
R. Bellazzi, A. Abu-Hanna, and J. Hunter (Eds.): AIME 2007, LNAI 4594, pp. 431–440, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Document-Oriented Views of Guideline Knowledge Bases

Samson W. Tu1, Shantha Condamoor1, Tim Mather2,
Richard Hall2, Neill Jones3, and Mark A. Musen1,

1 Stanford University School of Medicine
Stanford, CA 94305-5479, USA

2 SCHIN Lt. Newcastle upon Tyne, UK
3 University of Newcastle, Newcastle upon Tyne, UK

Abstract. A computer-interpretable guideline knowledge base can be a very large
network whose information content is difficult for developers and clinicians to
comprehend and review. We created a method to annotate a guideline model and
use the annotations to export the guideline knowledge base in an XML format that
can be transformed into a readable document. We applied this method to
knowledge bases developed in three different guideline modeling projects to
analyze uses and limitations of this approach. We demonstrate the promise of
creating such document-oriented views, but conclude that guideline models and
knowledge bases should be constructed with the goal of creating such human-
comprehensible views from the beginning.

1 Introduction

In recent years, professional societies, health-maintenance organizations, medical
publishers, and government agencies have produced a flood of clinical practice
guidelines (CPGs) for the purpose of disseminating evidence-based best practices.
Computer-based clinical decision-support systems that provide assistance in clinical
settings have been shown to be effective in improving the performance of care
providers [1]. To provide computer-based decision support based on CPGs, the
medical knowledge in largely narrative CPG documents must be formalized in
computer-interpretable models that can be applied to coded patient data to generate
patient-specific recommendations or critiques.

Recent literature on the relationship between narrative text and guideline-based
decision support focuses on the translation of such documents to computer-
interpretable knowledge bases [2-4].

Guideline knowledge bases, however, should be human-comprehensible as well as
computer-interpretable. Usually, developing such knowledge bases involves
collaborations between guideline encoders and subject-matter experts. Without a
review format that makes the content of knowledge bases intelligible to those who are
not users of sophisticated knowledge-engineering tools, knowledge bases become
black boxes that are not subject to human inspection and review. Having such a
review format not only benefits collaboration with subject matter experts, but also
provides guideline encoders with an efficient method for reviewing a knowledge base

432 S.W. Tu et al.

systematically, just as code inspection and walkthroughs are part of the software
testing process [5]. Furthermore, any sharing of computer-interpretable guidelines
across multiple institutions requires that they be reviewable by clinicians.

This paper describes experiments we conducted to create and evaluate document-
oriented views of guideline knowledge bases. We developed a method for
transforming frame-based knowledge bases to XML and then to HTML. We applied
the method to guideline knowledge bases developed in the SAGE [6], ATHENA [7],
and PRODIGY[8] projects. We conducted formative evaluation by obtaining
feedback from clinical collaborators and by analyzing the document-oriented views in
relation to properties of the guideline models used in these projects.

2 Problem Description

The SAGE (Standards-Based Sharable Active Guideline Environment) project [6]
was a collaboration among research groups at GE Healthcare Integrated IT Solutions,
the University of Nebraska Medical Center, Intermountain Health Care, Apelon, Inc.,
Stanford University, and the Mayo Clinic. The project sought to create the technology
for integrating guideline-based decision support into enterprise clinical information
systems. The PRODIGY project [8] in the United Kingdom was similarly funded to
develop a guideline-based decision-support system that can assist general
practitioners in the task of choosing rational therapeutic actions for their patients. The
ATHENA Hypertension Guideline Decision Support System [7] was a project that
used EON technology [9] to develop and evaluate the implementation of a
hypertension guideline decision-support system at Department of Veteran Affairs
clinics. All three projects used Protégé-frame [10], a knowledge-engineering
environment developed at Stanford University, as the tool for modeling and encoding
CPGs. Each project defined its computer-interpretable guideline model as a guideline
ontology consisting of Protégé classes (Figure 1). Individual guidelines (e.g., a
guideline for managing hypertension) were encoded as instances of these classes.
Generally, clinicians who were trained in the use of Protégé did the bulk of the
encoding work. Each of the CPG knowledge bases typically included several
thousand frames. Even expert users of Protégé might have difficulty drilling down to
the depth of the knowledge base and understanding the modeling decisions made by
the encoders.

The goal of creating a document-oriented view of a knowledge base was to allow
subject-matter experts and guideline encoders to read and review the content of the
knowledge base systematically. The format should expose large amount of
information and should present an accurate view of the computer-interpretable
knowledge content. The view should be “readable” on the web or as printed
document, where “readable” meant that the generated text was comprehensible to
someone not trained in the knowledge representation formalism, and that the
document organized significant portions of the content as linear narrative. The
document-generation capability should be generic, as we wanted to use the capability
to generate views of guideline knowledge bases from different projects. Furthermore,
the views should be highly configurable, as custom-tailored presentations might be
required for different classes of readers and for different types of content.

 Document-Oriented Views of Guideline Knowledge Bases 433

Fig. 1. Partial view of the SAGE guideline ontology. The Guideline class has properties such as
configurable parameters, de-enrollment criteria, description, and enrollment criteria.

3 Method

Natural language generation (NLG), a subfield of artificial intelligence, is concerned
the generation of text from structured information. In a survey of NLG in healthcare,
Cawsey et al. outlined the architecture of NLG as consisting of three stages: (1) text
planning (the large-scale organization of the text into coherent sections), (2) sentence
planning (the division of information into paragraphs and sentences), and (3)
realization (the generation of grammatically correct sentences) [11].

For text planning, we had to determine the scope of information to be presented. A
fully developed CPG knowledge base contained not only the content of a computable
guideline, but also formal terminologies and a patient data model that were need for
the guideline to be implemented in the electronic medical record. We decided that, for
our experiments, the scope of the document-oriented view should include frames that
were reachable directly and indirectly from instances of the top-level Guideline class.
In terms of Protégé, it meant the content of the document consisted of trees of
instances, where the root of a tree was an instance of the Guideline class and branches
were the relationships (e.g. enrollment criteria and recommendation sets) that defined
the structure of a guideline. However, because of interconnectivity of the frames, a
simple exhaustive tree-based expansion would result in tremendous repetitions. The
content should therefore be partitioned into sections, with hyperlinks connecting
references in one section to the content in another. Furthermore, to help navigating the
document, we should exploit Protégé graphs that all three projects used to represent
task networks of guideline scenarios, decisions, and actions. Thus, the tool should
create clickable images of these graphs that allowed a user to navigate to different
parts of the document.

434 S.W. Tu et al.

For sentence planning, we used an outline format because it corresponded to the
underlying nested frame structure and also because scanning an outline was often
easier than reading paragraphs. The bottom level of the outline consisted of either text
associated with textual properties of a frame or text generated from structured
information in one or more frames.

For sentence generation, we decided that, for our initial experiments, instead of
finding and using a sophisticated text generator that might add complexity to the
system and might not be appropriate for our needs, we would use configurable
templates that allowed us to generate the documents quickly.

To support the steps in document generation, we created an annotation knowledge
base that, for a guideline ontology, specified the large-scale structure of the document
and provided context-sensitive templates used by a Java program to convert Protégé
instances and graphics into XML fragments and jpeg files (Figure 2). Next, we used
Extensible Stylesheet Language Transformation (XSLT), a World Wide Web
Consortium standard for rewriting XML documents, to transform the image files and
XML file into an HTML file.

Guideline
ontology

Java
program

jpeg files

XML
KB file

Guideline KB

Annotations and Templates
based on guideline ontology

XSLT
HTML

Fig. 2. The process to create a document-oriented view from a guideline knowledge base

The annotation knowledge base for the SAGE guideline ontology specified, for
example, the Guideline, Recommendation, and Variables classes as classes whose
instances constituted the main sections of the document to be generated. The Java
program then traversed the instance trees anchored by these instances. For each node
in the tree, it generated XML output that could be converted to readable text.

To generate the XML output, we created templates for specifying how Protégé
instances should be translated. For each Protégé class whose instances we wanted to
include in the XML output, we enumerated, as part of the template associated with the
class, an ordered list of slots (i.e., properties) whose values should be included in the
output. The default XML output used class and slot names as XML tags. Thus, for an
instance of the class Presence_Criterion in the SAGE guideline model, which had
slots code, presence, valid_window, and vmr_class, and which allowed a clinician to

 Document-Oriented Views of Guideline Knowledge Bases 435

enter a decision criterion, such as “presence of MMR vaccine administration within
last 28 days,” in a fill-in-blank GUI form, the XML fragment looks like the following:

<Presence_Criterion p_id= "sageimmunization_02486">
 <code>MMR vaccine</code>
 <presence>true</presence>
 <valid_window>

 <RelativeTimeInteval> …
 </RelativeTimeInterval>

 </valid_window>
 <vmr_class> SubstanceAdministration

 </vmr_class>
</Presence_Criterion>

The RelativeTimeInterval element expands into an XML fragment that represents

an instance of the RelativeTimeInterval class (e.g., the interval between 28 days ago
and NOW).

For selected classes in the guideline ontology, we provided alternative templates
for specifying textual patterns used to write instances of those classes. The selection
of template for an instance was based on the usage context of the instance. Thus, for
example, when instances of Recommendation referenced instances of Action as slot
values, one template was used, whereas when instances of class Decision referenced
instances of Action, an alternative template for instances of Action was used.

The use of alternative templates for a class allowed us to specify when to expand
the content of an instance, and when to reference that instance. In a Protégé
knowledge base, frames, such as classes and instances, can be referenced from several
other frames. In fact, the reference relationship can be circular. Determining when to
expand the content of an instance and when to make a reference to the same content
were design decisions that affected the readability of the generated document.

Another reason for providing alternative templates for a class was that we wanted
to provide greater user control of the output format. Figure 3 shows an alternative
template for generating text for instances of the Presence_Criterion class. The pattern
“{presence} of {vmr_class} {code}{valid_window}” specifies how
values of slots should be substituted into the pattern to generate a string. For selected
slots, we specified how text could be generated based on presence or absence of slot
values. For the slot valid_window, the slot template indicates that, the slot value, if it
is available, should be preceded by “and time is within ” and followed by the
expansion of the value of the valid_time slot, a RelativeTimeInterval instance. The
previous XML fragment, using this template, would result in the text “presence
of SubstanceAdministration MMR vaccine and time is within
…” where the elided relative time interval could be “28 days before NOW.”

4 Results

We wrote scripts to generate default annotation knowledge bases for each of the three
guideline ontologies to be tested. Similarly, we developed XSL transforms for each
guideline ontology.

436 S.W. Tu et al.

<Presence_Criterion p_id=
"sageimmunization_026">
presence of
SubstanceAdministration
MMR vaccine and time is
within 28.0 day before
NOW

</Presence_Criterion>

Fig. 3. Alternative template for specifying output format of an instance of Presence_Criterion.
The inset box shows an example of the text generated from this template.

Figures 4 and 5 show parts of the HTML pages generated from a SAGE
immunization guideline and a PRODIGY post-myocardial infarction guideline. The
SAGE HTML page shows the use of graphics and hyperlinks to structure
the document. The presentation of the precondition of the Context node (an oval in
the task graph) shows a formal criterion being displayed as text, with the Age variable
linked to the section in the document where it is defined.

Because constraints on the resources of the projects involved in this study, a formal
evaluation of the document-oriented view of the guideline knowledge base was not
feasible. Instead, we performed formative evaluation to explore the text-generation
technology’s possible uses and limitations, alternative presentations, and properties of
guideline knowledge bases that allow better generation of readable text.

The document-oriented view was well-received by the SAGE team. Knowledge-
base developers in the project were able to use the HTML document to identify
dozens of errors and missing data in the knowledge base. Clinicians found the
documents much more accessible than the Protégé knowledge bases from which
the documents were generated. However, for the purpose of reviewing the content of
the knowledge bases, the clinicians asked for more contextual information about the
encoded guideline recommendations. The operationalization of SAGE guidelines
involved developing usage scenarios, distillation and interpretation of guideline text,
and formalization of decision logic in terms of standard terminologies and a patient
information model [6]. Understanding the encoded recommendations required more
than having access to the formalized knowledge base. Suggested enhancements to the
document included (1) overview documentation to orient a reader, (2) clear indication
of relationships between recommendations and sub-recommendations, (3) links to
source documents and abstracts of guideline content selected for encoding, and (4)
links to example scenarios. Despite these limitations, the document-generation
capability proved sufficiently useful for it to be incorporated into the SAGE guideline

 Document-Oriented Views of Guideline Knowledge Bases 437

Fig. 4. Partial view of the HTML document generated from a SAGE immunization guideline.
The clickable image map allows a viewer to navigate to different parts of the document. The
circle represents the context of the recommendation (pediatric patient), hexagons decision
nodes, and rectangles action nodes.

workbench, thus allowing document-oriented view to be generated at any stage of the
knowledge development process.

For the PRODIGY project, the main use case for the document-oriented view
involved creating human-readable documents for use by external groups to validate
the encoded guideline. Because guideline authors were often far more comfortable
authoring in the document paradigm, presenting the complex interconnected network
of knowledge components in this way was seen as a significant benefit. The

438 S.W. Tu et al.

Fig. 5. Partial view of the HTML document generated from a PRODIGY post-myocardial
infarction guideline. It displays the information associated with a scenario where a patient is not
recorded as taking any beta blocker, ACE inhibitor, or statin. The data entry section indicates
data that should be acquired in this scenario. The actions associated with this scenario include
scheduling follow-up appointment and invoking subguidelines to start ACE inhibitor and statin.

PRODIGY guideline model, as encoded in Protégé, consisted of a series of related
projects that allowed the re-use of the reference drugs, clinical terms, and decision
criteria. The learning curve for using Protégé exceeded what would be reasonable for
external reviewers of encoded guideline content. By flattening out this structure and
selectively displaying relevant slots, the document-oriented view provided a
convenient method for reviewing and ensuring the quality of the encoded knowledge.
One key aspect of the PRODIGY guideline was the concise narrative that was
associated with each guideline step and that was displayed to the user when the
guideline was executed. By emphasizing this quick-help slot in the HTML document
(see Figure 5), the generated document allowed an effective way of quality-assuring a
large quantity of text without having to access each frame individually. We also
recognized the possibility of automatically generating training documentation, and,
thus, using the knowledge base for multiple purposes.

 Document-Oriented Views of Guideline Knowledge Bases 439

The ATHENA hypertension guideline knowledge base had been developed, tested,
and deployed over a number of years [7]. A simple-minded hierarchical expansion
from the Guideline node resulted in an HTML document that contained almost 25
thousand lines. The graph of the clinical algorithm used in the knowledge base proved
to be insufficient to allow easy navigation in the generated document. A large part of
the hypertension guideline knowledge base dealt with the properties and usage of
different classes of anti-hypertensive agents. Alternative presentations (possibly in
tabular form) were needed to facilitate easier access to that information than the
current hierarchical expansion. Thus, we have not yet presented the HTML document
generated from ATHENA to clinicians for external review.

5 Discussion

The idea of generating human-readable documents from machine-interpretable
artifacts is not new. Cawsey et al. surveyed several systems in healthcare that used
text generation to provide explanations, summaries, reports, and descriptions of
medical concepts [11]. The original MYCIN program, for example, included a text-
generation module that produced natural-language rule translation [12]. More
recently, Design-a-Trial [13] provided a clinical trial authoring environment that
generated a protocol document and a Prolog-based executable knowledge base. In the
wider computer-science literature, this work on creating document-oriented view of a
knowledge base is closely related to Knuth’s literate programming [14], where the
construction of computer programs is seen as a task not only to instruct a computer
what to do, but also to explain to human being what we want a computer to do. The
experiences we gained from creating document-oriented views of guideline
knowledge bases are consistent with the tenets of literate programming.

First, while it important to generate text from the knowledge base, such text does
not replace the need to have well-written documentation. The PRODIGY example
showed how quick-help texts, originally designed as an explanation aid for end users,
were helpful to guideline authors for quality-assurance purpose. The SAGE clinician
reviewers similarly called for overview narrative to orient readers and to record
design decisions. Second, our experiments highlight the importance of mapping
knowledge base structures to appropriate document structures. The SAGE guideline
knowledge bases, for example, primarily consisted of recommendation sets that
provide chapter-like divisions whose content were indexed by graphical algorithms.
On the other hand, the ATHENA knowledge base contained heterogeneous
knowledge structures that required more complex mapping to a document model.

Just as Knuth designed the WEB system so that a programmer can write
documentation and code in the same literate program [14], our experiences suggest
that computable models of clinical guidelines should be designed so that a knowledge
modeler can encode an executable and a readable guideline at the same time. Results
in software engineering indicate that the maintenance cost of knowledge bases is
likely to exceed their initial development cost. Thus, having human-comprehensible
semantics is just as important as having machine-executable formal semantics. Our
work demonstrated that, with simple XML output and XSL transformations, it is
possible to generate rudimentary documents from multiple guideline knowledge

440 S.W. Tu et al.

bases. We expect to refine our computer-interpretable guideline models and text-
generation capability with the goal of producing better document-oriented views of
guideline knowledge bases.

Acknowledgement. This work has been supported in part by grant 70NANB1H3049
of the NIST Advanced Technology Program. We thank Kai Rong at SCHIN for his
help in generating the PRODIGY version of the HTML output. The ATHENA project
was supported in part by VA HSR&D CPG-97-006, CPI-275, and RCD-96301.

References

1. Hunt, D.L., Haynes, R.B., Hanna, S.E., Smith, K.: Effects of Computer-based Clinical
Decision Support Systems on Physician Performance and Patient Outcome: A Systematic
Review. JAMA 270(15), 1339–1346 (1998)

2. Shiffman, R.N., Michel, G., Essaihi, A., Thornquist, E.: Bridging the Guideline
Implementation Gap: A Systematic, Document-Centered Approach to Guideline
Implementation. J Am Med Inform Assoc 11, 418–426 (2004)

3. Shalom, E., Shahar, Y.: A graphical framework for specification of clinical guidelines at
multiple representation levels. In: AMIA Annu Symp Proc 2005, pp. 679–683 (2005)

4. Ruzicka, M., Svatek, V.: Mark-up based analysis of narrative guidelines with the Stepper
tool. Stud Health Technol Inform 101, 132–136 (2004)

5. Myers, G.J.: The Art of Software Testing. John Wiley & Sons, Inc., Hoboken, NJ (2004)
6. Tu, S.W., Musen, M.A., Shankar, R., et al.: Modeling Guidelines for Integration into

Clinical Workflow. Medinfo 174–178 (2004)
7. Goldstein, M.K., Hoffman, B.B., Coleman, R.W., et al.: Implementing Clinical Practice

Guidelines While Taking Account of Changing Evidence: ATHENA, an Easily Modifiable
Decision-Support System for Management of Hypertension in Primary Care. In: Proc
AMIA Symp, pp. 280–284 (2000)

8. Johnson, P.D., Tu, S.W., Booth, N., Sugden, B., Purves, I.N.: Using Scenarios in Chronic
Disease Management Guidelines for Primary Care. In: Proc AMIA Symp., pp. 389–393
(2000)

9. Tu, S.W., Musen, M.A.: From Guideline Modeling to Guideline Execution: Defining
Guideline-Based Decision-Support Services. In: Proc AMIA Symp., pp. 863–867 (2000)

10. Gennari, J.H., Musen, M.A., Fergerson, R.W., et al.: The Evolution of Protégé: An
Environment for Knowledge-Based Systems Development. Int J Hum Comput Stud 58(1),
89–123 (2003)

11. Cawsey, A.J., Webber, B.L., Jones, R.B.: Natural language generation in health care. J Am
Med Inform Assoc 4(6), 473–482 (1997)

12. Shortliffe, E.H.: Details of the Consultation System. In: Buchanan, B.G., Shortliffe, E.H.
(eds.) Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic
Programming Project, pp. 78–132. Addison-Wesley Publishing Company, Reading (1984)

13. Modgil, S., Hammond, P.: Decision support tools for clinical trial design. Artificial
Intelligence in Medicine 27(2), 181–200 (2003)

14. Knuth, D.E.: Literate Programming. The Computer Journal 27(2), 97–111 (1984)

	Document-Oriented Views of Guideline Knowledge Bases
	Introduction
	Problem Description
	Method
	Results
	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

