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Abstract. In diagnostic decision-support systems, a test-selection facility serves
to select tests that are expected to yield the largest decrease in the uncertainty
about a patient’s diagnosis. For capturing diagnostic uncertainty, often an infor-
mation measure is used. In this paper, we study the Shannon entropy, the Gini
index, and the misclassification error for this purpose. We argue that for a large
range of values, the first derivative of the Gini index can be regarded as an ap-
proximation of the first derivative of the Shannon entropy. We also argue that the
differences between the derivative functions outside this range can explain dif-
ferent test sequences in practice. We further argue that the misclassification error
is less suited for test-selection purposes as it is likely to show a tendency to se-
lect tests arbitrarily. Experimental results from using the measures with a real-life
probabilistic network in oncology support our observations.
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1 Introduction

In many fields of medicine, physicians have to establish a diagnosis and have to decide
upon an appropriate therapy in relative uncertainty about a patient’s true condition. To
assist physicians in their complex reasoning processes, sophisticated decision-support
systems are being developed. Such a system is often equipped with a test-selection
facility that serves to indicate which tests had best be performed to decrease the uncer-
tainty about the patient’s diagnosis [1,2]. The two most commonly used measures for
capturing diagnostic uncertainty in decision-support systems, are the Shannon entropy
and the Gini index [6]; in other contexts, also the misclassification error is used for
measuring uncertainty [5]. The three measures are defined for a probability distribution
over a designated diagnostic variable and express the expected amount of information
that is required to establish the value of this variable with certainty.

The Shannon entropy and the Gini index are generally considered to behave alike
for test-selection purposes, in particular for diagnostic variables with a small number
of values [3]. In fact, common knowledge has it that the two measures are interchange-
able in practice. In this paper, we compare the Shannon entropy, the Gini index and
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the misclassification error from a fundamental perspective. By studying the first deriva-
tives of the three functions, we argue that for a large range of probability distributions
over the main diagnostic variable, the Shannon entropy and the Gini index are indeed
expected to behave alike. For the more extreme probability distributions, however, the
two measures are expected to result in different test sequences. We further argue that
the misclassification error is less suited for test-selection purposes as it is likely to show
a tendency to select tests randomly.

We studied the Shannon entropy and the Gini index also from an experimental per-
spective. For this purpose, we implemented the two measures in a decision-support
system for the domain of oesophageal cancer and performed test selection for 162 real
patients. Upon analysing the sequences of tests yielded, we found that for 71% of the
patients, already the first or second test selected differed between the two measures. In
contrast with common knowledge, therefore, the Shannon entropy and the Gini index
gave rise to quite different test-selection behaviour. All differences could be explained,
however, from the insights that we had gained from our more fundamental analysis of
the Shannon entropy, the Gini index, and their first derivatives.

The paper is organised as follows. Section 2 reviews the Shannon entropy, the Gini
index, and the misclassification error, and details how these measures are used for test
selection. Section 3 summarises our fundamental analysis of the three measures, and
of their first derivatives more specifically. In Section 4 we report on the experimental
results obtained with the Shannon entropy and the Gini index, and explain the observed
differences. The paper ends with our conclusions in Section 5.

2 Information Measures and Test Selection

In a diagnostic decision-support system, test selection generally amounts to selecting
tests that are expected to yield the largest decrease in the uncertainty about a patient’s
diagnosis. For capturing diagnostic uncertainty, typically an information measure is
used. The three most commonly used measures are the Shannon entropy, the Gini index,
and the misclassification error. These measures are defined for a probability distribution
Pr over a set of stochastic variables. We distinguish a diagnostic variable D, modelling
the diagnoses of interest; the possible values of D are denoted d j, j = 1, . . . ,m,m ≥ 2.
We further distinguish n ≥ 2 test variables Ti, modelling diagnostic tests whose results
can influence the uncertainty in D; the results of a test Ti are denoted tk

i , k = 1, . . . ,mi,
mi ≥ 2. Each of the three measures attains its maximum when the uncertainty about the
value of the diagnostic variable is the largest, that is, when the probability distribution
over this variable is a uniform distribution. For a distribution with Pr(di) = 1 for some
value di of D and Pr(d j) = 0 for all d j �= di, the uncertainty about the value of the
diagnostic variable is resolved and the measures yield their minimum value of 0.

The Shannon entropy H(Pr(D)) of the probability distribution Pr over the diagnostic
variable D is the expected amount of information that is required to establish the value
of D with certainty; more formally, the entropy is defined as

H(Pr(D)) = − ∑
j=1,...,m

Pr(D = d j) · 2logPr(D = d j)
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where 0 · 2log0 is taken to be 0. Now suppose that some diagnostic test Ti is performed
and that the result tk

i is yielded. Because of this additional information, the probability
distribution over D will change from the prior distribution to the posterior distribution
given Ti = tk

i . The entropy of the distribution over D will then change as well, to the
entropy of the posterior distribution:

H(Pr(D | Ti = tk
i )) = − ∑

j=1,...,m

Pr(D = d j | Ti = tk
i ) · 2logPr(D = d j | Ti = tk

i )

Prior to performing the test Ti, however, we do not know for certain which result will
be obtained: each possible result tk

i is yielded with a probability Pr(Ti = tk
i ). Before

actually performing the test, therefore, we expect the entropy of the posterior probability
distribution over D to be

H(Pr(D | Ti)) = ∑
k=1,...,mi

H(Pr(D | Ti = tk
i )) ·Pr(Ti = tk

i )

We now have that the decrease in uncertainty in the diagnostic variable D by performing
the test Ti is expected to be ˜H(Ti) = H(Pr(D))− H(Pr(D | Ti)). A test that maximises
˜H thus is the best test to perform. We assume that upon selecting a test that maximises
the expected decrease in uncertainty, ties are broken at random.

The Gini index G(Pr(D)) of the probability distribution Pr over the variable D is
defined as

G(Pr(D)) = 1 − ∑
j=1,...,m

Pr(D = d j)2

The expected Gini index G(Pr(D | Ti)) after performing a test Ti is defined as the ex-
pected value of the Gini index where the expectation is taken over all possible results:

G(Pr(D | Ti)) = ∑
k=1,...,mi

G(Pr(D | Ti = tk
i )) ·Pr(Ti = tk

i )

The best test to perform again is a test that is expected to result in the largest decrease in
diagnostic uncertainty, that is, a test that maximises ˜G(Ti) = G(Pr(D))−G(Pr(D | Ti)).

Occasionally also the misclassification error is used for capturing uncertainty [5];
in the sequel we will argue that this measure is less suited for the purpose of test se-
lection, however. The misclassification error M(Pr(D)) of the probability distribution
Pr over the diagnostic variable D captures the difference between the probability of a
certain diagnosis, that is, a probability equal to 1, and the probability of the most likely
diagnosis; more formally, it is defined as

M(Pr(D)) = 1 − max{Pr(D = d j) | j = 1, . . . ,m}

The expected misclassification error after performing a diagnostic test Ti is

M(Pr(D | Ti)) = ∑
k=1,...,mi

M(Pr(D | Ti = tk
i )) ·Pr(Ti = tk

i )

The decrease in uncertainty in D by performing the test Ti thus is expected to be ˜M(Ti)=
M(Pr(D))− M(Pr(D | Ti)). A test that maximises ˜M again is the best test to perform.
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3 The Measures from a Fundamental Perspective

To provide for predicting the test-selection behaviour of the Shannon entropy, the Gini
index and the misclassification error, we study the three measures from a fundamental
perspective. Upon doing so, we focus on a binary diagnostic variable only; our consid-
erations, however, also hold for non-binary variables. For a binary diagnostic variable
D, with values d1 and d2, the Shannon entropy, the Gini index and the misclassification
error can be written as

H(Pr(D)) = − ∑
j=1,2

Pr(D = d j) · 2logPr(D = d j) =

= −x · 2logx − (1 − x) · 2log(1 − x)

G(Pr(D)) = 1 − ∑
j=1,2

Pr(D = d j)2 =

= 2x − 2x2

M(Pr(D)) = 1 − max{Pr(D = d j | j = 1,2} =

=
{

x , if x ∈ [0, 1
2 ]

1 − x , if x ∈ 〈 1
2 ,1]

where x = Pr(D = d1); the functions are shown in Figure 1(a), (b) and (c) respectively.
From Figure 1(a) and (b), we observe that the Shannon entropy has a higher value

than the Gini index. To formally support this observation, we consider the second
derivatives of the two functions:

H ′′(x) = − 1
x · ln2

− 1
(1 − x) · ln2

G′′(x) = −4

We observe that H ′′(x) < G′′(x) for all 0 < x < 1. Since both measures attain their
maximum at x = 1

2 , we thus have that in the interval 〈0, 1
2 〉 the ascent of the Shannon

entropy is steeper than that of the Gini index; in the interval 〈 1
2 ,1〉, the Shannon entropy

shows a steeper descent than the Gini index. We further observe that the two functions
attain the same value at x = 0 and at x = 1. We conclude that the two functions do not
otherwise intersect and, hence, that H(x) > G(x) for all 0 < x < 1. We also compare the
misclassification error and the Gini index. Within the interval [0, 1

2 ], we have that

G(x) = 2x − 2x2 ≥ x

since from 0 ≤ x ≤ 1
2 we can conclude that 2x2 ≤ x. The Gini index, therefore, lies

above the misclassification error. Within the interval 〈 1
2 ,1], we find that

G(x) = 2x − 2x2 = 2x · (1 − x) > 1 − x

since from 1
2 < x ≤ 1 we can conclude that 2x > 1. Again, the Gini index lies above

the misclassification error. We thus conclude that G(x) ≥ M(x). In fact, the misclassifi-
cation error can be looked upon as a piece-wise linear interpolation of the three points
G(0),G( 1

2 ) and G(1) of the Gini index.
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Fig. 1. The Shannon entropy (a), the Gini index (b), and the misclassification error (c) of a distri-
bution over a binary variable, and their first derivatives (d), (e) and (f)

Now, for test-selection purposes, we are not so much interested in the precise values
that the Shannon entropy, the Gini index and the misclassification error attain for a
specific probability distribution over the diagnostic variable D. We are more interested
in the way they value a shift in the distribution that is occasioned by a test result. We
therefore also study the first derivatives of the three functions:

H ′(x) = −2logx +2log(1 − x)

G′(x) = 2 − 4x

M′(x) =
{

1 , if x ∈ [0, 1
2〉

−1 , if x ∈ 〈 1
2 ,1]

These derivative functions are depicted in the Figures 1(d), (e) and (f) respectively.
The first derivative of the Gini index can be regarded as an approximation of the

first derivative of the Shannon entropy for a large range of values of x. To support this
observation, we consider the first three terms of the Taylor expansion of H ′(x) around
x = 1

2 , divided by G′(x). For the quotient, we find that

H ′(x)
G′(x)

= 1.44 + R

where the rest term R equals
R = 2.85 · (x − 1

2 )2

We observe that the rest term is dependent upon the value of x at which we compare the
two derivatives. Within the interval [0.37,0.63], for example, the rest term is smaller
than 0.05. Within this interval, therefore, we have that the Taylor approximation of the
first derivative of the Shannon entropy differs from the first derivative of the Gini index
by a multiplicative factor only, with an error of at most 0.05. This finding is supported
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by Figure 1(d), from which we observe that the first derivative of the Shannon entropy
approximates the linear derivative function of the Gini index in the middle part of the
[0,1]-interval. From the figure, we further observe that this property no longer holds
for the more extreme values. From the rest term R, we find, for example, that for the
value x = 0.3 the approximation error is less than 0.19 while for the value x = 0.25 it
has grown to 0.49. For x approaching the extremes, therefore, the quotient H ′(x)/G′(x)
grows excessively in favour of H ′(x).

To compare the first derivatives of the Gini index and of the misclassification error,
we begin by observing that G′ is a linear function and M′ is a piecewise constant func-
tion. We further observe that G′( 1

4 ) = M′( 1
4 ) and G′( 3

4 ) = M′( 3
4 ). We conclude that the

first derivative of the misclassification error is a two-point approximation of the first
derivative of the Gini index. We now briefly address the suitability of the misclassifica-
tion error for the purpose of test selection. We observe that within the interval x ∈ [0, 1

2 ],
the misclassification error for the probability distribution over the diagnostic variable D
equals M(Pr(D)) = Pr(D = d1) = x. Now suppose that for a test variable Ti, we have
that Pr(D = d1 | Ti = tk

i ) ∈ [0, 1
2 ] for all possible results tk

i of Ti. We then find that the
expected value of the misclassification error after performing the test equals

M(Pr(D | Ti)) = ∑
k=1,...,mi

Pr(D = d1 | Ti = tk
i ) ·Pr(Ti = tk

i ) = Pr(D = d1) = x

The expected misclassification error M(Pr(D | Ti)) of the posterior distribution thus
equals the misclassification error M(Pr(D)) of the prior distribution, and the expected
decrease in uncertainty in D by performing the test Ti is ˜M(Ti) = M(Pr(D))−M(Pr(D |
Ti)) = 0. Similar observations hold for Pr(D = d1) = x ∈ 〈 1

2 ,1]. Only if the posterior
probabilities of a diagnosis given the possible results tk

i of Ti, are distributed over both
intervals can the expected decrease in diagnostic uncertainty ˜M(Ti) be larger than 0.
Now, if at some stage in the test-selection process, for all remaining diagnostic tests
the expected decrease in diagnostic uncertainty equals 0, the misclassification error will
select a test at random. Since the probability distribution over the diagnostic variable is
likely to become less uniform as the test-selection process progresses, the probability
that a test will induce a shift to the other interval decreases. The misclassification error
will then show a tendency to select tests rather arbitrarily; this tendency has been noted
before by Breiman et al. [4]. We note that the tendency of the misclassification error to
select tests at random may be quite undesirable for real-life decision-support systems.

We conclude by reviewing the implications of our findings for the test-selection be-
haviour of the Gini index and the Shannon entropy. The two measures value a test based
upon the shifts that its results induce in the probability distribution over the diagnostic
variable and upon the probabilities with which these results are expected to be found.
Tests that induce a large shift in the probability distribution with a high probability, are
valued as more informative than tests that result in a minimal shift with a high prob-
ability or in a large shift with just a small probability. Since the first derivative of the
Gini index is a decreasing linear function, we find that it values a shift in distribution
concavely by a constant factor. Since the first derivative of the Shannon entropy approx-
imates a linear function within the interval [0.37,0.63], it values a shift in a distribution
where x stays within this interval in the same way as the Gini index. We conclude that
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the Shannon entropy and the Gini index will yield the same diagnostic test upon test se-
lection as long as the tests under consideration are unlikely to result in a rather extreme
distribution over the diagnostic variable. Since the Shannon entropy values a shift to an
extreme distribution disproportionally more than the Gini index, the two measures may
select different tests if a test is likely to result in such an extreme distribution. We note
that several other researchers [4,6] also described this difference in behaviour between
the Gini index and the Shannon entropy. Glasziou and Hilden for example argue that the
Shannon entropy overestimates the gain in information for shifts in an already extreme
probability distribution.

4 The Experimental Results

We formulated, in the previous section, the differences to be expected in the test-
selection behaviour of the three measures. Based upon our findings, we concluded that
the misclassification error is not as suitable for test selection as the other two measures.
In this section we therefore focus on the Shannon entropy and the Gini index. To study
the differences between the two measures in a practical setting, we conducted a test-
selection experiment using the measures in the context of a real-life decision-support
system in oncology. We briefly introduce the system that we used for our experiment
before presenting the results that we obtained.

With the help of two experts in gastrointestinal oncology from the Netherlands Can-
cer Institute, we developed a decision-support system for the staging of cancer of the
oesophagus [7]. The kernel of the system is a probabilistic network that models the
various presentation characteristics of an oesophageal tumour and the pathological pro-
cesses involved in its growth. The network currently includes 42 statistical variables, for
which almost 1000 probabilities are specified. The main diagnostic variable of the net-
work is the variable Stage that summarises the depth of invasion of the primary tumour
and the extent of its metastasis; this variable has six possible values. The oesophageal
cancer network further includes 25 variables to represent the results of diagnostic tests.
For the staging of a patient’s oesophageal cancer, typically a number of tests are per-
formed. The various tests differ considerably in their reliability characteristics.

To study the behaviour of the Shannon entropy and the Gini index in the context
of the oesophageal cancer network, we extended our decision-support system with a
sequential test-selection facility. With the facility, we conducted two experiments. For
the first experiment, we extended the oesophageal cancer network with a new binary
variable Operable that summarises the six possible values of the original diagnostic
variable Stage by classifying a patient’s oesophageal cancer as operable or inoperable.
For the second experiment, we used the test-selection facility with the original six-
valued diagnostic variable. For our experiments, we had available the medical records
of 162 patients diagnosed with cancer of the oesophagus. To simulate a realistic setting,
we entered, for each patient, the results of a gastroscopic examination into the network
prior to using the facility; in daily practice, the physicians also start selecting tests based
upon the initial findings from this standard test.

As an illustration of the results that we found from our first experiment, we discuss
the test-selection behaviour of the two measures for a specific patient. When the test
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Fig. 2. The effects of the results of a CT-scan of the liver (a) and of an endosonography of the
oesophageal wall (b), against the first derivatives of the Gini index and the Shannon entropy

selection is started, the probability of the cancer of this patient being operable, equals
0.38; the Gini index of the distribution over the variable Operable equals 0.471 and
the Shannon entropy equals 0.958. For the next test to perform, the Gini index and the
Shannon entropy suggest different tests. The Shannon entropy indicates that a CT-scan
of the liver is expected to result in the largest decrease in diagnostic uncertainty, whereas
the Gini index selects an endosonography of the oesophageal wall. More specifically,
the expected Shannon entropy is computed to be 0.862 for the CT-scan and 0.899 for the
endosonography; the expected values of the Gini index are 0.418 and 0.412 respectively.

To explain the observed difference in behaviour between the two measures, we study
the shifts in the probability distribution over the diagnostic variable Operable that
are occasioned by the various test results. Figure 2(a) shows, by means of vertical
lines, the shifts in distribution that are yielded by the two possible results of a CT-scan
of the liver; the shifts occasioned by the five different values of the endosonography of
the oesophageal wall are shown in Figure 2(b). The prior probability of the patient’s
cancer being operable is indicated by a bold vertical line in both figures. From Figure
2(a), we observe that the leftmost vertical line, indicating the probability 0.082 of the
patient’s tumour being operable given that the result of the CT-scan of the liver is yes,
is well within the range in which the first derivative of the Shannon entropy no longer
approximates a linear function. The shift in the probability distribution over the vari-
able Operable that is occasioned by this test result, therefore, is valued much higher by
the Shannon entropy than by the Gini index. The result moreover is relatively likely to
be found, with a probability of 0.231. The result no of the CT-scan is valued more or
less the same by both measures. Two results of the endosonography, on the other hand,
are valued more or less concavely by a constant factor by the Shannon entropy as well
as by the Gini index. The other three results of the endosonography are not within the
range where they are valued more or less the same by the two measures. These three
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Table 1. The step, in the test-selection process, at which the Shannon entropy and the Gini index
select different tests

Step Frequency Step Frequency Step Frequency Step Frequency Step Frequency

1 24 5 4 9 1 13 0 none 3
2 90 6 6 10 1 14 0
3 11 7 1 11 1 15 0
4 19 8 1 12 0 16 3

results have very low probabilities, of 0.034, 0.097 and 0.005, however. The result that
serves to shift the probability of interest to 0.612, on the other hand, has a probability of
0.252, whereas the result that serves to yield a shift to 0.287 has a probability of 0.612.
Note that although the probability 0.287 is not within [0.37,0.63], it is quite close to this
interval. The shift to this probability is therefore valued more by the Shannon entropy
than by the Gini index, yet not to a large extent. Since the shift occasioned by the en-
dosonography is expected to result in a larger decrease of the uncertainty involved than
that occasioned by the CT-scan of the liver, the Gini index selects the endosonography
as the best test to perform. The expected decrease in diagnostic uncertainty by the CT-
scan, however, is disproportionally larger with the Shannon entropy than with the Gini
index, thereby explaining the Shannon entropy selecting the CT-scan. Note that these
findings are conform the expectations from our fundamental analysis.

So far, we discussed in detail the differences in test-selection behaviour of the two
measures under study for a binary diagnostic variable. We also studied the differences
in behaviour for the original six-valued diagnostic variable Stage. Table 1 summarises,
over all patients, the step in the test-selection process at which the Shannon entropy
and the Gini index first selected a different diagnostic test. From the table we observe
that for 24 patients (15%), already the first test differed. For 90 patients (56%), the
measures selected the same diagnostic test for the first one to be performed, yet chose
different tests for the second one. The range of tests selected in the first two steps was
quite limited, however. The Shannon entropy selected the endosonography of the local
region of the primary tumour for 44% of the patients as the most informative test, the
endosonography of the oesophageal wall for 21% of the patients, and the CT-scan of
the liver for 28% of the patients. The Gini index selected the endosonography of the
local region of the primary tumour and of the oesophageal wall respectively, for 44%
and 40% of the patients as the most informative test.

Since the Shannon entropy and the Gini index are commonly taken to be interchange-
able for practical purposes, it is remarkable that for just three patients the two measures
selected the same tests in the same order. The analysis from the previous section serves
to explain why the two measures can select different tests. To explain the large num-
ber of differences found, we recall that, before the test-selection process is started for
a patient, we entered the results from the gastroscopic examination into the network.
Since these results tend not to influence the probability distribution over the diagnostic
variable much, the test-selection process was started with a rather similar probability
distribution for many patients. The example patient discussed in the previous section in
fact belongs to this large group of similar patients.
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5 Conclusions

In diagnostic decision-support systems, test selection amounts to selecting tests that
are expected to yield the largest decrease in the uncertainty about a patient’s diagnosis.
For capturing this uncertainty, often an information measure is used. In this paper, we
studied the Shannon entropy, the Gini index, and the misclassification error for this
purpose. We argued that the first derivative of the Gini index can be regarded as an
approximation of the first derivative of the Shannon entropy for a large range of values.
We observed that, although a shift in many probability distributions over the diagnostic
variable is valued similarly by the Gini index and the Shannon entropy, a shift to rather
extreme distributions is valued much higher by the Shannon entropy than by the Gini
index. Based upon this observation, the two measures are expected, at least occasionally,
to select different tests. We feel that, despite their possible differences in behaviour,
both measures are equally suited for use in a decision-support system. We furthermore
concluded that the misclassification error should not be used for test-selection purposes
due to its tendency to select tests randomly when all possible shifts in the probability
distribution over the diagnostic variable are within the same half of the [0,1]-interval.

We conducted an experiment to study the behaviour of the Shannon entropy and the
Gini index in a real-life setting. The results from our experiment served to corroborate
the differences in behaviour expected from our more fundamental analysis. A sensitivity
analysis with respect to the selection of tests based upon the two information measures,
moreover, showed that test selection based on the Shannon entropy and the Gini index
is quite robust. Since our analysis of the two measures is independent of our application
domain, we feel that the differences in test-selection behaviour observed in our exper-
iments in the domain of oesophageal cancer, are likely to show in other domains as
well.
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