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Chapter 7
Searching for the “Technical Compromise 
Solution”: Solving the Discrete Multi-Criterion 
Problem in an SMCE Framework

7.1 Pair-Wise Comparison of Alternatives

Given a set of evaluation criteria G = {g
m
}, m= 1, 2,…, M, and a finite set A= {a

n
},

n= 1, 2,…, N of potential alternatives (actions), let us start with the simple assump-
tion that the performance (i.e. the criterion score) of an alternative a

n
 with respect 

to a judgement criterion g
m
 is based on an interval or ratio scale of measurement. 

For simplicity’s sake, it is assumed that a higher value of a criterion is preferred to 
a lower one (i.e. the higher, the better). The pair-wise comparison of alternatives 
proposed here is a preference modelling structure based on the so-called threshold 
model and fuzzy preference relations.

As shown in Chap. 4, by introducing a positive indifference threshold q the 
resulting preference model is the threshold model:
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where a
j
 and a

k
 belong to the set A of alternatives and g

m
 to the set G of evaluation 

criteria.
The double threshold model is a preference relation where indifference and 

preference thresholds have been introduced, i.e.:
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for any m = 1, 2,…, M, p being a positive preference threshold.
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A pseudo-order structure is a double threshold model upon which the following 
consistency condition is imposed
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A problem is that the modelling procedure based on the notion of a pseudo-
criterion may display a serious lack of stability. Such undesirable discontinuities 
make a sensitivity analysis (or robustness analysis) necessary; however, this impor-
tant analysis step is very complex in its execution because of the combinatorial 
nature of the various sets of data (Saltelli et al., 2004). One should combine varia-
tions of two thresholds (indifference and preference) and k possible scores of the M
criteria. A solution to this problem may be found in the concept of valued preference
relations, that is a preference relation in which it is necessary to assign to each 
ordered pair of alternatives (a

j
, a

k
) a value v(a

j
, a

k
) representing the “strength” or 

the “degree of preference” (Fishburn, 1970, 1973a; Roubens and Vincke, 1985; 
Ozturk et al., 2005).

In this framework, an interesting concept is the one of a fuzzy preference rela-
tion (Kacprzyk and Roubens, 1988). If A is assumed to be a finite set of N alterna-
tives, a fuzzy preference relation is an element of the N×N matrix R = (r

jk
), i.e.:

r a a j,k N rjk R j k jk= = ≤ ≤m ( , ) , , ,with and 01 2 1…  (7.4)

r
jk
 = 1 indicates the maximum credibility degree of the preference of a

j
 over a

k
; each 

value of r
jk
 in the open interval (0.5, 1) indicates a definite preference of a

j
 to a

k
 (a 

higher value means a stronger credibility); r
jk
 = 0.5 indicates the indifference 

between a
j
 and a

k
. This definition implies that fuzzy preference relations can be 

used as mathematical models of intensity of preference.
Usually, fuzzy preference relations are assumed to satisfy two properties:

(1) Reciprocity, i.e. r
jk
+r

kj
 = 1

(2) Max–min transitivity, i.e. if a
i
 is preferred to a

j
 and a

j
 is preferred to a

k
, then a

i

should be preferred to a
k
 with at least the same credibility degree, i.e.:

ij jk ik ij jkr r r r r≥ ≥ ⇒ ≥0 5 0 5. , . min ( , ) (7.5)

Since small variations of input data (scores and thresholds) are modelled by 
means of a continuous membership function, by using fuzzy preference modelling 
as developed in (7.6), the combinatorial drawbacks of the pseudo-criterion model 
can be avoided.

Let us now consider any criterion g
m
 belonging to the set G and any pair of 

alternatives a
j
 and a

k
 belonging to the set A. The criterion scores g

m
(a

j
) and g

m
(a

k
)

are measured on an interval or ratio scale. Let p
m
 be a constant preference threshold 

and q
m
 a constant indifference threshold for the criterion g

m
. Then the credibility 

degree m of preference (P) and indifference (I) relations between a
j
 and a

k
 can be 

computed as follows:
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where m(a
j
I a

k
) ∀g

m
(a

j
) and g

m
 (a

k
) and

m( ) ( ) ( )a P a if g a g aj k m j m k− > 0  (7.7)

m( ) ( ) ( )a P a if g a g ak j m j m k− < 0  (7.8)

In (7.6) the parameters (c
pm

) and (c
qm

) are derived in function of the cross-over 
point, i.e. the value of the difference between two criterion scores where the 
credibility degree of the corresponding indifference/preference relation is equal to 
0.5; see Figs. 7.1 and 7.2 for an example1 (in these figures in the y-axis the credibil-
ity degrees and in the x-axis the thresholds are represented respectively). The rela-
tions m(a

j
P a

k
)and m(a

k
P a

j
) are derived from values satisfying the condition of 

additive transitivity, thus it is trivial to prove that all these relations are max-min 
transitive (Kacprzyk and Roubens, 1988); however the property of reciprocity does 
not hold, thus these are not fuzzy preference relations in a strict sense. The relation 
m(a

j
I a

k
) is a resemblance relation, which is reflexive and symmetrical but no tran-

sitivity is implied (thus the Luce paradox cannot occur).
It has to be admitted that the shape of the function representing the credibility 

degrees of the preference and indifference relations is arbitrary. However, there do 
exist some consistency requirements e.g. that the functions be continuous and 
monotonic and that p

m
 > q

m
 thereby reducing considerably the degree of 

arbitrariness.
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where p
m
 and q

m
 are the preference and indifference thresholds respectively.
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1 Algebraically the parameters are the solution of this equation
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7.2  Extensions: The Case of Mixed Information 
on Criterion Scores

Ideally the information available for a policy problem should be precise, certain, 
exhaustive and unequivocal. But in real-world situations, it is often necessary to use 
information which lacks these characteristics and thus to deal with uncertainty of a 
stochastic and/or fuzzy nature in the data. Let us then introduce a more realistic 
assumption, i.e. that the set of evaluation criteria G = {g

m
}, m = 1, 2,…, M, on the 

set A = {a
n
}, n = 1, 2,…, N of potential alternatives may include either crisp (i.e. 

impacts measured on interval or ratio scales), stochastic and fuzzy criterion 
scores.

Fig. 7.1 Example of credibility degrees of a fuzzy indifference relation

Fig. 7.2 Example of credibility degrees of a fuzzy preference relation



The treatment of mixed information on criterion scores proposed here is 
mainly based on the semantic distance I developed some years ago (Munda, 1995, 
Chap. 6). This because this semantic distance allows us to deal consistently with 
an impact (or evaluation) matrix which may include crisp, stochastic or fuzzy 
measurements of the performance of an alternative with respect to an evaluation 
criterion. As a consequence the multi-criterion problem is considered in its more 
general form (the next section will show that ordinal criterion scores can also be 
considered). The only restriction is in the case of fuzzy information, when con-
tinuous, convex membership functions allowing for a definite integration are 
required.

Let us start with the case of fuzzy criterion scores (to complete the axiomatic 
system in Appendix 7.1 it is proved that this distance satisfies the property of trian-
gle inequality):

if m
1
(x) and m

2
(x) are two fuzzy numbers, one can write (see Ragade and Gupta, 

1977 for a formal proof):

f(x) = k  (x)       = k  (x)1 1 2 2m mand g(y) (7.10)

where f(x) and g(y) are two functions obtained by rescaling the ordinates of m
1
(x)

and
m

2
(x) through k

1
 and k

2
, such that
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The distance between all points of the membership functions is computed as 
follows:

If f(x) is defined on X = [x
L
, x

U
] and g(y) is defined on Y = [y

L'
,y

u'
]

where sets X and Y can be non-bounded from one or either sides, then

d

x y
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,

( ) = −∫∫  (7.12)

If the intersection between the two membership functions is empty, it is x > y ∀x
∈ X and ∀y ∈ Y, it follows that a continuous function in two variables is defined 
over a rectangle. Therefore the double integral can be calculated as iterated single 
integrals; the result is

dS f x g y E x E y( ), ( ) ( ) ( )( ) = −  (7.13)

where E(x) and E(y) are the expected values of the two membership functions.
When the intersection between two fuzzy sets is not empty, their distance is 

greater than the difference between the respective expected values, since |x – y| is 
always greater than (x – y). In this case one finds:
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This is the case of a double integral over a general region; since this is not 
vertically or horizontally simple, its computation is not possible by means of iter-
ated integration; it is necessary to take the limit of the Rieman sum. This problem 
can easily be overcome by means of numerical analysis (in Munda, 1995 a Monte 
Carlo type numerical algorithm for the computation of this distance was developed. 
This is presented in Appendix 7.2).

As an example, we will compute the semantic distance between a symmetrical 
and a LR fuzzy number. Let us assume:
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while the difference between their expected values is about 4.368.
From a theoretical point of view, the following main conclusions can be 

drawn:

(1) The absolute value metric is a particular case of the semantic distance
(2) The comparison between a fuzzy number and a crisp number is equal to the dif-

ference between the expected value of the fuzzy number and the value of the 
crisp number

(3) Stochastic information can also be taken into account

In sum the semantic distance allows us to deal with fuzzy numbers, probability 
distributions and crisp numbers with the theoretical guarantee that all these sources 
of information are tackled equivalently, thus solving an open problem for multi-
criteria methods dealing with mixed information. Of course, this search for an equiva-
lent treatment of available information implies a trade-off with precision. For 
example, if stochastic information only is available, a stochastic dominance approach 
is more effective (see e.g. Markowitz, 1989; Martel and Zaras, 1995), or if fuzzy 



numbers only have to be compared, Matarazzo and Munda (2001) present a more 
sophisticated approach based on area comparison. However, in the case of mixed 
information in a multi-criteria framework, the semantic distance illustrated here is 
probably the best available compromise solution between generality and precision. 
Moreover, the use of this semantic distance allows a homogeneous preference model-
ling on all the criteria, otherwise impossible; this can be illustrated as follows.

Going back to the pair-wise comparison of alternatives, let us assume f(x) = 
g

m
(a

j
) and g(y) = g

m
(a

k
), where g

m
 is any criterion belonging to the set G and a

j
 and 

a
k
 any pair of alternatives belonging to the set A. The criterion scores g

m
(a

j
) and 

g
m
(a

k
) are fuzzy or stochastic in nature. Let p

m
 be a preference threshold and q

m
 an 

indifference threshold for the criterion g
m
. Then we have:
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where

m( ) ,a I a x yj k ∀ and

m( ) ( ) ( )
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x y

−( )∫∫ > 0  (7.16)

m( ) ( ) ( )
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x y

−( )∫∫ < 0  (7.17)

One should note that the comparison between the criterion scores of each pair of 
actions is carried out by means of the semantic distance. Since the absolute value 
metric is a particular case of this distance, fuzzy, stochastic and crisp criterion 
scores are dealt with equivalently.

7.3 Extensions: Introducing Weights as Importance Coefficients

At this point, a very delicate step has still to be tackled, i.e. the exploitation of the 
inter-criteria information in the form of weights. Let us then assume the existence

7.3 Extensions: Introducing Weights as Importance Coefficients 139
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 of a set of criterion weights W = {w
m
}, m = 1, 2,…, M, with m

m

M

w =
=

∑ 1
1

 derived as 

importance coefficients. The problem is the theoretical guarantee that weights are 
really treated as importance coefficients and not as trade-offs. The point is that no 
connection can be made between criterion weights and the corresponding criterion 
intensity of preference. Our objectives are then:

(1) To find a way to combine weights with credibility degrees without a direct 
interpretation of the latter as intensity of preference

(2) To divide each criterion weight into two parts proportionally to the credibility 
degrees of the indifference and preference fuzzy relations. In doing so, the 

 requirement that m
m

M

w =
=

∑ 1
1

 should not be lost.

Let us define m
p
 as the fuzzy preference relation between a pair of alternatives 

and m
I
 as the fuzzy indifference relation between the same pair. Let us put m

min

= min(m
p
, m

I
) and m

max
 = max(m

p
, m

I
).

Clearly, it is m
p
 = m

min
 on the left of the intersection point between the indiffer-

ence and the preference fuzzy relations and vice versa on the right. I propose that a 
criterion weight w

m
 be divided proportionally to m

p
 and m

I
 according to (7.18).

m m

m m

w w

w w

1

2

=
+

=
+

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

min

max min

max

max min

m

m m

m

m m

 (7.18)

(7.18) presents the following properties:

m m mw w w1 2+ =  (7.19)

if w wm mminm = ⇒ =0 2  (7.20)

if wmmin maxm m= = ⇒ =0 0  (7.21)

if w w wm m mmin maxm m= ⇒ = =1 2

1

2
 (7.22)

As a consequence (7.18) meets our objective of keeping the sum of weights per-
fectly equal to one. Moreover, in (7.18) no direct use of the concept of intensity of 
preference is made; as a result we can be sure that criterion weights are being used 
consistently with their nature as importance coefficients. Finally if a criterion score 
is ordinal in nature, it can be considered a particular case where m

min
 = 0. Again 

the treatment of crisp, fuzzy, stochastic and ordinal criterion scores is perfectly 



equivalent. Moreover, when indifference and preference thresholds are not used, 
the corresponding criteria can be dealt with as ordinal criteria2, where
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Now an N × N matrix E can be built, where any generic element e
jk
 with j ≠ k is 

the result of the pair-wise comparison between alternatives j and k according to all the 
M criteria. Such a global pair-wise comparison is obtained by means of (7.24):

jk m jk m jk
m

M

e w P w I= +⎛
⎝⎜
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∑ ( ) ( )
1

21
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where w
m
 (p

jk
) and w

m
 (I

jk
) are derived from m

P
 and m

I
 through (7.18). It is

e  + e  = 1jk kj  (7.25)

Property 7.25 is very important since it allows us to consider matrix E as a voting
matrix i.e. a matrix where instead of using criteria, alternatives are compared by 
means of voters’ preferences (on the principle of one agent, one vote). This analogy 
between the multi-criterion and the social choice problem, as noted by Arrow and 
Raynaud (1986), is very useful for tackling the step of ranking the N alternatives in 
a consistent axiomatic framework: a Condorcet consistent rule can now be used to 
exploit the pair-wise comparisons to order alternatives.

7.4 Ranking of Alternatives in a Complete Pre-Order

The issue here is whether it is possible to find a ranking algorithm consistent with the 
desirable properties of social multi-criteria evaluation. And conversely, given the 
results of Arrow’s impossibility theorem (Arrow, 1963), whether it is possible to 
ensure that no essential property is lost. Both social choice literature and multi-
criteria decision theory agree that whenever the majority rule can be operationalized, 

2 If criterion scores are used with an ordinal meaning only, as we saw in Chap. 6, the following 
axiomatic conditions must be added (adapted from Arrow and Raynaud, 1986, p. 81–82).

Axiom 1: Diversity. Each criterion is a total order on the finite set A of alternatives to be ranked, 
and there is no restriction on criteria; they can be any total order on A.

Axiom 2: Symmetry. Since criteria have incommensurable scales, the only preference information 
they provide is the ordinal pair-wise preferences they contain.

Axiom 3: Positive Responsiveness. The degree of preference between two alternatives a and b is a 
strictly increasing function of the number and weights of criteria that rank a before b.

7.4 Ranking of Alternatives in a Complete Pre-Order 141
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it should be applied. However, majority rule often produces undesirable intransitivi-
ties, thus “more limited ambitions are compulsory. The next highest ambition for an 
aggregation algorithm is to be Condorcet” (Arrow and Raynaud, 1986, p. 77). As we 
have discussed in Chap. 6, in the framework of SMCE the C–K–Y–L ranking proce-
dure seems the most appropriate.

According to this ranking procedure, the maximum likelihood ranking of alter-
natives, in a social multi-criterion framework, is that ranking supported by the 
maximum number of criteria for each pair-wise comparison, summed over all pairs 
of alternatives. More formally, the C–K–Y–L ranking procedure can be adapted to 
a multi-criteria framework as follows.

All the N(N – 1) pair-wise comparisons compose the matrix E, in which we remem-
ber that e

jk
 + e

kj
 = 1, with j ≠ k. Let us call R the set of all the N! possible complete 

rankings of alternatives: R = {r
s
}, s = 1, 2,…, N!. For each r

s
, let us compute the 

corresponding score j
s
 as the sum of e

jk
 over all the 

N

2

⎛
⎝⎜

⎞
⎠⎟
 pairs jk of alternatives, i.e.

s
jkej = ∑  (7.26)

where j ≠ k, s = 1, 2, …N! and e
jk

∈r
s

The final ranking (r*) is that3 which maximizes (7.26), which is:

*
*

maxr e e Rjk jk⇔ = ∈∑j where  (7.27)

A final issue to be discussed is the matter of ties, i.e. the case that in some 
 individual profiles alternatives can be ranked in the same position. This does not 
constitute a problem since such an event can easily be taken into account in the 
concordance index used for the construction of an outranking matrix (see (7.24)).

However, if some ties occur in the outranking matrix E, this might sometimes 
create a problem for the interpretation of the final results. In this case, one has to 
choose a tie-breaking rule, thus neutrality is necessarily lost. The question is then: 
which is the probability of finding ties in the outranking matrix E? Proposition 7.1 
states that this probability is approximately zero; as a consequence ties in the out-
ranking matrix are not a serious problem. The proof of this proposition can be 
found in Appendix 7.1.

Proposition 7.1 In the outranking matrix E the event of obtaining ties, that is,

e e
M

jk kj= =
2

, is possible but its probability is approximately zero.

3 It is important to remember that sometimes the final ranking is not unique. This is a desirable 
property since it can be considered a measure of the robustness of the results provided.



7.5 Introducing the Minority Principle: A Borda Approach

At this point, we refer to the normative tradition in political philosophy, which also 
has an influence in modern social choice (Moulin, 1981) and public policy (Mueller, 
1978). The fundamental idea is that any coalition controlling more than 50% of the 
votes may be converted into an actual dictator. As a consequence, the “remedy to 
the tyranny of the majority is the minority principle, requiring that all coalitions, 
however small, should be given some fraction of the decision power. One measure 
of this power is the ability to veto certain subsets of outcomes.… “(Moulin, 1988, 
p. 272). The introduction of a veto power in a multi-criteria framework can be 
further justified in the light of the so-called “prudence” axiom (Arrow and Raynaud, 
1986, p. 95), whose principle is that it is not prudent to accept alternatives whose 
degree of conflictuality is too high (and thus might make the final decision very 
vulnerable4). The point is then how to implement this idea of veto power in a multi-
criteria framework.

Historically, the first attempt was made by Roy (1985, 1996) in the so-called 
ELECTRE methods. Basically, Roy proposed that for any pair of alternatives one 
should look at the majority principle expressed as a concordance index and to the 
minority principle in the form of the discordance index. The discordance index is 
calculated according to the intensity of preference any single criterion has against 
the concordance coalition. This means that for each single criterion a veto threshold 
must be defined.

In my opinion, the implementation of veto power in an SMCE framework 
presupposes three desirable characteristics:

1. To be independent of arbitrary ad hoc thresholds.
2. To consider the global opposition to the final ranking and not to a pair of alterna-

tives (Roy’s approach), or any specific possible ranking (Paelinck, 1978).
3. No specific intensity of preference should be considered (if a weight is com-

bined with a veto threshold for each criterion, the resulting concept of criterion 
importance also depends on the intensity of preference; this means that weights 
probably can no longer be considered importance coefficients).

It is interesting to note that an approach meeting these requirements can again 
be found in classical social choice theory, in particular, in the Borda approach. The 
Borda rule is normally used to find a Borda winner, where the winner is the alterna-
tive which receives the highest score in favour (an alternative receives N – 1 points 
if it ranks first, and so on until 0 score if it ranks last on a given criterion). In the 
same way, a Borda loser can be defined as the alternative which receives the highest 
score against (where N – 1 points are assigned to the last alternative in the ranking 
and so on until 0 points are given to the option which ranks first).

4 It should be noted that mitigating the vulnerability of the C–K–Y–L ranking procedure is very 
important since this is one of the main criticisms of the method.
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Formally, the procedure I am proposing can be described as follows by taking 
inspiration from the concept of frequency matrices (Hinloopen et al., 1983; 
Matarazzo, 1988). Let us call F the matrix where any element f

ij
 means that a given 

criterion g
m
 scores alternative a

j
 in the i-th ordinal position. Now it is possible to 

define the N × N matrix Φ where any element ø
ij
 represents the summation of the 

weights of criteria which score alternative j at the i-th position; that is

ij m

m

w
G i

f =
∈
∑  (7.28)

where G g g a f with G Gi m m j ij i= ={ } ⊂: ( )  (7.29)

i = 1, 2, …, N and j = 1, 2, …, N
It is obviously:

ij
i

N

ja Af
=
∑ = ∀ ∈

1

1 and  (7.30)

ij
j

N

with j Nf
=

∑ = =
1

1 1 2, ,...,  (7.31)

Now for any alternative a
j
 let us apply the Borda rule in search for the Borda 

loser, i.e.

j ij i
i

N

i

B a b

where b N N with i N N

( ) ( )

, ,... , , ,....,

= ×

= − − = −

=
∑ f

1

1 2 0 1 1

(7.32)

The vetoed alternative a–
j
 is the Borda loser, i.e. the a

j
 for which B(a

j
) = max.

One should note that by means of this procedure weights are never combined 
with intensities of preference and no ad hoc parameter is needed. Consistently with 
the Borda approach, only one alternative, considered the one with the greatest 
opposition, is selected to be vetoed. It must be remembered that the Borda proce-
dure respects all the properties of the C–K–Y–L, except local stability. This is the 
main reason why Borda consistent rules are more appropriate for the selection of 
one alternative only and not for the generation of rankings.

Finally a question to be answered is: do Borda and Condorcet rules normally lead 
to different solutions? One might in fact believe that the divergence of solutions is a 
very special case and thus the value added of introducing the Borda loser is very lim-
ited. As we have seen in Chap. 6, this question can be answered very easily. Fishburn 
(1973b) proves the following theorem: there are profiles where the Condorcet winner 
exists and it is never selected by any scoring method. Moulin (1988, p. 249) proves 
that “a Condorcet winner (loser) cannot be a Borda loser (winner)”. In other words, 
Condorcet consistent rules and scoring voting rules are deeply different in nature.



7.6 Numerical Examples

Let us consider an evaluation problem concerning three types of publicly provided 
goods (A, B, C). Let us assume that it has been agreed that these goods have to be 
evaluated by taking into account three dimensions, i.e. economic, social and envi-
ronmental, and that each dimension has the same weight.

These dimensions are operationalized by means of the following evaluation 
criteria:

1. Financial cost (economic dimension), weight = 0.167; its criterion scores are in 
millions of Euro measured in crisp terms, indifference threshold = €250,000, 
preference threshold = €500,000 (see Fig. 7.3).

2. Employment (economic dimension), weight = 0.167; its criterion scores are in 
number of persons/year, measured by means of symmetric fuzzy numbers, indif-
ference threshold = 30 persons/year, preference threshold = 50 persons/year (see 
Fig. 7.4).

3. Avoidance of social exclusion (social dimension), weight = 0.333; its criterion 
scores are qualitative, measured by means of an ordinal scale of measurement 
(good better than moderate).

Fig. 7.3 Indifference and preference fuzzy relations on the criterion “financial cost”
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4. Environmental impact (environmental dimension), weight = 0.333; its criterion 
scores are qualitative, measured by means of an ordinal scale of measurement 
(1° better than 2°).

This policy problem can be summarized in the evaluation matrix described in 
Table 7.1.

Let us now compare each pair of alternatives according to each criterion. For the 
ordinal criterion scores the comparison is obvious. For the other criteria, let us 
apply the semantic distance. The results are presented in Tables 7.2 and 7.3.

Now it is possible to compute the fuzzy preference and indifference relations. 
Values are given in Tables 7.4 and 7.5.

Fig. 7.4 Indifference and preference fuzzy relations on the criterion “employment”

Table 7.1 Evaluation matrix of a hypothetical public policy problem

Alternatives A B C

Criteria

financial cost 13.2 13.5 15
employment approx. 100 approx. 135 approx. 200
avoidance of social exclusion Very Good Moderate Good
environmental impact 2-nd 1-st 3-rd

Table 7.2 Values of the  semantic dis-
tance for the criterion “financial cost”

 Semantic distance

(A,B) 0.30
(A,C) 1.80
(B,C) 1.50



Through (7.18), let’s now compute the relative weights on each criterion for any 
pair of alternatives.

Criterion 1: “Financial Cost”.
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Criterion 2: “Employment”.

Table 7.3 Values of the semantic distance for 
the criterion “employment”

 Expected Semantic
 value difference distance

(A,B) –35.0081 56.2391
(A,C) –99.9977 107.9972
(B,C) –64.9896 87.8337

Table 7.4 Values of the fuzzy relations for 
the criterion “financial cost”

mp mI

(A,B) 0.2647 0.5946
(A,C) 0.9284 0.0442
(B,C) 0.9000 0.0743

Table 7.5 Values of the fuzzy relations 
for the criterion “employment”

mp mI

(B,A) 0.3290 0.3827
(C,A) 0.8000 0.1570
(C,B) 0.6282 0.2224
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w (P)

w (I)

w (P)

2 (B, A)

2 (A, B)

2 (C, A)

= 0.0762

= 0.08872

= 0.1379

ww (I)

w (P)

w (I)

2 (A, C)

2 (C, B)

2 (B, C)

= 0.0270

= 0.1218

= 0.043199

Criterion 3: “Avoidance of Social Exclusion”.

w (P)

w (P)

w (P)

3 (A, B)

3 (A, C)

3 (C, B)

= 0.333

= 0.333

= 0.333

Criterion 4: “Environmental Impact”.

w (P) = 

w (P) = 

w (P) = 

4 (B, A)

4 (A, C)

4 (B, C)

0.333

0.333

0.333

By applying (7.24) the following results are obtained (see Table 7.6):

By applying the C–K–Y–L rule to the 3! possible rankings it is:

ABC 0.485 + 0.513 + 0.841 = 1.839

BCA 0.513 + 0.159 + 0

j
j

1

2

=
= ..515 = 1.187

CAB 0.159 + 0.485 + 0.487 = 1.13

ACB 0.84

j
j

3

4

=
= 11 + 0.487 + 0.485 = 1.813

BAC 0.515 + 0.841 + 0.513 = 1.j5 = 8869

CBA 0.487 + 0.515 + 0.159 = 1.161j6 =

The final ranking r* is then BAC
Let us now look for the Borda loser. Matrix F is presented in Table 7.7:
Computing the elements f

ij
 of matrix Φ, we obtain:

Table 7.6 Matrix E of a hypothetical 
public policy problem

E

A B C

A

B

C

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

0 0 485 0 841

0 515 0 0 513

0 159 0 487 0

. .

. .

. .



f
f

f
f
f

1A

2A

3A

1B

= 0.167 + 0.333 = 0.5

 = 0.333

 = 0.167

 = 0.333

22B

3B

1C

2C

 = 0.167 + 0.167 = 0.33333

 = 0.333

 = 0.167

 = 0

f
f
f ..333

 = 0.333 + 0.167 = 0.5f 3C

Then matrix Φ is the following Φ =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 5 0 333 0 167

0 333 0 333 0 333

0 167 0 333 0 5

. . .

. . .

. . .

By applying(7.32), we have:
B(A) = 0.333 × 1 + 0.167 × 2 = 0.666
B(B) = 0.333 × 1 + 0.333 × 2 = 1
B(C) = 0.333 × 1 + 0.5 × 2 = 1.333
The Borda loser is alternative C which, in this case, is also the C–K–Y–L 

loser.
Let us now look at a completely ordinal example. As discussed in Box 4.1, with 

composite indicators it is essential to use weights as importance coefficients. 
Moreover, indifference and preference thresholds would increase the degree of 
arbitrariness too much, thus a proper ranking procedure for composite indicators 
should be ordinal in nature (Munda and Nardo, 2003). Let us then apply the C–K–
Y–L ranking procedure to the urban sustainability assessment example with the 
criterion weights illustrated in Sect. 4.5. The corresponding outranking matrix is 
presented in Table 7.8.

The 24 possible rankings and the corresponding scores j
s
 are the following 

(where A is Budapest, B is Moscow, C is Amsterdam and D is New York):

Table 7.7 Matrix F of a hypothetical public policy problem

Alternatives A B C

Criteria

financial cost 1-st 2-nd 3-rd
employment 3-rd 2-nd 1-st
avoidance of social exclusion 1-st 3-rd 2-nd
environmental impact 2-nd 1-st 3-rd
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B D C A 3,6   B C A D 2,9
D B C A 3,5   C B A D 2,9
D C B A 3,5   A B D C 2,9
B D A C 3,5   B A C D 2,8
D B A C 3,4   A D B C 2,8
B A D C 3,3   A D C B 2,8
B C D A 3,2   C D A B 2,7
C B D A 3,2   C A B D 2,6
D C A B 3,2   C A D B 2,5
C D B A 3,1   A B C D 2,5
D A B C 3,1   A C B D 2,5
D A C B 3,1   A C D B 2,4

In comparison with the results obtained by applying the linear aggregation rule, 
without any criterion weights as described in Chap. 1, Moscow is still in top posi-
tion, but this time Budapest is at the bottom. New York again scores better than 
Amsterdam.

Note that the use of weights and the improvement of the mathematical aggrega-
tion procedure (in comparison with the simple linear aggregation rule) do not 
change the results spectacularly. The structuring process, and in this case above all, 
the input information used for the indicator scores clearly determine the final ranking.
“Garbage in, garbage out” phenomena are almost impossible to avoid (Funtowicz 
and Ravetz, 1990). This is a fundamental lesson to bear in mind in real-world appli-
cations of SMCE. Good mathematical algorithms guarantee consistency with the 
problem structuring and nothing else. Of course, ceteris paribus, the mathematical 
properties of a ranking algorithm may make an important difference.

Let us conclude by examining thereafter examples from the field of composite 
indicators (Munda and Nardo, 2003). Let us take into consideration a simple hypo-
thetical example with three countries (A, B, C) to be ranked according to a composite
sustainability indicator. Let us assume that three dimensions have to be considered, 
i.e. economic, social and environmental, and that each dimension should have the 
same weight, i.e. 0.3333.

The following individual indicators are used:

Economic dimension

Indicator:  GDP per capita. Weight: 0.167. Objective: maximization of economic 
growth. Variable: US dollar per year.

Indicator:  Unemployment rate. Weight: 0.167. Objective: minimization of 
unemployed people. Variable: percentage of population.

Table 7.8 Weighted outranking matrix

 Budapest Moscow Amsterdam New York

Budapest 0 0.3 0.4 0.4
Moscow 0.7 0 0.5 0.6
Amsterdam 0.6 0.5 0 0.3
New York 0.6 0.4 0.7 0



Environmental dimension

Indicator:  Solid waste generated per capita. Weight: 0.333. Objective: minimiza-
tion of environmental impact. Variable: tons per year.

Social dimension

Indicator:  Income disparity. Weight: 0.167. Objective: minimization of distribu-
tional inequity. Variable: Q5/Q1.

Indicator:  Crime rate. Weight: 0.167. Objective: minimization of criminality. 
Variable: robberies per 1000 inhabitants.

The impact matrix described in Table 7.9 can then be constructed.
The pair-wise comparison results can be summarized in the following outrank-

ing matrix:

E

A B C

A

B

C
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⎡
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⎦
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⎥
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0 0 666 0 333

0 333 0 0 333

0 666 0 666 0

. .

. .

. .

By applying the C–K–Y–L rule to the 3! possible rankings we obtain:

ABC  =0.666 + 0.333 + 0.333 = 1.333

BCA  =0.333 + 0.333 +

j
j

1

2   0.666 = 1.333

 = 0.666 + 0.666 + 0.666 = 2

ACB  = 0.

CABj
j

3

4 3333 + 0.666 + 0.666 = 1.666

BAC  = 0.333 + 0.333 + 0.333 j5 == 1

CBA 0.666 + 0.666 + 0.333 = 1.666j6 =

The final ranking r* is then CAB.
Note that using one of the standard ways to produce a composite indicator would 

produce a different result. If the composite indicator for each country is calculated 
in terms of the difference from the group leader (which assigns 100 to the leading 
country and ranks the others in percentage points away from the leader), the impact 
matrix becomes as shown in Table 7.10.

The index will be calculated by averaging each indicator (with the same weights 
as in the multi-criterion matrix), obtaining I

A
 = 69.8, I

B
 = 79.7, and I

C
 = 81.9. The rank-

ing would be CBA, different from the ranking obtained with the other algorithm.

Table 7.9 Impact matrix of the illustrative numerical example

Indicators GDP Unemp. rate Solid waste Inc. dispar. Crime rate

Countries
A  22,000 0.17 0.4 10.5 40
B  45,000 0.09 0.45 11.0 45
C  20,000 0.08 0.35 5.3 80
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Consider another example, the composite indicator of Industrial innovation
(OECD, 2003). This composite indicator is based on four sub-indicators: Business 
enterprise R&D as percentage of GDP (BERD), the number of business researchers 
per 10,000 labour force (Researchers), the number of patents per million population 
(Patents), and the share of firms having introduced at least one new or improved 
product or process on the market (HT). For sake of simplicity let us take the first 
three countries of OECD classification (see Table 7.11) (see OECD, 2003, p. 19)5:

The composite index is the simple average of indicators (thus we have a case of 
equal weights): 41.7 for Austria, 35.2 for Belgium, and 29.5 for Australia.

However, the outranking matrix with weight equal to ¼ for each index is as 
follows:

E

AU A B

AU

A

B

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

0 0 0 25

1 0 0 25

0 75 0 75 0

.

.

. .

From the comparison of 3! possible combinations it turns out that the one with 
the highest score is (B, A, AU) with 2.256. Again the ranking produced with the 
standard methods of summing up normalized variables is different from that pro-
duced with the C–K–Y–L ranking procedure.

Table 7.10 Impact matrix: distance from the leader

Indicators GDP Unemp. rate Solid waste Inc. dispar. Crime rate

Countries
A  48.9 47.05 87.5 50.5 100
B  100 88.9 77.8 48.2 88.9
C  44.4 100 100 100 50

Table 7.11 Performance in the knowledge-based economy: a tentative indicator

Indicators  BERD Researchers Patents HT

Countries
Australia  23.1 22.0 8.3 64.5
Austria  38.7 27.5 24.4 76.3
Belgium  46.5 40.2 32.0 22.3

5 The indicators in the matrix shown in Table 7.11 have been normalized with the min-max method 
which ranks each country with respect to the global maximum (the leader = 100) and the global 
minimum (the laggard = 0). The index is calculated as: (actual value – minimum value)/(maximum 
value – minimum value)*100. Note that none of the countries chosen is either a maximum or a 
minimum.
6 The outranking matrix is the same for the original data and for the normalized indicators.



Let us conclude with a real-world example which shows the importance of a 
computational algorithm: the “Environmental Sustainability Index” (ESI). The 
index for 2005 was produced by a team of environmental researchers from Yale and 
Columbia Universities, in co-operation with the World Economic Forum and the 
Joint Research Centre of the European Commission.

The aim of the ESI is to benchmark the ability of 146 nations to protect the 
environment over the next decades, by integrating 76 data sets into 21 indicators of 
environmental sustainability (see Esty et al., 2005). The database used to construct 
the ESI covers a wide range of aspects of environmental sustainability ranging from 
the physical state and stress of the environmental systems (like natural resource 
depletion, pollution, ecosystem destruction) to the more general social and institu-
tional capacity to respond to environmental challenges. Poverty, short-term thinking
and lack of investment in capacity and infrastructure committed to pollution control 
and ecosystem protection thus compete to determine the measure of a country’s 
sustainability.

Although the official ESI ranking is based upon the linear aggregation of 21 
equally weighted indicators, an attempt has been made, in the methodological 
appendix, to apply the non-compensatory approach presented in this chapter, in 
order to tackle the issues of weights as “importance measure” and the compensability 
of different and crucial dimension of environmental sustainability (see the 
Methodological Appendix in Esty et al., 2005).

Figure 7.5 compares the ranking obtained by means of the non-compensatory 
aggregation rule with that of the ESI2005. In both cases all 21 indicators are equally 
weighted. From this figure it is clear that the aggregation method used affects prin-
cipally the middle-of-the-road and, to a lesser extent, the leader and the laggard 
countries. Overall, for the set of 146 countries, the assumption underlying the 

y = 0.9623x + 2.7684
R2 = 0.9261
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Fig. 7.5 Comparison of rankings obtained by the linear aggregation (ESI2005 on the x-axis) and 
the non-linear/non-compensatory –C–K–Y–L– (NCMA on the y-axis) rules
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aggregation scheme has an average impact of eight ranks and a rank-order correlation
coefficient of 0.962. In particular, while the top 50 countries move on average only 
five positions, the next 50 countries on average move twelve positions and the 
remaining 46 countries eight positions.

It is important to underline that although both aggregation schemes seem to 
produce consistent rankings (the R2 is 0.92), those rankings do not nevertheless 
coincide. Using the non-compensatory approach, 43 out of 146 countries experi-
ence a change in rank greater than ten positions (none before the 30th ESI rank). 
When compensability among indicators is not allowed, countries with very poor 
performance in some indicators, such as Indonesia or Armenia, worsen their rank 
with respect to the linear yardstick, whereas countries that have less extreme values 
improve their ranking, such as Azerbaijan or Spain. Table 7.12 shows the countries 
with the largest variation in their ranks.

7.7 Conclusion

This chapter has presented a new mathematical aggregation convention for the 
solution of the so-called discrete multi-criterion problem in a SMCE context. This 
multi-criterion aggregation convention can be divided into two main steps:

● Pair-wise comparison of alternatives
● Ranking of alternatives in a complete pre-order

Throughout the pair-wise comparison step it is guaranteed that ordinal, crisp, 
stochastic and fuzzy criterion scores are tackled equivalently. The double threshold 
model, generating a pseudo-order structure, is used for preference modelling; as a 
consequence the so-called Luce paradox is avoided. To deal with the lack of stability

Table 7.12 ESI rankings obtained by linear aggregation (LIN) 
and the C–K–Y–L ranking procedure: countries that greatly 
improve or greatly worsen their rank position

Aggregation
ESI rank 
with LIN

Rank with 
NCMC

Change
in rank

Im
pr

ov
em

en
t Azerbaijan  99  61 38

Spain  76  45 31
Nigeria  98  69 29
South Africa  93  68 25
Burundi 130 107 23

D
et

er
io

ra
tio

n

Indonesia  75 114 39
Armenia  44  79 35
Ecuador  51  78 27
Turkey  91 115 24
Sri Lanka  79 101 22
Average change over 

146 countries
 8



of the pseudo-order structure, valued preference relations modelled by means of 
fuzzy preference relations are introduced. Given the requirement of consistency 
between indifference and preference thresholds, the functional form of these fuzzy 
relations looks descriptively reasonable. Weights are never combined with intensities
of preference; as a consequence the theoretical guarantee that they are importance 
coefficients holds. Given that the sum of weights is equal to one, the pair-wise 
comparisons can be synthesized in a matrix, which can be interpreted as a voting 
matrix. Thanks to Proposition 7.1, it is known that ties are possible but that the 
probability of coming across one is approximately zero; neutrality is then in general 
respected.

The information contained in the voting matrix is exploited to rank all alterna-
tives in a complete pre-order by using a Condorcet consistent rule. The Condorcet 
tradition has been chosen for four main reasons:

● Non-compensability is implied, since intensities of preference are never used.
● Manipulation rules of weights guarantee that they are importance coefficients.
● It is the most consistent approach for generating a complete ranking.
● There is a low probability of obtaining rank reversals.

A problem connected with the use of Condorcet consistent rules is the occurrence
of cycles. A cycle-breaking rule normally demands some arbitrary choices, such 
as eliminating the cycle with the lowest support, and so on. In search of a non-
arbitrary cycle breaking rule the Condorcet–Kemeny–Young–Levenglick ranking 
procedure was chosen; no arbitrary choice is called for with this procedure. Given 
the fact that criterion weights are used, anonymity is necessarily lost. However, 
given that Arrow’s impossibility theorem forces us to make trade-offs between 
decisiveness and anonymity, the loss of anonymity in favour of decisiveness in our 
framework is a positive feature. An important advantage of the C–K–Y–L proce-
dure is that its properties are completely known and meet the requirements of social 
multi-criteria evaluation. A problem connected with the C–K–Y–L procedure is its 
computational complexity. Given that this problem can be solved by the numerical 
algorithm presented, its implementation in a multi-criteria framework is possible 
without any restriction on the number of alternatives considered. Consistently with 
the normative tradition in political philosophy and following the prudence axiom, 
the minority principle is introduced by means of a veto power. A vetoed alternative, 
the Borda loser, is found by means of the original Borda approach, implemented 
through a frequency matrix. This approach has been chosen because:

● It is independent of arbitrary ad hoc thresholds.
● It considers the global opposition to the final ranking.
● No specific intensity of preference is considered, thus weights continue to be 

importance coefficients.

The issue that makes multi-criterion aggregation conventions intrinsically 
complex, is the fact they are simultaneously formal, descriptive and normative
models (Munda, 1993). As a consequence, the properties of an approach have to 
be evaluated at least in the light of these three dimensions. In the framework of the 
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debate on the maximization assumption in microeconomics, Musgrave (1981) 
made a very useful classification of the assumptions made in economic theory. He 
makes a distinction between negligibility assumptions, domain assumptions and 
heuristic assumptions. The first type is required to simplify and focus on the 
essence of the phenomena studied. The second type of assumption is needed when 
applying a theory to specify the domain of applicability. The third type is needed 
either when a theory cannot be directly tested or when the essential assumptions 
give rise to such a complex model that successive approximation is required.

Let us then try to clarify the properties of the approach I am proposing in the 
light of these considerations.

Descriptive domain assumptions:

● Mixed information is tackled in the form of ordinal, crisp, stochastic and fuzzy 
criterion scores.

● The preference model is a pseudo-order structure with constant indifference and 
preference thresholds.

● The most useful result for policy-making is a complete ranking of alternatives.

Normative domain assumptions:

● Simplicity is desirable and means the use of as few ad hoc parameters as 
possible.

● Weights are meaningful only as importance coefficients and not as trade-offs. As 
a consequence, complete compensability cannot be implemented.

● A minority principle must be implemented for ethical and prudential reasons.

Formal domain assumptions:

● Unanimity
● Monotonicity
● Neutrality
● Reinforcement

Heuristic descriptive assumptions:

● Criteria can always be derived from the higher dimensions to which they univo-
cally belong.

● Valued preference relations (in the form of fuzzy relations) are useful for solving 
the problem of lack of stability of a pseudo-order structure.

Heuristic formal assumptions:

● Local stability
● Cycle-breaking without losing neutrality.
● Semantic distance as a compromise solution between generality and precision

Negligibility formal assumptions:

● Anonymity
● Independence of irrelevant alternatives



In conclusion, we may state that the main characteristic of the multi-criterion 
aggregation convention I am proposing is that all the steps are fully justified and all 
the properties made explicit. Of course this is not to imply that it is the “best” possible
approach to the discrete multi-criterion problem. It is a “reasonable” approach 
based on theoretical and empirical grounds, all of them explicit and thus open to 
evaluation in relation to a particular purpose.

Appendix 7.1

Proposition 7.1 In the outranking matrix E the event of finding ties, that is 

e e
M

jk kj= =
2

 is possible but its probability is approximately zero.

Proof
The probability that e e

M
jk kj= =

2
 always depends at least on the number of 

criteria (voters or individual indicators) in favour of a
j
 and a

k
. Let us also assume 

the existence of a set of criterion weights W = {w
m
}, m = 1, 2,…,M, with m

m

M

w =
=

∑ 1
1

,

which is very common in multi-criteria analysis and in the construction of compos-
ite indicators. Let us then look at the specific probabilities of each single factor.

Given S criteria in favour of a
j
 and T criteria in favour of a

k
, the probability of a

specific combination is 
1

M

S

⎛
⎝⎜

⎞
⎠⎟

.

A specific value on the vector of weights depends on how many numbers we are 
using for the definition of each weight. Let us assume that each weight is defined 
by two integer numbers (e.g. 0.02, 0.10, 0.25,.…,..), then the probability of a spe-

cific weight is 
1

102 . Since the value 0.00 does not make sense, the probability is 

1

99
. Thus a specific vector has a probability of 

M
1

99( ) .

At this point it is possible to compute the probability p(v) of finding a tie on the 
outranking matrix E. The probability is:

v

M

M

S

p =
⎛
⎝⎜

⎞
⎠⎟

× ( )1 1

99

It is evident that p
v

� 0.
Let us now assume that no criterion weight is used. In this case, to have a tie, 

it is necessary that the number of criteria M be even. The probability is
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v M

M

p =
⎛

⎝
⎜

⎞

⎠
⎟

× ( )1

2

1

2
, where 1

2
 is the probability of having an even number of

criteria (on the grounds of Laplace insufficient reason principle). In this case too, 
the probability is very low.7

One should note finally that the probability to get ties is always close to zero in 
the case where indifference and preference thresholds are used in the preference 
modelling.

In fact, given the vector of intensities I
m
, of criteria g

m
, the values m(P)

m
 and m(I)

m

depend on the thresholds q
m
 and p

m
 defined on each criterion g

m
. Let us denote with 

p(q
m
) and p(p

m
) the respective probabilities of getting a precise value of q

m
 and p

m

on a criterion g
m
. Then the probability of getting a specific vector of values on q

m

and p
m
 is m

m

M

qp ( )  
=1
∩  and m

m

M

pp ( )  
=1
∩ . The question now concerns the values of

p(q
m
) and p(p

m
)? In theory, the thresholds may vary a priori on any point of the 

intensity of preference I
m
, I

m
 being a set which is not finite or countable. Thus, it is8

p p( ) ( ) limq p
nm m

n

= = =
→ +∞

1
0

At this point it is possible to compute the probability p(v) of having a tie in the 
matrix E in the most general case, i.e. where thresholds and weights are defined on 
all criteria. It is

v

M
M

m

M

mM

S

q pp p p=
⎛
⎝⎜

⎞
⎠⎟

× × ×( )1 1

99
( ) ( )

Let us put p(q)
m
 = p(p)

m
 = λ, then

7 In the case with the smallest M, which makes sense with a ranking problem, i.e. four criteria, the

probability is p v = 1
2 0 083� . ; for M = 6, it is: p v = 1

40 0 025� . .
8 One could argue that, from a descriptive point of view, it is not very realistic to assume that all 
thresholds have the same probability along the set I

m
. Let us make the VERY optimistic assump-

tion that only ten thresholds of each type are possible for each criterion and four criteria exist. 

In this case the probability of a specific vector on q
m
 and p

m
 is 

8
1

10
0 00000001

⎛
⎝⎜

⎞
⎠⎟

= . . As one

can see, even in this optimistic case the probability is very close to zero.



v

M
M

M

S

p l=
⎛
⎝⎜

⎞
⎠⎟

× ×( )1 1

99
2

It is evident that p
v
� 0

Appendix 7.2

It is a trivial matter to prove that the semantic distance satisfies the properties of 
non-negativity and symmetry: the fulfilment of the property of triangle inequality 
can be proven as follows (Munda, 1995). Let us assume three functions:

f x X R g y Y R h z Z R( ): , ( ): , ( ):→ → →+ + +

Let’s also assume that X � Y � Z � ∅
We first prove that ∀ x ∈ X, ∀ y ∈ Y and ∀ z ∈ Z; the relationship
x y y z x z− + − ≥ −  is always true.

The total number of possible cases is 3!

x y z x y y z x z

x z y x y y z x z z y

≥ ≥ → − + − − − =
≥ ≥ → − + − + − − = − ≥

( ) ( ) ( )

( ) ( ) ( ) ( )

0

2 0

yy x z x y y z x z y x

y z x x y y z x z

≥ ≥ → − + + − − − = − ≥
≥ ≥ → − + + − − − +

( ) ( ) ( ) ( )

( ) ( ) (

2 0

)) ( )

( ) ( ) ( ) ( )

( )

= − ≥
≥ ≥ → − + − + − − + = − ≥
≥ ≥ → − + +

2 0

2 0

y z

z x y x y y z x z x y

z y z x y (( ) ( )− + − − + =y z x z 0

therefore

x y y z x z x X y Y z Z

f x g y h z

− + − ≥ − ≥ ∀ ∈ ∀ ∈ ∀ ∈
≥ ≥ ≥

0

0 0 0

, .

( ) , ( ) ( ) ,

and

Since and iit is:

x y y z x z f x g y h z dz dy dx
zyx

− + − − −⎡⎣ ⎤⎦ ≥∫∫∫ ( ) ( ) ( ) 0

This integral can be decomposed as follows:

x y f x g y h z dz dy dx y z f x g y h z dz dy dx

x

zyx zyx

− + − −

−

∫∫∫ ∫∫∫( ) ( ) ( ) ( ) ( ) ( )

zz f x g y h z dz dy dx x y f x g y dy dx

y z g y

zyx yx

zy

∫∫∫ ∫∫

∫∫

= − +

+ −

( ) ( ) ( ) ( ) ( )

( )) ( ) ( ) ( )h z dzdy x z f x h z dz dx
zx

− −∫∫
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This is because the triple integrals can be computed by means of iterated 

integrals and because it is: f x dx g y dy h z dz
x y z

( ) ( ) ( )= = =∫ ∫ ∫ 1

Therefore, it is:

S f x g y S g y h z S f x h z

S f x g y

d d d

d

( ), ( ) ( ), ( ) ( ), ( )

( ), ( )

[ ]+ [ ] − [ ]≥

[ ]
0 or

++ [ ] ≥ [ ]S g y h z S f x h zd d( ), ( ) ( ), ( )

When both variables x and y are defined in the same interval, i.e. X = Y = [x
L
, x

U
]

= [y
L'
, y

U'
], for reasons of consistency it is necessary to prove that the value of the 

semantic distance is other than zero. For simplicity let us say x
L
 = y

L
 = a and x

U
 = 

y
U
 = b where a < b. Let us now consider the following algebraic expression:

x y f x g y− ( ) ( ) . This product assumes the value of zero if at least one of its three 
elements is zero. Concerning f(x) and g(y), the following two assumptions are 
made:

( )
( ) ( , )

( )
1

0

0

f x x a b

f x x a or x b

> ∀ ∈
= = =

⎧
⎨
⎩ if

( )
( ) ( , )

( )
2

0

0

g y y a b

g y y a y b

> ∀ ∈
= = =

⎧
⎨
⎩ if or

For the factor x y−  it is:

( )
,

3
0

0

x y x y a b

x y x y

− > ∀ ≠ ∈[ ]
− = =

⎧
⎨
⎩ if

On the basis of these assumptions it is possible to conclude that

x y f x g y x y a b

x y f x g y

− > ∀ ≠ ∈
− =

⎧
⎨
⎩

( ) ( ) ( , )

( ) ( )

0

0 elsewhere

If we take into consideration the sum of all

x y f x g y x a b y a b i e

x y f x g y dy dx

− ∀ ∈[ ] ∀ ∈[ ]
−

( ) ( ) , , , . .

( ) ( ) ,

and

given thaat it isnot

and it is

yx

x y f x g y

x a b y a b

x y f x

∫∫ − =

∀ ∈[ ] ∀ ∈[ ]
−

( ) ( ) ,

, , ,

(

0

)) ( )g y dy dx
yx

>∫∫ 0

Note that

S f x g y iff x y x a b and y a b

i e iff a x y b
d ( ( ), ( )) , , ,

. . .

= = ∀ ∈[ ] ∀ ∈[ ]
= = =

0

This is true only if x and y are two equal, crisp real numbers.



Finally, one should note that if the distance between a fuzzy number and itself 
is computed by definition, the condition S

d
 ( f(x), f(x)) = 0 has to be imposed.

Appendix 7.3

To make the semantic distance presented in Sect. 7.2 operational, a Monte Carlo 
type numerical algorithm is required (Munda, 1995).

The initial assumptions are:

( )
( ) : ,

( ) : ,’ ’

1
f x X x x

g y Y x x

L U

L U

= [ ] →

= [ ] →

Μ

Μ

where M is the membership space.
(2) All x ∈ X and all y ∈ Y can be obtained by means of a random generator that 

supplies uniformly distributed numbers r ∈[0,1].
We have:

x rx r x

y rx r x
L U

L U

= + −
= + −

( )

( )’ ’

1

1

and

(3) The probability of obtaining a point p inside e.g. f(x), whose value on the x-axis
is x

0
 depends on the shape of the function. An auxiliary variable Z, with

z f x∈[ ]0,max ( ) , is then introduced by means of a random generator.

Now the procedure is as follows:
STEP 1: draw a random number r

0

STEP 2: x
0
 = r

0
x

L
 + (1 − r

0
) x

U

STEP 3: draw a random number Z
0

STEP 4: if Z
0

≤ f(x
0
) then go to next step

if Z
0
 > f(x

0
) then return to step 1.

STEP 5: draw a random number r
1

STEP 6: y
1
 = r

1
x

L'
 + (1 − r

1
)x

U'

STEP 7: draw a random number Z
1

STEP 8: if Z
1

≤ g(y
1
) then compute |x

0
 − y

1
|

if Z
1
 > g(y

1
) then return to step 5.

By repeating this procedure N times, N values of |x
i
 − y

i
| are obtained. The 

semantic distance between two fuzzy sets is approximately equal to the arithmetic 
mean of all the points bounded by their respective membership functions obtained 
by drawing random numbers. In more formal terms it is:

d

x y

i ii

N

S f x g y x y f x g y dydx
x y

N

i

( ), ( ) ( ) ( )

, ,..

,

( ) = −
−

=

∫∫ ∑ =� 1

1 2with .., .N

Of course, the greater N, the more precise the computation.
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