
A QoS Test-Bed Generator for Web Services

Antonia Bertolino, Guglielmo De Angelis, and Andrea Polini

Istituto di Scienza e Tecnologie dell’Informazione - CNR
Via Moruzzi 1, 56124 Pisa - Italy

{antonia.bertolino, guglielmo.deangelis,
andrea.polini}@isti.cnr.it

Abstract. In the last years both industry and academia have shown a great inter-
est in ensuring consistent cooperation for business-critical services, with contrac-
tually agreed levels of Quality of Service. Service Level Agreement specifications
as well as techniques for their evaluation are nowadays irremissible assets. This
paper presents Puppet (Pick UP Performance Evaluation Test-bed), an approach
and a tool for the automatic generation of test-beds to empirically evaluate the
QoS features of a Web Service under development. Specifically, the generation
exploits the information about the coordinating scenario (be it choreography or
orchestration), the service description (WSDL) and the specification of the agree-
ments (WS-Agreement).

1 Introduction

The attractive promise of the Service Oriented Architecture (SOA) paradigm is to en-
able the dynamic integration between applications belonging to different enterprises
and globally distributed across heterogeneous networks. Within the SOA paradigm, the
most concrete technology is today realized by the Web Services (WSs).

Although WSs constitute a quite new drift in software application development, re-
search in this technology has already evolved through a few stages. Initially the focus
was in mechanisms which could allow for the loose interconnection among services
independently developed and implemented on different machines. Such vision can only
be achieved through the disciplined usage of standard notations and protocols, and in
fact the WS domain is characterized by a strong boost toward standardization. Thus key
achievements at this stage have been the establishment of common service descriptions,
the definition of open service directories for storing and retrieving such descriptions,
and the enactment of dynamic discovering and binding mechanisms. The technology
for basic WS interconnection is now well established, with WSDL, SOAP and UDDI
being just the most representative elements.

Nevertheless, the need soon arose of allowing for more complex scenarios, beyond
simple point-to-point interactions [1]. The standardization of adequate mechanisms for
services composition and interaction constituted thus the next stage, which is still very
active. Two directions currently lead the scene within two different, but related, con-
texts [1]: the first aims at defining the composition of services (referred to as orchestra-
tion), the second at describing how related services should cooperate to perform a given

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 17–31, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

18 A. Bertolino, G. De Angelis, and A. Polini

task (choreography). Both interpretations of service integration provide a means to de-
scribe interacting scenarios. On one side, orchestration approaches foresee the avail-
ability of an execution engine that, by executing the code defining the orchestration,
reproduces the specified interactions; as a fact, this need limits the applicability of or-
chestration to those cases in which a governing organization is in charge for defining the
business process. In contrast, the choreography approach foresees the availability of a
specification of the interactions to which the various services must conform, but it does
not introduce per se any mechanism for forcing such interactions. Currently, the most
significant proposals concerning the specification of WS orchestration and choreogra-
phy are represented by the Business Process Execution Language (WSBPEL) [18] and
the Web Services Choreography Description Language (WS-CDL) [22], respectively.

Eventually, the openness of the environment characterizing the SOA paradigm nat-
urally led to the pursuit of mechanisms for specifying the provided levels of Quality
of Service (QoS) and establishing an agreement on them, in line with the widely ac-
cepted idea that service delivery cannot just focus on functional aspects, and ignore
QoS-related properties.

Indeed, not only for Service Oriented systems, but for many other kinds of enterprise
applications [6] [20], communication networks and embedded systems [4], solutions
that do not put adequate consideration of non functional aspects [17] are no longer ac-
ceptable. Correspondingly, in recent years much research has been devoted to method-
ologies for QoS evaluation, including predictive and empirical techniques [13]. Predic-
tive approaches are crucial during the design and the development of a software system,
to shape the quality of the final product [20]: they perform analytical QoS evaluation,
based on suitable models, such as Petri Nets or Queueing Networks. But increasingly
modern applications are deployed over complex platforms (i.e., the middleware), which
introduce many factors influencing the QoS and not always easy to model in advance.
In such cases, empirical approaches, i.e., evaluating the QoS via run-time measurement,
could help smoothing platform-dependent noise. However, such approaches require the
development of expensive and time consuming prototypes [15], on which representative
benchmarks of the system in operation can be run.

In this last direction, however, when computer-processable specifications exist, and
code-factories can be used to automatically generate a running prototype from a given
specification, there is large room for the adoption of empirical approaches. In particular,
and this is the position we take in this work, given the high availability of standard-
ized computer processable information, WSs and related technologies [2,10,18,22,14]
yield very promising opportunities for the application of empirical approaches to QoS
evaluation.

According to this intuition, in this paper we introduce an approach, called Puppet
(Pick UP Performance Evaluation Test-bed), which realizes the automatic derivation of
test-beds for evaluating the desired QoS characteristics for a service under development,
before it is deployed. In particular, we are interested in assessing that a specific service
implementation can afford the required level of QoS (e.g., latency and reliability) when
playing one of the roles in a specified choreography or when used in composition with
other services (orchestration). To this purpose, Puppet relies on the availability of the
QoS specification of both the service under evaluation and the interacting services. Such

A QoS Test-Bed Generator for Web Services 19

assumption is in line with the increasing adoption of formal contracts to establish the
mutual obligations among the involved parties and the guaranteed QoS parameters,
which is referred to as the Service Level Agreement (SLA) for WSs.

In the next section we provide a basic background on the emerging languages for
the definition of SLAs. Then, in Sec. 3 we illustrate the general scenario in which the
Puppet tool should be employed. Successively, in Sec. 4 we describe the approach and
its logical architecture. An exploratory example is presented in Sec. 5 while related
work is summed up in Sec. 6. In Sec. 7 we draw conclusions and hint at future work.

2 Specification of Service Level Agreements

An important ingredient of the SOA paradigm is the QoS level agreement specifications
among interacting services.

Traditionally, agreements were expressed informally, not in machine-readable form.
In software engineering quite basic notions of agreements were established by means
of Interface Description Languages [17]. Concerning the WS technology, Service Level
Agreements (SLAs) represent instead one of the most interesting and actively pursued
issues. SLAs aim at ensuring a consistent cooperation for business-critical services.
Relevant experiences in this direction are certainly represented by work around Web
Service Level Agreement (WSLA) [14] or SLAng [19].

The approach introduced in this paper has been conceived to be as independent as
possible of a specific SLA language. Indeed, concerning the goal of the work, any
SLA languages predicating on the concepts we are considering are equivalent. How-
ever, when it comes to developing a specific implementation of our conceptual envi-
ronment, we obviously need to consider a specific technology. Hence, in the remainder
of the paper, we will focus on a proof-of-concept development carried on using the
WS-Agreement language [10]. To make the paper self-contained, we report below the
background notions behind its current proposal.

WS-Agreement is a language defined by the Global Grid Forum (GGF) aiming at
providing a standard layer to build agreement-driven SOAs. The main assets of the lan-
guage concern the specification of domain-independent elements of a simple contract-
ing process. Such generic definitions can be augmented with domain-specific concepts.

As shown in Fig. 1, the top-level structure of a WS-Agreements offer is expressed
by means of a XML document which comprises the agreement descriptive information,
the context it refers to and the definition of the agreement items.

The Context element is used to describe the involved parties and other aspects of
an agreement not representing obligations of parties, such as its expiration date. An
agreement can be defined for one or more contexts.

The defined consensus or obligations of a party core in a WS-Agreement specifica-
tion are expressed by means of Terms. Special elements (e.g., AND/OR/XOR opera-
tors) can be used to combine terms, via the specification of alternative branches or the
nesting within the terms of agreement.

The obligation terms are organized in two logical parts. The first specifies the in-
volved services by means of the Service Description Terms. Such part primarily de-
scribes the functional aspects of a service that will be delivered under an agreement. A

20 A. Bertolino, G. De Angelis, and A. Polini

<wsag:Agreement
AgreementId=xsd:string>
<wsag:Name>

xs:NCName
</wsag:Name>
<wsag:AgreementContext>

wsag:AgreementContextType
</wsag:AgreementContext>
<wsag:Terms>

wsag:TermCompositorType
</wsag:Terms>

</wsag:Agreement>

Fig. 1. WS–Agreement Structure

term for the service description is defined by means of its name, and the name of the ser-
vice which it refers to. In some case, a domain-specific description of the service may be
conditional to specific runtime constraints. A special kind of Service Description Terms
is the Service Reference, which defines a pointer to a description of a service, rather than
describing it explicitly into the agreement. The second part of the terms definition spec-
ifies measurable guarantees associated with the other terms in the agreement and that
can be fulfilled or violated. A Guarantee Term definition consists of the obliged party
(i.e, Service Consumer, Service Provider), the list of services this guarantee applies to
(Service Scope), a boolean expression that defines under which condition the guarantee
applies (Qualifying Condition), the actual assertion that have to be guaranteed over the
service (Service Level Objective) and a set of business-related values (Business Value
List) of the described agreement (i.e., importance, penalties, preferences). In general,
the information contained into the fields of a Guarantee Term are expressed by means
of domain-specific languages.

3 A WS Development and Evaluation Scenario

As explained in the Introduction, initially WSs were intended for loose and basic in-
teractions, but soon the need for mechanisms to describe more complex integration of
services emerged. The basic assumption of our approach is that such a description in-
deed exists. This is not an unrealistic assumption, as the global definition of applications
resulting from the dynamic integration of unrelated services is seen as one of the most
relevant factors at the basis of the take-off of the Service Oriented paradigm.

Our view1 is that the integration of services offers major guarantees, and will be fos-
tered, by the existence of predefined choreographies and the definition of orchestration.
Given a definition of the integration of different services, based on choreography or or-
chestration, our objective is to provide a tool to support the QoS evaluation of services
to be integrated, but still under development. The scenario we envisage is depicted in
Fig. 2.

1 This view is shared within the EU FP6 Strep n.26955 - PLASTIC, see at http://www.ist-
plastic.org

A QoS Test-Bed Generator for Web Services 21

Fig. 2. The Puppet approach and supporting tool

The first step in this process, referred to as “1: WS Composition Definition” in Fig. 2,
is indeed the specification of service integration, in terms of WS-CDL or WSBPEL,
and of a set of WSDL descriptions defining the interfaces of the services involved in the
interaction.

The process continues with the annotation of the composition with QoS attributes
for each service involved in the integration. In Fig. 2 this step is referred to as “2:
QoS instrumentation”. For this step we distinguish between the case of a choreogra-
phy and that of an orchestration. In the former case, the organization that released the
specification of the composition is in charge of augmenting the specification with QoS
attributes. Developers of services will take such a specification as a reference for their
implementation, expecting that their required services do the same. As a consequence
each developer of a service is interested in evaluating that it actually can provide the
required service according to the specified QoS. If this is not true we can expect that no
other service in the given choreography will agree on binding to such service.

In the case of an orchestration, the derivation of QoS values for the services to be
integrated is quite different. In this case the service that will be the subject of the valida-
tion is actually the orchestrated service. The developer company is interested in deriving
a competitive service in terms of provided QoS. In this case the parameters for the QoS
could not have been defined by someone else, i.e. a “standard” body as in the case of
a choreography, but should be derived by the QoS defined by similar services possibly
registered within a directory. Moreover in order to have a reliable picture of the final
run-time environment the developer should also consider the QoS defined for the ser-
vices that will be composed in the orchestration. Therefore retrieving from the directory

22 A. Bertolino, G. De Angelis, and A. Polini

service the QoS specification for similar services, and the QoS provided by the com-
posed services it is possible to get a quite trustable picture of the run-time conditions
for the case of orchestrating services.

Summarizing, Puppet assumes the availability of a WSDL specification for each
service, a definition of a composition in terms of WS-CDL or WSBPEL, and a WS-A
description for the services in the composition/coordination. At this point, Puppet can
automatically generate a test-bed to validate the implementation of a service before its
deployment in the target environment (referred as “3: Test-bed Generator” in Fig. 2).
The test-bed will consist of fake versions of the used services and of the possible clients.
Such services are successively composed by the tester in order to reproduce different
runt-time conditions for the service under evaluation, as discussed in the following.

As illustrated in Fig. 2, step 3 consists of two different phases. The first one is the
generation of the stubs simulating the non functional behavior of the services in the
composition, and referred as “3.1: Stubs Generation” in Fig. 2. The second one, re-
ferred as “3.2: Service/Stubs Composition” in Fig. 2, foresees the composition of the
implementation of a service, called “S1i” in Fig. 2, with the services with which it will
interact. The next paragraphs provide a short introduction to both phases, that will be
successively described in detail in Sec. 4.

The generation of the stubs proceeds through two successive steps (not detailed in
the figure). In the first one a skeleton of the stubs is generated starting from the WSDL
description. At this time the generated skeletons contain no behavior. Hence, in the sec-
ond step the implementation is “filled” with some behavior that by construction fulfills
the required non functional properties, for the corresponding service. The necessary in-
formation is retrieved from the WS-A specification and used to apply automatic code
transformation according to rules that we have defined and we describe in Sec.4. At the
end of the “Stubs Generation” phase, a set of stubs providing the services specified in
the composition according to the desired properties is available.

In turn Puppet permits also to derive stubs simulating the behaviour of possible
clients for the service under evaluation as “S2” in Fig.2. To generate such stubs Puppet
considers the part of the WS-A document defining the constraints among the client and
the service. Possible constraints can be for instance the number of invocations within a
time frame, or a minimum time between successive invocations, and similar ones.

The “Service/Stubs Composition” phase implements the final setting of the test-bed.
Goal of this step is to derive a complete environment in which to test the service. To this
purpose, Puppet composes the service under test, “S1i” in Fig. 2, with the required ser-
vices and according to the composition specified in the choreography or in the orches-
tration. At the same time client stubs are composed, by the tester, to derive a meaningful
workload for the service under evaluation. Currently this phase requires the assistance
of a human agent, as illustrated by the presence of a stick man in Fig. 2, that has to
hand-code the composition in the service stubs. Nevertheless we are working on further
automatizing the process on the base of the forthcoming final WS-CDL specification
and WS-BPEL specification.

Concluding, the final product provided by the Puppet tool is an environment for the
QoS validation of a composite service. The evaluation will require the development
of a tester that integrates the client stubs generated by Puppet, in order to reproduce

A QoS Test-Bed Generator for Web Services 23

meaningful workloads. Such a tool will have to verify that the properties specified in
the QoS document for the service under evaluation are fulfilled. In Fig. 2 also such a
tool is shown, nevertheless how this component can be derived is not within the scope
of our work and we refer to the literature on the argument [8] for possible approaches.

4 Description of the Approach

The inspiring idea behind Puppet is that the technologies introduced within the WS
infrastructure make it possible to automatically generate a test-bed environment for
a service. The generated environment can then be used to test if the specified QoS
properties (e.g. performance) will be respected by the service under development after
its deployment in the final environment.

Specifically, the generation exploits the information about the coordinating scenario
(be it choreography or orchestration), the service description (WSDL) and the specifi-
cation of the agreements that the involved roles will abide (see Sec. 3). Tools and tech-
niques for the automatic generation of service skeletons, taking as input the WSDL de-
scriptions, are already available and well known in the Web Services communities [2].
Nevertheless such tools only generate an empty implementation of a service and do not
add any logic to the service operations. Puppet exploits and improve those solutions
by processing the empty implementation of a service operation and augmenting it with
fake code resulting from the appropriate transformation of the SLA specification.

4.1 Skeleton Generation Process

In Puppet we automatically generate service stubs whose behaviors are derived from
the terms defined in a WS-Agreement document. The UML Component Diagram in
Fig. 3 outlines the architecture we propose. In the picture we directly refer to Apache-
Tomcat/Axis [2] as the technology used for the derivation of the various intermediate
artifacts needed for the derivation and deployment of the generated services stub. Nev-
ertheless, the approach is not bound to a particular technology and other solutions are
possible: the only requirement is to identify the corresponding tools in the chosen plat-
form with respect to Apache-Tomcat/Axis. Any Web Services platform provides in fact
some WSDL compiler permitting to automatically derive the different harness needed
both for the deployment of the service and for enabling service clients to invoke the
published service operations [1].

More specifically, the generation of a QoS stub service simulator for the service S1 in
Fig. 3 undergoes three main phases: service skeleton structure definition, QoS behavior
generation, service stub deployment.

The first step in the process is directly performed exploiting the Apache-Axis WSDL-
2Java utility [2]. Such tool, taking as input a WSDL description of a service, generates
a collection of Java classes and interfaces according to the abstract part of the specifi-
cation. Thus, for each binding a service skeleton structure will be automatically defined
and released. At the same time the tool generates both a deployment and an undeploy-
ment descriptors. Such descriptors can be identified by the extension WSDD (Web Ser-
vice Deployment Descriptor) [2]. The deployment specification represents the contact

24 A. Bertolino, G. De Angelis, and A. Polini

 Stubs Generation : Step 1

Stubs Generation: Step 2

 Stubs Generation : Step 3
<<artifact>>

S1Package Code

<<source>>

SkeletonN.java

<<source>>

Skeleton1.java

<<artifact>>

S1Package

<<source>>

SkeletonN.java

<<source>>

Skeleton1.java

<<component>>

Axis Deployment Engine

<<artifact>>

agreement.wsag

<<artifact>>

S1.WSDL

<<component>>

wsaCodeBuilder

<<component>>

Axis WSDL2Java

<<artifact>>

S1.WSDD

Empty methods

Methods with

behavior

OUTPUT

INPUTOUTPUTINPUT INPUT

Fig. 3. Puppet Test-bed Generator Logical Architecture

point between the abstract definition of the service, expressed into the WSDL, and the
corresponding concrete implementation of the endpoints coded into the Java skeletons.

Thus far, no behaviors are coded into the skeletons, but only the operations they
export are derived. According to a set of specified transformation rules from WS-
Agreement to Java and the relations in the deployment WSDD file, the wsCodeBuilder
then generates the simulation code and inserts it into the proper operations. At the time
of writing a running implementation of the wsCodeBuilder unit has been developed.

The last step of the process concerns the deployment of the services simulating the
selected QoS. The deployment descriptor coming from the first phase and the new ver-
sion of the skeletons are then used as input for the Axis Deployment Engine.

For the sake of completeness, it is important to remark that the generation of mean-
ingful stubs would require to also handle their return values. Such values could in fact
be part of a parametric QoS specification or influence the behavior of the tested service.
The current implementation of Puppet does not provide a general solution, but returns
values arbitrarily chosen among a set previously built for each possible data type. If no
behavioral contract has been defined for the service this should be considered correct
by the service under test. Nevertheless, within the WS community there is a great boost
toward the definition of functional contracts for services [12] [5] [3]. To manage such
situations, future releases of Puppet will integrate mechanisms that enable the instru-
mentation of stub services with code that returns conforming value with respect to the
associated functional contract [21] (a related problem is that the determination of the
return values must be low effort-intensive not to invalidate the evaluated QoS).

As above mentioned, the current version of the tool needs human support for the
setting of the choreography. This means that the binding among services under devel-
opment and stubs is manually derived from the WS-CDL or WSBPEL.

4.2 Matching WS-Agreement Statements to Java Code

Puppet can handle those QoS constraints that can be simulated by means of a parame-
terizable portion of code. The approach implemented in Puppet requires then that for

A QoS Test-Bed Generator for Web Services 25

Table 1. Service Level Objective Mapping for Latency

...
<wsag:ServiceLevelObjective>
<puppet:PuppetRoot>
<puppet:Latency>
<puppet:TagDelay> 1000
</puppet:TagDelay>
<puppet:Ditribution> normal
</puppet:Distribution>

</puppet:Latency>
</puppet:PuppetRoot>

</wsag:ServiceLevelObjective>
...

...
try{
Random rnd = new Random();
float val = rnd.nextFloat();
int sleepingPeriod = Math.round(val*1000);
Thread.sleep(sleepingPeriod);

}
catch (InterruptedException e) {}
...

each concept in a SLA language a precise mapping must be provided. This is clearly a
quite complex task; nevertheless given a specific language and a possible interpretation
of the corresponding statements, it has to be done only once and for all. Currently we
have defined a simple language for SLA that can predicate over several QoS character-
istics (latency, reliability, workload) and have set a precise mapping for this concepts,
defined in XML format, to composable Java code segments.

The mapping between the XML statements of the WS-A and the Java code has been
specified in a parametric format that is instantiated each time one occurrence of the
pattern appears. The examples reported in the remainder of this section show the trans-
formations we have defined and encapsulated in Puppet.

In particular, conditions on latency can be simulated introducing delay instructions
into the operation bodies of the services skeletons. For each Guarantee Term in a WS-
Agreement document, information concerning the maximum service latency is defined
as a Service Level Objective according to a prescribed syntax. The example in Tab. 1
reports the XML code for a maximum latency declaration of 1000mSec normally dis-
tributed and the correspondent Java code that Puppet will automatically generate.

Table 2. Service Level Objective Mapping for Reliability

...
<wsag:ServiceLevelObjective>

<puppet:PuppetRoot>
<puppet:Reliability>
<puppet:TagRate> 99.50
</puppet:TagRate>
<puppet:Window> 2000
</puppet:Window>

</puppet:Reliability>
</puppet:PuppetRoot>

</wsag:ServiceLevelObjective>
...

...
if (this.possibleFailureInWindow()){
Random rnd = new Random();
float val = rnd.nextFloat()*100;
if (val>99.50f) {
String fCode = "Server.NoService";
String fString="No target service to invoke!"
org.apache.axis.AxisFault fault = new

AxisFault(fCode,fString,"",null);
this.incNumberOfFailure(); throw fault; }

}
...

Constraints on services reliability can be declared by means of a percentage index
into the Service Level Objective of a Guarantee Term. Such kind of QoS can be repro-
duced introducing code that simulates a service container failure. Thus, given the size
of a sliding window defining the time interval within which reliability is measured, the
generated stub for a service will raise remote exceptions according to the specified rate
in the window. The XML code in Tab. 2 provides an example of the transformation for

26 A. Bertolino, G. De Angelis, and A. Polini

reliability constraint description, assuming that the Apache-Tomcat/Axis [2] platform
is used.

The case of workload can be simulated by equipping the generated skeletons with
client-side code for the automatic invocation of the service under evaluation. Currently
Puppet permits to describe the maximum number of requests that the clients can de-
liver to the service in a given period (i.e. WinSize in Tab. 3). The generation process
augments the stubs with a private method for the remote invocation (i.e. invokeService
in Tab. 3) and an exported public method that triggers the emulation request stream.
The transformation in Tab. 3 reports the code for the trigger method. The information
required for the instantiation of parameters such as the target endpoint is obtained from
the part of the guarantee term concerning the scoping aspects discussed below.

According to what described in Sec. 2, a guarantee in a WS-Agreement document
can be enforced under an optional condition. Such additional constraints are usually
defined in terms of accomplishments that a service consumer must meet: for example
the latency of a service can depend on the time or on the day in which the request
is delivered. In these cases, the transformation function wraps the simulating behavior
code-lines obtained from the Service Level Objective part with a conditional statement
(see Tab. 4.a).

As mentioned, the scope for a guarantee term describes the list of services to which it
applies. In particular, Tab. 4.b points out how to apply the term to a sub-set of the service
operations. In this case, for each listed service, the transformation function adds the
behavior previously obtained from the Service Level Objective and Qualifying Condition
parts only to those operations declared in the scope.

5 Working Example

This section illustrates the application of Puppet to derive a test-bed to verify the QoS
characteristics of one service when interacting with other services. The case study con-
sidered refers to an on-line booking of flights. Several clients access a Travel Operator

Table 3. Service Level Objective Mapping for Workload Generator

...
<wsag:ServiceLevelObjective>
<puppet:PuppetRoot>
<puppet:Workload>
<puppet:NRequest>
20

</puppet:NRequest>
<puppet:WinSize>
60000

</puppet:WinSize>
</puppet:Workload>

</puppet:PuppetRoot>
</wsag:ServiceLevelObjective>
...

...
public void generateTraffic ()
throws MalformedURLException,RemoteException{
Random rnd = new Random();
int sleepPeriod;
String endpoint="http://myhost/axis/services/";
String service="client";
String method="planJourney";
int winSize=60000;
for (int i=0; i<20; i++){

this.invokeService(endpoint,service,method);
sleepPeriod = rnd.nextInt(winSize);
try {
this.sleep(sleepPeriod);

} catch (InterruptedException e) {}
winSize = winSize - sleepPeriod;

}
}
...

A QoS Test-Bed Generator for Web Services 27

Table 4. More Mappings

...
<wsag:QualifyingCondition>
<puppet:PuppetRoot>
<puppet:Condition

operator="Not">
<puppet:Var> interFly </puppet:Var>

</puppet:Condition>
</puppet:PuppetRoot>

</wsag:QualifyingCondition>
...

...
if (!interFly){

try{
...

}
...

a) Qualifying Condition

...
<wsag:ServiceScope wsag:ServiceName="ABS1">
<puppet:PuppetRoot>
<puppet:Operation>checkFlight</puppet:Operation>

</puppet:PuppetRoot>
</wsag:ServiceScope>
...

b) Service Scope

Service (TOS) that in turn accesses different airline booking services (ABSs) to check
the availability of a route for the required journeys. In the general case, different ABSs
can provide the same functionality according to different QoS specifications.

In the scenario depicted in Fig. 4, clients invoking the TOS service have some re-
strictions due the maximum number of invocations that can be generated within a time
frame. In particular it is supposed that clients cannot generate a workload higher than
20 invocations each 60 seconds. Furthermore, the TOS can interact with two different
airline booking services providing different reliability and latency QoS agreements, in
particular when invoked with request for intercontinental route.

In the example one the airline booking service (ABS1) assures a latency of 15 sec-
onds for checking seat availability on a specified flight. The company guarantees service
replies reliable up to 99.5% of the requests per day. On the other hand the second airline
service (ABS2) declares to provide the same service in 10 seconds and a realiability of
98% every day. However, it is supposed that the company offering ABS2 does not di-
rectly operate on intercontinental flights. If an international flight operation is required,
ABS2 could need to contact other airline partners providing segments of the selected
journey. In these cases, the declared latency agreement reduces to 20 seconds.

planJourney

bookJourney

cancelOrder

checkFlight

bookFlight

checkFlight

bookFlight

ABS
1

ABS
2

TOSClient - C

...
<puppet:NRequest> 20
</puppet:NRequest>
<puppet:WinSize> 60000
</puppet:WinSize>
...

...
<puppet:Reliability>
 <puppet:TagRate> 99,50
 </puppet:TagRate>
 <puppet:Window> 86400000
 </puppet:Window>
</puppet:Reliability>
...
<puppet:Latency>
 <puppet:TagDelay> 15000
 </puppet:TagDelay>
 <puppet:Distribution> normal
 </puppet:Distribution>
<puppet:Latency>

Service Under Evaluation
Stub

Fig. 4. Example Scenario

28 A. Bertolino, G. De Angelis, and A. Polini

Table 5. ABS2:checkFlight Generated Code

...
/** RELIABILITY EMULATOR CODE
*/

if (this.possibleFailureInWindow()){
Random rnd = new Random();
float val = rnd.nextFloat()*100;
if (val>98.00f){
String fCode="Server.NoService";
String fString =

"No target service to invoke!"
org.apache.axis.AxisFault fault=new

AxisFault(fCode,fString,"",null);
this.incNumberOfFailure();
throw fault;
}

}
/**QUALIFYING COND. GENERATED CODE*/
if (interFly){
try{

Random rnd = new Random();
float val = rnd.nextFloat();
int sleepingPeriod = Math.round(val*20000);
Thread.sleep(sleepingPeriod);

}
catch (InterruptedException e) {}
}
/** QUALIFYING CONDITION GENERATED CODE */
if (!interFly){
/** LANTENCY EMULATOR CODE */
try{
Random rnd = new Random();
float val = rnd.nextFloat();
int sleepingPeriod = Math.round(val*10000);
Thread.sleep(sleepingPeriod);

}
catch (InterruptedException e) {}
}
...

Starting from this description Puppet is able to generate a set of stubs for the services
interacting with the service under test. In particular Table 5 shows the derived source
code for the method checkFlight provided by ABS2 starting from the corresponding
QoS values specified in Fig. 4 formatted according to the WS-Agreement specification
as shown in Section 4.

Table 3 instead shows the code generated for the client stub. The generated client
defines a method, to be used by the tester, that will raise the specified number of invo-
cations within the specified time frame.

In the idea of Puppet the tester should combine all the generated services in different
configurations, reproducing real run-time scenarios. Then launching the scenario it is
possible to check if the specification of QoS defined for the Service under evaluation are
respected and under which conditions. For instance the developer can try to understand
which is the maximum number of clients that can be introduced in the scenario while
still being able to abide by the specified QoS.

6 Related Work

Some years ago the authors of [9] recognized that the combination of testing and QoS
evaluation, performance in particular, was a seldom explored path in software engineer-
ing research. Today the situation has changed and some interesting work starts to appear
on this topic. The application of testing for QoS evaluation requires to solve two main
problems. The first one is the derivation and simulation of an environment faithfully
reproducing the final execution conditions. The second problem is the derivation of a
testing suite representative of the real usage scenario, with particular reference to the
specific property to be assessed.

This work is mainly related to the first point. Nevertheless the application of empir-
ical approaches to QoS evaluation asks to solve both problems cited above. For works
on how to automatically derive test cases, to be used for the successive evaluation of a
system in a simulated environment, we refer to the literature, e.g., [9,16,7].

A QoS Test-Bed Generator for Web Services 29

With reference to the generation of test-beds for the validation of WS QoS, we did
not find many works. With reference to the area of Component-based software the work
presented in [7] shows some similarities with what we propose here. Nevertheless the
two approaches are quite different in their motivations and hypotheses. In [7] starting
from the hypothesis that the middleware strongly influences the performance behav-
ior of a deployed CBS, the authors generate an environment for the evaluation of the
architecture of the system under development. The generated environment then is not
intended to be used for the evaluation of a single real component implementation. In-
stead our target here is to develop a test-bed for the evaluation of a real implementation
of a service. Moreover in [7] the stubs are directly derived starting from the architec-
tural definition, no descriptions of QoS are considered (that work was mainly aimed
at early performance evaluation). In our work instead, thanks to the availability of the
QoS specification (such as the WS-A document), we can generate stubs behaving in
accordance to what is defined in the corresponding WS-A document.

A work that has much in common with what we propose here is [11], in which a
performance test-bed generator, in the domain of SOA, is presented. The approach pro-
posed is structured in several steps. First, the service under development is described as
a composition of services. Then, from this compositional model a collection of service
stubs is generated. At this point for each service a description of the load that will be
generated by possible clients is defined. From such descriptions, clients simulating the
defined load are automatically developed. Finally, clients are executed in order to stress
the service composition. The main differences with our proposal are twofold: on the
one hand, the system in [11] makes no use of any kind of contract or agreement speci-
fication, differently from the approach we propose which is heavily based on the SLA.
On the other hand, in [11] the service under development reacts to external stimuli gen-
erated by some clients according to the given load model. In our approach the service
under development is considered plugged in a well specified choreography. Since none
of the choreography members implementation is supposed to be available, our approach
automatically builds an environment according to the specification of the coordination
scenario.

Finally a main stream of SOA literature is devoted today to runtime evaluation of
QoS by means of monitoring approaches. We do not tackle such related work here for
size limitations.

7 Conclusions and Future Work

The paper proposed the Puppet approach for the automatic generation of test-beds to
empirically pre-validate the QoS of a composite WS before it is deployed. To be ap-
plicable the approach requires the availability of the specification of the composition in
which the service under evaluation will be inserted. We also assume that the composi-
tion is augmented with QoS properties, for instance expressed as a WS-A specification.
QoS annotations of WS are not state-of-practice nowadays, nevertheless the relevance
of this topic is raising fast in this domain. This is due to the fact that the SOA paradigm
aims at removing the barrier among different organisations that can then directly coop-
erate. In a such scenario the reduced control over the required services certainly asks

30 A. Bertolino, G. De Angelis, and A. Polini

for the introduction of agreements concerning the quality of non functional properties
in addition to the functional behaviour.

Puppet requires first to define a precise mapping of the terms used for specifying
QoS properties to simple parameterized Java code. This step gives a sort of semantic to
each type of terms and is done once and for all. In some sense, it implicitly defines the
simplest instance of a service providing the specified QoS. More complex definitions
of QoS properties are obtained by composing terms of the QoS specification language.
Thus, the translation function composes simple transformations according to the rules
for the composition. In such a manner Puppet is able to generate service stubs accord-
ing to composite QoS properties. These stubs can be used to validate possible real im-
plementations of an under development service participating to the same coordination
scenario.

The approach we are working on seems promising, nevertheless some issues remain
open. Particularly interesting seems the generation of stubs that permit to return mean-
ingful values without introducing complex code that could undermine the realization of
stubs behaving in accordance to a specified QoS property.

The approach has been shown to be applicable and a tool is currently under final-
ization as an Eclipse plug-in. As described the tool will provide stubs mimicking real
services, according to the corresponding QoS definition. To carry on reliable experi-
ments the developer will have to distribute the stubs among various machines trying
to reproduce as much as possible the final deployment environment. Another important
factor strongly influencing the evaluation will be the definition of workload actually rep-
resenting the final deployment condition. We are working on adding support for these
steps that currently rely on human intervention to solve some technical issues. Never-
theless it is important to stress that the reproduction of a representative environment
will never be achieved in a completely automated way.

Acknowledgements

The authors wish to thank Giovanni Possemato for his important contribution to the
implementation of the tools enabling the proposed approach.

G. De Angelis PhD grant is sponsored by Ericsson Lab Italy in the framework of the
PISATEL initiative (http://www1.isti.cnr.it/ERI/)

This work is partially supported by the PLASTIC Project (EU FP6 Strep No. 26955).

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services–Concepts, Architectures and
Applications. Springer–Verlag, Heidelberg (2004)

2. Apache Software Foundation. Axis User’s Guide.
http://ws.apache.org/axis/java/user-guide.html.

3. Baresi, L., Ghezzi, C., Guinea, S.: Smart Monitors for Composed Services. In: ICSOC 2004.
Proc. 2nd Int. Conf. on Service Oriented Computing, pp. 193–202. ACM Press, New York
(2004)

http://ws.apache.org/axis/java/user-guide.html.

A QoS Test-Bed Generator for Web Services 31

4. Bertolino, A., Bonivento, A., De Angelis, G., Sangiovanni Vincentelli, A.: Modeling and
Early Performance Estimation for Network Processor Applications. In: Nierstrasz, O., Whit-
tle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, Springer, Heidelberg
(2006)

5. Bertolino, A., Frantzen, L., Polini, A., Tretmans, J.: Audition of Web Services for Testing
Conformance to Open Specified Protocols. In: Reussner, R., Stafford, J.A., Szyperski, C.A.
(eds.) Architecting Systems with Trustworthy Components. LNCS, vol. 3938, Springer, Hei-
delberg (2006)

6. Bertolino, A., Mirandola, R.: Software Performance Engineering of Component–Based Sys-
tems. In: WOSP 2004, pp. 238–242. ACM Press, New York (2004)

7. Denaro, G., Polini, A., Emmerich, W.: Early Performance Testing of Distributed Software
Applications. In: WOSP 2004, pp. 94–103. ACM Press, New York (2004)

8. Draheim, D., Grundy, J., Hosking, J., Lutteroth, C., Weber, G.: Realistic Load Testing of
Web Applications. In: Proc. Conf. on Software Maintenance and Reengineering, pp. 57–70.
IEEE Computer Society Press, Los Alamitos (2006)

9. Weyuker, E., Vokolos, F.: Experience with performance testing of software systems: Issues,
and approach, and case study. IEEE Transaction on Software Engneering 26(12), 1147–1156
(2000)

10. Global Grid Forum: Web Services Agreement Specification (WS–Agreement), version
2005/09 (edn.) (September 2005)

11. Grundy, J., Hosking, J., Li, L., Liu, N.: Performance Engineering of Service Compositions.
In: SOSE 2006. Proc. Int. Workshop on Service–Oriented Software Engineering, pp. 26–32.
ACM Press, New York (2006)

12. Heckel, R., Lohmann, M.: Towards Contract–based Testing of Web Services. Electronic
Notes in Theoretical Computer Science 116, 145–156 (2005)

13. Hrischuk, C.E., Rolia, J.A., Woodside, C.M.: Automatic Generation of a Software Perfor-
mance Model Using an Object-Oriented Prototype. In: MASCOTS 1995. Proc. 3rd Int.
Workshop on Modeling, Analysis, and Simulation On Computer and Telecommunication
Systems, pp. 399–409. IEEE Computer Society Press, Los Alamitos (1995)

14. IBM. WSLA: Web Service Level Agreements, version: 1.0 revision: wsla-, 2003/01/28 edn.
(2003)

15. Liu, Y., Gorton, I.: Accuracy of Performance Prediction for EJB Applications: A Statistical
Analysis. In: Gschwind, T., Mascolo, C. (eds.) SEM 2004. LNCS, vol. 3437, pp. 185–198.
Springer, Heidelberg (2005)

16. Liu, Y., Gorton, I., Liu, A., Jiang, N., Chen, S.: Designing a test suite for empirically-based
middleware performance prediction. In: CRPIT ’02: Proc. 4th Int. Conf. on Tools Pacific, pp.
123–130. ACS (2002)

17. Ludwig, H.: WS-Agreement Concepts and Use – Agreement-Based Service-Oriented Archi-
tectures. Technical report, IBM (May 2006)

18. OASIS. Web Services Business Process Execution Language (WSBPEL) 2.0 (De-
cember 2005) http://www.oasis-open.org/committees/tc home.php?
wg abbrev=wsbpel.

19. Skene, J., Lamanna, D.D., Emmerich, W.: Precise Service Level Agreements. In: Proc. 26th
Int. Conf. on Software Engineering (ICSE 2004), pp. 179–188 (2004)

20. Smith, C.U., Williams, L.: Performance Solutions: A practical Guide To Creating Respon-
sive, Scalable Software. Addison–Wesley, London, UK (2001)

21. Tkachuk, O., Rajan, S.P.: Application of Automated Environment Generation to Commercial
Software. In: ISSTA 2006. Proc. ACM Int. Symp. on Sw Testing and Analysis, pp. 203–214.
ACM Press, New York (2006)

22. W3C. Web Services Choreography Description Language (WS–CDL) 1.0 (November 2005)
http://www.w3.org/TR/ws-cdl-10/

protect protect protect edef OT1{OT1}let enc@update
elax protect edef ptm{ptm}protect edef m{m}protect edef n{n}protect xdef OT1/ptm/m/n/9 {OT1/ptm/m/n/9 }OT1/ptm/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef ptm{pcr}protect xdef OT1/ptm/m/n/9 {OT1/ptm/m/n/9 }OT1/ptm/m/n/9 size@update enc@update http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel.
protect protect protect edef OT1{OT1}let enc@update
elax protect edef ptm{ptm}protect edef m{m}protect edef n{n}protect xdef OT1/pcr/m/n/9 {OT1/ptm/m/n/9 }OT1/pcr/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef ptm{pcr}protect xdef OT1/pcr/m/n/9 {OT1/ptm/m/n/9 }OT1/pcr/m/n/9 size@update enc@update http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel.
http://www.w3.org/TR/ws-cdl-10/

	Introduction
	Specification of Service Level Agreements
	A WS Development and Evaluation Scenario
	Description of the Approach
	Skeleton Generation Process
	Matching WS-Agreement Statements to Java Code

	Working Example
	Related Work
	Conclusions and Future Work

