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Abstract. Disease processes in patients are temporal in nature and in-
volve uncertainty. It is necessary to gain insight into these processes
when aiming at improving the diagnosis, treatment and prognosis of
disease in patients. One way to achieve these aims is by explicitly mod-
elling disease processes; several researchers have advocated the use of
dynamic Bayesian networks for this purpose because of the versatil-
ity and expressiveness of this time-oriented probabilistic formalism. In
the research described in this paper, we investigate the role of context-
specific independence information in modelling the evolution of disease.
The hypothesis tested was that within similar populations of patients
differences in the learnt structure of a dynamic Bayesian network may
result, depending on whether or not patients have a particular disease.
This is an example of temporal context-specific independence informa-
tion. We have tested and confirmed this hypothesis using a constraint-
based Bayesian network structure learning algorithm which supports
incorporating background knowledge into the learning process. Clinical
data of mechanically-ventilated ICU patients, some of whom developed
ventilator-associated pneumonia, were used for that purpose.

1 Introduction

Bayesian networks are known to yield representations that are well suited as
a basis for medical decision making [1]. Reasoning with a Bayesian network,
which is done by filling in data of a patient into the network and computing
posterior probability distributions, often yields considerable insight into the dis-
ease process of a patient, as well as concerning the way the disease process can
be influenced by the selection of appropriate treatment. However, knowledge of
the temporal nature of a disease process may also be relevant in this respect, in
which case dynamic Bayesian networks are often selected for the construction
of models. Such models can be used for temporal reasoning in clinical decision-
support systems, as the formalism takes into account the notion of time [2,3,4,5].
Bayesian networks that ignore the notion of time are called static.
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So far, Bayesian networks have in particular been popular as models for uncer-
tainty reasoning in clinical decision-support systems; they have been less popular
as tools for the analysis of clinical data, despite the availability of a wide range
of Bayesian network structure and parameter learning techniques [6]. This is
somewhat surprising as the statistical nature of Bayesian networks would render
them in principle as useful as data-analytical tools as, say, logistic regression,
one of the main statistical tools of multivariate clinical data analysis.

We believe that the reasons why Bayesian networks, both static and dynamic,
are used so rarely for data analysis in medicine are threefold: (1) in particular
static Bayesian networks are difficult to interpret, as the direction of the arcs is
often counterintuitive; (2) whereas dynamic Bayesian networks have the advan-
tage that the direction of some of the arcs is in accordance to the order of time,
their structure is usually restricted to being repetitive [7], which may not be
compatible with the clinical problem at hand; (3) the conditional independences
modelled in Bayesian networks only concern random variables and not their in-
dividual values; however, in medicine it is often the context, i.e., the specific
values random variables take, that determine how things relate to each other.
Context-specific independences and dependences can be modelled by extensions
to Bayesian networks, such as by multinet models [8].

In this paper, we demonstrate that by using non-repetitive dynamic Bayesian
multi-networks in conjunction with context-specific independence information,
an analytical tool results that does indeed yield insight into the evolution of a
disease, in comparison to other diseases in a related population of patients. We
exploit a constraint-based learning algorithm for that purpose, as these struc-
ture learning algorithms allow for the easy incorporation of medical background
knowledge in the learning process. The ideas are illustrated by the analysis of
temporal data of patients in the Intensive Care Unit (ICU), who either have
developed ventilator-associated pneumonia, or VAP for short, and ICU patients
without VAP. As only some 10-15% of ICU patients will develop VAP, it was
also necessary to exploit background knowledge in the learning process, as some-
times clinically obvious relationships cannot be learnt from the data due to the
sparsity of data for a particular type of patient.

The paper is organised as follows. In Section 2, Bayesian networks, dynamic
Bayesian networks and context-specific independence are briefly reviewed. Next,
in Section 3, the basic theory underlying constraint-based structure learning is
reviewed. Finally, in Section 4 we discuss the results achieved. The paper is
rounded-off with some conclusions in Section 5.

2 Preliminaries

We briefly review the theory dynamic Bayesian networks, as discussed in more
detail in [7]. Furthermore, the medical domain of ventilator-associated pneumo-
nia, is described.
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2.1 Dynamic Bayesian Networks

A Bayesian network B = (G, P ), BN for short, is a joint probability distribution
P of a set of random variables X with an associated acyclic directed graph G =
(V, A), where P is assumed to be decomposed into a set of conditional probability
distributions in accordance to the structure of G. The random variables X and
the vertices V have a 1–1 correspondence; thus we sometimes write XW , W ⊆
V , for the random variables corresponding to the vertices W . Finally, dom(X)
denotes the domain of the set of random variables X (a Cartesian product).

Dynamic Bayesian networks (DBNs) are an extension of ordinary Bayesian
networks and allow for modelling uncertainty involved in processes regarding the
dimension of time. Usually, a DBN is described in terms of a timeslice that has
a fixed structure and is repeated several times, i.e., the DBN has a repetitive
structure [9]. We, however, are convinced that disease processes are more com-
plicated than that in the sense that independences may change over time and,
therefore, a repetitive DBN would not suffice in every domain. This motivated
some of us to develop a theory of modularisation of DBNs, with both repetitive
and non-repetitive DBNs as special cases [7]. Evidence of the practical usefulness
of non-repetitive DBNs has also come from work by Tucker et al. [10].

For the formal representation of the uncertain relations between variables
over time, we need the following notions. Let T denote the (discrete and finite)
time axis. Independence relationships between random variables with the same
time point t are represented by means of an acyclic directed graph (ADG) Gt =
(Vt, A

a
t ), called a timeslice, with Vt denoting a set of vertices and Aa

t ⊆ Vt × Vt

a set of atemporal arcs. Between timeslices, vertices corresponding to random
variables may be linked to each other by means of so-called temporal arcs. Thus,
a DBN consists of two parts: (1) an atemporal part (the timeslices), and (2) a
temporal part. First, we consider the atemporal part.

Definition 1. (timeslice and atemporal arcs) An ADG Gt = (Vt, A
a
t ), with

the set of vertices Vt and the set of atemporal arcs Aa
t ⊆ Vt ×Vt, t ∈ T , is called

a timeslice at time point t.

The set of all timeslices G of a DBN is taken as:

G = {Gt | t ∈ T } = {(Vt, A
a
t ) | t ∈ T } = (VT , Aa

T ). (1)

Let Gt and Gt′ , t, t′ ∈ T , be two timeslices. Then, an arc (ut, vt′) with t < t′

is called a temporal arc. The set of temporal arcs of an ADG is denoted by At.
Thus, temporal arcs connect timeslices with strict direction from the past to the
future.

Definition 2. (temporal network) A temporal network N is defined as a pair
N = (VT , A), where G = (VT , Aa

T ) and A = Aa
T ∪ At, with Aa

T denoting the set
of timeslices.

Clearly, a temporal network N is also an ADG. A dynamic Bayesian network
(DBN) is now defined as a pair DBN = (N, P ), where P is the joint probability
distribution (JPD) on XVT .
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2.2 Context-Specific Independences

Two sets of random variables X and Y are said to be conditionally independent
given a third set of random variables Z, denoted by X ⊥⊥P Y | Z, if it holds
that

P (X | Y, Z) = P (X | Z)

if P (Y, Z) > 0. Such conditional independence statements cannot only be repre-
sented in the form of probability distributions P ; they can also be read-off from
the graphical structure of an associated ADG G using the notion of d-separation.
Then, two disjoint sets of vertices A and B in G are said to be d-separated given
a third disjoint set of vertices C, denoted by A ⊥⊥G B | C, if each (undirected)
path from a vertex in A to a vertex in B is blocked by a vertex in C, taking into
account paths with so-called v-structures (i.e., subgraphs of the form → · ←).

For Bayesian networks B = (G, P ), it holds that if A ⊥⊥G B | C holds, then
XA ⊥⊥P XB | XC should also be satisfied. It is said that G is an independence
map of P . Similar, temporal and atemporal, notions of d-separation have been
developed for dynamic Bayesian networks, where the atemporal d-separation re-
lationship ⊥⊥G is defined for the part of the dynamic Bayesian network where
the temporal arcs are ignored, and temporal d-separation, denoted by ⊥⊥N|Θ , is
defined by always taking into account at least one temporal arc when investi-
gating blockage (for details, cf. [7]). Clearly, atemporal d-separation ⊥⊥G can be
defined in terms of atemporal d-separation for individual timeslices, i.e., in terms
of ⊥⊥Gt , t ∈ T .

Despite the fact that temporal and atemporal notions of d-separation allow for
the study of interesting independence patterns in dynamic Bayesian networks,
we believe that many of these patterns are context specific, i.e., independence
information may change for particular values of random variables. Formally, a set
of variables Y is conditionally context-specific independent of a set of variables
W given a third set Z in the context ϕ, written Y ⊥⊥P W | Z; ϕ, where ϕ is a
nonempty set of random variables U with values u, i.e., ϕ ≡ U = u, if P (Y |
W, Z, ϕ) = P (Y | Z, ϕ) and P (Y | W, Z, ϕ′) 	= P (Y | Z, ϕ′) for ϕ′ ≡ U = u′,
u′ 	= u [11]. For discrete random variables X with finite domain, it is possible
to associate an ADG Gϕ with every context ϕ. The result is called a Bayesian
multinetwork B = (G, P ) with G = {Gϕ | ϕ ≡ X = x, x ∈ dom(X)}. Dynamic
Bayesian multinetworks can be be defined along similar lines.

2.3 Ventilator-Associated Pneumonia

Ventilator-associated pneumonia (VAP) occurs in mechanically-ventilated ICU
patients. Clinical symptoms, such as fever, indicating that this bacterial infec-
tion is present or developing, are usually not very specific. Important symptoms
and signs, providing evidence for the development of VAP, include body tem-
perature, amount and colour of sputum, radiological signs on the chest X-ray,
duration of mechanical ventilation, number of leukocytes [12], and abnormal ra-
tio between the arterial oxygen pressure and the fractional inspired oxygen level
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(pO2/FiO2-ratio). Some of these signs and symptoms, such as fever and number
of leukocytes, are due to the fact that VAP is an infectious disease, whereas
others, such as increased amount of sputum, abnormal chest X-ray and changed
pO2/FiO2-ratio are due to the pulmonary location of the infection.

3 Constraint-Based Structure Learning

As only 10-15% of the ICU patients develop VAP, it was unlikely that we would
have been able to collect sufficient amount of data for patient with VAP, despite
the fact that the amount of data collected for the entire ICU population was
large. For situations where data are sparse, it is normally difficult to learn inde-
pendence relations from the data. However, lack of data can be compensated, in
principle, by augmenting the learning process through the exploitation of back-
ground knowledge. This is exactly what we have done. Learning algorithms that
allow easy incorporation of background knowledge into the learning process are
called constraint based. These algorithms derive a set of conditional indepen-
dence statements from the data, taking supplied dependence and independence
information as additional constraints, and build a structure with d-separation
properties corresponding to the independence information available.

3.1 The NPC Algorithm

One of the best constraint-based Bayesian network structure learning algorithms
available is the NPC algorithm. NPC stands for ‘Necessary Path Condition’; it
is a criterion that has been added to an earlier constraint-based algorithm, PC,
by researchers at Siemens in Munich [13]. The algorithm is a variant of the CI
algorithm by Verma and Pearl [14], and works as follows:

1. Automatic phase:
(a) An undirected graph H = (V, E), called skeleton, is derived through

computation of the score gχ2,α(X, Y, S), for pairs X, Y of random vari-
ables and the set of random variables S (with X, Y 	∈ S). The function
gχ2,α is based on the χ2 test with significance level α [13]. Typically, one
takes α ≤ 0.05. If gχ2,α(X, Y, S) > 0 then the conditional independence
hypothesis X⊥⊥P Y | S is rejected.

(b) Modify subgraphs X − Y − Z of H into X → Y ← Z, if X − Z 	∈ E and
X 	⊥⊥P Z | S, with Y ∈ S, using the same scoring function gχ2,α.

(c) Orientate the remaining lines as to obtain arcs, where the creation of
cycles in the resulting directed graph is avoided.

2. User interaction phase: To resolve inconsistencies in the conditional
(in)dependence statements, the NPC algorithm, unlike the PC algorithm
where in case of uncertain dependences directionality is chosen randomly,
relies on user interaction where the user gets the opportunity to decide on
the addition, removal and orientation of arcs. In addition, α can be arbitrar-
ily chosen, so that lines with calculated p-value (called p below) larger than
α are excluded.
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In our domain, the direction of an arc has beendeterminedby the use of background
knowledge. By doing so, cause and effect can be distinguished. For example, when
the NPC algorithm indicates a relation between ‘VAP’ and ‘temperature’, the most
logical order is that ‘VAP’ should be parent of ‘temperature’, as when a patient
suffers from VAP, normally, the temperature increases due to fever, and not the
other way round. Also, it is possible to supply known relations at the start of the
NPC learning process. By doing so, we were able to include constraints that have
already been proved to exist and have been described in literature. We used the
implementation of the NPC algorithm available in the Hugin tool set [15] for our
research. This includes the EM algorithm for parameter learning.

3.2 Data

A dataset D with temporal data of ICU patients, containing 17710 records, was
used. Each record represents data of one patient in the ICU during a period
of 24 hours. The database contains 2424 admissions to the ICU. For 157 of
these patient episodes, VAP was diagnosed by two infectious-disease specialists.
From dataset D three subsets were created: Dvap containing data of all 157 VAP
patients; Dvap containing data of patients who were not diagnosed with VAP
(so-called controls). Each patient with VAP was matched to 3 control patients,
with a similar duration of mechanical ventilation on the days of matching. DVAP
contained data of both VAP and control patients, i.e., DVAP = Dvap∪Dvap. Each
dataset contained data of 4 consecutive days, each representing a timeslice: t0
was either the day on which VAP was diagnosed or the day of matching and
t−3, t−2, t−1 were the three days preceding t0.

3.3 Procedure of DBN Construction

The construction of the context-specific and combined DBNs was performed as
follows:

1. Using the NPC algorithm, under the first author’s supervision, the atemporal
arcs between vertices in each separate timeslice were determined.

2. In the next run of the NPC algorithm, the temporal relationships of all
variables were explored, taking into account the structure of the timeslices.

3. Medical background knowledge was sometimes employed to decide about
the direction of arcs, or inclusion or deletion of arcs. However, this was
only employed when the algorithm was unable to decide about the inclusion
and direction of an arc. The direction of arcs was decided on by looking at
the network in terms of cause–effect relationships. Expertise of a medical
infectious disease specialist was used for that purpose.

4 Results

Based on the three databases,Dvap, Dvap and DVAP, three DBNs were constructed
using the NPC learning algorithm. As described above, atemporal subgraphs were
obtained separately, and then combined to a DBN by learning temporal arcs
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Fig. 1. Gvap : Independences obtained for VAP patients. Abbreviations: SC: sputum
colour; S: sputum; L: leukocytosis; T: temperature; P: pO2/FiO2; X: chest X-ray.

(taking into account the known timeslice structures). Sometimes uncertain arcs
were removed (user interaction phase). For example, an arc between the variable
temperature in timeslice t0 and variable leukocytosis in timeslice t−2, did not seem
clinically relevant and was, therefore, excluded.

4.1 VAP Patients (Dvap)

The timeslices (atemporal subgraphs) for the four different time points show dif-
ferent independences. For example, for t−3 an arc between sputum and sputum-
colour (p = 0.05) was suggested by the NPC algorithm, whereas for t−1 and
for t−2 that same relation was absent, but for t0 it was again present. Also, an
arc (p = 0.02) between chest X-ray and pO2/FiO2 (as explained, a measure-
ment of the lungs’ functions) was often found, as well as between temperature
and sputum-colour (p = 0.05). As the last arc was not considered clinically rel-
evant, it was excluded from the models. All temporal arcs proved to have high
significance (p < 10−7). Combining the atemporal en temporal parts resulted
in a DBN, called Gvap, shown in Fig. 1, that includes all signs and symptoms
describing the course of the development of VAP.

4.2 Patients Not Diagnosed with VAP (Dvap)

The timeslices for the non-VAP patients were similar, but not identical, to those
for VAP patients; in particular, arcs between chest X-ray and pO2/FiO2, and
between sputum and sputum-colour were found. The only difference was that the
strength of the arcs increased towards the time point matching the day of VAP,
i.e., t0, that is, p(t−3) ≈ 10−2, p(t−2) ≈ 10−3, p(t−1) ≈ 10−4 and p(t0) ≈ 10−5.
Thus, p(t−3) > p(t−2) > p(t−1) > p(t0). Temporal arcs were suggested between
timeslices t−2 and t−1 for the variables chest X-ray, sputum and pO2/FiO2
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Fig. 2. Gvap : Independences obtained for patients not diagnosed with VAP. Abbrevi-
ations: SC: sputum colour; S: sputum; L: leukocytosis; T: temperature; P: pO2/FiO2;
X: chest X-ray.

only. Moreover, these temporal relations proved to be less strong, i.e., p ≈ 0.01,
compared to the temporal relations in the context of VAP. Combining both
temporal and atemporal structures resulted in DBN called Gvap, shown in Fig. 2
with again, vap representing the matched control patients.

4.3 Patients With and Without VAP (DVAP)

As a model only suitable for VAP patients would not be useful in practice,
combining the two datasets mentioned above for building a DBN for VAP and
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Fig. 3. GVAP : Independence model for variables (excluding context-specific indepen-
dences). Abbreviations: SC: sputum colour; S: sputum; L: leukocytosis; T: temperature;
P: pO2/FiO2; X: chest X-ray; VAP: ventilator-associated pneumonia.
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non-VAP at the same time yields yet another view on structure learning. Struc-
ture learning based on the database including data of VAP as well as non-VAP
patients resulted in a combination of the two DBNs Gvap and Gvap, from here
denoted by GVAP. The temporal arcs were almost identical to those of Gvap,
though less strong (p ≈ 10−4). The atemporal arcs had strong correlations and
were, not surprisingly, found between the variables chest X-ray and pO2/FiO2
(p ≈ 10−3) and between sputum and sputum colour (p ≈ 10−3). In all, the tem-
poral arcs again proved to be stronger than the atemporal arcs. The resulting
model is shown in Fig. 3. This DBN clearly shows that much of the clarity of
the original context-specific DBNs was lost, and that it is no longer possible to
gain insight into the development of VAP and non-VAP separately.

5 Conclusions and Discussion

The hypothesis underlying the research described in this paper was that in or-
der to obtain insight into the evolution of disease processes, it is not merely
necessary to explicitly model time, but also to consider context-specific indepen-
dence information. The results we have obtained confirm this hypothesis, and
to the best of our knowledge, this is the first paper combining context-specific
independence and dynamic Bayesian networks.

The NPC learning algorithm proved to be useful, as it allowed for the incor-
poration of background knowledge, without which it would have been difficult
to obtain clinically meaningful results. This algorithm combines the virtues of
offering the capability of automatic learning of independence information from
data, whereas uncertainty regarding both the presence of dependences and the
directionality of arcs can be resolved by the user. Thus, the algorithm offers a
natural role for the incorporation of expert background knowledge in the learning
process.

The results obtained for the ICU domain show that signs and symptoms of
patients known to develop VAP proved to have strong temporal relationships,
whereas the temporal relationships between the signs and symptoms of patients
not diagnosed with VAP were very weak. The combined model GVAP included
independences from both the VAP and non-VAP models. However, the model
was not merely a union of the two independence sets.

When comparing the atemporal parts of the networks, change in the indepen-
dence information as a function of time was observed. This strengthens our belief
that when constructing a dynamic Bayesian model, it is not sufficient to resort
to repetitive DBNs if one wishes to obtain models that capture the characteris-
tics of the domain; rather, non-repetitive DBNs should be investigated as well
[7]. Further research is needed to evaluate our findings regarding the temporal
behaviour of both models for VAP patients and non-VAP patients. It would, for
example, be interesting to investigate the predictive value of an increasing body
temperature of an ICU patient in relationship to the development of VAP. More-
over, a more detailed comparison of the ADGs of VAP and non-VAP for larger
datasets may give more insight into the course of the disease process of VAP.
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In conclusion, the combination of a general theory of DBNs, where repetitive
and non-repetitive DBNs are both special cases, with the exploitation of context-
specific independence information proved to yield a powerful data-analysis tool.
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