
Finalizing Dialog Models at Runtime

Stefan Betermieux and Birgit Bomsdorf

Fernuniversität in Hagen, 58095 Hagen, Germany
stefan.betermieux@fernuni-hagen.de,
birgit.bomsdorf@fernuni-hagen.de

http://www.fernuni-hagen.de

Abstract. This paper proposes a dialog model for web applications aim-
ing at flexible interface generation. The basic idea is to enable the runtime
system to “finalize” the dialog structure. The overall approach follows
a task-oriented, user-centered development process, where models of the
users’ tasks and the user-system dialog play an essential role. In our ap-
proach, these models are transferred to the run time system that allows
the user to interact with the web application according to the specifi-
cations. It is based on an architecture that separates a task controller
and a dialog controller, which are responsible for model execution and
dialog creation. Throughout the paper, we take care of the special char-
acteristics of web applications and show enhancements of the conceptual
models and of the runtime architecture.

1 Introduction

Web sites have been developed towards highly interactive web applications. The
web site visitor is no longer a mere recipient of information but a user inter-
acting with an application, e.g., filling in data, triggering system functions, and
receiving feedback from the application. Thus, web pages evolve more and more
into user interfaces; besides providing content they have to support user-system
interaction, also referred to as the dialog. Furthermore, up-to-date web applica-
tions, such as e-shops, include business processes. The system has to guide users
through a predefined sequence of web pages through which they perform the
activities of the process.

In the field of model-based design of user interfaces (e.g. [7], [20], [21], [24],
[25]) well-known notations and techniques exist for developing systematically the
dialog of an interactive system. They were developed, however, for modelling tra-
ditional user interfaces. Within the web modelling community ([22], [15], [13],
[17], [5]), on the other hand, the interactive behavior is specified basically im-
plicitly within the navigation model. In some approaches, similarly to the field of
HCI, models describing the system from the view of the user are introduced. In
WSDM [13], for example, task models are used as a high-level dialog description
to guide the design of the navigation. In OOHDM [26], task descriptions are
analyzed to identify the data items, which are to be exchanged between the user
and the web application. In general, web modelling approaches are complemented

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 137–151, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.fernuni-hagen.de


138 S. Betermieux and B. Bomsdorf

increasingly by the investigation and specification of user goals, tasks and activ-
ities, respectively (further examples are given by WebML [8], UWE and OO-H
([10],[17])). All in all, these aspects are used as informal input to conceptual do-
main, navigation and presentation design. Since interaction design and feedback
specification becomes more and more important, this information should not be
an add-on to an otherwise data-oriented methodology. Both a data-centric view
and a task- and interaction-centric view are required. However, if a modelling
approach supports mainly the data and object based specification treating dia-
log specification implicitly only, achievement of a usable interaction design can
be very cumbersome. For example, spreading pieces of interaction specification
over the navigation model makes it difficult to detect common structures and
patterns, respectively. From our point of view, developers have to be supported
by modelling concepts that put the dialog explicitly and coherently into play.

The work presented here proposes a flexible dialog model. The whole ap-
proach follows a task-oriented, user-centered development process. However, in
this paper we focus on the conceptual task model and its associated abstract user
interface model. In most existing approaches these models are taken as input to
subsequent development steps, within which the sites and pages are modelled in
more detail aiming at the final web pages and navigation. In contrast to this, in
our approach the task and abstract user interface model are passed over to the
run time system. Its control component comprises a task controller and a dialog
controller responsible for “finalizing” the dialog model. The objective is, to use
this technique in the adaptation of web pages to various screen sizes. Implemen-
tation of the overall framework is work in progress. The scope of this paper is
to introduce the basic concepts of the flexible dialog.

2 Task Modelling for Web Applications

Modelling of a web application usually starts with requirement specification,
similarly to traditional Software Engineering. The objective is to get a picture,
as clear as possible, of information and functional as well as of usability require-
ments. Use case diagrams are commonly in use for a first description of them,
later on refined by means of, e.g., activity diagrams or task models. Like WSDM
[14], we apply task modelling for this step. While in WSDM a modified version
of CTT [20] is used, we adapted the notion of VTMB [4] for the concerns of
web modelling. Initially VTMB was developed to support task modelling in the
context of traditional user interfaces. Focussing on interactive web applications,
additional concepts are added by our current work. The concepts as relevant
within this paper are introduced below, whereby we concentrate on task models
as applied in conceptual design.

2.1 Task Model

Throughout this paper, a task is denoted by means of a symbol as depicted in
figure 1. Defining temporal relations (top right in the task symbol) and cardinality



Finalizing Dialog Models at Runtime 139

Fig. 1. Example of a task symbol (representing the task Buy Car)

(top left) is well-established in task modelling. In addition, we enriched it by the
task lifespan (denoted bottom left).

Task Cardinality. Information can be attached to a task symbol to express
the possible number of executing that task. Internally, minimum and maximum
values are used to control at run time the cardinality constraints. To support
readability of task models, cardinality information is attached to task symbols
by means of expressive names.

Optional (opt). The label opt denotes that the task can be omitted.
minimum = 0

Iteration (iter). A task labeled with iter can be performed as often as needed.
maximum = ∞

Mandatory. If no label is assigned to a task symbol, the task is to be executed
exactly one time, which is the default value for task performance.
minimum = 1, maximum = 1

Temporal Relations. Task relations are a basic concept regarding hierarchies
of tasks. In contrast to CTTs [20], we assign a temporal operator to the relation
between a parent task and its children tasks and not individually between the
siblings.

The universal relation is always an aggregation of the child tasks to a parent
task (is-part-of relation); a parent task is fulfilled, as soon as the sub-tasks are
fulfilled according to the temporal relation given. This is a very basic definition
of the possible semantics of the relation, they are refined to be more useful in
the context of task models.

Sequence (seq). The subtasks of a parent task have to be completed in se-
quence. The second subtask can only be performed, if the first subtask is
finished. This process is continued for all subtasks. The parent task is ful-
filled, as soon as the last subtask is finished.

Arbitrary Sequence (arb). The subtasks can be completed in an arbitrary
sequence. Only one subtask can be performed at one time. The parent task
is fulfilled, when all subtasks are finished.

Selection (sel). Only one of the subtasks can be selected to be performed. The
parent task is fulfilled, when that subtask is finished.

Parallel (par). All of the subtasks can be performed in parallel. There can
be more then one subtask performed at the same time. The parent task is
fulfilled, if all subtasks are finished.



140 S. Betermieux and B. Bomsdorf

Lifespan. In the context of web applications, task models have to cope with user
originated and system originated task suspensions. This holds true for traditional
applications as well, but has a slightly different meaning in the context of the
web.

User originated task suspension occurs, when the user navigates explicitly to
a page which would not be accessible by the current task model, for example
by using bookmarks or the browsers navigation buttons. These out-of-context
navigations cannot be solved automatically, but have to be addressed by the
task model designer.

Due to the stateless hypertext transfer protocol (HTTP), the server needs to
associate user requests to a memory area where the state of the application of
a user is saved. Since the memory on the server is finite and users may possibly
never return, the server needs to clean up this memory area (the user session),
normally by using timeouts after the last request. Hence, system originated task
suspension occurs, when the web application server terminates a user session
which contains a running task model instance.

Either way, the task controller needs to detect those exceptional events and
react to them with a predictable behavior. Instead of dictating a single task
model suspension strategy, it is possible to attach those strategies to tasks, where
they only affect the task and all of their subtasks. It is possible to mix strategies
in a task model depending on application requirements, as long as the tasks
with different strategies are on separate subtrees. The example in section 2.2
will explain this behavior in more detail.

Volatile. The default strategy for tasks without a lifespan attribute. If a sus-
pension occurs, the states of the task and all its subtasks are discarded.

Suspendable (susp). If a task is marked as suspendable and suspension oc-
curs, the task controller will put it and all its descendants into a suspended
state. The user is offered an interface option to resume the suspended tasks.

Persistent (pers). A task marked with pers is suspendable as defined by susp
and additionally will be persisted to a long term storage space (i.e. database)
when a session timeout occurs. This is only possible for users which can be re-
identified in the next session, for example by a name/password registration,
or a site cookie. During the next session, the user is offered an interface
option to resume the previously suspended tasks.

2.2 Example

Figure 2 shows a simplified model of a web application, which uses most of the
above mentioned concepts. The example is taken from an on-line picture gallery
where users can browse existing pictures and upload new ones. Starting from the
root task On-line Picture Gallery, three subtasks can be invoked independently
(the relation to the subtasks from the root tasks is marked as parallel). The sub
task Help provides context sensitive help and can be re-invoked if finished (task
is marked as iteration). The sub task Browse Pictures is subdivided into two
subtasks where the user has to chose one of the options (hence the selection).



Finalizing Dialog Models at Runtime 141

Fig. 2. Task Model

Browse Randomly is a leaf since the granularity of task refinement is adequately
modelled for our purposes. Search Metadata is subdivided into two sequential
subtasks, the first presenting a search form and the second displaying the results.
The largest subtree of the application Upload Pictures relates to a process to
register with the web application and to upload pictures. This process is marked
as persistent; whenever a user leaves the web site before completing the process
(subtree), it is persisted and presented again when the user returns. On the
other hand, browsing pictures and invoking help are volatile, thus the states are
discarded when the user leaves the web site. Uploading pictures consists of a
task sequence: logging in, uploading a picture, and entering meta-data for the
picture. Login is a selection between first time registration and authentication by
using a given username/password combination. Registration is subdivided into
three tasks, which can be performed in an arbitrary sequence: entering the user’s
name, entering an email address (which is optional) and choosing a password.

3 Domain Model

The domain model describes the objects of the business domain, their properties
in terms of attributes, sub-object structures, and semantic relationships. Tech-
niques adopted for defining this model correspond to well-known diagrams from
Software Engineering (such as the class model in UML) or database engineering
(ER diagrams). We will use UML (see figure 3). A simple entity class1 Account
is used to store user credentials and a service class2 AccountService is used to
create new accounts and to retrieve existing ones.
1 See [1] for a definition of the stereotype Entity.
2 See [1] for a definition of the stereotype Service.



142 S. Betermieux and B. Bomsdorf

Fig. 3. Domain Model

4 Abstract Dialog Model

The task model is not yet suitable to generate the dialog between the user and
the domain model. A dialog describes messages in terms of input and output
interactions exchanged between the user and the system. From a users point of
view, a dialog state represents the “position” within a dialog while the user is
interacting with the application. The positions, i.e., the states, are changed by
task execution. The tasks are associated with input and output declarations to
specify what kind of data may be exchanged between the user and the system
to perform a task. To enable this data exchange, appropriate interaction com-
ponents have to be defined. Such information is typically described by means of
a user interface model, comprising an abstract and concrete description of the
presentation [20]. The abstract model describes what will be shown to the user
at one point in time on a web page. The concrete model, also called the visual
design, described how the web pages will be presented defining the concrete
layout in terms of colors, fonts, the logo to be inserted and so on.

4.1 Basic Components and Grouping Mechanism

In our approach we introduce abstract dialog units (ADUs) for specifying the
abstract user interface [2]. ADUs are associated to tasks from the task model,
specifying abstract interface components for displaying output and transferring
data from input elements. Thus, the abstract presentation of a web application
is closely related to the dialog structure.

The abstract user interface can be constructed using predefined interaction
objects, i.e., output objects (text, image) and input objects (text input, check-
box input). Since we are focusing on web applications, these components, which
we refer to as generic interface components, correspond to HTML input and
output elements. Figure 4 shows some of the components used in the example
later on. Label just outputs some text, Image displays a picture. Input creates a
text input and links it to a field from the domain model. The type attribute can
automatically convert strings (HTTP request parameter are always strings) into
domain model types and the validate attribute can perform simple constraint
checks on user input (i.e. not empty, integer range, etc.). Secret has the same



Finalizing Dialog Models at Runtime 143

Fig. 4. Generic Interface Components

capabilities as an Input component, but the behavior of the input field displayed
in the browser, which is cloaked with asterisks.

Since a task requires most of the time more than a single input or output,
generic interface components can be grouped together using grouping compo-
nents. A simple grouping component Group, specifies an ordered aggregation
of its subcomponents. It outputs some text as the title of the group, displays
the subcomponents as a list and can run validations on the aggregated sub-
components. Menu also groups subcomponents, but presents them as a link list
to navigate to them individually, useful to create a menu. Wizard groups its
subcomponents into sequential steps.

More complex components, like data grids and tree structures, can be added
later on. The hierarchical structure of complex ADUs can be represented visually
by means of a tree notation as shown in figure 5. The complex task Enter Name
is composed of a set of label and input components, aggregated by the group
component.

4.2 Connecting the Domain Model

The domain model can be created after the task model has been finalized, or,
in case of legacy applications, can exist beforehand. In both cases, the domain
model needs to be linked to the task model, and there are two steps involved.

Input components need to be linked to domain model fields, creating value
bindings. These links are bidirectional, existing values from the domain are used
to initialize the input fields. After a subsequent request arrives from the user,
the user input is written back into the domain model.

Methods in the domain model can be invoked during task performance. Special
fields in the ADUs called onEntry and onExit are used to link to methods in the
domain model, creating method bindings. They are unidirectional, since method
invocation always originates from the task model and targets the domain model.

While value bindings just transfer data from and to the domain model, method
bindings can initiate processing on the data.



144 S. Betermieux and B. Bomsdorf

4.3 Abstract Dialog Model Example

The example (figure 5) in this section demonstrates the attachment of ADUs
to tasks. First of all, the Register task is performed and the onEntry method
binding is invoked, creating an empty Account object. The group component
merely displays a title for all subtasks, the validation is later triggered, when the
task Register is completed, i.e., all subtasks are completed (arbitrary sequence).

Enter Name creates two input fields with associated labels in a group and
uses value bindings to link into the domain model. Validation just checks for
empty strings.

Fig. 5. Abstract Dialog Units Attached to Tasks

Enter Email creates a single input field and a label in a group. The validator
checks for a syntactical correct email address and updates the value binding only
if the email address string from the request qualifies.

Enter Password creates two input fields with asterisk cloaking and ensures
for the first password, that it doesn’t violate the password policy. The grouping
component validates the entered passwords and checks if they are equal. Since
the first password field doesn’t know about the second password field, the check
of equality can be performed at the grouping layer only, since here the data of
both passwords entries are available to the validator.

After performing all three subtasks, the parent task Register is finished, the
validation of the parent group is triggered, which checks the entered account



Finalizing Dialog Models at Runtime 145

data for inconsistencies created by contradicting inputs in separate subtasks.
Finally, the onExit method binding is called and the account is created.

5 Runtime Architecture

Based on the models we described in the last sections, we propose a runtime
architecture to process instances of these models, i.e. a task controller which
processes task model instances and a dialog controller which processes abstract
dialog model instances. Figure 6 displays the overview of the architecture and
the flow of a request from a user’s web client.

Fig. 6. Architecture View

1. All requests are handled by the dialog controller3. It associates requests
to running task model instances and performs basic validation. 2. The dialog
controller invokes the task controller, which promotes the task model instance. 3.
The task controller returns. 4. The dialog controller delegates the transforming
of the ADU tree into a web page to the view assembly. 5. The view assembly
returns a web page. 6. The dialog controller returns the web page to the browser.

The architecture is based on the classic model-view-controller (MVC) pattern
for web applications [23], with a special focus on controllers. The model matches
the domain model, the view is created in the view assembly and the controller
corresponds to the task- and dialog controllers in cooperation with the task- and
abstract dialog model.

Task- and dialog controller are explained in more detail in the next sections.
The view assembly doesn’t need a more detailed specification at the moment,
because it just maps generic interface components to their HTML counterparts.
Later on, with more complex generic interface components available, the map-
ping part will be more sophisticated.
3 Since it acts as a single point of entry, it is also known as front controller.[1]



146 S. Betermieux and B. Bomsdorf

5.1 Task Controller

The task controller is responsible for creating task model instances from a dedi-
cated task model and managing their lifecycles. For each task it creates a finite
state machine (FSM, see figure 7), which consists of the possible task’s states
and the transitions between the states triggered by events.

Fig. 7. Task Finite State Machine

Initially, the FSM is in the initiated state, and can be started or skipped.
If skipped, the FSM changes into the skipped end state, counting the task as
not completed but successfully finished. For example, if an optional task in a
sequence is skipped, the subsequent task can be performed.

From initiated, the event start changes the FSM into the running state. By
entering the running state, the method binding onEntry will be invoked. If the
FSM receives a stop event, it will invoke the onExit method binding and change
into the completed end state (or the initiated state, if the task is iterable).

Since we have to cope with suspensions, it is always possible that the task
needs to be suspended while running. Depending on the lifespan of the task, it
changes into the suspended state (if lifespan = suspendable or persistent) or in
the terminated end state (if lifespan = volatile).

The hierarchy of tasks in the task model is adhered by adding conditions
based on temporal relations to the transitions of the finite state machines.
For example, to finalize a parent task (transition from running to completed)
in a arbitrary sequence, all child tasks need to be in the state completed or
skipped.



Finalizing Dialog Models at Runtime 147

5.2 Dialog Controller

Fundamental part of the dialog controller is the component tree, which is used to
interact with the user. ADUs are linked to tasks that need user interaction. Since
we don’t have generated pages yet, the information inherent to the task model
hierarchy can be used to combine ADUs in order to present them on web pages.
Using a task model instance from the task controller, the dialog controller creates
a component tree by adding the ADUs from running tasks to a component tree,
starting with the ADU from the root task and traversing the task hierarchy with
a depth first search. The resulting “virtual” generic interface component tree was
not modelled by the designer, but is created by the dialog controller to interact
with the user. The component tree for the example in figure 5 is depicted in
figure 8.

Fig. 8. Component Tree

For example, if a web site needs to be accessible using a desktop computer
and a PDA, the dialog controller can decide at runtime how much screen size is
used by the interface components and change the spatial appearance of grouping
elements. The Register task in figure 5, could be presented on one page or on
three subsequent pages. To combine all register tasks into a single page, the
dialog controller would decide to change the appearance of the grouping element
Wizard to display all its subcomponents at once. Since this can change the final
user interface in a bad way (jumping recurring interface elements, no recognition
of the web site), the change of grouping appearance should be applied to the
component tree bottom-up and is still research in progress.

Figure 9 depicts the internal flow of the dialog controller, which is divided
into six sequential phases4.

Restore Component Tree. assigns a previously stored component tree from
the user session to the request, which is only possible if the request originates
from a web page created by the dialog controller (i.e., a component tree has

4 This is inspired by the request processing of Java ServerFaces([19]).



148 S. Betermieux and B. Bomsdorf

Fig. 9. Dialog Controller

been created and stored). If a component tree is found, the request attributes,
which correspond to user input, populate the component tree and the next
phases only use the component tree to process user interactions.

Validate Inputs. The validations of the generic interface components of the
component tree are processed. If, for example, the last name field of the
registration example (figure 5) has been left empty by the user, the validation
would fail (mandates not empty) and the processing of the request would stop
here and jump immediately to the Assemble View phase to create the same
page with a validation error message, allowing the user to correct mistakes.

Update Domain Model. The values of the input components of the compo-
nent tree are passed over to the domain. If the domain does not accept some
of the input, the processing of the request would stop here again and jump
immediately to the Assemble View phase.

Invoke Task Controller. The task controller creates a new instance of the
task model if it doesn’t exist and stores it in the user session. It promotes the
task model instance by starting and stopping tasks depending on the users
interactions. It invokes domain model methods by executing the onEntry
and onExit method bindings of started and stopped tasks. The lifecycle of
tasks is explained in section 5.1.

Create Component Tree. Due to the changes in the task model instance in
the previous phase, the set of active tasks may have changed. The dialog
controller creates a new component tree based on tasks in running state to
interact with the user. After creating the tree, it is stored in the user session.

Assemble View. Pass the component tree to the view assembly, were a HTML
page is created. Insert context information into the resulting page, which
allows the dialog controller on a subsequent request to associate the user to
a running task model instance.

6 Related Work

WebML [11] provides mainly a visual notation for defining data-driven hyper-
texts. The core is made up by a continually expanded set of so-called units, e.g.,
Data Unit, Entry Unit, Login Unit. The units represent what is to be included on



Finalizing Dialog Models at Runtime 149

a web page, whereby the expressiveness range from simple (e.g., a Data Unit rep-
resents information from the underlying data base) up to little processes (such as
specified by the Login Unit). Application dependent sequences of task execution
(called workflows) can be specified by means of operation units with additional
information concerning control conditions. All in all, interaction elements, dialog
control and presentation are not modelled separately.

Separation of concerns is better realized in UWE and WSDM. UWE [16] is
an object-oriented approach supporting the whole life-cycle of web application
development. UML is used, including some extension enabling the specification
of, e.g., a navigation model. The approach has been extended for the purpose of
modeling task sequencing (called business processes in UWE). Similarly, as in
our approach, task modelling is distinguished within analysis and within design.
At design level, a process (task) is modelled in terms of classes that are refined
by UML activity diagrams. A process class specifies the information needed for
performance, including state information for the purpose of handling interrup-
tions. The integration of the process classes into the navigation model result into
two separated but connected spaces: one dedicated to process performance and
the other dedicated to ”pure” navigation / browsing. In our approach, similar
to OO-H [9], both aspects are interwoven in the navigation model.

The the objects chunks of WSDM [14] are similarly to the ADUs proposed
by our approach. While in WSDM such chunks are only attached to leaf tasks,
in the work presented here ADUs can be attached to a task regardless of its
position within the task hierarchy. By this, we can easily denote aspects being
relevant to a complete sub-task tree.

6.1 Current State of Work

Our work differs from all mentioned approaches above with respect of utilizing
the “task views”. In most approaches, including those developed in the field
of HCI, e.g., [20], [12], [18] the task / process structure is transformed into an
initial dialog model or navigation model at design time. We are postponing dialog
creation at runtime to adapt the user interface to client specific requirements.
The biggest drawback of this approach is poor imagination of the generated web
pages by the task designer, which we try to counter with predictable behavior
of grouping elements. Still, there is a trade-off between adaptability and user
interface consistency.

The concepts were applied in some projects so far. For this purpose, our previ-
ous work on simulating task models ([4]) was extended to support interactive web
applications at run time (an example of which was presented in ([3]). As shown
in ([5], [6]) the web-MVC pattern was extended by task-related components. A
task processing manager is responsible for keeping track of state information at
the level of task and process execution, respectively.

We are implementing task- and dialog controllers to support our ideas of
task suspension and runtime dialog generation. We have developed an XML
schema of our task notation, to support easy integration of task models into the
controllers. The task controller, which creates FSMs of the tasks is finished and



150 S. Betermieux and B. Bomsdorf

deployable. The dialog controller, which uses a component tree and generates
web pages is also in a running state. Current work aims at the integration of
both controllers into a coherent runtime system. An editor to create task models
has been developed and is able to export the models in XML.

References

1. Alur, D., Crupi, J., Malks, D.: Core J2EE Patterns: Best Practices and Design
Strategies, 1st edn. Prentice Hall, Englewood Cliffs (2001)

2. Betermieux, S., Bomsdorf, B., Langer, P.: Towards a generic model for specifying
different views on the dialog of web applications. In: Proceedings of HCI Interna-
tional. Lawrence Erlbaum Associates, Mahwah, NJ (2005)

3. Biedebach, A., Bomsdorf, B., Schlageter, G.: The changing role of instructors. In:
Proceedings eLearn 2002 (2002)

4. Biere, M., Bomsdorf, B., Szwillus, G.: The visual task model builder. In: Proceed-
ings of CADUI 1999 (1999)

5. Bomsdorf, B.: First steps towards task-related web user interfaces. In: Proceedings
of Computer-Aided Design of User Interfaces, pp. 349–356 (2002)

6. Bomsdorf, B.: Task modeling for customization of web applications. In: Proceedings
HCI International 2003, pp. 33–37 (2003)

7. Bomsdorf, B., Szwillus, G.: Towards a universal modelling tool. In: Palanque, P.,
Paternó, F. (eds.) DSV-IS 2000. LNCS, vol. 1946, Springer, Heidelberg (2001)

8. Brambilla, M., Ceri, S., Fraternali, P., Manolescu, I.: Process modeling in web
applications. In: ACM Transactions on Software Engineering and Methodology
(2006)

9. Cachero, C., Gómez, J., Pastor, O.: Object-oriented conceptual modeling of web
application interfaces: the OO-H method. In: ECWEB’00, pp. 206–215. Springer-
Verlag, Heidelberg (2000)

10. Cachero, C., Koch, N.: Conceptual navigation analysis: a device and platform in-
dependent navigation specification. In: Proceedings of 2nd International Workshop
on Web-Oriented Software Technology (2002)

11. Ceri, S., Fraternali, P., Matera, M., Maurino, A.: Designing multi-role, collaborative
web sites with WebML: a conference management system case study. In: IWWOST
2001 Workshop (2001)

12. Clerckx, T., Luyten, K., Coninx, K.: The mapping problem back and forth: cus-
tomizing dynamic models while preserving consistency. In: TAMODIA ’04. Pro-
ceedings of the 3rd annual conference on Task models and diagrams, pp. 33–42.
ACM Press, New York, NY, USA (2004)

13. de Troyer, O.: Audience-driven web design. In: Information modelling in the new
millennium, IDEA Group Publishing (2001)

14. de Troyer, O., Casteleyn, S.: Modeling complex processes for web applications using
WSDM. In: Proceedings of the Third International Workshop on Web-Oriented
Software Technologies, IWWOST (2003)

15. Isakowitz, T., Kamis, A., Koufaris, M.: The extended RMM methodology for web
publishing. Working Paper IS-98-18 (1998)

16. Koch, N., Kraus, A., Cachero, C., Meliá, S.: Integration of business processes in
web application models. Journal of Web Engineering 3(1), 22–49 (2004)

17. Kraus, A., Koch, N.: A metamodel for UWE. Technical report, University of Mu-
nich (2003)



Finalizing Dialog Models at Runtime 151

18. Luyten, K., Clerckx, T., Coninx, K., Vanderdonckt, J.: Derivation of a dialog model
from a task model by activity chain extraction. In: DSV-IS, pp. 203–217 (2003)

19. McClanahan, C., Burns, E., Kitain, R.: JavaServer faces specification, v1.1, rev.
01 (2004)

20. Paternò., F., Mancini, C., Meniconi, S.: Concurtasktrees: A diagrammatic notation
for specifying task models. In: INTERACT ’97. Proceedings of the IFIP TC13
International Conference on Human-Computer Interaction, London, UK, pp. 362–
369. Chapman & Hall, Ltd., Sydney (1997)

21. Puerta, A., Cheng, E., Ou, T., Min, J.: MOBILE: User-centered interface building.
In: Proceedings of CHI 99. ACM Press, New York, NY, USA (1999)

22. Rossi, G., Schwabe, D., Lyardet, F.: Web application models are more than concep-
tual models. In: Akoka, J., Bouzeghoub, M., Comyn-Wattiau, I., Métais, E. (eds.)
ER 1999. LNCS, vol. 1728, Springer, Heidelberg (1999)

23. Singh, I., Stearns, B., Johnson, M.: Designing Enterprise Applications with the
J2EE Platform, 2nd edn. Addison-Wesley, London, UK (2002)

24. Stary, C.: Task- and model-based development of interactive software. In: Proceed-
ings of IFIP 98 (1998)

25. van der Veer, G.C., Lenting, B.F., Bergevoet, B.A.J.: Groupware task analysis -
modelling complexity. Acta Psychologica (1996)

26. Vilain, P., Schwabe, D.: Improving the web application design process with UIDs.
In: Proceedings of 2nd International Workshop on Web-Oriented Software Tech-
nology (2002)


	Introduction
	Task Modelling for Web Applications
	Task Model
	Example

	Domain Model
	Abstract Dialog Model
	Basic Components and Grouping Mechanism
	Connecting the Domain Model
	Abstract Dialog Model Example

	Runtime Architecture
	Task Controller
	Dialog Controller

	Related Work
	Current State of Work


