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Abstract. Current predictive models in the intensive care rely on sum-
maries of data collected at patient admission. It has been shown recently
that temporal patterns of the daily Sequential Organ Failure Assessment
(SOFA) scores can improve predictions. However, the derangement of the
six individual organ systems underlying the calculation of a SOFA score
were not taken into account, thus impeding the understanding of their
prognostic merits. In this paper we propose a method for model induc-
tion that integrates in a novel way the individual organ failure scores
with SOFA scores. The integration of these two correlated components
is achieved by summarizing the historic SOFA information and at the
same time by capturing the evolution of individual organ system failure
status. The method also explicitly avoids the collinearity problem among
organ failure episodes. We report on the application of our method to
a large dataset and demonstrate its added value. The ubiquity of sever-
ity scores and sub-scores in medicine renders our approach relevant to a
wide range of medical domains.

Keywords: Prognostic models, temporal patterns, Intensive Care, organ
failure scores.

1 Introduction

Probabilistic predictions of patient outcomes such as mortality and length of stay
in the intensive care unit (ICU) are useful for supporting decisions at the level of
individuals and groups [1]. Current models for predicting hospital mortality, after
admission to the ICU, use summaries of patient information collected within the
first 24 hours of admission. These summaries, which take the form of severity-of-
illness-scores such as the APACHE-II [2] and SAPS-II [3], are used as covariates
in a logistic regression model (see appendix).

Since a decade ago, some ICUs started collecting Sequential Organ Failure
Assessment (SOFA) scores [4] on each day of ICU stay. A SOFA score is an
integer ranging from 0 to 24 that quantifies the derangement of all organs of
a patient on a given day, the higher the score the greater the derangement. A
SOFA score is calculated as the sum of 6 individual organ system failure (IOSF)
scores, each ranging between 0 and 4.
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Although not specifically targeted towards prediction of mortality, the rela-
tionship between SOFA scores and mortality has been investigated. In previous
work [5] we devised a new method for integrating the SOFA temporal informa-
tion in the existing logistic regression models. The method, more elaborated on
in the next section, is based on the idea of using frequent temporal patterns,
called episodes, as covariates in the model. Although the SOFA episodes im-
proved predictions, the use of only SOFA scores has two disadvantages. First,
no insight is obtained into the qualitative contribution of the individual organ
systems to mortality. Second, it is unclear whether the IOSF scores would fur-
ther improve the quality of predictions because these scores are correlated with
the SOFA scores and it is unclear how to combine the two.

In this paper we propose a method for model induction that incorporates
IOSF scores alongside the SOFA scores. The method deals with the overlap
between the two types of scores by summarizing the historic SOFA information
in one summary statistic, and by capturing the evolution of individual organ
system failure status in frequent temporal patterns. The summary statistic and
the organ failure (OF) episodes are used as covariates in the familiar logistic
regression framework. For a given day d, the application of the proposed method
results in a model predicting, for patients staying at least d days, the probability
of their eventual survival status at discharge (regardless of when this happens).
We report on the application of our method to a large real-world dataset and
demonstrate the added value in interpreting the models and in their improved
predictive performance. In the sequel we will refer to a model using only the
SAPS-II (in short SAPS) as the static model ; to a model using SAPS and SOFA
episodes as a SOFA-model (as described in [5]); and to a model using SAPS, a
summary of SOFA and failure episodes as an organ-failure model (OF-model).
The resulting OF-models will be subject to comparison with the other models.

The rest of the paper is organized as follows. Section 2 describes the proposed
method to induce OF-models and the data types it operates on. Section 3 and
Section 4 describe the case study used for demonstrating the method and the
obtained results. We discuss our method in Section 5 and put it in perspective
by relating it to other work.

2 Data and Methods

Data. We consider two categories of data: the static data, represented by the
SAPS score (collected at admission) and temporal data consisting of the daily
SOFA score along with its 6 components (IOSF scores) corresponding to the
following systems: respiratory (Resp), coagulation (Coag), hepatic (Hepa), car-
diovascular (Cardio), central nervous system (CNS), and renal (Ren) systems.
Table 1 shows an example of data for a patient who stayed for 4 days in the ICU
before dying on the fifth day.

Method. In previous work [5] we showed how to induce SOFA-models. In a
nutshell, this is done by the following process. First the SOFA scores, ranging
from 0 to 24, are categorized into three qualitative states: Low (L), Medium (M)
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Table 1. Example of available temporal data for an ICU patient admitted for 4 days.
The SOFA scores indicate a constant health status deterioration.

Day SOFA Resp Coag Hepa Cardio CNS Ren Outcome
1 10 4 2 0 0 1 3
2 12 4 1 2 1 2 2
3 14 4 2 2 0 4 2
4 15 4 1 2 1 4 3
5 – – – – – – – died

and High (H). For each day d on which hospital mortality is to be predicted the
subsample of patients that stayed at least d days is selected. Next, frequent
episodes of consecutive SOFA states that are aligned with the day of prediction
(later clarified in this paper) are discovered in these patients. The SAPS and
a set of binary variables representing the occurrence of the SOFA episodes in
patients are then considered as possible covariates (input variables) in a logistic
regression model to predict the hospital mortality for day d. For example if the
linear predictor LP (see appendix) of the model for day 5 is: −2 + 0.02SAPS −
1.5LL + 0.7H then for a patient with SAPS of 40 having the episode {L, L}
at days 4 and 5 will be −2 + 0.02 ∗ 40 − 1.5 = −2.7 which corresponds to a
probability of dying of 0.063 while a patient with SAPS of 40 but having the
episode {H} on day 5 will have an LP of −2 + 0.02 ∗ 40 + 0.7 = −0.5 which
corresponds to a probability of death of 0.38. In this paper we adapt and extend
our approach described above to induce OF-models. This process is described
below followed by a description of the main differences between the new and
previous approach.

Categorization. An IOSF score ranging between 0 to 4 is categorized based on
clinical definitions into two categories: failure (F ), for values ∈ {3, 4} and non–
failure (NF ) otherwise. For example, the renal scores during 3 days of 1–4–2
become NF, F, NF . Aside from clinical interpretability, limiting the number of
categories allows the emergence of episodes with higher support in the data.

Frequent episode discovery. We rely on the A-priori-like algorithm [6] described
in [7] for frequent pattern discovery. This is based on the downward closure
property which implies that a subsequence of a frequent episode must be frequent
too. The discovery procedure is an iterative process. We adapted the algorithm
to search for a special type of episodes: their occurrence in a patient’s sequence
of values is consecutive and also aligned to the day of prediction d. For example,
given the patient’s sequence F, F, NF, F, NF starting at admission day, then for
d=2 the episode {F, F} occurs in the patient data because aligning the episode
at day 2 (i.e. positioning the last F in the episode at the second element in the
patient’s sequence) results in a match with the subsequence F, F in the patient
sequence. However, for d=4 the episode is not aligned to the patient’s sequence.
The decision to use aligned episodes is motivated by the belief that the last days
before prediction are more relevant than information at earlier days.
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In each iteration, the algorithm extends frequent episodes from the previous
iteration with elementary episodes (F and NF for the organ failure data) and
assesses the frequency of the resulting episodes. For example given the frequent
episode {F, F, NF}, the extended aligned candidate episodes are {F, F, F, NF}
and {NF, F, F, NF}. In general, an episode aligned to day d is said to be frequent
when its frequency rate in the subset of patients staying at least d days exceeds
a pre-specified threshold (e.g. 5% of cases) referred to as minimum support rate.
The discovery process continues until no more frequent episodes are encountered.

Model fitting strategy. Not all the frequent OF episodes are relevant for prediction
and their excessive use can lead to overfitting. Our feature selection strategy is
based on an information-theoretic measure, the Akaike’s Information Criterion
(AIC) [8] used in an iterative backward variable elimination selection process.
In every iteration, the current model with N variables is used to produce N
models, each having one subset of N − 1 distinct variables. From the produced
models only the one that further reduces, by largest margin, the AIC of the
model with N variables is considered for the next iteration. The AIC, defined as
−2logL(θ) + 2k, where L(θ) is the maximized likelihood [9] of the model and k
the number of parameters, strikes a balance between likelihood and parsimony.
Use of an information-theoretic criterion mitigates the problems associated with
approaches based on significance testing [10]. Finally, we use background medical
knowledge to eliminate model coefficients not compliant to clinical expectations.
In particular we: (1) eliminate any episode with “failure” at the day of prediction
and a negative β coefficient in the model (e.g. β= −0.7 for {NF, F, F}) and (2)
eliminate any episode with “non-failure” at the day of prediction and a positive
β coefficient in the model (e.g. β= 1.1 for {NF, F, NF}). Keep in mind that
a negative coefficient reduces the probability of mortality, and a positive one
increases it. A similar idea was introduced in [11], under the name “sign OK”,
defining a variable selection strategy based on the plausibility of the sign of the
regression coefficient.

Another thorny issue requiring attention is the phenomenon of collinearity, a
situation in which at least one of the covariates can be predicted well from the
other covariates [10]. This leads to instability of the model and jeopardizes the
interpretability of the β coefficients in the logistic model (see appendix) since it
is based on the idea of studying a change of a covariate while fixing the others.
However, holding down the values fixed of the collinear covariates is unattainable
because, by definition, they will be affected. One strong type of collinearity which
is ubiquitous in our domain when dealing with aligned episodes, is the occurrence
of the logically entailed episodes [5]. For example we say that episode {NF, F, F}
logically entails episode {F, F} since the occurrence of the first in a patient
implies the occurrence of the second episode. To eliminate logical entailment we
included a ranking step in the modeling stage (this procedure is more stringent
but simpler than the one suggested in [5]). For each one of the six organ systems,
all its discovered frequent OF episodes are ranked, from those with smallest
(best) AIC value to the largest, based on a univariate analysis between mortality
and the episode. For each organ system we retain only its highest ranked episode.
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This eliminates logically entailed episodes and provides simple models. This risks
eliminating other possibly useful episodes, but with only 2 categories (F and
NF ) any two aligned episodes are at least partially correlated. The episodes
obtained in this manner are then fed into the AIC-based feature elimination
strategy described above.

Evaluation. For each day of prediction d a separate training and testing set
are created. An important performance aspect of a probabilistic model is its
calibration ability. We applied the commonly used Brier score, 1

N

∑N
i=1(P (Yi =

1 | xi)−yi)2, where N denotes the number of patients, and yi denotes the actual
outcome for patient i. The vector xi represents the covariate values for patient
i. The Brier score is a strictly proper scoring rule [12] which, unlike measures
like the area under the ROC curve, means it is optimal only when the true
probability of the event is provided. The performance of each of the OF-models
is compared to its corresponding SOFA and static models. To test for statistical
significance in performance difference we advocate the use of the non-parametric
bootstrap method [13] with 1000 bootstrap samples of differences.

3 Case Study

The ICU patient dataset is available from the OLVG, a teaching hospital in
Amsterdam and was collected during July 1998 and October 2006 including all
2785 patients (25% mortality) eligible for analysis [5]. Both SAPS and SOFA
scores values were larger in the non-survivors (averages are: SAPS 61±15.3 vs.
39±18.4 for survivors, SOFA: 9.7±3.2 vs. 7.3±2.6). The mean number of failures
(IOSF scores values ∈ {3, 4}) per patient, give a clear indication of the high
association between organ failure and survival outcome (9.8 organ failures in
non-survivors versus 4.4 organ failures in survivors).

4 Results

Based on the method described above, four OF-models corresponding to the
ICU days 2–5 (day 1 cannot show temporal evolution), were created for predict-
ing the hospital mortality. In episode discovery, a threshold of 5% was used for
minimum support rate. Each OF-model includes the SAPS covariates (SAPS,
log(SAPS+1)) and, potentially, after variable selection the average SOFA and
frequent OF episodes. For comparative purposes the same training set was used
to induce the static and SOFA-models for the given day. Table 2 shows the
resulting models described by their’s linear predictor (LP). logSAPS represent
log(SAPS + 1) (used in compliance with the original SAPS model). The organ
failure episodes are labeled to identify their type of organ system. For exam-
ple Resp{F, NF} represents a failure followed by a non-failure in the respira-
tory system. The SOFA-models use the elements {L, M, H} to describe frequent
SOFA episodes e.g. {HM}. Table 3 exemplifies the interpretation in terms of
odds-ratios (equal to exp(β)) of the OF-model coefficients for day 2 and 5. For
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Table 2. Temporal models (OF and SOFA) and static models for days 2–5 of ICU
stay described by their linear predictors (LPs)

Day OF–model LP SOFA–model LP Static model LP
-9.3 +0.005SAPS -5.9 +0.03SAPS -7.7 +0.036SAPS
+ 1.9logSAPS+0.065meanSOFA + 0.87logSAPS +0.6H +1.26logSAPS

2 -1.85Resp{F,NF} +1.1CNS{F,F} -0.7L
-10.8 -0.01SAPS +2.2logSAPS -7.26 +0.01SAPS -10.35 +0.02SAPS

3 +0.13meanSOFA +0.4Resp{F,F} +1.4logSAPS+ 1.1H -0.66L +2.2logSAPS
+1.1CNS{F}
-6.7 -0.006SAPS +1.9logSAPS -5.5 +0.014SAPS -7.88 +0.027SAPS
+0.45Resp{F,F,F,F} +1.56CNS{F} +1.18logSAPS -1.95L +1.42logSAPS

4 -0.62Hepa{NF,NF,NF,NF} -0.8Cardio{NF} -0.83MM -0.65HM
-0.8Ren{NF,NF,NF}
-6 -0.006SAPS +1.5logSAPS -2.5 +0.02SAPS -5.5 +0.02SAPS

5 +0.5Resp{F,F,F,F,F} -0.9Coag{NF,NF} +0.12logSAPS -1.04L +0.85logSAPS
+1.4CNS{F} -0.5Ren{NF,NF,NF,NF} +0.65H

Table 3. Model covariates, their coefficients and odds-ratios (exp(βi)) in the OF-
models for day 2 and 5 of ICU stay

Day Covariate β eβ Day Covariate β eβ

SAPS 0.005 1.005 SAPS -0.006 0.99
logSAPS 1.9 6.68 logSAPS 1.5 4.48

2 meanSOFA 0.065 1.07 5 Resp{F,F,F,F,F} 0.5 1.64
Resp{F,NF} -1.85 0.16 Coag{NF,NF} -0.9 0.4
CNS{F,F} 1.1 3 CNS{F} 1.4 4.05

Ren{NF,NF,NF,NF} -0.5 0.6

Table 4. Performance evaluation – Brier score

Day Brier score OF–model win SOFA–model win
OF SOFA SAPS vs. SAPS vs. SOFA vs. SAPS

2 0.157 0.158 0.163 Yes Yes Yes
3 0.179 0.185 0.197 Yes∗ Yes Yes∗

4 0.199 0.209 0.212 Yes Yes Yes
5 0.186 0.189 0.207 Yes∗ Yes Yes∗

example, for day 2, after adjusting for the other variables, the odds of dying for
patients with the episode CNS{F, F} is three times the odds for those without
it. The OF-models shown in Table 2 where evaluated on an independent test set
for day 2 till day 5 of ICU stay and compared to the static and SOFA-models.
The Brier scores (the lower the better) are shown in Table 4. An ∗ indicates a
statistically significantly better Brier score than the static model.

5 Discussion and Related Work

In this section we discuss the results, our approach in relation to others, delineate
further work, and conclude the paper.
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Results. Table 4 ascertains that the OF episodes can improve predictions: the
OF-models performed better than the SOFA-models on all days. Also, both
kinds of temporal models (SOFA and OF) were consistently better (sometimes
with statistically significant differences) than the traditional static model (SAPS
model). This evidence needs of course corroboration by a more stringent cross-
validation design that we plan to do in the future. The results also show the
usefulness of the coefficient qualitative and quantitative interpretations of or-
gan derangement (see Table 2). In all days the central nervous and respiratory
systems were present in the models. The renal organ system was the next best
predictor included in two models. In related work, when the central nervous
system was considered for analysis [14,15,16] it was indeed a good discrimina-
tor of mortality, otherwise, as in [17,18,19], the cardiovascular system emerged
as a strong predictor. When considering the frequent episodes selected we note
that those denoting constant organ conditions (failure e.g. {F, F} or non-failure
{NF, NF, NF, NF}) were dominant. Similar findings about the “constant pat-
terns” have been reported by [20]. We hypothesize that their dominance is rooted
in the high support they enjoy in the data: individual scores are not likely to
change often between the only two categories discerned (Non-failure, Failure).

Table 3 can be used to provide quantitative interpretations. For example, in
the model for day 5 the central nervous system episode {F} is associated with
the odds-ratio of about 4: the odds of dying given a failure of the central nervous
system failing on day 5 (day of prediction) is about 4 times the odds of dying
if the central nervous system did not fail on that day. By the same token, in
case of non-failure at the day of prediction an odds-ratio < 1 (corresponding to
a negative coefficient in the LP ) indicates a beneficial effect on the prognosis.
This holds for example for the renal episode {NF, NF, NF, NF}.

Another finding is that, starting from day 4 of prediction, the models do not
include the mean SOFA score anymore. A possible reason is that the importance
of the latest days is diluted in the unweighted SOFA score mean by the early
days which might be less important. Future work consists of using a weighted
summary of the SOFA scores where later days enjoy more weight.

Approach, related and future work. The main differences between the OF-
model induction approach and the one described in [5] to induce SOFA-models,
aside from applying it to other data types, are the following. First, for the in-
duction of OF-models, SOFA scores are aggregated in one summary statistic in
order to avoid major overlap with the IOSF scores. Second, each of the 6 organ
systems is categorized using clinical knowledge corresponding to organ failure.
Third, to avoid strong collinearity between the organ failure episodes we fol-
low a new stringent feature selection strategy based on ranking. Fourth, clinical
knowledge is infused in the covariate selection process by using the “sign OK”
rule.

The categorization we adopted of the IOSF scores in 2 categories can be char-
acterized as vertical (contemporaneous) data abstraction [21] or State Temporal
Abstractions [22]. The resulting categories are not necessarily the most useful
ones in prediction. Future work will include the use of the outcome (mortality),
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e.g. by using entropy-based categorization [23], or additional medical knowl-
edge [18] to generate more predictive categories.

Our frequent episodes are discovered in a data-driven manner. In using these
episodes we also apply various non-stationarity assumptions: the episodes are
aligned to the prediction day, and can be of different lengths. These two proper-
ties distinguish our work from the work appearing in the intensive care literature
in which pre-specified summaries (e.g. maximum value, average value during ICU
stay) or qualitative trends of IOSF scores are used [16,18]. This is also in con-
trast to the methodological work described in [24] which assumes a strict form of
stationarity where the mean value of adverse events (highly abnormal values of
medical measurements in a patient) is used to summarize the temporal process.

Valuable future work consists of investigating more expressive episodes like
those described in [25] where a pattern includes a multivariate set of attributes.
This will allow one to capture complex interactions between the IOSF scores
in one pattern instead of having various univariate episodes as describes in this
paper.

In [20] patterns similar in nature to ours are discovered not based on frequency
but on their discriminative capabilities (Area Under the Curve) and forms an
interesting future work. The most predictive ones are then used in a Naive Bayes
Classifier method. Given the nature of our episodes, the Naive Bayes approach
combined with an assessment geared towards discriminatory model capabilities
does not provide incentive to predict reliable probabilities. This is because our
particular episodes are correlated and because of the overlap between SOFA and
IOSF information, clearly violating the conditional independence assumption
used in the Naive Bayes approach.

Making use of logistic regression allows a fair comparison between our method
and that currently used in the ICU. It also generates coefficients with meaning-
ful interpretation as demonstrated above. These coefficients’ interpretability is
enhanced by the application of a logical entailment elimination step by means
of the AIC criterion avoiding drawbacks related to the p-value based variable
selection approaches. In [24] a comparison of various methods showed that in
a given setting, different than ours, the logistic regression model was slightly
outperformed only by the neural network model in terms of accuracy. Whether
neural networks will lead to better calibrated results in our case is unclear, but
if one is also interested in the interpretability of the models the logistic regres-
sion is a good choice. Future work could investigate how hybrid methods can be
employed. For example in [26] a classification tree based on baseline information
was used to stratify patients into homogeneous subgroups, then on each of these
subgroups a logistic regression model was fit to predict mortality. A similar idea
could be applied for temporal data.

In sum, this paper proposed a method for inducing predictive models based
on the integration of the information residing in baseline data with the tempo-
ral information concerning organ system functioning into the logistic regression
framework. The results are encouraging as the temporal organ failure episodes im-
prove predictions’ quality and interpretability. The ubiquity of scoring systems in
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medicine for baseline and repeated measurements suggests the wider applicability
of our approach to other domains.
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Appendix: Logistic Regression

A logistic regression model [27] specifies the conditional probability of a binary
outcome variable Y , given the values of the covariate vector x = (x1, ..., xm):
p(Y = 1 | x) = eLP (x)

1+eLP (x) . For m covariates the natural logarithm of the odds

(logit) is equal to the linear predictor LP (x): log( p(Y =1 | x)
1−p(Y =1 | x)) = LP (x) = β0 +

∑m
i=1 βi · xi where βi, i = 1, ..., m, denote the coefficients of the m covariates. A

coefficient (βi) can be interpreted in terms of an odds-ratio. Suppose the linear
predictor is β0+β1·SAPS+β2·Ep where Ep = 1 for patients having some specific
episode and 0 for patients not having the episode. The odds of dying for those
having the episode, odds(Ep = 1) is P (Y = 1|Ep = 1)/P (Y = 0|Ep = 1) and for
those not having the episode, odds(Ep = 0), is P (Y = 1|Ep = 0)/P (Y = 0|Ep =
0). The quantity eβ2 is equal to the odds-ratio odds(Ep = 1)/odds(Ep = 0). A
positive coefficient corresponds to an odds-ratio > 1 and indicates that, when
adjusting for all other variables (here SAPS), the odds of the event is higher for
those with the episode compared to those without it.
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