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Abstract. Coronary artery disease is one of the world’s most important causes
of early mortality, so any improvements of diagnostic procedures are highly ap-
preciated. In the clinical setting, coronary artery disease diagnostics is typically
performed in a sequential manner. The four diagnostic levels consist of evalu-
ation of (1) signs and symptoms of the disease and ECG (electrocardiogram)
at rest, (2) ECG testing during a controlled exercise, (3) myocardial perfusion
scintigraphy, and (4) finally coronary angiography (which is considered as the
“gold standard” reference method). In our study we focus on improving diagnos-
tic performance of the third diagnostic level (myocardial perfusion scintigraphy).
This diagnostic level consists of series of medical images that are easily obtained
and the imaging procedure represents only a minor threat to patients’ health. In
clinical practice, these images are manually described (parameterized) and sub-
sequently evaluated by expert physicians. In our paper we present an innovative
alternative to manual image evaluation – an automatic image parametrization on
multiple resolutions, based on texture description with specialized association
rules, and image evaluation with machine learning methods. Our results show
that multi-resolution image parameterizations equals the physicians in terms of
quality of image parameters. However, by using both manual and automatic im-
age description parameters at the same time, diagnostic performance can be sig-
nificantly improved with respect to the results of clinical practice.

Keywords: machine learning, coronary artery disease, medical diagnosis, image
parametrization, association rules, stepwise diagnostic process.

1 Introduction

Coronary artery disease (CAD) is one the world’s main cause of early mortality, and
there is an ongoing research for improving diagnostic procedures. The usual clinical
process of coronary artery disease diagnostics consists of four diagnostic steps (levels):
(1) evaluation of signs and symptoms of the disease and ECG (electrocardiogram) at
rest; (2) ECG testing during the controlled exercise; (3) stress myocardial scintigraphy;
and (4) coronary angiography.
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In this process, the fourth diagnostic level (coronary angiography) is considered as
the “gold standard” reference method. As this diagnostic procedure is invasive, com-
paratively expensive, and potentially dangerous for the patients, there is a tendency to
improve diagnostic performance and reliability of earlier diagnostic levels, especially of
myocardial scintigraphy [9, 10]. Approaches used for this purpose include applications
of neural networks [1], expert systems [7], subgroup mining [6], statistical techniques
and rule-based approaches [11]. In our study we focus on different aspects of improving
the diagnostic performance of myocardial scintigraphy.

Results of myocardial scintigraphy consist of series of medical images that are taken
both during rest and a controlled exercise. These images are readily available in PC or
Mac format by respective SPECT cameras and such and imaging procedure does not
threaten patients’ mostly frail health.

In clinical practice, expert physicians use their medical knowledge and experience
as well as the image processing capabilities provided by various imaging software to
manually describe (parameterize) and evaluated the images.

In our paper we present an innovative alternative to manual image evaluation –
automatic multi-resolution image parametrization, based on texture description with
specialized association rules, and image evaluation with machine learning methods.
Our results show that multi-resolution image parametrization equals or even betters the
physicians in terms of the quality of image parameters. Additionally, by using both
manual and automatic image description parameters at the same time, diagnostic per-
formance can be significantly improved with respect to the results of clinical practice.

2 Methods and Materials

2.1 Stepwise Diagnostic Process

Every medical diagnosis inherently contains some uncertainty and is therefore not com-
pletely reliable. Sometimes it is crucial to know the magnitude of diagnosis’ reliability
in order to minimize risks for patient’s health or even life.

In a stepwise diagnostic process diagnostic tests are ordered by some pre-determined
criteria, such as increasing cost, diagnostic accuracy, and invasiveness (in this order).
Key elements of stepwise testing are the estimate of the prior (pre-test) probability of
a disease, and the sensitivity and specificity of different diagnostic levels. With this
information, test results can be analyzed by sequential use of the Bayes’ conditional
probability theorem. The obtained post-test probability accounts for the pre-test proba-
bility, sensitivity and specificity of the test, and may later be used as a pre-test proba-
bility for the next test in sequence (Fig. 1). The process results in a series of tests where
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Fig. 1. Increasing diagnostic test levels in stepwise diagnostic process
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each test is performed independently. Its results may be interpreted with or without any
knowledge of the other test results. In diagnostic problems, the performance of a diag-
nostic test is described with diagnostic (classification) accuracy (Acc), sensitivity (Se)
and specificity (Sp). Test results from earlier levels are used to obtain the final proba-
bility of disease. Stepwise diagnostic tests are performed until the post-test probability
of disease’s presence or absence exceeds some pre-defined threshold value [3].

The Bayes’ theorem is applied to calculate the conditional probability of the dis-
ease’s presence, when the result of a diagnostic test is given. For positive test result the
probability P (d|+) = P (disease |positive test result) is calculated:

P(d |+) =
P · Se

P · Se + (1 − P ) · (1 − Sp)
(1)

For negative test result the probability P (d|−) = P (disease|negative test result) is
calculated:

P(d |−) =
P · (1 − Se)

P · (1 − Se) + (1 − P1) · Sp
(2)

The post-test probability after a diagnostic test represents the pre-test probability for the
subsequent test. This approach may not only incorporate several test results but also the
data from the patient’s history [3].

2.2 Image Parametrization

Images in digital form are normally described with matrices which are spatially com-
plex and yet do not offer features that could uniformly distinguish between their prede-
fined classes. Determining image features that can satisfactorily discriminate observed
image classes is a hard task for which different algorithms exist. They transform the
image from the matrix form into a set of numeric or discrete features (parameters) that
convey useful information for discrimination between classes.

The ArTeX Algorithm. The use of association rules used for texture description were
first described in [16]. We follow a slightly different approach introduced in [2], where
different texture representation and different algorithm for association rules are used.

Fig. 2 illustrates the association rule (1, 1) ∧ (2, 10) =⇒ (1, 15) ∧ (3, 5), which can
be read as follows: if a pixel of intensity 1 is found on distance 1 and a pixel of intensity

Fig. 2. An illustration of association rule (1, 1) ∧ (2, 10) =⇒ (1, 15) ∧ (3, 5)
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10 is found on distance 2, then there is also a pixel of intensity 15 on distance 1 and a
pixel of intensity 5 on distance 3.

Using association rules on textures allows to extract a set of features (attributes) for
a particular domain of textures. Here is a general description of the ArTeX algorithm:

• Select a (small) subset of images F for feature extraction. The subset F can be con-
siderably small. Use at least one example of each typical image in the domain. That
is at least one sample per class, or more if the class consists of subclasses.

• Pre-processing of images in F. Pre-processing involves the transformation of images
to grey scale if necessary, the quantization of grey levels and the selection of proper
neighborhood size R. The initial number of grey levels per pixel is usually 256. The
quantization process downscales it to say 16 levels per pixel. Typical neighborhood
sizes are 3, 4, 5.

• Generate association rules from images in F. Because of the representation of tex-
ture, it is possible to use any algorithm for association rules extraction. We use the
well-known algorithms Apriori and GenRules.

• Use generated association rules to extract a set of features. There are two features
associated with each association rule: support and confidence. Use these two at-
tributes of all association rules to construct a feature set. The number of extracted
features is twice the number of association rules, which could be quite a lot.

Earlier experiments [18] show excellent results when using ArTeX-type texture de-
scriptions in conjunction with machine learning algorithms. One of the reasons for the
success of ArTeX is that it describes images in a multi-resolution and rotation-invariant
manner. This parametrization is also invariant to image brightness which is in our case
necessary due to varying radiopharmaceutical agent absorption. These features make
ArTeX a promising tool for analyzing myocardial scintigrams.

Multi-resolution Parametrization. Algorithms for image parametrization are suitable
either for images (imaging some content of different classes) or textures (representing
some repeating patterns). Image illumination, scale and affine transformations often
obstruct the parametrization. Algorithms use different pixels’ properties and relations
between them since images in digital representation are described with pixels. Due to
the time and space complexity only a predefined size of pixel neighborhood is observed,
which makes detectable relations between pixels quite dependent on image resolution.
Not only different image scales require appropriate resolutions, but also when there are
more shapes of different size present in a picture more resolutions are desired. By using
only a single resolution, we may miss the big picture, and proverbially not see the forest
because of the trees.

Another issue is the pattern scale. Not every combination of scale and neighborhood
size can guarantee that the pattern would be detected. This yields a solution where
more resolutions are simultaneously observed in one image and obtained features for
each resolution are combined together in one feature vector.

If we want to use more resolutions it is necessary to determine which ones to use.
Many existing applications use fixed resolutions irrespectively of the image content and
usually three or four are used [5, 14]. Multi-resolution algorithms usually perform better
when using only a few resolutions; more resolutions typically yield worse results.
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We have developed an algorithm [17] for determining the resolutions for which more
informative features can be obtained. The idea for the algorithm is derived from the well
known SIFT algorithm [13]. In this way also resolutions for the hearth scintigraphy are
determined.

When detecting the appropriate resolutions the image is consequently resized from
100% down to some predefined lowest threshold at some fixed step. At each resize
peaks are counted. Peaks are represented by pixels which differ from their neighborhood
either as highest or lowest intensity. This algorithm can be implemented also with DOG
(Difference-Of-Gaussian) [13] method which improves the time complexity with lower
number of actual resizes required to search the entire resolution space.

Detected peak counts are recorded over all resolutions as a histogram. From the his-
togram the best resolutions are detected at the highest counts. The number of resolutions
we want to use in our parametrization is predefined. When there are more equal counts
we chose as diverse resolutions as possible [17]. When optimal resolutions are deter-
mined, an image parametrization algorithm (Artex in our case, but could be anything)
is used to describe images.

2.3 Medical Data

In our study we used a dataset of 288 patients with suspected or known CAD. All pa-
tients had performed proper clinical and laboratory examinations, exercise ECG, stress
myocardial perfusion scintigraphy (complete image sets were available for analysis),
and coronary angiography. Features for the ECG an scintigraphy data were extracted
manually by the clinicians. 10 patients were excluded for data pre-processing and cal-
ibration required by multi-resolution ArTeX, so only 278 patients (66 females, 212
males, average age 60 years) were used in actual experiments. In 149 cases the disease
was angiographically confirmed and in 129 cases it was excluded. The patients were
selected from a population of several thousands patients who were examined at the Nu-
clear Medicine Department between 2001 and 2004. We selected only the patients with
complete diagnostic procedures (all four levels), and for whom the imaging data was
readily accessible. Some characteristics of the dataset are shown in Tab. 1.

Table 1. CAD data for different diagnostic levels. Of the attributes belonging to the coronary
angiography diagnostic level, only the final diagnosis – the two-valued class – was used in
experiments.

Diagnostic level Number of attributes
Nominal Numeric Total

1. Signs and symptoms 22 5 27
2. Exercise ECG 11 7 18
3. Myocardial scintigraphy 8 2 10

(+9 image series)
4. Coronary angiography 1 6 7

Class distribution 129 (46.40%) CAD negative
149 (53.60%) CAD positive
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It must be noted that our patients represent a highly specific population, since many
of them had already had performed cardiac surgery or dilatation of coronary vessels.
This clearly reflects the situation in Central Europe with its aging population. It is there-
fore not surprising that both the population and the predictive performance are consid-
erably different than that of our previous study, where data were collected between
years 1991 and 1994 [8]. These differences are a consequence of rapidly progressing
interventional cardiology. and are therefore not applicable to the general population, but
only to comparable population in developed countries. Similarly, general findings about
CAD only partially apply to our population.

Scintigraphic Images. In each patient series of images were taken with the General
Electric Millennium SPECT gamma camera, both at rest and after a controlled exercise,
thus producing the total of 64 grayscale images in resolution of 64 × 64 8-bit pixels.
Because of patients’ movements and partial obscuring the heart by other internal organs,
these images are not suitable for further use without heavy pre-processing. For this
purpose, a General Electric workstation running eNTEGRA software was used (more
specifically we used the Emory Cardiac Toolbox [4]). One of ECToolbox’s outputs, a
series of 9 polar map (bull’s eye) images was used for each patients. Polar maps were
chosen because previous work in this field [12] showed that they have useful diagnostic
value. The 9 polar map images consist of the following images [4]:

• three raw images (the stress and the rest image, as well as the reversibility image,
calculated as a difference between normalized rest and stress images

• three blackout (defect extent) images (which are the stress and the rest image, com-
pared with the respective database of normal images, and suitably processed). Again
the reversibility image, calculated as a difference between normalized rest and stress
blackout images.

• three standard deviation images that show relative perfusion variance when com-
pared to the respective database of normal images.

An example of polar map images for a typical patient with well-defined CAD is shown
in Fig. 3. Unfortunately, in most cases (and especially in our specific population) the dif-
ferences between images taken during exercise and at rest are not so clear-cut as shown
in Fig. 3. Interpretation and evaluation of scintigraphic images therefore requires con-
siderable knowledge and training of expert physicians. Although specialized tools such
as the ECToolbox software can aid in this process, they still require a lot of training
and medical knowledge for evaluation of results. The aim of our study is to use auto-
matic image parametrization in conjunction with machine learning methods in order to
provide additional diagnostic tools.

3 Results

As already mentioned in Sec. 2.3, out of the 288 patients, 10 were excluded for data
preprocessing and calibration required by the multi-resolution ArTeX parametrization
procedure. These patients were not used in further experiments. The remaining 278
patients with 9 images each were parameterized for three resolutions in advance. The
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Fig. 3. Typical polar maps taken after exercise (first column), at rest (second column), and their
difference (third column). The first row consists of raw images, the second of blackout images,
and the third of standard deviations. Black regions indicates less perfused cardiac tissue (a poten-
tial defect). Images shown in this figure correspond to the patient with a very clear manifestation
of CAD.

proposed three resolutions1 were 0.95×, 0.80×, and 0.30× of the original resolution,
producing together 2944 additional attributes (features). Since this number is too large
for most practical purposes, we filtered2 it to 200 best features as estimated with the
ReliefF algorithm[15]. We also did some experiments with other image parametrization
approaches such as wavelet and DFT transform, Gabor filters, and combined them with
SIFT-like resolution selection; they, however, mostly performed considerably worse
than ArTeX. We omit further analysis of these results due to lack of space.

We applied three popular machine learning algorithms: naive Bayesian classifier,
support vector machine, and C4.5 (J4.8) decision tree. We performed experiments with
Weka [19] machine learning toolkits.

When necessary, continuous attributes were discretized in advance. Testing was per-
formed in the 10-fold cross-validation setting. Aggregated results of the coronary an-
giography (CAD negative/CAD positive) were used as the class variable.

Experimental results are compared with diagnostic accuracy, specificity and sensitiv-
ity of expert physicians after evaluation of scintigraphic images (Tab. 2). The results of
clinical practice were validated by careful blind evaluation of images by an independent
expert physician.

For machine learning experiments we considered several different settings: evalua-
tion of attributes extracted by physicians; evaluation of all attributes extracted by multi-
resolution ArTeX; evaluation of all attributes extracted by multi-resolution ArTeX in

1 A resolution of 0.30× means 0.30 · 64 × 0.30 · 64 pixels instead of 64 × 64 pixels.
2 Even better results could be expected if the wrapper approach were used instead of filtering.

We chose not to follow this lead for now because of its time consumption.
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Table 2. Diagnostic results of the physicians compared with results of machine learning classifiers
obtained from the original attributes, as extracted by physicians. Results that are significantly
(p < 0.05) different from clinical results are emphasized.

All basic attributes
Accurracy Specificity Sensitivity

Physicians 64.00 71.10 55.80
Naive Bayes 68.34 69.80 67.10
SVM 65.10 62.80 67.10
J4.8 57.19 53.50 60.40

conjunction with attributes, extracted by physicians (Tab. 3); as well as the above vari-
ants reduced to 200 best attributes with ReliefF (Tab. 4). Significance of differences to
clinical results was evaluated by using the McNemar’s test.

From Tab. 2 we can see that machine learning algorithms are approximately on level
with expert physicians when evaluating the original data, as collected by physicians.
Naive Bayesian classifier even achieves significantly higher diagnostic accuracy and
slightly lower sensitivity than physicians, while the J4.8 decision tree achieves signif-
icantly lower diagnostic accuracy. However, for physicians, improvements of speci-
ficity are more important than improvements of sensitivity or overall accuracy, since
increased specificity decreases the number of unnecessarily performed higher-level di-
agnostic tests, and consequently shorter waiting times for truly ill patients.

Table 3. Experimental results of machine learning classifiers on parameterized images obtained
by using all available attributes. Results that are significantly (p < 0.05) better than clinical
results are emphasized.

All image and basic attributes All image attributes
Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity

Physicians 64.00 71.10 55.80 64.00 71.10 55.80
Naive Bayes 70.50 72.10 69.10 70.14 72.10 68.50
SVM 69.40 69.80 69.10 61.15 58.10 63.80
J4.8 65.10 60.50 69.10 59.71 63.80 55.00

In Tab. 3 we can see that some machine learning algorithms have difficulties when
handling a huge number (2944) of attributes, with only 278 learning examples. This can
lead to overfitting the learning data and thus lower their diagnostic performance. Only
naive Bayesian classifier is significantly better than physicians when using all 2944
attributes. However, using these 2944 attributes together with the original attributes
invariably improves the physicians’ results, in two of three cases even significantly.

Tab. 4 depicts the situation where machine learning algorithms considerably benefit
from attribute filtering. In all cases the results are significantly better than the results of
physicians. Especially nice results are that of naive Bayesian classifier, which improves
diagnostic accuracy, sensitivity and specificity.
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Table 4. Experimental results of machine learning classifiers on parameterized images obtained
by selecting only the best 200 attributes. Results that are significantly better (p < 0.05) than
clinical results are emphasized.

200 best image and basic attributes 200 best image attributes
Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity

Physicians 64.00 71.10 55.80 64.00 71.10 55.80
Naive Bayes 74.10 79.80 69.10 72.30 79.80 65.80
SVM 69.42 65.90 72.50 70.14 72.90 67.80
J4.8 67.62 63.60 71.10 68.34 63.60 72.50

We also experimented with machine learning classifiers in stepwise process, as shown
in Fig. 1 and described in Sec. 2.1. By the stepwise diagnostic process, after the third di-
agnostic level we get the following percentages reliable diagnoses (post-test probability
≥ 0.90), which are practically the same as the results of expert physicians:

• 30.94% reliable true positive diagnoses and 10.50% erroneously reliable false posi-
tive diagnoses

• 19.88% reliable true negative diagnoses and 7.83% erroneously reliable false nega-
tive diagnoses

Our preliminary experiments show, that by using additional attributes from parameter-
ized images, we can increase the number of reliable positive and negative diagnoses by
almost 10% while keeping the number of incorrect diagnoses lower than the physicians
in clinical practice.

4 Discussion

Although our study is still in early stages, the results are promising. We have shown
that multi-resolution ArTeX parametrization in conjunction with machine learning tech-
niques can be successfully used as an intelligent tool in image evaluation, as well as as
a part of the stepwise diagnostic process. Automatic image parametrization and ma-
chine learning methods can help less experienced physicians evaluate medical images
and thus improve their combined performance (in terms of accuracy, sensitivity and
specificity).

From the practical use of described approaches two-fold improvements of the diag-
nostic procedure can be expected. Due to higher specificity of tests (by almost 9%),
fewer patients without the disease would have to be examined with coronary angiogra-
phy which is invasive and therefore dangerous method. Together with higher sensitivity
this would also save money and shorten the waiting times of the truly ill patients.

The most significant result of our study may well be the improvement in the predic-
tive power of the stepwise diagnostic process. The almost 10% improvement of positive
and negative patients who would not need to be examined with costly further tests, rep-
resents a significant improvement in the diagnostic power as well as in the rationaliza-
tion of the existing CAD diagnostic procedure without danger of incorrectly diagnosing
more patients than in current practice.



128 M. Kukar et al.

However, it should be emphasized that the results of sour study are obtained on a
significantly restricted population and therefore may not be generally applicable to the
normal population, i.e. to all the patients coming to the Nuclear Medicine Department
of the University Clinical Centre in Ljubljana.
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[15] Robnik-Šikonja, M., Kononenko, I.: Theoretical and empirical analysis of ReliefF and
RReliefF. Machine Learning 53, 23–69 (2003)



Multi-resolution Image Parametrization 129

[16] Rushing, J.A., Ranganath, H.S., Hinke, T.H., Graves, S.J.: Using association rules as texture
features. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(8), 845–858
(2001)
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