
Protecting the Intranet Against
“JavaScript Malware” and Related Attacks�

Martin Johns and Justus Winter

Security in Distributed Systems (SVS)
University of Hamburg, Dept of Informatics

Vogt-Koelln-Str. 30, D-22527 Hamburg
{johns,4winter}@informatik.uni-hamburg.de

Abstract. The networking functionality of JavaScript is restricted by
the Same Origin Policy (SOP). However, as the SOP applies on a doc-
ument level, JavaScript still possesses certain functionality for cross do-
main communication. These capabilities can be employed by malicious
JavaScript to gain access to intranet resources from the outside. In this
paper we exemplify capabilities of such scripts. To protect intranet hosts
against JavaScript based threats, we then propose three countermea-
sures: Element Level SOP, rerouting of cross-site requests, and restrict-
ing the local network. These approaches are discussed concerning their
respective protection potential and disadvantages. Based on this analysis,
the most promising approach, restricting the local network, is evaluated
practically.

We’re entering a time when XSS has become the new Buffer Overflow
and JavaScript Malware is the new shellcode.

Jeremiah Grossman [6]

1 Introduction

Web browsers are installed on virtually every contemporary desktop computer
and the evolution of active technologies like JavaScript, Java or Flash has slowly
but steadily transformed the web browser into a rich application platform. Fur-
thermore, due to the commonness of Cross Site Scripting (XSS) vulnerabilities
[3] the number of XSS worms [25] is increasing steadily. Therefore, large scale
execution of malicious JavaScripts is a reality nowadays. Additionally, if no XSS
flaw is at hand, a simple well written email usually suffices to lure a poten-
tial victim into visiting an innocent looking web page that contains a malicious
payload. For all these reasons, the browser was recently (re)discovered as a con-
venient tool to smuggle malicious code behind the boundaries of the company’s
firewall. While earlier related attacks required the existence of a security vulner-
ability in the browser’s source code or libraries, the attacks which are covered in
� This work was supported by the German Ministry of Economics (BMWi) as part of

the project “secologic”, www.secologic.org.

B. M. Hämmerli and R. Sommer (Eds.): DIMVA 2007, LNCS 4579, pp. 40–59, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Protecting the Intranet Against “JavaScript Malware” and Related Attacks 41

this paper simply employ the legal means that are provided by today’s browser
technology.

Within this context, the term “JavaScript Malware” was coined by J. Gross-
man [6] in 2006 to describe this class of script code that stealthy uses the web
browser as vehicle for attacks on the victim’s intranet. In this paper we exemplify
capabilities of such scripts and propose first defensive approaches.

1.1 Definitions

This paper focuses on web browser based attacks that target intranet resources.
Therefore, we frequently have to differentiate between locations that are either
within or outside the intranet. For this reason, in the remainder of this paper
we will use the following naming conventions:

Local IP-addresses: The specifier local is used in respect to the boundaries of
the intranet that a given web browser is part of. A local IP-address is therefore
an address that is located inside the intranet. Such addresses are rarely accessible
from the outside.

Local URL: If a URL references a resource that is hosted on a local IP-address,
we refer to is as local URL.

The respective counterparts external IP-address and external URL are defined
accordingly.

1.2 Transparent Implicit Authentication

With the term implicit authentication we denote authentication mechanisms,
that do not require further interaction after the initial authentication step. For
example the way HTTP authentication is implemented in modern browsers re-
quires the user to enter his credential for a certain web application only once per
session. Every further request to the application’s restricted resources is outfitted
with the user’s credentials automatically.

Furthermore, with the term transparent implicit authentication we denote au-
thentication mechanisms that also execute the initial authentication step in a
way that is transparent to the entity that is being authenticated. For example
NTLM authentication [4] is such an authentication mechanism for web appli-
cations. Web browsers that support the NTLM scheme obtain authentication
credentials from their underlying operating system. These credentials are de-
rived from the user’s operating system login information. In most cases the user
does not notice such an automatic authentication process at all. Often such
mechanism are summarized under the term “Single Sign On” (SSO).

Especially in the intranet context transparent implicit authentication is used
frequently. This way the company makes sure that only authorized users access
restricted resources without requiring the employees to remember additional
passwords or execute numerous, time-consuming authentication processes on a
daily basis.

42 M. Johns and J. Winter

The firewall as a means of authentication. A company’s firewall is often
used as a means of transparent implicit authentication: The intranet server are
positioned behind the company’s firewall and only the company’s staff has ac-
cess to computers inside the intranet. As the firewall blocks all outside traffic to
the server, it is believed that only members of the staff can access these servers.
For this reason intranet server and especially intranet web server are often not
protected by specific access control mechanisms. For the same reason intranet
applications often remain unpatched even though well known security problems
may exist and home-grown applications are often not audited for security prob-
lems thoroughly.

1.3 Cross Site Request Forgery

Cross Site Request Forgery (XSRF / CSRF) a.k.a. Session Riding is a client side
attack on web applications that exploits implicit authentication mechanisms.
The actual attack is executed by causing the victim’s web browser to create
HTTP requests to restricted resources. This can be achieved e.g., by including
hidden images in harmless appearing webpages. The image itself references a
state changing URL of a remote web application, thus creating an HTTP re-
quest (see Figure 1). As the browser provides this requests automatically with
authentication information, the target of the request is accessed with the privi-
leges of the person that is currently using the attacked browser. See [26] or [2]
for further details.

www.bank.com

Cookie: auth_ok

www.attacker.org

GET transfer.cgi?am=10000&an=3422421

Fig. 1. A CSRF attack on an online banking site

2 Attacking the Intranet with JavaScript

2.1 Using a Webpage to Get Access to Restricted Web Resources

As described in Section 1 many companies allow their employees to access the
WWW from within the company’s network. Therefore, by constructing a ma-
licious webpage and succeeding to lure an unsuspecting employee of the target
company into visiting this page, an attacker can create malicious script code that
is executed in the employee’s browser. As current browser scripting technologies
possess certain network capabilities and as the employee’s browser is executed
on a computer within the company’s intranet and the employee is in general out-
fitted with valid credentials for possibly existing authentication mechanisms (see

Protecting the Intranet Against “JavaScript Malware” and Related Attacks 43

Fig. 2. Using a webpage to access restricted web servers

Section 1.2), any script that runs inside his browser is able to access restricted
intranet resources with the same permissions as the employee would.

In the next Sections we examine the actual network capabilities and restric-
tions of existing active browser technologies and exemplify how these capabilities
can be used to circumvent authentication schemes.

2.2 A Closer Look at JavaScript

For security reasons, the networking functions of client-side browser technologies
are subject to major restrictions. We describe these restrictions only in respect
to JavaScript, but similar concepts apply to e.g., Flash or Java applets.

Network capabilities: Foremost JavaScript is limited to HTTP communica-
tion only. Furthermore, a script is not allowed to communicate with arbitrary
HTTP hosts. This is enforced by the Same Origin Policy (SOP): The Same Ori-
gin Policy was introduced by Netscape Navigator 2.0 [24]. It defines and limits
various rights of JavaScript. The origin of an element is defined by the protocol,
the domain and the port that were used to access this element. The SOP is sat-
isfied when the origins of two elements match. All explicit network functionality
of JavaScript is restricted to communication with targets that satisfy the SOP.
This effectively limits a script to direct communication with its origin host.

There is only one possibility for JavaScript to create HTTP requests to targets
that do not satisfy the SOP: The script can dynamically include elements like
images from foreign hosts into the document’s DOM tree [9].

Access rights: Additionally, the SOP defines the access rights of a given script.
A JavaScript is only allowed access to elements that are part of a document which
has been obtained from the same origin as the JavaScript itself. In this respect,
the SOP applies on a document level. Thus, if a JavaScript and a document
share a common origin, the SOP allows the script to access all elements that are
embedded in the document. Such elements could be e.g., images, stylesheets, or
other scripts. These granted access rights hold even if the elements themselves
where obtained from a different origin.

Example: The script http://exa.org/s.js is included in the document
http://exa.org/i.html. Furthermore i.html contains various images from

http://exa.org/s.js
http://exa.org/i.html
i.html

44 M. Johns and J. Winter

http://picspicspics.com. As the script’s and the document’s origin match,
the script has access to the properties of the images, even though their origin
differs from the script’s.

A loophole in the SOP: As explained above, the cross-domain networking
capabilities of JavaScript are restricted by the SOP. However, this policy allows
dynamically including elements from cross domain HTTP hosts into the DOM
tree by a JavaScript in its container document. This exception in the networking
policy and the fact that the SOP applies on a document level creates a loophole
in SOP, as this policy allows partial cross domain access. Depending on the type
of the element that was included in the document, the JavaScript’s capabilities
to gain information by the inclusion differs. In the next sections we explain how
this loophole can be exploited for malicious purposes.

2.3 Portscanning the Intranet

It was shown by various parties [19,21,7] how malicious web pages can use its
capability to port-scan the local intranet. While the specific techniques vary, the
general approach is always the same:

1. The script constructs a local URL that contains the IP-address and the port
that shall be scanned.

2. Then the script includes an element in the webpage that is addressed by this
URL. Such elements can be e.g., images, iframes or remote scripts.

3. Using JavaScript’s time-out functions and eventhandlers like onload and
onerror the script can decide whether the host exists and the given port
is open: If a time-out occurs, the port is probably closed. If an onload- or
onerror-event happens, the host answered with some data, indicating that
the host is up and is listening on the targeted port.

To launch such an discovery attack, the malicious script needs to know the
IP-range of the local intranet. In case this IP-range is unknown to the attacker,
he can use a Java-Applet [17] to obtain the IP-address of the computer that
currently executes the web browser which is vehicle of the attack. Using this
address the attacker’s script can approximate the intranet’s IP-range.

Limitation: Some browsers like Firefox enforce a blacklist of forbidden ports [23]
that are not allowed in URLs. In this case JavaScript’s port scanning abilities are
limited to ports that are not on this list. Other browsers like Internet Explorer
allow access to all ports.

2.4 Fingerprinting of Intranet Hosts

After determining available hosts and their open ports, a malicious script can
try to use fingerprinting techniques to get more information about the offered
services. Again the script has to work around the limitations that are posed
by the SOP. For this reason the fingerprinting method resembles closely the
port-scanning method that was described above [19,7].

http://picspicspics.com

Protecting the Intranet Against “JavaScript Malware” and Related Attacks 45

The basic idea of this technique is to request URLs that are characteristic for
a specific device, server, or application. If such a URL exists, i.e., the request
for this URL succeeds, the script has a strong indication about the technology
that is hosted on the fingerprinted host. For example, the default installation
of the Apache web server creates a directory called “icons” in the document
root of the web server. This directory contains image files that are used by the
server’s directory listing functionality. If a script is able to successfully access
such an image for a given IP-address, it can conclude that the scanned host
runs an Apache web server. The same method can be used to identify web
applications, web interfaces of network devices or installed scripting languages
(e.g., by accessing PHP eastereggs).

2.5 Attacking Intranet Servers

After discovering and fingerprinting potential victims in the intranet, the actual
attack can take place. A malicious JavaScript has for example the following
options:

Exploiting unpatched vulnerabilities: Intranet hosts are frequently not as
rigorously patched as their publicly accessible counterparts as they are believed
to be protected by the firewall. Thus, there is a certain probability that com-
paratively old exploits may still succeed if used against an intranet host. A
prerequisite for this attack is that these exploits can be executed by the means
of a web browser [7].

Opening home networks: The following attack scenario mostly applies to
home users. Numerous end-user devices like wifi routers, firewall appliances or
DSL modems employ web interfaces for configuration purposes. Not all of these
web interfaces require authentication per default and even if they do, the stan-
dard passwords frequently remain unchanged as the device is only accessible
from within the “trusted“ home network.

If a malicious script was able to successfully fingerprint such a device, there is
a certain probability that it also might be able to send state changing requests
to the device. In this case the script could e.g., turn off the firewall that is
provided by the device or configure the forwarding of certain ports to a host in
the network, e.g., with the result that the old unmaintained Windows 98 box in
the cellar is suddenly reachable from the internet. Thus, using this method the
attacker can create conditions for further attacks that are not limited to the web
browser any longer.

Cross protocol communication: Wade Alcorn showed in [1] how multi-part
HTML forms can be employed to send (semi-)valid messages to ASCII-based
protocols. Prerequisite for such an attempt is that the targeted protocol imple-
mentation is sufficient error tolerant, as every message that is produced this way
still contains HTTP-meta information like request-headers. Alcorn exemplified
the usage of an HTML-form to send IMAP3-messages to a mail-server which are
interpreted by the server in turn. Depending on the targeted server, this method
might open further fingerprinting and exploitation capabilities.

46 M. Johns and J. Winter

2.6 Leaking Intranet Content by Breaking DNS-Pinning

The SOP should prevent cross domain access to content hosted on intranet web
servers. In 1996 [27] showed how short lived DNS entries can be used to weaken
this policy.

Example: Attacking an intranet host located at 10.10.10.10 would roughly
work like this:

1. The victim downloads a malicious script from www.attacker.org
2. After the script has been downloaded, the attacker modifies the DNS answer

for www.attacker.org to 10.10.10.10
3. The malicious script requests a web page from www.attacker.org (e.g via

loading it into an iframe)
4. The web browser again does a DNS lookup request for www.attacker.org,

now resolving to the intranet host at 10.10.10.10
5. The web browser assumes that the domain values of the malicious script and

the intranet server match, and therefore grants the script unlimited access
to the intranet server.

To counter this attack modern browsers employ “DNS pinning”: The mapping
between a URL and an IP-address is kept by the web browser for the entire
lifetime of the browser process even if the DNS answer has already expired.
While in general this is an effective countermeasure against such an attack,
unfortunately there are scenarios that still allow the attack to work: Josh Soref
has shown in [28] how in a multi session attack a script that was retrieved from
the browser’s cache still can execute this attack. Furthermore, we have recently
shown [13] that current browsers are vulnerable to breaking DNS pinning by
selectively refusing connections.

Using this attack, the script can access the server’s content. With this ability
the script can execute refined fingerprinting, leak the content to the outside or
locally analyze the content in order to find further security problems.

Based on our findings, Kanatoko Anvil [16] demonstrated recently, that a
successful anti DNS-pinning attack also effects some browser plugins, like the
Flash player. As the Flash player’s scripting language ActionScript supports low
level socket communication, such an attack extends the adversary’s capabilities
towards binary protocols.

2.7 Attacks That Do Not Rely on JavaScript

Intranet exploration attacks like portscanning do not necessary have to rely on
JavaScript. It has been shown recently [5] that attacks similar to the vectors show
in Sections 2.3 can be staged without requiring active client-side technologies.
Instead timing analysis is employed.

Currently these attacks rely on a certain, not-standardized behaviour of the
Firefox web browser: In general whenever a browser’s rendering engine encoun-
ters an HTML element that includes remote content into the page, like image,

Protecting the Intranet Against “JavaScript Malware” and Related Attacks 47

script or style-tags, the browser sends an asynchronous HTTP request to re-
trieve the remote resource and resumes rendering the web page. However, the
link-tag does not adhere to this behaviour. Instead the rendering engine stops
the rendering process until the HTTP request-response pair, that was initiated
because of the tag, has terminated. Thus, by creating a webpage that contains
a link-element, that references a local URL, and an image-element, that is re-
quested from the attacker’s host, the attacker can use timing analysis to conclude
if in fact an actual host can be reached under a given local URL. Employing this
technique, an attacker can reliably create a mapping of the local lan. However,
the timing differences between the response time of a RST-package, that was
generated because of a closed port, and an actual HTTP-response are hard to
measure from the attacker’s position. For this reason fingerprinting attacks are
not yet feasible. As research in the area of these attack techniques is compara-
tively young and web browsers are still evolving, it is probable that there exist
more attack vectors which do not rely on active technologies.

2.8 Analysis

In the most cases CSRF attacks (see Section 1.3) target authentication mech-
anisms that are executed by the web browser, e.g., by creating hidden HTTP
requests that contain valid session cookies. The attacks covered in this paper are
in fact CSRF attacks that target an authentication mechanism which is based on
physical location: As discussed in Section 1.2, the firewall is used as a means of
transparent implicit authentication which is subverted by the described attacks.

The main problem in the context of the specified issues is that the attacked
intranet servers have very limited means to protect themselves against such at-
tacks. All they receive are HTTP requests from legitimate users, sometimes even
in a valid authentication context. Therefore, at the server side it is not always
possible to distinguish between requests that were intended by the user and re-
quests that were generated by a malicious JavaScript. In some cases evidence
like external referrers or mismatching host headers are available but this is not
always the case. Furthermore, some of the described attacks will still work even
when the server would be able to identify fraudulent requests.

Thus, a reliable protection mechanism has to be introduced at the client side.
Only at the client-side all required context information concerning the single
requests is available. Furthermore, to stop certain attacks, like the exploitation
of unpatched vulnerabilities, it has to be prevented that the malicious request
even reaches the targeted host.

3 Defense Strategies

In this section we discuss four possible strategies to mitigate the threats described
in Section 2. At first we assess to which degree already existing technology can
be employed. Secondly we examine whether a refined version of the Same Origin

48 M. Johns and J. Winter

Policy could be applied to protect against malicious JavaScript. The third tech-
nique shows how general client-side CSRF protection mechanisms can be extended
to guard intranet resources (a prior version of this approach was originally pro-
posed by us in [14]). The final approach classifies network locations and deducts
access rights on the network layer based on this classification. For every presented
mechanism, we assess the anticipated protection and potential problems.

3.1 Turning Off Active Client-Side Technologies

An immediate solution to counter the described attacks is to turn of active
client-side technologies in the web browser. To achieve the intended protection
at least JavaScript, Flash and Java Applets should be disabled. As turning off
JavaScript completely breaks the functionality of many modern websites, the
usage of browser-tools that allow per-site control of JavaScript like the NoScript
extension [10] is advisable.

Protection: This solution protects effectively against active content that is
hosted on untrusted web sites. However, this approach does not protect against
attacks, that do not rely on active technologies (see Section 3.1).

Furthermore, if an XSS weakness exists on a web page that is trusted by the
user, he is still at risk. Compared to e.g. Buffer Overflows, XSS is a vulnerability
class that is often regarded to be marginal. This is the case especially in respect
to websites that do not provide serious services, as an XSS hole in such a site has
only a limited attack surface in respect to causing “real world“ damage. For this
reason such web sites are frequently not audited thoroughly for XSS problems.

Any XSS hole can be employed to execute the attacks that are subject of
this paper. This is the analogy between XSS and Buffer Overflows, that was
mentioned in the introducing quote by J. Grossman: As a Buffer Overflow enables
the attacker to run the shellcode in a trusted binary, an XSS vulnerability enables
the attacker to run script code in the context of a trusted web application and
therefore inside the victims browser.

Drawbacks: In addition to the limited protection, an adoption of this protec-
tion strategy will result in significant obstacles in the user’s web browsing. The
majority of modern websites require active client-side technologies to function
properly. With the birth of the so-called “Web 2.0” phenomenon this trend even
increases. The outlined solution would require a site-specific user-generated de-
cision which client-side technologies should be permitted whenever a user visits
a website for the first time. For this reason the user will be confronted with nu-
merous and regularly occurring configuration dialogues. Furthermore, a website’s
requirements may change in the future. A site that does not employ JavaScript
today, might include mandatory scripts in the future. In the described protection
scenario such a change would only be noticeable due to the fact that the web
application silently stopped working correctly. The task to determine the reason
for this loss of functionality lies with the user.

Protecting the Intranet Against “JavaScript Malware” and Related Attacks 49

3.2 Extending the SOP to Single Elements

As discussed in Section 2 a crucial part of the described attacks is the fact that
the SOP applies on a document level. This allows a malicious JavaScript to
explore the intranet by including elements with local URLs into documents that
have an external origin. Therefore, a straight forward solution would be to close
the identified loophole by extending the SOP to the granularity of single objects:

Definition 1 (Element Level SOP). In respect to a given JavaScript an el-
ement satisfies the Element Level SOP if the following conditions are met:

• The element has been obtained from the same location as the JavaScript.
• The document containing the element has the same origin as the JavaScript.

Only if these conditions are satisfied the JavaScript
• is allowed to access the element directly and
• is permitted to receive events, that have been triggered by the element.

Jackson et. al describe in [12] a similar approach. In their work they extend
the SOP towards the browser’s history and cache. By doing so, they are able to
counter attacks that threaten the web user’s privacy.

Protection: Applying the SOP on an element level would successfully counter
attacks that aim to portscan the intranet or fingerprint internal HTTP-services
(see Sections 2.3 and 2.4). These attacks rely on the fact that events like onerror
that are triggered by the inclusion of local URLs can be received by attacker
provided JavaScript. As the origin of this JavaScript and the included ele-
ments differs, the refined SOP would not be satisfied and therefore the mali-
cious JavaScript would not be able to obtain any information from the inclusion
attempt.

However, refined and targeted fingerprinting attacks may still be feasible.
Even if elements of a different origin are not directly accessible any longer, side
effects that may have been caused by these elements are. E.g., the inclusion of
an image causes a certain shift in the absolute positions of adjacent elements,
which in turn could be used to determine that the image was indeed loaded
successfully. Furthermore, the attacks described in Section 2.5 would still be
possible. Such an attack consists of creating a state-changing request to a well
known URL, which would still be allowed by the refined policy. Also the content
leaking attack described in Section 2.6 would not be prevented. The basis of the
attack is tricking the browser to believe that the malicious script and the at-
tacked intranet server share the same origin. Nonetheless, the feasibility of these
still working attacks depends on detailed knowledge of the intranet’s internal
layout. As obtaining such knowledge is prevented successfully by the outlined
countermeasure the protection can still be regarded as sufficient, provided the
attacker has no other information leak at hand.

Drawbacks: The main disadvantage of this approach is its incompatibility to
current practices of many websites. Modern websites provide so called web APIs
that allow the inclusion of their services into other web applications. Such ser-
vices are for example offered to enable the inclusion of external cartography

50 M. Johns and J. Winter

material into webpages. Web APIs are frequently implemented using remote
JavaScripts that are included in the targeted webpage by a script-tag. If a
given browser starts to apply the SOP on an element level, such services will
stop working.

A further obstacle in a potential adoption of this protection approach is the
anticipated development costs, as an implementation would require profound
changes in the internals of the web browser.

3.3 Rerouting Cross-Site Requests

As discussed in Section 2.8, the attacks shown in Section 2 are CSRF attacks
which exploit the fact that the firewall is used as a means of transparent implicit
authentication. In [14] we proposed RequestRodeo a client side countermeasure
against CSRF attacks in general. This section presents a refined version of our
original concept that is geared towards protecting companies’ intranets against
JavaScript Malware.

RequestRodeo’s protection mechanism is based on a classification of outgoing
http requests:

Definition 2 (entitled). A given HTTP request is classified to be entitled if
and only if:

• It was initiated because of the interaction with a web page and
• the URLs of the originating page and the requested page satisfy the SOP.

Only requests that were identified to be entitled are permitted to carry implicit
authentication information.

According to this definition, all unentitled requests are “cross site requests”
and therefore suspicious to be part of a CSRF attack and should be treated
with caution. Cross-site request are fairly common and an integral part of the
hyperlink-nature of the WWW. Therefore, a protection measure that requires
the cancellation of such requests is not an option.

Instead we proposed to remove all authentication information from these re-
quests to counter potential attacks. However, in the given case the requests do
not carry any authentication information. They are implicitly authenticated as
their origin is inside the boundaries that are defined by the firewall. For this
reason other measures have to be taken to protect local servers. Our proposed
solution introduces a reflection service that is positioned on the outer side of the
firewall. All unentitled requests are routed through this server. If such a request
succeeds, we can be sure that the target of the request is reachable from the
outside. Such a target is therefore not specifically protected by the firewall and
the request is therefore permissible.

The method that is used to do the actual classification is out of scope of this
paper. In [14] we introduced a client side proxy mechanism for this purpose,
though ultimately we believe such a classification should be done within the web
browser.

Example: As depict in figure 3a a web browser requests a webpage from a
server that is positioned outside the local intranet. In our scenario the request is

Protecting the Intranet Against “JavaScript Malware” and Related Attacks 51

Inner Firewall

Intranet webserver

RequestRodeo

Malicious site

Reflection server

OK

Outer Firewall

1

3

2

Inner Firewall

Intranet webserver

RequestRodeo

Malicious site

Reflection server

Outer Firewall

1

3

2

a. legal request b. prohibited request

DMZ DMZ

DENY

Fig. 3. Usage of a reflection service

unentitled. It is therefore routed through the reflection service. As the reflec-
tion service can access the server unhindered, the browser is allowed to pose
the request and receives the webpage’s data. The delivered webpage contains a
malicious script that tries to request a resource from an intranet web server (see
figure 3b). As this is a cross domain request, it also is unentitled and therefore
routed through the reflection service as well. The reflection service is not able
to successfully request the resource, as the target of the request lies inside the
intranet. The reflection service therefore returns a warning message which is
displayed by the web browser.

Position of the service: It is generally undesirable to route internal web traffic
unprotected through an outside entity. Therefore the reflection service should
be positioned between the outer and an inner firewall. This way the reflection
service is treated as it is not part of the intranet while still being protected by
the outer firewall. Such configurations are usually used for DMZ (demilitarized
zone) hosts.

Protection: The attack methods described in Section 2.3 to Section 2.5 rely
on executing a JavaScript that was obtained from a domain which is under (at
least partial) control of the attacker. In the course of the attack, the JavaScript
creates HTTP requests that are targeted to local resources. As the domain-value
for local resources differs from the domain-value of the website that contains the
malicious script, all these requests are detected to be cross-site request. For this
reason they are classified as unentiteld. Consequently, these request are routed
through the reflection service and thus blocked by the firewall (see Figure 3).

Therefore, the usage of a reflection service protects effectively against ma-
licious JavaScript that tries to either port-scan the intranet (see Section 2.3),
fingerprint local servers (Section 2.4) or exploit unpatched vulnerabilities by
sending state changing requests (Section 2.5).

The main problem with this approach is its incapability to protect against
attacks that exploit the breaking of the web browser’s DNS pinning feature
(see Section 2.6). Such attacks are based on tricking the browser to access local
resources using an attacker provided domain-name (e.g., attacker.org). Be-
cause of this attack method, all malicious requests exist within that domain

attacker.org

52 M. Johns and J. Winter

and are therefore not recognised to be suspicious. Thus, these requests are not
routed through the reflection service and can still execute the intended attack.
As long as modern web browsers allow the breaking of DNS pinning, the pro-
tection provided by this approach is not complete. However, executing such an
attack successfully requires detailed knowledge on the particular properties of
the attacked intranet. As obtaining knowledge about the intranet is successfully
prevented by the countermeasure, the feasibility of anti-DNS-pinning based at-
tacks is questionable.

Drawbacks: Setting up such a protection mechanism is comparatively complex.
Two dedicated components have to be introduced: The reflection service and an
add-on to the web browser that is responsible for classification and routing of
the HTTP requests. Furthermore, a suitable network location for the reflection
service has to exist. As small-scale and home networks rarely contain a DMZ,
the user either has the choice of creating one, which requires certain amounts
of networking knowledge, or to position the reflection service outside the local
network, which is objectionable.

The most appropriate deployment scenario for the proposed protection ap-
proach is as follows: Many companies already require their employees to use an
outbound proxy for WWW-access. In such cases the classification engine, that is
responsible for routing non-trusted request through the reflection service, could
be included in the existing central proxy. This way all employees are transpar-
ently using the protection measure without additional configuration effort.

3.4 Restricting the Local Network

As introduced in Section 1 we refer to addresses that are located within the
intranet as local. This notation implies a basic classification that divides net-
work addresses into either local or external locations. If the web browser could
determine to which group the origin and the target of a given request belong, it
would be able to enforce a simple yet effective protection policy:

Definition 3 (restricted local network). Hosts that are located inside a re-
stricted local network are only accessible by requests that have a local origin.
Therefore, inside such a network all HTTP requests with an external origin that
target at a local resource are forbidden.

With requests with an external origin we denote requests that were generated
in the execution context of a webpage that was received from an external host.
Unlike the proposed solution in Section 3.3 this classification does not take the
domain-value of the request’s origin or target into account. Only the actual IP-
addresses are crucial for a policy-based decision.

Protection: All the attack methods specified in Section 2 depend on the capa-
bility of the malicious script to access local elements in the context of a webpage
that is under the control of the attacker: The portscanning attack (Sec. 2.3)
uses elements with local URLs to determine if a given host listens on the URL’s
port, the fingerprinting (Sec. 2.4) and local CSRF (Sec. 2.5) methods create

Protecting the Intranet Against “JavaScript Malware” and Related Attacks 53

local URLs based on prior application knowledge, breaking DNS-pinning (Sec.
2.6) tries to let the browser believe that an attacker owned domain is mapped
to a local IP-address, and even the methods that do not rely on JavaScript (Sec.
3.1) require the usage local URLs to function. Therefore, the attacker’s ability to
successfully launch one of the specified attacks depends on his capability to cre-
ate local HTTP requests from within a webpage under his control. By definition
the attacker’s host is located outside the intranet. Thus, the starting point of
the attack is external. As the proposed countermeasure cancels all requests from
an external origin to local resources, the attacker is unable to even bootstrap his
attack.

Drawbacks: The configuration effort of the proposed solution grows linearly
with the complexity of the intranet. Simple networks that span over a single
subnet or exclusively use private IP-addresses can be entered fairly easy. How-
ever, fragmented networks, VPN setups, or mixes of public and private address
ranges may require extensive configuration work.

Furthermore, another potential obstacle emerges when deploying this protec-
tion approach to mobile devices like laptops or PDAs. Depending on the current
location of the device, the applicable configuration may differ. While a poten-
tial solution to this problem might be auto-configuration based on the device’s
current IP-address, overlapping IP-ranges of different intranets can lead to am-
biguities, which then consequently may lead to holes in the protection.

3.5 Comparison of the Proposed Protection Approaches

As the individual protection features and disadvantages of the proposed ap-
proaches have already been discussed in the preceding sections, we concentrate
in this section on aspects that concern either potential protection, mobility or
anticipated configuration effort (see Table 1). The technique to selectively turn
of active technologies (see Section 3.1) is left out of this discussion, due to the
approach’s inability to provide any protection in the case of an exploited XSS
vulnerability.

Protection: The only approach that protects against all presented attack vec-
tors is introducing a restricted local network, as this is the sole technique that
counters effectively anti DNS-pinning attacks. However, unlike the other attack
methods that rely on inherent specifics of HTTP/HTML, successfully attacking
DNS-pinning has to be regarded as a flaw in the browser implementation. There-
fore, we anticipate this problem to be fixed by the browser vendors eventually. If
this problem is solved, the anticipated protection of the other approaches may
also be regarded to be sufficient.

Configuration effort & mobility: The element level SOP approach has the
clear advantage not to require any location-depended configuration. Therefore,
the mobility of a device protected by this measure is uninhibited. But as some
sites’ functionality depends on external scripts, adopters of this approach instead
would have to maintain a whitelist of sites, for which document level access to

54 M. Johns and J. Winter

cross-domain content is permitted. As the technique to reroute cross-site requests
requires a dedicated reflection service, the provided protection exists only in net-
works that are outfitted accordingly, thus hindering the mobility of this approach
significantly. Also a restricted local network depends on location specific config-
uration, resulting in comparable restrictions. Furthermore, as discussed above,
a restricted local network might lead to extensive configuration overhead.

Conclusion: As long as breaking DNS-pinning is still possible with current
browsers, an evaluation ends in favor of the restricted local network approach. As
soon as this browser flaw has been removed, rerouting cross-site request appears
to be a viable alternative, especially in the context of large-sized companies
with non-trivial network set-ups. Before an element level SOP based solution
is deployed on a large scale, the approach has to be examined further for the
potential existence of covert channel (see Section 3.2).

Table 1. Comparison of the proposed protection approaches

No JavaScr. Element SOP Rerout. CSR Restr. network
Prohibiting Exploring the Intranet (+)∗ (+)∗ + +
Prohibiting Fingerprinting Servers + + + +
Prohibiting IP-based CSRF - - + +
Resisting Anti-DNS Pinning + - - +
Mobile Clients + + - -
No Manual Configuration -∗∗ + - -

+: supported, -: not supported, ∗: Protection limited to JS based attacks, ∗∗: Per site
configuration.

4 Evaluation

4.1 Implementation

Based on the discussion above, we chose to implement a software to enforce a
restricted local network, in order to evaluate feasibility and potential practical
problems of this approach [30].

We implemented the approach in form of an extension to the Firefox web
browser. While being mostly used for GUI enhancements and additional func-
tions, the Firefox extension mechanism in fact provides a powerful framework
to alter almost every aspect of the web browser. In our case, the extension’s
functionality is based mainly on an XPCOM component which instantiates a
nsIContentPolicy [22]. The nsIContentPolicy interface defines a mechanism that
was originally introduced to allow the development of surf-restriction plug-ins,
like parental control systems. It is therefore well suited for our purpose.

By default our extension considers the localhost (127.0.0.1), the private
address-ranges (10.0.0.0/8, 192.168.0.0/16 and 172.16.0.0/12) and the link-local
subnet (169.254.0.0/16) to be local. Additionally the extension can be configured
manually to include or exclude further subnets in the local-class.

Every outgoing HTTP request is intercepted by the extension. Before passing
the request to the network stack, the extension matches the IP-addresses of the

Protecting the Intranet Against “JavaScript Malware” and Related Attacks 55

request’s origin and target against the specifications of the address-ranges that
are included in the local-class. If a given request has an external origin and a
local target it is dropped by the extension.

By creating a browser extension, we hope to encourage a wider usage of the
protection approach. This way every already installed Firefox browser can be
outfitted with the extension retroactively. Furthermore, in general a browser
extension consists of only a small number of small or medium sized files. Thus,
an external audit of the software, as it is often required by companies’ security
policies, is feasible.

An alternative to implementing a browser extension would have been to re-
alize the outlined protection mechanism in the form of a client-side web proxy.
A proxy has the advantage of not being restricted to one single browser brand.
Furthermore, such a proxy could be installed company wide at a central location,
thus minimizing configuration and maintenance effort. Unfortunately establish-
ing the origin for a given HTTP request is a non-trivial task outside the web
browser. Achieving this within a proxy requires substantial alteration of incom-
ing HTML content (see [14]), which is an error prone exercise, due to dynamic
content creation by JavaScript.

4.2 Practical Evaluation

Our testing environment consisted of a PC running Ubuntu Linux version 6.04
which was located inside a firewalled subnet employing the 192.168.1.0/24 pri-
vate IP-address range. Our testing machine ran an internal Apache webserver
listening on port 80 of the internal interface 127.0.0.1. Furthermore, in the same
subnet an additional host existed running a default installation of the Apache
webserver also listening on port 80. The web browser that was used to execute
the tests was a Mozilla Firefox version 2.0.0.1. with our extension installed. The
extension itself was configured using the default options.

Besides internal testing scripts, we employed public available tools for the prac-
tical evaluation of our implementation. To test the protection abilities against
portscanning and fingerprinting attacks, we used the JavaScript portscanner from
SPI Dynamics that is referenced in [19]. To evaluate the effectiveness against anti
DNS-pinning attacks we executed the online demonstration provided by [15] which
tries to execute an attack targeted at the address 127.0.0.1.

The results turned out as expected. The portscanning and fingerprinting at-
tempts were prevented successfully, as the firewall rejected the probing requests
of the reflection service. Also as expected, the anti DNS-pinning attack on the lo-
cal web server was prevented successfully. Furthermore the extension was able to
detect the attack, as it correctly observed the change of the adversary’s domain
(in this case 1170168987760.jumperz.net) from being remote to local.

4.3 Limitations

During our tests we encountered a possible network setup that may yield prob-
lems with our approach. A company’s web-services are usually served from

1170168987760.jumperz.net

56 M. Johns and J. Winter

within a DMZ using public IP-addresses. Unfortunately, the “local”/”external”-
classification of hosts located in a DMZ is not a straight-forward task. As the
hosts’ services are world-reachable the respective IPs should be classified as “ex-
ternal” to allow cross-domain interaction between these services and third party
web applications. However, in many networks the firewall setup allows connec-
tions that origin from within the company’s network additional access rights to
the servers positioned in the DMZ. For example internal IPs could be permitted
to access the restricted FTP-port of the webserver to update the server’s con-
tent. Thus, in such setups a malicious JavaScript executed within the intranet
also possesses these extended network capabilities.

5 Related Work

In this section we sum up related publications. As, to the best of our knowledge,
no work has been published yet that directly deals with the threats to the intranet
specified in this paper, we describe approaches that deal with related web appli-
cation threats in general. We thereby focus on protection mechanisms that are
positioned at the client side. If applicable we discuss if the described approaches
can be extended to protect the intranet against JavaScript based attacks.

Lam et al. [20] discus the reconnaissance probing attack (see Section 2.3) as a
tool to identify further victims in the context of web-server worm propagation.
They propose several options for client-side defense mechanisms, like limiting the
number of cross-domain requests. However, as they address the issues only in the
context of large scale worm propagation and DDoS attacks, these measures do
not promise to be effective against targeted intranet-attacks. The paper contains
an excellent analysis of existing restrictions posed by different web browsers, like
number of allowed simultaneous connections.

Vogt et al. [29] propose a combination of static analysis and dynamic data
tainting to stop the effects of XSS attacks. The outlined approach does not
identify or stop the actual injected script but instead aims to prohibit resulting
leakage of sensitive information. To achieve this, their technique employs an
enhanced JavaScript engine. The added features of this modified engine are
twofold: For one, the flow of sensitive data, like cookie-values, through the script
can be tracked dynamically. This way the mechanism detects and prevents the
transmission of such data to the adversary. Furthermore, via static analysis,
all control flow dependencies in scripts that handle sensitive information are
established. This is done to identify indirect and hidden channels that could be
abused for data leakage. If such channels are identified, their communication
with external hosts is prevented.

In a related approach, Kirda et al. [18] describe Noxes, an application-level
firewall that examines incoming HTML data in respect to potential sources for
information leaks. Based on this analysis the firewall dynamically creates connec-
tion rules, to stop HTTP requests that are suspicious to transport confidential
data, like cookie values. Noxes is concerned with the data content of outgoing
requests and not with the target. For this reason the described algorithm is not

Protecting the Intranet Against “JavaScript Malware” and Related Attacks 57

applicable in the context of this paper. However, the protection approach, can-
celing suspicious HTTP requests, is closely related to our solution proposed in
Section 3.4. A combination of both approaches to extend the respective range of
protection is therefore possible.

Ismail et al. [11] describe a local proxy based solution towards protection
against reflected XSS attacks. The proxy examines the GET and POST
parameters of outgoing HTTP request for the existence of potential problematic
characters like “<”. If such characters are found in one of the parameters, the
proxy also checks the respective HTTP response if the parameter is included
verbatim and unencoded in the resulting webpage. If this is the case, the proxy
concludes a potential XSS attack and encodes the offending characters itself.

A more general protection approach is described by Hallaraker and Vigna [8].
Their paper shows how to modify the JavaScript-engine of a web browser to allow
behaviour based analysis of JavaScript execution. Using this newly introduced
capability, they apply intrusion detection mechanisms to e.g., prevent denial of
service or XSS attacks. While the paper does not address the threats that are
subject of our work, it may be possible to extend their work towards detecting
and preventing JavaScript Malware. To verify this assumption further research
work is necessary.

Finally, as already mentioned in Section 3.2, Jackson et al. [12] describe a so-
lution to a related issue: Current browser technologies grant JavaScript certain
capabilities to access information about the user’s browsing history and cache
content. These capabilities enable the adversary to create scripts that compro-
mise the privacy of the user. In order to prevent such attacks, [12] extends the
Same Origin Policy to also apply to cache and history information. This has the
effect, that a JavaScript can only obtain cache and history information about
elements that have the same origin as the script itself. As browsing history and
cache content information can provide hints about the existence and particular-
ities of intranet servers without requiring the attacker to generate any network
traffic, an adoption of the described countermeasures is advisable in addition to
applying the here proposed mechanisms.

6 Conclusion and Future Work

We showed that carefully crafted script code embedded in webpages is capable
to bypass the Same Origin Policy and thus can access intranet resources. For this
reason simply relying on the firewall to protect intranet HTTP server against
unauthorized access is not sufficient. As it is not always possible to counter such
attacks at the server side, we introduced and discussed four distinct client-side
countermeasures. Based on this discussion, we implemented a Firefox extension
to enforce a restricted local network.

While our implementation reliably provides protection against the specified
threats, this protection comes with a price, as additional configuration overhead
and potential problems concerning mobile clients exist. Furthermore, our solu-
tion fixes a problem that occurs because of fundamental flaws in the underlying

58 M. Johns and J. Winter

concepts - HTTP and the current JavaScript security model. Therefore future
research in this area should specifically target these shortcomings to provide the
basis for a future web browser generation that is not susceptible any longer to
the attacks that have been discussed in this paper.

References

1. Alcorn, W.: Inter-protocol communication. Whitepaper (11/13/06) (August 2006)
http://www.ngssoftware.com/research/papers/
InterProtocolCommunication.pdf

2. Burns, J.: Cross site reference forgery - an introduction to a common web applica-
tion weakness. Whitepaper (2005)
https://www.isecpartners.com/documents/XSRF_Paper.pdf

3. Endler, D.: The evolution of cross-site scripting attacks. Whitepaper, iDefense Inc.
(May 2002) http://www.cgisecurity.com/lib/XSS.pdf

4. Glass, E.: The ntlm authentication protocol. (03/13/06) (2003) [online]
http://davenport.sourceforge.net/ntlm.html

5. Grossman, J.: Browser port scanning without javascript. (08/01/07) (Novem-
ber 2006) Website http://jeremiahgrossman.blogspot.com/2006/11/browser-
port-scanning-with out.html

6. Grossman, J.: Javascript malware, port scanning, and beyond. Posting to the web-
security mailing list (July 2006) http://www.webappsec.org/lists/websecurity/
archive/2006-07/msg00097.html

7. Grossman, J., Niedzialkowski, T.C: Hacking intranet websites from the outside. Talk
at Black Hat USA 2006 (August 2006) http://www.blackhat.com/presentations/
bh-usa-06/BH-US-06-Grossman.pdf

8. Hallaraker, O., Vigna, G.: Detecting malicious javascript code in mozilla. In: Pro-
ceedings of the IEEE International Conference on Engineering of Complex Com-
puter Systems (ICECCS), pp. 85–94 (June 2005)

9. Le Hegaret, P., Whitmer, R., Wood, L.: Document object model (dom). W3C
recommendation (January 2005) http://www.w3.org/DOM/

10. InformAction. Noscript firefox extension. Software (2006)
http://www.noscript.net/whats

11. Ismail, O., Eto, M., Kadobayashi, Y., Yamaguchi, S.: A proposal and implementa-
tion of automatic detection/collection system for cross-site scripting vulnerability.
In: 8th International Conference on Advanced Information Networking and Appli-
cations (AINA04), (March 2004)

12. Jackson, C., Bortz, A., Boneh, D., Mitchell, J.C.: Protecting browser state from
web privacy attacks. In: Proceedings of the 15th ACM World Wide Web Conference
(WWW 2006) (2006)

13. Johns, M. (somewhat) breaking the same-origin policy by undermining dns-
pinning. Posting to the Bug Traq Mailinglist (August 2006)
http://www.securityfocus.com/archive/107/443429/30/180/threaded

14. Johns, M., Winter, J.: Requestrodeo: Client side protection against session riding.
In: Piessens,F. (ed.) Proceedings of the OWASP Europe 2006 Conference, refereed
papers track, Report CW448, pp. 5 – 17. Departement Computerwetenschappen,
Katholieke Universiteit Leuven (May 2006)

15. Kanatoko. Stealing information using anti-dns pinning (30/01/07) (2006) Online
demonstration. webpage, http://www.jumperz.net/index.php?i=2&a=1&b=7

http://www.ngssoftware.com/research/papers/InterProtocolCommunication.pdf
http://www.ngssoftware.com/research/papers/InterProtocolCommunication.pdf
https://www.isecpartners.com/documents/XSRF_Paper.pdf
http://www.cgisecurity.com/lib/XSS.pdf
http://davenport.sourceforge.net/ntlm.html
http://jeremiahgrossman.blogspot.com/2006/11/browser-port-scanning-with out.html
http://jeremiahgrossman.blogspot.com/2006/11/browser-port-scanning-with out.html
http://www.webappsec.org/lists/websecurity/archive/2006-07/msg00097.html
http://www.webappsec.org/lists/websecurity/archive/2006-07/msg00097.html
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Grossman.pdf
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Grossman.pdf
http://www.w3.org/DOM/
http://www.noscript.net/whats
http://www.securityfocus.com/archive/107/443429/30/180/threaded
http://www.jumperz.net/index.php?i=2&a=1&b=7

Protecting the Intranet Against “JavaScript Malware” and Related Attacks 59

16. Kanatoko. Anti-dns pinning + socket in flash (19/01/07) (January 2007) Website
http://www.jumperz.net/index.php?i=2&a=3&b=3

17. Kindermann, L.: My address java applet (11/08/06) (2003) Webpage
http://reglos.de/myaddress/MyAddress.html

18. Kirda, E., Kruegel, C., Vigna, G., Jovanovic, N.: Noxes: A client-side solution for
mitigating cross site scripting attacks, security. In: Security Track of the 21st ACM
Symposium on Applied Computing (SAC 2006) (April 2006)

19. SPI Labs. Detecting, analyzing, and exploiting intranet applications using
javascript. Whitepaper (July 2006)
http://www.spidynamics.com/assets/documents/JSportscan.pdf

20. Lam, V.T., Antonatos, S., Akritidis, P., Anagnostakis, K.G.: Puppetnets: Misus-
ing web browsers as a distributed attack infrastructure. In: ACM Conference on
Computer and Communications Security (CCS’06), pp. 221–234 (2006)

21. Petkov, P.: Javascript port scanner (11/08/06), August (2006) Website
http://www.gnucitizen.org/projects/javascript-port-scanner/

22. XUL Planet. nsicontentpolicy. API Reference (11/02/07) (2006) webpage
http://www. xpcomref/ifaces/nsIContentPolicy.html

23. Mozilla Project. Mozilla port blocking (11/13/06) (2001) Webpage
http://www.mozilla.org/projects/netlib/PortBanning.html

24. Ruderman, J.: The same origin policy (01/10/06) (August 2001) Webpage
http://www.mozilla.org/projects/security/components/same-origin.html

25. Samy: Technical explanation of the myspace worm (01/10/06) (October 2005) web-
site http://namb.la/popular/tech.html

26. Schreiber, T.: Session riding - a widespread vulnerability in today’s web applica-
tions. Whitepaper, SecureNet GmbH (December 2004)
http://www.securenet.de/papers/Session_Riding.pdf

27. Princeton University Secure Internet Programming Group. Dns attack scenario
(February 1996) Webpage
http://www.cs.princeton.edu/sip/news/dns-scenario.html

28. Soref, J.: Dns: Spoofing and pinning (14/11/06) (September 2003) Webpage
http://viper.haque.net/~timeless/blog/11/

29. Vogt, P., Nentwich, F., Jovanovic, N., Kruegel, C., Kirda, E., Vig, G.: Cross site
scripting prevention with dynamic data tainting and static analysis. In: 14th An-
nual Network and Distributed System Security Symposium (NDSS 2007) (2007)

30. Winter, J., Johns, M.: Localrodeo: Client side protection against javascript malware
(01/02/07) (January 2007) webpage http://databasement.net/labs/localrodeo

http://www.jumperz.net/index.php?i=2&a=3&b=3
http://reglos.de/myaddress/MyAddress.html
http://www.spidynamics.com/assets/documents/JSportscan.pdf
http://www.gnucitizen.org/projects/javascript-port-scanner/
http://www.xulplanet.com/references/xpcomref/ifaces/nsIContentPolicy.html
http://www.xulplanet.com/references/xpcomref/ifaces/nsIContentPolicy.html
http://www.mozilla.org/projects/netlib/PortBanning.html
http://www.mozilla.org/projects/security/components/same-origin.html
http://namb.la/popular/tech.html
http://www.securenet.de/papers/Session_Riding.pdf
http://www.cs.princeton.edu/sip/news/dns-scenario.html
http://viper.haque.net/~timeless/blog/11/
http://databasement.net/labs/localrodeo

	Protecting the Intranet Against “JavaScript Malware” and Related Attacks
	Introduction
	Definitions
	Transparent Implicit Authentication
	Cross Site Request Forgery

	Attacking the Intranet with JavaScript
	Using a Webpage to Get Access to Restricted Web Resources
	A Closer Look at JavaScript
	Portscanning the Intranet
	Fingerprinting of Intranet Hosts
	Attacking Intranet Servers
	Leaking Intranet Content by Breaking DNS-Pinning
	Attacks That Do Not Rely on JavaScript
	Analysis

	Defense Strategies
	Turning Off Active Client-Side Technologies
	Extending the SOP to Single Elements
	Rerouting Cross-Site Requests
	Restricting the Local Network
	Comparison of the Proposed Protection Approaches

	Evaluation
	Implementation
	Practical Evaluation
	Limitations

	Related Work
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

