggest a solution to the current problem, evaluate the proposed solution,
and update the system by learning from this experience.

Reasoning by re-using past cases is a powerful and frequently applied way to
solve problems by humans. Several studies have given empirical evidences for the
dominant role of specific, previously experienced situations (cases) in human prob-
lem solving (e.g Ross[36]). Anderson[2] has shown that people use past cases as
models when learning to solve problems, particularly in early learning. Other re-
sults indicate (cf. Kolodner[30]) that the use of past cases is a predominant problem
solving method among experts as well.

The use of A-IFSs in case-based reasoning seems to be a promising direction.
A higher expressing power of A-IFSs can be exemplified by: a financial consultant
working on a difficult credit decision task collects material on a finance situation of
a company. The collected material consists of both positive and negative indicators,
and some indicators are missing. Such a situation, often met in practice, is ideal
to be describe via A-IFSs which make use of positive and (independently given)
negative information, which at the same time making it possible to express and
take into account the amount of lacking information as well. Also the processes of
decision making, assessing the soft grades of consensus (which are another cen-
tral task in CBR) are described and solved in a more adequate way when using
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A-IFSs. Additionally, the advantages of A-IFSs can be also noticed due to their
possibility of confident eliminating negative cases what can considerably speed up
the process of finding the past cases similar to the new one – especially in big case-
bases.

When having a current situation (case) described in terms of A-IFSs (the data can
be delivered by experts or assigned automatically (cf. Szmidt and Baldwin [40]),
and all the aspects of the decision, the case is added to the database. When a new
case is to be considered, it should be compared to the already collected cases. At this
stage similarity measures are necessary. Although some problems are still open, e.g.
aggregation of the data concerning the cases, application of A-IFSs to CBR seems
promising.

6 Concluding Remarks

The purpose of this paper was to briefly survey some developments in the use of A-
IFSs in decision making. We have basically examined some fuzzy decision making
models, mainly those based on a general approach due to Bellman and Zadeh [7],
and then considered a very important class of group decision making and measuring
a degree of consensus where there is a considerable literature on traditional fuzzy
approaches.

We have indicated some possible use of A-IFSs in those models. Notably, we
have indicated that a new class of models may be more fruitful, mainly those based
on the use of distances and similarities between A-IFSs, and also on their entropies.
These quantities reflect in a very good way some intrinsic characteristics of aspects
of decision making represented by A-IFSs, and seem to be a promising direction.

Finally, we have mentioned – again as a promising direction – the use of A-IFSs
in case based reasoning.

We hope that this paper can trigger a further research in the use of A-IFSs in
decision making under imprecision, and that A-IFSs will make it possible to express
and grasp many further aspects of imprecision that may be of relevance in decision
making models. Notably, by employing A-IFSs a decision maker may explicitly
express both advantages (membership) and disadvantages (non-membership) of a
situation considered independently. An imprecision (hesitation) is taken into ac-
count as well. The importance of such an approach lies in the fact that most people
concentrate usually on one or two “most visible” aspects of a problem. They do not
try to find out the contrary arguments or to consider uncertain (in a wide sense, i.e.
not restricted to randomness) aspects of a situation (cf. Sutherland [39]). A-IFSs
with their structure make a user consider a situation/problem more properly – from
different points of view – including all important aspects which should be taken into
account but which, unfortunately, are often omitted by people making decisions. A-
IFSs may be certainly viewed as modern and promising means for decision making
under imprecision.
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Fuzzy Methods for Data Mining and Machine
Learning: State of the Art and Prospects

Eyke Hüllermeier

Abstract Methods for the automated induction of models and the extraction of in-
teresting patterns from empirical data have recently attracted considerable attention
in the fuzzy set community. This chapter briefly reviews some typical applications
and highlights potential contributions that fuzzy set theory can make to machine
learning, data mining, and related fields. Finally, a critical consideration of recent
developments is given and some suggestions regarding future research are made.

1 Introduction

Aspects of knowledge representation and reasoning have dominated research in
fuzzy set theory (FST) for a long time, at least in that part of the theory which
lends itself to intelligent systems design and applications in artificial intelligence
(AI). Yet, problems of automated learning and knowledge acquisition have more
and more come to the fore in recent years. This is not very surprising in view of
the fact that the “knowledge acquisition bottleneck” seems to remain one of the key
problems in the design of intelligent and knowledge-based systems. Indeed, expe-
rience has shown that a purely knowledge-driven approach, which aims at formal-
izing problem-relevant human expert knowledge, is difficult, intricate, and tedious.
More often than not, it does not even lead to fully satisfying results. Consequently,
a kind of data-driven adaptation of fuzzy systems is often worthwhile. In fact, such
a “tuning” even suggests itself since, in many applications, data is readily available.
Indeed, recent research has shown that the traditional knowledge-driven approach
can be complemented by a data-driven one in a reasonable way. In the extreme
case, the former is even completely replaced by the latter. For example, several
approaches in which fuzzy models (e.g., fuzzy rule bases) are learned from data in
a fully automated way have already been developed [1].

In addition to this internal shift within fuzzy systems research, an external de-
velopment has further amplified the aforementioned trends. This development is the
great interest that the field of knowledge discovery in databases (KDD) has attracted
in diverse research communities in recent years. As a response to the progress in
digital data acquisition and storage technology, along with the limited human ca-
pabilities in analyzing and exploiting large amounts of data, this field has recently

H. Bustince et al., (eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation
and Models. C© Springer 2008 357



358 E. Hüllermeier

emerged as a new research discipline, lying at the intersection of statistics, ma-
chine learning, data management, and other areas. According to a widely accepted
definition, KDD refers to the non-trivial process of identifying valid, novel, poten-
tially useful, and ultimately understandable structure in data [21]. The central step
within the overall KDD process is data mining, the application of computational
techniques to the task of finding patterns and models in data. Meanwhile, KDD has
established itself as a new, independent research field, including its own journals
and conferences.

The aim of this chapter is to convey an impression of the current status and
prospects of FST in machine learning, data mining, and related fields. After a brief
introduction to these fields (Sect. 2), we present a collection of typical applications
of FST (Sect. 3). The examples are representative but not complete, and the sec-
tion is definitely not a comprehensive review of the literature. In Sect. 4, we try to
highlight in a more systematic way the potential contributions that FST can make
to machine learning and data mining. Finally, we conclude with a critical consider-
ation of recent developments and some suggestions for future research directions in
Sect. 5.

2 Machine Learning, Data Mining, and Related Fields

The automated learning of models from empirical data is a central theme in several
research disciplines, ranging from classical (inferential) statistics to more recent
fields such as machine learning. Model induction may serve different purposes, such
as accurate prediction of future observations or intelligible description of depen-
dencies between variables in the domain under investigation, among other things.
Typically, a model induction process involves the following steps:

• data acquisition
• data preparation (cleaning, transforming, selecting, scaling, ...)
• model induction
• model interpretation and validation
• model application

A common distinction of performance tasks in empirical1 machine learning is su-
pervised learning (e.g., classification and regression), unsupervised learning (e.g.,
clustering) and reinforcement learning. Throughout the chapter, we shall focus on
the first two performance tasks that have attracted much more attention in the FST
community than the latter one.

In unsupervised learning, the learning algorithm is simply provided with a set of
data. The latter typically consists of data points z ∈ Z , where Z is the Cartesian

1 Here, empirical learning is used as an antonym to analytical learning. Broadly speaking, analyti-
cal learning systems do not require external inputs, whereas such inputs are essential for empirical
learning systems. An example of analytical learning is speedup learning.
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product of the domains of a fixed set of attributes. That is, an observation z is
described in terms of a feature vector. However, Z can also be of more general
nature. For example, the analysis of complex objects such as, e.g., sequences, trees,
or graphs, which cannot be directly represented as a feature vector, has recently re-
ceived attention. Broadly speaking, the goal in unsupervised learning is to discover
any kind of structure in the data, such as properties of the distribution, relationships
between data entities, or dependencies between attributes. This includes, e.g., non-
parametric features such as modes, gaps, or clusters in the data (Sect. 3.1), as well
as interesting patterns like those discovered in association analysis (Sect. 3.4).

The setting of supervised learning proceeds from a predefined division of the data
space into an input spaceX and an output spaceY . Assuming a dependency between
the input attributes and the output, the former is considered as the predictive part of
an instance description (like the regressor variables in regression analysis), whereas
the latter corresponds to the target to be predicted (e.g., the dependent variable
in regression). The learning algorithm is provided with a set of labeled examples
(x, y) ∈ X × Y . Again, the inputs x are typically feature vectors. A distinction
between different types of performance tasks is made according to the structure
of the output space Y . Even though problems involving output spaces of a richer
structure have been considered recently (e.g., so-called ranking problems [23]), Y is
typically a one-dimensional space. In particular, the output is a categorical attribute
(i.e.,Y is a nominal scale) in classification. Here, the goal is to generalize beyond the
examples given by inducing a model that represents a complete mapping from the
input space to the output space (a hypothetical classification function). The model
itself can be represented by means of different formalisms such as, e.g., threshold
concepts or logical conjunctions. In regression, the output is a numerical variable,
hence the goal is to induce a real-valued mapping X −→ Y that approximates an
underlying (functional or probabilistic) relation between X and Y well in a specific
sense. So-called ordinal regression is in-between regression and classification: the
output is measured on an ordinal scale.

As can be seen, supervised machine learning puts special emphasis on induction
as a performance task. Moreover, apart from the efficiency of the induced model, the
predictive accuracy of that model is the most important quality criterion. The latter
refers to the ability to make accurate predictions of outputs for so far unseen inputs.
The predictive accuracy of a model h : X −→ Y is typically measured in terms of
the expected loss, i.e., the expected value of �(y, h(x)), where �(·) is a loss function
Y × Y −→ R (and (x, y) an example drawn at random according to an underlying
probability measure over X × Y .2)

Data mining has a somewhat different focus. Here, other aspects such as, e.g.,
the understandability, gain in importance. In fact, the goal in data mining is not
necessarily to induce global models of the system under consideration (e.g., in the
form of a functional relation between input and output variables) or to recover some
underlying data generating process, but rather to discover local patterns of interest,

2 Since this measure is normally unknown, the expected loss is approximated by the empirical loss
in practice, i.e., the average loss on a test data set.
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e.g., very frequent (hence typical) or very rare (hence atypical) events. Data mining
is of a more explanatory nature, and patterns discovered in a data set are usually
of a descriptive rather than of a predictive nature. Data Mining also puts special
emphasis on the analysis of very large data sets and, hence, on aspects of scalability
and efficiency.

Despite these slightly different goals, the typical KDD process has much in com-
mon with the process of inductive reasoning as outlined above, except for the fact
that the former can be (and indeed often is) circular in the sense that the data mi-
ning results will retroact on the acquisition, selection, and preparation of the data,
possibly initiating a repeated pass with modified data, analysis tools, or queries. A
typical KDD process may comprise the following steps:

• data cleaning
• data integration (combination of multiple sources)
• data selection
• data transformation (into a form suitable for the analysis)
• data mining
• evaluation of patterns
• knowledge presentation

Recently, the interest in data mining has shifted from the analysis of large but
homogeneous data sets (relational tables) to the analysis of more complex and het-
erogeneous information sources such as, e.g., texts, images, audio and video data,
and the term information mining has been coined to describe a KDD process focused
on this type of information sources [34].

There are several other fields that are closely related to machine learning and
data mining such as, e.g., classical statistics and various forms of data analysis
(distinguished by adjectives like multivariate, exploratory, Bayesian, intelligent, ...)
Needless to say, it is impossible to set a clear boundary between these fields. Sub-
sequently, we shall simply subsume them under the heading “machine learning and
data mining” (ML&DM),3 understood in a wide sense as the application of compu-
tational methods and algorithms for extracting models and patterns from potentially
very large data sets.

3 Typical Applications of Fuzzy Set Theory

The tools and technologies that have been developed in FST have the potential to
support all of the steps that comprise a process of model induction or knowledge
discovery. In particular, FST can already be used in the data selection and prepara-
tion phase, e.g., for modeling vague data in terms of fuzzy sets [47], to “condense”

3 Our distinction between machine learning and data mining can roughly be seen as a “modern” or
extended distinction between descriptive and inductive statistics. We note, however, that this view
is not an opinio communis. For example, some people have an even more general view of data
mining that includes machine learning as a special case.
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several crisp observations into a single fuzzy one, or to create fuzzy summaries of
the data [35]. As the data to be analyzed thus becomes fuzzy, one subsequently faces
a problem of fuzzy data analysis [2].

The problem of analyzing fuzzy data can be approached in at least two principally
different ways. First, standard methods of data analysis can be extended in a rather
generic way by means of an extension principle. For example, the functional relation
between the data points and the coefficients of a linear regression function can be
extended to the case of fuzzy data, where the observations are described in terms
of fuzzy sets. Thus, the coefficients become fuzzy as well. A second, often more
sophisticated approach is based on embedding the data into more complex mathe-
matical spaces, such as fuzzy metric spaces [13], and to carry out data analysis in
these spaces [14].

If fuzzy methods are not used in the data preparation phase, they can still be
employed in a later stage in order to analyze the original data. Thus, it is not the
data to be analyzed that is fuzzy, but rather the methods used for analyzing the data
(in the sense of resorting to tools from FST). Subsequently, we shall focus on this
type of fuzzy data analysis (where the adjective “fuzzy” refers to the term analy-
sis, not to the term data), which is predominant in ML&DM. In the following, we
focus on fuzzy extensions of some well-known machine learning and data mining
methods without repeating the original methods themselves; thus, we assume basic
familiarity with these methods.

3.1 Fuzzy Cluster Analysis

In conventional clustering, every object is assigned to one cluster in an unequivocal
way. Consequently, the individual clusters are separated by sharp boundaries. In
practice, such boundaries are often not very natural or even counterintuitive. Rather,
the boundary of single clusters and the transition between different clusters are
usually “smooth” rather than abrupt. This is the main motivation underlying fuzzy
extensions to clustering algorithms [26]. In fuzzy clustering an object may belong
to different clusters at the same time, at least to some extent, and the degree to
which it belongs to a particular cluster is expressed in terms of a fuzzy membership.
The membership functions of the different clusters (defined on the set of observed
points) is usually assumed to form a partition of unity. This version, often called
probabilistic clustering, can be generalized further by weakening this constraint: In
possibilistic clustering, the sum of membership degrees is constrained to be at least
one [33]. Fuzzy clustering has proved to be extremely useful in practice and is now
routinely applied also outside the fuzzy community (e.g., in recent bioinformatics
applications [24]).

3.2 Learning Fuzzy Rule Bases

The most frequent application of FST in machine learning is the induction or the
adaptation of rule-based models. This is hardly astonishing, since rule-based models
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have always been a cornerstone of fuzzy systems and a central aspect of research
in the field, not only in ML&DM but also in many other subfields, notably approx-
imate reasoning and fuzzy control. (The terms fuzzy system and fuzzy rule base are
sometimes even used synonymously.)

Fuzzy rule bases can represent both classification and regression functions, and
different types of fuzzy models have been used for these purposes. In order to real-
ize a regression function, a fuzzy system is usually wrapped in a “fuzzifier” and a
“defuzzifier”: The former maps a crisp input to a fuzzy one, which is then processed
by the fuzzy system, and the latter maps the (fuzzy) output of the system back
to a crisp value. For so-called Takagi-Sugeno models, which are quite popular for
modeling regression functions, the defuzzification step is unnecessary, since these
models output crisp values directly.

In the case of classification learning, the consequent of single rules is usually a
class assignment (i.e. a singleton fuzzy set).4 Evaluating a rule base (à la Mamdani-
Assilan) thus becomes trivial and simply amounts to “maximum matching”, that
is, searching the maximally supporting rule for each class. Thus, much of the ap-
pealing interpolation and approximation properties of fuzzy inference gets lost, and
fuzziness only means that rules can be activated to a certain degree. There are,
however, alternative methods which combine the predictions of several rules into
a classification of the query [8].

A plethora of strategies has been developed for inducing a fuzzy rule base from
the data given, and we refrain from a detailed exposition here. Especially important
in the field of fuzzy rule learning are hybrid methods that combine FST with other
methodologies, notably evolutionary algorithms and neural networks. For example,
evolutionary algorithms are often used in order to optimize (“tune”) a fuzzy rule
base or for searching the space of potential rule bases in a (more or less) systematic
way [9]. Quite interesting are also neuro-fuzzy methods [38]. For example, one idea
is to encode a fuzzy system as a neural network and to apply standard methods (like
backpropagation) in order to train such a network. This way, neuro-fuzzy systems
combine the representational advantages of fuzzy systems with the flexibility and
adaptivity of neural networks.

3.3 Fuzzy Decision Tree Induction

Fuzzy variants of decision tree induction have been developed for quite a while (e.g.
[32, 48]) and seem to remain a topic of interest even today (see [39] for a recent
approach and a comprehensive overview of research in this field). In fact, these
approaches provide a typical example for the “fuzzification” of standard machine
learning methods. In the case of decision trees, it is primarily the “crisp” thresholds
used for defining splitting predicates (constraints), such as e.g. size ≤ 181, at inner
nodes that have been criticized: Such thresholds lead to hard decision boundaries in

4 More generally, a rule consequent can suggest different classes with different degrees of certainty.
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the input space, which means that a slight variation of an attribute (e.g. size = 182
instead of size = 181) can entail a completely different classification of an object
(e.g., of a person characterized by size, weight, gender, ...) Moreover, the learning
process becomes unstable in the sense that a slight variation of the training examples
can change the induced decision tree drastically.

In order to make the decision boundaries “soft”, an obvious idea is to apply fuzzy
predicates at the inner nodes of a decision tree such as, e.g., size ∈ TALL, where
TALL is a fuzzy set (rather than an interval). In other words, a fuzzy partition in-
stead of a crisp one is used for the splitting attribute (here size) at an inner node.
Since an example can satisfy a fuzzy predicate to a certain degree, the examples
are partitioned in a fuzzy manner as well. That is, an object is not assigned to ex-
actly one successor node in a unique way, but perhaps to several successors with
a certain degree. For example, a person whose size is 181 cm could be an element
of the TALL-group to the degree, say, 0.7 and of the complementary group to the
degree 0.3.

The above idea of “soft recursive partitioning” has been realized in different
ways. Moreover, the problems entailed by corresponding fuzzy extensions have
been investigated. For example, how can splitting measures like entropy, originally
defined for ordinary sets of examples, be extended to fuzzy sets of examples [10]?
Or, how can a new object be classified by a fuzzy decision tree?

3.4 Fuzzy Association Analysis

The use of fuzzy sets in connection with association analysis has been proposed
by numerous authors (see [6, 11] for recent overviews), with motivations closely
resembling those in the case of rule learning and decision tree induction. Again, by
allowing for “soft” rather than crisp boundaries of intervals, fuzzy sets can avoid
certain undesirable threshold effects [44], this time concerning the quality measures
of association rules (like support and confidence) rather than the classification of
objects. Moreover, identifying fuzzy sets with linguistic terms allows for a compre-
hensible and user-friendly presentation of rules discovered in a database.

Many standard techniques for association rule mining have been transferred to
the fuzzy case, sometimes in a rather ad-hoc manner. Indeed, publications on this
topic are often more concerned with issues of data preprocessing, e.g., the prob-
lem of finding good fuzzy partitions for the quantitative attributes, rather than the
rule mining process itself. Still, more theoretically-oriented research has recently
been started [18]. For example, the existence of different types of fuzzy rules [19]
suggests that fuzzy associations might be interpreted in different ways and, hence,
that the evaluation of an association cannot be independent of its interpretation.
In particular, one can raise the question which generalized logical operators can
reasonably be applied in order to evaluate fuzzy associations, e.g., whether the
antecedent part and the condition part should be combined in a conjunctive way
(à la Mamdani rules) or by means of a generalized implication (as in implication-
based fuzzy rules) [27]. Moreover, since standard evaluation measures for association
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rules can be generalized in many ways, it is interesting to investigate properties of
particular generalizations and to look for an axiomatic basis that supports the choice
of specific measures [18].

3.5 Fuzzy Methods in Case-Based Learning

The major assumption underlying case-based learning (CBL) is a commonsense
principle suggesting that “similar problems have similar solutions”. This “similarity
hypothesis” serves as a basic inference paradigm in various domains of application.
For example, in a classification context, it translates into the assertion that “sim-
ilar objects have similar class labels”. Similarity-based inference has also been a
topic of interest in FST, which is hardly astonishing since similarity is one of the
main semantics of fuzzy membership degrees [41, 43]. Along these lines, a close
connection between case-based learning and fuzzy rule-based reasoning has been
established in [16, 17]. Here, the aforementioned “similarity hypothesis” has been
formalized within the framework of fuzzy rules. As a result, case-based inference
can be realized as a special type of fuzzy set-based approximate reasoning.

A possibilistic variant of the well-known k-nearest neighbor classifier, which
constitutes the core of the family of CBL algorithms, has been presented in [29].
Among other things, this paper emphasizes the ability of possibility theory to rep-
resent partial ignorance as a special advantage in comparison to probabilistic ap-
proaches. In fact, this point seems to be of critical importance in case-based learning,
where the reliability of a classification strongly depends on the existence of cases
that are similar to the query.

The use of OWA-operators as generalized aggregation operators in case-based
learning has been proposed in [49]. In fact, there are several types of aggregation
problems that arise in CBL. One of these problems concerns the derivation of a
global degree of similarity between cases by aggregating local similarity degrees
pertaining to individual (one-dimensional) attributes. Usually, this is done by means
of a simple linear combination, and this is where OWA-operators provide an inter-
esting, more flexible alternative. A second aggregation problem in CBL concerns
the combination of the evidences in favor of different class labels that come from
the neighbors of the query case. In [30], it is argued that cases retrieved from a case
library must not be considered as independent information sources, as implicitly
done by most case-based learning methods. To take interdependencies between the
neighbored cases into account, a new inference principle is developed that com-
bines potentially interacting pieces of evidence by means of the (discrete) Choquet-
integral. This method can be seen as a generalization of weighted nearest neighbor
estimation.

3.6 Possibilistic Networks

So-called graphical models, including Bayesian networks [40] and Markov net-
works [36], have been studied intensively in recent years. The very idea of such
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models is to represent a high-dimensional probability distribution (defined on the
Cartesian product of the domains of all attributes under consideration) in an efficient
way, namely by factorizing it into several low-dimensional conditional or marginal
distributions.

By their very nature, graphical models of the above kind provide a suitable means
for representing probabilistic uncertainty. However, they cannot easily deal with
other types of uncertainty such as imprecision or incompleteness. This has motivated
the development of possibilistic networks as a possibilistic counterpart to proba-
bilistic networks [3]. This approach relies upon possibility theory as an underlying
uncertainty calculus, which makes it particularly suitable for dealing with imprecise
data (in the form of set-valued specifications of attribute values). In this approach,
the interpretation of possibility distributions is based on the so-called context model
[25], hence possibility degrees are considered as a kind of upper probability.

4 Potential Contributions of Fuzzy Set Theory

In the following, we highlight some potential contributions that FST can make to
machine learning and data mining.

4.1 Graduality

The ability to represent gradual concepts and fuzzy properties in a thorough way is
one of the key features of fuzzy sets. This aspect is also of primary importance in the
context of ML&DM. In machine learning, for example, the formal problem of con-
cept learning has received a great deal of attention. A concept is usually identified
with its extension, that is a subset C of an underlying set (universe) U of objects. For
example, C might be the concept “dog” whose extension is the set of dogs presently
alive, a subset of all creatures on earth. The goal of (machine) learning is to induce
an intensional description of a concept from a set of (positive and negative) exam-
ples, that is a characterization of a concept in terms of its properties (a dog has four
legs and a tail, it can bark, ...). Now, it is widely recognized that most natural con-
cepts have non-sharp boundaries. To illustrate, consider concepts like woods, river,
lake, hill, street, house, or chair. Obviously, these concepts are vague or fuzzy, in
that one cannot unequivocally say whether or not a certain collection of trees should
be called a wood, whether a certain building is really a house, and so on. Rather, one
will usually agree only to a certain extent that an object belongs to a concept. Thus,
an obvious idea is to induce fuzzy concepts, that are formally identified by a fuzzy
rather than a crisp subset of U . Fuzzy concepts can be characterized in terms of
fuzzy predicates (properties) which are combined by means of generalized logical
connectives. In fact, one should recognize that graduality is not only advantageous
for expressing the concept itself, but also for modeling the qualifying properties. For
example, a “firm ground” is a characteristic property of a street, and this property is
obviously of a fuzzy nature (hence it should be formalized accordingly).
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Likewise, in data mining, the patterns of interest are often vague and have bound-
aries that are non-sharp in the sense of FST. To illustrate, consider the concept of a
“peak”: It is usually not possible to decide in an unequivocal way whether a timely
ordered sequence of measurements (e.g., the expression profile of a gene in a mi-
croarray experiment, to mention one of the topical application areas of fuzzy data
mining) has a “peak” (a particular kind of pattern) or not. Rather, there is a gradual
transition between having a peak and not having a peak. Taking graduality into
account is also important if one must decide whether a certain property is frequent
among a set of objects, e.g., whether a pattern occurs frequently in a data set. In
fact, if the pattern is specified in an overly restrictive manner, it might easily happen
that none of the objects matches the specification, even though many of them can be
seen as approximate matches. In such cases, the pattern might still be considered as
“well-supported” by the data.

Unfortunately, the representation of graduality is often foiled in machine learning
applications, especially in connection with the learning of predictive models. In such
applications, a fuzzy prediction is usually not desired, rather one is forced to come
up with a definite final decision. Classification is an obvious example: Usually, a
decision in favor of one particular class label has to be made, even if the object
under consideration seems to have partial membership in several classes simulta-
neously. This is the case both in theory and practice: In practice, the bottom line
is the course of action (e.g., the choice among a set of applicants) one takes on
the basis of a prediction, not the prediction itself. In theory, a problem concerns the
performance evaluation of a fuzzy classifier: The standard benchmark data sets (e.g.,
those from the UCI repository or the StatLib archive5) have crisp rather than fuzzy
labels. Moreover, a fuzzy classifier cannot be compared with a standard (non-fuzzy)
classifier unless it eventually outputs crisp predictions.

Needless to say, if a fuzzy predictor is supplemented with a “defuzzification”
mechanism (like a winner-takes-all strategy in classification), many of its merits
are lost. In the classification setting, for instance, a defuzzified fuzzy classifier does
again produce hard decision boundaries in the input space. Thereby, it is actually
reduced to a standard classifier.

Here is an example often encountered in the literature: Suppose the premise of a
classification rule to be a conjunction of antecedents of the form xi ∈ Ai , where xi is
an attribute value and Ai a fuzzy set, and let the rules be combined in a disjunctive
way. Moreover, let the consequent of a rule be simply a class assignment. If the
standard minimum and maximum operators are used, respectively, as a general-
ized logical conjunction and disjunction, it is easy to see that the classifier thus
obtained induces axis-parallel decision boundaries in the input space, and that the
same boundaries can be produced by means of interval-based instead of fuzzy rules.

If a classifier is solely evaluated on the basis of its predictive accuracy, then
all that matters is the decision boundaries it produces in the input space. Since a
defuzzified fuzzy classifier does not produce a decision boundary that is principally
different from the boundaries produced by alternative classifiers (such as decision

5 http://www.ics.uci.edu/˜ mlearn, http://stat.cmu.edu/
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trees or neural networks), fuzzy machine learning methods don’t have much to offer
with regard to generalization performance. Indeed, fuzzy approaches to classifica-
tion do usually not improve predictive accuracy.

Let us finally note that “graduality” is of course not reserved to fuzzy methods.
Rather, it is inherently present also in many conventional learning methods. Con-
sider, for example, a concept learner (binary classifier) c : X −→ [0, 1] the output
of which is a number in the unit interval, expressing a kind of “propensity” of an
input x to the concept under consideration. Classifiers of such kind abound, a typical
example is a multilayer perceptron. In order to extend such classifiers to multi-class
problems (involving more than two classes), one common approach is to apply a
one-against-all strategy: For each class y, a separate classifier cy(·) is trained which
considers that class as the concept to be learned and, hence, instances of all other
classes as negative examples. The prediction for a new input x is then given by the
class that maximizes cy(x). Now, it is of course tempting to consider the cy(x) as
(estimated) membership degrees and, consequently, the collection {cy(x) | y ∈ Y}
of these estimations as a fuzzy classification.

4.2 Interpretability

A primary motivation for the development of fuzzy sets was to provide an interface
between a numerical scale and a symbolic scale which is usually composed of lin-
guistic terms. Thus, fuzzy sets have the capability to interface quantitative patterns
with qualitative knowledge structures expressed in terms of natural language. This
makes the application of fuzzy technology very appealing from a knowledge repre-
sentational point of view. For example, it allows association rules discovered in a
database to be presented in a linguistic and hence comprehensible way. In fact, the
user-friendly representation of models and patterns is often emphasized as one of
the key features of fuzzy methods.

The use of linguistic modeling techniques does also produce some disadvantages,
however. A first problem concerns the interpretation of fuzzy models: Linguistic
terms and, hence, models are highly subjective and context-dependent. It is true that
the imprecision of natural language is not necessarily harmful and can even be ad-
vantageous.6 A fuzzy controller, for example, can be quite insensitive to the concrete
mathematical translation of a linguistic model. One should realize, however, that in
fuzzy control the information flows in a reverse direction: The linguistic model is
not the end product, as in ML&DM, it rather stands at the beginning.

It is of course possible to disambiguate a model by complementing it with the
semantics of the fuzzy concepts it involves (including the specification of mem-
bership functions). Then, however, the complete model, consisting of a qualitative
(linguistic) and a quantitative part, becomes cumbersome and will not be easily un-
derstandable. This can be contrasted with interval-based models, the most obvious

6 See Zadeh’s principle of incompatibility between precision and meaning [50].
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alternative to fuzzy models: Even though such models do certainly have their short-
comings, they are at least objective and not prone to context-dependency.

Another possibility to guarantee transparency of a fuzzy model is to let a user
of a data mining system specify all fuzzy concepts by hand, including the fuzzy
partitions for all of the variables involved in the study under consideration. This is
rarely done, however, mainly for two reasons. Firstly, the job is of course tedious and
cumbersome if the number of variables is large. Secondly, much flexibility for model
adaptation is lost, because it is by no means guaranteed that accurate predictive
models or interesting patterns can be found on the basis of the fuzzy partitions as
pre-specified by the user. In fact, in most methods the fuzzy partitions are rather
adapted to the data in an optimal way, so as to maximize the model accuracy or the
interestingness of patterns.

A second problem with regard to transparency concerns the complexity of mo-
dels. A rule-based classifier consisting of, say, 40 rules each of which has a condi-
tion part with 5–7 antecedents, will hardly be comprehensible as a whole, even if
the various ingredients might be well understandable. Now, since models that are
simple, e.g., in the sense of including only a few attributes or a few rules, will often
not be accurate at the same time, there is obviously a conflict between accuracy and
understandability and, hence, the need to find a tradeoff between these criteria [5].

In fact, this tradeoff concerns not only the size of models, but also other measures
that are commonly employed in order to improve model accuracy. In connection
with rule-based models, for example, the weighing of individual rules can often
help to increase the predictive accuracy. On the other hand, the interpretation of a
set of weighted rules becomes more difficult.

4.3 Robustness

It is often claimed that fuzzy methods are more robust than non-fuzzy methods. Of
course, the term “robustness” can refer to many things, e.g., to the sensitivity of an
induction method towards violations of the model assumptions.7 In connection with
fuzzy methods, the most relevant type of robustness concerns sensitivity towards
variations of the data. Generally, a learning or data mining method is considered
robust if a small variation of the observed data does hardly alter the induced model
or the evaluation of a pattern.8

A common argument supporting the claim that fuzzy models are in this sense
more robust than non-fuzzy models refers to the already mentioned “boundary ef-
fect”, which occurs in various variants and is arguably an obvious drawback of
interval-based methods. In fact, it is not difficult to construct convincing demon-
strations of this effect: In association analysis (cf. Sect. 3.4), for example, a small

7 This type of sensitivity is of special interest in robust statistics.
8 Note that we speak about robustness of the learning algorithm (that takes a set of data as input
and outputs a model), not about robustness of the induced model (that takes instances as input and
outputs, say, a classification).
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shift of the boundary of an interval can have a drastic effect on the support of a
fuzzy association rule if many data points are located near the boundary. This effect
is alleviated when using fuzzy sets instead of intervals.

Unfortunately, such examples are often purely artificial and, hence, of limited
practical relevance. Moreover, there is no clear conception of the concrete meaning
of robustness. Needless to say, without a formal definition of robustness, i.e., certain
types of robustness measures, one cannot argue convincingly that one data mining
method is more robust than another one. For example, it makes a great difference
whether robustness is understood as a kind of expected or a kind of worst-case
sensitivity: It is true that a shifting of data points can have a stronger effect on,
say, the support of an interval-based association rule than on the support of a fuzzy
association. However, if the data points are not located at the boundary region of
the intervals, it can also happen that the former is not affected at all, whereas a
fuzzy rule is almost always affected at least to some extent (since the “boundary”
of a fuzzy interval is much wider than that of a standard interval). Consequently, if
robustness is defined as a kind of average rather than maximal sensitivity, the fuzzy
approach might not be more robust than the non-fuzzy one.

4.4 Representation of Uncertainty

Machine learning is inseparably connected with uncertainty. To begin with, the data
presented to learning algorithms is imprecise, incomplete or noisy most of the time,
a problem that can badly mislead a learning procedure. But even if observations
are perfect, the generalization beyond that data, the process of induction, is still
afflicted with uncertainty. For example, observed data can generally be explained
by more than one candidate theory, which means that one can never be sure of the
truth of a particular model.

Fuzzy sets and possibility theory have made important contributions to the rep-
resentation and processing of uncertainty. In ML&DM, like in other fields, related
uncertainty formalisms can complement probability theory in a reasonable way, be-
cause not all types of uncertainty relevant to machine learning are probabilistic and
because other formalisms are more expressive than probability.

To illustrate the first point, consider the problem of inductive reasoning as indi-
cated above: In machine learning, a model is often induced from a set of data on the
basis of a heuristic principle of inductive inference such as, e.g., the well-known Oc-
cams’s razor. As one can never be sure of the truth of the particular model suggested
by the heuristic principle, it seems reasonable to specify a kind of likelihood for all
potential candidate models. This is done, e.g., in Bayesian approaches, where the
likelihood of models is characterized in terms of a posterior probability distribution
(probability of models given the data). One can argue, however, that the uncertainty
produced by heuristic inference principles such as Occam’s razor is not necessarily
of a probabilistic nature and, for example, that the derivation of a possibility distri-
bution over the model space is a viable alternative. This idea has been suggested in
[28] in connection with decision tree induction: Instead of learning a single decision
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tree, a possibility distribution over the class of all potential trees is derived on the
basis of a possibilistic variant of Occam’s razor.

The second point, concerning the limited expressivity of probability distribu-
tions, was already indicated in Sect. 3.5, where we mentioned that possibility distri-
butions are more suitable for representing partial ignorance in case-based learning.
Similarly, possibility theory is used for modeling incomplete and missing data in
possibilistic networks (cf. Sect. 3.6).

Finally, we note that apart from possibility theory, other formalisms can be used
to model various forms of uncertainty and incomplete information in learning from
data. For example, belief functions have been extensively employed in this connec-
tion (e.g. [12, 20]).

4.5 Incorporation of Background Knowledge

Roughly speaking, inductive learning can be seen as searching the space of can-
didate hypotheses for a most suitable model. The corresponding search process, re-
gardless whether it is carried out in an explicit or implicit way, is usually “biased” in
various ways, and each bias usually originates from a sort of background knowledge.
For example, the representation bias restricts the hypothesis space to certain types of
input-output relations such as, e.g., linear or polynomial relationships. Incorporating
background knowledge is extremely important, because the data by itself would be
totally meaningless if considered from an “unbiased” point of view [37].

Fuzzy set-based modeling techniques provide a convenient tool for making
expert knowledge accessible to computational methods and, hence, to incorpo-
rate background knowledge in the learning process. Here, we briefly outline two
possibilities.

One very obvious approach is to combine rule-based modeling and learning. For
example, an expert can describe an input-output relation in terms of a fuzzy rule
base (as in fuzzy control). Afterwards, the membership functions specifying the
linguistic terms that have been employed by the expert can be adapted to the data
in an optimal way.9 In other words, the expert specifies the rough structure of the
rule-based model, while the fine-tuning is done in a data-driven way. Let us note
that specifying the structure of a model first and adapting that structure to the data
afterwards is a general strategy for combining knowledge-based and data-driven
modeling, which is not reserved to rule-based models; it is used, for example, in
graphical models (cf. Sect. 3.6) as well.

An alternative approach, called constraint-regularized learning, aims at exploit-
ing fuzzy set-based modeling techniques within the context of the regularization
(penalization) framework of inductive learning [31]. Here, the idea is to express
vague, partial knowledge about an input-output relation in terms of fuzzy constraints

9 Here, the expert implements a kind of search bias, as it determines the starting point of the search
process and, hence, the first local optimum to be found.
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and to let such constraints play the role of a penalty term within the regularization
approach. Thus, an optimal model is one that achieves an optimal tradeoff between
fitting the data and satisfying the constraints.

4.6 Generalized Aggregation Operators

Many ML&DM methods make use of logical and arithmetical operators for rep-
resenting relationships between attributes in models and patterns. In decision tree
induction, for example, each inner node represents an equality or an inequality
predicate, and these predicates are combined in a conjunctive way along a path of a
tree. In nearest neighbor classification, each neighbor provides a certain amount of
evidence in favor of the class it belongs to. To make a final decision, this evidence
must be aggregated either way, which in the standard approach is done by simply
adding them up.

Now, a large repertoire of generalized logical (e.g., t-norms and t-conorms) and
arithmetical (e.g., Choquet- and Sugeno-integral) operators have been developed
in FST and related fields. Thus, a straightforward way to extend standard learning
methods consists of replacing standard operators by their generalized versions. In
fact, several examples of this idea have been presented in previous sections.

The general effect of such generalizations is to make models more flexible. For
example, while a standard decision tree can only produce axis-parallel decision
boundaries, these boundaries can become non-axis-parallel for fuzzy decision trees
where predicates are combined by means of a t-norm. Now, it is well-known that
learning from empirical data will be most successful if the model class under consid-
eration has just the right flexibility, since both over- and underfitting of a model can
best be avoided in that case. Therefore, the question whether a fuzzy generalization
will pay off cannot be answered in general: If the original (non-fuzzy) hypothesis
space is not flexible enough, the fuzzy version will probably be superior. On the
other hand, if the former is already flexible enough, a fuzzification might come
along with a danger of overfitting.

5 Conclusions

All things considered, it is beyond question that FST has the potential to contribute
to machine learning and data mining in various ways. In fact, the previous sections
have shown that substantial contributions have already been made. Yet, our remarks
also suggest that much scope for further developments is still left. According to our
opinion, however, it is very important to focus on the right issues, that is to say, to
concentrate more on the strengths and distinctive features of FST.

In particular, we doubt that FST will be very conducive to generalization per-
formance and model accuracy, albeit the latter is still the dominant quality criterion
in machine learning research. This somewhat sceptical view has at least two rea-
sons: Firstly, after several years of intensive research the field of machine learning
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has reached a somewhat mature state, and a large repertoire of quite sophisticated
learning algorithms is now available. Regarding predictive accuracy, a significant
improvement of the current quality level can hardly be expected.

Secondly, and perhaps more importantly, FST does not seem to offer fundamen-
tally new concepts or induction principles for the design of learning algorithms,
comparable, e.g., to the ideas of resampling and ensemble learning [15] (like bag-
ging [4] and boosting [22]) or the idea of margin maximization underlying discrim-
inative learning methods like SVMs [42], that might raise hope for an improved
generalization performance. As mentioned above, even though fuzzifying standard
learning methods, e.g., by using fuzzy partitions of numeric attributes or generalized
logical and arithmetical operators, can have an effect on the decision boundaries of
a classifier or the regression function produced in the case of numeric prediction,
the gain in predictive accuracy is mostly insignificant.

In this connection, we also like to question a current research trend in the FST
community. It seems that the shift from (knowledge-driven) modeling to (data-
driven) learning, as signified in Sect. 1, comes along with a tendency to view fuzzy
systems as pure function approximators. In fact, in many recent publications fuzzy
sets simply serve as a special kind of basis or kernel function.10 Thus, there is a high
danger of losing sight of the original ideas and intentions of FST, and to produce
another type of “black box” approach instead. Truly, renaming a basis function a
“fuzzy set” does not mean that a model will suddenly become comprehensible!

Rather than suggesting new solutions to problems for which alternative methods
from established fields such as, e.g., approximation theory, neural networks, and ma-
chine learning, will probably be more successful, more emphasis should be put on
the distinguished features of FST. In this connection, let us highlight the following
points:

1. FST has the potential to produce models that are more comprehensible, less com-
plex, and more robust.

2. FST, in conjunction with possibility theory, can contribute considerably to the
modeling and processing of various forms of uncertain and incomplete infor-
mation.

3. Fuzzy methods appear to be particularly useful for data pre- and post-processing.

Concerning the first point, our critical comments in previous sections have shown
that, despite of the high potential, many questions are still open. For example, no-
tions like “comprehensibility”, “simplicity”, or “robustness” still lack an underlying
formal theory including a quantification of their intuitive meaning in terms of univer-
sally accepted measures. This is probably one of the reasons why model accuracy
is still regarded as a more concrete and, hence, more important quality criterion.
Anyway, we think that the tradeoff between accuracy on the one side and compet-
itive criteria like interpretability, simplicity, and robustness on the other side is an
issue of central importance and a problem to that FST can contribute in a substantial

10 In [7], for example, a support vector machine is trained and then turned into a fuzzy rule base
by identifying each support vector with a fuzzy rule.
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way. In fact, fuzzy information granulation appears to be an ideal tool for trading
off accuracy against complexity and understandability of models. Of course, a nec-
essary prerequisite for studying this tradeoff in a more rigorous way and, hence, a
challenge for future research, is a better understanding and formalization of these
alternative criteria.

The second point refers to an aspect that is of primary importance in ML&DM,
and that has already been touched on in Sect. 4.4. Meanwhile, the coexistence of
various forms of uncertainty, not all of which can be adequately captured by prob-
ability theory, has been widely recognized. Still, in machine learning, and more
generally in the AI community, fuzzy sets and related uncertainty calculi have not
yet obtained a proper acceptance. This situation might be further impaired by the
increasing popularity of probabilistic methodology, which in machine learning can
mainly be ascribed to the success of statistical learning theory [46] as a solid foun-
dation of empirical learning, and in AI to the general acceptance of the Bayesian
framework for knowledge representation and reasoning under uncertainty. For the
FST community, it is all the more important to show that alternative uncertainty
formalisms can complement probability theory in a reasonable way.

Concerning the third point, we feel that this research direction has not received
enough attention so far. In fact, even though FST seems to be especially qualified
for data pre- and postprocessing, e.g., for data summarization and reduction, ap-
proximation of complex and accurate models, or the (linguistic) presentation of data
mining results, current research is still more focused on the inductive reasoning or
data mining process itself. In this respect, we see a high potential for further devel-
opments, especially against the background of the current trend to analyze complex
and heterogeneous information sources that are less structured than standard rela-
tional data tables.

Finally, there are some other research directions that are worth further explo-
ration. For example, so far most of the work in the FST community has been
methodologically oriented, focusing on the fuzzy extension of standard learning
methods, whereas both the experimental validation and the theoretical analysis of
fuzzy machine learning methods have received much less attention. As mentioned
above, validating the predictive performance of a fuzzy method in an empirical way
is not as easy, since fuzzy labels for comparison are rarely available in practice.
What is a good fuzzy prediction? This question naturally arises if fuzzy predictions
are not defuzzified, and it becomes even more intricate if predictions are expressed
in terms of still more complex uncertainty formalisms such as, e.g., lower and up-
per possibility bounds, type-II fuzzy sets, or belief functions. Regarding theoretical
analyses of fuzzy learning methods, it would be interesting to investigate whether
fuzzy extensions are profitable from a theoretical point of view. For example, is
it possible that a class of concepts is, say, PAC-learnable11 by the fuzzy exten-
sion of a learning algorithm but not by the original version? Such results would of
course be highly welcome as a formal justification of fuzzy learning methods.

11 The PAC (probably approximately correct) learning framework is a well-known formal model
of inductive learning [45].
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Pattern Classification with Linguistic Rules

Hisao Ishibuchi and Yusuke Nojima

Abstract Linguistic rules are fuzzy rules described by linguistic terms such as
small and large. Here we discuss pattern classification with linguistic rules. The
main advantage of using linguistic rules is their high interpretability. We can con-
struct linguistically interpretable fuzzy rule-based classification systems using lin-
guistic rules. First we briefly explain fuzzy rules for function approximation. Next
we explain fuzzy rules and fuzzy reasoning for pattern classification. Then we ex-
plain linguistic rule extraction from numerical data. Finally we show some future
research topics on pattern classification with linguistic rules.

1 Introduction

Fuzzy rule-based systems have been successfully implemented in various applica-
tion areas since the 1970s [38]. In early studies on fuzzy control, fuzzy rules were
extracted from human operators as linguistic rules. The extraction of linguistic rules,
however, is often a troublesome task for human operators. A number of heuristic
rule extraction methods have been proposed to design fuzzy rule-based systems
from numerical data with no intervention by human experts (e.g., Nozaki et al.
[54] and Wang & Mendel [62]). In the 1990s, learning ability of neural networks
was incorporated into fuzzy rule-based systems to improve their accuracy in many
studies (e.g., Horikawa et al. [22], Jang [42], Lin & Lee [30], and Nauck & Kruse
[51]). Since fuzzy rule-based systems in these studies have network structures sim-
ilar to neural networks, they are often called fuzzy neural networks or neuro-fuzzy
systems. Neuro-fuzzy systems are still an active research area in the fields of neural
networks and fuzzy systems [15, 21].

Global optimization ability of evolutionary computation was also incorporated
into fuzzy rule-based systems in the 1990s (e.g., Homaifar & McCormick [46],
Ishibuchi et al. [9], and Karr & Gentry [27]). Since genetic algorithms were usually
used as evolutionary computation, fuzzy rule-based systems in these studies are
often called genetic fuzzy systems [40, 12]. Whereas neuro-fuzzy systems usually
optimize only continuous parameter values, genetic fuzzy systems can optimize
various aspects of fuzzy rule-based systems including combinatorial optimization
such as input selection, fuzzy partition and rule selection.

Emphasis was placed on accuracy improvement in neuro-fuzzy systems and ge-
netic fuzzy systems in the 1990s. Good experimental results by neuro-fuzzy systems

H. Bustince et al., (eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation
and Models. C© Springer 2008 377
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and genetic fuzzy systems were reported with respect to their accuracy in the above-
mentioned studies. The accuracy improvement, however, was achieved at the cost
of an inherent advantage of fuzzy rule-based systems over other nonlinear systems
such as neural networks. That is, the interpretability of fuzzy rule-based systems was
often degraded by improving their accuracy in neuro-fuzzy systems and genetic fuzzy
systems. This issue was pointed out in the late 1990s in some studies (e.g., Nauck &
Kruse [52] and Setnes et al. [56]). Since there exists a tradeoff between the accuracy
and the interpretability in the design of fuzzy rule-based systems, it is impossible to
simultaneously optimize these two conflicting design criteria. Recently several ap-
proaches have been proposed to find a good compromise between them [2, 55, 57]. In
these studies, genetic algorithms were used to optimize a scalarizing fitness function,
which was defined by combining accuracy and interpretability measures into a single
fitness function. Whereas the definition of an accuracy measure is straightforward
in each application area (e.g., the mean squared error and the average error rate), it
is not easy to define an interpretability measure. Various aspects are involved in the
interpretability of fuzzy rule-based systems such as the number of fuzzy rules, the
number of input variables, the granularity of the fuzzy partition for each variable, the
number of antecedent conditions in each fuzzy rule, and the separability of adjacent
antecedent fuzzy sets [34, 23, 45, 26, 39]. Some of these aspects were taken into
account to find a good compromise between the accuracy and the interpretability in
[2, 55, 57].

When we use a scalarizing fitness function defined by accuracy and complexity
measures, a single fuzzy rule-based system is obtained by a standard single-objective
genetic algorithm. The obtained fuzzy rule-based system strongly depends on the
scalarizing fitness function. Its definition, however, is problematic. For example, it
is difficult to assign relative importance to the average error rate and the number of
fuzzy rules in the design of fuzzy rule-based classification systems. Multiobjective
genetic algorithms are used in some studies on genetic fuzzy systems to circumvent
the difficulty in the definition of the scalarizing fitness function [28, 44, 4, 3, 60, 61].
Multiobjective genetic fuzzy systems try to find a large number of non-dominated
(i.e., Pareto-optimal) fuzzy rule-based systems with respect to the two conflicting
design criteria: accuracy and interpretability. Obtained fuzzy rule-based systems
help us to understand the accuracy-interpretability tradeoff structure in the design
of fuzzy rule-based systems.

In this chapter, we discuss pattern classification with linguistic rules. First we
briefly explain fuzzy rule-based systems for function approximation. Next we ex-
plain fuzzy rule-based classification systems. Then we explain linguistic rule ex-
traction from numerical data for pattern classification. Finally we show some future
research topics on pattern classification with linguistic rules.

2 Fuzzy Rule-Based Systems for Function Approximation

In this section, we briefly explain fuzzy rule-based systems for function approx-
imation problems. Let us assume that we have m input-output pairs (xp, yp),
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p = 1, 2, ...,m where xp = (x p1, x p2, ..., x pn) is an n-dimensional input vector and
yp is the corresponding output value. Our task in this section is to approximate an
unknown input-output relation in the given numerical data (xp, yp), p = 1, 2, ...,m
using a fuzzy rule-based system.

Fuzzy rules of the following type were often used in early studies on fuzzy con-
trol since Mamdani [38]:

Rule Rq : If x1 is Aq1 and ... and xn is Aqn then y is Bq , (1)

where Rq is the label of the qth fuzzy rule, x = (x1, x2, ..., xn) is an n-dimensional
input vector, Aqi is an antecedent fuzzy set (i = 1, 2, ..., n), y is an output variable,
and Bq is a consequent fuzzy set. Linguistic terms such as small and large are often
associated with the antecedent and consequent fuzzy sets. An example of fuzzy rules
of this type is “If x1 is small and x2 is small then y is large”. The main advantage
of such a fuzzy rule is its clear linguistic interpretability.

Takagi & Sugeno [59] proposed the use of fuzzy rules of the following type with
a linear function in their consequent part in the mid 1980s:

Rule Rq : If x1 is Aq1 and ... and xn is Aqn then y = fq (x). (2)

The main characteristic is that the consequent part is not defined by the consequent
fuzzy set Bq but the linear function fq (x) of the input vector x:

fq (x) = bq0 + bq1x1 + ...+ bqnxn, (3)

where bqi is a real number (i = 0, 1, ..., n). An example of fuzzy rules of this
type is “If x1 is small and x2 is small then y = 0.2 + 0.5x1 − 0.3x2”. Because
Takagi-Sugeno fuzzy rules have high approximation ability of non-linear functions,
they have been frequently used in various application areas in the literature. Due to
the use of the consequent linear function, the linguistic interpretability of Takagi-
Sugeno fuzzy rules in (2) is not high if compared with those in Mamdani model
in (1).

The following simplified version of Takagi-Sugeno fuzzy rules has been also
frequently used due to its simplicity in the literature:

Rule Rq : If x1 is Aq1 and ... and xn is Aqn then y = bq , (4)

where bq is a consequent real number. An example of fuzzy rules of this type is “If
x1 is small and x2 is small then y = 0.236”. The linguistic interpretability of such
a fuzzy rule is not high due to the difficulty in the linguistic interpretation of the
consequent real number. The learning of fuzzy rules in (4) is straightforward in the
framework of neuro-fuzzy systems. This is an advantage of fuzzy rules of this type
over the other types.

Let us denote the membership function of the antecedent fuzzy set Aqi as Aqi (·).
The compatibility grade of the input vector xp = (x p1, x p2, ..., x pn) with the an-
tecedent part of the fuzzy rule Rq in (1), (2) and (4) is computed using a t-norm. The
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following product and minimum operators are often used as a t-norm to calculate
the compatibility grade:

Aq(xp) = Aq1(x p1) · Aq2(x p2) · ... · Aqn(x pn), (5)

Aq(xp) = min{Aq1(x p1), Aq2(x p2), ..., Aqn(x pn)}. (6)

In this chapter, we use the product operator since it is more popular than the mini-
mum operator in recently developed fuzzy rule-based systems.

When we have a fuzzy rule-based system with N Takagi-Sugeno fuzzy rules of
the form in (2), the estimated output value g(xp) for the input vector xp is calculated
as the weighted average of the consequent linear function of each fuzzy rule as

g(xp) =
N
∑

q=1

A∗q(xp) fq (xp), (7)

where

A∗q(xp) = Aq (xp)

N
∑

r=1

Ar (xp)

, q = 1, 2, ..., N. (8)

When we use the simplified version of Takagi-Sugeno fuzzy rules in (4), the
estimated output value g(xp) is calculated in the same manner as

g(xp) =
N
∑

q=1

A∗q(xp)bq . (9)

In the case of Mamdani fuzzy rules in (1), an additional defuzzification procedure
is required to calculate the estimated output value g(xp). If we use a representative
real number bq for the consequent fuzzy set Bq (i.e., if bq is the defuzzification of
Bq ), the calculation of the estimated output value g(xp) using Mamdani fuzzy rules
in (1) is exactly the same as (9).

Neuro-fuzzy systems adjust the antecedent and consequent parts of each fuzzy
rule using a steepest descent learning algorithm to minimize the squared error:

E p = 1

2
{yp − g(xp)}2. (10)

3 Fuzzy Rule-Based Systems for Pattern Classification

In this section, we explain fuzzy rules and fuzzy reasoning for pattern classification.
We use a special type of fuzzy rules with a class label in their consequent part instead
of a consequent fuzzy set, a real number or a linear function. Of course, we can use
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fuzzy rules in Sect. 2 for pattern classification as well as function approximation.
For example, Roubos & Setnes [55] and Setnes & Roubos [57] used an n-input
and single-output fuzzy system with simplified Takagi-Sugeno fuzzy rules for an
n-dimensional three-class problem. The target outputs were specified as 1, 2 and 3
for input patterns from Class 1, Class 2 and Class 3, respectively. It is also possible
to use an n-input and three-output fuzzy system for the same three-class problem.
In this case, the target vectors are specified as (1, 0, 0), (0, 1, 0) and (0, 0, 1) for
input patterns from Class 1, Class 2 and Class 3, respectively. This specification
of the target vectors has been often used in the application of neural networks to
classification problems.

We use, however, a different type of fuzzy rules with a class label in their con-
sequent part in this section. This is because such a fuzzy rule is more intuitive for
classification problems and has been used in many studies on fuzzy rule-based clas-
sification systems (e.g., Abe & Lan [41], Abe & Thawonmas [50], Ishibuchi et al.
[35], and Nauck & Kruse [51, 52]). For various fuzzy rules and fuzzy reasoning
schemes for classification problems, see Cordon et al. [24], Ishibuchi et al. [43, 26]
and Kuncheva [49].

3.1 Fuzzy Rules for Pattern Classification

Fuzzy rules for an n-dimensional classification problem are written as

Rule Rq : If x1 is Aq1 and ... and xn is Aqn then Class Cq . (11)

An example of such a fuzzy rule is “If x1 is small and x2 is small then Class 2”.
Fuzzy decision-trees have been used in many studies on fuzzy rule-based classifica-
tion systems (e.g., [14, 39, 48, 63]). A fuzzy decision tree can be viewed as a set of
fuzzy rules in (11).

In some studies (e.g., Gonzalez & Perez [20]), a disjunctive combination of mul-
tiple linguistic terms is used as an antecedent fuzzy set Aqi such as “If x1 is small
or medium and x2 is medium or large then Class 1”. The disjunctive combination
of all linguistic terms can be interpreted as don′t care. For example, “small or
medium or large” can be interpreted as don′t care when each attribute is divided
into three linguistic terms small, medium and large. In this case, the disjunctive
combination “small or medium” can be interpreted as the negation of large (i.e.,
“not large”). It should be noted that don′t care can be also directly used as a special
antecedent fuzzy set. We further discuss the handling of don′t care and disjunctive
combinations of multiple linguistic terms in Sect. 4.2 of this chapter.

We also use the following fuzzy rules with a rule weight:

Rule Rq : If x1 is Aq1 and ... and xn is Aqn then Class Cq with wq , (12)

where wq is the rule weight of the fuzzy rule Rq . Fuzzy rules of this type have
been frequently used in fuzzy rule-based systems from the early 1990s [35]. As
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shown in the next subsection, the rule weight of each fuzzy rule has a large effect
on classification results [6, 37, 53].

Whereas fuzzy rules in (11) and (12) have a single-dimensional fuzzy set Aqi for
each attribute in their antecedent part, it is also possible to use a multi-dimensional
antecedent fuzzy set as follows:

Rule Rq : If x is Aq then Class Cq , (13)

where x is an n-dimensional input vector (i.e., x = (x1, x2, ..., xn)) and Aq is an
n-dimensional antecedent fuzzy set in the n-dimensional pattern space. Fuzzy rules
of this type have been often used in clustering-based rule generation methods (e.g.,
[41, 50, 51, 52, 55]). Whereas fuzzy rules in (13) have high classification accuracy,
their interpretability is low due to the difficulty in the linguistic interpretation of the
multi-dimensional antecedent fuzzy set Aq . As we will explain later, linguistically
interpretable fuzzy rules with single-dimensional antecedent fuzzy sets in (11) can
be derived from fuzzy rules in (13) by projecting their multi-dimensional antecedent
fuzzy sets onto each axis of the pattern space.

3.2 Fuzzy Reasoning for Pattern Classification

First we explain fuzzy reasoning for pattern classification using fuzzy rules with no
rule weights in (11). As in Sect. 2, let Aq(xp) be the compatibility grade of the input
pattern xp with the antecedent part of the fuzzy rule Rq . When we use a winner-
take-all scheme, the maximum compatibility grade for each class is calculated as
follows:

αh(xp) = max{Aq(xp) | Cq = h; q = 1, 2, ..., N}, h = 1, 2, ..., M, (14)

where h is a class index and M is the number of classes. When the input pattern xp

is to be classified, xp is assigned to the class with the maximum value of αh(xp)

over the M classes. In this sense, αh(xp) can be viewed as a kind of discriminant
function for Class h. When we use fuzzy rules in the prevision section for pattern
classification as well as function approximation, the estimated output g(xp) is used
as αh(xp).

Instead of the maximum compatibility in (14), it is also possible to define αh(xp)

by the total compatibility grade as

αh(xp) =
N
∑

q=1
Cq=h

Aq(xp), h = 1, 2, ..., M. (15)

The input pattern xp is classified as the class with the maximum value of αh(xp).
Whereas only the winner rule with the maximum compatibility grade is responsible
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for the classification result in (14), all compatible rules vote for their consequent
classes in (15).

For illustration, let us assume that we have the following fuzzy rules:

If x1 is small and x2 is small then Class 1,
If x1 is small and x2 is large then Class 1,
If x1 is large and x2 is small then Class 1,
If x1 is large and x2 is large then Class 2,

where small and large are linguistic terms of antecedent fuzzy sets. These fuzzy
rules are shown in Fig. 1. The bold line in Fig. 1 (a) shows the classification bound-
ary by the winner-take-all scheme in (14) using the four fuzzy rules.

As pointed out in Kuncheva [49, 47], the classification boundary in Fig. 1 (a)
by the winner-take-all scheme in (14) is exactly the same as that of the non-fuzzy
lookup table with the following four rules:

If x1 is in [0.0, 0.5] and x2 is in [0.0, 0.5] then Class 1,
If x1 is in [0.0, 0.5] and x2 is in [0.5, 1.0] then Class 1,
If x1 is in [0.5, 1.0] and x2 is in [0.0, 0.5] then Class 1,
If x1 is in [0.5, 1.0] and x2 is in [0.5, 1.0] then Class 2.

On the other hand, Fig. 1 (b) by the voting-based scheme in (15) is different from
such a non-fuzzy lookup table. As shown in Fig. 1, smoother classification bound-
aries are obtained by the voting-based scheme. This suggests its possible advantage
in terms of the generalization ability of fuzzy rule-based classification systems. The
winner-take-all scheme, however, may be preferred when human users want to know
why each pattern is classified as a particular class. This is because only a single
fuzzy rule is responsible for the classification of each pattern in the winner-take-all
scheme. In this chapter, we use the winner-take-all scheme.

(a) Winner-take-all scheme in (14). (b) Voting-based scheme in (15).
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Fig. 1 Classification results by the four fuzzy rules
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When we use fuzzy rules with rule weights in (12), αh(xp) is defined as

αh(xp) = max{Aq(xp) ·wq | Cq = h; q = 1, 2, ..., N}, h = 1, 2, ..., M. (16)

That is, αh(xp) is defined as the maximum value of the product of the compatibility
grade and the rule weight. As demonstrated in [6, 37], various classification bound-
aries can be obtained by changing only the rule weight of each fuzzy rule with
no modification of its antecedent fuzzy sets. In Fig. 2, we show two examples of
classification boundaries generated by the above-mentioned four fuzzy rules when
they have rule weights.

Classification boundaries can be also adjusted by linguistic hedges such as very
and more or less (e.g., see Casillas et al. [19] for the use of linguistic hedges in
fuzzy rule-based systems). We show two examples of classification boundaries in
Fig. 3, which are obtained by changing only the fourth fuzzy rule with the Class 2
consequent in Fig. 1 (a). In Fig. 3, we use the winner-take-all scheme for the four
fuzzy rules with no rule weights. In Fig. 3 (a), the fourth fuzzy rule is modified as

If x1 is very large and x2 is very large then Class 2.

On the other hand, we use the following fuzzy rule in Fig. 3 (b):

If x1 is more or less large and x2 is more or less large then Class 2.

The membership function of large is changed as follows by these two linguistic
hedges:

μvery large(x) = [μlarge(x)]2, (17)

μmore or less large(x) =
√

μlarge(x). (18)
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(a) (w1 , w2 , w3 , w4) = (0.2,0.2,0.2,1.0)
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(b) (w1 , w2 , w3 ,w4) = (0.5,0.2,0.0,1.0)

Fig. 2 Classification results by the four fuzzy rules with rule weights
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(a) Use of very large instead of large. (b) Use of more or less large.
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Fig. 3 Classification results after modifying the fourth fuzzy rule with the Class 2 consequent
using the linguistic hedges very and more or less

4 Linguistic Rule Extraction for Pattern Classification

Various approaches to linguistic rule extraction have been proposed in the litera-
ture (e.g., [34, 23, 12, 26]). In this section, we explain two approaches to linguistic
rule extraction from numerical data for pattern classification. One is based on fuzzy
grids and the other is based on fuzzy clustering. These approaches are easy to un-
derstand and have been frequently used in the literature for the design of fuzzy
rule-based classification systems with linguistic rules. In this section, it is assumed
that we have m training patterns xp = (x p1, x p2, ..., x pn), p = 1, 2, ...,m from M
classes.

4.1 Fuzzy Grid-Based Approach

One of the most popular fuzzy rule extraction methods is Wang & Mendel [62].
Whereas their method was originally proposed for function approximation, it is also
applicable to pattern classification with minor modifications. Let us assume that
each of the n attributes is divided into Ki antecedent fuzzy sets with linguistic terms
(i = 1, 2, ..., n). This means that the n-dimensional pattern space is divided into
K1 × K2 × ...× Kn fuzzy subspaces. In the same manner as Wang & Mendel [62],
a single fuzzy rule is generated from each pattern by finding the most compatible
fuzzy subspace. The antecedent part of the fuzzy rule is specified by the identified
fuzzy subspace while its consequent class is the same as the pattern. In this manner,
m fuzzy rules including duplicated ones are generated from the given m training
patterns. Among the generated m fuzzy rules, some rules may be conflicting with
each other. When multiple fuzzy rules have the same antecedent part and different
consequent classes, the conflict is resolved by choosing the class of the pattern with
the highest compatibility grade.
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Whereas only a single pattern (i.e., the most compatible pattern with the an-
tecedent part) is responsible for the determination of the consequent part of each
fuzzy rule in Wang & Mendel [62], all the compatible patterns have an effect on the
rule extraction in Ishibuchi et al. [35]. When the consequent class of the fuzzy rule
Rq is to be specified, the sum of the compatibility grades with its antecedent part is
calculated for each class as

βh(Aq) =
∑

xp∈Class h

Aq(xp), h = 1, 2, ..., M, (19)

where Aq (xp) is the compatibility grade of the pattern xp with the antecedent part
of the fuzzy rule Rq . The consequent class Cq of the fuzzy rule Rq is specified as the
class with the maximum value of (19) over the M classes (i.e., with the maximum
total compatibility grade). On the other hand, Wang & Mendel [62] can be viewed as
using the following maximum compatibility grade instead of the total compatibility
grades in (19):

βh(Aq) = max{Aq(xp) | xp ∈ Class h}, h = 1, 2, ..., M. (20)

It should be noted that all fuzzy subspaces are examined to generate fuzzy rules in
Ishibuchi et al. [35] while only a single fuzzy rule is generated from each training
pattern in Wang & Mendel [62]. Thus much more fuzzy rules are usually generated
by Ishibuchi et al. [35].

Let us explain these two methods using Fig. 4. Wang & Mendel [62] generates
conflicting rules with the same antecedent part “If x1 is medium and x2 is medium”
in Fig. 4 (a) and Fig. 4 (b). The conflict is resolved by choosing Class 2 as the conse-
quent class in both plots because a Class 2 pattern (i.e., Pattern B) has the maximum
compatibility grade with the antecedent part. On the other hand, the consequent

(a) (b)

S
L

M

MS L

B

0.0

x2

1.0
Class 1 Class 2

0.0 x1 1.0

S
L

M

MS L

B

0.0

x2

1.0
Class 1 Class 2

0.0 x1 1.0

Fig. 4 Two training data sets in the two-dimensional pattern space. Three antecedent fuzzy sets
small, medium and large are denoted by S, M and L, respectively
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class by Ishibuchi et al. [35] is Class 2 in Fig. 4 (a) and Class 1 in Fig. 4 (b). This
is because Class 1 has the larger sum of the compatibility grades than Class 2 in
Fig. 4 (b).

In Fig. 4 (a) and Fig. 4 (b), Wang & Mendel [62] generates no fuzzy rule with the
antecedent part “If x1 is large and x2 is large” around the upper-right corner. This
is because the corresponding fuzzy subspace is not chosen as the most compatible
fuzzy subspace for any training patterns. On the other hand, Ishibuchi et al. [35]
generates “If x1 is large and x2 is large then Class 2” for the same fuzzy subspace
in both plots.

4.2 Fuzzy Grid-Based Genetic Fuzzy Systems

Genetic algorithms have been frequently used as machine learning techniques for
generating fuzzy rules from numerical data. Genetic algorithms for fuzzy rule gener-
ation are called fuzzy genetics-based machine learning (GBML) algorithms. Fuzzy
GBML algorithms are often categorized into three groups [40, 12]: Iterative rule
learning approach, Michigan approach, and Pittsburgh approach. These three ap-
proaches are classified into two categories according to the coding strategies. One
is the “chromosome = set of rules” approach which is usually called the Pittsburgh
approach. The other is the “chromosome = rule” approach, which includes the iter-
ative rule learning approach and the Michigan approach. Sometimes the Michigan
approach is used in a broad sense to mean the “chromosome = rule” approach in gen-
eral. Herrera [17] subdivides the “chromosome = rule” approach into three groups:
the Michigan approach, the iterative rule learning approach, and the cooperative-
competitive approach (for details, see Herrera [17]).

In the iterative rule learning approach, an individual is a single fuzzy rule. Thus
each population is a set of fuzzy rules (i.e., each generation consists of a set of fuzzy
rules). A heuristic rule evaluation criterion is used as a fitness function to evaluate
each fuzzy rule. A genetic algorithm is used to search for the best fuzzy rule with
respect to the given criterion. Only a single fuzzy rule is obtained from its single run.
A fuzzy rule-based classification system is constructed by iterating the execution of
the genetic algorithm. The main characteristic of the iterative rule learning approach
is that the training data are adjusted after each run (i.e., when each rule is obtained).
Roughly speaking, training patterns covered by the obtained fuzzy rule are removed
from the training data after each run. MOGUL [32, 18] and SLAVE [31, 20] are
examples of fuzzy GBML algorithms in the category of the iterative rule learning
approach. The main advantage of this approach is its efficiency. It does not need
long computation time or large memory storage. Its main disadvantage is the lack
of the global optimization ability in the level of rule sets (i.e., in the level of fuzzy
rule-based systems) because each rule is sequentially obtained without evaluating
the performance of the entire fuzzy rule-based system.

As in the iterated rule learning approach, an individual is a single fuzzy rule
in the Michigan approach. A heuristic rule evaluation criterion is used as a fitness
function to evaluate each fuzzy rule. Whereas a genetic algorithm is used to search
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for a single fuzzy rule in the iterative rule learning approach, the Michigan approach
searches for a set of fuzzy rules (i.e., a fuzzy rule-based system) by its single run.
Fuzzy GBML algorithms in the Michigan approach are often called fuzzy classifier
systems. It should be noted that fuzzy classifier systems are totally different from
fuzzy rule-based classification systems. The former is a framework of fuzzy GBML
algorithms whereas the latter is fuzzy rule-based systems for pattern classification.
The main characteristic of the Michigan approach is that each population corre-
sponds to a fuzzy rule-based system. Thus the generation update in the Michigan
approach can be viewed as the learning of a fuzzy rule-based system. The Michigan
approach was used to design linguistically interpretable fuzzy rule-based classifica-
tion systems in Ishibuchi et al. [8, 5]. The main advantage of the Michigan approach
is its efficiency. Its main disadvantage is the lack of the global optimization ability in
the level of rule sets. In the Michigan approach (as well as the iterative rule learning
approach), the search for a good fuzzy rule-based system is driven by the evaluation
of each fuzzy rule.

In the Pittsburgh approach, an individual is the set of fuzzy rules. That is, each
individual corresponds to a fuzzy rule-based system. The accuracy of each fuzzy
rule-based system is used as (a part of) a fitness function. A genetic algorithm is
used to optimize fuzzy rule-based systems. Many genetic fuzzy systems have been
developed in the framework of the Pittsburgh approach [40, 12]. The main advantage
of the Pittsburgh approach is its global optimization ability in the level of rule sets.
This is because the evolution of fuzzy rule-based systems is directly driven by their
accuracy. It is also easy in the Pittsburgh approach to incorporate various inter-
pretability measures into the fitness function to find a good compromise between
the accuracy and the interpretability. The main disadvantage of the Pittsburgh ap-
proach is its inefficiency. It usually needs long computation time and large memory
storage. If the available computation time is very small for a large-scale problem,
the Pittsburgh approach is not likely to find good rule sets. A hybrid algorithm of the
Michigan and Pittsburgh approaches was proposed in Ishibuchi et al. [11] to utilize
the advantage of each approach in a single fuzzy GBML algorithm.

The above-mentioned fuzzy GBML algorithms usually assume that each attribute
has already been divided into several linguistic terms. When each attribute is divided
into three linguistic terms small, medium and large as in Fig. 4, the antecedent
part of a fuzzy rule for an n-dimensional classification problem is represented by an
integer string of length n using an alphabet with four integers (i.e., 0: don′t care,
1: small, 2: medium, and 3: large). For example, “21” means the antecedent con-
dition “If x1 is medium and x2 is small”. Since the don′t care condition can be
removed from the antecedent part, “03” means “If x2 is large”. This coding method
was used in Ishibuchi et al. [8, 5, 11]. Since the consequent part of each fuzzy rule
can be specified from compatible training patterns by a heuristic procedure, only its
antecedent part is usually coded as a string in fuzzy GBML algorithms for pattern
classification.

In SLAVE [20], a binary string is used to represent the antecedent part of each
fuzzy rule instead of an integer string. For example, “011” means “medium or
large” when the corresponding attribute value is divided into three linguistic terms
small, medium and large as in Fig. 4. In this case, the antecedent part of a fuzzy
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rule for an n-dimensional problem is represented by a binary string of length 3n. In
Fig. 4, “010101” means the antecedent part “If x1 is medium and x2 is small or
large”. As a special case, “111” is handled as don′t care.

In a modified version of SLAVE by Castillo et al. [31], input selection ability is
incorporated into SLAVE to explicitly decrease the complexity of fuzzy rule-based
systems (i.e., to improve their interpretability). A real number string “z1z2...znθ”
of length n + 1 is used to represent input selection in each fuzzy rule for an n-
dimensional problem. When zi < θ , the antecedent condition on the i th attribute
is not used (i.e., don′t care is assigned to the i th attribute). It should be noted that
a different real number string is attached to each fuzzy rule. That is, each fuzzy
rule is denoted by a concatenated string of a real number string (for input selection)
and a binary string (for antecedent conditions) in the modified SLAVE algorithm in
Castillo et al. [31]. Of course, a binary string of length n can be also used to directly
represent input selection.

4.3 Clustering-Based Approach

Since Sugeno & Yasukawa [58], various clustering-based methods have been pro-
posed to the extraction of linguistically interpretable fuzzy rules from numerical
data for modeling and classification (e.g., Nauck & Kruse [51, 52], Roubos &
Setnes [55], Setnes et al. [56], and Setnes & Roubos [57]). A general outline of
these clustering-based methods can be written for pattern classification as follows:

Step 1: Clustering in the pattern space.
Step 2: Specification of a multi-dimensional fuzzy set for each cluster.
Step 3: Projection of each multi-dimensional fuzzy set onto each attribute to

generate a single-dimensional antecedent fuzzy set.
Step 4: Adjustment of each single-dimensional antecedent fuzzy set to improve

the accuracy and the interpretability of a fuzzy rule-based classification
system.

Step 5: Assignment of a linguistic term to each antecedent fuzzy set.

In Step 1, a prespecified number of clusters are obtained. Fuzzy clustering tech-
niques are used in Step 1. The number of fuzzy rules is the same as the number
of clusters. Next a multi-dimensional fuzzy set is specified in the pattern space for
each cluster in Step 2. Then each multi-dimensional fuzzy set is projected onto each
attribute to generate a single-dimensional antecedent fuzzy set in Step 3. The first
three steps are illustrated in Fig. 5 (a). As shown in Fig. 5 (a), the obtained single-
dimensional antecedent fuzzy sets do not always have high interpretability due to
large overlaps among them. Another difficulty is information loss by the projection
(see Fig. 5 (a)). This means that the obtained single-dimensional antecedent fuzzy
sets do not always have high classification ability, either. Thus each antecedent fuzzy
set is adjusted to improve both the accuracy and the interpretability in Step 4. In this
step, the number of the antecedent fuzzy sets is decreased through simplification
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(a) The first three steps. (b) The last two steps.
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Fig. 5 Illustration of clustering-based approaches to linguistic rule extraction

procedures. The prespecified number of fuzzy rules in Step 1 can be also decreased
in Step 4. Finally an appropriate linguistic term is assigned to each antecedent
fuzzy set in Step 5 to generate linguistic rules. The last two steps are illustrated in
Fig. 5 (b).

Linguistic rules with higher classification ability are often obtained from
clustering-based methods than grid-based ones in the previous subsection. This
is because the membership function of each antecedent fuzzy set is adjusted in
clustering-based methods while the fixed membership function is usually used with
no modifications in fuzzy grid-based methods.

As pointed out in Nauck & Kruse [52], information loss is involved in the pro-
jection of multi-dimensional fuzzy sets onto each attribute. This means that the ac-
curacy of fuzzy rule-based systems is degraded by extracting linguistic rules from
fuzzy rules with multi-dimensional antecedent fuzzy sets. If our goal is the accu-
racy maximization, it is recommended to use multi-dimensional antecedent fuzzy
sets without projections (e.g., Abe & Thawonmas [50]). On the other hand, if our
goal is the interpretability maximization, the use of single-dimensional antecedent
fuzzy sets is recommended. Single-dimensional antecedent fuzzy sets obtained by
clustering-based methods, however, are not necessarily linguistically interpretable.
This is because the consistency with human users’ intuition is not included in the
adjustment of each antecedent fuzzy set in Step 4.

5 Future Research Topics

There are a number of future research topics to be discussed for the design of fuzzy
rule-based systems with high accuracy and high linguistic interpretability. Here we
briefly explain some future research topics.
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5.1 Interpretability Measures

There are many aspects related to the interpretability of fuzzy rule-based systems
[34, 23, 45, 39] such as

• Number of fuzzy rules,
• Number of attributes (i.e., inputs) in fuzzy rule-based system,
• Number of antecedent conditions in each fuzzy rule,
• Number of antecedent fuzzy sets for each attribute,
• Separability of adjacent antecedent fuzzy sets,
• Linguistic interpretability of each antecedent fuzzy set.

It is not clear which measures should be taken into account in the design of fuzzy
rule-based systems. It is even more unclear how these measures are combined with
an accuracy measure. Moreover it is very difficult to quantitatively measure the last
aspect: the linguistic interpretability of each antecedent fuzzy set.

5.2 Accuracy Improvement of Linguistic Rules

Several approaches have been proposed to improve the accuracy of linguistic rule-
based systems for function approximation. For example, rule selection was used
in [33, 19, 16], linguistic hedges such as very and more or less were attached to
antecedent fuzzy sets in [19], antecedent fuzzy sets were subdivided in a hierarchical
manner in [33, 13], double consequents with different weights were used in each
fuzzy rule in [16, 54], and the combinations of antecedent and consequent fuzzy
sets were globally optimized in [36].

For pattern classification, only a few approaches to the accuracy improvement of
linguistic rule-based systems have been examined. Among them are rule selection
[7, 9], rule weight adjustment [6, 37, 53] and membership function learning [51,
52, 55]. Further studies are needed to design fuzzy rule-based classification systems
with high accuracy and high linguistic interpretability.

5.3 Multiobjective Optimization of Fuzzy Rule-Based Systems

As we have already explained, there exists a tradeoff between the accuracy and the
interpretability. Thus it is impossible to simultaneously optimize these two design
criteria. In many studies on genetic fuzzy systems, these two design criteria were
combined into a scalarizing fitness function to find a good compromise between
them using a standard single-objective genetic algorithm (e.g., [7, 9, 55, 56, 57]).
The main difficulty in these studies is that the specification of an appropriate scalar-
izing fitness function is not easy. For example, it is usually very difficult to assign
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relative importance to the average error rate and the number of fuzzy rules in the
design of fuzzy rule-based classification systems. In order to circumvent this diffi-
culty, the concept of Pareto-optimality has been introduced for the multiobjective
design of fuzzy rule-based systems in the literature. For example, Ishibuchi et al.
[28] formulated a two-objective fuzzy rule selection problem to search for Pareto-
optimal fuzzy rule-based systems with respect to the classification accuracy and
the number of fuzzy rules in the late 1990s. Their idea was extended to the case
of three-objective fuzzy rule selection in [44, 3] where the number of antecedent
conditions was taken into account as an additional complexity measure. In these
studies, a number of Pareto-optimal (or near Pareto-optimal) fuzzy rule-based clas-
sification systems were obtained using a multiobjective genetic algorithm. The con-
cept of Pareto-optimality was also incorporated into multiobjective fuzzy GBML
algorithms (e.g., [44, 4, 60, 61]). Multiobjective design of classification systems is
a very hot issue not only in the fuzzy system community but also in the machine
learning community. For example, see Jin [25].

5.4 Application to Large-Scale Data Sets

Fuzzy data mining (i.e., fuzzy rule extraction from large-scale data sets) seems to
be a promising research area in the field of fuzzy systems (e.g., [1, 10, 29, 26,
3]). In data mining, emphasis is usually placed on the interpretability of extracted
knowledge for human users rather than its accuracy. Thus fuzzy logic has a large
potential ability to play an important role in data mining. Despite of its potential
ability, fuzzy logic is not widely used in the field of data mining.

6 Conclusion

In this chapter, we explained fuzzy rule-based classification systems and linguistic
rule extraction from numerical data for pattern classification. When our main goal is
to design classification systems with high interpretability, the use of linguistic rules
is a good choice. We can construct fuzzy rule-based classification systems with high
linguistic interpretability. The use of linguistic rule is also a promising choice in data
mining. We can extract linguistically interpretable knowledge from numerical data.
On the other hand, the use of fuzzy rules with multi-dimensional antecedent fuzzy
sets seems to be a good choice when our main goal is to construct classification
systems with high classification accuracy.

Due to the page limitation, our explanations in this chapter did not go into details.
For details of linguistic rule extraction, see the book on linguistic data mining by
Ishibuchi et al. [26]. For further discussions on the accuracy-interpretability tradeoff
in fuzzy rule-based systems, see the edited books by Casillas et al. [34, 23]. Also
see the edited book by Jin [25] for recent developments on multiobjective machine
learning.
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An Overview of Mining Fuzzy
Association Rules

Tzung-Pei Hong and Yeong-Chyi Lee

Abstract Data mining is the process of extracting desirable knowledge or interest-
ing patterns from existing databases for specific purposes. Many types of knowledge
and technology have been proposed for data mining. Among them, finding associ-
ation rules from transaction data is most commonly seen. Most studies have shown
how binary valued transaction data may be handled. Transaction data in real-world
applications, however, usually consist of fuzzy and quantitative values, so design-
ing sophisticated data-mining algorithms able to deal with various types of data
presents a challenge to workers in this research field. This chapter thus surveys
some fuzzy mining concepts and techniques related to association-rule discovery.
The motivation from crisp mining to fuzzy mining will be first described. Some
crisp mining techniques for handling quantitative data will then be briefly reviewed.
Several fuzzy mining techniques, including mining fuzzy association rules, mining
fuzzy generalized association rules, mining both membership functions and fuzzy
association rules, will then be described. The advantages and the limitations of fuzzy
mining will also be discussed.

1 Introduction

Knowledge discovery in databases (KDD) has thus become a process of consid-
erable interest in recent years, as the amounts of data in many databases have
grown tremendously large. KDD means the application of nontrivial procedures for
identifying effective, coherent, potentially useful, and previously unknown patterns
in large databases [20, 45]. The KDD process generally consists of three phases:
pre-processing, data mining and post-processing [17, 2]. Among them, data mining
plays a critical role to KDD.

Depending on the types of databases to be processed, mining approaches may
be classified as working on transaction databases, temporal databases, relational
databases, and multimedia databases, among others [31]. On the other hand, de-
pending on the classes of knowledge derived, mining approaches may be classi-
fied as finding association rules, classification rules, clustering rules, and sequential
patterns [14], among others. Among them, finding association rules in transaction
databases is most commonly seen in data mining [41, 50, 18, 1, 42, 25, 48, 51].

H. Bustince et al., (eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation
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An association rule is an expression X → Y , where X is a set of items and Y is
usually a single item. It means in the set of transactions, if all the items in X exist in
a transaction, then Y is also in the transaction with a high probability. Most studies
have shown how binary valued transaction data may be handled. Transaction data in
real-world applications, however, usually consist of fuzzy and quantitative values.
Designing sophisticated data-mining algorithms able to deal with various types of
data presents a challenge to workers in this research field.

Fuzzy set theory was first proposed by Zadeh in 1965 [58]. It has been used more
and more frequently in intelligent systems because of its simplicity and similarity
to human reasoning [35]. It is primarily concerned with quantifying and reasoning
using natural language in which words can have ambiguous meanings. This can be
thought of as an extension of traditional crisp sets, in which each element must either
be in or not in a set. The theory has been applied in many fields such as manufac-
turing, engineering, diagnosis, economics, among others [35, 37, 59]. Several fuzzy
learning algorithms for inducing rules from given sets of data have been designed
and used with good effects in specific domains [33, 34, 19, 24, 46, 29, 53]. Strategies
based on decision trees [40] were proposed in [16, 47, 21]. Wang et al. also proposed
a fuzzy version space learning strategy for managing vague information [53].

Recently, the fuzzy set theory has also been applied to data mining to find inter-
esting association rules or sequential patterns in transaction data with quantitative
values [23, 29, 28, 8, 6, 3, 57]. This chapter thus attempts to survey some fuzzy
mining concepts and techniques about association rules. The remaining part of this
chapter is organized as follows. Some related crisp mining approaches for associ-
ation rules are first reviewed in Sect. 2. Some fuzzy mining techniques, including
mining fuzzy association rules, mining fuzzy generalized association rules, mining
both membership functions and fuzzy association rules, integrating clustering with
fuzzy association rules, are then described in Sects. 3 to 5. The advantages and the
limitations of fuzzy mining are discussed and conclusions are given in Sect. 6.

2 Some Crisp Data-mining Approaches for Association Rules

The goal of data mining is to discover important associations among items such
that the presence of some items in a transaction will imply the presence of some
other items. To achieve this purpose, Agrawal and his co-workers proposed the
famous Apriori algorithm that based on the concept of large itemsets to find as-
sociation rules in transaction data [41, 50]. They divided the mining process into
two phases. In the first phase, candidate itemsets were generated and counted by
scanning the transaction data. If the number of an itemset appearing in the trans-
actions (called the support of an itemset) was larger than a pre-defined threshold
value (called minimum support), the itemset was considered a large itemset. Item-
sets containing only one item were processed first. Large itemsets containing only
single items were then combined to form candidate itemsets containing two items.
This process was repeated until all large itemsets had been found. In the second
phase, association rules were induced from the large itemsets found in the first
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phase. All possible association rules from each large itemset were formed, and
their confidence values were calculated. The confidence was defined as the sup-
port of the itemset in the left hand side of the rule over the support of the item-
set in the whole rule. Those rules with calculated confidence values larger than
a predefined threshold (called minimum confidence) were output as association
rules.

Han et al. proposed the Frequent-Pattern-tree structure (FP-tree) for efficiently
mining association rules without generation of candidate itemsets [22]. The ap-
proach compressed a database into a tree structure storing only large items. Three
steps were involved in FP-tree construction. The database was first scanned to find
all items with their frequency. The items with their supports larger than a predefined
minimum support were selected as large 1-itemsets (items). Next, the large items
were sorted in descending frequency. At last, the database was scanned again to
construct the FP-tree according to the sorted order of large items. The construction
process was executed tuple by tuple, from the first transaction to the last one. After
all transactions were processed, the FP-tree was completely constructed. After the
FP-tree was constructed from a database, a mining procedure called FP-Growth [22]
was executed to find all large itemsets. FP-Growth did not need to generate candi-
date itemsets for mining, but derived frequent patterns directly from the FP-tree.
It was a recursive process, handling the frequent items one by one. A conditional
FP-tree was generated for each frequent item, and from the tree the large itemsets
with the processed item could be recursively derived. Many mining methods for
finding association rules based on the FP-tree structure have also been proposed
[32, 4, 49, 60].

Cai et al. proposed weighted mining to reflect different importance on items [36].
Each item was attached a numerical weight given by users. Weighted supports and
weighted confidences were then defined to determine interesting association rules.

In the above approach, the items in transactions are binary. That is, the value of
an item is treated as “1” if the item is present in a transaction, and as “0” if it is
not present. Items in real applications may, however, be presented with rich data
types, such as quantitative and categorical types. Some approaches were then pro-
posed for handling items with quantitative and categorical values while discovering
association rules. Piatetsky-Shapiro proposed a mining approach, which partitioned
quantitative attributes into intervals [27]. The value of each quantitative attribute
could be presented as a range rather than a single value, and was allowed to appear
in the left-hand side (antecedent) of a rule.

Srikant and Agrawal then proposed a method for mining association rules from
transactions with quantitative attributes [51]. Their proposed method first deter-
mined the number of partitions for each quantitative attribute, and then mapped
all possible values of each attribute into a set of consecutive integers. The number
of intervals was determined by a partial completeness factor, which was used to
evaluate the lost information from partition. Adjacent intervals were also allowed to
be merged into a large one. Their approach then found large itemsets whose support
values were greater than the user-specified minimum-support levels. These large
itemsets were then processed to generate association rules. An interest measure was
also introduced to get interesting association rules.
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Fukuda et al. proposed a mining approach to discover optimized association rules
from quantitative data [18]. Two problems were discussed, one for mining optimized
support rules and the other for mining optimized conference rules. Mining optimized
support rules focused on finding an association rule with a maximum support value
on the condition that the confidence value of the rule had to be larger than a given
minimum confidence. On the other hand, mining optimized confidence rules em-
phasized on finding an association rule with a maximum confidence value on the
condition that the support value of the rule had to be larger than a given minimum
support. The authors first found the ranges of quantitative attributes by sampling,
sorting and filling data into buckets before the mining process proceeded. Associ-
ation rules containing quantitative attributes in the left-hand side were then found
by an effective search approach. In addition, Rastogi and Shim extended Fukuda
et al.’s approach to find the association rules with disjunction conditions [30]. Lent
et al. proposed a geometry-based algorithm to deal with the problem of clustering
association rules from quantitative attributes [11]. Each association rule was initially
represented by a primitive attribute value (or range). Adjacent association rules were
then clustered together to form generalized rules. Many other researches are still in
progress.

3 Mining Fuzzy Association Rules

As mentioned above, the fuzzy set theory is concerned with quantifying and rea-
soning using natural language. It is thus very suitable to handle quantitative values
by fuzzy sets. Several fuzzy mining approaches have thus been proposed to find
interesting association rules or sequential patterns in transaction data with quanti-
tative values. In this section, we focus on the data mining approaches for finding
association rules with predefined membership functions.

Chan and Au proposed an F-APACS algorithm to mine fuzzy association rules
[23]. They first transformed quantitative attribute values into linguistic terms and
then used the adjusted difference analysis to find interesting associations among
attributes. It had the advantage that the user-specified thresholds were not needed
since the statistical analysis was used. In addition, both positive and negative asso-
ciations could be found.

Kuok et al. proposed a fuzzy mining approach to handle numerical data in
databases with attributes and derived fuzzy association rules [3]. At nearly the same
time, Hong et al. proposed a fuzzy mining algorithm to mine fuzzy rules from quan-
titative transaction data [29]. Basically, the fuzzy mining algorithms first used mem-
bership functions to transform each quantitative value into a fuzzy set in linguistic
terms. The algorithm then calculated the scalar cardinality of each linguistic term
on all the transaction data. The mining process based on fuzzy counts was then per-
formed to find fuzzy association rules. Hong et al. described the fuzzy mining steps
in details. Their fuzzy mining algorithm is described below as a good reference [8].
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The Fuzzy Data Mining Algorithm:

INPUT: A set of n training data, each with m attribute values, a set of member-
ship functions, a predefined minimum support value α, and a predefined
confidence value λ.

OUTPUT: A set of fuzzy association rules.

STEP 1: Transform the quantitative value v
(i)
j of each transaction datum D(i)

for each attribute A j , j=1 to m, into a fuzzy set f (i)j represented as
(

f (i)j1
R j1
+ f (i)j2

R j2
+ · · · + f (i)jl

R jl

)

using the given membership functions, where

i presents the current transaction number that is processed, R jk is the

k-th fuzzy region (linguistic term) of attribute A j , f (i)j k is the value of

the membership function in R jk for the value v
(i)
j , and l (=

∣

∣A j
∣

∣) is the
number of fuzzy regions for A j .

STEP 2: Calculate the count of each attribute region (linguistic term) R jk in the
transaction data:

count jk =
n
∑

i=1

f (i)j k .

STEP 3: Collect each attribute region (linguistic term) to form the candidate
set C1.

STEP 4: Check whether count jk of each R jk (1 ≤ j ≤ m and 1 ≤ k ≤ ∣

∣A j
∣

∣) is
larger than or equal to the predefined minimum support value α. If R jk

satisfies the above condition, put it in the set of large 1-itemsets (L1).
That is:

L1 = {R jk|count jk ≥ α, 1 ≤ j ≤ m and 1 ≤ k ≤ |A j |} .

STEP 5: IF L1 is not null, then do the next step; otherwise, exit the algorithm.
STEP 6: Set r=1, where r is used to represent the number of items kept in the

current large itemsets.
STEP 7: Join the large itemsets Lr to generate the candidate set Cr+1 in a way

similar to that in the apriori algorithm [41] except that two regions (lin-
guistic terms) belonging to the same attribute cannot simultaneously ex-
ist in an itemset in Cr+1. Restated, the algorithm first joins Lr and Lr

under the condition that r -1 items in the two itemsets are the same and
the other one is different. It then keeps in Cr+1 the itemsets which have
all their sub-itemsets of r items existing in Lr and do not have any two
items R j p and R jq (p �= q) of the same attribute R j .

STEP 8: Do the following substeps for each newly formed (r+1)-itemset s with
items (s1, s2, · · · , sr+1) in Cr+1:
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(a) Calculate the fuzzy value of each transaction data D(i) in s as f (i)s =
f (i)s1 ∧ f (i)s2 ∧· · ·∧ f (i)sr+1 , where f (i)s j is the membership value of D(i) in
region s j . If the minimum operator is used for the intersection, then:

f (i)s = Minr+1
j=1 f (i)s j

.

(b) Calculate the count of s in the transactions as:

counts =
n
∑

i=1

f (i)s

(c) If counts is larger than or equal to the predefined minimum support
value α, put s in Lr+1.

STEP 9: IF Lr+1 is null, then do the next step; otherwise, set r = r+1 and repeat
STEPs 6 to 8.

STEP 10: Collect the large itemsets together.
STEP 11: Construct association rules for each large q-itemset s with items (s1, s2,

. . . , sq ), q ≥ 2, using the following substeps:

(a) Form each possible association rule as follows:

s1 ∧ · · · ∧ sk−1 ∧ sk+1 ∧ · · · ∧ sq , k = 1 to q.

(b) Calculate the confidence values of all association rules using:

∑n
i=1 f (i)s

∑n
i=1( f (i)s1 ∧ · · · ∧ f (i)sk−1 ∧ f (i)sk+1 ∧ · · · ∧ f (i)sq )

.

STEP 12: Output the association rules with confidence values larger than or equal
to the predefined confidence threshold λ.

In the above fuzzy mining approach, all the linguistic terms are used. As an
alternative, each item can use only the linguistic term with the maximum cardinality
in later mining processes [28]. It can thus keep the same number of items as the
original attributes. The alternative therefore focuses on the most important linguistic
terms and can reduce its time complexity. Its derived set of association rules is,
however, more incomplete than that by considering all the linguistic items. Trade-off
thus exists between the rule completeness and the time complexity.

In addition, items may have different importance. Yue et al. thus extended the
above concept to find fuzzy association rules with weighted items from transaction
data [57]. Each item was given a weight to represent the importance of an item, and
each weight was in a range of [0, 1]. They also adopted Kohonen self-organized map-
ping to derive fuzzy sets for numerical attributes. Weighted supports and weighted
conferences were utilized to discover weighted fuzzy association rules.
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Hong et al. then proposed a mining approach for extracting interesting weighted
fuzzy association rules from transactions, with the parameters (minimum support
and minimum confidence) needed in the mining process were given in linguistic
terms [6]. Items were evaluated by managers as linguistic terms to reflect their
importance, which were then transformed as fuzzy sets of weights. The approach
then transformed linguistic weighted items, minimum supports and minimum confi-
dences into fuzzy sets, then filtered weighted large itemsets out by fuzzy operations.
Weighted association rules with linguistic supports and confidences were then de-
rived from the weighted large itemsets.

4 Mining Fuzzy Generalized Association Rules

Most mining algorithms for association rules focused on single-concept levels.
However, mining multiple-concept-level rules may lead to discovery of more spe-
cific and important knowledge from data. Relevant item taxonomies are usually
predefined in real-world applications and can be represented by hierarchy trees.
Terminal nodes on the trees represent actual items appearing in transactions; internal
nodes represent classes or concepts formed by lower-level nodes. A simple example
is given in Fig. 1.

In this example, food falls into two classes: brink and bread. Brink can be fur-
ther classified into milk and juice. Similarly, clothes are divided into jackets and
T-shirts. Only the terminal items (milk, juice, bread, jacket and T-shirt) can appear
in transactions.

Srikant and Agrawal thus proposed a method for finding generalized associa-
tion rules, which included generalized items (the terminal nodes in taxonomy) [48].
Their mining process could be divided into four phases. In the first phase, ancestors
of items in each given transaction were added according to the predefined taxonomy.
In the second phase, large itemsets were generated in a way similar to the Apriori
algorithm. In the third phase, all possible generalized association rules were induced
from the large itemsets found in the second phase. The rules with calculated con-
fidence values larger than the minimum confidence were kept. In the fourth phase,

Fig. 1 An example of
predefined taxonomic
structures

Food Clothes

JacketsDrink Bread

Milk Juice

T-shirts
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uninteresting association rules were pruned and interest rules were output according
to the following interest requirements:

• A rule that had no ancestor rules (by replacing the items in a rule with their
ancestors in the taxonomy) was mined out;

• The support of a rule was R times larger than the expected supports of its ancestor
rules, where R was called a minimum interest;

• The confidence of a rule was R times larger than the expected confidences of its
ancestor rules.

In addition, Han and Fu also proposed a method for finding level-crossing associa-
tion rules at multiple levels [1]. Nodes in predefined taxonomies were first encoded
using sequences of numbers and the symbol “*” according to their positions in the
hierarchy tree. A top-down progressively deepening search approach was then used
to explore level-crossing association relationships.

Wei et al. considered the partial relationships possibly existing in taxonomy [56].
An item may partially belong to more than one parent item. For instance, tomato
may partially belong to both fruit and vegetable with different degrees. Wei et al.
thus defined a fuzzy taxonomic structure and considered the extended degrees of
support, conference and interest measures for mining generalized association rules.

Hong et al. proposed a fuzzy multiple-level mining algorithm for extracting
implicit knowledge from transactions stored as quantitative values [5]. The pro-
posed generalized fuzzy mining algorithm was based on Srikant and Agrawal’s ap-
proach to find fuzzy interesting rules from quantitative data. The quantitative items
may be from any level of the given taxonomy. They also proposed another fuzzy
multiple-level mining algorithm which adopted a top-down progressively deepening
approach [28]. Shen et al. devised an algorithm for mining generalized association
rules with fuzzy taxonomic structure from quantitative databases based on Wei’s
algorithm [39]. They handled the quantitative data by Srikant and Agrawal’s al-
gorithm [51], which partitioned quantitative attributes into several intervals. Kaya
et al. then extended Hong et al’s approaches [6, 43] for discovering multi-cross-level
fuzzy weighted association rules [9].

In summary, mining fuzzy generalized association rules is a little different from
mining fuzzy association rules in the following ways.

1. Non-terminal items must be processed. These items are usually considered ex-
panded items.

2. The candidate set C2 must be processed in a particular way. The two items in
an itemset in C2 must not have relationships in the taxonomy. This check needs
to be done only for C2. The other candidate sets derived from C2 will not have
hierarchical relationships due to the characteristic of sub-itemset checking.

3. Cross-level association rules need to be found.
4. The interestingness of association rules must consider generalization criteria

from the taxonomy. Interest requirements are checked to remove uninteresting
rules.



An Overview of Mining Fuzzy Association Rules 405

5 Mining both Membership Functions
and Fuzzy Association Rules

The proposed approaches in the above sections mined fuzzy rules under a given set
of membership functions. The given membership functions had a critical influence
on the final mining results. Although many approaches for learning membership
functions were proposed [12, 13, 38, 54], most of them were usually used for clas-
sification or control problems. Recently, researches about fuzzy data-mining algo-
rithms for extracting both association rules and membership functions from quanti-
tative transactions have been proposed. For example, Wang et al. tuned membership
functions for intrusion detection systems based on similarity of association rules
[55]. Kaya et al. proposed a GA-based clustering method to derive a predefined
number of membership functions for getting a maximum profit within an interval
of user specified minimum support values [7]. In their approach, the membership
functions of quantitative attributes were obtained by GAs and were then used to
discover fuzzy association rules. Its goal was to output the membership functions
which would generate the maximized number of large itemsets. For this purpose,
the parameter values of membership functions of the quantitative attributes were
encoded into a real-valued string for evolving. Hong et al. proposed several algo-
rithms to dynamically adapt membership functions by genetic algorithms and used
them to fuzzify the quantitative transactions [44, 26]. They proposed a GA-based
framework for searching membership functions suitable for mining problems and
then used the final best set of membership functions to mine association rules. The
proposed framework is shown in Fig. 2.

The proposed framework maintained a population of sets of membership func-
tions, and used the genetic algorithm to automatically derive the resulting one. It
first transformed each set of membership functions into a fixed-length string. It then
chose appropriate strings for “mating”, gradually creating good offspring member-
ship function sets. The offspring membership function sets then underwent recursive
evolution until a good set of membership functions has been obtained. The fitness
was evaluated by the number of large 1-itemsets and the suitability of membership
functions. The suitability of membership functions was composed of two terms,
overlap and coverage. The overlap ratio of two membership functions was defined
as the overlap length divided by half the minimum span of the two functions. If the
overlap length was larger than half the span, then these two membership functions
were thought of as a little redundant. Appropriate punishment was thus considered
in this case. The coverage ratio of a set of membership functions for an item was
defined as the coverage range of the functions divided by the maximum quantity of
that item in the transactions. The more the coverage ratio was, the better the derived
membership functions were. Besides, a larger number of 1-itemsets would usually
result in a larger number of all itemsets with a higher probability, which would thus
usually imply more interesting association rules. The evaluation by 1-itemsets was,
however, faster than that by all itemsets or interesting association rules. Using the
number of large 1-itemsets could thus achieve a trade-off between execution time
and rule interestingness.
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Fig. 2 GA-based framework for searching membership functions

Hong et al. also proposed an enhanced approach, called cluster-based fuzzy-GA
mining algorithm, to speed up the evaluation process and keep nearly the same
quality of solutions [15]. The proposed algorithm first divided the chromosomes
in a population into k clusters by using the k-means clustering approach. All the
chromosomes in a cluster then used the number of large 1-itemsets derived from the
representative chromosome in the cluster and their own suitability of membership
functions to calculate the fitness values. Since the chromosomes with similar cover-
age and overlap factors would form a cluster, they would have nearly the same shape
of membership functions and induce about the same number of large 1-itemsets.
For each cluster, the chromosome which was the nearest to the cluster center was
thus chosen to derive its number of large 1-itemsets. All chromosomes in the same
cluster then used the number of large 1-itemsets derived from the representative
chromosome as their own. Finally, each chromosome was evaluated by this number
of large 1-itemsets divided by its own suitability value. The evaluation cost could
thus be greatly reduced due to the time-saving in finding 1-itemsets.

6 Discussion and Conclusion

This chapter has given a wide survey about fuzzy data mining for association rules.
Several fuzzy mining techniques, including mining fuzzy association rules, mining
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fuzzy generalized association rules, mining both membership functions and fuzzy
association rules, have been described. Some crisp mining techniques for handling
quantitative data have also been briefly reviewed.

Verlinde et al. investigated the difference between the rules by fuzzy mining and
crisp mining through experiments and claimed the difference was small from the ex-
perimental results [52]. They constrained the rules with only a single item in both the
antecedent and the consequence. The experiments were made in the environments
where the data were normally distributed and the data boundaries were at the sides
of the normal distributions. It is apparent that the rule difference in this situation
is small since the data used by fuzzy mining and by crisp mining are not different
very much. The boundary effect reduced by the fuzzy mining approaches on data in
large databases and with normal distribution is thus not significant. However, as we
know, the fuzzy set is usually used for modeling human perception on a concept. The
membership functions defined are not necessarily corresponding to the distribution
of a data. It is also the reason why the fuzzy set was proposed and not replaced with
the probability theory.

In summary, when compared to conventional crisp-set mining methods for quan-
titative data, fuzzy-mining approaches can get smoother mining results due to the
fuzzy membership characteristics. The mined rules are expressed in linguistic terms,
which are more natural and understandable for human beings. Besides, nearly all
the fuzzy mining approaches can be easily degraded into crisp ones by assigning
membership functions with values always equal to 1 or 0. These make fuzzy mining
promising in real applications.
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Subgroup Discovery with Linguistic Rules

Marı́a José del Jesus, Pedro González and Francisco Herrera

Abstract Subgroup discovery can be defined as a form of supervised inductive lear-
ning in which, given a population of individuals and a specific property of individu-
als in which we are interested, find population subgroups that have the most unusual
distributional characteristics with respect to the property of interest. Subgroup dis-
covery algorithms aim at discovering individual rules, which must be represented in
explicit symbolic form and which must be simple and understandable in order to be
recognized as actionable by potential users.

A fuzzy approach for a subgroup discovery process, which considers linguistic
variables with linguistic terms in descriptive fuzzy rules, lets us obtain knowledge in
a similar way of the human thought process. Linguistic rules are naturally inclined
towards coping with linguistic knowledge and to produce more interpretable and
actionable solutions. This chapter analyzes the use of linguistic rules for modelling
this problem, and shows a genetic extraction model for learning this kind of rules.

1 Introduction

Rule learning is an important form of predictive machine learning, aimed at inducing
a set of rules to be used for classification and/or prediction [6, 31]. Developments in
descriptive induction have recently also attracted much attention from researchers
interested in rule learning. The objective of descriptive machine learning is to dis-
cover individual rules that define interesting patterns in data, and it includes ap-
proaches for mining association rules [2], for subgroup discovery [24, 35] and other
non-classificatory induction approaches such as clausal discovery [34] or database
dependency [15] among others.

Subgroup discovery is a form of descriptive supervised inductive learning. It
aims to discover individual rules (or local patterns of interest, very frequent –hence
typical– or very rare –hence atypical–) in relation to a specific property of interest,
which must be represented in explicit symbolic form and which must be relatively
simple in order to be recognized as actionable by potential users. Therefore, the sub-
groups discovered in data are of a more explanatory nature and the interpretability
of the extracted knowledge for the final user is a crucial aspect in this field.

H. Bustince et al., (eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation
and Models. C© Springer 2008 411
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As it was claimed by Dubois et al. in [14], the use of fuzzy sets to describe as-
sociations between data extends the types of relationships that may be represented,
facilitates the interpretation of rules in linguistic terms, and avoids unnatural bound-
aries in the partitioning of the attribute domains. This is especially useful in medical,
control or economic fields where the boundaries of a piece of information used may
not be clearly defined. In fact, the use of linguistic variables and linguistic terms
in a machine learning process has been thoroughly explored by various authors in
predictive induction (see for instance Ishibuchi et al.‘s book [22] for a complete and
understandable up-to-date description of the design of classification and modelling
fuzzy systems). There are some proposals using fuzzy logic in descriptive induction,
for the extraction of fuzzy association rules [10, 20], and for subgroup discovery
fuzzy rules [12, 13].

A fuzzy approach for a subgroup discovery process, which considers linguistic
variables with linguistic terms in descriptive fuzzy rules, allows us to obtain knowl-
edge in a similar way to the human thought process. In order to understand this
it is enough to remember that much of the logic behind human reasoning is not
traditional two-valued or even multivalued logic, but logic with fuzzy truths, fuzzy
connectives and fuzzy rules of inference. Fuzzy rules are naturally inclined towards
coping with linguistic knowledge, thereby producing more interpretable and action-
able solutions in the field of subgroup discovery and in general in the analysis of
data to establish relationships and identify patterns [21].

This chapter analyzes the use of linguistic rules in subgroup discovery. A genetic
model for the extraction of fuzzy rules in subgroup discovery [12, 13] is described,
analyzing its possibilities and limitations. To do so, the chapter is arranged in the
following way: In Sect. 2, the subgroup discovery task is introduced. In Sect. 3 is
described the use of linguistic rules in the subgroup discovery task. An evolutionary
approach to obtain subgroup discovery descriptive fuzzy rules is explained in Sect.
4. Finally, in Sect. 5 the conclusions and further research are outlined.

2 Introduction to Subgroup Discovery

Subgroup discovery is a form of supervised inductive learning which is defined
as follows [24, 35]: given a set of data and a property of interest to the user (tar-
get variable), an attempt is made to locate subgroups which are statistically “most
interesting” for the user, e.g., are as large as possible and have the most unusual dis-
tributional characteristics with respect to the property of interest. The concept was
initially formulated by Klösgen in EXPLORA [24] and by Wrobel in MIDOS [35].

Descriptive machine learning methods for subgroup discovery have the objective
of discovering interesting properties of subgroups by obtaining simple rules (i.e.
with an understandable structure and with few variables), which are highly signifi-
cant and with high support (i.e. covering many of the instances of the target class).

An induced subgroup description has the form of an implication,

Cond → Class
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where the property of interest for subgroup discovery is class value Class that
appears in the rule consequent, and the rule antecedent Cond is a conjunction of
features (attribute-value pairs) selected from the features describing the training
instances.

The subgroup discovery task relies on the following main properties:

• The description language specifying the subgroups which must be adequate to be
applied effectively by the potential users. The subgroup description consists of a
set of expressions. In the simplest case, each expression is one-valued; however
negation or internal disjunctions are also possible.

• The quality function measuring the interest of the subgroup. A variety of quality
functions have been proposed (see for instance [18, 24, 25]). The quality func-
tions used is determined by the type of the target variable, the type of rules and the
problem considered. In subsection 2.2 several quality measures used in subgroup
discovery algorithms are described.

• The search strategy employed by the algorithm is very important, since the di-
mension of the search space has an exponential relation with respect to the num-
ber of features (or variables) and values considered.

Below related works and the quality measures used in subgroup discovery are
shortly revised.

2.1 Related Works in Subgroup Discovery

In the specialized bibliography, different methods have been developed which obtain
descriptions of subgroups represented in different ways and using different quality
measures:

• The first approach developed for subgroup discovery was EXPLORA [24]. It uses
decision trees for the extraction of rules. The rules are specified by defining a de-
scriptive schema and implementing a statistical verification method. The interest
of the rules is measured using measures such as evidence, generality, redundancy
and simplicity.

• MIDOS [35] applies the EXPLORA approach to multirelational databases. It
uses optimistic estimation and minimum support pruning. The goal is to discover
subgroups of the target relation which have unusual statistical distributions with
respect to the complete population. The quality measure is a combination of un-
usualness and size.

• Subgroup Miner [26] is an extension of EXPLORA and MIDOS. It is an ad-
vanced subgroup discovery system which uses decision rules and interactive
search in the space of the solutions, allowing the use of large databases, mul-
tirelational hypotheses, and the discovery of structures of causal subgroups.
This algorithm uses as quality function the classical binomial test to verify if
the statistical distribution of the target is significantly different in the extracted
subgroup.
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• SD [17] is a rule induction system guided by expert knowledge: instead of defin-
ing an optimal measure to search and select automatically the subgroups, the
objective is to help the expert in performing flexible and effective searches on a
wide range of optimal solutions.

• CN2-SD [29] (a modified version of the CN2 algorithm [6]) induces subgroups
in the form of rules using the relation between true positives and false positives
as a quality measure. It uses a modified weighted relative accuracy as quality
measure for the rule selection.

• RSD [30], Relational Subgroup Discovery, has the objective of obtaining pop-
ulation subgroups which are as large as possible, with a statistical distribution
as unusual as possible with respect to the property of interest, and which are
different enough to cover most of the target population. It is a recent upgrade of
the CN2-SD algorithm which enables relational subgroup discovery.

• APRIORI-SD [23] is developed by adapting the association rule learning algo-
rithm APRIORI [1] to subgroup discovery, including a new quality measure for
the induced rules (the weighted relative accuracy) and using probabilistic classi-
fication of the examples. For the evaluation is used the support and significance
of each individual rule, and the size, accuracy and area under the ROC curve of
the set of rules.

• Intensive Knowledge [3] is a subgroup discovery approach which uses several
types of application background knowledge to improve the quality of the results
of the subgroup discovery task and the efficiency of the search method.

• SDIGA [13] is an evolutionary fuzzy rule induction system which uses as quality
measures for the subgroup discovery task adaptations of the measures used in the
association rules induction algorithms. Unlike all the other proposals, SDIGA
uses linguistic rules as description language to specify the subgroups. This pro-
posal is shown in Sect. 4.

2.2 Quality Measures in Subgroup Discovery

One of the most important aspects of any subgroup discovery algorithm -and a
determining factor in the quality of the approach- is the quality measure to be
used, both to select the rules and to evaluate the results of the process. Objective
measures for descriptive induction evaluate each subgroup individually, but can
be complemented by their variants to compute the mean of the induced set of de-
scriptions of subgroups, allowing comparison between different subgroup discovery
algorithms.

There are different studies about objective quality measures for the descriptive
induction process [17, 25, 32] but it is difficult to reach an agreement about their
use. Below, the more widely used objective quality measures in the specialized bib-
liography of subgroup discovery are described.

• Coverage for a rule [29]: this measures the percentage of examples covered on
average by one rule of the induced set of rules.
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Cov(Ri ) = Cov(Condi → Class j ) = p(Condi ) = n(Condi )

ns
(1)

where n(Condi) is the number of examples which verifies the condition Condi

described in the antecedent (independently of the class to which belongs), and ns

is the number of examples.
The average coverage for the set of rules finally obtained is calculated by the

following expression:

C OV = 1

nr

nr
∑

i=1

Cov(Ri ) (2)

where nr is the number of induced rules.
• Support for a rule: In descriptive induction processes the support for a rule is

a standard measure which considers, by means of an expression that can vary
in different proposals, the number of examples satisfying both the antecedent
and the consequent parts of the rule. Lavrac et al. compute in [29] the overall
support as the percentage of target examples (positive examples) covered by the
rules. The support of a rule is so defined as the frequency of correctly classified
examples covered.

Sup1(Condi → Class j ) = p(Class j .Condi ) = n(Class j .Condi)

ns
(3)

where n(Class j .Condi ) is the number of examples which satisfy the conditions
for the antecedent (Condi ) and also belong to the value for the target variable
(Class j ) indicated in the consequent part of the rule. In [3], the support of a rule
is computed dividing by the total number of examples. It can also be computed
in other ways, such as dividing by the number of examples of the class or other
variations.

The support for a set of rules is computed by:

SU P = 1

ns

nc
∑

j=1

n(Class j · ∨
Condi→Class j

Condi ) (4)

where nc is the number of values for the target variable considered. It must be
noted that in this expression the examples which belong to many rules are con-
sidered only once.

• Size (for a set of rules): The size of a set of rules is a complexity measure calcu-
lated as the number of induced rules (nr ). Complexity can also be measured as
the mean number of obtained rules per class, or the mean of variables per rule.

• Significance for a rule [24]: indicates the significance of a finding, if measured
by the likelihood ratio of a rule.
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Sig(Condi → Class j ) = 2 ·
nc
∑

j=1

n(Class j .Condi) · log
n(Class j .Condi )

n(Class j ) · p(Condi )

(5)

where p(Condi), computed as n(Condi)/ns , is used as a normalized factor.
It must be noted that, although each rule is for a specific class value, the sig-

nificance measures impartially the novelty in the distribution, for all the class
values.

The significance for a set of rules is computed as follows:

SI G = 1

nr

nr
∑

i=1

Sig(Ri ) (6)

• Unusualness for a rule: It is defined as the weighted relative accuracy of a
rule [28].

W R Acc(Condi → Class j ) = n(Condi )

ns
·
(

n(Class j .Condi)

n(Condi )
− n(Class j )

ns

)

(7)

The weighted relative accuracy of a rule can be described as the balance bet-
ween the coverage of the rule (p(Condi)) and its accuracy gain (p(Class j .Condi)
- p(Class j )). It must be noted that the higher a rule’s unusualness, the more relevant
is it.

The unusualness for a set of rules is computed as follows:

W R ACC = 1

nr

nr
∑

i=1

W R Acc(Ri ) (8)

It must be noted that all the measures here described are crisp because in the majority
of the proposals the rules used to represent the knowledge in subgroup discovery are
not fuzzy.

3 Linguistic Rules in Subgroup Discovery

As it has been described in the previous section many approaches have already been
proposed for subgroup discovery task, usually based on non linguistic rules. Since
human information processing is mainly based on linguistic information, in order to
facilitate the human interpretability of the results, the use of linguistic rules must be
considered.

In this section, the use of linguistic rules in subgroup discovery will be analyzed,
and a kind of linguistic rules, DNF linguistic rules, and some quality measures for
them are described.
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3.1 The Use of Linguistic Rules in Subgroup Discovery

In any Data Mining problem two main objectives are present:

• to obtain knowledge about patterns in data which must be fitted to the nature and
reality of the problem, e.g., knowledge must be as precise as possible,

• to extract knowledge which must be simple, compact and understandable by the
final user. That is to say, the obtained knowledge must be close to the form in
which the expert represents his knowledge on the problem in order to be action-
able by him.

The second objective becomes the most important in descriptive data mining, and
specifically in the subgroup discovery task.

The way in which the knowledge is represented by a human expert is inherently
qualitative and vague. In this sense the use of Fuzzy Logic in Data Mining allows
us to model inaccurate and qualitative knowledge, as well as to handle uncertainty
and deal naturally to a reasonable extent with human reasoning. Ever since it was
proposed in 1965 by Zadeh [36], it has been applied to many areas of research,
fundamentally because of its proximity to human reasoning and because it provides
an effective way of capturing the approximate and inexact nature of the real world.

In rule induction processes, Fuzzy Logic is included in such a way that the mo-
dels extracted are fuzzy rules. In the most interpretable type of fuzzy rules, linguistic
fuzzy rules, and therefore the most appropriate for Data Mining, the continuous
variables are defined as linguistic variables; that is, variables which take as possible
values linguistic labels, the semantics of which are represented by an associated
fuzzy set [37].

One of the fundamental aspects when working with linguistic rules is the defini-
tion of membership functions associated with the fuzzy sets used. There are several
alternatives to determine this aspect:

• When the expert knowledge is not available, uniform partitions with triangular
membership functions can be used, as it is shown in Fig. 1 for a variable with 5
linguistic labels.

• When expert knowledge about the problem is available or an analysis of the data
can be realized, the definition for the fuzzy partition can be done in one of the
following ways:

Fig. 1 Example of fuzzy
partition for a continuous
variable

(Very Low) (Very High)(High)(Medium)(Low)
LLm

1 LLm
2 LLm

3 LLm
4 LLm

5

0.5
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– In order to increase the interpretability of the results obtained in some proposals
such as [4, 27] for the extraction of fuzzy rules the expert gives the algorithm the
continuous variables and their corresponding membership functions. The quality
of the results obtained depends on the suitability of the fuzzy sets.

– For many applications it is very difficult to know from the outset which fuzzy
sets will be the most appropriate and so different algorithms which learn the
fuzzy partitions have been proposed. In [16] the fuzzy sets and the membership
functions are generated through clustering techniques. In [19] the definition for
the linguistic labels is established by means a genetic algorithm.

– A fuzzy partition can be defined by a heuristic approach which places the fuzzy
sets in such a way that each of them will cover approximately the same number
of data, if the expert wants to. But it must be considered that, depending on the
problem, the interpretation of the resulting fuzzy rules could be decreased.

– Moreover, if it is necessary, a preliminary data analysis which detects outliers
in data can be done before the determination of the fuzzy partitions. This way a
specific analysis of them can be realized and the fuzzy partition (without these
outliers’ data) is not biased by them.

3.2 DNF Linguistic Rules

The objective in subgroup discovery is to extract knowledge about a variable of
interest for the user, in an easily interpretable way. In order to increase the inter-
pretability of the extracted knowledge, the Disjunctive normal form (DNF) fuzzy
rules can be used. A DNF fuzzy rule represents the knowledge in a flexible and
compact way, allowing each variable to take more than one value, and facilitating
the extraction of more general rules. Linguistic rules allow us to establish flexible
limits between the different levels of meaning without ignoring or overemphasizing
the elements closest to the edges in the same way as human perception does. In
addition, linguistic DNF fuzzy rules allow us to make changes in the initial gran-
ularity in each rule in a descriptive way. The following is an example of linguistic
DNF fuzzy rule:

IF Number of times pregnant High or Medium AND Body mass index is Low
THEN Diabetes is Tested negative

Below, the notation used to describe the DNF fuzzy rules is formally described.
We consider a problem with:

• a set of features, discrete or continuous

{Xm / m = 1, .., nv}
used to describe the subgroups, where nv is the number of features;

• a set of values for the target variable
{

Class j/j = 1, . . . , nc
}

where nc is the number of values for the target variable considered;
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• a set of examples

{

Ek = (ek
1, ek

2, . . . , ek
nv , class j )/k = 1, . . . , ns

}

where class j is the target variable value for the sample Ek(i.e., the class for this
example) and ns is the number of examples for the descriptive induction process;

• a set of linguistic labels for the continuous variables. The number of linguistic
labels and the definition for the corresponding fuzzy sets depend on each variable

Xm :
{

L L1
m , L L2

m , . . . , L Llm
m

}

In this expression, variable Xm , has lm different linguistic labels to describe its
domain in an understandable way.

A fuzzy rule Ri can be described as:

Ri : Condi → Class j

where the antecedent describes the subgroup.
Below is an example of a DNF fuzzy rule:

R1 : If (X1 is L L1
1 or L L3

1) and (X7 is L L1
7) then Class j (9)

It must be noted that, in the DNF rule, any subset of the complete set of variables
(with any combination of linguistic labels related with the operator OR) can take
part in the rule antecedent. In this way a subgroup is a compact and interpretable
description of patterns of interest in data.

For these rules, we consider that

• an example Ek verifies the antecedent part of a rule Ri if

APC(Ek, Ri ) = T (T C(μL L1
1
(ek

1), ..., μL L
l1
1
(ek

1)), ...,

T C(μL L1
nv
(ek

nv ), ..., μL L
lnv
nv
(ek

nv ))) > 0 (10)

where:
• APC (Antecedent Part Compatibility) is the degree of compatibility between

an example and the antecedent part of a fuzzy rule, i.e., the degree of mem-
bership for the example to the fuzzy subspace delimited by the antecedent part
of the rule,

• L Ll1
1 is the linguistic label number l1 of the variable 1,

• μ
L L

l1
1
(ek

1) is the degree of membership for the value of the feature 1 for the

example Ek to the fuzzy set corresponding to the linguistic label l1 for this
feature,
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• T is the t-norm selected to represent the meaning of the AND operator –the
fuzzy intersection–, in our case the minimum t-norm, and

• TC is the t-conorm selected to represent the meaning of the OR operator –the
fuzzy union–, in our case the maximum t-conorm.

• an example Ek is covered by a rule Ri if

APC(Ek , Ri ) > 0 AN D Ek ∈ Class j (11)

This means that an example is covered by a rule if the example has a degree of
membership higher than 0 to the fuzzy subspace delimited by the antecedent part
of the fuzzy rule, and the value indicated in the consequent part of the rule agrees
with the value of the target feature for the example. For the categorical variables,
the degrees of membership are just 0 or 1.

3.3 Quality Measures for DNF Linguistic Rules

When using linguistic rules, it is necessary to define quality measures to manage
this type of rules. Some of the quality measures used in the bibliography for the
induction of fuzzy rules are next detailed:

• Confidence of a fuzzy rule [13]: The confidence of a rule determines the relative
frequency of examples satisfying the complete rule among those satisfying only
the antecedent. In our proposal the expression used for confidence reflects the de-
gree to which the examples within the zone of the space marked by the antecedent
verify the information indicated in the consequent part of the rule. To calculate
this factor an adaptation of Quinlan’s accuracy expression [33] is used in order to
generate fuzzy classification rules [8]: the sum of the degree of membership of the
examples of this class and the fuzzy input subspace determined by the antecedent,
divided by the sum of the degree of membership of all the examples that verifies
the antecedent part of this rule (irrespective of their class) to the same zone:

Con f (Ri ) =

∑

Ek∈E/Ek∈Class j

APC(Ek , Ri )

∑

Ek∈E

APC(Ek , Ri )
(12)

• Support of a fuzzy rule, defined in [13] as the degree of coverage that the rule
offers to examples of that class:

Sup2(Ri ) = n(Class j .Condi )

n(Class j )
(13)

where n(Class j ) is the number of examples of the class j. A variation of this mea-
sure will be detailed in next section.
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4 A Genetic Algorithm for the Induction of Linguistic Rules
in Subgroup Discovery

In this section an evolutionary model for the extraction of linguistic rules for the sub-
group discovery task, SDIGA (Subgroup Discovery Iterative Genetic Algorithm),
which uses DNF rules is described [13]. The model follows the IRL approach –later
explained– and works as follows:

• The core of the model is a genetic algorithm (GA) which uses a post-processing
step based on a simple local search, a hill-climbing procedure. The hybrid GA
extracts one simple and interpretable fuzzy rule with an adequate level of sup-
port and confidence. The post-processing step consists of a local search process
increasing the generality of the rule.

• This hybrid GA is included in an iterative process for the extraction of a set of
fuzzy rules for the description of subgroups supported by different areas (not
necessarily disjuncts) of the instance space. In this way is obtained a set of diffe-
rent solutions generated in successive runs of the GA corresponding to the same
value of the target feature. The method to guide the GA evolution over diffe-
rent –although may be overlapped– fuzzy rules is explained in detail in the next
subsection.

The objective is to obtain a set of rules which describe subgroups for all the values
of the target feature, and so the iterative process must be carried out as many times
as different values the target feature has.

Once the basis of the proposal is outlined, the GA and the iterative rule extraction
model are described in detail. The results of a comparison of the proposal with other
subgroup discovery algorithms are also detailed.

4.1 Hybrid Genetic Algorithm for the Induction of a Fuzzy Rule

The hybrid GA extracts a single fuzzy rule in an attempt to optimize the confidence
and support. In the following subsections the elements of the hybrid GA are de-
scribed.

4.1.1 Chromosome Representation

The genetic representation of the solutions is the most determining aspect of the
characteristics of any genetic learning proposal. The “Chromosome = Rule” ap-
proach (in which each individual codifies a single rule) is more suited in subgroup
discovery because the objective is to find a reduced set of rules in which the quality
of each rule is evaluated independently of the rest. This is the encoding approach
used in the evolutionary proposal next described.

The GA discovers a single fuzzy rule whose consequent is prefixed to one of
the possible values of the target feature. Only the antecedent is represented in the
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chromosome and all the individuals in the population are associated with the same
value of the target feature.

All the information relating to a rule is contained in a fixed-length chromosome
with a binary representation in which, for each feature a bit for each one of the
possible values of the feature is stored; in this way, if the corresponding bit contains
the value 0 it indicates that the value is not used in the rule, and if the bit contains
the value 1 it indicates that the corresponding value is included. If a rule contains
all the bits corresponding to a feature with the value 1, or all of them contain the
value 0, the feature is ignored and does not take part in the rule. In Fig. 2, V0 and
V1 have 3 possible values, and V2 and Vk have 2 possible values. In this example,
neither V2 nor Vk take part in the rule (V2 does not take any of its values, and Vk

takes all, and so both variables are irrelevant for the rule).

4.1.2 Fitness Function

The objective of the rule discovery process is to obtain rules with high confidence,
and which are understandable and general. It means that the problem has at least
two objectives to maximize: the support and the confidence of the rule. To achieve
this, the weighted sum method that weights a set of objectives into a single objec-
tive is the simplest approach, and lets us introduce the expert criteria related to the
importance of the objectives for a specific problem in the rule generation process.
So, this proposal uses a weighted lineal combination in the following way:

f i tness (c) = ω1 × Sup3(c)+ ω2 × Con f (c)

ω1 + ω2
(14)

where confidence (Conf) and support (Sup3) of the rule are defined as:

• Confidence. This determines the accuracy of the rule, in that it reflects the degree
to which the examples within the zone of the space determined by the antecedent
verify the information specified in the consequent of the rule, and it is computed
as in [12].

• Support. This measures the degree of coverage that the rule offers to examples
belonging to the class specified in the rule consequent. It is calculated in a diffe-
rent way than in [5] to promote different fuzzy rules being obtained in different
runs of the hybrid GA. To do so, for the computation of the support it is only
considered the examples not marked (i.e. the examples not covered by other fuzzy
rules previously obtained by means of the past runs of the hybrid GA). Thus, the
support is defined as the quotient between the examples of this partial set covered
by the rule represented in the chromosome and the total number of examples of
this partial set:

Fig. 2 Encoding model of a
DNF rule

V0 V1 V2 Vk

0 1 1 0 0 1 0 0 … 1 1
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Sup3(Ri ) = Ne+(Ri )

NeNC
(15)

where NeNC is the number of examples of the class specified in the consequent
left uncovered by the previous rules, and Ne+(Ri ) is the number of examples
covered by the rule which are left uncovered by the previous rules, using (11) to
determine when an example is covered by a rule.

This way of measuring support is sensible, when using the GA within an it-
erative process, in order to obtain different rules each time the GA is run. From
the second iteration, rules which cover examples belonging to zones delimited by
previously obtained rules are penalized, because the support factor only considers
examples which have not been described by rules already obtained. No distance
function is used as differences are penalized on a phenotypical level. This pe-
nalization does not eliminate the examples covered by previously obtained fuzzy
and they take part in the computation of the confidence measure.

The overall objective of the evaluation function is to direct the search towards rules
which maximize accuracy, minimizing the number of negative and examples not-
covered. Whereas covered examples are used in the calculation of the confidence,
they are not used in the calculation of the support, to prevent the obtaining of rules
inconsistent with the examples previously penalized.

4.1.3 Reproduction Model and Genetic Operators

The GA includes a steady-state reproduction model [5], in which the original pop-
ulation is only modified through the substitution of the worst individuals by indi-
viduals resulting from crossover and mutation. The recombination is carried out by
means of a two-point crossover operator and a biased random mutation operator.

The crossover is applied over the two best individuals of the population, ob-
taining two new individuals, which will substitute the two worst individuals in the
population. This strategy leads to a high selective pressure with the aim of getting a
quick convergence of the algorithm.

Mutation is carried out as follows. First, according to the mutation probability,
the chromosome and the gene of the chromosome to be muted are determined. Then,
the biased random mutation operator is applied in two different ways, with proba-
bility 0.5 in each case. In the first way, the mutation causes the elimination of the
variable to which the gene corresponds, setting to 0 all the values of this variable,
as is shown in Fig. 3a. The second type of mutation randomly assigns 0 or 1 to all
the values of the variable, as can be seen in Fig. 3b. So, half the mutations have
the effect of eliminating the corresponding variable, and the rest randomly set the
values for the variable to be muted.

The mutation is applied according to the mutation probability not only on the
two best individuals in the population but on all the population. In order to obtain
diversity by means of the application of this operator, a greater population size than
the habitual in steady-state evolutionary models must be selected.
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Original chromosome

V0 V1 V2 Vk

V0 V1 V2 Vk

V0 V1 V2 Vk

0 1 1 0 0 1 0 0 … 1 1

a) Elimination of the variable 0 0 0 0 0 1 0 0 … 1 1

b) Random setting for the variable 1 0 1 0 0 1 0 0 … 1 1

Fig. 3 Types of mutation for a variable in a DNF rule

4.1.4 Hybrid GA Post-processing Phase: Local Search Algorithm

The post-processing phase, which improves the obtained rule by a hill-climbing
process, modifies the rule in order to increase the degree of support. To accomplish
this, in each iteration a variable is selected such that when it is eliminated, the sup-
port of the resulting rule is increased; in this way more general rules are obtained.
Finally, the optimized rule will substitute the original only if it overcomes minimum
confidence.

The diagram of the post-processing phase is as shown in Fig. 4.

4.2 Iterative Rule Extraction Model

The fuzzy descriptive rule extraction model follows the Iterative Rule Learning
(IRL) approach [9], in which each chromosome represents a rule, but the GA so-
lution is the best individual obtained and the global solution is formed by the best
individuals obtained when the algorithm is run multiple times. The objective of the
model is to obtain a set of rules giving information on the majority of available
examples for each value of the target feature.

The data mining process is carried out by means of an iterative algorithm allow-
ing the generation of several rules (one for each GA run) whereas the generated rules
reach a minimum level of confidence (previously specified) and give information
on areas of search space in which examples which are not described by the rules
generated by the previous iterations, remain. The repetition mechanism promotes
the generating of different rules (in the sense that they give information on different
groups of examples). This is achieved by penalizing –once a rule is obtained– the
set of examples represented by the same one in order to generate future rules. It
is important to point out that this penalization does not prevent the extraction of
overlapped rules because the examples covered by previously obtained fuzzy rules
are not eliminated and they take part in the computation of the confidence measure.
In subgroup discovery algorithms, the possibility of extracting information on de-
scribed examples is not eliminated since redundant descriptions of subgroups can
show the properties of groups from a different perspective.
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START
Best_Rule  R 
Best_support  support(R) 
Better  True 
REPEAT WHILE Better 
Better  False 
FOR (m=1 to nv)
R’m  Best_Rule without considering variable m 
IF (support(R’m)>=support(R) AND 
 confidence(R’m)>=confidence(R))
Better  True 
IF (support (R’m) > Best_support) 
Best_support  support (R’m)
Best_Rule  R’m

END FOR 

END WHILE
IF (confidence(Best_Rule)>=min_conf) 
 Return Best_Rule 
ELSE
 Return R 

END

Fig. 4 The post-processing phase of the hybrid GA

The confidence of the obtained rule in each iteration must be higher than a pre-
viously specified minimum value. In descriptive induction algorithms, one of the
fundamental problems, and partially significant to the quality of the obtained results,
is the specification of the minimum confidence required for the rules to be extracted.
This value depends greatly on the problem to be solved and its solution is a problem
which is still not completely resolved. In [38] a method based on fuzzy logic for the
setting of the minimum confidence level is described.

4.3 Comparison Between the Proposal and Other Subgroup
Discovery Algorithms

To verify the applicability of the proposal, we have compared the results of the
model (and of the model with canonical rules, a particular case of DNF rules) with
the results of other subgroup discovery algorithms.

For the experimental evaluation and comparison of the approach proposed, the
datasets breast-w and diabetes, both of them containing medical data, and available
in the UCI repository have been used. The diabetes dataset contains continuous
variables, and is used to show the results of the fuzzy rules extracted by the proposal
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in comparison with other subgroup discovery algorithms. On the other hand, our
proposal can also manage categorical variables, and the breast-w dataset is used to
show the behaviour of this proposal with this kind of problems.

The experiments have been carried out in the same way as in [29] to allow the
comparison: 10-fold cross validation for the error estimation.

Due to the proposal is a non-deterministic approach, we have carried out 5 runs of
each training/test set. The results are the averages of the values obtained by the test
partitions. After obtaining the rules with algorithm SDIGA, the measures of Cov-
erage (Cov), Support (Sup1), Size, Significance (Sig) and Unusualness (WRAcc),
which are not used in other knowledge extraction processes, were calculated with
the expressions indicated in Sect. 2 in order to make the comparison. The parameters
used are:

• Population size: 100
• Maximum number of evaluations of individuals in each GA run: 10000
• Mutation probability: 0.01
• Number of linguistic labels for the continuous variables: 3
• Quality measure weights for the fitness function: w1 = 0.4 and w2= 0.3

The specification of the weights for the fitness function depends on the expert
knowledge of the characteristics and/or complexity of the problem to be solved.
In this chapter, we use these values considering a slight promotion of the extraction
of general rules.

Tables 1 and 2 show the results obtained. The tables the results obtained with
the two versions of the SDIGA algorithm (SDIGA, using canonical rules [12], and
SDIGA-DNF using DNF rules) for 4 minimum confidence values (named “SDIGA
CfMin 0.6” for the SDIGA algorithm with a minimum confidence value of 0.6,
and so on), the results for the CN2 algorithm modifying the unusualness measure
(CN2-WRAcc), and the results of the CN2-SD using different parameters for the
weights (CN2-SD (γ = x) is the CN2-SD algorithm using multiplicative weights
with γ = x , and CN2-SD (add.) is the CN2-SD algorithm using additive weights).

For each measure, the average value and the standard deviation (sd) are detailed.
“COV” is the average coverage of the set of rules as measured in [2] “SUP” is the
overall support of a set of rules as computed in [4], “Siz” is the number of rules in the
induced set of rules, “SIG” is the average significance of a set of rules as measured
in [6], and “WRACC ” is the average rule unusualness as computed in [8].

Both models of SDIGA (using canonical and DNF linguistic rules) perform bet-
ter than the other non fuzzy algorithms for the measures coverage (COV), support
(SUP) and size (Siz). This means that our proposal obtains a reduced set of rules
with a high percentage of examples covered on average, a high number of examples
satisfying both the antecedent and the consequent parts of the rules (i.e., a higher
percentage of target positive examples leaving a smaller number of examples un-
classified is covered), and with a low number of rules. On the other hand, the results
for interest measures show different behaviour in the two problems: significance
(SIG) and unusualness (WRACC) of SDIGA are similar to the other algorithms for
the breast-w problem, but are worse for the diabetes one.
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Table 1 Comparison of subgroup discovery algorithms for Breast-W dataset

Algorithm COV (sd) SUP (sd) Siz (sd) SIG (sd) WRACC (sd)

CN2 WRAcc 0.150 0.04 0.900 0.02 8.8 0.95 13.300 1.69 0.063 0.04

CN2-SD (γ=0.5) 0.208 0.05 0.890 0.09 7.9 0.50 27.100 3.37 0.095 0.02

CN2-SD (γ=0.7) 0.174 0.04 0.840 0.04 8.5 1.75 2.100 0.02 0.079 0.01

CN2-SD (γ=0.9) 0.218 0.05 0.930 0.02 9.0 0.24 20.500 2.45 0.093 0.07

CN2-SD (add.) 0.260 0.04 0.860 0.05 9.2 1.24 26.600 3.43 0.111 0.04

SDIGA CfMin 0.6 0.199 0.13 0.497 0.34 5.9 3.03 6.459 2.46 0.002 0.03

SDIGA CfMin 0.7 0.213 0.13 0.481 0.32 5.7 2.80 7.627 2.84 0.010 0.03

SDIGA CfMin 0.8 0.238 0.19 0.439 0.30 4.0 2.06 5.782 3.08 0.006 0.03

SDIGA CfMin 0.9 0.211 0.20 0.423 0.33 3.0 1.08 6.470 3.80 0.022 0.03

SDIGA-DNF CfMin 0.6 0.398 0.07 0.983 0.03 5.4 0.88 16.910 3.81 0.113 0.03

SDIGA-DNF CfMin 0.7 0.414 0.07 0.981 0.02 5.2 0.74 17.399 4.05 0.116 0.03

SDIGA-DNF CfMin 0.8 0.435 0.09 0.969 0.03 4.5 1.36 18.523 5.81 0.124 0.03

SDIGA-DNF CfMin 0.9 0.478 0.07 0.923 0.07 2.4 0.81 24.434 6.63 0.156 0.03

Analyzing the results it is observed that the use of different measures in the rule
extraction process of CN2-SD with respect to SDIGA implies:

• the increase of the number of rules,
• the decrease of coverage and support, but
• the increase of the interest measurement values

The inclusion of these measures (or adaptation of them to the fuzzy rules) can be
considered in the improvement of SDIGA by means of a multiobjective version of it.

The comparison between the results of the two models of linguistic rules ex-
tracted by SDIGA shows that the model which uses DNF linguistic rules obtains

Table 2 Comparison of subgroup discovery algorithms for Diabetes dataset

Algorithm COV (sd) SUP (sd) Siz (sd) SIG (sd) WRACC (sd)

CN2 WRAcc 0.275 0.04 0.820 0.03 5.2 0.79 15.800 1.07 0.065 0.06

CN2-SD (γ=0.5) 0.296 0.06 0.920 0.06 6.0 0.68 14.900 1.95 0.085 0.07

CN2-SD (γ=0.7) 0.344 0.05 0.850 0.01 5.6 1.35 11.000 1.43 0.099 0.04

CN2-SD (γ=0.9) 0.299 0.05 0.950 0.01 5.4 0.30 15.200 1.85 0.086 0.07

CN2-SD (add.) 0.381 0.04 0.870 0.05 4.6 0.86 2.100 0.01 0.092 0.03

SDIGA CfMin 0.6 0.462 0.06 0.939 0.04 4.3 0.68 3.286 2.25 0.028 0.02

SDIGA CfMin 0.7 0.431 0.07 0.882 0.07 3.9 0.33 3.515 2.13 0.030 0.01

SDIGA CfMin 0.8 0.707 0.09 0.875 0.07 2.0 0.00 3.967 3.23 0.042 0.02

SDIGA CfMin 0.9 0.707 0.09 0.875 0.07 2.0 0.00 3.967 3.23 0.042 0.02

SDIGA-DNF CfMin 0.6 0.849 0.09 0.992 0.01 2.8 0.38 0.788 1.01 0.024 0.01

SDIGA-DNF CfMin 0.7 0.854 0.09 0.992 0.01 2.9 0.35 0.633 0.54 0.023 0.01

SDIGA-DNF CfMin 0.8 0.931 0.04 0.978 0.02 2.0 0.00 0.437 0.34 0.024 0.01

SDIGA-DNF CfMin 0.9 0.935 0.03 0.976 0.02 2.0 0.00 0.418 0.29 0.023 0.01



428 M. J. del Jesus et al.

better results than the model which uses canonical linguistic rules. As main con-
clusions of this short comparison study we can conclude that SDIGA allows us to
obtain subgroup discovering linguistic rules:

• with very high values of the measures of coverage and support, and so the lin-
guistic rules can be considered very general and significantly representing the
knowledge of the examples of the different values of the target variable;

• highly compact, because both the sizes of the set of rules and also the number of
variables involved are small;

• highly descriptive, due to the use of DNF linguistic rules, allowing a representa-
tion of the knowledge near to human reasoning, and making the extracted knowl-
edge very actionable, a main objective in any subgroup discovery algorithm;

• with a variable interest measure behaviour.

The use of DNF linguistic rules allows us to describe the extracted knowledge in
a more flexible way and moreover, to make changes in the initial granularity in
each rule in a descriptive way. In this kind of fuzzy rule, as defined in (9), fuzzy
logic contributes to the interpretability of the extracted rules due to the use of a
knowledge representation close to the expert, also allowing the use of continuous
features without a previous discretization.

5 Conclusions

This chapter gives a survey about the use of linguistic rules in the data mining task
of subgroup discovery. The subgroup discovery task has been defined, different pro-
posals have been described, and the use of linguistic rules has been analyzed. Then
an example of model using linguistic rules for the subgroup discovery task and its
advantages has been described.

In summary, for the subgroup discovery task, that searches for unknown and in-
teresting knowledge which can be used for the user, the use of linguistic rules allows
the extraction of knowledge in a more natural way and improves it interpretability:
Since words play a central role in human information processing, linguistic rules can
be used for describe knowledge about subgroups in data which can be actionable by
the user.

Finally, we point out some open problems in the development of a fuzzy approach
for subgroup discovery:

• To consider the support measure based on /fuzzy set concepts.
• The definition of quality measures for subgroup discovery adapted to the use with

linguistic rules.
• The use of multiobjective genetic algorithms [7, 11], analyzing the meaning of

pareto-optimal solutions from the subgroup discovery point of view, can provide
an interesting tool to get (for getting) set of rules with a trade-off among all the
objectives used in the evolutionary model.
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Fuzzy Prototypes: From a Cognitive View
to a Machine Learning Principle

Marie-Jeanne Lesot, Maria Rifqi and Bernadette Bouchon-Meunier

Abstract Cognitive psychology works have shown that the cognitive representa-
tion of categories is based on a typicality notion: all objects of a category do not
have the same representativeness, some are more characteristic or more typical than
others, and better exemplify their category. Categories are then defined in terms
of prototypes, i.e. in terms of their most typical elements. Furthermore, these works
showed that an object is all the more typical of its category as it shares many features
with the other members of the category and few features with the members of other
categories.

In this paper, we propose to profit from these principles in a machine learning
framework: a formalization of the previous cognitive notions is presented, leading
to a prototype building method that makes it possible to characterize data sets taking
into account both common and discriminative features. Algorithms exploiting these
prototypes to perform tasks such as classification or clustering are then presented.

The formalization is based on the computation of typicality degrees that mea-
sure the representativeness of each data point. These typicality degrees are then
exploited to define fuzzy prototypes: in adequacy with human-like description of
categories, we consider a prototype as an intrinsically imprecise notion. The fuzzy
logic framework makes it possible to model sets with unsharp boundaries or vague
and approximate concepts, and appears most appropriate to model prototypes.

We then exploit the computed typicality degrees and the built fuzzy prototypes
to perform machine learning tasks such as classification and clustering. We present
several algorithms, justifying in each case the chosen parameters. We illustrate the
results obtained on several data sets corresponding both to crisp and fuzzy data.

1 Introduction

Prototypes are elements representing categories, structuring and summarizing them,
underlining their most important characteristics and their specificity as opposed to
other categories. From a cognitive point of view, they are the basis for the catego-
rization task, process that aims at considering as equivalent objects that are distinct
but similar: cognitive science works [31, 32] showed that natural categories are or-
ganized around the notion of prototype and the related notion of typicality.

H. Bustince et al., (eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation
and Models. C© Springer 2008 431



432 M.-J. Lesot et al.

In this paper, we propose to transpose the cognitive view of prototypes to a ma-
chine learning principle to extract knowledge from data. More precisely, we propose
to characterize data sets through the construction of prototypes that realize the cog-
nitive approach. The core of our motivation is the fact that, through this notion of
prototype, a data subset (a category for instance) is characterized both from an in-
ternal and an external point of view: the prototype underlines both what is common
to the subset members and what is specific to them in opposition to the other data.
Using these two complementary components leads to context-dependent represen-
tatives that are more relevant than classic representatives that actually exploit only
the internal view. Furthermore, the method makes it possible to determine the extent
to which the prototype should be a central or a discriminative element, i.e. it allows
to rule the relative importance of common and discriminative features, leading to a
flexible prototype building method.

Another concern of our approach is the adequacy with human-like descriptions
that are usually based on imprecise linguistic expressions. To that aim, the con-
struction method we propose builds fuzzy prototypes: the fuzzy logic framework
makes it possible to model sets with unsharp boundaries or vague and approximate
concepts, as occur in this framework.

The paper is organized as follows: in Sect. 2, the cognitive definitions of typi-
cality and prototypes are introduced. In Sect. 3, these principles are formalized to
a prototype building method that makes it possible to characterize numerical data
sets. These prototypes are then exploited both for supervised and unsupervised lear-
ning: Sect. 4 presents prototype-based classification methods and Sect. 5 describes
a typicality-based clustering algorithm.

2 Cognitive Definition of Prototype

The cognitive definition of prototype was first proposed in the 70’s [27] and pop-
ularized by E. Rosch [31, 32], in the context of the study of cognitive concept
organization. Previously, a crisp relationship between objects and categories was
assumed, based on the existence of necessary and sufficient properties to determine
membership: according to this model, an object belongs to a category if it possesses
the properties, interpreted as necessary and sufficient conditions; otherwise, it is not
a member of the category. Now in the case of natural categories, it is often the case
that no feature is common to all the category members: as modeled in the family
resemblance model of Wittgenstein [36], each object shares different common fea-
tures with other members of the category, but no globally shared feature can be
identified.

The prototype view of concept organization [27, 31, 32] models categories as
organized around a center, the prototype, that is described by means of properties
that are characteristic, typical of the category members. Indeed, all objects in a
category are not equivalent: some are better examples and more characteristic of
the category than others. For instance, in the case of the mammal category, the dog
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is considered as a better example than a platypus. Thus, objects are spread over a
scale, or a gradient of typicality; the prototype is then related to the individuals that
maximize this gradient.

Rosch and her colleagues [31, 32] studied this typicality notion and showed it
depends on two complementary components: an object is all the more typical of its
category as it shares many features with the other members of the category and few
features with the members of other categories. This can for instance be illustrated
by platypuses and whales in the case of mammals: platypuses are atypical mainly
because they have too few features in common with other mammals, whereas whales
are atypical mainly because they have too many common features with members
of the fish category. Due to this typicality definition, prototypes underline both
the common features of the category members and their discriminative features as
opposed to other categories: they characterize the category both internally and in
opposition to other categories.

3 Realization of the Prototype View

3.1 Principle

To construct a fuzzy prototype in agreement with the previous cognitive prototype
view, we consider that the degree of typicality of an object depends positively on
its total resemblance to others objects of its class (internal resemblance) and on its
total dissimilarity to objects of other classes (external dissimilarity). This makes
it possible to consider both the common features of the category members, and
their distinctive features as opposed to other categories. More precisely, the fuzzy
prototype construction principle consists in three steps [29]:

Step 1 Compute the internal resemblance degree of an object with the other members
of its category and its external dissimilarity degree with the mem- bers of the
outside categories.

Step 2 Aggregate the internal resemblance and the external dissimilarity degrees to
obtain the typicality degree of the considered object.

Step 3 Aggregate the objects that are typical “enough”, i.e. with a typicality degree
higher than a predefined threshold to obtain the fuzzy prototype.

Internal Resemblance and External Dissimilarity

Step 1, that is illustrated on Fig. 1, requires the choice of a resemblance measure
and a dissimilarity measure to compare the objects. These measures depend on the
data nature and are detailed in Sects. 3.3 and 3.4 in the case of fuzzy and crisp data.
Formally, denoting them r and d respectively, and denoting x an object belonging
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Fig. 1 (a) Computation of the internal resemblance, as the resemblance to the other members of
the category, (b) computation of the external dissimilarity, as the dissimilarity to members of the
other categories

to a category C , x internal resemblance with respect to C , R(x,C), and its external
dissimilarity, D(x,C), are computed as

R(x,C) = avg(r(x, y), y ∈ C) D(x,C) = avg(d(x, y), y �∈ C) (1)

i.e. as the average resemblance to other members of the category and the average
dissimilarity to members of other categories. The average operator can be replaced
with other operators [29].

Figure 2 illustrates these definitions in the case of the iris data base, using only
one attribute (petal length) for visualization sake: the histograms represent the data
distribution, ∗, + and ◦ respectively depict the three classes; the y-axis shows for
each point its internal resemblance and external dissimilarity. As expected, it can
be seen that the points maximizing internal resemblance are, for each class, the
central points, underlining the common features of the category members. On the
contrary, the points maximizing the external dissimilarity are extreme points, at least
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Fig. 2 (a) Internal resemblance, (b) external dissimilarity, for the iris data set, considering only
the petal length attribute [23]
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for the two extreme classes: points in the middle class (+ class) get low external
dissimilarity values, as they are too close to the other groups and correspond to
an average behavior. Thus external dissimilarity underlines the specificity of the
classes, for instance indicating that high petal length is characteristic for the ◦ class:
it highlights the discriminative features of each category (or the absence of any, for
the + class), and makes it possible to build caricatures of the classes.

Therefore combining both information to a typicality degree makes it possi-
ble to build representatives that simultaneously underline the common features of
the category members, as well as their discriminative features as opposed to other
categories.

Aggregation to a Typicality Degree

Step 2 requires the choice of an aggregation operator to express the dependence of
typicality on internal resemblance and external dissimilarity, that is formally written

T (x,C) = ϕ(R(x,C), D(x,C)) (2)

where ϕ denotes the aggregation operator. It makes it possible to rule the semantics
of typicality and thus that of the prototypes, determining the extent to which the
prototype should be a central or a discriminative element [23].

Figure 3 illustrates the typicality degrees obtained from the internal resemblance
and external dissimilarity of Fig. 2 for four operators: the minimum (see Fig. 3a)
is a conjunctive operator that requires both R and D to be high for a point to be
typical, leading to rather small typicality degrees on average. On the contrary, for the
maximum (see Fig. 3b), as any disjunctive operator, if either R or D is high, a point
is considered as typical. This leads to higher values but to non-convex distributions,
reflecting a double semantics for typicality: central points as well as extreme points
are typical, but for different reasons.

Trade-off operators, such as the weighted mean (Fig. 3c), offer a compensation
property: low R values can be compensated for by high D. This is illustrated by
the leftmost point on Fig. 3c, whose typicality is higher than with the min opera-
tor, because its external dissimilarity compensates for its internal resemblance. The
weights used in the weighted mean determine the extent to which compensation can
take place, and rule the relative importance of internal resemblance and external
dissimilarity, leading to more or less discriminative prototypes, underlying more the
common or the distinctive features of the categories.

Lastly, variable behavior operators, such as the MICA operator [17] (see Fig. 3d)
or the symmetric sum [33], are conjunctive, disjunctive or trade-off operators, de-
pending on the values to be aggregated. They offer a reinforcement property: if both
R and D are high, they reinforce each other to give an even higher typicality (see
class ∗), if both are low, they penalize each other to give an even smaller value (see
the leftmost point of the ◦ class).
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Fig. 3 Typicality degrees obtained from the internal resemblance and the external dissimilarity
shown on Fig. 2 using different aggregation operators: (a) T = min(R, D), (b) T = max(R, D),
(c) T = 0.6R + 0.4D, (d) T = MICA(R,D) [17]

Therefore, the aggregation operator determines the semantics of typicality, and
rules the relative influence played by internal resemblance and external dissimilarity.

Aggregation to a Prototype

Lastly step 3 builds the prototype of a category itself, as the aggregation of the most
typical objects of the category: the prototype for category C is defined in a general
form as

p(C) = ψ({x/T (x,C) > τ}) (3)

where τ is the typicality threshold and ψ the aggregation operator. The latter can
still depend on the typicality degrees associated to the selected points, taking for
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instance the form of a weighted mean. Its actual definition depends on the data
nature, it is detailed in Sects. 3.3 and 3.4 in the case of fuzzy and crisp data.

Remarks

It is to be underlined that prototype can be built either from the typicality degrees
of objects, as presented above, but also in an attribute per attribute approach: the
global approach makes it possible to take into account attribute correlation, but it
can also be interesting to enhance the typical values of the different properties used
to describe the objects, without considering an object as an indivisible whole. This
means, all the values of a property are considered simultaneously, without taking
into account the objects they describe. For instance, if the objects are represented by
means of a color, a size and a weight, the fuzzy prototype of the category of these
objects is the union of typical values for the color, the size and the weight. It means
that instead of computing internal resemblance, external dissimilarity and typicality
degrees for each object, these quantities are computed for each attribute value. This
approach is in particular applied in the case of fuzzy data, as described in Sect. 3.3.

3.2 Related Works

There exist many works to summarize data sets, or build significant representatives.
A first approach, taking the average as starting point, consists in defining more so-
phisticated variants to overcome the average’s drawbacks, in particular its sensitivity
to outliers (see for instance [11]). Among these variants, one can mention the Most
Typical Value [11] or the representatives proposed in [26] or [37]. In all these cases,
the obtained value is computed as a weighted mean, the difference comes from the
ways the weights are defined.

Besides, a second approach, more concerned with interpretability, does not re-
duce the representative to a single precise value but builds so-called linguistic sum-
maries [16, 15]. The latter identify significant trends in the data and represent them
in the form “Q B’s are A” where Q is a linguistic quantifier and A and B are fuzzy
sets; for example, “most important experts are young”.

Yet, both approaches build internal representatives that take into account the
common characteristics of the data, but not their specificity. More precisely, they
focus only on the data to be summarized, and do not depend on their context, which
prevents them from identifying their particularity. On the contrary, the cognitive
view highlights the discriminative features: the data are also characterized in oppo-
sition to the other categories.

Furthermore, the proposed realization of the cognitive approach described in
Sect. 3.1 makes it possible to rule the relative importance common and discrimi-
native features play and the trade-off between them through the choice of the ag-
gregation operator, leading to a flexible method. As illustrated in Sects. 4 and 5, the
choice of the aggregation operator depends on the considered use of the prototype.



438 M.-J. Lesot et al.

3.3 Fuzzy Data Case

In this section, we consider the case of fuzzy data, i.e. data whose attributes take as
values fuzzy sets: formally, denoting F(R) the set of fuzzy subsets defined on the
real line, the input space is F(R)p where p denotes the number of attributes. We
describe the instantiation of the previous prototype construction method, discussing
comparison measures for such data and aggregation operators to construct the pro-
totypes from the most typical values. We then present an application in a medical
domain, to mammographies.

Comparison Measures

In the case of fuzzy data, the framework used to compute the internal resemblance as
well as the external dissimilarity is the one defined in [4] generalizing the Tversky’s
“contrast model” [35].

In this framework a measure of resemblance comparing two fuzzy sets A and B
is a function of three arguments: M(A ∩ B) (the common features), M(A− B) and
M(B− A) (the distinctive features), where M is fuzzy set measure [9] like the fuzzy
cardinality for instance. More formally [4]:

Definition 1 A measure of resemblance r is

– non decreasing in M(A ∩ B), non increasing in M(A − B) and M(B − A)
– reflexive: ∀A, r(A, A) = 1
– symmetrical: ∀A, B, r(A, B) = r(B, A)

An example of measure of resemblance, proposed by [8], generalizing the Jacc-
card measure to fuzzy sets, is the following:

ṙ(A, B) = M(A ∩ B)/M(A ∪ B)

forM such that : M(A ∪ B) = M(A ∩ B)+ M(A − B)+ M(B − A).
We also refer to this framework to choose a dissmilarity measure:

Definition 2 A measure of dissimilarity d is:

– independent of M(A ∩ B) and non decreasing in M(A − B) and M(B − A)
– minimal: ∀A, d(A, A) = 0

An example of measure of dissimilarity, based on the generalized Minkowski’s
distance, is the following:

d(A, B) =
(

1

Z

(∫

| fA(x)− fB(x)|ndx

))1/n
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where Z is a normalizing factor, n an integer and fX denotes the membership func-
tion of the fuzzy set X .

It is to be noticed that a dissimilarity measure is not necessarily deduced from
a resemblance measure and vice versa because the purpose is to have different
information when comparing two objects, the dissimilarity measure focusing on
distinctive features.

Aggregation into a Fuzzy Prototype

In the last step of the fuzzy prototype construction, fuzzy values of an attribute that
are typical “enough” have to be aggregated in order to obtain a typical value for
the considered attribute. An aggregation operator must be chosen among numer-
ous existing operators, deeply studied by several authors like Mizumoto [24], [25],
Detyniecki [7] or Calvo and her colleagues [5].

Application to Mammography

Nowadays, mammography is the primary diagnostic procedure for the early detec-
tion of breast cancer. Microcalcification1 clusters are an important element in the
detection of breast cancer. This kind of finding is the direct expression of pathologies
which may be benign or malignant. The description of microcalcifications is not an
easy task, even for an expert. If some of them are easy to detect and to identify, some
others are more ambiguous. The texture of the image, the small size of objects to be
detected (less than one millimeter), the various aspects they have, the radiological
noise, are parameters which impact the detection and the characterization tasks.

More generally, mammographic images present two kinds of ambiguity: impre-
cision and uncertainty. The imprecision on the contour of an object comes from the
fuzzy aspect of the borders: the expert can define approximately the contour but
certainly not with a high spatial precision. The uncertainty comes from the micro-
calcification superimpositions: because objects are built from the superimpositions
of several 3D structures on a single image, we may have a doubt about the contour
position.

The first step consists in finding automatically the contours of microcalcifica-
tions. This segmentation is also realized thanks to a fuzzy representation of impre-
cision and uncertainty (more details can be found in [28]). Each microcalcification
is then described by means of 5 fuzzy attributes computed from its fuzzy contour.
These attributes enable us to describe more precisely:

• the shape (3 attributes): elongation (minimal diameter/maximal diameter), com-
pactness1, compactness2.

• the dimension (2 attributes): surface, perimeter.

1 The microcalcifications are small depositions of radiologically very opaque materials which can
be seen on mammography exams as small bright spots.
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Fig. 4 Description of a microcalcification by means of fuzzy values of its 5 attributes

Figure 4 shows an example of the membership functions of the values taken by
a detected microcalcification. One can notice that the membership functions are not
“standard” in the sense that they are not triangular or trapezoidal (as it is often the
case in the literature) and this is because of the automatic generation of fuzzy values
(we will not go into details here, interested readers may refer to [3]).

Experts have categorized microcalcifications into 2 classes: round microcalci-
fications and not round ones, because this property is important to qualify the
malignancy of the microcalcifications. The aim is then to build the fuzzy prototypes
of the classes round and not round. Figure 5 gives the obtained fuzzy prototypes with
the internal resemblance and external dissimilarity computed using as aggregator
the median (replacing the average in (1) by the median). The typicality degrees are
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obtained by the probabilistic t-conorm (ϕ(x, y) = x + y − x · y in (2)). Lastly, the
fuzzy values with maximal typicality degree are aggregated through the max-union
operator to define the fuzzy prototype value of the corresponding attribute.

It can be seen that on the attributes elongation, compactness1 or compactness2,
the typical values of the two classes round and not round, are quite different: the
intersection between them is low. This can be interpreted in the following way:
a round microcalcification typically has an elongation approximately between 100
and 150 whereas a not round microcalcification typically has an elongation approx-
imately between 150 and 200, etc. For the attributes surface and perimeter, contrary
to the previous attributes, the typical values of the two classes are superimposed, it
means that these attributes are not typical.

3.4 Crisp Data Case

In this section, we consider the case of crisp numerical data, i.e. data represented
as real vectors: the input space is R

p , where p denotes the number of attributes.
We describe the comparison measures that can be considered in this case, and the
aggregation operator that builds prototypes from the most typical data; lastly we
illustrate the results obtained on a real data set.

Comparison Measures

Contrary to the previous fuzzy data, for crisp data, the relative position of two data
cannot be characterized by their common and distinct elements respectively repre-
sented as their intersection and their set differences: the information is reduced, and
depends on a single quantity, expressed as a distance or a scalar product of the two
vectors.

Thus dissimilarity is simply defined as a normalized distance [19]

d(x, y) = max

(

min

(

δ(x, y)− dm

dM − dm
, 1

)

, 0

)

(4)

where δ is a distance, for instance chosen among the Euclidean, the weighted Eu-
clidean, the Mahalanobis or the Manhattan distances, depending on the desired
properties (e.g. robustness, derivability). The parameters dm and dM are the nor-
malization parameters, that can for instance be chosen as dm = 0 and dM the
maximum observed distance. More generally, dm can be interpreted as a tolerance
threshold, indicating the distance below which the dissimilarity is considered as 0,
i.e. no distinction is made between the two data points; dM corresponds to a satura-
tion threshold, indicating the distance from which the two points are considered as
totally dissimilar.

Regarding resemblance measures, two definitions can be considered. They can
first be deduced from scalar products as the latter are related to the angle between
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the two vectors to be compared and are maximal when the two vectors are identical;
they must be normalized too to define a resemblance measure. Besides, similarity
can be defined as a decreasing function of dissimilarity, as for instance

r(x, y) = 1− d(x, y) or r(x, y) = 1

1+ d(x, y)γ
(5)

where γ is a user-defined parameter. Indeed, if dissimilarity is total, resemblance is
0 and reciprocally. The Cauchy function on the right expresses a nonlinear depen-
dency between resemblance and dissimilarity, and in particular makes it possible to
rule the discrimination power of the measure [19, 30].

It is to be noticed that, as in the case of fuzzy data, the resemblance measure
is not necessarily the complement to 1 of the dissimilarity measure: the normal-
ization parameters defining dissimilarity can be different from those used to define
the dissimilarity from which the resemblance is deduced. Indeed, resemblance is
used to compare data points belonging to the same category, whereas dissimilarity
compares points from different categories. Thus it is expected that they apply to
different distance scales, requiring different normalization schemes.

Aggregation into a Fuzzy Prototype

After the typicality degrees have been computed, the prototype is defined as the
aggregation of the most typical data. In the case of numerical data, one can for
instance define the prototype as the weighted average of the data, using the typicality
degrees as weights. Yet this reduces the prototype to a single precise value, which is
not in adequacy with human-like description of categories: considering for instance
data describing the height of persons from different countries, one would rather
say that “the typical French person is around 1.70m tall” instead of “the typical
French person is 1.6834m tall” (fictitious value): the prototype is not described with
a single numerical value, but with a linguistic expression, “around 1.70m”, which is
imprecise. This is better modeled in the fuzzy set framework, that makes it possible
to represent such unclear boundaries.

Therefore we propose to aggregate the most typical data in a fuzzy set [23]. To
that aim, two thresholds are defined, respectively indicating the minimum typicality
degree required to belong to the prototype kernel and its support; in-between, a lin-
ear interpolation is performed. In our experiments, the thresholds are set to high val-
ues (respectively 0.9 and 0.7), because the prototype aim is to characterize the data
set, and extract its most representative components, and not to describe it as a whole.

Application to Student Characterization

As an example, we consider a data set describing results obtained by 150 students to
two exams [23]. It was decomposed into 5 categories by the fuzzy c-means [2, 10]:
the central group corresponds to students having average results for both exams,
the 4 peripheral clusters correspond to the 4 combinations success/failure for the
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Fig. 6 Level lines of the 5
fuzzy prototypes
characterizing students
described by their results on
two exams [23]
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two exams. Prototypes are built to characterize these 5 categories. The comparison
measures are based on normalized Euclidean distances (with different normaliza-
tion factors for the dissimilarity and the resemblance). The typicality degrees are
derived from internal resemblance and external dissimilarity using the symmetric
sum operator [33]. Lastly the prototype is derived from the most typical data points
using the method described in the previous paragraph.

Figure 6 represents the level lines of the obtained prototypes and shows they
provide much richer information than a single numerical value: they model the un-
clear boundaries of the prototypes. They also underline the difference between the
central group and the peripheral ones: no point totally belongs to the prototype of the
central group, because it has no real specificity as opposed to the other categories,
as it corresponds to an average behavior.

In all cases, the fuzzy prototypes characterize the subgroups, capturing their
semantics: they are approximately centered around the group means but take into
account the discriminative features of the clusters and underline their specificity.
For instance, for the lower left cluster, the student having twice the mark 0 totally
belongs to the prototype, which corresponds to the group interpretation as students
having failed at both exams and underline its specificity. It is to be noticed that
this results from the chosen aggregation operator (symmetric sum [33]) that gives
a high influence for external dissimilarity: it can be the case that such an extreme
case should have a lower membership degree, which can be obtained changing the
aggregation operator.

4 Extension to Supervised Learning: Classification

In this section, we exploit the previous formalization of the typicality degrees as well
as the fuzzy prototype notion to perform a supervised learning task of classification.
It is true that the major interest of a prototype comes from its power of description



Fuzzy Prototypes: From a Cognitive View to a Machine Learning Principle 445

thanks to its synthetic view of the database. But, as Zadeh underlined [38], a fuzzy
prototype can be seen as a schema for generating a set of objects. Thus, in a clas-
sification task, when a new object has to be classified, it can be compared to each
fuzzy prototype and classified in the class of the nearest prototype (a sort of nearest
neighbor algorithm where the considered neighbors are only the prototypes of the
classes). Another approach consists in taking into account the degrees of typicality
without considering the fuzzy prototypes, it means that the last step of our construc-
tion processed is missed. The difference of our approach with an instance-based
learning algorithm [1] is that our methods are not lazy: the information learned dur-
ing the typicality degree computation is taken into account in the classification task,
more precisely in the class setting step, either by considering the nearest prototypes
or by weighting the comparison by the typicality degrees.

We proposed three classification methods based on typicality or on prototype
notions:

• The first one is the one described above giving the class of the nearest prototype
of the object to be classified. The prototype is constructed with the fuzzy value
maximizing the typicality degree.

• The second one is like the first one, but the fuzzy prototype is obtained aggre-
gating by the union (the maximum) of the values with a high typicality degree
whereas the first one considers only one value.

• In the third one, a new object is compared to each object of the learning database.
The comparison is the aggregation of the attribute by attribute comparisons
weighted by the degree of typicality of the attribute value of the object in the
learning database. Then, the class given to the unknown object is the class of the
most similar object in the learning database. It is also possible to consider the k
most similar objects but the realized experiments consider only the closest object
relatively to the weighted similarity.

We tested these 3 methods on the microcalcifications database presented in
Sect. 3.3 in 3 different classification problems: to classify the microcalcifications
in round/not round, elongated/not elongated and small/not small. Table 1 gives
the highest good classification rates obtained by each method and compares them
with instance-based algorithm (IBL) with 10 neighbors. It shows that our method
classifies better than IBL, highlighting the gain provided by the typicality-based
approaches.

Table 1 Classification results for the 3 typicality-based methods and for the instance-based lear-
ning algorithm (IBL) (in percentage of good classification)

Method 1 Method 2 Method 3 IBL

round/not round 75.00 79.63 82.41 79.63
elongated/not elongated 79.41 80.88 79.41 73.53
mall/not small 92.45 93.71 91.82 91.82
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5 Extension to Unsupervised Learning: Clustering

In this section, we further exploit the notion of prototype as a machine learning prin-
ciple, considering the unsupervised learning case and more precisely the clustering
task.

5.1 Motivation

Clustering [14] aims at decomposing a data set into subgroups, or clusters, that
are both homogeneous and distinct: the fact that the subgroups are homogeneous
(their compactness) implies that points assigned to the same cluster indeed resemble
one another, which justifies their grouping. The fact that they are distinct (their
separability) implies that points assigned to different subgroups are dissimilar one
from another, which justifies their non-grouping and the individual existence of each
cluster. Thus the cluster decomposition provides a simplified representation of the
data set, that summarizes it and highlights its underlying structure.

Now these compactness and separability properties can be matched with the
properties on which typicality degrees rely, namely internal resemblance and ex-
ternal dissimilarity: a cluster is compact if all its members resemble one another,
which is equivalent to their having a high internal resemblance. Likewise, clusters
are separable, if all their members are dissimilar from other clusters members, i.e.
if they have a high external dissimilarity. Thus a cluster decomposition has a high
quality if all points have a high typicality degree for the cluster they are assigned to.

This is illustrated using the artificial two-dimensional data set shown on Fig. 7a.
Figures 7b and 7d present two data decompositions into 2 subgroups, respectively
depicted with + and :. Figures 7c and 7e show their associated typicality degree
distribution: for each point, represented by its identification number as indicated
on Fig. 7a, its typicality degrees for the two clusters are indicated, the plain line
corresponding to the + cluster, the dashed one to the : cluster. It can be seen that
typicality degrees take significantly higher values for the data partition of Fig. 7d
than for the partition of Fig. 7b that is counter-intuitive and does not correspond to
the expected decomposition: the most satisfying decomposition is the one for which
each point is more typical of the cluster it belongs to.

Thus we propose to exploit the typicality degree framework to perform cluster-
ing: the typicality-based clustering algorithm (TBC) [20] looks for a decomposition
such that each point is most typical of the cluster it is assigned to, and aims at
maximizing the typicality degrees.

5.2 Typicality-based Clustering Algorithm

Following the motivations described above, the typicality-based clustering algo-
rithm consists in alternating two steps:



Fuzzy Prototypes: From a Cognitive View to a Machine Learning Principle 447

−2 −1 0 1 2
−2

−1

0

1

2

1 2

3 4 5

8 9

10 11 12

13 1476

−2 −1 0 1 2
−2

−1

0

1

2

−2 −1 0 1 2
−2

−1

0

1

2

0 5 10
0

0.2

0.4

0.6

0.8

1

0 5 10
0

0.2

0.4

0.6

0.8

1

(a) (b)

(d) (e)

(c)

Fig. 7 Motivation of the typicality-based clustering algorithm. (a) Considered data set and data
point numbering. (b) Counter-intuitive decomposition into 2 clusters, respectively depicted with+
and :, (c) associated typicality degrees with respect to the 2 clusters, for all data points represented
by their identification number; the plain line indicates the typicality degree with respect to the
+ cluster, the dashed one for the : cluster. (d) Decomposition into the 2 expected clusters and
(e) associated typicality degrees

1. Assuming a data partition, compute typicality degrees with respect to the
clusters,

2. Assuming typicality degrees, modify the data partition so that each point be-
comes more typical of the cluster it is assigned to.

This means, one reduces to the supervised case considering the candidate cate-
gories provided by the data decomposition, and one then evaluates these candidates
using the computed typicality degrees. According to empirical tests, this alternated
process converges very rapidly to a stable partition, that corresponds to the desired
partition [20].

Among the expected advantages of this approach are robustness to outliers
and ability to avoid cluster overlapping areas: both outliers and points located
in overlapping areas can be identified easily, as they have low typicality degrees
(respectively because of low internal resemblance and low external dissimilarity),
leading to clusters that are indeed compact and separable. Moreover, after the al-
gorithm has converged, the final typicality degree distribution can be exploited to
build fuzzy prototypes characterizing the obtained clusters, offering an interpretable
representation of the clusters.

Regarding the typicality computation step, two differences are to be underlined
as compared to the supervised case described in Sect. 3. First, in the supervised
learning framework, typicality is only considered for the category a point belongs
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to, and equals 0 for the other categories. In the clustering case, clusters are to be
identified, and different assignments must be considered, thus typicality degrees
are computed for all points and all clusters. The candidate partition is only used to
determine which points must be taken into account for the computation of internal
resemblance and external dissimilarity: for instance, for a given point, when its typi-
cality with respect to cluster C is computed, internal resemblance is based on points
assigned to C according to the candidate partition.

A second difference between supervised and unsupervised learning regards the
choice of the aggregation operator defining typicality degrees from internal resem-
blance and external dissimilarity: it cannot be chosen as freely in both cases. Indeed,
in the supervised case, on may be interested in discriminative prototypes (e.g. in
classification tasks), thus a high importance may be given to external dissimilarity.
In clustering, both internal resemblance and external dissimilarity must be influen-
tial, otherwise, outliers may be considered as highly typical of any cluster, distorting
the clustering results. This means the aggregation operator must be a conjunctive
operator or a variable behavior operator [20].

5.3 Experimental Results

In order to illustrate the properties of the typicality-based clustering algorithm
(TBC), its results on the artificial two-dimensional data set shown on Fig. 8a are
presented. The latter is made of 3 Gaussian clusters and a small outlying group in
the upper left corner.

Typicality-based Clustering Algorithm

Figures 8b and 8c represent the level lines of the obtained typicality degree dis-
tribution and the associated fuzzy prototypes, when 3 clusters are searched for.
Each symbol depicts a different cluster, the stars represent points assigned to the
fictitious cluster that represents outliers and points in overlapping areas (more
precisely, this cluster groups points with low typicality degrees [20]). Figure 8b
shows that the expected clusters are identified, as well as the outliers. These results
show the method indeed takes into account both internal resemblance and external
dissimilarity.

The effect of these two components can also be seen in the typicality distribution:
on the one hand, the distributions are approximately centered around the group cen-
ter, due to the internal resemblance constraint. On the other hand, the distribution
of the upper cluster for instance is more spread on the x-axis than on the y-axis: the
overlap with the two other clusters leads to reduced typicality degrees, due to the
external dissimilarity constraint.

The associated fuzzy prototypes shown on Fig. 8c provide relevant summaries of
the clusters: they have small support, and characterize the clusters. Indeed, they are
concentrated on the central part of the clusters, but also underline their distinctive
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Fig. 8 (a) Considered data set, (b-e) Level lines of several distributions: (b) typicality degrees,
(c) fuzzy prototypes, (d) FCM membership degrees, (e) PCM possibilistic coefficients

features, i.e. the particularities of each cluster as compared to the others: for the
rightmost cluster for instance, the prototype is more spread in the bottom right re-
gion, indicating such values are specific for this cluster, which constitutes a relevant
characterization as opposed to the 2 other clusters.

Comparison with Fuzzy c-means and Possibilistic c-means

So as to compare the results with classic clustering algorithms, Figs. 8d and 8e
respectively show the level lines of the fuzzy sets built by the fuzzy c-means (FCM)
algorithm [2, 10] and the distribution of coefficients obtained with the possibilistic
c-means (PCM) [18], both with c = 3.

Outliers have a bigger influence for FCM than for TBC, and tend to attract all
three clusters in the upper left direction. This sensitivity of FCM is well-known and
can be corrected using variants such as the noise clustering algorithm [6]. Apart
from the outliers assigned to the upper cluster, the FCM partition is identical to that
of TBC. The main difference between TBC and FCM concerns the obtained fuzzy
sets: the FCM ones are much more spread and less specific than the typicality or the
prototype distributions, they cover the whole input space. Indeed, FCM do not aim
at characterizing the clusters, but at describing them as a whole, representing all data
points: FCM fuzzy sets aim at modeling ambiguous assignments, i.e. the fact that
a point can belong to several groups simultaneously. The associated distribution
thus corresponds to membership degrees that indicate the extent to which a point
belongs to each cluster. Fuzzy prototypes only represent the most typical points,
they correspond to fuzzy sets that characterize each cluster, indicating the extent to
which a point belongs to the representative description of the cluster.
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The PCM coefficients (see Fig. 8e) correspond to a third semantics. It can be
observed that their distributions are spherical for all 3 clusters: the underlying func-
tions are indeed decreasing functions of the distance to the cluster center. This im-
plies they are to be interpreted as internal resemblances, not taking into account
any external dissimilarity component. Thus, contrary to FCM, PCM are not sen-
sitive to outliers, the latter are indeed identified as such and not assigned to any
of the three clusters. Yet due this weight definition PCM suffer from convergence
problems: they sometime fail to detect the expected clusters and identify several
times the same cluster [13]. To avoid this effect, Timm and Kruse [34] introduce in
the PCM cost function a cluster repulsion term, so as to force clusters apart. The
proposed typicality-based approach can be seen as another solution to this problem:
the external dissimilarity component also leads to a cluster repulsion effect. The
latter is incorporated in the coefficient definition itself and not only in the cluster
center expression, enriching the coefficient semantics.

5.4 Algorithm Extensions

The previous typicality-based clustering mechanism can be extended to adapt to
specific data or cluster constraints, we briefly mention here two extensions.

TBC does not depend on the data points themselves, but only on their comparison
through resemblance and dissimilarity measures: contrary to FCM or PCM, it does
not require the computation of data means and in the course of the optimization
process, clusters are only represented by the set of their members, and not cluster
centers. This implies that the algorithm is independent of the data nature, and makes
it possible to extend it to other distances [21]: on the one hand, non-Euclidean dis-
tances can be used, in particular to identify non-convex clusters; on the other hand,
non-vectorial data, such as sequences, trees or graphs can be handled.

Another extension concerns the use of typicality degrees in a Gustafson-Kessel
manner: the Gustafson-Kessel algorithm [12] is a variant of FCM that makes it
possible to identify ellipsoidal clusters, whereas FCM restrict to spherical clus-
ters, through the automatic extraction of the cluster covariance matrices: contrary
to the previous methods, the appropriate distance function is not determined at
the beginning of the algorithm, but is automatically learned from the data. The
Gustafson-Kessel-like typicality-based clustering algorithm [22] modifies the op-
timization scheme presented in Sect. 5.2 to estimate cluster centers and cluster co-
variance matrices, using as weights the typicality degrees. As TBC, it is robust with
respect to outliers and able to avoid overlapping areas between clusters, leading to
both compact and separable clusters [22].

6 Conclusion

In this paper, we considered the cognitive definition of prototype and typicality
and proposed to extend them to machine learning and data mining tasks. First,
these notions make it possible to characterize data categories, underlining both the
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common features of the category members and their discriminative features, i.e.
the category specificity, leading to an interpretable data summarization; they can be
applied both to crisp and fuzzy data. Furthermore, these notions can be extended
to extract knowledge from the data, both in supervised and unsupervised learning
frameworks, to perform classification and clustering.

Perspectives of this work include the extension of the typicality notion to other
machine learning tasks, and in particular to feature selection: when applied attribute
by attribute, typicality makes it possible to identify properties that have no typical
values for categories, and are thus not relevant for the category description. This
approach has the advantage of defining local feature selection, insofar as attribute
relevance is not defined for the whole data set, but locally for each category (or each
cluster in unsupervised learning). Links with other feature selection methods, and
particular entropy-based approaches are to be studied in details.
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Improving Fuzzy Classification by Means
of a Segmentation Algorithm

Ana del Amo, Daniel Gómez, Javier Montero and Greg S. Biging

Abstract In this chapter we consider remotely sensed images, where land surface
should be classified depending on their uses. On one hand, we discuss the advan-
tages of the fuzzy classification model proposed by Amo et al. (European Journal
of Operational Research, 2004) versus standard approaches. On the other hand, we
introduce a coloring algorithm by to Gómez et al. (Omega, to appear) in order to
produce a supervised algorithm that takes into account a previous segmentation of
the image that pursues the identification of possible homogeneous regions. This
algorithm is applied to a real image, showing its high improvement in accuracy,
which is then measured.

1 Introduction

Classification is a key stage towards knowledge, which used to require in the first
stage an approximate identification of the entities we are facing (linguistic terms
may represent useful tools). In a second stage we should be searching for relations
between those entities. But knowledge should not be confused with decision mak-
ing. We would all like to be ready to face our decision making problems, that is, to
have in our mind a sufficient awareness of reality [28]. Different rules and require-
ments play in knowledge and decision making, and in fact Medicine has proven that
these two activities are developed in different parts of the human brain: decision
making is deeply related to emotion (as is creativity, which has also been proven
as being physically separated from methodological thinking). A complete analytic
capability does not imply being able to choose one particular alternative.

In this way, we can accept that a certain previous classification process is always
needed in order to establish the terms in which each decision making problem is
stated. In this sense, the way classification is understood and therefore modelled
will be extremely relevant in decision making.

For example, our classification procedures are understood in terms of classical
Aristotelic logic, for example, the entities we consider should always be precisely
defined, and decision making problems will be stated in terms of those precise
entities. Hence, if we accept that each human act can be either good or bad, and
nothing else, the only question we can ask ourselves about our own possible acts is

H. Bustince et al., (eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation
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to choose if such an act will be good or bad: on one hand, we are forced to accept
that at least one good alternative is possible for every decision making (otherwise
we may fall into desperation); and on the other hand, either we accept it is good to
choose between several good alternatives, let’s say at random or by heart (falling
into a unethical behavior), or we are forced to think that such a good alternative is
unique (falling into an extremely stressful search).

In a more technical framework, assuming that every entity that must be precisely
defined may produce wrong results when precise definitions simply do not exist
(we end up imposing precise but arbitrary definitions). When analyzing Earth land
cover, for example, most of us may consider that beginning with three classes such
as natural space, urban area and wetland could be a starting point. But it is obvious
that a natural space vary between deep forest and desert, and frontiers between
those classes will frequently be arbitrary, with extensive gradation zones.

Principal learning processes refer to the ability to manage more and more com-
plex classification structures, which imply evaluating results and the possibility
of modifying our classification structure, including the search for new classes if
needed. In any case, it must be pointed out that such an evaluation implies a de-
tailed analysis of results taking into account the whole classification structure under
consideration.

In this paper we shall present a short overview of aggregative fuzzy classifica-
tion systems in the sense of [1, 3, 5]), which allows evolution by avoiding Ruspini’s
[36] static approach (Sect. 2). Such a model is then considered for the analysis
of digitalized images, by means of an unsupervised classification model, which is
improved introducing a previous segmentation of the image according to possible
homogeneous regions (Sect. 3). Such a model is applied to a particular remote sens-
ing image (Sect. 4), followed by a final comments section.

2 Aggregative Fuzzy Classification Systems

Let us assume a discrete set of classes C, each class being well defined, and a finite
family of objects X to be classified. From a classical point of view, the objective
should be to assign, one and only one, of those classes to each of the objects we
consider. The problems appear when the objects we present for classification do not
fall into any of those classes under consideration. In complex classification prob-
lems (see [40]) we quite often observe that objects belong to several considered
classes, but only to some extent. Following [39] (see also [10]) we can for example
determine the degree μc(x) ∈ [0, 1] to which every object x ∈ X belongs to class
c ∈ C, in such a way that a family of membership functions

{μc : X → [0, 1]}c∈C

are being defined.
It must be pointed out that, in practice, degrees of membership are assigned

taking into account all available possibilities for classification. This is clear in the
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classical crisp case, where C defines a standard partition in such a way that it is
required that μc(x) = 1 for a unique class c ∈ C and μc(x) = 0 otherwise. Most
people will never assign an object to a particular class without having a look at the
remaining classes (we choose the most appropriate class among the classes we are
being offered). Ruspini [36] translates this approach into the fuzzy context, intro-
ducing fuzzy partitions (see also [11, 12, 18, 25]) in such a way that μc(x) ∈ [0, 1]
for every object under consideration and

∑

c∈C
μc(x) = 1, ∀x ∈ X

holds. In this way it is suggested that the total degree of membership is distributed
among the classes.

But as already pointed out in [3], great difficulties appear when Ruspini’s proposal
is implemented in practice: we should not expect that our set of classes C is capturing
the whole problem, and in addition, in a compact way. In practice, classes used to
overlap, and it may even be the case that they are almost the same, or an object has
nothing to do with those considered classes, so an additional class should be searched.
In most cases a fuzzy partition has not been defined, we do not know if it exists or
if it is even a desired objective. It is only after a long learning (and lucky) process
that users are able to get a family of fuzzy classes fully explaining every object and
without superfluous information. In practice we need a first elementary family of
classes, to be improved depending on its behavior with respect to considered objects.

Such a fuzziness is often present in classification problems of remotely sensed
images, since most classes in nature do not present clear borders (see, e.g., [2, 4, 19,
27, 34]). In particular, we want to classify pixels in a digital image of a landscape
that have been obtained from a satellite, each pixel representing several kilometers
or meters (depending on the precision). A classical crisp approach will assign to
each pixel the class with higher likelihood, and a standard Ruspini approach will
distribute membership but forcing them to sum up to one, almost certain to be artifi-
cial. Moreover, classification of each pixel should take into account the behavior of
surrounding pixels.

Note that two main characteristics have appeared in the previous arguments: the
set of classes should explain each object as clearly as possible, but at the same
time classes should avoid excessive overlapping. In addition, each class should of
course be relevant (an empty class, for example, is useless). Hence, a classification
system requires a certain logical structure behind it, in order to evaluate the degree
to which each object is explained (by means of an union aggregation operator of
partial information from subsets of classes), the degree to which classes do not
overlap (by means of an intersection aggregation operator from subsets of classes),
and the degree to which a subset of classes is relevant (by means of a negation
operator). Hence, our classification structure should at least allow evaluation of the
classification produced by C, evaluation that should be the basis for the proposal of
a new family of classes improving previous classification.

Of course, general considerations about aggregation rules apply here (see, e.g.,
[14], but also [21]), although it is important to point out that an aggregation rule
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should not be identified with an associative binary operator. For example, in [6, 17]
an alternative model for building up operational aggregation rules was developed,
based on a recursive binary calculus (see also [9]). Although this last approach was
justified by a calculating argument, it should be noticed that such a model assumed a
given structure of data, which in general may be non linear. In fact, such a structure
defines a particular planar graph within the remote sensing framework. This dis-
cussion (see [31]) has much in common with Atanassov’s intuitioinistic fuzzy sets
[7, 8], and also with the necessary simultaneous presence of different aggregation
rules in basic structures pointed out in [29, 30] (objects and classes may deserve
different aggregation operators and logic).

In particular, a recursive rule φ was defined in [17] as a family of aggregation
functions

{φn : [0, 1]n → [0, 1]}n>1

such that there exists an ordering rule π and two sequences of binary operators

{Ln : [0, 1]2 → [0, 1]}n>1

and

{Rn : [0, 1]2 → [0, 1]}n>1

such that

φn(π(x1), . . . , π(xn)) = Ln(φn−1(π(x1), . . . , π(xn−1)), π(xn))

and

φn(π(x1), . . . , π(xn)) = Rn(π(x1), φn−1(π(x2), . . . , π(xn)))

In this way recursiveness appears as a property of a sequence of operators {φn}n>2
allowing the aggregation of any number of items one by one, by means of a se-
quence of binary aggregation operators, but not necessarily always the same binary
aggregation operator (see [6] for a characterization of quasi-linear recursive aggre-
gation rules, based on a previous result given in [37]). In a more general context,
this approach can be generalized in order to assure a sequential calculation, being
consistent with the natural contiguity structure in the bi-dimensional picture, which
is not a linear structure (the value to be associated with a certain pixel should be the
aggregation of surrounding pixels, depending on the distance to that pixel).

Hence, an aggregative fuzzy classification system was defined in [3] as a
family of fuzzy classes C (each c ∈ C with its associated membership function
μc : X → [0, 1]), together with an evaluation triplet (φ, ϕ, N) where φ is a
union aggregation, ϕ is an union operator and N is a strong negation [38]. Such
an aggregative fuzzy classification system can be therefore denoted by

(C;φ, ϕ, N)
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where ϕ is a disjunctive rule in the sense that ϕn(x1, x2, . . . , xn) = 1 whenever
∃ j/x j = 1, and

ϕ(x1, x2, . . . , xn) = N(φ(N(x1), N(x2), . . . , N(xn)))

for all x1, x2, . . . , xn ∈ [0, 1].
There are two basic properties we would like in an aggregative fuzzy classifica-

tion system, and a third is also desirable in order to produce compact models (and
note that a complementary statistical analysis is suggested in every item):

1. On one hand, every object should be explained to some extent, so the higher all
values,

μC(x) = ϕ{μc(x)/c ∈ C}

are, the better.
2. On the other hand, common information between classes should not be excessive,

and in addition to standard statistical arguments to establish which classes are
significatively different, we can point out that, for all A,B ⊂ C, the lower all
values

φ{μA(x), μB(x)}

are, the better.
3. And information should not be excessive either excessive, so whenever we sup-

press B ⊂ C from our classification system, the lower all values

ϕ{μc(x), c ∈ B}

are, the better.

These three basic properties suggest the following formulation for the three key
properties suggested above (note the great similitude of this approach to [13]).

2.1 Covering

In case

μC(x) = ϕ{μc(x)/c ∈ C} = 1

it can be understood that object x ∈ X is fully explained by our family of fuzzy
classes C.

Hence, the degree to which a family of objects X is covered by a certain family
of classes C can be associated with the value

μX (C) = minx∈X
(

ϕ{μc(x)/c ∈ C})
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A low value of the above degree of covering will suggest a search for a new class
not yet included in C (see [35]).

2.2 Redundancy

We should not only pursue an explanation for every object, but a compact family of
classes avoiding overlapping. This issue implies of course certain statistical analysis
to avoid useless information, like those non discriminative classes (μc(x) = ac ∈
[0, 1],∀x ∈ X) or those replicated classes (μc(x) = μk(x),∀x ∈ X), or any other
close family not showing significantly different behavior between objects.

According to the arguments above we can propose

μX (A,B) = maxx∈X
(

φ{μA(x), μB(x)}
)

as a measure for the degree of redundancy between two families of classesA,B ⊂ C.
In case

μA,B(x) = φ{μc(x)/c ∈ C} = 0

it can be understood that those two families of classes are orthogonal with respect
to object x ∈ X .

A high degree of redundancy may suggest a search for a new set of classes via
recombination of classes in C.

2.3 Relevancy

Redundancy between single classes may be enough in many practical problems,
at least at an initial stage, and we may then proceed similarly to certain statistical
procedures for the reduction of the amount of information. But such a search for
a reduction of information can be also suggested from our model, whenever the
information contained in a particular class or a subset of classes is not significantly
relevant.

According to the above arguments, relevancy of a given subset of classes A ⊂ C
being a candidate for being deleted from our model will require a compared analysis
between the following items:

(1) ϕ{μc(x)/ c ∈ C}
(2) ϕ{μk(x)/ k ∈ A}
(3) ϕ{μk(x)/ k ∈ C −A}

for every object x ∈ X (see [1] for details).



Improving Fuzzy Classification by Means of a Segmentation Algorithm 459

It must be pointed out that a class may not show significance according to some
standard statistical procedures, but that information may still be the only hint we
have as to classify some pixels. And of course a sequential analysis of isolated
irrelevant classes can suggest a wrong suppression of a relevant set of classes (a
relevant family of classes may contain no relevant class).

2.4 Fuzzy Partitions

From the above point of view, a fuzzy partition will appear when μX (C) = 1 and
μX (A,B) = 0 for all disjointed A,B ⊂ C, i.e., A ∩ B = ∅.

But in no way are we forced to work with these fuzzy partitions. The set of classes
can evolve, producing a sequence of aggregative fuzzy classification systems being
improved by experience, perhaps (but not necessarily) pursuing a fuzzy partition.
Although meaningless classification systems will not be useful as a decision aid tool,
any classification allowing some kind of discrimination between objects represents
some knowledge.

3 Remote Sensing Classification

The key issue pointed out in the previous section is the following: we do not need,
and we should not impose, that our classification system defines a fuzzy partition.
We can still manage, and we should manage, classification systems far from being
good. In fact, at the beginning of any problem we may assume a trivial non infor-
mative classification system, given by a single family of classes C∅ = {∅} such that
μ∅(x) = 0,∀x ∈ X (only one class telling us nothing). Then our first objective will
be to find out a class telling us something about objects, but we can still find another
trivial family containing only non discriminative classes, so in fact we should be
looking for a set of different classes, none of them being trivial. This process can be
continued until we get a satisfactory classification system, most likely approaching,
but not defining, a fuzzy partition.

Hence, we can address classification problems without relevant model restric-
tions, at least at an initial stage. But it is also extremely important to keep clear
in our mind the final objective we are pursuing, which can not be different from
knowledge support. As already pointed above, we should separate decision making
from the necessary rational analysis, most likely the only one subject to consistency
restrictions. Our objective is therefore restricted to a decision making aid tool: help-
ing decision making to understand the image under study (see [20]).

We shall now consider remotely sensed images, where land surfaces should be
classified depending on their uses, and then discuss the advantages of the previ-
ous fuzzy classification model within a non-supervised framework. In accordance
with this approach we shall produce at an initial stage a family of fuzzy classes,
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showing gradation zones and without imposing unrealistic assumptions. But since
this approach managed with difficulty by decision makers, we introduce information
about surrounding pixels, by means of a segmentation procedure that looks for re-
gions with homogeneous behavior. In particular we consider the coloring algorithm
given by to Gómez et al. [23]. Such a segmentation algorithm is based on a coloring
process for valued and fuzzy graphs (see [32]). From this segmentation we gather
useful information for training sites and pattern recognition steps, to be considered
as complementary information. In this way we shall produce a supervised algorithm
that can produce a simplified crisp classification, but based exclusively on data. Fur-
thermore, the model allows a posterior learning process for the post-classification
process (see, e.g., [26, 33] for some additional interesting complementary tools).

But we should first remind ourselves that although classification is the most im-
portant topic in remote sensing, numerous pre-processing procedures must always
be previously applied, given the amazing complexity of the Earth’s surface (see,
e.g., [15, 16]):

• Sensor determination: the choice of the sensor must be made taking into account
the objects or classes of the study, in order to discriminate classes. Fuzzy sets
theory appears in a natural way when the preferences and aims of the decision
maker are modelled.

• Management data and transformation: errors and fuzziness are often present in
data acquisition processes. Furthermore, sometimes a reduction of the amount of
information is needed when the image is extremely complex (for example more
that 100 spectral bands).

• Training site and pattern recognition: in order to know the main features associ-
ated with each class, a previously unsupervised classification or expert
classification is needed. Here the segmentation and non-supervised classifica-
tion techniques (hard and soft) are the most common. In the following section a
segmentation algorithm is presented as an alternative to solve this step.

• Supervised classification algorithm: this step ends with a classification (crisp or
fuzzy) of the image. Each pixel or unit sample is classified into crisp or fuzzy
classes, taking into account the information received from the training site.

• Post classification: in order to smooth the classification and improve the classifi-
cation accuracy, some learning process will be needed. Some logical rules should
be considered in order to improve and smooth results.

• Analysis results: once classification and post classification are finished, the ac-
curacy of the process and classifiers must be determined. For example, by con-
sidering different agreement measures between the reference data set and the
final classification. Recent researches give the fuzzy sets an important role in this
analysis.

It will be shown below, in a particular image, the high improvement in accuracy
(direct information about training sites can of course be considered at a third stage,
but it will usually imply an additional relevant cost).
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3.1 Segmentation as a Preprocessing Step

As already pointed out, before classifying pixels into known classes, complex
data pre-processing steps are required. Once the pre-processed image is obtained,
the standard immediate objective is the identification of homogeneous regions.
These regions will allow the decision maker to identify training sites for further
classification.

The most common techniques for determining homogeneous regions are based
on statistical methods that only take into account the spectral information of each
isolated pixel. In this way clusters are obtained, but since they are obtained taking
into account only spectral information of each pixel, it may happen that the proposed
cluster is not related to the real classes in which the decision maker is interested.
Consequently, there is a need to include contextual information within those algo-
rithms. With this aim, in this section a coloring algorithm is presented that takes into
account the neighborhood of each pixel. In our opinion this information should be
complementary with the classical information given by statistical methods.

The remote sensing image will be modelled here as a fuzzy graph where the
nodes are crisp and the edges-links are fuzzy (see [23]). Mathematically, a remote
sensing image with k bands can be initially defined as a set

P = {

pi, j / 1 ≤ i ≤ r 1 ≤ j ≤ s
}

of r × s information units -pixels-, where

pi, j =
(

p1
i, j , p2

i, j , · · · , pk
i, j

)

is the pixel associated with the coordinate (i, j).
In order to find homogeneous regions in the image we model this image by a

planar graph (see again [23]). The graph is planar in the sense that two pixels pi, j

and pi ′, j ′ are not connected if
∣

∣i − i ′
∣

∣+ ∣

∣ j − j ′
∣

∣ > 1 (see Fig. 1).
A fuzzy graph G̃ = (P, Ã) is then defined by the image of pixels P and the set

of fuzzy arcs Ã, being characterized by a matrix

μ Ã =
(

dpi, j ,pi′ , j ′
)

pi, j ,pi′ , j ′ ∈ P̄
(1)

Fig. 1 Planar graph with r = 3
and s = 4
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where P̄ is the set of connected pixels, i.e.,

P̄ =
{

(pi, j , pi ′, j ′) ∈ P2 :
∣

∣i − i ′
∣

∣+ ∣

∣ j − j ′
∣

∣ = 1; 1 ≤ i ≤ r, 1 ≤ j ≤ s
}

and the fuzzy number dpi, j ,pi′, j ′ represents the degree of dissimilarity between
the adjacent pixels pi, j and pi ′, j ′ . Some possible dissimilarity functions are given
in [24].

The coloring algorithm for valued-fuzzy graphs we propose (see [23, 24]) is also
a succession of binary coloring procedures. The first binary coloring analyzes the
pixels set P coloring each pixel as “0” or “1”. The second binary coloring is applied
separately to the sub graph generated by those pixels colored as “0”, to obtain the color
classes “00” and “01”, that can be understood as homogenous regions, and to the sub
graph generated by those pixels colored as “1”, to obtain the color classes “10” and
“11”. This hierarchical process of binary coloring is repeated a number of iterations
until the image segmentation is obtained. It is important to note that we consider as
homogeneous any region or subset of pixels whenever these pixels are connected
and have the same color. Once this algorithm is finished, the segmentation informa-
tion can be included in any of the standard unsupervised classification algorithms
in order to improve the overall accuracy of classical algorithms that only take into
account the spectral information of each pixel (see [22]). The key to this segmentation
algorithm is therefore the basic binary coloring process we apply to each step.

3.2 Binary Coloring Algorithm

A binary coloring of a graph G = (V , E) is a particular case of a 2-coloring:
col : V → {0, 1}. The binary coloring procedure that we propose as the basic
procedure, colors two adjacent pixels as “0” and “1” depending on the fuzzy dis-
similitude between them, when compared with a prescribed threshold (a procedure
based on distribution percentiles is suggested in [23], in order to determine the diffe-
rent values of this prescribed threshold). Note that a standard crisp approach assigns
the same color class to any two pixels whenever such a distance is small, no matter
if they are not adjacent.

To define the first binary coloring procedure, a value α is fixed. We can start, for
example, with pixel (1, 1) in the top-left corner of the image, and then pixels can be
colored from left to right and from up to down, in the following way:

col(i + 1, j) =
{

col(i, j)i f dpi, j ,pi′, j ′ ≥̃α
1− col(i, j)i f dpi, j ,pi′ , j ′ ≤̃α

∀(i, j) ∈ {1, . . .r}x{1, . . .s − 1}

and

col(i, j + 1) =
{

col(i, j)i f dpi, j ,pi′ , j ′ ≥̃α
1− col(i, j)i f dpi, j ,pi′ , j ′ ≤̃α

∀(i, j) ∈ {1, . . .r − 1}x{1, . . .s}
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In order to determine if the fuzzy number dpi, j ,pi′ , j ′ is greater than α, a rank-
ing function will be used. Therefore, given a colored pixel pi, j , the adjacent pix-
els pi+1, j and pi, j+1 can then be colored in a similar way. However, since pixel
pi+1, j+1 can be colored either from pixel pi+1, j or from pixel pi, j+1, both coloring
processes may not lead to the same color. The we are talking about an inconsistent
coloring process. This means that our binary coloring procedure is also dependent
on the particular order we have chosen for coloring.

In the proposed algorithm, once all pixels are colored, we look for a value α∗
that assures consistency. Then, pixels are classified either as color class “0” or “1”,
and afterwards we proceed to get a more precise color for both classes (class “0”, for
example, will switch either into “00” or “01”). This process is performed separately,
by alternatively activating only one of the classes already colored at a previous stage.
The same process will be applied to subsequent stages, in such a way that the above
binary coloring process is carried out to the activated pixels under consideration,
i.e., a subset P ′ of pixels contained within P .

As any representation technique, the tool presented in this section gives decision
makers an additional understanding in order to obtain a more accurate description
of the images, in our case involving fuzzy classes. Our hierarchical output offers a
systematic sequence of colored images that can be carefully analyzed by decision
makers for a more global understanding of the image (depending on their objectives
and capabilities).

As pointed out in [20], there is an absolute need for manageable descriptive tools
in order to show fuzzy uncertainty. In fact, the information given by this algorithm
can be included in different classical unsupervised classification methods in order
to improve the training site description.

4 Some Computational Results

In this section we show the performance of the above segmentation technique for
some common test digital images, and then we consider a particular Earth surface
image obtained by remote sensing. The information contained in the segmentation
process will be used in the subsequent fuzzy classification algorithm in order to
improve the accuracy of the final classification.

As a first experiment, two standard images have been considered (see Fig. 2 and
Fig. 4).

In order to model distance uncertainty, in these examples we consider symmetri-
cal triangular fuzzy numbers for the fuzzy graph, based on the Euclidean distance,
dp,p′ = (d − er, d, d + er), where

d =
√

√

√

√

b
∑

k=1

(xk
p − xk

p′)
2 ∀(p, p′) ∈ P
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Fig. 2 Squares

is the deterministic Euclidean distance and “er” is the error measurement considered
by the expert (see [24] for more details).

Hence, a sequence of binary classifications has been obtained, so a binary number
is associated with each pixel and the image is divided into regions of adjacent pixels,
all of them with the same associated color class. In order to be able to visualize these
regions, we can paint regions taking advantage of the full RGB color range, obtained
as the mean of the original color of pixels in each region (see segmented images in
Fig. 3 and Fig. 5).

Fig. 3 Segmented squares
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Fig. 4 House
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4.1 Application to a Remote Sensing Image

This section is devoted to summarize and describe how previous processes can be
aggregated in order to obtain a final fuzzy classification.

As already pointed out, the classification process is complex and requires some
preprocessing. We want to emphasize how representation techniques can be useful
to improve such a training sites and pattern recognition step. Given a remote sensing
image or digital image, we will describe shortly the interactive process proposed in
this paper.

• The image is preprocessed in the sense described in Sect. 3. The ideal sensor is
chosen and any necessary transformation of the date is made.

• After such a preprocessing, we model the remote sensing image as a fuzzy planar
graph G̃ = (P, Ã), where the nodes set P represent the pixels of the image. The

Fig. 5 Segmented house
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link set Ã is given by a matrix of fuzzy numbers, each one of them representing
the dissimilarity degree between two adjacent pixels.

• Once the model is built up, the coloring algorithm is applied to the fuzzy graph.
This coloring process divides the set of nodes-pixels P in homogeneous regions
Rk , in such a way that P = ∪Rk and Rk are connected in the crisp graph (P, P).

• The homogeneous regions determined in the above step, together with the infor-
mation of the segmentation process, can be useful in order to improve standard
non-classification algorithms. In particular, we can bring here the non-supervised
fuzzy classification algorithm suggested in [3]. This process begins with an ini-
tial fuzzy classification given by the fuzzy c-means algorithm. This initial fuzzy
classification can be improved by means of a learning algorithm that takes into
account the concepts of relevance, redundancy and covering, previously defined
in Sect. 2. But this algorithm classifies each pixel without taking into account be-
havior of neighborhood pixels. For this reason, we will combine the information

Fig. 6 Remotely sensed image of Rio Janeiro
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Fig. 7 Classification by
means of the fuzzy c-means 50
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contained in the above steps with the algorithm proposed in [3]. In particular,
fuzzy c-means algorithm (considered in [3] as the initial solution) has been modi-
fied, keeping the two bigger homogeneous regions found in the segmentation pro-
cess. After that, classification learning can follow the algorithm described in [3].

4.2 A Particular Case

The above two step process has been applied to a remote sensing image from Rio
de Janeiro (coast of Brazil, see Fig. 6), first producing a segmented image by means
of the above algorithm.

In order to compare the improvement introduced by our previous segmentation
process, two different fuzzy classifications (Fig. 7 and Fig. 8) have been carried

Fig. 8 Fuzzy classification
after segmentation
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Fig. 9 Crisp classification
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out. The first (see Fig. 7) has been obtained by means of the classical fuzzy c-means
algorithm [10]. We can observe that some pixels have been misclassified, most likely
because this classification does not take into account the information associated with
the neighborhood of each pixel. These errors can be appreciated with more detail in
its associated simplified crisp classification (see Fig. 9).

The second classification (see Fig. 8) has been attained in accordance with the
arguments of the above section. In this way, the information given by our segmen-
tation process is taken into account, producing a fuzzy classified picture in three
classes, which is shown in Fig. 8. From this fuzzy classification, a simplified crisp
classification (Fig. 10) is analogously derived as before. Note the great analogy of
this figure to the first classification the human eye will most likely make, distin-
guishing the main three concepts being present in such a picture: water, forest and
urban area.

We also show below intermediate information that we can compare with both
procedures: on one hand, degrees of membership to main three classes obtained

Fig. 10 Crisp classification
after segmentation

50

100

150

200

250

300

350

400

450

500
50 100 150 200 250 300 350 400 450 500

0

0.5

1

1.5

2

2.5

3



Improving Fuzzy Classification by Means of a Segmentation Algorithm 469

Fig. 11 Degrees of membership of the three main classes in Fig.7

Fig. 12 Degrees of membership of the three main classes in Fig. 8

by fuzzy c-means are shown in Fig. 11, where high degrees of membership appear
associated with dark tones (red in our original colored picture). On the other hand,
distances taking into account segmentation are shown in Fig. 12 (to “Forest”, “Urban
area” and “Water” classes, in this order). Note that in this case high degrees of
membership are therefore associated to clear tones (blue in our original colored
picture).

Although we present grey pictures here, it should be noted that their comprehen-
sion is not easy at all, even in their original colored version. Since both classifica-
tions are being made pixel by pixel, patterns are difficult to capture. The simplified
crisp segmented image given in Fig. 10 is indeed helping us to capture the existence
of the three main concepts explaining the image.

Some accuracy measures can be tried in order to quantify improvements between
classification, and to get objective quality evaluations. If [22] and [15] are taken into
account, for example, we find that for the crisp classification of Fig. 10 obtained by
our approach, the accuracy measure is 0.97 (i.e., 97% of the total data have been
classified correctly). This result represents a clear improvement if compared with
the crisp classification given in Fig. 9, obtained by standard fuzzy c-means, where
the total accuracy is 0.43.

5 Final Comments

The main objective of this paper is to point out that a bad classification system will
usually be the beginning of our learning process, so it is extremely restrictive to force
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our model to fit desired theoretical conditions, which should only be understood as an
objective to be reached through experience, if this is the case. This soft approach has
allowed us to apply unsupervised classification systems without risky manipulations,
and a particular application within remote sensing has been shown. Of course, we
can take advantage of additional information obtained by other means, such as for
example a segmentation procedure, in order to improve results.

It should be noted that the supervised classification being produced in this way
takes into account the picture itself, not requiring any field experimentation such as
standard expensive supervised methods in remote sensing. Of course this additional
learning procedures can be implemented at a subsequent stage.
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4. A. Amo, J. Montero, A. Fernández, M. López, J. Tordesillas and G. Biging (2002): Spectral
fuzzy classification: an application. IEEE Trans. Syst. Man and Cyb. (C) 32:42–48.

5. A. Amo, J. Montero and V. Cutello (1999): On the principles of fuzzy classification. In Pro-
ceedings North American Fuzzy Information Processing Society, NAFIPS Conference, IEEE
PRESS, Piscataway, NJ; 675–679.

6. A. Amo, J. Montero, E. Molina (2001): On the representation of recursive rules. European
Journal of Operational Research 130:29–53.

7. K.T. Atanassov (1986): Intuitionistic fuzzy sets. Fuzzy sets and Systems 20:87–96.
8. K.T. Atanassov (1999): Intuitionistic Fuzzy sets, Physica-Verlag., Heidelberg.
9. G. Beliakov, R. Mesiar and L. Valaskova (2004): Fitting generated aggregation operators to

empirical data. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
12:219–236.

10. J.C. Bezdek (1981): Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum
Press, New York.

11. J.C. Bezdek and J.D. Harris (1978): Fuzzy partitions and relations: an axiomatic basis for
clustering. Fuzzy Sets and Systems 1:111–127.

12. D. Butnariu (1983): Additive fuzzy measures and integrals. Journal of Mathematical Analysis
and Applications 93:436–452.

13. P. Cintula (2005): Basics of a formal theory of fuzzy partitions. In Proceedings European
Society for Fuzzy Logic and Technology, EUSFLAT Conference, Politechnic University of
Catalunya, Barcelona, Spain; 884–888.

14. T. Calvo, A. Kolesarova, M. Komornikova and R. Mesiar, Aggregation operators (2002):
properties, classes and construction methods. In T. Calvo, G. Mayor and R. Mesiar, Eds.:
Aggregation Operators, Springer; 3–104.

15. R.G. Congalton and K. Green (1999): Assessing the Accuracy of Remote Sensed Data, Prin-
ciples and Practices, Lewis Publishers, London.



Improving Fuzzy Classification by Means of a Segmentation Algorithm 471

16. R.G. Congalton and G. Biging (1992): A pilot study evaluating ground reference data col-
lection efforts for use in forestry inventory. Photogrametic Engineering and Remote Sensing
58:1669-1671.

17. V. Cutello and J. Montero (1999): Recursive connective rules. Int. J. Intelligent Systems 14:
3–20.

18. D. Dumitrescu (1992): Fuzzy partitions with the connectives T∞,S∞. Fuzzy Sets and Systems
47:193–195.

19. G.M. Foody (1999): The continuum of classification fuzziness in thematics mapping. Pho-
togrammetric Engineering and Remote Sensing 65:443–451.
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FIS2JADE: A New Vista
for Fuzzy-oriented Agents

Vincenzo Loia and Mario Veniero

Abstract In this chapter we present a new generalized agent-based model to imple-
ment fuzzy logic controllers (FLCs) distributed according to the Agents Paradigm.
The discussed model is presented along with FIS2JADE, a tool developed to convert
Simulink R© FIS-format controllers into a Multi-Agent System adhering to the de-
fined model, in order to improve developers efficiency when dealing with distributed
control. We present the model describing first its founding elements and concepts.
Then we present the model design by means of a simple and well-known case study,
the stationary inverted pendulum control problem, allowing us to focus on the model
definition rather than on the control problem to which it is applied. Lastly, we show
snapshots from the detailed design and implementation process when choosing the
JADE Agents Platform to implement the derived Multi-Agent System.

1 Introduction

Artificial Intelligence (AI) techniques have frequently been used to tackle the most
difficult automation problems. This is particularly true in industrial applications
where conventional software and teams of operators were unable to cope with the
demands of rapidly changing, complex environments. This explains the richness of
decision-support systems reported in scientific and industrial literature and designed
to assist different aspects of the control engineer’s job. Different approaches apart,
a “first” phase, ranging from the late 1970s to early 1990s, and characterized by
the use of AI in industrial application, ends with a unanimous learned lesson, the
difficulty in balancing effective realization of multi-control modelling with design
simplicity.

Since 1985, a new tendency emerged in the field of AI: “agent”-based approaches
became the alternative to main-stream “knowledge-based” systems. An agent is an
entity capable of carrying out goals as a component of a wider community of agents
that interact and cooperate with each other. Agents work by exploiting concurrent
and distributed processing, and performing some activities autonomously. Auton-
omy improves system modularization by organizing the modelling of the system in
terms of delegation and distribution activities. Autonomy of agents evolves with the
life of the system: when the agent shows an ability to improve its behaviour over

H. Bustince et al., (eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation
and Models. C© Springer 2008 473
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the time then the agent is said to be adaptive. These features influence the design
choices of recent intelligent systems, also thanks to these unstoppable trends:

• Computers are smaller, more powerful, and cheaper (everywhere powerful ma-
chines are no longer prohibitively expensive);

• Improvements in network technology (real advantage of distributed computing);
• Emerging of object-oriented programming paradigms (active objects, delega-

tion, reusing and asynchronous message passing support naturally agent-based
design).

Since agents embody inner features that underlie adaptive, robust and effective be-
haviour, it is more natural for designer to mix together heterogeneous techniques in
order to improve representation and handling of dynamic environments at different
level of granularity and complexity. Furthermore, the possibility to integrate useful
pieces of intelligence into embedded artefact makes realizable scenario of ubiq-
uitous computing. This vision has strongly stimulated the research community in
envisaging agents stemmed with physical devices. These agents are named embed-
ded agents, that is agents that run in an embedded system or device. Kaelbling and
Rosenschein refer embedded agents (or situated automata) in a finite-state-machine
structure.

The effectiveness of agent decision depends on 1) the “quality” of the knowledge
of its world and 2) on the robustness of its inference mechanism. One solution is to
enrich the environment with as many sensors as possible (in fact, large sensory sets
are an issue for ubiquitous computing), but the drawback is the explosion of data
and, consequently, of the difficulty in finding “relevant” data. The problem cannot
be solved only in terms of size of information: even in case of a space full of sensors,
we must remember that people act in a non-deterministic way and often their actions
are characterized by qualitative, subjective information.

Fuzzy Logic can play a fundamental role in coping with this difficult problem
thanks to its ability in bringing together human expertise and deals with the uncer-
tainties and imprecision typical of complex environments. Often, human beings take
decisions based on rules: from an operating viewpoint this approach is extremely
useful, since rule-based systems, consisting of if-then forms, represent knowledge
in terms of rules that indicate what to do in different situations instead of represent-
ing knowledge in a static way. In a similar way, fuzzy rules tend to mimic expert
behaviours by using a series of if-then statements: the decision itself and the means
of choosing that decision are replaced by fuzzy sets and the rules are replaced by
fuzzy rules. This simple but powerful idea, explains why fuzzy control is the most
successful and dynamic branch of fuzzy logic system technology, in terms of both
theoretical research and practical application. Fuzzy logic controller (FLC) is used
whenever conventional control methods are difficult to apply or show limitations in
the performances, for example, due to a complex system structure. FLC approach
is closer to the human, thanks to its ability to determine outputs for a given set of
inputs without using conventional, mathematical models. FLC, by using one set of
control rules and membership functions, converts linguistic variables intonumeric
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values required in most applications, revealing robustness with regard to noise and
variations of the system parameters.

When designing very complex control strategy using hybrid technology, one usu-
ally faces the challenge of balancing effective realization of multi-control modelling
with design simplicity. MATLAB R© is a popular high-performance language for
technical computing. Initially skilled for problems such as inverting matrices, solv-
ing linear equations and so on, MATLAB R© quickly has evolved towards a powerful
general language, dutied of set, list and string processing, and a rich suite of plotting
and graphic commands. The MATLAB website provides hundreds of MATLAB R©
programmes supported multilingual textbooks. Inside this wide suite, we find spe-
cialized areas such as neural nets, fuzzy logic, and statistics. This could be enough to
understand the worldwide success of MATLAB R©, and to explain its central role in
most of simulation and control projects, in academic as well as industrial contexts.

We argue that, nevertheless MATLAB R©, Fuzzy Logic and agent paradigm play
individually a strong role, their integration can be considered still at embryonic
level. This chapter tries to foster a progress in this direction. Starting from our
experiences in designing hybrid complex system with the agent paradigm, in this
chapter we propose a new integrated architecture for building distributed fuzzy con-
trol systems by means of agents. The platform we describe enables to conceptualize
MathWorks Simulink R© fuzzy inference systems in terms of ontology-driven Java
agents.

1.1 System Overview

Here we summarize the system design of a Distributed Fuzzy Logic Controller
as generated by “FIS2JADE” released by LASA (LAboratorio Sistemi ad Agenti,
Department of Mathematics and Computer Science of the University of Salerno)
in open source software under the terms of the LGPL (Lesser General Public Li-
cense Version 2). This chapter is the first publication devoted to FIS2JADE and its
produced model, whose version 1.0 is available for download at http://www.lasa.
dmi.unisa.it/.

FIS2JADE and its produced model can be viewed as an efficient architecture for
building distributed ontology-based fuzzy agent controllers. FIS2JADE has been
developed as an answer to the need for efficient, inexpensive, elegant, and exten-
sible multi-agents system-based applications encapsulating fuzzy inference engines
developed and tested with MathWorks Simulink R©. FIS2JADE application can gen-
erate the classes tree to execute fuzzy control activities in a FIPA (Foundation for
Intelligent, Physical Agents) compliant agent platform at any level of complexity.
The open source software includes a parsing and encoding application tool that can
be configured to allow users to produce distributed fuzzy controllers using JavaTM,
NRC FuzzyJ Toolkit [15] and JADE [16] content. FIS2JADE can be employed
by researchers and developers to build robust application by separating the fuzzy
control logic side, delegated to the well-known MATLAB R© environment, from im-
plementation details concerned to the agent-oriented paradigm.
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Multi-Agent Fuzzy Inference Framework Pattern

A pattern is a piece of literature that describes a design problem along with a general
solution for the problem in a given context. A pattern captures stable practices and
conventional problem solving approaches. In this chapter we define the agent pattern
for fuzzy inference systems generation, proving its “generative” property (accord-
ing with the objective of usable software). We discuss how this approach is use-
ful to enhance productivity while reducing development time, thanks to FIS2JADE
applications.

Analysis, Design and Implementation Model

FIS2JADE has been analyzed and developed adopting the Rational Unified Process
model, using UML as modeling language. The generated classes tree implement-
ing the distributed agent-based fuzzy logic controller is the outcome of a common
analysis and design process performed using the Gaia [11] methodology explicitly
proposed for Agent-Oriented Software Engineering. The Gaia metodology has been
extended to overcome its weaknesses, as described in [9], when applied to JADE
Agents Platform.

Reusability

The FIS2JADE application tool has been designed for reuse and extensibility. New
parsers and converters and their associated interfaces can be added to enhance or
extend the translation engine and object definitions in order to perform new actions
or implement new agents patterns.

1.2 Dependencies

This section identifies external protocols and software offerings upon which this
design relies.

JavaTM. FIS2JADE software is written using JavaTM, an object-oriented network
programming language originally introduced by Sun Microsystems in 1995. The
FIS2JADE framework software is intended for use with the Java 2 Standard Edition,
available at http://java.sun.com/j2se/index.jsp.

MathWorks Simulink R©. Simulink R© is a platform for multi-domain simulation and
Model-Based Design for dynamic systems. It provides an interactive graphical envi-
ronment and a customizable set of block libraries, and can be extended for special-
ized applications. Further information are available at http://www.mathworks.com/
products/simulink/.
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JADE. JADE (Java Agent DEvelopment Framework) is a software framework fully
implemented in Java language. It simplifies the implementation of multi-agent sys-
tems through a middle-ware that complies with the FIPA specifications and through
a set of graphical tools that supports the debugging and deployment phases. The
JADE platform is available for download at http://jade.cselt.it/.

NRC FuzzyJ Toolkit. The NRC FuzzyJ Toolkit from the National Research Council
of Canada’s Institute for Information Technology is a set of Java classes that provide
the capability for handling fuzzy concepts and reasoning. The toolkit is available for
download at http://www.iit.nrc.ca/IR public/ fuzzy/fuzzyJToolkit2.html.

2 The FIS2JADE View of a Distributed Fuzzy Controller

This section introduces main concepts of FIS2JADE view of a fuzzy controller. It
starts by defining the notion of distributed fuzzy controller as seen by FIS2JADE,
which is required to understand the generated classes and relationships among them.
Then the main concepts and relationships of the view are described.

Moreover, the section describes the interactions occurring among roles speci-
fying the ontology-based communication interactions that have been defined by
means of the adopted distributed fuzzy control analysis and design model to help
the analyst/designer using FIS2JADE to structure and extend the generated classes.

2.1 Foundations

The FIS2JADE interpretation of a distributed fuzzy controller can be described as
follows. A distributed fuzzy controller is a collection of fuzzy sensor and consumer
roled agents exchanging fuzzy values and interacting on a pure reactive base. The
Role concept allows the part played by an agent to be logically separated from the
identity of the Agent itself. The distinction between Role and Agent is analogous to
that between Interface and (object) Class: a Role describes the external characteris-
tics of an Agent in a particular context. This is useful in defining re-usable patterns.
Some sensor-like agents are specialized as physical sensors whilst some consumer-
like agents are specialized as physical actuators. Moreover, the same agent may
be capable of playing several roles, both consumer and sensor typed, this may be
the case of inference engine consumers acting as input fuzzy values consumer and
output fuzzy values producers (sensors). Finally, multiple Agents may be able to
play the same Role. Each interaction among roles is driven by specific communica-
tive ontologies induced by involved fuzzy values and initiator/responder agent roles.
The rest of this section describes the knowledge level concepts and interactions that
feature most prominently in the FIS2JADE view of a fuzzy controller as it stands at
the moment.
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2.2 Knowledge-level Concepts

Most of FIS2JADE knowledge-level entity concepts can be grouped into the follow-
ing main categories: Fuzzy Concepts, Fuzzy Sensors, Fuzzy Consumers. Figure 1
gives an informal overview of how these concepts are inter-related.

Fig. 1 FIS2JADE view of a fuzzy controller
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Fuzzy Concept. A Fuzzy Concept entity defines the language that will be used to
discuss a fuzzy concept such as temperature, pressure, age, or height. Each Fuzzy
Concept is characterized by providing a name (for example, “temperature”), the
units of the variable if required (for example, “degrees C”), the universe of dis-
course for the concept (for example a “range from 0 to 100”), and a set of primary
fuzzy terms (like “hot”, “cold” and “warm”) that will be used when describing
the specific concept’s components associated with the fuzzy variable. The name
and units are elements that are mainly used to generate the induced ontology to
describe the Fuzzy Concept. Alternately, the universe of discourse defines a set
of upper and lower bounds for the values of the fuzzy sets used to describe the
concept.

Fuzzy Term. As already stated, fuzzy terms are used to describe a specific fuzzy
component associated with a more general Fuzzy Concept. A fuzzy term is de-
scribed using a term name such as “hot”, along with a fuzzy set that represents
that term, i.e. a mapping of a set of real numbers (xi ) onto membership values (ui )
that (generally) lie in the range [0, 1]. This description is made a part of the ontology
induced by the associated fuzzy variable.

Fuzzy Value. The FuzzyValue defines the same concept identified by a Fuzzy Term
even though from a more generalized view point. In particular, a Fuzzy Value is an
association between a FuzzyConcept and a linguistic expression used to describe a
specific compomponent of it. However, a FuzzyValue can be created using a Fuzzy-
Concept and a FuzzySet, loosing any human language-like expression associated
with it. The FIS2JADE framework uses it to define a crisp value-derived term to
be used by the inferential process. Here a crisp value is a precise numerical value
obtained from a physical sensor and fuzzified (translated into a Fuzzy Value) by a
CrispFuzzyValueSensor located somewhere in the network and wired to the physical
sensor.

FuzzyValueSensor. A FuzzyValueSensor for the distributed FLC is a common de-
sign interface (or stereotype) aimed to identify each MAS role acting as a fuzzy
input value sensor for the FLC. A FuzzyValueSensor exposes and communicates
through specific ontologies describing involved fuzzy values and concepts. Futher-
more it is specialized by a CrispValueSensor when dealing with physical sensors of
the system.

FuzzyValueConsumer. Analogous to sensor, a controller consumer is a common
design interface (or stereotype) defined to identify each MAS role acting as a sensed
fuzzy value consumer. It worths noticing here the producer/consumer approach
adopted to define the distributed fuzzy controller design pattern. A FuzzyValueCon-
sumer registers to specific sensors in order to obtain the measured fuzzy values. As
for sensors, it is specialized into CrispValueConsumer when dealing with physical
actuators of the system.
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3 Case Study-driven Design

The following paragraph describes a Case Study used to design the modeling pattern
adopted by FIS2JADE while trying to illustrate the benefits coming from convert-
ing a single MathWorks Simulink R© FIS controller into a multiagent distributed
controller.

This case study is applied to the well known inverted pendulum as a very classi-
cal control problem. From an application point of view, the inverted pendulum is a
common mechatronic [7] application existing in many different forms, all sharing a
common goal: to balance a link on end using feedback control.

In our application context, the system (Fig. 2) being controlled is a computer-
simulated stationary inverted pendulum composed by a variable mass on the top of a
flexible pole hinged to a stationary variable power strenght motor through a free joint
with one degree of freedom. The motor will try to balance the pendulum depending
on the bopping and bobbing forces excerted on its top mass. This last force makes
the top mass appear as if it were on a spring rather than a rigid stick. Moreover, the
top mass is pushed by a bopping force f1 so to determine an angle from the vertical
that is greater than zero, obtaining an angular falling rate ω increasing or decreasing
as the force of gravity applies in conjunction with an eventual bobbing force f2
tapping the upper mass down to the lower one thus shrinking and extending the pole
of the pendulum. The typical balancing act is performed by the lower variable mass
strenght motor aiming to reverse the falling rate while trying to achieve an angle
from the vertical that is close to zero. In parametric values terms, the desired angle
and angular rate are both zero. In the absence of any other perturbation, if the initial
angle and rate are both zero then the balanced position is maintained. However, if
there is a perturbation induced by the bopping force f1, then the gravity increases
the falling rate forcing the angle to a side of the vertical. Without any control action,
the pole will fall down making the goal unachieved. Obviously, if the initial position
in unbalanced then the control is required immediately.

Fig. 2 Computer-simulated
stationary inverted pendulum
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3.1 A Fuzzy Logic Controller for Inverted Pendulum

Classical control techniques require a deep mathematical background. Nevertheless,
it can be recognized that a small set of common sense rules suffice to solve the
problem (we will see later, a few basic intuitive rules used and tuned to handle the
balancing act). With respect to this consideration, fuzzy controller was introduced
and developed to solve this control problem.

Since our main interest is not how to build the fuzzy logic controller to solve
the inverted pendulum control problem, but is primarly involved in showing how a
generic control problem can be solved using a fuzzy logic controller implemented
according to the agent paradigm and adopting the FIS2JADE vista of fuzzy control,
this phase is skipped and a fine-tuned system will be given directly.

The controller interaction with the system is primarly dependent on its state. This
appears defined in terms of two main input variariables: angle θ with the vertical
and angular rate ω of falling. A further characterization of the system is obtained
from the maximum power of the motor M and the mass m, respectively, used as
bottom motor power and top stick mass, as well as the original stick length l and the
eventual stick shrinking and expansion due to the bobbing force f2. Each of these
affects the main inputs of the controller during the balancing activity. Obviously,
the controller’s output should be the torque force f to be excerted by the motor to
achieve the balancing goal.

With respect to the angle with the vertical, we can think at its maximum value be-
ing+π

2 , at which the pole lies flat on a side (for instance, the right hand side) and the
minimum value being −π

2 , at which the pole lies flat on the opposite side. Thus the
universe of discourse for the angle parameter θ is

[−π
2 ,+π

2

]

. To define the universe
of discourse for the angular velocity ω we could reason, for sake of simplicity fixing
some constant values. Let us assume the pole has an allowed extension in the range
[0.7, 1.3]m whilst the size of the mass m can range in [0.5, 3.5]kg. Furthermore,
let us assume the bumping is such to introduce a perturbation able to set the mass
starting position to an angle θ = + π

10 with the vertical. Finally let us range the motor
size in the interval [60, 180] Amps. With these constraints is reasonable to assume
a maximum angular rate equal to 4

3π , leading us to set the universe of discourse
[

− 4
3π,

4
3π

]

/s.

To deal with the controller’s output, we must consider that the presented scheme
adopts a variable strenght motor with a linear power driving scheme realized by
two amplifiers with a bridge configuration. The example shows, on a principle base,
the left amplifier shaped like a tension pursuer (Vout(1) = Vin), while the right am-
plifier is acting as a differentiator (if the four resistors are equal, Vout(2) = Vcc -
Vin). This configuration let us set modulus and direction of the Vm input tension
driving in this way the motor rotation. In the light of these assumption, letting the
maximum working tension be 115V, and the motor power range from 60W to 180W,
respectively 0.52A and 1.56A at the fixed maximum working tension, we could set
the universe of discourse of controller’s output to [0, 115]/V. Having defined the
fuzzy labels, shown in Table 1, the membership functions for each input and output
and the controller’s rule base are depicted in Fig. 3.
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Table 1 Fuzzy labels for inverted pendulum FLC rule base definition

Label Description

NM Negative Medium
NS Negative Small
Z Zero
PS Positive Small
PM Positive Medium

The adopted fuzzy inference scheme is the classical Mamdani min-max composition
and the choosen defuzzification method is the centroid as shown in (1).

C OG =

N
∑

i=1
x
′
i · Ai

N
∑

i=1
Ai

(1)

So far the stationary inverted pendulum fuzzy logic controller has been completed.

Fig. 3 Membership functions and rule base for stationary inverted pendulum
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3.2 Simulink R© FIS for Inverted Pendulum FLC

To fully demostrate the controller performance, a suitable simulation environment
is provided by MATLAB R©/Simulink R©. The environment allows us to simulate the
whole system to control by means of composition of functional building blocks.
Among these we find the Simulink R© Fuzzy Inference System implementing the
defined FLC.

Since our main interest is focused on the conceptualization of a MathWorks
Simulink R© Fuzzy Inference System in terms of ontology-driven Java agents, in
the following we will directly report (Listing 1) the FLC controller via its FIS seri-
alization format.

Listing 1 Simulink R© FIS file for stationary inverted pendulum

[ System ]
Name= ‘ Inve r t edPendu l um ’
Type = ‘mamdani ’
V er s i o n =2.0
NumInputs =2
NumOutputs =1 NumRules=11
AndMethod = ‘min ’
OrMethod = ‘max ’
ImpMethod= ‘min ’
AggMethod = ‘max ’
DefuzzMethod= ‘ c e n t r o i d ’

[ Input1 ]
Name= ‘ Theta ’
Range =[−1.57 1 . 5 7 ]
NumMFs=5
MF1= ‘NM’ : ‘ t r i m f ’ , [−3 . 14 −1.57 −0.62]
MF2= ‘NS ’ : ‘ t r i m f ’ , [−1 . 57 −0.62 0 ]
MF3= ‘Z ’ : ‘ t r i m f ’ , [−0 . 620 0 . 6 2 ]
MF4= ‘PS ’ : ‘ t r i m f ’ , [ 0 0 . 62 1 . 5 7 ]
MF5= ‘PM’ : ‘ t r i m f ’ , [ 0 . 6 2 1 . 5 7 3 . 1 4 ]

[ Input2 ]
Name= ‘Omega ’
Range =[−4.18 4 . 1 8 ]
NumMFs=5
MF1= ‘NM’ : ‘ t r i m f ’ , [−6 . 28 −4.18 −2.09]
MF2= ‘NS ’ : ‘ t r i m f ’ , [−4 . 18 −2.090]
MF3= ‘Z ’ : ‘ t r i m f ’ , [ −2 . 09 0 2 . 0 9 ]
MF4= ‘PS ’ : ‘ t r i m f ’ , [ 0 2 . 09 4 . 1 8 ]
MF5= ‘PM’ : ‘ t r i m f ’ , [ 2 . 0 9 4 . 18 6 . 2 8 ]

[ Output1 ]
Name= ‘VIn ’
Range =[0 115]
NumMFs=5
MF1= ‘NM’ : ‘ t r i m f ’ , [−1 0 4 3 . 1 2 5 ]
MF2= ‘NS ’ : ‘ t r i m f ’ , [ 2 8 . 7 5 4 3 . 1 2 5 5 7 . 5 ]
MF3= ‘Z ’ : ‘ t r i m f ’ , [ 4 3 . 1 2 5 57 . 5 7 1 . 8 7 5 ]
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Listing 1 (continued)
MF4= ‘PS ’ : ‘ t r i m f ’ , [ 5 7 . 5 71 . 875 8 6 . 1 2 5 ] MF5= ‘PM’ : ‘ t r i m f ’ , [ 7 1 . 8 7 5
115120]

[ Rules ]
3 1 , 5 ( 1 ) : 1
3 2 , 4 ( 1 ) : 1
4 2 , 3 ( 1 ) : 1
1 3 , 5 ( 1 ) : 1
2 3 , 4 ( 1 ) : 1
3 3 , 3 ( 1 ) : 1
4 3 , 2 ( 1 ) : 1
5 3 , 1 ( 1 ) : 1
2 4 , 3 ( 1 ) : 1
3 4 , 2 ( 1 ) : 1
3 5 , 1 ( 1 ) : 1

3.3 Agent-based Approach for Inverted Pendulum FLC

In order to better understand the FIS2JADE view of a distribuited ontology-based
fuzzy controller, we will present how the previously defined Simulink R© FIS file
will be handled to obtain an agent-based distributed controller. We will accomplish
this task showing how the system is analyzed, designed and implemented adopting
the FIS2JADE view.

The aim of this system is to provide a distributed fuzzy controller based on the
given Simulink R© FIS file. The MAS analysis and design will be conducted using
the Gaia [11] methodology and implemented using the JADE [16] Agents Platform
and the FuzzyJ Toolkit [15].

The Analysis Phase

The analysis phase identifies six roles: ThetaFuzzyValueSensor and OmegaFuzzy-
ValueSensor sensing, respectively, the pendulum’s error from the vertical and the
top mass angular velocity; ThetaFuzzyValueConsumer and OmegaFuzzyValueCon-
sumer collecting the sensed values needed to infer control actions; VInFuzzyValue-
Sensor using the sensed values to infer control actions to sense the VIn required to
the balance act; VInFuzzyValueConsumer, that applies the sensed VIn to the bottom
strenght motor in order to balance the stationary pendulum. A Gaia roles model for
the system is presented in Table 2. In particular, recognizing a common structure
schema descriptions are presented via a role template approach for both θ /ω fuzzy
value sensors and consumers.

It worths noticing here that, in these definitions, all interactions with the Direc-
tory Facilitator (DF) are identified as actions because of the DF interaction model
provided by JADE and based on static methods invocation.
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Table 2 Distributed FLC roles schemas
Role Schema: ThetaFuzzyValueSensor (OmegaFuzzyValueSensor)

Description:
It senses the input crisp value (angle θ with the vertical,
angular velocity ω).
It also acquaints specific subscribed agents.

Protocols and Activities:
RegisterDF, ReadCrispValue, FuzzifyValue,
SensorValueAcquaintingRequest<T,FVS>, RegisterAcquaintanceRequest,
SensorValueNotification<T,FVS>.

Permissions:
reads measured sensedCrispValue<T> // theta angle (omega rate)

supplied consumerAID // acquaintance subscriber
supplied conceptTName

generates fuzzyfied sensedFuzzyValue<T> // fuzzy theta (omega rate)
writes supplied consumerAID

supplied conceptTName

Responsibilities:
Liveness:

MONITOR = Sense<T>‖ SubscribeConsumers
SUBSCRIBE CONSUMERS =

RegisterDF.(AcquaintanceInformRequest<T,FVS>.
(RegisterAcquaintanceRequest.
(AcquaintanceInformAgreement<T,FVS>|
InformAboutSensedValue<T,FVS>) )|
AcquaintanceInformRefusal<T,FVS>) )ω

SENSE<T> = ReadCrispValue.FuzzifyValue.
InformAboutSensedValue<T,FVS>∗

Safety: A successful DF registration will be held during the
whole life time.

Role Schema: VInFuzzyValueSensor

Description:
It senses the VIn value needed to balance the stationary inverted
pendulum. It also acquaints specific subscribed agents.

Protocols and Activities:
RegisterDF, CheckInputAvailability,FireRuleBase,
SensorValueAcquaintingRequest<VIn,FVS>,
RegisterAcquaintanceRequest, SensorValueNotification<VIn,FVS>.

Permissions:
reads supplied consumerAID // acquaintance subscriber

supplied conceptTName
generates fuzzyfied sensedFuzzyValue<VIn> // fuzzy voltage to provide
writes supplied consumerAID

supplied conceptTName

Responsibilities:
Liveness:

MONITOR = Sense<VIn> ‖ SubscribeConsumers
SUBSCRIBE CONSUMERS =

RegisterDF.(AcquaintanceInformRequest<VIn,FVS>.
(RegisterAcquaintanceRequest.
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Table 2 (continued)

Role Schema: ThetaFuzzyValueSensor (OmegaFuzzyValueSensor)

(AcquaintanceInformAgreement<VIn,VS>|
InformAboutSensedValue<VIn,FVS>) )|
AcquaintanceInformRefusal<VIn,FVS>) )ω

SENSE<VIn> =
(CheckInputAvailability.
[ FireRuleBase.InformAboutSensedValue<VIn,FVS>∗ ] )ω

Safety:
A successful DF registration will be held during the whole life time.
No needed input is empty when firing rule base.
At least an input has changed before firing rule base.

Role Schema: ThetaFuzzyValueConsumer (OmegaFuzzyValueConsumer)

Description:
It senses the input fuzzy value (angle θ with the vertical,
angular velocity ω).

Protocols and Activities:
SearchDF<T>, SensorValueAcquaintingRequest<T,FVC>,
SensorValueNotification<T,FVC>, NotifyChanged.

Permissions:
reads supplied sensedFuzzyValue<T> // fuzzy value
generates supplied sensedFuzzyValue<T> interrupt

Responsibilities:
Liveness:

PERFORM = SearchDF<T>.
AcquaintanceInformRequest<T,VC>
[ AcquaintanceInformAgreement<T,FVC> ]
( InformAboutSensedValue<T,FVC>.Consume )ω

CONSUME = NotifyChanged
Safety:

A successful DF search for T concept ontology supporting sensor has
been performed.
sensedFuzzyValue<T> is not empty when firing rule base.

Role Schema: VInFuzzyValueConsumer

Description:
It consumes VIn fuzzy value to obtain the defuzzyfied crisp
value to provide to the strenght motor in order to balance
the falling pendulum. It also gets acquainted with specific
sensor agents.

Protocols and Activities:
SearchDF<VIn>, DefuzzifyValue, ApplyOutput,
SensorValueAcquaintingRequest<VIn,FVC>,
SensorValueNotification<VIn,FVC>.

Permissions:
reads supplied sensedFuzzyValue<VIn> // fuzzy output
generates defuzzified sensedCrispValue<VIn> // output to provide
applies defuzzified sensedCrispValue<VIn> // output provided

Responsibilities:
Liveness:

PERFORM = SearchDF<VIn>.
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Table 2 (continued)

Role Schema: ThetaFuzzyValueSensor (OmegaFuzzyValueSensor)

AcquaintanceInformRequest<VIn,FVC>
[ AcquaintanceInformAgreement<VIn,FVC> ]
( InformAboutSensedValue<VIn,FVC>.Consume )ω

CONSUME = DefuzzifyValue.ApplyOutput
Safety:

A successful DF search for VIn concept ontology supporting sensor
has been performed.
sensedFuzzyValue<VIn> is not empty when applying voltage.

The adopted interaction model is presented in Fig. 4. This model consists of a set
of protocol definitions and has been used to fine tune the roles model. The reported
roles, for simplicity, have been identified as FVS<T> for <T>FuzzyValueSensor
and FVC<T> for <T>FuzzyValueConsumer.

The Design Phase

The design phase allows to achieve the Agent model (Fig. 5) that leads to the iden-
tification of the agent types that will make up the system and the agent instances
from these. The agent model for our system will include four agent types: the
ThetaSensor and OmegaSensor, fulfilling the homologous FuzzyValueSensor roles;

Fig. 4 Gaia interaction model
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Fig. 5 Gaia agent model

the VInSensor, who fulfills the VInFuzzyValueSensor, ThetaFuzzyValueConsumer
and OmegaFuzzyValueConsumer roles; and the PendulumBalancer, who fulfills the
VInFuzzyValueSensor role. Furthermore, there will be one single instance of each
agent type.

Services and acquaintances model are presented, respectively, in Table 3 and
Table 4, thus identifying the main services required to realize the agent’s role and
the lines of communication between the different agents types.

This completes the abstract analysis and design of the system enabled by Gaia.

JADE Design and Implementation

This section shows the design and implementation activities performed by the
FIS2JADE conversion tool in order to produce the JADE based MAS. This phase has
been conducted according to the roadmap presented in [13]. Thus the first step is to
define the ACL Messages by using the identified protocols and interaction models.
Table 5 presents the more relevant ACL messages types among those defined by the
previously described interactions. In Table 5, <T>FuzzyValueSensorOntology and
<T>FuzzyValueConsumerOntology are specialized from the FIS2JADE Fuzzy-

Table 3 Gaia Services Model
Service Balance Inverted Stationary Pendulum
Inputs θ angle, ω rate
Outputs Voltage to provide to the strength motor
Pre conditions A multi-agent FLC is instantiated and associated to the physical sensors
Post conditions θ and ω are reduced
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Table 4 Gaia acquaintances model

ThetaSensor OmegaSensor VInSensor PendulumBalancer

ThetaSensor I

OmegaSensor I

VInSensor I,A I,A I

PendulumBalancer I,A

Legend (read occurrences in rows):

I: Interacts, the row indentified agent type interacts with the column

identified one.

A: Is acquainted, the row indentified agent type has the column identified

one in his acquaintances data structure.

Table 5 ACL messages definition

ACLMessage AcquaintanceInformRequest<T>

Sender FVC<T>

Receiver FVS<T>

FIPA performative SUBSCRIBE

Protocol SensorValueAcquaintingRequest

Language SL

Ontology <T>FuzzyValueSensorOntology

Content Ontology action: Subscribe

ACLMessage InformAboutSensedValue<T>

Sender FVS<T>

Receiver FVC<T>

FIPA performative INFORM REF

Protocol SensorValueNotification

Language SL

Ontology <T>FuzzyValueConsumerOntology

Content Ontology action: Consume

ConceptOntology. This ontology describes fuzzy concepts, terms and sets adhering
to the FuzzyJ Toolkit proposed taxonomy. Following, FIS2JADE defines data struc-
tures and software modules that are going to be used by the agents according to the
played roles. Moreover JADE behaviours needed to implement liveness formulas
from the roles model are written down in a bottom-up implementation process. Fur-
thermore, for each safety properties block of the roles is defined a specific behaviour
responsible for monitoring it and suspending or adding the liveness-dedicated be-
haviour to the agent scheduling depending on the safety condition value. Last
FIS2JADE produces a static class utility aimed to startup the distributed agent plat-
form and fuzzy logic controller. FIS2JADE, when applied to this specific case study
writes down consume and produce empty placeholders the MAS developer should
fill in order complete the MAS implementation (Listing 2).



490 V. Loia, M. Veniero

Listing 2 Customizations needed for implementation completion.

publ i c c l a s s The t aSenso r ex tends C r i s p V a l u e S e n s o r {
[ . . . ]
publ i c f l o a t r e a d C r i s p V a l u e ( ) {

/ / empty p l a c e h o l d e r f o r t h e t a c r i s p v a l u e s e n s i n g
}

}
publ i c c l a s s OmegaSensor ex tends C r i s p V a l u e S e n s o r {
[ . . . ]
publ i c f l o a t r e a d C r i s p V a l u e ( ) {

/ / empty p l a c e h o l d e r f o r omega c r i s p v a l u e s e n s i n g
}

}
publ i c c l a s s VInAc t ua t o r ex tends Cri spValueConsumer {
[ . . . ]
publ i c void app l yOu t pu t ( f l o a t v a l u e ) {

/ / empty p l a c e h o l d e r f o r VIn v a l u e a p p l y i n g
}

}

4 Conclusive Remarks and Future Work

Most real fuzzy control applications require a limited number of inputs to the rule
base making the control surface suitable to define, test and implement simple fuzzy
control rules in simple environments. Generally this is due to hardware, software or,
more generally, performance requirements contraints. In more complex surroundings,
the number of inputs would not be so limited when wishing to perform realistic tasks
aided by fuzzy controllers. A typical scenario is provided by autonomous systems
which typically need many sensors of different types, resulting in a huge input space.

This chapter presented a distributed agent-based model to implement FLCs by
means of JADE agents platform. The model can be succesfully applied to context
requiring more complex interactions among distributed inference engines. In partic-
ular, the proposed model aims to answer to some important issues about the fuzzy
control system scaling up capabilities. These would allow programmers to define
reactive fuzzy system able to respond to a complex environment without throwing
out useful data or decreasing the input space by non-fuzzy means. This task can
be achieved by defining many parallel and independent fuzzy controllers linked
together by producer-consumer relationships to make up a fuzzy control network
(FCN). In this FCN each fuzzy consumer node is feeded by one or more fuzzy
sensors, acting as FCN sources. Inner FCN nodes can be implemented both as
fuzzy consumers and sensors. Such a node accepts the outputs of other controllers
as inputs and feeds with its output assignment of rules the input of other fuzzy
consumers value. In this way, when such a rule set fires, the output of this control
node can be added into the centroid calculation of sink fuzzy consumers allow-
ing them to behave as fuzzy multiplexers by making smooth transitions between
multiple recommendations according to qualitative rules. This decomposition, also
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known as fuzzy pre-processing, allows the mapping to be performed at each stage
to be kept much simpler and performative than the usual approach while keeping
unchanged the input space features and granularity. Moreover, the model allows
to distribute FCN nodes onto autonomous, mobile and intelligent agents enabling
improved distribuited inference handling strategies.

Due to the generality of the model, FIS2JADE tool has been developed to convert
Simulink R© FIS-format controllers into a Multi-Agent System adhering to the given
model in order to improve developers efficiency when dealing with distributed con-
trol. As future works we plan to improve the model and tool allowing more complex
and automatized ontology driven processes to distribute intelligence in a multi-agent
based system.
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An Overview on the Approximation Quality
Based on Rough-Fuzzy Hybrids

Van-Nam Huynh, Tu-Bao Ho and Yoshiteru Nakamori

Abstract The so-called measure of approximation quality plays an important role
in many applications of rough set based data analysis. In this chapter, we provide
an overview on various extensions of approximation quality based on rough-fuzzy
and fuzzy-rough sets, along with highlighting their potential applications as well as
future directions for research in the topic.

1 Introduction

After nearly twenty years since the introduction of fuzzy sets theory [51], Pawlak
[33] introduced the notion of a rough set as a new mathematical tool to deal with
the approximation of a concept in the context of incomplete information. Basically,
while a fuzzy set models the ill-definition of the boundary of a concept often de-
scribed linguistically, a rough set characterizes a concept by its lower and upper
approximations due to indiscernibility between objects arose because of incom-
pleteness of available knowledge. Since its inception, the rough set theory has been
proven to be of substantial importance in many areas of application [34, 39, 45].

During the last decades, many attempts to establish the relationships between
the two theories, to compare each to the other, and to simultaneously hybridize
them have been made, e.g., [10, 30, 31, 35, 40, 46, 47, 49, 50]. Among these lines
of research, rough fuzzy hybridization has emerged as a promising new paradigm
for decision-making related applications [17, 18, 31, 32], data analysis [22, 25]
and many others. This is due to rough-fuzzy hybrids can encapsulate two distinct
aspects of imperfection of knowledge being vagueness and indiscernibility, which
may simultaneously occur in many situations of practical application [10].

On the other hand, one of issues of great practical importance in data analysis
is discovering dependencies between attributes in datasets. In rough set theory, the
notion of approximation quality (also called degree of dependency) is often used
to evaluate the classification success of attributes in terms of a numerical evalua-
tion of the dependency properties generated by these attributes. Particularly, it has
been used as a useful tool, for instance, for discovering data dependencies and for
semantics-preserving feature reduction using only the given data without any ad-
ditional information as required by other theories [13, 25, 34]. This chapter aims

H. Bustince et al., (eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation
and Models. C© Springer 2008 493
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at providing an overview on various extensions of approximation quality based on
rough-fuzzy hybrids, along with highlighting their potential applications and future
directions for research in the topic as well.

The structure of the rest of this chapter is as follows. Section 2 briefly introduces
necessary notions of fuzzy sets and rough sets. Section 3 recalls Pawlak’s notions
of approximation quality and significance of attributes. In Sect. 4, the notions of
rough fuzzy sets and fuzzy rough sets are reviewed in relation to their applications
in practice. Sect. 5 devotes to an overview on rough-fuzzy hybrids based extensions
of approximation quality, accompanying with illustrative examples. Finally, some
concluding remarks and future work are presented in Sect. 6.

2 Basic of Rough Sets and Fuzzy Sets

In this section we briefly recall basic notions of fuzzy sets and rough sets. For the
purpose of this paper, it is sufficient to consider the finite version of universes of
discourse.

2.1 Fuzzy Sets

Let U be a finite and non-empty set called universe of discourse. A fuzzy set F
of U is a mapping μF : U −→ [0, 1], where for each x ∈ U we call μF (x) the
membership degree of x in F .

Given a number α ∈ (0, 1], the α-cut, or α-level set, of F is defined as follows

Fα = {x ∈ U|μF (x) ≥ α}

which is a subset of U. Let us denote rng(μF ) = μF (U) \ {0} and assume that
rng(μF ) = {α1, . . . , αn}, where αi > αi+1, for i = 1, . . . , n − 1. Then the mem-
bership function μF can be expressed as [12]

μF (x) =
∑

x∈Fαi

(αi − αi+1) (1)

Clearly, α1 = 1 if F is normal, i.e. ∃x such that μF (x) = 1. This representation of a
fuzzy set is considered as providing a probability based semantics for membership
function of fuzzy sets, where mi = (αi − αi+1), with αn+1 = 0 by convention,
can be viewed as the probability that Fαi stands as a crisp representative of F .
Then {(Fαi ,mi )|i = 1, . . . , n} is usually referred to as a finitely discrete consonant
random set, or body of evidence [41]. Note that the normalization assumption of
F insures the body of evidence does not contain the empty set. This view of fuzzy
sets has been also used in [2] to introduce the so-called mass assignment of a fuzzy
set, with relaxing the normalization assumption of fuzzy sets. Namely, the mass
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assignment of F , denoted by mF , is a probability distribution on 2U defined by

mF (∅) = 1− α1,

mF (Fαi ) = mi , for i = 1, . . . , n.
(2)

2.2 Rough Sets

Pawlak’s theory of rough sets begins with the notion of an approximation space,
which is a pair 〈U, R〉, where U is a non-empty set (the universe of discourse)
and R an equivalence relation on U , i.e., R is reflexive, symmetric, and transitive.
The relation R decomposes the set U into disjoint classes in such a way that two
elements x, y are in the same class iff (x, y) ∈ R. If two elements x, y in U belong
to the same equivalence class, we say that x and y are indistinguishable. For X ∈
2U, in general it may not be possible to describe X precisely in 〈U, R〉. One may
then characterize X by a pair of lower and upper approximations defined as follows
[33]

R(X) = {x ∈ U|[x]R ⊆ X}; R(X) = {x ∈ U|[x]R ∩ X �= ∅}

where [x]R stands for the equivalence class of x by R. The pair (R(X), R(X)) is
the representation of an ordinary set X in the approximation space 〈U, R〉 or simply
called the rough set of X.

In the context of rough set based data analysis, the equivalence relation in an
approximation space is often interpreted via the notion of information systems. An
information system I is a pair I = 〈U,A〉, where U is a set of objects, A is a set
of attributes, and each attribute a ∈ A associated with the set of attribute values Va

is understood as a mapping a : U → Va . An information system is called a decision
system if assuming that the set of attributes A = C ∪D and C ∩D �= ∅, where C is
the set of conditional attributes and D is the set of decision attributes. Given an
information system I, each subset P of the attribute set A induces an equivalence
relation IND(P) called P-indiscernibility relation as follows

IND(P) = {(x, y) ∈ U
2|a(x) = a(y), for all a ∈ P}

and IND(P) = ∩
a∈P

IND({a}). If (x, y) ∈ IND(P) we then say that objects x and y

are indiscernible with respect to attributes in P. In other words, we cannot distin-
guish x from y, and vice versa, in terms of attributes in P. Note that the partition of
U generated by IND(P), denoted by U/IND(P), can be calculated in terms of those
partitions generated by single attributes in P as follows [24]

U/IND(P) = ⊗
a∈P

U/IND({a}) (3)
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where

X ⊗ Y = {X ∩ Y |X ∈ X ,Y ∈ Y, X ∩ Y �= ∅}

For simplicity of notation, from now on we use the same notation P to denote the
equivalence relation induced from a set P of attributes, instead of IND(P).

3 Pawlak’s Approximation Quality

As mentioned in [13], one of the strengths of rough set theory is the fact that all its
parameters are directly obtained from the given data. That is, in rough set theory
the numerical value of imprecision is calculated by making use of the granularity
structure of the data only, while other uncertainty theories like Dempster-Shafer
theory [41] or fuzzy set theory [26] require probability assignments and membership
values respectively.

In [34], Pawlak firstly introduces two numerical characterizations of imprecision
of a subset X in the approximation space 〈U, P〉: accuracy and roughness. Accuracy
of X , denoted by αP (X), is simply the ratio of the number of objects in its lower
approximation to that in its upper approximation; namely

αP (X) = |P(X)|
|P(X)| (4)

where | · | denotes the cardinality of a set. Then the roughness of X , denoted by
ρP (X), is defined by subtracting the accuracy from 1 as

ρP(X) = 1− αP (X) = 1− |P(X)||P(X)| (5)

Note that the lower is the roughness of a subset, the better is its approximation.
In [48], Yao has interpreted Pawlak’s accuracy measure in terms of a classic dis-
tance measure based on sets, called Marczewski-Steinhaus (MS) metric [27], which
is defined by

DM S(X,Y ) = |X ∪ Y | − |X ∩ Y |
|X ∪ Y | = 1− |X ∩ Y |

|X ∪ Y |

Using MS metric, the roughness measure of a set X in 〈U, P〉 is the distance between
its lower and upper approximations.

Suppose now that two views of universe U are given, which may come from
two different subsets P and Q of attributes, by means of associated equivalence
relations. Then an interesting question arises to be how well the knowledge from
one view can be expressed by that from the other. In other words, we are concerned
here with the issue of measuring dependencies between attributes. This issue is very
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important in many tasks of data analysis. In rough set theory, the so-called approx-
imation quality measure γ [34] is often used for such a situation to describe the
degree of partial dependency between attributes.

Particularly, let P and Q be equivalence relations over U, then the approximation
quality of Q by P , also called degree of dependency, is defined by

γP(Q) = |POSP (Q)|
|U| (6)

where

POSP (Q) =
⋃

X∈U/Q

P(X) (7)

is called the positive region of the partition U/Q with respect to P . We then say
that Q depends on P in a degree k = γP(Q) (0 ≤ k ≤ 1) and denote as P ⇒k Q.
If k = 1, Q totally depends on P; if 0 < k < 1, Q partially (or roughly) depends
on P , and if k = 0, Q is totally independent from P .

Note that the approximation quality γP(Q) can be also represented in terms of
accuracy as follows

γP (Q) =
∑

X∈U/Q

|P(X)|
|U| αP (X) (8)

Then, γP (Q) is regarded as the weighted mean of the accuracies of approximation
of sets X ∈ U/Q by P [13].

Another issue of great practical importance is that of identifying how significant
a specific attribute (or a group of attributes) is in respect of the classification power.
This information is captured by calculating the change in dependency when an at-
tribute is removed from the set of considered conditional attributes. In particularly,
we can measure the significance of an attribute a ∈ P with respect to the classifica-
tion induced from Q by the difference

σP (Q, a) = γP(Q)− γP\{a}(Q) (9)

This measure expresses how influence on the quality of approximation if we drop
the attribute a from P . The higher the change in dependency, the more significant
the attribute is. If the significance is 0, the attribute is dispensable. A subset S of P
is called a Q-reduct of P (or a reduct of P with respect to Q) if γS(Q) = γP(Q).

In [13], the authors have also used the MS metric to re-interpret the rough ap-
proximation quality γ and ascertain its statistical significance. The approximation
quality measure and its extended variants have been extensively studied and used in
many applications, especially in feature selection, e.g., [4, 9, 22, 23, 24, 25, 43, 44]
and ranking problems, e.g., [14, 15, 16].
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4 Rough-Fuzzy Hybrids

As argued by Dubois and Prade [10], rough sets and fuzzy sets capture two distinct
aspects of imperfection of knowledge: indiscernibility and vagueness, that may be
simultaneously present in a given application. Therefore, it is necessary to find out
hybrid models which combines these notions for knowledge representation and inte-
gration in such situations. Among many possibilities for rough-fuzzy hybridization,
the most typical ones are to fuzzify sets to be approximated and/or to fuzzify the
equivalence relation in an approximation space [10, 11]. The first case allows to
obtain rough approximations of fuzzy sets which results in the so-called rough
fuzzy sets; while the second case allows to obtain approximations of (fuzzy) sets
by means of fuzzy similarity relations resulting in the so-called fuzzy rough sets.

4.1 Rough Fuzzy Sets

Given an approximation space 〈U, P〉. Let F be a fuzzy set in U with the member-
ship function μF . The upper and lower approximations P(F) and P(F) of F by P
are fuzzy sets in the quotient set U/P with membership functions defined by, for
each Fi ∈ U/P ,

μP(F)(Fi ) = sup
x∈Fi

{μF (x)}

μP(F)(Fi ) = inf
x∈Fi

{μF (x)}

The pair (P(F), P(F)) is then called a rough fuzzy set [11].
Furthermore, the rough fuzzy set (P(F), P(F)) naturally induces two fuzzy

sets P∗(F) and P∗(F) in U with membership functions are defined respectively
as follows

μP∗(F)(x) = μP(F)([x]P) and μP∗(F)(x) = μP(F)([x]P) (10)

That is, P∗(F) and P∗(F) are fuzzy sets with constant membership degree on
the equivalence classes of U by P , and for any x ∈ U, μP∗(F)(x) (respectively,
μP∗(F)(x)) can be viewed as the degree to which x possibly (respectively, definitely)
belongs to the fuzzy set F [3]. Conceptually, the pair (P∗(F), P∗(F)) can be viewed
as “extension” of rough fuzzy set (P(F), P(F)).

Rough fuzzy sets could find many applications in practical situations where a
fuzzy classification or a fuzzy concept must be approximated by available knowl-
edge expressed in terms of a Pawlak’s approximation space, for instance as in pattern
recognition and image analysis problems [1, 3, 5, 6, 7, 36, 37, 38, 42].
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4.2 Fuzzy Rough Sets

Let us consider another extension of rough sets corresponding to the second case
mentioned above. In this extension, instead of equipping the universe U with an
equivalence relation P , we consider a fuzzy similarity relation R, i.e., a fuzzy set R
of U

2, such that the properties of reflexivity (μR(x, x) = 1), symmetry (μR(x, y) =
μR(y, x)), and ∧-transitivity of the form

μR(x, z) ≥ μR(x, y)∧ μR(y, z)

are holded [52]. In order to define fuzzy rough approximation operators, the coun-
terpart of equivalence classes called fuzzy equivalence classes must be defined first.
According to Zadeh [52], the fuzzy equivalence class [x]R of objects close to x is
defined by

μ[x]R (y) = μR(x, y),∀y ∈ U (11)

Interestingly, this definition degenerates to the usual definition of equivalence
classes when R is a non-fuzzy relation. Furthermore, Höhle [19] also proposed a
definition of what should be a fuzzy equivalence class X by means of the following
axioms

(i) μX is normalized, i.e. ∃x, μX (x) = 1,
(ii) μX (x)∧ μR(x, y) ≤ μX (y),

(iii) μX (x)∧ μX (y) ≤ μR(x, y).

Then, according to [10], a fuzzy set [x]R as in (11) is a fuzzy equivalence class in
the sense of Höhle.

The family of fuzzy equivalence classes {[x]R|x ∈ U}, also denoted by U/R,
forms a “fuzzy partition” of U. Also, a more direct way is to define a family F =
{F1, . . . , Fn} of normal fuzzy sets of U, with m < |U|, which covers U sufficiently
in the following sense

inf
x∈U

max
i

μFi (x) > 0

Further, a disjointness property between Fi ’s can be requested as

∀i, j, sup
x∈U

min{μFi (x), μFj (x)} < 1

In the literature, a stronger restriction is often adopted

n
∑

i=1

μFi (x) = 1 (12)
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for any x ∈ U. Then F plays the role of the family of fuzzy equivalence classes
induced from a similarity relation R, i.e., F = U/R.

Given a fuzzy approximate space 〈U, R〉, a fuzzy set F can be approximated by
means of the fuzzy partition U/R in terms of an R-upper and an R-lower approxi-
mation R(F) and R(F) as follows [10]

μR(F)(Fi ) = sup
x∈U

min{μFi (x), μF (x)} (13)

μR(F)(Fi ) = inf
x∈U

max{1− μFi (x), μF (x)} (14)

for any Fi ∈ U/R. The pair (R(F), R(F)) is then called a fuzzy rough set. When
Fi ’s are crisp, i.e., R is an equivalence relation, we obtain the rough approximation
of F which results in a rough fuzzy set defined previously.

As noted in [24], these definitions given in (13)–(14) differ a little from the crisp
rough approximations, as the memberships of individual objects to the approxima-
tions are not explicitly available. As a result of this, fuzzy rough approximations are
redefined as fuzzy sets of U [24] by

μR(F)(x) = sup
Fi∈U/R

min

(

μFi (x), sup
y∈U

min{μFi (y), μF (y)}
)

(15)

μR(F)(x) = sup
Fi∈U/R

min

(

μFi (x), inf
y∈U

max{1− μFi (y), μF (y)}
)

(16)

These definitions have been often used in application of fuzzy rough sets to dimen-
sionality reduction [22, 23, 24, 25, 44].

Remark 1. Note that (15)–(16) can be viewed as the “extension” of the fuzzy rough
set (R(F), R(F)), which was defined in [10] making use of the knowledge of fuzzy
similarity relation R directly, instead of fuzzy equivalence classes induced by R.
Particularly, according to Dubois and Prade [10], we have

μR(F)(x) = sup
y∈U

μF (x) ∗ μR(x, y) (17)

μR(F)(x) = inf
y∈U

μR(x, y)→ μF (y) (18)

where ∗ is a t-norm and → is an S-implication operator. However, in practical
applications of fuzzy rough sets in data analysis, the knowledge of fuzzy similarity
relation R may not be available, but a fuzzy linguistic partition of attribute domain
which plays the role of the family of fuzzy equivalence classes is often pre-assumed.
This practically explains why (15)–(16) is often used in application.

For a more general and comprehensive treatment of fuzzy rough sets, the readers
can refer, e.g., to [10, 11, 40, 49].
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5 Approximation Quality Based on Rough-Fuzzy Sets

As we have mentioned previously, rough fuzzy sets arise naturally when we want to
approximate a fuzzy set or a fuzzy classification by means of the available knowl-
edge expressed in terms of an approximation space 〈U, P〉.

The first case may often occur in, for example, problems of image analysis, where
U denotes a gray image or feature space and U/P is a partition of U, a fuzzy set
F can be viewed to represent ill-defined pattern classes or some imprecise image
property such as brightness, darkness, smoothness, etc [3, 7]. In such a situation,
roughness (or accuracy) of a fuzzy set F may be used to provide the information
of how well its approximation is in 〈U, P〉. Regarding to this, Banerjee and Pal [3]
have proposed a roughness measure for fuzzy sets and have discussed the issue of
how to use this measure in tasks of image analysis.

The second case may come up in a natural way when a linguistic classification
must be expressed by means of already existing knowledge P . For example, let us
consider two attributes “experience” and “salary” in a database of employees. Then
the attribute “experience” may take values in a finite set of labels such as good, poor,
very good, etc., and the attribute “salary” may have numerical values. Then it is
natural to intuitively infer a “partial” dependence between “experience” and “salary”
as (the better the experience, the higher the salary). However, such a dependency
could not be expressed in terms of traditional data dependencies, because there may
be different employees having the same value of “experience” but different salaries,
even in small magnitude. Therefore, it is necessary and useful to look for measures
such as the approximation quality that may support us as numerical characteristics
to realize partial dependency between attributes in such situations.

5.1 Roughness of a Fuzzy Set

Banerjee and Pal’s Approach

In [3], Banerjee and Pal have proposed a roughness measure for fuzzy sets in a
given approximation space. Essentially, this measure of roughness of a fuzzy set
depends on parameters that are designed as thresholds of definiteness and possibility
in membership of the objects in U to the fuzzy set.

More explicitly, let us be given an approximation space 〈U, P〉 and a fuzzy set F
in U. We now consider parameters α, β such that 0 < β ≤ α ≤ 1. The α-cut P∗(F)α
and β-cut P∗(F)β of fuzzy sets P∗(F) and P∗(F), respectively, are called to be the
α-lower approximation and the β-upper approximation of F in 〈U, P〉, respectively.
Then a roughness measure of the fuzzy set F with respect to parameters α, β, with
0 < β ≤ α ≤ 1, and the approximation space 〈U, P〉 is defined by

ρ
α,β

P (F) = 1− |P∗(F)α|
|P∗(F)β |
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By the assumption made on parameters, we have

1. 0 ≤ ρ
α,β
P (F) ≤ 1.

2. If F is a fuzzy set such that there is a member x in each equivalence class of
U/P with μF (x) < α, then ρ

α,β
P (F) = 1.

3. If F is a definable fuzzy set, i.e., μF is a constant function on each equivalence
class of U/P and α = β, then ρ

α,β
P (F) = 0.

Note that while the third statement seems interesting as it says that the measure
ρ
α,β
P (·) inherits a property of Pawlak’s roughness measure, the second one may not

be well-justified. Furthermore, the following property of ρα,βP (·) proved in [3] may
be also undesired, unless the support of a constant fuzzy set, i.e. its strong 0-cut, is
definable in the approximation space.

Proposition 1. If F is a constant fuzzy set, say μF (x) = δ, for all x ∈ U, then
ρ
α,β
P (F) = 0, with the exception when β < δ < α, in which ρα,βP (F) = 1.

Properties of the measure ρ
α,β
P (·) and its potential applications in the field of

pattern recognition have been reported and mentioned in [3], and more recently in
[53].

An Alternative Approach

In [20], the authors have introduced a parameter-free measure of roughness of a
fuzzy set that in fact is a generalization of Pawlak’s notion of roughness measure
and avoids the undesirable properties held by Banerjee and Pal’s roughness mea-
sure as mentioned above. Basically, this approach is based on the random set based
representation of a fuzzy set and defines its roughness as the weighted mean of
roughness measures of its crisp representatives.

In particularly, let rng(μF ) and mF be the range of the membership function
μF and the mass assignment of F , respectively. Recall that in this representation
of fuzzy set F , for each α ∈ rng(μF ), mF (Fα) is viewed as the probability that
Fα stands as a crisp representative of F . Under such a representation, the rough-
ness measure of F with respect to the approximation space 〈U, P〉 is defined as
follows

ρ̂P (F) =
∑

α∈rng(μF )

mF (Fα)(1− |P(Fα)||P(Fα)|
) ≡

∑

α∈rng(μF )

mF (Fα)ρP (Fα) (19)

Remark 2. With this definition of roughness, we have

• 0 ≤ ρ̂P(F) ≤ 1.
• ρ̂P(·) is a natural extension of Pawlak’s roughness measure for fuzzy sets, i.e., if

F is a crisp subset of U then ρ̂P (F) = ρP(F).
• F is a definable fuzzy set, i.e., if P(F) = P(F), if and only if ρ̂P(F) = 0.
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Table 1 The approximations of the fuzzy set μsmall

{0,2,4} {1,3,5} {6,8,10} {7,9}
μsmall∗ 0.25 0 0 0

μsmall∗ 1 1 0 0

Let us consider a simple example depicting the introduced notions.

Example 1. Suppose we are given an approximation space 〈U, P〉, where U =
{0, 1, 2, . . . , 10} and P is such that

U/P = {{0, 2, 4}, {1, 3, 5}, {6, 8, 10}, {7, 9}}

Let us consider a linguistic value small whose membership function is defined by

u 0 1 2 3 4 5 6 7 8 9 10

μsmall(u) 1 1 0.75 0.5 0.25 0 0 0 0 0 0

The approximations of the fuzzy set μsmall in 〈U, P〉 are given in Table 1. Then
we obtain the mass assignment for the linguistic value small, and approximations of
its focal sets given in Table 2.

Using Banerjee and Pal’s notion, we obtain

ρ
α,β
P (small) =

{

1 for α > 0.25
0.5 for 0.25 ≥ α > 0

where the constraint α ≥ β > 0 is always assumed. On the other hand, the rough-
ness by (19) yields

ρ̂P (small) =
∑

α∈rng(μsmall )

msmall(smallα)(1− |P(smallα)|
|P(smallα)|

) = 0.875

Let P∗(F) and P∗(F) be fuzzy sets of U induced from the rough fuzzy set
(P(F), P(F)) as in preceding section. Denote

Table 2 Mass assignment for small and approximations of its focal sets

rng(μsmall ) 1 0.75 0.5 0.25

smallα {0, 1} {0, 1, 2} {0, 1, 2, 3} {0, 1, 2, 3, 4}
msmall(smallα) 0.25 0.25 0.25 0.25

P(smallα) ∅ ∅ ∅ {0, 2, 4}
P(smallα) {0, 1, 2, 3, 4, 5} {0, 1, 2, 3, 4, 5} {0, 1, 2, 3, 4, 5} {0, 1, 2, 3, 4, 5}
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rng(μP∗(F)) ∪ rng(μP∗(F)) = {ω1, . . . , ωp}

such thatωi > ωi+1 > 0 for i = 1, . . . , p−1.Obviously, {ω1, . . . , ωp} ⊆ rng(μF ).
With these notations, the following holds [20]

Lemma 1. For any 1 ≤ j ≤ p, if there exists αi , αi ′ ∈ rng(μF ) such that ω j+1 <

αi < αi ′ ≤ ω j then we have Fαi ≈P Fα′i , i.e. P(Fαi ) = P(Fα′i ) and P(Fαi ) =
P(Fα′i ), and so ρR(Fαi ) = ρR(Fα′i ).

Further, the following lemma is due to Dubois and Prade [10]

Lemma 2. For any α ∈ (0, 1], we have

P∗(F)α = P(Fα) and P∗(F)α = P(Fα)

It then follows from Lemmas 1 and 2 that ρ̂P (F) can be represented in terms of
level sets of fuzzy sets P∗(F) and P∗(F) as the following proposition shows.

Proposition 2. ρ̂P (F) =
p
∑

j=1
(ω j − ω j+1)(1−

|P∗(F)ω j |
|P∗(F)ω j | ), where ωp+1 = 0, by

convention.

Example 2. Let us continue with the approximation space 〈U, P〉 and the fuzzy set
small given in Example 1. We have

rng(μsmall) = {1, 0.75, 0.5, 0.25}

By Table 1, we obtain

rng(μP∗(small)) ∪ rng(μP∗(small)) = {1, 0.25}

which makes a partition of rng(μsmall) as {{1, 0.75, 0.5}, {0.25}}. It is easily to see
that Table 2 illustrates for Lemma 1, and by Proposition 2 we get

ρ̂R(small) = (1− 0.25)(1− P∗(small)1
P∗(small)1

)+ 0.25(1− P∗(small)0.25

P∗(small)0.25
) = 0.875

which coincides with that given in Example 1.

Similar to the case of roughness of a crisp set, we have also the following propo-
sition [20].

Proposition 3. If fuzzy sets F and G in U are roughly equal in 〈U, R〉, then we have
ρ̂R(F) = ρ̂R(G).
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5.2 Approximation Quality of a Fuzzy Classification

Let P and Q be two equivalence relations over universal set U. As mentioned above,
P and Q may be induced respectively by sets of attributes applied to objects in U.
Then the approximation quality γP(Q) of Q by P defined by (6) can be rewritten
as

γP(Q) = 1

|U|
∑

X∈U/Q

|P(X)| (20)

In [34], Pawlak also defines the so-called approximation accuracy of Q by P ,
which extends the approximation accuracy of sets, by

αP (Q) =
∑

X∈U/Q |P(X)|
∑

X∈U/Q |P(X)|
(21)

which is easily represented in terms of accuracies of sets as follows

αP (Q) =
∑

X∈U/Q

|P(X)|
∑

Y∈U/Q |P(Y )|
αP (X)

That is, the approximation accuracy of a classification can be regarded as the convex
sum of accuracies of its classes.

Furthermore, as mentioned in [34], the measure of approximation quality γP (Q)

does not capture how this partial dependency is actually distributed among classes of
U/Q. To capture this information we need the so-called precision measure πP (X),
for X ∈ U/Q, defined by

πP(X) = |P(X)|
|X | (22)

Clearly, we have πR(X) ≥ αP(X), for any X ∈ U/Q. The two measures γP (Q)

and πP(X), X ∈ U/Q, give us full information about the “classification power” of
the knowledge P with respect to the classification U/Q.

Now let us consider a fuzzy classification ˜Q of U instead of a crisp one Q,
i.e., U/˜Q is a fuzzy partition of U. This situation may naturally occur when a
linguistic classification must be approximated in terms of already existing knowl-
edge P . For example, assume that we have a personnel database given as D =
PERSONNEL[I D; Name; Posi tion; Salary], and attribute Position induces an
approximation space 〈D, IND(Posi tion)〉. Given a linguistic description on the at-
tribute Salary, say ‘high’, it defines a fuzzy set on D denoted by Dhigh . Then the
accuracy of the fuzzy set Dhigh , namely

α̂IND(Posit ion)(Dhigh) = 1− ρ̂IND(Posit ion)(Dhigh)
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may express the degree of completeness of our knowledge about the statement
“Salary is high”, given the granularity of D/IND(Posi tion). Further, a linguistic
classification, say {low,medium, high}, may be imposed on the attribute Salary
that induces a fuzzy partition of D. Now one may want to measure a degree of
dependency between “knowledge on attribute Salary expressed linguistically” and
“knowledge on attribute Position”.

In such a situation, guided by (20)–(21) and the random set based interpretation
of a fuzzy set, the approximation quality and accuracy of a fuzzy classification ˜Q
by a crisp classification P can be defined [20, 21] as

γ̂P(˜Q) = 1

|U|
∑

X∈U/˜Q

∑

α∈rng(μX )

m X (Xα)|P(Xα)| (23)

and

α̂P (˜Q) =

∑

X∈U/˜Q

∑

α∈rng(μX )

m X (Xα)|P(Xα)|
∑

X∈U/˜Q

∑

α∈rng(μX )

m X (Xα)|P(Xα)|
(24)

respectively, where for X ∈ U/˜Q, m X stands for the mass assignment of X .
On the other hand, for each fuzzy class X ∈ U/˜Q, viewing P(X) as the induced

fuzzy set P∗(X) of U (refer to (10)) defined by

μP∗(X)(x) = μP(X)([x]P)

we can then define a counterpart of (7) for POSP(˜Q) as a fuzzy set of U by

μPOSP (˜Q)(x) = max
X∈U/˜Q

μP∗(X)(x) (25)

Thus, guided by (6), another extension of the approximation quality can be also
defined as

γ̂ ′P(˜Q) = |POSP (˜Q)|
|U| =

∑

x∈U

μPOSP (˜Q)(x)

|U| (26)

Similarly, rewriting (21) as

αP (Q) =
| ∪

X∈U/Q
P(X)|

∑

X∈U/Q |P(X)|

suggests another extension of approximation accuracy of ˜Q by P defined by
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α̂′P (˜Q) = |POSP (˜Q)|
∑

X∈U/˜Q

|P(X)| =

∑

x∈U

μPOSP (˜Q)(x)

∑

X∈U/˜Q

∑

α∈rng(μX )

m X (Xα)|P(Xα)|
(27)

It is worth noting [20] here that the approximation quality and accuracy of ˜Q by
P defined by (23)–(24) can be respectively represented as

γ̂P(˜Q) = 1

|U|
∑

X∈U/˜Q

|P∗(X)| = 1

|U|
∑

X∈U/˜Q

∑

x∈U

μP∗(X)(x) (28)

α̂P (˜Q) =

∑

X∈U/˜Q

|P∗(X)|
∑

X∈U/˜Q

|P∗(X)| =

∑

X∈U/˜Q

∑

x∈U

μP∗(X)(x)

∑

X∈U/˜Q

∑

x∈U

μP∗(X)(x)
(29)

which interestingly turn out to be natural extensions of (20) and (21), respectively,
for the crisp case.

Clearly, two different, but equivalent, representations of γP (Q) and αP (Q) lead
to various different extensions in the fuzzy case. Therefore, the natural question
arises is that what extension should be used in practice. Theoretically, it seems
difficult to give a satisfactory answer to the question, however, an appropriate se-
lection could be made on the basis of experimental evaluations as usual for a given
application.

In the following we consider a simple example to illustrate discussed extensions.

Example 3. Let us consider a relation in a relational database as shown in Table 3
(this database is a variant of that found in [8]).

Let P be the set of attributes D (degree) and E (experience). We then obtain
an approximation space 〈U, P〉, where U = {1, . . . , 16}, with the corresponding
partition

Table 3 Relation in a relational database

ID Degree Experience Salary ID Degree Experience Salary

1 Ph.D. good 63K 9 M.S. poor 41K

2 Ph.D. very poor 47K 10 M.S. very good 68K

3 M.S. good 53K 11 M.S. good 50K

4 B.S. very poor 26K 12 B.S. very poor 23K

5 B.S. poor 29K 13 M.S. good 55K

6 Ph.D. very poor 50K 14 M.S. good 51K

7 B.S. poor 35K 15 Ph.D. good 65K

8 M.S. poor 40K 16 M.S. very good 64K
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Fig. 1 A linguistic partition
of attribute salary
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U/P = {{1, 15}, {2, 6}, {3, 11, 13, 14},
{4, 12}, {5, 7}, {8, 9}, {10, 16}}

Further, consider now for example a linguistic classification over attribute S
(salary), i.e. ˜Q = {S}, with membership functions of linguistic classes Low,
Medium, High graphically depicted as in Fig. 1. Then the linguistic classification
induces a fuzzy partition U/˜Q whose membership functions of fuzzy classes are
shown in Table 4.

Then approximations of the fuzzy partition U/˜Q in the approximation space
〈U, P〉 are given in Table 5.

Using (28) and (29) we obtain

γ̂P(˜Q) = 13.46

16
= 0.84, and α̂P (˜Q) = 13.46

18.21
= 0.739

respectively. That is, we have the following partial dependency in the database

{D,E} ⇒0.84 S (30)

Note that making use of (26) and (27) gives us

Table 4 Induced fuzzy partition of U based on salary

U μLow μMedium μH igh U μLow μMedium μH igh

1 0 0 1 9 0.27 0.73 0

2 0 0.87 0.13 10 0 0 1

3 0 0.47 0.53 11 0 0.67 0.33

4 1 0 0 12 1 0 0

5 1 0 0 13 0 0.33 0.67

6 0 0.67 0.33 14 0 0.6 0.4

7 0.67 0.33 0 15 0 0 1

8 0.33 0.67 0 16 0 0 1
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Table 5 The approximations of the fuzzy partition U/˜Q in 〈U, P〉
Xi {1, 15} {2, 6} {3, 11, 13, 14} {4, 12} {5, 7} {8, 9} {10, 16}
μP∗(H igh) 1 0.13 0.33 0 0 0 1

μP∗(H igh) 1 0.33 0.67 0 0 0 1

μP∗(Medium) 0 0.67 0.33 0 0 0.67 0

μP∗(Medium) 0 0.87 0.67 0 0.33 0.73 0

μP∗(Low) 0 0 0 1 0.67 0.27 0

μP∗(Low) 0 0 0 1 1 0.33 0

γ̂ ′P(˜Q) = 11.34

16
= 0.709, and α̂′P (˜Q) = 11.34

13.88
= 0.82

Now in order to show how the influence of, for example, attribute E on the quality
of approximation, let us consider the partition induced by the relation R = P\{E} =
{D} as follows

U/R = {{1, 2, 6, 15}, {3, 8, 9, 10, 11, 13, 14, 16}, {4, 5, 7, 12}}

Then we obtain approximations of the fuzzy partition U/˜Q in the approximation
space 〈U, R〉 given in Table 6.

Thus we have

γ̂R(˜Q) = γ̂P\{E}(˜Q) = 3.2

16
= 0.2

Similarly, we also easily obtain

γ̂P\{D}(˜Q) = 5.06

16
= 0.316

As we can see, both attributes D and E are highly significant because without
each of them the approximation quality γ̂P(˜Q) changes considerably.

Table 6 The approximations of the fuzzy partition U/˜Q in 〈U, R〉
Xi {1, 2, 6, 15} {3, 8, 9, 10, 11, 13, 14, 16} {4, 5, 7, 12}
μR∗(H igh) 0.13 0 0

μR∗(H igh) 1 1 0

μR∗(Medium) 0 0 0

μR∗(Medium) 0.87 0.73 0.33

μR∗(Low) 0 0 0.67

μR∗(Low) 0 0.33 1
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6 Approximation Quality Based on Fuzzy-Rough Sets

Let us turn to a fuzzy approximation space 〈U, P〉, where P is a fuzzy similarity
relation over universe U. This fuzzy similarity relation induces a fuzzy partition
over U denoted by U/P as mentioned previously. Assume now that U/Q is another
(fuzzy) partition of U. In order to have a counterpart of (6) for the approximation
quality of Q by P in this situation, one needs to define the fuzzy positive region
POSP (Q) which is regarded as a fuzzy set of U. Then, once having defined the
fuzzy positive region, an extension of the approximation quality of Q by P can be
defined [24, 28] as follows

γ̂P(Q) = |POSP (Q)|
|U| =

∑

x∈U

μPOSP (Q)(x)

|U| (31)

where 
-count is used for the cardinality of a fuzzy set.
In the case that the knowledge of P is not given directly but, instead, a fuzzy

partition U/P is predefined, Jensen and Shen [24, 25] have defined the membership
function of fuzzy positive region POSP(Q), for any object x ∈ U, as

μPOSP (Q)(x) = sup
X∈U/Q

μP(X)(x) (32)

where the membership function μP(X)(x) of fuzzy lower approximations can be
defined by (16). Note that when U/P is a crisp partition, (31) is identical to (26)
above. This approach has been successfully used for the task of feature reduction
for crisp and real-valued datasets in various applications of data mining [22, 23, 24,
25, 44].

In particularly, regarding the issue of feature reduction in crisp and real-valued
datasets, each real-valued attribute a is first associated with a fuzzy linguistic parti-
tion denoted by U/{a}, then the fuzzy partition U/P induced by a set P of attributes
defined over objects in U is defined as a fuzzy counterpart of (3) as follows

U/P = ⊗
a∈P

U/{a} (33)

where t-norm min is used for the fuzzy intersection. On the basis of these above
extensions, a fuzzy-rough based method of attribute reduction described by the
so-called fuzzy-rough QuickReduct algorithm has been proposed and applied to Web
categorization in [24] and complex systems monitoring [25].

The following simple example taken from [24] will illustrate how these exten-
sions work.

Example 4. Let us consider an example data set and fuzzy sets N and Z given in
Fig. 2. Here, for illustrative simplicity, the fuzzy sets are viewed as fuzzy classes
defined for all real-valued attributes.

Then we have the following partitions induced from corresponding individual
attributes
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1

–0.5 0.50

N
Z

Object a

1 –.4 –.3 –.5 no
2 –.4 .2 –.1 yes
3 –.3 –.4 –.3 no
4 .3 –.3 yes
5 .2 –.3 yes
6 .2 0

0
0

no0

b c q

Fig. 2 Data set and corresponding fuzzy sets

U/A = {Na , Za}, U/B = {Nb, Zb},
U/C = {Nc, Zc}, U/Q = {{1, 3, 6}, {2, 4, 5}},

where A = {a}, B = {b},C = {c}, Q = {q} and membership functions of corre-
sponding fuzzy classes are given in Table 7.

The following fuzzy partitions induced from subsets of conditional attributes are
obtained by (33)

U/{a, b} = {Na ∩ Nb, Na ∩ Zb, Za ∩ Nb, Za ∩ Zb},
U/{b, c} = {Nb ∩ Nc, Nb ∩ Zc, Zb ∩ Nc, Zb ∩ Zc},
U/{a, c} = {Na ∩ Nc, Na ∩ Zc, Za ∩ Nc, Za ∩ Zc},

U/{a, b, c} = {Na ∩ Nb ∩ Nc, Nc ∩ Nb ∩ Zc, Nc ∩ Nb ∩ Nc, Nc ∩ Nb ∩ Nc,

Nc ∩ Nb ∩ Nc, Nc ∩ Nb ∩ Nc, Nc ∩ Nb ∩ Nc, Nc ∩ Nb ∩ Nc}

where ∩ = min. Using (16) and (31) respectively for calculating fuzzy lower ap-
proximations and the approximation quality, we obtain

γ̂A(Q) = 2

6
, γ̂B(Q) = 2.4

6
, γ̂C(Q) = 1.6

6
, γ̂{a,b}(Q) = 3.4

6

γ̂{b,c}(Q) = 3.2

6
, γ̂{a,c}(Q) = 3.2

6
, γ̂{a,b,c}(Q) = 3.4

6

Table 7 Membership functions of corresponding fuzzy classes

Object a b c q

Na Za Nb Zb Nc Zc {1, 3, 6} {2, 4, 5}
1 0.8 0.2 0.6 0.4 1.0 0.0 1.0 0.0

2 0.8 0.2 0.0 0.6 0.2 0.8 0.0 1.0

3 0.6 0.4 0.8 0.2 0.6 0.4 1.0 0.0

4 0.0 0.4 0.6 0.4 0.0 1.0 0.0 1.0

5 0.0 0.6 0.6 0.4 0.0 1.0 0.0 1.0

6 0.0 0.6 0.0 1.0 0.0 1.0 1.0 0.0
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From these results it can be seen that the attribute c is not significant at all because
removing it from the set of conditional attributes does not cause any change in the
approximation quality, i.e. c is dispensable. Details on the fuzzy-rough QuickReduct

algorithm as well as how it could be applied to generate the Q-reduct {a, b} of
P = {a, b, c} for this example can be referred to [22, 24, 25].

In the study of fuzzy information systems, in which attribute values of object
may be fuzzy (linguistic) values, Mieszkowicz-Rolka and Rolka [28] proposed to
define a so-called compatibility relation over U induced from a set of attributes P
as follows

μP (x, y) = min
a∈P

sup
v∈Va

min(μ f (x,a)(v), μ f (y,a)(v)) (34)

where Va is the domain of attribute a; f (x, a) and f (y, a) are fuzzy values of x
and y at attribute a, respectively. Using this definition of a fuzzy similarity relation,
fuzzy lower approximations of fuzzy sets can be defined using (18) and then (31)
can be also used to define the approximation quality in case of fuzzy information
systems.

Similarly, as discussed in the preceding section, it is of interest to mention here
that equivalent representation of the approximation quality γP(Q) by (20) may also
suggest another extension for γ̂P (Q). However, due to overlapping of fuzzy lower
approximations, in this case we may need to carry out some normalization. For
example, we can normalize involved fuzzy similarity relations so that (12) is satis-
fied, then a fuzzy counterpart of (20) can be used to define an extension for γ̂P(Q).
Another possibility is that we can carry out a normalization after defining a fuzzy
counterpart of (20), for instance, as follows

γ̂P(Q) = 1

|U||U/Q|
∑

X∈U/Q

∑

x∈U

μP(X)(x) (35)

Intuitively, we may observe that if the fuzzy lower approximation of some (fuzzy)
class in U/Q dominates all those of the others, it solely affects the approximation
quality γ̂P(Q) defined by (31), while others classes play no role. This situation does
not occur in the crisp case because of the disjoint union. In such a situation, an
extension for γ̂P(Q) guided by (20) may be interesting to be considered since, in
any case, it takes fuzzy lower approximations of all classes in U/Q into account.
This, however, requires further research.

7 Conclusion and Future Work

The concepts of approximation quality essentially play an important role in practical
applications of rough set theory. They supply numerical characterizations for mea-
suring the dependency between attributes in databases and the accuracy of concept
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approximation using the given data alone and no additional information. At the same
time, rough-fuzzy hybrids have emerged naturally due to the need of encapsulating
the related but distinct concepts of vagueness and indiscernibility, both of which
occur as a result of imperfection in knowledge. This review paper has focused on
those extensions of approximation quality that make use of rough fuzzy and fuzzy
rough sets. We have also discussed how different but equivalent representations of
approximation quality in the (crisp) rough case may lead to various different ex-
tensions for rough-fuzzy cases. However, much research work should be done in
the future to explore theoretical features as well as practical implications of these
mentioned extensions.

Let us conclude here by pointing out some issues regarding the research topic
discussed, which would be interestingly considered for further research:

• Exploiting practical applications of roughness measure for fuzzy sets, particu-
larly in classification and image analysis problems as pointed out in [3, 42], as
well as its generalization in a fuzzy approximation space.

• Apart from those having been well studied, formulating and investigating other
extensions of the approximation quality, for example as mentioned in the preced-
ing section, and conducting comparative experiments to verify their applicability
in, for example, dimensionality reduction in comparison with known extensions
as studied in [22, 23, 24, 25, 44].

• Using rough-fuzzy hybrids based extensions of the approximation quality in ar-
eas of decision analysis [16], case-based reasoning [32] and knowledge discov-
ery [39].

• Studying extensions of approximation quality in variable precision fuzzy rough
sets model [29, 54] and their applicability.

Acknowledgment The authors would like to thank two anonymous reviewers and Editors for their
helpful comments and suggestions.
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19. U. Höhle, Quotients with respect to similarity relations, Fuzzy Sets and Systems 27 (1988)
31–44.

20. V. N. Huynh, Y. Nakamori, A rouhgness measure for fuzzy sets, Information Sciences 173
(2005) 255–275.

21. V. N. Huynh, T. Murai, T. B. Ho, Y. Nakamori, An extension of rough approximation quality
to fuzzy classification, in D. Slezak et al.(Eds.) Rough Sets, Fuzzy Sets, Data Mining, and
Granular Computing, LNCS 3641, 2005, pp. 512–521.

22. R. Jensen, Combining Rough and Fuzzy Sets for Feature Selection, PhD Thesis, University
of Edinburgh, UK, 2005.

23. R. Jensen, Q. Shen, Fuzzy-rough data reduction with ant colony optimization, Fuzzy Sets
and Systems 149 (2005) 5–20.

24. R. Jensen, Q. Shen, Fuzzy-rough attribute reduction with application to web categorization,
Fuzzy Sets and Systems 141 (2004) 469–485.

25. R. Jensen, Q. Shen, Semantics-preserving dimensionality reduction: Rough and fuzzy-rough-
based approaches, IEEE Transactions on Knowledge and Data Engineering 16 (2004)
1457–1471.

26. R. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice-Hall PTR,
Upper Saddle River, NJ, 1995.

27. E. Marczewski, H. Steinhaus, On a certain distance of sets and the corresponding distance of
functions, Colloquium Mathematicum 6 (1958) 319–327.

28. A. Mieszkowicz-Rolka, L. Rolka, Fuzziness in information systems, Electronic Notes in
Theoretical Computer Science 82 (4) (2003) 1–10.

29. A. Mieszkowicz-Rolka, L. Rolka, Remarks on approximation quality in variable precision
fuzzy rough sets model, in S. Tsumoto et al. (Eds.), RSCTC’2004, LNAI 3066, Springer-
Verlag, 2004, pp. 402–411.

30. T. Murai, H. Kanemitsu, M. Shimbo, Fuzzy sets and binary-proximity-based rough sets, In-
formation Sciences 104 (1–2) (1998) 49–80.

31. S. K. Pal, A. Skowron (Eds.), Rough Fuzzy Hybridization: New Trends in Decision Making,
Springer Verlag, Singapore, 1999.



An Overview on the Approximation Quality Based on Rough-Fuzzy Hybrids 515

32. S. K. Pal, P. Mitra, Case generation using rough sets with fuzzy representation, IEEE Trans-
actions on Knowledge and Data Engineering 16 (2004) 292–300.

33. Z. Pawlak, Rough sets, International Journal of Computer and Information Sciences 11
(1982) 341–356.

34. Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer Academic Pub-
lishers, Boston, MA, 1991.

35. Z. Pawlak, Rough sets and fuzzy sets, Fuzzy Sets and Systems 17 (1985) 99–102.
36. A. Petrosino, Rough fuzzy sets and unsupervised neural learning: applications in computer

vision. In: A. Bonarini et al. (Eds.), New trends in Fuzzy Logic. World Scientific, Singapore,
1996, pp. 166–176.

37. A. Petrosino, M. Ceccarelli, M., Unsupervised texture discrimination based on rough fuzzy
sets and parallel hierarchical clustering, Proceedings of IEEE International Conf. on Pat-
tern Recognition, IEEE-CS Press, Silver Spring 2000, pp. 1100–1103.

38. A. Petrosino, G. Salvi, Rough fuzzy set based scale space transforms and their use in image
analysis, International Journal of Approximate Reasoning 41 (2006) 212–228.

39. L. Polkowski, A. Skowron (Eds.), Rough Sets in Knowledge Discovery, Parts 1 & 2, Physica-
Verlag, Heidelberg-New York, 1998.

40. A. M. Radzikowska, E. E. Kerre, A comparative study of fuzzy rough sets, Fuzzy Sets and
Systems 126 (2002) 137–155.

41. G. Shafer, A Mathematical Theory of Evidence (Princeton University Press, Princeton, 1976).
42. M. Sarkar, Rough–fuzzy functions in classification, Fuzzy Sets and Systems 132 (2002)

353–369.
43. Q. Shen, A. Chouchoulas, A rough-fuzzy approach for generating classification rules, Pattern

Recognition 35 (2002) 2425–2438.
44. Q. Shen, R. Jensen, Selecting informative features with fuzzy-rough sets and its application

for complex systems monitoring, Pattern Recognition 37 (2004) 1351–1363.
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Fuzzy Sets in Information Retrieval:
State of the Art and Research Trends

Gabriella Pasi

Abstract In this contribution some applications of Fuzzy Set Theory to Information
Retrieval are described, as well as the more recent outcomes of this research field.
Fuzzy Set Theory is applied to Information Retrieval to the main aim to define
flexible systems, i.e. systems that can represent and manage the vagueness and sub-
jectivity which characterizes the process of information representation and retrieval.

1 Introduction

The advent and rapid diffusion of the Internet and the birth of the World Wide Web
have caused a strong resurgence of interest in Information Retrieval, a Computer
Science discipline whose roots date to late 60ties. With the diffusion of the World
Wide Web the information available on-line have been increasing, and consequently
the need for effective systems that allow an easy and flexible access to information
has become a urgent need [38]. By flexibility is here meant the capability of the
system to both manage imperfect (vague and/or uncertain) information, and to adapt
its behaviour to the user context. Moreover, more recently, the increasing interest in
defining the so called Semantic Web requires the definition of a basic infrastructure
more powerful and flexible than the existing one to organise and to give a meaning
to the available information, and to allow a better communication between humans
and machines.

Search engines represent the most recent outgrowth of IR [20]. However, despite
of the above mentioned needs most search engines are based on retrieval models
defined several years ago, and, more surprisingly, the query language on which these
systems are based is the Boolean query language, defined as the first formal query
language for IRSs,. The Boolean query language forces the user to precisely ex-
press her/his information needs as a set of un-weighted keywords, thus not allowing
users to express vague requirements for specifying selection conditions tolerant to
imprecision. Two distinct users formulating the same query will obtain the same
results despite of the fact that their choices can be defined on different criteria and
to different aims.

For the above mentioned reasons, in recent years a great deal of research has
been devoted to the promising direction of improving the (semi) automatic access

H. Bustince et al., (eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation
and Models. C© Springer 2008 517
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to information, by modelling the subjectivity, vagueness and imprecision intrinsic
in the process of locating relevant information. To this aim the application of Soft
Computing techniques has been experienced as a means to obtain a greater flexi-
bility in designing systems for Information Access [24, 18]. The expression Soft
Computing (SC) was introduced by Lotfi Zadeh as a synergy of methodologies
useful to solve problems using some form of intelligence that divert from traditional
computing. The principal constituents of SC are: fuzzy logic, neural networks, prob-
abilistic reasoning, and evolutionary computing, which in turn subsume belief net-
works, genetic algorithms, parts of learning theory, and multi-valued logics. As each
of these methodologies allows to independently represent imprecision, uncertainty
and learning, it is frequently advantageous to employ them in combination, rather
than exclusively. Because of these characteristic Soft Computing has provided very
powerful tools for modelling flexibility in IRSs.

In particular, Fuzzy Set Theory has been applied to IR starting in the 70ties, and
has allowed the definition of retrieval techniques capable of modelling, at some ex-
tent, the human subjectivity for estimating the partial relevance of documents to the
user needs. The objective of this contribution is to provide an overview of how fuzzy
set theory has been applied to the aim of designing flexible Information Retrieval
Systems. The chapter is organized as follows: in the next section the Information
Retrieval problem is introduced. In Sect. 3 an overview of the main approaches
to apply fuzzy set theory to model flexible Information Retrieval Systems is pre-
sented. In Sect. 4 a description of the traditional fuzzy document representation is
first sketched; then some more recent and promising approaches to fuzzy indexing
are described. Section 5 is devoted to the description of flexible query languages
for Information Retrieval Systems based on the specification of soft constraints ex-
pressed by linguistic selection conditions which capture the vagueness of the user
needs and simplify the query formulation.

In Sect. 6 some approaches to the application of fuzzy set theory to distributed
information retrieval are described. Finally, in Sect. 7 a description of fuzzy as-
sociative retrieval models based either on fuzzy pseudo-thesauri of terms or fuzzy
clustering techniques are introduced.

2 Information Retrieval

Information Retrieval (IR) aims at defining systems able to provide a fast and effec-
tive content-based access to a large amount of stored information usually organized
in documents (information items) [3, 40, 41, 42, 44]. Information can be multime-
dia: textual, visual, or auditory, although most actual IR systems (IRS) store and
enable the retrieval of only textual information.

A user accesses the IRS by explicitly formulating a query through a set of con-
straints that the relevant information items must satisfy. The aim of the IRS is to
evaluate the user query and to retrieve all documents which it estimates relevant
to that query. This is achieved by comparing the formal representation of the docu-
ments with the formal user’s query. The activity of IRSs is then based on the solution
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of a decision-making problem: how to identify the information items that correspond
to the users’ information preferences (i.e. relevant to their information needs)? What
a user expects from an IRS is a list of the relevant documents ordered according to
her/his preferences. The IRS acts then as an intermediary in this decision process: it
“simulates” the decision process that the user would personally undertake. The doc-
uments constitute the alternatives on which the decision process has to be performed
to the aim of identifying the relevant ones [45].

In order to estimate the relevance of each document with respect to a specific
user query the IRS must be based on a formal model which provides a formal re-
presentation of both documents and user queries. The main components of IRSs
are: a collection of documents, a query language which allows the expression of
selection criteria synthesizing the users’ needs, and a matching mechanism which
estimates the relevance of documents to queries (see Fig. 1).

The input of these systems is constituted by a user query; their output is usually
an ordered list of selected items, which have been estimated relevant to the informa-
tion needs expressed in the user query.

Most of the existing IRSs and search engines offer a very simple modelling of IR,
which privileges efficiency at the expenses of effectiveness. A crucial aspect affect-
ing the effectiveness of an IRS is related to the characteristics of the query language,
which should represent in the more accurate and faithful way the user’s information
needs. The available query languages are based on keywords specification, and do
not allow to express uncertainty and vagueness in specifying the constraints that
the relevant information items must satisfy. In real situations, however, the users
would find much more natural to express their information needs in an uncertain
and vague way.

Another important aspect which affects the effectiveness of IRSs is related to the
way in which the documents’ information content is represented; the documents’
representations are extremely simple, based on keywords extraction and weighting.
Moreover the IRSs generally produce a unique representation of documents for
all users, not taking into account that each user looks at a document content in a

Ordered
documents

Relevance
evaluation

Query
representation

Documents

Query

User
assessment

Document
representation

Information Retrieval System

Fig. 1 Scheme of a system for the storage and retrieval of information
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subjective way, by possibly emphasizing some subparts with respect to others. This
adaptive view of the document is not modelled. Another important aspect is related
to the fact that on the WWW some standard for the representation of semi-structured
information are becoming more and more employed (such as XML); for this reason
it is important to exploit their structure in order to represent the information they
contain.

In recent years a strong deal of research to improve IRSs was devoted to the
modelling of the concept of partiality intrinsic in the IR process and to making
the systems adaptive, i.e. able to “learn” the users’ concept of relevance. In recent
years big efforts have been devoted to the attempt to improve the performance of
IR systems, and the research has explored several different directions to the aim of
modelling the vagueness and uncertainty that invariably characterize the manage-
ment of information. In particular, a set of approaches that has received a strong
interest goes under the name of Soft Information Retrieval [8, 18, 19, 24]. These
approaches apply some of the so called Soft Computing techniques, among which
Fuzzy Set Theory.

In particular, fuzzy set theory has been extensively applied to extend IR to model
some aspects of the vagueness and subjectivity characterizing the retrieval process.
In the next section the main applications of fuzzy set theory to IR are synthesized.

3 Applications of Fuzzy Set Theory to Information Retrieval

To the aim of defining flexible IRS, fuzzy set theory has been successfully employed
to the following aims:

1. to define new IR models;
2. to deal with the imprecision and subjectivity that characterize the document in-

dexing process;
3. to manage the user’s vagueness in query formulation;
4. to soften the associative mechanisms, such as thesauri and documents’ clustering

algorithms, which are often employed to extend the functionalities of the basic
IR scheme;

5. to the definition of meta-search engines and to define flexible approaches to dis-
tributed IR;

6. to represent and inquiry semi-structured information (XML).

A survey on the definition of fuzzy IR models and of fuzzy generalizations of the
Boolean IR model can be found in [8, 27]. Fuzzy generalizations of the Boolean
model have been defined to the aim of designing IRSs able to produce discrimi-
nated answers in response to users’ queries. In fact, Boolean IRSs apply an exact
matching between a Boolean query and the representation of each document, de-
fined as a set of index terms. They partition the archive of items into two sets:
the relevant documents and those which are not relevant. As a consequence of
this crisp behaviour, they are liable to reject relevant items as a result of too re-
strictive queries, and to retrieve useless material in reply to general queries [40].
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Another approach to fuzzy modelling of IR is based on the use of linguistic in-
formation at various levels in the retrieval process [7, 22, 23]. More recently
some interesting approaches have been defined to possibilistic based information
retrieval [14, 16, 29].

At the level of document indexing some fuzzy techniques have been defined to
the aim of providing more specific and personalized representations of documents
than those generated by the existing indexing procedures. In Sect. 4, the basic fuzzy
interpretation of the weighted document representation is introduced. As it happens
with search engines, the incorporation of a weighted document representation in a
Boolean IRS is a sufficient condition to improve the system with a document ranking
ability. As a consequence of this extension the exact matching applied by a Boolean
system can be softened to a partial matching mechanism, evaluating the degree of
satisfaction of the user’s query for each retrieved document. This value is called the
Retrieval Status Value (RSV), and can be used for ranking documents. However, as
it will be seen in Sect. 4, more flexible indexing functions can remarkably improve
the systems’ effectiveness. The main idea is to explicitly model an indexing strat-
egy that adapts the formal document representation to the user personalized view
of documents’ information contents. In Sect. 4 a fuzzy and personalised indexing
model of documents structured in logical sections (such as XML documents) is
presented. This model can be tuned by users on the basis of their personal criteria
for interpreting the content of documents [6, 12]. An indexing procedure for HTML
documents is also shortly described [31, 35].

Fuzzy set theory has also been employed for defining flexible query languages,
able to capture the vagueness of user needs as well as to simplify the user system
interaction. This aim has been pursued at two levels: through the definition of soft
selection criteria (soft constraints), which allow the specification of the distinct im-
portance of the search terms, and by softening the way in which (weighted) search
terms can be aggregated. Query languages based on numeric query term weights
with different semantics have been first proposed as an aid to define more expres-
sive selection criteria [17, 27]. Then, an evolution of these approaches has been
defined, which introduces linguistic query weights, specified by fuzzy sets such as
important or very important, in order to express the distinct importance of the query
terms [4]. Another level of flexibility concerns the definition of soft aggregations of
the selection criteria, by means of operators characterized by a parametric behaviour
which can be set between the two extremes AND and OR adopted in the Boolean
language. In [5, 30] the Boolean query language has been generalized by defining
aggregation operators as linguistic quantifiers such as at least k or most of. In [13]
an approach to extend the query languages for inquiring XML documents has been
proposed. These extensions are presented in Sect. 5.

Fuzzy associative mechanisms based on thesauri or clustering techniques [33, 34]
have been defined in order to cope with the incompleteness characterizing either
the representation of documents or the users’ queries. Fuzzy thesauri and pseudo-
thesauri can be used to expand the set of index terms of documents with new terms
by taking into account their varying significance in representing the topics dealt
with in the documents; the degree of significance of the associated terms depends
on the strength of the associations with the documents’ descriptors. An alternative
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use of fuzzy thesauri and pseudo-thesauri is to expand the search terms in the
query with associated terms, by taking into account their distinct importance in
representing the concepts of interest; the varying importance is dependent on the
associations’ strength with the search terms. Fuzzy clustering can be used to ex-
pand the set of the documents retrieved by a query with associated documents; their
degrees of association with respect to the documents originally retrieved influence
their Retrieval Status Value. These approaches are more extensively explained in
Sect. 7.

4 Fuzzy Approaches to Document Indexing

The production of effective retrieval results depends on both subjective factors, such
as the users’ capability to express their information needs through a formal query,
and the characteristics of the Information Retrieval System. A component which
plays a crucial role is the indexing mechanism, which has the aim of generating
a formal representation of the contents of the information items (documents’ sur-
rogates). The most used automatic indexing procedures are based on term extrac-
tion and weighting: documents are represented by a collection of index terms with
associated weights (the index term weights). An index term weight expresses the
degree of significance of the index term as a descriptor of the document information
content [40, 42]. The vector space model, the probabilistic models and fuzzy models
adopt a weighted document representation. The automatic computation of the index
term weights is based on the occurrences count of a term in the document and in
the whole archive. In this case an indexing function F computes for each document
d and each term t a numeric value. An example of definition of the function F is
the following, in which the index term weight is proportional to the frequency of
term t in document d, and inversely proportional to the frequency of the term in the
documents of the archive:

F(d, t) = t fdt × I DFt (1)

where:

• tfdt is a normalized term frequency which can be defined as: tfd = OCCdt /
MAXOCCd ; where OCCdt is the number of occurrences of t in d , and MAXOCCd

is the number of occurrences of the most frequent term in d;
• IDFt is an inverse document frequency which can be defined as: IDFt =

log(N/NDOCt ), where N is the total number of documents in the archive and
NDOCt is the number of documents indexed by t . The computation of IDFt is
particularly costly in the case of large collections which are updated online.

The definition of such a function F is based on a quantitative analysis of the text
which makes it possible to model the qualitative concept of significance of a term
in describing the information carried by the text. The adoption of weighted indexes
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allows for an estimate of the relevance or of a probability of relevance of the docu-
ments to the considered query [3, 40, 44].

Based on such an indexing function and by maintaining the Boolean query
language, the first fuzzy interpretation of an extended Boolean model has been
to adopt a normalized weighted document representation and to interpret it as a
fuzzy set of terms [8, 27]. From a mathematical point of view this is a quite natural
extension: the concept of the significance of index terms in describing the infor-
mation content of a document can be naturally described by adopting the func-
tion F (such as the one defined in (1) but normalized so as to obtain values in the
range [0,1]) as the membership function of the fuzzy set representing a document.
Formally, a document is represented as a fuzzy set of terms: Rd = 
t∈Tμd(t) /
t in which the membership function is defined as μd: D × T → [0,1]. In this
case μd(t) = F(d,t), i.e. the membership value is obtained by the indexing func-
tion F. Through this extension of the document representation, the evaluation of a
Boolean query produces a numeric estimate of the relevance of each document to
the query, expressed by a numeric score, called the Retrieval Status Value (RSV),
which is interpreted as the degree of satisfaction of the constraints expressed in a
query.

4.1 A Fuzzy Approach to Personalized Document Indexing

The weighted representation of documents based on function (1) has the limitation
of not taking into account that a term can play a different role within a text, ac-
cording to the distribution of its occurrences. Let us think for example at an XML
document organized in “logical” sections. For example scientific papers are usually
organised into sections like title, authors, abstract, introduction, references, etc. An
occurrence of a term in the title has a distinct informative role than an occurrence
of the same term in the references. Moreover, indexing procedures based on the F
function like the one defined in (1) behave as a black box producing the same doc-
ument representation for all users; this enhances the system’s efficiency but implies
a severe loss of effectiveness. In fact, when examining a document structured in
logical sections the users have their personal views of the document’s information
content; according to this view in the retrieval phase they would naturally privilege
the search in some subparts of the documents’ structure, depending on their pref-
erences. This last consideration outlines the fact that the estimate of relevance of a
given document could take advantage from an explicit user’s indication of her/his
interpretation of the document’s structure, and supports the idea of dynamic and
adaptive indexing [6, 12]. By adaptive indexing we intend personalized indexing
procedures which take into account the users’ indications to interpret the document
contents and to “build” their synthesis on the basis of this interpretation. It fol-
lows that if an archive of semi-structured documents is considered (e.g. XML docu-
ments), flexible indexing procedures could be defined by means of which the users
are allowed to direct the indexing process by explicitly specifying some constraints
on the document structure (preference elicitation on the structure of a document).
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This preference specification can be exploited by the matching mechanism to the
aim of privileging the search within the most preferred sections of the document,
according to the users’ indications. The user/system interaction can then generate a
personalized document representation, which is distinct for distinct users.

In [6] a user adaptive indexing model has been proposed, based on a weighted
representation of semi-structured documents that can be tuned by users accord-
ing to their search interests to generate their personal document representation in
the retrieval phase. The considered documents may contain multimedia informa-
tion with different structures. A document is represented as an entity composed
of sections (such as title, authors, introduction, references, in the case of a scien-
tific paper). The model is constituted by a static component and by an adaptive
query-evaluation component; the static component provides an a priori computa-
tion of an index term weight for each logical section of the document. The formal
representation of a document becomes then a fuzzy binary relation defined on the
Cartesian product T × S (where T is the set of index terms and S is the set of iden-
tifiers of the documents’ sections): with each pair <section, term¿, a significance
degree in [0,1] is computed, expressing the significance of the term in the document
section.

The adaptive component is activated by the user in the phase of query formulation
and provides an aggregation strategy of the n index term weights (where n is the
number of sections) into an overall index term weight. The aggregation function is
defined on the basis of a two level interaction between the system and the user. At the
first level the user expresses preferences on the document sections, outlining those
that the system should more heavily take into account in evaluating the relevance
of a document to a user query. This user preference on the document structure is
exploited to enhance the computation of index term weights: the importance of index
terms is strictly related to the importance for the user of the logical sections in which
they appear.

At the second level, the user can decide which aggregation function has to be
applied for producing the overall significance degree (see Fig. 2). This is done by
the specification of a linguistic quantifier such as at least k and most [47]. In the
fuzzy indexing model defined in [6, 12] linguistic quantifiers are formally defined
as Ordered Weighted Averaging (OWA) operators [48].

Sets in Information Retrieval: State …

Aggregation function

Fs2(d,t)

Fs1(d,t)

Fs3(d,t)

Fs4(d,t)

F(d,t)

User’s preferences on sections

TITLE

AUTHORS

ABSTRACT

INTRODUCTION

Fig. 2 Sketch of the personalized indexing procedure
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By adopting this document representation the same query can select documents
in different relevance orders depending on the user indications.

It is very important to notice that the elicitation of users’ preferences on the
structure of a document is a quite new and recent research approach, which can
remarkably improve the effectiveness of IRSs. In [31, 35] another representation
of structured documents is proposed, which produces a weighted representation
of documents written in HyperText Markup Language. An HTML document has
a syntactic structure, in which its subparts have a given format specified by their
delimiting tags. In this context tags are seen as syntactic elements carrying an
indication of the importance of the associated text: when writing a document in
HTML, one associates a distinct importance with distinct documents’ subparts,
by delimiting them by means of appropriate tags. On the basis of these con-
siderations, an indexing function has been proposed, which computes the sig-
nificance of a term in a document by taking into account the distinct role of
term occurrences according to the importance of tags in which they
appear.

4.2 A Fuzzy Approach to Concept-based Document Indexing
and Retrieval

Recently, an increasing number of approaches to IR have defined and designed IR
models which are based on concepts rather than keywords, thus modeling docu-
ment representations at a higher level of granularity, trying to describe the topical
content and structure of documents [2]. These efforts gave raise to the so called
concept-based Information Retrieval, which aims at retrieving relevant documents
on the basis of their meaning rather than their keywords. The main idea at the basis
of conceptual IR is that the meaning of a text depends on conceptual relationships
to objects in the world rather than to linguistic relations found in text or dictionar-
ies [43]. To this aim, sets of words, phrases, names are related to the concepts they
encode.

In [15] a fuzzy set approach to concept-based Information Retrieval has been pro-
posed. Based on the existence of a conceptual hierarchical structure which encodes
the contents of the domain to which the considered collection of documents belongs,
both documents and queries are represented as weighted trees. The evaluation of a
conjunctive query is then interpreted as computing a degree of inclusion between
sub-trees. The ontology-based description of the contents of the documents takes
into account the semantic equivalences between expressions, as well as the basic
principle stating that if a document explicitly heavily includes some terms, it also
concerns to some extent more general concepts. This latter point is handled at the
technical level by a completion procedure which assesses positive weights also to
terms which do not appear directly in the documents. The possible completion of
queries is also discussed in [16].



526 G. Pasi

5 Fuzzy Approaches to the Definition of Flexible
Query Languages

By flexible query language is intended a language that makes possible a simple and
natural expression of subjective information needs. By means of fuzzy set theory
some flexible query languages have been defined as generalizations of the Boolean
query language. In this context a flexible query may consist of either both of the
two following soft components or just one: the first component is constituted by
weighted terms that are interpreted as flexible constraints on the significance of the
index terms in each document representation. The second component is constituted
by linguistic aggregation operators which can be applied to the flexible constraints
in order to specify compound selection conditions. The atomic selection conditions
are expressed by weighted terms expressed by pairs <term, weight>, in which
weight can be either a numeric value in [0,1] (which identifies a soft constraint)
or a linguistic value of the linguistic variable Importance, and the compound condi-
tions are expressed by means of linguistic quantifiers used as aggregation operators.
The notion of linguistic variable is suitable to represent and manage linguistic con-
cepts and for this reasons it has been used to formalize the semantics of linguistic
terms introduced in the generalized Boolean query language [46]. When flexible
constraints are specified, the query evaluation mechanism is regarded as performing
a fuzzy decision process that evaluates the degree of satisfaction of the query con-
straints by each document representation by applying a partial matching function.
This degree (the Retrieval Status Value) is interpreted as the degree of relevance
of the document to the query and is used to rank the documents. Then, as a result
of a query evaluation, a fuzzy set of documents is retrieved in which the RSV is
the membership value. The definition of the partial matching function is strictly
dependent on the query language definition and specifically on the semantics of the
flexible constraints, and is defined as a bottom-up evaluation procedure: first, each
atomic selection condition (flexible constraint) in the query is evaluated for a given
document, and then the aggregation operators are applied to the results starting from
the inmost operator in the query to the outermost operator. Flexible constraints are
defined as fuzzy subsets of the set [0,1] of the index term weights; the membership
value μweight (F(d,t)) is the degree of satisfaction of the flexible constraint imposed
by the weight associated with query term t by the index term weight of t in document
d. The result of the evaluation is a fuzzy set: 
d∈Dμweight (F(d,t))/d.

A first proposal to specify flexible constraints was by means of numeric weights
associated with terms. A numeric weight identifies a constraint on the weighted
document representation, which depends on the considered semantics. Distinct se-
mantics have been associated with query weights [17, 27]. However, the association
of a numeric value forces the user to quantify the qualitative concept of importance
of query weights, also if at the level of query evaluation this constraint is evaluated
in a gradual way. To overcome this limitation and to make the query language more
user friendly, in [4] a linguistic extension of the Boolean query language was de-
fined, based on the concept of linguistic variable [46]. By this language the user can
associate with query terms either the primary term “important”, or some compound
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terms, such as “very important” or “fairly important” to qualify the desired impor-
tance of the search terms in the query. A pair <t, important>, expresses a flexible
constraint evaluated by the function μimportant on the term significance values (the
F(d,t) values). The evaluation of the relevance of a given document d to a query
consisting of the pair <t,important> is then computed by applying the function
μimportant to the value F(d,t).

A second approach to make the Boolean query language more flexible has con-
cerned the specification of aggregation operators. In the Boolean query language,
the AND and OR aggregation operators are used. When the AND is used for ag-
gregating M selection conditions, the satisfaction of all conditions but one is not
tolerated, with the consequence that this may cause the rejection of useful items. To
face this problem, within the framework of fuzzy set theory a generalization of the
Boolean query language has been defined, based on the concept of linguistic quan-
tifiers: they are employed to specify both crisp and vague aggregation criteria of the
selection conditions [5]. New aggregation operators can be specified by linguistic
expressions, with a self-expressive meaning such as at least k and most of. They are
defined with a behaviour between the two extremes corresponding to the AND and
the OR connectives, which allow, respectively, requests for all and at least one of the
selection conditions. The linguistic quantifiers used as aggregation operators, have
been defined by Ordered Weighted Averaging (OWA) operators [48]. An alternative
approach is proposed in [30].

By adopting linguistic quantifiers, the requirements of a complex Boolean query
can be more easily and intuitively formulated. For example when desiring that at
least 2 out of the three selection conditions “politics”, “economy”, “inflation” be
satisfied, one should formulate the following Boolean query:

(politics AND economy) OR (politics AND inflation) OR
(economy AND inflation)

which can be replaced by the simpler one:

at least 2(politics, economy, inflation)

The expression of any Boolean query is supported by the new language via the
nesting of linguistic quantifiers. For example a query such as:

<image> AND (<processing> OR <analysis>) AND <digital>

can be translated into the following new formulation:

all (<image>, at least 1 of (<processing>, <analysis>), <digital>)

A quantified aggregation function can thus be applied not only to single selection
conditions, but also to other quantified expressions.

In [12] a generalisation of the Boolean query language that allows to personal-
ize the search in structured documents (as showed in Sect. 4) was proposed; both
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content-based selection constraint, and soft constraints on the document structure
can be expressed. The atomic component of the query (basic selection criterion) is
defined as follows:

aq = t in Q preferred sections

in which t is a search term expressing a content-based selection constraint, and Q
is a linguistic quantifier such as all, most, or at least k%. Q expresses a part of the
structure-based selection constraint. It is assumed that the quantification refers to
the sections that are semantically meaningful to the user. Q is used to aggregate
the significance degrees of t in the desired sections and then to compute the global
Retrieval Status Value RSV(d,aq) of the document d with respect to the atomic
query condition aq.

5.1 An Approach to Extend the XPath Query Language

With the development of the World Wide Web the diffusion of the de-facto standards
for the definition of structured documents such XML, witnesses the tendency of
producing documents in which the information is organized into (often hierarchical)
components. In particular, XML is increasingly gaining importance as a standard
format for information interchange on the WWW. XML has been employed as a
basic model for describing semi-structured data, and it constitutes the basic standard
for representing structured documents in IR.

In order to inquiry semi-structured information the need for flexible query lan-
guages has soon emerged. In the context of semi-structured databases, by flexible
query languages it is substantially meant languages that take into account the lack
of a rigid schema of the database, thus allowing to enquiry both data and the type-
/schema [1, 12]. In the context of IRSs, modelling flexibility means to take into
account the possibility to make explicit a non-uniform structure of the documents
when formulating queries.

In [13], fuzzy set theory has been applied to define a flexible extension of the
XPath query language to the aim of expressing soft selection conditions on both the
documents’ structure and contents. XPath is a standard language (www.w3.org/TR/
xpath) that allows to write “tree traversal expressions” for selecting XML tree nodes.
XPath expressions are also used as selection conditions in the framework of fully-
fledged XML query languages. In the last years, much work has been done towards
a standard for XML querying and recently the W3C endorsed the XQuery language
(www.w3.org/TR/xquery) as a candidate recommendation. Both in XQuery and in
XPath a retrieved information item is usually a “node set”.

The extensions of XPath proposed in [13] are finalized at:

• fuzzy sub-tree matching to the aim of providing a ranked list of retrieved infor-
mation items rather than the usual set oriented one;

• use of fuzzy predicates, to the aim of specifying flexible selection conditions;
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• fuzzy quantification, to the aim of allowing the specification of linguistic quanti-
fiers as aggregation operators.

The research work presented in this paper constitutes a step towards the more and
more increasingly studied problem of inquiring XML documents not only from a
structural point of view, but also from a content-based point of view [25].

6 Fuzzy Approaches to Distributed Information Retrieval

With the increasing use of the network technologies, the need of defining distributed
applications has emerged. In distributed Information Retrieval, there are two main
models: in the first model the information is considered as belonging to a unique,
huge database which is distributed but “centrally” indexed for retrieval purposes.
This is the model adopted by search engines on the WWW. A second model is
based on the distribution of the information on distinct databases, independently
indexed, and thus constituting distinct sources of information. This last model gives
rise to the so called distributed or multi-source information retrieval problem. In this
second case the databases reside on distinct servers each of which can be provided
with its own search engine (IRS). The multi-source information retrieval paradigm
is more complex than the centralized model as it presents additional problems, such
as the selection of an appropriate information source for a given information need.
A common problem which can be identified with both models is the problem of
list fusion. In the case in which we have a unique, huge and distributed informa-
tion repository (like in the WWW), and distinct IRSs (search engines), which can
be used to inquiry overlapping collections, meta-search engines have been defined
to improve the effectiveness of the individual search engines. The main aim of a
meta-search engine is to submit the same query to distinct search engines and to
fuse the individual resulting lists into an overall ranked list of documents that is
presented to the user. In this case we typically have overlapping individual lists
since a document may be retrieved by more than a single search engine. The fusion
method must then be able to handle situations in which a document may appear
in more than one list and in different positions within them. In the case of multi-
source information retrieval the problem is to merge the lists resulting from the
processing of the same query by (generally distinct) search engines on the distinct
databases residing on distinct servers. However, in this second case we generally
do not have overlapping lists as a result of the same query evaluation. Typically a
document will be retrieved by just one single search engine, and thus the fusion
problem is simplified with respect to the previous case. Recently in the literature
several papers have addressed the problem of defining effective solutions to the
problem of retrieving information on a network. In [10] some approaches to the
definition of meta-search engines are presented, while in [9] some solutions to the
problem of multi-source information retrieval are described. In this last paper both
previous models have been considered, and some fuzzy approaches to the solution
of the two above mentioned problems have been proposed. The uniqueness of these



530 G. Pasi

approaches is that they are based on soft computing techniques to more flexibly
model the resource selection problem (in distributed information retrieval), and the
list fusion problem [9, 10].

In [10] a meta-search model has been proposed where the soft fusion of over-
lapping ordered lists into an overall ordered list is regarded as a Group Decision
Making activity in which the search engines play the role of the experts, the docu-
ments are the alternatives that are evaluated based on a set of criteria expressed in
a user query, and the decision function is a soft aggregation operator modelling a
specific user retrieval attitude.

7 Fuzzy Associative Mechanisms

Associative retrieval mechanisms are defined to enhance the retrieval of traditional
IRSs. They work by retrieving additional documents that are not directly indexed
by the terms in a given query but are indexed by other terms, associated descriptors.
The most common type of associative retrieval mechanism is based on the use of
a thesaurus to associate entry terms with related terms. In traditional associative
retrieval the associations are crisp.

The fuzzy associative retrieval mechanisms are based on the concept of fuzzy
associations [33]. A fuzzy association between two sets X = {x1, . . . , xm} and Y =
{y1, . . . , yn} is formally defined as a fuzzy relation f : X × Y → [0,1]: the value
f(x,y) represents the degree of strength of the association existing between the values
x ∈ X and y ∈ Y.

In information retrieval, different kinds of fuzzy associations can be derived de-
pending on the semantics of the sets X and Y.

Fuzzy associative mechanisms employ fuzzy thesauri, fuzzy pseudothesauri, and
fuzzy clustering techniques to serve three alternative, but compatible purposes:

• to expand the set of index terms of documents with new terms
• to expand each of the search terms in the query with associated terms,
• to expand the set of the documents retrieved by a query with associated docu-

ments.

A thesaurus is an associative mechanism that can be used to improve both index-
ing and querying. It is well known that the development of thesauri is very costly, as
it requires a large amount of human resources. Moreover, in highly dynamic situa-
tions, where terms are added and new meanings derived for old terms quite rapidly,
the thesaurus needs frequents updates. For this reason, methods for the automatic
construction of thesauri have been proposed, based on statistical criteria such as the
terms’ co-occurrences, i.e., the simultaneous appearance of pairs (or triplets, or even
larger subsets) of terms in the same documents.

In a thesaurus the relations defined between terms are of different type: if the
associated descriptor has a more general meaning than the entry term, the relation is
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classified as broader term (BT), while a narrower term (NT) is the inverse relation;
synonyms or near-synonyms are associated by a related term (RT) relation.

Some authors have proposed the definition of fuzzy thesauri, see [34, 36, 37],
where the links between terms are weighted to indicate the strength of the as-
sociation. Moreover, this notion includes generalizations such as fuzzy pseudo-
thesauri [34], and fuzzy associations based on a citation index [36].

7.1 Fuzzy Clustering

Clustering in information retrieval is applied for partitioning a given set of docu-
ments D into groups using a measure of similarity (or distance) which is defined on
every pairs of documents. The similarity between documents in the same group
should be large, while it should be small for documents in different groups. A
common method to perform clustering of documents is based on the simultaneous
occurrences of citations in pairs of documents. Documents are so clustered using a
measure defined on the space of the citations. Generated clusters can then be used
as an index for information retrieval; that is, documents which belong to the same
clusters as the documents directly indexed by the terms in the query are retrieved.
Often, similarity measures are suggested empirically or heuristically [41, 42]. When
adopting the fuzzy set model, clustering can be formalized as a kind of fuzzy asso-
ciation. In this case, the fuzzy association is defined on the domain D × D, where D
is the set of documents. By assuming R(d) to be the fuzzy set of terms representing
a document d with membership function values μd(t)=F(d,t) being the index term
weights of term t in document d, the symmetric fuzzy relation s is taken to be the
similarity measure for clustering documents:

s(d1, d2) =
M
∑

k=1

min[μd1(tk),μd2(tk)]/
M
∑

k=1

max[μd1(tk),μd2(tk)]

=
M
∑

k=1

min[F(tk, d1),F(tk, d2)/

M
∑

k=1

max[F(tk, d1),F(tk, d2)] (2)

in which M is the cardinality of the set of index terms T.
In fuzzy clustering, documents can belong to more than one cluster with varying

degree of membership [21, 26, 28, 39]. Each document is assigned a membership
value to each cluster. In a pure fuzzy clustering, a complete overlap of clusters is
allowed. Modified fuzzy clustering, or soft clustering, approaches use threshold
mechanisms to limit the number of documents belonging to each cluster. The main
advantage of using modified fuzzy clustering is the fact that the degree of fuzziness
is controlled.

In [11] a new unsupervised hierarchical fuzzy clustering algorithm has been
defined to the aim of identifying the main categories of news in a new-stream
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information filtering system. In the following we list the distinguished character-
istics of the proposed approach to support category based news filtering.

The output of the proposed fuzzy algorithm is fuzzy hierarchy of the news given
as input; this reflects the very nature of a news, which may deal with multiple top-
ics. The algorithm computes a membership degree in [0,1] for each item (news)
to each generated fuzzy cluster. This allows to rank the news within a cluster and
thus easily support flexible filtering strategies such as the selection of the top ranked
news within a cluster of interest. The generated fuzzy hierarchy represents the topics
at different levels of granularity, from the most specific ones corresponding to the
clusters of the lowest hierarchical level (the deepest level in the tree structure rep-
resenting the hierarchy), to the most general ones, corresponding with the clusters
of the top level. Since topics may overlap one another, the hierarchy is fuzzy, thus
allowing each cluster of a level to belong with distinct degrees to each cluster in the
next upper level. The proposed algorithm works bottom up in building the levels
of the fuzzy hierarchy. Once the centroids of the clusters in a level of the hierar-
chy are generated, the fuzzy clustering algorithm is re-applied to group the newly
identified centroids into new fuzzy clusters of the next upper level. In this way, each
level contains fuzzy clusters that reflect topics homogeneous with respect to their
specificity (or granularity), so that, in going up the hierarchy, more general topics
are identified.

The clusters hierarchy can be easily and efficiently updated on-line when recent
news arrive on the stream. This may possibly increase the number of the clusters
already identified, and thus may require to compute the association of the old news
to the new clusters.

Since the optimal number of clusters to generate is unknown, the proposed algo-
rithm automatically determines this number. The procedure is based on the analysis
of the shape of the cumulative histogram curve of overlapping degrees between pairs
of news vectors. It identifies the number of clusters of news sharing a minimum
overlapping degree corresponding with the point on the curve of highest trend’s
variation.

8 Conclusions

In this contribution some approaches to the definition of flexible Information Re-
trieval Systems by applying Fuzzy Set Theory have been presented. In particu-
lar some promising research directions that could guarantee the development of
more effective IRSs have been outlined. Among these, the research efforts aimed
at defining new indexing techniques of semi-structured documents (such as XML
documents) are very important: the possibility of creating in a user-driven way the
documents’ surrogates would ensure a modeling of the users’ interests also at the in-
dexing level (usually this is limited to the query formulation level). Other promising
directions are constituted by conceptual document indexing, and flexible distributed
Information Retrieval.



Fuzzy Sets in Information Retrieval: State of the Art and Research Trends 533

References

1. Abiteboul S., Querying Semi-Structured Data, Lecture Notes In Computer Science, Proceed-
ings of the 6th International Conference on Database Theory, pp. 1–18, 199.

2. Azzopardi, L., Girolami M. L., and van Rijsbergen C.J., Topic Based Language Models for
ad hoc Information Retrieval, in: Proceedings of the International Joint Conference on Neural
Networks, Budapest, Hungary, 2004.

3. Baeza-Yates R., Ribeiro-Neto B., Modern Information Retrieval. Addison-Wesley, Woking-
ham, UK, 1999.

4. Bordogna G.and Pasi G., A fuzzy linguistic approach generalizing Boolean information re-
trieval: a model and its evaluation, Journal of the American Society for Information Science,
44(2), pp. 70–82, 1993.

5. Bordogna G.and Pasi G., Linguistic aggregation operators in fuzzy information retrieva,. In-
ternational Journal of Intelligent systems, 10(2), pp. 233–248, 1995.

6. Bordogna G.and Pasi G., Controlling retrieval trough a user-adaptive representation of docu-
ments, International Journal of Approximate Reasoning, 12, 317–339, 1995.

7. Bordogna G.and Pasi G., An Ordinal Information Retrieval Model, International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, Vol. 9, 2001.

8. Bordogna G.and Pasi G., Modelling Vagueness in Information Retrieval, in Lectures in Infor-
mation Retrieval, M. Agosti, F. Crestani and G. Pasi eds., Springer Verlag., 2001.

9. Bordogna G., Pasi G., and Yager R.R., Soft approaches to distributed information retrieval,
International Journal of Intelligent Systems, Vol. 34, pp. 105–120, 2003.

10. Bordogna G.and Pasi G., Soft fusion of Infomation Accesses, Fuzzy Sets and Systems, 148,
pp. 205–218, 2004.

11. Bordogna G.., Pagani M., and Pasi G., A dynamical Hierarchical fuzzy clustering algorithm
for document filtering, in “Soft Computing for Information Retrieval on the Web”, Springer
Verlag, 2006.

12. Bordogna G. and Pasi G., Personalized Indexing and Retrieval of Heterogeneous Structured
Documents, Information Retrieval, Kluwer, Vol. 8, Issue 2, pp. 301–318, 2005.

13. Braga D., Campi A.. Damiani E.,.Pasi G, Lanzi PL, FXPath: flexible querying of XML docu-
ments, in Proceedings of EUROFUSE 2002, Varenna, Italy, 2002.

14. Boughanem M., Loiseau Y., Prade H., Improving document ranking in information retrieval
using ordered weighted aggregation and leximin refinement., in: EUSFLAT-LFA 2005, 4th
Conference of the European Society for Fuzzy Logic and Technology and 11me Rencontres
Francophones sur la Logique Floue et ses Applications, pp. 1269–1274, 2005.

15. Boughanem M., Pasi G., Prade H., Baziz M., A fuzzy logic approach to information retrieval
using an ontology-based representation of documents, in “Fuzzy Logic and the Semantic Web”
(E. Sanchez, Ed.), Elsevier Science, 2006.

16. Brini A., Boughanem M., Dubois D., A Model for Information Retrieval Based on Possibilistic
Networks, in: String Processing and Information Retrieval (SPIRE 2005), LNCS, Springer
Verlag, pp. 271–282, 2005.

17. Buell D.A., and Kraft D.H., Threshold values and Boolean retrieval systems, Information
Processing & Management 17, pp. 127–136, 1981.

18. Crestani F. and Pasi G. eds., Soft Computing in Information Retrieval: Techniques and Appli-
cations, Physica Verlag, series Studies in Fuzziness, 2000.

19. Crestani F. and Pasi G., Soft Information Retrieval: Applications of Fuzzy Set Theory
and Neural Networks, in: “Neuro-fuzzy Techniques for Intelligent Information Systems”,
N.Kasabov and Robert Kozma Editors, Physica-Verlag , Springer-Verlag Group , pp.
287–313, 1999.

20. Glover E. J., Lawrence S., Gordon M. D., Birmingham W. P., and Lee Giles C., Web Search –
YourWay, Communications of the ACM, 1999.

21. Hathaway R.J., Bezdek J.C., and Hu Y., Generalized Fuzzy C-Means Clustering Strate-
gies Using Lp Norm Distances, IEEE Transactions on Fuzzy Systems, 8(5), pp.
576–582, 2000.



534 G. Pasi

22. Herrera-Viedma E., Modeling the Retrieval Process of an Information Retrieval System Using
an Ordinal Fuzzy Linguistic Approach, Journal of the American Society for Information Sci-
ence and Technology (JASIST), Vol. 52 N. 6, pp. 60–475, 2001.

23. Herrera-Viedma E., Cordon O., Luque M., Lopez A.G., Muñoz A.N., A Model of Fuzzy
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43. Thomopoulos R., Buche P., Haemmerlé O., Representation of weakly structured imprecise
data for fuzzy querying. Fuzzy Sets and Systems, 140, 111–128, 2003.

44. van Rijsbergen C.J., Information Retrieval. London, England, Butterworths & Co., Ltd., 1979.
45. Vincke P., Multicriteria Decision Aid, John Wiley & Sons, 1992.
46. Zadeh L. A., The concept of a linguistic variable and its application to approximate reasoning,

parts I, II, Information Science, 8, pp. 199–249, pp. 301–357, 1975.
47. Zadeh L.A., A computational Approach to Fuzzy Quantifiers in Natural Languages, Comput-

ing and Mathematics with Applications. 9, 149–184, 1983.
48. Yager, R.R., On Ordered Weighted Averaging Aggregation Operators in Multicriteria Decision

Making, IEEE Transactions on Systems Man and Cybernetics, 18(1), pp. 183–190, 1988.



Fuzzy Sets and Web Meta-search Engines

José A. Olivas

Abstract In this work, a description of what is a Web Meta-search engine and the
roles that fuzzy logic as a Soft Computing technique, can play to improve the search
with this kind of artefacts are described. Fuzzy logic can provide tools for extracting
and use knowledge from thesaurus and ontologies, formalize sentences and imple-
ment deduction capabilities in Question Answering systems, combine fuzzy values
and different logics, design clustering algorithms and manage Meta-search engines
architectures.

1 Introduction

The Web search process has become complicated and ineffective due to the big
size of Internet and the exponential growth in the information. In every web search,
users retrieve a big amount of irrelevant information. The reason is that most of the
major Search engines are based on lexical and sometimes syntactic aspects [43].
Soft computing techniques have taken an important role [22, 40] in order to provide
a way for improving web search results and lots of approaches have been proposed
in the recent last years. Some of them are leaded to the construction of flexible
adaptive sites (based on web patterns, user profiles, access patterns, user behaviour
patterns . . .) using Data Mining techniques [8, 35, 41, 49]. Some others are focused
on the organization of the retrieved documents into groups, being important to point
out the ones based on clustering algorithms [58] in contrast to those supported by
predefined thematic groups. Other approaches include systems based on flexible
query languages [7, 21], or systems based on fuzzy association rules that help the
user to find new terms to be used in the query [9].

Other approaches are focused in the documents representation, most of them
based on extensions of the standard vector space model [45]. It is frequent to find
systems based on term interrelations stored in Thesaurus and ontologies such as
WordNet, a semantic net of word groups [37]. Meta-search engines appears as a
promising new tool for improve Web search results, based on the use of several
major Search engines such as Google or Yahoo and selecting the results from these
very good sources. These kinds of systems are very different to the one proposed by
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Zadeh [56] which is focused on the development of Question-Answering Systems,
a very interesting point of view in information retrieval problems.

In this work, first is described what is a Meta-searcher and later some topics
where fuzzy logic can contribute very interesting approaches are explained.

2 What is a Meta-searcher?

The Meta-searchers are search engines that have not an own database that contains
the index of the documents. They usually are slower than search engines due to the
fact that they follow a more complex and elaborated process. They provide a unified
interface for consulting different search engines. Therefore, they limit to receive the
requests of the users and them to send it to other searchers. The results must be
classified to bring together in a unique list the documents returned by all the search
engines. The main problem of the meta-searchers consists of combining the lists
returned by the other searchers so that the performance is optimized.

Nevertheless, this type of systems improves some of the present problems in
the traditional searchers, as the Recall problem, though they still suffer the Preci-
sion problem. According to Kerschberg [24], the way of solving this problem is
approached using mainly four mechanisms: based on the content, collaborative, of
knowledge of the domain and based on ontology methods. The methods based on
the content try to obtain a representation of the as concrete as possible preferences
of the user to later improve the evaluation of the returned pages, based on the content
of the document and the preferences of the user. Inside this category there can be
WebWatcher [1], WAWA [48] and WebSail [6]. The collaborative method is based
on the similarity among the users to determine the relevancy of the information,
Phoaks [50] and Site-seer [4]. The method based on the knowledge of the domain
uses the help of the user and of the knowledge of the domain of the search to provide
a major relevancy. Finally, the method based on ontology establishes a hierarchy
among concepts that allows to make concrete and to improve the search. Of this type
are WebSifter II [24], that uses a tree representation named WSTT (Weighted Seman-
tic Taxonomy-Tree) to represent the intentions of search of the users, OntoSeek [20],
On2Broker [12] and WebKB [34].

The main advantages of a Meta-searcher [36] are:

• It facilitates the invocation of multiple searchers. It allows, by means of a unique
query, to obtain the most relevant documents index-linked by multiple searchers,
which avoids the user to search in each of them.

• It improves the efficiency of the recovery. Since it is possible to consult specialized
searchers, it allows obtaining of them a set more relevant of documents, without
suffering the standard deviation that produces the high number of documents that
there index the searchers of general intention.

• It solves the scalability of the search in the Web.
• It increases the coverage of the search in the Web. Due to the enormous quantity

of documents that Internet contains, it is impossible that an alone search engine
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index links the totality of the Web [29]. Therefore, by means of the combination
of different searchers, it is possible to cover a bigger number of documents in the
searches.

Likewise, according to Aslam et al. [2], a Meta-search engine also presents the
following potential advantages:

• Modular architecture: the technologies used in the Meta-searchers can be split
in small and more specialized modules that can be parallel and collaboratively
executed.

• Consistency: current searchers often answer very different the same query once
passed a time [47]. If different sources are used for obtaining the results, the
variability would be small, favoured by the searchers that provide more stable
results.

• It improves the Recall factor: on having obtained the results of multiple searchers
it can improve the number of relevant documents recovered (the Recall factor).

• It improves the Precision: different algorithms recover many relevant equal doc-
uments, but different irrelevant documents [31]. Based on this phenomenon, in
case of being true this theory, any algorithm that gives priority to the documents
that appear in the first positions in results of different searchers will obtain an im-
provement in the recovery. This phenomenon is usually called “choir effect” [52].

But there are some disadvantages that Meta-search engines could have:

• The selection of the database: this problem is associated with the selection of
the searcher that will receive the query: to select the searchers that return good
results for a concrete query. For example, it makes no sense the query “electric
guitar” on a specialized in scientific literature searcher. To try to solve this dis-
advantage, Meng proposes the use of measures that indicate the utility of every
database with regard to a given query. He classifies these mechanisms under three
categories: wide representation methods, statistical representation methods and
methods based on learning.

• The selection of documents: once selected the origin of the documents the prob-
lem consists of determining the appropriate number of documents that it is ne-
cessary to request. If too many documents are considered, the computational
cost to determine the best documents and the cost of communication to obtain
them can be excessive. Meng also establishes a series of mechanisms that try to
solve this problem divided in four categories: decision of the user, weights (major
number of documents are obtained from the searcher that is considered to be the
best), methods based on learning (it is based on the past to determine the number
of documents of every searcher) and the guaranteed retrieval (it tries to guarantee
the recovery of all the potentially useful documents).

• Mix up of the results: the problem consists of merging the results of different
searchers with its own characteristics and forms of evaluation in an ordered by
relevancy list. In addition, the possibility exists of finding repeated documents
returned by different searchers. The technologies used to solve this problem can
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be classified in both local similarity adjustment (it is based on the characteristics
of the searcher or the similarity returned) and estimation for global similarity
(the similarity of every recovered document with the original query is evaluated
or estimated).

The translation of a query into each specific searcher language can play an im-
portant role in a Meta-searcher due to the fact that every search engine has a typical
query language. Then, to adapt every query to the language of every searcher seems
to be necessary.

There are a lot of Meta-search engine architectures, such as the ones proposed by
Li [32], Kerschberg [24] and Glover [18]. Usually, the structure is decomposed in a
series of more or less specific modules. Meng describes an architecture of reference
with 5 components (Fig. 1).

• User’s Interface: For obtaining the query of the user. In some cases it can provide
an interactive query refinement system, based on the use of some knowledge
structures. In addition, it is the manager of showing the results of the search.

• Database selector: It tries to select the searchers that better answers will give
to the query of the user. It tries to avoid a massive sending of queries to all the
searchers which causes a low performance and a high cost in time.

• Documents selector: The aim is to recover the major number of relevant doc-
uments, avoiding retrieving not relevant ones. If an excessive number of not
relevant documents are retrieved, the efficiency of the search will be negatively
affected.

• Query Dispatcher: It is in charge of establishing the connection with the searcher
and to send it the query (or queries), as well as to get the results. It is usually
used http (HyperText Transfer Protocol) by means of the use of the methods
GET and POST. Nevertheless, there exist searchers which facilitate an interface
of programming (API) to send queries and they use different protocols (Google
uses the SOAP protocol in its API).

User

User Interface

Database Selector

Document Selector

Query Dispatcher

Result Merger

6

5

6

7

2

1 8

3

4

5

Search
Engine

Search
Engine

Fig. 1 Meta-searcher software components architecture [36]
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Level Database
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Results
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Filter
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Search Engine
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Datasources
(www-Servers)

Level3

Fig. 2 Search engines of the 3rd generation [23]

• Result Merger: Its principal function is to combine the results of the different
searchers in a list. It is essential the use of some evaluation criteria to establish
an order in the list that shows to the user.

Nowadays it is usual to find in literature references about Meta-Search engines
of the 3rd generation (or level-3 search engines). They work as it is shown on Fig. 2:
The user gives order to create a level-3 database. Meta-search engines (representing
level 2 search engines) use standard search engines (level 1) to find corresponding
results. Then a relevance-feedback analysis is done on these results. With that col-
lection of addresses and text documents a level 3 database is developed. It contains
only documents which are relevant for that user, who can get more query concerned
information by querying this database. In other words, a database is created and is
tailor-made for user’s personal fields of interest. A query on this database therefore
provides high quality results.

Then, it is necessary to think about including user profiles and customization in
future Meta-searchers.

The “real” Meta-search engines simultaneously search the major search engines,
aggregate the results, eliminate the duplicates and return the most relevant matches,
according to the engine’s algorithm. Some of the most popular Meta-search engines
in the Web are:

• Vivisimo [http://vivisimo.com] uses clustering algorithms, meaning matches are
organized in folders. It was created by researchers at Carnegie-Mellon Univer-
sity. There are some advanced searching options available: exact phrase, Boolean
operators, fields searching (domain, host, title, URL, etc.) . . .

• Pro Fusion [http://www.profusion.com/], from the University of Texas [11, 16].
• Mamma [http://mamma.com] displays the results in a uniform manner according

to relevance.
• MetaCrawler. [http://www.metacrawler.com].
• Dogpile [http://www.dogpile.com/].
• Ixquick [http://www.ixquick.com/] Multilanguage.
• Ez2Find [http://Ez2Find.com/] searches several Search engines and directories.
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Through its “Advanced Search” function it also searches a small part of the in-
visible (Deep) Web.

• Some other interesting Meta-search engines are the following: InfoGrid [http://
www.infogrid.com/]. Infonetware [http://www.infonetware.com/] sorts the re-
sults into topics. IBoogie [http://iboogie.com/] has a minimalist design and
uses clustering algorithms. Fazzle [http://www.fazzle.com/] uses an interest-
ing ranking algorithm. Query Server [http://www.queryserver.com/web.htm]
searches a list of 11 Search engines (except Google). This is another exam-
ple of the use of clustering algorithms. Meta Bear [http://www.metabear.com/]
provides relevant results from both international and Russian sites. Web Scout
[http://www.webscout.com/] uses the major Search engines (except Google)
and provides relevant matches in a clean results list. Experts Avenue [http://
www.expertsavenue.com/] enables online language translation of Web pages.
EmailPinoy [http://www.emailpinoy.com/] from the Philippines. Search 66
[http://www.search66.com/] groups together pages from the same domain. Inter-
nav [http://www.internav.com/]. Metengine [http://www.metengine.com/]
(Antigua). One2Seek [http://www.one2seek.com/]. Ithaki [http://www.ithaki.
net/]. meta EUREKA [http://www.metaeureka.com/] (Netherlands). Widow
[http://www.widow.com/]. 7 Meta Search [http://www.7metasearch.com/].Byte-
dog [http://www.bytedog.com/] (Canada). il motore [http://www.ilmotore.com/]
(Italy). ApocalX [http://www.search.apocalx.com/] (France) . . .

There can be taken into account, the engines that could be considered pseudo
Meta-search engines: Those which exclusively group the results by search engine
in one long list (such as qb Search [http://www.qbsearch.com/], Better Brain
[http://www.betterbrain.com/], My Net Crawler [http://www.mynetcrawler.com/],
NBCi [http://www.nbci.msnbc.com/], Planet Search [http://www.planetsearch.
com/], Rede Search [http://www.redesearch.com/] and Search Wiz [http://www.
searchwiz.com/]), and those which open a separate browser window for each search
engine used (such as for example Multi-Search-Engine [http://www.multi-search-
engine.com/] that opens 36 windows, The Info [http://www.theinfo.com/], Net De-
pot [http://www.netdepot.org/], Alpha Seek [http://www.alfaseek.com/] or Express
Find [http://www.expressfind.com/]).

2.1 Web Meta-search Engines

This work is focused on Web Meta-search engines because Web pages are the main
point of interest of most of the general Search engines, and most of the Meta-
searchers described and developed are focused on the Web. The design and im-
plementation of these kinds of systems is usually supported by an index process
that consists of creating an index of the terms and some other features that contains
the web pages that the searcher can or want to access. The index process is usually
implemented as an offline task, and the index is stored in a big database (usually
distributed) that is consulted when a user send a query.
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3 Meta Search Engines and Fuzzy Logic

Nowadays there are not commercial Fuzzy Searchers. Soft computing and Fuzzy
Logic could play an interesting role in Web Search and Meta-search engines. Fol-
lowing some relevant topics which could be improved with Soft computing tech-
niques are presented.

3.1 The Role that Nowadays Fuzzy Logic Plays in Search
and Meta-search Engines

If it is done a search in Google with the words “fuzzy searcher” many results appear.
Selected those that we consider to be relevant, we observe that the fuzzy character
that some commercial searchers assume is based exclusively on the use of a syn-
tactic fuzzy matching; this is, in a fitting of the word included and possibly badly
messed with another from a dictionary that the searcher contains or the searcher
accedes and which is correctly written. The result is that the searcher sends a sign
of notice (written text) that says: Did you mean? . . .Evidently, though the utility of
this function is, to name a searcher as “fuzzy” for implementing it is excessive.

More detailed, in popular search engines the fuzzy search operator makes it pos-
sible to search with a segment of a word when the user does not know how to spell
the entire word. For example, many medical terms and pharmaceutical products
have difficult spellings. You may know how to say the word, but searching for it
requires you to know how to spell as well. Fuzzy searching and wild card operators
allow you to get around this problem. For example, Netscape Search supports the
use of fuzzy searching. To search for the popular antibiotic “amoxicillin” the user
can use the fuzzy search operator. To do this, he has to type as much of the word
as he knows how to spell followed by the tilde character (∼) followed by your
best guess at how the rest of the word is spelled. For example, the search term
amoxi∼cilan will successfully return any sites that contain rough matches of this
search term including the correct one.

It is very similar the search based in Wild Card Characters. It is possible to ac-
complish searches for different variations and unknown spellings in other ways.
For example, many search engines supports three different well known wild card
characters: the dollar sign ($), the question mark (?), and the asterisk (∗).

3.2 The Role that Fuzzy Logic can Play in Meta-search Engines

The proposal is that a searcher will be fuzzy when it implements approximate
semantic searches; this is, when it includes in the searches semantic approximate
criteria, not only syntactic ones. Some aspects that there would be considered are
presented.
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The Use of a Dictionary of Synonymous and Thesaurus (Ontology)

When a user searches for a single word, the search can be facilitated by the use of a
dictionary of synonymous. The dictionary will allow searches not only for the source
word, but for its synonymous and will make possible to calculate the synonymy
degree, having to contemplate this degree in the relevancy of the retrieved pages as
response to the source terms.

The search can also be improved using thesaurus and ontologies. Nowadays,
there are many ontologies referring to different domains, that improve several as-
pects in some applications, but they all have been hand-made following different
methodologies such as Methontology [13] or those by Gruninger [19]. On the other
hand, automatic ontology building is a focus in current research where the results
hitherto have not been too satisfactory.

Nowadays, the online more used thesaurus is probably WordNet [38] that is or-
ganized on the basis of the semantic relations among different words. The bases of
WordNet are the synonymy and hyponymy relations and other similar ones. In this
way, groups of synonymous of a word can be found grouped in sets called synsets,
and a polysemic word can belong to different synsets. The hyponymy relation (and
the hypernymy one) is established among different terms, making a hierarchy based
on the hyponymy. So, if dog “is a type of” canine, then canine is a hyponymy of
dog. These relations provide important information that allows the expansion of the
query terms to incorporate semantic information into the search process, as well as
a mechanism to identify the correct meanings of the terms involved in a query. This
kind of systems usually require a special matching mechanism, as the ontomatching
algorithm proposed by Kiryakov and Simov [26] when comparing the concepts as-
sociated to the words. Whaley [53] propose other corpus-based search system that
uses the probability that certain concepts co-occur together to disambiguate mean-
ings. Leacock and Chodorow [30] approach the sense disambiguation problem by
studying the local context of the words and comparing them to the habitual context
words of each one of the word senses. This system requires the usual context words
to be stored in a repository. Loupy and El-Bèze [33] also uses WordNet and propose
a disambiguation system based on training the system with corpus of documents.
Ramakrishnan et al. [42] study the disambiguation from a soft point of view. In
this case, words are not disambiguated to an only sense, but rather to a set of senses
with their corresponding relevance degrees (obtained by Bayesian Belief Networks).
Lafourcade et al. [28] introduce the concept of relative synonymy to define a model
of concept-based vectors. In this model, a term can be represented by a conceptual
vector which is obtained by the linear combination of the definitions of the whole
set of concepts. This system requires a concept repository.

As an example, FIS-CRM [15] is a model for representing the concepts con-
tained in any kind of document. It can be considered an extension of the vector
space model (VSM) [45, 46]. Its main characteristic is that it is fed on the in-
formation stored in a fuzzy synonymy dictionary [14] and several fuzzy thematic
ontologies. The dictionary stores the synonymy degree between every pair of recog-
nized synonyms. The ontology stores the generality degree between every word and
its more general words. The way of calculating this value is the one proposed by
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Widyantoro and Yen [54]. The key of the FIS-CRM model is first to construct the
base vectors of the documents considering the number of occurrences of the terms
(what we call VSM vectors) and afterwards readjust the vector weights in order
to represent concept occurrences, using for this purpose the information stored in
the dictionary and the ontologies. The readjusting process involves sharing the oc-
currences of a concept among the synonyms which converge to the concept and
give a weight to the words that represent a more general concept than the contained
ones.

Sentences Search and Deduction Capabilities

If the search includes sentences, besides the dictionary of synonymous, thesaurus
and ontologies, suitable fuzzy connectives should be used, to discriminate for ex-
ample between a search “A and B” where A and B have common information, of
the search “A and B” where A and B are completely independent. Something similar
can happen with the relation “A or B”. Another desirable aspect is that the searcher
keeps the meaning of the words in mind under the synonymy relation, to choose the
best similarity function.

But the problem can be bigger in the case of “causal” relations. First, it is very
difficult to detect a causal relation in a written sentence (a query or a text). For
example, the text could be: “stormy and dark”, that could be understood by a person
as: “If the weather is stormy, the sky gets dark”. How can a search engine distin-
guishes the conjunctive “and” and the causal one? Nowadays is rather impossible,
even if there is some knowledge about the context. Second, it is very difficult to find
the most adequate implication function to represent the sentence (it is well known
that there is a huge variety of fuzzy implications). The detection and management
of causal relations could be very important for developing Question Answering
Systems.

To detect the causal relationships that exist in a collection of documents, a
starting point could be to detect conditional phrases. Nevertheless, this is not an
easy task. Descartes could not have possibly imagined that to propose his famous
phrase “I think, therefore I am”, would have given birth to so many conjectures
and interpretations for centuries after. In reality, what did he want to say, “First I
think and after I am a person”, or “As I am capable of thought, I am a person”. To
sum up, even on this occasion the intention of Descartes seems clear when he ex-
pressed his maxim, it is not easy to interpret and format the information expressed in
natural language, especially when it involves complex sentences with complicated
turns.

With the aim of detecting conditional phrases, some basic systems of detecting
structures and a classification of sentences have been developed (i.e. [39]) which
allow to locate, in terms of basic components (verb tenses, adverbs, linguistic turns,
etc.), some causal forms. To accomplish the grammatical analysis, it is observed on
the one hand, that it is possible to separate certain causal relationships based on the
verb form used, while on the other hand it is possible to separate others based on



546 J. A. Olivas

the adverbs used in the sentences. Both analyses give rise to some causal rules that
can be used to make an automatic extraction of knowledge. In the same way, every
structure is subdivided into two structures which correspond to the antecedent and
consequence of the causal relationship, and a parameter that measures the degree of
certainty, conjecture, or compliance of the said causal relationship. In other words,
it is not the same to form a sentence such as: “If I win the lottery, I will buy a
car”, in which there is no doubt that if the antecedent comes true the consequence
will come true, as to form the sentence “If we had bought a ticket in Sacramento,
we could have won the lottery” which leaves many more doubts and conjectures,
in which you cannot be sure that the completion of the antecedent guarantees the
consequences.

But this is still a Natural Language Processing complex problem. There are some
other very interesting approximations, such as the one of Trillas [51] for represent-
ing conditional sentences with fuzzy implications. On the other hand, an approach
based on PNL and protoforms could be a promising work line, such as Prof. Zadeh
proposes1:

“Existing search engines—with Google at the top—have many remarkable ca-
pabilities; but what is not among them is deduction capability—the capability to
synthesize an answer to a query from bodies of information which reside in various
parts of the knowledge base.

In recent years, impressive progress has been made in enhancing performance
of search engines through the use of methods based on bivalent logic and bivalent-
logic-based probability theory. But can such methods be used to add nontrivial de-
duction capability to search engines, that is, to upgrade search engines to question-
answering systems? A view which is articulated in this note is that the answer
is “No”.

The problem is rooted in the nature of world knowledge, the kind of knowledge
that humans acquire through experience and education.

It is widely recognized that world knowledge plays an essential role in assess-
ment of relevance, summarization, search and deduction. But a basic issue which
is not addressed is that much of world knowledge is perception-based, e.g., “it is
hard to find parking in Paris,” “most professors are not rich,” and “it is unlikely
to rain in midsummer in San Francisco.” The problem is that (a) perception-based
information is intrinsically fuzzy; and (b) bivalent logic is intrinsically unsuited to
deal with fuzziness and partial truth.

To come to grips with the fuzziness of world knowledge, new tools are needed.
The principal new tool—a tool which is briefly described in their note—is Pre-
cisiated Natural Language (PNL). PNL is based on fuzzy logic and has the ca-
pability to deal with partiality of certainty, partiality of possibility and partial-
ity of truth. These are the capabilities that are needed to be able to draw on
world knowledge for assessment of relevance, and for summarization, search and
deduction.”

1 Seminar: Web Intelligence, World Knowledge and Fuzzy Logic. Lotfi A. Zadeh, September 14;
2004, University of California, Berlkeley.
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Combination of Fuzzy Values

A Meta-searcher has to carry out a combination of logics (the algorithms that every
searcher uses) in order to combine the local similarities in a global similarity or
final order. But the local similarities are not based on fuzzy criteria. Therefore, the
orders of relevant pages are not approximate. Usually Meta-searchers consider the
searchers according to the prestige that they grant for the question that the users
do and, depending on it, they qualify its results to incorporate them into the final
list. In this case, the approximation comes for a criterion of market, but, again,
not for a linguistic criterion. It would be interesting to apply this criterion, first,
as it is previously indicated, doing that searchers make fuzzy semantic searches.
Later, achieving that Meta-searchers arrange the pages in a final list combining the
relevancy of the searchers with the confidence degrees associated with every result
of its local obtained list, not only with the word got in the search box, but also using
its related (synonyms . . .) words, the measures of similarity used in the calculation
of the degree of linguistic relations and the fuzzy Boolean operators used in searches
with sentences. Each of these searches would answer, therefore, to a fuzzy logic
used by the searchers, which the Meta-searcher would have to combine to provide
the final order. The use of the links that provides the order that the Meta-searcher
gives might be useful as a test bench to check hypothesis on the combination of
fuzzy logics.

Another important problem appears when it is necessary to aggregate several
different fuzzy values from various sources. Two words (concepts) can have more
than one linguistic relations (each one with its fuzzy value), such as hyponymy and
synonymy. For example “football” and “soccer” are synonyms but the first is also
more general than the last. A causal relation can also exist between both words
(concepts). Moreover, a fuzzy relation based on the physical distance (same sen-
tence, paragraph, chapter . . .) could be considered. Then, it is necessary to join all
these different fuzzy values in only one, to be applied in representation and search
tasks. How to aggregate these fuzzy values is still an open problem. Nowadays it
is usually done with standard OWA operators [55] (or similar such as LOWA or
WOWA ones). Another solution could be to use other operators, such as the ones
presented by Castro and Trillas [5].

Results Fuzzy Clustering

Document classification or text categorization (as used in information retrieval con-
text) is the process of assigning a document to a predefined set of categories based
on the document content. However, the predefined categories are unknown in a
real repository of documents. Text clustering methods can be applied to structure
the resulting set of documents, so they can be interactively browsed by the user.
Therefore, using a clustering process, it is possible to achieve the splitting up of the
collection of documents in a reduced number of groups made up of documents with
enough conceptual similarity.
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The amount of documents on a repository can range from tens to thousands and
the system should manage their contents efficiently. Thus, the most important fea-
tures of the organization of the repository and its components (classifiers, etc.) must
be the following:

• Dimensionality: The classifier can handle feature spaces of tens of thousands
dimensions, this requires the ability to deal with sparse data spaces or a method
of dimensionality reduction.

• Efficiency: The documental clustering algorithms must be very efficient and scal-
able. The method should be also accurate in the task of classifying an incoming
document.

• Understandability: The method must provide an understandable description of
the discovered clusters.

• Updatability: The classifier update promptly itself as each new document is filed
in the repository.

There are a lot of Soft-computing based clustering algorithms described in the
literature, such as fuzzy C-means [3], self organized maps based on Neural Net-
works architectures (i.e. Kohonen Maps) [27], etc. But nowadays soft-clustering
algorithms (i.e. the one presented in [25]) and dynamic clustering interfaces (i.e.
Grouper [57]) are frequently used for Meta-search engines classification tasks.

Meta-search Engines Architectures

Some typical tendencies in the use of search engines limit the effectiveness of the
search process. Added to search problems based on key-words, there is a usual
lack of experience in the users when using search engines. Meta-search engines
appear as a promising alternative for trying to relieve this low precision of major
search engines. An increase in the semantic capability of user queries is necessary
to improve the relevance of the search results. For this purpose, it is usually used
the query expansion technique [10] with terms semantically related with the terms
introduced by the user. There are different strategies that can be adopted to ex-
pand a query, each one with its own characteristics. Basically, these mechanisms
can be classified in manual, automatic and interactive query expansions. The au-
tomatic algorithms try to incorporate automatically new terms semantically related
with those ones introduced by the user, to obtain a set of documents closer to the
user search intention. But these approximations often are not easy to do, due to
the different problems that vocabulary presents. Different approaches have been
developed, for trying to get the correct meaning of the terms of a query and to
focus the search for obtaining better results, in an automatic fashion. These al-
gorithms are usually named Word Sense Disambiguation (WSD) algorithms. The
interactive query expansion method consists of requesting the help of the user. By
means of this mechanism the system suggests a series of terms among which the
user has to choose. This type of systems frequently uses a tree structure from more
general concepts towards more specific terms. It can make the process slow and
uncomfortable because usually the user needs to answer several questions. On the
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other hand, the query expansion is usually done using knowledge structures (which
initially could be WordNet but it could also be based on other ontologies or the-
saurus).

There are many Meta-search engine architectures proposed [17, 24, 32] in which
there are several common components. This is the case for the components that
make queries to be sent to different major search engines, as well as those compo-
nents which calculate the relevance of the retrieved documents. Most of the pro-
posed architectures are based on the use of agents with different functions which
communicate with each other through a net. Each agent develops a specific task,
working cooperatively with other agents and reducing the system complexity. How-
ever, a communication language known by all the system agents is necessary to work
cooperatively. This common language is known as Agent Communication Language
(ACL).

Fuzzy logic could play a fundamental role in this agent based architecture, mainly
in the task of joining the information from different sources (agents) and managing
the results in an efficient and satisfactory way.

4 Conclusions and Guidelines

Taking into account these presented criteria, among others, would make possible to
have really fuzzy searchers, or what is the same, searchers that do searches in terms
of approximate meanings. The main focus of these engines must be the Web, not for
general search artefacts but for Meta-search tools, because they use General Web
Search engines as a basis.

Having fuzzy searchers would offer the possibility to do interesting tests and
experiments. The Artificial Intelligence is an area of mixture of logics, because the
approaches in the formal analysis of a sentence can be very different. Then, the
logical form of the following phrase, a bit long, but not strange: “I suppose that you
believe that I will pick you up a little bit earlier”, implies using different logics:
belief, non monotonic, fuzzy, temporal, . . .But the problem is more complex yet,
because, for the words with vague meaning, there can be also several modalities
of fuzzy logics. The election has not been studied too much. Meta-searchers could
provide a useful frame, restricted by the language that it lets, to research on the
variety of formalisms that fuzzy logic provides.

Using user profiles in Web Meta-search engines could provide some advantages
to improve the search. The user profile can be another parameter to take into account
for expanding the query (with profile-related concepts: synonyms, broader than . . .),
for selecting the search engines and adapting the queries to them and for choosing
and ranking the results of the search. Soft computing techniques can help in learning
and representation tasks.

Meta Question-answering Systems?, perhaps the next goal to achieve would be
Meta Web Question-answering Systems, which analyze the user question and gen-
erate a set of precise queries (expanded queries) to the more suitable major Search
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engines and Directories, to get the correct answer to the query. Soft computing and
mainly fuzzy logic, as tools closer to human expression nature, can play an essential
role for detecting the human user correct meaning and intention.
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Fuzzy Set Techniques in E-Service Applications

Jie Lu, Da Ruan and Guangquan Zhang

Abstract E-services involve various types, delivery systems, advanced information
technologies, methodologies and applications of online services that are provided
by e-government, e-business, e-commerce, e-market, e-finance, e-learning systems,
to name a few. They offer great opportunities and challenges for many areas, such
as government, business, commerce, marketing, finance and education. E-service
intelligence is a new research field that deals with fundamental roles, social impacts
and practical applications of various intelligent technologies on the Internet based e-
services. This chapter aims to offer a thorough introduction and systematic overview
of the new field e-service intelligence mainly based on fuzzy set related techniques.
It covers the state-of-the-art of the research and development in various aspects in-
cluding both theorems and applications, of e-service intelligence by applying fuzzy
set theory. Moreover, it demonstrates how adaptations of existing intelligent tech-
nologies benefit from the development of e-service applications in online customer
decision, personalised services, web mining, online searching/data retrieval, online
pattern recognition/image processing, and web-based e-logistics/planning.

1 Introduction

Electronic-service (e-service) intelligence is a new research field that deals with
fundamental roles, social impacts and practical applications of various intelligent
technologies and methodologies on the Internet based e-services. Over the last
decade, many government and business online services have mainly gone through
four stages in most industrialized countries: (a) online information presentation,
(b) online transaction, (c) online information integration, and (d) intelligent e-
services. Clearly, the keyword intelligence will be the next paradigm shift in the
e-services thanks to web technological advances (Lu et al. 2006b). To provide
intelligence for e-services, various intelligent technologies including fuzzy logic,
expert systems, machine learning, and neural network etc. are being applied in var-
ious e-service approaches, systems and applications. In the framework of intelli-
gent technologies, government and business e-services will provide with a much
higher quality for online information presentation, online information searching,
personalized recommendation, website evaluation, and customer decision support
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(Lu et al. 2006a). We begin to see some successful developments recently in apply-
ing intelligent techniques to build intelligent e-service systems, such as intelligent
recommender systems, intelligent e-shopping systems, intelligent online customer
management systems and intelligent online decision support systems. We have also
found some successful investigations based on intelligent systems to evaluate e-
service systems, help users’ online trading and support users’ online decision mak-
ing. In the following we describe the application of fuzzy set based intelligent e-
service methods and systems to the World Wide Web.

This chapter presents a thorough introduction and systematic overview of the
new field e-service intelligence mainly based on fuzzy set related techniques. The
chapter is organised as follows. Section 2 summarises the role of fuzzy set tech-
niques in e-services. Section 3 highlights applications of fuzzy set techniques in web
information presentation, online search, and web mining. Section 4 discusses the
implementation of personalization and trust in e-services supported by fuzzy logic
approaches. Section 5 shows how fuzzy set techniques can help e-service evaluation
and knowledge discovery. Section 6 displays intelligent e-service systems with the
help of fuzzy set techniques, and finally Sect. 7 concludes the chapter and its related
future research direction.

2 The Role of Fuzzy Set Techniques in E-Services

Soft computing (SC) aims to use learning, adaptive, or evolutionary computation
to create programs. Expert systems, artificial neural networks, fuzzy logic systems
and evolutionary computation are major technologies used in SC and/or intelligent
systems. The power of each methodology as a design tool is limited only by the
designer’s imagination. Two features, in particular, stand out: (1) many of them are
biologically inspired, and (2) they are all capable of solving non-linear problems
(Ruan 1997). The methodologies comprising SC techniques are for the most part
complementary and synergistic rather than competitive. SC has already enjoyed
considerable success in e-services, which has proven to be instructive and vital
(Lu et al. 2006a).

Fuzzy logic (FL) (Zadeh 1965, 1996) is designed to handle imprecise linguistic
concepts such as small, big, low, high, young, or old. Systems based on FL exhibit
an inherent flexibility and have proven to be successful in a variety of industrial
control and pattern-recognition tasks ranging from handwriting recognition to traf-
fic control. Central to the flexibility that FL provides is the notion of fuzzy sets.
Fuzzy sets are the basic concept supporting fuzzy theory. The main research fields
in fuzzy theory are fuzzy sets, fuzzy logic, and fuzzy measure. Fuzzy reasoning
or approximate reasoning is an application of fuzzy logic to knowledge process-
ing. Fuzzy control is an application of fuzzy reasoning to control. One of the main
strengths of FL compared with other schemes to deal with imprecise data is that their
knowledge bases, which are in a rule format, are easy to examine and understand.
This rule format also makes it easy to update and maintain the knowledge base.
Experts think in imprecise terms, such as very often and almost never, usually and
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hardly ever, frequently and occasionally, and use linguistic variables such as the
above-mentioned small, big, low and high etc. FL provides a means to compute with
words. It concentrates on the use of fuzzy values that capture the meaning of words,
human reasoning and decision making, and provides a way of breaking through
the computational burden of traditional expert systems. As for the limitations of
FL, the main shortcoming is that the membership functions and rules have to be
specified manually. Determining membership functions can be a time-consuming,
trial-and-error process. Moreover the elicitation of rules from human experts can be
an expensive, error-prone procedure. FL as an additional useful tool has nevertheless
been successfully applied to some of the most interesting e-service areas described
over the rest of the chapter.

3 Web Information Presentations, Search, and Mining

The rapid growth of web based e-service applications has provided a better in-
formation presentation and faster web search and mining to web users. Fuzzy set
techniques, with their abilities to provide a very natural representation of human
conceptualization, are making many more useful contributions to improve the qual-
ity to e-service applications. Clearly, the presentation for information and searching
on products/services will benefit from the facility of linguistic descriptions and par-
tial matching. Fuzzy set theory has a great potential for supporting such kinds of
linguistic description and partial matching. Also, fuzzy sets based on intelligent
agents can be used in e-services as a means adding in the current web information
presentation.

Applying fuzzy set theory can improve the quality of web information search and
retrieval in several ways. One can add a fuzzy quantifier to each term or concept.
In addition, one can interpret the AND as fuzzy-MIN and OR as fuzzy-MAX func-
tions. Alternatively, one can add agents in the user interface and assign certain tasks
to them or use machine learning to learn user behavior or preferences to improve
performance (Nikravesh 2006). A Conceptual Fuzzy Search (CFS) model devel-
oped by (Nikravesh 2006) can be used for intelligent information and knowledge
retrieval through conceptual matching of both text and images. The selected query
does not need to match the decision criteria exactly, which gives the system a more
human-like behavior. The CFS can also be used for constructing fuzzy ontology or
terms related to the context of search or query to resolve the ambiguity.

Fuzzy set techniques have also been applied into web mining and web user profile
clustering. An important aspect of customer profiles in online customer relation-
ship management is the clustering of similar profiles to create customer “segments”
(Mobasher et al. 2000). Clustered user profiles are a good option when there exist in-
sufficient data to build individual profiles. Most customer attributes such as “quality-
conscious” and “calorie-conscious” are inherently fuzzy. Also, customer segments
are not crisp. Thus, fuzzy set theory can play a major role in customer profile rep-
resentations (Jain and Krishnapuram 2001). Bautista et al. (2000) used a genetic
algorithm to build an adaptive consumer profile based on documents retrieved by
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users. A fuzzy classification and a genetic term-selection process provide a better
utilization of valuable knowledge to learn the current and future interests of users.

Krishnapuram et al. (2001) introduced the notion of uncertainty in web usage
mining, discovering clusters of user session profiles using robust fuzzy algorithms.
In their approach, a user or a page can be assigned to more than one cluster. Af-
ter pre-processing the log data, they created a dissimilarity matrix that is used by
the fuzzy algorithms presented in order to cluster typical user sessions. To achieve
this, they introduced a similarity measure that takes into account both the individual
URLs in a web session, as well as the structure of the site.

4 Personalizations and Trust in E-Services

In an online environment, customers can be individually identified, observed, an-
alyzed, and addressed easily. While the initial research efforts have been directed
more towards contents, e-service is expected to dominate personalization efforts
over the next years. Personalization includes customization of all interactions bet-
ween the customer and the Internet intermediary (Chen et al. 2004). Web-based
personalized service, also called e-service personalization (ESP), is concerned with
building a closer relationship and understanding the needs of individual users to
deliver right information to right users at the right time. ESP is experiencing
widespread adoption in the application areas such as customer relationship man-
agement, e-commerce interaction and intimacy, and employee development (Lu et
al. 2006a; Adomavicius and Tuzhilin 2005). For example, given a customer, how to
pick the right advertisement to target? How to determine which product should be
recommended to a customer? How to determine the content of a Web page that a
customer views? Many researchers have recently endeavoured to provide personal-
ization mechanisms for e-service. Personalized e-service has recently received con-
siderable attention because online information and services provided need different
users (Adomavicius and Tuzhilin 2005; Eirinaki and Vazirgiannis 2003).

As one of the most popular applications of personalization techniques, recom-
mender systems have gained much attention in the past 10 years (Adomavicius and
Tuzhilin 2005). Recommender systems aim at filtering out the uninterested items
(or predicting the interested ones) automatically on behalf of the users according to
their personal preferences. A recommendation system (Amoroso and Reinig 2004)
considers user preferences, interests, or browsing behaviors when analyzing user be-
haviors for personalized services. It therefore can either predict whether a particular
user will like a particular item, or to identify a set of items that will be of interest to
a certain user (Karypis 2001).

Various approaches for recommender systems have been developed (Breese et
al. 1998; Burke 2000, 2002; Zeng et al. 2004). The main types of these approaches
adopted in recommender systems are the content-based (CB) approach, the col-
laborative filtering (CF) approach, the knowledge-based (KB) approach, and the
hybrid approach. The CB approach mainly relies on the content and relevant profiles
to generate personalized recommendations. Using the approach, a recommender
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system recommends some web objects, to a user, which are similar to what the
user has been interested in the past (Mooney and Roy 1999). The CF approach
offers recommendations based on the similarity of a group of users (Mobasher et al.
2000). The CF approach has been known to be the most popular recommendation
approach. It has been used in various e-service applications such as recommending
web pages, movies, articles and products. The CF approach can be divided into
two types: user-based CF and item-based CF (Karypis 2001). The user-based CF
approach is implemented in two main steps: (1) a set of k-nearest neighbours of a
target user is selected. This is performed by computing correlations or similarities
between user profiles and a target user; (2) producing a prediction value for the target
user on unrated (or unvisited) items, and generating recommendations to the target
user. The item-based CF approach first considers the relationships among items.
Rather than finding user neighbours, the system attempts to find k similar items that
are rated (or visited) by different users in some similar ways. Then, for a target item,
related predictions can be generated. For example, by taking a weighted average of
a target user’s item ratings (or weights) on these neighbour items. The third type is
KB approach; a new approach is new comparing with others. A knowledge-based
recommender system attempts to suggest items based on inferences about a user’s
preferences. Such systems use knowledge in relevant to users and items to gener-
ate recommendations. In some sense, all recommendation techniques could be de-
scribed as doing some kinds of inference. A knowledge-based recommender system
avoids gather information about a particular user because its judgments are indepen-
dent of individual taste (Burke 2000). Some of these systems employ the techniques
of case-based reasoning for knowledge-based recommendation, such as Wasabi Per-
sonal Shopper (Burke 1999), a restaurant recommender system. All of the known
recommendation techniques have strengths and weaknesses. A common thread in
recommender system research is the need to combine recommendation techniques
to achieve peak performance. For example, Fab (Balabanovic and Shoham 1997)
implements a hybrid CB-CF system for recommending web pages. In Fab, user
profiles based on the pages a user liked are maintained by using CB techniques.
The profiles are directly compared to determine similarity between users in order
to make CF predictions. Entrée (Burke 2002) initially is a knowledge-based rec-
ommender system that uses CBR techniques to select and rank restaurant. It was
implemented to serve as a guide to attendees of s serial of conferences in 1996.
Electronic Funding Information (ELFI) (Mooney and Roy 1999) provides sugges-
tions on funding programs and agencies for researches. It is a hybrid recommender
system by combining CB and KB approaches. ELFI is a web-based system that
provides information about research funding. Guo and Lu (2006) proposed a hybrid
recommendation approach by integrating item-based CF approach with semantic
similarity analysis techniques.

There are still some problems with current recommendation approaches includ-
ing the lack of scalability and sparsity, prediction accuracy, and lack the ability to
provide recommendations or predictions for new users and new items (Guo and
Lu 2006). Fuzzy approximate reasoning (Klir and Yuan 1995), fuzzy matching,
and fuzzy similarity are being used in recommendation approaches to overcome
these existing problems. Nasraoui and Petenes (2003) investigated the framework
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and presented an approach to provide a dynamic prediction in the web navigation
space. Yager (2003) described a reclusive approach in which fuzzy set methods are
used for the representation and subsequent construction of justifications and recom-
mendation rules. Differing from CF, it is based solely on preferences of the single
individuals for whom we provide the recommendation, without using preferences of
other collaborators. It makes extensively use of an internal description of the items,
and relies solely on the preferences of the target user. Carbo and Molina (2004)
developed a CF-based algorithm in which ratings and recommendations can be lin-
guistic labels represented by fuzzy sets. Perny and Zucker (1999, 2001) proposed
a recommender system from a decision support perspective, noting that such ap-
plications position themselves between the archetypical problems of individual and
group decision making. In that light, they pursued a hybrid approach that involves
a number of fuzzy relations. Using appropriate fuzzy similarity measures, for each
item i , and each user u, a neighbourhood of k most similar elements is constructed
and denoted Nk(i), respectively Nk(u); thanks to the use of neighborhoods, the
entire search space does not need to be traversed in producing recommendations.
Next, Q (u, i) can be a self- or peer-evaluation of the confidence about u’s rating
of i , to strengthen or diminish its impact in the generation of recommendations.
Based on fuzzy similarity measures, a hybrid recommendation algorithm with fuzzy
set theory was proposed. It is being used in a one-and-only item recommendation
system in government e-services (Cornelis et al. 2005).

Under these general framework and approaches, some fuzzy techniques based
recommender systems have been developed. For example, a personalized course-
ware recommendation system (PCRS) is proposed by Chen et al. (2004). This sys-
tem is developed based on the fuzzy item response theory to provide web-based
learning services. In the proposed fuzzy item response theory, the fuzzy theory is
combined with the original item response theory (Baker and Frank 1992) to model
uncertainly learning response. The PCRS can dynamically estimate learner ability
based on the proposed fuzzy item response theory by collecting learner feedback
information after studying the recommended courseware. Experiments show that the
proposed fuzzy technology based personalized courseware recommendation system
can recommend appropriate course materials to learners based on the individual
ability, and help them to learn more efficiently and effectively.

The applications of fuzzy sets in e-service personalization also conduct some
personalized e-service models. For example, Viswanathan and Childers (1999) con-
sidered online product categories as fuzzy sets. Products are said to have degrees of
memberships in specific attributes. The memberships at the attribute level are then
combined to obtain an overall degree of memberships of a product in a category.
Fuzzy-set-based measures enable fine distinction among products and assist in the
new product development, brand extension, and brand positioning. Another exam-
ple is about a competitive structure. Fuzzy methods are useful in modeling market
structure since they can handle the uncertainty associated with consumer choice and
their next purchase (Nishio and Shiizuka 1995).

E-service has managed to place itself in the society. However, there are many
hindrance factors that cause it to fail to reach its full potential, mainly on the dissat-
isfaction of customers, such as a low level of personal data security and mistrust
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of the technology (Manchala 2000). This has affected consumers’ trust towards
online business. Since the concept of trust is subjective, it creates a number of
unique problems that obviate any clear mathematical result. Hence, fuzzy logic is
currently being investigated as a possible best fit approach as it takes into account
the uncertainties within e-commerce data and like human relationships, trust is of-
ten expressed by linguistic terms rather than numerical values. Nefti et al. (2005)
identified two advantages of using fuzzy-logic to quantify trust in e-commerce ap-
plications. (1) Fuzzy inference is capable of quantifying imprecise data and quan-
tifying uncertainty in measuring the trust index of the vendors. For example, in the
trust model, the community comments variable in the fulfillment factor has a wide
range of values as we may have a small or large number of customers providing
positive or negative feedback to the vendor; the number of comments will affect
the decision made by the associated evaluation module. (2) Fuzzy inference can
deal with variable dependencies in the system by decoupling dependable variables.
The membership functions can be used to generate membership degrees for each
variable. Any defined fuzzy rule set will be applied to the output space (trust index)
through fuzzy ‘and’ and ‘or’ operators. Such a fuzzy trust module can describe more
effectively users’ trust behavior in e-services.

5 E-Service Evaluations and Knowledge Discovery

Since the mid-1990s, businesses have spent quite a bit of time, money and effort
developing web-based e-service applications. These applications are assisting busi-
nesses in building more effective customer relationships and gaining competitive
advantage through providing interactive, personalized, faster e-services to fulfill
customer demands (Chidambaram 2001). Businesses in the earlier stages of employ-
ing web-based applications had little data, knowledge and experience for assessing
and evaluating the potential of e-services for organizational impacts and benefits.
Organisational efforts were largely geared toward customer service provision with
little to no thought identifying and measuring the costs involved in moving services
online against the benefits received by adopting e-services. After several years ex-
perience of e-service provision, businesses now urgently need to plan their further
development in e-services (Lu 2003). Importantly, businesses have obtained related
e-service running data and knowledge, which makes it possible to identify in what
items of investment for an e-service application effectively contribute to what benefit
aspects of business objectives.

Recent reports concerning the success, quality, usability and benefit of e-services
have led researchers to express increasing interest in evaluating and measuring the
development of e-service applications (Wade and Nevo, 2005). Much research has
been conducted to evaluate e-services from various views and using various me-
thods. In general, the research in e-service evaluation can be classified under four
major categories.

The first one is the evaluation for the features, functions or usability of e-service
systems. It is often combined with the evaluation of the use of related websites.
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Typical approaches used in this category of research are testing, inspection and
inquiry (Hahn and Kauffman 2002). These approaches are often used together in an-
alyzing a web search or a desk survey. For example, Ng et al. (1998) reported a desk
survey of business websites and discussed the features and benefits of web-based
applications. Smith (2001) proposed a set of evaluation criteria to New Zealand gov-
ernment websites. Lu et al. (2001) showed their assessment results for e-commerce
development in the businesses of New Zealand.

The quality of websites needs to be measured using criteria focused on the ef-
fective website design (e.g., clear ordering of information, consistent navigation
structure). However, from the information consumer’s perspective the quality of
a website may not be assessed independently of the quality of the information
content that provides. Based on the information quality framework for the design
of information systems defined Lee et al. (2002), Enrique et al. (2003) presented a
computing-with-words based fuzzy method to measure the informative quality of
Web sites used to publish information stored in XML documents.

The second category is the customer satisfactory evaluation. Various evalua-
tion criteria and factors have been identified and related evaluation systems have
been designed for obtaining customers’ feedback and measuring the degree of their
satisfaction to current e-services provided (Lu and Lu 2004). Questionnaire-based
survey and multi-criteria evaluation systems are mainly used to conduct this kind
of research. For example, Lin (2003) examined some customer satisfaction for e-
commerce and proposes three main scales that play a significant role in influenc-
ing customer satisfaction: customer need, customer value and customer cost. In the
meantime, a related topic, customer loyalty, has also been paid attentions. For exam-
ple, Srinivasan et al (2002) explored the antecedents and consequences of customer
loyalty in e-commerce.

During the evaluation of e-services, in particular of user satisfactory evaluation,
fuzzy set techniques have been extended to discovery of fuzzy association rules
(Kuok et al. 1998) and their extension to fuzzy sequential pattems (Hong et al.
1999). Fuzzy set theory provides a host of parameterized operators that can be used
to model various aggregation strategies in web-based knowledge discovery (Jain and
Krishnapuram 2001). Mela and Lehmann (1995) established a parametric link bet-
ween fuzzy set theoretic techniques and commonly used preference formation rules
in psychology and marketing. Setnes and Kaymak (2001) described an application
of a fuzzy clustering algorithm to extract fuzzy rules from consumer response data
collected by a sampling procedure. The rules are used to rank customers and the
top n customers are considered targets. Fuzzy Adaptive Resonance (ART) can also
be used for clustering customers in groups for targeting (Jain and Krishnapuram
2001).

The third category is e-service investment analysis that has been conducted
for evaluating and justifying investment in an e-service application. For exam-
ple, Giaglis et al. (1999) presented a case study of e-commerce investment evalua-
tion. Furthermore, Drinjak et al. (2001) investigated the perceived business benefits
of investing in e-service applications. While Amir et al. (2000) created a cost-
benefit framework for online system management and evaluation. In particular, Lu
and Zhang (2003) proposed a cost benefit factor analysis model in e-services and
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conducted analysis for e-service development of businesses in Australia based on a
questionnaire survey.

Fuzzy set approaches have been used to summarise and analyse the survey re-
sults in the e-service evaluation in the form of linguistic knowledge that can be
understood by merchants easily. Fuzzy set techniques are known to be effective
for analysis even with sparse data especially when application-specific knowledge
is available in terms of fuzzy rules. Hsu et al. (2002) proposed a fuzzy clustering
approach for segment structure analysis of customer response to surveys.

Significant results have also been reported in the fourth category, the establish-
ment of evaluation models, frameworks and systems. For example, Lee et al. (1999)
created a model for evaluating the business value of business-to-business e-service
through five propositions. Zhang and Dran (2000) developed a two-factor model for
the website design and evaluation. More generally, Hahn and Kauffman (2002) pre-
sented a value-driven framework for evaluating e-commerce websites. A web-based
fuzzy multi-criteria group decision support system has been developed by Lu et al.
(2005) and used for the website evaluation. A group of users can use the online
decision support system to input linguistic terms such as ‘good’, ‘very good’ for a
set of selected websites respectively. Finally evaluation results will show the level
of the user satisfactory for each attribute of each website.

6 Intelligent E-Service Systems

As e-services become common a large number of Internet-based systems have been
developed to assist users in different aspects of e-services. Many software agents and
other kinds of intelligent systems have been developed for a web-based framework
to mainly perform tasks of intermediation and communication between users and
the web (Yager 2000).

One possibility to facilitate the communication processes consists in the appli-
cation of the fuzzy linguistic approach (Zadeh 1975), which provides a flexible re-
presentation model of information by means of linguistic labels. The application of
fuzzy linguistic techniques enables e-service providers to handle information with
several degrees of truth and solving the problem of quantifying qualitative concepts.
Some examples of the use of fuzzy linguistic techniques in the design of intelligent
e-service systems, in particular multi-agent systems, can be found in Delgado et
al. (2001), Delgado et al. (2002) and Herrera-Viedma et al. (2006). These papers
presented some new models of fuzzy linguistic intelligent systems that involve the
use of fuzzy set techniques and other intelligent approaches to improve the infor-
mation access on the Web. For example, a fuzzy linguistic multi-agent system can
gather information on the Web with a hierarchical architecture of seven action levels
(Herrera-Viedma et al. 2004) that improves information retrieval by means of the
application of user profiles to improve the filtering activity.

E-negotiation is a typical example of intelligent e-service systems. Kowalczyk
and Bui (2000) presented some aspects of a customable fuzzy e-negotiation agents
(FeNAs) system for autonomous multi-issue negotiation in the presence of limited
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common knowledge and imprecise/soft constraints and preferences. The FeNAs use
the principles of utility theory and fuzzy constraint-based reasoning in order to find
a consensus that maximizes the agent’s utility at the highest possible level of fuzzy
constraint satisfaction subject to its acceptability by other agents. This information
can be imprecise where constraints, preferences and priorities are defined as fuzzy
constraints describing the level of satisfaction of an agent (and its user) with dif-
ferent potential solutions. The approach used by the FeNAs is based on modeling
and solving negotiation as a fuzzy constraint satisfaction problem (FCSP) (Dubois
et al. 1994; Kowalczyk 1999; Zadeh 1973). Finally, a consensus that maximizes the
agent’s utility at the highest possible level of fuzzy constraint satisfaction subject
to its acceptability by other agents. Through applying these fuzzy set approaches, a
variety of e-negotiation problems with incomplete common knowledge and impre-
cise/soft constraints can be handled.

Another example of fuzzy set techniques based e-service systems is an e-learning
system. With the rapid growth of computer and Internet technologies, e-learning has
currently become a major trend in the computer assisted teaching and learning field.
Many researchers made efforts in developing e-learning systems to assist on-line
learning. To promote learning efficiency and effectiveness, some systems applied
fuzzy set approaches to fully consider learner’s behaviors, interests, or habits and
also to assist learners in selecting subject, topics, materials with an appropriate dif-
ficult level to learners through learners gives a fuzzy response of understanding per-
centage for the learned courseware. Results show that applying the proposed fuzzy
set approaches to e-learning can achieve personalized learning and help learners to
learn more effectively and efficiently.

The rapidly developing e-service activity of automated procurement will benefit
from the kinds of intelligent decision systems that can be constructed using fuzzy
technology (Yager 2000). Ngai and Wat (2005) developed a fuzzy decision support
system for risk analysis in e-commerce development. Lu et al. (2005) developed
a web-based fuzzy group decision support system (WFGDSS) based on the fuzzy
group decision making method. This system first identified three factors from web
users that may influence the assessment of utility of alternatives and the deriving
of the group satisfactory solution. The first one is an individual’s role (weight) in
the ranking and selection of the satisfactory solutions. The second factor is an in-
dividual’s preference for alternatives. The third factor is criteria for assessing these
alternatives. The above-mentioned three factors also derive a crucial requirement
for linguistic information processing techniques in an online group decision-making
practice. Any individual role in an online decision process, a preference for alter-
natives, and a judgment for assessment-criteria are often expressed by linguistic
terms. For example, an individual role can be described by using linguistic terms
strongly important person, general decision person or weakly important person.
Since these linguistic terms reflect the uncertainty, inaccuracy and fuzziness of
decision makers, fuzzy set theory (Zadeh 1965) is directly applied to deal with
them. The web-based GDSS uses a web environment as a development and delivery
platform. This system allows decision makers distributed in different locations to
participate in a group decision making activity through the web. It manages the
group decision making process through criteria generation, alternative evaluation,
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opinion interaction and decision aggregation with the use of linguistic terms. This
web based GDSS has a convenient and graphical user interface with visualization
possibilities, and therefore is automatically available to large number of decision
makers.

7 Conclusions

E-service intelligence is still in its infancy. The preliminary research seemed promis-
ing, but more research and developments should be followed soon. FL plays an
important role for dealing with e-services as already briefly outlined by many suc-
cessful applications in this chapter. We strongly believe the use of FL and related
SC techniques in copy with traditional tools will significantly enhance the cur-
rent development of e-services in general and the future intelligent e-services in
particular.
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A Fuzzy Linguistic Recommender System
to Advice Research Resources in University
Digital Libraries
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Abstract As it is known the Web is changing the information access processes. The
Web is one of the most important information media. Furthermore, the Web is influ-
encing in the development of other information media, as for example, newspapers,
journals, books, libraries, etc. In this chapter we analyze its impact in the devel-
opment of the University Digital Libraries (UDL). As in the Web, the growing of
information is the main problem of the academic digital libraries, and similar tools
could be applied in university digital libraries to facilitate the information access to
the students and teachers. Filtering systems or recommender systems are tools whose
objective is to evaluate and filter the great amount of information available on the
Web to assist the users in their information access processes. Therefore, we present
a model of fuzzy linguistic recommender system to help students and researchers
to find research resources which could improve the services that render the UDL to
their users.

1 Introduction

In last years the new concept of digital library is growing. Digital libraries are infor-
mation collections that have associated services delivered to user communities using
a variety of technologies. The information collections can be scientific, business or
personal data, and can be represented as digital text, image, audio, video, or other
media. This information can be digitalized paper or born digital material and the
services offered on such information can be varied, and can be offered to individuals
or user communities. Internet access has resulted in digital libraries that are increas-
ingly used by diverse communities for diverse purposes, and in which sharing and
collaboration have become important social elements. As digital libraries become
commonplace, as their contents and services become more varied, people expect
more sophisticated services from their digital libraries [4, 10, 11, 31].

The digital libraries are composed by human resources (staff) take over handle
and enable users the access to the documents more interesting for them, taking into
account their needs or interest areas. The library staff searches, evaluates, selects,
catalogues, classifies, preserves and schedules the digital documents access [10, 11].
Some of the main digital libraries functions are the following:
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• To evaluate and select digital materials to add in its repository.
• To preserve the security and conservation of the materials.
• To describe and index the new digital materials (catalogue and classify).
• To deliver users the material stored in the library.
• Other managerial tasks.

Digital libraries have been applied in a lot of contexts. We are going to center
in an academic environment. University digital libraries provide information re-
sources and services to students, faculty and staff in an environment that supports
learning, teaching and research [5, 27].

The exponential increase of Web sites and documents is contributing to that In-
ternet users not being able to find the information they seek in a simple and timely
manner. Users are in need of tools to help them cope with the large amount of
information available on the Web [25, 28]. Therefore, techniques for searching and
mining the Web are becoming increasingly vital. Furthermore, the Web is influenc-
ing in the development of many organizations, as for example, banks, companies,
universities, libraries, etc. In particular, we are interested in the development of aca-
demic digital libraries. As in the Web, the exponential growing of information is the
main problem of these libraries because the library staff find troubles to perform the
task of information delivery to the users. We could use those tools applied success-
fully in the Web context to solve the new problems appeared in UDL to facilitate
the tasks of library staff and therefore, the information access to the students and
teachers.

A traditional search function is normally an integral part of any digital library, but
however users’ frustrations are increased as their needs become more complex and
as the volume of information managed by digital libraries increases. Digital libraries
must move from being passive, with little adaptation to their users, to being more
proactive in offering and tailoring information for individuals and communities, and
in supporting community efforts to capture, structure and share knowledge [4, 11,
31]. So, the digital libraries should anticipate the users’ needs and recommending
about resources that could be interesting for them.

In this paper we study two techniques that applied together can contribute to
achieve major advances in the activities of university digital libraries in order to
improve their performance:

• Information Filtering Tools: An important tool to improve the information ac-
cess on many environments concerns the way in which it is possible to filter the
great amount of information available. Information filtering is a name used to
describe a variety of processes involving the delivery of information to people
who need it. Operating in textual domains, filtering systems or recommender
systems evaluate and filter the great amount of information available in a specific
scope to assist users in their information access processes [13, 32].

• Fuzzy Linguistic Modeling (FLM): The great variety of representations and
evaluations of the information existing in Internet is the main obstacle to the
information handling from what is very important the design of appropriate com-
munication protocol. The problem becomes more noticeable when users take part
in the process. This reveals the need of more flexible techniques to the informa-
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tion representation and evaluation. To solve this problem we propose the use
of FLM [16, 17, 34] to represent and handle flexible information by means of
linguistic labels.

The paper is structured as follows. Section 2 revises the main aspects and models
of information filtering techniques. Section 3 analyzes different approaches of FLM,
the 2-tuple FLM [17, 19] and the multi-granular FLM [15, 18]. In Sect. 4 we present
a model of fuzzy linguistic recommender systems to advice research resources in
UDL. Finally, some concluding remarks are pointed out.

2 Preliminaries

2.1 Information Filtering

Information gathering on the Internet is a complex activity. Finding the appropriate
information, required for the users, on the World Wide Web is not a simple task.
This problem is more acute with the ever increasing use of the Internet. For example,
users who subscribe to Internet lists waste a great deal of time reading, viewing or
deleting irrelevant e-mail messages. To improve the information access on the Web
the users need tools to filter the great amount of information available across the
Web. Information Filtering (IF) is a name used to describe a variety of processes
involving the delivery of information to people who need it. It is a research area
that offer tools for discriminating between relevant and irrelevant information by
providing personalized assistance for continuous retrieval of information.

IF systems are characterized by [13]:

• applicable for unstructured or semi-structured data (e.g. web documents, e-mail
messages),

• based on user profiles,
• handle large amounts of data,
• deal primarily with textual data and
• their objective is to remove irrelevant data from incoming streams of data items.

We can find some of the above features in Information Retrieval (IR) systems, but
IF differs from traditional IR in that the users have long-term information needs that
are described by means of user profiles, rather than ad-hoc needs that are expressed
as queries posed to some IR system [2]. Traditionally IR develops storage, indexing
and retrieval technology for textual documents. An user describes his information
need in the form of a query to the IR system and the system attempts to find items
that match the query within a document store. The information need is usually very
dynamic and temporary, i.e., an user issues a query describing an immediate need.
Furthermore, IR systems tend to maintain a relatively static store of information.
Unlike IR systems, IF systems generally operate on continuous information streams,
and always maintain a profile of the user interests needs throughout many uses of the
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system. As a result, IF systems tend to filter information based on more long-term
interests.

Traditionally, these IF systems or recommender systems have fallen into two
main categories [13, 29, 32]. Content-based filtering systems filter and recom-
mend the information by matching user query terms with the index terms used in the
representation of documents, ignoring data from other users. These recommender
systems tend to fail when little is known about user information needs, e.g. when
the query language is poor. Collaborative filtering systems use explicit or implicit
preferences from many users to filter and recommend documents to a given user,
ignoring the representation of documents. These recommender systems tend to fail
when little is known about an user, or when he/she has uncommon interests [29]. In
these kind of systems, the users’ information preferences can be used to define user
profiles that are applied as filters to streams of documents; the recommendations to
an user are based on another user’s recommendations with similar profiles. Many
researchers think that the construction of accurate profiles is a key task and the
system’s success will depend to a large extent on the ability of the learned profiles
to represent the user’s preferences [30]. Several researchers are exploring hybrid
content-based and collaborative recommender systems to smooth out the disadvan-
tages of each one of them [3, 6, 12, 29].

On the other hand, we should point out that the matching process is a main
process in the activity of filtering systems. The two major approaches followed in
the design and implementation of IF systems to do the matching are the statistical
approach and the knowledge based approach [13]. In our system, we have applied
the statistical approach. This kind of filtering systems represents the documents and
the user profiles as weighted vectors of index terms. To filter the information the
system implements a statistical algorithm that computes the similarity of a vector
of terms that represents the data item being filtered to an user’s profile. The most
common algorithm used is the Correlation or the Cosine measure between the user’s
profile and the document’s vector.

The filtering activity is followed by a relevance feedback phase. Relevance feed-
back is a cyclic process whereby the user feeds back into the system decisions on
the relevance of retrieved documents and the system then uses these evaluations to
automatically update the user profiles.

Another important aspect that we must have in mind when we design a IF system
is the method to gather user information. In order to discriminate between relevant
and irrelevant information for an user and to provide him/her personalized infor-
mation, we must have some information about this user, i.e. we must know the
user preferences. Information about user preferences can be obtained in two diffe-
rent ways [13], implicit and explicit mode, although these ways not be mutually
exclusive. The implicit approach is implemented by inference from some kind of
observation. The observation is applied to user behavior or to detecting an user’s
environment (such as bookmarks or visited URL). The user preferences are updated
by detecting changes while observing the user. On the other hand, the explicit ap-
proach, interacts with the users by acquiring feedback on information that is filtered,
that is, the user expresses some specifications of what they desire. This last approach
is very used. In [9] the personalization in digital libraries is studied. They conclude
that the technology is still premature, but the next step of digital libraries services
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should be oriented towards the automation of the process of constructing of user
profiles.

2.2 Fuzzy Linguistic Modeling

There are situations in which the information cannot be assessed precisely in a
quantitative form but may be in a qualitative one. For example, when attempting
to qualify phenomena related to human perception, we are often led to use words
in natural language instead of numerical values. In other cases, precise quantita-
tive information cannot be stated because either it is unavailable or the cost for its
computation is too high and an “approximate value” can be applicable. The use of
Fuzzy Sets Theory has given very good results for modeling qualitative information
[34]. FLM is a tool based on the concept of linguistic variable [34] to deal with
qualitative assessments. It has proven to be useful in many problems, e.g., in deci-
sion making [16], quality evaluation [24], models of information retrieval [20, 21],
clinical decision making [8], political analysis [1], etc.

Next we analyze two FLM that we use in our system, i.e., the 2-tuple FLM [17,
19] and the multi-granular FLM [15, 18, 23].

The 2-Tuple Fuzzy Linguistic Modeling

The 2-tuple FLM [17, 19] is a kind of fuzzy linguistic modeling that mainly al-
lows to reduce the loss of information typical of other fuzzy linguistic approaches
(classical and ordinal [16, 14, 34]). Its main advantage is that the linguistic com-
putational model based on linguistic 2-tuples can carry out processes of computing
with words easier and without loss of information. To define it we have to establish
the 2-tuple representation model and the 2-tuple computational model to represent
and aggregate the linguistic information, respectively.

Let S = {s0, ..., sg} be a linguistic term set with odd cardinality (g + 1 is the
cardinality of S), where the mid term represents an assessment of approximately
0.5 and with the rest of the terms being placed symmetrically around it. We assume
that the semantics of labels is given by means of triangular membership functions
represented by a 3-tuple (a, b, c) and consider all terms distributed on a scale on
which a total order is defined si ≤ s j ⇐⇒ i ≤ j . In this fuzzy linguistic context,
if a symbolic method [14, 16] aggregating linguistic information obtains a value
β ∈ [0, g], and β /∈ {0, ..., g}, then an approximation function is used to express the
result in S. To do this, we represent β as a 2-tuple (si , αi ), where:

• si represents the linguistic label, and
• αi is a numerical value expressing the value of the translation from the original

result β to the closest index label, i , in the linguistic term set (si ∈ S).

This model defines a set of transformation functions between numeric values and
2-tuples: (β) = (si , α) y −1(si , α) = β ∈ [0, g] [17].



572 E. Herrera-Viedma et al.

The 2-tuple linguistic computational model is defined by presenting the compar-
ison of 2-tuples, a negation operator and aggregation operators of 2-tuples:

1. Negation operator of 2-tuples: Neg((si , α)) = (g − (−1(si , α))).

2. Comparison of 2-tuples (sk, α1) and (sl , α2):

• If k < l then (sk , α1) is smaller than (sl , α2).
• If k = l then

a) if α1 = α2 then (sk, α1) and (sl , α2) represent the same information,
b) if α1 < α2 then (sk, α1) is smaller than (sl , α2),

c) if α1 > α2 then (sk, α1) is bigger than (sl , α2).

3. Aggregation operators of 2-tuples. The aggregation of information consists of
obtaining a value that summarizes a set of values, therefore, the result of the
aggregation of a set of 2-tuples must be a 2-tuple. In the literature we can find
many aggregation operators which allow us to combine the information accord-
ing to different criteria. Using functions  and −1 that transform without loss
of information numerical values into linguistic 2-tuples and viceversa, any of the
existing aggregation operator can be easily extended for dealing with linguistic
2-tuples. Some examples are the arithmetic mean, the weighted average operator
or the linguistic weighted average operator.

The Multi-Granular Fuzzy Linguistic Modeling

In any fuzzy linguistic approach, an important parameter to determinate is the
“granularity of uncertainty”, i.e., the cardinality of the linguistic term set S used
to express the linguistic information. According to the uncertainty degree that an
expert qualifying a phenomenon has on it, the linguistic term set chosen to provide
his knowledge will have more or less terms. When different experts have diffe-
rent uncertainty degrees on the phenomenon, then several linguistic term sets with
a different granularity of uncertainty are necessary (i.e. multi-granular linguistic
information) [15, 18, 23]. The use of different label sets to assess information is
also necessary when an expert has to assess different concepts, as for example it
happens in information retrieval problems, to evaluate the importance of the query
terms and the relevance of the retrieved documents [22]. In such situations, we
need tools for the management of multi-granular linguistic information, i.e., we
need to define a multi-granular FLM. In [15] we define a proposal of multi-
granular FLM based on the ordinal FLM [16], and in [18] we define other one
based on the 2-tuple FLM. In this paper, we follow that defined in [18] which uses
the concept of Linguistic Hierarchies [7] to manage the multi-granular linguistic
information.

A linguistic hierarchy is a set of levels, where each level is a linguistic term set
with different granularity from the remaining of levels of the hierarchy [7]. Each
level belonging to a linguistic hierarchy is denoted as l(t,n(t)), t being a number that
indicates the level of the hierarchy and n(t) the granularity of the linguistic term
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Table 1 Linguistic Hierarchies

Level 1 Level 2 Level 3

l(t,n(t)) l(1,3) l(2,5) l(3,9)
l(t,n(t)) l(1,7) l(2,13)

set of the level t. Usually, linguistic hierarchies deal with linguistic terms whose
membership functions are triangular-shaped, symmetrical and uniformly distributed
in [0,1]. In addition, the linguistic term sets have an odd value of granularity repre-
senting the central label the value of indifference (“approximately 0.5”). The levels
belonging to a linguistic hierarchy are ordered according to their granularity, i.e.,
for two consecutive levels t and t+1, n(t + 1) > n(t). Therefore, each level t + 1
provides a linguistic refinement of the previous level t .

Generically, we can say that the linguistic term set of level t+1, Sn(t+1), is ob-
tained from its predecessor level t, Sn(t) as: l(t, n(t)) → l(t + 1, 2 · n(t) − 1). In
Table 1 is presented the granularity needed in each linguistic term set of the level t
depending on the value n(t) defined in the first level (3 and 7 respectively).

In [18] was demonstrated that the linguistic hierarchies are useful to represent the
multi-granular linguistic information and allow to combine multi-granular linguis-
tic information without loss of information. To do this, a family of transformation
functions between labels from different levels was defined:

Definition 1. Let L H = ⋃

t l(t, n(t)) be a linguistic hierarchy whose linguistic

term sets are denoted as Sn(t) = {sn(t)
0 , ..., sn(t)

n(t)−1}. The transformation function
between a 2-tuple that belongs to level t and another 2-tuple in level t ′ �= t is
defined as:

T Ft
t ′ : l(t, n(t)) −→ l(t ′, n(t ′))

T Ft
t ′(s

n(t)
i , αn(t)) = (

−1(sn(t)
i , αn(t)) · (n(t ′)− 1)

n(t)− 1
)

As it was pointed out in [18] this family of transformation functions is bijective.
This result guarantees the transformations between levels of a linguistic hierarchy
are carried out without loss of information.

To define the multi-granular linguistic computational model we select a level to
uniform the information (normally the most granularity level is selected) and then
we can use the operators defined in 2-tuples model.
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3 A Recommender System Based on Multi-granular Fuzzy
Linguistic Modeling to Advice Research Resources
in University Digital Libraries

In this section we present a Recommender System (RS) designed using the content-
based filtering approach and assuming a multi-granular FLM. This RS is applied
to advice users on the better research resources that could satisfy their information
needs in an university digital library.

The users of an university digital library are usually the students and teachers that
access to its information resources. Both manage and spread a lot of information
about research information such as electronic books, electronic papers, electronic
journals, official dailies and so on. Nowadays this amount of information is growing
up and the users of these libraries are in need of automate tools to filter and to spread
the information in a simple and timely manner.

We present a RS that follows the content-based approach. Moreover to improve
the filtering process we incorporate in the system the possibility to manage multi-
granular linguistic information, that is, it uses different label sets to represent the
different concepts to be assessed in its recommending activity. Then, the system
filters the incoming information stream and delivers it to the suitable researchers
or students in accordance with their research areas. The system sends the users a
mail with a summarized information about the resources, the calculated relevance
degrees of the resources for the users and recommendations about others researchers
or students with which they could collaborate.

In that follows, we present the system architecture, the required data structures
and how the system works.

3.1 System Architecture

The system architecture is shown in Fig. 1. As we can see in the figure, the system
has three main components:

• Resources management. This module is the responsible of management the in-
formation sources from where the library staff receive all the information about
research resources, and obtain an internal representation of these electronic re-
sources. To management the resources, we represented them in accordance with
their features (title, author(s), abstract, text, date, type and so on) and their scope,
and to obtain this scope representation we use the UNESCO terminology for
the science and technology [33]. This terminology is composed by three lev-
els and each one is a refinement of the previous level. The first level includes
general topics and they are codified by two digits. Each topic includes some
disciplines codified by four digits in a second level. The third level is composed
by subdisciplines that represent the activities developed in each discipline; these
subdisciplines are codified by six digits. We are going to operate with the first
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and second levels, because we think the third level supply a discrimination level
too much high and this could difficult the interaction with the users. Moreover,
for each resource we store another kind of information that the system uses in the
filtering process.

• User profiles management. The users can be researchers or students. In both
cases, the system operates with an internal representation of the user’s prefer-
ences or needs, that is, the system represents the users’ preferences through user
profiles. To define an user profile we are going to use the basic information about
the user and his/her interest topics, defined too by the UNESCO terminology
[33], i.e. each user has a list of UNESCO codes according to his/her information
needs or interests. The research groups have assigned a set of UNESCO codes
that define their research activity. So, initially the systems assign to each research
or student the UNESCO codes of the research group which the user belongs. If
the user doesn’t belong to a group, the library staff assigns him/her the UNESCO
codes by hand, in accordance with his/her interest areas. Afterwards the users
can update their profiles by a feedback phase in which the users express some
explicit specifications of their preferences.

• Filtering process. In this phase the system filters the incoming information to
deliver it to the fitting users and this process is based in a Matching Process.
As our system is a content-based filtering system, it filters the information by
matching the terms used in the representation of user profiles against the index
terms used in the representation of resources. Later we will study this process in
detail taking into account the used data structures.

Information sources

Resources
insertion
process

Resources representation

Matching
Process

Relevant  resourcess for users

Feedback

User profiles

Users

Users
insertion
process

Resources management User profile managementFiltering process

Fig. 1 Structure of the system
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3.2 Data Structures

In this subsection we are going to discuss the data structures we need to represent
all the information about the users and research resources. We must have in mind
that the system stores this information because it doesn’t work with explicit user
queries.

To characterize a resource, we use the title, author(s), abstract, journal (if is part
of a journal, the system stores the journal name), book (if is a book chapter, the
system stores the book title), official daily (if is part of an official daily, the sys-
tem stores the daily title), date, source, text, link (when the system send the users
information about a resource, it doesn’t send all the information but summarized
information and the link to access the resource), kind of resource (if is a book, a
paper, a journal, an official daily and so on), target (this field indicates the kind
of users that is directed the resource, that is researchers, students or anybody) and
scope. To represent the resource scope we use the vector model where for each
resource the system stores a vector V R, i.e. an ordered list of terms. To build this
vector we follow the UNESCO terminology [33], specifically we use the second
level. This level has 248 disciplines, so the vector must have 248 positions, one
position for each discipline. In each position the vector stores the importance degree
for the resource scope of the UNESCO code represented in that position.

To characterize an user we must distinguish if is a research or a student, although
the system stores the same basic information: user’s identity (usually his/her mail),
password (necessary to access the system), dni (identity national document), name
and surname, department and center (if the user is a students this information is not
necessary), address, phone number, mobile phone and fax, web, email (elemental
information to send the resources and recommendations), research group (is a string
composed by 6 digits, 3 characters indicating the research area and 3 numbers iden-
tifying the group; if the user is a students this information is not necessary), col-
laboration preferences (if the user want collaborate with other researchers of other
groups, with students, with anybody or with nobody), preferences about resources
(the user choose the kind of desired resources, i.e. if he/she want only books, or
papers, etc.) and interest topics. To represent the interest topics we use the vector
model too where for each user the system stores a vector V U . To build this vector
we follow the UNESCO terminology [33], specifically we use the second level. This
level has 248 disciplines, so the vector must have 248 positions, one position for
each discipline. In each position the vector stores the importance degree for the user
research of the UNESCO code represented in that position. With all this information
the system sets up the user profiles.

On the other hand, to represent the linguistic information we use different la-
bel sets, i.e. the communication among the users and the system is carried out by
using multi-granular linguistic information, in order to allow a higher flexibility in
the processes of communication of the system. Therefore the system uses different
label sets (S1, S2, ...) to represent the different concepts to be assessed in its fil-
tering activity. These label sets Si are chosen from those label sets that composes
a L H , i.e., Si ∈ L H . We should point out that the number of different label sets
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that we can use is limited by the number of levels of L H , and therefore, in many
cases the label sets Si and Sj can be associated to a same label set of L H but with
different interpretations depending on the concept to be modeled. In our system, we
distinguish between three concepts that can be assessed:

• Importance degree (S1) of an UNESCO code with respect to a resource scope
or user preferences.

• Relevance degree (S2) of a resource for a researcher or for a student.
• Compatibility degree (S3) between a researcher and a student, between re-

searchers of different groups and between different students.

In our system we use a linguistic hierarchy of three levels. Specifically we use
the level 2 (5 labels) to assign importance degree (S1 = S5) and the level 3 (9 labels)
to assign relevance degrees (S2 = S9) and compatibility degrees (S3 = S9). Using
this linguistic hierarchy the linguistic terms in each level are:

• S3 = {a0 = Null = N, a1 = Medium = M, a2 = T otal = T }.
• S5 = {b0 = Null = N, b1 = Low = L, b2 = Medium = M, b3 = High =

H, b4 = T otal = T }
• S9 = {c0 = Null = N, c1 = V ery Low = V L, c2 = Low = L, c3 =

More Less Low = M L L, c4 = Medium = M, c5 = More Less High =
M L H, c6 = High = H, c7 = V ery High = V H, c8 = T otal = T }
Therefore, for a resource i we have a vector representing its scope:

V Ri = (V Ri1, V Ri2, ..., V Ri248),

where each component V Rij ∈ S1, with j = 1..248, stores a linguistic label
indicating the importance degree of the UNESCO code j with regard to the resource
i . These linguistic labels are assigned by the library staff when they add a new
electronic resource.

To represent the interest topics in the user profiles we follow the same method,
using a vector V U for each user of the system. Then, for the user x , we have a
vector:

V Ux = (V Ux1, V Ux2, ..., V Ux248),

where each component V Uxy ∈ S1, with y = 1..248, stores a linguistic label
indicating the importance degree of the UNESCO code y with regard to the prefer-
ences of the user x . These linguistic labels are assigned by the library staff too, but
the users can edit it when they want.

3.3 Operation of Recommender System

Any university digital library must provide the next two kind of services [10]:
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• User registration. The users accesses to the system to solicit the services of-
fered by the university digital library. The system present a form where the users
introduce their personal information, their collaboration preferences and their
preferences about the kind of resources they want to receive. Finally the users
define their interest topics setting up the UNESCO codes and the importance
degrees. If the user belongs to a research group, the system shows him/her the
UNESCO codes of the group, and the user can edit (add, delete, or assign new
degrees) these codes to adjust them to his/her interest areas. The system registers
the user and assigns him/her an identifier (usually it uses the mail address) and
a password. To conclude the registration process, the system sends the user an
email to confirm the inserted information.

• Information and documents access services. Once the users have their identi-
fies and passwords, they can use the digital library services. Therefore they can
performs their information access processes taking into account their profiles.

Next we describe the users insertion process, the resources insertion process, the
filtering process and the feedback phase.

Users Insertion Process

In order to gather information about users we use a hybrid approach between the ex-
plicit and implicit approach. When we insert a new user we use implicit information
to generate the profile and afterwards the users can update their profiles following
the explicit approach.

So, to add a new user into the system, it shows a form that the user must fill
in introducing his/her personal information, collaboration preferences, preferences
about the kind of resources he/she want to receive and so on. Then the system defines
the user interest topics using the UNESCO codes of the research group which the
user belongs. Each group or company has assigned one or more UNESCO codes, so
when the system is inserting a new user, it assigns him/her the UNESCO codes of
level 2 of the group which the user belong, with importance degree Total (b4 ∈ S1).
The other positions have a value Null (b0 ∈ S1). The system presents this infor-
mation to the users who can edit it if they want. The users who don’t belong to a
research group, must define their profiles manually, that is, they select the UNESCO
codes and their importance degrees (bi ∈ S1) to establish their interest topics. Later
the users can update their profiles always they want, accessing to the system and
editing the UNESCO codes or the linguistic labels (in S1) which they have assigned.

With this information the system defines and updates the user profiles which will
use to filter information when a new resource arrives to the system.

Example 1. In this example we see the process of insertion of a new user. The user
inserts all the information about him/her together with the user’s identity ID and a
password. Next, the system defines his/her interest topics. Let us suppose the user
belong to a group which works in Science of Nutriment, because of this it has the
UNESCO code 3206; remember the group could have more UNESCO codes. Then,
to define the vector of interest topics the system assigns the user this code (3206)
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with degree Total (b4 ∈ S1). With this information the user profile is represented by
a vector of interest topics with the following values:

V UID[x] = b4, if x = 100
V UID[x] = b0, otherwise.

Remark. The UNESCO code 3206 is in the position 100 of the list so it is stored
in V UID[100].

Resources Insertion Process

This sub-process is carried out by the library staff that receive or find information
about a resource and they want to spread this information. The experts introduce the
interesting resources into the system and it automatically sends the information to
the suitable users along with a relevance degree and collaborations possibilities.

As we said in the previous section, the system stores the general information
about the resource and its scope. The scope is represented by a vector of UNESCO
codes whereby to insert the resource the experts decide the UNESCO codes to as-
sign it. Moreover, to manage the linguistic information, the experts also decide a
linguistic label in S1 to weight the importance degree of each UNESCO code of
level 2 with regard to the resource.

Hence, when the library staff are going to insert a new resource, they access
to the system, insert all the information about it, i.e. title, author(s), abstract, date,
source, book name, journal name, daily name, link, text, kind of resource, target
and finally they assess the importance degree of each UNESCO code of level 2
with regard to the resource. To do this, the system shows a list of UNESCO codes
of level 2 and the library staff decide the codes to assign to the resource scope,
selecting a code of the list and assign it a linguistic label to assess its importance
degree. Then they accept and can either add another UNESCO code or finally the
resource insertion.

Example 2. Now let us suppose the digital library receives a paper i about an Science
of Nutriment Conference. Then, he/she inserts the paper into the system, introducing
all the available information and selecting from a list the UNESCO codes which
match with the resource scope. In this example, the library staff could select the
codes 3206 - Science of Nutriment with importance degree Total (b4 ∈ S1) and
3309 - Food Technology with degree Very High (b3 ∈ S1). Once the expert inserts
this information, we have a vector V Ri defining the resource i with the following
values:

V Ri [ j ] = b4, if j = 100
V Ri [ j ] = b3, if j = 118
V Ri [ j ] = b0, otherwise.

Remark. The UNESCO codes 3206 and 3309 are in the positions 100 and 118
of the list so they are stored respectively in V Ri [100] and V Ri [118].
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Filtering Process

As we have said, we are going to use the vector model [26] to represent the resources
scope and the user interest topics. This vector model uses sophisticated similarity
calculations to do the matching process, such as Euclidean Distance or Cosine Mea-
sure. Exactly we are going to use the Cosine Measure we described next.

The Cosine Measure is a similarity measure that is developed from the cosine
of the angle between the vectors representing the scope resource (V R) and the user
interest topics (V U ), or between the vectors representing two users interest topics
or between the vectors representing two scope resources. Its definition is [26]:

σ(V R, V U) =
∑n

k=1(rk × uk)
√

∑n
k=1(rk)2 ×

√

∑n
k=1(uk)2

where n is the number of terms used to define the vectors (i.e. the number of
UNESCO codes of level 2), rk is the value of term k in the resource vector and uk is
its value in the user vector. In mathematical terms this is the inner product of the re-
sources and users vectors, normalized by their lengths. Using this cosine transforms
the angular measure into a measure ranging from 1 for the highest similarity to 0 for
the lowest. In the case of two users or two resources, this cosine measure is applied
of the same way.

Angular measures representing a view of the resources and users items space
from a fixed point, the origin. In addition, an angular measure does not consider the
distance of each item from the origin, but only the direction. Hence two items that
lie along the same vector from the origin will be judged identically, despite the fact
that they may be far apart in the document space. This means that a one-paragraph
announcement and an extensive, detailed paper about a topic might be judged to
be equally relevant to a query. For example, suppose there are three notices, each
described by the same two terms, with resource vectors:

V R1 =< 1, 3 >,

V R2 =< 100, 300 >, and

V R3 =< 3, 1 > .

By the cosine measure, σ(V R1, V R2) = 1.0 and σ(V R1, V R3) = 0.6. The
cosine measure views R2 as more similar to R1 than is R3. It can be argued that in
R1 and R2 the two terms have the same relative importance; that is, that the ratio of
their values is the same.

Following this approach when a new resource has been inserted into the sys-
tem, we compute the cosine measure σ(V Ri , V U j ) between the new scope re-
source vector (V Ri ) against all the user vectors (V U j , j = 1..m where m is the
number of users of the system) to find the fit users to deliver this information. If
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σ(V Ri , V U j ) ≥ α, the system select the user j . Previously we have defined a
threshold value (α) to filter out the information. In this iteration, the system takes
into account too the user preferences (kind of resource) to consider or not the user.
The collaboration preferences are used to classify the selected users in two sets, the
selected users that don’t want to collaborate US and the selected users arranged to
collaborate UC .

After this, the system has two sets of selected users US and UC and for each
user it has a value σ(V Ri , V U j ) ≥ α. The system apply to each σ(V Ri , V U j ) the
transformation function defined in definition 1 to obtain the relevance degree of the
resource i for the user j , expressed in the set S2. Then, the system sends to the users
of US the resource information and its calculated relevance degree by a linguistic
label more effective than a number.

For the users in UC the system performs other step; it calculates the collaboration
possibilities between the selected users. To do it, between each two users x, y ∈ UC :

• to analyze if the users are researchers or students and take into account the users
preferences about it. For example a researcher could want to collaborate only
with others researches of different research group.

• to calculate the cosine measure between the users, σ(V Ux , V Uy),
• to obtain the compatibility degree between x and y, expressing σ(V Ux , V Uy) as

a linguistic label in S3 (using the transformation function defined in definition 1)
to send it to the user.

Finally the system sends to the users of UC the resource information, its calcu-
lated relevance degree and the collaboration possibilities along with a compatibility
degree. All the process is shown in the Fig. 2.

Feedback Phase

This phase is related to the activity developed by the filtering system once users
have taken some of the resources delivered by the system. As we said, user profiles
represents the users’ long-term information needs or interests and a desire property
for user profiles is that they should be adaptable since users’ needs could change
continuously. Because of this, the system allows the users update their profiles to
improve the filtering process with the needs of each one. In our system this feedback
process is developed in the following steps:

• The users access the system entering their ID and password.
• The users can do the following operations:

– to edit their collaboration preferences,
– to edit their preferences about kind of desired resources,
– to edit their interest topics:

• to add new UNESCO codes with its importance degrees, i.e. linguistic
labels bi ∈ S1.
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Compute the similarity between j and k,
transform it in S3 and save this information

For each user k of Uc

Include in Uc

Send the user the
resource information and
the calculated relevance

Does the user j
want to

collaborate?

Compute relevance degree
and transorm it in S2

Is compatible the kind of
resoure with the user

preferences?
Reject j

Compute σ (Vri,VUj)

NOσ (Vri,VUj) ≥ αYES

YES

NO

NO

YES

Are compatible the
collaboration preferences

of j with the kind of user k?

YES

Send an email to j with:
  - resource información and its relevance degree,
  - the located compatible users and their 
    compatibility degrees.

Fig. 2 Matching process for an user j

• to delete an existing UNESCO code.
• to modify the importance degree (linguistic label bi ∈ S1) assigned to an

existing UNESCO code.

Example 3. Assuming information given in 1, let us suppose the user ID wants
to update his/her profile because ID thinks he/she should belong to the category
3309 - Food Technology. In this case the user wants to add a new UNESCO code
and assigns it an importance degree of High (b3 ∈ S1).

After this, the user ID has a new profile represented by a new vector with the
following values:
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V UID[y] = b4, if y = 100
V UID[y] = b3, if y = 118
V UID[y] = b0, otherwise.

4 Concluding Remarks

The exponential increase of Web sites and electronic documents is contributing to
that Internet users not being able to find the information they seek in a simple and
timely manner. The impact of the new digital technologies in others organizations
is causing the apparition of problems similar to the Web ones, as for example it
happens in UDL. Hence, users of UDL need tools to assist them in their processes
of information gathering because of the large amount of information available on
these systems. We have presented two techniques that could contribute to solve this
problem, the information filtering tools and multi-granular FLM. Then, we have de-
fined a model of fuzzy linguistic recommender system to spread research resources
in UDL using both techniques. The proposed system is oriented both researchers
and student and advice them research resources that could be interesting for them.
In particular, it is a personalized system based on both content-based filtering tools
and the multi-granular FLM. The system filters the incoming information stream to
spread the information to the fitting users and recommends them about collabora-
tion possibilities. The multi-granular FLM has been applied in order to improve the
users-system interaction and the interpretability of the system activities. Moreover,
the system brings a extra value, that is, on the one hand it sends the users a lin-
guistic relevance degree to justify the information mailing and on the other hand it
recommends the user the collaboration possibilities with other users. However we
think the system could improve, incorporating some features, such as incorporate
a module to define the resources scope automatically, or apply new techniques that
have been used in development of the recommender systems.
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Fuzzy Measures in Image Processing

Tamalika Chaira

Abstract This chapter provides an overview of fuzzy measures and fuzzy integrals,
measures of fuzziness, and their application in image processing in the areas of
region based segmentation, thresholding, and color retreieval. This chapter also
introduces a fuzzy color image retrieval method using a new type of membership
function called beta membership function with Generalized Tversky’s index as a
measure of fuzziness. Lastly, the proposed method has been compared with some
existing fuzzy and non-fuzzy methods.

1 Introduction

The concept of a fuzzy measure is one of the most important area in mathematics
and so is the integral with respect to the fuzzy measure. The classical measure and
the integral theory is based on the additivity of the set function. Additive property
is sometimes important in some application but sometimes becomes ineffective in
many reasonings in real world environment e.g., fuzzy logic, decision making, arti-
ficial intelligence etc. But with the introduction of fuzzy set theory by Prof. Lotfi A.
Zadeh in 1965, which handles real life problems i.e. vagueness and ambiguity, the
additive property of classical measures becomes a subject of controversy. During
the seventies, M. Sugeno studied a common type of non- additive and monotonic
set functions, called fuzzy measures. According to Sugeno, fuzzy measures are ob-
tained by replacing the additivity requirement of classical measures with weaker
requirements of monotonicity and continuity. Fuzzy measure permits to represent
some background knowledge about the information sources that are being aggre-
gated. Fuzzy integral is a general term for integral with respect to fuzzy measure.
There are many kinds of fuzzy integrals developed by many researchers in defferent
streams. Some of these are - the Choquet integral, Sipos integral, Sugeno integral,
t-conorm integral etc.

The question as how fuzzy is a fuzzy set has been one of the issues associated
with the development of fuzzy set theory. If we understand an image (or its seg-
ments) as fuzzy sets, then we have to answer the question how fuzzy the image is.
The measure of uncertainty is the measure of fuzziness or fuzzy entropy. Kaufmann,
De Luca Termini, Yager suggested some measures of fuzziness.

H. Bustince et al., (eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation
and Models. C© Springer 2008 587
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This chapter reviews the theory of fuzzy measures and fuzzy integrals, measures
of fuzziness, and fuzzy distance measures. Their application in image processing
e.g. in image segmentation, image retrieval has also been studied extensively.

This chapter also introduces a method for color image retrieval, where a new type
of membership function has been proposed called beta membership function to find
the membership degree of the gray levels of an image histogram and a Generalized
Tversky’s index has been used as a fuzzy similarity measure. The method has been
compared with the earlier existing fuzzy and non-fuzzy methods.

2 Fuzzy Measures and Fuzzy Integrals

Sugeno [1] in 1974 introduced the theory of fuzzy measures and fuzzy integrals.
Fuzzy measure provides a structure for modeling the knowledge about the vari-
ables that are uncertain and unknown. It deals with the imprecise information
where imprecision is defined as the uncertainty that an element x belong to a set
X = {x1, x2, · · · , xn}, but we do not know the degree of belongingness, μ, to
the set X . Therefore ′x ′ is assigned a membership value to represent the degree
of belongingness. One useful feature of fuzzy measure is its ability to interact with
fuzzy integrals to provide a tool in dealing with uncertainty.

Let X = {x1, x2, · · · , xn} be a set. A fuzzy measure g on a finite space X is
a mapping from subsets of X into a unit interval such that g : 2X → [0, 1], if it
satisfies the following properties [2]:

1. Boundary conditions: g(φ) = 0, g(X) = 1
2. Monotonicity: If A ⊂ B,∀A, B ∈ X , then g(A) ≤ g(B)
3. If Ai is an increasing subsequence of subsets of X i.e. A1 ⊂ A2 ⊂ A3 ⊂
· · · , An , then

lim
i→∞

g(Ai ) = g(
∞
⋂

i=1

Ai )

A fuzzy measure, gλ, is a Sugeno measure or λ− fuzzy measure if it satisfies the
following condition for some λ > −1.

4. ∀A, B ⊂ X with A ∩ B = φ

gλ(A ∪ B) = gλ(A)+ gλ(B)+ λgλ(A)gλ(B)

For a finite set A, the fuzzy measure of set A may be calculated as:

g(A) = 1

λ
[
∏

xi∈A

(1+ λgi )− 1], λ �= 0 (1)

where gi = g({xi}) is called fuzzy density.
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Zero is always a solution and so the polynomial reduces from degree n to n–1.

With g(X) = 1, the value of λ may be calculated as:

λ+ 1 =
n
∏

i=1

(1+ λgi )

If Ai = {xi , · · · , xn}, then values of g({xi , · · · , xn}) for 1 ≤ i ≤ n may be com-
puted recursively as:

g({xi}) = gi

g({xi , · · · , xn}) = g({xn})+ g({xi , · · · , xn−1})+ λg({xn})g({xi , · · · , xn−1})
Some properties of fuzzy measure are:

If f, g ∈ [0, 1]X then

f ∧ g(x) = min{ f (x), g(x)}
f ∨ g(x) = max{ f (x), g(x)}

Fuzzy integral is an integral of a real function with respect to a fuzzy measure.
The performance of fuzzy integral is totally dependant on fuzzy measure. There
are many types of fuzzy integrals but the most common fuzzy integrals are Sugeno
integral [1] and Choquet integral [3].

A fuzzy integral of a function f with respect to fuzzy measure g may be de-
fined as:

∫

A
f (x) ◦ g(·) = sup

α∈[0,1]
[min(α, g( fα))]

where fα is a α level set of f .

Fuzzy integral is a Sugeno integral which is the generalization as a weighted min-
imum or median and thus presents a combination of fuzzy connectives - minimum
and maximum. It is an alternative form of aggregation operator for fuzzy measures
based on ‘max’ instead of sum. It combines data in numerical or ordinal scales with
respect to fuzzy measure.

If X = {x1, x2, · · · , xn} is a finite set, then Sugeno integral may be repre-
sented as:

(S)
∫

A
f (x) ◦ g(·) = n

max
i=1

[min( f (xi ), g(Ai )] (2)

where f (x1) ≥ f (x2) ≥ · · · ≥ f (xn) and Ai = {xi , xi+1 · · · xn}

Choquet integral uses a combination of algebraic product and then addition be-
comes a generalization of operators such as arithmetic mean.
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(C)

∫

A
f (x) ◦ g(·) =

n
∑

i=1

g(Ai)[ f (xi )− f (xi−1)] (3)

in which f (x1) ≤ f (x2) · · · f (xn) and Ai = {xi , xi+1 · · · xn} , f (x0) = 0.

The enclosed subindices are the result of sort operation, e.g. if f1 ≥ f3 ≥ f2,
then

f (x1) = f1, f (x2) = f3, f (x3) = f2

The coefficients of fuzzy measure take the values as :

g(A1) = g({x1}), g(A2) = g({x1, x3}), g(A3) = g({x1, x2, x3}).

Based on the properties of fuzzy measure, fuzzy integral is an aggregation oper-
ator on multi-attribute fuzzy information. Examples for calculating fuzzy integrals
are given below.

Example. Calculation of Sugeno measure:

Consider a set

X = {a, b, c}

Let the fuzzy density values are given as:

gi =
⎧

⎨

⎩

0.2 if xi =a
0.3 if xi =b
0.1 if xi =c

The value of λ may be calculated from the following equation

1+ λ = (1+ 0.2λ)(1+ 0.3λ)(1+ 0.1λ)

The solutions for λ are

λ = {−21.44, 3.1}.

Then the Sugeno measure may be written as follows:

E Sugeno measure
{a} g({a}) = 0.2
{b} g({b}) = 0.3
{c} g({c}) = 0.1
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From the condition 4 as mentioned above

{a, b} g({a, b}) = g({a})+ g({b}) + λg({a})g({b})
= 0.686

{b, c} g({b, c}) = g({b}) + g({c}) + λg({b})g({c})
= 0.4930

{a, c} g({a, c}) = g({a})+ g({c}) + λg({a})g({c})
= 0.3620

{a, b, c} g({a, b, c}) = 1

Example. Calculation of Sugeno integral.

Let the choice of f be given as follows:

f (xi) =
⎧

⎨

⎩

0.7 if xi =a
0.5 if xi =b
0.1 if xi =c

∫

A
f (x) ◦ g(·) = n

max
i=1

[min( f (a), gλ(a, b, c)),min( f (b), gλ(b, c)),min( f (c), gλ(c))]

= max[min(0.7, 1),min(0.50.4930),min(0.1, 0.1)]

= max(0.7, 0.493, 0.1)

= 0.7

Example. Calculation of Choquet integral

The choice of f in ascending order

f (xi) =
⎧

⎨

⎩

0.2 if xi =a
0.4 if xi =b
0.7 if xi =c

∫

A
f (x) ◦ g(·) =

n
∑

i=1

g(Ai)[ f (xi )− f (xi−1]]

= g({a, b, c}) f (a)+ g({b, c})[ f (b)− f (a)]+ g({c})[ f (c)− f (a)]

= 10.2+ 0.4930[0.4− 0.2]+ 0.1[0.7− 0.4]

= 0.2+ 0.098+ 0.03

= 0.328

Some application of fuzzy measures and fuzzy integrals in image processing are
as follows:

In color image retrieval, given a query image and an image database, we have
to find out the image that is most similar to the query image with respect to color,
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texture or shape features. If we use color as a feature, then we have to find the simi-
larity between the color features of the query image and the image in the database.
The similarity measure may be Euclidean distance, Hamming distance or any other
distances.

Frigui [2] proposed a dissimilarity measure using Choquet integral for retrieving
color images. Let X = [ f1, f2, · · · , fn] be a set of ′n′ features where fi represent
color, texture or shape feature and xk , xl are two n- dimensional feature vectors that
represent the two images to be compared. Then Choquet integral, as a dissimilarity
measure between two images, may be written as:

Cg(x
k, xl) =

n
∑

i=1

[(|xk
i − xl

i | − |xk
i−1 − xl

i−1|)g({ fi , · · · , fn})]

where (i) denotes the feature indices and

|xk
1 − xl

1| ≤ |xk
2 − x2| ≤| xk

n − xl
n|.

They represented gi = g({ fi }) as the relevence of feature i and it depends on
user’s perception of similarity. All the features are initialized with the same values
using

gi = 1

n
, i = 1, 2, · · · , n.

λ is calculated from (1).
Then fuzzy measures are computed recursively as:

g{ fi } = 1

n
;

g{ fi , · · · , fn} = g{ fn} + g({ fi , · · · , fn−1})+ λg{ fn}.g{ fi , · · · , fn−1}

With these fuzzy measures, they calculated the Choquet integral and based on the
dissimilarity, the system retrieves the K most similar images. The user then classi-
fies the retrieved images as relevant or irrelevant images. If the user is not satisfied
with the relevant images, the feature relevance weights are again updated [2].

For each image, Cg is computed to retrieve the most similar image.
Li et al. [4] argued that using Choquet integral [2, 5], a complex similarity ad-

justment is reflected. The fuzzy measure is defined over a power set of a given set
of features and Choquet integral is used to aggregate the similarity of these features.
So there is a complex interaction between the features. Thus they suggested the
efficacy of Sugeno’s integral based similarity measure for content based image re-
trieval by formulating a subjective feedback information. Sugeno Integral is having
a non-linear property i.e. the max - min relationship and so this complex interation
does not arise. Using a set of features, they calculated the dissimilarity between the
images using Sugeno integral.
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In region based image segmentation, regions are extracted on the basis of color,
texture or shape. There are many clustering algorithms in literature. Clustering could
be the process of organizing objects into groups whose members are similar in
some way. It involves the task of dividing data points into homogeneous classes
or clusters so that items in the same class are as similar as possible and items in
different classes are as dissimilar as possible. Clustering may also be thought of as
a form of data compression, where a large number of samples are converted into a
small number of representative clusters. Depending on the data and the application,
different types of similarity measures may be used to identify classes, where the
similarity measure controls how the clusters are formed. Similarity measures may
be Euclidean, Minkowiski or any other distances. The most widely used clustering
algorithm is fuzzy clustering algorithms that was originally introduced by Professor
Jim Bezdek in 1981 [6].

Pham and Yan [7] segmented color image data using Choquet fuzzy integral as
the distance measure. As other fuzzy clustering methods, they suggested that their
segmentation technique does not require an initial estimate of cluster center. They
found the cluster centers using mountain clustering technique. To express the simi-
larity between image data with respect to RG B components, they used π member-
ship function and used Choquet integral for calculating the degree of color similarity
between each pixel pi with respect to all cluster centres ck :

σ =
3
∑

j=1

g(A)[ f (x j )− f (x j−1]

σ is the degree of similarity. The greater the value, the more is the similarity.

x1 = Rpi , x2 = G pi x3 = Bpi

and

A = [x1 = Rck, x2 = Gck, x3 = Bck]

Then segmentation is carried by assigning each pixel to the cluster centre having
a maximum degree of similarity.

3 Measures of Fuzziness

The measure of uncertainty in a fuzzy set is the measure of fuzziness or fuzzy
entropy. It tells how fuzzy the fuzzy set is. Zadeh [8] first introduced the idea of
fuzzy entropy in 1969. De Luca and Termini [9] introduced axiom contruction of
entropy of a fuzzy set. The distance measure is also used to define entropy. It is a
measure that finds the difference between two fuzzy sets. The use of distance mea-
sure to define fuzzy entropy is due to Kaufmann [10] whereas Yager [11] defined
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entropy as the distance from a fuzzy set and its complement. Entropy measures are
used to know the uncertainty in the process. Some entropy measures have influ-
ence from Shannon probabilistic entropy which is commonly used as a measure of
information.

Let X be a universal set and F(X) is the class of all fuzzy sets of X . The proper-
ties of measures of fuzziness or entropy between two fuzzy sets A and B such that
A, B ∈ X with membership functions μA(xi ) and μB(xi ) are given as follows:

1. I (A) = 0 or minimum iff μA(xi ) = 0 or 1, ∀x ∈ A
2. I (A) = 0 or maximum iff μA(xi ) = 0.5,∀x ∈ A
3. I (A) = I ( Ā)
4. I (A) ≥ I (A!) where A! is a sharpened version of A

such that μ!
A(xi ) ≤ μA(xi ) if μA(xi ) ≤ 0.5

μ!
A(xi ) ≥ μA(xi ) if μA(xi ) ≥ 0.5

Many authors suggested many definitions for fuzzy entropy.

a) Entropy
as defined by De Luca and Termini [9] is the Logarithmic entropy which is given
by:

H (A) = 1

n log 2

n
∑

i=1

S(μA(xi )) (4)

with Shannon’s function

S(μA(xi )) = −μA(xi )ln(μA(xi ))− (1− μA(xi ))ln(1 − μA(xi ))

This entropy is quiet different from the classical entropy because no probabilistic
concept has been used.

b) Index of fuzziness
Kaufmann [10] defined the entropy or measure of fuzziness as the degree of ambigu-
ity or fuzziness present in a set by measuring the distance between the membership
values of the set A and its nearest ordinary set. The index of fuzziness is defined as:

I (A) = 2

nk
d(A, ˜A)

where d(A, ˜A) denotes the distance between set A and its nearest ordinary set ˜A.
An ordinary set ˜A nearest to the fuzzy set A is defined as

μ
˜A(xi ) =

{

0 if μA(xi ) ≤ 0.5
1 if μA(xi ) > 0.5
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There are two types of indices of fuzziness: - linear index of fuzziness and
quadratic index of fuzziness. These are defined as follows:

(i) If k = 1, d becomes Hamming distance and the linear index of fuzziness be-
comes:

L .I = 2

k
d(A, ˜A)

and

d(A, ˜A) =
n
∑

i=1

(μA(xi )− μ
˜A(xi ))

=
n
∑

i=1

μA∩˜A

μA∩˜A denotes the intersection (common) of the membership value of the element
ai at i th point in the fuzzy set A and its complement. So the linear index of fuzziness
(L.I) may be written as:

L .I. = 2

n

n−1
∑

i=0

min(μA(ai ), 1− μ Ā(ai )) (5)

ii) If k = 0.5, d becomes Euclidean distance and the quadratic index of fuzziness
(Q.I.) is defined as:

Q.I. = 2√
n

[
n−1
∑

i=0

{μA(ai )− μ
˜A(ai )}2]

1
2

Q.I. = 2√
n

[
n−1
∑

i=0

min(μA(ai ), 1− μ Ā(ai))
2]

1
2 (6)

c) Yager’s measure
Yager [11] defined fuzzy entropy or measure of fuzziness as the relationship bet-
ween fuzzy set and its complement. The distance between the fuzzy set A and its
complement Ā is denoted as:

D(X, X̄) =
n
∑

i=1

[μA(xi )− μ Ā(xi )]
1
p

μ Ā(xi ) = 1− μA(xi ), i = 1, 2, · · · , n

The measure of fuzziness is defined as:

S(A, B) = 1− D(X, X̄ )

X
1
p

(7)
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Another entropy as defined by Pal and Pal [12] is the exponential entropy and is
defined as:

H (A) = 1

n
√
(e)− 1

n
∑

i=1

(S(μA(xi ))− 1) (8)

with Shannon’s function

S(μA(xi)) = μA(xi )e
(1−μA(xi )) + (1− μA(xi))e

μA(xi )

d) Index of non-fuzziness
The index of non-fuzziness implies the amount of non-fuzziness or crispness in μA

by computing the distance from its complement version.

D(X, X̄) =
∑

i

|μA(ai )− μ Ā(ai )|, i = 1, 2, · · · , n (9)

e) Fuzzy geometrical measure
In pattern recognition we often want to measure the geometric properties of regions
in an image, but these regions are not crisply defined rather, it is sometimes regarded
as fuzzy subsets of an image. Fuzzy geometrical measures such as fuzzy compact-
ness may be used to measure the geometrical fuzziness of different regions of an
image. Many of these geometric properties include area, perimeter, compactness etc.
The standard approach to image analysis and recognition begins with the image seg-
mentation where the image is segmented into various regions. The optimization of
these measures (e.g. minimization of fuzzy compactness regarding to the cross-over
point of membership function) may be applied to make fuzzy and/or crisp pixel
classifications.

Rosenfeld [13] extended the concept of digital picture geometry to the fuzzy sub-
sets and generalized some of the standard geometric properties among the regions
of fuzzy subsets. Here μ(ai j ) is replaced by μ for simplicity.

The area of μ is defined as:

a(μ) =
∫

μ

where the integral is taken over the region in which μ > 0. If μ is a piecewise
constant as in a digital image, then a(μ) is the weighted sum of the areas of the
regions on which μ has constant values, weighted by these values. For a piecewise
constant, perimeter of μ is defined as:

P(μ) =
∑

m,n

∑

k

|μm − μn||Amnk |

m, n = 1, 2, · · · , r,m < n, k = 1, 2, · · · , rmn
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This is the weighted sum of the arcs Amnk along which mth and nth regions having
constantμ values,μm andμn respectively, meet weighted by the absolute difference
of these values. The compactness of μ is defined as:

Comp(μ) = a(μ)

P2(μ)
(10)

4 Fuzzy Similarity Measure

In day to day life, we often encounter situation where we have to distinguish bet-
ween similar groups or elements or find the similarity between two images or pat-
terns. In that case, similarity measure is the basic concept in a fuzzy set that is used
to find the similarity. Suppose there are n elements, {x1, x2, · · · , xn} and N groups,
{G1,G2, · · · ,GN }. We may want to know the similarity or the relation between the
two groups or between the two elements. So two types of questions may arise:

1. At what degree the groups are similar.
2. At what degree the elements are in the same group.

For answer to these questions, we have to use similarity measure between fuzzy sets
and fuzzy elements.

Let X be a universal set and F(X) is the class of all fuzzy sets of X . The prop-
erties of similarity measure and distance measure between two fuzzy sets A and B
such that A, B ∈ F(X) with membership functions μA(xi) and μB(xi ) are given as
follows:

1. S(A, B) = S(B, A),∀A, B ∈ F(X).
2. For three fuzzy sets A, B,C , ∀A, B,C ∈ F(X) if A ⊂ B ⊂ C then S(A, B) ≥

S(A,C) and S(B,C) ≥ S(A,C).
3. Similarity degree is bounded i.e. 0 ≤ S(A, B) ≤ 1 , if A, B are normalized.

Fuzzy Measure based on Tversky’s model

Tversky [14] in 1977 proposed a feature contrast model. Instead of considering stim-
uli as points in a metric space, Tversky characterized them as set of binary points
features. In other words stimulus ′a′ is characterized by ′A′ set of features that the
stimulus possesses. Equivalently, a feature set is a set of logic predicates, which are
true for the stimulus in question. Let a, b be two stimuli and A and B be the sets of
features respectively, and s(a, b) be a similarity between a and b. Then Tversky’s
theory is based on the following assumptions:

1. Matching: s(a, b) = F(A ∩ B, A− B, B − A)
2. Monotonicity: s(a, b) > s(a, c)

whenever A ∩ C ⊆ A ∩ B, A − B ⊆ A − C, B − A ⊆ C − A
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A function that satisfies matching and monotonicity is called matching function.
Tolias [15] proposed a similarity measure called Generalized Tversky’s index

(GTI). In the work [16], the generalized Tversky’s index has been extended to find
the similarity in gray/color images. It has been defined as:

GT I (A, B; α, β) = f (An ∩ Bn)

f (An ∩ Bn)+ α. f (An − Bn)+ β. f (Bn − An)

f is non-negative and increasing function. Here An , Bn are two sets of predicates
(which are the histograms of two images A and B) on the measurements α, β ≥ 0.
GTI compares the saliency of the common features to the saliency of distinctive
features. An ∩ Bn denotes the common features i.e. features that are common to
both images A and B . An − Bn is the distinctive features that are present in image
A and not in image B . The above equation has been written as:

GT I (A, B; α, β =
∑L

i=0 min(μA(n),μB(n))
∑L

i=0 min(μA(n),μB(n))+α.min(μA(n),1−μB(n))+β.min(1−μA(n),μB(n))

When the membership values of the gray levels of the histograms are similar,
it may be inferred that the common features of the two images are more and the
distinctive feature is less. This in turn implies that the two images are similar. The
values of α, β determine the relative importance of the distinctive features in the
similarity assessment. When α �= β, a directional similarity measure is obtained
that focuses on the distinctive features of image A, when α > β. Likewise when
β > α, the focus is on the distinctive features of image B . GTI provides a set
theoretic index for similarity assessment based on human perception. In the present
work, the values of α and β have been chosen as 0.5.

Some applications of fuzzy distance measures/measures of fuzziness in image
processing are given below.

In image thresholding, given an input image, a binarized output image is obtained
for a certain threshold gray level. The output image contains two regions- object and
background. Many authors suggested different methods to threshold an image using
measures of fuzziness/fuzzy similarity measures. Huang and Wang [17] minimized
Shannon entropy and Yager’s measure for thresholding an image. They used inverse
membership function that evaluates the relationship of the (i, j)th pixel, ai j , of im-
age A and has been defined as:

μA(ai j ) =
⎧

⎨

⎩

1
1+c.|ai j−μ0|) if ai j ≤ t , for background

1
1+c.|ai j−μ1|) if ai j > t , for object
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where the average gray level of the background and object region are respectively
given by the relation:

μ0 =
∑t

f=0 f count( f )
∑t

f=0 f count( f )

and

μ1 =
∑L−1

f=t+1 f count( f )
∑L−1

f=t+1 f count( f )

where ′count( f )′ denotes the number of occurrences of the gray level of the
image. The constant ‘c’ is taken as the inverse of the difference of the maximum
value and the minimum value of the image, c = 1

max−min, and has been used to
make the membership value of all the points lying between 0.5 and 1 i.e. 0.5 ≤
μA(ai j ) ≤ 1. This method has also been extended to multilevel thresholding.
The threshold is given as:

T = [
1

M Nln2

M−1
∑

i=0

N−1
∑

j=0

S(μA(ai j ))]

with Shannon’s function

S(μA(ai j )) = −μA(ai j )ln(μA(ai j ))− (1− μA(ai j ))ln(1− μA(ai j ))

M, N is the size of an image.
This (T ) is calculated for all the gray levels. The optimum threshold is the mini-

mum of the threshold values calculated for all the gray levels.
Chaira and Ray [18, 19, 20] minimized indices of fuzzziness and maximizes the
fuzzy compactness for image thresholding using a different type of membership
function, Gamma membership function, for finding the membership values of the
pixels of an image. They argued that using Gamma membership function the thresh-
olded results are better.

For any threshold ′t ′, the membership functions for the background and object
are:

μA(ai j ) =
{

exp(−c|ai j − μ0|) if ai j ≤ t , for background
exp(−c|ai j − μ1|) if ai j > t , for object

The constant is same as described in Huang’s method and has been used to make
the membership value of all the pixels to lie between [0, 1].
For each threshold, linear index of fuzziness is calculated as:
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L .I. = 2

n

L−1
∑

i=0

min(μA(ai), μ˜A(ai )), n = {0, 2, · · · , L − 1}

L is the maximum gray level of the image. The actual threshold value is selected
corresponding to the minimum value of the indices of fuzziness calculated for all
the gray levels. This method has also been extended to multilevel thresholding.

5 The Author’s Proposed Method for Color Image Retrieval

Given a query image and a database of images, we have to retrieve the image in
the database that is most similar to the query image with color as a feature. For
color image retrieval, the similarity between two sets of features, extracted from the
database image and the query image is used as a match measure. The match mea-
sure, which is a Generalized Tversky’s index, has been used to retrieve those images
present in the database image, which are similar to the query image. This measure
is a human perception model and has been presented to reflect the degree of resem-
blance between the image in the database and the query image. The features used
for the color images are the RG B colors present in the images which are calculated
from the histograms of the images. The gray levels of the histograms are fuzzified
using a newly proposed membership function, Beta membership function.

Scheme for Finding the Membership Value

As the images are considered to be fuzzy, so the membership values of the pixels of
the images are initially calculated. A new type of membership function is used here
that has been derived from Beta membership function with some assumptions. It is
nothing but another new type of membership function.

Beta Membership function

Beta distributions have two free parameters, which are labeled according to one
of two notational conventions. The usual definition calls these α and β. The plots
shown in Fig. 1 are for various values of (α, β) with α = 1 and β ranging from 0.25
to 3.00.

The domain is [0, 1] and the probability function P(x) is given by

P(x) = (1− x)β−1xα−1

B(α, β)

= Γ (α + β)

Γ (α)Γ (β)
(1− x)β−1xα−1 (11)

x should be less than 1.
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Fig. 1 Beta distribution

Case:- When α = 1, then

P(x) = Γ (1+ β)

Γ (1)Γ (β)
(1− x)β−1

= c1
Γ (1+ β)

Γ (β)
(1− x)β−1 (12)

Constant c1 has been chosen as 0.4. Replacing ′x ′ by |x − ν| in (12), ν being the
referencing parameter, the membership function may be written as:

μA(x) = (1− |x − ν|)β−1

For color image retrieval, the location parameter ν is the histogram of the query
image for the channel whose membership function is to be found out. So ν is re-
placed by h B , the histogram of the query image. Image A is one of the image in the
database and image B is the query image. The membership function of the database
image for each color channel may be written as:

μA(R,G,B)(n) = (1− |h A(R,G,B)(n)− h B(R,G,B)(n)|)β−1 (13)

Likewise, the membership values of the query image will be 1 as:

μB(R,G,B)(n) = (1− |h B(R,G,B)(n)− h B(R,G,B)(n)|)β−1 (14)

where n = {0, 1, 2 · · · L − 1} are the gray levels of the image.

The retrieval of a query image is based on the fuzzy similarity between two im-
ages. For computing the similarity between the images, the membership values for
the color pixel intensities in both the database image and the query image are ini-
tially computed from the (13), (14). Then GTI is calculated for each color channel
R, G, and B between the images in the database and the query image. The total
similarity for all the color channels in an image is

∑

R,G,B S, S is the GTI measure.
The image in the database whose GTI value is maximum, is the most similar to the
query image.
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5.1 Experimental Results and Discussion

The aim is to develop an efficient color retrieval. Retrieval is classified as accurate
and topmost retrieval if for a given query image, the image which is perceptually
most similar to the image in the database, is retrieved. For time complexity 16 bins
have been used to represent each of the 1-D color histograms.

The first experiment has been performed on the database of flag images having
70 flags of different countries, second experiment has been performed on a database
of VisTex(Vision Texture) color textured images containing 100 images, and third
experiment has been performed on a database of color logo images containing 200
logos of different comapnies.

The value of β in the experimentation has been selected as β = 2.5. Also the
histograms of the images are normalized.

20 query images from each of the database have been picked and each is pre-
sented as a query image. For each of these queries, similar images in the database
are manually listed and also the precision and recall rates [17, 21] are calculated for
measuring the accuracy of the retrieval scheme. These rates have been calculated at
positions 5, 10, 15, and 20. If ′n′1 is the number of images retrieved in top 5, 10,
15, and 20 positions that are closed to query and n2 is the number of images in the
database that are similar to the query then:

Recall rate = n1
n2

,

Precision rate = n1
n , n = 5, 10, 15, or 20

In the present work, for calculating the precision and recall rates, the average of
20 precision/recall values have been taken. The query image is at the extreme top
left of the figures in Figs. 2, 3, and 4. The color flag, color textured, and color logo
images are ranked according similarity of colors present in the query image. As the
query image is one of the images in the database, so the query image is the exact
similar image. Other images are ranked according to the similarity in descending
order. Table 1, 2, and 3 show the retrieval efficiency of the proposed method and the

Fig. 2 Sample result on color flag images
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Fig. 3 Sample result on color textured images

other three methods, i.e., Tolias et al. [14], Vertan and Boujemaa [22], and Swain
and Ballard [23] for comparison. Also, Figs. 5, 6 and 7 show the plots of precision
and recall of the proposed methods and other three methods.

From Table 1, 2, and 3 it is observed that using the proposed method, the pre-
cision rate in the case of color flag images is 0.84 and the recall rate is 0.35 when
n ≤ 5. For color textured images the precision rate is 0.80 and the recall rate is 0.34
when n ≤ 5. For color logo images the precision rate is 0.75 and the recall rate is
0.29 when n ≤ 5 . Results of Tolias et al., show the precision rate of 0.51 and the
recall rate of 0.22 for color flag images. For color textured images, the precision rate
is 0.66 and the recall rate is 0.28 when n ≤ 5. For color logo images, the precision
rate is 0.45 and the recall rate is 0.18 when n ≤ 5 . In the case Vertan and Boujemaa,
precision rate in the case of color flag images is 0.78 and the recall rate is 0.32 when
n ≤ 5. For color textured images the precision rate is 0.77 and the recall rate is 0.33
when n ≤ 5. For color logo images, the precision rate is 0.70 and the recall rate
is 0.27 when n ≤ 5. With the non-fuzzy/crisp method, Swain and Ballard obtained
the precision rate is 0.43 and the recall rate is 0.20 when n ≤ 5 with color textured
images. For color flag images, the precision rate is 0.81 and the recall rate is 0.33

Fig. 4 Sample result on color logo images
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Table 1 Recall/precision of color textured images

Method Precision Recall

Beta 0.80 0.63 0.55 0.47 0.34 0.47 0.56 0.62
Tolias et al. 0.66 0.44 0.37 0.30 0.28 0.43 0.49 0.55
Vertan 0.77 0.62 0.49 0.40 0.33 0.46 0.50 0.53
Swain, Ballard 0.43 0.34 0.31 0.27 0.20 0.23 0.32 0.35

Table 2 Recall/precision of color flag images

Method Precision Recall

Beta 0.84 0.68 0.57 0.48 0.35 0.56 0.69 0.77
Tolias et al. 0.51 0.38 0.32 0.27 0.22 0.27 0.33 0.42
Vertan 0.78 0.65 0.57 0.44 0.32 0.52 0.62 0.67
Swain, Ballard 0.81 0.65 0.52 0.45 0.33 0.53 0.65 0.73

Table 3 Recall/precision of color logo images

Method Precision Recall

Beta 0.75 0.53 0.52 0.41 0.29 0.39 0.49 0.60
Tolias et al. 0.45 0.25 0.22 0.20 0.18 0.21 0.27 0.36
Vertan 0.70 0.50 0.44 0.39 0.27 0.36 0.47 0.57
Swain, Ballard 0.47 0.33 0.31 0.28 0.19 0.25 0.35 0.40

when n ≤ 5. With color logo images,the precision rate is 0.47 and the recall rate is
0.19 when n ≤ 5.

So with the proposed Beta membership function, the retrieved results are much
higher than Tolias et al., Vertan and Boujemaa and a little better than non-fuzzy
method for color flag images. In case of textured images, the results are also better
than Vertan and Boujemaa but much better than Tolias et al and Swain and Ballard
method. While in case of color logo images, the results are also better than Vertan
and Boujemaa, Tolias et al., and Swain and Ballard method. As GTI is a human

Fig. 5 Precision/Recall of
color flag images
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Fig. 6 Precision/Recall of
color texture images
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Fig. 7 Precision/Recall of
color logo images
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perceptual model that takes into account both distinctive and common features, the
results will be better. Sample results of the proposed method on color flag images
and textured images are shown below.

The following graphs show the recall vs. precision of color flag, color texture,
and color logo images.

6 Conclusion

In this chapter, fuzzy measures and fuzzy integrals, different kinds of measures
of fuzziness, and fuzzy distance measures are reviewed. Also their application in
region based segmentation, color image retrieval, and thresholding are discussed.

Apart from this, a new fuzzy based method has been proposed for color image
retrieval using a new membership function called Beta membership function, when
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Generalized Tversky’s index has been used as a similarity measure. Generalized
Tversky’s index is a human perceptual measure that takes into account the com-
mon features as well as distinctive features.The results are found much better when
compared with the existing fuzzy and non-fuzzy methods.
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Type II Fuzzy Image Segmentation

Hamid R. Tizhoosh

Abstract Type II fuzzy sets are high-level representation of vague data with, com-
pared to ordinary fuzzy sets, greater capability for uncertainty management. Theo-
retical aspects of type II fuzzy systems have been extensively investigated, and the
research is still ongoing. Many image processing tasks accompanied with different
types of imperfection. In this chapter, the applications of type II fuzzy sets for image
segmentation will be discussed. Global and spatial type II segmentation schemes
will be systematically introduced and examples will be provided.

1 Introduction

In many image processing applications, we often have to segment gray-level images
into meaningful regions. In some cases, the image contains a background and one
or more objects. Image segmentation mainly serves as a tool for feature extraction
and object recognition. Image thresholding, the simplest form of segmentation, is
generally a two-class clustering procedure. Many segmentation techniques already
exist [5, 19, 38, 39] and extensive research has introduced new and more robust
thresholding techniques [12, 16, 26, 33]. Sankura and Sezginb list over 40 different
thresholding techniques [25].

Fuzzy techniques are suitable for development of new image processing algo-
rithms because as nonlinear knowledge-based methods, they are able to remove
grayness ambiguities in a robust way [29]. The concept of ultrafuzziness aims at
capturing/eliminating the uncertainties within fuzzy systems using regular (type I)
fuzzy sets. Ultrafuzzy sets should not only remove the vagueness/imprecision in the
data but also the uncertainty in assigning membership values to the data, which is
generally the reflection of inherent stochasticity.

This chapter is organized as follows: Sect. 2 describes briefly the type II fuzzy
sets. In Sect. 3 a measure of ultrafuzziness will be reviewed. Sect. 4 introduces im-
age thresholding using type II fuzzy sets by means of the measure of ultrafuzziness.
A simple type-II approach for segmenting images will be introduced in Sect. 5.
Finally, the chapter will be summarized with some conclusions and directions for
future work in Sect. 6.

H. Bustince et al., (eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation
and Models. C© Springer 2008 607
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2 Type II Fuzzy Sets

Type I fuzzy sets [37], and fuzzy inference systems in particular, have become a
powerful tool in dealing with vague and imprecise data. The main problem with
type I fuzzy sets, however, is the uncertain assignment of a membership degree
to an element/pixel regardless of which shape we use and what algorithm is ap-
plied. Membership functions are usually defined by an expert and are based on his
(mainly) subjective knowledge. The fact that different fuzzy approaches to solve a
given problem mainly differ in the way that they define the membership function is
for the most part due to this dilemma. To remove this uncertainty, type II fuzzy sets
should be utilized.

There are different sources of uncertainties in type I fuzzy sets [14, 32]; the mean-
ings of the words that are used, and noisy measurements. “Type I fuzzy sets are not
able to directly model such uncertainties because their membership functions are to-
tally crisp. On the other hand, type-2 fuzzy sets are able to model such uncertainties
because their membership functions are themselves fuzzy.” [Mendel et al. [14]]

The term footprint of uncertainty (FOU) is used in literature to verbalize the
irregular shape of a type II fuzzy set (gray area in Fig. 1)[13, 14]. The FOU implies
that there is a distribution that sits on top of that gray area. When they all equal
one, the resulting type II fuzzy sets are called interval type II fuzzy sets. Since we
are not certain about membership assignment fuzzy sets of type II are fuzzy sets for
which the membership function does not deliver a single value for every element,
but rather an interval.

Definition A type II fuzzy set Ã is defined by a type II membership function
μ Ã(x, u), where x ∈ X and u ∈ Jx ⊆ [0, 1], i.e. [13],

Ã = {(

(x, u), μ Ã(x, u)
) | ∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]

}

, (1)

in which 0 ≤ μ Ã(x, u) ≤ 1. Ã can also be expressed in usual notation of fuzzy
sets as

Ã =
∫

x∈X

∫

u∈Jx

μ Ã(x, u)/(x, u) Jx ⊆ [0, 1], (2)

where the double integral denotes the union over all x and u.
In order to define a type II fuzzy set one can define a type I fuzzy set and assign

upper and lower membership degrees to each element to (re)construct the footprint
of uncertainty (Fig. 1). A more practical definition for a type II fuzzy set can be
given as follows [32]:

Ã = {(x, μU (x), μL(x))| ∀x ∈ X, μL(x) ≤ μ(x) ≤ μU (x), μ ∈ [0, 1]} (3)

To define the lower and upper membership functions, μL and μU , linguistic
hedges can be employed to modify the skeleton function [32]. Hedges are generally
available as pairs, which represent diagonally different modification of a basic term.



Type II Fuzzy Image Segmentation 609

type I fuzzy set
1 1

0 0

type II fuzzy set

upper limit

lower limit

membership

Fig. 1 Constructing type II fuzzy sets. The interval between lower and upper membership values
(gray region) represents the footprint of uncertainty [32]

It seems that it is more practical to use a linguistic hedge and its reciprocal value to
represent the footprint of uncertainty:

μU (x) = [μ(x)]
1
α , (4)

μL(x) = [μ(x)]α, (5)

where α ∈ (1,∞). Well-established linguistic hedges like dilation and
concentration

μU (x) = [μ(x)]0.5, (6)

μL(x) = [μ(x)]2, (7)

and deaccentuation and accentuation

μU (x) = [μ(x)]0.75, (8)

μL(x) = [μ(x)]1.25, (9)

can be used to represent the FOU.

3 Measuring Ultrafuzziness

If we interpret images, their segments, histograms or thresholds as type II fuzzy
sets, then the question arises how ultrafuzzy is a fuzzy set, that is, to what degree
are membership values uncertain. If the degrees of membership can be defined
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without any uncertainty (ordinary or type I fuzzy sets), then the ultrafuzziness di-
minishes (=0). However, if the individual membership values can only be given as an
interval, then the amount of ultrafuzziness will increase. The maximal ultrafuzziness
(= 1) is comparable to total ignorance in measure theory, where we absolutely do
not have any knowledge about the nature of membership degrees of the problem at
hand. Tizhoosh [32] has defined a measure of ultrafuzziness γ̃ for an M × N image
subset Ã ⊆ X with L gray levels g ∈ [0, L − 1], histogram h(g) and membership
function μ Ã(g), as follows:

γ̃ ( Ã) = 1

M N

L−1
∑

g=0

h(g)× [μU (g)− μL(g)], (10)

where upper and lower memberships are calculated according to (4) and (5). For the
spatial case, the ultrafuzziness can be calculated as follows [32] (also see [1, 24]):

γ̃ ( Ã) = 1

M N

M−1
∑

i=1

N−1
∑

j=1

[μU (gi j )− μL(gi j )]. (11)

This basic definition relies on the assumption that the singletons sitting on the
FOU are all equal in height (which is the reason why interval-based type II sets are
used). Hence, it can only measure the variation in the length of the FOU.

The measure of ultrafuzziness γ̃ has the following properties [32]1:

1. Minimum Ultrafuzziness: γ̃ ( Ã) = 0 if μ Ã is a type I fuzzy set (∀g ∈ XμU (g) =
μL(g)).

2. Equal Ultrafuzziness: γ̃ ( Ã) = γ̃ ( ˜̄A) ( ˜̄A: complement set)

3. Reduced Ultrafuzziness: γ̃ ( Ã) ≥ γ̃ ( Ã
′
) if Ã

′
is an intensified (crisper) version

of Ã ( Ã
′

has a shorter/narrower FOU than Ã).
4. Maximum Ultrafuzziness: γ̃ ( Ã) = 1 if ∀g ∈ X μU (g)− μL(g) = 1.

4 Type II Image Thresholding

A large number of fuzzy techniques for image thresholding have been introduced
in literature. Fuzzy clustering, for instance, considers thresholding as a two-class
clustering problem [7, 8, 10, 11]. The rule-based approach, as the most popular
fuzzy scheme, uses fuzzy if-then rules to find the suitable threshold [30]. Fuzzy-
geometrical approaches optimize geometrical measures such as compactness, and
index of area coverage [17, 18, 20, 27, 28, 29]. The largest class of fuzzy threshoding

1 also see the definition of intuitionistic entropy [1].
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algorithms is based on information-theoretical measures and minimizes/maximizes
measures of fuzziness and image information such as index of fuzziness or crisp-
ness, fuzzy entropy, and fuzzy divergence [2, 3, 6, 21, 28, 29, 31, 35, 36].

The most common measure of image fuzziness is the linear index of fuzziness
[4, 9, 23, 29, 31, 36]. For an M × N image subset A ⊆ X with L gray levels
g ∈ [0, L − 1], histogram h(g) and membership function μA(g), the linear index of
fuzziness γl can be defined as follows:

γl(A) = 2

M N

L−1
∑

g=0

h(g)×min[μA(g), 1− μA(g)]. (12)

For the spatial case, the fuzziness can be calculated as follows:

γl(A) = 2

M N

M−1
∑

i=1

N−1
∑

j=1

min[μA(gi j ), 1 − μA(gi j )]. (13)

Other types of fuzzy negation may be considered as well.
To measure the global or local image fuzziness, a suitable membership function

μA(g) should be defined. Different functions are already used in the literature, such
as the standard S-function [22, 23] and the Huang/Wang-function [6]. Tizhoosh [28]
defined the suitable threshold as an L R-type fuzzy number (Fig. 2). Using a fuzzy
number seems to be more natural since we usually try to segment the image by
means of a preferably single number (a unique threshold for the entire image). Only
if this fails, which occurs in many applications, are advanced techniques for adaptive
thersholding employed. By moving/shifting the fuzzy threshold across the dynamic
range one can calculate the fuzziness and detect positions with minimum/maximum
values (Fig. 3). The general algorithm for image thresholding using type I fuzzy sets
is given in Tabel 1.

Tizhoosh [32] introduced type-II thresholding using the measure of ultrafuzzi-
ness. The general algorithm for image thresholding based on type II fuzzy sets is
summarized in Table 2. Thresholding based on this scheme can be formulated as
solving the following equation:

Fig. 2 Different membership functions for image thresholding. From left to right: S-function used
by Pal et al. [18], function used by Huang/Wang [6], and threshold as a fuzzy number used by
Tizhoosh [28]. [source: [32]]
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Fig. 3 The membership
function is moved/shifted
over the gray-level range to
calculate the fuzziness in
each position. The maximum
fuzziness indicates the
optimal threshold. [source:
[32]]

∂

∂T
γ̃ ( Ã) = ∂

∂T

1

M N

L−1
∑

g=0

h(g)× [μU (g, T )− μL(g, T )] = 0. (14)

Tizhoosh [32] has also compared type I and type II thresholding using different
test images and their gold standards. The results are compared using a measure of
performance η, which compares the individual gold images with the binary result
delivered by type I and type II thresholding. Based on the misclassification error
[25, 34], the performance measure has been defined as

Table 1 General algorithm for thresholding based on type I fuzzy sets

Select the shape of membership function
Select the suitable measure of fuzziness (e.g. (12))
Calculate the image histogram
Initialize the position of membership function
Shift the membership function along the gray-level range (Fig. 3)

Calculate fuzziness in each position, for instance using (12)
Locate the position gopt with minimum/maximum fuzziness

Threshold the image with T = gopt

Table 2 General algorithm for thresholding based on type II fuzzy sets [32]

Select the shape of skeleton membership function μ(g)
Initialize α
Calculate the image histogram
Initialize the position of membership function
Shift the membership function along the gray-level range

Calculate the upper and lower membership values μU (g) and μL (g)
Calculate ultrafuzziness in each position (10)
Find out the position gopt with maximum ultrafuzziness

Threshold the image with T = gopt
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Fig. 4 From Left to right: Original image, gold standard (created manually), type I segmentation,
and type II segmentation

η = 100× |BO ∩ BT | + |FO ∩ FT |
|BO | + |FO | , (15)

where BO and FO denote the background and foreground of the original (ground-
truth) image, BT and FT denote the background and foreground area pixels in the
resulting image, and | · | is the cardinality of the set. Sample results are presented in
Fig 4. The performance measure η for every algorithm is listed in Table 3.

As apparent from Table 3, type II thresholding has an average performance of
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Table 3 Performance of type I and type II methods based on comparison of their results with the
gold standards (see Fig.4,(15))

Image ηType I ηType II

blocks 71.21 98.98
gearwheel 64.47 98.21
shadow 75.75 94.39
stones 39.96 96.99
text 36.37 93.44

m (average) 57.55 94.60
σ (standard deviation) 18.19 3.22

94.60% with a standard deviation of 3.22%. In contrast, the type I algorithm yields a
57.55% average performance and 18.19% standard deviation, and is clearly inferior
to the type II algorithm.

5 Type II Segmenation

There exists a large number of techniques applied to image segmentation [5, 19,
38, 39]. The most natural way to employ the ultrafuzziness for segmenting images
would be to design a type II fuzzy systems consisting of fuzzy rules applied to each
pixel. However, we already know that even type I fuzzy inference has a relatively
high cost if applied in an spatial fashion. The benefit of uncertainty management via
type II fuzziness diminishes because the high computational expense that one has to
pay if type II inference is conducted on spatial windows. Therefore, one should be
looking for more feasible implementations of type II image segmentation especially
when realtime processing is a given constraint.

In this section, a simple and straightforward type II segmentation procedure will
be designed in order to demonstrate how one can exploit the advantage of type II
fuzzy sets without complex coding and/or high computation time.

Assume that the camera man in Fig. 5 should be segmented. Since the object
of interest (the camera man) is dark, the primary membership function μ, as the
skeleton, around which the footprint of uncertainty will be constructed, should be
defined first. The primary membership function is usually defined based on given
characteristics of the image at hand. For the test image, we can define a fuzzy set
dark pixels using a z-shaped membership function on the interval [gmin,

gmin+gmax
2 ]:

μ(g) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪
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⎪
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1− 8

(
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A

)2

gmin ≤ g ≤ B
4 ,

(

2AB − 8g

A

)2
B
4 < g < B

2 ,

0 g ≥ B
2 ,

(16)
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Fig. 5 Test image: The dark
object (camera man) should
be represented and segmented
with a type II fuzzy set

where A = gmax − gmin, and B = gmax + gmin.
Assuming that the primary (skeleton) membership function μ exists, the lower

and upper membership functions can be calculated:

μL(i, j) = μ(g(i, j))α(i, j ), (17)

μU (i, j) = μ(g(i, j))
1

α(i, j) . (18)

The ultrafuzzifier α for each spatial point (i, j) can be determined with regard to
some characteristics of the corresponding neighborhood:

α(i, j) = F ×min

⎛

⎝1,
max

k
g(i + k, j + k)−min

k
g(i + k, j + k)

L − 1

⎞

⎠ , (19)

where k ∈ {−n, . . . ,−1, 0, 1, . . . , n} (n = <W
2 >,W = window size) and the con-

stant F ∈ (1,∞) is an amplification factor controlling the length/width of the FOU.
This means if the intensity of the center pixel considerably deviates from its imme-
diate surrounding, then the uncertainty of segmentation increases.

In order to save computation time we may just operate on the upper and lower
membership functions. A weighted average would be the ideal way to determine a
single value for each pixel. The weight wL for lower membership function μL can
be calculated from the ratio of the local and global minimum gray levels:
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Table 4 Type II fuzzy image segmentation

Determine the spatial window size (e.g. 3× 3, 5× 5, . . . )

Determine gmin = 255, gmax = 0

For all spatial windows do

calculate α(i, j) (19)

calculate the weights wL and wU (20 and 21)

calculate the primary membership μ

calculate the the upper membership μU (i, j) (18)

calculate the the lower membership μL (i, j) (17)

assign new gray level g′(i, j) (22)

Fig. 6 Results of type II
segmentation. Left to right:
the ultrafuzziness γ̃ for
different F values, and
corresponding segmented
image

(a) γ|F=2 (b) segmentation

(d) segmentation

(f) segmentation

˜

(c) γ|F=20˜

(e) γ|F=100˜
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wL(i, j) =
min

k
g(i + k, j + k)

gmax
. (20)

If the spatial neighborhood is dark, then the lower membership will be amplified.
Analogously, the weight wU for the upper membership function μU can be given as

wU (i, j) =
max

k
g(i + k, j + k)

gmax
. (21)

Hence, the segmented pixels g′ can be given as

g′(i, j) = (L − 1)× wU (i, j)μU (g(i, j))+wL(i, j)μL(g(i, j))

wU (i, j)+wL(i, j)
. (22)

The following algorithm in Table 4 can segment the image based on the ultra-
fuzziness of gray-level intensities. Figure 6 shows the results of segmentation. As
it can be seen, for slight amplification of ultrafuzziness (F = 2) only the vicinity
of very strong edges can cause uncertainty. As we widen the FOU (F = 20 and
F = 100) more and more weak edges are included.

6 Concluding Remarks

Image segmentation is one of the most challenging tasks in image processing and
computer vision. Extracting meaningful image regions, due to the inherent imper-
fections of digital images, requires capable algorithms. Fuzzy sets have been exten-
sively used to develop a new generation of image processing algorithms. However,
they suffer from a major drawback; the definition of membership functions is usually
uncertain. A large number of researchers in the past have therefore focused on tuning
and refinement of fuzzy systems.

Type II fuzzy sets seem to remove the membership uncertainty. This could lead
to a new and robust class of segmentation algorithms capable of achieving a higher
level of accuracy. How type II fuzzy sets should be embedded within existing fuzzy
techniques, however, still needs to be investigated.

In this chapter two simple schemes were discussed to demonstrate how type II
fuzzy sets can be implemented with respect to practical limitations. The preliminary
results suggest that type II fuzzy sets are superior to their ordinary type I coun-
terparts. Extending existing fuzzy techniques, and deeper and more comprehensive
elaborations on advantages and challenges of type II fuzzy sets remains a subject
for future work.
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Image Threshold Computation by Modelizing
Knowledge/Unknowledge by Means
of Atanassov’s Intuitionistic Fuzzy Sets

Humberto Bustince, Miguel Pagola, Pedro Melo-Pinto,
Edurne Barrenechea and Pedro Couto

Abstract In this chapter, a new thresholding technique using Atanassov’s intu-
itionistic fuzzy sets (A-IFSs) and restricted dissimilarity functions is introduced.
We interpret the intuitionistic fuzzy index of Atanassov as the degree of unknowl-
edge/ignorance of an expert for determining whether a pixel of an image belongs to
the background or the object of the image. Under these conditions we construct an
algorithm on the basis of A-IFSs for detecting the threshold of an image. Then we
present a method for selecting from a set of thresholds of an image the best one. This
method is based on the concept of fuzzy similarity. Lastly, we prove that in most
cases our algorithm for selecting the best threshold takes the threshold calculated
with the algorithm constructed on the basis of A-IFSs.

1 Introduction

The division of an image into regions is called segmentation. In reality, the segmen-
tation of digital images is the process of dividing an image into disjointed parts,
regions or classes so that each one has very specific attributes or properties. Each of
these classes represents an object of the image.

One of the most commonly used methods for segmenting images is global thresh-
olding or segmentation by levels of gray. In this method the objects of the image are
supposedly characterized by different levels of gray. If the image is made up of one
object, global thresholding is classifying the pixels into two regions, background
and object. This classification is done establishing a threshold t from which the
pixels with the highest intensities belong to the background (or object) and those
with lowest intensities belonging to the object (or background).

We will denote the coordinates of each pixel on the image Q with (x, y); the
intensity or level of gray of the pixel (x, y) with q(x, y) so that 0 ≤ q(x, y) ≤
L − 1 for each (x, y) ∈ Q, where L − 1 is the highest level of gray of our
grayscale.

Normally an image is composed of many objects, therefore in practice it is ne-
cessary to choose more than one threshold in order to segment the image. In this
chapter we will only consider images containing a single object.

H. Bustince et al., (eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation
and Models. C© Springer 2008 621
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The choice of the best threshold t is a difficult process mainly for two reasons:

1. The histogram does not determine the image in a single way, that is, there can
be two equal histograms that correspond to two different images. Ambiguity in
the predicate (property or condition) that must be met by the pixels of the object,
due to the presence of overlap in the histogram associated with the image.

2. Presence of noise.

Many methods have been proposed for determining the threshold t of an image
[14, 15, 16, 18, 22, 23, 24, 25] nevertheless, considering that fuzzy set theory [30]
has worked well in the treatment of models that present ambiguity and highly noisy
data, this theory is an interesting alternative for determining the best threshold, in
order to obtain a good segmentation of the image considered [4, 11, 17, 18, 19, 21].
Within the framework of this theory the most popular algorithms are those that use
the concept of fuzzy entropy [4, 13, 17]. In this sense one of the most commonly
used is the following:

a. Assign L fuzzy sets Qt to each image Q. Each one is associated to a level of
intensity t , (t = 0, 1, · · · , L − 1), of the grayscale L used.

b. Calculate the entropy of each one of the L fuzzy sets Qt associated with Q.

c. Take, the best threshold gray level t , associated with the fuzzy set corresponding
to the lowest entropy. The justification for this choice is explained in [13, 17].

The main problem of this algorithm is step (a). The question considered is: which is
the best function we should take in order to assign the membership of each elemen-
t/pixel of the image to the associated fuzzy set? [27]. In order to solve this problem
we will associate each pixel with three numerical values:

• A value for representing its membership to the background, which we will inter-
pret as the knowledge of the expert of the membership of the pixel to the back-
ground. We obtain this value by means of the membership function associated
with the set that represents the background. In this chapter this function will be
constructed by the expert using restricted dissimilarity functions (see [3]).

• A value for representing its membership to the object, which we will interpret as
the knowledge of the expert of the membership of the pixel to the object. This
value is obtained by means of the membership function associated with the set
that represents the object. This function will also be constructed using restricted
dissimilarity functions.

• A value for representing the unknowledge/ignorance of the expert in determining
the membership functions described in the first two items. This value will be
represented by Atanassov’s intuitionistic index.

Under these conditions, if Atanassov’s intuitionistic index associated with a pixel
has a value of zero, it means that the expert is positively sure about the belonging-
ness of the pixel to the background or to the object. However, if the expert does not
know that the pixel belongs to the background or to the object he must represent
its membership to both with the value 0.5, and under these conditions we can say
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that the expert has used the greatest unknowledge/ignorance/intuition allowed in the
construction of the functions of membership to the background and to the object re-
spectively. For this reason we will use the A-IFSs (Atanassov’s Intuitionistic Fuzzy
Set [1, 2]).

2 A-IFSs

In 1983 K. Atanassov [1] introduced A-IFSs in the following way:
Let X be an ordinary finite non-empty set. An A-IFS in X is an expression Ã

given by

Ã = {(x, μ Ã(x), ν Ã(x))|x ∈ X}

where
μ Ã : X −→ [0, 1]

ν Ã : X −→ [0, 1]

satisfy the condition 0 ≤ μ Ã(x)+ ν Ã(x) ≤ 1 for all x in X.
The numbers μ Ã(x) and ν Ã(x) denote respectively the degree of membership

and the degree of non-membership of the element x in set Ã. We will represent as
A-IFSs(X) the set of all the A-IFSs in X .

We know that fuzzy sets are represented exclusively by the membership function,

A = {(x, μA(x))|x ∈ X}.

Hereinafter, fuzzy sets will have associated (besides the membership degree that
defines them) a non-membership degree given by one minus the membership degree,
that is:

A = {(x, μA(x), νA(x))|x ∈ X} = {(x, μA(x), 1− μA(x))|x ∈ X}. (1)

Since μA(x) + νA(x) = μA(x) + 1 − μA(x) = 1, in this sense fuzzy sets will be
considered as a particular case of A-IFSs [1, 5, 8, 12]. We will represent as FSs(X)
the set of all the fuzzy sets in X . We also will represent as I the following fuzzy set
{(x, μI(x) = 1)|x ∈ X}.

We will call [1]

π Ã(x) = 1− μ Ã(x)− ν Ã(x)

Atanassov’s intuitionistic fuzzy index of the element x in the A-IFS Ã. Naturally, if
the set A considered is fuzzy, then πA(x) = 1 − μA(x) − νA(x) = 1 − μA(x) −
1+ μA(x) = 0.

For every Ã, B̃ ∈A-IFSs(X) the following expressions are known [1, 2, 7, 8, 12]:
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1. Ã ≤ B̃ if and only if μ Ã(x) ≤ μB̃(x) and ν Ã(x) ≥ νB̃(x) for all x ∈ X
2. Ã � B̃ if and only if μ Ã(x) ≤ μB̃(x) and ν Ã(x) ≤ νB̃(x) for all x ∈ X
3. Ã = B̃ if and only if Ã ≤ B̃ and B̃ ≤ Ã
4. K. Atanassov [1, 2] defined the complementary of an IFS as follows: Ãc =
{(x, ν Ã(x), μ Ã(x))|x ∈ X}.

5. ∨( Ã, B̃) = {(x,∨(μ Ã(x), μB̃(x)),∧(ν Ã(x), νB̃(x)))|x ∈ X}.
6. ∧( Ã, B̃) = {(x,∧(μ Ã(x), μB̃(x)),∨(ν Ã(x), νB̃(x)))|x ∈ X}.

2.1 Entropy on A-IFSs

Much has been written on entropy on A-IFSs (see [5, 26]). We will focus on the
definition and characterization of this concept presented in [5]. In this chapter en-
tropy on A-IFSs is defined as a magnitude that measures the degree of A-IFS that a
set has with respect to the fuzziness of the said set . The idea can be specified in the
following conditions:

1. The entropy will be null when the set is a FSs(X),
2. the entropy will be maximum if the set is totally intuitionistic; that is, μ(x) =

ν(x) = 0 for all x ∈ X ,
3. as in fuzzy sets, the entropy of an A-IFS will be equal to its respective comple-

mentary,
4. if the degree of membership and the degree of non-membership of each element

increase, the sum will do as well, and therefore, this set becomes more fuzzy, and
therefore the entropy should decrease.

Taking into account the above considerations, we have the following definition.

Definition 1. A real function I E : A − I FSs(X) → R+ is called an entropy on
A-IFSs(X) if it has the following properties:
(I E1) I E( Ã) = 0 if and only if A ∈ FSs(X),
(I E2) I E( Ã) = Cardinal(X) = n if and only if μ Ã = ν Ã = 0 for all x ∈ X,
(I E3) I E( Ã) = I E( Ãc) for all Ã ∈ A-IFSs(X),
(I E4) if Ã � B̃, then I E( Ã) ≥ I E(B̃).

In [5] it is proven that the most general form of IE is:

I E( Ã) = 1

n

n
∑

k=1

π Ã(xk) (1)

being n = Cardinal(X). In the literature there are other definitions of entropy [26]
which are not of use in the application that we present here. In this chapter we will
use the expression (1).
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3 Best Thresholding with A-IFSs

In general terms the algorithm we propose for calculating the best threshold of an
image Q is made up of the following steps:

A. Construct L fuzzy sets QBt associated with the image Q. These sets represent
the background of the image Q. Each one is associated with a level of intensity
t , (t = 0, 1, · · · , L − 1), of the grayscale L used.

B. Construct L fuzzy sets QOt associated with the image Q. These sets represent
the object of the image Q considered. Each one is associated with a level of
intensity t , (t = 0, 1, · · · , L − 1), of the grayscale L used.

C. Represent the unknowledge/ignorance of the expert in the construction of the
sets corresponding to items (A) and (B) by means of Atanassov’s intuitionistic
fuzzy index.

D. Construct L intuitionistic fuzzy sets of Atanassov Q̃Bt associated with the back-
ground of the image.

E. Calculate an entropy I E of each one of the L intuitionistic fuzzy sets of
Atanassov Q̃Bt by means of the expression (1).

F. Take the best threshold t associated with the intuitionistic fuzzy set of Atanassov
Q̃Bt corresponding to the lowest entropy I E .

4 A Model of the Algorithm with Restricted
Dissimilarity Functions

In this section we present a possible development of the steps of the algorithm de-
scribed in Sect. 3. We also justify each one of them.

4.1 Steps (A) and (B)

For each image Q we will construct L fuzzy sets QBt and another L fuzzy sets
QOt , with t = 0, 1, · · · , L − 1. The fuzzy sets QBt , QOt are associated with the
background and with the object of the image respectively.

The membership function of each element to the set QBt (QOt ) must express the
relationship between the intensity q of the pixel in question and its membership to
the background (object).

We will define these functions using the concept of restricted dissimilarity func-
tions, so that the lower the dissimilarity between the gray level of any pixel q and
the mean of the intensities of the background (object) is, the greater will be the value
of the membership function μQ Bt (q) (μQ Ot (q)).

For each t , the mean of the intensities of gray of the pixels that belong to the
background m Bt and the mean of the intensities of gray of the pixels that belong to
the object mOt are given by the following expressions:
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m B(t) =
∑t

q=0 qh(q)
∑t

q=0 h(q)
mO (t) =

∑L−1
q=t+1 qh(q)

∑L−1
q=t+1 h(q)

,

h(q) being the number of pixels of the image with intensity q .
Evidently, the first thing we must do is to introduce the concept of restricted

dissimilarity function and analyze its main properties. This concept is studied in [3].

Definition 2. A function d : [0, 1]2 → [0, 1] is called a restricted dissimilarity
function, if it satisfies the following conditions:

1) d(x, y) = d(y, x) for all x, y ∈ [0, 1];
2) d(x, y) = 1 if and only if x = 0 and y = 1 or x = 1 and y = 0;
3) d(x, y) = 0 if and only if x = y;
4) For all x, y, z ∈ [0, 1], if x ≤ y ≤ z, then d(x, y) ≤ d(x, z) and d(y, z) ≤

d(x, z).

Next we present a method for the construction of restricted dissimilarity func-
tions from automorphisms. Constructions of these functions from implication oper-
ators can also be found in [3].

We know that a continuous, strictly increasing function ϕ : [a, b] → [a, b] with
boundary conditions ϕ(a) = a, ϕ(b) = b is called an automorphism of the interval
[a, b] ⊂ R. In this chapter we always use the interval [0, 1].

Proposition 1. If ϕ1, ϕ2 are two automorphisms of the unit interval, then

d(x, y) = ϕ−1
1 (∨(ϕ2(x)− ϕ2(y), ϕ2(y)− ϕ2(x)))

is a restricted dissimilarity function.

Proposition 2. Under the conditions of Proposition 1:

ϕ1(x) = ϕ2(x) for all x ∈ [0, 1] if and only if d(1, x) = ϕ−1
1 (1− ϕ1(x)).

Once the concept of restricted dissimilarity function has been set and a mech-
anism for generating such functions has been given, we present a method for the
construction of fuzzy sets using these functions.

Under these conditions we will construct fuzzy sets QBt and QOt by means of
F functions with special properties in the following way:

Let d be a restricted dissimilarity function and let F : [0, 1] → [0.5, 1] a non
increasing function such that

{

F(x) = 1 if and only if x = 0

F(x) = 0.5 if and only if x = 1

In these conditions, given an image Q and an intensity threshold t set, we construct
the membership functions of each intensity to the sets Q Bt and QOt in the following
way:
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μQ Bt (q) = F(d(
q

L − 1
,

m B(t)

L − 1
))

μQ Ot (q) = F(d(
q

L − 1
,

mO (t)

L − 1
)).

Remark: possible F functions are the following: F(x) = 1− 0.5x , F(x) = 1
1+x ,

F(x) = e−x2.Ln2.
In the following proposition (see [3]) we present the main properties of these

constructions.

Proposition 3. Under the conditions of the construction above, the following items
hold:

1. 0.5 ≤ μQ Bt (q) ≤ 1 for all q;
2. 0.5 ≤ μQ Ot (q) ≤ 1 for all q;
3. μQ Bt (q) = 1 if and only if q = m B(t);
4. μQ Ot (q) = 1 if and only if q = mO (t);
5. If q1 ≤ q2 ≤ m B(t), then μQ Bt (q1) ≤ μQ Bt (q2),

If m B(t) ≤ q1 ≤ q2, then μQ Bt (q1) ≥ μQ Bt (q2),
If q1 ≤ q2 ≤ mO (t), then μQ Ot (q1) ≤ μQ Ot (q2),
If mO (t) ≤ q1 ≤ q2, then μQ Ot (q1) ≥ μQ Ot (q2).

It is important to point out that, as a result of the first and the second items
of Proposition 3, the membership functions constructed are always greater than or
equal to 0.5 (see[17]).

Example 1. Let the function F(x) = 1 − 0.5x . If we take the automorphisms
ϕ1(x) = ϕ2(x) = x for all x ∈ [0, 1] we have the restricted dissimilarity function
d(x, y) = |x − y|. In these conditions the construction above provides the fuzzy
sets QBt and QOt represented by the following membership functions:

{

μQ Bt (q) = F(d( q
L−1 ,

m B (t)
L−1 )) = 1− 0.5d( q

L−1 ,
m B (t)
L−1 ) = 1− 0.5| q

L−1 − m B (t)
L−1 |

μQ Ot (q) = F(d( q
L−1 ,

mO (t)
L−1 )) = 1− 0.5d( q

L−1 ,
mO (t)
L−1 ) = 1− 0.5| q

L−1 − mO (t)
L−1 |

We take the following image (Fig. 1) on the grayscale from 0−255.
For t = 40 we have m B(t) = 17.03 and mO(t) = 79.26, so that the fuzzy set

QB40 is given by Fig. 2 and QO40 is given by Fig. 3.

Considering the construction method of fuzzy sets presented in this section, we
propose Algorithm 1 for generating the L fuzzy sets QBt associated with the back-
ground of the image Q and the L fuzzy sets QOt associated with the object of the
same image Q.
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(1) Choose the automorphisms ϕ1 and ϕ2 and construct the function d .
(2) Take the function F .
(3) FOR t := 0 TO L − 1 DO

(3− 1) Calculate m B(t) and mO(t);
(3− 2) Construct

μQ Bt (q) = F(d( q
L−1 ,

m B (t)
L−1 ));

μQ Ot (q) = F(d( q
L−1 ,

mO (t)
L−1 ));

ENDFOR.
Alg. 1

4.2 Step (C). Justification for the use of A-IFSs

Once the sets QBt and QOt have been constructed for each t ∈ {0, 1, · · · , L − 1}
by means of Algorithm 1 we must ask ourselves if the construction chosen is the
best (see[27]).
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Fig. 3 Object membership fuction for t = 40

We know that in order to separate the object from the background it is necessary
to accurately determine the property that must be fulfilled by the pixels that belong
to the object. This property establishes the form of the membership function associ-
ated with the set that represents the object. Normally this property is not positively
known and therefore the choice of membership function is conditioned by the un-
knowledge/ ignorance of the expert who has been asked to construct a membership
function.

As we remarked in the introduction, we will interpret Atanassov’s intuitionistic
index π as the unknowledge/ignorance of the expert in assigning the membership
value of a certain pixel to the background or the object of the image. Under this
interpretation of π , we will consider that μQ Bt (μQ Ot ) indicates the expert’s degree
of knowledge of the pixel belonging to the background (object).

In any case the following conditions must be fulfilled:

1. The unknowledge that the expert uses in the choice of the membership of a pixel
must be zero if he is certain that the pixel belongs to the object or the background.

2. The unknowledge/ignorance must decrease with respect to the certainty of the
expert as to whether the pixel belongs to the background or to the object.

3. The unknowledge/ignorance must have the least possible influence on the choice
of the membership degree. In this chapter we will work on the basis that, in the
worst of cases, the unknowledge will have a maximum influence of 25 percent.

In this context, π(q) is the quantification of the unknowledge/ignorance of the
expert in the selection of the membership functionsμQ Bt (q) andμQ Ot (q). The three
considerations above justify the choice of the following expression for π(q):

π(q) = (1− μQ Bt (q))(1− μQ Ot (q)).

Evidently, this expression is not the only possible one.



630 H. Bustince et al.

4.3 Step (D)

In this section we will associate an A-IFS (using the index π described in the sub-
section above) with each one of the fuzzy sets QBt and QOt , in the following way:

Q̃Bt = {(q, μQ̃ Bt
(q), νQ̃ Bt

(q))|q = 0, 1, · · · , L − 1}, given by
μQ̃ Bt

(q) = μQ Bt (q)
νQ̃ Bt

(q) = 1− μQ̃ Bt
(q)− π(q) = (1− μQ Bt (q)) · μQ Ot (q)

and

Q̃Ot = {(q, μQ̃ Ot
(q), νQ̃ Ot

(q))|q = 0, 1, · · · , L − 1}, given by
μQ̃ Ot

(q) = μQ Ot (q)
νQ̃ Ot

(q) = 1− μQ̃ Ot
(q)− π(q) = (1− μQ Ot (q)) · μQ Bt (q)

Example 2. In Fig. 4 we show Atanassov’s intuitionistic fuzzy sets Q̃B40 and Q̃O40
associated with the image in Fig. 1.

4.4 Step (E)

Proposition 4. For each t ∈ {0, 1, · · · , L − 1},

I E(Q̃Bt ) =I E(Q̃Ot ) = I E(∨(Q̃Bt , Q̃Ot )) = I E(∧(Q̃Bt , Q̃Ot ))

= 1

N × M

L−1
∑

q=0

h(q)(1− μQ Bt (q))(1− μQ Ot (q)) (2)

holds.

Proof. Direct. �
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Fig. 4 Atanassov’s intuitionistic fuzzy sets Q̃ B40 and Q̃O40
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4.5 Step (F). Justification for the Minimum Value of IE

Proposition 5. Under our constructions, for each t ∈ {0, 1, · · · , L − 1},

0 ≤ I E(Q̃Bt ) ≤ 0.25

holds.

Proof. We know by Proposition 3 that the following inequalities hold for all q:
0.5 ≤ μQ Bt (q) ≤ 1 and 0.5 ≤ μQ Ot (q) ≤ 1. Therefore 1 − μQ Bt (q) ≤ 0.5 and
1 − μQ Ot (q) ≤ 0.5. Using these inequalities in the expression (2) we have that
I E(Q̃Bt ) ≤ 0.5 ∗ 0.5 = 0.25. Evidently I E(Q̃Bt ) ≥ 0. �

From our constructions we deduce the following two items:

1. If μQ Bt (q)→ 1, then d( q
L−1 ,

m B (t)
L−1 )→ 0, therefore q ≈ m B(t). In this case the

pixels with intensity q are such that this intensity is very close to the average in-
tensity of the pixels that represent the background. This fact enables us to assure
that the pixel in question belongs to the background.

2. If μQ Ot (q) → 1, then d( q
L−1 ,

mO (t)
L−1 ) → 0, therefore q ≈ mO (t). In this case

the pixels with intensity q are such that this intensity is very close to the average
intensity of the pixels that represent the object. This fact enables us to assure that
the pixel in question belongs to the object.

Therefore, the most representative set of the background Q̃Bt is that whose
membership degrees are closest to one. Identical reasoning can be made for the
most representative set of the object Q̃Ot . In any case these sets are obtained by
taking, from among all the sets constructed (one for each value of t), the set with
the lowest intuitionistic fuzzy entropy I E . This is due to the fact that expres-
sion (2) is close to zero when for each q the following holds: μQ Bt (q) → 1 or
μQ Ot (q)→ 1, which is the best possible situation as has been made clear in the two
items above.

Please note that it can never happen that μQ Bt (q) = 1 = μQ Ot (q), the pixel
either belongs to the background or it belongs to the object, never to both at the
same time.

4.6 Algorithm

The theoretical considerations studied in subsections 4.1– 4.5 enable us to write the
following general algorithm (Algorithm 2) for calculating the threshold of an image
using A-IFSs.

Given an image Q of N × M pixels on the grayscale of 0 to L − 1.
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(1) Take the automorphisms ϕ1 and ϕ2 and construct the function d .
(2) Take F .
(3) FOR t:= 0 TO L − 1 DO:

(3.1) Calculate m B(t) and mO(t);
(3.2) FOR q:= 0 TO L − 1 DO:

(3.2.1) Construct
μQ Bt (q) = F(d( q

L−1 ,
m B (t)
L−1 ));

μQ Ot (q) = F(d( q
L−1 ,

mO (t)
L−1 ));

(3.2.2) Construct π(q) = (1− μQ Bt (q))(1− μQ Ot (q))
END FOR;

(3.3) Construct Q̃Bt ;
(3.4) Calculate I E(Q̃Bt );

END FOR.
(4) Take the best threshold value t associated with the set QBt

corresponding to the lowest intuitionistic fuzzy entropy of Atanassov.
Alg. 3

5 Experimental Results

We have applied Algorithm 2 to each one of the 250 images taken from website:
http://www.cs.cmu.edu/ cil/vision.html, in the following conditions: ϕ1(x) = ϕ2
(x) = x for all x ∈ [0, 1], i. e., d(x, y) = |x − y|, and F(x) = 1− 0.5x .

When constructing the binary image from each image using the thresholds
obtained we have visually observed that these thresholds produce a good binariza-
tion. This fact can be seen in Fig. 5. In this figure we present the thresholds and their
corresponding binarized image, from 21 images taken from the set above.

6 Comparison with Other Methods

In this section we set ourselves two objectives:

1. To provide a method for selecting from a set of thresholds of an image Q, the
best one.

2. To prove experimentally on a large set of images taken randomly, that we obtain
the best threshold with the algorithms that use A-IFSs, (Algorithm 2).

6.1 Best Threshold Selection

In order to select the best threshold from a set of n thresholds (t1, t2, · · · , tn), we
will use the concept of fuzzy similarity. The similarity between sets has been amply
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Original

t = 93 t= 153 t = 98

t = 137 t= 171 t = 127

t = 53 t= 63 t = 107

t = 132 t= 143 t = 58

t = 60 t= 97 t = 103

t = 138 t= 97 t = 100

t = 97 t= 123 t = 115

Binarized Original Binarized Original Binarized

Fig. 5 Binarized images obtained with Algorithm 2

studied (see [3, 6, 9, 10]), evidently, SM(A, B) = 1 if and only if A = B . In this
chapter we will use the following expression called Similarity measure based on
contrast de-enhancement (see [6, 10])):

SM(A, B) = 1
n

n
∑

i=1
1− |μA(xi )− μB(xi)| for all A, B ∈ FSs(X).

Under these conditions we present the following algorithm (see [3]).
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(1) Select the functions d and F from the construction method
developed in Subsection 4.1.

(2) FOR t := t1 TO tn DO:
(2.1) Construct QBt ;
(2.2) Calculate the similarity of QBt with the set I;
ENDFOR.

(3) Take the best threshold value t associated with the set QBt

corresponding to the greatest similarity with I.
Alg. 3

The selection of the greatest similarity between the set QBt and the set I is justi-
fied bearing in mind that in these conditions μQ Bt (q) is the one closest to 1 for most
of the values of q . Considering our constructions, it results that we take as the best
threshold the value of t associated with the set with the intensities q most grouped
around the mean m Bt , i.e. | q

L−1 − m Bt (q)
L−1 | → 0 for all q .

6.2 Selection from Otsu’s Threshold, a Fuzzy Threshold
and the One Obtained with Algorithm 2

In this section, using Algorithm 3, we will select the best threshold of the image Q
from a set of three thresholds: The one obtained with the classical Otsu method (see
[20]), the one achieved with the fuzzy algorithm described in the introduction (steps
(a)−(c)) and the one obtained with Algorithm 2.

For the fuzzy algorithm we will employ in step (a) the construction developed in
Subsection 4.1 and in step (b) Yager’s fuzzy entropy with d = 1 (see [28, 29]).

In order to calculate the threshold with the A-IFSs method we use Algorithm 2
in the conditions described in the section of experimental results (Sect. 5).

For step 1 of Algorithm 3 we will use d(x, y) = |x − y| for all x, y ∈ [0, 1] and
F(x) = 1− 0.5x .

Under these conditions on a set of 250 images taken from the above-mentioned
website, we have found that the greatest similarity, and therefore the best threshold
(from our point of view), is provided by Algorithm 2 in 51% of the images, the
Fuzzy method in 25% and the Otsu method in 24%.

In Fig. 6 we present a sample composed of 6 images taken from the collection
above with their corresponding binary images using the methods Otsu, Fuzzy and
A-IFS.

The last column shows the numerical values corresponding, in each case, to
the similarity between the fuzzy set constructed from the corresponding thresh-
old (Otsu, Fuzzy and A-IFS) and set I. We have indicated in bold type the high-
est numerical value. Please note that in all of the cases, except for the second
to last row, the greatest similarity is that of the numerical value provided by
Algorithm 2.



Image Threshold Computation by Modelizing Knowledge/Unknowledge 635

Original Otsu Fuzzy A-IFSs Similarities
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Fig. 6 Binary images obtained with the Otsu, Fuzzy and A-IFSs algorithms

We would point out that the best threshold selection carried out by Algorithm 3
does not always coincide with the image that visually separates background from the
object best. As we know, the selection of best threshold is very subjective and depends
in each case on the application we are working on. For example, in medicine the result
provided by Algorithm 3 is only indicative and it is the doctor who has to decide, in
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supervision mode, which is the best threshold. (We have conducted experiments that
indicate the criteria used by many doctors provide results that are not very good when
the images used are not provided with methods used in medicine).

7 Conclusions

We know that the difficulty of the fuzzy techniques for determining the thresholding
of an image mainly lies in the determination of the optimal membership function.
In this chapter we have presented a method that considers the difficulty encountered
by experts for finding the best function. We have quantified the ambiguity in the se-
lection of such functions in the intuitionistic indices of the A-IFS sets that represent
the image. This way we have been able to use entropy IE in the same sense as fuzzy
entropy is used in the fuzzy algorithms.

Considering the experimental results, we can say that, in general terms, the algo-
rithm proposed in the chapter (Alg. 2) provides us with better results than the fuzzy
algorithms. We think there are two reasons why this happens:

1. The use of restricted dissimilarity functions in the constructions of the mem-
bership functions. Another advantage of this concept is that, since they can be
generated from automorphisms, the program developed enables us to construct
different restricted dissimilarity functions for their later execution in an almost
immediate way.

2. The representation of the ignorance/unknowledge of the expert by means of
Atanassov’s intuitionistic index.

With respect to the time efficiency of the A-IFS algorithm we have seen that it is
practically the same as that of the fuzzy algorithm. The reason is that, once the fuzzy
sets are constructed, in Algorithm 2 we construct the non-membership functions and
afterward we calculate the IE by means of sums of differences. In the fuzzy case,
once the same membership functions have been constructed, we calculate the fuzzy
entropy, which also generally consists of sums of differences.

Finally, we must point out that the method presented for the best threshold se-
lection gives good results under experimental conditions. This method enables us
to assure that the thresholds calculated with Atanassov’s intuitionistic fuzzy tech-
niques are good. Nevertheless, we have also found in experiments that the threshold
selected by Algorithm 3 does not often coincide with the one that would be visually
selected by a human. This is due to the fact that the choice of best threshold is
very difficult and the method presented in this chapter does not always take into
account the particular interests of the field in which it is going to be applied. For
this reason, in the near future we must improve our algorithms with heuristic tech-
niques that will enable us to adapt the algorithms to the corresponding application.
Nevertheless, we must indicate that in most cases the algorithms developed in these
chapters improve the threshold calculated with respect to those calculated with other
techniques.
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It is important to point out that the results achieved with Algorithm 2 when QBt

is replaced by QOt are the same.
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Colour Image Comparison
Using Vector Operators

Dietrich Van der Weken, Valérie De Witte, Mike Nachtegael,
Stefan Schulte and Etienne Kerre

Abstract Objective quality measures or measures of comparison are of great im-
portance in the field of image processing. These measures serve as a tool to evaluate
and to compare different algorithms designed to solve particular problems, such as
noise reduction, deblurring, compression, ... Consequently these measures serve as
a basis on which one algorithm is preferred to another. In [15, 16] we constructed
several new fuzzy similarity measures for grey-scale images that outperform the
classical measures of comparison, like Root Mean Square Error or Peak Signal to
Noise Ratio, in the sense of image quality evaluation. In this chapter we investigate
the usefulness of these similarity measures for the comparison of colour images.
First of all, we discuss the component-based approach in three different colour
spaces, namely the RGB, HSV and Lab colour spaces. And secondly, we discuss
a vector-based approach using vector morphological operators. Both approaches are
compared by means of several experiments.

1 Basic Notions

1.1 Fuzzy Sets and Digital Images

First of all it is important to observe that digital images and fuzzy sets are modelled
in the same way. A fuzzy set A in a universe X is characterised by a X – [0, 1] map-
ping χA , which associates with every element x in X a degree of membership χA(x)
of x in the fuzzy set A. In the following, we will denote the degree of membership
by A(x). A digital image can be identified with a fuzzy set that takes its values on
the grid points (i, j), with i, j ∈ N, 0 ≤ i ≤ M and 0 ≤ j ≤ N (M, N ∈ N). Given
a digital image A, the quantity A(i, j) ∈ [0, 1] (after rescaling) then represents the
greyvalue of the image A in the grid point (i, j).

1.2 Similarity Measures

In the literature a lot of measures are proposed to express the similarity or equality
between fuzzy sets. There is no unique definition, but the most frequently used is the

H. Bustince et al., (eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation
and Models. C© Springer 2008 639



640 D. V. der Weken et al.

following. A similarity measure [21] is a fuzzy binary relation in F(X), i.e. a F(X)
× F(X)→ [0, 1] mapping that is reflexive, symmetric and min-transitive. However,
not every measure in the literature satisfies this definition. Therefore, a similarity
measure will here be understood as a measure we can use to compare fuzzy sets, or
objects which can be identified with fuzzy sets. We refer to the following section for
some examples.

1.3 Colour Spaces

A colour space is a way of representing colours and their relationship to each other.
Different image processing systems use different colour models for different rea-
sons. In this paper we will consider three commonly used colour spaces, namely
the RGB colour space, the HSV colour space and the Lab colour space. For more
details on these colour spaces we refer to [11, 12].

RGB Colour Space

This technical colour model is very popular and is mostly used in digital image pro-
cessing. The model is based on the trichromatic theory where colours are produced
by a composition of the three basic colours: red, green and blue. These basic colours
are called primaries. The RGB colour model is an additive colour display system,
where the origin is black and the different colours are obtained by adding different
amounts of the three basic colours. The grey-scales follow the line from black to
white.

The RGB model simplifies the design of computer graphics systems but is not
ideal for all applications. The red, green and blue colour components are highly
correlated and therefore it is difficult to execute some image processing algorithms.
Many processing techniques, such as histogram equalization, operate on the inten-
sity component of an image only.

HSV Colour Space

Sometimes the properties hue, saturation and value are used to describe colour.
Therefore it seems logical that there is a corresponding colour model, namely the
HSV colour space. In this case we do not see a certain colour as amounts of primary
colours mixed in certain proportions. Hue is the colour as described by wavelength,
for instance the distinction between red and yellow. Saturation is the amount of the
colour that is present. The saturation describes how much a certain colour differs
from white light, for instance the distinction between red (highly saturated) and
pink (little saturated). The value is the amount of light, the distinction between a
dark red and light red or between dark grey and light grey. So we don’t need to
know what percentage of blue or green is present in order to produce a colour. We
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can simply adjust the hue to get the colour we wish. To change the amount of white
light, we adjust the saturation and to make the colour darker or lighter we alter the
value.

The HSV colour space can be modelled with cylindrical coordinates. The hue
is represented as the angle, varying from 0◦ to 360◦. Saturation corresponds to the
radius, varying from 0 to 1. The value varies along the z axis with 0 being black and
1 being white.

Lab Colour Space

The RGB model has a technical origin and has a few drawbacks. Similar colours
are 3-dimensional subspaces of the colour cube and are therefore difficult to repre-
sent. The borders of these subspaces are not straight lines, and consequently hard
to define. Therefore the Commission Internationale de l’Eclairage (CIE) defined
another colour space in 1931. The Lab colour model was developed to be completely
independent of any device or other means of emission or reproduction and is based
as closely as possible on how humans perceive colour. Equal Euclidean distances
in these colour space correspond to roughly equal perceived colour differences. We
refer to [12] for more detailed information about this colour space.

2 Overview of the Similarity Measures for Greyscale Images

2.1 Direct Application of Similarity Measures to Digital Images

In the literature a lot of measures are proposed to express the similarity or equality
between two fuzzy sets [2, 3, 4, 7, 9, 10, 21, 22, 23, 24]. From a total of more than
40 different similarity measures, 14 similarity measures satisfy a list of relevant
properties for image processing [15]. Six of these measures were already discussed
in [13], but meanwhile 8 other similarity measures turned out to be appropriate for
the comparison of images. We will not discuss the whole list of similarity measures,
but as example we will shortly repeat the expressions of three similarity measures.

The first similarity measure is based on the fuzzy Minkowski distance , and the
observation that the smaller the distance between A and B , the greater the similarity
between A and B . This observation leads to the following two similarity measures
M1 [3] and M2 [10] (for r →∞):

M1(A, B) = 1−
⎛

⎝

1

M N

∑

(x,y)∈X

|A(x, y)− B(x, y)|r
⎞

⎠

1
r

, r ∈ N\{0} (1)

M2(A, B) = 1− max
(x,y)∈X

|A(x, y)− B(x, y)|. (2)
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For the next similarity measure we also need the notion of cardinality of a fuzzy
set. The cardinality of a finite crisp set is given by the number of elements in that
set. This concept can be extended to fuzzy sets using the sigma count . The sigma
count of a fuzzy set A (with finite support) in a universe X is defined as:

|A| =
∑

x∈X

A(x). (3)

The similarity measure M3 [4] is based on this notion of cardinality:

M3(A, B) = |A ∩ B|
|A ∪ B|

=

∑

(x,y)∈X
min(A(x, y), B(x, y))

∑

(x,y)∈X
max(A(x, y), B(x, y))

. (4)

Note that we use the minimum to model the intersection of two fuzzy sets and the
maximum to model the union of two fuzzy sets.

2.2 Construction of Neighbourhood-based Similarity Measures

In order to improve the perceptual character of the similarity measures we have
incorporated an important property of the human visual system, namely the contrast
or homogeneity sensitivity [20]. Therefore, we review shortly how to construct these
neighbourhood-based similarity measures that also incorporate homogeneity in the
different neighbourhoods. We start with calculating the similarity between disjoint
image parts of two images A and B . Therefore we divide both images A and B in
disjoint 8× 8 image parts and we calculate the similarity between each of the 8× 8
image parts (see Fig. 1). To calculate the similarity between two image parts we sim-
ply apply the above pixel-based similarity measures to both image parts. So, suppose
the image is divided in N image parts of size 8×8, and the similarity between the im-
age part Ai of image A and the image part Bi of image B is denoted by M(Ai , Bi ),
then the similarity between the two images A and B is given by the weighted average
of the similarities in the corresponding disjoint image parts. So, we have that

Mh(A, B) = 1

N

N
∑

i=1

wi · M(Ai , Bi ), (5)

where the similarity M(Ai , Bi ) is calculated using a pixel-based similarity measure,
discussed in subsection 3.1, restricted to the image parts Ai and Bi and the weight
wi is defined as the similarity between the homogeneity h Ai of image part i in image
A and the homogeneity h Bi of image part i in image B . The homogeneity h Ai of
an image part i in image A is computed as the similarity between the grey value of
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A

Image part Ai Image part Bi

hom

wi 
.Mj (Ai , Bi) 

B

.

Ai
hom

Bi

Fig. 1 For the calculation of the global similarity value between two images A and B we consider
a weighted average with weights wi which are defined as the similarity between the homogeneity
hom Ai of the image part Ai in image A and the homogeneity hom Bi of the image part Bi in
image B

the pixel in the image part with maximum intensity and the grey value of the pixel
in the image part with minimum intensity (see Fig. 2), using a resemblance relation
[5, 15]. In order to decide which resemblance relation we will use, we make use of
the following property [5]:

Preposition For every pseudo-metric d on X, for a in [1,+∞[, b in ]0,+∞[ we
have that: E defined as

E(x, y) = min(1,max(0, a − b · d(x, y))) (6)

Fig. 2 The homogeneity in
an image part Ai is defined as
the similarity between the
grey value of the pixel with
minimum intensity (min Ai )
in this image part and the
grey value of the pixel with
maximum intensity (max Ai )
in this image part

Ai

max Ai min Ai
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for every x and y in X, is a [0, 1]-valued resemblance relation on X w.r.t. d.
Furthermore we have that

E(x, y) = 1 if and only if d(x, y) ≤ a−1
b

E(x, y) = 0 if and only if d(x, y) ≥ a
b .

(7)

Since every subset G of R can be transformed to a metric space by using the
absolute value metric as distance function and since normalized grey values and
consequently the homogeneity in a certain image part belong to the unit interval, we
make use of the absolute value metric to construct the resemblance relation s.
Furthermore we prefer that

s(x, y) = 1 if and only if d(x, y) ≤ 0.1
s(x, y) = 0 if and only if d(x, y) ≥ 0.6.

(8)

Using the above property we obtain then the following values for a and b:

a = 6

5
and b = 2, (9)

such that we obtain the following expression for the resemblance relation s (see
Fig. 3) which will be used for the calculation of the similarity between two values:

s(x, y) = min(1,max(0,
6

5
− 2|x − y|)). (10)

So we have that

h Ai = s(max
(i, j )∈Ai

A(i, j), min
(i, j )∈Ai

A(i, j)) (11)

Fig. 3 The resemblance
relation s with a = 6

5 and
b = 2
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and the weight wi is then defined as follows:

wi = s(h Ai , h Bi ). (12)

Using a similarity measure Mi from subsection 3.1 to calculate the similarity bet-
ween the image parts, we obtain a neighbourhood-based similarity measure. These
neighbourhood-based similarity measures will be denoted as Mh

i .

2.3 Application of Similarity Measures to Histograms
of Digital Images

In this section we illustrate how fuzzy similarity measures can be useful for the
comparison of histograms of digital images. We will show that similarity measures
can be applied to two different types of histograms: normalized histograms and
ordered normalized histograms.

Direct Application to Histograms

First of all, it is meaningful to compare two histograms in the framework of fuzzy
set theory, because the histogram of an image can be transformed into a fuzzy set
in the universe of grey levels by dividing the values of the histogram in every grey
level by the maximum amount of pixels with the same grey value. In this way the
most typical grey value gets membership degree 1 in the fuzzy set associated with
the histogram and every other less typical grey value gets a smaller membership
degree. Consequently, a normalized histogram is in accordance with the intuitive
idea behind a fuzzy set: the most typical element in the universe gets membership
degree 1 and all other less typical elements belong to the fuzzy set to a less extent
which can be expressed by membership degrees smaller than 1. In this way we
obtain the following expression for the membership degree of the grey value g in de
fuzzy set Fh A associated with the histogram h A of the image A:

Fh A(g) = h A(g)

h A(gM )
(13)

with G the universe of grey levels and h A(gM ) = max
g∈G

h A(g). As histograms of

digital images can be identified with fuzzy sets in the universe of grey values, it
is interesting to investigate whether similarity measures, originally introduced to
express the degree of comparison between two fuzzy sets, can be applied to nor-
malized histograms in a meaningful way. In this way we compare two images on
a histogram-level, and the frequencies of the different grey values are mutually
compared.
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Application to Ordered Histograms

Similarity measures can be applied in a second way to associated histograms of
digital images. The values of a histogram can be ordered in such a way the least
occurring grey value is placed in the first position of the histogram and the remain-
ing frequencies are ordered in increasing order. Again, the histogram is normalized
analogously to the first case, and consequently the most typical grey value gets
membership degree 1 in the fuzzy set associated with the histogram and all the other
membership degrees are smaller than or equal to 1 and are ordered in increasing
order. Again, we can apply the different similarity measures to these ordered and
normalized histograms. In contrast to the first application of similarity measures
to normalized histograms, where the frequencies of the different grey levels are
mutually compared, in this case the frequency of the most occurring grey level in
the image A is compared with the frequency of the most occurring grey level in
the image B , the frequency of the second most occurring grey level in the image A
is compared with the second most occurring grey level in the image B , ... So, the
frequencies of the different grey values are compared frequency by frequency, with
respect to an increasing order of the different frequencies. So, it can happen that two
frequencies of two different grey values are compared to each other, depending on
the place they take in the ordered histogram. If the ordered histogram of an image
A is denoted as oA, we obtain the following expression for the fuzzy set associated
with the ordered histogram of the image A. For i = 1, ..., |G|, with G the universe
of grey levels:

Oh A(i) = oA(i)

oA(|G|) , (14)

with oA(|G|) = max
g∈G

h A(g).

Appropriate Measures of Comparison for Histograms

A profound experimental study of the applicability of similarity measures to normal-
ized histograms resulted in 15 similarity measures [14, 17] which are appropriate for
histogram comparison, i.e. they satisfy the list of relevant properties we impose to
a similarity measure in order to be applicable in image processing. As example, we
repeat the expression of two appropriate similarity measures:

H3(A, B) = |Fh A ∩ Fh B |
|Fh A ∪ Fh B |

=

∑

g∈G
min(Fh A(g), Fh B(g))

∑

g∈G
max(Fh A(g), Fh B(g))

, (15)
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H4(A, B) = |(Fh A#Fh B)
c|

max(|(Fh B\Fh A)c|, |(Fh A\Fh B)c|)

=

∑

g∈G
1−max

(

min(Fh A(g), 1− Fh B(g)),
min(Fh B(g), 1− Fh A(g))

)

max(

⎛

⎜

⎝

∑

g∈G
1−min(Fh B(g), 1− Fh A(g)),

∑

g∈G
1−min(Fh A(g), 1− Fh B(g))

⎞

⎟

⎠

(16)

with G the universe of grey levels.
If the similarity measures are applied to ordered histograms we obtained 22

similarity measures which satisfy the list of relevant properties [17]. Besides the 15
similarity measures which were appropriate for direct application, we found 7 extra
similarity measures which are appropriate for application to ordered histograms.
Also in this case we only recollect the expression of two appropriate similarity
measures:

O H3(A, B) = |Oh A ∩ Oh B |
|Oh A ∪ Oh B |

=

|G|
∑

i=1
min(Oh A(i), Oh B(i))

|G|
∑

i=1
max(Oh A(i), Oh B(i))

(17)

O H5(A, B) = min(|Oh A\Oh B |, |Oh B\Oh A|)
max(|Oh A\Oh B |, |Oh B\Oh A|)

=

min

⎛

⎜

⎜

⎜

⎝

|G|
∑

i=1
min(Oh A(i), 1− Oh B(i)),

|G|
∑

i=1
min(Oh B(i), 1− Oh A(i))

⎞

⎟

⎟

⎟

⎠

max

⎛

⎜

⎜

⎜

⎝

|G|
∑

i=1
min(Oh A(i), 1− Oh B(i)),

|G|
∑

i=1
min(Oh B(i), 1− Oh A(i))

⎞

⎟

⎟

⎟

⎠

(18)

Application to Local Histograms

Applying the similarity measures to partitioned images resulted in neighbourhood-
based similarity measures with a higher perceptual performance. Therefore, it is also
very interesting to investigate whether the performance of the histogram similarity
measures can be improved by applying them to larger image parts. In this respect we
can investigate whether the similarity measures can be applied to local histograms.
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Therefore, we again divide both images A and B in disjoint 8 × 8 image parts and
we determine the histogram for each of the image parts. The similarity between the
images A and B is then calculated by applying a histogram similarity measure H j

(or O H j ) to each of the pairs (h Ai , h Bi ), with h Ai and h Bi the local normalized
histograms of respectively image part Ai in the image A and image part Bi in the
image B (or to each of the pairs (oAi , oBi ) with oAi and oBi the local normalized
ordered histograms of respectively image part Ai in the image A and image part Bi

in the image B).

2.4 Combined Similarity Measures

In order to optimally incorporate the image characteristics we proposed com-
bined similarity measures which consist of a combination of neighbourhood-based
similarity measures and similarity measures which are applied to ordered his-
tograms (see Fig. 4). The combined image quality measures [16] are given by

A B

Image part Ai Image part Bi

hom
Ai

hom
Bi

h
Ai

h
Bi

h
Bi

hi  
.wi 

.Mj (Ai ,Bi) 
m

Fig. 4 A diagram of the combined method which uses local histograms and neighbourhood-based
similarity measures which also incorporate homogeneity for the calculation of the similarity value
between two digital images A and B
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the following weighted average:

Qm,n(A, B) = 1

N

N
∑

i=1

hm
i · wi · Mn(Ai , Bi ), (19)

where hm
i is calculated by applying a similarity measure O Hm to the local ordered

histograms of the image parts Ai and Bi .

3 Applicability of the Similarity Measures to Colour Images

If we want to apply similarity measures to colour images, a problem arises because
in case of colour images the value of a pixel is not a single value but a colour vector
consisting of three values. For greyscale images we can calculate the minimum,
maximum, sum or difference between two grey values of two pixels, but this is no
longer straightforward in case of colour pixels. So we need a mechanism to extend
the different similarity measures to colour images. A straightforward extension is
based on the application of the different similarity measures to each component of
the colour vectors. Besides this approach, we also discuss a vector-based approach
[19] in this paper.

3.1 Component-based Approach

A straightforward extension to colour images is applying the different similarity
measures to each component of the colour vectors and then merge the result of the
different components in a suitable way. We will consider the arithmetic mean for
merging the results in the different components. Note that there exist other aggrega-
tion operators [1] that could be useful for this merging. So, for example in the RGB
colour space, we have that

QRG B
i, j (A, B) =

QR
i, j (A, B)+ QG

i, j (A, B)+ QB
i, j (A, B)

3
(20)

This approach can be applied in a similar way in the HSV colour space and the Lab
colour space.

3.2 Vector-based Approach

Vector Operators for Colour Images

In order to define the minimum and maximum between two colours we need an
ordering in the different colour spaces. Of course the ordering can be dependent on
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the choice of the colour space. We start with the RGB colour space. In this case we
use the new ordering≤RG B of vectors introduced in [6]. If we consider two colours
c(rc, gc, bc) and c′(rc′ , gc′, bc′) in the RGB cube, we have that:

c <RG B c′
⇔ d(c, Bl) < d(c′, Bl)

or

(

(d(c, Bl) = d(c′, Bl))
and (d(c,Wh) > d(c′,Wh))

)

c >RG B c′
⇔ d(c,Wh) < d(c′,Wh)

or

(

(d(c,Wh) = d(c′,Wh))
and (d(c, Bl) > d(c′, Bl))

)

c =RG B c′
⇔ d(c, Bl) = d(c′, Bl)

and d(c,Wh) = d(c′,Wh)

(21)

with Bl(0, 0, 0) and Wh(1, 1, 1) representing black and white, and d the Euclidean
distance.

In the HSV colour space we use the ordering ≤H SV introduced in [8]. For two
colours c(hc, sc, vc) and c′(h′c, s′c, v′c) in the HSV colour space, this ordering is de-
fined as follows:

c <H SV c′
⇔ vc < v′c

or (vc = v′c) and (sc > s′c)
or (vc = v′c) and (sc = s′c) and (hc < h′c)

c =H SV c′
⇔ (vc = v′c) and (sc = s′c) and (hc = h′c)

(22)

In the Lab colour space we can use a similar ordering as in the RGB colour space,
which means that we use the distance to black and white to define the ordering.

Besides the minimum and maximum between two colours, we also need to ex-
tend the notion of cardinality. A colour image can be considered as a L-fuzzy set,
with L the RGB cube (resp. the HSV colour space, or Lab colour space) or, after
normalisation, the unit cube [0, 1]3. So, in this case we can’t sum up membership
degrees because the membership degree of a certain pixel in a colour image is a
triplet (cx , cy, cz). Therefore we replace the colour values c(cx , cy, cz) by the norm
(or distance to black) of the colour, and we use these values to define the sigma
count. So for a colour image C we have that

|C| =
∑

c∈X

√

c2
x + c2

y + c2
z , (23)

with cx , cy and cz the colour values of the pixel c.
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Local Colour Histograms

We also have to pay attention to the histogram of a colour image. The histogram of
a greyscale image is a chart that shows the frequency distribution of the different
grey levels. The value of the histogram of a greyscale image A in a grey level g
equals the total amount of pixels in the image A with grey level g. If we consider
the histogram of a colour image in the same way, we obtain a histogram, in case

of 8-bit images, of dimension 283
. It is obvious that the dimension and variance of

such histograms is far too large. If we however consider local ordered histograms,
for example histograms of 8 × 8 image parts, the dimension of the histogram will
decrease significantly. So, if we consider two colour images A and B , we divide
both images by N 8 × 8 image parts Ai and Bi . In this way, the local histograms
of the image parts Ai and Bi will consist of at most 64 different colours. We now
sort for each image part the frequencies of the different colours in descending order
such that the most typical colour takes the first place in the colour histogram of the
image part. The ordered histogram of an image part Ai will be denoted as oAi and
can be transformed into a fuzzy set by dividing the values of the histogram by the
maximum number of pixels with the same colour (the colour at position 1 in the
ordered histogram). In this way the most typical colour has membership degree 1
in the fuzzy set associated with the ordered histogram and we obtain the following
expression for the membership degree of the colour on the i -th position in the fuzzy
set Oh Ai associated with the ordered histogram oAi of the image part Ai :

Oh Ai (c) =
oAi (c)

oAi (1)
, (24)

where oAi (1) = maxc h Ai (c).

4 Experiments

In this Section we will illustrate the applicability of the similarity measures for
the comparison of colour images. We compare the performance of the vector-based
approach with the component-based approach from several experiments where we
consider a certain image to which we add a variety of corruptions: impulsive salt &
pepper noise, additive gaussian noise, enlightening, blur and JPEG compression.
Furthermore, we tuned all the corruptions to yield more or less the same RM SE
relative to the original image. As example, we choose the following two similarity
measures:

• Q3,3(A, B) = 1
N

N
∑

i=1
h3

i ·wi ·M3(Ai , Bi ), where h3
i is calculated by applying the

similarity measure O H3 to the local ordered histograms of the image parts Ai

and Bi ;
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• Q5,1(A, B) = 1
N

N
∑

i=1
h5

i ·wi ·M1(Ai , Bi ), where h5
i is calculated by applying the

similarity measure O H5 to the local ordered histograms of the image parts Ai

and Bi .

The different similarity measures are applied to the different versions of the
“monkey” image (see Fig. 5). The numerical results of this experiment are displayed
in Table 1 and Table 2. From these results we can observe that, especially in the
RGB and Lab colour space, the values of the vector-based measures are significantly
higher than the values of the component-based measures (except for the comparison
of the original image with the blurred version of it). This is also in accordance with
the visual quality of the different images. Especially when we compare these results
with the experiments on greyscale images (see [15]). The results of the component-
based measures applied to the colour versions of the “monkey” image are compa-
rable with the results in case of greyscale images. This is of course not suprisingly,
since in this case a colour image is considered as three separate greyscale images.
However, the different distortions seem to have less influence on colour images, and
this observation is confirmed by the numerical results. The results in the HSV colour
space are less convincing. This can possibly be explained by the different ranges of
the different components and the lack of uniformity in this colour space.

(a) (b) (c)

(d) (e) (f)

Fig. 5 (a) Original “monkey” image; (b) salt & pepper noise; (c) gaussian noise; (d) enlightening;
(e) blur; (f) JPEG compression
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Table 1 Results of the similarity measures Qc
3,3 (component-based approach) and Qv

3,3 (vector-
based approach) if they are applied to the different greyscale and colour versions of the “monkey”
image

“monkey” image
greyscale version of the “monkey” image

(a) vs. (b) (a) vs. (c) (a) vs. (d) (a) vs. (e) (a) vs. (f)

RM SE 15.44 15.20 15 15.43 15.24

Q3,3 0.636 0.47125 0.8903 0.30274 0.54401

RGB model
(a) vs. (b) (a) vs. (c) (a) vs. (d) (a) vs. (e) (a) vs. (f)

RM SE 27.40 27.75 27.58 28.22 28.71

Qc
3,3 0.68146 0.46831 0.84274 0.29957 0.56389

Qv
3,3 0.81464 0.62370 0.90783 0.28802 0.67571

HSV model
(a) vs. (b) (a) vs. (c) (a) vs. (d) (a) vs. (e) (a) vs. (f)

Qc
3,3 0.62613 0.48000 0.88542 0.45296 0.54730

Qv
3,3 0.70394 0.45466 0.84532 0.31426 0.42458

Lab model
(a) vs. (b) (a) vs. (c) (a) vs. (d) (a) vs. (e) (a) vs. (f)

Qc
3,3 0.57223 0.47646 0.81492 0.46401 0.47174

Qv
3,3 0.67102 0.54879 0.81996 0.48405 0.50101

Table 2 Results of the similarity measures Qc
5,1 (component-based approach) and Qv

5,1 (vector-
based approach) if they are applied to the different greyscale and colour versions of the “monkey”
image

“monkey” image

greyscale version of the “monkey” image

(a) vs. (b) (a) vs. (c) (a) vs. (d) (a) vs. (e) (a) vs. (f)

RM SE 15.44 15.20 15 15.43 15.24

Q5,1 0.62891 0.50782 0.94118 0.30333 0.57409

RGB model
(a) vs. (b) (a) vs. (c) (a) vs. (d) (a) vs. (e) (a) vs. (f)

RM SE 27.40 27.75 27.58 28.22 28.71

Qc
5,1 0.67363 0.51253 0.90234 0.30890 0.60256

Qv
5,1 0.74704 0.57669 0.95844 0.25829 0.61223

HSV model
(a) vs. (b) (a) vs. (c) (a) vs. (d) (a) vs. (e) (a) vs. (f)

Qc
5,1 0.53301 0.32498 0.72638 0.37757 0.45536

Qv
5,1 0.70341 0.55238 0.82729 0.32624 0.43872

Lab model
(a) vs. (b) (a) vs. (c) (a) vs. (d) (a) vs. (e) (a) vs. (f)

Qc
5,1 0.57667 0.46822 0.83610 0.39587 0.40732

Qv
5,1 0.68788 0.52680 0.92844 0.42721 0.42819
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Table 3 Results of the ordering according to image quality for the measures Qc
3,3 and Qv

3,3 in the
three colour models

RGB HSV Lab
Qc

3,3 Qv
3,3 Qc

3,3 Qv
3,3 Qc

3,3 Qv
3,3

d d d d d d
b b b b b b
f f f c c c
c c c f f f
e e e e e e

We can also order the different images according to image quality; the results in
the three colour models are summarized in Table 3 and Table 4. From these results
we can observe that for the measures Qc

3,3 and Qc
5,1 the results are dependent on

the choice of the colour space. We obtain the same ordering for the RGB colour
space and the HSV colour space, but a different ordering for the Lab colour space.
For the measure Qv

3,3 we obtain the same ordering for the HSV colour space and
the Lab colour space, but a different ordering for the RGB colour space. Also for
the measures Qc

5,1 and Qv
5,1 the orderings are dependent on the choice of the colour

space. It is of course very hard and possibly subjective to decide which ordering
leans closest against the visual quality of the different images.

Finally, we applied the similarity measures to similar distorted versions of the
other images. From the numerical results of these experiments we can make similar
conclusions as from the results of the “monkey” experiment.

Table 4 Results of the ordering according to image quality for the measures Qc
5,1 and Qv

5,1 in the
three colour models

RGB HSV Lab
Qc

5,1 Qv
5,1 Qc

5,1 Qv
5,1 Qc

5,1 Qv
5,1

d d d d d d
b b b b b b
f f f c c c
c c e f f f
e c c e e e

5 Conclusion

In this paper we have investigated whether similarity measures, which are designed
for the comparison of greyscale images, can also be applied to colour images. Since
the minimum and maximum are indispensable operators for several similarity mea-
sures, we needed a new definition for the minimum and maximum between two
colours. We used a vector ordering in three different colours spaces (RGB, HSV
and Lab) to define the minimum and maximum between two colours. In contrast to
a component-based approach, a vector-based approach is more natural to deal with
colour images. We illustrated both approaches with several examples. The results of
these experiments showed that the vector-based similarity measures perform better
than the component-based similarity measures.
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A Fuzzy-based Automated Cells Detection
System for Color Pap Smear Tests -FACSDS-

Pilar Sobrevilla, Eduard Montseny and Enrique Lerma

Abstract There is a compelling need for automated cervical smear screening sys-
tems to improve the quality and cost/efficiency screening rate. Computer-assisted
devices can reduce false negative Pap smear interpretations using computerized
systems to assist the cytotechnologist in identifying Pap smear abnormalities and
providing added value in their ability to consistently and objectively analyze all
cells on slides without fatigue. However, automation of the process is a challeng-
ing problem due to the large variability in conventional Pap smears exhibiting no
standard appearance and tremendous amount of data to be processed. Moreover,
smear diagnostic may be obscured by benign conditions, overlapping cells, debris,
inflammation, and no uniform staining.

Here we propose an efficient and fast Fuzzy-based Automated Cells Screen-
ing Detection System -FACSDS-, which can be useful for future Automatic Cells
Screening System ACSS-. Because of detecting abnormal cells in a Pap smear can
be refereed to as a “rare” event problem due to the normal cells and artifacts out-
number the intraepithelial lesions, the proposed algorithm has been divided into
two steps. At first step the Areas of Interest AOI-, or best areas for screening in
the smear, are detected and the degree to which these areas are interesting is given
by means their evaluation goodness degree. At second step the AOIs are analyzed,
taking into account their evaluation goodness degree, for detecting the cell nucleus.
First step is carried out on monochrome images obtained using a 2.5X objective, and
the results obtained have provided a high concordance degree with the cytotechnol-
ogist evaluation. The automatic system implemented at second step for detecting the
nuclei is based on color information. We have considered color images because cells
nuclei appear as dark regions within the images, hardly detected on monochrome
images. Moreover, as color-order systems based on perceptual variables are some-
how correlated with human beings color perception, and their coordinates are highly
independent, what makes possible to treat achromatic and chromatic information
separately, the proposed algorithm first convert RGB into Hue, Saturation and
Intensity (HSI) color components. In addition, we make use of fuzzy techniques
to face up the problems due to low saturation and illumination.

H. Bustince et al., (eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation
and Models. C© Springer 2008 657
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1 Introduction

Cervical cancer is an important cause of death in women worldwide. It originates
on the surface of the uterine cervix or in the endocervical canal. Precursor lesions
are epithelial dysplasia and/or Carcinoma In Situ (CIS). Some of these early lesions
develop into invasive cervical cancer. Generally, the progression to invasive cancer
is a slow, predictable pattern. Longitudinal studies indicate that 30 to 70 percent of
untreated patients with Cervical Intraepithelial Neoplasia (CIN) will develop inva-
sive carcinoma in 10–12 years. In about 10 percent of patients with CIN, lesions
progress to invasive carcinoma in less than one year. Prognosis for the disease is
influenced by the stage, size and grade of tumor at the time of detection, the tumors
histologic type, and whether or not it has spread via the blood or lymphatic systems
[41, 50].

Pap smear is the primary screening method for the detection of cervical cancer
and its precursor [14, 33, 34, 36]. The Pap test is a subjective method that has
remained substantially unchanged for more than 60 years, and there are several
concerns regarding its performance [23]. When properly obtained and prepared,
Pap smears alert practitioners to possible abnormalities of the cervix. Manual mi-
croscopic screening of Pap smears by cytotechnologist continues being the most
widely used and accepted method of identifying irregular cells on cellular abnor-
malities of the cervix. During manual screening, at a first step, cytotechnologists
search for what may be a few pathologic cells inspecting many fields on a slide
under the microscope. They microscopically examine the morphologic features of
the cells, relate these findings to the patient’s clinical history, and render a cyto-
logical impression. In a second step cytopathologists diagnose disease by analyz-
ing cells previously selected by the cytothechnologist manipulating the microscope
stage through visual inspection of approximately 50.000 to 300.000 epithelial and
inflammatory cells per smear. Even smears with serious abnormalities may contain
only a few dozen malignant or pre-malignant cells among hundreds of thousands of
normal cells [19, 31].

Over the last 60 years several modifications of the terminology for cytological
diagnosis has been introduced. Today the most accepted one is The Bethesda System
[15], proposed initially in 1989, and actualized in 2001 [40]. In this system, cytolo-
gies are divided into two classes: negatives and pathological. In the latest group
there are, according to the severity of the lesion, four diagnostic groups: atypia, low
grade lesion, high grade lesion and carcinoma. The main objective of screening is
in identifying these pathological groups, from atypia until carcinoma. Most atyp-
ias can be resolved spontaneously, but up to 30% can progress to a carcinoma if
they are not adequately controlled [16]. In addition, most lesions would progress to
a carcinoma [12, 13, 15].

Medical community and consumers are concerned about the number of “false
negative” results (i.e. a normal cytologic report for a woman with existing dyspla-
sia, pre-malignant or malignant lesions of the cervix [24]) generated by the manual
technique [32]. It is estimated that manual Pap smear test suffers from a high number
of “false negative” which rate varies from 5% to over 55%, although most are in
the range of 20–30%. When these cells are missed, resulting delays in diagnosis
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can lead to progression of the disease and the need for more aggressive treatment.
“False negative” can occur under following conditions:

• Cell sampling and preparation: At the time of collection, samples of cells col-
lected from the surface of the cervix must contain both ectocervical and endo-
cervical cells. If abnormal cells are not included in the sample, abnormalities
cannot be detected. “False negatives” can also occur if blood, vaginal secretions,
or inflammatory cells in the sample conceal the abnormal cells making them
undetectable by the human eye.

• Screening and interpretation: “False negative” results due to screening are
caused by failure to identify a relatively small number of cells in the screening
process. A trained cytotechnologist typically searches hundreds of cells per smear
on up to 100 slides per day [20].

About two-thirds of “False negative” are a result of sampling error and the re-
maining one-third a result of detection error [45]. Techniques have been introduced
to improve screening and interpretation accuracy through improvements in sampling
and slide preparation methods. Each of the new technologies is directed at one of
these components of “False negative”. So, while Thin-Layer cytology aims primar-
ily to fix sampling error [17, 18], computerized re-screening PAPNET and AutoPap
systems target detection error [1, 46]. This implies that neither technology will be
able to reduce “False negative” beyond a certain threshold. Moreover, while the
added value of these technologies in improving the net health outcome of women
and preventing cervical cancer has not been determined, questions have been raised
concerning their cost-effectiveness [10, 22].

Factors that can lead or contribute to a misdiagnosis include habituation, cy-
totechnologist fatigue, incomplete screening of a specimen, and cytotechnologist
shortage. All of these factors contribute to human error. It is because of the likeli-
hood of human error that there is a compelling need for low-cost automated systems
to improve the quality and efficiency of screening and diagnosis. Computer-assisted
devices can reduce false negative Pap smear interpretations. The use of computer-
ized systems could both, assist the cytotechnologist in identifying Pap smear ab-
normalities and provide added value in their ability to consistently and objectively
analyze all cells on slides without fatigue.

However, automation of the process is challenging due to the tremendous amount
of data to be processed. Detecting abnormal cells in a Pap smear can be refereed to as
a “rare” event problem or a needle-in-a-haystack problem. Typically 9600 images
(measuring 400 microns by 400 microns) have to be processed for each conventional
Pap smear slide. 95 percent of all slides that are processed will be normal and have
no abnormal cells. Of the 5 percent of slides that have abnormal cells, perhaps only
100 of the 300,000 cells will show signs of abnormality.

To carry out the Pap Smear Screening process technicians must first discard the
areas wherein cells can’t be analyzed because are superimposed, there is blood
or other artifacts, there are no enough cells in good conditions to be identified,
or other problems that make impossible the correct cells visualization and the
posterior cells identification. This discarding process is performed using a 2.5X
objective.
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In a second stage the technician proceeds to a more specific analysis on the im-
ages obtained using a 10X objective. This stage has two essential and final aims:
locate the cells feasible of being abnormal and to account up the identified normal
cells. The potentially abnormal cells have to be located to be analyzed and identified
in a following stage. Cells normality or abnormality is determined based on geomet-
ric features of their nuclei. As normal cells are counted but won’t be undergone to
further analysis, in a first step the features of the nuclei matching with normal cells
are specified. The cells whose nuclei don’t satisfy those features will be labelled as
Abnormal/Doubtful, and the shape, size and characteristics of their cytoplasm are
analyzed.

Some times the cytoplasm’s analysis allows to the cytopatologist give a diag-
nostic of the cells Normality/Abnormality. If it is not possible, in order to observe
the cells’ features more precisely and be able of identifying the Doubtful cells, the
technician uses a 40X objective.

Since many of the structural and molecular changes occur within the cell’s nu-
cleus, the ability to segment the individual nuclei is an important and basic technical
capability. Segmentation performance can be greatly improved by incorporating pri-
ory knowledge about the specific type of images being segmented.

Considering the problems involved within manual Pap smear tests we propose
an efficient and fast Fuzzy-based Automated Cell Screening Detection System -
FACSDS- suitable of interacting with the human technologist, which can be useful
for future Automatic Cells Screening System -ACSS-. Taken into consideration the
process followed by the technicians the process is carried out in two differentiated
steps:

1. Detection and evaluation of the areas wherein cells can be identified. This
step will be carried out on monochrome images obtained using a 2.5X objec-
tive. To intelligently eliminating normal images (the “hay”) a degree of interest
will be also associated to each region. So, normal images can be eliminated and
suspicious images saved and evaluated for further processing.

2. Nuclei detection. To do it the regions to which a high interesting degree has
been associated at previous step will be analyzed on color images obtained
using a 10X objective. We will consider a color representation that prevents
non-homogeneity problems due to illumination and shadows, allowing color
recognition process to be independent of illumination [29]. Moreover, the pro-
cess is based on fuzzy techniques, so that the natural variability of color data is
well accommodated.

The paper is organized as follows: After laying, in Sect. 2, the foundations of the
considered color perceptual, at Sect. 3, after introducing the method considered for
representing the vagueness of both, color pixels and pixels’ illumination intensity,
we obtain the membership degree of each pixel to the Regions of Interest. Then, the
values obtained at Sect. 3 are considered for detecting and locating the cells nuclei.
Finally, Sect. 3 presents some results obtained by the proposed approach and the
conclusions.
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2 Color Perceptual System

A color space is a way of representing colors and their relationship to each other.
Different image processing systems use different color models for different reasons.
However, as color is not an absolute characteristic of an object, but a human per-
ception, color-order systems based on perceptual variables are more convenient for
computer vision applications, as they are somehow correlated with human being’s
color perception [28]. It can be said that the perceptual variables hue, saturation
and lightness are related to the psychophysical variables dominant wavelength,
purity and luminance, respectively.

The majority of color segmentation algorithms work with the RGB values of pix-
els, what may be misleading, especially when using distances within the RGB space
to compare color differences, as explained by Chien and Cheng in [8]. Although a
lot of color segmentation algorithms work on the RGB color space [6], the number
of researchers that make use of the Hue-Saturation-Intensity (HSI) components
attending to their perceptual meaning is slowly increasing [4, 5, 7, 26, 35, 43, 44].
Moreover, two principal factors make the HSI model ideal for developing machine
vision applications: decoupling the intensity component from the color information,
and the close relationship between chromaticity and how humans perceive color.

When working with HSI representation of color it must be taken into account
the varying noise-sensitivity within the color space. Some authors have studied and
modelled the propagation of constant noise through several RGB to HSI transfor-
mations, and Gevers [9] proved that the intrinsic error of each RGB channel can
be modelled as a normal zero-mean distribution with nearly constant deviation for
the whole space. Moreover, HSI components variability has to be considered taking
into account following statements [3, 11, 44]:

– Low Saturation -S- increases the Hue -H- standard deviation: if S = 0 then the
value of H gets undefined.

– Low Intensity -I- increases the Hue and Saturation standard deviations: if I =
0 then both H and S values get undefined.

With regard the H and S invariance in front of intensity variations of illumination,
typically produced by shadows, shading and highlights, some HSI formulations, like
Smith’s and Tenenbaum’s ones [37, 42], provide stable Hue and Saturation values
from a colored surface illuminated with different intensities. In this sense Perez and
Koch [26], based on algebraic manipulations of its formulation, proved that Hue is
invariant to uniform shifting and scaling in RGB space. Moreover, in the case of the
Smith’s color space, we have proved [29] that Saturation is invariant to uniform
scaling in RGB space.

From these properties, and taking into account that shadowing and shading pro-
duce uniform RG B scaling while highlights produce uniform RGB shifting [26],
we can conclude that Hue keeps invariant when both artifacts appear, but Satura-
tion only keeps invariant for shadowing and shading. Other authors [2, 25] experi-
mented on the Hue invariance of color samples under controlled illumination level
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variations, and tested the Saturation invariance for several color models, founding
that Saturation is less invariant than Hue.

A great many color transformation formulae have been proposed in order to
convert the basic RG B coordinates into several HSI spaces [27, 37, 42, 49], that
can appear with different notations (HSV, HSB, IHS, HIS, etc.). Among the avai-
lable HSI models [47] we have chosen Smith’s one [37] because: assures a high
independence degree among the three components, is easy to compute, shows the
maximum component reliability under illumination variations, and allows to avoid
the variability due to the RGB representation of color characteristics.

In present work, we will consider the chromatic components (Hue and Satura-
tion) for representing the color feature of the scene, while the achromatic compo-
nent (Intensity) will be interpreted as a color-independent feature measuring the
intensity of light reflected by those objects. Moreover, we really believe that Inten-
sity has to be handled separately from the color characteristic, because it does not
intrinsically belong to the chromaticity of a color and we are very confident of the
fact that chromatic features are very stable on illumination-varying environments. A
positive aspect of this color representation is that our algorithm will be aware from
the non-homogeneity due to illumination and shadows problems, because these ar-
tifacts modify only the Smith’s I component, and should let H and S components
invariant.

As we pretend to develop a system robust with regard to variable illuminant level
conditions, but taking into account color components’ variability degrees, we will
make use of the Reliability Functions introduced in [30] for predicting the expected
reliability of the Smith’s Hue and Saturation data for any color pixel. So, if Hij ,
Si j , and Ii j represent the Hue, Saturation, and Intensity values of a pixel color pi j ,
its Hue and Saturation Reliability values are given by expressions (1) and (2),
wherein the scalar factors φH and φS are chosen to fit conveniently the behavior of
real data.

RH (pi j ) = Min

(

1,
(φH · Si j · Ii j )

20000

)

(1)

RS(pi j ) = Min

(

1,
(φS · Ii j )

500

)

(2)

Previous Reliability Functions are thought for taking into account the variability
of color components, and are defined so that the higher the deviation from the real
component value, the lower the stability, and vice-versa. Moreover, these functions
have been limited to vary within the unit interval.

Working on real color samples captured within a varying illumination level en-
vironment, some reliability behaviors have been observed. On the one hand, it has
been noticed that Hue and Saturation Reliability Functions depend on the inten-
sity value in such a way that Intensity values lower than 120 imply low Reliability
Functions values. On the other hand, even for high Intensity values, the Reliability
Functions values are dependant on the Saturation values because low Saturation
values correspond to a “light” dye feature.
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3 Areas of Interest -AOI- Detection and Evaluation

Bearing in mind the problems involved within manual Pap smear tests, and taken
into consideration the process followed by the technicians, the first step for devel-
oping an automatic and cost-effective cells detection system will be to carry out an
Areas of Interest -AOI- detection and evaluation process. On the one hand, this
step will allow marking the areas that must not be later analyzed by the technician
and, on the other hand, the process will provide with the importance degree with
which the rest of regions will have to be analyzed, so giving a priority degree very
useful for later system steps.

To carry out this step at a reduced cost/efficiency screening rate, but consider-
ing cells images properties, it has been applied to grey-scale images because of
they are less sensitive to variations of lighting conditions and staining quality than
those of color images. So, due to original images are color ones, to avoid a further
monochrome additional capture, and to increment the overall cost, the monochrome
information of each pixel pi j will obtained converting the RGB values (Rij , Gij ,
Bij ), obtained using a 2.5X objective, to grey-level ones (Gl(pi j )) applying the
expression:

Gl(pi j ) = 0.6 · Rij + 0.3 · Gij + 0.1 · Bij

3.1 Region Segmentation by Pixel Classification

To incorporate as much as possible cyto-technologists’ knowledge and experience
avoiding their subjectivity in such a way that the results provided by the AOI detec-
tion be independent of human bias and error, our system makes use of segmentation
by pixel classification, wherein local features are analyzed using fuzzy techniques
[21, 38].

Following the usual structure of pixel classification systems, the detection and
location of the areas wherein cells can be identified (AOI), will be based on region
segmentation [21]. This is why, after segmenting the image into distinguishably dif-
ferent regions, in a second step the results obtained will be analyzed for recognizing
the AOIs.

3.1.1 Regions Description and Evaluation

To implement these steps in a suitable way, vagueness factors introduced by vaginal
secretions, inflammatory cells, cell-clumbing, blood staining, air-drying and other
cell sampling and preparation artifacts have to be taken into consideration.

So, following the technician way of work, after an analysis of the images focused
on grey level and texture characteristics, the regions of the cell images that will be
considered by our pixel classification system are:
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– Cells,
– Background,
– Region 1: that includes inflammatory cells, cell-clumbing and bloodstaining,
– Region 2: that contains vaginal secretions, air-drying and other cell sampling and

preparation artifacts, and
– Contours: which are transition areas with special characteristics.

For detecting these regions within the cell images, we carry out an analysis based
on their local grey level lightness and homogeneity degree that will provide the de-
gree to which the pixels belong to the regions. To do it, first the regions’ description
is as given in Table 1.

Then, following the framework of [38], and considering variability and vague-
ness within the images, as well as the linguistic descriptions of the elements, we
represent the fuzzy knowledge by the fuzzy rule base given by:

RCell : i f Gl(pi j ) i s LM and Hom(pi j ) i s M, then pi j i s Cell.

RB : i f Gl(pi j ) i s L and Hom(pi j ) i s H, then pi j i s Background.

RBCont : i f Gl(pi j ) i s L and Hom(pi j ) i s VS,

then pi j i s Contour or Background.

RR1 : i f Gl(pi j ) i s DM and Hom(pi j ) i s VH,

then pi j i s Region1.

RR1Cont : i f Gl(pi j ) i s DM and Hom(pi j ) i s VS,

then pi j i s Contour of Region1.

RR2 : i f Gl(pi j ) i s LM and Hom(pi j ) i s VH,

then pi j i s Region2.

To get the degree to which each pixel belongs to the regions, and so the mem-
bership functions of the consequent fuzzy sets, the grey level lightness and homo-
geneity degrees are evaluated by means of the average and standard deviation of
the grey values measured over a 3x3 window, respectively. Then, the membership
functions μGlL , μGlL−M , μGl D−M , μHomV S , μHomM , μHom H , and μHomV H are

Table 1 Regions’ description

Regions Grey level Homogeneity

Cell (Cell) Light-Medium (LM) Medium (M)
Background (B) Light (L) High (H)
Back-Contour (B-Cont) Light (L) Very Small (VS)
Region 1 (R1) Dark-Medium (DM) Very high (VH)
Region 1-Contour (R1-Cont) Dark-Medium (DM) Very Small (VS)
Region 2 (R2) Light-Medium (LM) Very high (VH)



FACSDS: Fuzzy-based Automated Cells Detection System 665

obtained starting from the probability density and distribution functions of these
values, evaluated over the training images following the process explained at [21].
The fuzzy sets so obtained are aggregated by the minimum, according to previous
rules to get the regions fuzzy sets determined by their membership functions:

μCell(pi j ), μB(pi j ), μBCont(pi j ), μR1(pi j ), μR1Cont(pi j ), μR2(pi j )

3.2 AOI Detection

To provide the cytotechnologist with an accurate Areas of Interest (AOI) detection
and location, the output of the system must give information about all the best areas
for screening. The identification of the Areas of Interest can be performed locating
them directly, or finding and eliminating the Areas Of No Interest -AONI-. Consid-
ering the high conceptual level of cell images, and to be sure that all best areas for
screening are obtained, the output of the proposed FACSDS will be the optimum
obtained comparing the outputs provided by both methods.

Therefore, next step will consist in detecting the Areas of no Interest. This pro-
cess will be carried out applying next rule:

RAONI : i f (pi j ) i s Bacground, or Region1, or Region2 then pi j i s AO N I.

And the AONI membership function will be obtained implementing this rule as
follows:

μAO N I (pi j ) = Max{μB(pi j ), μR1(pi j ), μR2(pi j )}
Once the AONI has been obtained, we go on to obtain the AOI, which is accom-
plished applying the classic complement to μAO N I .

3.3 Areas of Interest Evaluation

For deciding the importance degree of each area for its evaluation, the proposed
approach checks that the AOIs obtained by the direct -Cells- and indirect -AOI-
methods are concordant. To do it, given an image I, after obtaining the Cells and
AOI membership degrees of each pixel pi j ( μCell (pi j ), and μAO I (pi j ) ), to decide
if this image has to be analyzed, as well as the membership value with which this
analysis has to be performed, next rule will be applied:

RCells: i f ∀pi j ∈ I μAO I (pi j )
>≈ μCell(pi j ) then I is analyzed,

else I i s rejected.

If I is considered to be analyzed, μAO I will be the Area of Interest fuzzy set to be
considered.

Then, to get the final Areas that will be given to the cytotechnologist, and their
importance degree, a regional analysis will be performed. In this analysis a Fuzzy
Morphological Structural Element -FMSE- [39] is used to detect the areas of the
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image in which there exist interesting cells in a high enough number that will ponder
next conditions:

1. The region containing cells must be compact.
2. The presence of cells is important in the inner as well as in the periphery of the

region.

In accordance with these conditions, and considering that an element without
edges matches better the regions to be segmented, and a small element reduces the
computational cost allowing detecting small regions containing cells, a circle FMSE
having a 2.9 pixels radius has been chosen. Moreover, based on the small number
of pixels within the considered element, it has been divided into one inner region
R1, having 1.6 pixels’ radius, and four outer (R2 to R5) sub-regions. This division
has been performed with the aim of getting similar number of pixels in all regions,
allowing analyzing the homogeneity of the presence of cells.

Bearing in mind the second aforementioned condition, and that we are looking
for regions in the image with a minimum of cells, the same level of demand is
required to all sub-regions.

As the FMSE moves over the image, and all the pixels covered by it have a
membership degree to the Area of Interest fuzzy set, μAO I (pi j ), these membership
degrees must be aggregated bearing in mind the second aforementioned condition,
and that we are looking for regions in the image with a minimum of cells. This is
why we have considered OWA operators to aggregate the membership degrees of
the pixels inside each sub-region.

So, in the case of Region R1 we have considered the OWA operator [48] of
dimension 9, whose associated vector is given by (3), and for Regions R2 to R5
we have used an operator of dimension 4 with associated vector (4). This way, a
membership degree μRr will be assigned to all the pixels covered by sub-region Rr ,
1 ≤ r ≤ 5.

{W1 = {0, 0.4, 0.25, 0.25, 0.1, 0, 0, 0, 0}} (3)

{W2 = {0.25, 0.25, 0.25, 0.25}} (4)

Moreover, as the same level of demand is required to all sub-regions, the five mem-
bership degrees are associated by the minimum and the value obtained is assigned
to all the pixels covered by the FMSE, i.e. saying ∀pi j ∈ IF M S E the set of pixels
covered by the FMSE, then:

ηIF M SE (pi j ) = min
1≤r≤5

{μRr } (5)

In order to homogenize the Area of Interest membership degrees, and use the
FMSE as a Morphological Closing, previous membership values have been con-
sidered to modify the original AOI membership degrees such that ∀pi j ∈ IF M S E :

i f μAO I (pi j ) < ηIF M SE (pi j ) then μAO I (pi j ) < ηIF M SE (pi j ) (6)
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4 Fuzzy Nuclei Detection

Nuclei detection and location has been carried out on color images due to these
images hold more information, what make easier both, nuclei detection and the
analysis that will be performed in subsequent stages for identifying the kind of cells
appearing within the image. Moreover, it has to be taken into consideration that
within these images there is blood, which appears as red stains that in a monochrome
image is converted into a dark grey-level very similar to the one of the cells nuclei,
so obstructing their location. Moreover, as color-order systems based on perceptual
variables are somehow correlated with human being’s color perception, and their
coordinates are highly independent, what makes possible to treat achromatic and
chromatic information separately, the Smith’s chromatic components.

The process followed for achieving the nuclei detection works as follows: after
introducing the method considered for representing the vagueness of each color
pixel (subsection 4.1), we represent the vagueness of the pixels’ illumination inten-
sity (subsection 4.2). Finally (Sect. 4.3), making use of the information obtained at
previous steps, we obtain the membership degree of each pixel to the Cells Regions.

4.1 Color Pixels’ Vagueness Representation

As we consider the Hue and Saturation for representing the color feature of the
scene, the system is based on a palette of 92 colors, Ck(1 ≤ k ≤ 92), defined
by their H and S values (Hi , Si ) and distributed over the H-S map. The selection of
these color patterns has been carried out subject to next commitment: ”The number
of color patterns must be big enough for assuring that two pixels are classified
to different pattern colors if the pixels’ components differ, but no so big as to
classify to different pattern colors pixels belonging to the same color or make
more difficult the algorithm”. For a suitable distribution map, bearing in mind
the particular behavior of color components, the Saturation interval has been di-
vided into five subintervals labelled: Very Low, Low, Medium, High, and Very
High. Then, considering the Saturation/Hue color behavior, and their relation, we
have chosen one color with very low saturation, 5 colors with low saturation, 9
with medium, 13 with high, and 64 equidistant distributed colors with very high
saturation.

For representing color vagueness, each pattern color Ck has associated a fuzzy
set μCk , given by:

μCk (pi j ) =
√

μH
Ck (pi j ) · μS

Ck (pi j ) (7)

such that, if (Hij , Si j , Ii j ) are the H ue, Saturation, and Intensi ty values of pixel
pi j , and (H k, Sk) are the H ue and Saturation of color Ck , then μH

Ck (pi j ) and

μS
Ck (pi j ) represent the degrees to which the H ue and Saturation of the pixel

are similar to the color ones. These membership degrees are obtained taking into
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account the H ue and Saturation Reliabili tyvalues, (RH and RS) according to
next expressions:

mu H
Ck (pi j ) = μH

Ck (H
k − (H k − Hij ) · RH (pi j )) (8)

μS
Ck (pi j ) = μS

Ck (S
k − (Sk − Si j ) · RS(pi j )) (9)

4.2 Pixels’ Illumination Intensity Vagueness Representation

As a previous step for getting the Nuclei Regions we must take into account that
these regions appear within the images as poorly illuminated areas. Therefore, for
each pattern color Ck , we have defined the fuzzy set Ck − shadow, whose mem-
bership function, μShadow

Ck , is obtained according to next process:

1. ∀pi j such that μCk (pi j ) > 0.5 we obtain the histogram of intensity frequencies.
2. Within the histograms we get the minimum and maximum values:

I k
min , I k

max .
3. Then, the fuzzy set Ck − shadow is defined by the membership function:

μShadow
Ck (pi j ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1− Ii j − I k
min

(I k
max − I k

min ) · 0.4
i f μCk (pi j ) > 0.5 and Ck ∈ C N

0 else

where C N is the set of colors associated with the nucleus that has been experi-
mentally determined and is constituted by the colors that can present the nuclei
when react with the preservative liquids. Moreover, previous membership value is
restricted to belong to the unit interval.

4.3 Obtaining the Nuclei Fuzzy Sets

Finally, the membership degree to which each pixel belongs to the Nuclei fuzzy set
is obtained by:

μNuclei (pi j ) = max
1≤k≤92

{muCk (pi j ) ·muShadow
Ck (pi j )}; ∀pi j

5 Results and Conclusions

As presented the system has been developed within two differentiated parts, one
devoted to the Areas of Interest detection and the other addressed to the cells nuclei
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detection. These two parts have been verified in an independent way in order to
guarantee their good performance. The results of the tests carried out have been
very satisfactory, providing very accurate results in the case of AO I detection, and
promising results in the case of nuclei detection. However, it must be pointed out
that, as nuclei detection tests have been carried out considering not only the AO I
but the whole sample, the majority of false detections are located on the areas don’t
marked as AO I s at previous step.

Next, some results obtained at each part of the proposed system are going to be
presented.

5.1 Areas of Interest Detection

This part has been tested on more than 100 images obtained by a system formed by
a JVC TK-C1381 video color camera attached to a BH2 Olympus microscope and
connected to a PC. In each slide, the screening field detection was tested with the
2.5X objective. Afterwards, the system has been tried out by expert cytopatologists
for a period of three months, during which they verified its good operation, prov-
ing that the system versus expert concordance degree has been between 80 and 95
percent considering both AO I detected and goodness degree, but greater than 95%
if only the areas that must be analyzed are considered. Moreover, isolated cells and
bidimensional groups were clearly differentiated from a-cellular areas or those with
marked cell crowding that usually makes screening impossible. Dense mucus and
contaminants, such as dust or air bubbles, were correctly discarded. Some results
are presented at Fig. 1.

a) b) c) d)
Fig. 1 a) Original image; b) results obtained for the Cells Fuzzy set -Direct ROI obtaining-;
c) results obtained for the final ROI after comparison; and d) ROI after applying the Fuzzy Mor-
phological Structural Element
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Pictures a) of each row correspond to the original image over which the algorithm
has been applied. The pictures labelled b) show the Cells fuzzy set (AO I using the
direct method) obtained as explained at Sect. 3.2 by the direct method. In these
pictures, higher grey level corresponds to pixels belonging with higher degree to the
Cells region. Pictures labelled c) depict the AO I fuzzy set obtained after applying
the comparison between the Cells region and the AO I obtained by the indirect
method. As in b), higher grey level corresponds to pixels belonging with higher
degree to AO I .

Finally, pictures d) correspond to the Cells region obtained applying the F M SE
to the images shown by pictures c) detected from original image, these images will
be used by the cytotechnologist to perform the final analysis.

5.2 Nuclei Detection

This step has been tested on 20 cervical smear color images from a database col-
lected at the Hospital de Sant Pau de Barcelona, Spain. These images were obtained
with the system previously described, but using a 10X objective. As previously said,
the results are very promising considering that the majority of false detections are
located on areas of the images that should be classified at previous step as no in-
teresting regions. Here we present the results obtained after applying the proposed
system to three real data images. It mist be taken into consideration that the images
sides are no analyzed.

Having a look at the image of Fig. 2-a) it can be observed that cells appear in
good conditions to be analyzed, and the results provided by the system (Fig. 2-b)
show that almost all the nucleus have been detected and doesn’t appear any false
detection.

Within the original images of Fig. 3 the marked regions correspond to areas with
cells that cannot be analyzed. Having a look at the results obtained (second column
of Fig. 3) by the Nuclei detection algorithm, the system detects a large number
of nuclei that in many cases correspond to false detections. However, it must be
noticed that these ”no good results” lack importance because, if the AO I step was
first applied, these regions never would be considered.

a) b)

Fig. 2 a) Original image; b) Nuclei detected applying the process explained at Sect. 4



FACSDS: Fuzzy-based Automated Cells Detection System 671

Original Nuclei Detected

Fig. 3 First column: Regions with cells that cannot be analyzed are surrounded. Second column:
Nuclei detected applying the process explained at section 4

If we have a look at the two amplified areas of interest of image Fig. 4, depicted at
first column of Fig. 5, and the results obtained for these two regions (second column
of Fig. 5), it can be observed that the nucleus have been correctly detected.

Table 2 gives the details of the nuclei detection in images 3-a), 5-b), and 5-d). As
can be seen most of the nuclei were detected, and no false alarm appear.

Table 2 Results of the nulei detection step for the images of Figs. 3-a), 5-b), and 5-d)

Image Nuclei Nuclei False Perform. Efficiency
Number N N Detected N D Alarms F A ρ ξ

Fig.3-a 20 19 0 0.95 0.95
Fig.6-a 49 45 0 0.918 0.918
Fig.6-c 53 49 0 0.924 0.924

The performance (ρ) and efficiency (ξ ) measures, defined as ρ = N D/N N and
ξ = N D/(N N + F A), are given at fifth and sixth columns of this table. As can be
observed these values are very high and coincide due to no false has been detected.

Fig. 4 Original Image.
Surrounded areas correspond
to Regions of interest
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Fig. 5 First column: Original
image. Second column:
Nuclei detected applying the
process explained at Sect. 4

Original Nuclei Detected

5.3 Conclusions

We have proposed an efficient and very fast Fuzzy-based Automated Cells Screen-
ing Detection System algorithm, useful for future Automatic Cells Screening Sys-
tem, which simulates technologists’ process, simplifies their work, and provides a
very high Areas of Interest detection concordance percentage with the cytotechnol-
ogist.

The results obtained by the first step of the proposed approach for detecting
AO I within the smears show the effectiveness of fuzzy techniques in vagueness
treatment. Furthermore, the Structural Element has seen to be very effective for
segmentation based on pixel classification, when uniformity and gray level must be
analyzed locally. On the other hand, the way this element has been applied allows
us to obtain convex and compact regions.

Although it has not been the case in our tests, an open problem is to decide what
to do if there are not concordances between the AO Is obtained by the direct -Cells
Regions- and indirect -Regions Of Interest- methods.

The proposed algorithm for Nuclei Detection has proved a good performance and
efficiency, specially considering that, in general, the number of false detections has
been lower than the 0.5% for all the images.

As a future work, the Nuclei detection step will be implemented starting from
the information provided by the AO I detection step.

Acknowledgment This work has been partially supported by the Spanish CICYT Project TIC2002-
02791.
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