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Abstract. Many machines used in the modern hospital settings offer real time 
physiological monitoring. Haemodialysis machines combine a therapeutic 
treatment system integrated with sophisticated monitoring equipment. A large 
array of parameters can be collected including cardiovascular measures such as 
heart rate and blood pressure together with treatment related data including rela-
tive blood volume, ultrafiltration rate and small molecule clearance.  A small 
subset of this information is used by clinicians to monitor treatment and plan 
therapeutic strategies but it is not usually analysed in any detail. The focus of 
this paper is the analysis of data collected over a number of treatment sessions 
with a view to predicting patient physiological behaviour whilst on dialysis and 
correlating this with clinical characteristics of individual patients. 

One of the commonest complications experienced by patients on dialysis is 
symptomatic hypotension. We have taken real time treatment data and outline a 
program of work which attempts to predict when hypotension is likely to occur, 
and which patients might be particularly prone to haemodynamic instability. 
This initial study has investigated: the rate of change of blood pressure versus 
rate of change of heart rate, rate of fluid removal, and rate of uraemic toxin 
clearance. We have used a variety of machine learning techniques (including 
hierarchical clustering, and Bayesian Network analysis algorithms). We have 
been able to detect from this dataset, 3 distinct groups which appear to be clini-
cally meaningful. Furthermore we have investigated whether it is possible to 
predict changes in blood pressure in terms of other parameters with some en-
couraging results that merit further study. 

1   Introduction 

The human renal system is responsible for a number of different roles, including: Wa-
ter Balance, Electrolyte Balance (e.g. sodium, potassium), Toxin Removal, Acid/Base 
Balance, and Blood Pressure Regulation, [Daugirdas et al, 2001]. Patients with  
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advanced renal failure where overall excretory renal function is below 15% often re-
quire renal replacement therapy. The most common form of treatment in the UK is 
unit based haemodialysis. Most patients receive standard haemodialysis 3 times a 
week for between 4-5 hours per session. A haemodialysis machine pumps blood from 
the patient through a high surface area semi-permeable dialysis membrane before re-
turning the blood back to the patient. Fluid is removed through a process of ultrafiltra-
tion due to the pressure differential across the membrane and toxins are removed by 
diffusion across the membrane into a controlled dialysis solution. A range of treat-
ment refinements have been developed that try to improve patient stability and thera-
peutic efficacy. They include the use of ultrafiltration alone or in combination with 
dialysis and dialysis treatment profiling where fluid removal or diasylate sodium con-
centration is dynamically changed during the treatment session. The entire dialysis 
process requires careful regulation and monitoring and is handled by an on board 
computer. Internal monitoring equipment records both machine parameters as well as 
patient physiological variables. Real time data is often used by clinicians to assess 
current physiological status but long term analyses of the whole treatment data-sets 
are unusual. We have used a combination of statistical, data mining [Hand et al, 
2001], and theory refinement [Craw & Sleeman, 1990] approaches to address a range 
of clinical issues such as: 

• Can major intra-dialytic complications such as hypotension be predicted? 
• Are there distinct groups of patients with specific physiological behaviour 

characteristics?  
• What are the major differences between patients who are stable on dialysis 

and those that are not? 
• Is it possible to create patient specific optimum dialysis strategies [Sleeman 

et al., 2004]. 

2   Methods 

Three dialysis machines (AK200 Ultra S, Gambro) installed at a hospital based satel-
lite unit  (Dr Gray’s hospital, Elgin, Grampian, Scotland) have been fitted with a data 
collection interface node wirelessly linked to a server running data collection software 
(Exalis, Gambro). Data was routinely collected at each dialysis session delivered by 
the enabled machines. With this configuration data can be collected on a maximum of 
12 patients per week of treatment with storage of approximately 144 hours of real 
time data. Initial pilot investigations have taken 288 hours of complete data sets for 
analysis. Collected parameters are detailed in Table 2.1.  

The initial suite of programs in this series was implemented in the Neurological 
ICU at Western General Hospital in Edinburgh to monitor patients who have had 
traumatic head injuries, [Howells, 1994; McQuatt et al, 1999]. They implemented a 
monitor system which allows clinicians to review real-time data sets, as well as earlier 
data, for a number of important parameters on a monitor at the patient’s bedside. Ad-
ditionally, they implemented a BROWSER system for use by clinicians and data ana-
lysts to view the same data sets in an off-line mode. Further, both of these systems  
allow the clinician/administrator to define a series of insult levels for each of the 
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Table 2.1. Parameters collected during dialysis sessions and their frequency of collection 

Parameter Name Frequency Parameter Collected 
Heart Rate 30mins 
Systolic Pressure 30mins 
Diastolic Pressure 30mins 
Actual Weight Loss Rate 1min 
Blood Volume 1min 
Plasma Conductivity (AK) 30mins 
Total Blood 1min 
Actual Time 1min 
NA Concentration Once per session 
KT/V 1min 
Ionic Effective Dialysance 1min 
Actual Total Weight Loss 1min  

 
“channels”; for instance in the case of the NICU data sets the colours are normal – 
white, slight raised – yellow, considerably raised – orange, extreme value – red.  

We, at Aberdeen, have extended the system to enable it to deal with not just head 
injury data sets but with a range of data sets including: dialysis data sets from Pavia 
(Italy), Aberdeen & Elgin, and an ITU data set. Further types of data sets can be 
added relatively easily and usually require a further specialized input routine. We took 
the opportunity to recode the system in Java – hence the new name, JAB (Java ver-
sion of the Aberdeen Browser). Additionally the user is able to decide which of a 
range of parameters he/she wishes to have displayed at any time; the system also 
gives the user the chance to choose between several display formats. Further, the abil-
ity to define insult levels has been extended. This implementation thus reads initially 
details of the parameters collected, followed by the appropriate data set. Figure 2.1 
shows the UI for this system displaying part of the Elgin / Aberdeen data set. 

3   Results 

In the introduction we outlined a number of top-level questions which we hope to ad-
dress using data sets collected from dialysis patients. Our pilot study aimed to address 
two specific questions: 

a. Is it possible to identify distinct clinical subgroups of patients from the dialy-
sis data alone? 

b. Can one predict the blood pressure or change in blood pressure during a dialy-
sis session using the other collected variables?  

We selected 72 sessions with complete data from 9 patients (i.e. 8 sessions per  
patient). This included a range of patients with differing clinical and demographic fea-
tures. Some were recognised as stable patients whilst others were known to be more 
challenging to treat effectively.  
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Fig. 2.1. JAB’s UI displaying a portion of a dialysis patient’s data set 

3.1   Determining Distinct Patient Groups in the Data Set: Clustering Analysis 
and Sub-group Discovery 

We have performed an analysis on the group of 9 patients using several clustering al-
gorithms. We used two different methods, namely hierarchical clustering using 
Ward's method with Euclidean distance [Ward 1963] and k-means clustering (with 
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Table 3.1. Allocation of patient data records to the three main clusters using hierarchical clus-
tering. Each row contains the patient ID, number of records (percentage in brackets) in each 
cluster and total number of records for that patient. 

Patient LHS cluster Centre cluster RHS cluster Total 
20 48(80%) 0(0%) 12(20%) 60 
23 1(2%) 9(19%) 38(79%) 48 
25 0(0%) 52(93%) 4(7%) 56 
26 0(0%) 59(97%) 2(3%) 61 
28 3(5%) 5(9%) 48(86%) 56 
30 0(0%) 56(87.5%) 8(12.5%) 64 
33 53(95%) 0(0%) 3(5%) 56 
35 0(0%) 36(64%) 20(36%) 56 
37 0(0%) 0(0%) 56(100%) 56 

varying number of clusters), [MacQueen 1967]. Each instance was described by a 
vector of 10 real-valued attributes: Systolic pressure, diastolic pressure, heart rate, 
blood volume, and the absolute changes of these four attributes in the previous 30 
minute interval, as well as rate of fluid removal (weight loss) and rate of toxin re-
moval (KT/v). So for a patient undergoing a 4-hour dialysis session, this procedure 
produces 7 such vectors: one at the end of the second 30 minute period when the val-
ues are compared with those at the end of the first 30 minute period, one at the end of  
third 30 minute period when the values are compared with those at the end of the 
second 30 minute period, etc. 

The three clusters of the dendrogram produced by the hierarchical clustering algo-
rithm are shown in Figure 3.1. Labels have the form pp:ss where pp is patient ID and 
ss is session number. For six patients (ID numbers 20, 28, 30, 33, 35, 37), it can be 
seen that a high percentage of their instances fall within a single cluster. The algo-
rithm has identified three main sub-clusters: (a) the left-hand side (LHS) cluster in the 
dendrogram, dominated by records from patients 20 and 33, (b) the centre cluster 
dominated by patients 25, 26, 30 and 35, and (c) the right-hand side (RHS)  
cluster dominated by patients 23, 28 and 37. The allocation of patients to these three 
clusters is shown in more detail in Table 3.1. Comparing these clusters with the 
demographic data, we see that the LHS cluster contains patients with an average age 
of 26, compared to 66 in the rest of the dataset. Within the RHS cluster, the two most 
dominant patients, who are also clustered more compactly, namely patients 28 and 37, 
are the ones who suffer both from diabetes and cardio-vascular disease.  And the third 
cluster corresponds to the remaining patients. 

K-means clustering was performed with two, three, and nine clusters. The advan-
tage of the k-means method is that it gives us a comparative quantitative evaluation of 
the clusters discovered with hierarchical clustering. The disadvantage is that we have 
to manually experiment with different numbers of clusters. The clustering was evalu-
ated by matching clusters to the patient IDs, patient age (discretised in two groups), 
occurrence of diabetes, occurrence of cardio-vascular disease (CVD), and occurrence 
of both diabetes and CVD. The error rates (incorrectly clustered instances divided by 
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Fig. 3.1. The three main clusters derived using hierarchical clustering in detail. LHS cluster is 
dominated by patients 20 and 33, and the RHS cluster by patients 28 and 37. 
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Table 3.2. Error rates for different classes and numbers of clusters 

# of clusters Class Error 
9 Patient ID 27.7% 
2 Age 2.9% 
2 Cardio-vascular 33.7% 
2 Diabetes 41.1% 
3 CVD and Diabetes 19.5% 

 
total number of instances) are summarised in Table 3.2. We see that for k=9 the dif-
ferent patients are clustered fairly well (28% error is not very high for a 9-class prob-
lem); binary clustering (for k=2) essentially separates the two age groups; finally, 
while CVD and diabetes independently do not form significant sub-groups, their con-
junction (when k = 3) stands out as an important cluster. 

 
Conclusions: Both types of clustering identify essentially the same 3 clusters, which 
is encouraging. Further, the clinician, using his considerable experience, had selected 
3 distinct groups of patients (see the introductory paragraph of this section), and in 
fact he has confirmed that the 3 clusters identified by the algorithm correspond ex-
actly to those 3 clusters. These 3 clusters are clinically significant as they would be 
expected to react to dialysis in distinctly different ways; in particular, the third group 
(diabetes and cardio-vascular disease) are likely to present more challenges to dialyse 
them successfully. So clinically it is likely that the latter group would be monitored 
more closely during dialysis. These results are encouraging because it appears to be 
possible for a machine learning algorithm on the basis of a small amount of demo-
graphic data and the information collected during the dialyses sessions, to identify 
these clinically significant groups. This also suggests that other patients who perhaps 
can not be clearly identified by their existing medical history, can be detected by the 
algorithm on the basis of their dialysis data sets, as patients who are likely to be “un-
stable” / complex patients to dialyse. Further, this suggests that more sophisticated 
analyses should be applied to the data sets produced by this group of “complex” pa-
tients, probing for example for early signs of instability etc. 

3.2   Determining If It Is Possible to Predict Changes in the Patient’s BP in 
Terms of Other Parameters  

The aim of this analysis is to predict the occurrence of hypotension during a dialysis 
session. We were particularly interested in investigating for each patient whether the 
following are correlated: 

1. Rate of change of BP and Rate of change of heart rate 
2. Rate of change of BP and rate of Fluid removal 
3. Rate of change of BP and rate of toxin removal 

We consider a hypo-tensive event to be a drop greater than or equal to 10 mmHg in 
systolic pressure between two successive measurements (at 30 minute intervals). We 
have considered a dataset obtained from the same 9 patients, for each of which eight 
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complete sessions of approximately four hours were available. Blood pressure (sys-
tolic and diastolic) and heart rate were measured at 30 minute intervals during these 
sessions. Toxin removal and fluid removal rates were available, and these were ap-
proximately constant within each individual session. Blood volume was measured 
every minute; we have converted that to 30 minute averages during pre-processing. 
The demographic data was also included  in the analysis.  We have incorporated some 
of the time-series information by creating the additional features of the changes in 
heart rate, blood volume, systolic and diastolic pressure since the previous measure-
ment, and appending these to the data vector of each instance. The target attribute in 
each of these instances was derived from the change in systolic pressure in the next 
half hour. Each dialysis session yielded about 8 measurements; of these the first and 
the last were used to derive the changes of values compared to the second and last but 
one, respectively. We therefore had roughly 6 different instances labelled as hypoten-
sive or non-hypotensive for each dialysis session. In fact since a few of the sessions 
were slightly longer, we obtained a total of 442 instances, of which 120 were labelled 
positive (hypotension event occurring) and 322 negative.  

Table 3.3. Confusion matrix for hypotension prediction 

 Predicted positives Predicted negatives Total 
Actual positives 32 88 120 
Actual negatives 11 311 322 
Total 43 399 442 

 

Fig. 3.2. ROC curve for hypotension prediction 

Experiments were run using the WEKA data mining software tool [Witten and Frank 
2005]. We used a Bayesian network classifier combined with a hill-climbing algorithm 
for structure learning, and evaluated the classifier using 10-fold cross validation. The 
ROC curve obtained by the algorithm (shown in Figure 3.2) was analysed to determine 
the optimal decision threshold for the Bayesian classifier. The confusion matrix for the 
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optimal accuracy point is given in Table 3.3. The maximum accuracy reached was 
77.6% (32+311/442), with a true positive rate of 26.7% (32/120) and false positive rate 
of 3.4% (11/322). This is an encouraging result, since predicting blood pressure trends 
over a half-hour period is a hard task; the algorithm predicts correctly more than a quar-
ter of the hypo-tensive events, with only 11 false positive cases. 

4   Conclusions and Further Work 

These pilot studies have indicated that it may be possible to relate a patient’s physio-
logical behaviour on dialysis with their underlying pathological status. This offers an 
intriguing possibility that further analysis may allow more precise characterisation of 
patients and enable clinicians to tailor therapy more appropriately. Planned further 
work includes: 

• Using the clustering approaches on a much wider range of patients to see if it is 
still possible for the algorithms to identify a number of clinically significant 
groups (e.g. those that are “unstable” / complex  under dialysis) 

• Investigating whether it is possible to improve the blood pressure predictions. 
As noted in section 3.2 some of the false positives (i.e. avoidance of hypo-
tension) could well be due to nursing interventions (e.g. infusing of saline 
fluid). So in future we aim for better access to the patients’ nursing notes. 

• Pursuing some of the other issue list in section 1; addressing this agenda should 
enable us to progressively customize dialysis sessions to individual patients. 

• Collecting opinions from a group of renal experts on a range of dialysis ses-
sions, compare their analyses, and then hold face-to-face session(s) where these 
differences are discussed / resolved. 

• Evaluating these Aides with a number of renal physicians and perhaps nurse 
practitioners.  
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