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Chapter 8
Searching for the “Social Compromise 
Solution”: A Conflict Analysis Procedure 
for Illuminating Distributional Issues

8.1 Introduction

As discussed in Chap. 1, one of the most interesting research directions in modern 
public economic policy is the explicit attempt to take political constraints, interest 
groups and collusion effects into account. The issue of “distributional coalitions” 
has been considered of key importance in determining growth factors (Olson, 
1982). In the framework of sustainability policies, the need to deal with conflicts 
among various social actors is even more unavoidable.

Ecosystems are used in several ways at the same time by a number of different 
users. Such situations almost always lead to conflicts of interest and damage to the 
environment. Any social decision problem is characterized by conflict between 
competing values and interests and the different groups and communities that repre-
sent them. In sustainability policies, biodiversity goals, landscape objectives, the 
direct functioning of different environments as resources, the historical and cultural 
meanings that places have for communities, the recreational options environments 
provide, etc., are a constant source of conflict. Any policy option always implies 
winners and losers, thus it is imperative to check if a policy option seems preferable 
just because some dimensions (e.g. the environmental) or some social actors (e.g. the 
lower income groups) have not been taken into account. This is what was defined in 
Chap. 2 as the social incommensurability issue.

In operational terms, one of the classical evaluation tools is cost–benefit analysis. 
It is generally considered that cost–benefit analysis focuses on efficiency criteria; but, 
any policy decision affects the welfare of individuals, regions or groups in different 
ways; consequently, public support for any policy decision very much depends on 
the distributional effects of such a decision. Some revisions of cost–benefit analysis 
try to include distribution issues directly in the analysis (see e.g. Helmers, 1979). 
However, all these revisions may sometimes present such theoretical and operational 
difficulties (see Box 4.2) that it is rather tempting to ignore distributional aspects 
without further comment. This attitude is rarely defended theoretically, but unfortu-
nately often practiced (Bojö et al., 1990).

A well-known approach for dealing with distributional issues in land-use planning 
is the so-called planning balance sheet method which can be considered an extension 
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of conventional cost–benefit analysis (Lichfield, 1964, 1988, 1993). This approach 
aims to provide a broader framework for the assessment of the gains and losses of a 
plan by constructing detailed socio-economic accounts of all project effects and by 
taking into account the different groups in society which are affected in their well-
being by the plan. A weakness of this method is that it is primarily meant to present 
in a systematic way a description of all the distributive impacts, but no elaboration 
with normative purposes is generally made.

This chapter presents a possible way of overcoming this drawback of the plan-
ning balance sheet method; introducing concepts coming mainly from fuzzy set 
theory and social choice. Most of the results presented here proceed from the 
empirical experience of various real-world applications of the NAIADE conflict 
analysis procedure (Munda, 1995) over a decade. First a fuzzy coalition formation 
algorithm will be developed, followed by the introduction of a ranking procedure 
and a veto index founded on the minority principle.

8.2  Do Similarities Exist Among Social Actors? A Fuzzy 
Cluster Analysis

As in the planning balance sheet method, the proposed approach requires as a first 
step the construction of a social impact matrix showing the various policy options and 
their impact on the social actors. From an empirical point of view, the construction of 
this matrix requires sophisticated field work based mainly on participative techniques 
(see e.g. Kasemir, 2003). However, the results obtained with such techniques are 
qualitative in nature and often presented in an unstructured manner. As a conse-
quence, formal techniques helping the structuring, synthesis and further elaboration 
of this information are operationally very useful (Funtowicz et al., 1999; Munda, 
2004). The following main assumptions are made:

(1) Only a set of well defined policy options has to be taken into account.
(2)  The impact of these policy options on different social actors are evaluated by 

means of “linguistic variables” (good, not very good, etc.).
(3)  The semantic distance between any pair of social actors is used as a conflict 

indicator.
(4)  A fuzzy cluster algorithm is used to synthesize similarities/diversities among 

social actors.

In more formal terms, the problem faced can be described in the following way:

A is a finite set of N feasible policy options; B is the set of different social 
actors,

B = {b
p
} p = 1, 2,…, P considered relevant in a policy problem,

L = {l
p
}, p = 1, 2,…,P, with p

p

P

l =
=

∑ 1
1

  being the vector of weights attached to the 

set of the P social actors, indicating their relative importance, i.e. given two non-equal 
numbers to construct a vector in R2, then the greatest number must be placed in the 
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position corresponding to the most important social actor (Podinovskii, 1994). In this 
framework, the policy option a

1
 is evaluated to be better than a policy option a

2
 (both 

belonging to the set A) according to the p-th point of view if b
p
(a

1
) > b

p
(a

2
), where the 

social actor scores b
p
(.) are measured on a linguistic variable scale of measurement.

As we have seen in Chap. 4, fuzzy set theory provides a framework for representing 
“qualitative information” by means of the concept of “linguistic variable”. Human 
judgements, especially in linguistic form, appear to be plausible and natural represen-
tations of cognitive observations. We can explain this phenomenon through cognitive 
distance. A linguistic representation of an observation may require a less complicated 
transformation than a numerical representation, and therefore less distortion may be 
introduced by the former than by the latter.

The formal problem we are dealing with can be summarized in a table form, 
called a social impact matrix, as shown in Table 8.1 (where P = 6 and N = 4).

As discussed in Chap. 7, the semantic distance can be used to compare fuzzy 
sets in general and linguistic variables in particular. In short if m

1
(x) and m

2
(x) are 

two linguistic variables, one can write:

f(x)=k ( ) ( )1m m1 2 2x and k xg y( )=  (8.1)

where f(x) and g(y) are two functions obtained by rescaling the ordinates of m
1
(x)

and m
2
(x) through k

1
 and k

2
, such that

f x dx g y dy( ) ( )= =
−∞

+∞

−∞

+∞

∫ ∫ 1 (8.2)

The distance between all points of the membership functions is computed as follows:

d

x y

S f x g y x y f x g y dydx( ), ( ) ( ) ( )
,

( ) = −∫∫  (8.3)

In the problem at hand, between any pair of social actors b
i
, b

j
 with i ¹ j, their 

relative distance can be computed by considering the set of N linguistic evaluations 
given to the set of policy options (i.e. the rows i and j in the matrix). In more formal 
terms, if  is the vector of the linguistic evaluations of b

i
 and  is that of b

j
, both 

belonging to RN, the generalization of the Minkowski metric described in (8.4) can 
be applied:

Table 8.1 Example of a social impact matrix

 Policy
 options   

Social Actors a1 a2 a3 a4

b1 b
1
(a

1
) b

1
(a

2
) · b

1
(a

4
)

b2 · · · ·
b3 · · · ·
b4 · · · ·
b5 · · · ·
b6 b

6
(a

1
) b

6
(a

2
) · b

6
(a

4
)
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d b b x y x y f x g y dydxi j

x y

i i
i

N

( ),
,

( ) ( )= − = −
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥∫∫∑

=

b b

1

1

 (8.4)

For

b = 1 an absolute value metric (completely compensatory)
b = 2 a Euclidean metric (partially compensatory)
b→• the Tchebycheff metric (completely non-compensatory) can be obtained.

By using the distance described in (8.4) as a conflict indicator, a similarity 

matrix (achieved by means of the simple transformation s
dij

ij

=
+
1

1
) for all possible 

pairs of groups can be obtained, so that a clustering procedure is meaningful.
On an axiomatic basis, cluster analysis can be differentiated into deterministic, 

stochastic and fuzzy. By taking into consideration the “clustering criteria”, the 
following distinction exists (Anderberg, 1973: Hartigan, 1975; Bezdek, 1980):

• Hierarchical methods
• Graph theoretic methods
• Objective functional methods

The hierarchical clustering approach, in particular, allows an evolutionary view 
of the aggregation process and can easily be dealt with within fuzzy terms. 
However, in a fuzzy environment a problem exists, i.e. the relation between the 
concepts of partition and equivalence class.

In a crisp environment, the choice of treatment of data in terms of partitions or 
equivalence relations is a matter of convenience, since the two models are fully 
equivalent (philosophically and mathematically). On the contrary, fuzzy equiva-
lence relations and partitions are philosophically similar, but their mathematical 
structures are not isomorphic (e.g. the notion of transitivity is unique for crisp rela-
tions but may take any of several forms in the fuzzy case).

We begin the discussion of fuzzy cluster analysis with the definition of a crisp 
equivalence relation. Let B={b

1
, b

2
,.…,b

p
} be the finite set of social actors. Then a 

P×P matrix S = [s
ij
] = [s(b

i
, b

j
)] is a crisp equivalence relation for B×B if

s
ij

= 1 1 £ i£P (reflexivity)

s
ij

= s
ji

1£ i¹j£ P (symmetry)

s

s

s i j k

ij

jk

ik

=

=

⎧

⎨
⎪

⎩
⎪

⇒ = ∀

1

1

1 , , (transitivity)

Let S be a fuzzy binary relation with m
s
(b

i
, b

j
) indicating the degree to which two 

social actors b
i
 and b

j
 are similar (similarity matrix). The relation S is obviously 

reflexive and symmetrical, thus it is called a resemblance relation.



A fuzzy relation is a similitude relation if it has the following properties:

mS i i i ib b b b B B( , ) ( , )= ∀ ∈ ×1  (reflexivity)

m mS i j S j i i jb b b b b b B B( , ) ( , ) ( , )= ∀ ∈ ×  (symmetry)

m m mS i k S i j S j k

i j j k

b b b b b b

b b b b b

( , ) ( , ), ( , )

( , ),( , ),(

≥ ⎡⎣ ⎤⎦
∀

max min

ii kb B B, )∈ × (max-min transitivity)

Note that compared to the notion of transitivity in conventional analysis, the 
present concept defines a weaker transitivity of similarity.

If one wants to derive a set of equivalence classes (and not simple partitions) it 
is necessary for the similarity matrix to be at least max–min transitive. As is well-
known (Leung, 1988), an intransitive similarity matrix can be transformed into 
transitive by deriving the transitive closure

�
S  of S. The max–min transitive closure

of a fuzzy binary relation S is

�
S S S S= ∪ ∪ ∪2 3 ... (8.5)

where S2 = S ° S is the max–min composition of S (more technical details can be 
found in Appendix 8.1).

Knowing that any fuzzy set Ã can always be decomposed into a series of α-level 
sets Ãa, the similitude relation 

�
S  can be decomposed into

� �
S S= ∪

∈[ ]a
a a

0 1,
(8.6)

Since
�
S a is reflexive, symmetrical and transitive in the sense of ordinary sets, it 

is an equivalence class of level α. Within each a-level equivalence class, the 
similarity of any two social actors is no less than α.

Note that the equivalence classes obtained are ordinary disjoint sets. In fact, in 
order to have non-mutually exclusive equivalence classes, it is necessary to 
assume the use of a min-addition transitive similarity matrix (which is a stronger 
assumption than max–min transitivity). Consider the social impact matrix 
described in Table 8.2.

By applying the semantic distance described in (8.4) with b= 2, after the trans-

formation s
dij

ij

=
+
1

1
, the similarity matrix for all possible pairs of social actors 

shown in Table 8.3 is obtained:
This means, for example, that the greatest similarity is found between social 

actors b
1
 and b

2
, and between b

4
 and b

5
. These social actors have a relatively high 

correspondence of goals, accordingly. The reverse holds true for social actors b
2

and b
4
, between which the lowest degree of similarity is found.
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Table 8.2 Illustrative example of a social impact matrix

 Policy
 options

Social a1 a2 a3 a4 a5 a6 a7
Actors

b1 Very  good Moderate bad fairly  fairly  very
good    good bad bad

b2 Very  good Moderate bad fairly  very  Very
good    good bad bad

b3 Very  fairly Moderate good very  good moderate
bad bad   good

b4 very  fairly  fairly  good fairly  good very
bad bad bad good good

b5 Very  bad fairly  moderate fairly  good very
bad bad good good

b6 Very  good Bad good good good very
bad      good

By using the notion of max–min composition, the following new fuzzy relations 
are derived:

 S2

 b
1
 b

2
 b

3
 b

4
 b

5
 b

6

b1 1 0.729 0.426 0.426 0.426 0.426
b2 0.729 1 0.426 0.410 0.410 0.410
b3 0.426 0.426 1 0.675 0.675 0.672
b4 0.426 0.410 0.675 1 0.729 0.672
b5 0.426 0.410 0.675 0.729 1 0.672
b6 0.426 0.410 0.672 0.672 0.672 1

S3

b
1
 b

2
 b

3
 b

4
 b

5
 b

6

b1 1 0.729 0.426 0.426 0.426 0.426
b2 0.729 1 0.426 0.426 0.426 0.426
b3 0.426 0.426 1 0.675 0.675 0.672
b4 0.426 0.426 0.675 1 0.729 0.672
b5 0.426 0.426 0.675 0.729 1 0.672
b6 0.426 0.426 0.672 0.672 0.672 1

S4

b
1
 b

2
 b

3
 b

4
 b

5
 b

6

b1 1 0.729 0.426 0.426 0.426 0.426
b2 0.729 1 0.426 0.426 0.426 0.426
b3 0.426 0.426 1 0.675 0.675 0.672
b4 0.426 0.426 0.675 1 0.729 0.672
b5 0.426 0.426 0.675 0.729 1 0.672
b6 0.426 0.426 0.672 0.672 0.672 1



Since in the series of max–min compositions S3 = S4, the transitive closure is

�
S S S S S= ∪ ∪ =2 3 3  (8.7)

Since
�
S is a similitude relation, it can be decomposed into equivalence classes 

with respect to the degree of similarity α.
Thus the application of the clustering procedure leads to the following results 

(see Fig. 8.1). As long as the similarity degree α required for convergence is 
higher than 0.729, there will be no cluster formation. Two groups will be formed 
when α is between 0.729 and 0.675 (b

1
 and b

2
), and (b

4
 and b

5
). When the similar-

ity degree is reduced to 0.675 and 0.672, social actors b
3
 and b

6
 join the last group 

respectively. The conflict of interest between the remaining groups (b
1
, b

2
) versus 

(b
3
, b

4
, b

5
, b

6
) is considerable, as can be inferred from the low degree of similarity 

associated with a grand coalition.
It can be proved that the following four algorithms generate the same partition 

(Miyamoto, 1990):

Table 8.3 Similarity matrix between the social actors of the illustrative example

b
1
 b

2
 b

3
 b

4
 b

5
 b

6

b1 1 0.729 0.426 0.399 0.403 0.403
b2 0.729 1 0.410 0.386 0.390 0.390
b3 0.426 0.410 1 0.675 0.584 0.569
b4 0.399 0.386 0.675 1 0.729 0.672
b5 0.403 0.390 0.584 0.729 1 0.595
b6 0.403 0.390 0.569 0.672 0.595 1

αα b1 b2 b3 b4 b5 b6

1

0.729

0.675

0.672

0.426

• • • • • •

• • • •
• • •
• •

•
Fig. 8.1 Dendrogram of the cluster formation process
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• The single linkage method
• The connected components of an undirected fuzzy graph
• The transitive closure of a reflexive and symmetric fuzzy relation
• The maximal spanning tree of a weighted graph

Thus the following conclusions can be drawn:

1. Since the connected components are independent of the numbering of the 
vertices, the algorithm is independent of the ordering of the inputs, and is 
therefore stable.

2. No reversal exists in the dendrogram (“reversal” meaning that the merging 
levels are not monotonically decreasing, and thus a cut of the dendrogram 
might produce ambiguous results).

3. One is not obliged to use only the Euclidean metric (e.g. as in the “centre of 
gravity” procedures), any distance measure (even if it does not respect the trian-
gular inequality property) can be used, thus the method is general.

In real-world applications, when the actors involved in a policy process look at 
dendrograms, they can generally make little sense of them. Clearly, further elabo-
ration is then needed. In particular, information on rankings of policy options 
according to each cluster of social actors seems very desirable.

8.3 Ranking Policy Options

As discussed in Chaps. 6 and 7, the maximum likelihood ranking of policy options 
is that ranking supported by the maximum number of social actors for each pair-wise 
comparison, summed over all pairs of policy options. More formally, the C–K–Y–L 
ranking procedure, adapted to the problem at hand, can be described as follows.

For each α-level equivalence class, let Ca ={c
1
, c

2
,.…,c

z
} be the finite set of possible 

groups of social actors, with |c
1
|∪|c

2
|∪…∪|c

z
| = P. Then, ∀c

i
∈Ca, with i = 1, 2,…,Z,

a pair-wise comparison of the N policy options needs to be carried out.
For carrying out such a pair-wise comparison the following axiomatic system is 

required (adapted from Arrow and Raynaud, 1986, pp. 81–82).

Axiom 1: Diversity. Each social actor b
p
 defines a total order on the finite set A of 

policy options to be ranked.
Axiom 2: Symmetry. The only preference information social actors provide is the 

ordinal pair-wise preferences.
Axiom 3: Positive Responsiveness. The degree of preference between two policy 

options a
1
 and a

2
 is a strictly increasing function of the number |c

i
| and 

weights l
p
, of the social actors who rank a1 before a2.

Clearly all three axioms are fulfilled by giving an ordinal meaning to the linguis-
tic variables contained in the social impact matrix (i.e. no intensity of preference is 
used). Thanks to these three axioms an N×N outranking matrix E can be built. Any 
generic element of E: e

jk
, j≠ k is the result of the pair-wise comparison, according to 



all the |c
i
| social actors, between policy options j and k. Such a global pair-wise 

comparison is obtained by means of (8.8).

jk p jk p jk
p

c

e P I
i

= +⎛
⎝⎜

⎞
⎠⎟=

∑ l l( ) ( )
1

21

 (8.8)

where l
p
 (P

jk
) and l

p
 (I

jk
) are the weights of the social actors expressing a preference 

and an indifference relation respectively. All the N(N − 1) pair-wise comparisons 
of policy options N compose the matrix E.

Let us call T the set of all the N! possible complete rankings, of policy options, 
T = {t

s
}, s = 1, 2,…, N!. For each t

s
, we compute the corresponding score j

S
 as the 

sum of e
jk
 over all the 

N

2

⎛
⎝⎜

⎞
⎠⎟

 pairs jk of policy options, i.e.

 j
S
 = ∑ ejk (8.9)

where j ≠ k, s = 1, 2, … N! and e
jk

∈t
s

The final ranking (t
*
) is the one1 which maximises(8.9):

t
*
⇔ j

*
= max ∑ ejk where ejk ∈ T. (8.10)

As we know from Chap. 6, other properties of the C–K–Y–L ranking procedure 
are as follows.

• Neutrality: it does not depend on the name of any policy option, all policy 
options are treated equally.

• Unanimity (sometimes called Pareto Optimality): if all social actors prefer 
policy option a

1
 to policy option a

2
 than a

2
 should not be chosen.

• Monotonicity: if policy option a
1
 is chosen in any pair-wise comparison and only 

the social actors’ linguistic evaluations of a
1
 are improved, then a

1
 should still 

be the winning policy option.
• Reinforcement: if the set A of policy options is ranked by two subsets B

1
 and B

2

of the social actors set B, such that the ranking is the same for both B
1
 and B

2
,

then B
1
∪ B

2
 = B should still produce the same ranking.

At this point, we refer to the normative tradition in political philosophy, 
which has also an influence in modern social choice (Moulin, 1981) and public 
policy (Mueller, 1978). The basic idea is that any coalition controlling more than 
50% of the votes may be converted in an actual dictator. As a consequence, the 
“remedy to the tyranny of the majority is the minority principle, requiring that all 
coalitions, however small, should be given some fraction of the decision power. 
One measure of this power is the ability to veto certain subsets of outcomes.…” 

1 It is important to remember that sometimes the final ranking is not unique. This is a desirable 
property since it can be considered a measure of the robustness of the results provided.
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(Moulin, 1988, p. 272). As discussed in Chap. 7, the introduction of a veto power 
can be further justified in the light of the so-called “prudence” axiom (Arrow and 
Raynaud, 1986, p. 95), whose main idea is that it is not prudent to accept alterna-
tives whose degree of conflictuality is too high (and thus the decision taken 
might be very vulnerable).

Note that allocating veto power across the various groups of social actors has 
profound ethical implications, since it entails attaching different weights to differ-
ent groups. Moreover, if too much veto power is allowed, cooperatively stable solu-
tions may disappear; on the other hand, if too little veto power is allowed, stable 
solutions are too numerous. This problem has a unique mathematical solution 
attributable to Moulin (1981). The philosophy behind Moulin’s theorem is that any 
group with x% of social actors must be able to veto any subset containing less than 
x% of policy options.

Formally, Moulin’s theorem can be adapted to our problem as follows. Given P
social actors, N policy options and Ca={c

1
, c

2
,.…,c

z
} possible groups of social 

actors, |c
1
|∪|c

2
|∪…∪|c

z
| = P, ∀ c

i
∈ Ca, with i = 1,2,…,Z, the corresponding 

proportional veto function is defined in (8.11):

V c N
c

PP N i
i

, ( ) = •
⎛

⎝⎜
⎞

⎠⎟
−1 (8.11)

where (x) is the smallest integer bounded below by x, with

x N
c

P
i= •

⎛

⎝⎜
⎞

⎠⎟
.

In the case that weights are attached to the social actors, the proportional veto 
function is presented in (8.12).

V c NP N i i, ( ) = •( ) −l 1 (8.12)

where l li p
p ci

=
∈
∑ (8.13)

Let us continue with the example described in Table 8.2, by applying the ranking 
method and the veto function just discussed. Let us choose the equivalence class 
obtained with α=0.672. For C

0.672
, groups c

1
 with (b

1
, b

2
) and c

2
 with (b

3
, b

4
, b

5
, b

6
)

exist. By applying the computations described in Equations from (8.8) to (8.10), 
with the assumption of equal weighting of social actors, the following rankings are 
obtained.

For c
1
 the permutation with the highest score is unique:

a a a a a a a1 2 5 3 6 4 7→ → → → → →



For c
2
 the ranking is also unique:

a a a a a a a7 6 5 4 3 2 1→ → → → → →

The application of Moulin’s proportional veto function produces the following 
results:

V c6 7 1 7
2

6
1 1, ( ) = •⎛

⎝⎜
⎞
⎠⎟

− ≅ , only a
7
 can be vetoed.

V c6 7 2 7
4

6
1 3, ( ) = •⎛

⎝⎜
⎞
⎠⎟

− ≅ , options a
1
, a

2
 and a

3
 can be vetoed.

From analysing these results it is clear that social compromise solutions could 
be options a

6
 and a

5
. Any other choice would imply “strong value judgements” such 

as attaching an enormous weight to group c
1
, which would be the only way to 

defend options a
1
 or a

2
; while choosing a

7
 would imply a complete “dictatorship” 

of the majority.
It is important to highlight that I do not maintain that a policy-maker should not 

be free to use these “strong value judgements”. What I want to emphasize here is that, 
when she/he uses them, this fact should be transparent and responsibility of doing so 
clearly assumed. As discussed in the tradition of public choice (Buchanan and 
Musgrave, 1999) not necessarily a public policy-maker is always benevolent; this is 
why I stated that the objective of the proposed approach is to illuminate distributional 
issues and corresponding ethical (or un-ethical) positions. This call for transparency 
in modern public economics is widely shared by various contemporary authors (see 
e.g. Stiglitz, 2002).

As a final example, let us consider again the Catalan wind park location problem 
introduced in Chap. 3. The ordinal multi-criteria evaluation matrix for this problem is 
described in Table 8.4 (the higher the criterion score the better the evaluation). The 
ordinal criterion scores are obtained by applying a positive indifference threshold q to 
each quantitative criterion score (for more details see Gamboa and Munda, 2007).

By considering the information contained in the impact matrix shown in Table 8.4, 
the outranking matrix presented in Table 8.5 is obtained. All criteria are considered 
under the equal weighting assumption.

By applying the C–K–Y–L ranking procedure, among the 5,040 possible 
rankings, the following four present the maximum score (see Table 8.6) (where 
the extreme left alternatives are the top ones and the extreme right alternatives 
are the bottom ones):

As we know, criteria and criterion scores are not determined directly by social 
actors. The impact matrix is a result of a technical translation operationalized by the 
scientific team. Even if the criteria are exactly the ones agreed with the social actors 
the determination of the criterion scores is independent of their preferences. For 
example, an interest group can accept the use of a criterion measuring the effects of 
the various alternatives on the employment, but the determination of the figure cannot 
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Table 8.5 Outranking matrix for the wind park location problem

CB Pre CB ST CBST L R NP

CB Pre 0,00 0,50 0,30 0,40 0,30 0,30 0,70
CB 0,50 0,00 0,10 0,20 0,10 0,10 0,70
ST 0,70 0,90 0,00 0,40 0,70 0,65 0,70
CBST 0,60 0,80 0,60 0,00 0,60 0,60 0,70
L 0,70 0,90 0,30 0,40 0,00 0,65 0,70
R 0,70 0,90 0,35 0,40 0,35 0,00 0,70
NP 0,30 0,30 0,30 0,30 0,30 0,30 0,00

Table 8.6 Multi-criteria maximum likelihood rankings for the wind park location problem

First Second Third Fourth Fifth Sixth Seventh

CBST ST L R CBPre CB NP
CBST ST L R CB CBPre NP
ST CBST L R CBPre CB NP
ST CBST L R CB CBPre NP

Table 8.4 Ordinal multi-criteria evaluation matrix for the wind park 
location problem



be (at least completely) controlled by them. This is one of the main reasons why it is 
desirable to combine a social impact matrix with the technical impact matrix.

As we have seen in this chapter, the first step is the construction of the Social 
Impact Matrix i.e. the evaluation every social actor gives to each option (see 
Table 8.7).

By applying the fuzzy clustering procedure introduced in Sect. 8.2 to the social 
impact matrix presented in Table 8.7 (by using the assumption of equal weighting 
for the various social actors), the dendrogram presented in Fig. 8.2 is obtained.

• The proximity of aims between the Municipality of Senan (G5) and the Platform 
per Senan (G7) are reflected in the dendogram. Also the Municipalities of 
Vallbona de les Monges (G2) and Rocallaura (G4) are working together in look-
ing for their benefits.

• The Association of friends and neighbours of Montblanquet (G8) joints to the 
first mentioned coalition (G5 + G7) with a medium-high degree of credibility. 
They meet with other actors in the Coordinating committee to defend the land 
(G6). Most of them working in independently.

• On the other side, EHN (G9) has been negotiating with the municipalities and 
with the Catalonian government in order to push their project forward. This 
coalition (G2 + G4 + G1 + G9) has a medium degree of credibility.

• A coalition between the municipality of Els Omells de Na Gaia (G3) and Gerrsa 
(G10) shares a medium degree of proximity with the previous coalition. 
Nowadays this coalition depends more or less in the amount of money that can 
be received from Gerrsa as benefit tax revenue.
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In real-world applications, when the actors involved in a policy process look at 
dendrograms generally have a question like: and so what? Clearly further elabora-
tions are then needed. In particular, information on rankings of policy options 
according to each coalition of social actors seems very desirable. This can easily 
been done by applying again the C–K–Y–L ranking procedure (already used on the 
multi-criteria impact matrix). The coalitions obtained with the degree of credibility 
0.7194 (thus a very high one) are considered.

The coalition C
1
, with Municipality of Senan (G5), Platform per Senan (G7), 

Association of friends and neighbours of Montblanquet (G8) and Coordinating 
committee to defend the land (G6) present the following rankings as the maximum 
likelihood ones (see Table 8.8):

Fig. 8.2 Dendrogram of the coalition formation process for the wind park location problem

Table 8.8 Maximum likelihood rankings for coalition C1

First Second Third Fourth Fifth Sixth Seventh

NP R L CB Pre CB ST CBST
NP R L CB CB Pre ST CBST
NP R L CB Pre CB CBST ST
NP R L CB Pre ST CB CBST



For coalition C
2
, (including Municipalities of Vallbona (G2) and Rocallaura 

(G4) ) the following rankings receive the maximum score (see Table 8.9):
Moreover by looking at the social impact matrix (Table 8.7), it is clear that 

for the Catalonian Government, option CBST is the best one. Anyway all the 
other alternatives are also more o less OK, except for NP that is considered as 
extremely bad. For the Municipality of Els Omells, the only acceptable alterna-
tives are CB Pre, CB and CBST, all the others are considered bad. For EHN, 
alternatives ST and CBST are good options. L and R are more or less acceptable 
but NP is considered as extremely bad. For Gersa, alternatives CB Pre, CB and 
CBST are at least very good options, all the other possibilities are considered as 
extremely bad.

By applying Moulin’s theorem the only coalition that can veto one option is C
1
,

which vetoes option CBST. However, it is important to remember that veto power 
is not a technical decision only. For instance, the alternatives as well as the social 
actors to be considered are defined in the problem structuring phase, which is 
mainly a technical, political and social process.

Concluding we can say that technically speaking, the most defensible alter-
natives are CBST, ST and L. From a social conflict analysis point of view, it 
seems that alternative CBST is the one which might generate the maximum 
conflict. Even if CBST seems acceptable for the majority of the social actors 
involved, coalition C

1
 always ranks it in low positions. R has good evaluations, 

except by GERRSA which would be excluded in this case. L is always ranked 
in medium positions by all social actors. It might also be a social compromise. 
NP is not acceptable for most of social actors. In summary, we can state that 
alternatives L and R seem the only ones defensible from both technical and 
social points of view. All other options might maximize the social conflict or 
are not technically acceptable. It is interesting to note that business as usual is 
definitely not a desirable situation.

Table 8.9 Maximum likelihood rankings for coalition C2

First Second Third Fourth Fifth Sixth Seventh

CBST ST L R CB Pre CB NP
CBST ST R L CB Pre CB NP
ST CBST L R CB Pre CB NP
ST CBST R L CB Pre CB NP
CBST ST L CB Pre R CB NP
CBST ST L R CB Pre NP CB
CBST ST L R CB CB Pre NP
CBST ST R CB Pre L CB NP
CBST ST R L CB Pre NP CB
CBST ST R L CB CB Pre NP
CBST L ST R CB Pre CB NP
CBST R ST L CB Pre CB NP
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8.4 Concluding Remarks

In the area of environmental and resource management and in policies aiming at 
sustainable development, conflicting issues and interests are the normal state of 
affairs. Formal approaches like the one proposed here cannot resolve all conflict, 
but they can help to provide more insight into the nature of the conflict by providing 
systematic information; and to arrive at political compromises by making a com-
plex situation more transparent to policy-makers and lay people.

In the present chapter, distribution issues have been taken into consideration by 
means of an eclectic approach using concepts from land-use planning, fuzzy cluster 
analysis and social choice. Starting with a matrix showing the impact of different 
courses of action on each social actor, a fuzzy clustering procedure indicating the 
groups whose interests are closer is used. This is more or less in agreement with the 
hypotheses underlying the “minimal range theory” in coalition formation literature. 
Rankings for each “credible” group of social actors are obtained by means of the 
majority principle implemented using a Condorcet voting principle. The issue of 
cycles has been tackled thoroughly. The minority principle has also been consid-
ered by means of Moulin’s proportional veto function.

The approach proposed aims to be a normative model based on a set of formal
properties with some descriptive meaning. As a consequence, the properties of 
this approach have to be evaluated at least in the light of these three dimensions 
(descriptive, normative and formal). By adding Musgrave’s distinction between 
negligibility assumptions, domain assumptions and heuristic assumptions the 
following set of properties is obtained.

Descriptive domain assumptions:

• Evaluation scores are considered in the form of linguistic variables.
• The preference model is a complete pre-order structure.
• The most useful result for policy-making is considered to be a complete ranking 

of policy options.

Normative domain assumptions:

• Simplicity is desirable and means the use of a few ad hoc parameters as 
possible.

• Weights are meaningful only as importance coefficients.
• A minority principle must be implemented for ethical and prudential reasons.

Formal domain assumptions:

• a-level equivalence classes obtained by using max–min composition operations 
arriving at a max–min transitive closure.

• Stability of the clustering algorithm.
• Generality of the clustering algorithm.
• No reversal in the dendrogram.
• Monotonicity.
• Diversity.



• Symmetry.
• Positive Responsiveness.
• Unanimity.
• Neutrality.
• Reinforcement.

Heuristic descriptive assumptions:

• Transparency is a desirable feature of policy processes.
• Social actors and policy options can always be identified in a satisfactory way.
• The social impact matrix is a consistent and meaningful representation of the 

qualitative field work (institutional analysis, interviews, questionnaires, focus 
groups, and so on).

• A fuzzy cluster algorithm is a good tool for forming an idea of the credibility of 
similarities/diversities among social actors.

Heuristic formal assumptions:

• Semantic distance as a conflict indicator.
• C–K–Y–L ranking procedure as a proper tool for implementing the majority 

principle.
• Local stability of the ranking method.
• Cycle-breaking without losing neutrality.
• Proportional veto function as a proper tool for implementing the minority 

principle.

Negligibility formal assumptions:

• Anonymity.
• Independence of irrelevant alternatives.

Appendix 8.1

Let X and Y be two universes of discourse, a fuzzy binary relation R in the Cartesian 
product X × Y is a fuzzy set in X × Y defined by the membership function

m
m

R

R

X Y

x y x y x X y Y

: ,

( , ) ( , ),

× → [ ]
→ ∈ ∈

0 1

and

where the grade of membership m
R
 (x, y) indicates the degree of relationship 

between x and y.
The max–min composition is a standard operation for two fuzzy relations: given 

two relations R(x, y), Q(y, z) defined on X × Y and Y × Z, respectively, the max–min 
composition of R and Q, denoted as R Q� , is defined by

m m mR Q
y Y

R Qx z x y y z x X y Y z Z� ( , ) ( , ), ( , ) , .= ⎡⎣ ⎤⎦ ∈ ∈ ∈
∈
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By using the notion of max–min composition, one can derive new fuzzy rela-
tions. A transitive closure can be obtained by means of the following theorem 
(Leung, 1988, p. 125):

Theorem 1

Let R be any fuzzy binary relation. If for some k, the max–min composition Rk + 1 = Rk,
then the max–min transitive closure is

�
R R R R Rk= ∪ ∪ ∪ ∪2 3 ... .




