

Lecture Notes in Computer Science 4607
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Luciano Baresi Piero Fraternali
Geert-Jan Houben (Eds.)

Web Engineering

7th International Conference, ICWE 2007
Como, Italy, July 16-20, 2007
Proceedings

13

Volume Editors

Luciano Baresi
Piero Fraternali
Politecnico di Milano
Dipartimento di Elettronica e Informazione
piazza Leonardo da Vinci 32, 20133 Milano, Italy
E-mail: {luciano.baresi, piero.fraternali}@polimi.it

Geert-Jan Houben
Vrije Universiteit Brussel
Department of Computer Science
Pleinlaan 2, 1050 Brussels, Belgium
Geert-Jan.Houben@vub.ac.be

Library of Congress Control Number: 2007930462

CR Subject Classification (1998): D.2, C.2, I.2.11, H.4, H.2, H.3, H.5, K.4, K.6

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-73596-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-73596-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12089673 06/3180 5 4 3 2 1 0

Preface

This volume contains the proceedings of the seventh International Conference
on Web Engineering (ICWE2007), which was held in Como (Italy) in July 2007.
The conference is the flagship event of the community, promoting research and
scientific progress in the Web engineering field. The importance of the Web —
and of its many related technologies— is widening the scope of the conference
year after year, and is also leading to the cross-fertilization of several related
disciplines (e.g., requirements engineering, testing and analysis, communication
science, HCI, multimedia, and more). The conference brings together practition-
ers, scientists, and researchers committed to investigating and innovating the
technologies, methodologies, tools, processes, and techniques used to construct,
verify, and maintain Web-based applications and services.

This year, the Call for Papers attracted a high number of submissions with a
very good coverage of all the different facets of the Web engineering discipline. A
total of 172 submissions (as for research papers) allowed us to build an attractive
program of high technical and scientific quality. The 39 selected submissions
comprise 26 full papers and 13 short papers (with an acceptance rate close to
23%); they cover the different aspects highlighted in the Call for Papers and
represent well the many Web engineering research groups active worldwide. The
program spans from service-based systems to testing and analysis, from quality
and metrics to models, and from semantic issues and Web 2.0 to application
development techniques.

This year, we strove to attain a very homogeneous program in which the dif-
ferent initiatives (technical program, workshops, tutorials, demos, and doctoral
symposium) are intertwined in a coherent sequence of events. The technical pro-
gram remained the main forum for presenting innovative, and already consoli-
dated, research results, while the collateral events were valuable opportunities
to present interesting ideas and practical realizations and to discuss on-going
research, and thus advance the state of the art in the field.

The conference would not have been possible without the help of Politecnico
di Milano, WebRatio, Acer, and Cefriel, which kindly accepted to support the
conference, the endorsement of the International World Wide Web Conference
Committee and the International Society for Web Engineering, and the enthu-
siastic work of the various chairs (Emilia, Nora, Maristella, Sara, Fabio, Sven,
Alexander, Michalis, Antonio, and Marco), and of the local organizers. Finally,
special thanks to all the contributors and participants who, at the end of the
day, are what a conference like ICWE is all about.

May 2007 Luciano Baresi
Piero Fraternali

Geert-Jan Houben

Organization

General Chair

Piero Fraternali, Politecnico di Milano, Italy

Program Chairs

Luciano Baresi, Politecnico di Milano, Italy
Geert-Jan Houben, Vrije Universiteit Brussel, Belgium

Program Committee

Grigoris Antoniou, University of Crete, Greece
Uwe Assmann, TU Dresden, Germany
Maria Bielikova, Slovak University of Technology in Bratislava, Slovakia
Judith Bishop, University of Pretoria, South Africa
Marco Brambilla, Politecnico di Milano, Italy
Chris Brooks, University of San Francisco, USA
Fabio Casati, Università di Trento, Italy
Sven Casteleyn, Vrije Universiteit Brussel, Belgium
Dan Chiorean, University Babes-Bolgni, Cluj, Romania
Sara Comai, Politecnico di Milano, Italy
Paul Dantzig, IBM T. J. Watson Research Center, USA
Yogesh Deshpande, University of Western Sydney, Australia
Olga De Troyer, Vrije Universiteit Brussel, Belgium
Peter Dolog, Aalborg University, Denmark
Schahram Dustdar, Vienna University of Technology, Austria
Martin Gaedke, University of Karlsruhe, Germany
Dragan Gasevic, Simon Fraser University, Canada
Michael Gertz, UC-Davis, USA
Athula Ginige, University of Western Sydney, Australia
Angela Goh, NTU, Singapore
Jaime Gomez, Universidad de Alicante, Spain
Volker Gruhn, Universität Leipzig, Germany
Gerti Kappel, Vienna University of Technology, Austria
Alexander Knapp, Ludwig Maximilians Universität München, Germany
Nora Koch, Ludwig Maximilians Universität München, Germany
Frank Leymann, Universität Stuttgart, Germany
David Lowe, University of Technology Sydney, Australia
Maristella Matera, Politecnico di Milano, Italy
Heinrich Mayr, University of Klagenfurt, Austria

VIII Organization

Emilia Mendes, University of Auckland, New Zealand
San Murugesan, University of Southern Cross, Australia
Moira Norrie, ETH, Switzerland
Oscar Pastor, Universidad Politecnica de Valencia, Spain
Vicente Pelechano, Universidad Politecnica de Valencia, Spain
Michalis Petropoulos, University at Buffalo, SUNY, USA
Claudia Pons, University of La Plata, Argentina
I.V. Ramakrishnan, Stony Brook University, USA
Gustavo Rossi, Universidad Nacional de la Plata, Argentina
Daniel Schwabe, PUC Rio de Janeiro, Brazil
Katsumi Tanaka, Kyoto University, Japan
Ernest Teniente, UPC, Spain
Bernhard Thalheim, Universität Kiel, Germany
Philippe Thiran, University of Namur, Belgium
Riccardo Torlone, Università di Roma, Italy
Paolo Traverso, ITC, Italy
Antonio Vallecillo, Universidad Politecnica de Valencia, Spain
Jean Vanderdonckt, Université Catholique de Louvain, Belgium
Fabio Vitali, University of Bologna, Italy
Petri Vuorimaa, Helsinki University of Technology, Finland
Jeffrey Yu, Chinese University of Hong Kong, China

Industrial Track Committee

Fabio Casati, Università di Trento, Italy (Chair)
Boualem Benatallah, University of New South Wales Sydney, Australia
Aldo Bongio, WebRatio, Italy
Arthur Ryman, IBM Toronto, Canada
Regis Saint-Paul, University of New South Wales Sydney, Australia
Erwin Schaumlechner, Tiscover, Austria
Ming-Chien Shan, SAP Research, USA
Bebo White, SLAC, USA
Jin Yu, Martsoft, USA

Doctoral Consortium Committee

Nora Koch, Ludwig Maximilians Universität München, Germany (Chair)
Piero Fraternali, Politecnico di Milano, Italy
Gerti Kappel, Vienna University of Technology, Austria
Alexander Knapp, Ludwig Maximilians Universität München, Germany
David Lowe, University of Technology Sydney, Australia
Emilia Mendes, University of Auckland, New Zealand
Luis Olsina, Universidad Nacional de la Pampa, Argentina
Oscar Pastor, Universidad Politecnica de Valencia, Spain
Antonio Vallecillo, Universidad Politecnica de Valencia, Spain

Organization IX

Demo Chairs

Sven Casteleyn, Vrije Universiteit Brussel, Belgium
Alexander Knapp, Ludwig Maximilians Universität München, Germany

Tutorial Chair

Michalis Petropoulos, University at Buffalo, SUNY, USA

Publicity Chairs

Maristella Matera, Politecnico di Milano, Italy
Antonio Vallecillo, Universidad Politecnica de Valencia, Spain

Treasurer and Sponsorship Chair

Sara Comai, Politecnico di Milano, Italy

Local Organization Chair

Marco Brambilla, Politecnico di Milano, Italy

Additional Referees

Omar Alonso
Andreas Bartho
Bettina Biel
Sören Blom
Matthias Book
Eugene Borodin
Alessandro Bozzon
Daniele Braga
Michael Byrd
Alina Campan
Alessandro Campi
Sebastian Cech
Alejandra Cechich
Florian Daniel
Sergio España
Federico Michele Facca
Paul Fodor
Joan Fons
Conny Franke

Irene Garrigos
Robert Gombotz
Sam Guinea
Michael Göschka
Falk Hartmann
Christian Wende
Florian Heidenreich
Christian Huemer
Malte Hülder
Angelo Di Iorio
Horst Kargl
Nima Kaviani
Nicolas Kicillof
Engin Kirda
Gerhard Kramler
Katja Lehmann
Tammo van Lessen
Jalal Mahmud
Daniel Martin

Johannes Meinecke
Santiago Melia
Elke Michlmayr
Ralph Mietzner
Milan Milanovic
Hisashi Miyamori
Shinsuke Nakajima
Satoshi Nakamura
Jose I. Panach Navarrete
Johann Oberleitner
Hiroaki Ohshima
Satoshi Oyama
Filippo Pacifici
Conrad Parker
Ins Pederiva
Pierluigi Plebani
Marco Plebani
Birgit Pröll
Alessandro Raffio

X Organization

Sebastian Richly
Thomas Richter
Florian Rosenberg
Andreas Schroeder
Wieland Schwinger
Clemens Schäfer
Martina Seidl
Anu Singh
Keishi Tajima
Puay Siew Tan
Taro Tezuka

Dave Thau
Massimo Tisi
Victoria Torres
Martin Treiber
Christina Tziviskou
Tobias Unger
Pedro Valderas
Francisco Valverde
Martin Vasko
Roberto De Virgilio
Valentino Vranic

Hui Wan
Junhu Wang
Jianshu Weng
Branimir Wetzstein
Matthias Wieland
Daniel Wutke
Qing Zhu
Daniel Zinn
Chang Zhao

Table of Contents

Services

On Embedding Task Memory in Services Composition Frameworks 1
Rosanna Bova, Hye-Young Paik, Salima Hassas,
Salima Benbernou, and Boualem Benatallah

A QoS Test-Bed Generator for Web Services . 17
Antonia Bertolino, Guglielmo De Angelis, and Andrea Polini

Engineering Compensations in Web Service Environment 32
Michael Schäfer, Peter Dolog, and Wolfgang Nejdl

Context-Aware Workflow Management . 47
Liliana Ardissono, Roberto Furnari, Anna Goy,
Giovanna Petrone, and Marino Segnan

Practical Methods for Adapting Services Using Enterprise Service
Bus . 53

Hyun Jung La, Jeong Seop Bae, Soo Ho Chang, and Soo Dong Kim

Metrics and Quality

On the Quality of Navigation Models with Content-Modification
Operations . 59

Jordi Cabot, Jordi Ceballos, and Cristina Gómez

Metamodeling the Quality of the Web Development Process’
Intermediate Artifacts . 74

Cristina Cachero, Coral Calero, and Geert Poels

The Use of a Bayesian Network for Web Effort Estimation 90
Emilia Mendes

Caching

Sequential Pattern-Based Cache Replacement in Servlet Container 105
Yang Li, Lin Zuo, Jun Wei, Hua Zhong, and Tao Huang

A Hybrid Cache and Prefetch Mechanism for Scientific Literature
Search Engines . 121

Huajing Li, Wang-Chien Lee, Anand Sivasubramaniam, and
C. Lee Giles

XII Table of Contents

Interfaces

Finalizing Dialog Models at Runtime . 137
Stefan Betermieux and Birgit Bomsdorf

Transparent Interface Composition in Web Applications 152
Jeronimo Ginzburg, Gustavo Rossi, Matias Urbieta, and
Damiano Distante

Fine-Grained Specification and Control of Data Flows in Web-Based
User Interfaces . 167

Matthias Book, Volker Gruhn, and Jan Richter

Authoring Multi-device Web Applications with Database Access 182
Giulio Mori, Fabio Paternò, and Carmen Santoro

Enriching Hypermedia Application Interfaces . 188
André T.S. Fialho and Daniel Schwabe

Models

Functional Web Applications . 194
Torsten Gipp and Jürgen Ebert

Integrating Databases, Search Engines and Web Applications: A
Model-Driven Approach . 210

Alessandro Bozzon, Tereza Iofciu, Wolfgang Nejdl, and
Sascha Tönnies

A Method for Model Based Design of Rich Internet Application
Interactive User Interfaces . 226

M. Linaje, Juan C. Preciado, and F. Sánchez-Figueroa

Improving Communication in Requirements Engineering Activities for
Web Applications . 242

Pedro Valderas and Vicente Pelechano

Meta-model to Support End-User Development of Web Based Business
Information Systems . 248

Buddhima De Silva and Athula Ginige

Verification and Testing

Easing Web Guidelines Specification . 254
Barbara Leporini, Fabio Paternò, and Antonio Scorcia

Table of Contents XIII

A Transformation-Driven Approach to the Verification of Security
Policies in Web Designs . 269

Esther Guerra, Daniel Sanz, Paloma Dı́az, and Ignacio Aedo

Efficiently Detecting Webpage Updates Using Samples 285
Qingzhao Tan, Ziming Zhuang, Prasenjit Mitra, and C. Lee Giles

Auto-Generating Test Sequences for Web Applications 301
Hongwei Zeng and Huaikou Miao

A Survey of Analysis Models and Methods in Website Verification and
Testing . 306

Manar H. Alalfi, James R. Cordy, and Thomas R. Dean

Semantics and Web 2.0

Building Semantic Web Portals with WebML . 312
Marco Brambilla and Federico M. Facca

Engineering Semantic-Based Interactive Multi-device Web
Applications . 328

Pieter Bellekens, Kees van der Sluijs, Lora Aroyo, and
Geert-Jan Houben

Towards Improving Web Search by Utilizing Social Bookmarks 343
Yusuke Yanbe, Adam Jatowt, Satoshi Nakamura, and
Katsumi Tanaka

Designing Interaction Spaces for Rich Internet Applications with
UML . 358

Peter Dolog and Jan Stage

A Behavioral Model for Rich Internet Applications 364
Sara Comai and Giovanni Toffetti Carughi

Search

Considering Web Accessibility in Information Retrieval Systems 370
Myriam Arrue and Markel Vigo

Fixing Weakly Annotated Web Data Using Relational Models 385
Fatih Gelgi, Srinivas Vadrevu, and Hasan Davulcu

Creating Personal Histories from the Web Using Namesake
Disambiguation and Event Extraction . 400

Rui Kimura, Satoshi Oyama, Hiroyuki Toda, and Katsumi Tanaka

XIV Table of Contents

Comparing Clustering Algorithms for the Identification of Similar
Pages in Web Applications . 415

Andrea De Lucia, Michele Risi, Giuseppe Scanniello, and
Genoveffa Tortora

Structural Patterns for Descriptive Documents . 421
Antonina Dattolo, Angelo Di Iorio, Silvia Duca,
Antonio Angelo Feliziani, and Fabio Vitali

Application Development

Component-Based Content Linking Beyond the Application 427
Johannes Meinecke, Frederic Majer, and Martin Gaedke

A Double-Model Approach to Achieve Effective Model-View Separation
in Template Based Web Applications . 442

Francisco J. Garćıa, Raúl Izquierdo Castanedo, and
Aquilino A. Juan Fuente

Model-Driven Development of Web Applications with UWA, MVC and
JavaServer Faces . 457

Damiano Distante, Paola Pedone, Gustavo Rossi, and
Gerardo Canfora

On Refining XML Artifacts . 473
Felipe I. Anfurrutia, Oscar Dı́az, and Salvador Trujillo

Demonstrations

Mixup: A Development and Runtime Environment for Integration at
the Presentation Layer . 479

Jin Yu, Boualem Benatallah, Fabio Casati, Florian Daniel,
Maristella Matera, and Regis Saint-Paul

Squiggle: An Experience in Model-Driven Development of Real-World
Semantic Search Engines . 485

Irene Celino, Emanuele Della Valle, Dario Cerizza, and
Andrea Turati

WebTE: MDA Transformation Engine for Web Applications 491
Santiago Meliá, Jaime Gómez, and José Lúıs Serrano

Noodles: A Clustering Engine for the Web . 496
Giansalvatore Mecca, Salvatore Raunich,
Alessandro Pappalardo, and Donatello Santoro

Table of Contents XV

WebRatio 5: An Eclipse-Based CASE Tool for Engineering Web
Applications . 501

Roberto Acerbis, Aldo Bongio, Marco Brambilla, and Stefano Butti

Extending Ruby on Rails for Semantic Web Applications 506
Cédric Mesnage and Eyal Oren

Personalized Faceted Navigation in the Semantic Web 511
Michal Tvarožek and Mária Bieliková

WebVAT: Web Page Visualization and Analysis Tool 516
Yevgen Borodin, Jalal Mahmud, Asad Ahmed, and
I.V. Ramakrishnan

Smart Tools to Support Meta-design Paradigm for Developing Web
Based Business Applications . 521

Athula Ginige, Xufeng Liang, Makis Marmaridis,
Anupama Ginige, and Buddihma De Silva

Industrial Track

Next-Generation Tactical-Situation-Assessment Technology (TSAT):
Chat . 526

Emily W. Medina, Sunny Fugate, LorRaine Duffy,
Dennis Magsombol, Omar Amezcua, Gary Rogers, and
Marion G. Ceruti

Tool Support for Model Checking of Web Application Designs 533
Marco Brambilla, Jordi Cabot, and Nathalie Moreno

Developing eBusiness Solutions with a Model Driven Approach: The
Case of Acer EMEA . 539

Roberto Acerbis, Aldo Bongio, Marco Brambilla, Massimo Tisi,
Stefano Ceri, and Emanuele Tosetti

The Challenges of Application Service Hosting . 545
Ike Nassi, Joydip Das, and Ming-Chien Shan

Doctoral Consortium

Securing Code in Services Oriented Architecture . 550
Emilio Rodriguez Priego and Francisco J. Garćıa

Service Level Agreements: Web Services and Security 556
Ganna Frankova

XVI Table of Contents

Risk Management for Service-Oriented Systems . 563
Natallia Kokash

A Framework for Situational Web Methods Engineering 569
Sebastian Lahajnar

Author Index . 575

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 1–16, 2007.
© Springer-Verlag Berlin Heidelberg 2007

On Embedding Task Memory in Services Composition
Frameworks

Rosanna Bova1, Hye-Young Paik2, Salima Hassas3, Salima Benbernou1,
and Boualem Benatallah2

1 LIRIS, University Lyon 1, France
{rosanna.bova, salima.benbernou}@liris.cnrs.fr

2 CSE, University of New South Wales, Australia
{hpaik, boualem}@cse.unsw.edu.a

3 LIESP, University Lyon 1, France
hassas@bat710.univ-lyon1.fr

Abstract. With the increasing availability of Web services and adoption of ser-
vices oriented paradigm, there is a growing need to dynamically compose ser-
vices for realizing complex user tasks. While service composition is itself an
important problem, a key issue is also how to support users in selecting the
most appropriate compositions of services to fulfill a task. In existing dynamic
services selection approaches, combinations of services are repeatedly discov-
ered (e.g., using ontology-based matching techniques) and selected by users
whenever needed. To improve their effectiveness, we propose a new technique
that provides an efficient access to what is named a “task memory”. A task
memory is used to provide users with a context-aware service selection by rec-
ommending combinations of services that are most appropriate in a given con-
text. A task memory is formed using the service composition history and their
metadata. We present an incremental approach for building the task memory in
which we monitor how users use and rank the services. The continuous updates
of the task memory over time will result in more fine-tuned recommendations
for composite services.

Keywords: composite web services reuse, context-aware composite web
services selection, service oriented architecture.

1 Introduction

Advances in service oriented computing and semantic web technologies provide
foundations to enable automated services selection and aggregation [1]. Coupled with
other advances in communication technologies, these foundations constitute the pil-
lars of a new computing paradigm in which users and services establish on-demand
interactions, possibly in real-time, to realize useful experiences. This paradigm offers
effective automation opportunities in a variety of application domains including per-
sonal information management, office tasks, travel, healthcare, and e-government. For
example, a driver might use location, travel route computation, traffic information,
and road conditions services to get timely information regarding a trip in progress.

2 R. Bova et al.

Business travelers can cope with schedule changes by seamlessly combining services
to find and book hotels, search and book nearby rental cars, change flight reserva-
tions, modify meeting schedules and notify attendees [2].

A key issue to facilitate seamless and efficient composition of services is providing
appropriate support for services selection. This is especially important in environ-
ments where there may be large number of services offering similar functionality [3].
Services discovery and composition are very active area of research and standardiza-
tion. Efforts in these areas focused mainly on designing languages for process-based
services composition (e.g., BPEL), designing rich and machine understandable repre-
sentations of service properties, capabilities, and behavior, as well as reasoning
mechanisms to select and aggregate services (e.g., OWL-S and services matching
techniques) [4]. Main stream services discovery and selection approaches typically
rely on descriptions matching techniques (e.g., whether descriptions of services and
requests are compatible). Descriptions refer to meta-data such as service capabilities
and non-functional properties (e.g., quality of service properties) [3]. It should be
noted that, in a description-based matching approach, identifying that a service has a
capability to answer a user request, does not mean that the service will be selected by
the user. For example, not all travel services offer airfares from Lyon to Sydney.
Other approaches improve the effectiveness of description-based approaches by
considering also content-based matching (e.g., using content summary [5] or using
service probing [6]).

Although existing techniques have produced promising results that are certainly
useful, more advanced techniques that cater for context (e.g., user location, computer
environment), specially in large and dynamic environments, are necessary. This will
relieve users from repeating the same selection refinement process to deal with a
potentially large number of relevant services returned by a matching system every
time they need to perform an activity. We observe that, while performing routine
tasks, there is valuable knowledge being exposed to the service matching and selec-
tion component of a service infrastructure, that is, the information about the contexts
in which a certain combination services were considered most appropriate by users.
This information can be helpful in terms of reuse because users would select similar
services in similar contexts (e.g., repetitive, regular tasks). Unfortunately, this infor-
mation is not effectively captured and utilized in existing service matching and selec-
tion approaches. In this paper, we present an approach that leverages and seamlessly
extends existing service matching and selecting techniques to cater for context-aware
services selection by utilizing the knowledge on past experience. More precisely, we
make the following contributions:

1. We introduce a notion of task memories that effectively represent the knowledge
about service selection and contexts. We use task memories during services selec-
tion to suggest most relevant candidate services.

2. We use incremental acquisition techniques to build and update task memory. By
applying continuous feedback and monitoring of ongoing usage of services, the
system is able to maintain and evolve the task memory. Keeping the task memory
up-to-date should result in more fine-tuned services selection.

3. We propose a multi-agent architecture; called, WS-Advisor, that seamlessly extends
existing service matching and service selection techniques. The interactions among

 On Embedding Task Memory in Services Composition Frameworks 3

the agents are well coordinated to cater for a comprehensive service provisioning
environment which supports effective capturing and utilization of user knowledge
during service matching and selection.

2 WS-Advisor: Design Overview

The proposed architecture builds on existing services matching, selection, and com-
position frameworks. This is to take advantage of the already known techniques [7],
[8], but, more importantly, to strengthen the notion of reuse in the frameworks. We
propose that using incrementally acquired knowledge about service capabilities and
their usage history during service matching and selection will help promote effective
adoption of reuse. The added value of this extension is making the system (named
WS-Advisor) capable of providing context-aware and adaptive service provisioning in
dynamic environments.

Fig. 1. Overview of WS-Advisor architecture

The main proposition of WS-Advisor is to offer effective recommendations on
“best-fit” services during the process of service selection. The architecture as a whole
relies on the notion of building, maintaining and querying a service usage history. By
continuously monitoring which services are used in which context and how users rate
the services after execution, WS-Advisor can build up extensible knowledge about a
history of service usage. The knowledge is stored in the form of task memories, which
are then queried during the selection of services to draw recommendations which are
based on past experience (i.e., the best candidate services that performed well for the
given task and context). In summary, WS-Advisor has two core functions, namely: (i)
constructing task memories, and (ii) using task memories to recommend “best-fit”
services based on the past experience.

It is noted that WS-Advisor is based on a multi-agent architecture. Figure 1 shows
the agents involved in the system, namely: user agent, adviser agent, task memory
builder agent and context agent. These agents use their internal knowledge and

 User Agent Memory
Builder Agent

Context
Provider

Interact

Tasks Memory
Repository

Temporary
Tasks
Repository

Update
Task
Memory

Query for
Tasks Memory

Stores
Temporary
Tasks

User

 Adviser Agent

 Context Agent

Retrieval-
Context

Context
Provider

Context
Provider

Contexts

Entry New Tasks
Memory

Recommend
Task Memory

Send Events
for Update TM

4 R. Bova et al.

policies to perform their functions. They interact pro actively to collect information
for building the task memories and adapt continuously to provide effective service
selection in dynamic environments. In the following, we introduce each agent.

User Agent (UA). There are two types of users in WS-Advisor: administrators and
end users. An administrator interacts with a user agent to manage tasks (i.e., create,
update or delete). For an end user, a user agent acts like a proxy, performing various
actions on behalf of the user. A user agent maintains a folder of tasks (e.g., travel
booking, organizing a board meeting). The user can browse, select, and execute the
tasks. When a task is chosen, the user agent performs the following automatic actions:
(i) it contacts a context agent (see below) to retrieve context information, (ii) after
obtaining the necessary contexts, it asks the adviser agent to recommend the services
suitable for the chosen task. These recommendations are passed back to the user agent
who makes the final decision on which services to run, (iii) when the services are
finally chosen, the user agent interacts with a service orchestration engine (e.g., BPEL
execution engine) to execute the task by invoking the involved services and orches-
trating their interactions.

Adviser Agent (AA). A recommendation request from the user agent includes task
attributes (e.g., departure date and destination city for a travel booking task) and con-
text (e.g., current time and location) attributes. The knowledge that the adviser agent
uses for recommendation is encoded in task memories. Briefly stated, a task memory
consists of tuples, each tuple containing a combination of services, the contexts in
which the services were selected and executed, a score indicating how “successful”
the execution was. More detailed description of task memories and the scores will be
given in the later sections.

Builder Agent (BA). This agent is responsible for incremental knowledge acquisition
in the task memories. It interacts with the user agent to gather service usage history
(e.g., which services were recommended in which contexts, which of the recom-
mended services were eventually chosen to be executed in the end, etc). It also con-
tinuously monitors and collects information about how the users rank the service
performance after a task is completed and carry out updates in the task memories
accordingly. We will discuss this agent in details in the later sections.

Context Agent (CA). The context agent collects an assortment of contexts from con-
text providers and disseminates the information to the user agent. A context may refer
to a user context (e.g., preferences, location, timezone), an environment context (e.g.,
hardware and software characteristics of the user’s devices). We assume that a context
providing service, such as the one implemented in [9], [10], exists and it will generate
the context attributes and value pairs.

3 User Agent

In this section, we describe the concepts that are important, namely, service and con-
text ontologies; tasks, to explain the activities performed by a user agent during task
provisioning.

 On Embedding Task Memory in Services Composition Frameworks 5

3.1 Concepts and Definitions

Service Ontology. Briefly stated, the service ontology provides a description (e.g.,
domain, properties and capabilities) of potential services that could be used to execute
specific activities. A service ontology can be described using an ontology description
language such as OWL-S. In our approach, the service ontology is described by a
name that represents the domain of services and a set of service categories. A service
category is specified by a set of attributes and a set of operations. An attribute
describes a service property and is described by its name and type.

An operation describes a service behavior and is described by its name and signa-
ture (i.e, input and output parameters of the service). Categories within a service ontol-
ogy can be related by specialization and generalization relationships. In this paper, we
assume that service ontologies are available and accessible for instance from registries
(e.g. UDDI registries). For example, in Figure 2, the domain Travel has a category
Transportation, which is described using attributes origin, destination
and price, etc., and this category has three sub-categories.

A service provider advertises a service by specifying which ontology the service is
complaint to and the service categories that are supported by the service. Let us as-
sume that the service Alitalia offers a range of flight information. The service
may register itself with the Transportation ontology and advertise that it sup-
ports all operations in the category Flight as well as all attributes inherited from the
categories AirTransport and Transportation.

Fig. 2. An example of Service Ontology: “Travel Service Ontology”

Context Ontology. Various definitions exist in the literature for the notion context
[11], [12]. For the purpose of our work, a context represents environmental or circum-
stantial factors that are relevant to effectively selecting services to perform a given
task. We use a simple context ontology that consists of a set of context classes. Each
class represents a specific aspect of task context (e.g., Spatio-Temporal context,

6 R. Bova et al.

Computing Environment context, ConditionalEnvironment context,
User context etc). These are generic classes in the sense that they are used to de-
scribe context of any task. Each class is described by a set of attributes representing
specific state of the task environment. For instance, the class Hardware that is a
sub-class of ComputingEnvironment contains the attributes: memoryFree,
cpuUsage, storage and network and etc. It should be noted that, although the
adopted context ontology has a limited number of context classes (for the sake of
illustration), it is extensible: new classes can be added without fundamentally altering
the service selection techniques built on top of this ontology.

Task Definition. A task in WS-Advisor represents a set of coordinated activities that
realize recurrent needs (i.e. a process that orchestrates the execution a number of
individual activities). For example, a user may define a business travel task or a driv-
ing planning task. The business travel task may include activities such as hotel book-
ing, car rental, flight reservation, meeting scheduling and attendee’s notification. A
driving planning task may include activities such as gathering traffic and road condi-
tions and producing an optimum driving route. An activity can be one of three types:
(i) an elementary task that refers to an operation of an actual service, (ii) an elemen-
tary task that refers to an operation defined in a service ontology, or (iii) a sub-task
(i.e., a task consists of other tasks).

The user agent provides support for defining new tasks and a repository for storing
them. Tasks are, for example, defined by an administrator based on common patterns
in recurring processes. A task is described in terms of services ontologies and is rep-
resented using state charts [7]. The choice of such notation is motivated by the fact
that state charts offer main constructs that are needed to define typical user tasks such
as sequence of activities, branching, and parallel activities. In addition, to their ex-
pressive power, well-defined semantics, state charts can also be translated to executa-
ble processes such BPEL. It should be noted however, that any other task modeling
notation such as petri nets could be used to define tasks in our approach.

In a nutshell, a state chart representing a user task consists of states and transitions.
A state can be basic, or composite. Each basic state is labeled with an execution of
activity that refers to:

− An invocation of a concrete service operation in case the service is deemed rele-

vant the corresponding activity whenever the task is performed. This means that,
the binding of an activity to a service operation is done at task definition time.

− An invocation of operation defined in a category of a service ontology. The binding
of this operation to an operation of a concrete service of the corresponding ontol-
ogy is done at run-time. In this case, an activity represents a request for a service
instead of an invocation of a service. Since, activities describing a user task are la-
beled with requests for services, concrete Web services belonging to the required
service ontologies are selected during the execution of the composite task. Hence,
it is possible to execute tasks in different ways by allocating different Web services
to execute component activities in the task.

A composite state allows the nesting sub-tasks (represented as state-charts) inside a
parent task. Transitions represent dependencies among the activities of a task (e.g., a

 On Embedding Task Memory in Services Composition Frameworks 7

transition may represent that an activity a1 should be executed after an activity a2 or
a1 and a2 should be executed in parallel). A simplified state chart diagram specifying
a “Travel Planner” task is depicted in figure 3. In this task, a search is per-
formed to find a flight reservation service. After that, if the flight reservation is suc-
cessful, an AND state follows, in which a search hotel booking service is performed
in parallel with an invocation of a car rental service, and finally a search for an enter-
tainment is performed. Note that states BookFlight and BookHotel are labeled
with requests for services whereas the state RentCar is labeled with an invocation to
an actual service (called “Avis”). The latter invocation style is useful when the ser-
vice to use for executing specific task is the preferred (e.g., Avis is the preferred car
rental service in the country of destination by the user of the task).

Fig. 3. State chart of the “Travel Planner”

Annotating Tasks with Context Information. To cater for context-aware service
selection, in addition to the activities and their dependencies, a task definition in-
cludes context attributes from the context ontology. The administrator associates each
task with its relevant contexts (e.g., for a travel booking task, the user's timezone,
local currency, type of Web browser, may be relevant). Therefore, when a user
chooses a task to perform, the user agent is able to determine the contexts associated
with the task and contacts the context agent to retrieve the values of each context
attribute. For example, in the “Travel Planner” task, the administrator may
choose the following relevant context attributes:

− for the state BookFlight, the attributes preferences of the context class
User and time and location of the context class Spatio-Temporal. This
may be needed because the user may have some preferences in the choice of airline
company and this choice depends from time and location of this user;

− for the state HotelBooking, the attribute noise of the context class Condi-
tionalEnvironment. This may be needed because the user may want, for ex-
ample, a room with low noise level.

3.2 Provisioning Task

At a usage phase, a user chooses a task to perform from task repository (a repository
maintained by the user agent). The user configures the required information to exe-
cute the task. In other words, user needs to specify a query that will be used by the
system to select services to execute activities of the task. A user query is expressed in
terms of attributes of service ontologies associated with the task. To simplify the

8 R. Bova et al.

process of expressing queries, each task is associated with task service schema (ser-
vice schema for short). Given a task definition, a service schema describes the attrib-
utes that can be seen as a global schema for selecting the services to execute such
tasks. The attributes of such service schema are derived from the attributes, inputs and
outputs of operations referenced in that task definition. In addition, since our ap-
proach caters for task context, a query is expanded by the user agent to specify the
current context. The user agent interacts with the context agent to get the values of
context attributes that are relevant to a given task.

Example. Assume, that the schema of the task shown in Figure 3 contains: (i) the context
attributes preferences, time, location, temperature, (ii) the service attrib-
utes origin, destination, departureDate, returnDate, specialSer-
vice, numberOfFlight, price, location, star, hasRestaurant, pe-
riod. The user agent retrieves the values of the context agent from the context agent.
For instance, the result of querying of the context agent can be: (preferences =
“Austrian Airlines”, time = “8:30 AM CET”, location = “Lyon”, noise = “no”,
temperature = “25°C”). After that, the user fills the value of service attributes if
desired and the input/output of operations. For instance the user query in this case can be:
(origin = “Lyon”, destination = “Sydney”, departureDate = “02/01/2007”,
returnDate = “04/03/2007”, specialService = “seat far to window”, number-
OfFlight = “OS 402”, price “1000,00€€ ”, location = “Randwick”, star = “2”,
hasRestaurant = “no”, period = “03/01/2007 – 03/03/2007”).

4 Adviser Agent

The core idea of our services selection approach is to recommend combinations of
services that are most appropriate to meet the user's needs in given contexts. The rec-
ommendations are based on the past execution history of a task (i.e., task memories).
In this section, we define the notion of task memories and discuss how the adviser
agent makes service selection recommendations. The issue of building a task memory
will be discussed in the next section when we discuss the memory builder agent.

4.1 Task Memory

A task memory is associated with a specific task and it captures the information about
the contexts and combinations of services that have been successfully used in the past
to execute the task. It is a kind of a dynamic folder that associates contexts to combi-
nations of services. Dynamic, here, means that the contexts and the combinations of
services may evolve over time. In this way, service selection is not only based on the
description or content of services but also on how likely they will be relevant in a
given context. We represent a task memory as a table that has two attributes, namely,
context summary, and recommendations.

Context Summary. Briefly stated, a context summary is a query representing a context
that is considered by the system (or a system administrator) as relevant for selecting a
combination of services to execute a task. It is specified using a conjunctive query of

 On Embedding Task Memory in Services Composition Frameworks 9

atomic comparisons involving context attributes, service attributes, service operation
inputs/outputs, and constants. The second column of the table 1 shows examples of
context summary queries. While context summaries could be defined using
sophisticated query languages such as XQuery or Xpath, without loss of generality, we
choose to use a simplified representation model in terms of attribute/value comparisons
for clarity of presentation. The concept of context summary allows capturing a set of
possibly relevant contexts to effectively select services instead of encoding all possible
service selection queries which may incur high performance cost. In other word, the
notion of context summary allows the adviser agent to maintain a partial, concise and
effective index of service selection queries.

Table 1. An example of task memory table

ID CSQ Combination_GA
CSQ1 origin = ‘Lyon’ ^ destination = ‘Sydney’ ^ 100 < p < 250 {[(Quantas, Hilton), 0.6], (Quantas, Paradise), 0.4]}

CSQ2 origin = ‘Lyon’ ^ destination = ‘Hong Kong’ ^ 100 < p < 250 {[(VolareWeb, Paradise), 0.7], (Alitalia, Paradise), 0.75]}

CSQ3 origin = ‘Milan’ ^ destination = ‘Sydney’ ^ 300 < p < 500 {[(Alitalia, Hilton), 0.8], (Alitalia, Paradise), 0.65]}

We assume that an administrator can identify a set of context summary queries that
are relevant to a give task. This can be done by identifying a subset of attributes of the
task schema that can be used to specify context summary queries. For each of these
attributes, ranges of values are formed by dividing the domain of the attribute into a
set of non-overlapping ranges known as Attribute Value Groups (AVGs). For nominal
attributes, an AVG contains one or more distinct nominal values; for continuous at-
tributes, an AVG specifies values range [5]. The union of AVGs of attribute is
equivalent to the domain of the attribute. The Context Summary Queries (CSQs) are
generated based on a cartesian product of these values. Table 2 lists examples of
AVGs, assuming origin, destination, price, star, memoryFree and
temperature are selected as summary attributes for the task “Travel Planner”. The
AVGs can be either manually defined by an administrator or discovered from query
logs using query or context discovery techniques such as those presented in [13].
Once summary attributes are selected and AVGs are defined, the context summary
queries are fixed.

Table 2. Example AVGs of summary attributes

Attribute AVGs
Origin
Destination
Price
Star
Temperature (°C)

‘Lyon’, ‘Milan
‘Sydney’, ‘Hong Kong’
100 < p <250, 300 < p < 500
1 < s < 3, 4 < s < 5
20 < t < 25, 4 < t < 7

Recommendations. For each context summary query, the task memory maintains the
K (K>= 0) most preferred combinations of services to execute a given task. Each ser-
vices combination is associated with a positive weight value, called Global Affinity

10 R. Bova et al.

(GA), exceeding a predefined threshold (parameter sets by a system administrator, for
example). A task memory is represented by a table that as three columns: ID (identifier
of context summary query), CQS (Context Summary Query), Combination_GA
(combinations of services with their associate Gas). For instance, the column
Combination_GA of Table 1 shows examples of service combinations and their
associated GAs. The global affinity of a services combination measures the relevance
of this combination to perform a task in a given context. More precisely, this value
represents a weighted average of the values that measure the level of satisfaction of
users, about a services combination, which respect to all the possible combinations in
the that have been selected in that context. A more detailed description the notion of
global affinity and its computation is given in [14].

4.2 Making Services Selection Recommendation

During services selection, in a response to a query from the UA, the AA identifies the
potential combinations of services having answers to the query. The AA provides an
operation called recommendCombinations(), that takes as input a selection
query and returns a set of service combinations that can be potentially used to executed
the corresponding task. The AA matches the user query against context summary
queries of the corresponding task memory. The matching process relies on subsumption
(containment) or equivalence between a user query and context summaries queries. If
no combination is found to be appropriate based on the task memory, the AA forwards
the query to a matching service engine to discover new possible combinations of
services. For instance, the query Q: (category = “TravelToSydney”, attributes:
origin, destination, price and values: origin = “not defined”,
destination = Sydney, price = 150€€) may not pass through the context filter of
CSQ3 as the price is not included in its range. Hence any service associated to CQ2 is
selected to answer to query Q, but CSQ1 can be used recommended to user.

5 Task Memory Builder Agent

The task of building a task memory is to associate context summary queries to com-
binations of services. This process is facilitated by a task memory builder agent (or
simply builder agent). The Builder Agent (BA) is responsible for the incremental
acquisition and to update of the elements the task memory table. Instead of asking an
administrator to populate and update the task memory table, this agent incrementally
captures the combinations of services that should be associated to context summary
queries, by continuously monitoring how users use and rank services through interac-
tions with the user agent.

This agent has access to operational knowledge such as service usage patterns as
well as means for analyzing such patterns and updating task memories. There can be
two approaches to build a task memory.

− A lazy approach consists to consider that the builder agent incrementally update
a task memory starting from an initial table (e.g., an empty or a manually crafted
table), during the service selection process. In this approach the builder agent

 On Embedding Task Memory in Services Composition Frameworks 11

maintains a usage table that consists of context summary queries and their associ-
ated service combinations. The usage table contains only combinations that have
been used at least once with satisfaction. Every time that a combination is used
with satisfaction (respectively dissatisfaction) the associated global affinity will be
upgraded (respectively, degraded).

− An eager approach that consists to periodically search for services usage patterns by
calculating the global affinities of previously selected service combinations. This
can be achieved for instance by a logging facility associated with the builder agent.
The agent logs events related to services selection. The logged information could be
analyzed in real-time (during services selection phase) or periodically to identify
patterns that help updating the task memory. Then, each pattern is associated to a
task memory update operation (e.g., adding a new combination of services).

More specifically, in the current architecture, the builder agent relies on the following
building blocks to incrementally construct selection policies:

− Logging service selection events. Table 3 summarizes basic events that are logged
by the builder agent. Over time, these events are used as a basis to identify service
usage patterns (e.g., identify that a combination of services needs to associate to a
given context because the number of times this combination was selected with sat-
isfaction is greater than a given threshold).

− Task memory table update operations. Table 4 summarized main task memory
update operations. The evolution of a task memory table is realized through update
operations.

− Task memory table update rules. Table 5 summarizes the main update operations
supported in our framework. Operations to perform for updating a task memory ta-
ble as a result of the occurrence certain service usage pattern are captured using
Pattern Action where Pattern is a condition over service selection events, and Ac-
tion is a table update operation. More precisely, a condition of a rule is a sequence
over service selection events. A rule is defined for each update operation.

In the lazy update strategy, whenever a combination is selected, the builder agent
checks if an update rule can be triggered (i.e, checks if the associated event pattern is
true, and eventually performs the rule action if true). In the eager strategy, the agent
relies on a pre-defined rule triggering policy (e.g, specified by an administrator). For
instance a triggering policy may say “analyze the logged events periodically
(e.g, each 2 days) to detect the occurrence of event patterns” or “whenever the task

Table 3. Selected events supported in WS-Advisor

Events Descriptions
services_selected (cs, cqs) The combination of services cs is selected by the AA as a relevant

candidate in a context identified by context query summary cqs
services_used (cs, cqs) The combination of services cs was selected by the AA as a relevant

candidate and used with satisfaction by the user in context identified by
context query summary cqs

services_discarded used (cs,
cqs)

The combination of services cs is selected by the AA as a relevant
candidate but discarded by the user in context identified by context
query summary cqs

12 R. Bova et al.

Table 4. Selected operations supported in WS-Advisor

Operations Description
Upgrade_Score (cs, cqs) The GA of combination cs is upgraded with regard to context query

summary cqs
Downgrade_Score (cs, cqs) The GA of the combination cs with regard to context query summary cqs
Add_combination (cs, cqs) A new combination cs is added and its score is initialized with regard to

context query summary cqs
Remove_Combination (cs,
cqs)

A combination cs is removed with regard to context query summary cqs

Table 5. Selected rules supported in WS-Advisor

Rules Pattern Action
Upgrade_Score_Rule (cs, cqs) <services_selected (cs, cqs),

services_used (cs, cqs)>
Upgrade_Score (cs, cqs)

Downgrade_Score_Rule (cs,
cqs)

<services_selected (cs, cqs),
services_discarded (cs, cqs)>.

Downgrade_Score (cs, cqs)

Add_Combination (cs, cqs) <services_selected (cs, cqs),
services_used (cs, cqs)>

Add_combination (cs, cqs)

Remove_Combination (cs, cqs) <services_selected (cs, cqs),
services_discarded (cs, cqs)>

Remove_Combination (cs, cqs)

memory becomes a bottleneck.” Note that a task memory might become a bottleneck
when the AA forwards the user query to a service matching engine frequently as the
user is never happy with the recommendations of the AA or the agent does not find
any relevant services combination.

6 WS-Advisor: Implementation Architecture

We adopt a layered architecture for the implementation of the whole WS-Advisor
system. Figure 4 shows the elements of this architecture which are grouped into two
layers: the agents layer and the infrastructure services layer. The agent layer consists of
services implementing the user, adviser, builder, and context agents. The implementa-
tion of the agents is based on Java (using JADE platform), XML, and some generic
services provider by the infrastructure layer of the architecture. In other words, all the
agents are implemented as Java classes. The infrastructure services layer consists of
generic services that we reuse from existing Web services environments to implement
specific functionalities of the agents proposed in our approach.

The user agent provides a GUI to assist administrators in the creation and mainte-
nance of tasks. It provides an editor for describing a statechart of a task. The editing
process consists of annotating states of a task with services descriptions based on
services ontologies. In addition, a task is also associated to a number of context at-
tributes from the Context ontology. After the editing process, the user agent generates
an XML file that represents a BPEL skeleton (a parametric process where invocations
refer to service definitions instead of concrete services). The implementation of the
task editor and the generation of BPEL process skeleton rely on the state-charts editor
and BPEL process generation components of the Self-Serv Prototype [7]. The user
agent also provides a GUI to assist users in browsing tasks, selecting services, and

 On Embedding Task Memory in Services Composition Frameworks 13

execute tasks. It invokes the adviser agent to select services for executing a task. Once
services are selected the user agent generates a BPEL executable process from the
BPEL skeleton of the task and invokes a BPEL engine (ActiveBPEL) [15] to perform
the execution of a task. The user agent provides means to inform the builder agent
about the selected services.

The adviser agent provides methods for querying a Task Memory which repre-
sented as XML file. It also provides methods to query the service discovery engine.
The service discovery engine facilitates the location Web services from external ser-
vice registries. The implementation of this component relies on the services matching
component of the WS-CatalogNet prototype [8]. The builder agent provides methods
receiving notifications from the user agent, registering event patterns to the event
monitoring service, and triggering actions for updating the task memory file. The
event monitoring service is used for tracking and monitoring service usage and relies
on the event management component of the WS-CatalogNet prototype. The context
agent provides a method for querying context information. The implementation of this
agent is a work in progress and will rely on the context service implemented in the
PCAP prototype [7] which is an extension of Self-Serv to cater for context awareness
in service oriented architectures.

Service &
Context Onto

Task Repository

Task Memory

Service Usage Report

User Agent

Adviser Agent

Task Memory
Builder Agent

Context Agent

Uses

Monitor/ Update

Monitor

User
Interface

Event Service

BPEL Engine

BPEL Generator

State Chart Editor

Service Discovery Engine

Context Service

Uses

Submit Query/
Display Result

Fig. 4. WS-Advisor: Implementation Architecure

7 Discussion and Conclusions

A large body of research exists in the general area of web services discovery, selec-
tion, and composition. For example, early approaches based on the UDDI standard

14 R. Bova et al.

provide limited services search facilities, supporting only keyword-based search of
businesses, services, category names, and service identifiers [16]. To cope with this
limitation, other approaches based on semantic web technology, and in particular web
ontology languages such OWL-S, to support service description and discovery
emerged. Main stream approaches in this area focus on description-based matchmak-
ing techniques based on subsumption and equivalence relationships [17]. As pointed
out before, other approaches leverage content summarization techniques to improve
the accuracy of description-based services selection and matching approaches. It
should be also noted that the problem of description based matching has also been
addressed by several other research communities, e.g., federated databases, informa-
tion retrieval, software reuse systems and multi-agent communities. More details
about these approaches and their applicability in the context of the semantic Web
services area can be found in [18] and in [19].

Our work is also related to the general area of recommender systems, especially
those based on multi-agents. (e.g., Amalthea [20], SAGE [21]). These efforts focused
on analyzing documents (e.g., web pages, email folders) to recommend relevant docu-
ments as in search engines or products as e-commerce systems. Efforts in this area
build upon personalization techniques in Web applications including content-based,
collaborative and rule-based filtering [22]. Other agent-based approaches catered for
context awareness in the orchestration of interactions among components of a compos-
ite service [23]. Our work is complementary to efforts in user context modelling [10,
24, 25]. We focus on capturing task memories to allow effective services selection.

Our approach features embedding intelligence, consisting of task memories, into
services composition frameworks allowing context-aware services selection. It builds
upon ontology support as in web services, services discovery, selection and composi-
tion to develop a context-aware services recommender facility during execution of
routine tasks. This approach is based on the observation that, in performing routine
tasks, the service matching and selection component of service infrastructure may
produce valuable information on the contexts in which combinations of services
where considered most appropriate by users. This information can be helpful to users
in selecting services to perform a task because sometimes users would select similar
services in similar contexts. Unfortunately, this information, which we call task mem-
ory in our framework, is not effectively captured in existing service matching and
selection approaches.

We use task memory during services selection to suggest most relevant candidate
services. We proposed to use incremental acquisition techniques to build and update
task memory. A task is associated to an agent that monitors how users use and rank
services. We believe that the proposed approach is an essential ingredient that will
work in a tandem with services discovery and selection cooperative service techniques
to provide more personalized and context-aware selection of services. Ongoing work
consists of extending the agent-based architecture presented in this paper to cater for
collaboration among different users via social networks to share task memories. Our
future work will focus on experimenting with the proposed approach using some case
studies to test its validity in real settings. More specifically, we will investigate the
validity of the assumptions and approaches related to context summary queries acquisi-
tion and global affinity computation. We also plan to investigate the use of incremental
knowledge acquisition techniques as means to learn context summary queries.

 On Embedding Task Memory in Services Composition Frameworks 15

References

1. Huhns, M.N., Singh, M.P.: Service-Oriented Computing: Key Concepts and Principles.
IEEE Internet Computing 9, 75–81 (2005)

2. Teevan, J., Jones, W., Bederson, B., B.: Special issue on Personal information manage-
ment, vol. 49 (2006)

3. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: QoS-Aware
Middleware for Web Services Composition. IEEE Trans. Software Eng., 30, 311–327
(2004)

4. Medjahed, B., Bouguettaya, A.: A Dynamic Foundational Architecture for Semantic Web
Services. Distributed and Parallel Databases 17, 179–206 (2005)

5. Sun, A., Benatallah, B., Hassan, M., Hacid, M.S.: Querying E-Catalogs Using Content
Summaries. In: Cooperative Information System (2006)

6. Caverlee, J., Liu, L., Rocco, D.: Discovering and ranking web services with BASIL: a per-
sonalized approach with biased focus. ICSOC, pp. 153–162 (2004)

7. Sheng, Z., Benatallah, B., Dumas, M., E., O.Y.: SELF-SERV: A Platform for Rapid Com-
position of Web Services in a Peer-to-Peer Environment. In: Proc. of the 28th International
Conference on Very Large Databases. Hong Kong, China. September (2002)

8. Baina, K., Benatallah, B., Paik, H., Rey, C., Toumani, F.: WS-CatalogNet: An Infrastruc-
ture for Creating, Peering, and Querying e-Catalog Communities. In: Proc. of the 30th In-
ternational Conference on Very Large Databases. Toronto, Canada (2004)

9. Sheng, Q.: CompositeWeb Services Provisioning in Dynamic Environments. PhD thesis,
School of Computer Science, University of New South Wales, Sydney, Australia (2005)

10. Dey, A. K.: Providing Architectural Support for Building Context-Aware Applications.
PhD thesis, College of Computing, Georgia Institute of Technology (2000)

11. Lei, H.: Context Awareness: a Practitioner’s Perspective. In: IEEE International Workshop
on Ubiquitous Data Management (UDM 2005), in conjunction with ICDE 2005, Tokyo,
Japan, April (invited paper, 2005)

12. Dey, A.K., Abowd, G.D.: Towards a Better Understanding of Context and Context-
Awareness. Technical Report GIT-GVU-99-22, GVU Center, Georgia Institute of Tech-
nology, June (1999)

13. Chakrabarti, K., Chaudhuri, S., Hwang, W., S.: Automatic categorization of query results.
In: Proc. of ACM SIGMOD’04, Paris, France, June, pp. 755–766 (2004)

14. Bova, R., Hassas, S., Benbernou, S.: An Immune System-Inspired Approach for Compos-
ite Web Service Reuse. In: Int. Workshop of ECAI06 Artificial Intelligence for Service
Composition. Riva del Garda, Trento, Italy (2006)

15. ActiveBPEL Engine http://www.activebpel.org/
16. Dustdar, S., Treiber, M.: A View Based Analysis on Web service Registries. In: Distrib-

uted and Parallel Databases, Springer, Heidelberg (2006)
17. Benatallah, B., Hacid, M., Leger, A., Rey, C., Toumani, F.: On automating Web services

discovery. VLDB J. 14, 84–96 (2005)
18. Paolucci, M., Kawamura, T., Payne, T., R., Sycara, K., P.: Semantic Matching of Web

Services Capabilities. In: International Semantic Web Conference, pp. 333–347 (2002)
19. Bernstein, A., Klein, M.: Towards High-Precision Service Retrieval. In: International Se-

mantic Web Conference, pp. 84-101 (2002)
20. Moukas, A., Maes, P.: Amalthea: An Evolving Multi-Agent Information Filtering and

Discovery System for the WWW. Journal of Autonomous Agents and Multi-Agent Sys-
tems 1(1), 59–88 (1998)

16 R. Bova et al.

21. Blake, M.B., Kahan, D., R., Nowlan, M., F.: Context-aware agents for user-oriented web
services discovery and execution. In: Distributed and Parallel Databases, Springer, Heidel-
berg (2006)

22. Paik, H.: Community-Based Integration Adaptation of Electronic Catalogs. PhD thesis,
School of Computer Science, University of New South Wales, Sydney, Australia (2004)

23. Maamar, Z., Mostefaoui, S., M., Yahyaoui, H.: Toward an Agent-Based and Context-
Oriented Approach for Web Services Composition. In: IEEE Transactions on Knowledge
and Data Engineering (2005)

24. Jovanovic, J., Knight, C., Gasevic, D., Richards G.: Learning Object Context on the Se-
mantic Web. In: Sixth IEEE International Conference on Advanced Learning Technolo-
gies (ICALT’06). Netherlands. July 5-7 (2006)

25. McCalla, G.: The Ecological Approach to the Design of E-Learning Environments: Pur-
pose-based Capture and Use of Information About Learners. Journal of Interactive Media
in Education (2004)

A QoS Test-Bed Generator for Web Services

Antonia Bertolino, Guglielmo De Angelis, and Andrea Polini

Istituto di Scienza e Tecnologie dell’Informazione - CNR
Via Moruzzi 1, 56124 Pisa - Italy

{antonia.bertolino, guglielmo.deangelis,
andrea.polini}@isti.cnr.it

Abstract. In the last years both industry and academia have shown a great inter-
est in ensuring consistent cooperation for business-critical services, with contrac-
tually agreed levels of Quality of Service. Service Level Agreement specifications
as well as techniques for their evaluation are nowadays irremissible assets. This
paper presents Puppet (Pick UP Performance Evaluation Test-bed), an approach
and a tool for the automatic generation of test-beds to empirically evaluate the
QoS features of a Web Service under development. Specifically, the generation
exploits the information about the coordinating scenario (be it choreography or
orchestration), the service description (WSDL) and the specification of the agree-
ments (WS-Agreement).

1 Introduction

The attractive promise of the Service Oriented Architecture (SOA) paradigm is to en-
able the dynamic integration between applications belonging to different enterprises
and globally distributed across heterogeneous networks. Within the SOA paradigm, the
most concrete technology is today realized by the Web Services (WSs).

Although WSs constitute a quite new drift in software application development, re-
search in this technology has already evolved through a few stages. Initially the focus
was in mechanisms which could allow for the loose interconnection among services
independently developed and implemented on different machines. Such vision can only
be achieved through the disciplined usage of standard notations and protocols, and in
fact the WS domain is characterized by a strong boost toward standardization. Thus key
achievements at this stage have been the establishment of common service descriptions,
the definition of open service directories for storing and retrieving such descriptions,
and the enactment of dynamic discovering and binding mechanisms. The technology
for basic WS interconnection is now well established, with WSDL, SOAP and UDDI
being just the most representative elements.

Nevertheless, the need soon arose of allowing for more complex scenarios, beyond
simple point-to-point interactions [1]. The standardization of adequate mechanisms for
services composition and interaction constituted thus the next stage, which is still very
active. Two directions currently lead the scene within two different, but related, con-
texts [1]: the first aims at defining the composition of services (referred to as orchestra-
tion), the second at describing how related services should cooperate to perform a given

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 17–31, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

18 A. Bertolino, G. De Angelis, and A. Polini

task (choreography). Both interpretations of service integration provide a means to de-
scribe interacting scenarios. On one side, orchestration approaches foresee the avail-
ability of an execution engine that, by executing the code defining the orchestration,
reproduces the specified interactions; as a fact, this need limits the applicability of or-
chestration to those cases in which a governing organization is in charge for defining the
business process. In contrast, the choreography approach foresees the availability of a
specification of the interactions to which the various services must conform, but it does
not introduce per se any mechanism for forcing such interactions. Currently, the most
significant proposals concerning the specification of WS orchestration and choreogra-
phy are represented by the Business Process Execution Language (WSBPEL) [18] and
the Web Services Choreography Description Language (WS-CDL) [22], respectively.

Eventually, the openness of the environment characterizing the SOA paradigm nat-
urally led to the pursuit of mechanisms for specifying the provided levels of Quality
of Service (QoS) and establishing an agreement on them, in line with the widely ac-
cepted idea that service delivery cannot just focus on functional aspects, and ignore
QoS-related properties.

Indeed, not only for Service Oriented systems, but for many other kinds of enterprise
applications [6] [20], communication networks and embedded systems [4], solutions
that do not put adequate consideration of non functional aspects [17] are no longer ac-
ceptable. Correspondingly, in recent years much research has been devoted to method-
ologies for QoS evaluation, including predictive and empirical techniques [13]. Predic-
tive approaches are crucial during the design and the development of a software system,
to shape the quality of the final product [20]: they perform analytical QoS evaluation,
based on suitable models, such as Petri Nets or Queueing Networks. But increasingly
modern applications are deployed over complex platforms (i.e., the middleware), which
introduce many factors influencing the QoS and not always easy to model in advance.
In such cases, empirical approaches, i.e., evaluating the QoS via run-time measurement,
could help smoothing platform-dependent noise. However, such approaches require the
development of expensive and time consuming prototypes [15], on which representative
benchmarks of the system in operation can be run.

In this last direction, however, when computer-processable specifications exist, and
code-factories can be used to automatically generate a running prototype from a given
specification, there is large room for the adoption of empirical approaches. In particular,
and this is the position we take in this work, given the high availability of standard-
ized computer processable information, WSs and related technologies [2,10,18,22,14]
yield very promising opportunities for the application of empirical approaches to QoS
evaluation.

According to this intuition, in this paper we introduce an approach, called Puppet
(Pick UP Performance Evaluation Test-bed), which realizes the automatic derivation of
test-beds for evaluating the desired QoS characteristics for a service under development,
before it is deployed. In particular, we are interested in assessing that a specific service
implementation can afford the required level of QoS (e.g., latency and reliability) when
playing one of the roles in a specified choreography or when used in composition with
other services (orchestration). To this purpose, Puppet relies on the availability of the
QoS specification of both the service under evaluation and the interacting services. Such

A QoS Test-Bed Generator for Web Services 19

assumption is in line with the increasing adoption of formal contracts to establish the
mutual obligations among the involved parties and the guaranteed QoS parameters,
which is referred to as the Service Level Agreement (SLA) for WSs.

In the next section we provide a basic background on the emerging languages for
the definition of SLAs. Then, in Sec. 3 we illustrate the general scenario in which the
Puppet tool should be employed. Successively, in Sec. 4 we describe the approach and
its logical architecture. An exploratory example is presented in Sec. 5 while related
work is summed up in Sec. 6. In Sec. 7 we draw conclusions and hint at future work.

2 Specification of Service Level Agreements

An important ingredient of the SOA paradigm is the QoS level agreement specifications
among interacting services.

Traditionally, agreements were expressed informally, not in machine-readable form.
In software engineering quite basic notions of agreements were established by means
of Interface Description Languages [17]. Concerning the WS technology, Service Level
Agreements (SLAs) represent instead one of the most interesting and actively pursued
issues. SLAs aim at ensuring a consistent cooperation for business-critical services.
Relevant experiences in this direction are certainly represented by work around Web
Service Level Agreement (WSLA) [14] or SLAng [19].

The approach introduced in this paper has been conceived to be as independent as
possible of a specific SLA language. Indeed, concerning the goal of the work, any
SLA languages predicating on the concepts we are considering are equivalent. How-
ever, when it comes to developing a specific implementation of our conceptual envi-
ronment, we obviously need to consider a specific technology. Hence, in the remainder
of the paper, we will focus on a proof-of-concept development carried on using the
WS-Agreement language [10]. To make the paper self-contained, we report below the
background notions behind its current proposal.

WS-Agreement is a language defined by the Global Grid Forum (GGF) aiming at
providing a standard layer to build agreement-driven SOAs. The main assets of the lan-
guage concern the specification of domain-independent elements of a simple contract-
ing process. Such generic definitions can be augmented with domain-specific concepts.

As shown in Fig. 1, the top-level structure of a WS-Agreements offer is expressed
by means of a XML document which comprises the agreement descriptive information,
the context it refers to and the definition of the agreement items.

The Context element is used to describe the involved parties and other aspects of
an agreement not representing obligations of parties, such as its expiration date. An
agreement can be defined for one or more contexts.

The defined consensus or obligations of a party core in a WS-Agreement specifica-
tion are expressed by means of Terms. Special elements (e.g., AND/OR/XOR opera-
tors) can be used to combine terms, via the specification of alternative branches or the
nesting within the terms of agreement.

The obligation terms are organized in two logical parts. The first specifies the in-
volved services by means of the Service Description Terms. Such part primarily de-
scribes the functional aspects of a service that will be delivered under an agreement. A

20 A. Bertolino, G. De Angelis, and A. Polini

<wsag:Agreement
AgreementId=xsd:string>
<wsag:Name>

xs:NCName
</wsag:Name>
<wsag:AgreementContext>

wsag:AgreementContextType
</wsag:AgreementContext>
<wsag:Terms>

wsag:TermCompositorType
</wsag:Terms>

</wsag:Agreement>

Fig. 1. WS–Agreement Structure

term for the service description is defined by means of its name, and the name of the ser-
vice which it refers to. In some case, a domain-specific description of the service may be
conditional to specific runtime constraints. A special kind of Service Description Terms
is the Service Reference, which defines a pointer to a description of a service, rather than
describing it explicitly into the agreement. The second part of the terms definition spec-
ifies measurable guarantees associated with the other terms in the agreement and that
can be fulfilled or violated. A Guarantee Term definition consists of the obliged party
(i.e, Service Consumer, Service Provider), the list of services this guarantee applies to
(Service Scope), a boolean expression that defines under which condition the guarantee
applies (Qualifying Condition), the actual assertion that have to be guaranteed over the
service (Service Level Objective) and a set of business-related values (Business Value
List) of the described agreement (i.e., importance, penalties, preferences). In general,
the information contained into the fields of a Guarantee Term are expressed by means
of domain-specific languages.

3 A WS Development and Evaluation Scenario

As explained in the Introduction, initially WSs were intended for loose and basic in-
teractions, but soon the need for mechanisms to describe more complex integration of
services emerged. The basic assumption of our approach is that such a description in-
deed exists. This is not an unrealistic assumption, as the global definition of applications
resulting from the dynamic integration of unrelated services is seen as one of the most
relevant factors at the basis of the take-off of the Service Oriented paradigm.

Our view1 is that the integration of services offers major guarantees, and will be fos-
tered, by the existence of predefined choreographies and the definition of orchestration.
Given a definition of the integration of different services, based on choreography or or-
chestration, our objective is to provide a tool to support the QoS evaluation of services
to be integrated, but still under development. The scenario we envisage is depicted in
Fig. 2.

1 This view is shared within the EU FP6 Strep n.26955 - PLASTIC, see at http://www.ist-
plastic.org

A QoS Test-Bed Generator for Web Services 21

Fig. 2. The Puppet approach and supporting tool

The first step in this process, referred to as “1: WS Composition Definition” in Fig. 2,
is indeed the specification of service integration, in terms of WS-CDL or WSBPEL,
and of a set of WSDL descriptions defining the interfaces of the services involved in the
interaction.

The process continues with the annotation of the composition with QoS attributes
for each service involved in the integration. In Fig. 2 this step is referred to as “2:
QoS instrumentation”. For this step we distinguish between the case of a choreogra-
phy and that of an orchestration. In the former case, the organization that released the
specification of the composition is in charge of augmenting the specification with QoS
attributes. Developers of services will take such a specification as a reference for their
implementation, expecting that their required services do the same. As a consequence
each developer of a service is interested in evaluating that it actually can provide the
required service according to the specified QoS. If this is not true we can expect that no
other service in the given choreography will agree on binding to such service.

In the case of an orchestration, the derivation of QoS values for the services to be
integrated is quite different. In this case the service that will be the subject of the valida-
tion is actually the orchestrated service. The developer company is interested in deriving
a competitive service in terms of provided QoS. In this case the parameters for the QoS
could not have been defined by someone else, i.e. a “standard” body as in the case of
a choreography, but should be derived by the QoS defined by similar services possibly
registered within a directory. Moreover in order to have a reliable picture of the final
run-time environment the developer should also consider the QoS defined for the ser-
vices that will be composed in the orchestration. Therefore retrieving from the directory

22 A. Bertolino, G. De Angelis, and A. Polini

service the QoS specification for similar services, and the QoS provided by the com-
posed services it is possible to get a quite trustable picture of the run-time conditions
for the case of orchestrating services.

Summarizing, Puppet assumes the availability of a WSDL specification for each
service, a definition of a composition in terms of WS-CDL or WSBPEL, and a WS-A
description for the services in the composition/coordination. At this point, Puppet can
automatically generate a test-bed to validate the implementation of a service before its
deployment in the target environment (referred as “3: Test-bed Generator” in Fig. 2).
The test-bed will consist of fake versions of the used services and of the possible clients.
Such services are successively composed by the tester in order to reproduce different
runt-time conditions for the service under evaluation, as discussed in the following.

As illustrated in Fig. 2, step 3 consists of two different phases. The first one is the
generation of the stubs simulating the non functional behavior of the services in the
composition, and referred as “3.1: Stubs Generation” in Fig. 2. The second one, re-
ferred as “3.2: Service/Stubs Composition” in Fig. 2, foresees the composition of the
implementation of a service, called “S1i” in Fig. 2, with the services with which it will
interact. The next paragraphs provide a short introduction to both phases, that will be
successively described in detail in Sec. 4.

The generation of the stubs proceeds through two successive steps (not detailed in
the figure). In the first one a skeleton of the stubs is generated starting from the WSDL
description. At this time the generated skeletons contain no behavior. Hence, in the sec-
ond step the implementation is “filled” with some behavior that by construction fulfills
the required non functional properties, for the corresponding service. The necessary in-
formation is retrieved from the WS-A specification and used to apply automatic code
transformation according to rules that we have defined and we describe in Sec.4. At the
end of the “Stubs Generation” phase, a set of stubs providing the services specified in
the composition according to the desired properties is available.

In turn Puppet permits also to derive stubs simulating the behaviour of possible
clients for the service under evaluation as “S2” in Fig.2. To generate such stubs Puppet
considers the part of the WS-A document defining the constraints among the client and
the service. Possible constraints can be for instance the number of invocations within a
time frame, or a minimum time between successive invocations, and similar ones.

The “Service/Stubs Composition” phase implements the final setting of the test-bed.
Goal of this step is to derive a complete environment in which to test the service. To this
purpose, Puppet composes the service under test, “S1i” in Fig. 2, with the required ser-
vices and according to the composition specified in the choreography or in the orches-
tration. At the same time client stubs are composed, by the tester, to derive a meaningful
workload for the service under evaluation. Currently this phase requires the assistance
of a human agent, as illustrated by the presence of a stick man in Fig. 2, that has to
hand-code the composition in the service stubs. Nevertheless we are working on further
automatizing the process on the base of the forthcoming final WS-CDL specification
and WS-BPEL specification.

Concluding, the final product provided by the Puppet tool is an environment for the
QoS validation of a composite service. The evaluation will require the development
of a tester that integrates the client stubs generated by Puppet, in order to reproduce

A QoS Test-Bed Generator for Web Services 23

meaningful workloads. Such a tool will have to verify that the properties specified in
the QoS document for the service under evaluation are fulfilled. In Fig. 2 also such a
tool is shown, nevertheless how this component can be derived is not within the scope
of our work and we refer to the literature on the argument [8] for possible approaches.

4 Description of the Approach

The inspiring idea behind Puppet is that the technologies introduced within the WS
infrastructure make it possible to automatically generate a test-bed environment for
a service. The generated environment can then be used to test if the specified QoS
properties (e.g. performance) will be respected by the service under development after
its deployment in the final environment.

Specifically, the generation exploits the information about the coordinating scenario
(be it choreography or orchestration), the service description (WSDL) and the specifi-
cation of the agreements that the involved roles will abide (see Sec. 3). Tools and tech-
niques for the automatic generation of service skeletons, taking as input the WSDL de-
scriptions, are already available and well known in the Web Services communities [2].
Nevertheless such tools only generate an empty implementation of a service and do not
add any logic to the service operations. Puppet exploits and improve those solutions
by processing the empty implementation of a service operation and augmenting it with
fake code resulting from the appropriate transformation of the SLA specification.

4.1 Skeleton Generation Process

In Puppet we automatically generate service stubs whose behaviors are derived from
the terms defined in a WS-Agreement document. The UML Component Diagram in
Fig. 3 outlines the architecture we propose. In the picture we directly refer to Apache-
Tomcat/Axis [2] as the technology used for the derivation of the various intermediate
artifacts needed for the derivation and deployment of the generated services stub. Nev-
ertheless, the approach is not bound to a particular technology and other solutions are
possible: the only requirement is to identify the corresponding tools in the chosen plat-
form with respect to Apache-Tomcat/Axis. Any Web Services platform provides in fact
some WSDL compiler permitting to automatically derive the different harness needed
both for the deployment of the service and for enabling service clients to invoke the
published service operations [1].

More specifically, the generation of a QoS stub service simulator for the service S1 in
Fig. 3 undergoes three main phases: service skeleton structure definition, QoS behavior
generation, service stub deployment.

The first step in the process is directly performed exploiting the Apache-Axis WSDL-
2Java utility [2]. Such tool, taking as input a WSDL description of a service, generates
a collection of Java classes and interfaces according to the abstract part of the specifi-
cation. Thus, for each binding a service skeleton structure will be automatically defined
and released. At the same time the tool generates both a deployment and an undeploy-
ment descriptors. Such descriptors can be identified by the extension WSDD (Web Ser-
vice Deployment Descriptor) [2]. The deployment specification represents the contact

24 A. Bertolino, G. De Angelis, and A. Polini

 Stubs Generation : Step 1

Stubs Generation: Step 2

 Stubs Generation : Step 3
<<artifact>>

S1Package Code

<<source>>

SkeletonN.java

<<source>>

Skeleton1.java

<<artifact>>

S1Package

<<source>>

SkeletonN.java

<<source>>

Skeleton1.java

<<component>>

Axis Deployment Engine

<<artifact>>

agreement.wsag

<<artifact>>

S1.WSDL

<<component>>

wsaCodeBuilder

<<component>>

Axis WSDL2Java

<<artifact>>

S1.WSDD

Empty methods

Methods with

behavior

OUTPUT

INPUTOUTPUTINPUT INPUT

Fig. 3. Puppet Test-bed Generator Logical Architecture

point between the abstract definition of the service, expressed into the WSDL, and the
corresponding concrete implementation of the endpoints coded into the Java skeletons.

Thus far, no behaviors are coded into the skeletons, but only the operations they
export are derived. According to a set of specified transformation rules from WS-
Agreement to Java and the relations in the deployment WSDD file, the wsCodeBuilder
then generates the simulation code and inserts it into the proper operations. At the time
of writing a running implementation of the wsCodeBuilder unit has been developed.

The last step of the process concerns the deployment of the services simulating the
selected QoS. The deployment descriptor coming from the first phase and the new ver-
sion of the skeletons are then used as input for the Axis Deployment Engine.

For the sake of completeness, it is important to remark that the generation of mean-
ingful stubs would require to also handle their return values. Such values could in fact
be part of a parametric QoS specification or influence the behavior of the tested service.
The current implementation of Puppet does not provide a general solution, but returns
values arbitrarily chosen among a set previously built for each possible data type. If no
behavioral contract has been defined for the service this should be considered correct
by the service under test. Nevertheless, within the WS community there is a great boost
toward the definition of functional contracts for services [12] [5] [3]. To manage such
situations, future releases of Puppet will integrate mechanisms that enable the instru-
mentation of stub services with code that returns conforming value with respect to the
associated functional contract [21] (a related problem is that the determination of the
return values must be low effort-intensive not to invalidate the evaluated QoS).

As above mentioned, the current version of the tool needs human support for the
setting of the choreography. This means that the binding among services under devel-
opment and stubs is manually derived from the WS-CDL or WSBPEL.

4.2 Matching WS-Agreement Statements to Java Code

Puppet can handle those QoS constraints that can be simulated by means of a parame-
terizable portion of code. The approach implemented in Puppet requires then that for

A QoS Test-Bed Generator for Web Services 25

Table 1. Service Level Objective Mapping for Latency

...
<wsag:ServiceLevelObjective>
<puppet:PuppetRoot>
<puppet:Latency>
<puppet:TagDelay> 1000
</puppet:TagDelay>
<puppet:Ditribution> normal
</puppet:Distribution>

</puppet:Latency>
</puppet:PuppetRoot>

</wsag:ServiceLevelObjective>
...

...
try{
Random rnd = new Random();
float val = rnd.nextFloat();
int sleepingPeriod = Math.round(val*1000);
Thread.sleep(sleepingPeriod);

}
catch (InterruptedException e) {}
...

each concept in a SLA language a precise mapping must be provided. This is clearly a
quite complex task; nevertheless given a specific language and a possible interpretation
of the corresponding statements, it has to be done only once and for all. Currently we
have defined a simple language for SLA that can predicate over several QoS character-
istics (latency, reliability, workload) and have set a precise mapping for this concepts,
defined in XML format, to composable Java code segments.

The mapping between the XML statements of the WS-A and the Java code has been
specified in a parametric format that is instantiated each time one occurrence of the
pattern appears. The examples reported in the remainder of this section show the trans-
formations we have defined and encapsulated in Puppet.

In particular, conditions on latency can be simulated introducing delay instructions
into the operation bodies of the services skeletons. For each Guarantee Term in a WS-
Agreement document, information concerning the maximum service latency is defined
as a Service Level Objective according to a prescribed syntax. The example in Tab. 1
reports the XML code for a maximum latency declaration of 1000mSec normally dis-
tributed and the correspondent Java code that Puppet will automatically generate.

Table 2. Service Level Objective Mapping for Reliability

...
<wsag:ServiceLevelObjective>

<puppet:PuppetRoot>
<puppet:Reliability>
<puppet:TagRate> 99.50
</puppet:TagRate>
<puppet:Window> 2000
</puppet:Window>

</puppet:Reliability>
</puppet:PuppetRoot>

</wsag:ServiceLevelObjective>
...

...
if (this.possibleFailureInWindow()){
Random rnd = new Random();
float val = rnd.nextFloat()*100;
if (val>99.50f) {
String fCode = "Server.NoService";
String fString="No target service to invoke!"
org.apache.axis.AxisFault fault = new

AxisFault(fCode,fString,"",null);
this.incNumberOfFailure(); throw fault; }

}
...

Constraints on services reliability can be declared by means of a percentage index
into the Service Level Objective of a Guarantee Term. Such kind of QoS can be repro-
duced introducing code that simulates a service container failure. Thus, given the size
of a sliding window defining the time interval within which reliability is measured, the
generated stub for a service will raise remote exceptions according to the specified rate
in the window. The XML code in Tab. 2 provides an example of the transformation for

26 A. Bertolino, G. De Angelis, and A. Polini

reliability constraint description, assuming that the Apache-Tomcat/Axis [2] platform
is used.

The case of workload can be simulated by equipping the generated skeletons with
client-side code for the automatic invocation of the service under evaluation. Currently
Puppet permits to describe the maximum number of requests that the clients can de-
liver to the service in a given period (i.e. WinSize in Tab. 3). The generation process
augments the stubs with a private method for the remote invocation (i.e. invokeService
in Tab. 3) and an exported public method that triggers the emulation request stream.
The transformation in Tab. 3 reports the code for the trigger method. The information
required for the instantiation of parameters such as the target endpoint is obtained from
the part of the guarantee term concerning the scoping aspects discussed below.

According to what described in Sec. 2, a guarantee in a WS-Agreement document
can be enforced under an optional condition. Such additional constraints are usually
defined in terms of accomplishments that a service consumer must meet: for example
the latency of a service can depend on the time or on the day in which the request
is delivered. In these cases, the transformation function wraps the simulating behavior
code-lines obtained from the Service Level Objective part with a conditional statement
(see Tab. 4.a).

As mentioned, the scope for a guarantee term describes the list of services to which it
applies. In particular, Tab. 4.b points out how to apply the term to a sub-set of the service
operations. In this case, for each listed service, the transformation function adds the
behavior previously obtained from the Service Level Objective and Qualifying Condition
parts only to those operations declared in the scope.

5 Working Example

This section illustrates the application of Puppet to derive a test-bed to verify the QoS
characteristics of one service when interacting with other services. The case study con-
sidered refers to an on-line booking of flights. Several clients access a Travel Operator

Table 3. Service Level Objective Mapping for Workload Generator

...
<wsag:ServiceLevelObjective>
<puppet:PuppetRoot>
<puppet:Workload>
<puppet:NRequest>
20

</puppet:NRequest>
<puppet:WinSize>
60000

</puppet:WinSize>
</puppet:Workload>

</puppet:PuppetRoot>
</wsag:ServiceLevelObjective>
...

...
public void generateTraffic ()
throws MalformedURLException,RemoteException{
Random rnd = new Random();
int sleepPeriod;
String endpoint="http://myhost/axis/services/";
String service="client";
String method="planJourney";
int winSize=60000;
for (int i=0; i<20; i++){

this.invokeService(endpoint,service,method);
sleepPeriod = rnd.nextInt(winSize);
try {
this.sleep(sleepPeriod);

} catch (InterruptedException e) {}
winSize = winSize - sleepPeriod;

}
}
...

A QoS Test-Bed Generator for Web Services 27

Table 4. More Mappings

...
<wsag:QualifyingCondition>
<puppet:PuppetRoot>
<puppet:Condition

operator="Not">
<puppet:Var> interFly </puppet:Var>

</puppet:Condition>
</puppet:PuppetRoot>

</wsag:QualifyingCondition>
...

...
if (!interFly){

try{
...

}
...

a) Qualifying Condition

...
<wsag:ServiceScope wsag:ServiceName="ABS1">
<puppet:PuppetRoot>
<puppet:Operation>checkFlight</puppet:Operation>

</puppet:PuppetRoot>
</wsag:ServiceScope>
...

b) Service Scope

Service (TOS) that in turn accesses different airline booking services (ABSs) to check
the availability of a route for the required journeys. In the general case, different ABSs
can provide the same functionality according to different QoS specifications.

In the scenario depicted in Fig. 4, clients invoking the TOS service have some re-
strictions due the maximum number of invocations that can be generated within a time
frame. In particular it is supposed that clients cannot generate a workload higher than
20 invocations each 60 seconds. Furthermore, the TOS can interact with two different
airline booking services providing different reliability and latency QoS agreements, in
particular when invoked with request for intercontinental route.

In the example one the airline booking service (ABS1) assures a latency of 15 sec-
onds for checking seat availability on a specified flight. The company guarantees service
replies reliable up to 99.5% of the requests per day. On the other hand the second airline
service (ABS2) declares to provide the same service in 10 seconds and a realiability of
98% every day. However, it is supposed that the company offering ABS2 does not di-
rectly operate on intercontinental flights. If an international flight operation is required,
ABS2 could need to contact other airline partners providing segments of the selected
journey. In these cases, the declared latency agreement reduces to 20 seconds.

planJourney

bookJourney

cancelOrder

checkFlight

bookFlight

checkFlight

bookFlight

ABS
1

ABS
2

TOSClient - C

...
<puppet:NRequest> 20
</puppet:NRequest>
<puppet:WinSize> 60000
</puppet:WinSize>
...

...
<puppet:Reliability>
 <puppet:TagRate> 99,50
 </puppet:TagRate>
 <puppet:Window> 86400000
 </puppet:Window>
</puppet:Reliability>
...
<puppet:Latency>
 <puppet:TagDelay> 15000
 </puppet:TagDelay>
 <puppet:Distribution> normal
 </puppet:Distribution>
<puppet:Latency>

Service Under Evaluation
Stub

Fig. 4. Example Scenario

28 A. Bertolino, G. De Angelis, and A. Polini

Table 5. ABS2:checkFlight Generated Code

...
/** RELIABILITY EMULATOR CODE
*/

if (this.possibleFailureInWindow()){
Random rnd = new Random();
float val = rnd.nextFloat()*100;
if (val>98.00f){
String fCode="Server.NoService";
String fString =

"No target service to invoke!"
org.apache.axis.AxisFault fault=new

AxisFault(fCode,fString,"",null);
this.incNumberOfFailure();
throw fault;
}

}
/**QUALIFYING COND. GENERATED CODE*/
if (interFly){
try{

Random rnd = new Random();
float val = rnd.nextFloat();
int sleepingPeriod = Math.round(val*20000);
Thread.sleep(sleepingPeriod);

}
catch (InterruptedException e) {}
}
/** QUALIFYING CONDITION GENERATED CODE */
if (!interFly){
/** LANTENCY EMULATOR CODE */
try{
Random rnd = new Random();
float val = rnd.nextFloat();
int sleepingPeriod = Math.round(val*10000);
Thread.sleep(sleepingPeriod);

}
catch (InterruptedException e) {}
}
...

Starting from this description Puppet is able to generate a set of stubs for the services
interacting with the service under test. In particular Table 5 shows the derived source
code for the method checkFlight provided by ABS2 starting from the corresponding
QoS values specified in Fig. 4 formatted according to the WS-Agreement specification
as shown in Section 4.

Table 3 instead shows the code generated for the client stub. The generated client
defines a method, to be used by the tester, that will raise the specified number of invo-
cations within the specified time frame.

In the idea of Puppet the tester should combine all the generated services in different
configurations, reproducing real run-time scenarios. Then launching the scenario it is
possible to check if the specification of QoS defined for the Service under evaluation are
respected and under which conditions. For instance the developer can try to understand
which is the maximum number of clients that can be introduced in the scenario while
still being able to abide by the specified QoS.

6 Related Work

Some years ago the authors of [9] recognized that the combination of testing and QoS
evaluation, performance in particular, was a seldom explored path in software engineer-
ing research. Today the situation has changed and some interesting work starts to appear
on this topic. The application of testing for QoS evaluation requires to solve two main
problems. The first one is the derivation and simulation of an environment faithfully
reproducing the final execution conditions. The second problem is the derivation of a
testing suite representative of the real usage scenario, with particular reference to the
specific property to be assessed.

This work is mainly related to the first point. Nevertheless the application of empir-
ical approaches to QoS evaluation asks to solve both problems cited above. For works
on how to automatically derive test cases, to be used for the successive evaluation of a
system in a simulated environment, we refer to the literature, e.g., [9,16,7].

A QoS Test-Bed Generator for Web Services 29

With reference to the generation of test-beds for the validation of WS QoS, we did
not find many works. With reference to the area of Component-based software the work
presented in [7] shows some similarities with what we propose here. Nevertheless the
two approaches are quite different in their motivations and hypotheses. In [7] starting
from the hypothesis that the middleware strongly influences the performance behav-
ior of a deployed CBS, the authors generate an environment for the evaluation of the
architecture of the system under development. The generated environment then is not
intended to be used for the evaluation of a single real component implementation. In-
stead our target here is to develop a test-bed for the evaluation of a real implementation
of a service. Moreover in [7] the stubs are directly derived starting from the architec-
tural definition, no descriptions of QoS are considered (that work was mainly aimed
at early performance evaluation). In our work instead, thanks to the availability of the
QoS specification (such as the WS-A document), we can generate stubs behaving in
accordance to what is defined in the corresponding WS-A document.

A work that has much in common with what we propose here is [11], in which a
performance test-bed generator, in the domain of SOA, is presented. The approach pro-
posed is structured in several steps. First, the service under development is described as
a composition of services. Then, from this compositional model a collection of service
stubs is generated. At this point for each service a description of the load that will be
generated by possible clients is defined. From such descriptions, clients simulating the
defined load are automatically developed. Finally, clients are executed in order to stress
the service composition. The main differences with our proposal are twofold: on the
one hand, the system in [11] makes no use of any kind of contract or agreement speci-
fication, differently from the approach we propose which is heavily based on the SLA.
On the other hand, in [11] the service under development reacts to external stimuli gen-
erated by some clients according to the given load model. In our approach the service
under development is considered plugged in a well specified choreography. Since none
of the choreography members implementation is supposed to be available, our approach
automatically builds an environment according to the specification of the coordination
scenario.

Finally a main stream of SOA literature is devoted today to runtime evaluation of
QoS by means of monitoring approaches. We do not tackle such related work here for
size limitations.

7 Conclusions and Future Work

The paper proposed the Puppet approach for the automatic generation of test-beds to
empirically pre-validate the QoS of a composite WS before it is deployed. To be ap-
plicable the approach requires the availability of the specification of the composition in
which the service under evaluation will be inserted. We also assume that the composi-
tion is augmented with QoS properties, for instance expressed as a WS-A specification.
QoS annotations of WS are not state-of-practice nowadays, nevertheless the relevance
of this topic is raising fast in this domain. This is due to the fact that the SOA paradigm
aims at removing the barrier among different organisations that can then directly coop-
erate. In a such scenario the reduced control over the required services certainly asks

30 A. Bertolino, G. De Angelis, and A. Polini

for the introduction of agreements concerning the quality of non functional properties
in addition to the functional behaviour.

Puppet requires first to define a precise mapping of the terms used for specifying
QoS properties to simple parameterized Java code. This step gives a sort of semantic to
each type of terms and is done once and for all. In some sense, it implicitly defines the
simplest instance of a service providing the specified QoS. More complex definitions
of QoS properties are obtained by composing terms of the QoS specification language.
Thus, the translation function composes simple transformations according to the rules
for the composition. In such a manner Puppet is able to generate service stubs accord-
ing to composite QoS properties. These stubs can be used to validate possible real im-
plementations of an under development service participating to the same coordination
scenario.

The approach we are working on seems promising, nevertheless some issues remain
open. Particularly interesting seems the generation of stubs that permit to return mean-
ingful values without introducing complex code that could undermine the realization of
stubs behaving in accordance to a specified QoS property.

The approach has been shown to be applicable and a tool is currently under final-
ization as an Eclipse plug-in. As described the tool will provide stubs mimicking real
services, according to the corresponding QoS definition. To carry on reliable experi-
ments the developer will have to distribute the stubs among various machines trying
to reproduce as much as possible the final deployment environment. Another important
factor strongly influencing the evaluation will be the definition of workload actually rep-
resenting the final deployment condition. We are working on adding support for these
steps that currently rely on human intervention to solve some technical issues. Never-
theless it is important to stress that the reproduction of a representative environment
will never be achieved in a completely automated way.

Acknowledgements

The authors wish to thank Giovanni Possemato for his important contribution to the
implementation of the tools enabling the proposed approach.

G. De Angelis PhD grant is sponsored by Ericsson Lab Italy in the framework of the
PISATEL initiative (http://www1.isti.cnr.it/ERI/)

This work is partially supported by the PLASTIC Project (EU FP6 Strep No. 26955).

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services–Concepts, Architectures and
Applications. Springer–Verlag, Heidelberg (2004)

2. Apache Software Foundation. Axis User’s Guide.
http://ws.apache.org/axis/java/user-guide.html.

3. Baresi, L., Ghezzi, C., Guinea, S.: Smart Monitors for Composed Services. In: ICSOC 2004.
Proc. 2nd Int. Conf. on Service Oriented Computing, pp. 193–202. ACM Press, New York
(2004)

http://ws.apache.org/axis/java/user-guide.html.

A QoS Test-Bed Generator for Web Services 31

4. Bertolino, A., Bonivento, A., De Angelis, G., Sangiovanni Vincentelli, A.: Modeling and
Early Performance Estimation for Network Processor Applications. In: Nierstrasz, O., Whit-
tle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, Springer, Heidelberg
(2006)

5. Bertolino, A., Frantzen, L., Polini, A., Tretmans, J.: Audition of Web Services for Testing
Conformance to Open Specified Protocols. In: Reussner, R., Stafford, J.A., Szyperski, C.A.
(eds.) Architecting Systems with Trustworthy Components. LNCS, vol. 3938, Springer, Hei-
delberg (2006)

6. Bertolino, A., Mirandola, R.: Software Performance Engineering of Component–Based Sys-
tems. In: WOSP 2004, pp. 238–242. ACM Press, New York (2004)

7. Denaro, G., Polini, A., Emmerich, W.: Early Performance Testing of Distributed Software
Applications. In: WOSP 2004, pp. 94–103. ACM Press, New York (2004)

8. Draheim, D., Grundy, J., Hosking, J., Lutteroth, C., Weber, G.: Realistic Load Testing of
Web Applications. In: Proc. Conf. on Software Maintenance and Reengineering, pp. 57–70.
IEEE Computer Society Press, Los Alamitos (2006)

9. Weyuker, E., Vokolos, F.: Experience with performance testing of software systems: Issues,
and approach, and case study. IEEE Transaction on Software Engneering 26(12), 1147–1156
(2000)

10. Global Grid Forum: Web Services Agreement Specification (WS–Agreement), version
2005/09 (edn.) (September 2005)

11. Grundy, J., Hosking, J., Li, L., Liu, N.: Performance Engineering of Service Compositions.
In: SOSE 2006. Proc. Int. Workshop on Service–Oriented Software Engineering, pp. 26–32.
ACM Press, New York (2006)

12. Heckel, R., Lohmann, M.: Towards Contract–based Testing of Web Services. Electronic
Notes in Theoretical Computer Science 116, 145–156 (2005)

13. Hrischuk, C.E., Rolia, J.A., Woodside, C.M.: Automatic Generation of a Software Perfor-
mance Model Using an Object-Oriented Prototype. In: MASCOTS 1995. Proc. 3rd Int.
Workshop on Modeling, Analysis, and Simulation On Computer and Telecommunication
Systems, pp. 399–409. IEEE Computer Society Press, Los Alamitos (1995)

14. IBM. WSLA: Web Service Level Agreements, version: 1.0 revision: wsla-, 2003/01/28 edn.
(2003)

15. Liu, Y., Gorton, I.: Accuracy of Performance Prediction for EJB Applications: A Statistical
Analysis. In: Gschwind, T., Mascolo, C. (eds.) SEM 2004. LNCS, vol. 3437, pp. 185–198.
Springer, Heidelberg (2005)

16. Liu, Y., Gorton, I., Liu, A., Jiang, N., Chen, S.: Designing a test suite for empirically-based
middleware performance prediction. In: CRPIT ’02: Proc. 4th Int. Conf. on Tools Pacific, pp.
123–130. ACS (2002)

17. Ludwig, H.: WS-Agreement Concepts and Use – Agreement-Based Service-Oriented Archi-
tectures. Technical report, IBM (May 2006)

18. OASIS. Web Services Business Process Execution Language (WSBPEL) 2.0 (De-
cember 2005) http://www.oasis-open.org/committees/tc home.php?
wg abbrev=wsbpel.

19. Skene, J., Lamanna, D.D., Emmerich, W.: Precise Service Level Agreements. In: Proc. 26th
Int. Conf. on Software Engineering (ICSE 2004), pp. 179–188 (2004)

20. Smith, C.U., Williams, L.: Performance Solutions: A practical Guide To Creating Respon-
sive, Scalable Software. Addison–Wesley, London, UK (2001)

21. Tkachuk, O., Rajan, S.P.: Application of Automated Environment Generation to Commercial
Software. In: ISSTA 2006. Proc. ACM Int. Symp. on Sw Testing and Analysis, pp. 203–214.
ACM Press, New York (2006)

22. W3C. Web Services Choreography Description Language (WS–CDL) 1.0 (November 2005)
http://www.w3.org/TR/ws-cdl-10/

protect protect protect edef OT1{OT1}let enc@update elax protect edef ptm{ptm}protect edef m{m}protect edef n{n}protect xdef OT1/ptm/m/n/9 {OT1/ptm/m/n/9 }OT1/ptm/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef ptm{pcr}protect xdef OT1/ptm/m/n/9 {OT1/ptm/m/n/9 }OT1/ptm/m/n/9 size@update enc@update http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel.
protect protect protect edef OT1{OT1}let enc@update elax protect edef ptm{ptm}protect edef m{m}protect edef n{n}protect xdef OT1/pcr/m/n/9 {OT1/ptm/m/n/9 }OT1/pcr/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef ptm{pcr}protect xdef OT1/pcr/m/n/9 {OT1/ptm/m/n/9 }OT1/pcr/m/n/9 size@update enc@update http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel.
http://www.w3.org/TR/ws-cdl-10/

Engineering Compensations in Web Service

Environment

Michael Schäfer1, Peter Dolog2, and Wolfgang Nejdl1

1 L3S Research Center, University of Hannover,
Appelstr. 9a, D-30167 Hannover, Germany

Michael.Schaefer@stud.uni-hannover.de, nejdl@l3s.de
2 Aalborg University, Department of Computer Science,
Fredrik Bajers Vej 7E,DK-9220 Aalborg East, Denmark

dolog@cs.aau.dk

Abstract. Business to business integration has recently been performed
by employing Web service environments. Moreover, such environments
are being provided by major players on the technology markets. Those
environments are based on open specifications for transaction coordi-
nation. When a failure in such an environment occurs, a compensation
can be initiated to recover from the failure. However, current environ-
ments have only limited capabilities for compensations, and are usually
based on backward recovery. In this paper, we introduce an engineer-
ing approach and an environment to deal with advanced compensations
based on forward recovery principles. We extend the existing Web ser-
vice transaction coordination architecture and infrastructure in order to
support flexible compensation operations. A contract-based approach is
being used, which allows the specification of permitted compensations
at runtime. We introduce the abstract service and adapter components
which allow us to separate the compensation logic from the coordination
logic. In this way, we can easily plug in or plug out different compensa-
tion strategies based on a specification language defined on top of basic
compensation activities and complex compensation types. Experiments
with our approach and environment show that such an approach to com-
pensation is feasible and beneficial.

1 Introduction

The Web service environment has become the standard for Web applications
supporting business to business transactions and user services. Processes such
as payroll management or supply chain management are realized through Web
services. In order to ensure that the results of the business transactions are
consistent and valid, Web service coordination and transaction specifications
[12,13,11] have been proposed. They provide the architecture and protocols that
are required for transaction coordination of Web services.

The transaction compensation [7] is a replacement for an operation that was
invoked but failed for some reason. The operation which replaces the original one
either undoes the results of the original operation, or provides similar capabilities

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 32–46, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Engineering Compensations in Web Service Environment 33

as the original one. The notion of compensation was introduced for environments
where the isolation property of transactions is relaxed but the atomicity needs
to be maintained. Several protocols have been proposed to control transactional
processes with compensations [20].

Current open specifications for transaction management in Web service envi-
ronment provide only limited compensation capabilities [8]. In most cases, the
handling of a service failure is restricted to backward recovery in order to main-
tain consistency, i.e. all running services are aborted, and all already performed
operations are reversed [1]. This approach is very inflexible and can result in
the abortion of many services and transactions. Especially if dependencies be-
tween multiple transactions exist, the failure of one service can lead to cascading
compensations. Furthermore, current approaches do not allow any changes in a
running transaction. If for example erroneous data was used in a part of a trans-
action, then the only possible course of action is to cancel the transaction and
to restart it with correct data.

In this paper, we investigate an engineering approach for advanced compen-
sation operations adopting forward recovery within Web service transactions.
Forward recovery proactively changes the state and structure of a transaction
after a service failure occurred, and thus enables the transaction to finish success-
fully. The main idea is the introduction of a new component called an abstract
service, which functions as a mediator for compensations, and thus hides the
logic behind the introduced compensations. Moreover, it specifies and manages
potential replacements for primary Web services to be used within a transaction.
The compensations are performed according to predefined rules, and are sub-
ject to contracts [14]. We introduce a framework based on the abstract services,
which enables the compensations described in the compensation specifications.

Such a solution has the following advantages:

– Compensation strategies can be defined on both, the service provider and
the client side. They utilize local knowledge (e.g. the provider of a service
knows best if and how his service can be replaced in case of failure) and
preferences, which increases the flexibility and efficiency.

– The environment can handle both, internally and externally triggered com-
pensations.

– The client of a service is informed about complex compensation operations,
which makes it possible to trigger additional compensations. Compensations
can thus consist of multiple operations on different levels, and consistency is
achieved through well defined communication protocols.

– By extending the already adopted Web service specification, it is not neces-
sary to discontinue current practices if compensations are not required.

– The separation of the compensation logic from the coordination logic allows
for a generic definition of compensation strategies, independent from the
coordination specification currently in use. They are therefore more flexible
and can easily be reused in a different context.

The rest of the paper is structured as follows. Section 2 introduces the mo-
tivating scenario, which will be used in the paper in order to exemplify the

34 M. Schäfer, P. Dolog, and W. Nejdl

concepts. Section 3 introduces the proposed design for an infrastructure that is
able to handle internally and externally triggered compensations without trans-
action aborts, and describes the basic components and compensation specifica-
tions based on compensation activities and compensation types. A prototype
implementation of the design is described in section 4, along with two experi-
ments that use the new compensation capabilities. Section 5 reviews related work
in the area of forward recovery. Section 6 concludes this paper and provides a
direction for future work on this topic.

2 Motivating Scenario

The motivating scenario for this paper is a company’s monthly payroll process-
ing. In order to introduce real-life dependencies, both, the company’s and the
employee’s responsibilities are considered.

Company: In the first step of the payroll processing procedure, the company
has to calculate the salary for each employee, which can depend on a multitude
of factors like overtime hours or bonuses. In the next step, the payment of the
salary is performed, which comprises several operations. First of all, the salary
is transferred from the company’s account to the employee’s account. Then the
company transfers the employee’s income tax to the account of the fiscal author-
ities. Finally, the company prints the payslip and sends it to the employee.

Employee: The employee has only one task which he has to perform each month
in this scenario: He transfers the monthly instalment for his new car to the car
dealer’s account.

The company’s and the employee’s operations are each controlled by a busi-
ness process, and are implemented using Web services from multiple providers.
The two business processes use transactions in order to guarantee a consistent
execution of all required operations. This is depicted in Figure 1. Only the ser-
vices of transaction T1 are shown.

It is obvious that there are multiple dependencies in this simple scenario,
between and within these transactions. Therefore, it is vitally important that no

Fig. 1. The motivating scenario

Engineering Compensations in Web Service Environment 35

transactions have to be aborted and compensated in order to avoid cascading
compensations. However, such a situation can become necessary quite easily:

1. It can always happen that a service which participates in a transaction fails.
Here, it could be that the service that handles the transfer of the salary fails
due to an internal error. The transaction inevitably has to be aborted, even
though the error might be easily compensatable by using a different service
that can perform the same operation. Such a replacement is encouraged by
the fact that usually multiple services exist that have the same capabilities.

2. A mistake has been made regarding the input data of an operation. In this
scenario, it could be that the calculation of the salary is inaccurate, and too
much has been transferred to the employee’s account. The flaw is spotted by
an administrator, but the only option is again to abort the complete trans-
action, although it would be very easy to correct the mistake by transferring
the sum that has been paid too much back to the company’s account.

Although it should be possible to handle these situations without the need to
cancel and compensate the transaction(s), current technology does not allow to
do so in a sensible way.

3 Web Service Environment with Transaction
Coordination

We base our work on Web service coordination and transaction specifications
[12,13,11]. These transaction specifications provide a conceptual model and ar-
chitecture for environments where business activities performed by Web services
are embedded into transactional contexts.

Figure 2 depicts an excerpt of such an environment with the main compo-
nents. The client runs business activities A1 to A5, which are embedded in a
transactional context. The transactional context and conversation is maintained
by a transaction coordinator. Client and server stubs are responsible for getting

Fig. 2. Transactional environment for Web services adopted from [1]

36 M. Schäfer, P. Dolog, and W. Nejdl

Fig. 3. The abstract service and adapter

and registering the activities and calls for Web services in the right context. The
sequence of conversation messages is numbered. For clarity, we only show a con-
versation with a Web service provider that performs business activity A1. The
transaction coordinator is then responsible for running appropriate protocols,
such as two phase commit or some of the distributed protocols for Web service
environments such as [2].

As pointed out above, the compensation capabilities are left to the client
business activities according to the specifications in [12,13,11]. We extend the
architecture and the infrastructure based on those specifications, so that it can
handle internally and externally triggered compensations. Figure 3 depicts the
extension to the transaction Web service environment, namely the abstract ser-
vice and the adapter components. This extension does not change the way how
client, transaction coordinators and Web service providers operate. Clients, in-
stead of invoking concrete Web services, invoke abstract services which wrap
several services and compensations for them. The adapter functions as a medi-
ator between transaction coordinator, abstract service and concrete service to
ensure proper transactional context.

3.1 Abstract Service

The central element of the extension is the notion of an abstract service. The
client stub communicates with the Web service provider stub through the ab-
stract service. An abstract service does not directly implement any operations,
but rather functions as a management unit, which allows to:

– define a list of Web services which implement the required capabilities,
– invoke a service from the list in order to process requests which are sent to

the abstract service,

Engineering Compensations in Web Service Environment 37

– replace a failed service with another one from the list without a failure of
the transaction, and

– process externally triggered compensations on the running transaction.

Distributed applications consisting of collaborating Web services have the
advantage that normally single operations can be performed by multiple services
from different providers. Which service will be chosen depends usually on the
quality of service (QoS) requirements of the distributed application. The abstract
service takes advantages of the existing diversity. To the outside, it provides an
abstract interface and can be used like any other Web service, and uses the same
mechanisms like SOAP [15] and WSDL [4]. On the inside, it manages a list of
Web services (called concrete services) which provide the required capabilities.
When the abstract service receives a request, it chooses one of these services and
invokes it. Interface and data incompatibilities between the abstract interface
and the interfaces of the concrete services are solved by predefined wrappers.

This approach has multiple benefits:

– Usually, a client does not care which specific service handles his requests, as
long as the job will be done successfully and in accordance with the contract.
The abstract service design supports this notion by providing the capabilities
to separate the required abilities from the actual implementation.

– The available list of concrete services enables the abstract service to provide
enhanced compensation possibilities.

– The definition of an abstract service can be done independently from the
business process in which it will be used. It can therefore be reused in mul-
tiple applications without the need for changes. If a specific service imple-
mentation is no longer usable, then the business process does not have to be
changed, as this is being managed in the abstract service.

Figure 3 depicts the basic structure of an abstract service. Four interfaces are
supplied to the outside: The service operations for which the abstract service has
been defined can be accessed via the abstract service interface. A contract can
be exchanged or negotiated by using the contract exchange interface. Execution
events of a service (e.g. a failure) can be signaled via the event interface. Com-
pensations can be triggered from the outside using the compensation interface.

On the inside, the main component is the management unit, which receives
and processes requests, selects and invokes concrete services, and handles com-
pensations. In order to do so, it has several elements at its disposal:

– Concrete service list : Contains the details of all available concrete services.
– Concrete service wrappers : Define the mapping of the generic abstract service

interface to the specific interface of each concrete service.
– Request log: Holds all requests of the current session.
– Compensation rules repository: Manages the rules that control the compen-

sation handling process.
– Contract repository: Contains the existing contracts with the different clients.

38 M. Schäfer, P. Dolog, and W. Nejdl

3.2 Adapter

Abstract services could be used in conjunction with a wide variety of technolo-
gies. Therefore, it would be preferable if the definition of the abstract service
itself could be generic. However, the participation in a transaction requires ca-
pabilities that are different for each transaction management specification.

That is why the transaction specific requirements are encapsulated in a so-
called adapter (see Figure 3). An abstract service registers at this adapter, which
in turn registers with the transaction coordinator. To the coordinator it looks as
if the abstract service itself has registered and sends the status messages. When
the abstract service invokes a concrete service, it forwards the information about
the adapter, which functions as a coordinator for the service. The service registers
accordingly at the adapter as a participant in the transaction.

As it can be seen, the adapter works as a mediator between the abstract ser-
vice, the concrete service, and the transaction coordinator. The adapter receives
all status messages from the concrete service and is thus able to process them
before they reach the actual coordinator. Normal status messages can be for-
warded directly to the coordinator, while the failure messages can initiate the
internal compensation handling through the abstract service.

If the adapter receives such an error message, it informs the abstract service,
which can then assess the possibility of compensation. The adapter will then be
informed about the decision, and can act accordingly. If for example the replace-
ment of a failed concrete service is possible, then the adapter will deregister this
service and wait for the replacement to register. In this case, the failure mes-
sage will not be forwarded to the transaction coordinator. The compensation
assessment could of course also show that a compensation is not possible (or
desirable). In such a case, the adapter will simply forward the failure message to
the coordinator, which will subsequently initiate the abort of the transaction.

3.3 Compensation Specifications

Compensation specifications enable the abstract service to handle both kinds of
compensations: Internally triggered compensations (arising from internal errors)
and externally triggered compensations. An example for an externally triggered
compensation could be the handling of the mistake spotted by an administrator
as described in the motivation scenario section. We distinguish between com-
pensation activities and compensation types in our compensation specifications,
whose interaction are shown in Figure 4.

Basic Compensation Activities are the basic operations which can be used
in a compensation. ServiceReplacement replaces the currently used Web service
with a different one, which can offer the same capabilities and can thus act as a
replacement. LastRequestRepetition resends the last request to the Web service.
PartialRequestRepetition resends the last n requests from the request sequence of
the current session (i.e. within the current transaction) to the Web service, while
AllRequestRepetition resends all requests. CompensationForwarding forwards the

Engineering Compensations in Web Service Environment 39

Fig. 4. The compensation types and their included activities

external compensation request to a different component, which will handle it.
AdditionalServiceInvocation invokes an additional (external or internal) service,
which performs some operation that is important for the compensation (e.g.
the invocation of a logging service, which collects data about a specific kind
of compensation). AdditionalRequestGeneration creates and sends an additional
request to the Web service. Such a request is not influenced by the client, and
the result will not be forwarded to the client. ServiceAbortInitiation cancels the
operations on the Web service, i.e. the service aborts and reverses all operations
which have been performed so far. RequestSequenceChange performs changes
in the sequence of requests that have already been sent to the Web service.
ResultResending sends new results for old requests, which have already returned
results.

Compensation Types aggregate multiple compensation activities, and thus
form complex compensation operations, as shown in Figure 4. These types are the
compensation actions which can be used for internal and external compensations,
and which form the basis of the compensation specification language. There are
currently 7 different compensation types.

The most simple type is NoCompensation, which does not perform any op-
eration. If a Web service fails, then this will be signaled to the transaction
coordinator, which will initiate the transaction abort.

The Repetition type is important for the internal error handling, as it repeats
the last request or the last n requests. The last request can for example be resend
to a Web service after a response was not received within a timeout period. A

40 M. Schäfer, P. Dolog, and W. Nejdl

partial resend of n requests can for instance be necessary if the request which
failed was part of a sequence, which has to be completely repeated after the
failure of the final request. A partial repetition of requests will result in the
resending of results for old requests to the client, which has to be able to process
them.

The compensation type Replacement can be used if a Web service fails com-
pletely. It replaces the current service with a different one, and resends either
all requests, a part of the requests, or only the last one. Resending only the last
request is possible if a different instance of the service that has failed can be used
as replacement, which works on the same local data and can therefore simply
continue with the operations.

Forwarding is special in comparison with the other types, as it only indirectly
uses the available activities. It forwards the handling of the compensation to a
different component, which can potentially use each one of the compensation
activities (which are therefore marked as ”possibly included”) in the process.

In an externally triggered compensation, it is sometimes necessary to invoke
additional services and send additional requeststo the concrete service. For this
purpose, the compensation types AdditionalService and AdditionalRequest exist.

The final compensation type is SessionRestart. This operation is required if
the external compensation request can not be handled without a restart of the
complete session, i.e. the service has to be aborted and subsequently the complete
request sequence has to be resend. The requested change will be realised by a
change in the request sequence prior to the resending.

Compensation Protocol controls the compensation process and its interac-
tion with the different participants. An externally triggered compensation al-
ways has the purpose of changing one particular request that has already been
processed at the service. More specifically, the compensation request contains the
original request with its data that has to be changed (request1(data1)), and
the new request-data (data2) to which the original request has to be changed
to (request1(data2)). The participants in the protocol are the abstract service,
the client which uses the abstract service in its business process, the initiator
which triggers the external compensation (either the client itself, or any other
authorized source like an administrator), and the transaction coordinator. An
externally triggered compensation can only be performed if the transaction in
which the abstract service participates has not yet finished, as it usually has
consequences for the client due to result resending.

The protocol consists of two stages. The first stage is the compensation assess-
ment : As soon as the abstract service receives a request for a compensation, it
checks whether it is feasible and what the costs would be. To that end, predefined
compensation rules are being used, which consist of a compensation condition
(defines when a compensation rule can be applied) and a compensation plan
(defines the compensation actions that have to be performed). The second stage
of the protocol is the compensation execution, which performs the actual com-
pensation according to the plan. Whether this stage is actually reached depends
on the initiator: After the assessment has been completed and has come to a

Engineering Compensations in Web Service Environment 41

positive conclusion, the initiator, based on this data, has to decide whether the
compensation should be performed or not.

As the client and the initiator of an external compensation can differ, the
protocol contains the means to inform the client about the compensation process.
It also ensures that the transaction coordinator is informed about the status of
the external compensation, because the assessment and the execution stages have
consequences for the abstract service’s status in the transaction. While assessing
the possibilities for a compensation, and while performing it, the abstract service
can not process additional requests (and either has to store the requests in a
queue, or has to reject them with an according error message). Moreover, its
status can change as a result of a successful compensation.

3.4 Application on the Client and Provider Side

The abstract service design can be applied on both, the client and the provider
side. A client which wants to create a new distributed application using services
provided by multiple providers can utilize abstract services in two different ways:

1. The client can include the abstract service from a provider in its new business
process, and can use the added capabilities.

2. The client can define a new abstract service, which manages multiple con-
crete services that can perform the same task.

The main goal of a Web service provider is a successful and stable execution of
the client’s requests in accordance with the contracts. If the service of a provider
fails too often, he might face contractual penalties, or the client might change
the provider. He can use abstract services in order to enhance the reliability
and capability of his services by creating an abstract service which encapsulates
multiple instances or versions of the same service. These can be used in case of
errors to compensate the failure without the need for a transaction abort.

4 Discussion and Experiments

The described design approach has been used in a prototype implementation
based on the scenario in section 2, and we performed two experiments with the
implemented environment.

The four services participating in the payment transaction have been realized
as abstract services. The abstract services manage the standard Web services
performing the required operations as concrete services. The implementation
has been done using Apache Tomcat as Web container, and Apache Axis as
SOAP engine. The WS-Transaction specification has been chosen for the trans-
action coordination, more specifically the BusinessAgreementWithCoordinator-
Completion protocol with the extension for transaction concurrency control that
has been introduced in [2]. It is necessary for externally triggered compensations
that the transaction coordinator is able to adapt to the changes that have to be
performed in the process.

42 M. Schäfer, P. Dolog, and W. Nejdl

Fig. 5. Compensation on the provider side

The first experiment was devoted to the evaluation of the compensation of an
internal service error. In this case, a failure of the concrete service on the provider
side is simulated. Figure 5 shows the setup for the transfer salary operation: The
abstract service AS1 on the client side currently uses a concrete service that is
itself an abstract service (AS2), which is operated by a service provider. The
abstract service AS2 uses Web Service 1, which performs the required operations.
Figure 5 also depicts the interconnection of the services: AS1 is registered as a
participant at the Transaction Coordinator via Adapter 1, AS2 is registered at
Adapter 1 via Adapter 2, and Web Service 1 is registered at Adapter 2.

Now Web Service 1 fails due to an internal error, and is thus not able to
perform all operations required for the salary transfer. Instead of informing the
transaction coordinator, abstract service AS2 is informed, which assesses its
compensation rules, the contract, and the available substitution services, and
decides that a compensation is possible. Web Service 1 is discarded and the
request that failed is send to Web Service 2, which registers at the adapter.
Web Service 2 is another instance of the same service, and can therefore simply
continue with the request as it operates on the same local resources. This scenario
shows that the signal of the service failure can be intercepted and the service
replaced, without the need to cancel the complete transaction.

The second experiment evaluates an externally triggered compensation. Fig-
ure 1 summarizes the operations on the different accounts in the scenario de-
scribed in section 2. In this experiment, an administrator has found an error
in the calculation of the salary: The company transferred 50 units too much
to the account of the employee. The administrator directly sends a compen-
sation request to the abstract service that handles the salary transfer (AS1).
The abstract service assesses the request by consulting its compensation rules.
In this scenario, the rules specify that this compensation is only allowed if the
employee’s account would still be in credit after the additional debit operation,
in order to avoid the employee’s account being in debit after the transaction.

The result of the assessment is positive, which is reported to the adminis-
trator, who can decide based on this data whether the compensation should be
performed. He decides that the compensation is necessary. The abstract service

Engineering Compensations in Web Service Environment 43

Table 1. The transfer operations on the accounts in the scenario

Nr. Transaction Company (C) Employee (E) Tax (T) Car Dealer (D)

10.000 0 Y Z

01 T1.debit(C,1.000) 9.000

02 T1.credit(E,1.000) 1.000

03 T1.debit(C,500) 8.500

04 T1.credit(T,500) Y+500

05 T2.debit(E,150) 850

06 T2.credit(D,150) Z+150

8.500 850 Y+500 Z+150

Table 2. The additional operations on the accounts

Nr. Transaction Company (C) Employee (E) Tax (T) Car Dealer (D)

...

07 T1.debit(E,50) 800
08 T1.credit(C,50) 8.550

8.550 800 Y+500 Z+150

compensates operations 01 and 02 from Table 1 by creating an additional debit
and credit operation, as can be seen in Table 2. The operations transfer 50 from
the employee’s account back to the company’s account, which thus compensates
the initial problem. As an additional service, the abstract service initiates a
precautionary phone call, which informs the employee about the change.

Subsequently, the compensation will be reported to the client, who has to assess
whether any other services are affected according to its business process. It decides
that the tax transfer does not have to be changed, while the payslip has to be
updated, as the details of the salary have changed. The business process therefore
initiates a compensation on the respective service, which handles this request by
printing and mailing a new payslip. This shows that even the more complex initial
problem could be solved without the need to abort the transaction.

These two experiments have shown that the proposed design is successful
in employing flexible compensation strategies in Web service transactions. It is
thus possible to develop more robust distributed applications, where the abstract
services are able to adapt their compensation rules to the contract they have with
the client. Especially in long-running transactions, this approach helps to avoid
unnecessary transaction aborts, and therefore saves money and time. While it is
of course still possible that the abstract service itself encounters an error, it at
least provides the capabilities to avoid transaction aborts due to concrete service
failures. Moreover, it is possible to mix the new design with existing technology:
The new capabilities can be used, but do not have to be, as an abstract service
can be employed like any other normal Web service.

However, the new functionality of the design with its advanced compensation
abilities has its costs. By introducing additional components like the abstract

44 M. Schäfer, P. Dolog, and W. Nejdl

services and the adapters, the overall structure of a distributed application be-
comes more complex. The outsourcing of compensation logic to the abstract
services simplifies the business process definitions, but at the same time the dis-
tributed compensation logic can make maintenance more difficult. And finally,
the added components require additional messaging, and therefore the design
increases the total number of messages that have to be sent.

The current implementation is a proof-of-concept of the proposed design ar-
chitecture, and is still limited regarding certain aspects. The prototype of the
abstract service uses only synchronous requests and does not allow parallel re-
quests. Nevertheless, the same principles can be applied in this case, although
additional request queue management will be required. Accordingly, the execu-
tion of compensation actions is currently performed only sequentially.

5 Related Work

Forward recovery can be realized by using dynamic workflow changes, as de-
scribed in [17,19], which allow the semi-automatic adaptation of a workflow in
case of errors. A change of the workflow process can for example consist of a
deletion or jump instruction, or the insertion of a whole new process segment.
The change can either be done on a running instance, or it can be performed
on the scheme which controls the workflow, and which results in a change in all
running instances. Refer to [18] for details. Although this approach is very pow-
erful, it has two major disadvantages. Firstly, it is in most cases only possible
to perform these adaptations semi-automatically. Changing a workflow requires
a lot of knowledge about the process and the current state it is in, and the
implications a change would have. Therefore, it is often necessary for a human
administrator to specify and control the change. Secondly, these kinds of work-
flow changes require a very strict definition of the process, including for example
data and control links. Ad-hoc changes of business processes with normal or-
chestration languages like WS-BPEL (see [6]) is very difficult [9]. [5] provides
a mechanism to overcome this difficulty through a compensation handler. Our
approach provides a more flexible solution for compensations orthogonal to the
business processes, concrete services, and transaction coordination.

Our compensation approach can be used with the Enterprise Service Bus
(ESB) [3], a powerful messaging infrastructure for business to business inte-
gration with Web services. The abstract service and adapter can be integrated
through the ESB flexible extension mechanism. In this way, ESB can serve as
a platform to exchange extended messages between business process, abstract
services and adapters involved in the compensation conversation. Our approach
can be used independently of ESB, employing ESB on top of the introduced
infrastructure to integrate abstract services with workflow activities.

[16] introduces a notion of compensable Web services by specifying operations
which can revert the execution. In our approach, we allow for a more complex
specification of forward recovery compensations, which can be introduced at the
client side, mediator side, as well as provider side. Two related approaches to a

Engineering Compensations in Web Service Environment 45

flexible compensation mechanism for business processes are proposed in [20,10].
In both cases, the focus is put on backward recovery. The compensation logic
is treated as a part of coordination logic. In our approach, we separate the
coordination from the compensation logic to provide for more flexibility.

6 Conclusions and Further Work

We have described a new design approach for complex compensation strategies in
current transaction standards. Two new components have been described, the
abstract service, which manages replacement services and compensation rules,
and the adapter, which separates the coordination protocol specific functions
from the generic definition of the abstract service. We have also presented the
protocol that handles the assessment and processing of externally triggered com-
pensations. The design and the protocol have been successfully validated in a
prototype implementation.

Regarding future work, we plan to run additional experiments with different
compensation scenarios. Moreover, it will be necessary to further analyze the
impact of the new compensation capabilities on the business process definitions.
At the moment, it is only assumed that the business process is able to adapt to
the signaled compensations. It will be required to analyze possible extensions of
existing orchestration languages like BPEL in order to include the new capabil-
ities. The current implementation will be extended to support the management
of parallel request processing, and the definition of compensation rules will be
adapted accordingly.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services - Concepts, Archi-
tectures and Applications. Springer, Heidelberg (November 2003)

2. Alrifai, M., Dolog, P., Nejdl, W.: Transactions Concurrency Control in Web Service
Environment. In: ECOWS ’06. Proceedings of the European Conference on Web
Services, Zurich, Switzerland, pp. 109–118. IEEE Computer Society Press, Los
Alamitos, CA, USA (2006)

3. Chappell, D.A.: Enterprise Service Bus. O’Reilly Media, Inc., (2004)

4. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services De-
scription Language (WSDL) 1.1. W3C note, W3C, March (2001)

5. Dobson, G.: Using ws-bpel to implement software fault tolerance for web services.
In: EUROMICRO ’06: Proceedings of the 32nd EUROMICRO Conference on Soft-
ware Engineering and Advanced Applications, pp. 126–133. IEEE Computer Soci-
ety Press, Los Alamitos (2006)

6. Alves, A., et al.: Web Services Business Process Execution Language Version
2.0 (Published online 2007) http://docs.oasis-open.org/wsbpel/2.0/CS01/
wsbpel-v2.0-CS01.pdf

7. Gray, J.: The transaction concept: Virtues and limitations. In: VLDB 1981: Intl.
Conference on Very Large Data Bases (1981)

protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.pdf
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.pdf

46 M. Schäfer, P. Dolog, and W. Nejdl

8. Greenfield, P., Fekete, A., Jang, J., Kuo, D.: Compensation is not enough. In:
EDOC 2003. 7th International Enterprise Distributed Object Computing Confer-
ence, Brisbane, Australia, pp. 232–239. IEEE Computer Society Press, Los Alami-
tos (2003)

9. Karastoyanova, D., Houspanossian, A., Cilia, M., Leymann, F., Buchmann, A.P.:
Extending bpel for run time adaptability. In: Ninth IEEE International Enter-
prise Distributed Object Computing Conference EDOC, Enschede, The Nether-
lands (2005)

10. Lin, L., Liu, F.: Compensation with dependency in web services composition. In:
NWeSP 2005. International Conference on Next Generation Web Services Prac-
tices, Seoul, Korea, pp. 183–188. IEEE Press, New York (August 2005)

11. Arjuna Technologies Ltd., BEA Systems, Hitachi Ltd., IBM Corporation,
IONA Technologies, and Microsoft Corporation. Web Services Business Activity
Framework, Published online (2005) ftp://www6.software.ibm.com/software/
developer/library/WS-BusinessActivity.pdf

12. Arjuna Technologies Ltd., BEA Systems, Hitachi Ltd., International Business Ma-
chines Corporation, IONA Technologies, and Microsoft Corporation. Web Services
Coordination (Published online 2005) ftp://www6.software.ibm.com/software/
developer/library/WS-Coordination.pdf

13. Arjuna Technologies Ltd., BEA Systems, Hitachi Ltd., International Business Ma-
chines Corporation, IONA Technologies, and Microsoft Corporation Inc. Web Ser-
vices Atomic Transaction, Published online (2005) ftp://www6.software.ibm.com/
software/developer/library/WS-AtomicTransaction.pdf

14. Meyer, B.: Applying ”Design by Contract”. IEEE Computer 25(10), 40–51 (1992)
15. Nielsen, H.F., Mendelsohn, N., Moreau, J.J., Gudgin, M., Hadley, M.: SOAP ver-

sion 1.2 part 1: Messaging framework. W3C recommendation, W3C (June 2003)
16. Pires, P.F., Benevides, M.R.F., Mattoso, M.: Building reliable web services compo-

sitions. In: Aksit, M., Mezini, M., Unland, R. (eds.) NODe 2002. LNCS, vol. 2591,
pp. 7–10. Springer, Heidelberg (2003)

17. Reichert, M., Dadam, P.: ADEPTflex: Supporting Dynamic Changes of Workflow
without Loosing Control. Journal of Intelligent Information Systems 10(2), 93–129
(1998)

18. Reichert, M., Rinderle, S., Kreher, U., Dadam, P.: Adaptive Process Management
with ADEPT2. In: ICDE, pp. 1113–1114. IEEE, New York (2005)

19. Rinderle, S., Bassil, S., Reichert, M.: A Framework for Semantic Recovery Strate-
gies in Case of Process Activity Failures. In: Manolopoulos, Y., Filipe, J., Constan-
topoulos, P., Cordeiro, J. (eds.) ICEIS, pp. 136–143 (2006)

20. Yang, Z., Liu, C.: Implementing a flexible compensation mechanism for business
processes in web service environment. In: ICWS ’06. Intl. Conference on Web Ser-
vices (2006)

protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update ftp://www6.software.ibm.com/software/developer/library/WS-BusinessActivity.pdf
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ftp://www6.software.ibm.com/software/developer/library/WS-BusinessActivity.pdf
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ftp://www6.software.ibm.com/software/developer/library/WS-Coordination.pdf
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ftp://www6.software.ibm.com/software/developer/library/WS-Coordination.pdf
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ftp://www6.software.ibm.com/software/developer/library/WS-AtomicTransaction.pdf
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ftp://www6.software.ibm.com/software/developer/library/WS-AtomicTransaction.pdf

Context-Aware Workflow Management�

Liliana Ardissono, Roberto Furnari, Anna Goy, Giovanna Petrone, and Marino Segnan

Dipartimento di Informatica - Università di Torino
Corso Svizzera 185, 10149 Torino - Italy

{liliana,furnari,goy,giovanna,marino}@di.unito.it

Abstract. We describe the CAWE framework for the management of context-
aware workflow systems, based on Web Services. The framework is based on a
hierarchical workflow representation supporting a synthetic and extensible speci-
fication of context-sensitive workflows, which can be executed by standard work-
flow engines. We have exploited the CAWE framework to develop a prototype ap-
plication handling a medical guideline specifying the activities to be performed
in order to monitor patients treated with blood thinners.

1 Introduction

We present the CAWE (Context-Aware Workflow Execution) framework for the devel-
opment of context-aware applications based on Web Service technologies, which adapt
to the user features and the execution context. In order to support a flexible adaptation
of the business logic, we have adopted a workflow-based approach, which enables the
declarative specification of such logic. The CAWE framework is based on a hierarchical
representation of the workflow, which specifies alternative, context-dependent courses
of action, and on a declarative specification of the conditions determining the runtime
selection of the appropriate context-dependent part of the workflow.

In order to test the functionality offered by our framework, we developed a prototype
system and we have instantiated it on the execution of medical workflows involving the
cooperation of human actors playing different roles. The system may be accessed from
the internet, by using a PC or a Smart Phone client. The resulting medical application
supports the home assistance of patients affected by heart diseases and coordinates the
activities of doctors, patient and other technical and administrative personnel during the
execution of the clinical guidelines to be applied.

2 Dimensions in Context-Aware Adaptation

Often, context-aware applications proposing personalized products/services to their
users do not consider (at least explicitly) the fact that there are two different types
of roles: the beneficiary of the product/service (henceforth, the service-user) and the
user who interacts with the system to get the product/service (interacting-user). For in-
stance, in an adaptive e-commerce application, a person could buy a product on behalf

� This work is supported by the EU (project WS-Diamond, grant IST-516933) and by MIUR
(project QuaDRAnTIS).

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 47–52, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

48 L. Ardissono et al.

of somebody else [1]. Although the same person can play different roles, it is useful
to distinguish them. In fact, both the service-user and the interacting-user can be the
targets of adaptation, but the features to be taken into account, and what is adapted,
differ in the two cases. For instance, a different product might be proposed, depending
on the service-user’s preferences; however, the User Interface (UI) should be adapted
to the device utilized by the interacting-user to connect to the system. The CAWE
framework supports UI adaptation, targeted to the interacting-user’s context, and work-
flow adaptation, based on the context of the service-user; the latter is the focus of this
paper.

2.1 UI and Workflow Adaptation in the CAWE Framework

In the CAWE framework, the interaction is tailored to the features of the device used to
connect to the system (e.g., screen size), and to the role of the interacting-user (e.g., a
relative or a doctor), by generating UI pages with different content and layout.

The adaptation of the workflow, described in detail in the following, consists of ac-
tuating different courses of action (activity paths) on the basis of the features of the
context of execution. These context features belong to the service-user context. For in-
stance, the clinical guideline of our medical application prescribes blood tests which
can be performed at home or at the blood test lab, depending on the fact that the patient
(service-user) is movable or not. The two alternative behaviors are associated to differ-
ent activity paths, as the first one requires that a nurse visits the patient at home, while
the second can be managed by taking the patient to the lab.

2.2 Service-User’s Context in Our Medical Application

In order to provide a more concrete idea of the service-user context, we briefly decribe
its representation within our medical application. The service-user is the patient, who
benefits from the home assistance service. The patient’s context includes long-term and
short-term information to separate stable data from features which might change during
the service execution.

The long-term information includes:
(a) The personal context: this corresponds to the clinical record, which includes features
such as the patient id, contact information, gender, age, prescribed therapy, date of the
most recent blood test, and so forth.
(b) The environment: this includes features such as the available resources (i.e., the
medical equipment available at home).

The short-term information includes:
(a) The Personal context: this includes physiological data (e.g., blood pressure, hearth
pulsation, ...), the patient’s mobility state (the “movable” feature specifies whether she
can be transported by car, or she needs an ambulance), and the degree of urgency in
treatments due to the patient’s health state.
(b) The Environment: it includes the “social context” (i.e., the people who next to the
patient), which can influence the course of action to be selected.

Context-Aware Workflow Management 49

3 The CAWE Framework

The architecture of the CAWE framework includes various modules, wrapped by Web
Service interfaces. Specifically, the context-aware workflow execution is supported by
two modules: the Context-Aware Workflow Manager and the Context Manager. The
Context-Aware Workflow Manager runs a workflow engine which executes the work-
flow activities by following the flow specification. However, when it encounters a
context-dependent portion of the workflow, the engine invokes a Personalization Mod-
ule which applies adaptation strategies to select the course of action to be performed.
The Context Manager provides the other modules with contextual information during
the execution of the application.

3.1 Workflow Representation

In order to represent the context-dependent parts of the workflow, we introduce an ab-
straction hierarchy whose higher-level elements describe the activities to be performed
in generic way. Specifically, we introduce the concept of abstract activity to denote an
activity schema which does not directly specify a piece of business logic of the appli-
cation. The actions to be executed in order to complete the abstract activity are selected
at runtime, depending on the context state.

Moreover, we define abstract workflow a workflow schema including at least one
abstract activity: the workflow abstracts from the details of execution of at least one
(context-dependent) activity. If a workflow does not contain any abstract activity, it
represents a concrete workflow and it can be executed by the workflow engine without
invoking the Personalization Module.

Finally, each abstract activity is associated with a set of context-dependent imple-
mentations, representing the alternative courses of action which the workflow engine
should execute, depending on the context. Each context-dependent implementation is
a (possibly abstract) workflow and represents a subprocess to be performed in order to
achieve the results of the abstract activity.

Figure 1 depicts the abstract workflow of our medical application, which includes
the following activities (abstract/concrete activity start with an uppercase/lowercase
letters):

1. A doctor starts the workflow by setting the first blood test that the patient has to
undergo (setFirstBloodTest(patient, date)).

2. The application books a blood test with a lab at the specified date (BookBlood-
Test(patient, date)). Then, it evaluates the time interval between the current date
and the date of the blood test (eval(interval)).

3. If the patient’s health state is regular, she waits until the date of the test before
doing any actions (onAlarm(date)). However, if warning symptoms, e.g., bleed-
ing or fainting, occur before that date (onMessage ...), the urgency feature within
the patient’s context is set to “high” (setUrgency(patient, “high”)), and the patient
skips the wait. This is represented by means of a pick scope which includes the two
competing courses of action.

50 L. Ardissono et al.

start

BookBloodTest(patient, date)

eval(interval)

evaluateResults
(patient,date,bloodResults,eval)

SendToHospital(patient)end

no yes
eval=OK?

ManageBloodCollection
(patient, date, bloodResults)

onMessage:
bleeding or
fainting

onAlarm (interval)

pick

setUrgency(patient, high)

emailPatient(date, therapy)

setFirstBloodTest(patient, date)

storeTherapy(patient,date,therapy)

Fig. 1. Abstract Workflow of Medical Guideline

4. At the specified date, or immediately after the occurrence of a warning symptom,
a sample of blood is taken from the patient for the lab. Then, the lab analyzes the
blood sample and returns the values of the measured blood parameters (Manage-
BloodCollection(patient, date, bloodResults)).

5. A doctor evaluates the results that are then stored, together with the doctor evalua-
tion, into the patient’s context (evaluateResults(patient, date, bloodResults, eval)).

6. If the test results are good (eval=OK?), the doctor selects the date for the next
blood test and sets the therapy to be followed until then (storeTherapy(patient, date,
therapy)). Moreover, the application sends the patient an e-mail with the needed
information (emailPatient(date, therapy)) and the flow restarts from item 2. Other-
wise, the patient is notified to go to the hospital for further analyses (SendToHospi-
tal(patient)).

Figure 2 shows the workflow specification of a context-dependent implementation
suitable for patients who may be taken to the lab by car. The applicability condition
of this implementation is movable=true, where movable is a context variable included
in the short-term patient’s context. The application requests the appointment with the
lab (requestLabApp(patient, date)), by invoking the Blood Test Lab Service1, which
returns a notification of the appointment, specifying time and place where to show up

1 We assume that the actors involved in the workflow have Web Service interfaces.

Context-Aware Workflow Management 51

start
requestLabApp
(patient, date)

emailPatient
(appCode,date, time, address)

end

workflow specification of context-dependent implementation for
movable patient

receiveLabAppNotification
(patient, appCode, date, time, address)

Fig. 2. Worflow Specifications of one of the Context-Dependent Implementations of Abstract
Activity “BookBloodTest”

(receiveLabAppNotification(patient, appCode, date, time, address)). In turn, the appli-
cation notifies the patient about the appointment (emailPatient(appCode, date, time,
address)).2

3.2 Context-Aware Workflow Execution

The workflow engine wrapped by the Context-Aware Workflow Manager creates an
instance of the abstract workflow each time the starting activity of the workflow is
performed for the first time. The context-aware execution of the workflow is based on
the selection of paths, depending on decision points and on the selection of the concrete
implementations of the abstract activities to be performed. When the workflow engine
has to execute an abstract activity, it first invokes the Personalization Module, which
retrieves the context-dependent implementations of the abstract activity and returns the
one to be executed, together with the bindings for its variables. Then, the workflow
engine executes the selected context-dependent implementation as a subprocess of the
main process instance. At subprocess completion, the control returns to the abstract
workflow, which moves to the execution of the next activity.

The Personalization Module, invoked on an abstract activity, works as follows: first
of all, if the abstract activity is associated to more than one context-dependent imple-
mentation, the module evaluates the applicability conditions of each candidate and it
selects one of the applicable implementations for execution. Then, the module binds
the context-dependent variables of the implementation to their current values, provided
by the Context Manager.

4 Related Work

The introduction of context awareness in workflow systems is mainly focused on Qual-
ity of Service management (e.g., [2]) and on the adaptation to the user’s device (e.g.,
[4]). An interesting approach in the area of Web Engineering is presented in [3], where
the authors propose an extension to WebML to model multi-channel, context-aware
Web applications.

2 Another context-dependent implementation, not shown for space reasons, specifies that, if the
patient is non-movable, a nurse is requested, to collect the patient’s blood at home.

52 L. Ardissono et al.

In this paper, we attempt to look at workflow systems from a more general perspec-
tive, and we propose a framework for the management of applications which adapt
to user preferences and requirements, as well as to context-aware aspects such as the
physical environment or the available resources.

The introduction of hierarchical workflows is usually related to the specification of
compositional workflows. For instance, several workflow languages enable the designer
to define complex activities which expand in workflows forming a composition hierar-
chy; e.g., see WS-BPEL [5] and process languages such as Petri Nets [6]. Our proposal
differs from those approaches because it introduces a specialization hierarchy support-
ing the actuation of the same abstract activity in different ways.

5 Conclusions

We have presented the CAWE framework for the development of applications com-
posing Web Service suppliers in complex, long-lasting workflows. CAWE supports the
customization of the service offered by the application to the beneficiary of the service,
taking the execution context into account; moreover, it personalizes the UI to the user(s)
interacting with the application to carry out the assigned tasks.

The abstract activities and contextual conditions can be executed by a standard work-
flow engine because they simply include the invocation of a piece of code in their body.
Indeed, the hierarchical workflow could be pre-processed by translating it to a flat work-
flow where abstract activities are replaced with decision points which fork on alternative
workflow paths. However, our approach supports the conciseness and the readability of
the resulting workflows, which could be very hard to understand, if represented as a
flat graph including all the alternative courses of action. Moreover, it supports a seam-
less extension of the business logic of an application to take new contextual conditions
and new courses of action into account. Finally, the introduction of the Personalization
Module for the selection of context-dependent implementations supports the extension
of the framework to the adoption of possibly complex personalization rules, without
imposing restrictions on the workflow engines employed.

References

1. Ardissono, L., Goy, A.: Tailoring the interaction with users in Web stores. User Modeling and
User-Adapted Interaction 10(4), 251–303 (2000)

2. Benlismane, D., Maamar, Z., Ghedira, C.: A view-based approach for tracking composite Web
Services. In: Proc. of European Conference on Web Services (ECOWS-05), Växjö, Sweden,
pp. 170–179 (2005)

3. Ceri, S., Daniel, F., Matera, M.: Extending webml for modeling multi-channel contextaware
web applications. In: WISE - MMIS’03 IEEE Computer Society Workshop (2003)

4. Keidl, M., Kemper, A.: Towards context-aware adaptable Web Services. In: Proc. of 13th Int.
World Wide Web Conference (WWW’2004), New York, pp. 55–65 (2004)

5. OASIS: OASIS Web Services Business Process Execution Language (2005), http://www.
oasis-open.org/committees/documents.php?wg abbrev=wsbpel

6. van der Aalst, W.: Making work flow: on the application of Petri Nets to Business Process
Management. In: Proc. of 23rd Int. Conf. on Applications and Theory of Petri Nets, Adelaide,
South Australia, pp. 1–22 (2002)

protect protect protect edef OT1{OT1}let enc@update elax protect edef ptm{ptm}protect edef m{m}protect edef n{n}protect xdef OT1/ptm/m/n/9 {OT1/ptm/m/n/9 }OT1/ptm/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef ptm{pcr}protect xdef OT1/ptm/m/n/9 {OT1/ptm/m/n/9 }OT1/ptm/m/n/9 size@update enc@update http://www.oasis-open.org/committees/documents.php?wg_abbrev=wsbpel
protect protect protect edef OT1{OT1}let enc@update elax protect edef ptm{ptm}protect edef m{m}protect edef n{n}protect xdef OT1/pcr/m/n/9 {OT1/ptm/m/n/9 }OT1/pcr/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef ptm{pcr}protect xdef OT1/pcr/m/n/9 {OT1/ptm/m/n/9 }OT1/pcr/m/n/9 size@update enc@update http://www.oasis-open.org/committees/documents.php?wg_abbrev=wsbpel

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 53–58, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Practical Methods for Adapting Services
Using Enterprise Service Bus*

Hyun Jung La, Jeong Seop Bae, Soo Ho Chang, and Soo Dong Kim

Department of Computer Science
Soongsil University, Seoul, Korea

511 Sangdo-Dong, Dongjak-Ku, Seoul, Korea 156-743
{hjla, jsbae, shchang}@otlab.ssu.ac.kr, sdkim@ssu.ac.kr

Abstract. In service-oriented computing (SOC), services are designed not just
for a dedicated client but for a family of potential clients. For services to be ge-
neric and serviceable to different clients, service variability among the clients
must be analyzed and modeled into service components. Enterprise Service Bus
(ESB) is an architectural framework for service integration, but it does not pro-
vide effective adaptation mechanisms. Hence, it is desirable to devise tech-
niques to adapt services on ESB for specific service requests. In this paper, we
identify four types of service variability, and we present methods to adapt ser-
vices provided on ESB. These methods can be practically applied in designing
highly adaptable services on ESB.

1 Introduction

In service-oriented computing (SOC), services are designed not just for a dedicated
client, but for a family of potential clients. A key problem in developing such com-
mon services is to model the variability embedded in common features, and to be able
to adapt common services for specific service requests [1][2]. Another case requiring
service adaption is when there is a partial matching between available services and
services expected by clients. That is, an available service can potentially fulfill the
service expected by a client, but they do not match in full [3]. Hence, identifying
types of variability which may occur on services and how service variability can be
modeled into adaptable services are two essential prerequisites to designing highly
reusable and applicable services.

Enterprise Service Bus (ESB) is an architectural framework to integrate heteroge-
neous services and applications in distributed network [4]. It provides the integration
functionality through transformation, communication, and routing. Beyond this, how-
ever, ESB does not provide methods for service adaptation. Hence, it is desirable to
devise techniques to adapt services on ESB for specific service requests.

In this paper, we first identify four types of variability which may occur on ser-
vices. Then, we present adaptation methods for services on ESB; Workflow Mediator,
Service Binder, Interface Transformer, and Logic Broker. Each method is presented

* This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant

funded by the Korea government (R01-2005-000-11215-0 (2007)).

54 H.J. La et al.

with its overall scheme and a specific adaptation algorithm based on ESB specifica-
tion. These methods can be practically applied in designing highly adaptable services
on ESB.

2 Related Works

Sam’s work proposes a customization framework for dynamic Web services [5].
Based on the comparison to syntactic/semantic aspects and to the constraint on input
and output, it suggests a matchmaking process and conflict resolution mechanism for
service adaptation. However, this work deals with only interface adaptation. Jiang’s
work proposes a categorization of variation points and introduces a pattern-based ap-
proach for managing the variation points [6]. However, instructions for identifying
variability and adaptation are not included. Herault’s work proposes an approach to
mediating and executing operations on ESB [7]. It explains how mediation can be
achieved on ESB. However, how they mediation is performed is not given in enough
details. Schmidt’s work addresses a mediation model on ESB, which reconfigures the
links between bus service providers and requesters to create dynamic alternations to
routing and to modify their behaviors [8]. It treats interface mediations and policy
mediations. However, practical adaptation mechanisms for these are not given.

From our survey, we observe that current research works treat service adaptation at
conceptual level rather than design level, and adaptation methods on ESB treat only
interface and logic variability. In this paper, we treat four types of service variability
and suggest design-level practical methods for adapting services on ESB.

3 Types of Service Variability

In this section, we identify four places where service variability may occur [9].

Workflow Variability. A business process consists of a sequence of activities, i.e. unit
services [10], and this sequence is called a workflow. For a given business process, the
workflow may slightly vary, depending on different service clients. That is, some unit
services in a workflow may be optional, and there can be more than one execution
path for the given workflow.

Composition Variability. Services are discovered at runtime, and there may be more
than one unit service which fulfills the required functionality. In this case, variation
occurs on binding the right services. That is, for each specific request, one of the can-
didate unit services must be composed.

Interface Variability. Variability on interfaces occurs when the interfaces of unit ser-
vices do not match to the interfaces of published services. Even if the functionality of
a unit service is met by the functionality of a registered service, the signatures of in-
terface and the semantics may not fully match. This should be modeled during service
engineering, and the mismatch should be resolved by some interface adaptation
mechanism.

 Practical Methods for Adapting Services Using Enterprise Service Bus 55

Logic Variability. Service component includes operations for providing service func-
tionality. There may be minor variation on the business logic or algorithm for the ser-
vice component. This micro-level logic variability should be modeled into a service
component, so that it can be tailored for each invocation.

4 Adaptation Managers for Services on EBS

In SOC, service clients do not have access to the internal details of services, and
hence adaptation of a service is performed by an external software agent, which we
call it adaptation manager. We propose a general scheme of designing ESB-based
adaptation mangers which can be used in resolving all four types of variability.

To implement adaptation managers on ESB, we define two kinds of components; lis-
tener and adaptor. As shown in Figure 1, a listener with «Listener» stereotype listens
and intercepts service requests made by clients. And, it determines the required adapta-
tion for each invocation, and invokes appropriate adaptors. The adaptors actually per-
form the requested adaptation over service components through end-points of ESB.
Figure 1, shows four types of adaptors, which are denoted with «adaptor» stereotype.

«Listener»
Invocation
Listener #n

BPEL
Engine

Service
Component #1

«Listener»
Invocation
Listener #1

…
«Listener»
Invocation
Listener #2

Service
Component #2

Service
Component #n

«adaptor»
Workflow
Mediator

«adaptor»
Service
Binder

«adaptor»
Interface

Transformer

«adaptor»
Logic

Broker

(1) Request Invocation

(3) Resolve
variability

(4) Invoked adapted components

(2) Listen to
Invocation

End
point

Enterprise Service Bus

End
point

End
point

Adaptation Manager

…
Client

Program

Fig. 1. Adaptation Manager deployed on ESB

4.1 Workflow Mediator for Workflow Variability

Workflow Mediator is to adapt the workflow of services, and it is implemented with
Mediator pattern. When modeling workflow variability, variation points of workflow
type and their relevant variants are identified and stored in the workflow repository.

Service
Requested

Unit
Service a

Unit
Service b

Workflow
Repository

«Workflow
Mediator»

Look Up
Workflow Variability

Workflow Variants

«Service
Component»Unit

Service c
«Service

Component»

«Service
Component»

1st invocation

2nd invocation

3rd invocation

Path #2

Path
#1

Fig. 2. Pattern of Workflow Mediator

56 H.J. La et al.

As shown in Figure 2, the workflow mediator analyzes service requirements using
user’s preference and context information, determines an appropriate workflow vari-
ant from the repository, and makes a series of invocations over the participating ser-
vice components by using the rule repository.

We define two adaptation methods for workflow mediators as shown in Figure 3;
determineWorkflow() and conctroServicelInvocation(). The determineWorkflow()
method is to select the most appropriate workflow from the repository based on the
service requirements. This operation returns a path of the BPEL specification which
will be executed. The conctroServicelInvocation() method is to execute the workflow
by invoking appropriate service components.

public String determineWorkflow(MessageExchange exchange) throws MessagingException {

String BPELPath; // path of the BPEL documents
Message sourceMsg = getSourceMsg(exchange); // to get source invocation message
Vector workflowVariant = getWorkflowVariants(exchange); // to get candidate workflows

// to get a particular workflow among candidate workflow based on the condition
for (int i = 0 ; i < workflowVariant.size() ; i++) {

if (compare (workfowVariant[i], condition) == true) {
BPELPath = workflowVariant[i].path;
return BPELPath;

}
}

}

public void controlServiceInvocation(MessageExchange exchange) throws MessagingException {

Message sourceMsg = getSourceMsg(exchange); // to get source invocation message
Vector serviceComp = getServiceComponents (exchange); // to get the service components
Rule rule = getRule (exchange) // to get the rule for the exchange

// to invoke a service component by comparing when the service component is invoked
for (int i = 0 ; i < serviceComp.size() ; i++) {

if (compare (serviceComp[i].case, rule.case) == true) CallComponents (serviceComp[i]
}

}

Fig. 3. Algorithm of Workflow Mediator

4.2 Service Binder for Composition Variability

Service Binder is to adapt the service compositions, and it is implemented with dy-
namic selection pattern. When modeling composition variability, variation points of
composition type and their variants are identified and stored in composition repository.

Unit Service

Composition
Repository

«Service
Binder»

Preference Service Interface #2

Service Interface #1

Look Up Selections

Fig. 4. Pattern of Service Binder

 Practical Methods for Adapting Services Using Enterprise Service Bus 57

public String determineInterface (MessageExchange exchange) throw MessageException{

Message sourceMsg= getSourceMsg(exchange); // to get source invocation message
Vector endPoints = getEndPoint(exchange); // to get possible end points
Rule rule = getRule (exchange); //to get selection rule for the exchange
String targetEndPoint; //to save a target end point

// to get an appropriate end point
for (int i=0;i<endPoints.size(); i++) {

if (compare(endPoints[i].case, rule.case) == true)
targetEndPoint = (String)endPoint[i];

}
}

public void bindInterface (Endpoint ed) throw MessageException{
if (comparingInterface(sInvc, ed) == match) call(ed); // adaptation is not needed.
else call(interfaceMediator, sourceMsg) // in order to adapt interface mismatch

}

Fig. 5. Algorithm of Service Binder

Figure 4 shows the relationship among the service binder, unit services, composition
repository and WSDL service interfaces.

We define two methods for service binder; determineInterface(), and bindInter-
face(). The determineInterface() method is to select an interface variant in the reposi-
tory based on user preferences, characteristics of services, and other context, and to
generate a service endpoint type which is specific to the interface variant. The bind-
Interface() method is to bind the specified WSDL interface to the unit service. If in-
terface mismatch occurs, it should be resolved with Interface Transformer.

4.3 Interface Transformer for Interface Variability

Interface Transformer is to adapt interfaces, and it is placed between unit services and
service providers. When modeling interface variability, variation points of interfaces
and relevant interface variants are identified and stored in the Interface Transform
Repository. Each transformation method takes a service invocation of the interface
specified by a unit service, transforms it into the published interface which eventually
maps to the interface of a service component. It analyzes the service innovation, de-
termines a transformation method, performs the transformation, and generates a new
service invocation of a published interface.

4.4 Logic Broker for Logic Variability

Logic adaptor is a kind of adaption manager use the plugin method with profiles since
the method makes the variable logics more decoupled [2]. When modeling logic vari-
ability, client profiles and objects which implement algorithms are identified and
stored in Client Profile and Logic Object Repository.

Message listener recognizes the invocation from Web service client to the service in-
terface written in WSDL. The listener invokes the variability analyzer so that the vari-
ability analyzer finds out corresponding adaptation types. Then, the listener invokes the
service component with the object path through object finder so that the service compo-
nent can use the logic object. For the logic variants of unknown and newly added unit
services, new algorithm object should be deployed on the object container.

58 H.J. La et al.

5 Conclusion

A key problem in developing reusable services in SOC is to identify the common fea-
tures among potential clients and to model them into service components. In addition,
variability within a common feature should also be modeled. Moreover, partial
matching between available services and requested services should be identified can
resolved. ESB provides an architectural framework for service integration, without
providing practical adaptation mechanisms.

In this paper, we identified four types of variability which could occur on services.
By extending software adaptation techniques and utilizing the key features of ESB,
we presented practical methods to adapt services on ESB. Each method was presented
with its overall scheme and a specific adaptation algorithm based on ESB specifica-
tion. By using the methods, services with high adaptability and applicability on ESB
can be effectively developed.

References

[1] Kim, S., Her, J., Chang, S.: A Theoretical Foundation of Variability in Component-Based
Development. Information and Software Technology (IST) 47, 663–673 (2005)

[2] Chang, S.H., Kim, S.D.: A Systematic Approach to Service-Oriented Analysis and De-
sign. In: the proceedings of the 8th International Conference on Product Focused Soft-
ware Development and Process Improvement (PROFES) (to Appear)

[3] Min, H., Choi, S., Kim, S.: Using Smart Connectors to Resolve Partial Matching Prob-
lems in COTS Component Acquisition. In: Crnković, I., Stafford, J.A., Schmidt, H.W.,
Wallnau, K. (eds.) CBSE 2004. LNCS, vol. 3054, pp. 40–47. Springer, Heidelberg (2004)

[4] Chappell, D.A.: Enterprise Service Bus, O’Reilly (2004)
[5] Sam, Y., Boucelma, O., Hacid, M.: Web Services Customization: A Composition-based

Approach. In: ICWE’06. proceedings of the International Conference on Web Engineer-
ing, IEEE Computer Society Press, Los Alamitos (2006)

[6] Jiang, J., Ruokonen, A., Syata, T.: Pattern-base Variability Management in Web Service
Development. In: ECOWS ’05. proceedings of the Third European conference on Web
Services, IEEE Computer Society Press, Los Alamitos (2005)

[7] Herault, C., Thomas, G., Lalanda, P.: Meditation and Enterprise Service Bus A position
paper. In: the proceedings of the First International Workshop on Mediation in Semantic
Web Services (MEDIATE 2005), pp.1-14 (2005)

[8] Schmidt, M.T., Hutchison, B., Lambros, P., Phippen, R.: The Enterprise Service Bus:
Making Service-oriented Architecture Real. IBM Systems Journal 4(4), 781–797 (2005)

[9] Chang, S.H., La, H.J., Kim, S. D.: A Comprehensive Approach to Service Adaptation,
IEEE International Conference on Service-Oriented Computing and Applications (SOCA)
(to Appear)

[10] OMG Business Process Management Initiative, Business Process Modeling Notation
(BPMN) Version 1.0, OMG Final Adopted Specification (February 6, 2006)

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 59 – 73, 2007.
© Springer-Verlag Berlin Heidelberg 2007

On the Quality of Navigation Models with
Content-Modification Operations

Jordi Cabot1, Jordi Ceballos1, and Cristina Gómez2

1 Estudis d'Informàtica i Multimèdia, Universitat Oberta de Catalunya
{jcabot,jceballos}@uoc.edu

2 Dept. Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya
cristina@lsi.upc.edu

Abstract. Initially, web development methods focused on the generation of
read-only web applications for browsing the data stored in relational database
systems. Lately, many have evolved to include content-modification functional-
ities. As a consequence, we believe that existing quality properties for web
model designs must be complemented with new property definitions. In particu-
lar, we propose two new quality properties that take the relationship between
navigation models and the related data models into account. The properties
check if navigation models include all necessary content-modification opera-
tions and whether all possible navigation paths modify the underlying data in a
consistent way. In this paper, we show how to determine if a navigation model
verifies both properties and also how to, given a data model, automatically
generate a preliminary navigation model satisfying them.

1 Introduction

Many web development methods are evolving to cover the definition of full-fledged
web applications, including data processing and manipulation functionalities. As a
consequence, the models involved in the specification of a web application (that is,
the data model to specify the data used by the application, the navigation model to
describe the organization of the front-end interface and the presentation model to
personalize its graphical aspect) have been extended with new modelling primitives.

One of the most relevant evolutions is the extension of navigation models with
content-modification primitives that permit to modify the data managed by the web
application. These primitives may be basic operations (insert/delete/update opera-
tions, as in WebML [4]) or references to more complex operations defined in the data
model (as in OOWS [13]) or in a different model (as in the operational models
proposed in [10]).

These new primitives complicate the definition of web model designs. Even for
small web applications, data and navigation models can become huge and complex.
Consequently, their definition is a time consuming and error prone process. This is a
critical issue since their quality is very important, especially when web designs are
used to automatically derive the implementation of the web application.

Up to now, quality properties for navigation models are based mainly on a pur-
ely syntax consistency analysis of the model structure (for instance, a common

60 J. Cabot, J. Ceballos, and C. Gómez

verification is to check the reachability of all pages or that there are no broken links).
These properties do not consider quality issues involving the new content modifica-
tion operations that may appear in the navigation models. Therefore, existing proper-
ties are not suited to assess the quality of such models.

The main goal of this paper is to complement the existing set of quality properties
defined for navigation models with two new quality properties that focus on the rela-
tionship between the content-management operations appearing in a navigation model
and the data model specified for the same web application. Through these properties
we can check early in the development process the quality of these extended naviga-
tion models. Additionally, we show how these properties help in the automatic
generation of a preliminary navigation model once the related data model has been
specified. This way we speed up the web development process because designers
need not define the navigation model from scratch.

The first property we propose is the completeness of a navigation model with re-
spect to its data model. We say that a navigation model is complete if the user can
manipulate all the data underlying the web application by means of the modification
operations included in the model (except for those parts of the data that the designer
defines as derived or read-only). Incomplete navigation models result in web applica-
tions with data that a user can never modify. As an example, consider the partial data
model shown in Fig. 1. Assuming that all elements of the data model are modifiable, a
navigation model with a single page to modify sale objects is incomplete since users
are unable to enter or modify sale lines.

 S a le
id : N atu ra l
a m o u n t: M o n ey

S a leL in e

q u an tity : N atu ra l 1 ..* 1

C o m p o sed O f

Fig. 1. Example of a data model

The second property is the correctness of a navigation model with respect to its
data model. A navigation model is correct when all navigation paths admit at least one
possible run (i.e. a run-time execution) that leaves the underlying data in a consistent
state. Incorrect navigation models result in web applications with some paths that
always end up in an inconsistent state. Every time the user interacts with the web
application following such paths, an error arises and all user actions carried out until
then must be rolled back (or repaired). Following the previous example, since sales
must be composed of a minimum of one sale line, navigation models containing a
path that permits to insert new sales but where no new sale lines can be created lead to
a state where these sales always violate the minimum multiplicity of the ComposedOf
relationship type. Therefore, such new sales must be discarded.

The rest of the paper is structured as follows. Section 2 reviews some basic con-
cepts of data and navigation models. Section 3 formalizes our quality properties and
characterizes the conditions that navigation models must satisfy in order to verify
them. Then, Section 4 shows how these properties can be used to derive a preliminary
complete and correct navigation model from an initial data model. Section 5 discusses
the related work. Finally, Section 6 presents some conclusions and further work.

 On the Quality of Navigation Models with Content-Modification Operations 61

2 Basic Concepts of Data and Navigation Models

Web modelling languages provide several models to specify a web application. In this
section, we review briefly the basic concepts and terminology of data and navigation
models, which are the focus of this paper.

2.1 Data Model

A data model (also known as content model) defines the knowledge about the domain
that a web application must have to perform its business functions. Fig. 2 shows an
example data model, represented in UML, meant to (partially) model a simple
e-commerce application. It contains information about sales, their sale lines and the
products they contain. Sales may be associated with the customer purchasing them.

 Sale
Purchases *

id : Natural
date: Date
amount: Money

SaleLine

quantity: Natural

0..1
Customer

id: Natural
name : String
nationality: String

Product
id : Natural
name: String
price: Money
description: String

1..*

1
ComposedOf

References

1

*

Fig. 2. The data model for the e-commerce application

The most basic constructors in data models are entity types (i.e. classes), relation-
ship types (i.e. associations) and generalizations. Each entity type ET contains a set of
attributes. For instance, in Fig. 2, Sale is an entity type with the attributes id, date and
amount. Each binary relationship type RT has a name and two participants. A partici-
pant ETi in RT may have a minimum and maximum cardinality, determining the mini-
mum (resp. maximum) number of relationships (i.e. links) of RT in which ETi may
participate. We denote by min(ETi,RT) and max(ETi,RT) these cardinality constraints.
For instance, ComposedOf states that each sale consists of at least one sale line so
min(Sale,ComposedOf)=1. Each generalization, denoted by Gens(ET,ET1,…,ETn),
relate a supertype ET with a set of subtypes ET1,…,ETn. Generalizations may be
disjoint and/or complete.

Additionally, the data model may include the definition of several operations to
modify the state of the data. The basic operations (i.e., content-modification primi-
tives) we consider are: InsertET(x,v1,..,vn) (resp. DeleteET(x)) to perform the addition
(removal) of the entity x into (from) entity type ET (optionally, attributes of x may be
initialized with values v1,..,vn), UpdateAiET(v,x) to set v as the new value for the
attribute Ai of entity x and InsertRT(x1,x2,) (resp. DeleteRT(x1,x2)) to perform the addi-
tion (removal) of the fact that entities x1,x2 participate in an instance of RT. More
complex operations can be defined as a sequence of these basic ones.

2.2 Navigation Model

A navigation model (also known as a hypertext model) specifies the organization of
the front-end interfaces of a web application. Fig. 3 shows an excerpt of a possible

62 J. Cabot, J. Ceballos, and C. Gómez

Fig. 3. A fragment of a navigational model for the e-commerce application

navigation model in WebML [4] for the e-commerce application presented in Fig. 2.
The model shows the interface to create new sales and their related sale lines.

The most basic constructors of navigation models are pages and links. Pages may
include several elements to specify the page contents. For practical purposes, our
navigational models do not show the pages internal structure.

Many web modelling languages permit to define navigation models with content-
modification operations that are executed as a result of browsing a link. As an exam-
ple, Fig. 3 shows that when the user navigates to NewSaleLine from the NewSale
page, the operation InsertSale is executed (using the parameters provided by the user
in NewSale). In some languages these operations are simple create/update/delete op-
erations equivalent to the basic operations defined above. Alternatively, other lan-
guages allow defining that browsing a link triggers the execution of a complex opera-
tion op defined in the data model (or in some other model). Then, the basic operations
executed during the navigation are the ones specified in the definition of op.

Fig. 3 shows the process for creating a new sale. From the home page the user
accesses the NewSale page. From here, the user may move to the NewSaleLine page
or return to the HomePage again. During the navigation to NewSaleLine a new sale
(empty or with the selected customer, not shown in the figure) is created because of
the InsertSale operation attached to the link. In this page, the user selects the prod-
uct to buy and indicates the quantity. Then, the user may either navigate to the
CheckOut page (the new sale line and the connections between the line and the sale
and between the line and the selected product will be created when browsing the
link) or to buy additional products by following the link leading to the NewSaleLine
page again.

3 Complete and Correct Navigation Models

In this section, a navigation model N is formalized as a graph GN (section 3.1) in
order to check whether N satisfies the completeness (section 3.2) and correctness
(section 3.3) properties with respect to its corresponding data model D.

 On the Quality of Navigation Models with Content-Modification Operations 63

3.1 Graph Representation

Given a navigation model N, the graph GN = (VN , AN) is obtained by means of the
following rules:

- Every page in N is a vertex in VN.
- Every link in N from a page X to a page Y is an arc from X (i.e. from the

vertex representing X in GN) to Y in AN.
- The label of an arc a stores the (possibly empty) ordered sequence of ba-

sic operations associated to the link l represented by a in GN.

Note that GN is a directed graph (digraph), since being able to navigate from a page
X to a page Y does not imply that the navigation from Y to X is also possible. Some-
times GN turns out to be a multigraph [3] since it may contain multiple arcs with the
same orientation between a pair of vertices v1 and v2. This happens when the page
corresponding to v1 contains several links targeting the page represented by v2.

Fig. 4 shows the graph corresponding to the navigation model of Fig. 3

InsertSale

New
SaleLine

New
Sale

Home
Page

Check
Out

InsertSaleLine
InsertComposedOf
InsertReferences

InsertSaleLine
InsertComposedOf
InsertReferences

Fig. 4. Graph definition for the navigation model of Fig. 3

3.2 Completeness of a Navigation Model

Intuitively, a navigation model N is complete when the users of the web application
may perform all basic operations1 over the modifiable2 elements of the corresponding
data model D through interacting with the set of pages in N. Incomplete navigation
models result in web applications with parts of the data that users cannot modify.

The set of basic operations that N must contain are the ones explicitly provided
by the designer in D (or in some additional model [10]). If no operations are pro-
vided, this set of necessary basic operations may be automatically generated from D
using a simple set of rules. For instance, we could generate an InsertET operation
for each entity type ET in D, an UpdateAiET operation for each attribute Ai of ET in
D and so forth. We denote by setop the set of operations (either defined or gener-
ated) for D.

Definition 3.2.1. N is complete when, for each operation op in setop, it exists, at least,
an arc a in AN where op ∈ label(a)3.

1 When different user groups or roles are defined, we require that at least one of them can per-

form such an operation.
2 Designers can mark parts of the data model as read-only or derived.
3 Label(a) returns the ordered sequence of operations associated to the arc a.

64 J. Cabot, J. Ceballos, and C. Gómez

As an example, the graph of Fig. 4 is an incomplete navigation model regarding the
data model of Fig. 2 since, for instance, basic operations to create customers and
products are missing (no arc contains those operations).

Definition 3.2.2. N is minimal when it is complete and, for each operation op in setop,
there is a single arc a in AN satisfying that op ∈ label(a).

It is worth noting that non minimal navigation models may be useful. The designer
may decide on purpose to offer several alternatives (i.e. several navigation paths) to
execute the same kind of modification in the web application. However, we believe it
is worth detecting these cases so that the designer can review and validate them.

Given the previous definitions, verification that a given navigation model N is
complete (or minimal) is quite straightforward, we just need to generate the graph GN
for N and check if definition 3.2.1 (or definition 3.2.2) is satisfied by GN.

3.3 Correctness of a Navigational Model

A navigation model defines the possible navigation paths permitted in the web appli-
cation. Each navigation path admits several runs (i.e. run-time executions). Each run
represents a possible interaction scenario between a user and the application. During a
run several modification operations may be applied over the population of the entity
and relationships types defined in the data model.

In some particular executions, these operations may turn the data into an inconsis-
tent state (a state where some integrity constraint defined in the data model is not
satisfied). This may happen, for instance, when the user does not enter appropriate
values in the forms of the pages visited during the navigation. In such cases, all
changes performed during the run must be discarded.

It may happen that all possible runs following the same navigation path fail (i.e.
leave the data in an inconsistent state due to the execution of the basic operations in-
cluded in the path). Clearly, such navigation path is completely useless and should be
disabled in order to improve the performance and the usability of the web application.

As an example, consider the graph of Fig. 5 representing a simple navigation
model consisting of a home page and a page for deleting existing sales. The user se-
lects the sale to be deleted and then browses a link that deletes the sale and returns to
the same page again so that additional sales can be deleted. According to the multi-
plicities of the relationship type ComposedOf (Fig. 2), all sales must be related with at
least one sale line and all sales lines must be related to a sale. Therefore, when, after
deleting a sale, we do not delete the associated sale lines as well (or assign those sale
lines to a different sale) these multiplicity constraints will be violated. Hence, every
single time the user tries to interact with this navigation model, an error will be
raised4, independently of the sale the user selects.

Intuitively, correct navigation models are those that do not include navigation paths
that always (i.e. for all possible runs) lead to an inconsistent data state, regardless of
the parameter values the users provide during the interaction with the pages in the path.

4 Obviously, for this particular example we could define the database so that the sale deletion

removes all related sale lines in cascade. However, since this information is not expressed in
the model, this must be manually done after the initial code-generation.

 On the Quality of Navigation Models with Content-Modification Operations 65

 DeleteSaleDelete
Page

Home
Page

Fig. 5. Graph definition for deleting sales

Definition 3.3.1. A navigation model N is correct iff all navigation paths are correct.

This correctness definition relies on the computation of all navigation paths in N (sec-
tion 3.3.1) and on the formalization of the correctness property for a given navigation
path (section 3.3.2).

3.3.1 Determining the Possible Navigation Paths in a Navigation Model
Definition 3.3.2. Let SNavP be the set of possible navigation paths in N. Then, SNavP =
AllPaths(GN), where AllPaths(GN) returns the set of all paths in GN that do not include
repeated arcs (these kinds of paths are also known as trails [3]).

SNavP considers as valid navigation paths all possible paths. However, in general, not
all possible navigation paths in N are valid, since a user cannot start browsing the web
application choosing an arbitrary page but beginning in some predefined entry page.
Similarly with the exit pages, users are expected to follow the navigation path until
they arrive to some predefined exit page; after that they can quit or start from the
beginning again. For this purpose, some web modelling languages support the concept
of home page, the notion of transaction [4] or the concept of service [11].

When this information is available in the navigation model, we may discard from
SNavP those paths that either do not start in an entry page or do not finish in an exit
page. As an example, given the navigation model of Fig. 3 we could define that
HomePage is the entry page and that the exit pages are HomePage and CheckOut
page. Then, the navigation sequence {HomePage, NewSale, NewSaleLine, CheckOut}
would represent a valid path while {HomePage, NewSale} would not.

Clearly, the user may quit the web application before reaching an exit page. How-
ever, in that case the user is not properly interacting with the web application and thus
the correctness of this partial interaction does not affect the correctness of the navigation
model.

3.3.2 Correctness of a Navigation Path
Correctness of a navigation path depends on the operations associated to the arcs
contained in the path. The basic idea is that some operations require the presence of
other operations in a precedent or subsequent arc in the path in order to leave the data
in a consistent state. For instance, a path including an InsertSale operation on an arc ai

requires that at least an operation InsertComposedOf appears further in the path (that
is, it must exist an arc aj, j>=i, where InsertComposedOf ∈ label(aj)). Otherwise,
every run on this navigation path will end up in an inconsistent state due to the inser-
tion of a sale not related with any sale line, thus violating the minimum multiplicity
constraint of Sale in ComposedOf.

When an operation op1 requires the presence of another operation op2 in the same
path we say that op1 depends on op2. Dependencies for an operation depend on the

66 J. Cabot, J. Ceballos, and C. Gómez

type of the operation (insert, update,…) and on the integrity constraints defined in the
data model. We just consider graphical constraints (as the cardinality, disjoint and
complete constraints) since most web modelling languages do not permit the defini-
tion of textual integrity constraints.

A navigation path must satisfy all dependencies of all operations included in the
path to have a chance of finishing successfully. We denote by SeqOpnav the ordered
sequence of all operations associated to the arcs contained in the path. Given a naviga-
tion path nav consisting of the sequence of arcs a1…an, the first operation in SeqOpnav
is the first operation in label(a1) and the last operation is the last operation in label(an).

Note that the satisfaction of all dependencies is a necessary condition but not a suf-
ficient one to ensure that all runs following the navigation path end successfully (this
will depend on the exact parameter values provided by the user at run-time); this just
guarantees that a successful run exists at least (i.e. a navigation path including the
creation of a sale and the creation of a link between the sale and a sale line may fail if
the parameters for the operations are not the appropriate ones; a navigation path not
including the link creation after the sale creation will always fail).

Definition 3.3.3. A navigation path nav is correct when, for each operation opi in
SeqOpnav, the set of dependencies depopi for opi is satisfied in SeqOpnav

It may happen that an operation opi requires N (N>1) operations of type opj. This
dependency is satisfied in SeqOpnav when the N opj operations explicitly appear in it.
Alternatively, it is also satisfied if the navigation path nav consists of the arcs a1…an,
opi is associated to an arc ai, opj to an arc aj and there is a cycle in the graph including
aj but not ai. Iterating through the cycle N times, the user could generate the required
N opj operations when running the application.

In the following we define how to compute the exact set of dependencies depop for
an operation op. A dependency for an operation op is defined as a tuple <direction,
operation, number> where operation is the name of the operation required by op and
direction indicates if operation must be executed before op (symbol ←), after5 op
(symbol →) or if the exact position of op is irrelevant (symbol ↑). Number informs
about how many operations of type operation are required by op. More complex de-
pendencies are expressed as a sequence of simple ones joined with the logical AND
and OR operators (as an example, op may require the existence of the operations op1
and op2 or, alternatively, the existence of the operation op3).

Definition 3.3.4. Let ET be an entity type and op be an operation defined over ET.
Depop is computed as follows:
- If op = InsertET, there is a dependency depRT = <→, InsertRT, min(ET,RT)> for

each RT where min(ET,RT)≥1. Additionally, if ET is the supertype of a complete
generalization Gens(ET,ET1,…,ETn) there is a dependency depGensSup = <→, In-
sertETi, 1> for at least one ETi. If ET is a subtype of a disjoint and complete gen-
eralization Gens(ET’,ET,…) we need a dependency depGensSub = <←, InsertET’,
1>. Depop is the union of the depRT, depGensSup and depGensSub dependencies.

- If op = DeleteET, there is a dependency depRT = <←, DeleteRT, min(ET,RT)>
for each RT where min(ET,RT)≥1.. Additionally, if ET is a subtype of a disjoint

5 But not necessarily immediately before or after.

 On the Quality of Navigation Models with Content-Modification Operations 67

and complete generalization Gens(ET’, ET,…) there is a dependency depGensSub =
<→, DeleteET’, 1>. If ET is the supertype of a complete generalization
Gens(ET,ET1,…,ETn) there is a dependency depGensSup = <→, DeleteETi, 1> for at
least an ETi. Depop is the union of the depRT, depGensSup and depGensSub
dependencies.

Note that no dependencies are needed for the UpdateAiET operation since changes on
attribute values do not either violate cardinality, complete or disjoint constraints.

Definition 3.3.5. Let RT be a relationship type with two participants ET1 and ET2. Let
op be an operation defined over RT. Depop is computed as follows6:

- If op = InsertRT, there is a dependency depop = <↑, DeleteRT, 1> (if min(ETi,RT)
= max(ETi,RT) for just one participant ETi) OR <←, InsertETi, 1> for each ETi
such that min(ETi,RT) = max(ETi,RT) ≥1.

- If op = DeleteRT, there is a dependency depop = <↑, InsertRT, 1> (if min(ETi,RT)
= max(ETi,RT) for just one participant ETi) OR <←, DeleteETi, 1> for each ETi
such that min(ETi,RT) = max(ETi,RT) ≥1.

Consider the navigation path nav for the graph of Fig. 4 consisting of the navigation
sequence: {HomePage, NewSale, NewSaleLine, CheckOut}. For this path, SeqOpnav =
{InsertSale, InsertSaleLine, InsertComposedOf, InsertReferences}. To check the
correctness of nav we must consider the dependencies for all operations in SeqOpnav.
According to the previous rules, the dependencies are:

depInsertSale = <→, InsertComposedOf, 1>
depInsertSaleLine = <→, InsertComposedOf, 1> AND <→, InsertReferences, 1> depIn-

sertComposedOf = <←, InsertSaleLine, 1> OR <↑, DeleteComposedOf, 1>
depInsertReferences = <←, InsertSaleLine, 1> OR <↑, DeleteReferences, 1>

SeqOpnav satisfies the dependency for InsertSale since there is an InsertCompose-
dOf operation after the InsertSale operation in the sequence. Dependencies for Insert-
SaleLine are satisfied as well because SeqOpnav includes the InsertComposedOf and
InsertReferences operations after InsertSaleLine. Dependencies for InsertCompose-
dOf require that before this operation we find in SeqOpnav an InsertSaleLine operation
or (anywhere) a DeleteComposedOf. Since SeqOpnav contains the InsertSaleLine op-
eration before the InsertComposedOf operation, this OR-dependency is also satisfied.
This is likewise with the dependencies for InsertReferences. Therefore, all dependen-
cies for the operations in the path are satisfied and we may conclude that this naviga-
tion path is correct.

Given all these previous definitions, the verification that a navigation model N is
correct can be summarized in the following steps: 1 – Generation of the graph
GN, 2– computation of the function AllPaths, 3 – Computation of SeqOpnav for each
navigation path, 4 – Determining the dependencies for all operations in SeqOpnav with
the rules presented above and 5 – Checking that all paths satisfy the correctness
definition 3.3.3.

6 For some (unusual) cardinality combinations additional (longer) sets of dependencies could be

defined.

68 J. Cabot, J. Ceballos, and C. Gómez

4 Generating a Complete and Correct Navigational Model

Given a data model D, we show in this section how to automatically derive a prelimi-
nary navigation model that is guaranteed to be complete and correct with respect to D
(idea of correctness-by-construction [9]). Designers may complement this initial
navigation model (for instance, adding all details on the internal page structure) to
obtain the full navigation model for the web application.

Clearly, such automatic generation offers three main benefits. Firstly, designers
save time and effort by not defining the navigation model from scratch. Secondly, it
minimizes costly design errors since designers depart from an already complete and
correct model. Finally, the generated model may present several alternative naviga-
tion designs that go beyond the one/s the designer had in mind and that may be worth
exploiting in the final navigation model.

The construction of this initial model is split in several phases:

1. Generation of basic pages and links to ensure the completeness of the
navigation model

2. Combining basic pages to create correct navigation paths
3. Refactorings to improve the structure of the generated navigation model

As a result of the process, we obtain a graph GN representing the new navigation
model. Then, this graph can be translated into the actual navigation model by means
of reversing the rules introduced in section 3.1.

Each of the steps is described as follows.

4.1 Generation of a Complete Navigation Model

To be complete, the navigation model must contain all necessary data manipulation
operations to modify the underlying web application data. Thus, for each required
operation op, the graph GN must include at least an arc a verifying that op ∈ label(a).

Additionally, for each created arc a we define a new vertex v1 in the graph repre-
senting the page where the user can select/enter all the parameters required by op. The
link represented by a is anchored in that page, that is, v1 is the origin vertex for a. At
this stage of the process, we could use as a target page any other page of the model.
The easiest option is to assume that either the target page is the same page (so that the
user can apply again the same operation) or the home page.

 InsertSale

New
SaleLine

Home
Page

New
Sale

New
ComposedOf

InsertSaleLine

New
References

Remove
ComposedOf

InsertComposedOf

InsertReferences

DeleteComposedOf

Fig. 6. Graph corresponding to a complete navigation model

 On the Quality of Navigation Models with Content-Modification Operations 69

Assuming that the only operations that can be executed over the data model of
Fig. 2 are: InsertSale, InsertSaleLine, InsertComposedOf, InsertReferences and De-
leteComposedOf, a complete navigation model could be the one corresponding to the
graph shown in Fig. 6 From the home page, the user can access five different pages.
Each page permits to enter the necessary information to execute the operation at-
tached to the single exit link in the page. The exit link leads to the home page again.

4.2 Generation of a Complete and Correct Navigation Model

The previous graph corresponds to a complete navigation model but not a correct one
since, for instance, the user can insert a new sale without inserting the corresponding
sale lines thus leaving the data in an inconsistent state. In this section we extend this
initial graph to ensure its correctness. Due to space limitations, we focus on the
correctness of the subgraph including the home page and the new sale page.

As seen in section 3.3, correctness depends on the dependencies among the opera-
tions contained in the navigation paths of the graph. For instance, the occurrence of an
InsertSale operation in a navigation path nav requires that, to be correct, nav includes
an InsertComposedOf operation as well.

Therefore, a first step to ensure the correctness of the graph of Fig. 6 is to extend
the graph by adding a new vertex and a new arc with the InsertComposedOf operation
after the NewSale vertex (see Fig. 7). Now after inserting a new sale the user is redi-
rected to a page to create a ComposedOf link.

InsertSale New

ComposedOf
New
Sale

Home
Page

InsertComposedOf

Fig. 7. Graph corresponding to a partially correct navigation model

However, this navigation path is not yet correct. The addition of the InsertCom-
posedOf operation forces us to consider also the dependencies of this new operation.
InsertComposedOf requires a previous operation InsertSaleLine or, alternatively, the
existence of a DeleteComposedOf operation. None of them already appear in the path
so we need to add one of them as well. Since we have two different alternatives to
satisfy the correctness (either to add a new vertex and link for the InsertSaleLine or
for the DeleteComposedOf operation), we duplicate the path created up to now. Each
path takes one of the possible options so that we can cover all possible scenarios.
After, we continue the process with each path separately.

In the path with the InsertSaleLine operation we need to further add a new
InsertReferences operation. Dependencies for this latter operation are already satisfied
by the path so we can stop the process for this path. The path with the DeleteCom-
posedOf operation does not need new extensions (dependencies for DeleteCompose-
dOf are satisfied if earlier in the path we find a DeleteSale or a InsertComposedBy as
it is the case).

70 J. Cabot, J. Ceballos, and C. Gómez

Fig. 8 shows the final aspect for this part of the graph. From the home page, we can
insert a new sale in two different ways. We can either insert the sale and the related
sale line or, alternatively, we can insert the sale and assign an existing sale line (pre-
viously related to a different sale) to the sale. The designer may decide if this second
alternative makes sense in this particular domain. The decision cannot be automated.

 InsertReferences

InsertSale New
SaleLine

New
Sale Home

Page

InsertSaleLine New
ComposedOf

InsertComposedOf New
References

New
Sale

New
ComposedOf

InsertComposedOf Remove
ComposedOf

InsertSale

DeleteComposedOf

Fig. 8. Graph corresponding to a correct and complete navigation model

The generation process may add some extra arcs to create cycles in the graph. Cy-
cles are created when the multiplicities of relationship types modified in the path are
greater than one. In the previous example the graph should offer the option of adding
several sale lines for the same sale as permitted by the multiplicities of ComposedOf.

More formally, the generation of a correct navigation model can be summarized in
the following steps:

1. Compute the function AllPaths (see section 3.3.1) for the complete graph ob-
tained in the previous section. AllPaths in this case just needs to consider the
arcs between the home page and each specific page created for the required
operations.

2. For each path compute the transitive closure of the dependencies of the opera-
tions in the path. The transitive closure can be computed by means of recur-
sively applying the dependency rules of section 3.3.2 over the new operations
added to the path until no more operations are added. When finding alternative
dependencies (none of them already satisfied in the path) we create an addi-
tional path for each alternative.

3. Extending the graph with the new vertices and arcs that are necessary to sat-
isfy all dependencies appearing in the transitive closure.

4.3 Refactorings for Navigation Models

Refactorings were initially proposed at the code level [8] as a disciplined technique
for improving the structure of existing code (using simple transformations) without
changing the external observable behavior. More recently, some work has been car-
ried out to apply this technique on software models instead of on source code [12].

In this section we propose three simple refactorings to automatically improve the
structure of the navigation model obtained at the end of the previous step. In our case,
“without changing the external observable behavior” means without turning the
model into an incomplete or incorrect model, that is, refactorings are transformations
of the graph GN representing a navigation model N that keep the completeness and
correctness properties of N.

 On the Quality of Navigation Models with Content-Modification Operations 71

Refactoring 1. Removal of redundant navigation paths. Given two navigation paths
n1 and n2, we say that paths n1 and n2 are equivalent when SeqOpn1 = SeqOpn2, where
SeqOpni represents the ordered sequence of operations associated to the arcs of ni. If
two navigation paths are equivalent they are also redundant since the removal of one
of them does not affect the completeness or the correctness of the navigation model.
This refactoring removes all redundant navigation paths. The removal of a path con-
sists in the removal of all arcs and nodes in the path not appearing in any other (non-
redundant) path.

Refactoring 2. Head-Merging of navigation paths. Given two navigation paths
n1={<v1,a1,v2>,<v2,a2,v3>,…,<vx-1,ax-1,vx>} and n2={<v’1,a’1,v’2>, <v’2,a’2,v’3>,
….,<v’y-1,a’y-1,v’y>} we can merge the beginning of the two paths when there is an
interval 1..i where for all k, 1<=k<=i, label(ak)=label(a’k) (that is when the first part
of the path coincides in n1 and n2). After applying the refactoring, n2 becomes
n2={<v1,a1,v2>, <v2,a2,v3>, …, <vi-1,ai-1,vi>,<vi,a’i,v’i+1>, ….,<v’y-1,a’y-1,v’y>}

Refactoring 3. Tail-Merging of navigation paths. Given two navigation paths
n1={<v1,a1,v2>, <v2,a2,v3>,….,<vx-1,ax-1,vx>} and n2={<v’1,a’1,v’2>, <v’2,a’2,v’3>,
….,<v’y-1,a’y-1,v’y>} we can merge the end of the two paths when there is an interval
1..i where for all k, 1<=k<=i, label(ax-k)=label(a’y-k) (that is when the last part of the
path coincides in n1 and n2). After applying the refactoring, n2 becomes
n2={<v’1,a’1,v’2>, <v’2,a’2,v’3>,…, <v’y-i,ay-i,vx-i+1>,….,<vx-1,ax-1,vx>}

The application of the second refactoring over the graph of Fig. 8 results in the new
graph shown in Fig. 9.

 InsertReferences

InsertSale New
SaleLineNew

Sale
Home
Page

InsertSaleLine New
ComposedOf

InsertComposedOf New
References

New
ComposedOf

InsertComposedOf Remove
ComposedOfInsertSale

DeleteComposedOf

Fig. 9. Graph after applying the second refactoring

Apart from these automatic refactorings we could also provide several manual
refactorings (i.e. refactorings that the designer must decide where and when to apply
them). For instance, we could merge the nodes NewSaleLine, NewComposedOf and
NewReferences in a single page with an outgoing link including the (ordered) se-
quence of operations included in the outgoing links for the three pages.

5 Related Work

Two kinds of related research are relevant to this paper: methods proposing properties
to determine the quality of navigation models and methods devoted to the automatic
generation of navigation models from data models.

72 J. Cabot, J. Ceballos, and C. Gómez

Regarding quality aspects of navigation models, current proposals are rather
limited. CASE tools provide limited verification facilities, mainly purely syntactic
analysis of the correctness of the models regarding the syntax and semantics of the
modelling languages. Other common supported properties include basic verifications
of the navigation structure, as the reachability of all pages from the home page [4],
[5]. [11] accepts the definition of a route for each conceptual user service. A route
represents the sequence of steps that the user must follow to complete the service.
Then, it checks that the structure of the navigation model is consistent with the de-
fined routes. A few powerful formal verifiers also exist (see [6] as an example)
though they are not yet fully integrated with current web development methods,
which hamper their practical usability. Moreover, none of these proposals consider
the specificities of navigation models with content-modification operations or the
relationship between navigation models and their related data models as the quality
properties we have defined in this paper.

With respect to the automatic generation of navigation models, existing approaches
(as [1], [7] and [2]) derive the structure of the navigation model based on the relation-
ships among the entity types in the data model (outside the web community, we find
similar proposals, devoted to the automatic generation of the application graphical-
user interface, see [14] as an example). Nevertheless, the generated models are just
read-only navigation models for browsing the data; they do not include data modifica-
tion functionalities.

Other important kinds of quality properties, as usability and accessibility of web
applications [16] are outside the scope of this paper.

6 Conclusions and Further Work

We have presented two new quality properties (completeness and correctness of navi-
gation models) that focus on the relationship between navigation and data models
defined for the same web application. With these properties we can check whether a
navigation model conforms to its data model so that inconsistencies between them can
be detected in the early stages of the web application development process.

Our properties complement current quality checks for navigation models, which do
not consider the data modification operations that may appear in those models. We
believe that our properties are relevant to current web development methods address-
ing the definition and generation of fully-fledged web applications.

Also, we have shown how these properties can be used to automatically generate a
preliminary version of a navigation model once the data model has been specified.
This initial navigation model can then be refined by the designer in order to obtain the
final navigation model for the web application.

Regarding further work, we would like to extend our quality assessment by detect-
ing not only errors in the navigation model but also other kinds of problematic situa-
tions (“warnings”) that should be revised and by exploring the applicability of our
graph-based representation to check additional properties (some properties may be
reduced to path problems over our graph [15]) Besides, we also plan to improve our

 On the Quality of Navigation Models with Content-Modification Operations 73

current generation method for navigation models to include additional patterns and
refactorings that make the model closer to the final one expected by the designer.
Finally, we plan to validate our approach using an industrial case study.

Acknowledgments

We would like to thank the people of the GMC group and the anonymous reviewers
for their many useful comments in the preparation of this paper. This work has been
partially supported by the Ministerio de Ciencia y Tecnología under the project
TIN2005-06053 and the integrated action HI2006-0208.

References

1. Albert, M., Pelechano, V., Fons, J., Rojas, G., Pastor, O.: Extracting Knowledge from As-
sociation Relationships to Build Navigational Models. LA-WEB’03, pp. 2–10 (2003)

2. Assossou, D., Wack, M.: Transformation Rules from Conceptual Model to Navigational
Model in Hypermedia Applications. WEBIST’06 (1) pp. 428-434 (2006)

3. Bollobás, B.: Modern Graph Theory, p. 394. Springer-Verlag, Heidelberg (1998)
4. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a modeling lan-

guage for designing Web sites. Computer Networks 33(1-6), 137–157 (2000)
5. Comai, S., Matera, M., Maurino, A.: A Model and an XSL Framework for Analyzing the

Quality of WebML Conceptual Schemas. In: Spaccapietra, S., March, S.T., Kambayashi,
Y. (eds.) ER 2002. LNCS, vol. 2503, pp. 339–350. Springer, Heidelberg (2002)

6. Deutsch, A., Marcus, M., Sui, L., Vianu, V., Zhou, D.: A Verifier for Interactive, Data-
driven Web Applications, SIGMOD’05, pp. 539–550 (2005)

7. Falquet, G., Guyot, J., Nerima, L., Park, S.: Design and analysis of active hypertext views
on databases, Information Modeling for Internet Applications, pp. 40–58. Idea Group Pub-
lishing (2003)

8. Fowler, M.: Refactoring: Improving the design of existing code, p. 464. Addison-Wesley,
London, UK (1998)

9. Hall, A., Chapman, R.: Correctness by construction. IEEE Software 19(1), 18–25 (2002)
10. Jakob, M., Schwarz, H., Kaiser, F., Mitschang, B.: Modeling and Generating Application

Logic for Data-Intensive Web Applications, ICWE’06, pp. 77–84 (2006)
11. Lucas, F.J., Molina, F., Toval, A., de Castro, M.V., Cáceres, P., Marcos, E.: Precise WIS

Development. ICWE’06, pp. 71–76 (2006)
12. Mens, T., Tourwé, T.: A Survey of Software Refactoring. IEEE Trans. Software

Eng. 30(2), 126–139 (2004)
13. Pastor, O., Fons, J., Pelechano, V., Abrahao, S.: Conceptual Modelling of Web Applica-

tions: The OOWS approach. In: Web Engineering, pp. 277–302. Springer-Verlag, Heidel-
berg (2006)

14. Pizano, A., Shirota, Y., Iizawa, A.: Automatic Generation of Graphical User Interfaces for
Interactive Database Applications. CIKM’93, pp. 344–355 (1993)

15. Tarjan, R.E.: Fast algorithms for solving path problems. Journal of the ACM 28(3),
594–614 (1981)

16. Vanderdonckt, J., Beirekdar, A.: Automated Web Evaluation by Guideline Review, Jour-
nal of Web Engineering 4(2), 102–117 (2005)

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 74–89, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Metamodeling the Quality of the Web Development
Process’ Intermediate Artifacts

Cristina Cachero1, Coral Calero2, and Geert Poels3

1 University of Alicante. Spain
ccachero@dlsi.ua.es

2 ALARCOS Research Group. University of Castilla-La Mancha. Spain
Coral.Calero@uclm.es

3 Faculty of Economics and Business Administration, Ghent University. Belgium
geert.poels@ugent.be

Abstract. WE practices lack an impact on industry, partly due to a WE field
that is not quality-aware. In fact, it is difficult to find WE methodologies that
pay explicit attention to quality aspects. However, the use of a systematic proc-
ess that includes quality concerns from the earliest stages of development can
contribute to easing the building up of quality-guaranteed Web applications
without drastically increasing development costs and time-to-market. In this
kind of process, quality issues should be taken into account while developing
each outgoing artifact, from the requirements model to the final application. .
Also, quality models should be defined to evaluate the quality of intermediate
WE artifacts and how it contributes to improving the quality of the deployed
application. In order to tackle its construction while avoiding some of the most
common problems that existing quality models suffer from, in this paper we
propose a number of WE quality models to address the idiosyncrasies of the dif-
ferent stakeholders and WE software artifacts involved. Additionally, we pro-
pose that these WE quality models are supported by an ontology-based WE
measurement meta-model that provides a set of concepts with clear semantics
and relationships. This WE Quality Metamodel is one of the main contributions
of this paper. Furthermore, we provide an example that illustrates how such a
metamodel may drive the definition of a particular WE quality model.

Keywords: web quality process, web quality, web process quality, web meas-
urement, ontology, metamodel, navigational model.

1 Introduction

It is an avowed fact that WE practices lack a big impact on industry [1]. This situation
is at least partly caused by a WE field that is not quality-aware. In fact, it is difficult
to find WE methodologies that include explicit support for quality aspects among
their characteristics. In order to change this situation and assess the quality of the
different WE artifacts, we need to define specific evaluation instruments. Such in-
struments may come in the shape of a Quality Model, defined by the ISO as the set of
characteristics and the relationships between them which provide the basis for speci-
fying quality requirements and evaluating quality [2].

 Metamodeling the Quality of the Web Development Process’ Intermediate Artifacts 75

At this point, a question may arise: what should be the objective of such quality in-
struments? Garvin [3] defines five different quality perspectives, among which two
have been widely adopted when defining quality models. The first one is ‘quality as
the degree of compliance with respect to certain specifications’. This is the most
widespread perspective in Software Engineering due to the fact that in this kind of
quality assurance the end user is not involved and therefore measures are easier and
cheaper to take. The second perspective is quality as ‘meeting customer needs’. Even
if much more complex to evaluate, it is this second perspective the one that, according
to the ISO/IEC 9126 [2] and ISO/IEC 14598 [4] standards, should make up the over-
all objective of any quality evaluation process. Provided that we narrow the term
‘customer’ to that of ‘end-user’, this concept of quality from the end-users’ perspec-
tive is what the ISO/IEC 9126 standard defines as ‘quality in use’, that is, the effi-
ciency, productivity, security and satisfaction with which users use the application to
satisfy specific goals under specific conditions.

This ISO recommendation agrees with the fact that quality in use, even if it has not
been tackled in a systematic way, is a widespread concern among Web developers,
due to the necessity for most applications to keep the audience coming back to the site
[5]. However, this concern is no reflected in current Web quality evaluation practices.
If we examine the myriad of Web design guidelines [6] and automated measures [7]
that can be gathered in literature we observe that, as it happens in Software Engineer-
ing, such Web evaluation effort reflects a ‘conformance to specification perspective’,
that is, implicitly assumes the assessment of quality before the user is actually inter-
acting with the application. One second problem of using such measures and guide-
lines is that, talking in terms of the OMG Standard Metapyramid [8] (see main subdi-
visions in Figure 1), the Web quality evaluation effort is concentrated on the M1-
Implementation level (measures over the application code, without running it) and
M0-test level of abstraction (code running under testing conditions). Only log analysis
techniques have strived to evaluate the end-user actual behavior.

M1-Implementation

M0-Running Code with test users under testing conditions

M1-Presentation

M1-Navigation

M1-Domain

M1-Requirements

M2-MetaModels

Traditional

Web

Quality

Evaluation

Our proposed

WE Quality

Evaluation

Scope

M3-MOF

M0-Running Code with real users under real conditions of use

Fig. 1. The OMG standard metapyramid with additional WE subdivisions to distinguish among
different levels of abstraction at M1 level (adapted from ISO10027)

Starting to assess quality at such a late stage of development is avowed to have a

negative impact on the final product cost and quality [9]. In fact, according to Moody

76 C. Cachero, C. Calero, and G. Poels

and Shanks [10], the cost associated with removing a defect during design is on aver-
age 3.5 times greater than during requirements; at implementation stage the effort
associated with removing the same defect can be up to 50 times greater, and up to 170
times greater after delivery. Other empirical studies have shown that moving quality
evaluation effort up to the early phases of development can be 33 times more cost
effective than testing done at the end of the development.

The solution to these two problems requires therefore to conciliate an early evalua-
tion of the main internal Web products (that is, a ‘conformance to specification’
evaluation that is not just centered on code, but also makes use of early models, from
requirements to implementation, see Figure 1) with the necessity of ‘meeting cus-
tomer needs’, which implies taking into account the actual user behaviour under real
conditions of use. Fortunately, the ISO set of quality standards establishes that the
‘conformance to specifications’ degree of a given software product (such as interme-
diate artifacts generated as part of a WE process) may be a valid predictor of the abil-
ity of the product to meeting user needs. This assumption means that is it possible to
improve the Web quality in use by working on the quality of each outgoing artifact
that participates in a typical WE process, from the requirements model to the final
application to be delivered. The, only requisite is that the translation from the ‘
meeting user needs’ (whose fulfillment is the final objective of the development proc-
ess) quality perspective to the set of specific ‘conformance to specifications’ require-
ments defined for each model (which analysts/designers can systematically check) is
accurately defined.

In order to perform such inclusion of quality concerns in existing WE methodolo-
gies in a sensible a consistent way, we have developed a proposal that has three main
elements: (1) a quality-aware Web development process, (2) a set of general-purpose
WE quality models specific for each stakeholder and/or WE artifact and, (3) a WE-
Software Measurement Metamodel (SMM) that permits to operationalize and, if
needed, also tailor, those quality models according to a particular domain and/or ap-
plication. All three elements are based on principles and achievements that, uncovered
in different quality lines of research, provide insights into how to deal with quality in
each of the different workflows that a typical WE process defines, from requirements
to implementation.

In this paper we are centering on the last two elements of our approach, that is, the
definition of WE quality models and their adaptation to particular Web applications.
To justify the necessity for our proposal, in Section 2 we present a brief overview of
the main problems that existing quality models suffer from. How (1) the use of the
Software Measurement Ontology (SMO) and (2) the definition of an associated WE
measurement metamodel that guides the construction and adaptation of the quality
model, can contribute to palliate such problems is presented in Section 3. This WE
Measurement Metamodel must be instantiated to reflect a certain WE quality model
as well as any necessary tailoring. An example of such instantiation that reflects an
hypothetical Navigational quality model is developed in Section 4. Last, conclusions
and future work are explained in Section 5.

 Metamodeling the Quality of the Web Development Process’ Intermediate Artifacts 77

2 Related Work

Quality models for software products are far from scarce. Well known pioneer models
include McCall [12], Boehm[13], Dromey [14] and ISO/IEC 9126 [2]. All of them
center on measurable elements over the implementation of the software product on
one hand, and on the (abstract) quality characteristics on the other hand, and try to
establish relationships among both dimensions.

There are various proposals of specific Web quality models, most of them tackling
the Web idiosyncrasy from the ‘meet the user needs’ perspective [15, 16, 17, 18, 19].
From them, only [20] and [19] promote considering other artifacts (apart from code)
that may take part in the WE development cycle, and none of them provide independ-
ent quality models for each level of abstraction. These approaches can however be
refined and complemented by research in conceptual modeling quality (e.g. Lindland
et a. framework [12], Krogstie et al. framework [21] and Moody and Shanks frame-
work [11]), which provides further insight into how the quality concept can be dealt
with at higher levels of abstraction. Last but not least, Web quality evaluation needs
to be performed following a well defined quality evaluation process. Some well
known Web quality evaluation processes are WebQUEM [15] and WebTango [7].
The main drawback of these processes is that they assume that Web quality evaluation
is performed on the deployed application. Only [11] and [19] present a broader per-
spective and try to conciliate Web quality evaluation with a general WE development
process, even if they only provide general guidelines and not specific proposals.
Next, we present the challenges all these fields pose, and how we propose to integrate
them in a single, consolidated proposal in the context of WE.

2.1 Research Issues

When trying to operationalize all the myriad of different quality models and quality
evaluation processes that have been proposed in literature, several theoretical and
practical issues arise: [10, 22]:

• P1: Terminology inconsistencies. Most approaches (the exception being those
based on theoretical grounds) lack a definition for quality concepts that is precise
and concise. For instance, while in the ISO/IEC 9241-11 usability refers to the end-
user perception as a whole (and therefore encompasses efficiency effectiveness and
satisfaction), in the ISO/IEC 9126 end-user perception is referred to as ‘quality in
use’, and usability is only one of the internal characteristics that may affect such
quality in use.

• P2: Partially defined. Most quality models are outlined but not fully developed. All
define measurable concepts, some of them also attributes, few of them include (most
often partial) measures and scarcely any defines decision criteria or indicators.

• P3: Lack of focus. Most quality models provide an extensive (and mostly tangled)
coverage of stakeholders and levels of abstraction. An example of such assertion is
the QUIM model [22], which aims at being a consolidated usability model that in-
tegrates all possible perspectives. As another example, WQM [16] covers 10 fac-
tors, 26 subfactors and 127 measures that may be related to any WE artifact, from
analysis to implementation.

78 C. Cachero, C. Calero, and G. Poels

• P4: Disregard for process quality. Most quality models define criteria and, in
some cases, measures for evaluating products (error detection), but not how to de-
velop products in a way that assures a certain level of quality (error prevention).

• P5: Lack of integration with current practices. Quality management is not inte-
grated into current WE practices.

• P6: Lack of simplification and validation. Quality models that include measures
usually pay little attention to the theoretical/empirical validation of the included
measures. Furthermore, although empirical research has shown that a few measures
most times suffice to obtain significant gains in quality ([11]), quality models usu-
ally include an extensive, even redundant set of measures. Such verboseness un-
necessarily increases the complexity and therefore hampers the potential usefulness
of the quality models.

• P7: Interdependencies and measure interpretations not clear. In most quality
models (again the notable exception being those that are based on theory), the de-
gree of influence of individual internal quality factors on the quality in use of the
application, as well as their interdependencies, are not well established. For exam-
ple, the role of learnability versus understandability in the usability model pre-
sented in [19] is an open issue. Also, little information is provided on how to inter-
pret measurement results.

• P8: Lack of tool support. Although most Web measures are automated, tool sup-
port for the definition of quality models and, even more important, for the automa-
tion of the measurement process on a given Web application is still an open issue.

• P9: Lack of guidelines for improvements. Even in the case of being able to
evaluate a certain Web characteristic, to our knowledge extent no quality model
provides a clue about how (by means of which changes in the artifacts) such
evaluation could be improved, let alone to which extent such changes may affect
the evaluation of other characteristic included in the quality model.

In order to overcome these problems, certain requirements should be achieved when
defining WE quality models and integrating them with WE development processes:

Requirement 1. WE quality models should be expressed using a set of clear con-
cepts with clear semantics and relationships, in order to ease their understanding
and assure a structural coherence. This palliates problems P1, P2 and P3.
Requirement 2. WE quality models should be defined taking into account a spe-
cific stakeholder and a specific software artifact. This palliates problem P3.
Requirement 3. WE quality models should be accompanied by a WE quality
evaluation process. Such process must be defined and integrated with the WE de-
velopment process. This contributes to overcome problems P3, P4, and P5. Fur-
thermore, for the definition of the WE quality evaluation process, standards should
be followed when possible. This alleviates problem P6.
Requirement 4. Guidelines should be provided when possible to improve WE ar-
tifacts according to the WE Quality Model under consideration. Such guidelines
should also if possible preserve the semi-automatic nature of the WE process. This
contributes to solve problem P9.
Requirement 5. The integration of WE quality models in the WE process should
preserve the semi-automated nature of such process. This contributes to alleviating
problem P8.

 Metamodeling the Quality of the Web Development Process’ Intermediate Artifacts 79

Requirement 6. WE quality models should be empirically validated before being
included in the WE process. This palliates problems P6 and P7.

In this paper, we will center on how the definition of WE Quality models that pre-
serve Requirement 1 and Requirement 2 can be achieved if we base them on an on-
tology-based WE measurement meta-model. The use of a meta-model assures the
syntactic correctness of the WE Quality Models (including completeness restrictions
and focus control on specific stakeholders and specific WE artifacts), while the fact
that this meta-model is based on an ontology contributes to avoiding terminology
inconsistencies.

3 Definition of WE Quality Models Following an Ontology and a
Meta-model

As we presented previously, one of the problems that existing quality models face is
terminology inconsistencies. In order to overcome such problem we need a common
vocabulary both to express WE concepts and to express quality concepts. Such com-
mon vocabulary usually comes in ontology form.

Software Measures

Measurement

Characterization and Objectives

Measurement Approaches

Measurement Method
(from Measurement Approaches)

Base Measure
(from Software Measures)

1..*

1

1..*

1

uses

Measurement Function
(from Measurement Approaches)

0..*

0..*

0..*

0..*

uses

Derived Measure
(from Software Measures)

0..*

0..*

0..*

0..*

calculated with

0..*

0..*

0..*

0..*

uses

Quality Model

kind
(from Characterization and Objectives)

Measurement Result

value
(from Measurement)

Measurement Approach

(from Measurement)

Type of Scale
(from Software Measures)

Entity Class
(from Characterization and Objectives)

0..* 0..*0..*

includes

0..*

1

*

1

*

defined for

Measurable Concept
(from Characterization and Objectives)

1..* 1..*1..* 1..*

evaluates

0..*

0..*

0..*

includes
0..*

Measurement

LocationInTime

(from Measurement)

1

1

1

1
produces

1

*

1

*

performs

Unit of Measurement
(from Software Measures)

Scale
(from Software Measures)

1..*

1

1..*

1
belongs to

Attribute
(from Characterization and Objectives)

1 1..*1 1..*

has

*

1

*

1

Is performed on

1..*

1..*

1..*

1..*

relates

Information Need
(from Characterization and Objectives)

1

1..*

1

1..*is associated with

Measure
(from Software Measures)

*

1

*

1

uses

0..* 0..*0..*

transformation

0..* 1..*

0..1

1..*

0..1

expressed in

1..*

1

1..*

1

has

0..*1..* 0..*1..*
defined for

Indicator
(from Software Measures)

1..*

0..*

1..*

0..*

satisfies

Decision Criteria
(from Measurement Approaches)

Analysis Model
(from Measurement Approaches)

1..*

0..*

1..*

0..*

uses

1..*

1

1..*

1

calculated with

1..*

1..*

1..*

1..*

uses

Entity
(from Characterization and Objectives)

1..*

0..*

1..*

0..*

belongs to

*1 *1

Is performed on

0..*0..*

composed of

Fig. 2. The UML diagram of the SMO

80 C. Cachero, C. Calero, and G. Poels

Ontologies, defined as explicit, formal and shared specifications of a conceptuali-
zation, have been widely used in Software Engineering [23]. The use of an ontology
not only avoids vocabulary conflicts and inconsistencies but also establishes the ade-
quate level of detail for the definition of each concept.

While the definition of a WE ontology is still being worked on and remains out of
the scope of this paper, the greater maturity of the measurement field causes some
proposals for measurement ontologies to co-exist. From them, the Software Meas-
urement Ontology (SMO)[24] is, to our knowledge extent, the most complete one,
which is the reason why we have chosen it as the basis for our approach. The SMO
ontology is structured around four packages, namely:

• Software Measurement Characterization and Objectives, which includes the
concepts required to establish the scope and objectives of the software measure-
ment process.

• Software Measures, which aims at establishing and clarifying the key elements in
the definition of a software measure.

• Measurement Approaches, which introduces the concepts necessary for reflect-
ing measurement results.

• Measurement, which establishes the terminology related to the act of measuring
software.

Table 1. SMO terms definition

Term Definition
Measurement Approach Sequence of operations aimed at determining the value of a measurement result. (A measurement

approach is either a measurement method, a measurement function or an analysis model)
Measurement A set of operations having the object of determining the value of a measurement result, for a given

attribute of an entity, using a measurement approach
Measurement Result The number or category assigned to an attribute of an entity by making a measurement
Information Need Insight necessary to manage objectives, goals, risks, and problems
Measurable Concept Abstract relationship between attributes of entities and information needs
Entity Object that is to be characterized by measuring its attributes
Entity Class The collection of all entities that satisfy a given predicate
Attribute A measurable physical or abstract property of an entity, that is shared by all the entities of an entity

class
Quality Model The set of measurable concepts and the relationships between them which provide the basis for

specifying quality requirements and evaluating the quality of the entities of a given entity class
Measure The defined measurement approach and the measurement scale. (A measurement approach is either

a measurement method, a measurement function or an analysis model)
Scale A set of values with defined properties
Type of Scale The nature of the relationship between values on the scale
Unit of Measurement Particular quantity, defined and adopted by convention, with which other quantities of the same kind

are compared in order to express their magnitude relative to that quantity
Base Measure A measure of an attribute that does not depend upon any other measure, and whose measurement

approach is a measurement method
Derived Measure A measure that is derived from other base or derived measures, using a measurement function as

measurement approach
Indicator A measure that is derived from other measures using an analysis model as measurement approach
Measurement Method Logical sequence of operations, described generically, used in quantifying an attribute with respect

to a specified scale. (A measurement method is the measurement approach that defines a base
measure)

Measurement Function An algorithm or calculation performed to combine two or more base or derived measures. (A
measurement function is the measurement approach that defines a derived measure)

Analysis Model Algorithm or calculation combining one or more measures with associated decision criteria. (An
analysis model is the measurement approach that defines an indicator)

Decision Criteria Thresholds, targets, or patterns used to determine the need for action or further investigation, or to
describe the level of confidence in a given result

 Metamodeling the Quality of the Web Development Process’ Intermediate Artifacts 81

In Figure 2 the UML diagram of the ontology is presented, while in Table 1 the con-
cepts defined in the ontology are shown.

This ontology is the basis on which a namesake (and structure-equivalent) meta-
model has been defined [25]. Next, we present how we have adapted such meta-
model to meet our detected needs.

3.1 The WE Software Measurement Meta-Model (WE-SMM)

The Software Measurement Meta-Model (SMM) presented in [25] is a mirror of the
Software Measurement Ontology presented in Figure 2, and may be instantiated to
define in a systematic and non-ambiguous way a quality model that includes all the
necessary concepts for its operationalization. The main advantage of using meta-
models instead of ontologies in the context of a software development process stems
in their prescriptive rather than descriptive nature, what permits the designer to make
assumptions on the quality models that are not possible with ontologies. Furthermore,
while ontologies need to be general, meta-models can be tailored to meeting specific
needs. In our case, and given the fact that we aim at simplifying as much as possible
the definition of WE Quality Models, we have adapted the SMM to the WE environ-
ment, with the aim of making its instantiation more intuitive for Web designers. Such
WE-SMM is presented in Figure 3.

Summarizing, the construction of this WE-SMM has implied the following actions
over the original SMM:

• We have limited the risk for inconsistencies in the measurement model by elimi-
nating SMM redundant relationships.

• We have limited the set of valid Entity Classes to the outgoing artifacts of the WE
development process. In this way, measurable concepts that are to be measured on
different WE artifacts are forced to belong to different quality models.

• We have introduced a global Information Need that is connected with the WE-
quality model as a whole to justify its definition. For the structure of this Global In-
formation Need we propose to use the GQM template for goal definition [13].

• In order to keep the quality model simple, we have restricted the number of Infor-
mation Need objects that can be associated wich each Measurable Concept (1)

• For the same reason, we have established that each Information Need be satisfied
by a single Indicator, implying that the Measurable Concept connected with the In-
formation Need is also (transitively) associated with that indicator.

• In order to assure that every Attribute is measurable, every attribute defined in a
WE quality model should be associated with at least one Measure that is devoted to
measuring such Attribute. This restriction makes sure that the evaluation model is
operationally defined by means of Measures, that is, no reliant on subjective inter-
pretations of concepts [10].

• In order to further contextualize the WE quality model and help to keep the focus,
we have added a ‘Stakeholder’ element to the original SMM. Stakeholders are usu-
ally not explicitly identified in existing quality models. However, as stated in [11],
they are important in any quality model, as different Stakeholders will generally be
interested in different Measurable Concepts. The instantiation possibilities of this

82 C. Cachero, C. Calero, and G. Poels

concept in the context of WE are (1) Analysts/Designers, (2) Develop-
ers/Maintainers and (3) Customers (subdivided into Acquirers and End-Users)

• Finally, we have omitted from the WE-SMM the Measurement package, due to the
fact that their elements do not contribute to the definition of quality models but
rather to the results of their operationalization.

Additionally, and although not directly reflected in the WE-SMM, in order to control
the quality model complexity we recommend the limitation of the hierarchy depth of
Measurable Concepts to two levels of detail. Also, following the ISO/IEC 9126 ex-
ample, these two levels should be characterized by familiar labels and concise defini-
tions. Similarly, attributes associated with Entity Classes should also be familiar and
provide concise definitions. Finally, in order to facilitate a hypothetical merging of
quality models at different levels of abstraction into a general, well-structured WE
Global Quality Model, we recommend that attributes for the different models have
unique names in the context of the WE field.

The concepts and relationships included in this meta-model, together with the addi-
tional recommendations, force a certain structure similarity among any quality model

Measurement Method

Base Measure

1..n

1

1..n

1

uses

Measurement Function

0..n

0..n

0..n

0..n

uses

Derived Measure

0..n

0..n

0..n

0..n

calculated with

0..n

0..n

0..n

0..n

uses

Type of Scale

Information Need

Indicator

1

1

satisfies

Decision Criteria

Measurable Concept

11

1
is associated with

Unit of Measurement

Scale

1..n

1

1..n

1
belongs to

Analysis Model

1..n

1

1..n

1

calculated with

1..n

1..n

1..n

1..n

uses

WE Quality Model
1..n

1

1..n

evaluates

Measurement Approach

Attribute
Measure

0..n 0..n0..n

transformation

0..n 1..n

1

1..n

expressed in

1..n

1

1..n

1

has

1..n 1..n1..n

defined for
Entity Class

1

n

1

n

defined for

1 1..n1 1..n

has

Stakeholder

n

1

defined for

1

Global

Information Need

0..n 1

defined for

Fig. 3. WE-Measurement metamodel

 Metamodeling the Quality of the Web Development Process’ Intermediate Artifacts 83

defined based on it, what in turn facilitates the understanding and discussion of WE
quality models among both researchers and practitioners.

With a WE-SMM that is based on a SMO we are fulfilling Requirements 1 and 2
(see Section 2). Next we present an example of how to use these instruments to define
particular WE Quality Models.

4 WE-SMM Based Definition of WE-Quality Models

The WE-SMM defined above can be easily instantiated to define a complete and
structurally sound quality model over any WE intermediate artifact with the ultimate
objective of assuring certain characteristics that may contribute to improving the qual-
ity in use of the application. Such quality model can be general (when it does not take
into account the particularities of the domain and/or application under evaluation) or
particular, if such knowledge introduces any divergence in the elements that are taken
into account for the evaluation task, This means that, while Quality Models in litera-
ture usually reflect a global view of the set of measurable concepts, measures and so
on that may be applied at a certain level of abstraction (that required by the measures
included), our WE-SMM instantiation may furthermore involve a tailoring process
over the original Quality Model to adapt it to a given application in a given domain.
During this tailoring process certain fine-tuning actions can be performed. For in-
stance, more specific decision criteria that better reflect the domain knowledge could
be defined, or certain attributes/measures may be dismissed to even further simplify
the measurement process. Furthermore, we say that the WE-SMM instantiation opera-
tionalizes a Quality Model, due to the fact that (1) it obligues the QM to present cer-
tain characteristics (e.g. to provide measures for every attribute) and (2) it permits to
express the Quality Model it in a machine-readable format, which in turn opens the
path to applying automation techniques.

In order to illustrate this fact, next we are presenting an instantiation example that
operationalizes a hypotetical quality model devoted to evaluating the navigability of a
Web application. Although the whole definition of this WE Quality Model is out of
the scope of this paper, for illustration purposes let’s assume that this Navigability
WE-QM includes an Understandability characteristic that can be measured based on
two attributes: Navigation Node Complexity and Navigation Path Complexity. The
definition of the meaning of these concepts was presented in Table 1.

This measurement model intends to reflect the viewpoint of the end-user of the ap-
plication, that is, the Stakeholder involved is the End-User. Therefore, only model
qualities that are bound to contribute to increasing the end-user quality in use of the
application should be included in this instantiation. Such instantiation aims at assess-
ing the navigability problems that may arise due to a low-quality definition of naviga-
tional paths and navigational nodes.

Due to the fact that navigation paths and nodes are both defined by means of a
navigation model, the Entity Class will be such Navigation Model, which is part of
any WE methodology.

The WE-Quality Model is associated to a Global Information Need To Know
how good Navigability is. Recall that the description of such global information need

84 C. Cachero, C. Calero, and G. Poels

must follow the GQM template, and therefore could be defined as follows: analyzing
the WE Navigational Model for the purpose of evaluating it with respect to the navi-
gability of the final application from the viewpoint of the end-user of the application
in the context of a testing environment.

The Navigability WE-Quality Model contains a set of Measurable Concepts. If
we consider Navigability as ‘Usability of the navigation’, we can assume that the
main characteristics included in the ISO 9126-1 for Usability apply. These character-
istics are Understandability, Learnability, Operability, Attractiveness and Compli-
ance. We agree with [19] in that the first three Measurable Concepts (understandabil-
ity, learnability, operability) are related with the user performance and can be there-
fore quantified using objective measures, some of which can be taken over naviga-
tional models. Attractiveness is not relevant at this stage of development, where final
users are not yet present. Last, as far as we know there are no widely accepted stan-
dards or conventions regarding the definition of navigation structures in WE naviga-
tional models, and therefore Compliance is not relevant either.

Table 2. WE-Measurement Meta-model instantiation example

Term Instantiation for the Understandability Measurable Concept
Stakeholder End-User
Global Information Need To know how good navigability is
Information Need To know how good understandability is
Measurable Concept Understandability
Entity Class Navigation model
Attribute (1) Navigation Node Complexity – (2) Navigation Path Complexity
WE-Quality Model Navigability WE-Quality Model
Base Measure (1) Number of attributes (NA) - (2) Number of Navigational Links (NNL)
 Scale Natural Number
 Type of Scale Ratio
Measurement Method (1) Count the number of attributes of the model– (2) Count the number of links of the model
Indicator UND_IND (NA, NNL)
 Scale Acceptable-NonAcceptable
 Type of Scale Ordinal
Analysis Model f(UND_IND)=NA+NNL
Decision Criteria If f(UND_IND) <50 then Acceptable else NonAcceptable

Each one of these Measurable Concepts must be related to an Information Need.
The Information Need covered by Understandability in the context of the Navigability
WE-Quality Model is To Know how good Understandability is. The description asso-
ciated with such concept could be ‘the capability of the Web application navigational
structure to enable the user to understand whether the application is suitable for her,
and how it can be used for particular tasks under certain conditions of use’. Learnabil-
ity and Operability can be defined similarly.

The next step consists in defining the attributes that may influence each character-
istic. The navigational model has two main purposes in the WE development process.
On one hand it defines the set of abstract pages, that is, the basic information nodes
that make up the application. On the other hand, it provides the navigation paths and
the navigation facilitators (menus, indexes, guided tours and so on) to improve the
user experience. With these two purposes in mind, we have identified two Navigation
Model Attributes:

 Metamodeling the Quality of the Web Development Process’ Intermediate Artifacts 85

1. Navigation Node Complexity: possibly related to learnability, and understandabil-
ity. Such relationship is not in the meta-model because it is derived from the rela-
tionship between measures-attributes on one hand and the empirically validated re-
lationship measure- measurable concepts on the other hand.

2. Navigation Path Complexity: possibly related to learnability, understandability and
operability. Again, such relationship must be empirically validated (it would be a
derived relationship)

The partial instantiation of the WE-SMM that gathers all the concepts presented so far
is presented in Figure 4.

According to the meta-model, each model attribute must be related to at least one
measure. For the sake of the example, let’s suppose that we have determined that only
two measures are relevant for the evaluation purposes of this Navigability WE-Quality
Model: the number of navigational links (NNL) and the number of attributes (NA).

Fig. 4. Partial instantiation of WE_Navigability model (Part 1)

The definition of the Number of Navigational Links (NNL) Base Measure in-
cludes the Scale Natural Number, the Type of Scale Ratio and the Unit of Measure-
ment Links. This measure is associated with the Navigation Path Complexity Attrib-
ute. The measurement method is ‘to count the number of links of the model’. Simi-
larly, the definition of the Number of Attributes (NA) Base Measure is associated
with the Scale Natural Number, the Type of Scale Ratio and the Unit of Measurement
Attributes. This measure is related with the Navigation Node Complexity Attribute.
The measurement method is ‘to count the number of attributes of the model’.

Also, each information need requires at least one Indicator. Indicators can be
regarded as special kinds of measures that are related to decision criteria via an
Analysis Model.

As an example, let’s define the Understandability Indicator UND_IND. Let’s sup-
pose that the Analysis Model associated to this indicator is a function that involves
the two measures presented above: F(UND_IND)=NNL+NA.

Let’s also assume that this indicator belongs to the Scale {Acceptable, Non
Acceptable} and Type of Scale Ordinal (Acceptable is better than Non Acceptable).

Last, for the definition of the decision criteria let’s assume that the Trellis number
applies, and that models with less than 50 elements are understandable enough. This

86 C. Cachero, C. Calero, and G. Poels

decision criteria is expressed in the meta-model instantiation as if f(UND_IND) <50
then Acceptable else NonAcceptable.

Figure 5 presents a WE-SMM instantiation that reflects all these new elements of
the Navigability WE-Quality Model.

As the reader may have already noticed, this measurement model is quite straight-
forward to use by any designer familiar with Navigation Models. The fact that we
specifically consider the stakeholder helps to focus the measurable concepts, attrib-
utes and measures that must be taken in consideration.

Fig. 5. Partial instantiation of WE_Navigability Model (Part 2)

5 Conclusions and Future Work

The systematic integration of quality issues in the WE field is mandatory if we aim at
setting the focus on preventing rather than detecting errors and therefore decreasing
maintainability costs. Even more important, we believe that providing practitioners
with WE methodologies that assure a certain degree of quality of the application de-
livered is likely not only to support some of the WE traditional claims of providing
better results than creative practices, but also to increase the acceptance rate of the
WE technology in industry.

These quality issues should be taken into account while developing each outgoing
artifact, from the requirements model to the final application to be delivered. In order
to perform such inclusion of quality concerns in existing WE methodologies in a
sensible and consistent way, we have developed a proposal that enriches the tradi-
tional WE development process with a set of quality activities and instruments that
serve to evaluate the quality of intermediate WE artifacts as a means to improving the
quality of the deployed application. Our proposal has three main elements: (1) a qual-
ity-aware Web development process (out of the scope of this paper), (2) a set of gen-
eral-purpose WE quality models specific for each stakeholder and/or WE artifact and,
(3) a WE software measurement metamodel (SMM) that permits to operationalize
and, if needed, also tailor, those quality models according to a particular domain
and/or application. All three elements are based on principles and achievements that,
uncovered in different quality lines of research, provide insights into how to deal with
quality in each of the different workflows that a typical WE process defines, from
requirements to implementation.

 Metamodeling the Quality of the Web Development Process’ Intermediate Artifacts 87

This paper presents two contributions. On one hand, it provides an overview of the
main problems associated with quality models in Software Engineering, and a set of
requirements that should be met by any quality model proposal if it aims at being of
use. On the other hand, we clarified how some of these requirements can be covered
by defining quality models with certain elements and restrictions. In order to assure
this, we have defined a WE-SMM that tailors an existing SMM. This WE-SMM and
the way we propose to use it to instantiate sound and complete WE quality models is
the second contribution of this paper.

If we review the list of problems presented in Section 2, the fact that such WE-
SMM is based on an underlying ontology contributes to avoiding terminology incon-
sistencies (P1). Also, the use of this metamodel turns the descriptive nature of ontolo-
gies into prescriptive, and therefore assures that a set of syntactic and semantic con-
straints are met by any quality model defined as an instantiation of such meta-model.
One of such constraints is the set of elements that must be present in any syntactically
correct WE quality model, which partially solves P2. The focus on a given field (in
our case the WE field) as the application context of the quality models facilitates the
task of constructing consolidated, exhaustive yet specialized models. This fact also
contributes to alleviating P2 and P3. Additionally, the consideration of the WE devel-
opment process with its related stakeholders and outgoing artifacts allows us to
univocally define (1) the particular stakeholder at which each WE quality model is
aimed and (2) the measurable concepts, attributes and measures that are applicable to
each specific artifact. This fact also contributes to improving P3. Last but not least,
this way of representing WE quality models by means of a meta-model instantiation is
a machine-readable way, which helps to preserve the development advantages pro-
vided by the (semi-)automatic nature of WE processes. This in turn leverages P8. As a
proof of concept we have presented a navigational quality model by using the meta-
model, together with an indicator. This quality model proposal must be validated
empirically in order to determine if the selected indicator and decision criteria are
valid (which is one of the requirements presented in Section 2 that are not covered in
this work). In fact, this is one of the main further lines of research: defining empiri-
cally validated quality models that include all the elements referenced in the WE-
SMM for each level of abstraction is far from easy, yet it is an unavoidable step if we
eventually aim at assuring that the results of the WE quality evaluation process are
trustworthy. Another important future line of research is how the improvement of the
intermediate models based on the quality evaluation results should be tackled in order
to actually assure a good quality of the final product.

Acknowledgments

This paper has been supported by the MEC Spanish Ministry for Staff Stages at for-
eign Universities (PR2006-0374) and projects CALIPSO (TIN20005-24055-E),
MEC-FEDER (TIN2004-03145), ESFINGE (TIN2006-15175-C05-05), METASIGN
(TIN2004-00779) and DSDM (TIN2005-25866-E)). Also, is part of the
DADASMECA project (GV05/220), financed by the Valencia Government and
DIMENSIONS (PBC-05-012-1) financed by the Castilla-La Mancha government.

88 C. Cachero, C. Calero, and G. Poels

References

[1] Lang, M., Fitzgerald, B.: Hypermedia Systems Development Practices: A Survey. IEEE
Software 22(2), 68–75 (2005)

[2] ISO/IEC 9126. Software engineering – Product quality – Part 1: Quality model. Interna-
tional Organization for Standardization, Geneva (2001)

[3] Garvin, D.: What Does “Product Quality” Really Mean?, Sloan Management Review,
Fall 1984, pp. 25–45 (1984)

[4] ISO/IEC 14598. Information technology – Software Product Evaluation. International
Organization for Standardization. Geneva (1999)

[5] Fraternali, P., Paolini, P.: Model-driven development of Web applications: the Autoweb
System. ACM Transactions on Information Systems (TOIS) 18(4), 323–382 (2000)

[6] Nielsen, J.: Designing Web Usability: The Practice of Simplicity. New Riders, Berkeley
(2000)

[7] Ivory, M.Y.: Automated Web Site Evaluation. Kluwer Academic Publishers, Norwell
(2004)

[8] ISO/IEC 10027. Information technology – Information Resource Framework. Interna-
tional Organization for Standardization. Geneva (1990)

[9] Briand, L., Morasca, S., Basili, V.: Defining and Validating Measures for Object-based
High-level Design. IEEE Transactions on Software Engineering 25(5), 722–743 (1999)

[10] Moody, D.L.: Theoretical and practical issues in evaluating the quality of conceptual
models: current state and future directions. Data & Knowledge Engineering 55, 243–276
(2005)

[11] Moody, D.L., Shanks, G.G.: Improving the quality of data models: empirical validation of
a quality management framework. Information Systems, vol. 28, pp. 619–650. Elsevier
Science Ltd (2003)

[12] McCall, J.A., Richards, P.K., Walters, G.F.: Factors in Software Quality, Nat’l Tech. In-
formation Service, vol. 1, 2 and 3 (1977)

[13] Bohem, B.W.: Software Engineering Economics. Prentice Hall Inc., Englewood Cliffs,
NJ (1981)

[14] Dromey, R.G.: A model for software product quality. IEEE Transactions on Software En-
gineering 21(2), 146–162 (1995)

[15] Olsina, L., Rossi, G.: Measuring Web Application Quality with WebQEM. IEEE Multi-
media Magazine 9(4), 20–29 (2002)

[16] Calero, C., Ruiz, J., Piatinni, M.: A Web Metrics Survey Using WQM. In: Koch, N., Frat-
ernali, P., Wirsing, M. (eds.) ICWE 2004. LNCS, vol. 3140, pp. 147–160. Springer, Hei-
delberg (2004)

[17] Moraga, M., Calero, C., Piattini, M.: Ontology Driven Definition of a Usability Model for
Second Generation Portals. In: MATES 2006, vol. 155, ACM Press, NewYork (2006)

[18] Comai, S., Matera, M., Maurino, A.: A Model and an XSL Framework for Analyzing the
Quality of WebML Conceptual Schemas. In: Olivé, À., Yoshikawa, M., Yu, E.S.K. (eds.)
Advanced Conceptual Modeling Techniques. LNCS, vol. 2784, pp. 339–350. Springer,
Heidelberg (2003)

[19] Abrahao, S., Insfran, E.: Early usability evaluation in Model-Driven Architecture Envi-
ronments. In: Proceedings of the Sixth IEEE International Conference on Quality Soft-
ware. IEEE Press, Wiley, Chichester (2006)

[20] Comai, S., Matera, M., Maurino, A.: A Model and an XSL Framework for Analyzing the
Quality of WebML Conceptual Schemas. In: Olivé, À., Yoshikawa, M., Yu, E.S.K. (eds.)
Advanced Conceptual Modeling Techniques. LNCS, vol. 2784, pp. 339–350. Springer,
Heidelberg (2003)

[21] Krogstie, J., Lindland, O.I., Sindre, G.: Defining quality aspects for conceptual models.
ISCO 1995: 216-231 (1995)

 Metamodeling the Quality of the Web Development Process’ Intermediate Artifacts 89

[22] Seffah, A., Donyaee, M., Kline, R.B., Padda, H.K.: Usability measurement and metrics: a
consolidated model. Software Quality Journal 14, 159–178 (2006)

[23] Ruiz, F., Hilera, J.R.: Using Ontologies in Software Engineering and Technology. In: Ca-
lero, C., Ruiz, F., Piattini, M. (eds.) Ontologies for Software Engineering and Software
Technology, Springer, Heidelberg (2006)

[24] García, F., Bertoa, M., Calero, C., Vallecillo, A., Ruiz, F., Piattini, M., Genero, M.: To-
wards a consistent terminology for software measurement. Information and Software
Technology 48(8), 631–644 (2005)

[25] Ferreira, M., García, F., Bertoa, M., Calero, C., Vallecillo, A., Ruiz, F., Piattini, M.,
Braga, J.L.: Medición del Software: Ontología y Metamodelo. Technical Report, Univer-
sity of Castilla-La Mancha (2006)

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 90–104, 2007.
© Springer-Verlag Berlin Heidelberg 2007

The Use of a Bayesian Network for Web Effort
Estimation

Emilia Mendes

The University of Auckland, Private Bag 92019
Auckland, New Zealand, 0064 9 3737599 ext. 86137

emilia@cs.auckland.ac.nz

Abstract. The objective of this paper is to describe the use of a probabilistic
approach to Web effort estimation by means of a Bayesian Network. A Bayes-
ian Network is a model that embodies existing knowledge of a complex domain
in a way that supports reasoning with uncertainty. Given that the causal system
relative to Web effort estimation has an inherently uncertain nature the use of
Bayesian model seemed a reasonable choice. We used a cross-company data set
of 150 industrial Web projects volunteered from Web companies worldwide,
which are part of the Tukutuku database. Results showed that the effort esti-
mates obtained using a Bayesian Network were sound and significantly superior
to the prediction based on two benchmark models, using the mean and median
effort respectively.

Keywords: Web effort estimation, Bayesian Networks, Effort accuracy, Web
cost estimation.

1 Introduction

A cornerstone of Web project management is sound resource estimation, the process
by which resources are estimated and allocated effectively, enabling projects to be
delivered on time and within budget. Resources are factors, such as cost, effort, qual-
ity, ‘problem size’, that have a bearing on a project’s outcome. Within the scope of
resource estimation, the causal relationship between factors is not deterministic and
has an inherently uncertain nature. E.g. assuming there is a relationship between de-
velopment effort and an application’s quality, it is not necessarily true that increased
effort will lead to improved quality. However, as effort increases so does the prob-
ability of improved quality. Resource estimation is a complex domain where corre-
sponding decisions and predictions require reasoning with uncertainty.

In Web project management the complete understanding of what factors affect a
project’s outcome and the causal relationships between factors is unknown. In addition,
as Web development differs substantially from software development 0, there is very
little research on resource estimation for software projects that can be readily reused.

Web development, despite being a relatively young industry, initiated just 13 years
ago, currently represents a market that increases at an average rate of 20% per year,
with Web e-commerce sales alone surpassing 95 billion USD in 2004 (three times the

 The Use of a Bayesian Network for Web Effort Estimation 91

revenue from the world’s aerospace industry)1[33]. Unfortunately, in contrast, most
Web development projects suffer from unrealistic project schedules, leading to appli-
cations that are rarely developed on time and within budget [33].

To understand resource estimation for Web projects, previous studies have devel-
oped models that use as input, factors such as the size of a Web application, and cost
drivers (e.g. tools, developer’s quality, team size), and provide an effort estimate as
output. The differences between these studies were the number and type of size meas-
ures used, choice of cost drivers and occasionally the techniques employed to build
resource estimation models. Despite previous studies, to date no complete understand-
ing of which factors affect a Web project’s outcome, their causal relationships, and
the uncertainty inherent to such relationships has been achieved.

Important reasons for this gap in knowledge are: i) the use of techniques to build
resource estimation models that fail to represent the causal relationship between fac-
tors and their corresponding uncertainty, and require the use of large amounts of data
that is often difficult to obtain; ii) a strong reliance on obtaining the “correct” causal
model using simple statistical models, which are inadequate to accommodate complex
relationships between all the relevant factors [8]; iii) until recently, the non-existence
of appropriate algorithms and corresponding software tools [11] to enable the building
of large causal models that allow for uncertainty and probabilistic reasoning; iv) the
relatively new research area of resource estimation for Web projects with the first
study published in 2000 [19].

There have been numerous attempts to model resource estimation of Web projects, but
none yielded a complete causal model incorporating all the necessary component parts.
Mendes and Counsell [19] were the first to investigate this field by building a model that
used machine-learning techniques with data from student-based Web projects, and size
measures harvested late in the project’s life cycle. Mendes and collaborators also carried
out a series of consecutive studies [10],[18],[19]-[28] where models were built using mul-
tivariate regression and machine-learning techniques using data on industrial Web pro-
jects. Recently they also proposed and validated size measures harvested early in the
project’s life cycle, and therefore better suited to resource estimation [22].

Other researchers have also investigated resource estimation for Web projects. Reifer
[34] proposed an extension of an existing software engineering resource model, and a
single size measure harvested late in the project’s life cycle. None were validated em-
pirically. This size measure was later used by Ruhe et al. [35], who further extended a
software engineering hybrid estimation technique to Web projects, using a small data set
of industrial projects, mixing expert judgement and multivariate regression. Later,
Baresi et al. 0,[2], and Mangia et al. [17] investigated effort estimation models and size
measures for Web projects based on a specific Web development method. Finally, Co-
stagliola et al. [4] compared two types of Web-based size measures for effort estimation.

The goal of our research is therefore to create and evaluate a large-scale Bayesian
network [11] (BN) that represents the causal model for resource estimation of Web
projects, incorporating all the fundamental factors and their causal relationships. A BN
is a model that embodies existing knowledge of a complex domain in a way that sup-
ports reasoning with uncertainty [11][31]. It is a representation of a joint probability

1 http://www.aia-erospace.org/stats/aero_stats/stat08.pdf
http://www.tchidagraphics.com/website_ecommerce.htm

92 E. Mendes

distribution over a set of variables, and is made up of two parts. The first, the qualita-
tive part, represents the structure of a BN as depicted by a directed acyclic graph (di-
graph) (see Fig. 1). The digraph’s nodes represent the relevant variables (factors) from
the domain being modelled, which can be of different types (e.g. observable or latent,
categorical, numerical). A digraph’s arcs represent probabilistic relationships, i.e. they
represent the causal relationships between variables [11][29][41]. The second, the
quantitative part, associates a node probability table (NPT) to each node, its probability
distribution. A parent node’s NPT describes the relative probability of each state
(value) (Fig. 1 “NPT for node Total Effort”); a child node’s NPT describes the relative
probability of each state conditional on every combination of states of its parents (Fig.
1 “NPT for node Quality delivered”). So, for example, the relative probability of
Quality delivered (QD) being ‘Low’ conditional on Total effort (TE) being ‘Low’ is
0.8, and represented as:

• p(QD = ‘Low’ | TE = ‘Low’) = 0.8

Each column in a NPT represents a conditional probability distribution and there-
fore its values sum up to 1 [11].

Total effort

Quality

delivered

Functionality

delivered

People

quality

Child node

Parent node

NPT for node Total Effort (TE) NPT for node Quality Delivered
(QD)

Low 0.2 Total Effort Low Medium High
Medium 0.3 Low 0.8 0.2 0.1
High 0.5 Medium 0.1 0.6 0.2

High 0.1 0.2 0.7

Fig. 1. A small BN model and two NPTs

Formally, the relationship between two nodes is based on Bayes’ rule [11][31]:

)(

)()|(
)|(

Ep

XpXEp
EXp = (1)

where:

•)|(EXp is called the posterior distribution and represents the probability of

X given evidence E;
•)(Xp is called the prior distribution and represents the probability of X before

evidence E is given;
•)|(XEp is called the likelihood function and denotes the probability of E as-

suming X is true.

 The Use of a Bayesian Network for Web Effort Estimation 93

Once a BN is specified, evidence (e.g. values) can be entered onto any node, and
probabilities for the remaining nodes are automatically calculated using Bayes’ theo-
rem [31][41]. Therefore BNs can be used for different types of reasoning, such as
predictive and “what-if” analyses to investigate the impact that changes on some
nodes have upon others [37].

The BN described and validated in this paper focuses on Web effort estimation.
This BN comprises a subset of a more complete BN, and was chosen since this is the
only BN within the scope of our research that was built from data on Web projects, as
opposed to being elicited from interviews with domain experts. We had the opportu-
nity to gather data on 150 industrial Web projects as part of the Tukutuku Bench-
marking project [22], and to use these data to build and validate the BN presented
herein. The project data characterises Web projects using size measures and cost driv-
ers targeted at effort estimation. Since we had a dataset of real industrial Web pro-
jects, we were also able to compare the accuracy of our Web effort BN to that pro-
vided using a mean and median effort models, which are used here as a benchmark.
To do so we computed point forecasts for the BN using the method described in [32],
to be detailed later.

Prediction accuracy was measured using de facto measures such as the Mean Mag-
nitude of Relative Error (MMRE), Median Magnitude of Relative Error (MdMRE)
and Prediction at 25% (Pred(25)) [4].

The remainder of the paper is organised as follows: Section 2 describes the proce-
dure used to build and validate the Web effort BN. Section 3 presents the results using
for the Web effort BN, and for the mean and median effort models. Finally, conclu-
sions and comments on future work are given in Section 4.

2 Building the Web Effort BN

2.1 Dataset Description

The analysis presented in this paper was based on data from 150 Web projects of the
Tukutuku database [22], which aims to collect data from completed Web projects, to
be used to develop Web cost estimation models and to benchmark productivity across
and within Web Companies. The Tukutuku includes data on 150 Web hypermedia
systems and Web applications [3] where:

• Projects come from 10 different countries, mainly New Zealand (56%), Brazil
(12.7%), Italy (10%), Spain (8%), United States (4.7%), England (2.7%), and
Canada (2%).

• Project types are new developments (56%) or enhancement projects (44%).
• The applications are mainly Legacy integration (27%), Intranet and eCommerce

(15%).
• The languages used are mainly HTML (88%), Javascript (DHTML/DOM)

(76%), PHP (50%), Various Graphics Tools (39%), ASP (VBScript, .Net) (18%),
and Perl (15%).

94 E. Mendes

Each Web project in the database was characterized by 25 variables, related to the
application and its development process (see Table 1). These size measures and cost
drivers have been obtained from the results of a survey investigation [22], using data
from 133 on-line Web forms aimed at giving quotes on Web development projects. In
addition, these measures and cost drivers have also been confirmed by an established
Web company and a second survey involving 33 Web companies in New Zealand.
Consequently it is our belief that the 25 variables identified are measures that are
meaningful to Web companies and are constructed from information their customers
can provide at a very early stage in project development.

Table 1. Tukutuku database variables

Variable name Scale Description
COMPANY DATA
Country Categorical Country company belongs to.
Established Ordinal Year when company was established.
nPeopleWD Ratio Number of people who work on Web design and development.
PROJECT DATA
TypeProj Categorical Type of project (new or enhancement).
nLang Ratio Number of different development languages used
DocProc Categorical If project followed defined and documented process.
ProImpr Categorical If project team involved in a process improvement programme.
Metrics Categorical If project team part of a software metrics programme.
Devteam Ratio Size of project’s development team.
Teamexp Ratio Average team experience with the development language(s)

employed.
TotEff Ratio Actual total effort in person hours used to develop the Web

application.
estEff Ratio Estimated total effort in person hours necessary to develop the

Web application.
Accuracy Categorical Procedure used to record effort data.
WEB APPLICATION
TypeApp Categorical Type of Web application developed.
TotWP Ratio Total number of Web pages (new and reused).
NewWP Ratio Total number of new Web pages.
TotImg Ratio Total number of images (new and reused).
NewImg Ratio Total number of new images created.
Fots Ratio Number of features reused without any adaptation.
HFotsA Ratio Number of reused high-effort features/functions adapted.
Hnew Ratio Number of new high-effort features/functions.
totHigh Ratio Total number of high-effort features/functions
FotsA Ratio Number of reused low-effort features adapted.
New Ratio Number of new low-effort features/functions.
totNHigh Ratio Total number of low-effort features/functions

Within the context of the Tukutuku project, a new high-effort feature/function
requires at least 15 hours to be developed by one experienced developer, and a high-
effort adapted feature/function requires at least 4 hours to be adapted by one
experienced developer. These values are based on collected data.

 The Use of a Bayesian Network for Web Effort Estimation 95

Table 2 summarises the number and percentages of projects for the categorical
variables, and summary statistics for the numerical variables from the Tukutuku data-
base are given in Table 3.

Table 2. Summary of Number of Projects and Percentages for Categorical variables

Variable Level Num. Projects % Projects
TypeProj Enhancement 66 44
 New 84 56
DocProc No 53 35.3
 Yes 97 64.7
ProImpr No 77 51.3
 Yes 73 48.7
Metrics No 85 56.7
 Yes 65 43.3

Table 3. Summary Statistics for Numerical variables

 Mean Median Std. Dev. Min. Max.
nlang 3.75 3.00 1.58 1 8
DevTeam 2.97 2.00 2.57 1 23
TeamExp 3.57 3.00 2.16 1 10
TotEff 564.22 78.00 1048.94 1 5000
TotWP 81.53 30.00 209.82 1 2000
NewWP 61.43 14.00 202.78 0 1980
TotImg 117.58 43.50 244.71 0 1820
NewImg 47.62 3.00 141.67 0 1000
Fots 2.05 0.00 3.64 0 19
HFotsA 12.11 0.00 66.84 0 611
Hnew 2.53 0.00 5.21 0 27
totHigh 14.64 1.00 66.59 0 611
FotsA 1.91 1.00 3.07 0 20
New 2.91 1.00 4.07 0 19
totNHigh 4.82 4.00 4.98 0 35

As for data quality, we asked companies how their effort data was collected (see

Table 4). At least for 83% of Web projects in the Tukutuku database effort values
were based on more than guesstimates.

Table 4. How Effort data was gathered

Data Collection Method # of Projects % of Projects
Hours worked per project task per day 93 62
Hours worked per project per day/week 32 21.3
Total hours worked each day or week 13 8.7
No timesheets (guesstimates) 12 8

2.2 Procedure Used to Build the BNs

The BN presented in this paper was built and validated using an adapted Knowledge
Engineering of Bayesian Networks (KEBN) process [6][16][41] (see Fig. 2). In Fig. 2

96 E. Mendes

arrows represent flows through the different processes, depicted by rectangles. Such
processes are executed either by people – the Knowledge Engineer (KE) and the
Domain Experts (DEs) [41] (white rectangles), or automatic algorithms (dark grey
rectangles). Within the context of this research project this author is the knowledge
engineer, and Web project managers from Web companies in Rio de Janeiro and
Auckland are the domain experts.

Structural Development

Parameter Estimation

Model Validation

Identify
nodes/vars

Identify
values/states

Identify
relationships

Evaluation

Yes

No

Ye

Data

Further
Elicitation

No

No

Next
Stage

Yes

Accept

Begin

Domain expert

Model
Walkthrough

Data-driven

Predictive
Accuracy

Accept?

Expert
Elicitation

Automated
Learning

Fig. 2. KEBN, adapted from [40]

 The Use of a Bayesian Network for Web Effort Estimation 97

The three main steps within our KEBN process are the Structural Development,
Parameter Estimation, and Model Validation. This process iterates over these steps
until a complete BN is built and validated. Each of these three steps is detailed below:

Structural Development: This step represents the qualitative component of a BN,
which results in a graphical structure comprised of, in our case, the factors (nodes,
variables) and causal relationships identified as fundamental for resource estimation
of Web projects. This is an iterative process where independent BN’s sub-models are
identified. This model construction process has been validated in previous studies
[7][9][16][29][41] and uses the principles of problem solving employed in data mod-
elling and software development [39]. Also, the BN tool we used (Hugin Expert)
allows for the representation of sub-models, thus facilitating the application of our
modelling approach. Existing literature in Web resource estimation, data from the
Tukutuku database and current knowledge from domain experts are employed to elicit
the BN’s structure. In the context of this paper we have used data from the Tukutuku
database and current knowledge from a domain expert who works in a well-
established Web company in Rio de Janeiro (Brazil). The identification of nodes, val-
ues and relationships was initially obtained automatically using Hugin, and later
modified once feedback was obtained from the domain expert and the conditional
independences were checked. In addition to identifying variables, their types (e.g.
query variable, evidence variable) and relationships, domain experts in general also
choose what states (values) each variable should take, and if they are discrete or con-
tinuous. In practice, currently available BN tools require that continuous variables be
discretised by converting them into multinomial variables [14], also the case with
Hugin Expert. Hugin offers two discretisation algorithms – equal-width intervals [36],
whereby all intervals have equal size, and equal-frequency intervals, whereby each
interval contains n/N data points where n is the number of data points and N is the
number of intervals (this is also called maximal entropy discretisation [40]). We used
equal-frequency intervals as suggested in [13], and five intervals. Automatic discreti-
sation frees domain experts and knowledge engineers from having to statically discre-
tise variables manually [30]. Throughout this step the knowledge engineer also evalu-
ated the structure of the BN in two stages. The first entailed checking if [14]: vari-
ables and their values have a clear meaning; all relevant variables for that cycle have
been included; variables are named conveniently; all states are appropriate (exhaus-
tive and exclusive); a check for any states that can be combined. The second stage
entailed reviewing the graph structure of the BN to make sure any identified d-
separation dependencies comply with the types of variables used and causality as-
sumptions. D-separation dependencies are used to identify variables influenced by
evidence coming from other variables in the BN [11][31]. Once the BN structure is
assumed to be close to final we may still need to optimise this structure to reduce the
number of probabilities that need to be assessed for the network. If optimisation is
needed then we employ techniques that change the graphical structure (e.g. divorcing
[11]) and the use of parametric probability distributions (e.g. noisy-OR gates [7][31]).
In the case of the Web effort BN we changed its original graphical structure to main-
tain the conditional independence of the nodes (see Section 2.3), however divorcing
was not employed in order to keep only nodes that had been elicited from the
Tukutuku data.

98 E. Mendes

Parameter Estimation: This step represents the quantitative component of a BN,
which results in conditional probabilities, obtained via Expert Elicitation or automati-
cally, which quantify the relationships between variables [11][14]. For the Web effort
BN, they were obtained using two steps: first, by automatically fitting a sub-network
to a subset of the Tukutuku dataset (Automated learning); second, by obtaining feed-
back from the domain expert regarding the suitability of priors and conditional prob-
abilities that were automatically fitted. No previous literature was used in this step
since none reported probabilistic information. Of the 150 projects available in the
Tukutuku database we used 120 (80%) to build the Web effort BN and later employed
the remaining 30 for the Model Validation step to assess the BN’s effort prediction
accuracy.
Model Validation: This step validates the BN that results from the two previous steps,
and determines whether it is necessary to re-visit any of those steps. Two different
validation methods are used - Model Walkthrough and Predictive Accuracy, which
specifically verifies if resource predictions provided by a BN are, on average, better
than those currently used by Web companies. Predictive Accuracy is normally carried
out using quantitative data, thus this was the validation approach we employed to
validate the Web effort BN. Accuracy was measured using de facto measures such as
the Mean MRE, median MRE and Pred(25), and estimated effort for each of the 30
projects in the validation set was obtained using a point forecast, computed using the
method described in [32]. This method calculates the joint probability distribution of
effort using the belief distribution [31], and computes estimated effort as the sum of
the probability of a given effort scale point multiplied by its related mean effort.
Within the context of our Web effort BN, effort was discretised using a five-scale
point (see Section 2.3).

Model walkthrough represents the use of real case scenarios that are prepared and
used by domain experts to assess if the predictions provided by a BN, or BN’s sub-
model, correspond to the predictions experts would have chosen based on their own
expertise. Success is measured as the frequency with which the BN’s predicted value
for a target variable (e.g. quality) that has the highest probability corresponds to ex-
perts’ own assessment. We did not employ a model walkthrough to validate the Web
effort BN because we had already carried out a Predictive accuracy procedure using
real data volunteered by numerous Web companies worldwide.

2.3 The Web Effort BN

Fig. 3(a) shows the original Web effort BN obtained from fitting the data on Web
projects. We used the entire Tukutuku database when building the structure, however
for parameter estimation we only employed the 120 projects in the training set, oth-
erwise the point estimates would be biased.

Once this structure was obtained using the Necessary Path Condition (NPC) algo-
rithm [38], it was validated with a domain expert, resulting in the structure presented
in Figure 3(b). The main changes to the original structure were related to node
TypeProj, from which all causal relationships, except for TotalEffort, were removed.
There were also several changes relating to the three categorical variables Docu-
mented Process, Process Improvement and Use Metrics. In the validated structure
(see Figure 3(b)), Process Improvement presents a relationship with both Use Metrics

 The Use of a Bayesian Network for Web Effort Estimation 99

and Documented Process, indicating that it is an important factor determining
whether a Web company adheres to the use of metrics and to the use of a documented
process. This structure also relates Use Metrics to Documented Process, indicating
that companies that measure attributes to some extent document their processes. The
number of languages to be used in a project (numLanguages) and the average number
of years of experience of a team (Team Experience) are also related with the size of
the development team (sizeDevTeam). The nodes relative to Web size measures (e.g.
NewWP) remained unchanged as the data already captured the strong relationship
between size and effort.

(a) (b)

Fig. 3. Original BN (a) and BN after evaluation with DE (b)

Once the structure had been validated, our next step was to ensure that the condi-

tionally independent variables (nodes) in the Web effort BN were really independent
of each other [31]. Whenever two variables were significantly associated we also
measured their association with effort, and the one with the strongest association was
kept. For example, Process improvement was significantly associated with Fots, so
one of these nodes had to be removed from the BN. Given that Process Improvement
had a significant association with TotalEffort stronger than the association between
TotalEffort and Fots, we kept Process Improvement in the model. This was an itera-
tive process given that once nodes are removed (e.g. FotsA, New), other nodes be-
come conditionally independent (e.g. totNHigh) and so need to be checked as well.
The associations between the numerical variables were assessed using a non-
parametric test - Spearman’s rank correlation test; the associations between numerical
and categorical variables were checked using the one-way ANOVA test, and the asso-
ciations between categorical variables were checked using the Chi-square test. All
tests were carried out using SPSS 12.0.1 and α = 0.05.

Fig. 4 shows the Web effort BN after all conditional independences were checked.
This was the Web effort BN used as input to the Parameter estimation step, where
prior and conditional probabilities were automatically generated using the EM-
learning algorithm [15], and later validated by the DE.

100 E. Mendes

Fig. 4. BN after conditional independences were checked

Effort was discretised into five discrete approximations, described in Table 5.

Table 5. How Effort data was gathered

Categories Range (person hours) Mean Effort
Very low <= 12.55 5.2
Low > 12.55 and <= 33.8 22.9
Medium > 33.8 and <= 101 63.1
High > 101 and <= 612.5 314.9
Very High > 612.5 2,238.9

TotWP and NewWP were also discretised into five discrete approximations. There

are no strict rules as to how many discrete approximations should be used. Some stud-
ies have employed three [32], others five [9], and others eight [37]. We chose five.
However, further studies are necessary to determine whether a different number of
approximations leads to results significantly different. The NPTs for the seven nodes
used in the Web effort BN are not presented here due to lack of space.

3 Measuring the Prediction Accuracy of the Web Effort BN

The 30 Web projects in the validation set were used to measure the prediction accu-
racy of the Web effort BN model. In addition, we also used the mean (526.9) and me-
dian (59.1) effort models as benchmark. Prediction accuracy was measured using
MMRE, MdMRE, and Pred(25) and Table 6 shows that the MMRE and MdMRE ob-
tained using the BN model was very close to the baseline predictions suggested in the
literature (MMRE and MdMRE <= 25%). However, Pred(25) was lower than the
suggested baseline of 75% or above. In addition, Table 6 also shows that the predic-
tion accuracy for the Web Effort BN model was superior to the accuracy obtained
with either the mean or median effort models.

In order to assess if the difference in accuracy between the Web Effort BN model
and the mean & median models was not due to chance we also used a statistical
significance test to compare the absolute residuals (actual effort – estimated effort)
between these three models. Since none of the residuals were normally distributed,

 The Use of a Bayesian Network for Web Effort Estimation 101

confirmed used the One-Sample Kolmogorov-Smirnov Test, they were compared
using the non-parametric Wilcoxon Signed Paired Test. This test confirmed that the
predictions obtained using the Web Effort BN model were significantly superior to
the predictions from both the median and mean models. In addition, this test also
showed that there were no significant differences between the median and mean effort
models.

Table 6. Accuracy Measures for the Web Effort BN and Benchmarking models

Accuracy (%) BN model Mean model Median model
MMRE 34.26 1106.31 132.76
MdMRE 27.42 252.36 85.90
Pred(25) 33.33 6.67 10.00

Fig. 5 shows boxplots of absolute residuals for the Web effort BN (ResBN), mean

(Mean) and median (Median) models. The median of ‘ResBN’ is much lower than the
median of ‘Mean’, and also lower than the median of ‘Median’. All boxplots present
outliers, however those for ‘Mean’ and ‘Median’ are much worse than the ones for
‘ResBN’. The boxes for ‘ResBN’ and ‘Mean’ are flatter than the box for ‘Median’.
What these results suggest is that using a model that allows the representation of un-
certainty, which is inherent in effort estimation, can outperform other commonly used
benchmarking models, based on the mean or median effort. In addition, these results
also suggest that Web companies that either volunteered projects to the Tukutuku
database, or develop similar projects to those in that database, would benefit from
using a Bayesian Network to obtain effort estimates, compared to simply relying on
estimated based on the mean or median effort of past projects.

Fig. 5. Boxplots with distribution of residuals

The Web effort BN model presented in this paper is a very simple model, built us-

ing a dataset that does not represent a random sample of projects, therefore these
results have to be interpreted with care. In addition, we chose to use only the nodes
identified using the Tukutuku dataset, i.e., other nodes that could have been identified

102 E. Mendes

by the DE were not included. We also wanted to investigate to what extent a BN model
and probabilities generated using automated algorithms available in HUGIN would
provide predictions comparable to those obtained using mean and median models.

There are several issues regarding the validity of our results: i) the choice of discre-
tisation, structure learning, parameter estimation algorithm, and the number of catego-
ries used in the discretisation all affect the results and there are no clear-cut guidelines
on the best combination to use. This means that further investigation is paramount; ii)
the Web effort BN presented in this study might have been quite different had it been
entirely elicited from DEs, and this is part of our future work; iii) the decision as to
what conditional independent nodes to retain was based on their strength of associa-
tion with TotalEffort, however other solutions could have been used, e.g. ask a DE to
decide; iv) obtaining feedback from more than one DE could also have influenced the
BN structure in Fig. 3(b), and this is also part of our future work .

Finally, the use of BN tools by practitioners may still prove to be a challenge given
that there are still many interface and technical issues that do not make their use
straightforward.

4 Conclusions

This paper has presented the results of an investigation where a dataset containing
data on 120 Web projects was used to build a Bayesian model, and the predictions
obtained using this model were compared to those obtained using the mean and me-
dian effort models, based on a validation set with 30 projects.

The predictions obtained using the Web effort BN was significantly superior to the
median-based and mean-based predictions, despite the use of a simple BN model.
Future work entails: the building of a second Web effort BN based solely on domain
experts’ knowledge, to be compared to the BN presented in this paper; aggregation of
this BN to our large Web resource BN, to obtain a complete causal model for Web
resource estimation.

Acknowledgments. We would like to thank all the Web companies that volunteered
the data used in this study. We would also like to thank Dr. N. Mosley for his com-
ments on a previous version of this paper and Associate Professor Filomena Ferrucci
for volunteering data on 15 projects to the Tukutuku project. This work is sponsored
by the Royal Society of New Zealand, under the Marsden Fund research grant
06-UOA-201 MIS.

References

[1] Baresi, L., Morasca, S., Paolini, P.: An empirical study on the design effort for Web ap-
plications. In: Proceedings of WISE 2002, pp. 345–354 (2002)

[2] Baresi, L., Morasca, S., Paolini, P.: Estimating the design effort for Web applications. In:
Proceedings of Metrics 2003, pp. 62–72 (2003)

[3] Christodoulou, S.P., Zafiris, P.A., Papatheodorou, T.S.: WWW2000: The Developer’s
view and a practitioner’s approach to Web Engineering. In: Proc. Second ICSE Workshop
on Web Engineering, 4 and 5 June 2000, Limerick, pp. 75–92 (2000)

 The Use of a Bayesian Network for Web Effort Estimation 103

[4] Conte, S.D., Dunsmore, H.E., Shen, V.Y.: Software Engineering Metrics and Models,
Benjamin-Cummins (1986)

[5] Costagliola, G., Di Martino, S., Ferrucci, F., Gravino, C., Tortora, G., Vitiello, G.: Effort
estimation modeling techniques: a case study for web applications. In: Procs. Intl. Con-
ference on Web Engineering (ICWE’06), pp. 9-16 (2006)

[6] Druzdzel, M.J., Onisko, A., Schwartz, D., Dowling, J.N., Wasyluk, H.: Knowledge engi-
neering for very large decision-analytic medical models. In: Proceedings of the 1999 An-
nual Meeting of the American Medical Informatics Association, pp. 1049–1054 (1999)

[7] Druzdzel, M.J., van der Gaag, L.C.: Building Probabilistic Networks: Where Do the
Numbers Come From? IEEE Trans. on Knowledge and Data Engineering 12(4), 481–486
(2000)

[8] Fenton, N., Krause, P., Neil, M.: Software Measurement: Uncertainty and Causal Model-
ing, IEEE Software, pp. 116–122 (2002)

[9] Fenton, N., Marsh, W., Neil, M., Cates, P., Forey, S., Tailor, M.: Making Resource Deci-
sions for Software Projects. In: Proc. ICSE’04, pp. 397-406 (2004)

[10] Fewster, R., Mendes, E.: Measurement, Prediction and Risk Analysis for Web Applica-
tions. In: Proceedings of IEEE Metrics Symposium, pp. 338–348 (2001)

[11] Jensen, F.V.: An introduction to Bayesian networks. UCL Press, London (1996)
[12] Kitchenham, B.A., Mendes, E.: A Comparison of Cross-company and Single-company

Effort Estimation Models for Web Applications. In: Proceedings EASE 2004, pp. 47–55
(2004)

[13] Knobbe, A.J., Ho, E.K.Y.: Numbers in Multi-Relational Data Mining. In: Jorge, A.M.,
Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI),
vol. 3721, Springer, Heidelberg (2005)

[14] Korb, K.B., Bayesian, A.E.N: Artificial Intelligence. CRC Press, USA (2004)
[15] Lauritzen, S.L.: The EM algorithm for graphical association models with missing data.

Computational Statistics & Data Analysis 19, 191–201 (1995)
[16] Mahoney, S.M., Laskey, K.B.: Network Engineering for Complex Belief Networks. In:

Proc. Twelfth Annual Conference on Uncertainty in Artificial Intelligence, pp. 389–396
(1996)

[17] Mangia, L., Paiano, R.: MMWA: A Software Sizing Model for Web Applications. In:
Proc. Fourth International Conference on Web Information Systems Engineering, pp. 53–
63 (2003)

[18] Mendes, E., Kitchenham, B.A.: Further Comparison of Cross-company and Within-
company Effort Estimation Models for Web Applications. In: Proc. IEEE Metrics, pp.
348–357 (2004)

[19] Mendes, E., Counsell, S.: Web Development Effort Estimation using Analogy. In: Proc.
2000 Australian Software Engineering Conference, pp. 203–212 (2000)

[20] Mendes, E., Mosley, N., Counsell, S.: Web Effort Estimation. In: Mendes, E., Mosley, N.
(eds.) Web Engineering, pp. 29–73. Springer-Verlag, Heidelberg (2005)

[21] Mendes, E., Mosley, N.: Further Investigation into the Use of CBR and Stepwise Regres-
sion to Predict Development Effort for Web Hypermedia Applications. In: Proc.
ACM/IEEE ISESE, Nara, Japan, pp. 79–90 (2002)

[22] Mendes, E., Mosley, N., Counsell, S.: Investigating Web Size Metrics for Early Web Cost
Estimation. Journal of Systems and Software 77(2), 157–172 (2005)

[23] Mendes, E., Mosley, N., Counsell, S.: A Replicated Assessment of the Use of Adaptation
Rules to Improve Web Cost Estimation. In: Proc. ISESE, pp. 100–109 (2003)

[24] Mendes, E., Mosley, N., Counsell, S.: Early Web Size Measures and Effort Prediction for
Web Costimation. In: Proceedings of the IEEE Metrics Symposium, pp. 18–29 (2003)

[25] Mendes, E., Mosley, N., Counsell, S.: Comparison of Length, complexity and functional-
ity as size measures for predicting Web design and authoring effort. In: IEE Proc. Soft-
ware 149(3), 86–92 (2002)

104 E. Mendes

[26] Mendes, E., Mosley, N., Counsell, S.: Web metrics - Metrics for estimating effort to de-
sign and author Web applications. IEEE MultiMedia, pp. 50–57 (January-March, 2001)

[27] Mendes, E., Mosley, N., Watson, I.: A Comparison of Case-Based reasoning Approaches
to Web Hypermedia Project Cost Estimation. In: Proc. WWW’02 (2002)

[28] Mendes, E., Watson, I., Triggs, C., Mosley, N., Counsell, S.: A Comparative Study of
Cost Estimation Models for Web Hypermedia Applications. ESE 8(2), 163–196 (2003)

[29] Neil, M., Fenton, N., Nielsen, L.: “Building Large-scale bayesian networks”, The knowl-
edge Engineering Review. KER 15(3), 257–284 (2000)

[30] Neil, M., Tailor, M., Marquez, D., Fenton, N., Hearty, P.: Modeling Dependable Systems
using Hybrid Bayesian Networks. In: Proc. BND Workshop, pp. 817–823 (2006)

[31] Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Fran-
cisco (1988)

[32] Pendharkar, P.C., Subramanian, G.H., Rodger, J.A.: A Probabilistic Model for Predicting
Software Development Effort. IEEE Trans. Software Eng. 31(7), 615–624 (2005)

[33] Reifer, D.J.: Web Development: Estimating Quick-to-Market Software. IEEE Software,
57–64 (2000)

[34] Reifer, D.J.: Ten deadly risks in Internet and intranet software development. IEEE Soft-
ware, 12–14 (2002)

[35] Ruhe, M., Jeffery, R., Wieczorek, I.: Cost estimation for Web applications. In: Proceed-
ings ICSE 2003, pp. 285–294 (2003)

[36] Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall,
Sydney (1986)

[37] Stamelos, I., Angelis, L., Dimou, P., Sakellaris, E.: On the use of Bayesian belief net-
works for the prediction of software productivity. Information and Software Technol-
ogy 45(1), 51–60 (2003)

[38] Steck, H., Tresp, V.: Bayesian Belief Networks for Data Mining. In: Proceedings of The
2nd Workshop on Data Mining und Data Warehousing, Sammelband (September 1999)

[39] Studer, R., Benjamins, V.R., Fensel, D.: Knowledge engineering: principles and methods.
Data & Knowledge Engineering 25, 161–197 (1998)

[40] Wong, A.K.C., Chiu, D.K.Y.: Synthesizing Statistical Knowledge from Incomplete
Mixed-mode Data. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.
PAMI-9(6), pp. 796–805 (1987)

[41] Woodberry, O., Nicholson, A., Korb, K., Pollino, C.: Parameterising Bayesian Networks.
In: Proc. Australian Conference on Artificial Intelligence, pp. 1101–1107 (2004)

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 105 – 120, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Sequential Pattern-Based Cache Replacement
in Servlet Container

Yang Li, Lin Zuo, Jun Wei, Hua Zhong, and Tao Huang

Technology Center of Software Engineering, Institute of Software
Chinese Academy of Sciences, Beijing 100080, P.R. China

{fallingboat, martin_zl, wj, zhongh, tao}@otcaix.iscas.ac.cn

Abstract. Servlet cache can effectively improve the throughput and reduce
response time experienced by customers in servlet container. An essential issue
of servlet cache is cache replacement. Traditional solutions such as LRU, LFU
and GDSF only concern some intrinsic factors of cache objects regardless of as-
sociations among cached objects. For higher performance, some approaches are
proposed to utilize these associations to predict customer visit behaviors, but
they are still restricted by first-order Markov model and lead to inaccurate
predication. In this paper, we describe associations among servlets as sequential
patterns and compose them into pattern graphs, which eliminates the limitation
of Markov model and achieve more accurate predictions. At last, we propose a
discovery algorithm to generate pattern graphs and two predictive probability
functions for cache replacement based on pattern graphs. Our evaluation shows
that this approach can get higher cache hit ratio and effectively improve the
performance of servlet container.

Keywords: Servlet Cache, Sequential Patterns, Cache Replacement.

1 Introduction

Recently, Java EE has become mainstream middleware platform for large-scale enter-
prise applications. As the core part, servlet container [1] provides runtime environ-
ment for servlet components and plays a key role in the performance of Web applica-
tions. However, servlet performance report [2] presented by Web Performance Inc. in
2004 showed that challenges still exist to improve the performance of servlet con-
tainer. Many solutions based on cache technology are proposed to gain performance
improvement in web server and proxy server [4] [5]. But they are hard to adapt to
servlet container because responses generated by servlets are dynamic and dependent
on values of input parameters.

In servlet container, there exist lots of servlets which are frequently accessed, and
their outputs or responses keep unchanged or stable in some period if their parameter
values are unchanged, e.g. catalog pages within a shopping application or an events
calendar on a university web site [5]. We call them as cacheable servlets. Therefore,
the responses of these cacheable servlets can be cached and accessed by multiple
clients to significantly improve response time experienced by customers. Cacheable
servlets have been supported in Websphere [6].

106 Y. Li et al.

Cache replacement is an essential issue in servlet cache. Traditional cache
replacement algorithms such as LRU [3], LFU [7] and GDSF [12] mainly utilize a
combination of several intrinsic factors of cache objects (e.g. file size, the recentness
and frequency) to design replacement cost functions, which can enhance cache hit
ratio and performance of servers to a certain extent. However, they ignore business
functionaries represented by servlets and business associations among them.

Some researchers have observed these associations among business components
and adopted them in different areas. Access patterns [8] are firstly introduced to data-
base system to represent associations among data items. Access patterns are also util-
ized to prefetch cached web objects by mining server logs to achieve the associations
among web pages [9]. Qiang [14] also proposes one discovery algorithm for proxy
server based on web access pattern mining and gives the n-gram replacement algo-
rithm to improve cache hit ratio. In general, access patterns mainly includes associa-
tion rule [9] and sequential pattern [9][10][11], and sequential pattern is widely used
in Web system.

Markov model is often adopted to describe sequential patterns. Some researchers
have made use of associations among web pages to predict customer visit behaviors
for link prediction and path analysis [21][22], but most of them are under first-order
Markov model, which assumes the future visit behaviors of customers are only
influenced by their current behaviors. Therefore, first-order Markov model can not
accurately reflect customer visit behaviors at all time because it brings some inexist-
ent behaviors from multiple steps predictions and leads to invalid replacements. For
example, suppose there exist five servlets S1, S2, S3, S4 , S5, and customer visit behav-
iors are S1->S3->S4(10 times) and S2->S3->S5(10 times). The predictions based on
first-order Markov model are described in Fig.1, where direct predictions are accurate
(Figure1. a). However, the two steps predictions (Figure1.b) include inaccurate
behaviors S1->S5 and S2->S4, which never happened in actual behaviors.

S1

S4

S3

S5

S2

0.5

0.5

0.5

0.5

S1

S4 S3 S5

S2

0.25 0.25

0.250.25

S1

S4

S3

S5

S2

0.5

0.5

0.5

0.5

S1

S4 S3 S5

S2

0.25 0.25

0.250.25

(a) (b)

Fig. 1. The Predictions Based on First-order Markov Model

In this paper, we proposed a novel cache replacement approach to support servlet
cache. We first describe the business associations among servlets as sequential
patterns and compose them to form pattern graphs, which do not suffer the invalid
predictions of first-order Markov model and reflect customer visit behaviors more
accurately. Then, we present a discovery algorithm to discover above pattern graphs
according to customer visit histories, and two predictive probability functions based
on pattern graphs are presented, which can be combined with traditional cost func-
tions to improve the effectiveness of cache replacement. We discuss this approach in
the context of servlet container. However, we believe the principle idea can be applied

 Sequential Pattern-Based Cache Replacement in Servlet Container 107

to other dynamic environments, such as ASP and PHP. Our evaluation shows that this
approach greatly enhances cache hit ratio, reduces redundant reexecution of cacheable
servlets and gains more attractive performance in servlet container.

In the next section, we briefly review related work. Some basic definitions and
cache system model of servlet container are presented in section 3. The definitions
of sequential patterns and sequential patterns discovery algorithm is described in
section 4. Section 5 presents sequential pattern-based replacement cost functions. In
section 6, we provide simulation and performance evaluation of the proposed ap-
proach and conclude the paper in section 7.

2 Related Works

Many cache replacement algorithms use a combination of several factors such as the
visit time and visit frequency, the size, and the cost of fetching a document, which
lead to a significant improvement in cache hit ratio and latency reduction in proxy
server and web server. LRU [3] replaces cache object with the oldest visit time. LFU
[7] evicts cache object with minimal visit frequency. LRU-threshold [13] extends
LRU and only caches the object whose size is less than a threshold value. GDSF
[12][14] is based on visit time, file size, visit frequency and loading cost etc, which
evicts cache object with minimal replacement cost. However, all these algorithms
only utilize some factors of cache objects itself (visit time, visit frequency, file size,
loading cost, and so on) as criterion to replace cache objects, and ignore associations
among cache objects which can be applied to cache replacement and greatly enhance
cache hit ratio. In addition, they mainly suit for static files and are hard to handle
dynamic servlet responses.

Some approaches are proposed to utilize sequential patterns to describe business
association among cache objects. Agrawal [15] first adopts sequential patterns to
describe the associations among data items in database and present three algorithms to
discover them. Huang [16] analyzes user access sequential patterns and design a pre-
diction-based proxy server to improve hit ratio of accessed documents. Sarukkai [21]
uses Markov chain to solve probabilistic link prediction and path analysis in web
server. To improve the efficiency of link prediction, Zhu [22] uses Markov model to
construct the structure of a Web site based on past visitor behaviors. However, these
approaches only adapt to static objects and can not support cacheable servlet re-
sponses which depend on the values of parameters. In addition, some of them are base
on the first-order Markov model in which the objects that a client visits in future are
only determined by its current position. Therefore, these approaches can not
accurately reflect business association among servlets on multiple steps predictions.

Compared to current approaches, our contributions are summarized as follows: 1)
we describe business associations among servlet as sequential patterns. 2) We utilize
pattern graphs to compose above sequential patterns, which can reflect multiple steps
associations and get rid of the inaccuracy of Markov model. 3) We design a discovery
algorithm discoverTPG to gather pattern graphs at runtime. 4) Based on pattern
graphs, we propose two sequential pattern-based replacement cost functions to makes
a supplement for traditional replacement cost functions. To the best of our knowledge,
this is the first attempt to utilize sequential pattern in servlet cache.

108 Y. Li et al.

3 Servlet Cache Model

In this section, we present some basic definitions about servlet cache and discuss
servlet cache model in servlet container.

3.1 Basic Definitions

Definition 1. Servlet s can be defined by s=<id, name, parameters, type> where id
and name are identity and name of s, parameters is a group of parameters of s, type is
the type of s and type ∈ {cacheable, non-cacheable}.

When type is cacheable, it means responses generated by s can be cached. On the
contrary, responses of s can not be cached if type is non-cacheable. In servlet con-
tainer we represent all servlets by S, all cacheable servlets by SC and non-cacheable
servlets by SNC. For convenience, we put all cacheable servlet before non-cacheable
servlets in S, which means si.type=cacheable when 1<i ≤ L and si.type=non-
cacheable when L<i ≤ N if S={s1,s2,…si,…sN} and |S|=N,|SC|=L.

Cacheable servlets are often defined in a configure file according to their business
functionaries by application developers, which generally only return some query in-
formation such as product information or history of stock. They are generally visited
frequently but generated responses are changed rarely when values of parameters are
identical. We can cache their responses to service multiple customers, which makes
that servlet container need not execute cacheable servlets to generate same responses
for each customer at each time.

Definition 2. Servlet cache object is defined as a five-tuples: scache =<id, s, values,
response, factors > where

• id denotes a unique identity of cache object
• s denotes a cacheable servlet
• values denotes the values of s.parameters
• response denotes the response generated by s when the values of s.parameters

are values
• factors denotes factors of cost function

Comparing with static files, servlet cache object depends on not only cacheable
servlet but also its parameter values. The scache.factors is different according to spe-
cific cache replacement algorithms. For LRU, the scache.factors is {age}, and the
scache.factors for GDSF is {age, frequency, cost, size}. The meanings of the factors
will be detailed in section 5.

Web Characterization Activity (WCA) defines a user session as the click-stream of
page views for a single user across the entire web site [23]. In servlet container we
also define a session just like what they do.

Definition 3. A session represents a sequence of servlets visited by a customer, which
can be defined as session={id1,id2, idm…,idlength}, where idm is id of a servlet and
length represents the length of session.

Next, we will detail the cache model of servlet container.

 Sequential Pattern-Based Cache Replacement in Servlet Container 109

Servlet Container

Customer
Servlet

Modules

Store

Cache
Manager

Configure

request

response

Fig. 2. Servlet Cache Model

3.2 Servlet Cache Model

Fig.2 describes the cache model of servlet container. Here configure defines the
cacheable servlets; cache manager stores servlet cache objects into store and man-
ages their consistency; servlet modules generate response to service customers.

Algorithm 1 explains how above cache model works. ServletContainer.execute(s,
values) means execution of s with values of s.parameters (line 5). CacheManager.get
(s.name, values) means to lookup corresponding scache in store according to s.name
and its parameters values (line 9). CacheManager.updateFactors(scache) means to
update some factors of scache such as visit time and frequency (line 11).

From Algorithm 1, we can see that the process flows are different according to
servlet type. If s.type is non-cacheable, servlet container will directly execute s with
the values of s.parameters (line 5) and return generated response to customer (line 6).
But when s.type is cacheable, servlet container will first lookup corresponding scache
from store (line 9). If scache exists, some factors of scache are updated, and
scache.response is returned to customer (line 12). If scache does not exist, servlet
container does what it does for non-cacheable servlet (line 15) and creates new scache
object to store into store (line 16, 17). When the store overflows upper limit, some
scaches are evicted according to replacement cost function rank(scache) (line 19).

Obviously, replacement cost function rank (scache) is the key of cache replace-
ment, which determinates which scaches should be evicted. Next we will detail our
approach, and describe two more effective replacement cost functions based on this
approach in section 5.

1. s: servlet that client requests
2. values: the values of parameters of s
3. function request(s, values){
4. if(s.type == non-cacheable){
5. response = ServletContainer.execute(s,values);
6. return response;
7. }
8. else if(s.type == cacheable){
9. scache= CacheManager.get(s.name, values)
10. if(scache != null){
11. CacheManager.updateFactors(scache);
12. return scache.response;

110 Y. Li et al.

13. }
14. else{
15. response = ServletContainer.execute(s, val-
ues);
16. scache= new scache(new(id), s, val-
ues,response);
17. CacheManager.push(scache);
18. while(Store.size > Store.maxsize){
19. Run cache replacement algorithm to evict the
 scache with minimal values of rank(scache).
20. }
21. return scache.response;
22. }
23. }
24. }

Algorithm 1. The Principle of Servlet Cache Model

4 Sequential Patterns in Servlet Container

4.1 Basic Definitions

Srikant [8] defines sequential patterns in database as “5% of customers bought ‘Foun-
dation’ and ‘Ring world’ in one transaction, followed by ‘Second Foundation’ in a
later transaction. In servlet container, we use similar description to define sequential
patterns as “15% of customers visited servlet ‘searchBook’ followed by servlet
‘showBookDetail’ in a later visit”. Some basic definitions of sequential pattern are
presented as follows.

Definition 4. Transition, if a session contains a sequence like …idm,…,idm+d…and
idm =ssource.id, idm+d = starget.id, we think that there exists a transition from servlet
source to servlet target and transition distance is d, which is defined as:

d
source targets s⎯⎯→ , where ssource , starget and d are source, target and distance of the transi-

tion, respectively.

A transition is called self transition if its source and target are the same servlet. For
example, if a servlet s returns product information according to productid, a self tran-
sition happens when a customer visits s with different productid continuously.

Definition 5. Sequential pattern is defined as the probability that transition
d

source targets s⎯⎯→ happens in servlet container.

Sequential patterns in servlet container represent the business associations among
servlets. We can use them to predict the probability that a cacheable servlet response
is visited again and evict cache objects with minimal probability.

4.2 Pattern Graphs

Definition 6. Transition graph TG(d) is a directed weighted graph, which comes
from a group of session sessions: session(1), session(2), …… , session(n). Vertex i of

 Sequential Pattern-Based Cache Replacement in Servlet Container 111

TG(d) represents servlet si, edge e<i, j> represents transition d
i js s⎯⎯→ and weight of

edges WTG(d)(i, j) represents the times that d
i js s⎯⎯→ happened in sessions.

Definition 7. P (i, j, d) denotes the probability that transition d
i js s⎯⎯→ happened in a

group of session sessions. Obviously P (i, j, k) = TG(k) TG(k)W (i, j) W (i, m) /
m EndS∈
∑ , where

WTG(k)(i, j) represents the weight of edge e<i, j> of TG(k) and EndS is collections
contained all end of transition k

i ms s⎯⎯→ in sessions. P(i, j, d) is sequential pattern in
servlet container according to definition 5.

Definition 8. Transition probability graph TPG(d) is also a directed weighted
graph from a group of session sessions: session(1), session(2), …… , session(n). Its
vertices and edges have the same meaning with TG(d), but the weight of edge
WTPG(d)(i, j)=P(i, j, d).

TG(d) and TPG(d) are called pattern graphs (PG), they record customer visit be-
haviors from different viewpoints. The former records customer visit behaviors hon-
estly and latter records the trends of customer visit behaviors. Before using them to
design replacement cost functions, we first take an example to illustrate pattern graphs
(d=1, 2) and compare them with Markov model.

Suppose there are 5 servlets and SC = {s1, s2, s3}, SNC = {s4, s5} in servlet con-
tainer. The sessions of three customers are as follows:

session (1)={s1,s2,s3,s5,s5,s2,s3,s4}
session (2)={s1,s2,s4,s3,s4,s1,s2,s3,s5,s5}
session (3)={s2,s3,s5,s1,s2,s4}

Obviously we can get N=5, L=3. We represent cacheable servlets by grey nodes
and non-cacheable servlets by white nodes. Then, the corresponding pattern graphs
can be illustrated in Fig.3 (a) ~ (d).

S1

S4

S3

S5

S2
4 4

3 2

2

1 2

11
1

S1

S4

S3

S5

S2

2
3

2
2

1

1

2

1

1

2
1

S1

S4

S3

S5

S2
4 4

3 2

2

1 2

11
1

S1

S4

S3

S5

S2

2
3

2
2

1

1

2

1

1

2
1

(a)TG(1) (b)TG(2)

S1

S4

S3

S5

S2
1 0.67

0.6 0.4

0.5

0.25
0.33

0.50.5
0.25

S1

S4

S3

S5

S2

0.5
0.5

0.67
0.33

0.2

0.5

0.2

0.5

0.5
0.5

0.6
S1

S4

S3

S5

S2
1 0.67

0.6 0.4

0.5

0.25
0.33

0.50.5
0.25

S1

S4

S3

S5

S2

0.5
0.5

0.67
0.33

0.2

0.5

0.2

0.5

0.5
0.5

0.6
S1

S4

S3

S5

S2

0.67

0.3
0.38

0.17

0.27

0.33

0.17

0.2

0.35
0.5

0.4

0.17 0.15

0.2

0.3

0.13

0.09
0.25

S1

S4

S3

S5

S2

0.67

0.3
0.38

0.17

0.27

0.33

0.17

0.2

0.35
0.5

0.4

0.17 0.15

0.2

0.3

0.13

0.09
0.25

(c) TPG(1) (d) TPG(2) (e) TPG2(1)

Fig. 3. Pattern Graphs

112 Y. Li et al.

Current approaches mainly adopt first-order Markov model to predict the future cus-
tomer visit behaviors according to visit histories [21][22]. First-order Markov model
gets TPG (n) by calculating the power of TPG (1), namely TPG (n) =TPGn(1). However,
these approaches have some defects comparing with ours. On the one hand, they base
on first-order Markov assumption, in which those servlets that customer will visit in
future are only determined by servlets that customer are visiting currently. This model
can not accurately reflect customer visit behaviors because it will bring some inexistent
multiple steps visit behaviors. For example, as shown in Fig.3(e), there exist some tran-
sitions such as 2

3 2s s⎯⎯→ , 2
5 1s s⎯⎯→ and 2

5 4s s⎯⎯→ in TPG2(1), but they never happened
in three customer sessions. The inexistent transitions make visit patterns from Markov
model are imprecise and may lead to invalid predictions. Our approach obtains pattern
graphs from original customer sessions, so it overcomes the inaccuracy of Markov
model. In addition, computation of TPGn(1) will bring more time-complexity.

4.3 Sequential Patterns Discovery Algorithm

Based on above definitions, we present a discovery algorithm discoverTPG to dis-
cover pattern graphs. For convenience of discussion, we define operation: session
[k] = idk, which gets the identity of servlet at position k in a session.

Algorithm 2 describes our sequential patterns discovery algorithm. First we use the
function discoverTG to compute all transition graphs TG(k) (line 5). Secondly we

compute TG(k)W (i, m)
m EndS∈
∑ for different distances (line 10). At last, we get all transi-

tion probability graphs with different distances (line 13).

1. S: the set of all servlets in servlet container
2. sessions: sessions represented clients behaviors
3. d: maximal transition distances
4. function discoverTPG(S, sessions, d){
5. int[][][] TG = discoverTG(S, sessions, d);
6. double[][][] TPG = new double[|S|][|S|][d];
7. int[][] Temp = new int[|S|][d];
8. for(int m = 0; m < d ; m ++){
9. for(int j = 0; j < |S|; j ++)
10. Temp[i][m] += TG [i][j][m];
11. for(int j = 0; j < |S|; j ++) {
12. for(int i = 0; i < |S|; i ++){
13. TPG [i][j][m] = TG [i][j][m]/ Temp[i][m];
14. }
15. }
16. }
17. return TPG;
18. }
19. function discoverTG(S, sessions, d){
20. int[][][] TG = new int[|S|][|S|][d];
21. for(each session in sessions){
22. for(int i = 0; i < d; i ++){
23. for(int j = 0; j < session.length -d; j ++){
24. TG [session[j]][session[i + d]][d]+=1;
25. }

 Sequential Pattern-Based Cache Replacement in Servlet Container 113

26. }
27. }
28. return TG;
29. }

Algorithm 2. discoverTPG Algorithm

If there are N sessions and the average length of them is avglength, the time-
complexity of O(N*d*avglength) is required for the function discoverTG. On the
other hand, the function discoverTPG needs O(|S|*|S|*d) time-complexity to compute
all transition probability graphs. Therefore this discovery algorithm has a time-
complexity of O(max(N*d*avglength, |S|*|S|*d)). While there are a large number of
sessions and servlets in servlet container, this algorithm is time-consuming and may
occupy a lots of system resources. Therefore, we should choose suitable time to run
discovery algorithm to avoid the influence on the normal running of servlet container.

In addition, Berkhin [17] has confirmed that there are no associations between two
servlets if transition distance is higher than 6. Therefore, we only concern the transi-
tions with less 7 distance.

5 Replacement Cost Functions

In this section, we first briefly review some traditional replacement cost functions.
Secondly the concept of predictive probability function will be presented. At last two
replacement cost functions based predictive probability function are introduced.

5.1 Traditional Replacement Cost Functions

Traditional replacement cost functions concern some factors such as visit time, visit
frequency, file size and file loading cost in web server and proxy server. The same
factors can also be concerned in servlet container, but they have different meanings
for servlet cache object. Some factors of scache are as follows:

• age: the last visit time of scache.
• frequency: the visit times of scache.
• size: the size of scache.response
• cost: the time spending on executing scache.s to generate scache.response with

scache.values.

Definition 9. Above factors are called as original factors because they belong to
servlet cache object (scache) itself. Some typical replacement cost functions of tradi-
tional cache replacement algorithms are listed in Table.1, which contain one or more
original factors.

In Table.1, the factor age and frequency make the cache objects with minimal revis-
ited possibility evicted from the cache; the factor size and cost make the cache objects
with minimal replacement cost removed from the cache. These replacement cost func-
tions only consider visit history of single servlet regardless of associations among

114 Y. Li et al.

Table 1. The Factors of Cache Replacement Algorithms

 age frequency size cost replacement cost function
LRU √ age
SIZE √ size
LFU √ frequency

GDSF √ √ √ √ cost*frequency/size +age

servlets. Next, we will consider some features of servlet container and utilize afore-
mentioned transition probability graph TPG(d) to design predictive probability func-
tion, which makes a supplement for traditional replacement cost functions.

5.2 Predictive Probability Function

Definition 10. Predictive probability function represents the probability that a
cacheable servlet is revisited in near future, which is regarded as a supplementary fac-
tor for original factors and comes from associations among servlets. In this section we
design two predictive probability functions as follows, where K represents quantity of
scache objects in cache system.

• Session-based predictive probability function

| |

1 1

, ()[[], ,]
sessionsD

session

d i

rank (j D) TPG d session length j d
= =

=∑ ∑

(1)

• Scache-based predictive probability function

1 1

(,) ()[(). . , ,]
D K

scache

d i

rank j D TPG d scache i s id j d
= =

=∑∑

(2)

Equations (1) and (2) predict the probability that a cacheable servlet sj is revisited
in near future according to the different historic information. The function ranksession(j,
D) bases on session information and reflects realtime customer behaviors. The func-
tion rankscache(j, D) only considers the transitions starting from cacheable servlets and
reflects the status of cache system, which maybe makes its prediction lesss accurate
than equation (1), but less time-complexity of computation will be gained.

It needs the time-complexity (| |)O L D sessions× × , ()O L D K× × to compute the pre-
diction probability of all cacheable servlets through equations (1) and (2), respec-
tively. Although predictive probability functions induce some computation cost, they
can evict cache objects with minimal cost and reduce the times of cache replacement
and redundant reexecution of cacheable servlets. In result, a higher cache hit ratio and
better performance of servlet container are achieved by adoption of predictive prob-
ability functions.

If we define traditional cost functions and predictive probability functions as
ranktranditional(scache) and rankpredictive(scache) respectively, we can represent new re-
placement cost function as:

ranknew(scache)=ranktraditional(scache) × rankpredictive(scache). (3)

 Sequential Pattern-Based Cache Replacement in Servlet Container 115

In the section 6 we will confirm the effectiveness of new replacement cost function
ranknew(scache) through evaluations.

6 Evaluation

The servlet cache model of servlet container and replacement cost functions have
been implemented in the application server OnceAS [18] developed by Institute of
Software, Chinese Academy of Sciences.

OnceAS application server runs on a PC with CPU of P4 2.8G, memory of 512M,
and windows 2000 professional operating system. The simulating customers visit
OnceAS through a 100M LAN. We adopt a Java EE blueprint program Pet Store
Demo [19] as our web application. For experiment simulation, we add 10000 pets
including 2000 cats, dogs, fish, birds and reptiles respectively into pet store as our
simulation data.

category

product item

cart

search

customer main signon

create_customer

0.1

0.1

0.31

0.35

0.15
0.59

0.32

0.52

0.43

0.95

0.48

0.38

0.4

0.33

0.45

0.54

0.270.71

0.2

0.13

0.12

0.22

category

product item

cart

search

customer main signon

create_customer

0.1

0.1

0.31

0.35

0.15
0.59

0.32

0.52

0.43

0.95

0.48

0.38

0.4

0.33

0.45

0.54

0.270.71

0.2

0.13

0.12

0.22

category

product item

cart

search

customer main signon

create_customer

0.2

0.15

0.3

0.33

0.1
0.5

0.3

0.42

0.5

0.8

0.33

0.32

0.3

0.23

0.4

0.51

0.20.71

0.15

0.11

0.1

0.2

category

product item

cart

search

customer main signon

create_customer

0.2

0.15

0.3

0.33

0.1
0.5

0.3

0.42

0.5

0.8

0.33

0.32

0.3

0.23

0.4

0.51

0.20.71

0.15

0.11

0.1

0.2

category

product item

cart

search

customer main signon

create_customer

0.5

0.35

0.15

0.1
0.3 0.4

0.38

0.4

0.3

0.10.71

0.1

0.12

0.1

1

0.6

0.3
0.1

0.13

0.3
0.1

0.2
0.3

0.1

0.4

0.1

category

product item

cart

search

customer main signon

create_customer

0.5

0.35

0.15

0.1
0.3 0.4

0.38

0.4

0.3

0.10.71

0.1

0.12

0.1

1

0.6

0.3
0.1

0.13

0.3
0.1

0.2
0.3

0.1

0.4

0.1

(a)CBMG (b) TPG(1) (c) TPG(2)

Fig. 4. CBMG of Simulating Customers and Pattern Graphs

Daniel [20] proposes customer behavior model graph (CBMG) and gives different
category CBMG for three kinds of customers to simulate the behaviors of real cus-
tomers in TPC-W. We use Daniel’s method to compute the CBMG of Pet Store for
one category customer in Fig.4 (a) where white nodes denote non-cacheable servlets
and grey nodes denote cacheable servlets. We regard Fig.4 (a) as the behaviors of
simulated customers, every simulated customer visits different servlets continually
according to the transition probability of Fig.4 (a).

Servlet cache system running in OnceAS has provided the solution on cache
consistency, which will evict invalid cache objects in time. In addition, since the re-
sponse of servlets search, categories, products and items are relatively stable unless

Table 2. The Cacheable Servlets of Pet Store

Servlet name category product item customer search
Parameter category_id product_id item_id customer_id keywords

116 Y. Li et al.

we maintain the database of Pet Store, we define them as cacheable servlets. Their
name and parameters are shown in Table.2.

The evaluation has been performed in two steps. First of all, 100 customers are
simulated to visit Pet Store for six hours according to the CBMG in Fig.4 (a) so that
we can collect the customer sessions and run discovery algorithm discoverTPG to
achieve pattern graphs. In a second stage, we utilize the results from first stage to
perform some experiments to confirm the efficiency of our approach.

The results of first stage are presented in Fig.4 (b)(c). Obviously, TPG(1) is similar
to Fig.4 (a), which has covered customer visit tendency. In addition, we can see that
TPG(2) can discover some sequential patterns that can not be discovered by TPG(1),
such as 2customer customer⎯⎯→ and 2item category⎯⎯→ .

Experiment 1 is conducted with different cache sizes and replacement cost func-
tions. We still simulate 100 customers with the behaviors described in Fig.4 (a) to
visit Pet Store for two hours. The settings and results of experiment 1 are presented in
Table 3 and Fig.5. (The function whose rankpredictive =1 represents a traditional algo-
rithm, and mranksession(j,1) and mranksession(j,2) represent the one step and two steps
replacement cost functions from Markov model, respectively.) First, experiment 1
compares cache hit ratios of traditional LRU algorithm and sequential pattern-based
cache replacement algorithms adopted equations (1) and (2) ,respectively. Secondly
experiment 1 shows the influence on cache hit ratio from different transition dis-
tances. At last, experiment 1 also compares the prediction effect of our approach with
Markov model at different distance.

Table 3. The Settings of Experiment 1

Cost function ranktraditional rankpredictive
Func1 age 1
Func2 age rankscache(j,1)
Func3 age ranksession(j,1)
Func4 age mranksession(j,1)
Func5 age ranksession(j,2)
Func6 age mranksession(j,2)

From Fig.5 (a) we can see that traditional LRU algorithm (Func1) has the worst
cache hit ratio, only 52% when cache size is 1.2MB. Then, cache hit ratio has in-
creased remarkably when predictive probability functions are applied. In addition,
cache hit ratio increment gained from equation (1) is higher than that from equation
(2) (Func3>Func2) just like what we expect in section 5. Although there exist several
exceptions caused by additional computation, the cache hit ratio of Func5 is higher
than that of Func3 at most time. It shows that the longer distance is considered in
replacement cost function, the higher cache hit ration can be gained. At last, we can
see that Markov model (Func4) has the almost same increment comparing to our
approach (Func3) when transition distance is 1. However, our approach has the more
attractive enhancement of cache hit ratio than Markov model when transition distance
is 2, because the latter introduces some inexistent visit behaviors at this time.

 Sequential Pattern-Based Cache Replacement in Servlet Container 117

 (a) Cache Hit Ratio (b) Average Response Time

 (c) Throughput (d) Cache Hit Rate of Cacheable Servlet

Fig. 5. The Result of Experiment 1

Fig.5(b) and (c) show that our approach also gains much less average response
time and higher throughput of servlet container than traditional algorithms and
those based on Markov mode. However, we notice that there exists an abnormal
case where the cache hit ratio of Func3 is lower than that of Func1 (traditional
LRU) for servlets customer and category, as shown in Fig.5 (d). The reason is that
TPG(1) in Fig.4 (b) misses some customer behaviors, which makes cached re-
sponses of servlets customer and category are evicted improperly and impairs cache
hit ratio. But we are glad to see that Func5 (TPG(2)) has erased these abnormalities
successfully.

Experiment 2 is also conducted with different cache sizes, which compares cache
hit ratio of original LRU, LFU and GDSF algorithms and the corresponding algo-
rithms using predictive probability function ranksession(j,2) respectively. Table.4 and
Fig.6 show the settings and the result of experiment 2.

Table 4. The Cost Functions of Experiment 2

Cost function ranktraditional rankpredictive
Func7 age 1
Func8 age ranksession(j,2)
Func9 frequency 1
Func10 frequency ranksession(j,2)
Func11 cost*frequency/size +age 1
Func12 cost*frequency/size +age ranksession(j,2)

0

10

20

30

40

50

60

70

C
a
c
h
e

H
i
t

R
a
t
i
o
(
%
)

customer category product item

Cache Hit Ratio of Cacheable Servlet

Func1 Func3 Func4 Func5 Func6

Average Response Time vs Cache Size

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11

Cache Size(KB)

A
v
e
r
a
g
e

R
e
s
p
o
n
s
e

T
i
m
e
(
m
s
)

Func1 Func2 Func3 Func4 Func5 Func6

Throughput vs Cache Size

50

60

70

80

90

100

110

120

130

1 2 3 4 5 6 7 8 9 10 11

Cache Size(KB)

T
h
r
o
u
g
h
p
u
t
(
b
y
t
e
s
/
s
)

Func1 Func2 Func3 Func4 Func5 Func6

Cache Hit Ratio vs Cache Size

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11

Cache Size(KB)

C
a
c
h
e

H
i
t

R
a
t
i
o
(
%
)

Func1 Func2 Func3 Func4 Func5 Func6

118 Y. Li et al.

From Fig.6(a) we can observe that cache hit ratios of three cache replacement algo-
rithms have been improved after adopting predictive probability function (rankses-

sion(j,2)). Although there are some inconsistencies in Fig.6 (a) because the computa-
tion of ranksession(j,2) consumes some system resources such as CPU and memory,
Fig.6 (b) and (c) still show that predictive probability functions have improved the
performance of servlet container in response time and throughput.

 (a) Cache Hit Ratio (b) Average Response Time

(c) Throughput

Fig. 6. The Result of Experiment 2

7 Conclusion

To resolve the servlet cache replacement problem and improve the performance of
servlet container, in this paper, we first present pattern graphs to describe business
associations among servlets as sequential patterns. Secondly we present our discovery
algorithm to discover the pattern graphs and propose two predictive probability func-
tions to mend traditional replacement cost functions according to pattern graphs.
Finally, evaluation shows that our approach can effectively improve cache hit ratio
and the performance of servlet container.

However, our approach still has some limitations. Firstly, the discovery algorithm
discoverTPG has a higher time-complexity (O(max (N × d × avglength, |S| × |S| × d))),
which makes us have to choose suitable time to run discovery algorithm. Secondly
pattern graphs maybe become stale with the change of customer visit behaviors so
that we have to rerun discovery algorithm to capture these changes and adjust our
predictive probability functions appropriately. In addition, to apply this approach into
other environments such as EJB and Web service, it is need to be extended to solve
the consistency of cached objects. We will solve above issues in the future.

Average Response Time vs Cache Size

60

110

160

210

260

30 50 80 120 200 300 400 600 800 1000 1200

Cache Size(KB)

A
v
e
r
a
g
e

R
e
s
p
o
n
s
e

T
i
m
e
(
m
s
)

Func7 Func8 Func9 Func10 Func11 Func12

Throughput vs Cache Size

50

60

70

80

90

100

110

120

30 50 80 120 200 300 400 600 800 1000 1200

Cache Size(KB)

T

h

r

o

u

g

h

p

u

t

(

B

y

t

e

s

/

s

)

Func7 Func8 Func9 Func10 Func11 Func12

Cache Hit Ratio vs Cache Size

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11

Cache Size(KB)

C
a
c
h
e

H
i
t

R
a
t
i
o
(
%
)

Func7 Func8 Func9 Func10 Func11 Func12

 Sequential Pattern-Based Cache Replacement in Servlet Container 119

Acknowledgments. The work was supported partially by the National Natural Sci-
ence Foundation of China under Grant No. 60573126; the National Basic Research
Program of China (973) under Grant No. 2002CB312005; the National High-Tech
R&D Plan of China (863) under Grant No.2006AA01Z19B; the National Key Tech-
nology R&D Program of China under Grant No. 2006BAH02A01.

References

1. Coward, D.: Java TM Servlet Specification Version 2.4 Sun Microsystems Inc. 2003-11-24
http://jcp.org/aboutJava/ community/ process/final/jsr154/index.html

2. Christopher, L.: Servlet Performance Report: Comparing The Performance of J2EE Serv-
ers http://www.webperformanceinc.com/library/reports/ServletReport/index.html

3. Bonchi, F., Giannotti, F., Gozzi, C., Manco, G., Nanni, M., Pedreschi, D., Renso, C., Rug-
gieri, S.: Web Log Data Warehousing and Mining for Intelligent Web Caching. Data &
Knowledge Engineer 39(2), 165–189 (2001)

4. Li, K., Shen, H., Tajima, K.: Cache Design for Transcoding Proxy Caching. In: Jin, H.,
Gao, G.R., Xu, Z., Chen, H. (eds.) NPC 2004. LNCS, vol. 3222, pp. 187–194. Springer,
Heidelberg (2004)

5. Turner, D.: Web Page Caching in Java Web Applications. In: Proc. of International Con-
ference on Information Technology Coding and Computing, Las Vegas (2005)

6. Shupp, R., Andy, C., Chuck, F.: Web Sphere Dynamic Cache: Improving J2EE application
performance. IBM System Journal 43(2), 351–370 (2004)

7. Podlipnig, S., Böszörmenyi, L.: A survey of web cache replacement strategies. ACM
Computing Surveys 35(4), 374–398 (2003)

8. Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and performance im-
provements. In: Proc. of the Fifth Int. Conference on Extending Database Technology,
Avignon, France: Springer-Verlag Berlin and Heidelberg GmbH, pp.18–32 (1996)

9. Cooley, R., Mobasher, B., Srivastava, J.: Web mining: information and pattern discovery
on the World Wide Web. In: Proc. of the 9th IEEE International Conference on Tools with
Artificial Intelligence, Newport Beach, pp. 558–567. IEEE Computer Society, Los Alami-
tos, CA, USA (1997)

10. Garofalakis, M., Rastogi, R., Shim, K.: Spirit, Sequential pattern mining with regular ex-
pression constraints. In: Proc. of the ICVLD, pp. 223–234. Morgan Kaufmann Publishers,
Edinburgh (1999)

11. Han, J., Pei, J., Mortazavi-Asl, B.: PrefixSpan: Mining sequential patterns efficiently by
prefix-projected pattern growth. In: ICDE01, pp. 215–224. Springer, Heidelberg (2001)

12. Cherkasova, L.: Improving WWW Proxy Performance with Greedy-Dual-Size Frequency
Caching Policy, HP Labs: Computer Systems Laboratory: HPL-98-69R1 (1998)

13. Abrams, M., Stanbridge, C., Abdulla, G., Williams, S.: Caching Proxies: Limitation and
Potentials. In: Proc. of the 4th WWW Conference, pp. 119–133. O’Reilly, Boston (1995)

14. Yang, Q., Zhang, H.: Web-log mining for predictive web caching. IEEE Transactions on
Knowledge and Data Engineering 15(4), 1050–1054 (2003)

15. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Yu, P.S., Chen, A.S.P. (eds.)
ICDE. In: Proc. of the 11th ICDE, pp. 3–14. IEEE Computer Society Press, Washington
DC (1995)

16. Yin-Fu, H., hao Min, J.: Mining Web Logs to Improve Hit Ratios of Prefetching and Cach-
ing. In: Proc. of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence,
Compiegne France, Sep. 19-22, pp. 577–580 (2005)

120 Y. Li et al.

17. Pavel, B., Becher, D.J., Randall, D.J.: Interactive Path Analysis of Web Site Traffic. In:
Proc. of ACM SIGKDD Int. KDD01, San Francisco, CA, pp. 419–441. ACM Press, New
York (2001)

18. Huang, T., Chen, N.J., Wei, J., Zhang, W.B., Zhang, Y.: OnceAS/Q: A QoS-enabled Web
application server. Journal of Software 15(12), 1787–1799 (2004)

19. JavaTM Pet Store Demo, http://java.sun.com/developer/ releases/petstore/
20. Daniel Menascé, TPC-W:A Benchmark for E-commerce IEEE Internet Computing, 6(3),

pp. 83–87 (2002)
21. Sarukkai, R.: Link Prediction and Path Analysis Using Markov Chains. In: Proc. of the 9th

Intl. World Wide Web Conf. Amsterdam, May (2000)
22. Zhu, J., Hong, J., Hughes, J.: Using Markov Chains for Link Prediction in Adaptive Web

Sites. In: Proc. of Software, Belfast, Northern Ireland, pp. 60–73 (2002)
23. Web Characterization Activity. http://www.w3.org/WCA

A Hybrid Cache and Prefetch Mechanism for Scientific
Literature Search Engines

Huajing Li1, Wang-Chien Lee1, Anand Sivasubramaniam1, and C. Lee Giles1,2

1 Department of Computer Science and Engineering
2 The School of Information Sciences and Technology

Pennsylvania State University
State College, PA 16802, USA

{huali, wlee, anand}@cse.psu.edu, giles@ist.psu.edu

Abstract. CiteSeer, a scientific literature search engine that focuses on docu-
ments in the computer science and information science domains, suffers from
scalability issue on the number of requests and the size of indexed documents,
which increased dramatically over the years. CiteSeerX is an effort to re-architect
the search engine. In this paper, we present our initial design of a framework for
caching query results, indices, and documents. This design is based on analysis of
logged workload in CiteSeer. Our experiments based on mock client requests that
simulate actual user behaviors confirm that our approach works well in enhancing
system performances.

1 Introduction

Due to the rapid growth of the Web in recent years, Internet has changed our everyday
life style dramatically. Various types of web applications have come into shape and be-
gun to service the public, among which maybe the most successful story is the popularity
of search engines (i.e. Google1, AltaVista2). As one important branch of search engine
applications, scientific literature search engines are welcomed because of their dedica-
tion in a specific domain, which in result improve the quality of services. Unlike generic
search engines such as Google, scientific literature search engines limit their scope in a
set of tightly-correlated topics. CiteSeer [2,6,7] is a web-based scientific literature search
engine which focuses on computer and information science. On average, CiteSeer re-
ceives over 800,000 requests daily, is accessed by over 100,000 unique users monthly,
and serves approximately 30 gigabytes of data daily. As the document corpus grows
larger and the workload increases, it is observed that CiteSeer suffers from its original
design deficiencies, causing long service latencies and larger maintenance costs.

A perceivable performance metric for end-users of search engines is the query re-
sponse time. Namely, the time it takes for a user to wait before an issued query to be
answered and returned. Inside a search engine, queries are sent to the server, which
accesses the indices (in the form of inverted lists) to obtain the result set. In addition
to the query performance, CiteSeer has another concern as well: the document retrieval

1 http://www.google.com
2 http://www.altavista.com

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 121–136, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

122 H. Li et al.

efficiency, which represents the time it takes for the system to generate the detail page
of a document and present it to the user. As we click on a specific item in a search
result, CiteSeer will provide a summary page describing the document, including title,
author, abstract, related documents, bibtex, etc. The required data are located in dis-
tributed sources, some of which have to be generated by internal algorithms on-the-fly.
Considering the huge volume of requests for documents, it is critical to improve the
document retrieval efficiency.

Caching techniques have been used to address performance issue of information sys-
tems, including search engines. Two levels of caches exist for current search engine
applications. Result cache [9,13] stores previous search results, while index cache [4],
on the other hand, stores inverted lists for query terms that have been used. In addition,
as an alternative to existing cache replacement policies, prefetching can improve the
system performance by fetching result list beforehand.

To better understand the characteristics of CiteSeer, usage logs are analyzed to gain
insights into typical user behaviors. In our analysis, we found high shareness and local-
ity in user requests, with popular requests repeating frequently. Existing works mainly
apply a cache management policy to the system. With detailed analysis into the request
distribution characteristics, we believe such one-policy scheme lacks the flexibility to
reflect the distribution features. Hence, we propose a hybrid cache management scheme,
whose performance can be optimized by tuning parameters according to the summa-
rized request distributions. In addition, our workload analysis reveals that high corre-
lation exists for requests to CiteSeer, which motivates us to incorporate a correlation-
based prefetching mechanism into the framework. This unique function is not available
in existing caching mechanisms for search engines. Also, we include document caching
in improving document retrieval latency.

Previously proposed caching approaches do not fully exploit the potential of the
unique running characteristics exhibited by CiteSeer logs to optimize the system per-
formance. In this paper, we propose and analyze a hybrid cache and prefetch framework
for CiteSeerX . Our contributions can be summarized as follows:

– We propose an integrated hybrid caching framework, which is based on our analysis
to the the logged CiteSeer trace. The framework is comprised of multiple compo-
nents, each of which utilizes a combined cache management policy and is dedicated
to improve the latencies for a specific group of requests.

– We include the term and document correlation into consideration in predicting fu-
ture user requests and thus provide prefetch facility before a user actually requests
documents.

– We experimentally evaluate the proposed hybrid cache to test its effect based on
CiteSeer’s actual data and workload. Also, we demonstrate the tuning of cache’s
running parameters to achieve optimized performance.

The rest of the paper is organized as follows. Our analysis to CiteSeer’s usage logs
is presented in Section 2. We propose our hybrid caching framework for CiteSeerX in
Section 3. Section 4 gives our evaluation results and discussions. In Section 5, we briefly
review and compare proposed caching mechanisms in the literature. Finally, Section 6
provides the concluding remarks.

A Hybrid Cache and Prefetch Mechanism for Scientific Literature Search Engines 123

2 Workload Analysis

In order to understand the working nature of CiteSeer, usage logs are parsed and an-
alyzed so that we can have insights into typical user behaviors and evaluate the ef-
fectiveness of a system cache. This section summarizes our workload analysis results.
Basically, Section 2.1 introduces the preliminary tasks we performed to the usage logs.
Section 2.2 gives a statistical summary to basic attributes of the logs. Afterwards, Sec-
tion 2.3 and Section 2.4 respectively give the request frequency distribution analysis
and locality analysis. Next, we studied the correlation between user requests, which is
presented in Section 2.5. Finally, we give the analysis summary.

2.1 Data Preparation

A typical CiteSeer logging entry consists of five parts: time stamp, request type, para-
meter (query terms, requested document identifiers, etc), IP address, and agent type. An
example is given below:

1114070813.127 event context 0 1782747 0 446930 ip: 128.255.54.*3 agent:
Generic

Although the log format contains all the information needed for the research, some
data preparation tasks are necessary. First, irrelevant request types of the study are fil-
tered out. Only three request types are kept, which are (1) document query, (2) doc-
ument detail, and (3) document download. The latter two request types are treated as
the same type in the analysis because they are both requests for document records. The
second task we performed is to sessionize the logged trace. In CiteSeer, the system does
not record user identities as well as session information. We use the following heuris-
tics to differentiate sessions: (1) The IP address is used as the user identity. (2) A time
threshold is used to measure the request interval from a same IP address. In our experi-
ment, we set the time threshold to be 1, 800 seconds (30 minutes). Finally, it is found the
robot requests form a considerable portion of the network traffic. To better understand
a user’s behavior, robot requests are removed. Basically, we used a robot agent string
list4 to identify obvious robots. To those robots that do not declare themselves, statis-
tical analysis is performed to identify them. If we find that either the average session
length is extremely long (more than 500) or a portion (10%) of intra-session intervals
are particularly small (less than 0.5 second), the IP address is tagged with ”robots”
because they exhibit odd behaviors from normal human users.

2.2 Statistical Summary

Two-week-length CiteSeer logs are collected and analyzed in this paper. Table 1 gives
the statistical summary of the usage logs. From the number of requests and the number
of the unique requests we can infer that many requests do not repeat frequently (also
shown in Section 2.3). Also, we can see that the for most sessions, the session length is
limited in a relatively small value. The detailed session length distribution can be found
in Figure 1(a), from which we can observe that most sessions have a length of 2 or 3.

3 We suppressed the last section of the IP address.
4 http://www.pgts.com.au/pgtsj/pgtsj0208d.html

124 H. Li et al.

Table 1. Statistical summary of the analyzed logs

Summary Trace

Number of Document Query Requests 601, 337

Number of Document Retrieval Requests 2, 273, 233

Number of Distinct Document Query Requests 334, 731

Number of Distinct Document Retrieval Requests 393, 416

Average Session Length 2.839

0

50000

100000

150000

200000

250000

300000

1 2 3 4 5 6 7 8 9 1011121314151617181920

Session Length

Fr
eq

ue
nc

y

(a) Session length distribution

0

50000

100000

150000

200000

250000

300000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Term Number

Fr
eq

ue
nc

y

(b) Term number distribution
for document queries

Fig. 1. Statistical analysis

We also performed an analysis on the distribution of term numbers in document
queries. From Figure 1(b), it can be observed that most queries only contain a small
number of terms (less than 10). This finding implies that there is a high possibility that
some unique terms are frequently queried.

2.3 Frequency Distribution

As we look through the logs, we find that there exist a set of hot query terms and
documents in the system. The requests to these terms and documents are very frequent.
Correspondingly, the large portion of the requested term corpus and document corpus
only contributes a small portion of the entire requests. we rank terms and documents
according to their request frequencies and plot the distributions in Figure 2, where Y-
axis shows the log-scaled request frequency, while X-axis shows the log-scaled ranking
of the request, sorted by their frequencies. The distributions shown in Figure 2 are close
to straight lines, suggesting the existence of the Zipf distribution. This finding shows
that system cache can improve the service efficiency, considering some query terms
and documents are highly popular. If results are stored in a high-speed storage device
or in main-memory, a large portion of requests can be answered without accessing the
indices or the data store.

The above study does not tokenize query terms. However, many queries have some
popular terms in common. Remember for most search engines the query service will
tokenize the query string into separate terms and send them to the indices. In addition,
full-text indices are arranged as inverted lists corresponding to individual terms. There-
fore, inverted lists of popular single-terms can be cached as long as we find similar
Zipf distribution for single term frequencies. We examine the logs and plot the finding
in Figure 2(c), from which we can see the existence of an approximate straight line,
confirming our expectations.

A Hybrid Cache and Prefetch Mechanism for Scientific Literature Search Engines 125

1

10

100

1000

1 10 100 1000 10000
Ranking

Fr
eq

ue
nc

ie
s

(a) Query term distribution

1

10

100

1000

10000

1 10 100 1000 10000
Ranking

Fr
eq

ue
nc

ie
s

(b) Retrieved document dis-
tribution

1

10

100

1000

10000

1 10 100 1000 10000
Ranking

Fr
eq

ue
nc

ie
s

(c) Tokenized query term dis-
tribution

Fig. 2. Log-log scale request distribution

2.4 Request Locality

Previous studies indicate that there is a high shareness in user requests [10,13,16]. How-
ever, the effectiveness of a system cache will be greatly decreased without temporal
locality in highly repetitive requests. To answer this question, we analyze the logs to
find request localities.

Firstly, we try to reveal the distance between subsequent resubmission of same re-
quests, where distance represents the number of other requests in the interval of a re-
quest resubmission. Figure 3(a) and 3(b) shows the distance distribution (in log-log
scale) for document query and retrieval respectively. From the plots we can see that
most repeated requests have a relatively small distance. In other words, the same re-
quests are often issued with small intervals. This statistics suggest that if we cache
temporary query results or documents, it has a high possibility that the cached data will
be requested in a short period of time. With a good cache replacement policy deployed,
high cache hit rate can be expected.

1

10

100

1000

10000

100000

1 10 100 1000 10000
Query Distance

Fr
eq

ue
nc

ie
s

(a) Log-log scale query term
distance

1

10

100

1000

10000

1 10 100 1000 10000
Document Retrieval Distance

Fr
eq

ue
nc

ie
s

(b) Log-log scale document
retrieval distance

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Page Number

Fr
eq

ue
nc

ie
s

(c) Browsed result page num-
ber

Fig. 3. Request locality distributions

We also study user behaviors in browsing paged query results. Previous web studies
[3] reveal that users are reluctant to browse pages other than the first one. We conduct
the analysis to find the probability for a user to view following pages. The distribution
of requested page number is plotted in Figure 3(c), from which we can see most users
are only interested in the top 3 pages, which contributes to 75.33% browse requests.
Hence, if we consider prefetching result pages, the scope should not exceed the first 3
ones.

126 H. Li et al.

2.5 Correlation Studies

If the system can capture a user’s interest on-the-fly from previous operations and re-
trieve relevant documents beforehand, the user can acquire the documents instanta-
neously as he clicks the document link. Correlation studies can help us in predicting
the possible relevant documents in the repository. For example, if we find users have a
high probability to view or download di after querying Q, di probably is a good can-
didate document for the user. We study the correlation between issued queries and the
documents that are browsed afterwards. We give the correlation analysis of all 334, 731
distinct logged query strings in Table 2.

Table 2. Correlation for query-document (Q-D) pairs

Correlation Q-D Pairs Unpopular Q Percentage

1% 221, 981 79.13%

5% 41, 718 86.61%

10% 18, 903 90.72%

50% 2, 381 95.38%

As we look into the queries that have high correlation with documents, we find most
queries (90.72% for 10% correlational probability or higher, for instance) are unpopular
ones, whose cumulative query frequency does not exceed 5 in the logged time interval.
This result suggests that if a correlation-based prefetch is supported, it can work as
a good supplementary method for ordinary cache mechanisms, which basically serve
popular queries.

Correspondingly, we also analyze the correlation between document retrieval re-
quests, which would reveal the relationship between documents. The same procedure
is applied to all 393, 416 distinct document retrieval requests. The results are given in
Table 3.

Table 3. Correlation for document-document (D1-D2) pairs

Correlation D1-D2 Pairs Unpopular D1 Percentage

1% 85, 695 81.68%

5% 6, 875 84.41%

10% 2, 634 86.82%

50% 298 93.10%

Deeper analysis into the contents of involved papers shows that many highly corre-
lated papers have inherent relationships, including the same author papers, cited-citing
pairs, and semantically similar papers. For the limitation of pages, detailed analysis is
not included.

A Hybrid Cache and Prefetch Mechanism for Scientific Literature Search Engines 127

2.6 Summary

In this section, an analysis has been performed on the logged user requests. In summary,
we find the existence of Zipf distributions in user query terms and retrieved documents.
A small portion of hot requests contributes a large portion of the entire traffic. The
follow-up locality study shows that for these hot requests, usually they have a high
temporal locality. Hence, the results demand a well-tuned cache for CiteSeer to improve
the system’s performance. Single-term study also suggests caching popular inverted
lists. Supplementarily, our correlation study suggests that correlation-based prefetch
can determine in advance what documents to be retrieved and reduce the response time
of unpopular requests.

3 Cache Framework

Based on the conclusion in Section 2, we derive our design for the cache framework of
CiteSeerX . In this section, we first discuss what unit should be cached in Section 3.1.
For each unit type, the cache is segmented and appropriate replacement policies are
employed (Section 3.2). Hybrid cache framework architecture is given in Section 3.3.
Finally, we discuss the implementation issues for CiteSeerX .

3.1 Caching Unit

The first question that needs to be answered in developing a cache scheme is: what
need to be cached? Look at the generic service process for CiteSeer to fulfill a user
request. Basically, multiple modules and data sources in the system are involved. Based
on request types, we can cache contents in multiple levels. First, our single-term analy-
sis indicates it would be great if we can store indices in high-speed storage devices or
main-memory. However, due to the cost concerns and the huge size of indices, it is un-
realistic to store all indices in the cache. However, it is easy to cut out a small portion of
the index (inverted lists) so that it can fit the cache size. For example, the well-known
Lucene 5 library supports such operations and provides in-memory index facility. We
call this type of cache as Index Cache.

Another possibility to improve document query performance is to cache result list
pages, which we call Result Cache. The unit for this sort of cache is the already-
generated result page. Although the result cache serves the same goal as the index cache,
it has its own pros and cons. The advantage is that the result cache can save more storage
spaces. Also, as we find a result cache hit, the page can be returned instantaneously
without looking up the index. However, the result cache can only answer precisely
identical queries. One entry in the index cache can be shared by multiple queries.

The third level of cache (Document Cache) is to help improve document retrieval
efficiency. Here, the document detail page is wrapped with other auxiliary data (PDF
paper, bibtex file, etc) and stored in the cache to avoid invoking related algorithms and
unnecessary I/O requests.

5 http://lucene.apache.org

128 H. Li et al.

3.2 Cache Replacement Policy

Previous search engine cache designs generally are tailored to improve service effi-
ciency for popular requests, with only one cache management policy for all records. In
Section 2.3, we observed the Zipf-like distributions of queried terms and retrieved doc-
uments. Roughly speaking, the Zipf-like distribution has a head for most popular (hot)
requests, with a long tail (unpopular requests). The body of the distribution includes
some moderately-popular requests. Observing this, we can cut the distribution into three
sections with two frequency threshold parameters t1 and t2, where t1 separates the head
section, while t2 separates the tail. The value of the parameters are dependent upon the
distribution and the cache setting, which will be discussed in Section 3.4.

Because request frequencies are dramatically different in each distribution segment,
it is helpful to treat them differently, employing separate cache management policies
for them. This approach can improve the flexibility in managing the cache so that the
system performance can be tuned. For the hot requests, we use a static cache policy,
with the cached items always resident in the cache. For the moderately-popular requests,
we implement a dynamic cache replacement policy, in which some well-known cache
replace algorithm (LRU, SLRU, etc [5]) is used. For unpopular requests, we do not
reserve cache space for them. However, a prefetch buffer is included in the cache to store
prefetched data based on correlation statistics. As we have seen earlier, the prefetch is
very effective for unpopular requests. The one-policy approach can be viewed as an
extreme case of the hybrid cache design.

For the three components of caches, three previously observed Zipf-like distribu-
tions are used. To be specific, the tokenized query term distribution is used for the
index cache, the document query term distribution for the result cache, and the doc-
ument retrieval identifier distribution for the document cache. Each distribution has
its own frequency threshold parameters, which are represented as ti1 and ti2 , where
i ∈ {index, result, document}.

Based on the above discussions, we have the conceptual view of the hybrid caching
framework for CiteSeerX , as shown in Figure 4.

Cache Framework

Index Cache

Document Cache

Result Cache

Unpopular

Requests

Moderately

-Popular

Requests

Hot

Requests

Static

Static

Static

Dynamic

Dynamic

Dynamic

Prefetch Buffer

Fig. 4. Conceptual view of the hybrid cache framework

3.3 Architectural Design

As an important part of the query engine in CiteSeerX , the cache framework captures
incoming requests before they access the data repository. The whole process is briefly
illustrated in Figure 5. When receiving a request, the request classifier determines the
request type based on the encoded URL. Afterwards, the cache lookup module checks

A Hybrid Cache and Prefetch Mechanism for Scientific Literature Search Engines 129

Cache

User

Query Engine

Request
Classifier

Cache Lookup

Request Set

Index Access

Repository
Access

Index
Data

Repository

Index Cache

Result Cache

Document Cache

Cache
Replacement

Policy

Prefetch
Service

Prefetch Buffer

Request

Cached result pages or document pages

Cached indices
Cache miss

Cache hit

Find request class

Retrieve results from index / data repository

Access indices

Access data repository Update cache

Correlation Set

Fig. 5. The workflow in answering a user request

the cache for the results of the request. If a cache hit is found, either the result page can
be returned to the user instantly or the cache contains some index entries for the query
request. If it happens to be the latter case, partial resolved results are sent to the index
access module for further processing. If there is a cache miss, the query engine directs
the request to the index access module or the data repository access module. Prefetch
can be triggered by previous requests, which access a built-in correlation set to find
relevant documents, and store them in the prefetch buffer. The prefetched documents
are removed from the buffer as long as the current user session terminates or another
query is issued by the same user. Also, our analysis confirms that after issuing a query to
CiteSeer, a user has a high possibility to access the second and third result list page. The
two pages, if available, are prefetched when the user is browsing the first result list page
until the session ends or the arrival of a new query. After fulfilling a user’s request by
index or data repository, the cache replacement policy works to check if the cache needs
to be updated. A request set, resident in a high-speed local device, classifies the request
into a popularity class (popular, moderately-popular, unpopular) and thus directs the
request to an appropriate cache. The victim cached data entry is removed.

3.4 Implementation Issues

Suppose the available cache size is S in total, an important decision to be made during
implementing the hybrid cache is to determine how to divide S for each cache compo-
nent. Actually, the number of entries in the prefetch buffer is the same as the number of
active users in the system, because each user has a collection of prefetched documents
based on previous requests. The active user number is normally no more than 50 in
CiteSeer. Hence, its size is negligible to the entire cache. We use a set of parameters,
fx(x ∈ {index, result, document}), to denote the size percentage of S reserved for
each cache component. The value of fx is within the range [0, 1] and the sum of all fx

equals to 1.

130 H. Li et al.

The optimized values of fx are influenced by request distributions. Remember in
Section 3.2 two thresholds are used to separate each request distribution into three parts.
Actually, parameter t1 decides the number of popular requests for each frequency distri-
bution. As a result, the static cache size in each component is heavily depended on t1. In
the experimental settings, we only restrict the size reserved for each cache component.
Parameter t1 determines how many units should be cached in each static cache, and
thus decides the actual static cache size. The remainder storage is used for the dynamic
portion.

CiteSeer is an autonomous system that keeps obtaining new documents from Inter-
net. System workload also varies over time. As the statistical analysis grows out-of-date,
the effectiveness of the cache will be decreased. It is necessary to update the statistics
in the system over a period of time. The update process mainly includes summarizing
user request, updating request set, re-calculating request correlation, updating correla-
tion set, and tuning cache sizes. These tasks can be performed offline in another server.
Updated data can be switched to the public server during system maintenance period.

4 Performance Evaluation

4.1 System Setup

We develop a test query engine, which includes the proposed cache framework, for the
evaluation. Actual CiteSeer data collection and real logged usage traces are used in
the experimental platform. CiteSeer’s internal algorithms are also included to dynami-
cally generate output results. Lucene is used to index documents. This testing platform
needs to communicate with CiteSeer for data and services, which increases the response
time. This extra overhead remains almost constant regardless the workload and query
processing strategy. The dataset is stored in a SUN StorEdge 3511 FC array with SATA
hard drives. We implement the cache on a workstation (CPU: 1 AMD Opteron Proces-
sor 252, 4GB Main Memory, OS: Red Hat). Index cache is an in-memory cache. Result
cache and document cache are stored in local high-speed disks. We use the popular

Table 4. Default experiment implementation parameters

System parameter Default value

Cache size (S) 2GB

Prefetch buffer size 50MB

Correlation threshold 0.1

Cache component Size portion

Index cache 50%

Result cache 12.5%

Document cache 37.5%

Distribution Frequency threshold

Tokenized term tindex1 = 1000, tindex2 = 10000

Query term tresult1 = 300, tresult2 = 3000

Retrieved document tdocument1 = 1000, tdocument2 = 10000

A Hybrid Cache and Prefetch Mechanism for Scientific Literature Search Engines 131

cache replacement algorithm, LRU, as an example to manage the dynamic caches. The
default parameter values we set for our experiments are given in Table 4.

Two workloads are applied in our experiments. The first workload (actual trace) uses
another piece of system usage log (38, 590 queries and 212, 269 document retrievals)
to mock user clients. The other workload (uniform trace) is randomly generated from
the request corpus, without considering the popularity. The averaged response time and
cache hit rate are used for performance comparison.

4.2 Effects of Caching

As the first experiment, we study CiteSeer’s performance in answering requests under
different system settings. The actual trace and uniform trace are both used for compar-
ison, whose results are given in Figure 6.

0

0.5

1

1.5

2

Real trace Uniform

Workload

R
es

po
ns

e
T

im
e No cache,

no prefetch

Cache, no
prefetch

No cache,
prefetch

Cache,
prefetch

(a) Response time

0

0.1

0.2

0.3

0.4

Real trace Uniform

Workload

H
it

R
at

e

Index cache

Result
cache

Document
cache

Prefetch

(b) Cache and prefetch hit
rate

Fig. 6. Cache effect study

Figure 6(a) compares the system’s response time under various running conditions. It
is obvious that using cache can improve the performance dramatically (27.65%
improvement). Considering the fact that document retrieval requests contribute a dom-
inating percentage in the actual trace, prefetch technique can further improve the re-
sponse time. Also, it is shown that our caching mechanism works better for the actual
workload than the uniform workload. This is because there exists a strong Zipf-like
distribution in request semantics in the actual trace, which is absent in the uniform
workload. In the following experiments, only actual trace is used.

Figure 6(b) gives the cache hit rates for each cache component. Index cache has a
higher hit rate than any other cache component, because some queried terms are widely
shared by many queries. In addition, document cache is more effective than the result
cache, suggesting temporal locality in requested documents is stronger than queries,
which can be observed from Figure 2 as well.

4.3 Cache Size Effects

In this section, we change the cache size parameter S. The size of the prefetch buffer
and the fraction of each cache component is fixed.

It is expected that a larger cache size can bring better cache hit rate, and thus returns a
shorter response time. This expectation is confirmed from the above figures. However,
huge cache size is inefficient in cost and storage. As we can see from Figure 7(a),
the response time does not change too much as the cache size reaches 1GB, showing a

132 H. Li et al.

1.15

1.2

1.25

1.3

1.35

250MB 500MB 1GB 1.5GB 2GB

Cache size

R
es

po
ns

e
tim

e

(a) Response time

0

0.1

0.2

0.3

0.4

0.5

0.6

250MB 500MB 1GB 1.5GB 2GB

Cache size

C
ac

he
 h

it
ra

te

Index cache

Result cache

Document cache

(b) Cache hit rate

Fig. 7. Cache size effect study

reasonably good cache performance can be achieved without a larger cache. Figure 7(b)
indicates when the cache size reaches 1GB or larger, all cache hit rates only increase in
a slow speed with the size.

4.4 Correlation Threshold Effects

When we construct the correlation set, we use the correlation probability threshold to
filter the strong-correlated request pairs. In the default setting, this value is fixed at 0.1,
indicating a 10% or higher correlation probability is required. In this experiment, we
change the threshold value to observe its effect.

1.21

1.215

1.22

1.225

1.23

1.235

1.24

0.05 0.1 0.2 0.5

Correlation threshold

R
es

po
ns

e
ti

m
e

(a) Response time

0

0.1

0.2

0.3

0.4

0.5

0.05 0.1 0.2 0.5

Correlation threshold

R
at

e

Prefetch hit

Prefetched
document

(b) Prefetch hit rate and
prefetched document rate

Fig. 8. Correlation threshold effect study

From Figure 8(a), we find a low threshold is very useful in improving the average re-
sponse time. However, as seen from Figure 8(b), a low threshold means more correlated
request pairs are qualified, and thus more documents are prefetched, most of which are
not accessed by follow-up requests. When we set the correlation threshold to be 0.05,
a document prefetch rate of 0.45 is reached. This means that on average each request
will trigger 0.45 document to be stored in the prefetch buffer. However, the hit rate at
the time is only around 0.05, meaning most of them will be replaced from the buffer
without any access. The above analysis indicates us to control the correlation threshold
at a reasonable level to optimize the performance.

4.5 Size Parameter Tuning

In this section, we investigate the problem of tuning each cache component size, assum-
ing the total cache size is fixed.

A Hybrid Cache and Prefetch Mechanism for Scientific Literature Search Engines 133

1.16

1.21

1.26

1.31

1.36

0 0.25 0.5 0.75 1

Static cache percentage

R
es

po
ns

e
tim

e

Index cache
Result cache
Document cache

(a) Response time

0

0.1

0.2

0.3

0.4

0.5

0 0.25 0.5 0.75 1

Static cache percentage

C
ac

he
 h

it
ra

te

Index cache
Result cache
Document cache

(b) Cache hit rate

Fig. 9. Tuning static cache percentage

In the first experiment, we fix the assigned sizes for each cache component and re-
spectively vary the static cache size in each component. Each curve in Figure 9 gives
the study result for a specific cache component. Generally, the three curves are similar
in their shapes in Figure 9(a) and Figure 9(b) respectively. It is suggested that the ex-
treme cases (the entire cache uses static or dynamic policy) do not produce the optimal
performance. This study also gives evidence in supporting a segmented cache manage-
ment policy for search engines. It is also found that the optimal points on the curves are
different for each cache component, indicating the necessity to study the distributional
request feature behind each type of cache to optimize it.

1.16

1.18

1.2

1.22

1.24

1.26

1.28

0.125 0.25 0.375 0.5 0.625 0.75 0.875

Query cache percentage

R
es

po
ns

e
ti

m
e

(a) Response time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.125 0.25 0.375 0.5 0.625 0.75 0.875

Query cache percentage

C
ac

he
 h

it
ra

te

Index cache

Result cache

Document cache

(b) Cache hit rate

Fig. 10. Tuning query cache percentage

In the next study, we keep the static-dynamic ratio in each cache component constant
and try to tune the storage reserved for the query caches (result cache and index cache)
and the document cache. We perform this analysis because the two targets serve differ-
ent request types. From Figure 10(b) we can clearly see how the two cache categories
compete for cache space. The document cache performance is sacrificed if we increase
the query cache sizes, and vice versa. Overall, the system reaches its best performance
in the middle of the curve shown in Figure 10(a), meaning the cache should be divided
approximately evenly for the query caches and the document cache. This value is af-
fected by the composition of the request stream, in which we find the document retrieval
requests are approximately 5 times as many as the query requests in CiteSeer.

Finally, we study the details in the query caches by modifying sizes reserved for the
index cache and the result cache. The results (Figure 11) indicate the optimal size ratio
is not reached in the extreme case as well. We can see that the hit rates for both caches
do not change dramatically as long as their sizes are not extremely small. Thereafter, the
response time is not very sensitive to the size ratio between the two cache components.

134 H. Li et al.

1.1

1.15

1.2

1.25

1.3

1.35

1.4

0 0.2 0.4 0.6 0.8 1

Index cache percentage

R
es

po
ns

e
ti

m
e

(a) Response time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.125 0.25 0.375 0.5 0.625 0.75 0.875

Query cache percentage

C
ac

he
 h

it
ra

te

Index cache

Result cache

Document cache

(b) Cache hit rate

Fig. 11. Tuning index cache percentage

5 Related Work

A large number of works have been performed to study user behaviors in search en-
gines by analyzing logged data. As one of the first few papers discussing search engine
user behavior, [3] analyzed query logs of Fireball, a popular German search engine,
showing a large portion of users only browse the first page of returned results. [17]
studied Altavista search engine and found the majority of the users submitted only
one query before the session ended. [13] shows the existence of locality in the queries
for Excite search engine. The results are later confirmed by another study [16]. A late
work on Altavista [10] shows over 67% of the logged queries are requested only once,
while other few queries are requested frequently. Again, the Zipf distribution is ob-
served.

Based on these observations, server-side cache management mechanism is adopted
to improve system performance. Basically, two types of caches are proposed [16]. One
choice is the Result Caching[9,13]. The previously processed query results are cached
to answer future identical queries. The alternative approach is to cache inverted index
other than results. The idea of inverted index caching is to extract a portion of the entire
index to store in the cache [4]. Corresponding cache replacement policy that is based
on access semantic is enforced. Meanwhile, the application is able to support dynamic
query evaluation based on cache contents. [16] exploits the opportunity to combine
the previously addressed two caching types in the search engine TodoBR. [12] found
it is often observed that large web search engines are related to multiple data sources.
Hence, a new intermediate level is added to cache intersections or projections of the
frequently occurred term pairs, which contributes to the three-layer architecture. Fur-
thermore, [18] suggests a hybrid composition of search engine cache which maintains
a static set of statically locked cache entries and a dynamic set which contains replace-
able cache entries. In addition, a speculative result page prefetching strategy is added
to improve the hit ratio. Prefetching technique is also referred in other web applications
[14,15].

Another popular cache study direction is in the infrastructure level. In summary,
based on the usage patterns, it is interesting to find the best place to cache web contents
[19,20]. Cache is widely used in other research domains. [8,11] studied how to main-
tain caches in mobile environment, with limited resources. [1] uses profiles to manage
caches, which can be used for personalized services.

A Hybrid Cache and Prefetch Mechanism for Scientific Literature Search Engines 135

6 Conclusion

In this paper, we present our initial design of a cache framework for a scientific literature
search engine, CiteSeer. Our workload analysis on the usage logs indicates character-
istics of requests in such a system, including temporal localities and the correlation of
requests. Based on our findings, the proposed system cache is comprised of multiple
components, which include index cache, result cache and document cache. Correlation-
based prefetch is provided to further improve the document retrieval efficiency. Exper-
imental results show that our caching mechanism produces dramatic improvement in
the system’s response time.

Our future work will investigate the research interests of users to decrease the request
ambiguity and improve the service precision. Another future research direction is to
develop an adaptive cache management policy to tune cache parameters in real time.

Acknowledgements

We gratefully acknowledge partial support from Microsoft Research, NSF and NASA
for CiteSeer project. Wang-Chien Lee was supported by NSF under Grant No. IIS-
0328881, IIS-0534343 and CNS-0626709.

References

1. Cherniack, M., Galvez, E.F., Franklin, M.J., Zdonik, S.B.: Profile-driven cache management.
In: ICDE, pp. 645–656 (2003)

2. Giles, C.L., Councill, I.G.: Who gets acknowledged: measuring scientific contributions
through automatic acknowledgement indexing. In: Proceedings of the National Academy
of Sciences. vol. 101(51), pp. 17599–17604 (2004)

3. Hölscher, C.: How internet experts search for information on the web. In:WebNet (1998)
4. Jónsson, B.T., Franklin, M.J., Srivastava, D.: Interaction of query evaluation and buffer man-

agement for information retrieval. In: SIGMOD Conference, pp. 118–129 (1998)
5. Karedla, R., Spencer Love, J., Wherry, B.G.: Caching strategies to improve disk system per-

formance. IEEE Computer 27(3), 38–46 (1994)
6. Lawrence, S., Bollacker, K.D., Giles, C.L.: Indexing and retrieval of scientific literature. In:

CIKM, pp. 139–146 (1999)
7. Lawrence, S., Giles, C.L., Bollacker, K.: Digital libraries and Autonomous Citation Indexing.

IEEE Computer 32(6), 67–71 (1999)
8. Ken C., Lee, K., Lee, W.-C., Zheng, B., Xu, J.: Caching complementary space for location-

based services. In: EDBT, pp. 1020–1038 (2006)
9. Lempel, R., Moran, S.: Optimizing result prefetching in web search engines with segmented

indices. In: VLDB, pp. 370–381 (2002)
10. Lempel, R., Moran, S.: Predictive caching and prefetching of query results in search engines.

In: WWW, pp. 19–28 (2003)
11. Lim, S., Lee, W.-C., Cao, G., Das, C.R.: A novel caching scheme for improving internet-

based mobile ad hoc networks performance. Ad Hoc Networks 4(2), 225–239 (2006)
12. Long, X., Suel, T.: Three-level caching for efficient query processing in large web search

engines. In: WWW, pp. 257–266 (2005)

136 H. Li et al.

13. Markatos, E.P.: On caching search engine query results. Computer Communications 24(2),
137–143 (2001)

14. Min-You, Y.J.: Web prefetching: Costs, benefits and performance.
15. Nanopoulos, A., Katsaros, D., Manolopoulos, Y.: Effective prediction of web-user accesses: a

data mining approach. In: Kohavi, R., Masand, B., Spiliopoulou, M., Srivastava, J. (eds.) WE-
BKDD 2001 - Mining Web Log Data Across All Customers Touch Points. LNCS (LNAI),
vol. 2356, Springer, Heidelberg (2002)

16. Saraiva, P.C., de Moura, E.S., Fonseca, R.C., Wagner Meira Jr., Ribeiro-Neto, B.A., Ziviani,
N.: Rank-preserving two-level caching for scalable search engines. In: SIGIR, pp. 51–58
(2001)

17. Silverstein, C., Henzinger, M.R., Marais, H., Moricz, M.: Analysis of a very large web search
engine query log. SIGIR Forum 33(1), 6–12 (1999)

18. Silvestri. F.: High performance issues in web search engines: Algorithms and techniques.
Ph.D. dissertation. UniversitPá degli Studi di Pisa—Facoltà di Informatica, Pisa, Italy.

19. Wong, T.M., Wilkes, J.: My cache or yours? making storage more exclusive. In: USENIX
Annual Technical Conference, General Track, pp. 161–175 (2002)

20. Xie, Y., O’Hallaron, D.R.: Locality in search engine queries and its implications for caching.
InINFOCOM (2002)

Finalizing Dialog Models at Runtime

Stefan Betermieux and Birgit Bomsdorf

Fernuniversität in Hagen, 58095 Hagen, Germany
stefan.betermieux@fernuni-hagen.de,
birgit.bomsdorf@fernuni-hagen.de

http://www.fernuni-hagen.de

Abstract. This paper proposes a dialog model for web applications aim-
ing at flexible interface generation. The basic idea is to enable the runtime
system to “finalize” the dialog structure. The overall approach follows
a task-oriented, user-centered development process, where models of the
users’ tasks and the user-system dialog play an essential role. In our ap-
proach, these models are transferred to the run time system that allows
the user to interact with the web application according to the specifi-
cations. It is based on an architecture that separates a task controller
and a dialog controller, which are responsible for model execution and
dialog creation. Throughout the paper, we take care of the special char-
acteristics of web applications and show enhancements of the conceptual
models and of the runtime architecture.

1 Introduction

Web sites have been developed towards highly interactive web applications. The
web site visitor is no longer a mere recipient of information but a user inter-
acting with an application, e.g., filling in data, triggering system functions, and
receiving feedback from the application. Thus, web pages evolve more and more
into user interfaces; besides providing content they have to support user-system
interaction, also referred to as the dialog. Furthermore, up-to-date web applica-
tions, such as e-shops, include business processes. The system has to guide users
through a predefined sequence of web pages through which they perform the
activities of the process.

In the field of model-based design of user interfaces (e.g. [7], [20], [21], [24],
[25]) well-known notations and techniques exist for developing systematically the
dialog of an interactive system. They were developed, however, for modelling tra-
ditional user interfaces. Within the web modelling community ([22], [15], [13],
[17], [5]), on the other hand, the interactive behavior is specified basically im-
plicitly within the navigation model. In some approaches, similarly to the field of
HCI, models describing the system from the view of the user are introduced. In
WSDM [13], for example, task models are used as a high-level dialog description
to guide the design of the navigation. In OOHDM [26], task descriptions are
analyzed to identify the data items, which are to be exchanged between the user
and the web application. In general, web modelling approaches are complemented

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 137–151, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.fernuni-hagen.de

138 S. Betermieux and B. Bomsdorf

increasingly by the investigation and specification of user goals, tasks and activ-
ities, respectively (further examples are given by WebML [8], UWE and OO-H
([10],[17])). All in all, these aspects are used as informal input to conceptual do-
main, navigation and presentation design. Since interaction design and feedback
specification becomes more and more important, this information should not be
an add-on to an otherwise data-oriented methodology. Both a data-centric view
and a task- and interaction-centric view are required. However, if a modelling
approach supports mainly the data and object based specification treating dia-
log specification implicitly only, achievement of a usable interaction design can
be very cumbersome. For example, spreading pieces of interaction specification
over the navigation model makes it difficult to detect common structures and
patterns, respectively. From our point of view, developers have to be supported
by modelling concepts that put the dialog explicitly and coherently into play.

The work presented here proposes a flexible dialog model. The whole ap-
proach follows a task-oriented, user-centered development process. However, in
this paper we focus on the conceptual task model and its associated abstract user
interface model. In most existing approaches these models are taken as input to
subsequent development steps, within which the sites and pages are modelled in
more detail aiming at the final web pages and navigation. In contrast to this, in
our approach the task and abstract user interface model are passed over to the
run time system. Its control component comprises a task controller and a dialog
controller responsible for “finalizing” the dialog model. The objective is, to use
this technique in the adaptation of web pages to various screen sizes. Implemen-
tation of the overall framework is work in progress. The scope of this paper is
to introduce the basic concepts of the flexible dialog.

2 Task Modelling for Web Applications

Modelling of a web application usually starts with requirement specification,
similarly to traditional Software Engineering. The objective is to get a picture,
as clear as possible, of information and functional as well as of usability require-
ments. Use case diagrams are commonly in use for a first description of them,
later on refined by means of, e.g., activity diagrams or task models. Like WSDM
[14], we apply task modelling for this step. While in WSDM a modified version
of CTT [20] is used, we adapted the notion of VTMB [4] for the concerns of
web modelling. Initially VTMB was developed to support task modelling in the
context of traditional user interfaces. Focussing on interactive web applications,
additional concepts are added by our current work. The concepts as relevant
within this paper are introduced below, whereby we concentrate on task models
as applied in conceptual design.

2.1 Task Model

Throughout this paper, a task is denoted by means of a symbol as depicted in
figure 1. Defining temporal relations (top right in the task symbol) and cardinality

Finalizing Dialog Models at Runtime 139

Fig. 1. Example of a task symbol (representing the task Buy Car)

(top left) is well-established in task modelling. In addition, we enriched it by the
task lifespan (denoted bottom left).

Task Cardinality. Information can be attached to a task symbol to express
the possible number of executing that task. Internally, minimum and maximum
values are used to control at run time the cardinality constraints. To support
readability of task models, cardinality information is attached to task symbols
by means of expressive names.

Optional (opt). The label opt denotes that the task can be omitted.
minimum = 0

Iteration (iter). A task labeled with iter can be performed as often as needed.
maximum = ∞

Mandatory. If no label is assigned to a task symbol, the task is to be executed
exactly one time, which is the default value for task performance.
minimum = 1, maximum = 1

Temporal Relations. Task relations are a basic concept regarding hierarchies
of tasks. In contrast to CTTs [20], we assign a temporal operator to the relation
between a parent task and its children tasks and not individually between the
siblings.

The universal relation is always an aggregation of the child tasks to a parent
task (is-part-of relation); a parent task is fulfilled, as soon as the sub-tasks are
fulfilled according to the temporal relation given. This is a very basic definition
of the possible semantics of the relation, they are refined to be more useful in
the context of task models.

Sequence (seq). The subtasks of a parent task have to be completed in se-
quence. The second subtask can only be performed, if the first subtask is
finished. This process is continued for all subtasks. The parent task is ful-
filled, as soon as the last subtask is finished.

Arbitrary Sequence (arb). The subtasks can be completed in an arbitrary
sequence. Only one subtask can be performed at one time. The parent task
is fulfilled, when all subtasks are finished.

Selection (sel). Only one of the subtasks can be selected to be performed. The
parent task is fulfilled, when that subtask is finished.

Parallel (par). All of the subtasks can be performed in parallel. There can
be more then one subtask performed at the same time. The parent task is
fulfilled, if all subtasks are finished.

140 S. Betermieux and B. Bomsdorf

Lifespan. In the context of web applications, task models have to cope with user
originated and system originated task suspensions. This holds true for traditional
applications as well, but has a slightly different meaning in the context of the
web.

User originated task suspension occurs, when the user navigates explicitly to
a page which would not be accessible by the current task model, for example
by using bookmarks or the browsers navigation buttons. These out-of-context
navigations cannot be solved automatically, but have to be addressed by the
task model designer.

Due to the stateless hypertext transfer protocol (HTTP), the server needs to
associate user requests to a memory area where the state of the application of
a user is saved. Since the memory on the server is finite and users may possibly
never return, the server needs to clean up this memory area (the user session),
normally by using timeouts after the last request. Hence, system originated task
suspension occurs, when the web application server terminates a user session
which contains a running task model instance.

Either way, the task controller needs to detect those exceptional events and
react to them with a predictable behavior. Instead of dictating a single task
model suspension strategy, it is possible to attach those strategies to tasks, where
they only affect the task and all of their subtasks. It is possible to mix strategies
in a task model depending on application requirements, as long as the tasks
with different strategies are on separate subtrees. The example in section 2.2
will explain this behavior in more detail.

Volatile. The default strategy for tasks without a lifespan attribute. If a sus-
pension occurs, the states of the task and all its subtasks are discarded.

Suspendable (susp). If a task is marked as suspendable and suspension oc-
curs, the task controller will put it and all its descendants into a suspended
state. The user is offered an interface option to resume the suspended tasks.

Persistent (pers). A task marked with pers is suspendable as defined by susp
and additionally will be persisted to a long term storage space (i.e. database)
when a session timeout occurs. This is only possible for users which can be re-
identified in the next session, for example by a name/password registration,
or a site cookie. During the next session, the user is offered an interface
option to resume the previously suspended tasks.

2.2 Example

Figure 2 shows a simplified model of a web application, which uses most of the
above mentioned concepts. The example is taken from an on-line picture gallery
where users can browse existing pictures and upload new ones. Starting from the
root task On-line Picture Gallery, three subtasks can be invoked independently
(the relation to the subtasks from the root tasks is marked as parallel). The sub
task Help provides context sensitive help and can be re-invoked if finished (task
is marked as iteration). The sub task Browse Pictures is subdivided into two
subtasks where the user has to chose one of the options (hence the selection).

Finalizing Dialog Models at Runtime 141

Fig. 2. Task Model

Browse Randomly is a leaf since the granularity of task refinement is adequately
modelled for our purposes. Search Metadata is subdivided into two sequential
subtasks, the first presenting a search form and the second displaying the results.
The largest subtree of the application Upload Pictures relates to a process to
register with the web application and to upload pictures. This process is marked
as persistent; whenever a user leaves the web site before completing the process
(subtree), it is persisted and presented again when the user returns. On the
other hand, browsing pictures and invoking help are volatile, thus the states are
discarded when the user leaves the web site. Uploading pictures consists of a
task sequence: logging in, uploading a picture, and entering meta-data for the
picture. Login is a selection between first time registration and authentication by
using a given username/password combination. Registration is subdivided into
three tasks, which can be performed in an arbitrary sequence: entering the user’s
name, entering an email address (which is optional) and choosing a password.

3 Domain Model

The domain model describes the objects of the business domain, their properties
in terms of attributes, sub-object structures, and semantic relationships. Tech-
niques adopted for defining this model correspond to well-known diagrams from
Software Engineering (such as the class model in UML) or database engineering
(ER diagrams). We will use UML (see figure 3). A simple entity class1 Account
is used to store user credentials and a service class2 AccountService is used to
create new accounts and to retrieve existing ones.
1 See [1] for a definition of the stereotype Entity.
2 See [1] for a definition of the stereotype Service.

142 S. Betermieux and B. Bomsdorf

Fig. 3. Domain Model

4 Abstract Dialog Model

The task model is not yet suitable to generate the dialog between the user and
the domain model. A dialog describes messages in terms of input and output
interactions exchanged between the user and the system. From a users point of
view, a dialog state represents the “position” within a dialog while the user is
interacting with the application. The positions, i.e., the states, are changed by
task execution. The tasks are associated with input and output declarations to
specify what kind of data may be exchanged between the user and the system
to perform a task. To enable this data exchange, appropriate interaction com-
ponents have to be defined. Such information is typically described by means of
a user interface model, comprising an abstract and concrete description of the
presentation [20]. The abstract model describes what will be shown to the user
at one point in time on a web page. The concrete model, also called the visual
design, described how the web pages will be presented defining the concrete
layout in terms of colors, fonts, the logo to be inserted and so on.

4.1 Basic Components and Grouping Mechanism

In our approach we introduce abstract dialog units (ADUs) for specifying the
abstract user interface [2]. ADUs are associated to tasks from the task model,
specifying abstract interface components for displaying output and transferring
data from input elements. Thus, the abstract presentation of a web application
is closely related to the dialog structure.

The abstract user interface can be constructed using predefined interaction
objects, i.e., output objects (text, image) and input objects (text input, check-
box input). Since we are focusing on web applications, these components, which
we refer to as generic interface components, correspond to HTML input and
output elements. Figure 4 shows some of the components used in the example
later on. Label just outputs some text, Image displays a picture. Input creates a
text input and links it to a field from the domain model. The type attribute can
automatically convert strings (HTTP request parameter are always strings) into
domain model types and the validate attribute can perform simple constraint
checks on user input (i.e. not empty, integer range, etc.). Secret has the same

Finalizing Dialog Models at Runtime 143

Fig. 4. Generic Interface Components

capabilities as an Input component, but the behavior of the input field displayed
in the browser, which is cloaked with asterisks.

Since a task requires most of the time more than a single input or output,
generic interface components can be grouped together using grouping compo-
nents. A simple grouping component Group, specifies an ordered aggregation
of its subcomponents. It outputs some text as the title of the group, displays
the subcomponents as a list and can run validations on the aggregated sub-
components. Menu also groups subcomponents, but presents them as a link list
to navigate to them individually, useful to create a menu. Wizard groups its
subcomponents into sequential steps.

More complex components, like data grids and tree structures, can be added
later on. The hierarchical structure of complex ADUs can be represented visually
by means of a tree notation as shown in figure 5. The complex task Enter Name
is composed of a set of label and input components, aggregated by the group
component.

4.2 Connecting the Domain Model

The domain model can be created after the task model has been finalized, or,
in case of legacy applications, can exist beforehand. In both cases, the domain
model needs to be linked to the task model, and there are two steps involved.

Input components need to be linked to domain model fields, creating value
bindings. These links are bidirectional, existing values from the domain are used
to initialize the input fields. After a subsequent request arrives from the user,
the user input is written back into the domain model.

Methods in the domain model can be invoked during task performance. Special
fields in the ADUs called onEntry and onExit are used to link to methods in the
domain model, creating method bindings. They are unidirectional, since method
invocation always originates from the task model and targets the domain model.

While value bindings just transfer data from and to the domain model, method
bindings can initiate processing on the data.

144 S. Betermieux and B. Bomsdorf

4.3 Abstract Dialog Model Example

The example (figure 5) in this section demonstrates the attachment of ADUs
to tasks. First of all, the Register task is performed and the onEntry method
binding is invoked, creating an empty Account object. The group component
merely displays a title for all subtasks, the validation is later triggered, when the
task Register is completed, i.e., all subtasks are completed (arbitrary sequence).

Enter Name creates two input fields with associated labels in a group and
uses value bindings to link into the domain model. Validation just checks for
empty strings.

Fig. 5. Abstract Dialog Units Attached to Tasks

Enter Email creates a single input field and a label in a group. The validator
checks for a syntactical correct email address and updates the value binding only
if the email address string from the request qualifies.

Enter Password creates two input fields with asterisk cloaking and ensures
for the first password, that it doesn’t violate the password policy. The grouping
component validates the entered passwords and checks if they are equal. Since
the first password field doesn’t know about the second password field, the check
of equality can be performed at the grouping layer only, since here the data of
both passwords entries are available to the validator.

After performing all three subtasks, the parent task Register is finished, the
validation of the parent group is triggered, which checks the entered account

Finalizing Dialog Models at Runtime 145

data for inconsistencies created by contradicting inputs in separate subtasks.
Finally, the onExit method binding is called and the account is created.

5 Runtime Architecture

Based on the models we described in the last sections, we propose a runtime
architecture to process instances of these models, i.e. a task controller which
processes task model instances and a dialog controller which processes abstract
dialog model instances. Figure 6 displays the overview of the architecture and
the flow of a request from a user’s web client.

Fig. 6. Architecture View

1. All requests are handled by the dialog controller3. It associates requests
to running task model instances and performs basic validation. 2. The dialog
controller invokes the task controller, which promotes the task model instance. 3.
The task controller returns. 4. The dialog controller delegates the transforming
of the ADU tree into a web page to the view assembly. 5. The view assembly
returns a web page. 6. The dialog controller returns the web page to the browser.

The architecture is based on the classic model-view-controller (MVC) pattern
for web applications [23], with a special focus on controllers. The model matches
the domain model, the view is created in the view assembly and the controller
corresponds to the task- and dialog controllers in cooperation with the task- and
abstract dialog model.

Task- and dialog controller are explained in more detail in the next sections.
The view assembly doesn’t need a more detailed specification at the moment,
because it just maps generic interface components to their HTML counterparts.
Later on, with more complex generic interface components available, the map-
ping part will be more sophisticated.
3 Since it acts as a single point of entry, it is also known as front controller.[1]

146 S. Betermieux and B. Bomsdorf

5.1 Task Controller

The task controller is responsible for creating task model instances from a dedi-
cated task model and managing their lifecycles. For each task it creates a finite
state machine (FSM, see figure 7), which consists of the possible task’s states
and the transitions between the states triggered by events.

Fig. 7. Task Finite State Machine

Initially, the FSM is in the initiated state, and can be started or skipped.
If skipped, the FSM changes into the skipped end state, counting the task as
not completed but successfully finished. For example, if an optional task in a
sequence is skipped, the subsequent task can be performed.

From initiated, the event start changes the FSM into the running state. By
entering the running state, the method binding onEntry will be invoked. If the
FSM receives a stop event, it will invoke the onExit method binding and change
into the completed end state (or the initiated state, if the task is iterable).

Since we have to cope with suspensions, it is always possible that the task
needs to be suspended while running. Depending on the lifespan of the task, it
changes into the suspended state (if lifespan = suspendable or persistent) or in
the terminated end state (if lifespan = volatile).

The hierarchy of tasks in the task model is adhered by adding conditions
based on temporal relations to the transitions of the finite state machines.
For example, to finalize a parent task (transition from running to completed)
in a arbitrary sequence, all child tasks need to be in the state completed or
skipped.

Finalizing Dialog Models at Runtime 147

5.2 Dialog Controller

Fundamental part of the dialog controller is the component tree, which is used to
interact with the user. ADUs are linked to tasks that need user interaction. Since
we don’t have generated pages yet, the information inherent to the task model
hierarchy can be used to combine ADUs in order to present them on web pages.
Using a task model instance from the task controller, the dialog controller creates
a component tree by adding the ADUs from running tasks to a component tree,
starting with the ADU from the root task and traversing the task hierarchy with
a depth first search. The resulting “virtual” generic interface component tree was
not modelled by the designer, but is created by the dialog controller to interact
with the user. The component tree for the example in figure 5 is depicted in
figure 8.

Fig. 8. Component Tree

For example, if a web site needs to be accessible using a desktop computer
and a PDA, the dialog controller can decide at runtime how much screen size is
used by the interface components and change the spatial appearance of grouping
elements. The Register task in figure 5, could be presented on one page or on
three subsequent pages. To combine all register tasks into a single page, the
dialog controller would decide to change the appearance of the grouping element
Wizard to display all its subcomponents at once. Since this can change the final
user interface in a bad way (jumping recurring interface elements, no recognition
of the web site), the change of grouping appearance should be applied to the
component tree bottom-up and is still research in progress.

Figure 9 depicts the internal flow of the dialog controller, which is divided
into six sequential phases4.

Restore Component Tree. assigns a previously stored component tree from
the user session to the request, which is only possible if the request originates
from a web page created by the dialog controller (i.e., a component tree has

4 This is inspired by the request processing of Java ServerFaces([19]).

148 S. Betermieux and B. Bomsdorf

Fig. 9. Dialog Controller

been created and stored). If a component tree is found, the request attributes,
which correspond to user input, populate the component tree and the next
phases only use the component tree to process user interactions.

Validate Inputs. The validations of the generic interface components of the
component tree are processed. If, for example, the last name field of the
registration example (figure 5) has been left empty by the user, the validation
would fail (mandates not empty) and the processing of the request would stop
here and jump immediately to the Assemble View phase to create the same
page with a validation error message, allowing the user to correct mistakes.

Update Domain Model. The values of the input components of the compo-
nent tree are passed over to the domain. If the domain does not accept some
of the input, the processing of the request would stop here again and jump
immediately to the Assemble View phase.

Invoke Task Controller. The task controller creates a new instance of the
task model if it doesn’t exist and stores it in the user session. It promotes the
task model instance by starting and stopping tasks depending on the users
interactions. It invokes domain model methods by executing the onEntry
and onExit method bindings of started and stopped tasks. The lifecycle of
tasks is explained in section 5.1.

Create Component Tree. Due to the changes in the task model instance in
the previous phase, the set of active tasks may have changed. The dialog
controller creates a new component tree based on tasks in running state to
interact with the user. After creating the tree, it is stored in the user session.

Assemble View. Pass the component tree to the view assembly, were a HTML
page is created. Insert context information into the resulting page, which
allows the dialog controller on a subsequent request to associate the user to
a running task model instance.

6 Related Work

WebML [11] provides mainly a visual notation for defining data-driven hyper-
texts. The core is made up by a continually expanded set of so-called units, e.g.,
Data Unit, Entry Unit, Login Unit. The units represent what is to be included on

Finalizing Dialog Models at Runtime 149

a web page, whereby the expressiveness range from simple (e.g., a Data Unit rep-
resents information from the underlying data base) up to little processes (such as
specified by the Login Unit). Application dependent sequences of task execution
(called workflows) can be specified by means of operation units with additional
information concerning control conditions. All in all, interaction elements, dialog
control and presentation are not modelled separately.

Separation of concerns is better realized in UWE and WSDM. UWE [16] is
an object-oriented approach supporting the whole life-cycle of web application
development. UML is used, including some extension enabling the specification
of, e.g., a navigation model. The approach has been extended for the purpose of
modeling task sequencing (called business processes in UWE). Similarly, as in
our approach, task modelling is distinguished within analysis and within design.
At design level, a process (task) is modelled in terms of classes that are refined
by UML activity diagrams. A process class specifies the information needed for
performance, including state information for the purpose of handling interrup-
tions. The integration of the process classes into the navigation model result into
two separated but connected spaces: one dedicated to process performance and
the other dedicated to ”pure” navigation / browsing. In our approach, similar
to OO-H [9], both aspects are interwoven in the navigation model.

The the objects chunks of WSDM [14] are similarly to the ADUs proposed
by our approach. While in WSDM such chunks are only attached to leaf tasks,
in the work presented here ADUs can be attached to a task regardless of its
position within the task hierarchy. By this, we can easily denote aspects being
relevant to a complete sub-task tree.

6.1 Current State of Work

Our work differs from all mentioned approaches above with respect of utilizing
the “task views”. In most approaches, including those developed in the field
of HCI, e.g., [20], [12], [18] the task / process structure is transformed into an
initial dialog model or navigation model at design time. We are postponing dialog
creation at runtime to adapt the user interface to client specific requirements.
The biggest drawback of this approach is poor imagination of the generated web
pages by the task designer, which we try to counter with predictable behavior
of grouping elements. Still, there is a trade-off between adaptability and user
interface consistency.

The concepts were applied in some projects so far. For this purpose, our previ-
ous work on simulating task models ([4]) was extended to support interactive web
applications at run time (an example of which was presented in ([3]). As shown
in ([5], [6]) the web-MVC pattern was extended by task-related components. A
task processing manager is responsible for keeping track of state information at
the level of task and process execution, respectively.

We are implementing task- and dialog controllers to support our ideas of
task suspension and runtime dialog generation. We have developed an XML
schema of our task notation, to support easy integration of task models into the
controllers. The task controller, which creates FSMs of the tasks is finished and

150 S. Betermieux and B. Bomsdorf

deployable. The dialog controller, which uses a component tree and generates
web pages is also in a running state. Current work aims at the integration of
both controllers into a coherent runtime system. An editor to create task models
has been developed and is able to export the models in XML.

References

1. Alur, D., Crupi, J., Malks, D.: Core J2EE Patterns: Best Practices and Design
Strategies, 1st edn. Prentice Hall, Englewood Cliffs (2001)

2. Betermieux, S., Bomsdorf, B., Langer, P.: Towards a generic model for specifying
different views on the dialog of web applications. In: Proceedings of HCI Interna-
tional. Lawrence Erlbaum Associates, Mahwah, NJ (2005)

3. Biedebach, A., Bomsdorf, B., Schlageter, G.: The changing role of instructors. In:
Proceedings eLearn 2002 (2002)

4. Biere, M., Bomsdorf, B., Szwillus, G.: The visual task model builder. In: Proceed-
ings of CADUI 1999 (1999)

5. Bomsdorf, B.: First steps towards task-related web user interfaces. In: Proceedings
of Computer-Aided Design of User Interfaces, pp. 349–356 (2002)

6. Bomsdorf, B.: Task modeling for customization of web applications. In: Proceedings
HCI International 2003, pp. 33–37 (2003)

7. Bomsdorf, B., Szwillus, G.: Towards a universal modelling tool. In: Palanque, P.,
Paternó, F. (eds.) DSV-IS 2000. LNCS, vol. 1946, Springer, Heidelberg (2001)

8. Brambilla, M., Ceri, S., Fraternali, P., Manolescu, I.: Process modeling in web
applications. In: ACM Transactions on Software Engineering and Methodology
(2006)

9. Cachero, C., Gómez, J., Pastor, O.: Object-oriented conceptual modeling of web
application interfaces: the OO-H method. In: ECWEB’00, pp. 206–215. Springer-
Verlag, Heidelberg (2000)

10. Cachero, C., Koch, N.: Conceptual navigation analysis: a device and platform in-
dependent navigation specification. In: Proceedings of 2nd International Workshop
on Web-Oriented Software Technology (2002)

11. Ceri, S., Fraternali, P., Matera, M., Maurino, A.: Designing multi-role, collaborative
web sites with WebML: a conference management system case study. In: IWWOST
2001 Workshop (2001)

12. Clerckx, T., Luyten, K., Coninx, K.: The mapping problem back and forth: cus-
tomizing dynamic models while preserving consistency. In: TAMODIA ’04. Pro-
ceedings of the 3rd annual conference on Task models and diagrams, pp. 33–42.
ACM Press, New York, NY, USA (2004)

13. de Troyer, O.: Audience-driven web design. In: Information modelling in the new
millennium, IDEA Group Publishing (2001)

14. de Troyer, O., Casteleyn, S.: Modeling complex processes for web applications using
WSDM. In: Proceedings of the Third International Workshop on Web-Oriented
Software Technologies, IWWOST (2003)

15. Isakowitz, T., Kamis, A., Koufaris, M.: The extended RMM methodology for web
publishing. Working Paper IS-98-18 (1998)

16. Koch, N., Kraus, A., Cachero, C., Meliá, S.: Integration of business processes in
web application models. Journal of Web Engineering 3(1), 22–49 (2004)

17. Kraus, A., Koch, N.: A metamodel for UWE. Technical report, University of Mu-
nich (2003)

Finalizing Dialog Models at Runtime 151

18. Luyten, K., Clerckx, T., Coninx, K., Vanderdonckt, J.: Derivation of a dialog model
from a task model by activity chain extraction. In: DSV-IS, pp. 203–217 (2003)

19. McClanahan, C., Burns, E., Kitain, R.: JavaServer faces specification, v1.1, rev.
01 (2004)

20. Paternò., F., Mancini, C., Meniconi, S.: Concurtasktrees: A diagrammatic notation
for specifying task models. In: INTERACT ’97. Proceedings of the IFIP TC13
International Conference on Human-Computer Interaction, London, UK, pp. 362–
369. Chapman & Hall, Ltd., Sydney (1997)

21. Puerta, A., Cheng, E., Ou, T., Min, J.: MOBILE: User-centered interface building.
In: Proceedings of CHI 99. ACM Press, New York, NY, USA (1999)

22. Rossi, G., Schwabe, D., Lyardet, F.: Web application models are more than concep-
tual models. In: Akoka, J., Bouzeghoub, M., Comyn-Wattiau, I., Métais, E. (eds.)
ER 1999. LNCS, vol. 1728, Springer, Heidelberg (1999)

23. Singh, I., Stearns, B., Johnson, M.: Designing Enterprise Applications with the
J2EE Platform, 2nd edn. Addison-Wesley, London, UK (2002)

24. Stary, C.: Task- and model-based development of interactive software. In: Proceed-
ings of IFIP 98 (1998)

25. van der Veer, G.C., Lenting, B.F., Bergevoet, B.A.J.: Groupware task analysis -
modelling complexity. Acta Psychologica (1996)

26. Vilain, P., Schwabe, D.: Improving the web application design process with UIDs.
In: Proceedings of 2nd International Workshop on Web-Oriented Software Tech-
nology (2002)

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 152 – 166, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Transparent Interface Composition in Web Applications

Jeronimo Ginzburg1, Gustavo Rossi2, Matias Urbieta2, and Damiano Distante3

1 Departamento de Computación, FCEyN, Universidad de Buenos Aires, Argentina
jginzbur@dc.uba.ar

2 LIFIA, Facultad de Informática, UNLP, La Plata, Argentina and Conicet1
{gustavo, matias.urbieta}@lifia.info.unlp.edu.ar

3 RCOST – Research Centre on Software Technology
Department of Engineering, University of Sannio, Italy

distante@unisannio.it

Abstract. In this paper we present an approach for oblivious composition of
Web user interfaces, particularly for volatile functionality. Our approach, which
is inspired on well-known techniques for advanced separation of concerns such
as aspect-oriented software design, allows to clearly separate the design of the
core’s interface from the one corresponding to more volatile services, i.e. those
that are offered for short periods of time. Both interfaces are oblivious from
each other and can be seamlessly composed using a transformation language.
We show that in this way we simplify the application’s evolution by preventing
intrusive edition of the interface code. Using some illustrative examples we fo-
cus both on design and implementation issues, presenting an extension of the
OOHDM design model which supports modular design of volatile functionality.

1 Introduction

Even simple Web applications must deal with a myriad of concerns, each one of them
encompassing multiple requirements. It is well known that by clearly decoupling
application concerns in each development stage, and using proper composition
mechanisms to weave corresponding design and implement artifacts, we can get more
evolvable (Web) software [11]. However, while different techniques for advanced
separation of concerns such as architectural and design patterns [9] and aspects [8]
have been already introduced in the Web field (for example [2]), there are still many
open problems, related with concern separation and composition, which have not been
fully addressed. In this paper we focus on the design of volatile functionality, particu-
larly on presentation issues. In a Web application there may be many different kinds
of volatile requirements giving raise to volatile functionality. Some of them may arise
during the application’s evolution to check acceptability of the users’ community (like
beta functionality) and might be later considered or not core application services (e.g.
forums or users’ tags in Amazon.com). Others are known to be available only on
short and determined periods of time such as functionality for giving donations after a
catastrophe or sales for fixed periods of time (e.g. Christmas). Others are even more

1 This paper was partially funded by Secyt Project PICT 13623.

 Transparent Interface Composition in Web Applications 153

irregular: some kinds of price discounts in e-stores (e.g. for specific left-over stock
products), draws and concert tickets selling (associated with a CD), Amazon’s
“fishbowl performance” for new releases of an artist, etc.

Volatile functionality may also affect irregular sub-sets of objects; for example
only some CDs in a store are involved in a draw, artists’ performances in a video
appear only in some novelties, etc. As an example, in Figure 1 we show the Amazon
page of the last CD of Norah Jones, including a short video, which will be surely
removed after some weeks. Additionally at the bottom of the page there is a link to a
Valentine’s store, a volatile sub-store which was removed after St. Valentine’s day.

Core
Information

Fishbowl
Performance

St Valentine
ReminderCustomer reviews

Fig. 1. Different volatile functionality in Amazon.com

Volatile functionality poses many challenges to the designer, and also to design
approaches. Suppose for example that we have designed a CD class or entity type
using any Web design approach. If we want that some CD objects exhibit some new
behaviors or data (e.g. a video performance), we can either add an attribute to the
class, create a sub-class for the new behavior, re-design the class (type) so that it is
now a composite, encompassing as a component the new features, etc. Some of these
solutions might be better than others depending on the context (e.g. sub-classification
or class editing are not good solutions to deal with functionality attached to certain
instances). However, in all cases we face a serious problem: being this functionality
volatile, we might need to deactivate it after certain time. This means, once again,
some kind of intrusive editing, which is cumbersome even if we are using a model
driven approach and tool: the model has to be edited and this operation is certainly
error prone. To make matters worse, if new requirements arose after introducing vola-
tile modules, we might have a more complex tangle of core and volatile design com-
ponents. Even using powerful configuration management environments, rolling back
to the desired application’s configuration might be a nightmare.

Unfortunately, the armory of existing Web design methods (object oriented ones
like OOHDM [21], UWE [12] or OOWS [17], or those based on data modeling ap-
proaches like WebML [3]) lacks modeling primitives to deal with this problem. In
[19] we presented an extension to the OOHDM approach to deal with volatile func-
tionality, both at the conceptual and navigational levels. Following our approach,
we model volatile features as first class entities (e.g. classes), which are completely

154 J. Ginzburg et al.

decoupled from core modules. Core and volatile classes are then “weaved” together at
run-time, by using an integration specification. In this paper, we describe how we
extended these ideas to the user interface realm, showing that it is also possible to
create concern-specific interfaces which are obliviously composed according to inte-
gration specifications.

The rest of the paper is structured as follows: in Section 2 we present the back-
ground of our approach; next, in Section 3 we present an extension to the Abstract
Data Views (ADV) interface design notation [7] used in OOHDM with ideas coming
from aspect-oriented software design; we next introduce the idea of interface compo-
sition using transformations and illustrate our approach. In Section 4 we discuss some
related work. Finally in Section 5 we conclude the paper and present some further
work we are pursuing.

2 Integrating Volatile Functionality into OOHDM Models

Our approach is based on the idea that even the simplest volatile functionality (e.g. a
video as in Figure 1), must be considered a first-class citizen and designed accord-
ingly. Our extension to OOHDM can be summarized with the following design deci-
sions, which are shown schematically in Figure 2:

• We decouple volatile from core functionality by introducing a model for volatile
functionality (called Volatile Layer), which comprises both a conceptual and
navigational models.

• New behaviors, i.e. those which belong to the volatile functionality layer are
modeled as first class objects in the volatile conceptual model; they are consid-
ered as a combination of Commands and Decorators [9] of the core classes.

• As a consequence, we use inversion of control to achieve obliviousness; i.e. in-
stead of making core conceptual classes aware of their new features, we invert
the knowledge relationship. New classes know the base classes on top of which
they are built. Core classes therefore have no knowledge about the additions.

• Nodes and links belonging to the volatile navigational model may or may not
have links to the core navigational model. The core navigational model is also
oblivious to the volatile navigational classes, i.e. there are no links or other ref-
erences from the core to the volatile layer.

• We use a separate integration specification to specify the connection between
core and volatile functionality.

• We design (and implement) the interfaces corresponding to each concern sepa-
rately; the interface design of the core classes (described using ADVs [7]) are
oblivious with respect to the interface of volatile concerns.

• Core and volatile interfaces (at the ADV and implementation levels) are
woven by executing an integration specification, which is realized using XSL
transformations.

In this section we focus only on conceptual and navigational issues while Section 3
describes user interface specification. The overall conceptual model of the application
comprises two coarse grained packages, one containing the core functionality and the
other which is itself composed of packages describing each volatile module. Classes

 Transparent Interface Composition in Web Applications 155

in the volatile layer have a knowledge relationship to those classes which are ex-
tended with the new services. The navigational model is built analogously; there are
no links between core and volatile nodes, though there might be links to the core
navigational model (indicated with a dashed line in the diagram).

Core Conceptual
Model

Volatile Conceptual
Model

Core Navigational
Model

Volatile Navigational
Model

Core Interface
Model

Volatile Interface
Model

Integration Specification

Integration Specification

A
ffinities

P
o

intcut +
 Insertion

In
ve

rsion of
C

ontrol

Fig. 2. Overall Schema for Volatile Functionality

Nodes comprising volatile functionality are woven onto the core model using an
integration specification, which is decoupled both from volatile and core classes, thus
making the nodes oblivious to the integration strategy. In this way, the same volatile
functionality can be attached to different nodes at different times according to the
application’s needs. The specification indicates the nodes that will be enhanced with
the volatile functionality, and the way in which the navigation model will be ex-
tended. For example we can add links, insert new information or components in a
node, etc. The nodes which are affected by the new functionality are called the affin-
ity of the functionality.

In Figure 3, we present an oversimplified conceptual and navigational diagram,
showing a couple of outstanding classes and node classes in the CD example; the in-
tention of Figure 3 is to serve as an anchor for further examples in Section 3. More
elaborated examples of volatile functionality and integration specifications can be
found in [19]. The integration specification for the video functionality is the following:

Affinity NorahJones (FROM FishbowlNode WHERE performer=Norah Jones)
FROM CDNode WHERE title = 'Not too Late'

 AND performer = 'Norah Jones'
Integration: Extension

This specification indicates that the nodes corresponding to the CD with title “Not
too late” and performed by “Norah Jones” will be enriched with the Norah Jones
video (as if new attributes where added). Meanwhile, the specification for the volatile
St. Valentine’s store is as follows:

Affinity Valentine
From CDNode and BookNode WHERE styleTag=’Romantic’
Integration: Linkage (StValentineStore)
Additions: [Message: Text (“Find perfect Valentines for sweethearts….”)
 ToStore: Anchor]

156 J. Ginzburg et al.

Fig. 3. Core and Volatile Conceptual and Navigational Models

In this case we wish to add a link towards the singleton StValentineStore to those
products (CDs and Books) which are tagged as “romantic”. The text message is indi-
cated in the specification and the Anchor is associated to the unnamed link created at
weaving time. Notice that in both cases the interface specification (and therefore some
aspects of the implementation) also should change.

Our notation which is similar to the OOHDM node definition syntax (based on
object queries) allows expressing different affinities for the same volatile concern,
therefore allowing great flexibility in the resulting nodes without polluting core
classes. For example, once the CD is not more a novelty, we can weave the video to
another node, if necessary, with a different specification; in Amazon, particularly,
some of these videos are re-located (during a period of time) in the home page.

In order to support our model-driven approach and to simplify the process of weav-
ing volatile functionality into core nodes, we have implemented a framework
(CAZON), on top of Apache Struts. CAZON supports semi-automatic translation of
core and volatile OOHDM models into XML specifications, and manages the instan-
tiation of Web pages from the OOHDM navigational schema; the integration between
core and volatile services is performed by executing the queries which specify the
service affinities. A service manager evaluates affinity queries (stored in XML files)
on the actual node which is being built, and when a query succeeds, it augments the
node (in fact the corresponding XML description) with the attributes, links or aggre-
gated nodes indicated in the specification. As a result of a request CAZON returns a
node which now contains the corresponding volatile functionality and whose presen-
tation is handled using the base Struts mechanisms and tools. A full description of
CAZON can be found in [19].

In the following sections we explain how we managed to apply the ideas of oblivi-
ous composition of volatile features in the user interface, both at the design and im-
plementation levels. Though we focus on our implementation in CAZON, most of the
concepts can be easily applied in a broader context. Particularly, the idea of separation
and oblivious composition of user interfaces is applicable to all kinds of design con-
cerns though we exemplify it with volatile ones.

 Transparent Interface Composition in Web Applications 157

3 Improving Web Interface Composition

User interfaces also suffer the impact of the addition and editing of volatile function-
ality both at design and implementation levels. Even if we push languages like JSP to
their limits regarding modularity, it is practically inevitable that code which describes
the interface of core components is polluted with tags belonging to volatile function-
ality and therefore both concerns (core and volatile) get tangled.

As an example, the JSP page that implements the CD interface (see Figure 1) will
have knowledge on both St. Valentine store and on the Fishbowl component as shown
in Figure 4.

....

.... <tr><td><input name="addToBabyRgstr" alt="Add to Baby ...
src="btn-baby-reg.gif"/></td></tr>

<tr><td> <jsp:directive.include file="fishbowl.jsp" /> </td></tr>

<tr><td> Find perfect Valentines for sweethearts…
 ... Valentine’s Gift for music lovers</td></tr>

<tr><td><hr><h2>Customer Reviews</h2></br>
Average Customer Review:....
.....

Information pertaining to
core concern CD

Fishbowl Service

StValentine
Service

Fig. 4. Code tangling in the user interface

In Figure 4, we can see two blocks of code which refer to the Fishbowl and St Val-
entine concerns and which are clearly tangled with the code of the core (CD) concern
therefore compromising modularity. A similar situation would arise at the interface
design level regardless of the used notation. The classes corresponding to the core’s
interface will have explicit references (either as attributes or as aggregated classes) to
the volatile ones.

It is important to state that this problem is conceptual and not technological. In
common implementation technologies (such as JSP, JSF, etc.) or user interface de-
scription languages (such as usiXML [15], UIML [18], etc) we may experience this
kind of tangling due to the lack of primitive constructs to implement either a solution
based on polymorphism (e.g., using Decorators to made oblivious interface code
insertion) or on point-cuts such as in aspect-orientation. The include primitive, typical
of scripting languages, does not guarantee obliviousness because it yields an explicit
invocation.

It is not surprising that separation of concerns is such elusive at the interface level;
most modern Web engineering techniques have treated these aspects as lower-level
issues (e.g. relegating it to the implementation stage). Avoiding tangling at the inter-
face level allows better composition of existing interfaces and interface designs.
Though this impact is obvious and seems more harmful at the code level (e.g. in a JSP
page) it should be also addressed at design time. For the sake of understanding we
describe our approach in two different sub-sections, addressing design issues first, and
then showing how we realized these ideas in the implementation stage in the context
of CAZON.

158 J. Ginzburg et al.

3.1 Composing Web Interface Designs

In OOHDM, the user interface is specified using Abstract Data Views (ADVs) [7],
which support an object-oriented model for interface objects. In OOHDM we define an
ADV for each node class, indicating how each node’s attribute or sub-node (if it is a
composite node) will be perceived. An ADV can be seen as an Observer [9] of the node,
expressing its perception properties, in general as nested ADVs or primitive types (e.g.
buttons). Using a configuration diagram [21] we express how these properties relate
with the node’s attributes.

ADVs are also used to indicate how interaction will proceed and which interface
effects take place as the result of user-generated events. These behavioral aspects,
which are specified using ADV-charts [7] (a kind of Statechart), are outside the scope
of the paper; we will only focus on structural interface aspects.

picture Title:string

Performer:String

ADV CD

ListPrice:string

CustomerAvg:image

ADV Customer Reviews

CustomerAvg:image

Customer Review

Description:string

Set

Cover:bitmap

ADV
addShopCart

(asButton)

Customer reviews

Fig. 5. The ADV corresponding to the CD Node

We have slightly modified the ADV notation in such a way that the positions of
nested objects in the ADV reflect the look and feel of the interface as shown in
Figure 5. This notation which is inspired in a similar one for UWE [12], allows im-
proving discussions with different stakeholders, though it can not be processed auto-
matically by standard ADV-based tools.

As explained in Section 2, each concern (core and volatile) will comprise ADVs
for its corresponding nodes; when necessary, e.g. when a node should exhibit some
volatile functionality, we weave volatile and core ADVs using an integration specifi-
cation. Figure 6 shows these ideas schematically.

Core Volatile

ADV V1ADV C2

Fig. 6. ADV V1 woven into ADV C2

To express the integration, we have defined a simple specification language which
allows indicating pointcuts and insertions at the abstract interface level, i.e. the
position of the volatile ADV when it is inserted in the core ADV. The specification

 Transparent Interface Composition in Web Applications 159

generalizes the idea of pointcuts to the two dimensional space of Web interfaces. A
pointcut and the corresponding insertion are specified using the following template:

IntegrationFor: Concern name. affinity name
Target: ADV target name
Add: ADV source name | Insertion Specification
Relative to: ADV name
Position: [above | bottom | left | right]

The field “IntegrationFor” refers to the navigational affinity as described in Section 2;
the name of the affinity is necessary only when there is more than one affinity in the
same concern. When the affinity is satisfied (at the navigational level) the interfaces must
be composed according to the specification. The field “Target” indicates the name of the
ADV (or ADVs) which will host the volatile interface code. Inner ADVs may be speci-
fied using a “.” notation, such as CD.Reviews to indicate that the insertion will take place
in the ADV Reviews, which is a part of the ADV CD.

The “Add” field indicates which elements must be inserted in the target, either an
ADV or an immediate specification, which is used when the inserted field is simple
enough to avoid the specification of another (auxiliary) ADV. Finally we indicate the
insertion position by using the “Relative” and “Position” fields. Notice that the speci-
fication is still “abstract”, leaving place to fine tuning during implementation.

In Figure 7 we show (on the left) the ADV for the Fishbowl volatile functionality
and the integration specification which corresponds to the abstract interface of Figure
5. The result of the weaving process in the concrete interface is shown on the right of
Figure 7. As shown, the ADV Fishbowl is placed between the CD’s core information
and the inner ADV Customer Review.

Sometimes the integration requires additional interface objects, for example when
the navigation extension is of type Linkage, as in the case of the St. Valentine store.
The corresponding objects might be defined either as ADVs belonging to the specific
volatile concern package (e.g. for reusing them in other specifications), indicated in
the integration specification (e.g. when they are simply strings), or separately defined
as “integrators” ADVs (e.g. when only used for this particular specification).

IntegrationFor: NorahJones
Target: ADV CD
Add: ADV Fishbowl
Relative to:
CD.CustomerReviews
Position: above

ADV Video

ADV Fishbowl

Play STOP
Customer reviews

Fig. 7. Integrating Fishbowl onto the ADV CD

In Figure 8 (left), we show the ADV Reminder which is used during the integration
process of the Valentine’s store. This ADV does not need to have an underlying navi-
gational node and it provides an anchor to the St. Valentine’s store which is realized

160 J. Ginzburg et al.

Fig. 8. ADV Reminder and integration specification

in the CD node after the navigational weaving. The result of weaving the ADV Re-
minder into the ADV CD according to the specification in the right of Figure 8, gives
as a result the ADV in Figure 9 (left) with a concrete interface shown in Figure 9
(right).

picture Title:string

Performer:String

ADV CD

ListPrice:string

picture

Valentine’s Gift for music
lovers

ADV Reminder
Find perfect Valentines for

sweethearts in our

Cover:bitmap

Anchor

ADV Customer Reviews

CustomerAvg:image

Fig. 9. ADV CD after weaving and the resulting concrete interface

A further research subject (see Section 5) is to analyze the impact of the order in
which integrations are specified (in fact “executed”) in the interface look and feel, for
example in the case of the volatile concerns Fishbowl and St. Valentine.

As shown in [21], ADVs can be mapped systematically into concrete interface
specifications in different running environments. Next, we show our approach to
achieve obliviousness of interface code in the implementation stage.

3.2 Using Transformations to Compose XML Documents

The problem of achieving obliviousness at the user interface can be expressed in
terms of XML documents as follows: given two documents A and B which express
the contents of a node, we need to describe how to obtain a document which inte-
grates B into (an specific part of) A, without an explicit reference inside A. Moreover,
in the case of (irregular) volatile functionality, we need that this integration is done in
all documents which fulfill some conditions; this might eventually involve specific
instances of different document types.

The core of our solution is to use XSL [25] transformations to compose volatile and
core interfaces, and XPATH [24] to indicate the parts of the source document in which
the insertions are done. The transformation acts as an aspect in aspect-orientation: the

 Transparent Interface Composition in Web Applications 161

content of a template is like an advice, while the XPATH specification which matches
the template, indicates the point-cut where the advice is inserted. An XSL engine (e.g.,
Xalan[23], Saxon[20]) does the weaving process.

Pointcut

Advice

<xsl:stylesheet version="1.0" xmlns:xsl="http://...." xmlns:jsp="http://....” >
 <!--Imports a transformation which copies all the elements-->
 <xsl:import href="defaultTemplate.xsl"/>
 <xsl:template match=" ">

 <tr><td> <jsp:directive.include file="fishbowl.jsp" /></td></tr>
 <tr><xsl:apply-templates select="*"/></tr>

 </xsl:template>
</xsl:stylesheet>

//tr[contains(.,'Customer Reviews')]

Fig. 10. Transformation that inserts Fishbowl component

For example, in order to add the Fishbowl component to the CD Node, we can ap-
ply the XSL transformation shown in Figure 10 over the CD interface. The XPATH
expression (point-cut) "//tr[contains(.,'Customer Reviews')]" refers to the row con-
taining the text "Customer Reviews" (see Figure 4). The template (advice) leaves the
existing elements of that row unchanged and inserts above a new one with the
Fishbowl element.

In the case of class-based volatile functionality (e.g. functionality which applies to
all instances of a class), and given that JSP pages can be written as well-formed XML
documents, this kind of transformations could be applied statically to incorporate the
tags with volatile functionality without polluting the source code (see Figure 11).

A problem with this simple solution is that when volatile functionality only affects
some instances of a class (e.g., those products which are recommended to be St. Valen-
tine presents), some kind of conditional structure should be included in the tags, pollut-
ing the resulting code. As applying XSLT transformations in bare JSP during run time
is cumbersome, we decided to use a flexible approach using a more “pure” XML-based
framework in which the publishing process is done by applying XSL style sheets to the
XML content. We describe our approach in the following sub-section.

XSL
Transformation

Core JSP
File

Volatile
JSP File

JSP Enhanced

Fig. 11. Statically weaving of volatile interfaces

3.3 Our Approach in a Nutshell

In CAZON for each node type we define a style sheet which transforms its XML
representation in a physical presentation object (e.g., HTML, WAP, etc). When the
node contains aggregated sub-nodes, the style sheet contains calls to the style sheets

162 J. Ginzburg et al.

templates corresponding to the nested parts. As explained before, when the frame-
work receives a request to perform an action, it produces as a result a node’s instance,
described with an XML document containing its attributes, anchors and its recursively
aggregated nodes. The presentation layer gets this document and transforms it accord-
ing to the corresponding style sheet. As an example, in Figure 12 (left) we show the
style sheet associated to the CDNode type; when applied to the XML node representa-
tion corresponding to the Norah Jones CD (Figure 12 right) it yields a concrete inter-
face, like the one in Figure 9, but without the reference to the St. Valentine’s store.

place where StValentine reminder
should be inserted

<cd>
 <title>
 Not to late
 </title>
 <performer>
 Norah Jones
 </performer>
 <listPrice>
 9.99
 </listPrice>
 <customerReviews>
 <average....

 </customerReviews>

 </cd>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/...
 <!--Imports customerReviews stylesheet-->
 <xsl:import href="customerReviews.xsl"/>
 <xsl:template name="cd" match="cd">
 <html>
 <table border="0">
 <tr>
 ...
 <td class="cdInfo">
 <xsl:value-of select="title"/>

 <xsl:value-of select="performer"/>

 List Price: $<xsl:value-of select="listPrice"/>
 </td>
 </tr>
 </table>
 <xsl:call-template name="customerReviews"/>
 </html>
 </xsl:template>
</xsl:stylesheet>

Fig. 12. CD stylesheet and CDNode instance

As explained in Section 2, when a node’s instance satisfies an affinity query corre-
sponding to a volatile service, the corresponding node (in fact its XML representation)
is augmented according to the indication of the integration specification, either with a
link, attributes or nested nodes. Therefore, to complete the task in the user interface
and according to Section 3.2, for each integration specification we need to implement a
XSL transformation which applied over the style sheet corresponding to the core node,
inserts the newly added elements. The transformation associated with the St. Valen-
tine’ Reminder integration specification (Figure 8) is shown in Figure 13.

Pointcut Advice

Reference to Valentine’s reminder stylesheet

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <!--Imports a transformation which copies all the elements-->
 <xsl:import href="defaultTemplate.xsl"/>
 <xsl:template match=" ' ”>
 <xsl:copy-of select="document('reminder.xsl')//xsl:template[@name='reminder']/table"/>
 <xsl:copy-of select="."/>
 </xsl:template>
</xsl:stylesheet>

//xsl:call-template[@name='customerReviews]

Fig. 13. Transformation that inserts Valentine’s reminder

We have realized these ideas in CAZON using Stxx [22], an extension of Struts
which allows action classes to return XML data documents, to be transformed using
different technologies into appropriated presentation formats.

To allow dynamic weaving of style sheets during run time, we created a sub-class
of the Stxx AbstractXSLTransformer such that the method transform() collaborates

 Transparent Interface Composition in Web Applications 163

with CAZON’s ServiceManager to get the list of volatile services which had affinities
with the actual node. For each of these volatile services, its associated integration
transformation is obtained and applied over the base interface style sheet. Finally, the
transformed style sheet is applied to its XML document (which has been previously
augmented) and the final user interface is obtained, as shown in Figure 9 (right).

Receive
Request

Node Augment
with v olatile

data

XML
Marshalling

Apply
Stylesheet

Response
delivery

Final

Resolv ing
conceptual

object

Resolv ing
Nav igational

Node

Resolv ing
Conceptual
obj ects of
VServ ice

Resolv ing
Nav igational

Node of
VServ ice

Resolve
Node

Stylesheet

Request
event

Conceptual
Object

Nav igational node
Volatil

Conceptual
Object

Volatil
Nav igational

Node

XML
DocumentXSLHTML, WAP,PDF,

etc

XSL

Resolve
v olatile node

stylesheet

Compose
Stylesheet

determine
node

affinities
satisfaction

[has no more affinities]

[has no more transformations]

[has more
transformations]

[has more
affinities]

Fig. 14. Overview of request processing in CAZON

In figure 14 we show a UML activity diagram which summarizes the core steps of
our implementation.

We have finally defined a set of heuristics to allow semi-automatic translation of
interface integration definitions (as those presented in Section 3.1) to XSL templates
and XPATH specifications, assuming that the XSL style sheets which correspond to
the ADVs have been manually codified.

4 Related Work

Volatile Requirements have been a research focus in the requirement engineering
community for some years. In [16], the authors present an aspect-oriented approach
for representing and composing volatile requirements using composition patterns [5].
Though we deal with the problem on another level of abstraction (design and imple-
mentation), our approach complements the ideas in [16] for the kind of volatile ser-
vices which are usual in the Web. We have also got inspiration from the so called
symmetric separation of concerns approaches, such as Theme/Doc [4]. Both volatile
and core models are modeled using the same concepts, while in asymmetric
approaches crosscutting concerns are modeled with a different primitive: the aspect.

Modern Web design methods have already recognized the importance of advanced
separation of concerns for solving the problem of design (and code) tangling and scat-
tering. For example, in [2] aspect oriented concepts are used to deal with adaptivity.

164 J. Ginzburg et al.

Though we don’t use aspects to deal with volatile functionality, the approaches are
somewhat equivalent.

In [12] the authors present an XML Publication Framework based on the UWE ap-
proach; the transformation concept presented in this paper can be used to extend the
framework of [12] to allow volatile concerns. One just needs to append transforma-
tions steps into the Cocoon pipeline.

Composition of interfaces has also been addressed in [14] by using operators of the
tree algebra with the UsiXML description language [15]. A visual tool (Com-
posiXML) has been implemented with these ideas. The aim of that research is to help
in the reuse of interface components. Our proposal uses affinity specifications and
XSL transformations instead of tree algebra, focusing on oblivious integration of core
and volatile interfaces.

So far, we are not aware of any approach supporting oblivious composition of in-
terface design models; meanwhile, in the XML field, the AspectXML project [1] has
ported some concepts of aspect-orientation to XML technology, by allowing the
specification of point-cut and advices similarly to Aspect Java. The project is still in a
research stage.

In [6] a J2EE framework (named AspectJ2EE) which incorporates aspects on EJB
components is presented. AspectJ2EE may be used to incorporate volatile concerns
on J2EE applications at the model layer, though navigational and interface aspects
are not mentioned in the project. The aspect weaving is performed at the deployment
stage, while we propose to perform it in runtime in order to deal with volatile
functionality that only affects some instances of a class dynamically.

5 Concluding Remarks and Further Work

We have presented an original approach for seamless and oblivious composition of
Web applications’ interfaces. Our approach is grounded on the well-known principles
of advanced separation of concerns to improve modularity and therefore to foster
reuse and software evolution. We have focused on one specific kind of application’s
concerns: those which encompass volatile functionality, i.e. the kind of functionality
that can not be guaranteed to be stable. Using the compositional approach that we
described in the paper, conceptual navigation, and user interface models correspond-
ing to core concerns can be made oblivious to the models corresponding to volatile
requirements, which are designed using the same primitives (in our approach, those in
the OOHDM design framework). By using a very simple syntax, we indicate the way
in which interface designs are composed, and using XSL transformations we are able
to weave the corresponding XML files. In this way we don’t need to pollute the de-
sign model and the implementation code with references to components that may be
eliminated (requiring newer code editions). We have realized these ideas in the con-
text of CAZON, an OOHDM-based framework which automates dynamic weaving of
volatile functionality into core application’s modules, both at the navigation and inter-
face levels. The ideas in this paper can be used for weaving any kind of concern into
the application’s core in those cases in which we want both (the concern and the core
functionality) to evolve separately and obliviously.

 Transparent Interface Composition in Web Applications 165

We are now working on several research areas: first we are building tools to auto-
mate the translation of ADVs into XSL files, and point-cut specifications into XSL
transformations to improve model-driven support in CAZON. We are also analyzing
other kinds of concerns (either volatile or not) in which interface weaving might be
crosscutting, i.e. involving further changes in the core interface. Though XSL trans-
formations can cope with this situation, we aim to improve our specification language
to support more complex crosscutting. We are also studying the problem of conflicts
among volatile models, and the impact which the order of execution of integration
specifications has in the interface look and feel; this problem is similar to the problem
of conflicts among aspects already reported in [8]. Finally, we are researching on the
process of building prototypes from requirement specifications which encompass
separated concerns using early aspects approaches such as [10]. A further topic not
addressed in this paper is the application of these ideas in the field of RIA (rich inter-
net applications), particularly those built using Ajax or similar scripting languages.

References

1. AspectXML: The AspectXML home page. In www.aspectxml.org
2. Baumeister, H., Knapp, A., Koch, N., Zhang, G.: Modelling Adaptivity with Aspects. In:

Lowe, D.G., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, Springer, Heidelberg
(2005)

3. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): A Modeling Lan-
guage for Designing Web Sites. Computer Networks and ISDN Systems 33(1-6), 137–157
(2000)

4. Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design. The Theme Approach.
Addison-Wesley, Object Technology Series (2005)

5. Clarke, S., Walker, R.: Composition patterns: an approach to designing reusable aspects.
In: Proceedings of the 23nd International Conference on Software Engineering, Toronto,
Canada, May 2001, pp. 5–14. ACM Press, New York (2001)

6. Cohen, T. (Yossi) Gil, J.: AspectJ2EE = AOP + J2EE Towards an Aspect Based, Pro-
grammable and Extensible Middleware Framework. In: Odersky, M. (ed.) ECOOP 2004.
LNCS, vol. 3086, pp. 219–243. Springer, Heidelberg (2004)

7. Cowan, D., de Lucena Pereira, C.: Abstract Data Views: An Interface Specification Con-
cept to Enhance Design for Reuse. IEEE Trans. Software Eng. 21(3), 229–243 (1995)

8. Filman, R., Elrad, T., Clarke, S., Aksit, M. (eds.): Aspect-Oriented Software Development.
Addison-Wesley, London, UK (2004)

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Elements of reusable ob-
ject-oriented software. Addison Wesley, London, UK (1995)

10. Gordillo, S., Rossi, G., Moreira, A., Araujo, A., Vairetti, C., Urbieta, M.: Modeling and
Composing Navigational Concerns in Web Applications. Requirements and Design Issues.
LA-WEB, pp. 25–31 (2006)

11. Harrison, W., Ossher, H., Tarr, P.: General Composition of Software Artifacts. Software
Composition, pp. 194–210 (2006)

12. Koch, N., Kraus, A., Hennicker, R.: The Authoring Process of UML-based Web Engineer-
ing Approach. In: Proceedings of the 1st International Workshop on Web-Oriented Soft-
ware Construction (IWWOST 02), Valencia, Spain, pp. 105–119 (2001)

166 J. Ginzburg et al.

13. Kraus, A., Koch, N.: Generation of Web Applications from UML Design Models using an
XML Publishing Framework. In: Integrated Design and Process Technology Conference
(IDPT’2002) (June 2002)

14. Lepreux, S., Vanderdonckt, J.: Towards Supporting User Interface Design by Composition
Rules. In: Proceedings of CADUI’2006. Ch. 19, Springer, Berlin (2006)

15. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., López-Jaquero, V.: UsiXML:
a Language Supporting Multi-Path Development of User Interfaces. In: Proceedings of 9th
IFIP Working Conference on EHCI-DSVIS’2004 (2004)

16. Moreira, A., Araujo, J., Whittle, J.: Modeling Volatile Concerns as Aspects. In: Dubois,
E., Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, p. 544. Springer, Heidelberg (2006)

17. Pastor, O.: Abrahão, S., Fons, J.: An Object-Oriented Approach to Automate Web Appli-
cations Development. In: Proceedings of EC-Web, pp. 16–28 (2001)

18. Phanouriou, C.: UIML: A Device-Independent User Interface Markup Language. Ph.D.
Thesis, Virginia University (2000)

19. Rossi, G., Nieto, A., Mengoni, L., Lofeudo, N., Distante, D.: Model-Based Design of
Volatile Functionality in Web Applications. Proceedings of LA-WEB 2006, Mexico 2006,
pp. 179–188. IEEE Press, Orlando, Florida, USA (2006)

20. Saxon: (2007), http://saxon.sourceforge.net/
21. Schwabe, D., Rossi, G.: An object-oriented approach to web-based application design.

Theory and Practice of Object Systems (TAPOS), Special Issue on the Internet 4, 207–225
(1998)

22. Stxx. Struts for Transforming XML with XSL (2005) http://stxx.sourceforge.net
23. Xalan: (2007) http://xalan.apache.org/
24. XPATH. XML Path Language: (2007) http://www.w3.org/TR/xpath
25. XSL: The Extensible Stylesheet Language Family (2007) In http://www.w3.org/Style/

XSL/

Fine-Grained Specification and Control of

Data Flows in Web-Based User Interfaces

Matthias Book, Volker Gruhn, and Jan Richter

Chair of Applied Telematics/e-Business, University of Leipzig
Klostergasse 3, 04109 Leipzig, Germany

{book,gruhn}@ebus.informatik.uni-leipzig.de, jan.richter@saxess.ag

Abstract. When building process-intensive web applications, develop-
ers typically spend considerable effort on the exchange of specific data
entities between specific web pages and operations under specific condi-
tions, as called for by business requirements. Since the WWW infrastruc-
ture provides only very coarse data exchange mechanisms, we introduce
a notation for the design of fine-grained conditional data flows between
user interface components. These specifications can be interpreted by
a data flow controller that automatically provides the data entities to
the specified receivers at run-time, relieving developers of the need to
implement user interface data flows manually.

1 Introduction

Web-based user interfaces have become popular front-ends for information sys-
tems that require convenient access at any time from anywhere [1]. Especially
in business-to-business and intranet applications that are designed to support
elaborate business processes, these user interfaces can turn out to be quite com-
plex. Their complexity is typically twofold: Most obviously to the user, they
have intricate dialog structures that include nested dialog sequences, wizards,
context-sensitive links and other navigation patterns. More transparent for the
user, but all the more palpable for the developer, are the complex data flows be-
tween the interface and the business logic. No matter if these data flows mirror
major business process features or serve minor technical purposes, the devel-
oper must ensure that the right data is available for the right component at the
right time, all the while keeping an eye out for security issues, validity concerns,
performance considerations and persistence strategies.

Despite some progress over the past years, the WWW infrastructure itself
still provides only rudimentary data flow support: Originally, the only available
data flow mechanism was the transmission of parameter strings from clients to
servers in HTTP requests. Soon, web browsers became capable of receiving
short cookie strings from a server and sending them back to the same server
with every subsequent request. This in turn enabled servers to unambiguously
associate multiple requests with the same client, and keep individual state in-
formation for all clients in sessions. Since sessions usually expire after some

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 167–181, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

168 M. Book, V. Gruhn, and J. Richter

time without user activity, persistence of selected data is typically ensured by
integration of databases or other storage technologies in the back-end.

These basic data flow mechanisms are technically sufficient to build any web-
based application: Requests provide a channel for data flows from client to server,
sessions provide a scope for data flows among server components, and if neces-
sary, cookies can provide an additional channel for client-server data exchange,
client-side state-keeping, and even simple client-side persistence. However, these
mechanisms are only convenient for a small subset of conceivable data flows: Re-
quests are ideal for sending data from a web page to those business operations
responsible for building the server’s response; and sessions are ideal for making
data accessible throughout the application. These alternatives mark two ends of
a spectrum – in our experience, however, most data flows described by business
processes lie somewhere in the middle: Often, data generated in a certain process
step is intended only for a clearly defined, but not necessarily immediately fol-
lowing set of pages and/or operations. Thus, the respective data flows must
reach beyond a single request-response cycle, but do not require session-wide
data publication.

When mapping such process requirements to the technical level, developers
currently need to choose the lesser of two evils: Passing data along a chain of
requests toward its ultimate destination violates the principle of encapsulation,
as the intermediate pages and operations need to handle data that they are
not actually responsible for – an unclean and error-prone solution that requires
high implementation and maintenance effort. Alternatively, storing data in the
session for use at a later time relieves the intermediate steps from a lot of hassle,
but bears the danger of memory leaks if the data is not removed from the
session when it is no longer required. In addition, both approaches pose inherent
security risks as data is exposed to pages or operations that do not need to
know about it (and in the first case, even repeatedly sent over the network).
Even if other application components are considered “friendly”, this unnecessary
exposure multiplies the possible points of failure or attack.

Since neither the request nor the session scope provides satisfactory dialog
flow support, we propose a supplemental method for realizing data flows that
match the process requirements of application domains more closely, while at the
same time reducing the required implementation effort. In this paper, we will
first show how arbitrary point-to-point data flows can be specified in a graphical
notation (Sect. 2). We then show how this specification can be interpreted at
run-time by a data flow controller that provides just the specified data to each
page and operation (Sect. 3). We conclude with a discussion of related work
(Sect. 4) and an overview of further research opportunities (Sect. 5).

2 Data Flow Specification

In the introduction, we discussed data flows related to the user interface layer.
Obviously, data also flows along the control structures within the application
logic, may be exchanged with third-party, legacy or back-end systems, and can

Fine-Grained Specification and Control of Data Flows 169

be stored in and retrieved from persistent memory. However, since these data
flows are the responsibility of the application and persistence logic, established
specification methods (e.g. UML data flow diagrams, sequence diagrams etc.)
and implementation techniques (e.g. SOAP, EJB etc.) can be used for these
layers. Our work instead focuses on data flows between the presentation and ap-
plication logic, where suitable implementation techniques (apart from the coarse
request and session scopes) and specification methods have not yet been widely
established.

To specify user interface data flows on a more fine-grained level than the one
provided by the request or session scopes, we first need to define the concept of
a data flow more clearly. Given a data source A, a data sink B and a data entity
d, we define that the data flow of d from A to B is the provision to B of the d
available to A (i.e. B gets to know the d that is known to A). As we will soon
see, it is helpful to make data flows conditional, i.e. to execute them only if a
certain constraint is fulfilled.

In designing a notation that maps this abstract definition onto a technical
level, we need to answer a number of questions:

– What are concrete data sources and data sinks?
– Which constraints determine if a data flow is executed?
– How are sources and sinks related?
– What are concrete data entities?
– How is the “provision” of data entities realized?

The first three questions relate to the specification of data flows, and will
be answered in the following subsections. The last two questions relate to the
implementation of data flows, which will be discussed in Sect. 3.

2.1 Data Sources and Sinks

The data sources and data sinks used to model data flows should be entities
that represent the structure of web-based user interfaces. In our past work, we
have found it natural to distinguish between web pages and application logic
operations in order to model the navigation structure of web applications: In
the Dialog Flow Notation (DFN) [2], web pages are symbolized as dog-eared
sheets (the so-called masks), while application logic operations (actions) are
symbolized by circles. To specify all possible navigation paths, these elements are
connected by arrows symbolizing dialog events generated by masks or actions
when the user submits a request, or a business operation produces a result. In
the dialog graphs specified this way, masks and actions do not have to alternate
since it is conceivable for a mask to trigger a succession of several server-side
operations, and also conceivable for a mask to link directly to another mask
without the need for any intermediary business operations. The dialog graphs
are encapsulated in dialog modules that can call each other at run-time to
form hierarchically nested dialog structures.

We found that the DFN provides an ideal basis for specifying the data flows
within a web-based user interface: The masks, actions and modules can serve as

170 M. Book, V. Gruhn, and J. Richter

data sources and sinks, while the dialog events can be interpreted as constraints
that determine when a data flow is executed. In the following subsections, we
will show how the original DFN was extended to specify different kinds of data
flows. Our aim was to extend the notation in such a way that the data flows are
intuitively readable and conceptually integrated with the DFN semantics, but
do not add unnecessary optical clutter to the diagrams.

2.2 Data Flow Types

Depending on the types of the data sources and sinks, and their proximity within
the topology of the dialog graph, we distinguish several kinds of data flows:

Parallel Data Flows. The simplest type of data flow is running in parallel
with the dialog flow, i.e. a data flow from the generator of a dialog event to
the receiver of the same event. It is specified in the DFN by adding the label
of the data entity in square brackets to the event’s name (if the data flow shall
comprise several data entities, we separate them with commas). For example, in
the login module in Fig. 1, the name and passwd data entities entered by the
user on the login mask shall only be provided to the check name, passwd action
upon generation of the submit event. At first sight, this data flow may look
equivalent to the request scope, but it is actually more finely grained: While the
request scope always encompasses all intermediate actions up to the next mask,
the parallel data flow is restricted to the current dialog event’s receiver only.
Therefore, the passwd data in the example is only provided to the succeeding
action, but not accessible beyond it (as it would be in the request scope).

login

login
check
name,

passwd

submit
[name,

passwd]

invalid
[error]

valid
[name]check

login
status

not yet
logged

in

already logged in

mark
user as
logged

in

create account
register
[name]

 done

done
[name]

 cancelled

cancel

S S

[user] [user]

ok

Fig. 1. Login module performing user authentication

Request scopes and parallel data flows also differ in their starting points:
While a request can only be generated by a mask, a dialog event with associated
parallel dialog flow can also be generated by actions or modules. For example,
if the login credential check fails, the error data is provided by the check name,
passwd action to the login mask with the invalid event.

Fine-Grained Specification and Control of Data Flows 171

Finally, parallel data flows can be used more flexibly than request scopes since
developers can specify which data is provided with which events: Using only the
request scope, the developer may not be able to prevent that the credentials
entered by the user on the login mask are provided to subsequent elements both
for the submit and (unnecessarily) the cancel event. Using parallel data flows,
however, the developer can specify that the name and passwd data is provided
to the subsequent action with the submit event, just the name data is provided
to the create account module with the register event, but no data is provided
with the cancel event.1

Divergent Data Flows. As we have just seen, parallel data flows enable de-
velopers to specify which data entities shall be provided to the receivers of which
events. Often, however, the data generated by one element should not be pro-
vided to any of its immediate successors, but rather to some more distant element
in the dialog graph that is responsible for the actual data processing.

create account

address
form

address
valida-

tion

submit
[address]

invalid
[error]

prefer-
ences
form

valid prefs
valida-

tion

submit
[prefs]

invalid
[error]

passwd
form

valid passwd
valida-

tion

submit
[passwd]

invalid
[error]

create
accountok

[name]

done

[p
re

fs
][address][name]

[user] valid
[passwd]

Fig. 2. Create account module employing a “wizard” navigation pattern for gathering
user input

As an example, consider the “wizard” navigation pattern of the create account
module in Fig. 2: Here, we prompt the user for his address, preferences and
password, validate each of the inputs, and finally create an account from all the
collected data. In order not to burden the various forms and validation actions
with forwarding the data of their predecessors, we would like to provide the data
gathered in each step directly to the final processing action. For the validation
actions, the outgoing dialog and data flows therefore diverge: For example, if the
address validation action produces a valid event, the dialog flow shall continue
to the next wizard step, i.e. the preferences form, but the address data shall be
provided directly to the create account action, bypassing the other steps of the
1 Note that these restrictions cannot prevent the respective data from being transmit-

ted across the network in the request, as this would require client-side logic. However,
the data flow controller will ensure that any submitted data is only available to the
specified receivers on the server side.

172 M. Book, V. Gruhn, and J. Richter

wizard. To specify that the data flow diverges from the dialog flow in this case,
we draw a dashed line to the element that the data shall be provided to, and
annotate it with the data entity’s label in square brackets.

Just like a parallel data flow is always tied to a dialog event, a divergent data
flow is also always associated with a particular dialog event and only executed
if that event is traversed. To specify this constraint in the DFN, the data flow
arrow must always begin in the same spot (marked by a black dot) as the event
arrow that it shall be associated with. To maintain consistency with parallel
data flows, which are always implicitly associated with an event, the DFN does
not allow the specification of divergent data flows without an associated event.

Inter-module Data Flows. Of course, data does not only flow among the
dialog elements within a module, but also between modules. Therefore, when
a module is called, it should be able to accept data provided to it, and when
a module terminates, it should be able to provide data to subsequent dialog
elements. To express this behavior in the DFN, compatible data flows must be
specified both in the exterior dialog graph that a module is embedded in, and
in the interior dialog graph of the module itself: In the exterior dialog graph,
modules can simply serve as sources and sinks of parallel and divergent dialog
flows just like masks and actions. In Fig. 1, for example, the create account sub-
module is provided name data with the incoming register event and provides
name data with its outgoing done event.

To specify which data entities a module can accept and provide, the initial
and terminal anchors of its interior dialog graph serve as data flow interfaces:
Parallel and divergent data flows can originate from the initial anchor (the
black disk marking the starting point of the dialog graph traversal) to specify to
which elements the incoming data shall be provided. Analogously, parallel and
divergent data flows can lead to the module’s terminal anchors (the circled
small black dots marking the end of the dialog graph’s traversal). They specify
which data entities the module will provide to its exterior dialog graph, and who
provides those data entities internally. In the definition of the create account
module in Fig. 2, for example, the incoming name data flows directly from the
initial anchor to the create account action, which will process it later together
with the other data collected by the wizard. The name data will then flow from
the create account action to the done terminal anchor, so it can be provided to
the module’s successor in the exterior dialog graph upon its termination.

Through these incoming and outgoing interfaces, data can be flexibly passed
from several sources outside a module to several sinks inside a module and vice
versa. Developers need to ensure that the data flows specified in the interior and
exterior dialog graphs match, as unmatched entities will otherwise be unavailable
to their sinks.

2.3 Shared Scope Access

Parallel and divergent data flows enable developers to define the propagation
of data entities on a very fine-grained level. However, their specification may

Fine-Grained Specification and Control of Data Flows 173

become cumbersome if the same data entities shall be provided to many elements,
as a profusion of explicit data flow arrows would be required. For this reason,
the DFN provides constructs to symbolize data exchange through various shared
scopes.

Module Scope. Often, the same data entities should be provided to virtually
all elements within the same module. As we mentioned earlier, storing such data
entities in the session scope is not an optimum solution for this problem since
the developer would be responsible for removing them from the session before
the module is terminated. Instead, it would be preferable if all elements within
a module had a shared scope that is cleared out automatically once the module
terminates. Our Dialog Control Framework (DCF) described in Sect. 3 provides
the module scope for this purpose: It is comparable to the session scope in
that it is associated with the current user, but exists only during the traversal of
the current module. An empty module scope is instantiated whenever a module
is entered, and discarded again once a terminal anchor has been reached.

message details

message
view

reply

cancelled

accept
[text] store

new
post

return

login
reply

compo-
sition

done markup
valida-

tion

submit
[text]

reject
[error]

to thread view
[r

ep
ly

]
ok

[m
es

sa
ge

]

Fig. 3. Message details module for viewing and replying to messages in a discussion
forum

To specify in the DFN that a data entity should be provided through the mod-
ule scope, developers can simply draw a divergent data flow with the respective
entity label in square brackets from any dialog event to the module’s contour. In
the message details module in Fig. 3, for example, the incoming message data
is provided to all other elements through the module scope right away.

Of course, data flows to the contour can also originate from any other source,
indicating that the respective data will be available throughout the module as
soon as the associated event is traversed. Since all data in the module scope
is implicitly available to all dialog elements, no explicit notation construct is
required to indicate that an element accesses data from the module scope. In
the message details module, for example, all masks and actions can access the
original message data in the module scope to display it, quote it in the text of
the reply, and reference it with the new post.

174 M. Book, V. Gruhn, and J. Richter

In the DCF implementation, module scopes are stacked to reflect the nested
module call structure: When a module calls a sub-module, a fresh module scope
for the sub-module is pushed onto the stack, rendering the calling module’s scope
temporarily inaccessible. When the sub-module terminates, its module scope is
removed from the stack, and the calling module’s scope becomes available again.

Session, Application and Cookie Scope; Storage Access. The mecha-
nisms described so far are helpful in many situations where the data scopes
provided by the application server are too coarse for the data flow requirements
at hand. However, there are obviously also a number of situations where those
more generous scopes are the perfect choice – information about the user’s login
status, for example, should be available throughout the application and is there-
fore ideally stored in the session scope. Other data may best be globally provided
through the application or cookie scope, and business objects often need to be
stored in or retrieved from persistence storage by the application logic.

The data flows for these scenarios usually concern only the application (and
possibly persistence) layer, so the dialog control logic that couples the presen-
tation and application layer should not be involved in them. Consequently, the
DCF does not handle data flows through these larger scopes, but lets the busi-
ness logic interact directly with the application server or persistence layer API.
This restriction of responsibilities allows for a clean separation of concerns on
an architectural level, and allows developers to choose whichever scope and per-
sistence framework is suited best to their needs, instead of being bound to the
DCF’s data flow mechanisms throughout the application.

Due to the framework’s limitation to user interface management, the DFN
technically would not need to provide additional constructs related to the larger
scopes. Intuitively, however, developers will expect to be able to specify not only
fine-grained data flows through the user interface, but also data shared through
the more coarse scopes.

The DFN solves this dilemma by providing a compromise – developers cannot
specify the complete application logic’s internal data flows within the dialog
flow, but the DFN enables them to specify where the dialog flow interfaces with
the larger scopes: Data flow arrows leading to or from the letters S, A or C
enclosed by horizontal bars indicate that the respective data entities are stored
in or retrieved from the session, cookie or application scope, respectively. For
example, in Fig. 1, the check login status action retrieves user data from the
session scope, and the mark user as logged in action stores user data in the
session scope. In addition, data flow arrows leading to or from a “can” symbol
indicate that the respective data entity is stored in or retrieved from persistent
storage – for example, the user data constructed by the create account action in
Fig. 2 is sent to the back-end for storage. Note that in contrast to divergent data
flows, the data flows leading to those larger scopes cannot share their starting
point with an event, since the respective data handling operations are beyond
the control of the dialog controller that is only aware of dialog events.

Since the DCF does not provide mechanisms for handling these scopes, the
corresponding notation constructs have only illustrative character – the actual

Fine-Grained Specification and Control of Data Flows 175

data handling will have to be implemented manually by the developer. In con-
trast, the module scope and parallel, divergent and inter-module data flows are
executable specifications: The developer only needs to specify the desired behav-
ior, but does not need to implement it since the framework handles the respective
data flows automatically.

2.4 Summary

With the traditional scopes, the module scope and the new finely-grained data
flows, developers now have a full spectrum of data flow mechanisms at their dis-
posal, as Fig. 4 illustrates: While the application and session scopes are suitable
for publishing application-global and user-global data, parallel and divergent
data flows are ideally suited for data propagation between arbitrary dialog ele-
ments. Since multiple parallel and divergent data flows can be associated with
any dialog event, developers can control which data is propagated where under
which conditions very flexibly.

Ap
pl

ica
tio

n
Sc

op
e

Se
ss

ion
 S

co
pe

 (o
the

r u
se

r)

Se
ss

io
n

Sc
op

e (
cu

rre
nt

 u
se

r)

Mo
du

le
St

ac
k

login

Module Scope (inactive)

Inter-Module Data Flow

create account

Parallel Data Flow

Divergent Data Flow

Module Scope (active)

create
account

S S

Request Scope Page
Scope

Fig. 4. Scopes and data flows supported by the Dialog Flow Notation and Dialog
Control Framework

The page scope remains an important tool for data exchange between the
components involved in constructing a response (e.g. a JavaServer Page (JSP)
and its tag libraries). The request scope, however, has been rendered virtually
redundant since its visibility is determined by purely technical criteria that only
seldomly map exactly to business requirements for data propagation. This allows
us to retrofit it for conveniently accessing the new data flow mechanisms, as we
will show in the following section.

176 M. Book, V. Gruhn, and J. Richter

3 Data Flow Controller

Having introduced the new data flow constructs of the extended Dialog Flow
Notation, we will now show how their semantics are supported by the Dialog
Control Framework (DCF). Revisiting our initial questions from Sect. 2, we first
need to address the technical representation of data entities, and discuss how
the provision of those entities from sources to sinks is interpreted. After this,
we will give a brief overview of the technical implementation of the data flow
control mechanism within the DCF.

3.1 Data Entity Representation and Provision

In the previous sections, we identified data entities only by their label (e.g. “user
data”). In concrete applications, a data entity can be any object – in Java-based
applications, it will typically be an instance of a JavaBean holding various at-
tributes, which is stored in or retrieved from a data scope using its label as a
look-up key. In Java Enterprise Edition-compatible application servers, for exam-
ple, HttpSession instances provide the Object getAttribute(String name)
and void setAttribute(String name, Object value) methods for this pur-
pose. Just like the DFN relies on existing notations to specify the layout of dialog
masks (e.g. visual design sketches or XForms) or the control flow within actions
(e.g. UML activity or state diagrams), it does not provide its own constructs
for the specification of data entities’ internal structure. Instead, we recommend
using existing notations such as entity-relationship or UML class diagrams for
this purpose.

Since we assume that the data entities in our data flows are objects (i.e.
reference types), we have two alternatives for interpreting the flow of data from
a source to a sink: “providing a data entity” could mean

– forwarding the data entity itself from the source to the sink, or
– extending the data entity’s scope so it is not only available to the source,

but also to the sink.

While these alternatives may at first sight look like equivalent implementa-
tion variants, they exhibit different behavior if a source provides the same data
entity to several sinks, as illustrated in Fig. 5. In a situation like this, the first
approach (forwarding the data entity) intuitively implies that both B and C
receive identical copies of d from A, and that any changes B makes to d will not
affect C ’s copy of d. In contrast, the second approach (extending the entity’s
scope) implies that B and C can now both access the same instance of d that
is already known to A, so any changes that B makes to d will also affect the d
available to C. In short, the first approach requires a copy-by-value mechanism,
while the second can be implemented as copy-by-reference.

The copy-by-value implementation has the advantage that side effects are
avoided. However, since we are dealing with objects that may have arbitrary
complexity, copying data entities is not trivial. We could simply require that
all data entities are cloneable and thereby put the responsibility on application

Fine-Grained Specification and Control of Data Flows 177

A B C
e

[d]
f

[d]

Fig. 5. Data flow with different copy-by-value and copy-by-reference behavior

developers, however, this is hardly a satisfactory solution for a framework that
strives to make developers’ jobs easier. Furthermore, cloning comes at a high
performance and memory cost (especially since some clones may turn out to be
unnecessary if the respective data sinks happen never to be visited in the user’s
subsequent traversal of the dialog graph), and some data structures may not be
cleanly cloneable with justifiable effort. A restriction to flat copies or primitive
types is not a realistic option either, since it would limit application developers’
design freedom severely.

For these reasons, we prefer a copy-by-reference implementation of data flows.
While it may involve a bit more subtle semantics, its basic concept and the situ-
ations in which side effects may occur are well known to experienced developers.
This approach is much easier to implement for framework and application de-
velopers, and does not cause the performance and memory overhead of cloning.

The above considerations were confirmed by our initial prototype of a data
flow control extension for the DCF: Here, clones of JavaBeans were only flat
copies, so any nested references were not cloned, and the isolation between the
data entities available to the dialog elements was not perfect. We are therefore
currently switching to a data flow controller implementation that copies only ob-
ject references instead of whole instances, and thus realizes the scope extension.

3.2 Data Flow Controller Design

Having determined the operational semantics of data flows, we still need a way
to actually provide the specified data to the respective dialog elements in a
web application. At first sight, an obvious solution would be to equip every
mask and action instance with a look-up table that holds references to all data
entities available to that element. This individual “element scope” could then
be accessed by the application and presentation logic just like the session or
application scope, using setAttribute and getAttributemethods. A data flow
controller would ensure that object references are copied from one element scope
to another according to the data flow specifications.

While this approach seems straightforward, it proves cumbersome in practice
since the element scope itself cannot be easily made available to the presentation
logic: Servlets, JSPs and other web resources provide convenient mechanisms for
accessing the standard scopes (e.g. through the implicit application, session
and request objects of the Java EE Expression Language), but do not provide
as convenient means for accessing custom-built scopes.

178 M. Book, V. Gruhn, and J. Richter

«interface»
HttpServletRequest

HttpServletRequestWrapper

AugmentedRequest

+ getAttribute(String) : Object
+ setAttribute(String, Object) : void

Stack

ModuleStack

«interface»
HttpSession

Module
HashMap

ModuleScope

DialogElement
HashMap

ElementScope

DataFlowController

HashMap

EntityCache

*

1

1

DataFlow

*

*

1

Fig. 6. Data flow control logic of the Dialog Control Framework

In the data flow extension to the DCF, we therefore took a slightly different
approach: The data flow controller still manages look-up tables that contain the
object references available to each dialog element. However, these tables are not
directly accessible to the dialog elements. Rather, we project their contents into
the existing request scope that is already conveniently available to all masks and
actions.

As Fig. 6 shows, this can be achieved by wrapping the original HTTP request
into a wrapper object (here, AugmentedRequest) that looks and behaves just like
an HTTP request, since it passes most method calls directly to their counterparts
in the original HttpServletRequest. The only exceptions are the setAttribute
and getAttribute methods that are normally used to access the request scope,
but now rerouted to the DataFlowController. This central controller has (via
the current Module on top of the ModuleStack) access to the data flow model (a
graph of DialogElements linked with DataFlow edges), the current ModuleScope
and the current element’s ElementScope (two HashMaps containing the object
references associated with the data entity labels).

Whenever a mask or action calls the request’s getAttribute method with
some data entity label, the DataFlowController looks up the respective object
reference in the current ModuleScope and ElementScope (the element scope
takes precedence over the module scope in case both contain a reference with
the same label), and returns the found reference.

Populating the look-up tables requires slightly more effort: Whenever a dia-
log element calls the request’s setAttribute method, the DataFlowController
stores the respective data entity in the current element’s scope. It also looks
up any departing data flow edges in the module’s data flow model and caches
the entity’s object reference if it is associated with any outgoing event. Once an
event is generated by the current dialog element, the associated data references

Fine-Grained Specification and Control of Data Flows 179

from the EntityCache are stored in the element scopes of the respective data
flow receivers, and the cache is cleared.2 This way, the data flow controller en-
sures that every element can access through the request context all data entities
available to it according to the specification.

Besides giving the presentation and application logic convenient access the
element and module scopes, projecting the element scope into the request scope
has the additional benefit that the mechanism is transparent to other web ap-
plication frameworks: In our prototype implementation, we integrated the DCF
with JavaServer Faces (JSF) to make use of its UI component model and valida-
tion logic. Since JSF pages exchange data through the request scope, they can
work with the new module scope and data flows seamlessly.

4 Related Work

Many modeling languages for web-based applications have traditionally had a
strong focus on data-intensive web applications [3], allowing developers to spec-
ify how users navigate through complex data schemas. More recently, a number
of languages such as OOHDM [4], OO-H and UWE [5], and WebML [6] have also
incorporated aspects of business process modeling, thereby narrowing the gap
between process and navigation specifications that developers need to bridge.
The data focus of these modeling languages is reflected in the variety of con-
structs they provide for specifying relations between and manipulations of data
entities, most of which reside in the back-end of a web application.

However, apart from the transport links in WebML, which have similar se-
mantics as our divergent data flows, the above modeling languages do not seem
to provide explicit notation constructs for the fine-grained specification of inter-
element data scopes and provision: The navigational model and process flow
model in UWE, for example, specify how to navigate across and manipulate a
data space provided by the back-end, but does not show which data instances
are provided from one interface component to another. In OO-H, activity and
navigation access diagrams enable developers to specify which navigation nodes
will invoke which data-manipulation methods on data objects, but any scoping
of these instances is not explicitly modeled.

The extension to the Dialog Flow Notation we introduced here focuses on
the fine-grained specification of data scopes and data provisioning (i.e. which
data instances are made available to which dialog elements). These data flow
specifications do not have to be implemented manually, but are automatically
enforced by the Dialog Control Framework at run-time.

In contrast to the above notations, the DFN does not provide constructs
for specifying how the data that is provided to the various dialog elements is
2 The actual data flow controller is a bit more complex than the diagram and this brief

description suggest – among other things, it also moves incoming request parameters
into request attributes, and ensures that data references are also copied to other
scopes if they have not been set by calls to setAttribute, but received through
data flows from other elements.

180 M. Book, V. Gruhn, and J. Richter

manipulated. This is in keeping with our philosophy that the dialog flow is what
distinguishes web applications most from traditional applications – we therefore
focus the DFN on the typical and unique challenges of navigation and data flow
in web applications, and encourage developers to use other established notations
for modeling those aspects that go beyond this layer (e.g. by using activity or
state diagrams to specify how data entities are manipulated in actions).

Regarding run-time support for complex dialog flows, popular web applica-
tion frameworks have recently also adopted the notion of encapsulating dialog
sequences in so-called “flows” (in Spring Web Flow [7]) or “conversations” (in
the Shale Framework [8]), which have associated data scopes. However, these
frameworks do not provide mechanisms for the realization of parallel or diver-
gent data flows, and are lacking a corresponding notation that would provide
executable specifications for such data flows.

5 Conclusion

In this paper, we presented a data flow extension to the Dialog Flow Notation
(DFN) that enables web application developers to specify data flows between
arbitrary elements in a dialog graph, as well as between nested dialog modules.
Since all data flows are associated with events whose traversal is the condition
for data propagation, and the receiver of a data flow may be different from
the receiver of the associated dialog event, developers can build on the existing
DFN semantics to specify fine-grained conditional data propagation within a
web application’s user interface. A new module-wide data scope complements
the existing coarse scopes provided by common application servers.

To relieve developers of the tedious and error-prone effort of manually imple-
menting secure and correct data flows throughout a web-based user interface,
the data flow specifications created with this notation are executable: Using a
graphical editor, they can be transformed into machine-readable specifications
that are interpreted by our Dialog Control Framework (DCF), which manages
the dialog and data flow automatically. At run-time, the framework ensures that
data entities are always provided to their specified receivers, and that dialog
elements can only access those data entities that they are entitled to. Since the
new data flow mechanisms are transparently added to the existing request scope,
other web application frameworks relying on this scope can also benefit from the
specified data flows.

Our work aims to support the development process for web-based applications
in both the design and the development phase: We expect it to be easier for de-
signers to communicate with clients and other non-technical stakeholders in the
software development process, since data flow information that was previously
contained only in business process models can now be mapped to dialog flow
diagrams, thereby providing a smoother transition from requirements to imple-
mentation. Given the specifications created in this way, we are confident that
developers can reduce implementation, testing and maintenance efforts since
they do not need to be concerned with the actual data flow implementation.

Fine-Grained Specification and Control of Data Flows 181

A prototype version of the enhanced Dialog Control Framework has already
demonstrated that the described concepts are technically feasible. In our ongo-
ing work, a first application for the data flow mechanism will be the DiaGen
extension to the DCF, which automatically breaks dialog masks into wizard-
style interaction sequences at run-time to cater to different device capabilities
[9] – the use of divergent data flows will greatly simplify the auto-generated data
propagation code in this context. Apart from this, we are striving to test our
hypotheses regarding the positive impact on the software development process
in real-life projects. We are also considering further refinements of the data flow
notation to provide interfaces to other modeling languages for the specification
of the application logic’s internal data handling. Another major upcoming re-
search effort based on the data flow engine will be the development of algorithms
for recognizing and handling backtracking, cloned browser windows and other
unexpected user activities in web applications.

References

1. Gaedke, M., Beigl, M., Gellersen, H., Segor, C.: Web content delivery to heteroge-
neous mobile platforms. In: Kambayashi, Y., Lee, D.-L., Lim, E.-p., Mohania, M.K.,
Masunaga, Y. (eds.) Advances in Database Technologies. LNCS, vol. 1552, Springer,
Heidelberg (1999)

2. Book, M., Gruhn, V.: Modeling web-based dialog flows for automatic dialog con-
trol. In: ASE 2004. 19th IEEE International Conference on Automated Software
Engineering, pp. 100–109. IEEE Computer Society Press, Los Alamitos (2004)

3. Fraternali, P.: Tools and approaches for developing data-intensive web applications:
A survey. ACM Computing Surveys 31(3), 227–263 (1999)

4. Rossi, G., Schmid, H., Lyardet, F.: Engineering business processes in web applica-
tions: Modeling and navigation issues. In: Third International Workshop on Web-
Oriented Software Technology, pp. 81–89 (2006)

5. Koch, N., Kraus, A., Cachero, C., Meliá, S.: Integration of business processes in web
application models. Journal of Web Engineering 3(1), 22–49 (2004)

6. Brambilla, M., Ceri, S., Fraternali, P., Manolescu, I.: Process modeling in web ap-
plications. ACM Transactions on Software Engineering and Methodology 15(4),
360–409 (2006)

7. Vervaet, E., et al.: Spring web flow. http://www.springframework.org/go-webflow
8. Apache Software Foundation: Shale framework. http://shale.apache.org
9. Book, M., Gruhn, V., Lehmann, M.: Automatic dialog mask generation for device-

independent web applications. In: Book, M., Gruhn, V., Lehmann, M. (eds.) ICWE
2006. Proceedings of the 6th International Conference on Web Engineering, pp.
209–216. ACM Press, New York (2006)

http://www.springframework.org/go-webflow
 http://shale.apache.org

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 182 – 187, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Authoring Multi-device Web Applications with
Database Access

Giulio Mori, Fabio Paternò, and Carmen Santoro

ISTI-CNR, Via Moruzzi 1,
56126 Pisa, Italy

{Giulio.Mori, Fabio.Paterno, Carmen.Santoro}@isti.cnr.it

Abstract. In this paper we present an environment for authoring Web sites
through a model-based approach for user interface design. In particular, we
focus on how it supports the access to remote databases and the dynamic gen-
eration of the Web pages presenting the corresponding query results. The envi-
ronment is able to support development of applications implemented in many
Web mark-up languages (XHTML, XHTML MP, X+V, VoiceXML) adapted to
various interaction platforms (vocal, mobile, desktop, …).

Keywords: Dynamic Web Applications, Multi-device Environments, Interfaces
Adapting to the Platform.

1 Introduction

The increasing availability of interaction devices poses a number of challenges to
Web designers and developers to obtain usable interactive applications. There is an
increasing number of Web applications that would benefit from the possibility of
accessing them through many interaction platforms that can even vary in terms of the
modalities supported (graphical, vocal, gestural, …). To address such issues the W3C
consortium started various activities in the area of Ubiquitous Applications [3] and
Multimodal Interfaces [5] and a number of mark-up languages have been developed,
including XHTML, XHTML Mobile Profile (MP), VoiceXML, X+V.

In this context, model-based approaches have shown to be useful because they
provide logical descriptions independent of the implementation languages and allow
designers to better manage such increasing complexity. Many types of model-based
approaches have been proposed: in the software engineering area there are several
tools based on UML; for data-intensive Web applications there are approaches such
as WebML [2]; examples of model-based approaches in the user interface area are
UsiXML [7] and TERESA XML[4]. In the latter community, there is a general con-
sensus regarding the useful logical descriptions [1][6] supporting user interface
design: the task and object level, which reflects the user view of the interactive system
in terms of logical activities and objects manipulated; the abstract user interface,
which provides a modality-independent description of the user interface; the concrete
user interface, which provides a modality-dependent but implementation language-
independent description of the user interface; The final implementation, in an

 Authoring Multi-device Web Applications with Database Access 183

implementation language for UIs. In particular, when designing multi-device user
interfaces, this framework has the additional advantage that the task and the abstract
level can be described through device-independent languages: it means that it is pos-
sible to use the same languages for whatever platform we aim to address.

In this paper, we present how an approach for model-based user interface design is
able to support access to remote databases and the dynamic generation of the Web
pages presenting the corresponding query. We discuss the solution proposed at both
conceptual and implementation level. An example application is also presented, fol-
lowed by empirical feedback collected from some Web designers and developers.

2 Design of Multi-device Applications with Database Access

Our approach is based on a tool, TERESA [4], which applies transformations and
logical descriptions to generate interactive applications for different devices starting
with different abstract models. Here we present an extension of the approach able to
overcome the two main limitations of the original environment: generation of only
static Web pages, and need for providing designers with greater control over the UI
generated. In order to enhance the environment with features able to support access to
remote databases, we provided support through different abstraction levels and suit-
able transformations among the different levels indicated in the introduction, includ-
ing the generation of the appropriate code of the final user interfaces for various target
platforms starting from specifications at the concrete level.

As for the final implementation language considered, for this type of support we
focus on JSP, a well-known language for generating dynamic web pages. Therefore, if
the application built by the designer contains at the concrete level objects supporting
access to a remote database, the tool automatically produces dynamic JSP pages to
provide support to this feature, which then will generate the implementation lan-
guages depending on the target platform. In the case of generation of applications for
database access, the tool also generates some servlets that have to be installed in the
server side in order to make the environment working properly. On the server side,
the servlet is in charge of receiving the query specification, connect to the concerned
database and execute the query to the database, sending the result of such query to a
presentation. The environment for the generation of pages accessing to remote data-
bases can provide different implementation languages (such as XHTML, XHTML
Mobile Profile, VXML…) for the modalities supported by the platforms. We can
analyse the new support by considering the possible abstraction languages.

2.1 The Task Level

The task models are specified in the ConcurTaskTrees notation [6]. At the task level,
the allocation of tasks (namely, if they are performed by the application, or the user,
or an interaction between the user and the system) and the objects manipulated by the
tasks are important information for modelling and supporting the access to a database.
Indeed, if we consider the specification of a task requiring access to a remote data-
base, we should include an interaction task through which the user defines the attrib-
ute values; then, another (application) task is supposed to be sequentially connected to

184 G. Mori, F. Paternò, and C. Santoro

the first one (from which it receives input values) and able to send such values to the
back-end module of the server accessing the database. The last task is another appli-
cation task, providing the user with the presentation of the query result. As for the
specification of the objects manipulated by the tasks, they are classified in perceivable
and application objects. The former have a direct impact on the UI as they are associ-
ated with concrete interface elements (menus, buttons, labels, etc.), whereas the “ap-
plication” objects refer to logical objects corresponding to elements of the underlying
application. When the task model is transformed into an abstract interface specifica-
tion, tasks corresponding to database access are transformed into abstract interactors
(called activators), which are associated with the functionality of the core that should
be accessed and other attributes indicating the request parameters. The tasks present-
ing information to the user can be automatically detected because they are application
tasks manipulating both perceivable and application objects. We will see that they
will be supported by a new type of object at the abstract user interface level, the table,
mapped at the concrete user interface level onto a database_table object.

2.2 The Abstract and the Concrete User Interface Description level

In TERESA XML, the logical interfaces are structured into presentations. To support
access to remote database, at least two presentations are needed: one for allowing the
user to specify the values of the query parameters and to send them to the associated
database; another one for showing the query results. In terms of Abstract Interface,
the first presentation is composed of a group of interactors allowing users to edit the
query, which are related to an object of activator type (supporting the triggering of the
functional module sending the values to the database). The second presentation in-
cludes the elements that will contain the query result. This type of element at the
abstract level is a description, mapped at the concrete level onto a new type of ele-
ment, a database_table. For the first presentation, the input elements, such as the
textedit objects are mapped into the concrete elements of type textfield, whereas the
activator is mapped onto the activate_database concrete element, introduced to sup-
port this new feature. As we said, the object activate_database, which has been in-
troduced in TERESA XML as a new type of activator interactor, enables the connec-
tion with the concerned database. It has a number of attributes for specifying the
parameters necessary to build the database query, e.g. label (for naming the concrete
object), database_properties (for specifying the properties of the considered database,
e.g. the server on which the database resides, the name of the database, user account),
attributes_names (the set of attributes on which queries will be possible), presentation
(the name of the presentation that will visualise the query result). Figure 1 shows how
the activate_database element is supported within the TERESA authoring environ-
ment: in the left part there is the list of edited presentations, in the right top part there
is the abstract specification of the currently selected presentation (the presentation
titled “Ford News”), in the right bottom part there is the concrete description of the
currently selected element of the abstract part (Activator_7_0). In the concrete user
interface language for graphical interfaces we have also introduced the table element
for managing the data corresponding to the query result. In particular, two types of
tables were introduced: database_table and normal_table. The first one is used when
the content of the table is not known at design time, as it is filled at runtime with the

 Authoring Multi-device Web Applications with Database Access 185

query result. Thus, the designers do not know the number of its rows, but they should
know the number of columns (database attributes). The normal_table is a table whose
content (both textual and graphical content) is statically decided by the designer.

Fig. 1. The specification of the activate_database element with the TERESA tool

For both tables it is possible, with the tool, to customise their visualisation (modifying
parameters such as colour and size of the table border, background colour, etc.).

3 An Example Application and a First Usability Evaluation

In this section we analyse an example application, working for both the desktop and
the mobile platform, which provides the user with a list of up-to-date news. The user
can query a database to get more information about a specific topic (eg: cars). Fig.1
shows the TERESA environment while editing the presentation allowing users to
specify the query to the concerned database about cars. In this case, the attributes
include brand name, type of fuel, number of car doors, etc. As the desktop is supposed
to have good capabilities in display size, the designer chooses to visualise all the at-
tributes: indeed, no attribute is specified in the related panel field labelled ”Attrib-
utes”. For the mobile platform, the number of attributes to be visualised should be
more limited, and listed by the designer in the field “Attributes”.

186 G. Mori, F. Paternò, and C. Santoro

Fig. 2. The final user interface for the considered example (desktop platform)

In Figure 2 shows the user interface to specify the query (left) and the correspond-
ing information result regarding all 12 attributes. For the mobile platform the case is
different. Not only the designer has to select a more limited number of attributes to be
visualised in the result (namely, the columns of the table), but, we have also to limit
the information to be shown in each presentation (namely, the number of rows that
can be reasonably presented in each table), because of the limited size of the mobile
platform screen. In the example we decided to present only two attributes (car model
name, and power type), and to enable the visualisation of only five rows in each pres-
entation. The result of such settings produces the presentations shown in Fig. 3. As
you can see the tool automatically adds the links required to navigate through the
various pages generated for presenting the query result.

Fig. 3. The final user interface for the considered example (mobile platform)

 Authoring Multi-device Web Applications with Database Access 187

A first evaluation session was performed to assess whether the new version pro-
vides designers of dynamic user interfaces with useful support and more control on
the generated UIs, and its usability. A first test was carried out involving 5 developers
recruited from the institute community, ageing between 25 and 38, and with laurea
degree in Informatics. Before the exercise, users read a short introduction text about
the tool and then instructed about the task that they were expected to carry out: build-
ing an application able to access a database with the support of the tool. Differences
initially noticed between people having some knowledge of the tool and people who
had not soon disappeared as soon as users gained familiarity with it. The intuitiveness
of the tool was rated good (the average value was 3.5 in a (min) 1-to-5 (max) scale),
although improvable. The pages built with the tool were judged usable (average rat-
ing: 4); testers reported that the final UI reflected their objectives, showing that the
tool provides a good control on the UI produced (average rating: 4). Almost all users
judged extremely valuable the help provided by the tool to the designers during the
building of UIs accessing to remote databases (average rating: 4). Especially useful
was considered the flexibility given by the tool in combining such dynamic objects
with more static parts of the user interface.

4 Conclusions and Future Work

In this paper we present a new tool for supporting generation of interactive Web ap-
plications for various types of devices and able to access remote databases. The solu-
tion developed is able to support authoring of applications for desktop and mobile
platforms, and generate page implementations in XHTML, XTML MP, VoiceXML
(only vocal interaction) and X+V (vocal and graphical). Future work will be dedicated
to further testing it in order to receive empirical feedback regarding its usability and
suggestions for further improvements.

Acknowledgments. We thank Marco Pellegrino for the help in the implementation.

References

1. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.A: A
Unifying Reference Framework for Multi-Target User Interfaces. Interacting with Com-
puters 15(3), 289–308 (2003)

2. Ceri, S., Fraternali, P., Matera, M.: IEEE Internet Computing, 6, 4, July/August, pp.20–30
(2002)

3. Ubiquituous Web Application Activity: http://www.w3.org/2007/uwa/
4. Mori, G., Paternò, F., Santoro, C.: Design and development of multidevice user interfaces

through multiple logical descriptions. IEEE Transactions on Software Engineering 30(8),
507–520 (2004)

5. Multimodal Interaction Activity, W3C, http://www.w3.org/2002/mmi/
6. Paterno, F.: Model-Based Design and Evaluation of Interactive Applications. Springer, Ber-

lin (1999)
7. Vanderdonckt, J.: A MDA-compliant environment for developing user interfaces of infor-

mation systems. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp.
16–31. Springer, Heidelberg (2005)

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 188 – 193, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Enriching Hypermedia Application Interfaces

André T. S. Fialho and Daniel Schwabe

Departamento de Informática – Pontifícia Universidade Católica do Rio de Janeiro
(PUC-Rio) – Caixa Postal 38.097 – 22.453-900 – Rio de Janeiro – RJ – Brazil

atfialho@inf.puc-rio.br, dschwabe@inf.puc-rio.br

Abstract. This paper presents a systematic approach for the authoring of
animated multimedia transitions in Web applications, following the current
trend of rich interfaces. The transitions are defined based on an abstract inter-
face specification, over which a rhetorical structure is overlaid. This structure is
then rendered over concrete interfaces by applying rhetorical style sheets, which
define concrete animation schemes. The resulting applications has different
transition animations defined according the type of navigation being carried out,
always emphasizing the semantically important information. Preliminary
evaluation indicates better user experience in using these interfaces.

1 Introduction

Current web applications have become increasingly more complex, and their inter-
faces correspondingly more sophisticated. A noticeable tendency is the introduction
of animation as an integral part of Web application interfaces, after the advent of
AJAX technologies (see, for instance, the Yahoo Design Patterns Library for transi-
tions [7]). In hypermedia applications a more complex kind of animation is involved
when considering entire interface changes that occur during navigation, where there is
a transition as a result of a navigational operation. As such, this type of interface
change is a prime candidate for the application of animation techniques.

This paper presents an approach for systematically enriching hypermedia applica-
tions by extending the SHDM approach [3]. In particular, attention is paid on how to
relate animations to the application semantics expressed in the SHDM models.

The remainder of this paper is organized as follows. Section 2 gives some back-
ground on the use of animation, and on the representation of interfaces in SHDM.
Section 3 presents the proposed approach, and Section 4 presents a discussion about
the results and conclusions.

2 Background

The common definition of animation is the result of several static images that, when
exhibited in sequence, creates an illusion of continuity and movement. Nowadays
there are several systems that use animation with the purpose of enriching the interac-
tion process and the ser experience or even provide smooth transitions the prime
examples being the MacOS, and more recently Windows Vista. Some experiments

 Enriching Hypermedia Application Interfaces 189

indicate that animations can be of help [1]. Furthermore, film editing knowledge has
been applied to the design of human-computer interfaces [5].

Since animations will be expressed in terms of interface elements, we first summa-
rize how the interface is specified in SHDM through Abstract and Concrete Interface
Models [6]. The abstract interface model is built by defining the perceptible interface
widgets. Interface widgets are defined as aggregations of primitive widget (such as
text fields and buttons) and recursively of interface widgets. Navigational objects are
mapped onto abstract interface widgets. This mapping gives them a perceptive ap-
pearance and also defines which objects will activate navigation.

The Abstract Interface is specified using the Abstract Widget Ontology, which es-
tablishes the vocabulary. According to it, an abstract interface widget is can be a Sim-
ple Activator, which is capable of reacting to external events, such as mouse clicks;
an Element Exhibitor, which is able to exhibit some type of content, such as text or
images; or a Capturer, which allows input of data, including widgets like input text
fields, and selection widgets such as pull-down menus and checkboxes, etc... Finally,
it can also be a CompositeInterfaceElement, which is a composition of any of the
above.

Once the Abstract Interface has been defined, each element must be mapped onto
both a navigation element, which will provide its contents, and a concrete interface
widget, which will actually implement it in a given runtime environment.

3 Introducing Animations in Hypermedia Applications

The process for the insertion of animations during the design of the application is
composed of four stages illustrated in Fig. 1, in which each of the stages produces a
specific output used by the next stage.

Animated
Interface

Description of the
Abstract Interface

Identification of the
interface pairs

Definition of the
animations for
each transition

Interpretation of
the

Specification

Fig. 1. Steps to produce an animated interface

The animations proposed in this work are displayed to the user during interactions
that define a change in the navigational state. Each change is relative to a pair of dis-
tinct source/destination interfaces that represent these corresponding navigation states.
We call this process a transition, which can be represented as an intermediate ani-
mated interface between two interfaces. This intermediate interface is only representa-
tional, and is described as a list of animations.

Each interface is a composition of widgets. A transition animation between inter-
faces is the process of visual transformation that transforms the source interface into
the destination interface. Therefore, the transformation to be applied to each widget
has to be specified.

To set up an interface animation it is necessary to identify the abstract widgets that
compose each interface, and then specify which pairs of interfaces will define
the source and destination of the transition. This is determined by the navigational

190 A.T.S. Fialho and D. Schwabe

structure of the application and associated abstract interfaces, as specified in the
SHDM model of the application.

For each defined transition we need to identify widgets (in the source and destina-
tion interfaces) that are mapped to the same or related element in the model. As a
result, we identify which widgets remain unchanged, which disappear, which appear,
and define which widgets are related. The first three behaviors are straightforward;
the last one will depend on which relationship the designer whishes to expose. A
common example of this last widget relation is when widgets in the source and desti-
nation interfaces are mapped to different attributes of the same element in the model
(e.g., a name and a picture).

After pairing the widgets, we must provide the transition specification for the navi-
gational change. The transition specification is made considering a pre-defined set of
animation functions, identified considering that only three basic actions can be ap-
plied to a widget: a removal, an insertion or a transformation, which can be a

• Match – For widgets that are identified as remaining in the destination interface
(i.e. they are present in both the source and the destination interfaces), it is neces-
sary to match their appearance parameters such as position, size and color. This
transformation animation responsible for matching these parameters.

• Trade – A transformation animation responsible for exposing the relation between
two distinct related widgets during the transition, for example as a morph.

• Replace – When the same widget exists in the source and destination interfaces,
but the associated elements in the model are different, this transformation anima-
tion replaces the information contained within a widget.

• Emphasize – A transformation animation that alters certain parameters such as size
or color of a widget to emphasize an element.

Each of these functions will also have properties that describe the point in time it
should occur within the transition, and which effect should be used (fade, push, grow,
etc). These properties are specified according their role in the transition, described
next.

3.1 Rhetorical Animation Structure

When we define the transition specification we must describe not only the list of the
animation actions that will occur, but in which order in the timeline they will be exe-
cuted, animation effect and the duration of each action. This sequence in which the
animations are presented has great importance since it influences how the transition
will be interpreted by the user.

In order to determine the best sequence and which effects should be used in each
animation we propose the use of a rhetorical animation structure. This approach is
inspired by the use of Rhetorical Structure Theory (RST) [4], as it has been used for
generating animation plans ([2]). With this structure we can define the communicative
role of each animation during the transition, and so identify which animations are
more important and how they should be presented to better inform the user of the
transformations that occur.

The rhetorical structure is specified in terms of rhetorical categories, which classify
the various possible animation structures, as follows:

 Enriching Hypermedia Application Interfaces 191

• Removal – Set of all animations that achieve an element removal (widgets that
disappears). Rhetorically, these animations clean up the screen to set the stage for
the upcoming transition;

• Widget Feedback – Any kind of transformation that represents an immediate feed-
back of the triggered widget. Rhetorically, these animations emphasize that the re-
quest made has been received, and the application is about to act on it.

• Layout animations – Set of animations that change (insert or transform) interface
widgets that are independent of the contents being exhibited. These widgets are
typically labels, borders, background images, etc…

• Secondary animations – Set of animations that transform interface widgets associ-
ated to secondary (satellite in terms of RST) elements

• Main animations – Set of animations that transform interface widgets associated to
main (nucleus in terms of RST) elements.

Once the structures are chosen the designer must categorize the animation func-
tions that have been identified in the previous step. We can partially aid this classifi-
cation by observing the navigational model, identifying which relations are more
important to describe. For example, transitions between objects of different classes
should help identify the relation and the contexts associated with the navigation step
being carried out in the transition.

The next step after the functions have been allocated to the rhetorical categories is
to determine a rhetorical structure in which the animations will be presented. Differ-
ent sequences can be arranged for each type of navigation. For example, Fig. 2 shows
one possible sequence using these rhetorical categories.

Remove Transitions Layout Transitions Main Transitions Insert Transitions

Widget Feedback Secondary Transitions

Timeline

Fig. 2. Rhetorical animation structure

This sequence follows the rationale that first the screen should be cleared of ele-
ments that will disappear, simultaneously with a feedback of the activated widget.
Next, the screen layout is changed to reflect the destination interface, in parallel with
the secondary transitions (i.e., those that are judged as accessory to the main transi-
tion) are made. Then the main transition is carried out, as the most important part,
followed by the insertion of new element.

After defining the rhetorical animation structure we need to map the categories
into concrete transitions that describe which are the effects, duration and the sequence
of the actions within the structure. The specification is done through a set of styles
defined as a Rhetorical Style Sheet which reflects the designer preferences, and can
be guided by the use of specific patterns that gather solutions to common transition
problems within a specific context.

192 A.T.S. Fialho and D. Schwabe

3.2 Implementation

The next step once the specification is done is to interpret this specification so the
animations are presented to the user during the interaction. In this work we use an
environment for supporting animation on web documents, in which HTML web pages
represent the different types of interfaces, and JavaScript technology using dynamic
HTML for the animations. Fig. 3 shows a diagram with the sequence of events in the
implemented environment.

TTrraannssiittiioonn SSppeecciiffiiccaattiioonn

Interacts with widget

IInniittiiaall..hhttmmll FFiinnaall..hhttmmll

Request destination Interface

Set of animations that
describe the transition

specification

Redirect to destination

Document that
describes the

destination interface

Renders animations

Renders final interface

User

Document that
describes the

originating interface

Request specification

Fig. 3. Diagram representing the environment

Given the reduced space available, and the nature of this work, we have developed a
demo flash application of an hypermedia movie database application using the approach
described in this document, with step-through functionality to help understand the rhe-
torical animation structure being followed.. This example can be accessed at http://
www.inf.puc-rio.br/~atfialho/hmdb/hmdb.html (requires a flash plug-in to execute).

4 Conclusions

This paper presented an approach for adding animation to hypermedia applications,
enriching a set of existing models in SHDM. Although several initiatives exist to add
animation to web pages, we are not aware of any published description of approaches
dealing with entire web page transitions.

We have so far made only informal evaluations of the resulting interfaces obtained
through this approach. Users have given positive feedback about the so-called “user
experience”, and seem to prefer animated interfaces over equivalent non-animated
interfaces. However, a more systematic evaluation will still be carried out.

 Enriching Hypermedia Application Interfaces 193

While based on models and being more structured, the present approach still poses
authoring difficulties, since they require manual insertion and choice of animation
effects for each interface widget. We are currently investigating the use of wizards
and the construction of a Rhetorical Style Sheet library to aid designers for the more
common tasks routinely encountered in designing hypermedia applications.

Acknowledgement. Daniel Schwabe was partially supported by a grant from CNPq.

References

1. Bederson, B.B., Boltman, A.: Does Animation Help Users Build Mental Maps of Spatial
Information? In: InfoVis ‘99. Proceedings of IEEE Symposium on Information Visualiza-
tion ’99, pp. 28–35. IEEE Computer Society Press, Los Alamitos (1999)

2. Kennedy, K., Mercer, R.E.: Using Communicative Acts to Plan the Cinematographic Struc-
ture of Animations. In: Cohen, R., Spencer, B. (eds.) LNCS (LNAI), vol. 2338, pp. 132–
146. Springer, Heidelberg (2002)

3. Lima, F., Schwabe, D.: Application Modeling for the Semantic Web. In: Proceedings of
LA-Web, Santiago, Chile, Nov. 2003, pp. 93–102, IEEE Press,ISBN (2003), available at
http://www.la-web.org

4. Mann, W.S., Thompson, S.: Rhetorical Structure Theory: Toward a Functional Theory of
Text Organization. Text, 8(13), 243–281 (1988)

5. May, J., Dean, M.P., e Barnard, P.J.: Using Film Cutting Techniques in Interface Design. In:
Human-Computer Interaction, vol. 18, pp. 325–372. Lawrence Erlbaum Associates, Inc.,
Mahwah, NJ (2003)

6. Moura, S.S., Schwabe, D.: Interface Development for Hypermedia Applications in the
Semantic Web. Proc. of LA Web, Ribeirão Preto, Brasil, pp. 106–113. IEEE CS Press, Los
Alamito (2004)

7. Yahoo Design Patterns Library (transitions), available at http://developer.yahoo.com/
ypatterns/parent.php?pattern=transition

Functional Web Applications

Torsten Gipp and Jürgen Ebert

University of Koblenz-Landau
{tgi,ebert}@uni-koblenz.de

Abstract. Web applications are complex software artefacts whose cre-
ation and maintenance is not feasible without abstractions, or models.
Many special-purpose languages are used today as notations for these
models. We show that functional programming languages can be used
as modelling languages, offering substantial benefits. The precision and
expressive power of functional languages helps in developing concise
and maintainable specifications. We demonstrate our approach with the
help of a simple example web site, using Haskell as the implementation
language.

Keywords: Web Application Modelling, Specification, Functional Lan-
guages, Haskell.

1 Introduction

A web application (or web site) is an application that is delivered through the
web. Creating such a web site is a complex task. Aside from the most trivial
web sites that can be simply written down in one go, ‘real’ web sites require the
application of a sound and consistent engineering approach. The end product
must be expandable, reliable, error-free, and, of course, adhere to the given
‘specification’ perfectly. However, the trade-off between the required development
time and the aspired quality is much too often solved by sacrificing the latter.

The Web Engineering discipline suggests using models to build abstract de-
scriptions of a web site and to derive the end product from these models (e.g.,
[16]). This becomes particularly useful if the derivation can be done automati-
cally (e.g., [23]), at least to a significant degree, and if the modelling does not
impose too much overhead. Our idea is to apply modelling as well, but to do it
using a functional language.

Example. As an example application we consider a travel booking system that
offers its services over the web. The system is called the Travel Agency System
(TAS). A customer can search for trips by supplying the origin and destination
city together with the desired timeframe for a trip and the system will respond
with a list of possible alternatives. Picking one of these provides further details
about the selected trip, including the calculated prospective costs, and the cus-
tomer can choose to book this trip, which will trigger the steps necessary for the
financial transaction.

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 194–209, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Functional Web Applications 195

Every page of such a web site must be modelled, stating its inherent composi-
tional structure and, most importantly, define which type of content, or data, it
shall display. This must be done in a precise and abstract way. Here especially,
functional languages are an almost natural choice because of their conciseness
and power. Section 4.4 will introduce an abstract data type for page descriptions
that is used as the backbone for the page models. We chose Haskell [25] as our
implementation language, because it is in widespread use and well supported. In
principle, however, the implementation of our approach does not depend on any
particular language.

For this paper, we assume the reader to have some knowledge of functional
programming languages. Due to space limitations, we cannot provide an exten-
sive introduction into functional programming or Haskell. The abstract concepts,
however, should be understandable nonetheless. Using Haskell, page specifica-
tions look like in this example:

tasTripDescription :: PageInfo
tasTripDescription = PageInfo ”TASTripDescription”$

λ params →
do tasMainTemplate

(Element ”slots” []
[Element ”heading” [] [Text ”Trip Description”]
, Element ”navigation” [] [tasNavigation params]
, Element ”body” []

[(tasTripDescriptionForm []) (1)
, (tasPreferencesList params)
]

, Element ”footer” [] [Text ”Footer”]
]

)

This constructs a page that fills the four slots heading, navigation, body and
footer of a page template. A page template defines the common structural layout
of all pages. The composition of a page is defined by assembling smaller parts,
like the function tasTripDescriptionForm (see mark (1)) that describes a web form.
Section 4.4 will give the necessary background information in full detail.

Figure 1 shows the hyperlinks between the single pages that constitute the
example web site. The dashed arrows suggest the steps of the buying ‘workflow’
just described. A diagram like this is used as a depiction of the navigation struc-
ture. This structure models another one of six distinguished aspects of the web
site. Section 4, the main part of this paper, will give an overview over this and
the other important aspects, and section 4.3, in particular, will detail on dia-
grams that represent the navigation structure. But first, the following section 2
briefly lists the problems that our approach actually solves, and how this is done.
We will reference related work as we go, but a coherent look into the state of
the art is deferred until section 5. The TAS, our example web site, will be used
throughout the remainder of this text to demonstrate our ideas. A preliminary
result using the same example was described in a workshop paper [11].

196 T. Gipp and J. Ebert

Fig. 1. Navigation structure

2 Benefits

Our approach delivers the following benefits:

– Declarative description in combination with models allows for executable
specifications.
We employ a functional programming language to write down specifications
of web sites, suggesting the combination of model-driven approaches with
purely functional ones. Many web sites today are not specified in any way,
or if they are, then the specifications are often not precise enough. A declara-
tive description of a web site, however, written in a functional programming
language, can serve as both: as a precise description and as an executable
specification of the end product. The functional language is the perfect ve-
hicle to produce consistent specifications.

– Formalisation of the requirements as early as possible.
We suggest that the formalisation of the requirements be tried as exten-
sively as possible, which results in the specification being sufficiently close
to the requirements. This ensures the consistency of the web site and its
coherence with the specification. With functional languages, requirements
that are given in a declarative way, like “In a trip description, the date of
return must not be earlier than the date of departure.”, can be written down
directly, in this case by giving a boolean function that checks the constraint
on the two date values (see the code in section 4.7).

– Abstractions can be introduced wherever needed, to master complexity.
The emerging complexity of a web site and its model is almost necessarily
handled by using abstractions. Functional languages provide very powerful
ways to introduce new abstractions, which makes them an almost ideal ve-
hicle for these kinds of specifications. Higher-order functions can be used
to implement new control structures, for example, and combinator libraries
(e.g., as in [13]) or domain-specific embedded languages (DSEL) like Peter
Thiemann’s WASH/CGI [29] help tremendously by hiding implementation
details.

Functional Web Applications 197

– The separation of concerns leads to the identification of six core aspects.
We provide a backbone structure for the modelling of web sites by the sepa-
ration of content, navigation, pages, queries and updates, presentation, and
dynamics.

– Support for testing and simulating.
Functional programs also lend themselves very well to testing. Thus, it is
possible to construct test cases directly from the requirements documents.
The simulation of a web site visitor is possible as well, as a visit of the
web site is nothing more than a sequence of function calls with concrete
parameters.

3 Functional Web Sites

The core idea of our approach is the consistent use of a functional programming
language to specify a web site. Following a strict separation of concerns, we
partition the task of describing a web site into a set of separate aspects that can
be tackled individually. The identified aspects are

– the content,
– the navigation structure (site map),
– the pages (navigation objects),
– queries and updates,
– the presentation, and
– the dynamics.

Section 4 will provide details for each of them. Each aspect is captured in a
model, and the combination of these models provides the overall picture of the
entire web site. Since the concerns are tackled separately, each can be treated
according to the particular requirements for the respective aspect. The content,
for example, is modelled using a conceptual model, which gives an abstract view
on the content in form of concepts (or classes). The content itself is stored in a
graph data structure, which in turn adheres to a (type) schema that is defined
by the conceptual model. The navigation structure is captured using a visual
language. The pages are modelled using functions that yield the actual page
upon evaluation, using concrete parameter values. The dynamics, the queries
and updates as well as the presentation are also specified in a functional way.

Thus, the functional language is used extensively. Any specification can benefit
from this fact, because the full power of the functional programming language can
be used at any level. The introduction of new abstractions is possible at any time,
which is very important to master the complexity. As an example, regard the
need for some sort of ‘templating’ when describing the single pages of a web site,
as many pages will share common parts like design elements or a visualisation of
the site map. We simply use a function that fills given fragments of a web page
into a page template that contains everything that does not change from page
to page. Additionally, the template itself is not static. It can contain conditional
expressions that allow variations of the template to be handled smoothly. All this

198 T. Gipp and J. Ebert

calls

calls

calls

refersTo

refersTo

calls

calls

refersTo Content
Model

Page
Function

Navigation
Model

Dynamics
Function

Query &
Update

Function

Presentation
Function

Legend:

calls

function
call

refersTo

model
dependency

f m

function class
(model)

conceptual
model

Fig. 2. Model overview

can be embedded into the functional language without syntactic clutter, due to
the extensibility of the language via higher-order functions or the definition of
new operators. Thus, new abstractions can be defined in the specification itself,
without the need for any other language.

4 Functional Specifications

According to the list of aspects given in the previous section, we will now pro-
vide the respective details. Starting with a bird’s eye view (section 4.1), the
subsequent sections introduce one aspect each.

4.1 Overview

Figure 2 shows the dependencies between the aspects. The aspects are depicted
by rectangles. Rounded rectangles represent a conceptual model, normal rec-
tangles represent a set of functions. The content model (at the bottom of the
diagram) is a conceptual abstraction of the application domain. Relevant terms,
or concepts, like, in our example, customer or trip, are identified and related
to one another. We can therefore abstract from the actual content, and we can
operate on the ‘class’ level rather than on the ‘instance’ level, to use object-
oriented terminology. This level of abstraction is exploited in the definition of
query and update functions. These functions specify the content access by us-
ing the terminology provided by the content model. The same abstraction step
is done for the dynamics functions. They capture the application behaviour or
‘business logic’. Both kinds of functions are used in the definition of the single
web pages through the page functions. They are at the heart of our approach.
There is one function for each (kind of) page. The overall navigation structure of
the web site is modelled separately in the navigation model, and the conversion
of the abstract page descriptions into a concrete output language is specified by
the presentation functions.

We will now give the details, starting with the content aspect.

Functional Web Applications 199

1using

*

1

1

from

1

to

*provides

1

emanatesFrom

0..1*

*

1

originCity

0..1

destinationCity

0..1

City

Route
Transportation

Method

Route
Pref

Method
Pref

«abstract»
Transportation
MethodPref

Trip
Description

Customer

Trip
Course

Trip

1

1..* {ordered}

Fig. 3. Content model for the TAS example (attributes omitted)

4.2 Content

As far as the content is concerned, we consider the model (schema) level and the
instance level.

Content Model. On the content model level, we capture the application do-
main by defining a conceptualisation, that is, the model identifies concepts and
their relationships. The creation of the content model is an important step to-
wards the understanding and mental structuring of the application domain. It
captures what the application is all about. For the travel agency system, this
includes trips, cities, customers and their preferences, flight schedules, etc.

It is almost consensus to use UML class diagrams as a notation for those
conceptual models. This way, concepts (represented by classes), their attributes,
and their relationships to other concepts can be visualised conveniently. The
class diagram serves as a means of communication between the project partici-
pants. The model usually evolves over time, until, after a number of iterations,
a sufficiently stable version has emerged.

The content model defines a terminology for talking about the application
domain. The terms are referenced in other models, thus serving as a building
block for the overall set of models. We will define query functions, for example,
that access the content by using the abstractions defined in the content model.

Content Instance. The actual content itself is an instance of the content
model. This means that the type of an individual content object corresponds to
a class, and that its relationships adhere to the structure given by the content
model. The content itself must be stored, retrieved, and changed. To this end,
we employ graphs.

200 T. Gipp and J. Ebert

Graphs are a powerful mathematical structure that make an almost ideal
data repository. We rely on typed and attributed graphs to store the web site’s
content. Nodes and edges of the graph have a type, and each type directly corre-
sponds to a class or a relationship, respectively, in the content model. Instance at-
tributes are attached to nodes. Node and edge types constitute a graph’s schema,
and the schema defines a class of graphs. The graph repository is implemented
with the Functional Graph Library (FGL, [5]).

The job of retrieving and changing graph data is performed by the query and
update functions, which will be dealt with in section 4.5.

4.3 Navigation Structure

Figure 1 shows the navigation structure, or site map, of our example web site.
It is a visual representation of the hyperlink structure that connects all pages
constituting the ‘web’. In our opinion, a visual language is suited very well for
showing, to a human, what the structure of the web site actually looks like.
Especially during the design phase, moving icons around is easier and more
‘intuitive’ than writing formulas. This language has been successfully applied in
some of our web engineering projects (e.g., [7]). The remainder of this section
briefly introduces the language; cf. [10] for further details.

The syntax of the navigation structure diagrams is quite simple. The primary
navigation structure, given by the solid arrows, defines a tree of page nodes. This
tree assigns a unique path to every page. It is also easy to communicate to a web
site visitor, who can create a mental image of the site map fairly quickly, which
in turn is a very important ergonomic feature.

In the page functions, which will be explained shortly, the primary navigation
structure is accessible through a simple, regular term structure.

The secondary navigation structure is visualised by dashed arrows. They rep-
resent arbitrary links between pages, without heeding the tree structure.

Types of Pages. There are four different types of pages, visually differentiated
by four different page icons (cf. the legend in fig. 1). A lightning bolt marks
a page as being dynamic, i.e., as a page whose relevant content is calculated
(and thus potentially varies) at the time of access. In contrast, the content of
static pages does not change at run-time. The classification of a page as being
either static or dynamic is not necessarily unambiguous, because the definition
of ‘relevant content’ is subject to interpretation. The distinction merely serves
communicative purposes during modelling. There are no consequences on the
implementation level. In our example, the home page is dynamic, and the ‘about
us’ page is declared static.

Pages providing a form to let a web site visitor enter some data can be distin-
guished by a corresponding form icon. In our example, the user can enter and
submit a trip description on the TripDescription page.

A small piece of script code on a stacked page icon signifies a virtual page
that is computed by a script. In contrast to the ‘lightning bolt’ pages with
dynamic content, the script-generated pages are entirely calculated by a set of

Functional Web Applications 201

parameters, where one (the first) parameter defines the name of the page. This
is inspired by the skolem functions from Strudel [6]. As an example, consider the
CustomerHome(id) page, which represents a set of personalised pages, one page
for each customer. The virtual pages do not exist under a pre-defined identifier,
like the pages with dynamic content do. They are rather created on-the-fly, every
time the page is called with a concrete identifier. We will use the term instance
to talk about concrete virtual pages. There is one instance for each possible
identifier.

These four basic web page flavours can also be mixed on one page. A virtual,
a static, or a dynamic page can contain a form (or more than one). Since non-
dynamic virtual pages do not make much sense – because this would mean
that every instance looked the same and did not make use of the identifying
parameter – the lightning bolt adornment will not be applied to virtual page
icons, and virtual pages will count as always being dynamic.

Technically, pages of all four page types are defined by a page function of the
same signature. Therefore, the page type chosen in the site map diagram is of
no relevance implementation-wise, it is only important conceptually. Section 4.4
will deal with the page functions.

Additional Information about Links. The navigation structure diagram
may also contain information on authorisation-dependent navigation. In the ex-
ample, the primary link to CustomerHome(id) is annotated with a role-icon. It
states that a web site visitor must possess the role Customer in order to access
the page. The scope=subtree declaration expands this constraint to the whole
subtree rooted at this page. The alternative value thisPage for scope would pro-
hibit this expansion. The actual mechanism for checking the authorisation of a
given user, a given action and a given object is intentionally left open in our
approach. We can encompass any matrix-based scheme that maps permissions
to roles.

The diagram can also capture the multiplicity of links to or from virtual pages.
This is useful because virtual pages are like classes in that they represent a set
of instances. Thus, we adopted a subset of the UML’s multiplicity symbols to
define how many instances may be connected. In figure 1, each CustomerHome(id)
instance is connected to exactly one instance of EditPref(id).

The actual checking of the constraints and of the authorisation is contained
in the associated page functions in form of expressions. They also contain the
definition of the links for the secondary navigation structure. Thus, we can em-
ploy the full power of the underlying functional language to provide conditional
links, whose behaviour or mere existence depends on the system state and other
context information.

4.4 Pages

Basic Definitions. Each page that is part of the web site is specified by a
page function. A first example for a page function was given in the introduction.

202 T. Gipp and J. Ebert

Page functions return a value of the abstract type APD, short for abstract page
description. This type allows for defining a page on an abstract level in terms of
hierarchically nested, labelled, and attributed elements (comparable to XML).
Here is the definition of this data type (in Haskell):

data APD
= Text String
| Element Name Attrs APDs
| Link Name Attrs APDs PageInfo Params
| Form Name Attrs APDs PageInfo Params
| Field Name Attrs FieldType APDs String
| Empty

There are six constructors for the APD type. An APD term can be a simple
text node (Text); an element (Element) with a name, a list of attributes, and a list
of child terms; a link or a form (Link, Form) with a name, a list of attributes, a list
of child terms, information about the destination page, and a list of parameters
that should be passed to this page; a field in a form (Field) with a name, a list
of attributes, the type, a list of child terms, and a default field content; or it can
simply be empty (Empty).

Some auxiliary declarations are used: The name of an element (Name) is
a string. Attributes and parameters (Attrs, Params) are modelled as lists of
key/value-pairs. Elements as well as forms and fields can contain child nodes, so
they use APDs as a container for a list of arbitrary APD terms. A PageInfo term
contains information about a single page, comprising an identifier, and a page
function, which is the function that returns the APD for that page. Since func-
tions are first-class objects in a functional language, the term is able to contain
the proper function itself.

A page function basically maps a set of parameters to an APD. The current
system state, including the session information, is passed along as an implicit
parameter with the help of the Haskell StateT monad transformer (cf. [10]).

Links and form destinations are defined in terms of PageInfos. This implies
that links are represented by terms in an APD structure, attached with a refer-
ence to the actual page function they link to. This guarantees link consistency.

Example. The following code for the function tasTripDescriptionForm represents
a form for entering a trip description. The form itself is not a complete page,
but rather just a building block. It is used inside another page function, tas-
TripDescription, that was already shown in the introduction. Figure 4 shows a
rendered version of the form after a transformation to HTML (cf. section 4.6 for
information about how this transformation is specified).

tasTripDescriptionForm :: StatefulPageFunc
tasTripDescriptionForm = do

(graph, session) ← get
return $

Form ”TripDescriptionForm” [] (1)
[Text ”From:”

Functional Web Applications 203

Fig. 4. Example page fragment

, Field ”originCity” [] (OptionListField $ getOriginCities graph) [] ”” (2)
, Text ”To:”
, Field ”destCity” [] (OptionListField $ getDestCities graph) [] ””
, Text ”Departure:”
, Field ”dateOfDeparture” [] SimpleField [] ””
−− some similar fields omitted
, Text ”Sorting Order:”
, Field ”sortingPreference” []

(OptionListField $ map show possibleTripSortingPreferences) [] ””
, Field ”submit” [] SubmitField [] ””
]
tasTripList []

The form is defined using the Form constructor (see mark (1)). The form’s
content is a list of Text and Field elements, which stand for a simple text la-
bel or a corresponding input field, respectively. The example code unveils two
demonstrations of re-use:

1. The possibility for a page function to also define a fragment of a page, rather
than a complete one, seems trivial and minor. In fact, however, this implies
that pages can be assembled from smaller building blocks, which is a very
important feature for encouraging re-use of page fragments.

2. The definition of helper functions like getOriginCities (see mark (2)) helps
cleaning up the specification. Here, this function encapsulates the access of
instance data that is stored in a graph.

Next to the list of form fields we can see the link to tasTripList. This is the
PageInfo function that gets called when the form is actually submitted (the action
handler).

The same principle applies to ordinary links between pages defined by the
secondary navigation structure, as following a link is only a special case of sub-
mitting a form. One can regard a link as a form without any fields. Hyperlinks
are defined with the Link constructor, in the same manner as forms.

204 T. Gipp and J. Ebert

Templates. The introduction already mentioned page templates as a useful
abstraction element for pages with recurring content. We use a transformation-
based approach to implement templating: A template function transforms a given
input APD into an output APD in a filter-like manner, provided that the input
conforms to some simple constraints. It must provide a ”slots”element that con-
tains a list of named slots. These slots are then merged with the template. It is
the template function’s job to define how the slots are actually rearranged, and
thus it defines the general structure of all pages that use this template.

A template function traverses the given APD term and processes the slots it
knows about. Typically, the slots’ content is copied into a new APD term that
represents the output page. Generally, arbitrary transformations on the input
are possible.

Thus, templates are an example of an abstraction that is introduced in order
to reduce complexity. This easy abstraction is possible due to the functional
language.

4.5 Queries and Updates

We rely on graphs to store the content data. This has many advantages compared
to other data structures or even to storing the data in an external database
system. Since the content model is given in terms of classes and associations, it
is possible to use almost any kind of representation for the underlying content
repository.

One strong point for graphs is the possibility to employ powerful graph query-
ing to retrieve values from it. In our implementation, we defined a simple query-
ing interface to graphs.

Consider, as an example, the following query that retrieves the list of all
available cities:

queryAllCities :: AttributedGraph → [String]
queryAllCities g =

nodesToValues
g
(λ lbl → getValue lbl ”id”)
(query g (nodes g) [constrainByType ”City”])

Without diving into the implementation details, you can see from the signature
that this function returns a list of strings, given a concrete Graph g. It does so
by first selecting all nodes that are of type City, and then mapping a function
that extracts the value of the id attribute over this list of nodes, resulting in the
desired list of city names.

The function queryAllCities is used in the definition of getOriginCities and
getDestCities.

Updating the graph is done analogously, by defining a function that returns
the changed graph as its result. The calling function then puts this new graph
into the session context, replacing the old one.

Functional Web Applications 205

4.6 Presentation

The presentation model is given by defining one or more mappings (presentation
functions) from an APD to the corresponding presentation level language. In the
case of a web application that is to be rendered by a user agent that under-
stands XHTML, a simple transformation of the regular APD into XHTML was
implemented as a Haskell function. Alternatively, the APD could be converted to
any other XML dialect first, and subsequent transformations may be done with
technologies like XSLT [3]. All conceivable possibilities are open at this point,
and the approach can be easily adapted to a great number of run-time systems.
Note that the actual transformations can be selected at run-time, even on a
page-to-page basis, or according to context information. This opens the path
to adaptive web applications, encompassing customisation, personalisation, and
multi-mediality.

Our implementation uses a straight-forward transformation of an APD into
XHTML (cf. the example in figure 4). Links and form actions are coded into sim-
ple URL query strings. As a proof-of-concept, this is sufficient, but we would like
to enhance this by integrating a proper web server (see the outlook in section 6).

4.7 Dynamics

The ‘business logic’ or dynamics of a web site is captured in the requirements
documents. Use cases, for example, are employed to describe the behaviour of
the site and which interaction steps are possible.

Using the terminology defined in the content model, many statements con-
cerning the behaviour can be formalised. We suggest to do this with functional
specifications. This way, the dynamics is broken down into well-specified func-
tions that can be glued together in the page function definitions.

As a simple example, consider that, for the TAS, the requirements state that
a trip description must always be well-formed, meaning that “(a) The cities
denoted by originCity and destinationCity are not equal; and (b) dateOfReturn is
later than dateOfDeparture.” (that is, the travel agency is not happy if you order
a trip of length zero, and they don’t offer time travels either). This statement is
captured by a function:

checkWellformedness :: TripDescriptionRecord → Bool
checkWellformedness td =

(originCity td �= destinationCity td) (1)
&& (

if (isJust (dateOfReturn td)) −− is the return date provided at all?
then (fromJust (dateOfReturn td) > (dateOfDeparture td)) (2)
else True

)

Line (1) tests statement (a), and line (2) lets the function return True if, and
only if, statement (b) holds as well.

The function is used in the page that shows the trip list (see line (1)):

206 T. Gipp and J. Ebert

tasTripList :: PageInfo
tasTripList = PageInfo ”TASTripList”$

λ params →
do (graph, session) ← get

navigation ← tasNavigation params
tripDescr ← return $ validateTripDescription params (graph, session)
if (isJust tripDescr && checkWellformedness (fromJust tripDescr)) (1)

then do
trips ← return $ prepareTrips (fromJust tripDescr) (graph, session)
−− remainder omitted

5 Related Work

Relying on models for describing and specifying web sites has quite a long tradi-
tion. Overviews and comparisons of the most prominent approaches are given e.g.
in [18], [8], and [16]. The approaches can be very coarsely classified by their ‘foun-
dations’: Some focus on object-oriented models, others rely on entity-relationship
models, and again others put documents into the center of interest. The most in-
fluential ‘schools’ are the graph-based Strudel approach [6], the TSIMMIS project
[2], the ER-based RMM [14], Araneus [21], HDM [9] and OOHDM [26], WebML
[1], and UWE [17]. The integration of the access to models into a programming
language by using a domain specific language is reported in [24].

Significant effort has been put into developing and describing diverse method-
ologies for web site generation, of which none, to our knowledge, relies as much
on functional specifications as we do. We envision a synergetic potential for the
integration of our findings into existing approaches, or, vice versa, the integra-
tion of selected parts of the aforementioned approaches into ours. This vision
was the reason for our approach being as abstract and as extensible as possible.
The idea of integrating the models by making them functions, which is unique
to our approach, clearly works best when all models are specified as functions.

It is interesting to compare the various notations used in the respective ap-
proaches. Some approaches rely on proprietary notations for some of the diagram
types, especially for the hypertext models. A majority of the current approaches
employs the UML (and its extension mechanisms) for the notation of diagrams.
The main reasons stated for using UML are the availability of tools ([12, p. 2]),
the fact that the UML is well-documented ([19, p. 2]), and the coherence gained
by using UML for a web application that is connected to other systems that
are already modelled using UML ([4, p. 64]). As of today, one can state that
using UML class diagrams for the notation of entity-relationship views simply is
standard practice.

Our approach is based on functional specifications. We aim at integrating the
advantages of this ‘way of thinking’ into existing web engineering practice. To
the best of our knowledge, only very little effort has been put into this direction.
Producing HTML and XML with a functional language in a type-safe way is,
e.g., investigated in [27], [28]. This is expanded by work directed towards the

Functional Web Applications 207

specification of XHTML-based, interactive web applications (esp. [30], [13]). A
very inspiring solution for Scheme is described in [20].

6 Summary and Conclusion

We described an approach to web site modelling by using functional languages.
It is very important to use models as a basis for the development of web sites.
We practise a separation of concerns and identify six core aspects that have to
be considered for modelling, namely the content, the navigation structure, the
pages, the queries and updates, the presentation, and the dynamics. The con-
tent model and the navigation structure are captured using ‘traditional’ object-
oriented, conceptual models and a simple, graphical language, respectively. The
other four aspects, however, are formalised using a functional language. In our
examples, we used the functional programming language Haskell to write down
these functional specifications.

The functional programming language can unleash its full power for the bene-
fit of concise, easily maintainable, and re-usable specifications. Furthermore, the
specifications are also executable, which is an advantage over the potential ‘gap’
between an abstract model, given in one language, and a manually crafted im-
plementation written in another. The inherent features of a functional language
allows for powerful and new abstractions wherever they are needed, which is
almost a necessity to master the complexities of real-world applications. Relying
on a wide-spread implementation language like Haskell facilitates the specifica-
tion even further, because a great array of data structures and function libraries
are already available.

Our future work will be directed towards the extension and streamlining of
our approach. The specifications could benefit from improving the usage of type
information for the content that is stored in the graph. Currently, we rely on
simple, string-based labels for the types, while a real type-system, possibly built
using the specification language, would be desirable. The same idea applies to
the typing of the output documents; here the integration of a domain-specific
embedded languages (DSEL) like WASH/HTML (for XHTML documents) might
be tried, possibly sacrificing some of our approach’s generality.

We would also like to integrate our current implementation with either HSP
[22] or WASH/CGI [30], two very powerful web server solutions written in
Haskell. Both approaches offer substantial benefits, as they correctly deal with
the bookkeeping of states and sessions, and also with the user jumping back-
wards in the browser history, or cloning the browser window. This integration
should also provide an opportunity to test the scalability of our approach.

The template functions we use are an example for an ad-hoc extension that
becomes possible because the functional programming language allows to do it.
The notion of templates and slots could be sharpened by using a separate data
structure for templates.

An end-user who wants to specify a complete web site needs better tool sup-
port than a text editor to write Haskell programs with. Libraries with commonly

208 T. Gipp and J. Ebert

needed auxiliary functions is not enough. A visual language for specifying the
pages, for example, could be used by a graphical tool to generate the functional
specifications. The visual language might be less powerful than the functional
one, but it might suffice for the majority of the cases. An interesting compromise
between user-friendliness and expressive power is sketched in [15], proposing a
more user-friendly way of working with functions in a spread-sheet software.
We would also like to investigate the integration of existing graphical modelling
languages, so to avoid inventing yet another new visual language.

References

1. Ceri, S.: Web Modeling Language (WebML): a modeling language for designing
Web sites. Computer Networks (Amsterdam, Netherlands: 1999), 33(1–6), pp. 137–
157 (2000)

2. Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y.,
Ullman, J.D., Widom, J.: The TSIMMIS project: Integration of heterogeneous
information sources. In: 16th Meeting of the Information Processing Society of
Japan, pp. 7–18, Tokyo, Japan (1994)

3. Clark, J.: XSL Transformations (XSLT) Version 1.0. W3C Recommendation (1999)
http://www.w3.org/TR/xslt

4. Conallen, J.: Modeling Web application architectures with UML. Communications
of the ACM 42(10), 63–70 (1999)

5. Erwig, M.: Inductive graphs and functional graph algorithms. Journal of Functional
Programming 11(5), 467–492 (2001)

6. Fernández, M., Florescu, D., Levy, A.Y., Suciu, D.: Declarative specification of
Web sites with Strudel. VLDB Journal 9(1), 38–55 (2000)

7. Fleer, J.: Entwurf und Implementierung eines erweiterbaren Web-Portals. Studi-
enarbeit, University of Koblenz-Landau, Koblenz (2005)

8. Fraternali, P.: Tools and approaches for developing data-intensive Web applica-
tions: a survey. ACM Computing Surveys 31(3), 227–263 (1999)

9. Garzotto, F., Paolini, P., Schwabe, D.: HDM – a model-based approach to hypertext
application design. ACM Transactions on Information Systems 11(1), 1–26 (1993)

10. Gipp, T.: Functional Web Site Specification. Logos Verlag Berlin, Berlin (2006)
11. Gipp, T., Ebert, J.: Web engineering does profit from a functional approach. In:

Koch, N., Vallecillo, A., Rossi, G. (eds.) Workshop on Model-driven Web Engi-
neering (MDWE 2005). Proceedings, pp. 40–49. University of Wollongong (July
2005)

12. Gorshkova, E., Novikov, B.: Exploiting UML extensibility in the design of web
information systems. In: Proc. Fifth International Baltic Conference on Databases
and Information Systems, pp. 49–64, Tallinn, Estonia (June 2002)

13. Hanus, M.: Type-oriented construction of web user interfaces. In: PPDP’06. Proc.
of the 8th International ACM SIGPLAN Conference on Principle and Practice of
Declarative Programming, pp. 27–38. ACM Press, NewYork (2006)

14. Isakowitz, T., Stohr, E.A., Balasubramanian, P.: RMM: A methodology for struc-
tured hypermedia design. Communications of the ACM 38(8), 34–44 (1995)

15. Jones, S.P., Blackwell, A., Burnett, M.: A user-centred approach to functions in
Excel. SIGPLAN Not. 38(9), 165–176 (2003)

16. Kappel, G., Pröll, B., Reich, S., Retschitzegger, W(eds.): Web Engineering: Sys-
tematische Entwicklung von Web-Anwendungen. dpunkt.verlag, Heidelberg (2004)

http://www.w3.org/TR/xslt

Functional Web Applications 209

17. Knapp, A., Koch, N., Zhang, G., Hassler, H.-M.: Modeling business processes in
web applications with ArgoUWE. In: Baar, T., Strohmeier, A., Moreira, A., Mellor,
S.J. (eds.) UML 2004 - The Unified Modeling Language. Model Languages and
Applications. LNCS, vol. 3273, pp. 69–83. Springer, Heidelberg (2004)

18. Koch, N.: A comparative study of methods for hypermedia development. Technical
Report 9905, Ludwig Maximilians-Universität München (November 1999)

19. Koch, N., Kraus, A., Hennicker, R.: The authoring process of the UML-based
Web engineering approach (june 2001) (on-line) http://www.dsic.upv.es/ west/
iwwost01/files/contributions/NoraKoch/Uwe.pdf

20. Krishnamurthi, S., Hopkins, P.W., McCarthy, J., Graunke, P.T., Pettyjohn, G.,
Felleisen, M.: Implementation and use of the plt scheme web server. Higher-Order
and Symbolic Computation (2007)

21. Mecca, G., Merialdo, P., Atzeni, P.: Araneus in the era of XML. IEEE Data Engi-
neering Bulletin 22(3), 19–26 (1999)

22. Meijer, E., van Velzen, D.: Haskell server pages - functional programming and the
battle for the middle tier. Electronic Notes in Theoretical Computer Science, 41(1)
(2001)

23. Meliá, S., Kraus, A., Koch, N.: Mda transformations applied to web application
development. In: Lowe, D.G., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, pp.
465–471. Springer, Heidelberg (2005)

24. Nunes, D.A., Schwabe, D.: Rapid prototyping of web applications combining do-
main specific languages and model driven design. In: ICWE ’06. Proceedings of
the 6th international conference on Web engineering, New York, NY, USA, pp.
153–160. ACM Press, NewYork (2006)

25. Peterson, J., Chitil, O.: The Haskell Home Page. (December 2004)
http://www.haskell.org/

26. Schwabe, D., Rossi, G.: The object-oriented hypermedia design model. Communi-
cations of the ACM 38(8), 45–46 (1995)

27. Thiemann, P.: Modeling HTML in Haskell. In: Pontelli, E., Santos Costa, V. (eds.)
PADL 2000. LNCS, vol. 1753, p. 263. Springer, Heidelberg (2000)

28. Thiemann, P.: A typed representation for HTML and XML documents in Haskell.
Journal of Functional Programming 12(4 and 5), 435–468 (2002)

29. Thiemann, P.: An Embedded Domain-Specific Language for Type-Safe Server-Side
Web-Scripting. ACM Transactions on Internet Technology 5(1), 1–46 (2005)

30. Thiemann, P.: Web Authoring System Haskell (WASH) (February 2007)
http://www.informatik.uni-freiburg.de/~thiemann/haskell/WASH/

protect protect protect edef T1{T1}let enc@update elax protect edef aer{aer}protect edef m{m}protect edef n{n}protect xdef T1/aer/m/n/9 {T1/aer/m/n/9 }T1/aer/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef aer{aett}protect xdef T1/aer/m/n/9 {T1/aer/m/n/9 }T1/aer/m/n/9 size@update enc@update http://www.dsic.upv.es/~west/iwwost01/files/contributions/NoraKoch/Uwe.pdf
protect protect protect edef T1{T1}let enc@update elax protect edef aer{aer}protect edef m{m}protect edef n{n}protect xdef T1/aett/m/n/9 {T1/aer/m/n/9 }T1/aett/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef aer{aett}protect xdef T1/aett/m/n/9 {T1/aer/m/n/9 }T1/aett/m/n/9 size@update enc@update http://www.dsic.upv.es/~west/iwwost01/files/contributions/NoraKoch/Uwe.pdf
http://www.haskell.org/
http://www.informatik.uni-freiburg.de/~thiemann/haskell/WASH/

Integrating Databases, Search Engines and Web

Applications: A Model-Driven Approach

Alessandro Bozzon1, Tereza Iofciu2, Wolfgang Nejdl2, and Sascha Tönnies2

1 Politecnico di Milano , P.zza L. da Vinci 32, I-20133 Milano, Italy
2 Forschungszentrum L3S, Appelstr. 9a, 30167 Hannover, Germany

bozzon@elet.polimi.it, {iofciu,nejdl,toennies}@l3s.de

Abstract. This paper addresses conceptual modeling and automatic
code generation for search engine integration with data intensive Web
applications. We have analyzed the similarities (and differences) between
IR and database systems to extend an existing domain specific language
for data-driven Web applications. The extended Web modeling language
specifies the search engine’s index schemas based on the data schema of
the Web application and uniquely designs the interaction between the
database, the Web application, the search engine and users. We also
provide an implementation of a CASE tool extension for visual model-
ing and code generation. Experimentation of the proposed approach has
been successfully applied in the context of the COOPER project.

Keywords: Web Engineering, Web Site Design, Search Engine Design,
Index Modeling.

1 Introduction and Motivation

In data intensive Web applications, traditional searching functionalities are based
on site navigation and database-driven search interfaces with exact query match-
ing and no results ranking. There are many applications, though, where the con-
tent relies not only on structured data, but also on unstructured, textual data;
such data, from small descriptions or abstracts to publications, manuals or com-
plete books, may reside in the database or in separate repositories. Examples of
these classes of applications are digital libraries, project document repositories
or even simple on-line book stores. The search capabilities provided by database-
driven search interfaces are less effective w.r.t search engines (using information
retrieval, IR, techniques), especially when dealing with large quantities of text:
users, nowadays, are accustomed to interact with search engines to satisfy their
information needs and the simple yet effective Web search functionalities offered,
for example, by Google are by all means standard. Nevertheless, using external
search engines may not suffice: they usually crawl only documents openly pro-
vided by the application on the Web, losing possible contextual information
(unless the Web application provides an exporting tool for its metadata) and
rank resources taking into account all the data existing on the Web. Sensitive
information and private data are not published freely on the Web and authorized

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 210–225, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Integrating Databases, Search Engines and Web Applications 211

users would not be able to make use of them in searching. Integrating IR func-
tionalities within the Web applications allows a finer control over the indexed
data, possibly by making use of the published information schema and by tai-
loring the retrieval performances to the specific needs of different categories of
users. Traditional solutions integrate IR and database systems by writing a cen-
tral layer of software acting as a bridge between the sub-systems to properly
distribute indexing and querying functionalities [1]. The key advantage is that
the two systems are independent commercial products continuously improved by
vendors and can be combined independently from the respective technologies.
In addition, existing databases and applications might co-exists while new IR
features are introduced to enhance searching performances. On the other hand,
such solutions introduce problems of data integrity, portability and run-time
performance which can be solved only by means of integration software designed
for the specific adopted technologies, databases schema and applications.

This paper presents a method for the conceptual modeling and automatic
generation of data intensive Web applications with search engine capabilities
by extending an existing Web modeling language. The aim is to overcome the
problems of ad-hoc integration between database and IR systems by leveraging
on a model-driven approach which allows a declarative specification of the in-
dex structure and content composition. Our model-driven approach leads to a
homogenous specification as the conceptual modeling and the automatic code
generation for indexing and searching are done through the same techniques as
for the database system. Thus, the synchronization between the search engine
indexes and the data back-end is also modeled. The starting point is the Web
Modeling Language (WebML), a visual modeling language for the high-level
specification of data-intensive Web applications and the automatic generation
of their implementation code. Nonetheless, the examples and results are inde-
pendent from the WebML notations and could be applied to other modeling
languages [2] and tools.

The contribution of the paper is twofold: 1) an extension of the concepts of a
Web model to allow (i) the specification of search engine index schemas based
on the data schema of the Web application and (ii) the design of the interaction
between the database, the Web application, the search engine and users; the core
problem is how to provide (in a model-driven fashion) access and synchronization
features to (and from) the search engine. 2) A validation-by implementation of
the proposed model extensions. We have extended a commercial CASE tool
(WebRatio) with novel runtime components and code generation rules. These
two contributions go beyond the state of the practice in the field and allow a
seamless integration and synchronization between database, Web Applications
and search engine technologies.

2 Case Study

To better motivate the need for the integration between databases and search en-
gine technologies in the domain of data intensive Web Applications, we introduce

212 A. Bozzon et al.

Data Back-end
Database

Document
Base

Search Engine

Web Application

Index

Index

T
he W

eb

Fig. 1. Architecture of the case study

as an example the COOPER platform [3], a model-driven solution for project
oriented environments, where users (students,professors or company employees)
from different locations form teams to solve assigned tasks. The COOPER plat-
form is currently used by three corporate users, two universities and one com-
pany, each one having different data and searching requirements. It is therefore
important for the core platform to be easily adaptable to clients’ specifications,
in order to respond quickly to changes in the platform requirements.

The COOPER architecture, presented in Figure 1, is built upon a data back-
end mainly composed of (i) a document base, containing the knowledge resources
managed by the platform, and (ii) a database, containing meta-data about such
resources and references to the files in the document base. Users work in teams
and thus participate in one or more projects at a given time. On top of the data
back-end there are (i) the Web Application, connected both to the database and
to the document base and acting as a bridge between the two with the aid of (ii)
a search engine module, responsible for indexing the content of the whole data
back-end. Figure 2 shows a simplified data schema for the COOPER core data-
base. Users can perform two types of search operations over the data back-end:
by operating only over database data, via SQL queries, or by leveraging on the
search engine that queries both the information in the database and in the doc-
ument base, ordering the results according to their relevance to the user’s query.
Both querying strategies should take into account the whole data structure of
the COOPER database. Users can search for resources, users or related projects.
Search operations have to take into account also the information related to the
searched item (e.g., when searching for a resource, users can specify information
about its authors and related projects). After submitting the search request,
users can navigate through the results, refine their search query or select one re-
sult from the list for further navigation. For example when a user wants to find
resources about “indexing” written by persons working in the COOPER project,
she could post the following query: ‘indexing’ and ‘author works COOPER’.
Such type of requests can also be defined for database queries when the text
is stored in the database, but only by hard-wiring the query predicate into the
Web application’s code, restricting the user’s search horizon. When the user
is creating an IR query she doesn’t need to know much of the schema itself:
the queries are more flexible, allowing users to express their information needs
without the constrains imposed by the underlying query structure. The applica-
tion also allows users to modify the content of the repository. Users may add new

Integrating Databases, Search Engines and Web Applications 213

Project

Brochure: BLOB
Description: Text
EndDate: Date
Name: String
StartDate: Date

Resource

Name: String
OriginalFile: BLOB
Description: Text
PubDate: Date

Team

Description: Text
Name: String User

Affiliation: String
Curriculum: BLOB
Name: String
Position: String

1:N
0:N

0:N

0:N

1:N

0:N

1:N

1:N

UserToResources

ResourceToUser

ProjectToTeams

UserToTeam

ProjectToResources

ResourceToProject

TeamToUser

TeamToProjects

Fig. 2. WebML Data model of the case study application

resources, whose content has to be indexed by the search engine. Data about a
resource (or the resource itself) may be modified by the user, forcing the system
to update both the database and the search engine index. Finally, a resource can
also be deleted from the repository, which means that both the database entry
and the indexed information have to be deleted.

3 Conceptual Modeling for Search Engine in Web
Applications

In this section we present how we have extended a conceptual model for data-
intensive Web applications to support integration with a search engine, in order
to reuse well-proven code generation tools and implementation architectures. We
outline a comparison between IR and database systems in order to provide a new
modeling layer for the definition of index schemas; afterward we present how we
enriched the hypertext model with a set of primitives enabling the specification
of the interaction between the database, the Web application, the search engine
and users.

3.1 Modeling the Index Structure

In Web applications design, the goal of the data model is to enable the specifica-
tion of the data used by applications in a formal way; likewise, when creating a
search engine, designers should also be able to specify the model for the indexed
content. According to [4], an IR model is a quadruple < D, Q, �, R(qi, dj) >
where D is a set composed of logical views for the document in the collection,
Q is a set composed of logical views for the user’s information needs (queries),
� is a framework for modeling the document representation, the queries and
their relationships; R(qi, dj) is a ranking function which associates a real num-
ber with a query qi ∈ Q and a document representation dj ∈ D. In our work
we refer as index data model to the set of document representation contained
in D. In the classic information retrieval, such model is simple and considers
that an index is composed of a set of documents (where by document we mean
the representation of any indexable item) and each document is described by
a set of representative words called index terms (that are the document words
or part of words). This unstructured model relies on indexed contents coming
either from structured (e.g. database), semi-structured (e.g. XML documents)

214 A. Bozzon et al.

and unstructured data (e.g. Web pages). Different works (like [5] or [6]) show the
usefulness (and the potential) of a model combining information on text con-
tent with information about the document structure. These models (also known
as structured text retrieval models) bring structure into the index data model
and allow users to specify queries combining the text with the specification of
structural components of the document.

Analysis of the index data model from a databases perspective. The
logical representation of indexes is an abstraction for their actual physical im-
plementation (e.g. inverted indexes, suffix trees, suffix arrays or signature files).
This abstraction resembles the data independence principle exploited by data-
bases and, by further investigation, it appears clear how databases and search
engine indexes have some similarities in the nature of their data structures: in
the relational model we refer to a table as a collection of rows having a uniform
structure and intended meaning; a table is composed by a set of columns, called
attributes, having values taken from a set of domains (like integers, string or
boolean values). Likewise, in the index data model, we refer to an index as a
collection of documents of a given (possibly generic) type having uniform struc-
ture and intended meaning where a document is composed of a (possibly uni-
tary) set of fields having values also belonging to different domains (string, date,
integer...).

Differently from the databases, though, search engine indexes do not have
functional dependencies nor inclusion dependencies defined for their fields, ex-
cept for an implied key dependency used to uniquely identify documents into
an index. Moreover, it is not possible to define join dependencies between fields
belonging to different indexes. Another difference enlarging the gap between the
database data model and the index data model is the lack of standard data def-
inition and data manipulation languages. For example both in literature and in
industry there is no standard query language convention (such as SQL for data-
bases) for search engines; this heterogeneity is mainly due to a high dependency
of the adopted query convention to the structure and to the nature of the items
in the indexed collection.

In its simplest form, for a collection of items with textual representation,
a query is composed of keywords and the items retrieved contain these key-
words. An extension of this simple querying mechanism is the case of a collec-
tion of structured text documents, where the use of index fields allows users to
search not only in the whole document but also in its specific attributes. From a
database model perspective, though, just selection and projection operators are
available: users can specify keyword-based queries over fields belonging to the
document structure and, possibly, only a subset of all the fields in the document
can be shown as result. Queries over indexes are also set-oriented, which means
that traditional ordering clauses can be defined: a standard ordering clause is
based on the R(qi, dj) ranking function. Also grouping clauses over fields can be
defined but, usually, just to support advanced result navigation techniques like,
for example, faceted search[7].

Integrating Databases, Search Engines and Web Applications 215

The index data model. Web modeling languages usually make use of Entity-
Relationship (E-R) or UML class diagrams to model applications’ data. We
propose the usage of a subset of the E-R model to define a complete representa-
tion of indexes and their structure. With respect to the E-R model, we define the
following modeling primitives: the entity concept is converted into the (i) index
concept, which represents a description of the common features of a set of re-
sources to index; an index document is the indexed representation of a resource.
Index fields(ii) represent the properties of the index data that are relevant for the
application’s purposes. Since all index documents must be uniquely distinguish-
able, we define a single special purpose field named (iii) object identifier, or OID,
whose purpose is to assign a distinct identifier to each document in the index.
Fields can be typed and we assume that a field belongs to one of these domains:
String, Integer, Date, BLOB and URL. While the meaning of String, Integer and
Date data types are self-explanatory, BLOB and URL fields assume a different
flavor in index modeling and, hence, they deserve some further explanations:
BLOB and URL fields contain information taken from resources which, because
of their size and format (MIME Type), must be indexed (and perhaps queried)
differently from plain text. Example of BLOB resources are PDF/Word/Excel
documents, or audio/video files while URL resources consist of indexable docu-
ments identifiable on the Web by their Uniform Resource Locator. Finally, the
relationship concept is not used by the index data model since, as stated in 3.1,
there are no semantic connections between indexes. Likewise, no generalization
hierarchies are allowed.

Index data model for the case study application. Figure 3 depicts the in-
dex data model for the case study application; we modeled an index for resources
(ResourceIndex), for projects (ProjectIndex) and for users (UserIndex). Since the
goal of our search engine is to allow the retrieval of database instances, each in-
dex has a set of fields composed by a subset of the associated data model entity’s
attributes: the ResourceIndex, for example, contains the Name,Description and
OriginalFile fields. In addition, such a set is completed with further fields specif-
ically aimed to enrich the information contained in the index in order to improve
its retrieval performances. For example, the ResourceIndex has a field named Be-
longingTo which, as the name suggests, will contain indexed information about
the projects for which the resources have been produced.

ResourceIndex
BelongingTo: String
Description: String
IndexingDate: Date
OriginalFile: BLOB
Name: String
WrittenBy: String

ProjectIndex
Brochure: BLOB
Description: String
InvolvedUsers: String
Name: String
RelatedDocuments: String

UserIndex
Affiliation: String
Curriculum: BLOB
Name: String
Position: String
PublishedDocuments: String
WorkingProjects: String

Fig. 3. Index data model for the case study application

216 A. Bozzon et al.

Mapping the index model over the data model. Once the index model
is defined, it is necessary to instruct the search engine about how to extract
information from its data source(s). In our approach this is accomplished in
a model-driven fashion by specifying a mapping between an index in the index
schema and an entity in the data schema, making indexes a partially materialized
view over the application data. Figure 4 depicts a graphical representation of the
case study data model mapping for the ResourceIndex index: the {/Resource}
label aside the index name represents the identifier for the entity on which the
index is mapped 1. An entity can have more than one index associated with
it, and each index could assume different forms depending on the design goals.
Since search engines and databases are different systems, unique identifiers for

ResourceIndex {/Resource}
BelongingTo {context}: String

Description {/Description}: String

IndexingDate {unmapped}: Date

OriginalFile {/OriginalFIle}: BLOB

Name {/Name}: String

WrittenBy {context}: String

{/ResourceToUsers} {/UserToTeam}
R

C

C

C

R

R

WrittenBy
{/User}

Affiliation {/Affiliation}
Name {/Name}

{/Project}
Name {/Name}
Description {/Description}

{/ResourceToProject}

1:N
BelongingTo

{/Team}
Name {/Name}: String

0:N

{/Project}

Name {/Name}: String
0:N

{/TeamToProject}

(i) (ii)

1:N

Fig. 4. Example Of Mapping

tuples and documents need to be paired manually by keeping an unambiguous
reference to the indexed tuple inside the index documents; the index will con-
tain two implicit fields, not specifiable by designers but nonetheless fundamental
for the indexing process: (i) a unique identifier for the document in the index
(named OID) and a (ii) unique identifier, (named entityOID or EOID) for the
indexed tuple in the database. Other fields composing an index can be classi-
fied according to two orthogonal mapping dimensions, summarized in Table 1.
The first one, called storing policy, specifies how the index should manage the
indexed content for a given field; an index may cache a (possibly condensed)
portion of the application data in order to improve the searching activity. An
example for this situation is the case of resources like textual PDF/WORD/TXT
files: caching snippets of their data allow one to present to users a summarized
but significant snapshot of their contents, improving the visual representation
of the search results without the need to download the original file; also caching
database content might be useful, especially for attributes containing a signif-
icant quantity of text. Caching also enables the use of advanced search engine
features like query keywords highlighting in the shown snippets. Nevertheless,
caching introduces space (or time) consumption issues which are highly depen-
dent on specific application needs but, as side effect, it might help to improve the
overall performances of the application by minimizing the number of additional
requests addressed to databases or to the repository. Fields can be therefore

1 The notation using a / character in front of the entity identifier is borrowed from
UML, where it is used for specify derived attributes.

Integrating Databases, Search Engines and Web Applications 217

Table 1. Mapping dimensions for the specification of an index content

Mapping Dimension Allowed Values Description
Storing Policy Reference, Cached Management policy for an index field

content
Field Association Mapped, Document, Un-

mapped, Context
Source of an index field content

defined as reference or cached. Reference fields contain a representation of the
original data useful just for index purposes. Conversely, in cached fields, original
data are also stored (possibly after some processing) to allow their publication
without further access to original data sources. Figure 4 reports an example of
the notation used to express the storing policy: the field named BelongingTo, as-
sociated with a white circle, is defined as reference while the OriginalFile field,
marked with a filled circle, is cached.

The second mapping dimension, named field association, addresses the speci-
fication of the source of a field data. Mapped fields contain information directly
extracted from one attribute of a data schema entity. In Figure 4(i) mapped
fields (like Description) are defined by the indexed attribute in the data schema,
specified, for example, by the {/Description} label aside the field name. Such
information can be indexed (or cached) using the same domain type as the orig-
inal attribute or, when allowed, translated into a different domain. A particular
mention should be addressed to BLOB attributes: since an entity instance con-
tains only a reference to the original file, a translation into a different domain
(e.i. different from BLOB) will imply the indexing of the raw information con-
tained into the attribute (which, in our case, is the file path). Document fields,
conversely, address the cases where such a change in the domain type is not
performed by containing an indexed version of the files stored into the data
repository. Unmapped fields, instead, contain values not directly derived from
the database nor from indexed documents; their content is specified at run-time
and might differ from document to document. Such fields can be used, for exam-
ple, to index time-dependent information, like the Indexing Date field in Figure
4(i), which stores the date of an index document creation; in general, the con-
tent of unmapped fields can be freely specified, allowing the definition of custom
content composition tailored to specific needs. Finally, Context fields contain
information originating from the context of the indexed entity. Here by context
we mean information semantically associated to a single concept split across dif-
ferent related entities because of the data schema design process: for example,
the WrittenBy field in the ResourceIndex from Figure 4(ii) will contain indexed
information about the users who wrote the indexed document, like their names
or their affiliations or even the teams they work in. The content of a context field,
hence, is composed by data indexed from attributes belonging to entities related
with the one defining the index. We leverage on the data derivation language
of WebML (which makes use of an OCL-like syntax) to compose such content.
In Figure 4(ii), for example, the content of the BelongingTo field is obtained by

218 A. Bozzon et al.

navigating the ResourceToProjects relationship role and by indexing the value
of the Description and Name attributes of the related entity instances.

3.2 Modeling Search Engine Interaction in the Hypertext Model

In WebML the hypertext model specifies the organization of the front-end in-
terface of a Web Application by providing a set of modeling constructs for the
specification of its publication (pages and content units), operation (content
units) and navigation (links) aspects [8]. We extended the WebML primitives to
allow the specification of the interaction between the Web application, the user
and the search engine. Similarly to how WebML units work on database data,
the new modeling primitives cover all the spectrum of querying and updating
operations specifiable for a search engine, taking into account the boundaries
defined by the index data model as described in Section 3.1.

(i) (ii) (iii)

Search

Source Index
[selector]

Source Index
[selector]

Document

(iv) (v) (vi)

Indexer

Source Index

Un-Indexer

Source Index

Re-Indexer

Source Index

Result Scroller

Source Index
[selector]

Fig. 5. Modeling primitives for the specification of search engine-aware Web interfaces

Modeling search engines-aware Web interfaces. The first type of user
interaction with search engines is the possibility to query and navigate content
extracted from the indexes. We extend the WebML notation with three content
units, depicted in Figure 5: the (i)Search unit, the (ii)Document unit and the
(iii)Search Scroller unit. Table 2 gives an overview of their common properties.
These units model the publication, in the hypertext, of documents extracted
from an index defined in the index schema. To specify where the content of such
units comes from, we use two concepts: (i)the source index, which is the name of
the index from which the documents are extracted, and (ii)the selector, which is
a predicate used to define queries over the search engine. In IR systems a basic
query is a set of keywords and boolean operators (OR, AND and BUT) hav-
ing relaxed constraints (w.r.t. boolean algebra) for their matching properties or
phrase and proximity operator[4]. For document collections with fixed structure,
sub-queries over specific fields may also be addressed; the set of documents deliv-
ered by each sub-query is combined using boolean operators to compose the final
collection of retrieved documents. Our approach focuses on the specification of
queries leveraging on the structure of a given index, using boolean operators to
join sub-queries addressed to the index fields. The selector of the new units will
be therefore composed by the conjunction of a (possibly empty) set of conditions
defined over the fields of their source index; in addition, every unit disposes of an
implicit condition over the OID field, to retrieve one or more documents given

Integrating Databases, Search Engines and Web Applications 219

Table 2. Properties and Parameters for the Data Primitives

Property Description
Source Index the index providing the documents to the unit
Selector a set of conditions defined over the source index
Input Parameter Search String: set of terms to search for; OID: identifier for the index

documents to publish
Output Parameter OID: a set of identifiers for the retrieved documents; EOID: a set of

identifiers of the database tuple associated with the retrieved documents

their unique identifier. Matching values for such conditions are retrieved from
the parameters associated with the input links of the unit. When no conditions
are defined, only the default searchString input parameter is available and the
query is performed by matching its content over all the fields in the index.

The basic navigational pattern for defining the interaction with the search
engine is when the user poses a query to it and then selects one result from the
retrieved list. The Search unit models such process by providing as output the
document OID as well as the associated EOID of the selected result. For a Search
unit the following additional properties can be defined: (i) a list of displayed fields
(selectable from the fields mapped as stored) and an optional (ii) result number
value, which specifies the top-n results to show; if such value is not defined, the
unit will display all the result collection from the search engine. Figure 6 depicts
an example of usage for the Search unit in our case study application. From the
Keyword Search page, the parameters provided on the Search Fields ’s outgoing
links are used by the Search Index unit to perform a query on the index and to
display its results. When the user selects a result from the Search Result page,
the OID of the selected Resource entity is transported to the Resource Detail
unit, allowing the user to visualize all the database information about the chosen
resource. In this case the link passes information from the index to the database.

Another way for users to navigate through search results is by browsing them
in a paged fashion, using commands for accessing the first, last, previous, next or
nth element of a sequence. To model such interaction we borrowed from WebML
the Scroller unit, adapting its behavior to cope with the new information sources
offered by the index model: our Search Scroller operates on a given index, provid-
ing as output a set of OIDs for the document contained by the current displayed
page. Figure 7 depicts an example of usage for the Search Scroller unit in our
case study application: when the user issues a query, the Result Scroller provides

Keyword Search

Search Fields
NameField

AuthorField

Search Results Details

OID : eoid
Search Index

ResourceIndex
[Name = nameP]

[WrittenBy = wrbP]

Resource
<OID:=eoid>

Resource Details
NameField:nameP

AuthorField:wrbP

Fig. 6. Example of user to search engine interaction: result selection

220 A. Bozzon et al.

Search

Search Field
Search

Paged Search Results

Search:
keyword

ID : setOfID

Details

ID : docid OID : eoid
Result Scroller

ResourceIndex
<searchString:keyword>

ResourceIndex
<OID:=docid>

Result DetailsSearch Index

ResourceIndex
<OID:= setOfID>

Resource
<OID:=eoid>

Resource Details

A

Fig. 7. Example of paged navigation through search results

to the Search Index unit the set of OIDs for the first page in the result collection.
The user is able then to move through the retrieved results and, eventually, select
one of them to display further details about it before continuing and show the
actual data instance. This is accomplished by the Document unit, which, given
a list of displayed field and an optional set of selector conditions, enables the
visualization of a single document of an index without accessing the database.

Modeling operations on search engines. The second typical integration
involving a search engine is its interaction with the Web application and its
underlying data back-end. Therefore, there is the need to specify how the Web
application acts as a broker between the search engine and the database in order
to keep the content of the latter synchronized with the content of the former.
We extend the WebML notation with three operation units, depicted in Figure
5: the (iv) Indexer unit, the (v)Un-Indexer unit and the (vi)Re-Indexer unit.

It has to be noticed how the proposed approach does not grant transactional
features, which means that, for example, if the creation of a document in the
index fails, the database and the index are out of synchronization and any further
reconciliation activity must be modeled separately or performed manually.

The Indexer operation unit models the process of adding new content into an
index to make it available for searching. The unit specifies as source object the
desired index and accepts as input parameter the set of object identifiers for the
entity instances to index. In addition, if the current index specifies some fields
mapped as unmapped, the input parameters set is extended to allow the definition
of the values for such fields. In our case study for example the IndexingDate is
an unmapped field. For having the possibility to provide the current date during
runtime, the set of input parameters is extended by one. The value of all the other
fields is filled automatically according to the mapping rules, as specified in the
index model mapping. Output parameters depend on the creation status; the OK
and KO links will provide all the successfully created, respectively not created,
document OIDs. Referring to the case study application, Figure 8 depicts a
typical example of usage for the Indexer unit: a user, adding new resources
into the data repository, has to provide the data to store in the database and
to upload the physical file(s). This is modeled in WebML with an entry unit
specifying a field for each entity attribute to fill. By navigating its outgoing link,
the user activates the Create unit which creates a new entity instance in the
database and eventually stores the provided files into the document base. If the

Integrating Databases, Search Engines and Web Applications 221

Create Resource

Resource Data
Name, File

Description

Create

Resource
<Name := value1><File := value2><Description := value3>

EOID : OID_2

OK Error PageKO

Indexer

ResourceIndex
<EOID := OID_2><IndexingDate=now()>

Name : value1, File : value2

Description : value3

OK

Fig. 8. Example of index document creation

creation succeeds, the OID of the created instance is provided as input to the
Indexer Unit which takes care of the creation of the new index document. The
success of the operation leads the user back to the Create Resource page, while
its failure leads the user to an error page.

The process of removing content from an index and making it unavailable
for search is modeled by means of the Un-Indexer operation unit. Like for the
Indexer unit, this unit specifies as source object the required index. As input
parameters the unit accepts a set of object identifiers for the entity instances
associated to the index documents to remove from the index. Alternatively a
set of document identifiers for the index documents can be used as input. In
the first case the Un-Indexer unit searches inside the index and removes every
entry referring to the entity instances’ EOIDs. In the second case no search is
performed and exactly the documents having the provided OIDs will be removed
from the index. The Un-Indexer unit provides as output of its OK link the OIDs
of all the documents successfully deleted while, on the KO link, the OIDs of the
document for which a deletion was not possible. A typical example of usage of
the Un-Indexer unit (shown in Figure 9) is the synchronization of the index after
the deletion of a resource from the database. This scenario is modeled in WebML
with an index unit showing the list of resources currently stored in the database.
The index unit is linked to a delete unit, which is activated by navigating the
outgoing link; after activation, the unit removes the entry from the database and
also all the linked files from the repository. If the deletion succeeds, the OID of
the deleted object is delivered as an input parameter to the Un-indexer unit,
which, in turn, deletes all the documents referring to the provided EOID. If the
deletion is successful the operation leads the user back to the Delete Resource
page, otherwise it leads to an error page.

Delete Resource

Resource Index

Resource

Delete

Resource
<OID := OID_2>

OID : OID_2
EOID : OID_2 Un-Indexer

ResourceIndex
<EOID := OID_2>

Error Page

OK

OK KO

Fig. 9. Example of an existing index document deletion

222 A. Bozzon et al.

Finally, the Re-Indexer unit allows to model the process of updating the
content of index documents by re-indexing again their source data. This unit,
given a source index to work on, accepts as input parameters the set of OIDs for
the objects needing to be re-indexed. Because the re-indexing process is actually
the same as the indexing one, this unit borrows from the Indexer unit the same
input and output parameter specification. For space reasons we don’t report an
example of usage for the Re-Indexer unit which is anyway straightforward: this
unit usually works paired either to one or more Modify or Delete units operating
on the entities indexed directly (with mapped field) or indirectly (with context
fields) by the search engine.

4 Implementation and Validation

Model extension, code generation, and run-time experiments were conducted in
the context of the COOPER project, allowing us to successfully cover and val-
idate all aspects of the outlined modeling approach. The modeling primitives
discussed in the paper have been implemented in WebRatio [9], a CASE tool for
the visual specification and the automatic code generation for Web applications.
WebRatio’s architecture consists of (i) a design layer for the visual specifications
of Web applications and (ii) a runtime layer, implementing a MVC2 Web appli-
cation framework. A code generation core maps the visual specifications (stored
as XML) into application code exploiting XSL transformations. In our proto-
type, index model extensions have been realized by enriching the data model
primitives offered by WebRatio with custom properties for the definition of in-
dexes, fields and their respective mappings. Hypertext model primitives have
been plugged into the existing architecture. We also created extensions to the
code generator core of WebRatio in order to generate XML descriptors for the
modeled indexes. Such descriptors have been used to instruct the search engine
about mapping with the database and, hence, about how to retrieve and process
the indexed data. Figure 10 depicts the new WebRatio run-time architecture.
Search engine functionalities has been provided by exploiting Apache Lucene[10]
as implementation technology. Lucene is an object oriented text search engine
library written entirely in Java. We created custom classes for the automatic
creation, management and maintenance of indexes based on the XML index
descriptors produced by the code generator. In order to optimize the re-indexing
processes, which may be time consuming, we have exploited advanced indexing
techniques by creating ad-hoc parallel indexes for fields mapped as Document
and Context. When modifications do not involve such fields, their associated in-
formation are not re-indexed, reducing the overall indexing time. The interaction
between the WebRatio run-time and the index files has been developed inside the
boxes of the MVC2 Struts framework, while concurrency and synchronization
features over indexes have been left under the control of Lucene. Hypertext mod-
eling primitives interact directly with the Lucene libraries in order to perform
query and update operation over the content of indexes.

Integrating Databases, Search Engines and Web Applications 223

Configuration File

Fig. 10. Index data model for the case study application

5 Related Work

There are several approaches to overcome the limitations of not integrating IR
techniques in database Web applications. Developers usually use back-end sys-
tems’ built-in data retrieval features (based on standards query languages like
SQL or XQuery) to enable content search into their Web sites. However, it is
generally known how such approaches lack in flexibility due to exact-matching
retrieval of data objects, which are often insufficient to satisfy users’ information
needs. The presence of additional resources along the structured data - which
are only referenced in the database - exacerbates this problem and leads to the
need for alternative solutions to cope with the limitations.

One possible solution is to integrate IR features into the data management
systems by extending the existing models (relational, OO) to include traditional
IR and user-defined operators. Several extensions for standard [11][12] and ex-
tended [13] relational query languages have been proposed both in literature and
by database producers [14]. This approach allows a seamlessly integration of IR
features inside the robust environment offered by an RDBM system, which re-
sults in instantaneous and transitionally-aware updates on the internal indexes.
However, such solutions do not implement all the functionalities offered by IR
systems, and, since they do not rely on widespread adopted standards, they are
usually implemented only by few vendors; moreover, pre-existing applications
leveraging on traditional RDBMS products can not benefit on such extensions,
leaving to developers the task of integrating external IR technologies. Other ap-
proaches deal with allowing keyword search on databases or on semi-structured
data [15][16] by annotating the database keywords with schema information and
creating different query schemas. The problem is that this approaches work best
for situations where there is not much text in the database and they provide un-
ranked results sets. In our situation we consider both having textual information
in the database and having external repositories.

Traditional solutions [17] integrate IR and database systems by exploiting a
mediation layer to provide a unified interface to the integrated systems. Accord-
ing to [1], such solutions belong to the category known as loosely coupled (or
middleware integration) systems. Our proposal also fits into such category but

224 A. Bozzon et al.

we introduce a model-driven approach for the specification of a mediation layer
actualized as a Web application by leveraging on WebML [8], one of a family [2]
of proposals for the model-driven development of Web applications. For context
fields mapping we referred to [6], which shows how we can index materialized
views of semi-structured data. In this approach the terms are indexed along with
the paths leading to them from the root node. The (term,context) pairs become
the axes of the vector space. The resulting index is not merely a flat index, it
also contains structure information because of the association between tags and
their paths. The queries undergo the same operations. The method is closer to
our needs, but still there is the problem of creating too many axes in the vector
model, which we try to avoid by artificially recording the path information and
index related information under a single axe as presented in [18].

6 Conclusions and Future Work

In this paper we have addressed the problem of the integration between search
engine technologies and Web applications in a model driven scenario. We have
proposed an extension for a specific modeling notation (WebML) and a de-
velopment tool suite (WebRatio) to support the specification and automatic
generation of search engine-aware Web applications. Such extensions involve
(i) the definition of a novel conceptual schema (the index model), (ii) a set
of rules to specify in a model-driven fashion the content of search engine in-
dexes and (iii) novel modeling primitives for the specification of the integration
between the database, the Web application and the search engine. Our future
work will proceed along three directions: more complex hypertext modeling fea-
tures will be considered, to widen the spectrum of interaction scenarios usu-
ally available for users (e.g. faceted search); extended index model primitives
to support the definition of user policies for the access of indexed content; fi-
nally, further investigation will be addressed to apply the proposed approach
to wider search scenarios, possibly involving multimedia content querying and
retrieval.

References

1. Raghavan, S., Garcia-molina, H.: Integrating diverse information management sys-
tems: A brief survey. IEEE Data Engineering Bulletin (2001)

2. Gu, A., Henderson-Sellers, B., Lowe, D.: Web modelling languages: the gap between
requirements and current exemplars. In: AUSWEB (2002)

3. Bongio, A., van Bruggen, J., Ceri, S., Matera, M., Taddeo, A., Zhou, X., et al.:
COPPER: Towards A Collaborative Open Environment of Project-centred Learn-
ing. In: Nejdl, W., Tochtermann, K. (eds.) EC-TEL 2006. LNCS, vol. 4227, pp.
1–4. Springer, Heidelberg (2006)

4. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley,
London, UK (1999)

5. Navarro, G., Baeza-Yates, R.: Proximal nodes: A model to query document data-
bases by content and structure. ACM TOIS 15, 401–435 (1997)

Integrating Databases, Search Engines and Web Applications 225

6. Carmel, D., Maarek, Y., Mandelbrod, M., Mass, Y., Soffer, A.: Searching xml
documents via xml fragments. In: SIGIR (2003)

7. Oren, E., Delbru, R., Decker, S.: Extending faceted navigation for rdf data. In:
ISWC (2006)

8. Ceri, S., Fraternali, P., Brambilla, M., Bongio, A., Comai, S., Matera, M.: Designing
Data-Intensive Web Applications. Morgan Kaufmann, Seattle, Washington, USA
(2002)

9. WebRatio: http://www.webratio.com
10. Apache Lucene. http://lucene.apache.org/.
11. Crawford, R.: The relational model in information retrieval. JASIST, pp. 51–64

(1981)
12. Vasanthakumar, S.R., Callan, J.P., Bruce Croft, W.: Integrating inquery with an

rdbms to support text retrieval. Data Engineering Bulletin (1996)
13. Ozkarahan, E.: Multimedia document retrieval. Information Processing and Man-

agement 31(1), 113–131 (1995)
14. Oracle: Oracle technical white paper (May 2001)
15. Hristidis, V., Papakonstantinou, Y.: DISCOVER: Keyword search in relational

databases. In: Procs. VLDB, August 2002 (2002)
16. Weigel, F., Meuss, H., Bry, F., Schulz, K.U.: Content-Aware DataGuides: Inter-

leaving IR and DB Indexing Techniques for Efficient Retrieval of Textual XML
Data. In: McDonald, S., Tait, J. (eds.) ECIR 2004. LNCS, vol. 2997, pp. 378–393.
Springer, Heidelberg (2004)

17. Grabs, T., Bm, K., Schek, H.J.: PowerDB-IR: information retrieval on top of a
database cluster. In: IKE’01. Atlanta, Georgia, USA (2001)

18. Iofciu, T., Kohlschtter, C., Nejdl, W., Paiu, R.: Keywords and rdf fragments: Inte-
grating metadata and full-text search in beagle++. In: Workshop on The Semantic
Desktop at ISWC, Galway, Ireland (November 6, 2005)

http://www.webratio.com
 http://lucene.apache.org/.

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 226 – 241, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Method for Model Based Design of
Rich Internet Application Interactive User Interfaces

M. Linaje, Juan C. Preciado, and F. Sánchez-Figueroa

Quercus Software Engineering. Universidad de Extremadura (10071 – Cáceres, Spain)
mlinaje@unex.es; jcpreciado@unex.es; fernando@unex.es

Abstract. During the last years, Web Models have demonstrated their utility fa-
cilitating the development of Web Applications. Nowadays, Web Applications
have grown in functionality and new necessities have arisen. Rich Internet Ap-
plications (RIAs) have been recently proposed as the response to these necessi-
ties. However, present Web Models seem to be incomplete for modelling the
new features appearing in RIAs (high interactivity, multimedia synchronization,
etc). In this paper we propose a Model Driven Method, validated by implemen-
tation, called RUX-Model that gives support to multi-level interface specifica-
tions for multi-device RIAs.

Keywords: Rich Internet Applications, Models, Web Engineering.

1 Introduction

Web distribution architecture has inherited benefits such as low maintenance costs,
decentralization and resource sharing among others. During the last few years, the
growth of Web projects has brought about the development of models and techniques
coming from the Web Engineering community. Nevertheless, the complexity of ac-
tivities performed via Web interfaces keeps increasing, coming close to that of desk-
top applications. In this context, HTML-based Web Applications are showing their
limits when considering high levels of interaction and multimedia support [5].

One solution to this limitation resides in Rich Internet Applications (RIAs) which
combine the benefits of the Web distribution model with the interface interactivity of
desktop applications. However, there is still a lack of complete development models
and methodologies related to the new capacities offered by RIA [11]. As a result of
RIAs technological characteristics and requirements, the current methodologies can
not be directly applied to model and generate them. Most Web methodologies do not
support multimedia properly, their focus being on data intensive Web applications
(e.g., WebML [3], UWE [7] and OO-H [6]). In addition, most of the multimedia
methodologies are not data intensive oriented and they focus on temporal specifica-
tions to support multimedia/animations and final-user interaction (e.g., HMT [2] and
OMMMA [4]). According to previous studies, these methodologies do not cover RIA
composition parameters fully at all [11].

To be more precise, Web modelling approaches can be extended towards RIA
modelling in two different directions: 1) sharing business logic and establishing data

 A Method for Model Based Design of RIA Interactive User Interfaces 227

persistence between client and server sides; 2) extending Web User Interface (UI)
capacities to specify the richness of presentation and interaction in RIA.

The first issue is beyond the scope of this paper and has been treated in [5]. For the
second issue, lessons learned from Multimedia and Hypermedia fields are necessary.

The contribution of this paper is a Model Driven Method for the definition of rich UIs
with high levels of user interaction and multimedia temporal relationships called RUX-
Model (Rich User eXperience Model). This proposal is validated by implementation on
RUX-Tool (the RUX-Model CASE Tool available at http://www.ruxproject.org/).

The rest of the paper is organized as follows: in section 2 the main design decisions
for RUX-Model are shown and argued, after which in section 3 we describe RUX-
Model in detail. Finally, conclusions and future work are outlined in section 4.

2 Design Decisions in RUX-Model

Due to RUX-Model being a multidisciplinary proposal and in order to decrease cross-
cutting concepts, the interface definition is divided into levels. According to [14] an
interface can be broken down into four levels, Concepts and Tasks (which has no
bearing in RUX-Model, it correspond to the hypertext model level and is the starting
point for RUX-Model), Abstract Interface, Concrete Interface and Final Interface. In
RUX-Model each Interface level is composed by Interface Components.

For the Abstract Interface we are interested in models as independent as possible.
RUX-Model Abstract Interface is partially based on Object-oriented Modelling of
Multimedia Applications (OMMMA) [4] in order to define the set of media compo-
nents. OMMMA is independent enough, but quite limited, so it must be improved by
adding RUX-Model views and connector elements. The Concrete Interface in
RUX-Model consists of spatial, temporal and interaction UI presentations.

Spatial Presentation.- There are many proposals to build a generic interface common
to multiple devices and to customize it for specific devices [12]. Among them, our
interest is focused on those languages being scalable and flexible enough to be ex-
tended with new features and, if possible, being standard. We have selected User
Interface Modelling Language (UiML) [1]. UiML might be the most well-known and
widely spread general XML-based UI description language. However, UiML is not
enough to deal with some RIA necessities [10], so several extensions to UiML are
proposed in RUX-Model.

Temporal Presentation.- The main interest is on the definition of temporal logic rela-
tions among Interface Components and the validation of the set of temporal relations
allowed. In this sense, the Synchronized Multimedia Integration Language (SMIL)
[15] is used to express temporal logic relations. Graphical commonly-adopted repre-
sentation of SMIL is based on Petri Nets. RUX-Model uses Petri nets’ structure as a
bipartite directed multigraph. Timed Petri Nets (TOCPNs) are introduced for multi-
media presentations in [8] and extended in DMPS [9], but they have mainly been used
to give temporal functionality to static multimedia presentations of desktop systems.
So, in RUX-Model graphical representation of Temporal Presentation definition is
lightly inspired by sequence diagrams defined in OMMMA. The set of possible tem-
poral relations in RUX-Model has been validated by correspondences of the set of
temporal relations defined in HMT [2].

228 M. Linaje, J.C. Preciado, and F. Sánchez-Figueroa

Interaction Presentation.- The proposal that covers part of our goal is XML Events
[16]. The XML Events is an events syntax for XML that provides XML-based lan-
guages with the ability to uniformly integrate event listeners and associated event
handlers with Document Object Model event interfaces. Handlers in RUX-Model are
attached to the Temporal or Interaction Presentations. An event handler in RIA must
be able to define the alterations of the presentation caused by the user interaction and
the connections with the underlying business logic. UiML has a nice proposal to de-
fine handlers but it is not powerful enough to express RIA capabilities according to
[10], so RUX-Model extends it and proposes a graphical representation over it to
specify handlers in a visual way based on Flow Charts. In addition, OCL is used when
low level detail operations are to be performed.

RUX-Model Final Interface describes the final UI according to RIA selected ren-
dering technology. At the moment, the technologies considered in RUX-Model are
Flex [17], Lazslo [18], and Ajax together with DHTML, but the model should be able
to describe similar RIA rendering technologies (e.g., XUL or XAML).

Table 1. Summary of RUX-Model related technologies and their extensions

Concrete Interface
 Abstract Interface

Spatial Temporal Interaction
Final Interface

Flow Charts - -
Extended to represent graphically

condition-action trees
-

HMT - -
To validate the set of
temporal relations

- -

OMMMA Extended to define and
group Media

-
Extended to perform
sequence diagrams

- -

TOCPN
DMPS

- -
To express Temporal

Logic Relations
- -

OCL - -
Very low level specification of

handlers
-

SMIL - -
To express temporal

logic relations
- -

UiML -
Subset for Structure
and Style of the UI

Extended to specify handlers -

XICL
Extended to define

Interface Components
Extended to define and map Interface Components

Extended to define and map
Interface Components

XML Events - - -
Listener

definitions
-

AJAX,FLEX,LASZLO Used to define the set of Concrete Interface Components Rich Render Technology

Finally, glue between levels is needed. XICL (eXtensible user Interface Compo-
nents Language) [13] is an extensible XML-based mark-up language for the devel-
opment of UI components in Web systems and browser-based software applications.
XICL allows not only the specification of components with their properties, methods
and so on, but also the definition of target platforms and the mapping among Interface
Components. RUX-Model extends XICL to define Interface Components and to es-
tablish mapping options between two components of adjacent Interfaces.

 A Method for Model Based Design of RIA Interactive User Interfaces 229

Due to the amount of RUX-Model related technologies, table 1 summarizes the mod-
els, methodologies and languages selected to be used or extended in order to conform
parts of RUX-Model. We must clarify that RUX-Model does not depend on any of
these models and languages and just takes advantage of these previous works.

3 RUX-Model Core

RUX-Model is an intuitive visual method that allows designing rich UIs for RIAs.
Main RUX-Model features are:

• It defines reusable interfaces: RUX-Model Abstract Interface is reusable because
it is common to all the RIA platforms, so all the devices that can run this kind of
application may use the same Abstract Interface.

• It allows the spatial arrangement of the UI to be specified, as well as the
look&feel of the interface elements based on a flexible set of RIA components.

• It models the temporal aspects, allowing the specification of those behaviours
which require a temporal synchronization.

• It allows the user’s interactions with the RIA UI to be modelled based on the
active Interface Components definition.

RUX-Model allows communication with the underlying hypertext application,
hence data-content and functionality is offered by the HTML-based Web application.
The final application’s functionality is thus dependent on the chosen Web model
capacities.

Thus, RUX-Model is formed by the definition of a set of interfaces with distinctive
responsibilities and abstraction levels (Figure 1).

Fig. 1. RUX-Model MDA overview

The development process in RUX-Model has four main stages: connection with the
previously defined hypertext model, definition of the Abstract Interface, definition of
the Concrete Interface and the specification of the Final Interface, which ends in code
generation. In RUX-Model each stage is fed by the previous one, as well as by the
Component Library and the mapping possibilities specified in XICL (Figure 1).

The first stage in RUX-Model deals with the connection with the previous hyper-
text model (e.g., WebML, OO-H or UWE). At this stage, the presentation elements

230 M. Linaje, J.C. Preciado, and F. Sánchez-Figueroa

and the relationships among them are extracted, as well as the defined operations on
the Web model. The Connection Rules ensure RUX-Model to adapt to the system
requirements shaped in the previous Web model. On the basis of the results offered by
the Connection Rules, RUX-Model builds the Abstract Interface, by means of which
we can specify an interface which is independent from the platform and the final
display device.

From the Abstract Interface, through the application of the first set of Transforma-
tion Rules, the Concrete Interface, which allows the appearance, spatial arrangement,
temporal and interactive behaviour, is obtained.

Finally, from the Concrete Interface and through the second set of Transformation
Rules, we obtain the Final Interface, which has inherited, among others, the connec-
tion with the previous Web model.

Model Driven Architecture (MDA) is an approach to software development that
provides a set of guidelines for structuring specifications expressed as models. Using
the MDA methodology, system functionality may first be defined as a Platform Inde-
pendent Model (PIM) through an appropriate Domain Specific Language. PIM may
then be translated to one or more Platform Specific Models (PSMs) by mean of a set
of Transformation Rules.

According to MDA approach, the relationship among each one of the stages of
RUX-Model goes as follows (Figure 1): For each hypertext model you get an Abstract
Interface (PIM). For each Abstract Interface you get n Concrete Interfaces (PIM). For
each Concrete Interface you get m Final Interfaces (PSM).

Thus, by using RUX-Model it is only necessary to specify a common Abstract In-
terface for the different Concrete Interfaces. Hence, every Concrete Interface can be
specified in order to be rendered in one or more specific platforms. The application
building process finishes with a stage in which the transformation engine generates
the code dependent on the chosen target specific platform.

3.1 Connection Rules

By defining a certain set of rules, called Connection Rules, we ensure the RUX-
Model connection integrity with the previous Web model. The set of Connection
Rules establishes the way the matching takes place among the elements in the previ-
ous Web model and the Abstract Interface.

RUX-Model extracts (from the Web model it connects) the structure and naviga-
tion in order to use them to create an initial Abstract Interface model, and to grant the
Concrete Interface model access to the “operation chains” or “operation points”,
which represent the operational links in the hypertext navigation models.

The process starts when we choose the set of Connection Rules to be used, which
are defined specifically regarding the previous Web model taken.

The following is extracted from the previous Web model:

• The data used by the Web application and its relationships.
• The existing hypertext element groupings.
• The connections between pages, which allow us to put the application in context.

 A Method for Model Based Design of RIA Interactive User Interfaces 231

3.2 Transformation Rules and the Component Library

Following MDA, we will focus on defining models and specifying Transformation
Rules in order to systematize the RIAs construction process.

In order to understand the way the Transformation Rules are applied in the steps
PIM2PIM and PIM2PSM (Figure 1), we need to know the specifications for the Inter-
face Components involved in each of the RUX-Model Interface levels. In RUX-
Model an Interface Component is defined by its name, its identifier (required) and a
set of properties, methods and events, which are optional. Thus, RUX-Model is made
up among others of Abstract Interface Components, Concrete Interface Components
and Final Interface Components.

With the aim of making the access and the maintenance of the Interface Compo-
nents easy, RUX-Model specifies a Component Library, which is responsible for: 1)
storing the components specification (name, properties, methods and events) 2) speci-
fying the transformation capabilities for each component from an Interface level in
other components in the following Interface level and 3) keeping the hierarchy among
components at each Interface level independently to every other level.

Fig. 2. Component Library E-R description

The Component Library specified in Figure 2 maintains the specifications of the
Interface Components and their relationships along the modelling process. The set of
Interface Components defined in the library can be increased or adapted by the
modeller to its needs and according to the specifications of the project. Properties,
methods and events of each Component can be extended at any time.

The transformation specifications contained in the Component Library are added to
our own XICL extended specification (see http://ruxproject.org/xiclext.pdf for further
information) in order to declaratively specify which are the transformation options
available to be carried out on each Interface Component.

XICL extensions allow RUX-Model to keep the definition of several target plat-
forms in a single XML document, as well as the translation of an origin component to
one or more target platforms when we specify PIM2PSM Transformation Rules. This
is a basic capability of the RUX-Model Transformation Rules not existing in XICL
that was designed primarily to create HTML components. XICL mixes spatial

232 M. Linaje, J.C. Preciado, and F. Sánchez-Figueroa

arrangement and interaction, which is not a desirable feature in our model. XICL
original component tag has been extended to allow several platforms and reference
each component to the platform it belongs to. Also the properties declaration has been
modified and unused elements and attributes have been removed. Moreover, a strict
key reference definition has been added to XICL to facilitate checking the Transfor-
mation Rules.

Abstract to Concrete Interface (PIM2PIM): PIM2PIM Transformation Rules estab-
lish the correspondences which are allowed among Abstract Interface Components
and among Concrete Interface Components. The set of different components which
can form the Abstract Interface is fixed and limited by a number of elements set by
RUX-Model as native (mentioned later), even though it is conceptually extendable
extending the Component Library. The size of Concrete Interface Components set is
variable and depends on the number of RIA elements to be defined dynamically in the
Component Library. Applying these rules on the Abstract Interface allows creating a
first version of the Concrete Interface.

Concrete to Final Interface (PIM2PSM): This case is different from PIM2PIM in
the fact that now both the set of origin components (Concrete Interface) and the set of
target components (Final Interface) are changeable and dynamic within the Compo-
nent Library. In the Component Library, the Concrete Interface Components are de-
fined and we detail a series of final platforms. The methods, events and properties
mapping is done individually by each component and target platform that we want to
deploy in the Final Interface level. For instance: we define our native Concrete
Interface Component called tabnav, which could become the TabNavigator FLEX
component or the tabpane Laszlo component.

3.3 Abstract Interface

Abstract Interface lets us obtain an abstraction on the chosen Web model, obtaining a
common representation for the hypertext systems currently used in the Web.

This Interface can be initially obtained from the selected Web model by using the
Connection Rules. A refinement process is allowed, in which the modeller can
add and/or restructure the Abstract Interface if it is considered necessary until the
modeller’s goal is achieved.

Fig. 3. RUX-Model Abstract Interface formal description

 A Method for Model Based Design of RIA Interactive User Interfaces 233

RUX-Model Abstract Interface is composed by connectors, media and views. Figure
3 shows the Abstract Interface elements and the relations among them.

1) Connectors. They are related to the data model once it is specified how they are
going to be recovered in the hypertext model. Web development methodologies typi-
cally give the hypertext model some characteristics which allow, for instance, specify-
ing the way a set of registers recovered from a database is going to be ordered and so
on. Each connector owns an attribute called “sourceid” among others which identifies
its connection with the underlying Web model.

2) Media. They represent an atomic information element that is independent of the
client rendering technology.

The availability of media components and their grouping is based on OMMMA. In
RUX-Model they are categorized into discrete media (texts and images) and continu-
ous media (videos, audios and animations). Each media gives support to Input/Output
processes, so it is possible to design multimodal RIAs’ UIs. This is necessary since
RIA allows audio/video inputs over the Web.

Common media attributes are “source” and “connectorid”. These attributes are
used to define dynamic data source of the media (from the underlying Web model).

3) Views. In the Abstract Interface, a view symbolizes a group of information that will
be shown to the client at the same time. In order to group information, RUX-Model
allows the use of four different types of containers: simple, alternative, replicate and
hierarchical views. In RUX-Model, the root element of the Abstract Interface is al-
ways represented by a view.

3.4 Concrete Interface

The Concrete Interface specifies the presentation and behaviour of the UI that has to
be modelled, depending on how we want the application to be. The UI of the Concrete
Interface deals with a UI common to all the current RIA final rendering technologies
and it is formed by three additional “presentations” in order to minimize cross-
cutting: Spatial, Temporal and Interaction Presentations. In order to offer the modeller
intuitive visual models for the different presentations, RUX-Model provides each one
of them with their own intuitive graphic representation that is backed by modelling
languages or representations based on standards.

3.4.1 Spatial Presentation
The Spatial Presentation in RUX-Model is responsible for specifying over the Ab-
stract Interface the positioning, dimension and look&feel of the Interface Components
in the application space.

RUX-Model gives the modeller a set of native RIA components (see http://
ruxproject.org/nativecomp.pdf for further information) which have been defined on
the basis of a component set which is currently present in nearly all current RIA
rendering platforms. The choice of these components is the fusion among the groups
of components in the platforms Laszlo, Macromedia Flex, Macromedia Flash and
XUL that are well-known RIA development platforms. RUX-Model Concrete Inter-
face Components can be classified in three categories: Controls (components used
to gather the user entries or to provide the user with output information), Layouts

234 M. Linaje, J.C. Preciado, and F. Sánchez-Figueroa

(components able to distribute and/or gather the elements in the Concrete Interface)
and Navigators (components able to provide navigation among the stack layout and
other typical navigation components).

As we have mentioned before, the Component Library is responsible among other
things for keeping the Interface components specification, both the native Concrete
Interface ones and those new ones that modellers want to add. The RIA native set of
components has been specified in RUX-Model only to ease the modeller’s work.

Additionally there are descriptions in two declarative languages: the first one, the
XICL extension proposed which has already been commented on, and the second one,
the usage of dynamic schemes extracted from the Component Library to maintain the
hierarchical consistency among the components that compose the spatial presentation.

The spatial presentation specification is simple from the point of view of the mod-
eller, given that the grouping is given first by the Abstract Interface, so the modeller
just has to refine the grouping, place the components spatially, and define their di-
mensions and look&feel.

The textual specification of the RUX-Model spatial presentation RUX-Model uses
a subset of the specification proposed by UiML, which is formed by part of the
children defined in UiML inside the node <interface>. This includes the nodes
<structure> and <style>, avoiding the use of <content> and <behavior> nodes.

3.4.2 Temporal Presentation
The goal of the RUX-Model Temporal Presentation is to represent those behaviour
which take place without the direct mediation of the user and establish a series of
temporal relationships between the different Interface Components in the presenta-
tion. It is very useful in order to represent behaviours that take place in a temporal
way on the Concrete Interface Components or to specify calls to the underlying busi-
ness logic in a predefined way based on time events.

The Temporal Presentation is defined on the Spatial Presentation in order to be
able to specify how changes affecting the RIA UI will take place.

The temporal presentation is made up of the temporal presentation elements, which
are Concrete Interface Components or groups of Concrete Interface Components,
whose spatial presentation is already defined.

It is possible to establish the temporal relationships logic between the elements (E)
of the temporal presentation and also group temporal presentation element (G) which
can contain one or more temporal elements in order to share a temporal logic.

In this sense, to illustrate better the implied processes in temporal relationship
logic, we define some concepts implied in this logic.

Real Using Time: linearly elapsed time from when the application starts running in
the client until the client finishes the application.

Predefined Using Time: time used to specify the duration of a temporal behaviour
established on one or more temporal presentation elements.

The Real Using Time will always be equal to or higher than the Predefined Us-
ing Time, given that it is possible for a user to pause, play and restart the temporal
behaviour in a temporal presentation element.

 A Method for Model Based Design of RIA Interactive User Interfaces 235

Moment: We can at any time “take a picture” of the temporal state of the components
in the presentation, defining a precise moment of the Real Using Time. Every moment
is defined according to the temporary situation at a given instant of all the temporal
presentation elements.

Temporal Presentation definition takes place through triads of the kind E[E’:V0,
E’’:VF, {handler:VE}] and is graphically represented by an extended sequence dia-
gram that expresses how the elements behave in time and how these behaviours affect
other elements. In this triad the values are referred to as follows:

E: Temporal Presentation element target of the indicated temporal logic.
E’: Temporal Presentation element with which E is related in order to start its tempo-
ral behaviour in a synchronized way.
V0: Delay in the start of element E regarding the start of element E’. It can contain a
real value.
E’’: Element with which E is related to finish its temporal behaviour in a synchro-
nized way.
E’ and E’’ can refer or not to the same presentation element.
VF: Delay in the end of element E regarding the end of element E’’. It can contain:

END: Indicates that it ends when Real Using Time finishes.
Real Value: Indicates the time units the temporal presentation element must
last.

Handler: Reference name for a handler in a set of defined handlers in RUX-Model.
VE: Delay when launching the handler from the beginning of element E. It can con-
tain a real value.
Related to the couple handler:VE :

1) it can be repeated by modifying one or both values as many times as necessary, in
order to indicate the launching of different handlers at different moments in the time-
line E is acting in.
2) taking into account that the couple is compulsorily tied to a predefined temporal
event E and gets affected by its temporal definition, the launching of the handler is
also affected by such situation in a way that, if E is repeated in time, the launching of
the handler will be too.

(a) (b)

Fig. 4. Temporal Presentation description examples

The graphic representation of the temporal relationships logic is depicted in Figure 4a,
where the element E1 starts just when the application begins to run and ends when the

236 M. Linaje, J.C. Preciado, and F. Sánchez-Figueroa

application finishes (here Real and Predefined Using Time are equal). Predefined Using
Time of element E2 starts when E1 starts plus a three delay time units from E1 and ends
four time units later. E3 is implicitly executed simultaneously to E2 for four time units
and finishes at the same time as the Predefined Temporal Time of E1.

In RUX-Model temporal representation diagram, the temporal presentation ele-
ments are placed on the left, while the temporal relationships logic that affects those
elements is placed on the right. For each temporal presentation element in the diagram
there is a temporal sequence that starts and finishes in a black dot.

In case it being interesting to focus attention on just a part of the temporal diagram
and there are other elements in the segment starting or finishing outside the shown
range, this is shown by means of a white circle. This means that the element or group
starts before or finishes after, depending on the situation, the shown Predefined Using
Time range. Each handler launched by the temporal behaviour is symbolized in the
diagram by a triangle.

The definition of temporal representation on presentation element groups is done
by quartets of the kind G[E’:V0, M, E’’:VF, {elements}]. These quartets are graphi-
cally represented in the extended sequence diagram and express the behaviour of
elements in time and how these behaviours affect other elements or groups of ele-
ments. In the indicated quartet the values are referred to as follows:

G: Group of temporal elements, target of the indicated temporal logic.
E’: Temporal presentation element related with G to initiate its temporal behaviour in
a synchronized way.
V0: The initial delay of element G with respect to the start of element E’, it can con-
tain a real value.
M: Execution mode, which can be PAR, parallel (default value), or SEQ, sequential.
Like SMIL, RUX-Model defines mainly two kinds of grouping: Parallel (PAR - plays
child elements in parallel) and Sequential (SEQ - plays child elements in sequence).
E’’: Element related with G to finish a temporal behaviour in a synchronized way.
VF: Delay in the end of G regarding the end of element E’’, which can contain the
following value:

LOOP(n): Indicates that the group temporal logic will be repeated n times. n
can also take the value END, thus indicating that it will be repeated until the
application stops running.

In Figure 4b an example of grouping is depicted where E9 begins running in the
moment three of the Predefined Using Time and finishes seven time units later. E9
also triggers two handlers in the instant two from E9 runs. This temporal diagram also
specifies that G1 begins running when E9 begins and defines a temporal sequence
relation between E1 and E2, looping until the end of Real Using Time.

The temporal relationships logic specifies the temporal behaviour of the Concrete
Interface Components. For the attributes of a presentation element implied in a tem-
poral behaviour the values wanted for the initial moment and those for the temporal
elements in the final moment of the behaviour must be indicated. It is possible to
associate values for the attributes of a presentation element related to the values of the
attributes that other temporal presentation elements have in any moment.

 A Method for Model Based Design of RIA Interactive User Interfaces 237

3.4.3 Interaction Presentation
The objective of the Interaction Presentation in RUX-Model is to capture and repre-
sent those behaviours triggered by the user interaction. As in previously shown RUX-
Model phases, we have provided an intuitive graphic notation and a strong definition
language at this point.

In RIAs, capturing the user interaction with the UI is generally carried out by the
application components that are able to capture certain event types.

In RUX-Model, an event is the representation of some asynchronous occurrence
(such as a mouse click on the presentation of the element) that gets associated with a
Concrete Interface Component. An action is some way of responding to an event; a
handler is some specification for such an action; a listener is a binding of such a han-
dler to an event targeting some component.

As the event capture definition language, RUX-Model uses XML Events, W3C
Standard language for the event capture specification. The XML Events module pro-
vides RUX-Model with the ability to uniformly integrate event listeners and event
handlers.

XML Events is not limited to expressing conditions such as “if windows1 moves
launch action1”. XML Events ease richness in expression in DOM based languages,
which allows the event definition to affect all the children of the window (e.g., all the
components previously defined in RUX-Model within a windowlayout, such as but-
toncontrols, could get affected by a “drag” type event assigned to the father). In
RUX-Model all events are declared globally in order to take advantage of the way
events propagate.

XML Events is based on the definition of “listeners” that are used to declare event
listeners and register them with specific nodes in the DOM. It has several attributes:
1) event: the event type for which the listener is being registered; 2) observer: the id
of the element with which the event listener is to be registered; 3) target: the id of the
target element of the event; 4) handler: the URI of a resource that defines the action
that should be performed; 5) phase: when the listener will be activated by the desired
event (capture or bubbling phase); 6) propagate: whether after processing all listeners
at the current node, the event is allowed to continue on its path (continue or stop); 7)
defaultAction: whether after processing all listeners for the event, the default action
for the event (if any) should be performed or not (perform or cancel); 8) id: event
identifier. It’s important to note that XML Events does not specify available event
types or actions. This feature is really important in RUX-Model, since event types are
declared in the dynamic Component Library.

The graphic notation of a listener is quite simple and it is related with the spatial
presentation since events are registered over Concrete Interface Components. Over
the spatial presentation, it a shape is depicted that contains the handler name and the
event selected. In order to represent the relationship between the observer and the
handler a line is also drawn to connect them.

3.4.4 Handlers
Once the way the events are captured, defined and integrated with the handlers is
specified, this section focuses on handler specification.

Handlers in RUX-Model follow an Event-Condition-Action (ECA) model. Each
ECA is defined by the Event (in RUX-Model defined in the listener declaration) and a

238 M. Linaje, J.C. Preciado, and F. Sánchez-Figueroa

Condition-Action-Tree (CAT) defined in the handler. With ECA, RUX-Model is able
to define rules with actions that are triggered when some conditions are met. This
behaviour model is more than enough to express both changes in the UI and calls on
the business logic expressed in the defined Web Model.

In RUX-Model, handlers are textually represented in a declarative way. The speci-
fication is based on a subset of UiML “behaviour” module that is composed of the
following basic elements: 1) behaviour: the behaviour root element; 2) rule: this ele-
ment defines a binding between conditions and actions; 3) condition: element that
contains a logical expression based on the <op> element. <op> may also contain
hierarchical op elements to compose more complex conditions. UiML <op> available
logical conditions are ==, !=, >, <, && and ||. <op> available operators are constant,
property, reference, call, op and event; 4) action: element that contains one or more
elements that are executed in the order they appear in the UIML document. Actions in
UiML may carry out procedure calls (<call> element), changes on properties
(<property> element) and other actions like UI restructuring, or event activations
(<restructuration> and <event>). Additional action subelements are <whentrue>,
<when-false> and <by-default> conditions.

As we have introduce previously, UiML is not sufficiently powerful to represent
RIA and therefore at this point an explanation is given for each extension proposed to
adopt UiML as part of RUX-Model syntax.

Concerning rules, RUX-Model uses the UiML “id” attribute as handler name for
the binding between temporal/interaction presentations and actions to be evaluated
and performed. On the one hand, <event> element in UiML conditions is less expres-
sive than XML Events listeners, so RUX-Model does not use UiML <event> elements
(this has been explained inside the Interactive Presentation section). On the other
hand, UiML <op> element is powerful enough to support the conditions that are nec-
essary to express conditions for actions in RUX-Model, so RUX-Model maintains
UiML definition of conditions. Since UiML <equal> element is equivalent to <op
name=”= =”> and is only supported in UiML for legacy descriptions, we do not adopt
it as part of RUX-Model.

To define actions in RUX-Model, we use a subset of UiML <action> element. In
RUX-Model there are two kinds of actions: those which modify the UI and those that
affect the underlying web business logic. For those actions that affect UI, we avoid
using <restructuration> element to change UI. RUX-Model at this point is richer than
UiML proposal, since RUX-Model facilitates not only property changes available in
UiML but also the definition of transitions… calling the Temporal Presentation speci-
fied by the RUX-Model.

For those actions that affect the underlying business logic, we use UiML <call>
element. The name of the procedure and a set of arguments is the typical syntax to
call a function in procedural languages and that is the way UiML does it using <pa-
ram> elements. However, RUX-Model needs to communicate asynchronously with
the Web model in the way a hypertext page communicates with another one, using
GET or POST request methods by a pair of name/value. RUX-Model extends UiML
call parameters adding the attribute “id”, “name”, “uri” and “type” (request method)
to the <param> element. UiML <action> declaration in actual version (v.3.1) also
includes conditions (<when-true>, <when-false> and <by-default>). As we need to

 A Method for Model Based Design of RIA Interactive User Interfaces 239

extend UiML, we also improve this feature, taking these conditions not only as
<action> children but also as <action> parents.

The proposed ECA model represents in a declarative way the system of conditions
and actions of RUX-Model, and helps to solve the majority of the problems with
handlers regarding the triggering of operation chains and Spatial Presentation
changes. Additionally, using OCL syntax, RUX-Model provides those models requir-
ing an extra expressivity out of the CAT usage domain provided by ECA.

RUX-Model also has a graphical description of handlers in order to ease the mod-
eller’s work. RUX-Model has an intuitive diagram for the visual specification of the
CAT, inspired in the flow charts visual representation (visit http://ruxproject.org/
catelements.pdf to see the elements of the CAT diagrams).

3.5 Final Interface

The last process that takes place in RUX-Model is related with the translation of the
Concrete Interface to the Final Interface. This last level of the model is defined de-
pending on the specific platform to which we want to associate the whole design. It is
closely related and depends on the components registered in the Component Library
for each final rendering platform.

Thus, the correspondences that the modeller wants to establish among the Concrete
Interface components and the Final Interface component are decided in the Final
Interface. Hence, in order to generate the application depending on a specific plat-
form, we have to translate the design carried out in the Concrete Interface into one of
the different rich rendering platforms previously defined in the Component Library
(e.g., Laszlo, Flex, AJAX, XAML).

Thanks to the fact that the Spatial, Temporal and Definition presentation tech-
niques integrated in the Concrete Interface design allow a textual representation based
on XML, it is easier to process them by means of a translation engine in order to ob-
tain the Final Interface. This translation can be automated depending on the options
chosen by the modeller and based on a set of Transformation Rules. These rules es-
tablish the correspondences allowed among each element in the source presentation
model and the target presentation model that we want to obtain.

The formal definition of those models mentioned in these Transformation Rules
grants the integrity of the final result in the transformation process.

4 Conclusions and Future Work

This paper introduces RUX-Model, a Model Driven Method for the systematic design
of RIAs UIs over existing HTML-based Web Applications in order to give them mul-
timedia support, offering more effective, interactive and intuitive user experiences.

Conceptually, RUX-Model can be used on several Web development mod-
els/methodologies. At the implementation level, RUX-Tool has a series of prerequi-
sites about the models that can be used in order to extract from them all the informa-
tion stored by these models automatically. Currently, RUX-Tool works together with
WebRatio (http://www.webratio.com/) the WebML CASE Tool, but there is a work in
progress with UWE and OO-H CASE Tools.

240 M. Linaje, J.C. Preciado, and F. Sánchez-Figueroa

Once RUX-Model has been defined, future work will deal with the definition of
extensions on current Web models in order to be able to represent the distribution of
data and business logic between server and client as well as the specification of the
new communication models that have appeared related with RIAs. This will make
possible to model RIAs with more complex specific capacities that cannot be properly
modelled today.

Acknowledgements

PDT06A042 and TIN2005-09405-C02-02 projects.

References

1. Abrams, M., Phanouriou, C., Batongbacal, A.L., Williams, S.M., Shuster, J.E.: An appli-
ance-independent XML language, Computer Networks. The International Journal of Com-
puter and Telecommunications Networking 31, 1695–1708 (1999)

2. Specht, G., Zoller, P.: HMT: Modeling Temporal Aspects in Hypermedia Applications. In:
1st International Conference on Web-Age Information Management, pp. 256–270.
Springer-Verlag, Heidelberg (2000)

3. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing Data-
Intensive Web Applications. Morgan Kauffmann, Seattle, Washington, USA (2002)

4. Sauer, S., Engels, G.: Extending UML for Modeling of Multimedia Applications. In: IEEE
Symposium on Visual Languages, IEEE Computer Society, p. 80 (1999)

5. Bozzon, A., Comai, S., Fraternali, P., Toffetti Carughi, G.: Conceptual Modeling and Code
Generation for Rich Internet Applications. In: International Conference on Web Engineer-
ing, pp. 353–360 (2006)

6. Pastor, O., Gómez, J., Insfrán, E., Pelechano, V.: The OO-Method approach for informa-
tion systems modeling: from object-oriented conceptual modeling to automated program-
ming. Information Systems 26(7), 507–534 (2001)

7. Koch N., Kraus A.: The Expressive Power of UML-based Web Engineering, Int. Wsh.
Web-Oriented Software Technology, pp. 105–119 (2002)

8. Yoon, K., Berra, P.B.: TOCPN: interactive temporal model for interactive multimedia
documents. In: International Workshop on Multi-Media Database Management Systems,
pp. 136–144 (1998)

9. Shih, T.K., Keh, H., Deng, L.Y., Yeh, S., Huang, C.: Extended Timed Petri Nets for Dis-
tributed Multimedia Presentations. In: Proceedings of the 15th International Parallel &
Distributed Processing Symposium, p. 98. IEEE Computer Society, Los Alamitos (2001)

10. Mueller, W., Schaefer, R., Bleul, S.: Interactive Multimodal User Interfaces for Mobile
Devices. In: 37th Annual Hawaii International Conference on System Sciences, vol. 9.
IEEE Computer Society, Los Alamitos (2004)

11. Preciado, J.C., Linaje, M., Sanchez, F., Comai, S.: Necessity of methodologies to model
Rich Internet Applications. In: IEEE Internat. Symposium on Web Site Evolution, pp. 7–
13 (2005)

12. Luyten, K.: Dynamic User Interface Generation for Mobile and Embedded Systems with
Model-Based User Interface Development, University Limburg: School of Information
Technology (2004) http://research.edm.luc.ac.be/ kris/research/phd/

 A Method for Model Based Design of RIA Interactive User Interfaces 241

13. de, S.G., Leite, J.C.: XICL - an extensible markup language for developing user interface
and components. In: Fourth International Conference on Computer-Aided Design of User
Interface. vol. 1 (2004)

14. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Lopez, V.: UsiXML: a Lan-
guage Supporting Multi-Path Development of User Interfaces. In: Bastide, R., Palanque,
P., Roth, J. (eds.) Engineering Human Computer Interaction and Interactive Systems.
LNCS, vol. 3425, pp. 207–228. Springer, Heidelberg (2005)

15. SMIL W3C (2005) http://www.w3.org/TR/2005/REC-SMIL2-20051213/
16. XML Events W3C (2003) http://www.w3.org/TR/2003/REC-xml-events-20031014/
17. Adobe RIA: http://www.adobe.com/devnet/ria
18. Open Laszlo: http://www.openlaszlo.org

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 242 – 247, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Improving Communication in Requirements Engineering
Activities for Web Applications

Pedro Valderas and Vicente Pelechano

Department of Information System and Computation.
Technical University of Valencia, Spain

Cami de Vera s/n 46022
{pvalderas, pele}@dsic.upv.es

Abstract. We present a requirements engineering environment which provides
techniques and tools to improve communication in Requirements Engineering
activities. First, a technique based on requirements ontologies is proposed to al-
low customers to describe their needs. This technique is supported by a tool.
This tool provides analysts with structured descriptions of the customers’ needs
that facilitate analysts to understand the problem to be solved. Next, both a
model-to-text transformation and a model-to-model transformation are intro-
duced to automatically obtain a textual requirements specification and a task-
based requirements model respectively. The textual specification facilitates cus-
tomers to validate requirements. The task-based requirements model facilitates
programmers to interpret the requirements specification.

1 Introduction

We present a Requirements Engineering (RE) environment for Web applications that
provides techniques and tools to improve the process of communication among cus-
tomers, analysts and programmers. First, this environment introduces a tool which
makes customers a set of questions throughout a guided process. This tool analyzes
the information provided by customers in order to obtain a structured description of
their needs. To do this, the tool uses a set of requirements ontologies. The obtained
description of the customers’ needs is clearly defined by means of concepts of the
requirements ontologies which facilitates analysts to understand it. Furthermore, the
proposed RE environment introduces two transformations: (1) A model-to-text trans-
formation which transforms the ontology-based description of the customers’ needs
into a requirements specification defined in natural language. This aspect facilitates
customers the validation of requirements. (2) A model-to-model transformation which
transforms the ontology-based description of the customers’ needs into a requirements
model based on the concept of task. This aspect facilitates programmers to interpret
the requirements specification.

The rest of the paper is organized as follows: Section 2 introduces both the concept
of requirements ontology and the tool which uses them. Section 3 introduces the
model-to-text transformation. Section 4 introduces the model-to-model transforma-
tion. Finally, conclusions are comment on in Section 5.

 Improving Communication in Requirements Engineering Activities 243

2 Facilitating Customers to Describe Their Needs

We introduce next a strategy which facilitates customers to describe their needs. It is
based on two elements: (1) Requirements ontologies and (2) a tool which asks cus-
tomers for their needs by using these ontologies. We present next both elements.

2.1 Requirements Ontologies

A Requirements Ontology specifies the concepts and the relationships between con-
cepts that represent a Web application of a specific type (E-commerce applications,
web portals, directories, etc). Figure 1 shows a partial view of the requirements
ontology for E-commerce applications. This ontology defines concepts such as On-
Line Purchase, Shopping Cart, or Products (concepts that characterize E-commerce
applications).

To define ontologies of this kind, we use the approach presented in [1]. According
to this approach, two kinds of concepts can be defined, namely lexical concepts (en-
closed in dashed rectangles) and nonlexical concepts (enclosed in solid rectangles). A
concept is lexical if its instances are indistinguishable from their representation. Date
(see Figure 1) is an example of lexical concept because its instances (e.g.
“21/05/2005” and “04/09/2004”) represent themselves. A concept is nonlexical if its
instances are object identifiers, which represent real-world objects. User (see Figure
1) is an example of nonlexical concept because its instances are identifiers such as
“ID1”, which represents a particular person in the real world who is a user. The main
concept in a type ontology is marked with “->•”. We designate the concept On-line
Purchase in Figure 1 as the main concept because it represents the main purpose of an
E-commerce application.

Figure 1 also shows a set of relationships among concepts, represented by connect-
ing lines, such as Product has Property. The arrow connection represents a one-to-
one relationship or a many-to-one relationship (the arrow indicates a cardinality of
one), and the non-arrow connection represents a many-to-many relationship. For
instance, Auction offers Item is a many-to-one relationship (i.e. in each auction only
an item can be offered but an item can be offered in several auctions) and Product has
Property is a many-to-many relationship (i.e. a product can have several properties,
and a property can be defined for several products). A small circle near the source or
the target of a connection represents an optional relationship. For instance, it is not
obligatory for a category to belong to another category. A triangle in Figure 1 defines
a generalization/specialization with a generalization connected to the apex of the
triangle and a specialization connected to its base. For instance, Direct Purchase is a
specialization of On-Line Purchase.

Finally, we have extended this notation by introducing abstract concepts. An ab-
stract concept is a concept that depends on the domain of the Web application and
need to be instantiated. These concepts are marked with a vertical line on the right
side (see Figure 1, concepts Product, Property and Category). For instance, Product
is an abstract concept because we know that every E-commerce application must
allow users to purchase products; however, we do not know what kind of products
they are (they can be CDs, Books, software, etc.). This information depends on the
E-commerce application domain and must be instantiated by customers. To do this, a
tool has been developed. It is introduced in the next section.

244 P. Valderas and V. Pelechano

Fig. 1. Requirements Ontology for E-commerce applications

2.2 A Web Application Requirements Elicitation Tool

In this section, we introduce a requirements elicitation tool that supports customers in
the description of their needs by means of requirements ontologies. To do this, the
tool perform three main steps:

First, the tool allows customers to describe the Web application that they need by
using natural language. This description is used by the tool to know the general re-
quirements of the web application and then to select the proper requirements ontol-
ogy. To do this, we use a technique based on data frames [2]. The data frame ap-
proach allows us to describe information about a concept by means of its contextual
keywords or phrases, which may indicate the presence of an instance of the concept.
We define data frame contextual information for each Web application type that is
represented by a requirements ontology. The tool uses this contextual information to
recognize the web application type and then select the proper ontology.

Next, the tool must obtain the information that cannot be systematically extracted
from a requirements ontology in order to obtain the description of the customers’
needs. This information is related to domain-dependent features such as for instance
the kinds of products that must be on sale in an E-commerce application (e.g. CDs,
DVDs, Books, etc.) (Abstract concepts, see Figure 1). This information must be intro-
duced by customers. To do this, the tool provides them with an appropriate interface.
For instance, Figure 2 shows the HTML interface that allows customers to determine
which products must be on sale in the running example.

Finally, the information introduced by customers, together with the general fea-
tures of the application domain (defined in the requirements ontology), allow the tool
to obtain a description of the Web application that customers need. This description is
defined as a view over the selected requirements ontology where abstract concepts

 Improving Communication in Requirements Engineering Activities 245

Fig. 2. HTML interface

(e.g. Product) are replaced by their instantiations (e.g. CD) and relationships among
abstract concepts are replaced by relationships among instantiations (e.g. Product has
Property has been replaced by CD has Title). These descriptions are stored in OWL.

3 Obtaining Textual Requirements Specifications

In this section, we introduce a model-to-text transformation that allows analysts to
transform the Web application description based on ontology concepts into a textual
requirements specification. Furthermore, each textually specified requirement is com-
plemented with a list of real examples where customers can see an implementation of
it. This list of real examples facilitates customers both to understand the requirements
and to check that it is really what they need.

1 <xsl:template match=”owl:Class” name=”FindShoppingCart”>

2 <xsl:variable name=”concept” select=”@rdf:ID” />
3 <xsl:if test=”$concept=’Shopping_Cart’”>

4 Requirement Number {$num_requirements}:
5 <u>Name:</u> Shopping Cart.

6 <u>Description:</u> The E-Commerce Application must allow
users to add products to a Shopping Cart. A shopping cart
is a ‘persistent’ store for products that can be accessed
from the whole Web application. The option of ’add to
shopping cart’ is attached to each product in order to al-
low users to add it. Furthermore, other operations are as-
sociated to manage the cart such as eliminating a product,
changing quantities, making an order, etc.

7 <xsl:call-template name=”ShoppingCartRealExamples” />

8 </xsl:if>

9 </xsl:template>

Fig. 3. Example of a XSL Transformation

246 P. Valderas and V. Pelechano

To achieve this, we have implemented a set of XSL Transformations which take as
source the ontology-based description of the customer needs and then create the cor-
responding textual requirements specification. The XSL Transformations are created
in order to match with the concepts and relationships between concepts that appear in
the description of the customer’s needs. Figure 3 shows the XSL Transformation that
generates a textual requirement specification from the concept “Shopping Cart”. In
order to better understand it we must know that concepts are represented in OWL by
means of the label owl:Class and the name of each concept is defined by the
attribute rdf:ID.

The textual requirements specification that is obtained by means of the transforma-
tion in Figure 3 can be consider to be a very simple specification that is little useful
throughout the rest of development process. This is true. However, this simplicity has
been explicitly chosen in order to facilitate customers to understand them. More for-
mal requirements specifications which can be taken as reference point throughout the
development process are obtained in the next section.

4 Obtaining Task-Based Requirements Models

In this section, we introduce a model-to-model transformation that allows analysts to
transform the Web application description based on concepts of a requirements
ontology into a task-based requirements model. This model is presented in [3].

The transformation has been defined by using a graph transformation technique
[4]. Graph transformations are graph rewriting rules made of basically a Left Hand
Side (LHS) and a Right Hand Side (RHS). They are applied in the following way:
when the LHS matches into a host graph G (which in this case represents the source
model) then the LHS is replaced by the RHS.

Figure 4 shows two representative examples of transformation rules. Rule 1 trans-
forms the main concept of a type ontology (which indicates the main purpose of a
Web application type, see Section 2.1) into the root of a hierarchical task description.
Rule 2 match with the concept “Checkout Identification” which indicate the type of
identification that the E-commerce application must support (see Figure 1). According
to this concept users must identify themselves when checkout. Then, this concept is
derived into a task-based representation which indicates that users must first login and
then handle payment in order to checkout.

We have chosen a graph transformation technique because several widely validated
tools can be found. In particular, we have chosen the AGG (Attributed Graph Gram-
mar System) tool [5]. The AGG tool can be considered to be a genuine programming
environment based on graph transformations. It provides 1) a programming language
enabling the specification of graph grammars and 2) a customizable interpreter ena-
bling graph transformations. AGG was chosen because it allows the graphical expres-
sion of directed, typed and attributed graphs (for expressing specifications and rules).
It has a powerful library containing notably algorithms for graph transformation,
critical pair analysis, consistency checking and application of positive and negative
conditions.

 Improving Communication in Requirements Engineering Activities 247

Task

Name: ‘Direct Purchase’
Root: ‘yes’ 1: Concept

Name: ‘Direct Purchase’
Main: ‘yes’

: =

Task

Name: ‘Collect Products’
Root: ‘no’

Task

Name: ‘Checkout’
Root: ‘no’

subtask subtask

[]>>

LHS RHS

Rule 1

Task

Name: ‘Checkout’
Root: ‘no’

2: Concept

Name: ‘Checkout Identification’
Main: ‘no’

: =

Task

Name: ‘Login’
Root: ‘no’

Task

Name: ‘Handle Payment’
Root: ‘no’

subtask subtask

[]>>

LHS RHS

Rule 2

Fig. 4. Examples of transformation rules

5 Conclusions

In this paper we have presented a RE environment in order to improve the communi-
cation activity during the RE process.

We have introduced a technique based on Requirements Ontologies in order to
facilitate customer to describe their needs. This technique is supported by a re-
quirements elicitation tool which provides customers with an intuitive interface
which allows them to generate a structured description of their needs. This helps
analysts to understand which Web application customers need. Furthermore, two
transformations have been presented: (1) A model-to-text transformation which
transforms ontology-based descriptions of the customers’ needs into textual re-
quirements specifications. This facilitates customers to validate the requirements
specification. (2) A model-to-model transformation which transforms ontology-
based descriptions of the customers’ needs into task-based requirements models.
This provides precise requirement specifications to facilitate programmers interpret
them.

References

1. AL-Muhammed, M., Embley, D.W., Liddle, S.: Conceptual Model Based Semantic Web Services.
In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.) ER 2005. LNCS,
vol. 3716, Springer, Heidelberg (2005)

2. Embley, D.W.: Programming with Data Frames for every Items. In: Proceedings of AFIPS Confer-
ence, Anheim, California, pp. 301–305 (1980)

3. Valderas, P., Fons, J., Pelechano, V.: Developing E-Commerce Application From Task-Based
Descriptions. In: Bauknecht, K., Pröll, B., Werthner, H. (eds.) EC-Web 2005. LNCS, vol. 3590, pp.
65–75. Springer, Heidelberg (2005)

4. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformation.
World Scientific, Singapore (1997)

5. The Attributed Graph Grammar System (AGG) v1.5: http://tfs.cs.tu-berlin.de/agg/

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 248 – 253, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Meta-model to Support End-User Development of Web
Based Business Information Systems

Buddhima De Silva and Athula Ginige

University of Western Sydney, Locked Bag 1797, Penrith South DC, 1719, NSW, Australia
bdesilva@scm.uws.edu.au, a.ginige@uws.edu.au

Abstract. End-user development is proposed as a solution to the issues business
people have when getting web applications developed. In this paper, we have
presented a meta-model for web based information systems to support End-user
Development. End-users can actively participate in web application develop-
ment using tools to populate and instantiate the meta-model. The meta-model
we created is based on three abstraction levels: Shell, Application, and Func-
tion. At Shell Level, we model aspects common to all business web applications
such as navigation and access control. At Application Level, we model aspects
common to specific web applications such as workflows. At Function Level, we
model requirements specific to the identified use cases. Inheritance and
Overriding properties of the meta-model provide a balance between ease and
flexibility when developing business information systems. The key aspect that
underpinned this research work is the view- “software is a medium to capture
knowledge rather than a product”. Meta-model will help end-users to participate
in web application development activities.

1 Introduction

The characteristics of the web such as ubiquity and simplicity make it a suitable plat-
form to disseminate information and automate business processes. AeIMS research
group at University of Western Sydney has been working with businesses in Western
Sydney region to investigate how Information and Communication Technologies (ICT)
can be used to enhance their business processes [1-3]. In this work, we have identified
many issues Business users have to overcome when trying to implement web applica-
tions [3] . These issues vary from not being able to get web applications developed to
meet needs of the business in a timely manner to development projects running over
budget. The development approach should also reduce the gap between what the users
actually wanted and what is being implemented in terms of functionality [4]. Research-
ers have proposed to empower end-users in web application development as a solution
to these issues [3, 5-8].

There are different approaches to empower end-users. One approach is to provide
end-users with tools to develop any kind of a web application such as informational,
search directory and directory look up, workflow and collaboration, e-commerce and
web portal, etc. However, such a tool will become very complex because it has to
cover a variety of features [3]. The other approach is to develop different tools to

 Meta-Model to Support End-User Development 249

support different types of web applications. Our approach falls in to the second cate-
gory. We have analysed many business web applications. From this analysis, we iden-
tified, the business users need support to store, process and report information to effec-
tively carry out various business processes. The meta-model for this class of business
web applications at conceptual level is form being routed based on rules. Example
instance of that meta-model is a leave processing system where employees can apply
for leave. Meta-model elements are high level abstract concepts such as user, role,
form User Interface, business object etc. Being able to develop web applications using
these high level concepts help to address the critical concerns of end-user developer
relating to details of creating databases, creating web forms, user authentication, etc.,.

The major finding presented in this paper is the hierarchical meta-model. In section
2 we present the hierarchical meta-model and section 3 discuss the properties of meta-
model. In section 4 we review the related work and section 5 conclude the paper.

2 Hierarchical Meta-model of Business Web Applications

As mentioned previously we view Web based business applications as an instance of
a meta-model. Theoretically by creating a meta-model and developing tools to popu-
late the instance values we can generate business applications. In practice creating a
meta-model to support end-user development is not easy because of the complexities
of business applications. To manage the complexity we developed the meta-model at
3 levels of hierarchical abstraction called Shell, Application and Function as shown in
figure 1.

Fig. 1. Hierarchy of Abstraction Levels of the Meta-Model

• Shell Level: The aspects common to all web applications such as user, navigation
are modeled at shell level.

• Application Level: The aspects specific to a web application such as workflow,
instance level access control are modeled at this level.

• Function level: The function specific aspects which are required to implement the
function are modeled at function level.

250 B. De Silva and A. Ginige

2.1 Shell Level

We analysed many business applications to identify common functionality required in
most of the web applications. These common functionalities are modeled at the shell
level. User model, Access Control model, Navigation Model and Business Object
Model are four models that we identified at this level. Shell level of meta-model is
shown in figure 2.

Fig. 2. Shell level of meta-model

Each user has a profile. Profile can have many properties such as name, address,
e-mail address, etc. User can play many roles. A role can have one or more users. Each
role has functions in an application assigned to it. Application has presentation proper-
ties. Each function has a menu link. Business Objects have many attributes and asso-
ciations. Navigation model is the mechanism that authenticated users can use to access
the authorised functions. We have identified two types of functions: State independent
functions and State dependent functions. Once a user log in, user will be provided with
a menu to access state independent functions which are available to authorized users to
access based on the navigation model. On the other hand, the state dependant functions
are available to users only if it is waiting for that particular user at that time. We have a
menu link to access such functions in all applications at one place.

2.2 Application Level

As mentioned earlier an application consists of many functions. Therefore, applica-
tion consists of models which support many functions. The Application level of the
meta-model is shown in figure 3. Application inherits the function level access con-
trol, common business objects and navigation models from the shell level. It consists
of workflow model, instance level access control model and application specific
object models. Workflow model models the business rules that govern the flow of
information. When the business objects are accessed through the state dependant

 Meta-Model to Support End-User Development 251

Fig. 3. Application Level of meta-model

functions there could be rules specifying who can access what instances of a Business
object. By applying the instance level access rules we can identify the ‘project team’
that participates in actions in state dependant functions in the workflow.

2.3 Function Level

Functions are the way of performing the actions in an application. The User Interface
is the mechanism users have to perform the functions.

Fig. 4. Function level of meta-model

The function level meta-model is shown in figure 4. User Interface Model consists
of UI guide, UIElementGroup, and or UIElements, and UI Actions. UI elements can
be in input mode or output mode. In a form we have UI elements in Input mode. In a
report we have UI elements in output mode. UIGuide provide the guidelines to use the
particular interface. At function level we model two types of business rules. One type
is the business rules used to derive new object attribute values based on existing ob-
ject attribute values. The other category is the validation rules applied over values of
form field in a user interface.

252 B. De Silva and A. Ginige

3 Meta Model Properties

The hierarchical model has two properties inheritance and overriding. These two
properties provide a balance between flexibility and ease of use. For example, if end-
user wants he/she can develop a web application with default presentation style inher-
ited from the shell. He/she doesn’t have to bother about the presentation styles and
templates at the application level. However, if an end-user wants a custom look and
feel he/she can override the default presentation style provided from shell level at the
application level.

4 Related Work

Several meta-models exist for web applications. One of them is UWE meta model
[9, 10]. It is designed as an extension based on MOF 1.4. The objective of UWE
meta-model is to provide a common meta-model for the web application domain,
which will support all web design methodologies. UWE meta-model has similar
model elements as ours. However, the main difference between the 2 meta-models is
the 3 level, hierarchical abstraction that we used to support end user development.
W2000 [11], a successor of HDM [12], has provided model semantics and transfor-
mation rules to achieve consistency between models. Muller et al. [13] present a
model-driven design and development approach with the Netsilon tool. The tool is
based on a meta-model specified with MOF 1.4 and the Xion action language. Re-
cently another two meta models[14, 15] based on MOF and UML 2 profiles are pre-
sented for WebML design methodology with the objective of interoperability.

All these meta-models of web applications are towards the precise definition of the
semantics of existing web models. Our work is complementary to existing web meta-
models; in that we propose a hierarchical organization of meta-model with a different
perspective- to help to effectively involve end users in development.

5 Conclusion

In this paper we have presented a hierarchical meta-model enabling business end-user
to develop business web applications. The semantics in our meta-model helps end
users to begin the development work with little knowledge in computer domain. For
example to configure an application they only need the knowledge of the shell meta-
model. To participate in development at application level they have to use their do-
main knowledge and logical thinking; thus should know the application meta-model.
We limit our focus to form based web applications as these are the most required by
business end users. However, in the future we are planning to expand the meta-model
for development of other types of web applications. We are currently planning formal
experiment in end user development based on this meta-model. This will help us to
better understand the mental model of end users; thus help to refine the tools available
for end users to instantiate the meta-model.

 Meta-Model to Support End-User Development 253

Reference

1. Arunatileka, S., Ginige, A.: Applying Seven E’s in eTransformation to Manufacturing
Sector. in eChallenges (2004)

2. Ginige, A.: From eTransformation to eCollaboration: Issues and Solutions. In: 2nd Interna-
tional Conference on Information Management and Business (IMB 2006) Sydney, Austra-
lia (2006)

3. Ginige, J., De Silva, B., Ginige, A.: Towards End User Development of Web Applications
for SMEs Using a Component Based Approach. In: Lowe, D.G., Gaedke, M. (eds.) ICWE
2005. LNCS, vol. 3579, Springer, Heidelberg (2005)

4. Epner, M.: Poor Project Management Number-One Problem of Outsourced E-Projects, in
Research Briefs, Cutter Consortium (2000)

5. Ginige, A., De Silva, B.: CBEADS: A framework to support Meta-Design Paradigm. In:
3rd International Conference on Universal Access in Human-Computer Interaction
(UAHCI07), China. LNCS, vol. 4554, pp. 107–116, Springer, Heidelberg (2007)

6. Costabile, M., F., et al.: A meta-design approach to End-User Development. In:
VL/HCC05 (2005)

7. Fischer, G., Giaccardi, E.: A framework for the future of end user development, in End
User Development. In: Lieberman, H., Paterno, F., Wulf, V. (eds.) Empowering People to
flexibly Employ Advanced Information and Communication Technology, Kluwer Aca-
demic Publishers, Boston, MA (2005)

8. Fischer, G., et al.: Meta Design: A Manifesto for End -User Development. Communica-
tions of the ACM 47(9), 33–37 (2004)

9. Kraus, A., Koch, N.: A Metamodel for UWE. 2003, Ludwig-Maximilians-Universität
München (2003)

10. Koch, N., Kraus, A.: Towards a Common Metamodel for the Development of Web Appli-
cations. In: Third international conference on Web engineering, Oviedo, Spain. Springer-
Verlag, Heidelberg (2003)

11. Luciano, B., Sebastiano, C., Luca, M.: First experiences on constraining consistency and
adaptivity of W2000 models. In: Proceedings of the 2005 ACM symposium on Applied
computing. ACM Press, Santa Fe, New Mexico (2005)

12. Garzotto, F., Paolini, P., Schwabe, D.: HDM — A Model-Based Approach to Hypertext
Application Design. ACM Transactions on Information Systems (TOIS) 11(1), 1–26
(1993)

13. Muller, P., et al.: Platform independent Web application modeling and development with
Netsilon. Software & System Modeling 4(4), 424–442 (2005)

14. Schauerhuber, A., Wimmer, M., Kapsammer, E.: Bridging existing Web modeling lan-
guages to model-driven engineering: a metamodel for WebML. In: Workshop proceedings
of the sixth international conference on Web engineering. ACM Press, Palo Alto, Califor-
nia (2006)

15. Nathalie, M., Piero, F., Antonio, V.: A UML 2.0 profile for WebML modeling. In: Work-
shop proceedings of the sixth international conference on Web engineering. ACM Press,
Palo Alto, California (2006)

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 254 – 268, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Easing Web Guidelines Specification

Barbara Leporini, Fabio Paternò, and Antonio Scorcia

ISTI - CNR
Via G. Moruzzi, 1 - 56124, Pisa

{barbara.leporini, fabio.paterno, antonio.scorcia}@isti.cnr.it

Abstract. More and more accessibility and usability guidelines are being pro-
posed, especially for Web applications. Developers and designers are experi-
encing an increasing need for tools able to provide them with flexible support in
selecting, editing, handling and checking guidelines. In this paper, we present
an environment for addressing such issues. In particular, an interactive editor
has been designed to assist designers and evaluators in abstracting and specify-
ing new and existing guidelines in an XML-based Guideline Abstraction Lan-
guage (GAL). Our tool has been designed in such a way to be able to check any
guidelines specified in this language without requiring further changes in the
tool implementation.

Keywords: Guidelines, editor, abstraction language, accessibility, usability.

1 Introduction

Design guidelines are increasingly applied in order to improve Web user interfaces
and make them consistent, in particular to attain better accessibility and usability.
Indeed, several guidelines have been proposed in the literature for general user inter-
faces (e.g., [10]) as well as for Web interfaces (e.g. [5, 9, 12]). Thus, in order to as-
sure a certain level of accessibility and usability, developers have to orient themselves
among several sets of guidelines.

In order to support designers in checking guidelines, a number of automatic tools
have been made available on the market, such as Bobby, now called WebXACT [14],
Web ATRC [13], Lift [8], and so on. However, such tools have several limitations.
For example, they only support the assessment of a fixed set of guidelines. In order to
overcome such limitations, we have investigated new solutions for more flexible
support [7]. To this end, we have designed and implemented an environment, MA-
GENTA (Multi-Analysis of Guidelines by an ENhanced Tool for Accessibility)
which is a tool that supports the inspection-based evaluation of accessibility and us-
ability guidelines. One of its main features is that it is guideline-independent. In fact,
our tool has been developed considering the limitations of most current tools, in
which the guidelines supported are specified in the tool implementation, with a certain
number of consequent drawbacks, such as having to change the tool implementation
each time a guideline is modified or added. Thus, the tool has been developed in such
a way to be able to deal with any type of guidelines, which are defined externally
from the tool. To this end, an abstract language for guidelines has been defined. If the

 Easing Web Guidelines Specification 255

guidelines are expressed through it and stored in external files then the tool can check
any of them without modifications to its implementation.

However, we soon realised that many Web designers can have difficulties in han-
dling and formulating guidelines, usually specified through XML-based languages.
For these reasons, we have extended the environment with a new tool conceived to
assist developers and evaluators in proposing, specifying and modifying guidelines.

In this paper we present our solution to this issue, which includes a Guideline
Editor designed to assist developers in specifying new guidelines and handling al-
ready existing ones (such as those for accessibility and usability for the Web). We
also report on the results gathered through a user test conducted in order to evaluate
the editor in terms of user interface as well as functionalities. Based on the collected
data during the evaluation, we decided to further improve the guideline editor tool in
order to ease its use and the guideline specification process as well.

After a short overview of related work on the topic addressed, in this paper we
firstly describe our Guideline Abstraction Language (GAL) used for specifying guide-
lines. Next, we introduce the main functionalities of the proposed editor for Web
Guidelines. We also report on the data and opinions collected through a user test.
Then, changes made on the editor to enhance its functionalities are described. Lastly,
we draw some conclusions and provide indications for future work.

2 Related Work

National and international legislations more and more promote inclusive policies and
practices. With regard to accessibility, the number of proposed guidelines is rapidly
increasing, thus requiring an increasing effort by developers who have to handle
them. Indeed, in addition to the W3C guidelines almost each Western country has
national guidelines for accessibility, and new guidelines focusing on specific types of
users have started to appear. To this end, several automatic or semi-automatic sup-
ports have been proposed for easily handling guidelines. In particular, several auto-
matic tools have been developed to assist evaluators by automatically detecting and
reporting guideline violations and in some cases making suggestions for fixing them.
EvalIris [1] is an example of a tool that provides designers and evaluators with good
support to easily incorporate new additional accessibility guidelines. Another contri-
bution in this area is DESTINE [2], which supports W3C and 508 guidelines specified
through another language. Also, in the BenToWeb project two tools are proposed to
support test case management for accessibility test suites [4]: Parsifal - a desktop
application, which easily allows editing test description files – and Amfortas - a Web
application, which allows controlled evaluation of the test suites by users. A different
approach is presented in [6], which supports the creation of an internal design knowl-
edge management tool for Web developers as a means to encourage user-centred
development practices.

In order to verify various usability aspects related to accessibility issues, other
tools have been proposed. The Functional Accessibility Evaluation (FAE) Tool [3]
provides a means to estimate the functional accessibility of Web resources by analyz-
ing Web pages and estimating their use. FAE uses rules for testing each of the func-
tional accessibility features of navigation, text descriptions, styling, scripting and the

256 B. Leporini, F. Paternò, and A. Scorcia

use of standards. Such rules are defined on X/HTML tags. This means that they are
directly implemented in the source tool code. Consequently, to add or modify a rule
the source code must be modified.

Also the approach reported in [11] is based on the separation between the guideline
specification and the evaluation engine. Guidelines are stored into a XML-based re-
pository. A guideline can be expressed in terms of conditions to be satisfied on
HTML elements (i.e., tags, attributes). The formal guideline is expressed according to
the Guideline Definition Language (GDL), a XML-compliant language. Although the
GDL allows mapping the informal statements associated with initial guidelines onto
formal statements, such a process has to be manually carried out by the developers
who have to directly handle the XML constructs specifying the guideline structure. To
this end, we propose an editor that supports designers in the guideline specification,
even if they do not have any knowledge of XML and its constructs.

In summary, our contribution in this area is represented by an environment, which
is able to work with different sets of guidelines, provided they are appropriately speci-
fied in external files. This means that developers or evaluators should formalize and
specify the guidelines in a specific format based on XML. Since this may require
particular abilities as well as a long time, we decided to develop a tool supporting
guidelines editing and modifications, which is presented in this paper, since there is a
lack of similar tools as indicated in the above discussion.

3 The Guideline Abstraction Language

The tool we propose aims to provide novel support for Web designers, such as provid-
ing interactive support for defining new guidelines as well as customizing new groups
starting with other existing guideline sets. Since our intent is to provide designers
with a tool independent of the guidelines to check, the proposed approach is based on
a language able to abstract the usual types of conditions that designers aim to assess.
The tool includes an engine able to interpret and check any guideline specified by
GAL without requiring any further modifications in its implementation. Currently, in
the MAGENTA tool three sets of guidelines can be specified and interpreted at
run-time: (1) the Italian law for accessibility requirements; (2) W3C WCAG 1.0
guidelines; (3) accessibility and usability guidelines for the visual impaired.

3.1 Guideline Abstraction

In general, a guideline is defined as a rule or principle that provides guidance to ap-
propriate behaviour. Generally speaking, a guideline is expressed in natural language,
which automatic tools cannot handle. Indeed, a guideline should be specified in a
rigorous manner so that it can be automatically processed. and managed. In practice,
the solution consists of abstracting guideline statements into a well-defined XML-
based language. To this end, an XML-Schema has been defined in order to express
the general structure of our Guideline Abstraction Language (GAL).

In defining a guideline abstraction, the main features and elements characterizing
the guideline itself must be defined. In brief, each guideline expresses a principle to
be complied with by applying one or more conditions to checkpoints, which are

 Easing Web Guidelines Specification 257

constructs in the implementation language. Hence, general features, objects involved
in the checking process, and conditions referred to such objects must be structured
and specified through our GAL specification language. In particular, we define a
guideline in terms of a number of elements:

• checkpoints expressed with objects,
• operations (Exist, Count, Check, Execute), which identify the general

processing required to check a guideline,
• conditions to be verified.

Such Abstraction Language has been refined over time in order to better define
more complex guidelines. We added new attributes in order to be able to specify more
precise conditions. It is possible to select specific objects (tags) having given attrib-
utes with specified values (e.g. links with the class=”navbar”). Such a selection allows
designers to include in the guideline specification also cases in which only objects
(tags) with given features (attributes) should be considered. Moreover, the language
supports the selection of those objects (tags) being children of other tags in the DOM
(Document Object Model) structure. For example, in this context the tags <head> and
<body> are children of <html> tag (root). This allows designers to specify specific
restrictions associated with the tags considered. For instance, to check graphical links
- - in the XML-based guideline we can specify the
tag as child of the tag <a>. In this way, the checkpoint only focuses on the
tags included between the tags <a> and . This feature has been added to
be more precise and able to restrict the selection of objects to involve within the
checkpoints.

3.2 Abstraction Examples

In order to understand how the abstract description of a guideline can be obtained
through GAL, in this paragraph we provide the reader with some examples.

Example 1: Language identification
When using different languages on a page, any language change should be clearly
identified by using the "lang" attribute. In this context, let us consider the guideline
"Use mark-up elements to facilitate document language identification. In particular, in
multi-language pages designers should use the appropriate attributes to mark links
written in a different language.". This means we need to check the presence of the
attribute "lang" in the tag <html> as well as the link tags <a> that do not refer to
anchors (i.e. tags with the attribute href).

To abstract this guideline, the objects involved in the guideline must be extracted.
Firstly, there are two aspects to consider: (1) the object to examine is the tag <html>;
(2) the elements to analyse are all links. These two controls indicate that two check-
points should be specified. For each checkpoint, in addition to the main object in-
volved - i.e. <html> tag in the first case, and <a> in the second one - the correspond-
ing conditions must be defined. The main structure could be abstracted as indicated
below:

GDL: [HTMLtag (Exist LANGattrib)]1 and [Atag | HREFattrib (Exist LANGattrib)]2

258 B. Leporini, F. Paternò, and A. Scorcia

In order to satisfy the guidelines, the checkpoints must be applied. A checkpoint
defines a series of conditions to verify or to apply in order to satisfy an aspect of a
guideline. In our case, each checkpoint is included in the square brackets marked 1
and 2; round brackets are conditions to be verified.

Next figure shows how the guideline example can be specified by using the XML-
based GAL language. This guideline example was also used for a task (T5) assigned
in a user test conducted to evaluate the editor (see section "Editor evaluation").

Table 1. Example of guideline abstraction with GAL

<guideline id="22" summary="Language identification">
<checkpoints rel="and">
<cp id="22.1" summary="Main document language" priority="1">...
<object type="tag">html</object>...
<conditions rel="or">
<evaluate operator="exist" idErr="22.1.1">
<el type="attrib">lang</el></evaluate>
</conditions></cp>
<cp id="22.2" summary="Marking links with different language" priority="3">
<object type="tag">a</object>
<select type="attrib">href</select></eval_object>
<conditions rel="and">
<evaluate operator="exist" idErr="22.2.1">
<el type="attrib">lang</el></evaluate>
</conditions></cp></checkpoints></guideline>

Example 2: Equivalent alternatives to auditory and visual content
Let us consider the guideline n. 1 of WCAG 1.0, which is related to alternative con-
tents. This guideline is composed of several checkpoints. For our example we con-
sider the checkpoint 1.1: "Provide a text equivalent for every non-text element (e.g.,
via "alt", "longdesc", or in element content). This includes: images, graphical repre-
sentations of text (including symbols), image map regions, animations, applets and
programmatic objects, images used as list bullets, graphical buttons, sounds, and so
forth.". To simplify our example, we only report the specification of the "image" case.
The next figure shows the XML-based specification of the simplified checkpoint 1.1
according to the GAL schema.

Actually the checkpoint should be extended with other conditions (<conditions>)
to include all the non-text elements, such as objects, applets, and so on.

The checkpoint involves the tag to which five evaluations are applied: (1)
the presence of attribute "alt"; (2) the "non-empty" verification for that attribute; (3)
the "not belonging" of alt content to a black list of possible values which are com-
monly used for alternative descriptions (e.g., "logo" or "file-name.jpg"); (4) the con-
trol of the presence of "longdesc" attribute and (5) that its value is not empty. These
evaluations are mainly specified with the operators "exist" as well as "check" with the
conditions "not_equal" and "not_belong". The black list of values are stored in exter-
nal files, such as "noImages.dic".

 Easing Web Guidelines Specification 259

Table 2. Example of abstraction according to GAL

<guideline id="1" summary="Alternatives to auditory and visual content">
<checkpoints rel="and">
<cp id="1.1" summary="Provide a text equivalent for images" priority="1">
 <object type="tag">img</object>
 <conditions rel="or">
 <evaluate operator="exist" idErr="1.1.1">
 <el type="attrib">alt</el></evaluate>
 <evaluate operator="check" cond="not_equal" idErr="1.1.2">
 <el type="attrib">alt</el>
 <el type="value">""</el></evaluate>
 <evaluate operator="check" cond="not_belong" idErr="1.1.3">
 <el type="attrib">alt</el>
 <el
type="file">"noimages.dic"</el></evaluate>
<!-- repeated code for longdesc
 </conditions></cp></checkpoints></guideline>

The kind of error is coded with the attribute idErr defined in GAL. A progressive
number is associated to each evaluation statement (<evaluate>); it is obtained by
adding a progressive number to the checkpoint id (e.g., 1.1.2 where 1.1 is the check-
point id). The list of possible errors is externally coded by matching the type - (e)
error, (w) warning and (a) alert - with corresponding message for each idErr.

Example 3: Logical partition of interface elements
As third example let us consider the guideline that requires well structured content in
a page in order to simplify Web navigation through screen readers: " All interface

Table 3. Fragments of guideline specification according to GAL

CP Fragment
1.
Headings

...
<conditions rel="or">
<evaluate operator="count" cond="greater" idErr="1.1.1">
 <el type="tag"> h1 </el>
 <el type="value"> 0 </el></evaluate>...

2.
div blocks

<conditions rel="or">
<evaluate operator="count" cond="greater" idErr="1.2.1">
 <el type="tag"> div </el>
 <el type="value"> 1
</el></evaluate></conditions></cp>

3.
Paragraphs

<conditions rel="and">
<evaluate operator="count" cond="greater" idErr="1.3.1">
 <el type="tag"> p </el>
 <el type="value"> 0
</el></evaluate></conditions></cp>

260 B. Leporini, F. Paternò, and A. Scorcia

elements should be well-arranged and structured. Use heading levels, div blocks and
paragraphs”. To specify this guideline three checkpoints must be defined: (1) for
heading levels; (2) for div blocks; and (3) for paragraphs. The next figure reports
fragments of the guideline specification based on GAL.

In the checkpoint 1, heading levels are counted. In practice, the control consists in
verifying that the number of heading levels is at least 1. Thus, in this case the effec-
tive verification of an appropriate page structure is demanded to the evaluator; the
checkpoint points out the usage or not of headings in the page. The evaluator will
manually check if the structure has been appropriately applied. A similar checking is
applied to the checkpoints 2 and 3. Checking is not easy to perform in completely
automatic way. The main goal of this guideline and its evaluation is to stimulate
attention on the page structure by the developers.

4 The Guideline Editor

When a guideline must be defined so that a tool can deal with it automatically, the
problem is to transform its natural language description into technical terms. The
abstraction process is not easy and requires some effort when implementation lan-
guages for the Web are considered. In order to facilitate this process, a graphical edi-
tor was designed and added to our environment.

4.1 Functionalities

The Guideline Editor (GE) has been designed to assist developers in handling single
as well as groups of guidelines. The tool supports new guideline definition and vari-
ous types of editing. In summary, the editor offers various useful features in order to
facilitate multiple guideline sets management and general utilities. In particular, the
guideline editor provides support for:

• Defining or modifying single guidelines;
• Importing guidelines from various sets in order to create customised groups;
• Organising, classifying and browsing guidelines into groups;
• Handling several sets of guidelines simultaneously.

Regarding manipulation of single guidelines, the tool allows developers to add new
ones or modify/delete existing ones. In practice, the graphical editor guides the de-
signer in specifying all the XML tags necessary to define a guideline. Figure 1 shows
an example in which the designer specifies the guideline “The number of links in a
navigational bar should be less than 7”. The left part of the graphical representation is
devoted to defining the scope of the application, in this case the tag <a> with class
attribute value equal to navbar in HTML documents. The right part indicates the con-
dition to check: in this case that the number of occurrences of the indicate tag should
be less than 7. Furthermore, it is also possible to add new guidelines by importing
them from other guideline set(s). This allows designers to create customised set(s) of
guidelines by reusing already specified ones. More precisely, regarding individual
guidelines, the tool makes it possible to:

 Easing Web Guidelines Specification 261

• Handle general information on the guideline (short name, description, etc.);
• Select the object to be considered in the guideline (i.e., language, tags and

restriction on the object itself).
• Handle the checkpoints needed: general information for each checkpoint

(e.g., short name, description) and checkpoint relations (and | or);
• Define the conditions to be verified, by selecting operators and conditions to

be applied at a runtime (i.e. when the tool will carry out the evaluation).

Fig. 1. The Guideline Editor

4.2 User Interface

The Guideline Editor UI is organized in various parts shown in cascade:

• Main Guideline Management, where all groups of guidelines are listed and
can be handled. It is possible to create a new set, modify or delete an existing
one.

• Guideline set, in this environment a new specific group of guidelines can be
defined. General information on the set, as well as the list of guidelines exist-
ing in the group are presented.

• Guideline specification, where developers can structure and define a single
guideline. Firstly, general data such as the short name and description of the
current guideline as well as the main object – tag, attribute or property - in-
volved in the guideline can be written and modified; next, all checkpoints
and their conditions to be applied or evaluated can be edited through a direct
manipulation graphical editor.

262 B. Leporini, F. Paternò, and A. Scorcia

In guideline editing, the elements to be selected are listed in order to make them
available for the evaluator and to avoid typing errors. In this way, the user is guided
during the abstraction and definition process. For instance, when an object to be
checked has been selected, the list-box for selecting the associated attributes displays
only its attributes according to the implementation language considered. When the
user has selected all the elements that express the objects to be checked, including
their properties, checkpoints and conditions, the editor saves them in the XML-based
file associated to the current guideline set.

While in the previous version many windows opened during the process of defin-
ing guidelines and checkpoints, an updated version utilised a single window to dis-
play such information, with the additional possibility to zoom in the parts of interest.
In addition, a new interactive representation of the checkpoint structure was intro-
duced in order to simplify the somewhat “complex” structure of a checkpoint via a
hierarchical tree structure representation.

5 Editor Evaluation

5.1 Method

To get information about the actual use of the guideline editor prototype, we used two
evaluation techniques: think aloud and questionnaires. We observed users interacting
with the guideline editor. Users were asked to complete a set of predetermined tasks,
while we watched and recorded the users' actions (using the paper-and-pencil analysis
protocol). At the end of the test we asked users to fill in a questionnaire.

5.2 Participants

In order to evaluate the guideline editor prototype, ten designers were recruited, 7
men and 3 women. Since the guideline editor is conceived for an expert evaluator or
developer, the choice in recruiting potential participants was limited. The user age
varied from 22 to 38 years. All users were computer scientists: 40% were university
graduates, whereas the other 60% were still students. On average, users had a poor
knowledge about guidelines (2.1/5), and a sufficient knowledge of the X/HTML
language (3.1/5).

5.3 Tasks

The assigned tasks focused on the main functionalities offered by the editor, such as
handling guideline groups or single guidelines. The five tasks assigned to the users
were:

T1 Creating a new guideline group named “test”.
The purpose was to create a new group associated to an XML file in which all guide-
lines elaborated by the user were stored. This file was considered the final result of
the test carried out by each user.

 Easing Web Guidelines Specification 263

T2 Importing various guidelines from existing groups.
The purpose of this task was working with several guidelines to populate the “test”
group.

T3 Editing an existing guideline.
This task was mainly assigned to allow users to familiarize themselves with the guide-
line structure.

T4 Adding a new “guided” guideline.
This task was guided by providing the user with all the necessary information to de-
scribe the guideline formalization. The purpose was to observe users when they edited
the elements without having to go through the guideline formalization process.

T5 Adding a new “unguided” guideline.
The purpose was to observe the user when formalizing a guideline expressed in a
natural language.

5.4 Questionnaires

Since the purpose of our test was to collect information on the Guideline Editor (GE)
interface and its functionalities, the questionnaire was basically composed of three
kinds of questions: (1) general questions aimed at gathering information on users; (2)
interface section, aimed at getting useful comments and impressions about the editor
UIs; and (3) functionality section, to collect remarks on the main GE functionalities
tested. To collect useful information and comments by the users, we included both
open questions and “quantitative” questions (on a 1 to 5 scale).

5.5 Results

The observational data gathered through the think aloud test and subjective judgments
collected by the questionnaires provided some useful empirical feedback. Additionally,
all XML files created in T1 allowed us to analyse the task accomplishment for each
user. Task T1 and T2 were carried out by all users, even if we observed that T2 pre-
sented some difficulties when extracting the desired guidelines from the groups. In
fact, some users reported that the rendering structure used for grouping guidelines in
the import procedure was not particularly clear. Larger labels or a more guided proce-
dure could be more useful for orienting users among many guidelines. Regarding the
task T3 (guideline editing) – “verifying that the summary attribute of a table is not
empty” - only 50% of users understood that the needed action was to add a new
<evaluate> condition (i.e. a new branch in the checkpoint tree). Lastly, regarding the
guideline creation requested in task T4 and T5, about half users encountered some
problems in carrying out the tasks correctly. We noted some difficulties in formalizing
a guideline due to some confusion encountered by the users in the logical flow of the
needed actions. Concerning the last task (T5) – “abstracting and formalizing a guide-
line expressed in terms of natural language” - users worked better with the checkpoint
structure than in the other tasks. This may be due to the greater familiarity with the tool
acquired during the test (the sessions lasted on average 45 minutes per user).

264 B. Leporini, F. Paternò, and A. Scorcia

In order to collect subjective opinions regarding the user interface and editor func-
tionalities, users were asked to express some judgments on several aspects. The scale
varied from 1 (lowest – negative value) to 5 (highest – positive value). Regarding the
general user interface, the average rating was 3.2. Users expressed intermediate val-
ues - on average - also for the more specific UI aspects, such as location (3.6) and
clearness (3.2) of elements, icon clearness (3.5) and graphical structures (3.4). The
lowest average value reported (2.7) regards the logical flow in structuring a guide-
line. In the questionnaire, users expressed also some comments about difficulties
encountered during the test.

Concerning the editor functionalities, users were asked to express opinions of the
main functions tested. The averages are higher (around 4) than those expressed for the
interface (around 3). The function considered most difficult by users is related to
checkpoint handling. Indeed, handling a checkpoint was the most frequent error in
performing the tasks T3 and T4. Task T1 and T2 were those considered the easiest.
By analysing open questions, we observed that in general users appreciated the guide-
line editor. Most difficulties were related to the guideline formalization. This is
probably due to the required advanced knowledge of X/HTML in terms of tags and
attributes. To address this issue, we could improve the interaction by inserting a more
descriptive and clearer list of elements. For example, instead of listing all tags <a>,
<frame> and so on, we could use a list of more explicative items, such as link, frame,
etc.. The same can be applied for the attributes. All in all, the editor had a positive
impact on the users. However, some improvements were still needed in order to make
it more usable and more intuitive.

6 The New Version of the Tool

Based on the gathered opinions and the observed user actions, various difficulties
related to the user interface emerged. For this reason we decided to make some
changes on the GE tool. Changes basically affected two kinds of aspects: (1) interface
functionalities and (2) specification and abstraction process.

With regard to interface functionalities, the major revisions introduced are related
to interface components (such as labels, buttons, graphical views, etc.). Concerning
the labels, extended names rather than technical tags have been introduced to identify
the elements involved in the abstraction process. Indeed, users encountered some
difficulties in orientating among the X/HTML tags. For instance, clearer labels (such
as "Link", "Image", "Table", and so on) have been used to replace tags such as <a>,
, <table>, etc.. Although commands and functions are available on the tool bar
as well as on the context menu (i.e. associated to the mouse right click), users showed
some confusion in locating the necessary command. For this reason, various com-
mand buttons have been repeated in the current work area. In addition, in order to
provide a visual structure of a guideline, a graphical tree was used. However, such a
tree had various accessibility problems (for example, blind users interacting through
screen readers are not able to use the mouse as required by editing such graphical
representation), thus an alternative representation has been developed. The basis idea
was to provide a more accessible technique consisting in reproducing the visual tree

 Easing Web Guidelines Specification 265

Fig. 2. The Structure of a Guideline in GAL

Fig. 3. The Editor of the Guideline Textual Description

266 B. Leporini, F. Paternò, and A. Scorcia

in a way similar to the typical “resource explorer”. This type of technique is probably
less effective from a graphical viewpoint, but it is accessible even by people with
disabilities using assistive technology, such as screen readers.

The second kind of introduced changes was more substantial and was related to the
specification and abstraction process. The basic idea was to guide the user through the
guideline abstraction process. For this purpose, the structure of the GAL guideline
specification was analysed. As Figure 2 shows, there are four main components: the
object of the evaluation, the operator indicating the type of processing, the specific
aspect to evaluate, and the condition to check.

Thus, we decided to provide support able to guide the designers through dialogue
windows. The dialogue window shows the corresponding four main questions to drive
the developer in choosing the involved elements, and the possible answers. The main
purpose is to lead the developer through the abstraction process by a logic flow. In
this way abstracting should be easier, especially when selecting objects in a correct
order.

As shown in Figure 3 the main questions are:

• What are you testing?
• Which type of object are you checking?
• Which operation do you want to apply?
• Which aspect to do you want to verify?

Fig. 4. An Example of Two Representations of the Same Guideline

 Easing Web Guidelines Specification 267

The possible answers for each question are predefined as well depending on the
type of aspect considered. The resulting guideline specified through the answers is
also shown in the text area at the bottom.

Consequently, the resulting environment provides two ways to specify the guide-
lines: the graphical editor and the natural language description obtained through pre-
defined questions. The two possible representations are not independent, thus it is
possible to show them at the same time (see an example in Figure 4) and if one repre-
sentation is modified then the other one is automatically updated to reflect the
changes.

7 Conclusions

The increasing number of design guidelines proposed for the Web, in particular for
accessibility evaluation, makes the implementation of automatic tools for managing
guidelines more and more complex. In order to develop a tool independent of guide-
line definition, guidelines should be specified separately and interpreted at runtime.
To this end, we have introduced a Guideline Abstraction Language to define guide-
lines using an XML structure. These XML-based files can be managed by our tool,
which loads and checks any guideline indicated by the developer through this lan-
guage without requiring modifications to its implementation. Thus, designers can
dynamically select and edit the guidelines to check in their Web site. Since abstract-
ing and defining guidelines requires considerable effort, a Guideline Editor has been
developed and integrated in our environment to assist evaluators in these activities.
The user interface has been designed to guide developers as much as possible in order
to facilitate their tasks. Currently, the editor supports guidelines for documents im-
plemented in the X/HTML and CSS languages.

Future work is planned to support other Web languages such as SMIL and
XForms. As we have shown in the paper, the last version of our guideline editor sup-
ports two possible representations (graphical and textual), with the associated editing
techniques. Future work is also planned to better investigate what types of users pre-
fer each guideline representation.

References

1. Abascal, J., Arrue, M., Fajardo, I., Garay, N., Tomás, J.: Use of Guidelines to automati-
cally verify Web accessibility. In: UAIS, vol. 3(1), pp. 71–79. Springer Verlag, Heidelberg
(2004)

2. Beirekdar, A., Keita, M., Noirhomme-Fraiture, M., Randolet, F., Vanderdonckt, J.,
Mariage, C.: Flexible Reporting for Automated Usability and Accessibility Evaluation of
Web Sites. In: Costabile, M.F., Paternó, F. (eds.) INTERACT 2005. LNCS, vol. 3585, pp.
281–294. Springer, Heidelberg (2005)

3. Gunderson, J., Rangin, H.B., Hoyt, N.: Functional Web accessibility techniques and tools
from the university of Illinois. In: Proc. of the 8th international ACM SIGACCESS con-
ference on Computers and accessibility (Assets 2006), Portland, Oregon, USA, October
2006, pp. 269–270 (2006)

268 B. Leporini, F. Paternò, and A. Scorcia

4. Herramhof, S., Petrie, H., Strobbe, C., Vlachogiannis, E., Weimann, K., Weber, G.,
Velasco, C.A.: Test Case Management Tools for Accessibility Testing. In: Miesenberger,
K., Klaus, J., Zagler, W., Karshmer, A.I. (eds.) ICCHP 2006. LNCS, vol. 4061, pp. 215–
222. Springer, Heidelberg (2006)

5. Italian Accessibility Law, Provisions to support the access to information technologies for
the disabled (2004)

6. Kuniavsky, M., Raghavan, S.: Common sense and reason: Guidelines are a tool: building a
design knowledge management system for programmers. In: Proc. of DUX ’05 (2005)

7. Leporini, B., Paternò, F., Scorcia, A.: Flexible tool support for accessibility evaluation. In-
teracting with Computers 18(5), 869–890 (2006)

8. Lift. http://www.usablenet.com/products_services/lift_online/lift_online.html
9. Mariage, C., Vanderdonckt, J., Pribeanu, C.: State of the Art of Web Usability Guidelines.

In: Proctor, R.W., Vu, K.-P.L. (eds.) The Handbook of Human Factors in Web Design,
Lawrence Erlbaum Associates, Mahwah (2005)

10. Mayhew, D.J.: Principles and guidelines in software and user interface design. Prentice
Hall, Englewood Cliffs (1992)

11. Noirhomme-Fraiture, M., Beirekdart, A., Vanderdonckt, J.: Automated Evaluation of Web
Usability and Accessibility by Guidelines Review. In: Koch, N., Fraternali, P., Wirsing, M.
(eds.) ICWE 2004. LNCS, vol. 3140, pp. 17–30. Springer, Heidelberg (2004)

12. Web Content Accessibility Guidelines 2.0, W3C World Wide Web Consortium Recom-
mendation (August-September 2006)

13. Web ATRC, http://checker.atrc.utoronto.ca/index.html
14. WebXACT http://Webxact.watchfire.com/

A Transformation-Driven Approach to the Verification
of Security Policies in Web Designs

Esther Guerra, Daniel Sanz, Paloma Dı́az, and Ignacio Aedo

Computer Science Department,
Universidad Carlos III de Madrid (Spain)

{eguerra,dsanz,pdp}@inf.uc3m.es, aedo@ia.uc3m.es

Abstract. In this paper, we present a verification framework for security poli-
cies of Web designs. The framework is based on the transformation of the models
that conform the system design into a formalism where further analysis can be
performed. The transformation is specified as a triple graph transformation sys-
tem, which in addition creates mappings between the elements in the source and
target models. This allows the back-annotation of the analysis results to the orig-
inal model by means of triple graphical patterns. The verification mechanisms
are provided by the designer of the Web design language, together with the lan-
guage specification. However, the complexities of the formalisms are hidden to
the developer who uses the language.

As case study, we apply these ideas to Labyrinth, a domain specific language
oriented to the design of Web applications. The analysis is done by a transfor-
mation into the Petri nets formalism, and then performing model checking on
the coverability graph. The framework is supported by the meta-modelling tool
AToM3.

1 Introduction

Domain Specific Languages (DSLs) are becoming popular due to its capability to cap-
ture high-level, powerful abstractions of well-studied application domains, and have the
potential to increase the user productivity for modelling tasks. Since they are close to
the application domain, they are less error-prone than other general-purpose languages
and easier to learn, also because the semantic gap between the user’s mental model and
the design model is smaller. The Web is a typical domain where the use of DSLs is
successful [8,5,15], as there are domain specific terms (e.g. node, link) not provided by
general-purpose languages.

Due to the fact that Web systems provide specialized services that cannot be per-
formed by all the system users, correctness of access control policy for Web becomes
a crucial issue. Access control is used extensively in information systems as a security
mechanism for protecting sensitive information and resources from unauthorized ac-
cess. The access policy requires to be expressed during the design stage, using the same
abstraction level as the one used to capture the system description, instead of delaying
access control to the implementation phase. In addition, this integrated, abstract expres-
sion allows to validate the access policy at design time, so that inconsistencies can be
detected and corrected.

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 269–284, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

270 E. Guerra et al.

In order to validate system designs, a common approach is transforming the models
into semantic domains (e.g. Petri nets, process algebra or logic) for analysis. Formal
methods [4,6] are techniques based on mathematics or logics that help to specify and
verify systems. They are usually applied on the early phases of the development, when
the cost of fixing errors is lower [4]. Although they offer significant benefits in terms
of improved quality, they are not broadly used due to several reasons, among them
their high cost and the need of expert personnel in a certain formal method. This expert
knowledge is seldom found among the average software engineers.

In this paper, we follow a transformation-based approach for the verification of se-
curity policies in Web designs that hides the complexities of the underlying formal
methods from the developers, who specify the Web system in a well-known DSL. In-
ternally, these models are transformed into a semantic domain for further analysis, and
feedback is given back to them. The verification process is responsibility of the DSL
designer. He specifies the DSL by using meta-modelling, and for the verification, he
defines triple graph transformation systems that perform the transformation into the se-
mantic domain and create mappings between the elements in both models. Besides, he
can define graphical triple patterns in order to specify how the results of the analysis
are shown back to the user in the original notation, that is the Web DSL.

The paper follows an example-driven approach by applying the verification frame-
work to Labyrinth [7], a DSL oriented to the design of hypermedia and Web systems.
In particular, we have designed a transformation from Labyrinth into Petri nets [20]
in order to analyse system properties, such as the availability of navigational paths or
hypermedia objects, taking into account the applied role-based access control (RBAC)
model [2]. The approach can be adapted to other Web-oriented notations, as it lies on a
meta-modelling framework that does not depend on the DSL.

The paper is organized as follows. Section 2 introduces Labyrinth, which is used as
case study throughout the paper. Its use is illustrated through the modelling of ARCE,
a Web system for emergency management. Section 3 presents our approach to the ver-
ification of security policies with back-annotation of results, and how these ideas have
been implemented and applied to ARCE. Section 4 compares with related research.
Finally, section 5 ends with the conclusions and future work.

2 Security Modelling in Web Systems. A Case Study: Labyrinth

For the purposes of this work we use the Ariadne Development Method (ADM) [8], a
Web engineering method that provides a set of meta-models to specify the information
structure, navigation paths, interaction mechanisms, presentation features and access
control policies. The method comprises three phases: Conceptual Design, that is con-
cerned with the identification of abstract types of components, relationships and func-
tions; Detailed Design, where system features, processes and behaviours are specified
in detail; and Evaluation, where a set of criteria are used to assess system usability from
the evaluation of prototypes. Our work focuses on those meta-models of the Conceptual
Design related with the definition of the access control policy.

The ADM lies on a meta-model called Labyrinth [7] that defines the hypermedia
abstractions used in the different diagrams of the ADM. A simplified version of its

A Transformation-Driven Approach to the Verification of Security Policies 271

Fig. 1. Labyrinth Meta-model

meta-model with its most salient features is shown in Fig. 1. A complete description of
Labyrinth and its contributions can be found in [7]. Here we give a brief description.

Structural features are specified through nodes and contents. A node is an abstract
container where information contents are placed by means of the location function,
which promotes separation of structure and content. Nodes and contents support com-
position mechanisms that allow to create complex information structures by using ag-
gregation and generalization. Navigation features are expressed through anchors and
links. An anchor is a link endpoint (whether source or target), and can refer to a content
or a node and be shared between links. User modelling is based on the RBAC paradigm
[2], and includes users, roles and teams. A role represents a job function within an or-
ganization, gathering a set of permissions, and a set of users allowed to exercise them.
Roles decouple privileges from users, facilitating the management of authorizations due
to the fact that roles are more stable than users in terms of responsibilities. Relation-
ship assumes relates users with the roles that are allowed to hold, while the permission
assignment (relationship PA) relates subjects to the nodes and contents that the role is
allowed to visit. Changes in user privileges are managed through role memberships. As
some roles can be more general than others, we define a generalization relation that im-
plies inheritance: permissions assigned to the more general roles are inherited by more
specific roles. A team represents a collection of heterogeneous roles and/or teams, and
captures groups of interest or collaborative teams. Users cannot be assigned to teams,
but instead participate in a team through role membership. A permission assigned to a
team is propagated to all team components. Note that it is not necessary to explicitly
define all permissions in the system, as they are propagated throughout the roles and
teams structure as described in [1]. Anchors get the permission of the node or content
to which are tied, while links are available for a role if at least one anchor of each end
is available, that is, the role has access to the source and target link ends.

272 E. Guerra et al.

2.1 Modelling Example: The ARCE System

This section presents an example that will be used to illustrate the features of the ver-
ification framework. The ARCE system is aimed at resource management for interna-
tional cooperation in case of disaster1. When an emergency happens, the Civil Protec-
tion Department of the affected country uses ARCE to create an emergency report. If
international cooperation is needed, the affected country can ask for resources to other
countries, which in their turn may offer a contribution. Here we will focus on emergency
report management, resource requests and resource contributions.

2.2 ARCE System Design

Part of the nodes making the Web application, as well as their structural relationships,
are specified in the structural diagram shown in Fig. 2. Composite node Home acts
as root of the system, while abstract nodes Requests and Contributions group
nodes related to each activity respectively. Each leaf node corresponds to a Web page
that includes the contents required to do a particular function in ARCE.

Fig. 2. Excerpt of the ARCE Structural Diagram in ADM

The navigation diagram in Fig. 3 captures the navigation paths by means of nodes
and links. To request a resource, the user navigates from Home to Resource
Request. To add a resource, the user goes to the ResourceSelection node,
picks the desired resource and indicates the quantity, and finally returns back to the
ResourceRequest node, where an editable list of resources is shown. When the
request is ready, the user confirms it and returns Home. Optionally, the user may see
or modify the emergency report during the request. To make a contribution, the user
navigates from Home to NewContribution, where some details of the offer are
filled and the list of resources is prepared. To add a resource to the offer, the users goes
to node ResourceSelection, which in this case shows the contributor’s available
resources, picks one, selects the quantity and returns to the NewContribution node.

For each node, an internal diagram describes its internal structure made by the con-
tents and spatial-temporal relationships that define the presentation aesthetics. For ex-
ample, the internal diagram for the SeeReport node is shown in the window to the

1 http://arce.dei.inf.uc3m.es

A Transformation-Driven Approach to the Verification of Security Policies 273

Fig. 3. ARCE Navigation Diagram in ADM

left of Fig. 8. This node includes three contents: ReportHeader, GeneralData
and TechnicalData. The contents are available according to the role that accesses
the node, which is defined by the access policy.

Fig. 4 shows the user diagram of ARCE. The team ARCE User aggregates teams
Requester and Contributor. Role ROperator can request resources, but can-
not confirm them. He can see all the report contents. Role RExpert is an expert op-
erator who can do the same as a ROperator and, in addition, modify the report.
Emergency Manager is a directive role that confirms the requests and only can see
the general data of the report. Role COperator can make a contribution but not con-
firm it. He can access the general data of the report, but not modify it. Role CExpert
does the same as COperator, but he also can read the technical data of the record.
Finally, Contributor Manager is a directive role that can see the contributions,
confirm them and read the general data of the report.

Access policy, expressed as permissions on nodes and contents, is depicted in Ta-
ble 1. The • symbol denotes the assignment of a permission to a role/team for ac-
cessing a node/content, and the � symbol represents an inherited permission. The
Web designer only specifies the direct assignments, and the inherited ones are derived.

Fig. 4. ARCE User Diagram in ADM

274 E. Guerra et al.

Table 1. Access Policy for ARCE System Nodes and Contents

Subjects
ARCEUsr Requ ROp RExp EMgr Contr CExp CMgr COp

Nodes

Home • � � � � � � � �
ResourceSelection • �
ResourceRequest • � � �
SeeRequest • � � � � � � � �
ConfirmRequest •
SeeReport • � � � � � � � �
ModifyReport •
NewContribution • � � �
ConfirmContribution •

Contents
ReportHeader • � � � � � � � �
GeneralData • � � � � � � � �
TechnicalData • •

With this access policy, for example, role Emergency Manager can access to con-
tents ReportHeader and GeneralData (permissions inherited from team ARCE
User) but not to TechnicalData.

3 A Transformation-Driven Approach to Security Analysis

When modelling security for software systems, there is a need in verifying the cor-
rectness of the access policy in terms of the availability of different system entities. In
the case of Web systems incorporating RBAC policies (e.g. Labyrinth), we are partic-
ularly interested in verifying the availability of navigation paths, nodes and contents
for different subjects, the absence of nodes or contents that are not available to any
subject, which contents are shown to each subject, and checking if it is possible for a
subject to reach a node from which no link to any other node is available (i.e. there is a
deadlock).

In order to be able to answer these questions, we have used a common technique
that consists of expressing the operational semantics of the model(s) to be analysed
by using a formalism [14,19,23,24]. The used formalism must provide the necessary
tools to answer such questions. In this case, we transform the Labyrinth designs into
Petri nets [20], which provide analysis techniques to investigate system properties such
as deadlock, reachability of states and invariants, which are the kind of properties
we are interested in. The transformation is performed by a triple graph transforma-
tion system (TGTS) [13] that builds, from a Labyrinth model, the equivalent Petri net
for a system subject. Once the net is obtained, we use analysis techniques based on
the reachability/coverability graph, as well as model checking, in order to verify sys-
tem properties. Finally, the results are back-annotated and shown to the user in the
original notation, which is the one he knows. Next subsections explain this process
in detail.

A Transformation-Driven Approach to the Verification of Security Policies 275

3.1 Transformation from Labyrinth into Petri Nets

Graph transformation [9] is an abstract, declarative, visual, formal and high-level tech-
nique to express computations on graphs (and therefore on models). Roughly, graph
transformation systems are made of rules having graphs in their left and right hand
sides (LHS and RHS respectively). In order to apply a rule to a host graph, a morphism
(an occurrence or match) of the LHS has to be found in it. Then, the rule is applied by
substituting the match by the rule’s RHS. The execution of a graph grammar consists of
a non-deterministic application of its rules to an initial graph, until no rule is applicable.
In addition, rules can be equipped with application conditions that restrict their applica-
bility. One of the more used is the so-called Negative Application Condition (NAC).
This is a graph that, if found in the host graph, forbids the rule application. Finally, we
can combine meta-modelling and graph transformation allowing abstract graph nodes
to appear in rules [10]. In this way, nodes can be matched to instances of any subclass,
greatly improving the expressive power of rules.

In model-to-model transformation, it can be useful to manipulate triple graphs in-
stead of the usual ones. Triple graphs are made of three different graphs: the source
graph (of the transformation), the target one, and a correspondence graph that relates
the elements in the other two graphs. Similarly to graph grammars, TGTSs [13] are
used in order to manipulate triple graphs.

In this paper, we have defined a TGTS that builds a Petri net from a Labyrinth model.
By using a TGTS we create correspondences between the Labyrinth and the resulting
Petri net elements that facilitate the back-annotation of the analysis results in terms of
the Labyrinth notation. Fig. 5 shows some rules of this TGTS. The source graph (shown
in the upper part of the rules) corresponds to Labyrinth, while the target graph (lower
part of the rules) is the Petri nets formalism. We use a compact notation for the rules,
in which the LHS and the RHS are presented together. The elements to be added by the
rule application (i.e. those that belong to the RHS but not to the LHS) are shown in a
gray area and labelled as “new”. NACs are omitted for clarity, and in all the rules are
equal to the RHS. The general idea of the transformation is creating a net that simulates
the behaviour of a subject (i.e. a role or team). For this purpose, a Petri net place is
created for each node and content for which the subject is granted, and links between
them are transformed into Petri net transitions. The subject is represented as a token;
therefore, if a token is in a certain place, that means that the subject is accessing to the
node or content(s) that the place represents. Note that visiting a node implies visiting
all authorized contents for the subject, and thus, the Petri net marking gives the set of
nodes and contents accessed in a given moment by the subject.

The three rules to the left in Fig. 5 perform the flattening of the subject’s hierarchy.
Rule Flattening1 creates a correspondence element CElem with a morphism to the sub-
ject for which the Petri net is calculated. The rule receives such subject as parameter.
This is an abstract rule: therefore, the rule is applicable to any subclass of subject (i.e.
classes Team and Role). Then, rules Flattening2 and Flattening3 traverse the subject’s
hierarchy creating correspondence elements with morphisms to each subject’s ancestor.

Rule HMObject2Place in Fig. 5 creates a place for each hypermedia object (i.e.
node or content) to which the subject or its ancestors have permission to access (i.e.
a correspondence element to the subject was created by the execution of the flattening

276 E. Guerra et al.

Fig. 5. Some Triple Rules of the Transformation from Labyrinth to Petri Nets

rules). Similarly, rule Link2Transition creates a Petri net transition for each link. We
only transform those links between hypermedia objects for which the subject has ac-
cess, that is, objects that have a correspondence element created by previous executions
of rule HMObject2Place. Another similar rule is used for the case in which the source
of the link is a content component instead of a node component. Rule Anchor2Arc cre-
ates an incoming arc from a place to a transition if the corresponding node is source
of the corresponding link. Two similar rules create an arc when the source is a content
component, or when the node is target of the link (creating in that case an outgoing
arc from the transition). Rule Subject2Token creates an extra place with a token (the
subject) and a transition from it to the place related to the home page. This transition
models the first access of the subject to the system. Finally, each time a transition is
fired (i.e. each time a link is traversed), a token must be placed not only in the target
node, but also in the target node contents for which the subject is granted. For this pur-
pose, rule Location2Arc creates the appropriate arcs to such contents. Similarly, leav-
ing a node implies leaving its contents. Again, two similar rules create the necessary
arcs.

Note that some system information is lost in the proposed transformation (e.g. the
position of anchors), however, such information is useless for our analysis purposes.
Thus, we require from the transformation to preserve the properties under investigation
(availability of navigation paths depending on the security policy), as we do in this case.

Fig. 6 shows the Petri net resulting from applying the presented TGTS to the role
Emergency Manager in the ARCE Web example.

A Transformation-Driven Approach to the Verification of Security Policies 277

Fig. 6. Resulting Petri Net for Role Emergency Manager

3.2 Analysis and Back-Annotation

In order to verify a property, we first apply to the Labyrinth model the presented TGTS
and create the Petri net for a certain subject. Then, we obtain the net’s coverability
graph (an approximation of the possibly infinite net state space), and apply model
checking [20] on the graph in order to verify the property. Properties are expressed
in Computational Tree Logic (CTL). CTL formulae are made of atomic propositions,
the names of the places of the Petri net, which are true for a given net state if the place
contains at least one token. Propositions can be combined with boolean connectors (∧,
∨, ¬), path quantifier operators that express if predicates are fulfilled starting from a
certain state, and temporal quantifier operators that describe the properties of a branch
in the computation tree. Valid path quantifiers are E (exists a path) and A (for all the
paths). Valid temporal quantifiers are X (in next state) and U (until). Other quantifiers,
such as F (in some state in the future) and G (always), can be expressed in terms of X
and U . The result of checking a property on a model is the set of states satisfying the
given property.

In the case of Labyrinth, we are interested in verifying the following properties:

1. A specific navigational path is allowed for a given subject. Let s be a subject, and
Np =< node1, node2, ..., nodeN > a navigational path where subindex i spec-
ifies the order in which nodes are visited. Np can be expressed as the recursive
function next(i) = nodei ∧ EX (next(i+1)) if i < N , and next(i) = nodei if
i = N . Thus, this property can be written as the CTL expression E True U (next(1)),
which is evaluated on the coverability graph of the Petri net obtained for subject s.
This property allows checking if a subject can perform a task that implies travers-
ing certain navigation path. For example, in order to validate a contribution, the
role Contributor Manager should be able to go from node Home to node
ConfirmContribution and then return Home.

2. A specific node or content is never shown to a given subject. Let s be a subject and
hmo a node or content. Then, this property can be expressed as ¬ (E True U hmo),
which allows detecting elements that should be available for a subject but are not,

278 E. Guerra et al.

as well as checking if a subject has more permissions than required. For example,
as no other role than RExpert can modify a report, the node Modifyreport
must not be shown to any other subject.

3. A specific node or content is never shown. Let S be the set of system subjects, and
hmo a node or content. Then, this property can be expressed as

∧
s∈S ¬ (E True U

hmo). This is an extension of property number 2 to the set of subjects of the system.
4. A specific node or content is shown in each navigational path for a given subject.

Let s be a subject, and hmo a node or content. Then, this property can be expressed
with the CTL expression A True U hmo, which checks that all the possible naviga-
tion paths followed by a subject will show the specified object. For example, node
Home should be accessed in any possible path.

5. A subject does not reach a deadlock state. In other words, all nodes define at least
one outgoing link. Let s be a subject, then the property can be written as ¬ (E True
U deadlock), where predicate deadlock becomes true in states with no successor.

6. A specific node shows at least one content for a subject. Let s be a subject and n a
node. Then the expression n gives the Petri net markings that satisfy the expression.
Note that if the node has a token, then its contents for which the subject is granted
have also one and belong to the marking. This property allows detecting nodes that
are empty for certain subjects due to a bad design of the access policy.

In order to hide the analysis process to the Web designer (who is proficient in the Web
domain and the used DSL) we back-annotate the results to the Labyrinth model. This is
possible since we maintain in the correspondence graph the relations between the ele-
ments in the source and target models. The elements to back-annotate can be specified
as a triple pattern that receives as parameters the Petri net states or transitions to back-
annotate, and as output the Labyrinth elements resulting from the back-annotation. For
example, Fig. 7 shows to the left the triple pattern used to specify how results are shown
to the user in the case of property type number 6. The pattern is executed for each place
(the input) obtained as result of the analysis. The output is the set of contents related
to those places. Similarly, the pattern to the right in the same figure is used for the
back-annotation of properties number 2, 3 and 4. The analysis method used for these
properties returns the sequence of firing transitions that leads from the system initial
state to the analysed node or content. These transitions are the input of the pattern. The
output is the set of links related to the transitions, together with their sources, targets
and corresponding anchors. Thus, in the Labyrinth model will be shown each possible
navigational path leading to the hypermedia object under study.

3.3 Tool Support

The whole verification framework has been implemented in the AToM3 tool [17], which
allows the specification of visual languages by means of meta-modelling, and the ma-
nipulation of graphs by means of graph transformation. Recently, the tool has been en-
hanced with the possibility of expressing multi-view visual languages [12], which are
languages made of different diagram types, such as the presented ADM (or the general
purpose UML). Thus, we have defined the whole Labyrinth meta-model in AToM3, and
then the different diagrams types as subsets of it. The tool provides syntactic and static

A Transformation-Driven Approach to the Verification of Security Policies 279

Fig. 7. Some Back-annotation Triple Patterns

Fig. 8. Generated Environment for Labyrinth

semantics consistency between diagrams by means of automatically generated TGTSs
that build a repository made of the gluing of the different diagrams. For the analysis
of the dynamics, it is possible to define semantic views to be generated by means of
TGTSs from the models. In the case of Labyrinth, we have defined the presented TGTS
to transform the repository into Petri nets. In addition, each property to be verified in
the semantic view can be specified with: (i) a pre-process method where the request of
data required for the analysis (e.g. the name of the subject for which the property is
checked) is specified; (ii) an analysis method call; and (iii) a back-annotation mecha-
nism specified either procedurally or by triple patterns. For the analysis of properties in
Labyrinth, method calls use analysis functions that calculate the coverability graph in
AToM3 and use a model checker implemented in the tool as well. It is up to future work
the use of external Petri net tools to perform the analysis.

Starting from this definition, AToM3 generated a modelling environment that allows
specifying instances of the different diagram types. This environment is shown to the
left of Fig. 8, where the different diagrams of ARCE have been defined. The figure
shows to the right the editing of the internal diagram of node SeeReport.

The environment automatically creates a repository with the gluing of the system
diagrams. In the repository interface (background window in Fig. 9), a button is gener-
ated for each Labyrinth concrete class and for each analysis property. Buttons derived

280 E. Guerra et al.

from classes allow adding new entities to the repository. Buttons derived from proper-
ties allow checking properties, and the result is shown according to the defined back-
annotation mechanism, hiding the internals of the analysis process. If the back-
annotation is specified by a pattern, the output elements obtained from its application
are highlighted in the original model, as well as summarized in a dialog window. Fig. 9
shows the checking of a property in the Labyrinth repository and the back-annotation of
the results. In addition, a button is generated that allows showing the result of executing
the TGTS. This can be used for simulation purposes.

3.4 Verifying ARCE Access Policy

The generated environment has been used for the modelling of ARCE. The verification
of the availability of navigation paths for different roles (property of type number 1 in
subsection 3.2) implied just clicking on the button Check NavigationPath in the repos-
itory interface, which is shown in Fig. 9. The name of the subject and the sequence of
nodes in the navigation path to be checked are requested to the Web designer. Then, the
environment internally builds the corresponding CTL expression, performs the analysis,
and the result is shown in a dialog window.

Similarly, checking to which contents of a node a subject could access (property
number 6) was done by clicking on the button Check Node Contents. The name of the
subject and node are requested to the user. Then, the node contents are shown high-
lighted (by the execution of the left pattern in Fig. 7 to the analysis result), as well as
summarized in a dialog window. Fig. 9 shows the result obtained after checking the
property for role Emergency Manager and node SeeReport. Note how content
TechnicalData, although was specified in the internal diagram of the node, is not
accessible for this role due to the specified access policy.

Fig. 9. Back-annotation of Property Checking. The result is highlighted in the model and summa-
rized in a dialog window.

A Transformation-Driven Approach to the Verification of Security Policies 281

Table 2. Some Properties Verified in ARCE

Prop.
Type

Verified Property Expected
Result

Observed
ResultSubject CTL Expression

1

ROp E True U (Home ∧ EX (ResourceRequest ∧ EX (ResourceSelection ∧ EX
(ResourceRequest ∧ EX Home))))

true true

EMgr E True U (Home ∧ EX (SeeReport ∧ EX (SeeRequest ∧ EX (ConfirmRe-
quest ∧ EX Home))))

true false

COp
E True U (Home ∧ EX (NewContribution ∧ EX (SeeReport ∧ EX (Modi-
fyReport ∧ EX (SeeReport ∧ EX (NewContribution ∧ EX (ResourceSelec-
tion ∧ EX (NewContribution ∧ EX Home))))))))

false false

CMgr E True U (Home ∧ EX (ConfirmContribution ∧ EX Home)) true false

2

CExp ¬ (E True U ModifyReport) no no
RExp ¬ (E True U ModifyReport) yes yes
COp ¬ (E True U SeeReport) yes yes

CMgr ¬ (E True U NewContribution) no no

3 –
�

s∈{ARCEUsr,Requ,Contr,ROp,RExp,EMgr,COp,CExp,CMng} ¬ (E True U SeeReport) no no

4
ROp A True U ModifyReport no no
ROp A True U Home yes yes

5
ROp neg (E True U deadlock) true true

CMgr neg (E True U deadlock) true true

6 EMgr SeeReport yes yes

Table 2 summarizes some properties that were checked in the ARCE design by using
the presented approach and environment. For each kind of property described in section
3.2, we provide some example concrete CTL formulae, together with the expected and
observed results. Results for properties 2, 3, 4 and 6 are back-annotated to the original
model. For the rest of properties, the result is given as a true/false dialog window.

4 Related Work

The use of Petri nets for the formal specification, simulation and analysis of software
systems (among them Web and security systems) is spread. For example, in [11] naviga-
tional paths are modelled by using Petri nets, where temporal links are also considered.
[3] presents a formal XML firewall security model using RBAC based on Petri nets.
In [22] security analysis of extended role based access control systems is modelled by
using coloured Petri nets. In all these cases, the designer models the system directly as a
Petri net, where verification is performed. In this paper we also use Petri nets for system
verification, but propose the use of DSLs that include concepts especially suitable for
the domain to be modelled (e.g. node, link, anchor), which makes system specification
easier for the Web designer. Verification is provided by translating the specific domain
models into Petri nets and then performing model checking on the net’s coverability
graphs. However, the transformation and analysis are hidden to the Web designer, as
the results are back-annotated and shown in the original notation.

282 E. Guerra et al.

Approaches to model transformation for the analysis of systems by its translation
into a semantic domain are frequent, mainly oriented to the validation of UML models
[14,19,23,24], some of them providing support for back-annotations as well. Quite sim-
ilar to ours is the approach followed in [23], where reference models are used to in-
terrelate the elements of the source and target models in a single graph, allowing the
back-annotation of analysis results. The reference model is similar to the notion of cor-
respondence graph in triple graphs that we are using in this work, though our approach
maintains the two graphs cleanly separated (i.e. we have separate models and meta-
models for Labyrinth and Petri nets). In addition, triple graphs are more flexible as no
additional structure is needed in the models in order to maintain the correspondences.

Validation techniques have been also applied to RBAC in works like [16,18] in order
to check inconsistencies in terms of (non-)existence of permissions or verification of
the RBAC model itself. These approaches are general or domain-independent, in the
sense that the RBAC and system meta-models are separated. On the contrary, we base
on a DSL that includes elements for the modelling of access policies in its meta-model.
These elements are specially suite for the Web domain. Other works, such as [25,21],
also allow to include domain-dependent modelling entities in the verification process.
However, these inclusions seem to be done by hand, without an automatic mechanism
able to transform a system model to the chosen formalism, so that back-annotations are
hard to implement.

5 Conclusions and Future Work

In this paper we have presented a formal verification framework for security policies
on Web systems that hides the complexity of the formalisms from the Web designer.
The framework has been illustrated by its application to Labyrinth, a DSL oriented to
the design of Web applications. We have designed a transformation from Labyrinth
into the Petri nets formalism, which allows checking model properties such as reacha-
bility or deadlocks. The analysis of properties is made by performing model-checking
of the coverability graph by using temporal logic formulae. Analysis results are back-
annotated by using triple patterns.

The present work uses a simplified version of the complete Labyrinth meta-model.
It is up to future work the extension to the complete meta-model, which includes for
example categorization of permissions. We are also studying the transformation into
Timed Petri nets that include temporal constraints (e.g. temporal anchors and security
constraints). The transformation into coloured Petri nets would possibly allow to gen-
erate a single net for the whole system instead of for each subject.

Acknowledgements. Work sponsored by projects TIN2006-09678 of the Spanish Min-
istry of Education and Science (MEC); TSI2004-03394 of the MEC and an agree-
ment between Univ. Carlos III (UC3M) and Dir. Gral. de Protección Civil y Emer-
gencias (DGPCE); and ARCE, supported by an agreement between UC3M and
DGPCE.

A Transformation-Driven Approach to the Verification of Security Policies 283

References

1. Aedo, I., Dı́az, P., Montero, S.: A methodological approach for hypermedia security mod-
elling. Inform. Software Technol. 45(5), 229–239 (2003)

2. ANSI INCITS 359-2004. Role Based Access Control (2004)
3. Ayachit, M.M., Xu, H.: A Petri Net based XML Firewall Security Model for Web Services

Invocation. In: Proc (547) Communication, Network, and Information Security (2006)
4. Berry, D.M.: Formal methods: the very idea. Some thoughts about why they work when they

work. Science of Computer Programming 42(1), 11–27 (2002)
5. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing Data-

Intensive Web Applications. Elsevier Science (2003)
6. Clarke, E.M., Grumberg, O., Long, D.: ”Model Checking”. In: Proceedings of the Inter-

national Summer School on Deductive Program Design Marktoberdorf, Germany, 1994. In
M. Broy, ”Deductive Program Design”, NATO ASI Series F, vol. 152, Springer, Heidelberg
(1996)

7. Dı́az, P., Aedo, I., Panetsos, F.: Labyrinth, an abstract model for hypermedia applications.
description of its static components. Information Systems 22(8), 447–464 (1997)

8. Dı́az, P., Montero, S., Aedo, I.: Modelling hypermedia and web applications: the Ariadne
Development Method. Information Systems 30(8), 649–673 (2005)

9. Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G.: Handbook of Graph Grammars and
Computing by Graph Transformation. vol. 1. World Scientific (1997)

10. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transfor-
mation. In: Monographs in Theoretical Computer Science, Springer, Heidelberg (2006)

11. Furuta, R., Na, J.: Applying programmable browsing semantics within the context of the
world-wide web. In: Proc. of Hypertext 02, pp. 23–24. ACM Press, New York (2002)

12. Guerra, E., Dı́az, P., de Lara, J. (eds.): A formal approach to the generation of visual lan-
guage environments supporting multiple views. In: Proc. VL/HCC’05, pp. 284–286. IEEE
Computer Society Press, Los Alamitos (2005)

13. Guerra, E., de Lara, J.: Attributed typed triple graph transformation with inheritance in the
double pushout approach. Tech. Report UC3M-TR-CS-06-01, Universidad Carlos III (2006)

14. Guerra, E., de Lara, J.: Model View Management with Triple Graph Transformation Systems.
In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006.
LNCS, vol. 4178, pp. 351–366. Springer, Heidelberg (2006)

15. Koch, N., Kraus, A.: Towards a Common Metamodel for the Development of Web Appli-
cations. In: Lovelle, J.M.C., Rodrı́guez, B.M.G., Gayo, J.E.L., Ruiz, M.d.P.P., Aguilar, L.J.
(eds.) ICWE 2003. LNCS, vol. 2722, pp. 497–506. Springer, Heidelberg (2003)

16. Koch, M., Parisi-Presicce, F.: Visual Specifications of Policies and Their Verification. In:
Pezzé, M. (ed.) ETAPS 2003 and FASE 2003. LNCS, vol. 2621, pp. 278–293. Springer,
Heidelberg (2003)

17. de Lara, J., Vangheluwe, H.: AToM3: A tool for multi-formalism modelling and meta-
modelling. In: Kutsche, R.-D., Weber, H. (eds.) ETAPS 2002 and FASE 2002. LNCS,
vol. 2306, pp. 174–188. Springer, Heidelberg (2002)

18. Li, N., Tripunitara, M.V.: Security Analysis in Role-Based Access Control. ACM Transac-
tions on Information and System Security 9(4), 391–420 (2006)

19. Machado, R.J., Lassen, K.B., Oliveira, S., Couto, M., Pinto, P.: Execution of UML Models
with CPN Tools for Workflow Requirements Validation. In: Proc. of the Sixth Workshop and
Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools. pp. 231–250 (2005)

20. Murata, T.: Petri nets: Properties, analysis and applications. In: Proceedings of the IEEE, vol.
77(4) pp. 541–580 (1989)

284 E. Guerra et al.

21. Schaad, A., Lotz, V., Sohr, K.: A Model-checking Approach to Analysing Organisational
Controls in a Loan Origination Process SACMAT 2006. pp. 139–149 (2006)

22. Shin, W., Lee, J.G., Kim, H.K., Sakurai, K.: Procedural Constraints in the Extended RBAC
and the Coloured Petri Net Modeling. IEICE Trans. on Fundamentals 88(1), 327–330 (2005)

23. Varró, D., Varró, G., Pataricza, A.: Designing the automatic transformation of visual lan-
guages. Sci. Comp. Programming 44(2), 205–227 (2002)

24. Xie, F., Levin, V., Browne, J.C.: ObjectCheck: A Model Checking Tool for Executable
Object-oriented Software System Designs. In: Kutsche, R.-D., Weber, H. (eds.) ETAPS 2002
and FASE 2002. LNCS, vol. 2306, pp. 331–335. Springer, Heidelberg (2002)

25. Zhang, N., Ryan, M., Guelev, D.P.: Evaluating Access Control Policies Through Model
Checking. In: Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650,
pp. 446–460. Springer, Heidelberg (2005)

Efficiently Detecting Webpage Updates

Using Samples

Qingzhao Tan1, Ziming Zhuang2, Prasenjit Mitra1,2, and C. Lee Giles1,2

1 Computer Science and Engineering
2 Information Sciences and Technology

The Pennsylvania State University, University Park, PA 16802, USA
qtan@cse.psu.edu, {zzhuang, pmitra, giles}@ist.psu.edu

Abstract. Due to resource constraints, Web archiving systems and
search engines usually have difficulties keeping the local repository com-
pletely synchronized with the Web. To address this problem, sampling-
based techniques periodically poll a subset of webpages in the local
repository to detect changes on the Web, and update the local copies
accordingly. The goal of such an approach is to discover as many changed
webpages as possible within the boundary of the available resources. In
this paper we advance the state-of-art of the sampling-based techniques
by answering a challenging question: Given a sampled webpage that has
been updated, which other webpages are also likely to have changed? We
propose a set of sampling policies with various downloading granularities,
taking into account the link structure, the directory structure, and the
content-based features. We also investigate the update history and the
popularity of the webpages to adaptively model the download probability.
We ran extensive experiments on a real web data set of about 300,000
distinct URLs distributed among 210 websites. The results showed that
our sampling-based algorithm can detect about three times as many
changed webpages as the baseline algorithm. It also showed that the
changed webpages are most likely to be found in the same directory
and the upper directories of the changed sample. By applying cluster-
ing algorithm on all the webpages, pages with similar change pattern
are grouped together so that updated webpages can be found in the
same cluster as the changed sample. Moreover, our adaptive downloading
strategies significantly outperform the static ones in detecting changes
for the popular webpages.

1 Introduction

Search engine relies on crawlers to harvest webpages and the downloaded web-
pages are stored in the local repositories. These local copies of webpages are later
retrieved to answer relevant user queries. Due to the fact that webpages change
independently and that the crawling and indexing process takes time to complete,
searching the Web could be somewhat similar to searching for the stars through
a telescope: what is seen is the past. Although ideally the archiving systems and
search enginesmay synchronize the local copies ofwebpageswith their online coun-
terparts, due to resource constraints it is not feasible for crawlers to constantly

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 285–300, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

286 Q. Tan et al.

monitor anddownload everywebpage in the local repositories. In this case, a round-
robin polling strategywill waste resources in downloadingunchanged webpages.To
be more efficient, crawlers can periodically re-visit a portion of the webpages that
are more likely to have changed since previous visit.

We investigate a typical scenario in which due to resource constraints, a
crawler is only allowed to periodically download a fixed number of webpages and
update the corresponding local copies when a change has been found. We define
this fixed number of pages as the download resources and the periodical interval
as the download cycle. Thus, the crawler’s goal is to maximize the number
of updated webpages detected in each download cycle with the fixed amount
of download resources. Because a crawler can verify whether a webpage has
changed only after it has been downloaded, the challenge therefore becomes how
to predict, as accurately as possible, the change probabilities for the webpages
in the local repository. Those webpages with higher change probabilities will be
assigned a higher priority for download.

Cho and Ntoulas proposed a sampling-based algorithm [7] to address the
above challenge. In their approach, a small number of webpages are sampled
from the search engine’s local repository. Their counterparts on the Web are then
downloaded and examined whether they have changed. Based on the results, the
crawler can determine which webpages in the local repository are more likely to
change, and those webpages are also downloaded. Cho et al. theoretically and
empirically proposed the optimal sample size and downloading policy based on
the sampling results. While their method has been proved effective in predicting
and downloading updated webpages, it is carried out in the unit of a website, i.e.,
pages are sampled from each website and the sampling results are used to decide
whether to download other pages within the same website. However, webpages’
update behavior could be carried out very differently throughout a website [14].
Within one website, some webpages are more dynamic than others.

In this paper, we investigate and improve the sampling-based techniques to
detect webpage changes by making the following contributions:

– We propose a new sampling algorithm to detect webpage updates. In our
algorithm, sampling is done at the webpage level and each webpage is equally
likely to be selected as a sample. In addition, each sample has a tunable
downloading granularity.

– We propose three downloading policies for change detection. Specifically,
given a sampled webpage, we exploit its linkages (link-based downloading
policy), directory structure (directory-based downloading policy), or content-
based features (cluster-based downloading policy) to detect updates on other
webpages. We also show empirically that a website may not be a good
granularity for change detection.

– We propose two biased sampling algorithms based on two metrics, the change
history [8] and PageRank [15]. We predict webpages updates based on their
change history using the first metric, and based on their popularity using
the second one.

Efficiently Detecting Webpage Updates Using Samples 287

The rest of the paper is organized as follows. In Section 2 we describe the
context of our work. We propose our sampling algorithm in Section 3. In Section
4 and 5 we investigate details of the parameter space in the proposed algorithm
and further propose techniques to adaptively optimize the parameter. In Section
6 we present and discuss the empirical results. We outline our conclusion in
Section 7.

2 Related Work

Existing studies have investigated the dynamics of the Web pages by showing
that webpages have a broad spectrum of change intervals varying from a few
hours, a few weeks, to a year [12,3,9,16,6]. As a result, search engines frequently
update their indices and the search results could be quite unstable [17]. In order
for search engines to keep up with the dynamic Web, server-side approaches
require that the Web servers keep a file with a list of URLs and their respective
modification dates [2]. Before visiting a site, a crawler downloads the URL list,
identifies the URLs that were modified since its last visit, and retrieves only the
modified pages. This approach is very efficient and avoids waste of Web server
bandwidth and crawler resources, but requires modifications to the server-side
implementation.

On the other hand, client-side techniques are independent of server-side im-
plementation. First, probabilistic models have been proposed to approximate
the observed update history of a webpage and to predict its change in the
future [10,13]. Most of these change-frequency–based refresh policies assume
that the webpages are modified by Poisson processes [18]. Besides page’s change
frequency, several metrics have been proposed to guide the crawler how to choose
webpages to re-download, such as freshness and age [10], “embarrassment” met-
ric [23] and user-centric metric [22]. However, a limitation common to all these
approaches is that they need to gather enough accurate historical information
of each webpage.

To address this problem, sampling-based approaches are proposed to detect
webpage changes by analyzing the update patterns. Their sampling method
samples and downloads data in the unit of a website. Specifically, they proposed
a greedy downloading policy, in which a number of pages are first sampled from
each website. After getting the change status of the samples, the crawler re-visits
all the webpages in the website with the largest number of changed samples, and
then the website with the second largest number of changed samples, and so on,
until the download resources are used up. Different from their approaches, we
analyze sampling and downloading in different granularities, which is based on
webpages linkages, directory structure, and content-based features.

Recently, a classification-based algorithm [1] takes into account both the his-
tory and the content of pages to predict their change behavior. Their experiment
results on real web data indicate that their solution had better performance
than the change-frequency–based policy [9]. The key difference between their
algorithm and ours is that they assume the crawler knows the change history of

288 Q. Tan et al.

a set of webpages. And these webpages are used as training data to learn the
change pattern of other new pages. While in our approach, we do not assume
the crawler have any existing historical information. Therefore, our approach is
more practical than the classification-based method.

3 Sampling-Based Update Detection

We present a sampling-based update detection algorithm based on the assump-
tion that webpages that are relevant (discussed later) to an updated webpage are
also likely to be updated as well. The goal of the algorithm is to maximize the
number of updated webpages downloaded in each download cycle, with a fixed
amount of download resources. Please note that our sampling-based algorithm
can detect an “update” including the creation, change, or removal of a webpage.
In this section, we describe in detail the sampling and downloading process of
our change detection algorithm. This process constitutes the main part of the
algorithm.

Let L0 denote the initial set of webpages in the local repository during the
initiation of the algorithm. We also denote the download resources for each
download cycle as R, and subsequently updated versions of L0 in the following
n download cycles as Li(i = 1, ..., n). Algorithms 1 and 2 show the sampling and
downloading process during each download cycle, respectively. There are two
tunable parameters, the download probability ϕ and the download granularity d,
which are explained in details in Section 4 and 5. The algorithm proceeds as
follows. The sampling process randomly chooses a set of pages as samples from
the local repository. For each sampled page ps ∈ Li−1, its current version on
the Web is downloaded and compared with the local version ps. Based on this
comparison, the process triggers the downloading process with the probability
ϕ. During the execution of the downloading process, ps is used as a seed page
and its neighbors within d are downloaded. Please note that in the downloading
process p will be downloaded in either of the following cases. In the first case, p is
downloaded as a sample. In the second case, p is a neighbor within distance
d of a changed sample, and is downloaded with a probability ϕ.

4 Tuning Download Granularity

The download granularity d determines that, given a changed sample, which
additional webpages and how many of them the crawler should choose to down-
load. We propose three definitions of d and investigate which definition gives us
the best performance, in terms of maximizing the probability of discovering and
downloading webpages that have been updated.

4.1 Link-Based Downloading Policy

Consider the directed graph created from the World-Wide Web where the nodes
are webpages and a directed edge between two nodes p1 and p2 corresponds to

Efficiently Detecting Webpage Updates Using Samples 289

Algorithm 1. Sampling Process in the ith Download Cycle

Input: Li−1, download probability ϕ, download granularity d, download resources R
Procedure:
1: repeat
2: Randomly sample a webpage ps from Li−1;
3: Download ps and check its change status;
4: With probability ϕ, Li ← Download(ps, d);
5: until R is used up
6: if |Li| < |Li−1| then
7: Li ← (Li−1 − Li);
8: end if
Output: Li

Algorithm 2. Download(ps, d)

Input: Seed webpage ps and download granularity d
Procedure:
1: download a set of webpages P d within d from ps;

Output: P d

a link from the webpage represented by p1 to the webpage represented by p2. In
this policy, when the algorithm identifies a sampled webpage, say ps has been
updated, it crawls all webpages whose nodes are within a distance d of the node
representing ps. We refer to this approach as the link-based downloading policy
(LB). The intuition behind this policy is the topical locality in the Web [11].

The depth, dLB, between two webpages ps and p can be formally defined as
follows. Let DG denote the directed graph generated based on the topology of a
website, by considering the webpages as nodes and the hyperlinks as the directed
edges between the nodes. Let DG denote the directed graph with the same set
of nodes as DG but all the directed edges reversed. We then define dLB as:

dLB =

⎧
⎪⎪⎨

⎪⎪⎩

h if ps � p in DG,

−h if ps � p in DG,
0 if ps and p have a common parent,

∞ otherwise.

(1)

where ps � p indicates that a path exists from ps to p (i.e. p is reachable from
ps), and h > 0 denotes the length of the shortest path between ps and p in the
number of hops. When dLB > 0, the crawler follows only the out-links; when
dLB < 0 the crawler follows only the in-links. dLB between two siblings (i.e.
webpages that share a common parent) is defined as 0.

Figure 1 depicts the partial topology of a website. If there are more than one
paths from ps, take the shortest one (e.g., p10). dLB of ps’s siblings is always 0
although there are paths from ps to them (e.g., p5). When dLB = 1, the crawler

290 Q. Tan et al.

in our algorithm downloads all the webpages that have dLB ≤ 1, i.e. ps, p4, p5,
p6, p7, and p10.

4.2 Directory-Based Downloading Policy

Alternatively, we define the download granularity d based on the directory
structure of the Web server, and refer to this approach as the directory-based
downloading policy (DB). In this policy, we consider the directory structure as a
hierarchical tree structure and webpages as the leaf nodes (illustrated in Figure
2). Formally, let ps denote the seed webpage at http : //u1/u2/.../um, p denote
a webpage at http : //v1/v2/.../vn, and uc = vc denote their nearest common
ancestor, i.e. ∃c, 0 ≤ c ≤ min(m, n), ∀i ≤ c, ui = vi and ∀i > c, ui �= vi. dDB

can then be defined as follows:

dDB = [(m − c) + (n − c) − 2] ∗ sign(n − m). (2)

The constant 2 is a scaler used to leverage the value of dDB so that webpages
at the same level as ps in the directory tree will have dDB = 0. The function
sign(n − m) indicates whether the webpage is on the level upper or lower than
the level of the seed webpage.

We use the following example to illustrate the definition of dDB . Assume
in Figure 2 the webpage at http://www.abc.com/dir1/index1.htm is chosen as
the seed ps for the downloading process. The values of dDB from ps to other
webpages are also shown in the figure. Intuitively, the download granularity is
a directory on the Web server. For example, dDB = 0 indicates downloading all
the webpages in the same directory as the seed; dDB > 0 indicates downloading
every webpage in the upper directories; and dDB < 0 indicates downloading
every webpage in the lower directories.

4.3 Cluster-Based Downloading Policy

We now cast the problem of discovering webpages that are updated concurrently
with a seed page into a clustering problem, which we refer to as the cluster-based
downloading policy (CB). There are two main steps in this policy. We first extract
features that are relevant to the webpages’ change pattern. Recent studies have
found that some characteristics of webpages are strongly correlated with their
change frequencies. For example, Douglis et al. [12] noted that actively-changing
webpages are often larger in size and have more images. Fetterly et al. [14]
observed that the top-level domains of the webpages are correlated with their
change patterns. Based on previous work and our observations, the feature vector
used for the clustering algorithm include the following features: content of the
webpage and URLs (see details below), number of non-markup words, number
of incoming and outgoing links, number of images, name of the top-level domain
in the URL, depth of the URL (i.e. number of slashes), size of the file, etc. We
construct a word-level vector to represent the content of the webpage. To avoid
its dominance over other features, we first cluster all the webpages based on the

Efficiently Detecting Webpage Updates Using Samples 291

Ps

P1

P2

P3

P4

P5
P6

P7

P8

P9

P10

0

−1

−1

−1

0

0

1

1
1

2

2

Fig. 1. dLB from ps to other webpages
in the link topology. Webpages further
away from ps have larger |dLB |s.

dir1/index.htm

http://www.abc.com

...

info.htm

p13.htmp12.htmp11.htm p21.htm p22.htm p23.htm

index2.htm subdir2/

dir2/

0 0

−1 −1

1

2

−3−3

index1.htm(Ps) subdir1/

−1 −3

Fig. 2. dDB from ps to other webpages in
the directory structure. Under DB, dDB is
defined at a directory level.

tf · idf vector of all the words. The IDs of the 10 largest clusters are chosen as
the labels of 10 dimensions in the feature vector. Then for each webpage p, the
values of these 10 dimentsions are computed as follows. Suppose the webpage
belongs to the cluster Cp, the feature’s cluster label is Cf . The value of the
feature fCf

is computed as follows: fCf
= 0 for the webpages in Cp = Cf ,

fCf
= 1 for the webpages in Cp which has the shortest distance to Cf , fCf

= 2
for the webpages in Cp which has the second shortest distance to Cf , and so on.
We use the distance of the centroids of each cluster to represent the distance of
two clusters. A similar method is used to generate another 10 dimensions of the
feature vector, using all the words in the URLs.

Second, with each webpage represented by a feature vector, we apply the
Repeated Bisection Clustering algorithm [20] to construct hierarchical clusters,
each of which contains webpages with a similar update pattern. A k-way clus-
tering solution is obtained via a sequence of cluster bisections: first the entire
set of webpages is bisected, then one of the two clusters is selected and further
bisected; such process of selecting and bisecting a particular cluster continues
until k clusters are obtained. Note that the two partitions generated by each
bisection are not necessary equal in size, and each bisection tries to ensure a
criterion function is locally optimized. Based on the clusters obtained from the
algorithm, we use the distance between the centroids of two clusters to compute
dCB, similar to the method used to compute the values of the URL/webpage
features.

5 Adaptive Download Probability

In Algorithm 1, a download probability ϕ ∈ [0...1] is used. The larger the
value of ϕ, the more likely it is that the sample is used as a seed to trigger
the download process. We first consider the baseline case in which ϕ is a fixed
binary variable {0, 1} for all webpages. Note that the sample itself will always be
downloaded regardless of its change status. Therefore, ϕ = 0 indicates that no
webpages other than the sample is downloaded, which is equivalent to randomly
download webpages from the Web. When ϕ = 1, all of the neighbors of the
sample are downloaded. Both of these two extreme cases are intuitively not good
downloading strategies to optimize performance. In the following discussions, we

292 Q. Tan et al.

propose adaptively assigning different ϕs for various sampled webpages based
on three characteristics, current change status, change history, and webpage
popularity.

5.1 Adapting to Current Change Status

A straightforward improvement over random download is to adapt the download
probability ϕ to the sampled webpage’s current change status as follows:

ϕ =

{
1 if the sampled webpage has changed,
0 otherwise.

(3)

With the above definition, whether or not a sample has changed in the current
download cycle determines whether to crawl and download its neighbors. While
this is an effective approach with relatively easy implementation, it considers
only the most recent change status of the sample, with no regard to information
such as the temporal patterns of change and the intrinsic quality of the sampled
webpage.

5.2 Adapting to Change History

Here we discuss how to adapt the download probability ϕ toward the change
history of a sampled webpage. Figure 3 shows three webpages with different
change patterns. Assume that at time Ti+1 these three pages are downloaded.
By comparing their (i + 1)st and ith versions, the crawler observes that all of
them have changed and a naive crawler concludes that they are equally likely to
change again at time Ti+2. However, by looking at their change history between
T0 and Ti+1, we observe that P1 has only one change, while P2 and P3 both
have three changes. Moreover, P2 has two of its three changes at the beginning of
[T0, Ti+1]. On the contrary, P3 has no change at the beginning but three changes
toward the end. Through these historical change patterns we could determine
the ascending order of their change probabilities as P1 < P2 < P3.

P1

P3

P2

page is changed

......

......

......

T1 T2T0 Ti Ti+1

Fig. 3. Three webpages with different
change patterns over time. Considering
only their latest updates will lead to a
misconception that they have a similar
change pattern.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8

Number of slashes

P
er

ce
nt

ag
e

.com .edu .gov .org .net .mil

Fig. 4. Distribution of webpages by the
number of slashes in the URLs for each
top-level domain. Majority of URLs
have depth smaller than 7.

Efficiently Detecting Webpage Updates Using Samples 293

We model the change of the webpages using a Poisson process [18], which
has been shown effective in experiments with real webpages [4,10]. The Poisson
process is often used to model a sequence of events that happen randomly and
independently at a fixed rate over time. In the Poisson process, the time to the
next event is exponentially distributed. In our scenario it is reasonable to assume
the updates of a webpage p follows a Poisson process with its own change rate λp.
This means a webpage changes on its own, independent of other pages. This
assumption may not strictly be true but is a workable first approximation. Note
that the change rate may differ from page to page. For each webpage p, let T
denote the time when the next event occurs as a Poisson process with change
rate λp. Then, we obtain the probability that p changes in the interval (o, t] by
integrating the probability density function:

Pr{T ≤ t} =

∫ t

0
fp(t)dt =

∫ t

0
λpe−λptdt = 1 − e−λpt. (4)

We set the parameter download probability ϕ to be Pr{T ≤ t} where t = 1,
which means one download cycle. Therefore,

ϕ = Pr{T ≤ 1} = 1 − e−λp . (5)

Obviously, ϕ depends on the parameter λp. We compute λp based on the change
history of the webpage p within n download cycles:

λp =

∑n
i=1 I(Li[p])

n
. (6)

where I(pi) is an indicator function defined as follows:

I(Li[p]) =

{
1 if Li[p] �= Li−1[p],
0 otherwise.

(7)

Next, in order to take into account the distribution of change events, we attach
different importance to changes occurred in different download cycles. To for-
malize this, we extend the definition of λp in Equation (6) by assigning a weight
wi to each download cycle and define:

λp =

∑n
i=1 wi · I(Li[p])

n
,

n∑

1

wi = 1. (8)

Typically, wa < wb is satisfied when a < b, which indicates that changes occurred
in the more recent download cycles are more important. When all wi are equal,
Equation (8) reduces to Equation (6). We refer to Equation (6) as the History-
Adaptive strategy (HA), and refer to Equation (8) as the Weighted-History–
Adaptive strategy (WHA).

5.3 Adapting to Webpage Popularity

PageRank [15] is a probability distribution to indicate the likelihood that a
person randomly traversing the Web will eventually arrive at any particular

294 Q. Tan et al.

page. The PageRank of a webpage, pi, is calculated as follows:

PR(pi) =
1 − d

N
+ d

∑

pj∈IL(pi)

PR(pj)

OL(pj)
. (9)

where p1, p2, ..., pN are the webpages on the Web, IL(pi) is the set of pages that
link to pi, OL(pj) is the number of out-going links on page pj , and N is the total
number of webpages in the local repository.

Intuitively, PageRank is a good estimator for the popularity of a webpage.
As the third adaptive strategy, we propose to set ϕ for each sampled web-
page in proportion to its popularity as reflected in the PageRank. Note that
under this definition, whether to crawl and download the neighbors of a sample
is independent of whether the sample has changed. We refer to this as the
PageRank-Adaptive strategy (PRA).

6 Evaluation and Discussion

We carried out extensive experiments on a large dataset to evaluate the sampling-
based update detection algorithm and the various parameter settings we proposed.

6.1 Data Collection and Evaluation Metrics

All of our experiments were carried out on a collection of real webpages from the
WebArchive project1. To obtain the historical snapshots of these webpages, we
implemented a special spider to crawl the Internet Archive2, which has archived
more than 55 billion webpages since 1996. Excluding the webpages that were not
available in the Internet Archive, we eventually constructed a dataset containing
approximately 300,000 distinct webpages that belong to more than 210 websites,
with their historical snapshots dated between Oct. 2002 and Oct. 2003. We have
the largest number of websites in the .com domain and the largest number of
webpages in the .edu domain (see Table 1 for the distribution by different top-
level domains). Overall, our dataset is diverse enough to evaluate our proposed
algorithms.

Figure 4 shows the depth distribution of the crawled webpages, which is
measured in the number of slashes in the URLs. We can see from this figure
that the majority of URLs have depth of 2, 3, and 4, while only a few URLs
have depth of 7 and 8. Based on this observation, we tuned the download depth
d from -6 to 8 for DB in our experiments.

The following two metrics were used in the evaluation of our proposals.

– ChangeRatio: The fraction of downloaded and changed webpages Dc
i over

the total number of downloaded webpages Di in the ith download cycle [12].
In our experiments we measure the per-download-cycle ChangeRatio Ci as
well as the average ChangeRatio C which is the mean Ci over all download
cycles.

1 http://webarchive.cs.ucla.edu/
2 http://www.archive.org/

Efficiently Detecting Webpage Updates Using Samples 295

Table 1. Distribution of top-level domains in the collected data; .com and .edu together
account for more than 70% of the webpages

domain total unique websites avg urls per site

.edu 107204 (37.7%) 68 1576.5

.com 100725 (35.4%) 92 1094.8

.gov 38696 (13.6%) 23 1682.4

.org 22391 (7.9%) 16 1399.4

.net 12972 (4.6%) 12 1081.0

.mil 1998 (0.7%) 1 1998.0

Sum 284692 (including 706 misc. URLs)

– Weighted ChangeRatio: The above general ChangeRatio metrics treat every
webpage as equally important. However, in practice some webpages may be
more popular than others so that once they have changed, such change has a
higher priority to be detected by the crawler. Motivated by this observation,
we also introduce a Weighted ChangeRatio [7] by giving different weights wp

to the changed pages, formally defined as

Cw
i =

∑

p∈Di

wp · I1(p)

|Di|
(10)

in which I1(p) is an indicator function:

I1(p) =

{
1 if p ∈ Dc

i ,
0 otherwise.

(11)

In our experiments, we use a webpage’s PageRank [15] as an indicator for
the popularity of the webpage.

6.2 Results and Discussion

We now present our findings in applying the sampling-based algorithm on the
aforementioned data collection. For all of the experiments, the download cycle is
set incrementally from 2 weeks, 4 weeks, to 8 weeks, and the download resources
R is set to be 25K, 50K, and 100K. Note that at the end of each download cycle,
our crawler chooses some webpages to download, each of which is downloaded
only once during one cycle. When a webpage is crawled, the corresponding
historical snapshot with the same time-stamp from the Wayback Machine is
checked whether has changed or not; if there is no exact match in the archive,
the version with the closest time-stamp is checked instead.

Comparison of downloading policies. To compare the performance under
different definitions of download granularity d, we implemented our proposals,
LB, DB, and CB, with the download probability ϕ set to 1 for the changed
samples and 0 for the unchanged ones. We tuned d from -6 to 8. We present here

296 Q. Tan et al.

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

Download Granularity

A
v
e
r
a
g
e
 C
h
a
n
g
e
R
a
ti
o

DB LB CB

Fig. 5. Comparison of three downloading
policies in C

0

0.1

0.2

0.3

0.4

0.5

Rand RR GSB DB LB CB

Download Policy

A
v
e
r
a
g
e
 C
h
a
n
g
e
R
a
ti
o

Fig. 6. Comparison of existing download-
ing policies with ours

only the setting for the download cycle to be 8 weeks and the download resource
limit to be 25,000 webpages, because the results under other settings are similar.
Later on, we will show more details with the different settings of download cycle
and resources.

As illustrated in Figure 5, overall DB outperforms LB in terms of C. Based on
the empirical results, it is interesting to see that following the hyperlinks might
not be a good strategy for the crawler to discover newly updated webpages, as
webpages with similar change patterns are put in the same or a nearby directory
rather than linked with each other. Compared with CB, however, DB is less
effective when 0 ≤ d ≤ 3. As DB is much more efficient than CB, in the following
experiments, we fixed thef downloading policy as DB to further investigate in
detail the other facets of the parameter space.

We also compared our proposed algorithm with three other existing download-
ing policies. First, we used the Random Node Sampling (RNS) method proposed
in [21] as a baseline in our comparison. With the RNS method, the crawler
uniformly re-downloads random webpages in each download cycle. Second, we in-
cluded the round-robin (RR) method for comparison, which is currently adopted
by many systems [5,19] because it is simple to implement. In RR, the webpages
are downloaded in a round-robin fashion in each download cycle. The advantage
of this method is that every page is guaranteed to be downloaded within a certain
period of time. Finally, we implemented the greedy sampling-based technique
(GSB) over site level, setting the sample size to be

√
Nr as proposed in [7]. Here

N is the average number of pages in all sites, and r is the ratio of download
resources to the total number of webpages in the local repository. For our
approaches, we use the optimal setting of d, i.e., dDB = 1, dLB = 3, and dCB = 0.

We present the results in Figure 6. From this figure we can see that our
approaches all perform better compared to RNS, RR, and GSB. More specifically,
RR has similar performance as the baseline aglorithm, RNS. The performance
of GSB is better than RNS and RR. Our sampling-based algorithm can detect
about three times as many changed webpages as RNS/RR, and about twice as
many changed webpages as GSB, which is a sampling-based approach at a site
level.

Efficiently Detecting Webpage Updates Using Samples 297

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

Download Granularity

A
v
e
r
a
g
e
 C
h
a
n
g
e
R
a
ti
o

R=25,000 R=50,000 R=100,000

(a) Cycle = 2 weeks

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

Download Granularity

A
v
e
r
a
g
e
 C
h
a
n
g
e
R
a
ti
o

R=25,000 R=50,000 R=100,000

(b) Cycle = 4 weeks

0
0.05

0.1
0.15

0.2

0.25
0.3

0.35
0.4

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

Download Granularity

A
v
e
ra
g
e
 C
h
a
n
g
e
R
a
ti
o

R=25,000 R=50,000 R=100,000

(c) Cycle = 8 weeks

Fig. 7. ChangeRatio as a function of download depth d under different settings of
download cycles and download resources R. Overall, a smaller download granularity
and fewer download resources perform the best in a longer download cycle.

Effect of download granularity. Figure 5 has already shown C is strongly
influenced by the download granularity d. For all the downloading policies, C
goes up when d increases, and it drops after reaching its peak at d = dopt.
Empirically, dopt = [0, 1] for DB, dopt = 3 for LB, and dopt = 0 for CB. This
indicates that given a changed sample, the most likely changed webpages are
usually stored in the same or the upper directory of the sample, or are within
three hops away following the out-links of the changed sample. CB has the
highest C when dCB = 0 because the webpages within the same cluster have
similar change pattern. Then the C largely decreases when dCB > 0. This is
because dCB is defined at a cluster level, which contains average 3,000 webpages
in our experiments. Thus, the change of dCB leads to significant descrease of
C when dCB > 0. Moreover, for both LB and DB, C with positive d is higher
than that of negative d. This means that given a changed sample, changed pages
can be found in the sample’s upper directories more than lower ones, and its
out-links more than in-links.

The aforementioned results were obtained by setting the download cycle to
be 8 weeks and the download resources to be 25,000 webpages. Next, we further
evaluate the influence of d by varying the other two parameters: download
cycle and download resources. We still assign the download probability ϕ as
in Equation (3) (ϕ = 1 for the changed samples and 0 for the unchanged ones).
Figure 7 shows C as a function of d under different settings of the download cycle
and the download resource R. From the graph, we can confirm the trend that we
discussed in Figure 5. Furthermore, there are three observations. First, the longer
the download cycle, the better performance in terms of Ci. This can be explained
by the fact that more webpages are likely to have changed in a longer timeframe.
Second, the shapes of the three Ci curves under the same settings are roughly the
same, indicating that our proposal could be potentially applied toward crawlers
with different download abilities and scalabilities. Third, it appears that a smaller
R produces better results. This shows that our sampling-based algorithm works
fine even if R is limited.

Impact of adaptive download probability. We present our findings on the
impact of adaptively tuning the download probability ϕ. We tuned the download

298 Q. Tan et al.

0.005

0.01

0.015

0.02

0.025

0.03

0 1 2 3 4 5 6 7 8

Download Granularity

W
e
ig
h
te
d
 C
h
a
n
g
e
R
a
ti
o DB PRB Rand

Fig. 8. Comparison of the adaptive
PageRank-adaptive strategy and the
non-adaptive DB in Cw

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 3 5 7 9 11 13 15 17 19 21 23

Download Cycle

C
h
a
n
g
e
R
a
ti
o

RNS DB

HA WHA

Fig. 9. Comparison of the long-term
performance over 24 cycles. Ci of the
two history-adaptive strategies eventually
outperformed that of the DB.

probability ϕ with the following three adaptive strategies: PRA, HA, and WHA.
For PRA, we retrieved from CPAN Google PageRank API3 to obtain each page’s
PageRank, which is an integer between 0 and 10. We then set ϕ to be 1/11, 2/11,
. . ., and 11/11, for webpages with PageRank of 0, 1, ..., 10, respectively. For HA
and WHA, we assign ϕ according to Equation (5). Specifically for WHA, to
calculate the weighted λp according to Equation (8), we assign the weight wi for
the ith download cycle as wi = i/(1 + ... + n) where n denotes the total number
of cycles the crawler has processed thus far.

We compared these adaptive strategies with DB. Here we present the results
of a typical setting, i.e., the download cycle is set to 2 weeks, the download
resources are set to 25,000 webpages, and d is positive. Figure 8 shows the
comparison results measured in Cw

i . We see that PRA clearly outperforms DB
by almost 100% in Cw

i .
From Figure 9, we see that at the beginning, the two history-adaptive strate-

gies that take into account the webpages’ change history performed worse than
DB. Specifically, from cycle 2 to cycle 5, their ChangeRatios were similar or even
slightly worse than the random sampling policy. However, as time went by and
more information about the change history could be gathered, the ChangeRatios
for the two history-adaptive strategies gradually became higher in the following
download cycles, and eventually outperformed DB. This reconfirms that in the
long-run, algorithms that take into account the past changes of the webpages
will have a better prediction about future changes to these webpages. Between
the two history-adaptive strategies, WHA performed better than HA. Moreover,
WHA outperformed DB in download cycle 16, earlier than HA did in cycle 18.
These results indicate that a crawler which takes into account the change history
of the webpages should pay more attention to the more recent changes than the
older ones. Toward the right-hand side of the figure, the difference in Chang-
eRatio among the three investigated adaptive strategies became less significant.
We believe this is because the 24 download cycles were still not long enough for
the two history-adaptive strategies to demonstrate their advantages over DB.

3 http://search.cpan.org/

Efficiently Detecting Webpage Updates Using Samples 299

We plan to explore the history-adaptive strategy over a longer timeframe in our
future work.

7 Conclusion

In this paper, we studied a challenging problem in automatic Web content
archiving: how to make the local repository as up-to-date as possible under
a fixed amount of available download resources? Motivated by the observation
that relevant webpages tend to have similar change patterns, we proposed a
sampling-based algorithm which uses the changed samples as the seeds to dis-
cover more changed webpages. We investigated in detail the parameter space and
conducted extensive experiments to evaluate our proposals. We found that given
a changed sample, the most likely changed webpages are usually stored in the
same cluster as that of the changed sample. And the PageRank adaptive strategy
is good at discovering changes to the popular webpages. Finally, for long-term
performance, the weighted-history–adaptive strategy will outperform the others
once the crawler has acquired sufficient information about the historical change
patterns.

References

1. Barbosa, L., Salgado, A.C., de Carvalho, F., Robin, J., Freire, J.: Looking at both
the present and the past to efficiently update replicas of web content. In: WIDM
’05, pp. 75–80 (2005)

2. Brandman, O., Cho, J., Garcia-Molina, H., Shivakumar, N.: Crawler-friendly web
servers. In: PAWS ’00 (2000)

3. Brewington, B.E., Cybenko, G.: How dynamic is the Web? In: WWW ’00 (2000)
4. Brewington, B.E., Cybenko, G.: Keeping up with the changing web. Computer 33,

52–58 (2000)
5. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.

In: WWW’98, pp. 107–117 (1998)
6. Castillo, C.: Effective web crawling. ACM SIGIR Forum 39, 55–56 (2005)
7. Cho, J., Ntoulas, A.: Effective change detection using sampling. In: Bressan, S.,

Chaudhri, A.B., Lee, M.L., Yu, J.X., Lacroix, Z. (eds.) CAiSE 2002 and VLDB
2002. LNCS, vol. 2590, Springer, Heidelberg (2003)

8. Cho, J., Garcia-Molina, H.: Synchronizing a database to improve freshness. In:
SIGMOD ’00, pp. 117–128 (2000)

9. Cho, J., Garcia-Molina, H.: The evolution of the web and implications for an
incremental crawler. In: VLDB ’00, pp. 200–209 (2000)

10. Cho, J., Garcia-Molina, H.: Effective page refresh policies for web crawlers. ACM
TODS 28, 390–426 (2003)

11. Davison, B.: Topical locality in the web. In: SIGIR ’00 (2000)
12. Douglis, F., Feldmann, A., Krishnamurthy, B., Mogul, J.C.: Rate of change and

other metrics: a live study of the world wide web. In: USENIX Symposium on
Internet Tech. and Syst. (1997)

13. Edwards, J., McCurley, K., Tomlin, J.: An adaptive model for optimizing
performance of an incremental web crawler. In: WWW ’01, pp. 106–113 (2001)

300 Q. Tan et al.

14. Fetterly, D., Manasse, M., Najork, M., Wiener, J.L.: A large-scale study of the
evolution of web pages. In: WWW ’04, Budapest, Hungary (2004)

15. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford Digital Library Technologies
Project (1998)

16. Ntoulas, A., Cho, J., Olston, C.: What’s new on the web?: the evolution of the web
from a search engine perspective. In: WWW ’04, pp. 1–12 (2004)

17. Selberg, E., Etzioni, O.: On the instability of web search engines. In: 6th Recherche
dInformations Assistee par Ordinateur (RIAO) Conference (2000)

18. Grimmett, G., Stirzaker, D.: Probability and Random Processes, 2nd edn. Oxford
University Press, Oxford, England (1992)

19. Heydon, A., Najork, M.: Mercator: A scalable, extensible web crawler. World Wide
Web 2, 219–229 (1999)

20. Karypis, G., Han, E.H.S.: Fast supervised dimensionality reduction algorithm with
applications to document categorization & retrieval. In: CIKM ’00, pp. 12–19
(2000)

21. Leskovec, J., Faloutsos, C.: Sampling from large graphs. In: KDD ’06, Philadelphia,
USA, pp. 631–636 (2006)

22. Pandey, S., Olston, C.: User-centric web crawling. In: WWW ’05, pp. 401–411
(2005)

23. Wolf, J.L., Squillante, M.S., Yu, P.S., Sethuraman, J., Ozsen, L.: Optimal crawling
strategies for web search engines. In: WWW ’02. pp. 136–147 (2002)

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 301 – 305, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Auto-Generating Test Sequences for Web Applications*

Hongwei Zeng and Huaikou Miao

School of Computer Engineering and Science, Shanghai University, 200072, China
zenghongwei@shu.edu.cn, hkmiao@shu.edu.cn

Abstract. We propose a formal model, representing the navigation behavior of a
Web application as the Kripke structure, and an approach to test generation. The
behavior model can be constructed from the object structure of a Web application
and then a set of test sequences is derived automatically from the behavior model
with respect to some coverage criteria for the object structure by using the model
checking’s capability to construct counter-examples.

Keywords: Web application, test generation, model checking, consistency
relation.

1 Motivation and Related Work

With such pervasive and rapid growth of web applications, it becomes increasingly
important to ensure the correctness of Web applications through a validation and veri-
fication process. However, in today’s fast-paced Web application development culture
due to market pressure, testing usually falls by the wayside in practice simply because it
is perceived as being too time-consuming and lacking a significant payoff. Automated
testing has got considerable attention in the academic and industrial communities.
Model checking, an automatic, model-based, property-verification approach, has the
advantage to provide diagnostic sequences (called counter-examples) in the stack as
soon as violations of properties are detected, and so provides an automatic way to
generate test sequences.

This paper addresses automated test generation of Web applications. We propose a
formal model that represents the navigation behavior of a Web application and can be
constructed from the object structure of the Web application. Then model checking is
performed to generate automatically test sequences.

Testing Web applications is a relatively new research direction. Haydar et al.[1]
presented an approach for modeling and verifying a web application using communi-
cating finite automata. Donini et al.[2] partitioned the usual Kripke structure into
windows, links, pages and actions to support for automated verification of a web ap-
plication. Both approaches aim at verification of a Web application, while our approach
focus on testing.

* This work is supported by National Science Foundation of China (grant No. 60673115) and

National 973 Program (2002CB312001).

302 H. Zeng and H. Miao

Kung[3] modeled a web application in terms of the object, behavior, and structured
perspectives and derived automatically both structural and behavioral test cases. The
method proposed in [4] was based on a UML model and considered the testing and
validation of the developed web system. Andrews et al. [5] used a hierarchical FSM and
proposed a system-level testing technique that combines test generation based on FSM
with constraints. Differing from those testing approaches, our approach enables the use
of model checking and the automation of test case generation. Connections between
test generation and model checking has been considered previously in the literature
[6-9]. To our knowledge, however, no work applied this approach to Web application
testing.

2 Modeling Web Applications

A typical Web application comprises a collection of Web pages and associated soft-
ware components. A page is displayed to the user, and the navigation links toward other
pages. Software components may be ASPs or JSPs, CGIs, Java Beans, even remote
web services etc. There are multiple types of relationships among pages and software
components. A link from page to page can be enabled by a attribute href; Frame and
frameset elements make a page consist of several other pages; Pages can call compo-
nents by sending requests enabled by href attributes or action attributes of Forms, and
software components can build dynamically new pages as responses to the requests and
so on.

Aiming at the test of the external behavior of a Web application from client’s point
of view, we consider only Web pages, software components interacting directly with
the Web pages, and their relationships. An Object Relation Diagram (ORD) [3] is
employed to represent the object structure of a Web application.

Definition 1 An WAO = (V, L, E) is a directed graph, where V = Vpage U Vcomp such
that Vpage is a set of Web pages and Vcomp is a set of software components that accept
requests from Web pages or be able to build dynamic Web pages, L= {consist of, link,
call, build} includes four labels representing the relationship types, and E ⊆ V x L x V.

To apply model checking to generate automatically test sequences of Web applica-
tions, we choose NuSMV[10] as our model checker and propose a formal approach to
modeling Web applications as a Kripke structure.

Definition 2 The behavior model of a Web application, denoted by WAB, is a
quadruple (S, R, L, S0). S = Spage U Sreq is a finite set of states where Spage is a set of Web
pages and Sreq is a set of requests sent to the application. S0 ⊆ S is the set of initial states.
Reasonably, a blank page is used as the only initial state in S0 where the request for the
home page of a Web application can be sent. R ⊆ S × S is a transition relation such that
for each s ∈ S there is a state s’ ∈ S satisfying (s, s’) ∈ R. L: S→2AP is a state labeling
function that labels each state with a set of atomic propositions (AP) that are true.

Here, Web pages and requests are considered as states of the Kripke structure. Re-
quests can result from typing in of a URL in the browser’s address bar, clicking on
hyperlinks, submitting forms and initiating frames with their src attributes. AP includes
those atomic propositions specifying whether requests are enabled in Web page states

 Auto-Generating Test Sequences for Web Applications 303

or triggered in request states. For a request r, link-r, call-r and src-r denote ‘r is en-
abled’ by a hyperlink to a Web page, a call (a form action or a hyperlink to a software
component) and the src attribute in a frame respectively, and tri-r means ‘r is trig-
gered’. In addition, each Web page has an additional atomic proposition specifying the
name of the corresponding page, denoted by prefixing page- to the page name.

The algorithm that constructs WAB from WAO is outlined briefly as follows:

1. Constructs the initial state s0 with atomic propositions page-blank and link-<home
page>, state s1 with tri-<home page> and state s2 with page-<home page>, and then
construct two transitions (s0, s1) and (s1, s2).

2. ∀v ∈Vpage, constructs a state s ∈ Spage with page-v, ∀v ∈Vcomp, constructs a state s ∈
Sreq with tri-v.

3. For any (v, l, v’) ∈ E in WAO, we assume that s and s’ are states of WAB corre-
sponding to node v and v’ respectively. For edge (v, consist of, v’), a state sn with
tri-v’ and two transitions (s, sn) and (sn, s’) are created, and src-v’ is added to state s.
For edge (v, link, v’) is converted similar to edge (v, consist of, v’), but link-v’ instead
of src-v’ is added to state s. For edge (v, call, v’), a transition (s, s’) is created, and
call-v’ is added to state s. For edge (v, build, v’), only a transition (s, s’) needs to be
created.

3 Generating Trap Properties

The key to the generation of test sequences by means of model checking lies in con-
structing a set of trap properties[2] that will cause the violation of model checking and
output of counter-examples. Similar to adequacy criteria, the completeness of the trap
properties must be considered. In this context, a set of trap properties is complete if it
includes all trap properties derived from the WAO of a Web application under test in
terms of consistency relation. Typically, an application is considered consistent with its
specification when it implements at least what is specified.

Definition 3 A Web application is consistent with its WAO if (i) it can reach all ob-
jects specified in WAO, and (ii) it implements all relationships specified in WAO.

The first criterion requires that each node of WAO has a corresponding reachable
state in WAB. To generate a test sequence for a node, a trap node property, denoting that
there is not any path reachable to the state for the node, needs to be defined.

For each Web page v, there exists a state with the name of the page in WAB, i.e.,
page-v holds. The trap node property is defined in CTL formula as

AG !page-v (1)

However, a component acts as a bridge which receives a request from a Web page
and generates another new page as the response to the request. The trap node property
for a component node v requires that no any request for the component is triggered
actually, which is expressed as:

AG !tri- v (2)

304 H. Zeng and H. Miao

The second criterion requires that all edges in WAO should be tested to check
whether or not all legal navigations are implemented. Therefore, trap properties for
each edge of WAO are generated. The generation algorithm of trap edge properties is
outlined briefly as follows:
− For each edge (v, consist of, v’) where both v and v’ are Web page nodes, three states

need to be considered in determining if the edge is implemented at least once in
WAB: the first state denotes that v with a frame page v’, i.e., page-v and src-v’ hold,
the second state satisfying tri-v’ denotes that a request for v’ is sent out, and the third
state in which page-v’ holds, meaning that the page v’ is obtained and rendered. As
the result, we define a trap edge property in the CTL formula:

AG!((page-v ∧ src-v’) ∧ EX (tri-v’ ∧ EX page-v’)) (3)

− For each edge (v, link, v’), the trap edge property can be defined similarly but link-v’
instead of src-v’.

AG! ((page-v ∧ link-v’) ∧ EX (tri-v’ ∧ EX page-v’)) (4)

− For each edge (v, call, v’) where v is a Web page node and v’ is a component node,
two states need to be considered in determining if the edge is implemented at least
once in WAB: the state in which page-v and call-v’ hold, and the state satisfying
tri-v’. The trap edge property is defined as:

AG! ((page-v ∧ call-v’) ∧ EX tri-v’) (5)

− For each edge (v, build, v’) where v is a component node and v’ is a Web page node,
two states need to be considered in determining if the edge is implemented at least
once in WAB: the state in which tri-v holds, and the state satisfying page-v’, The
corresponding trap edge property is expressed as:

AG! (tri-v ∧ EX page-v’) (6)

4 Conclusion

This paper proposes a formal approach to test generation of Web applications by using
the model checking technique. We define an implementation to be consistent with its
design if the implementation does what it should do. Then, a collection of trap proper-
ties with respect to consistency relation is generated automatically from the object
structure by using node and edge coverage criteria. The generated trap properties are
model checked on the behavior model to reveal its inconsistencies illustrated by
counter-examples that are used to form test sequences.

Now, we only consider if a Web application does what it should do. It is clearly a
fault, however, if an application implements an unspecified behavior. It is necessary to
complement our testing approach with verification.

 Auto-Generating Test Sequences for Web Applications 305

References

[1] Haydar, M., Petrenko, A., Sahraoui, H.: Formal Verification of Web Applications Modeled
by Communicating Automata. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004.
LNCS, vol. 3235, pp. 115–132. Springer, Heidelberg (2004)

[2] Donini, F.M., Mongiello, M., Ruta, M., Totaro, R.: A Model Checking-based Method for
Verifying Web Application Design. Electronic Notes in Theoretical Computer Sci-
ence 151(2), 19–32 (2006)

[3] Kung, D.C., Liu, C.H., Hsia, P.: An Object-Oriented Web Test Model for Testing Web
Applications. In (APAQS 2000). In: Proceedings of the 1st Asia-Pacific Conference on
Web Applications, pp. 111–120. IEEE Press, New York (2000)

[4] Tonella, P., Ricca, F.: Testing processes of web applications. Annals of software engi-
neering 14(1), 93–114 (2002)

[5] Andrews, A., Offutt, J., Alexander, R.: Testing Web Applications by Modeling with FSMs.
Software Systems and Modeling 4(3), 326–345 (2005)

[6] Gargantini, A., Heitmeyer, C.L.: Using Model Checking to Generate Tests from Re-
quirements Specifications. In: ESEC/FSE99. Proceedings of Joint 7th European Software
Engineering Conference and 7th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, Toulouse, France, pp. 146–162. ACM Press, NewYork
(1999)

[7] Heimdahl, M.P.E., Rayadurgam, S., Visser, W., Devaraj, G., Gao, J.: Auto-generating Test
Sequences Using Model Checkers: A Case Study. In: Petrenko, A., Ulrich, A. (eds.)
FATES 2003. LNCS, vol. 2931, pp. 42–59. Springer, Heidelberg (2004)

[8] Hong, H.S., Lee, I., Sokolsky, O., Cha, S.D.: Automatic Test Generation from Statecharts
Using Model Checking. In: Proceedings of the 1st International Workshop on Formal
Approaches to Testing of Software (FATES ’01), Aalborg, Denmark, pp. 15–30 (August
2001)

[9] Belli, F., Güldali, B.: Software Testing via Model Checking. In: Aykanat, C., Dayar, T.,
Körpeoğlu, İ. (eds.) ISCIS 2004. LNCS, vol. 3280, pp. 907–916. Springer, Heidelberg
(2004)

[10] McMillan, K.L., “The SMV System for SMV version 2.5.4 (October, 2006) http://
www.cs.cmu.edu/ modelcheck/smv/smvmanual.ps

A Survey of Analysis Models and Methods in

Website Verification and Testing

Manar H. Alalfi, James R. Cordy, and Thomas R. Dean

School of Computing, Queens University
Kingston, Ontario, Canada

{alalfi,cordy,dean}@cs.queensu.ca

Abstract. Models are considered an essential step in capturing system
behavior and simplifying the analysis required to check or improve the
quality of software. Verification and testing of websites requires effective
modelling techniques that address the specific challenges of web applica-
tions (WAs). In this study we survey 21 different modelling methods used
in website verification and testing. Based on our survey, a categorization,
comparison and evaluation for such models and methods is provided.

1 Introduction

Web applications (WAs) are evolving rapidly, using many new technologies, lan-
guages and programming models to increase interactivity and usability. This
inherent complexity brings challenges for modelling, analysis, verification and
testing. Some of these challenges are:

– WAs interact with many components that run on diverse hardware and soft-
ware platforms. The integration of such components is extremely loose and
dynamically coupled, which provides powerful abstraction capabilities to the
developers, but makes analysis for testing and verification extremely difficult.

– WAs are heavily dynamic, due to dynamically generated components, dy-
namic interaction among clients and servers, and continual change in web
technologies.

– WAs may have several entry points, and users can engage in complicated in-
teractions that the WA cannot prevent. WAs are often interfaced to database
systems and provide the same data to different users. In these cases, access
control mechanisms become an important requirement for safe and secure
access to WA resources, and the process of implementing and applying such
rules is considered a great challenge.

– Some information in WAs is transmitted using hidden fields and special chan-
nels, due to the stateless behavior of the HTTP protocol. It’s a challenge to
provide a precise analysis for WAs that takes this information into account.

Most of the early literature concentrates on the process of modelling the design
of WAs, using forward engineering-based methodologies designed to simplify
the process of building a highly interactive WAs. Other research uses reverse

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 306–311, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Survey of Analysis Models and Methods 307

engineering to extract models from existing WAs in order to support their main-
tenance and evolution. This survey studies a range of different analysis models
that are currently applied in the field of verification and testing of WAs. Design
modelling methodologies are outside the scope of our study.

While reviewing different methods, we found that some methods focus on
modelling the navigational aspects of WAs. Others concentrate on solving prob-
lems arising from user interaction with the browser in a way that affects the
underlying business process. Still others are interested in dealing with static and
dynamic behavior. In this paper, we attempt to categorize these methods ac-
cording to the level of WA modelling - navigation, behavior, and content. In
each category, methods are sorted according to the kind of notation employed.
A comparison and evaluation of 21 different methods is described. The rest of
this paper is organized as follows: Section 2 lists the desirable properties of WA
modelling. Section 3 describes the set of comparison and categorization criteria
used in our study, and gives a comparative analysis of 21 different modelling
methods. Conclusions and open problems are discussed in Section 4.

2 Desirable Properties for Website Modelling

We can think of WAs from three orthogonal perspectives: web navigation, web
content and web behavior. Desirable properties of WAs can fall within these
three dimensions and can be classified into:

– Static navigation properties. Most of the early literature on web analysis
and modelling concentrates on dealing with static links, treating WAs as
hypermedia applications. It addresses checking of properties such as broken
links, reachability, consistency of frame structure, and other features related
to estimating the cost of navigation, such as longest path analysis.

– Dynamic navigation properties. This kind of analysis focuses on aspects that
make the navigation dynamic, where the same link may lead to different
pages depending on given inputs. The inputs could be user inputs transferred
via forms, or system inputs depending on a state in the server such as date,
time, session information, access control information or hidden fields.

– Interaction navigation properties. This kind of analysis focuses on properties
that are related to user navigation that happens outside the control of the
WA, such as user interaction with the browser. This includes features such
as the back button, the forward button, and URL rewriting.

– Static content properties. Consistency of the web page content with respect
to syntax and semantics.

– Dynamic content properties. This analysis requires the ability to check the
syntax and semantics of dynamically generated content that results from the
execution of scripts by the server. Some technologies are able to generate new
connections, which may be to a remote site. In addition, new web components
could be generated at run time, and these must also be analyzed.

– Security properties. This issue is related to access control mechanisms that
can be employed on the web content or web links. It can also involve the

308 M.H. Alalfi, J.R. Cordy, and T.R. Dean

backend when the database contains data reserved to specific users. These
properties are also tied to session control mechanisms.

– Instruction processing properties. This includes client- and server-side exe-
cution. Client-side execution is any process that changes the state of the ap-
plication without communication with the web server. Server-side execution
refers to all instructions processed on a web server in response to a client’s
request. A modeling method should to be able to model these features and
recognize whether execution is done on the server or on the client.

3 Comparison and Categorization Criteria

In our study we reviewed 21 different modelling methods that are applied in the
field of testing and verification of WAs. Following is a brief description of the
main comparison criteria used in our review:

1. Feature Type. We note the WA features that are being captured by the
proposed models, and the properties that the modeling methods are capable
of checking. These features are categorized into:

– Static Features. This includes static properties of WAs, and is mainly
concerned with links that connect an HTML page to other HTML pages.
When the user clicks on a static button or link, a request is sent to the
server to fetch a page. The server responds by retrieving the required
page from its storage and sending it back to the client. Properties to be
checked in this category relate to static navigation and static content.

– Dynamic Features. These features include both dynamic links and dy-
namic content. Dynamic links describe the connection between HTML
pages and server code that must to be executed to generate the required
information, build it into an HTML page, and return it to the client.
The processing done by the server may depend on user or system inputs.
User inputs are usually sent by filling a form or by hidden fields in the
HTTP request. System inputs depend on the server state, such as server
time, or on interaction with other resources such as database servers and
web objects. The output could be constructed as new content, or as a
link to a new HTML page. Properties in this category are those related
to dynamic navigation properties, dynamic content properties, security
properties, and instruction processing properties.

– Interaction Features. This includes properties related to user interaction
with the browser. The browser’s influence on the navigation behavior of
the WAs should be taken into consideration while modelling or analyzing
WAs, as the web browser provides the interface to the WAs, and can
change the navigation behavior while a user browses a WA.

2. Notation. Modeling methods use different notations; some of them are for-
mal, while others are either semi- or informal. The main notation used by
each method is noted.

A Survey of Analysis Models and Methods 309

Table 1. Summary of Methods Categorized by Modelling Level

Method
Name

Feature
type

Notation Level Application Source
code
required

Model
optimization

Tool support

GFKF03[14] Interaction Abstract model, use
lambda calculus

Interaction Behavior WA interaction with
the browser

No No Prototype

LK04 [3] Interaction WebCFG Interaction Behavior Verification Yes Yes Implement a
model checker

CZ04 [20] Interaction
+Static

Labeled transition Interaction + static
 (Navigations)

Testing and verification No Yes None

 BA05 [2] Interaction UML(WS structure)
OCL (behavior of
the model)

Interaction Behavior Verification for user
interaction(Amazon +
Orbitz bug)

No Yes UML2Alloy

ABF05 [16] Static Partial rewriting Content WS verification
Tool(GVerdi)

Yes No GVerdi

Con99 [9] Static Extended UML Structure
(Navigation)

Analysis No No Rational Rose
Tools

BMT04 [22] Static +
dynamic

UML-meta Model +
UML state diagram

 Structure
 (Navigation)

Analysis & Testing Yes No WebUML

RT00 [7] Static Directed graph Structure
(Navigation)

Analysis + can be use
for verification &
testing

No No ReWeb

dA01 [10]
 and
dAHM01[26]

Static Directed graph
With Webnodes

Structure
(Navigation)

Verification No No MCWeb

SDMP02 [5] Static +
dynamic

Web graph Structure
(Navigation)

WA design Verification No No AnWeb

SDM+05[6]
and
CMRT06 [23]

Static +
dynamic

(WAG)WA graph +
extension to Kripke
structure

Structure
(Navigation)

WA design Verification No No WAVer + SMV
tools

WP03 [25] Static +
dynamic

Extended
StateCharts

 Structure
(Navigation)

Design
Verification

Yes Yes SWCEditor

HH06 [19]
FARNav

Static +
dynamic

StateCharts Adaptive
Navigation

design and
implementation
Verification + testing

No Yes Existing SVM
model-checking
tools

SM03 [12] Static +
dynamic

SDL Structure
(Navigation)

Testing and verification Yes No Existing SDL
Support tool

KLH00 [21]
WTM

Static +
dynamic

Control flow graph,
data flow graph, and
finite state machines
OSD(object state
diagram)

Static and dynamic
Behavior, Dynamic
Navigation

Testing Yes No None

BFG02 [11]
Veriweb

static +
dynamic

Directed graph Navigation +
Behavior

WS testing Yes Yes VeriSoft + web
Navigator +
ChoiceFinder +
SmartProfiles

HPS04 [8] Static+
dynamic

System of
communicating
automata

Navigation +
Behavior

WA Verification No Yes Fame Work with
GUI + network
monitoring tool +
analysis tool

AOA05 [17]
FSMWeb

static +
dynamic

hierarchies of Finite
State Machines
(FSM)

Navigation +
Behavior

System level testing No Yes Prototype

WO02 [18] Interaction
+ static +
dynamic

Regular expression Interaction +
dynamic Behavior

Can be used for testing
+ implementation +
impact analysis

Yes No None

TR04 [13]
And
TR02 [15]

Static +
dynamic

 (model navigation
layer) + CFG (client
& server code)

Structure
(Navigation)+
Behavior

Testing Yes No ReWeb + TestWeb

KZ06 [24] Static +
dynamic

Extended UML
(UWE)

Structure
(Navigation) +
Behavior

Design Validation and
Verification

No No ArgoUWE +
Spin or UPPAAL

Interaction B
ehavior

M
odeling M

ethods

C
ontent M

odeling
M

ethods
N

avigational M
odeling

M
ethods

H
ybrid M

odeling M
ethods

(M
ore than one level)

3. Level of Modelling. WA modelling can be viewed from different perspectives.
We compare the modelling methods here according to three basic levels:
content, structure (navigation), and behavior. These three levels in turn
could have a static or a dynamic flavor.

4. Application of the Model. In our study we focus on methods that are con-
cerned with modelling WAs for the purpose of testing or verification; this
also could include design verification.

5. Is Source Code required?. Modeling methods may require doing a white-box
or a black-box analysis. This determines whether or not the existence of
the source code is required for the analysis. The kind of analysis for each
reviewed method is specified.

310 M.H. Alalfi, J.R. Cordy, and T.R. Dean

6. Model Optimization. Complex systems in general may have a state explosion
problem or generate a large complex model. Such models require some kind
of optimization. In WAs, this problem becomes a major challenge to the
success of any method that attempts to model a scalable web system.

7. Tool Support. We list if the method being described is supported either with
a proposed tool, or with a pre-existing tool.

Our study resulted in two different views of the methods we surveyed, a general
categorization by modelling level, and a detailed comparison by property cov-
erage. Table 1 summarizes the first one, where the 21 methods are categorized
according to the level of WA modelling. A second comparison between methods
was done based on the more specific details of methods in the same category in
particular, and other methods in other categories in general. This second com-
parison is based on a combination of feature type and the level of WA modeling,
using the comparison criteria outlined in Section 3 as desirable properties for
website modeling. The second comparison could not fit in this short paper and
can be found in our technical report [1].

4 Conclusions and Open Problems

Little work has been done to compare different modelling methods in the field
of web development. To the best of our knowledge this is the first study which
focuses on a comprehensive review and comparative study of modelling methods
that are currently applied in website verification and testing. Previous work has
focussed more on the development process in general, and on the design phase
in particular. Our analysis is based on two sets of criteria, with results summed
up in two concise tables. We found that this field is still in its infancy. While
much has been done, up until now there is no complete modelling method that is
able to capture all of the desirable properties of WAs at all modelling levels. An
integration of different modelling methods may be required in order to generate
a new complete model that could be verified using model checking. There is also
a need for work on security modelling techniques that are able to deal with the
complex, distributed structure of WAs, taking into account concurrent access to
web servers and other shared resources.

References

1. Alalfi, M., Cordy, J.R., Dean, T.R.: A survey of analysis models and methods in
website verification and testing. Technical report, School of Computing, Queen’s
University (2007)

2. Bordbar, B., Anastasakis, K.: MDA and analysis of web applications. In: Draheim,
D., Weber, G. (eds.) TEAA 2005. LNCS, vol. 3888, pp. 44–55. Springer, Heidelberg
(2006)

3. Licata, D.R., Krishnamurthi, S.: Verifying interactive web programs. In: ICASE,
pp. 164–173. IEEE Computer Society, Los Alamitos (2004)

A Survey of Analysis Models and Methods 311

4. Sciascio, E.D., Donini, F.M., Mongiello, M., Piscitelli, G.: Anweb: a system for
automatic support to web application verification. In: ICSEKE, pp. 609–616 (July
14-19, 2002)

5. Sciascio, E.D., Donini, F.M., Mongiello, M., Totaro, R., Castelluccia, D.: Design ver-
ification of web applications using symbolic model checking. In: Lowe, D.G., Gaedke,
M. (eds.) ICWE 2005. LNCS, vol. 3579, pp. 69–74. Springer, Heidelberg (2005)

6. Ricca, F., Tonella, P.: Web site analysis: Structure and evolution. In: ICSM, pp.
76–86 (2000)

7. Haydar, M., Petrenko, A., Sahraoui, H.A.: Formal verification of web applications
modeled by communicating automata. In: de Frutos-Escrig, D., Núñez, M. (eds.)
FORTE 2004. LNCS, vol. 3235, pp. 115–132. Springer, Heidelberg (2004)

8. Conallen, J.: Modeling web application architectures with UML. Communications
of the ACM 42, 63–71 (1999)

9. de Alfaro, L.: Model checking the world wide web. In: Berry, G., Comon, H., Finkel,
A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 337–349. Springer, Heidelberg (2001)

10. Benedikt, M., Freire, J., Godefroid, P.: Veriweb: Automatically testing dynamic
web sites. In: IWWWC (May 2002)

11. Syriani, J.A., Mansour, N.: Modeling web systems using SDL. In: Yazıcı, A., Şener,
C. (eds.) ISCIS 2003. LNCS, vol. 2869, pp. 1019–1026. Springer, Heidelberg (2003)

12. Tonella, P., Ricca, F.: A 2-layer model for the white-box testing of web applications.
In: IWWE, pp. 11–19. IEEE Computer Society, Los Alamitos (2004)

13. Graunke, P.T., Findler, R.B., Krishnamurthi, S., Felleisen, M.: Modeling web in-
teractions. In: Degano, P. (ed.) ESOP 2003 and ETAPS 2003. LNCS, vol. 2618,
pp. 238–252. Springer, Heidelberg (2003)

14. Tonella, P., Ricca, F.: Dynamic model extraction and statistical analysis of web
applications. In: IWWSE, pp. 43–52. IEEE Computer Society, Los Alamitos (2002)

15. Alpuente, M., Ballis, D., Falaschi, M.: A rewriting-based framework for web sites
verification. ENTCS 124, 41–61 (2005)

16. Andrews, A.A., Offutt, J., Alexander, R.T.: Testing web applications by modeling
with fsms. Software and System Modeling 4, 326–345 (2005)

17. Wu, Y., Outt, J.: Modeling and testing web-based applications. Technical report,
George Mason University (2002)

18. Han, M., Hofmeister, C.: Modeling and verification of adaptive navigation in web
applications. In: ICWE, pp. 329–336 (2006)

19. Chen, J., Zhao, X.: Formal models for web navigations with session control and
browser cache. In: ICFEM, pp. 46–60 (2004)

20. Kung, D.C., Liu, C.H., Hsia, P.: An object-oriented web test model for testing web
applications. In: COMPSAC, pp. 537–542 (2000)

21. Bellettini, C., Marchetto, A., Trentini, A.: Webuml: reverse engineering of web
applications. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357,
pp. 1662–1669. Springer, Heidelberg (2004)

22. Castelluccia, D., Mongiello, M., Ruta, M., Totaro, R.: Waver: A model checking-
based tool to verify web application design. ENTCS 157, 61–76 (2006)

23. Knapp, A., Zhang, G.: Model transformations for integrating and validating web
application models. In: Modellierung, pp. 115–128 (2006)

24. Winckler, M., Palanque, P.A.: Statewebcharts: A formal description technique ded-
icated to navigation modelling of web applications. In: Jorge, J.A., Jardim Nunes,
N., Falcão e Cunha, J. (eds.) DSV-IS 2003. LNCS, vol. 2844, pp. 61–76. Springer,
Heidelberg (2003)

25. de Alfaro, L., Henzinger, T.A., Mang, F.Y.: MCWEB: A model-checking tool for
web site debugging. In: WWW, pp. 86–87 (2001)

Building Semantic Web Portals with WebML

Marco Brambilla and Federico M. Facca

Dipartimento di Elettronica e Informazione
Politecnico di Milano

P.za Leonardo da Vinci 32, I-20133 Milano, Italy
{marco.brambilla,federico.facca}@polimi.it

Abstract. Current conceptual models and methodologies for Web ap-
plications concentrate on content, navigation, and service modeling. Al-
though some of them are meant to address semantic web applications
too, they do not fully exploit the whole potential deriving from interac-
tion with ontological data sources and and from Semantic annotations.
This paper proposes an extension to Web application conceptual models
toward Semantic Web. We devise an extension of the WebML modeling
framework that fulfills most of the design requirements emerging for the
new area of Semantic Web. We generalize the development process to
cover Semantic Web and we devise a set of new primitives for ontology
importing and querying. Finally, an implementation prototype of the
proposed concepts is proposed within the commercial tool WebRatio.

1 Introduction

Evolution of Web applications toward complex Web-based Information Systems
dramatically increases the complexity of the requirements and of the technolog-
ical issues associated to the design and development phases. Modern Web ap-
plications comprise distributed data integration, remote service interaction, and
workflow management of activities, possibly spawned on different peers. In this
scenario, a wider attention to semantics of data and applications is mandatory
to allow effective design and evolution of complex systems, that can be possibly
set up and manipulated by different organizations. Indeed, if semantics of data
and applications is known, their integration becomes more feasible. Moreover,
explicit semantic annotation of Web applications can facilitate content search
and access and foster a future generation of Web client that exploit the semantic
information to provide better browsing capabilities to customers.

The Semantic Web is an evolution of the World Wide Web, promoted by Tim
Berners-Lee to bring “semantics” to the human-readable information so as to
make them machine-readable and allow better and easier automatic integration
between different Web applications. To address this challenge many semantic
description languages arose, like RDF, OWL and WSML; some of them are
currently W3C Recommendations. All these languages allow to formally model
knowledge by means of ontologies: the resulting formal models are the starting
point to enable easy information exchange and integration between machines.

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 312–327, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Building Semantic Web Portals with WebML 313

These languages are suitable for reasoning and inferencing, i.e., to deduct more
informations from the model by applying logic expressions. This makes the mod-
eling task easier since not all the knowledge has to be modeled. This languages
are supported by a wide range of tools and APIs, that support design of knowl-
edge (e.g. Protégé, OntoEdit), provide storing facilities (e.g. Sesame and Jena),
and offer reasoning on the data (e.g., Racer and Pellet). Based on these modeling
languages, a set of querying languages have been devised too; among them, we
can mention SPARQL, a W3C recommendation.

Unfortunately, although the theoretical bases and some technological solutions
are already in place for Semantic Web support, the techniques and methodologies
for Semantic Web application design are still rather rough. This leads to high
costs of implementation for Semantic Web features, even if embedded within
traditional Web applications. These extra costs are related not only to the design
of the architecture and deployment of the Semantic platforms, but only to the
repetitive and continuous task of semantic annotation of contents and application
pages.

We claim that conceptual modeling can increase dramatically the efficiency
and efficacy of the design and implementation of such applications, by offering
tools and methodologies to the designer for specifying semantically-rich Web
applications. In [1] we presented our vision on the needs and the opportunity
of applying Web Engineering methods to the development of Semantic Web
Services in the context of the WSMO framework [2]. In particular we showed
how, starting from a rich and annotated model of a Web Service, it is possible to
automatically generate both the implementation of the Web Service and a large
part of its semantic description. Now we focus on the extension of WebML as a
Model Driven method to model and develop Semantic Portals. A Web Portal is
a Web site providing personalized capabilities to its visitors and is designed to
use distributed and different sources. A Semantic Web Portal adopts semantic
Web technologies to better integrate distributed data sources and to provide
semantic descriptions of its contents so as to make them machine-readable.

The introduction of Semantic Web applications brought a new set of require-
ments, to be fulfilled by methodologies and tools for such applications: e.g. easy
reuse of existing ontological models, support for semantic web languages, ad-
vanced ontology query paradigms, easy specification of semantically rich descrip-
tions of services, contents, and interfaces. Some of these requirements have been
addressed by existing modeling methodologies for semantic Web applications
and Semantic Portals [3,4,5,6,7].

The paper is organized as follows: Section 2 specifies the new requirements
of Semantic Web; Section 3 presents the case study used throughout the paper;
Section 4 briefly summarizes the principles of the WebML language; Section 5
presents the extensions to the language for supporting Semantic Web features, in
terms of extensions to development process, content model, and hypertext model;
Section 6 exemplifies the approach on the running case; Section 7 describes the
implementation experiments; Section 8 discusses the related work; and finally
Section 9 draws some conclusions.

314 M. Brambilla and F.M. Facca

2 Requirements for Semantic Web Engineering

To collect the requirements that a Semantic Web application should comply
with, we analyzed some current online Semantic Web Portals (e.g., [8,9,10]) and
we extracted the following set of needs:

– Support of semantic languages. Semantic Web applications should be
aware of and support (i.e., be able to query and manage) different Semantic
Languages and metamodels (RDFS [11], OWL[], WSML [2], . . .).

– Semantic application models. Semantic Web applications should be de-
signed and specified by means conceptual models that include and support
semantic descriptions.

– Flexible integration. Semantic Web applications should embrace the phi-
losophy of flexibility and heterogeneity integration of Semantic Web.

– Classes and instances access and queries. Both domain ontology classes
and instances should be easily and seamlessly accessible by Semantic Web
applications, through appropriate querying primitives. Notice that, while
queries in data-driven Web applications are only on data instances, a Se-
mantic Web application may exploit structure querying too.

– Inference and verification. Ontology-based web applications should ex-
ploit available inferencing systems on ontological data, both for semantic
queries and verification of data.

– Semantic data sources. A Semantic Web application relies on semantic
data (e.g., ontologies) that offer a machine understandable data description
that may be not only used to populate and generate Web pages, but also to
automatically enrich such Web pages with semantic annotations.

– Importing and reuse of ontologies. Semantic Web applications shall
allow to: (i) import new (possibly distributed) data conforming to the Web
application ontology; (ii) to seamlessly integrate new ontologies, not fitting
the default ontology; and (iii) to reuse existing and shared ontologies.

From the previous set of requirements, we derived the following requirements
for the conceptual metamodels pursuing the design of Semantic Web applications:

– Metamodels should be aware of and support semantic languages.
– Metamodels themselves should be “semantic”, i.e., grant self-annotation and

explicit semantic extraction.
– Metamodels should allow flexible integration of heterogeneous sources and

applications.
– Metamodels should allow transformations towards a query language able to

capture all the aspects of ontologies, including inference, verification, query
on instances, and query on classes.

– Metamodels should easily allow: to specify semantic data sources as under-
lying level of the application; to exploit these sources for populating Web
pages, and for (automatically) annotating such Web pages.

– Metamodels shall be able to import and reference distributed data and on-
tologies, aiming at the reuse and sharing of the knowledge.

Building Semantic Web Portals with WebML 315

name

genre

name

Artist

Track Album

pla
ye
dB

y

play
s

containedIn

contains

authored
hasAuthor

Fig. 1. A fragment of the MusicBrainz ontology representing Artist, Album, Track and
their relationships

3 A Semantic Web Portal for the Music Domain

To discuss our approach, a running example will be used throughout the paper.
To implement a realistic scenario, we will consider the reuse of one of the exist-
ing ontologies available on the Internet that can be easily used and integrated to
create new Semantic Web Portals. We integrate two ontologies for the musical
domain to build a Web application offering access to this kind of contents, con-
sidering also users profile information. In particular, we exploit the MusicBrainz
ontology [12] for the music domain information; the MusicMoz [13] hierarchy to
classify music genres; the RDF Site Summary [14] for music news; and the Friend
Of A Friend (Foaf) ontology [15], a widely used formalism to describe for user’s
profiles and relationships among them. A fragment of the MusicBrainz ontology
is reported in Figure 1. This application is similar to other existing Semantic
Web applications (e.g., [9]), that provide personalized access to the contents ex-
ploiting distributed semantic information. The presented application, although
rather simple because of space reasons, can be considered a Semantic Web Portal
since it aggregates different sources of information spanned across the Intenet. In
Section 6 we will show how to model such application with the extended version
of WebML.

4 WebML: An Overview

Our approach to Semantic Portals specification is based on the WebML language.
WebML (Web Modeling Language) is a methodology for Web application design
that comprises the definition of a development process and of a modeling lan-
guage (composed by several metamodels for describing orthogonal aspects of a
Web application) [16]. WebML offers a set of visual primitives for defining con-
ceptual schemas that represent the organization of the application contents and
of the hypertext interface. The WebML primitives are also provided with an
XML-based textual representation, which allows specifying additional detailed
properties, not conveniently expressible in the visual notation.

316 M. Brambilla and F.M. Facca

For specifying the data underlying the application, WebML exploits the Entity-
Relationship model, which consists of entities (classes of data elements), and rela-
tionships (semantic connections between entities).

WebML also allows designers to describe hypertexts, called site views, for
publishing and managing content. A site view is a piece of hypertext, which can
be browsed by a particular class of users. Multiple site views can be defined for
the same application. Site views are then composed of pages, and they in turn
include containers of elementary pieces of content, called content unit, typically
publishing data retrieved from the database, whose schema is expressed through
the E-R model. WebML offers a set of predefined units for extracting data from
the datasource, submitting data to the application, and specifying the navigation
behaviors. Finally, WebML models the execution of arbitrary business actions,
by means of operation units. An operation unit can be linked to other operations
or content units. WebML incorporates some predefined operations for creating,
modifying and deleting the instances of entities and relationships, and allows
designers to extend this set with their own operations.

Units may be connected through links, represented as oriented arcs between
source and destination units. The aim of links is twofold: defining the navigation
(possibly displaying a new page or a piece of content in the same page) and the
data parameters passing from the source to the destination unit.

WebML-based development is supported by the WebRatio CASE tool [17],
which offers a visual environment for designing the WebML conceptual schemas,
storing them in XML format, and automatically generates the running code
(through XSLT model transformations), which is deployed as pure J2EE code.

5 Extending WebML Towards Semantic Web Portals

This section discusses the extensions to the WebML metamodels that are needed
for complying with the new requirements of semantic web applications, according
to the specifications of Section 2. The extensions apply to any aspect of the
WebML methodology:

– Development process: extensions to describe the tasks related to the de-
sign of ontologies and semantic aspects of the web applications/services;

– Data model: extensions to support semantic data sources (i.e., ontologies);
– Hypertext model: extensions to support querying on ontologies, with par-

ticular attention to advanced and inferencing queries;
– Presentation model: extensions to support semantic annotations of the

applications.

5.1 Extensions to the Development Process

The methodology adopted in the development of “traditional” Web applications
needs to be extended with additional tasks that formalize the new design steps
required by the injection of semantics within Web applications. Figure 2 depicts

Building Semantic Web Portals with WebML 317

Data Design

Presentation Design

Hypertext Design

Ontology Import

Annotation Design

Business Requirements

Requirements Specification

Architecture Design

ImplementationTesting and Evaluation

Maintenance and Evolution

Fig. 2. The extended development process for Semantic Web applications

the extended version of the development process for Web applications. The orig-
inal version was proposed in [16] and is adopted with slight variations by most
of the existing Web Engineering approaches. The gray blocks represent the new
tasks we introduced to fulfill Semantic Web application requirements:

– Ontology Import. This task addresses the selection and the importing of
existing domain ontologies that may be exploited for the domain of the Web
application under development. The imported ontologies can be possibly
modified or merged to better suite the Web application purposes.

– Hypertext Design. This step, which already existed in the original ap-
proach, needs to be extended to specify how to query ontologies by means
of proper primitives. Notice that the design of interactions with relational
data remains unchanged.

– Design Annotation. In this phase the Web engineer specifies how the
hypertext pages will be annotated using existing ontological knowledge. This
step enriches the Hypertext Design and relies on the Presentation Design for
deciding the actual position and display style of annotations.

Notice that the waterfall representation may be adjusted for some design expe-
riences, considering that in some cases some steps are not needed at all (e.g.,
if only imported ontologies are necessary, the data design step can be skipped).
We did not depict all the variants for sake of clarity.

5.2 Extensions to the Data Model

The existing metamodels for Semantic Web applications either evolved from
existing ones by extending their data source coverage to ontologies , or have
born with native support of semantic data sources.

Although ontology support is obviously necessary for semantic Web applica-
tion design, we think that relational data sources can still provide great added

318 M. Brambilla and F.M. Facca

value to Web applications, since the representation of every piece of information
as a semantic concept is not realistic in short/medium terms. Indeed, relational
databases are still effective to describe substantial parts of web applications.
Therefore, allowing seamless interaction between ontologies and databases is a
desiderata of current Semantic Web applications (see Section 2 too). Notice that
now we do not aim at extending the data model of WebML so as to model
ontologies (see [18]), but at allowing Web Portals to query imported semantic
knowledge together with relational sources. By adopting a model-based paradigm
like WebML, interaction between ontology instances and database instances can
be quite straightforward and will be exploited within the hypertext model.

5.3 Extensions to the Hypertext Model

Ontological Queries Within WebML Hypertext Primitives. The main
asset of WebML is the ability of effectively capturing the parameters passed be-
tween the different components (units) of the Web application. We believe that
this added value is still valid even when we are considering Semantic Web Ap-
plications. Indeed, no matter if the underlying data are ontologies or databases,
the basic hypertext primitives (units) and the parameter passing mechanism re-
main the same. Thus, parameters on the links become the actual contact point
between traditional and semantic data and provide the mechanism for orthogo-
nalizing data issues and hypertext issues.

The basic WebML primitives for data access (e.g., Index unit, Multidata
unit, the Data unit) have a general purpose meaning and are perfectly fitting
in the role of query and navigation primitives for both relational and ontology
sources. They only need a few simple extensions for supporting the additional
expressive power and the different data model of the ontological sources.

Let us consider the Index unit: besides extracting lists of relational instances,
we want to use it to produce lists of instances of a particular class within an
ontology model. Some requirements were highlighted about this kind of queries:
(i) the possibility to show only direct instances or also inferred instances; (ii) the
need for querying both instances and classes, thus mixing instances and classes
in the results too. The same discussion applies to Multidata unit and Data
unit. Another primitive already introduced by WebML is the Hierarchical
Index unit. This unit acquires a first class role in the context of Semantic Web
applications, because it provides a mechanism to browse and publish a portion
of an ontology in a hierarchical tree representation; for instance, given a class, it
allows to publish the hierarchical tree underlying it, comprising subclasses and
instances.

Although the basic primitives remain valid, they require some extensions to
cover the new kind of datasources. Indeed, queries on ontological data require
a much wider expressive power and some different modeling rules for the in-
formation with respect to relational data. This affects the notations that the
primitives must use for defining the conditions and the selection of the data.
Typical examples of new features and queries of the ontological models are:

Building Semantic Web Portals with WebML 319

Table 1. Summary of new WebML inference units

Name Symbol Input Output

subClassOf

[ClassName1=?]

[ClassName2=?]

SubclassOf
c1, c2 true if c1 is subclass of the class c2

c1, ? the list of superclasses of the class c1

?, c2 the list of subclasses of the class c2

instanceOf

[ClassName=?]

[Instance=?]

InstanceOf
i, c true if i is an instance of the class c

i, ? the list of classes to which the instance i belongs

?, c the list of instances of the class c

hasProperty

[ClassName=?]

[Property=?]

HasProperty
c, p true if the class c has the property p

c, ? the list of properties of the class c

?, p the list of classes having the property p

hasPropertyValue

[Property=?]

[Value=?]

Has

PropertyValue

p, v the list of URIs where property p has value v

p, ? the list of possible values for the property p

?, v the list of properties with value v

subPropertyOf

[Property1=?]

[Property2=?]

Subproperty
p1, p2 true if the property p1 is subproperty of p2

p1, ? the list of superproperties of the property p1

?, p2 the list of subproperties of the property p2

– there is no distinction between relationships and attributes within the set
of properties of a class. E-R style relationships might be considered as on-
tological properties having an URI as value, and attributes to ontological
properties having a literal as value.

– several Semantic Web framework (e.g., OWL, RDF) assume that any in-
stance of a class may have an arbitrary number (zero or more) of values for
a particular property.

– Cardinality constraints and classes can be defined when specifying proper-
ties. In this case, it is possible to publish as values also structured objects
and not only atomic attributes.

In general, while in a E-R model the selection of attributes to be published is
straightforward, in the ontology model some navigation over the model may be
required to publish the data. The extensions to the existing WebML primitives

320 M. Brambilla and F.M. Facca

Fig. 3. Symbols of the new WebML semantics management units

provide these advantages. By means of the extended WebML primitives we can
express visual queries over an ontology.

Advanced Data Access Primitives. The evolution of the basic data access
primitives, introduced in the previous paragraph, is still not enough to exploit
the rich set of possible queries over semantic instances and classes. Therefore, we
introduce a new set of operational primitives to describe advanced queries over
ontological data. We introduced these new units largely inspired by SPARQL
[19] and RDF Schema syntax [11].

A first set of new units allow advanced ontological queries. The units are
aggregated primitives that, depending on the type of parameters, execute differ-
ently. The complete summary of the behavior of these units is available in Ta-
ble 1. These units (SubClassOf, InstanceOf, HasProperty, HasPropertyValue,
PropertyValue, SubPropertyOf) aim at providing explicit support to advanced
ontological queries. They allow to extract classes, instances, properties, values;
to check existence of specific concepts; and to verify whether a relationship holds
between two objects.

Besides the units for ontological data query, we introduce also three new
units depicted in Figure 3. The Set Composition operation unit, is able to
perform classic set operations (i.e., union, intersection, difference) over two in-
put sets of URIs, considering the hierarchy of the URIs involved. E.g. sup-
pose we have two set of classes: A = {ProgressiveRock, Jazz, Metal} and
B = {Rock, JazzFusion} In this case, the set operation will give the follow-
ing results: A ∩ B = {ProgressiveRock, Metal, JazzFusion} and A ∪ B =
{Rock, Jazz} since Rock is superclass of ProgressiveRock, and Jazz is super-
class of JazzFusion.

The Import Ontology unit imports at run time an ontological data source
that must be consistent with one or more of the ontology models used at design
time of the web application (it’s validated against them before being added):
according to the designer choice, it is possible to store only the url of the newly
imported ontology (i.e., it will be accessed remotely for each query) or to import
the ontology in the local OWL/RDF repository (i.e., it will be accessed locally,
but modifications to the original data will not be propagated to the application).
Notice that the navigational model of the Web application does not change at
runtime, thus if the imported ontology contains new pieces (e.g., a new class un-
related with already existing classes) that were not considered in the hypertext,
these pieces of knowledge will not be reachable.

Building Semantic Web Portals with WebML 321

Fig. 4. A piece of Semantic Web application described by the new WebML units

The Describe unit returns the RDF description of an URI, thus enabling data
exporting and semantic annotation of pages.

The above mentioned querying units can be used to compose reasoning tasks
over ontological data: e.g., suppose that we want to find the set of common
properties between two classes (e.g., Track and Song), first we can use two
HasProperty units to extract the two set of properties characterizing the two
classes; and finally we can find the common set of properties by means of the
SetComposition unit, that will be in charge of calculating the intersection be-
tween the two sets.

Figure 4 reports a fragment of the portal that allows to retrieve artists or al-
bums whose names sound in a similar way to the name specified by the user. The
value submitted in the form is passed to the HasPropertyValue unit that ex-
tracts a set of URIs of instances (albums or artists) that have value as value of
the mm:soundsLike property. The set of URIs is then passed to the InstanceOf
unit that checks if they are instances of the class Artist. In this case, the URIs are
passed over through the OK link to an Index unit showing list of Artists, otherwise
theURIs are passed on the KO to publish a list ofAlbums (not shown in the figure).

6 Modeling the Semantic Web Portal for Music Domain

Thanks to the extensions introduced so far, we are now able to model a Semantic
Web Portal scenario like the one proposed in Section 3 for the music domain.
Figure 5 reports a fragment of the WebML model (including the semantic exten-
sions) for that application. The publication units with the RDF symbol () rely on
ontological data sources (e.g., Artists index unit), while the other units publish
data from the a relational database (e.g., User Data data unit). The integration
between the two kinds of content happen at the parameter level: once the results
are transferred as parameters through links, they become homogeneous pieces
of contents. The user starts his navigation from the User Home Page, where he
can find his Foaf Profile; he can import a profile if it is not available yet. This
part of the application actually shows how integration between ontological data
sources and relational data can be achieved using parameters transported over
links: when the user imports his Foaf profile, he actually stores the uri of the
profile in the User relational entity; this uri is later used to publish his Foaf
profile from the ontology repository according to the database schema.

322 M. Brambilla and F.M. Facca

Fig. 5. A portion of a WebML diagram for a Semantic Music Portal

Navigating the outgoing link from Foaf Profile, the user can access the Sug-
gestion page showing an index of Artists corresponding to his preferences. From
here the user can navigate to the Artist details page, where detailed informa-
tions about the selected Artist and his Tracks are presented. The user can ask
for the exporting of the RDF description of the artist he is currently browsing.
Finally, the Search by genre page provides a hierarchical representation of the
class Genre, and then displays all the artists that are related to the selected
genre. The SubClassOf unit extracts indirect sub-genres of the chosen one, thus
allowing to display associated artists.

7 Implementation and Architectural Issues

This section discusses the implementation and architectural issues related to
the proposed extensions to the WebML metamodel. These issues are discussed
with respect to the reference implementation of the Webratio toolsuite. For our
prototype implementation we adopted the Jena framework [20] to interact with
OWL/RDF ontologies. We provided reasoning support by means of the Jena
integrated reasoner, and by means of the integration of Pellet [21] with the Jena
framework. The design environment offered by Webratio has been extended ex-
ploiting the plug-in mechanism of the toolsuite: we devised a general purpose

Building Semantic Web Portals with WebML 323

<SWINDEXUNIT class="mf:Track" id="swinu1"
name="Tracks" ontology="onto1">
<DisplayedProperties
property="mf:title"/>

<DisplayedProperties
property="mf:descriptor"/>

<SortProperties order="ascending"
property="mf:title"/>

<Filter boolean="or">
<FilterCondition id="fselector1"
property="mf:playedBy"
predicate="eq" name="Artist"/>

</Filter>
</SWINDEXUNIT>

<descriptor service="org.webml.onto.
SWIndexUnitService">
<onto>onto1</onto> ...
<input-params>

<input-param type="mf:Artist"
name="swdau3.Artist" />

</input-params>
<query type="SELECT">
DISTINCT ?instance ?p1 ?p2
WHERE {?instance rdf:type mf:Track .

?instance mf:title ?p1 .
?instance mf:descriptor ?p2 .
?instance mf:playedBy ?fs1 .
FILTER (?fs1 = $swdau2.Artist$)}

ORDER BY DESC(?p1)
</query>

</descriptor>

Fig. 6. Design time (left) and runtime (right) descriptors for a semantic index unit

ontology data access layer to be exploited by every unit; moreover, we developed
a runtime Java component and an XML descriptor for each unit.

Ontological Units implementation Each unit is implemented by means of
a generic class representing the runtime component that is executed for every
instance of that kind of unit. Then, for each new unit (including the revisited
traditional units that access ontologies) we developed an XML descriptor specify-
ing its parameters, its properties, and the binding to the implementation classes,
and so on. To better clarify the structure of the descriptor, we show an example
of an ontological index unit descriptor (see left part of Figure 6). By mean of
an associated XSLT transformation, design time descriptors are translated to
runtime descriptors that include automatically generated template of SPARQL
queries (right part of Figure 6). Units are implemented by Java components
that behave according to the logics specified in the runtime descriptors, defined
for each instance of the unit.

Ontology Data Access Layer. To handle interaction with ontologies we de-
fined a new data access layer, comprising a set of general purpose Java classes to
be reused by all the new units for querying the ontology repositories. These classes
provide facilities to import ontologies and to select OWL/RDF classes, properties,
and instances (possibly filtered by one ormore conditions). The main aspects of the
class structure are represented in Figure 7. The OntologyModelService enables
connections to local and remote ontologies specified at design time or imported at
runtime by mean of the Import Ontological Source unit. Three abstract classes
offer the query services corresponding to the query methods offered by SPARQL
on the ontology contents: the AbstractSelectQueryService class perform selec-
tion over data (SPARQL SELECT query); the AbstractDescribeQueryService
retrieves the RDF describing a given URI (DESCRIBE query), the AbstractAsk-
QueryService verifies simple predicates (ASK query). The AbstractAskQuery-
Service is extended by the AskQueryServicethat is used by some of the advanced
querying units to verify predicates (e.g., to check whether a class is subclass of an-
other). In general, unit services use or implement these services.

324 M. Brambilla and F.M. Facca

Fig. 7. A UML class diagram that shows part the of class hierarchy of the new imple-
mented units

8 Related Works

While design methodologies for traditional Web applications offer rather mature
and established solutions, Semantic Web application methodologies are still in a
development phase. Realizing the benefits of the Semantic Web platform (e.g.,
interoperability, inference capabilities, in-creased reuse of the design artifacts,
etc.) traditional design methodologies are now focusing on designing Semantic
Web applications: e.g., OOHD evolved in SHDM [5]. New methodologies like
XWMF [3], OntoWebber [4] and Hera [6] were specifically designed by consid-
ering the Semantic Web peculiarities.

Table 2 reports a summary that compares the features of the previously cited
models for Semantic Web Portals and the WebML extensions presented in this
paper. All the models, except XWMF, have a complete development methodol-
ogy that covers all the needed aspects to create a Semantic Web applications.
They also offer a wide support for ontology languages: basically all the models
support both RDF and OWL (except for XWMF).

However, our extension is the only one that leverages on Semantic Web query
languages to offer advanced query primitives that allows both query on schema
and instances, together with simple reasoning patterns over data. The others
models, in some cases (e.g., Hera) offers query on data schema and instances.
Hera and OntoWebber offer direct to support to integration by mean of an
integration model that can be used to query different data schema using the
same query, while our proposal offers only a basic integration of different data
sources thanks to the parameter flow between the different units in the hypertext.
WebML offers the chance to integrate relational, XML and ontology data sources,
while other methodologies seems to support explicitly only ontologies (off course,
this issue can be solved adopting extraction techniques to import other data
sources within ontologies). SHDM does not allow to import ontologies but only
to create them from UML diagrams. Then, it offers a tricky way to link these
ontologies to the external ones. Even if all the analyzed models are based on an
ontology representation, only our proposal and a WSDM extension [22] provide
an approach to annotate pages so as to make them machine readable.

Most of the new methodologies offer runtime frameworks that include or allow
integration of reasoners, while some of them do not clarify if the reasoning is sup-
ported also at design time. An important factor to assure the success of a Web in-
formation System design methodology is the existence of CASE tool support, since

Building Semantic Web Portals with WebML 325

Table 2. Comparison of methodologies for modeling Semantic Web Portals

Requirement XWMF OntoWebber SHDM Hera WebML+Sem.
Methodology Partial Yes Yes Yes Yes
Semantic Model Description Yes Yes Yes Yes Partial
Advanced query support No Partial Partial Partial Yes
Flexible integration No Partial Yes Yes Partial
Heterogeneous data sources No No Partial Partial Yes
Distributed data sources No No No Yes Yes
Reuse of ontologies Yes Yes Partial Yes Yes
(Automatic) Annotation No No No No Yes
Reasoning Support No No Yes Yes Yes

a powerful methodology that is not accompanied by adequate tools will make the
designer tasks very difficult to fulfill. While most of the traditional design method-
ologies have powerful CASE tools, no established tool support is provided for Se-
mantic Web design, although all the cited methodologies offer some basic tools.
Among them, the most complete are Hera and SHDM. Our methodology is com-
pletely supported by a commercial tool, Webratio [17] that we extended with the
new components to enable design of Semantic Web applications.

9 Conclusions

In this paper we presented an extension to the WebML methodology and models
for supporting the design and the specification of Semantic Web applications.
The described solution provides a full coverage of the development process, and
allow the designer to specify basic and advanced queries on ontological data
sources, to import existing sources, and to annotate Web pages with semantic
descriptions of the contents and of the models. Our approach provide substantial
added value with respect to the existing frameworks for Semantic Web appli-
cation design, although some of them offer more advanced solutions on some
aspects (e.g., seamless integration of different ontologies). We support our pro-
posal with a prototype implementation within the CASE tool WebRatio. Finally
we showed how the proposal can be adopted to develop a Semantic Web Portal
for the musical domain reusing existing knowledge.

Future work includes providing a integration layer to allow for seamless in-
tegration of different ontologies, extended testing of the new framework and
integration of existing Eclipse based solutions for ontology editing with in the
CASE tool.

Acknowledgments

We would like to thank Emanuele Della Valle and Irene Celino for the useful
discussions on the engineering of Semantic Web Portals and their support in the
definition of the case study.

326 M. Brambilla and F.M. Facca

References

1. Brambilla, M., Celino, I., Ceri, S., Cerizza, D., Della Valle, E., Facca, F.M.: A
Software Engineering Approach to Design and Development of Semantic Web Ser-
vice Applications. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D.,
Mika, P., Uschold, M., Aroyo, L. (eds.) ISWC 2006. LNCS, vol. 4273, Springer,
Heidelberg (2006)

2. Fensel, D., Lausen, H., Polleres, A., de Bruijn, J., Stollberg, M., Roman, D.,
Domingue, J.: Enabling Semantic Web Services: The Web Service Modeling On-
tology. Springer-Verlag, New York, Inc., Secaucus, NJ, USA (2006)

3. Klapsing, R., Neumann, G., Conen, W.: Semantics in Web Engineering: Applying
the Resource Description Framework. IEEE MultiMedia 8(2), 62–68 (2001)

4. Jin, Y., Decker, S., Wiederhold, G.: OntoWebber: Model-Driven Ontology-Based
Web Site Management. In: Cruz, I.F., Decker, S., Euzenat, J., McGuinness, D.L.
(eds.) The first Semantic Web Working Symposium. Proceedings of SWWS’01,
Stanford University, California, USA, July 30 - August 1 (2001), pp. 529–547
(2001)

5. Lima, F., Schwabe, D.: Application Modeling for the Semantic Web. In: 1st
Latin American Web Congress (LA-WEB 2003), Empowering Our Web, Sanitago,
Chile, 10-12 November 2003, pp. 93–102. IEEE Computer Society, Los Alamitos
(2003)

6. Vdovjak, R., Frasincar, F., Houben, G.J., Barna, P.: Engineering Semantic Web
Information Systems in Hera. J. Web Eng. 2(1-2), 3–26 (2003)

7. Maedche, A., Staab, S., Stojanovic, N., Studer, R., Sure, Y.: Semantic portal - the
seal approach. In: Fensel, D., Hendler, J., Lieberman, H., W.W. (eds.) Spinning
the Semantic Web, pp. 317–359. MIT Press, Cambridge, MA (2003)

8. MIND LAB: Mindswap - Maryland Information and Network Dynamics Lab Se-
mantic Web Agents Project (2007) http://www.mindswap.org

9. Music Technology Group, Universitat Pompeu Fabra: Foafing the music (2007)
http://foafing-the-music.iua.upf.edu

10. AIFB, University of Karlsruhe: ontoworld.org (2007) http://ontoworld.org

11. W3C: Rdf vocabulary description language 1.0: Rdf schema (2007)
http://www.w3.org/TR/rdf-sparql-query

12. MusicBrainz: Musicbrainz project (2007) http://musicbrainz.org

13. MusicMoz: Musicmoz - open music project (2007) http://musicmoz.org/

14. RSS-DEV Working Group: Rdf site summary (rss) 1.0 (2000) http://
web.resource.org/rss/1.0/

15. Miller, L., Brickley, D.: Foaf project (2007) http://www.foaf-project.org

16. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing
Data-Intensive Web Applications. Morgan Kauffmann, Seattle, Washington, USA
(2002)

17. WebModels s.r.l.: Webratio tool. (2007) http://www.webratio.com

18. Noy, N.F., Sintek, M., Decker, S., Crubezy, M., Fergerson, R.W., Musen, M.A.: Cre-
ating Semantic Web contents with protege-2000. IEEE Intelligent Systems 16(2),
60–71 (2001)

19. W3C: Sparql query language for rdf (2007) http://www.w3.org/TR/rdf-sparql-
query

http://www.mindswap.org
http://foafing-the-music.iua.upf.edu
http://ontoworld.org
http://www.w3.org/TR/rdf-sparql-query
http://musicbrainz.org
http://musicmoz.org/
http://web.resource.org/rss/1.0/
http://web.resource.org/rss/1.0/
http://www.foaf-project.org
http://www.webratio.com
http://www.w3.org/TR/rdf-sparql-query
http://www.w3.org/TR/rdf-sparql-query

Building Semantic Web Portals with WebML 327

20. Jena Team: Jena a semantic web framework for java (2007)
http://jena.sourceforge.net

21. Parsia, B., Sirin, E., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: An owl dl reasoner
(Technical report)

22. Casteleyn, S., Plessers, P., Troyer, O.D.: Generating semantic annotations during
the web design process. In: ICWE ’06. Proceedings of the 6th international confer-
ence on Web engineering, New York, NY, USA, pp. 91–92. ACM Press, New York
(2006)

http://jena.sourceforge.net

Engineering Semantic-Based Interactive

Multi-device Web Applications

Pieter Bellekens, Kees van der Sluijs, Lora Aroyo�, and Geert-Jan Houben��

Technische Universiteit Eindhoven
PO Box 513, NL 5600 MB, Eindhoven, The Netherlands

{p.a.e.bellekens,k.a.m.sluijs,l.m.aroyo,g.j.houben}@tue.nl

Abstract. To build high-quality personalized Web applications devel-
opers have to deal with a number of complex problems. We look at the
growing class of personalized Web Applications that share three charac-
teristic challenges. Firstly, the semantic problem of how to enable con-
tent reuse and integration. Another problem is how to move away from
a sluggish static interface to a responsive dynamic one as seen in regu-
lar desktop applications. The third problem is adapting the system into
a multi-device environment. For this class of personalized Web appli-
cations we look at an example application, a TV recommender called
SenSee, in which we solve these problems in a metadata-driven way. We
go into depth in the techniques we used to create a solution for these
given problems, where we particularly look at utilizing the techniques of
Web Services, Web 2.0 and the Semantic Web. Moreover, we show how
these techniques can also be used to improve the core personalization
functionality of the application. In this paper we present our experience
with SenSee to demonstrate general engineering lessons for this type of
applications.

1 Introduction

The ICT landscape is developing into a highly-interactive distributed environ-
ment in which people interact with multiple devices (e.g. portable devices such
as mobile phones or home equipment such as TVs) and multiple applications
(e.g. Web browsers and dedicated Web services). Globally the industry is be-
ing driven by the shift away from old models - moving from physical to digital.
New methods emerge for getting content such as TV programs via the Web. For
example, more and more people want to watch or manage TV content on their
PCs, and thus make a bridge between a TV and a PC: each device doing what it
can do best. As we can see, technologies in these fields are rapidly progressing,
but the user is lost. The information overload is enormous and the content pre-
sented is hardly adapted to the prior knowledge, to the preferences and to the
current situation of the user. Not only the users, but also the industry comes to

� Also affiliated with Vrije Universiteit, Amsterdam, The Netherlands.
�� Also affiliated with Vrije Universiteit Brussel, Brussels, Belgium.

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 328–342, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Engineering Semantic-Based Interactive Multi-device Web Applications 329

the realization that integrated content services and personalized user experience
are becoming more important.

Personalization in information retrieval [1] and information presentation [2]
has therefore become a key issue. Successful personalization experiments have
been done, in e-commerce [3] and news websites [4], where the most common
example is the Amazon.com recommendations. Personalization is seen as a key
ingredient of the so-called Web 2.0 applications [5] [6]. However, such personaliza-
tion is still local. As a nice example, on the Web users are increasingly involved in
multiple virtual environments (e.g. MySpace, Flickr, YouTube, Amazon, enter-
tainment sites) in each of them with a different identity (e.g. login information,
preferences). There is very limited integration between them, and if there does
exist some integration, it is not always under the user’s control. Moreover, there
remains a great lack of transparency in the use of personal data between different
applications [7].

The main objective in this research is to provide techniques to improve
personalization in the world of multi-device access to interactive Web applica-
tions connected via semantic-based integration. This world can be characterized
with three key terms: Semantic-based, Interactive and Multi-device. We use the
acronym SIM to refer to this application setting. In SIM Web applications,
people do use multiple devices to interact with multiple distributed Web appli-
cations. It results in complex interaction patterns requiring integrated views of
distributed data collections, multiple modeling perspectives of content, user and
environment data, as well as an increased need for personalized information pre-
sentation. To realize this kind of personalization, we need to address challenges
concerning the integration of content services, the integration of user modeling
and personalized presentation. In our approach we exploit recent developments
in the field of Web services, Web 2.0 and Semantic Web to meet these challenges.

In this paper we present the core elements of this approach. In Section 2
we explain the rationale behind our focus on the SIM setting. In Section 3 we
introduce the SenSee application that we use to illustrate the SIM approach.
SenSee is a personalized content recommender for multimedia consumption in an
ambient home media-centre and is created within the context of the Passepartout
project [8]. We then discuss its architecture and subsequently in Sections 4, 5 and
6 we show how we in SenSee implemented the Web Service, Web 2.0 and Semantic
Web solutions for SIM applications. In Section 7 we show how the combination of
the techniques can in addition be used to aid in the core functionality of SenSee.
We finally summarize our experience for the general class of SIM applications in
Section 8.

2 SIM Web Application Requirements

A main concern in modern Web applications is personalization and adapting the
application in all its facets to the user’s current situation. In this research we
consider the development of personalized Web applications in the light of three
characteristic trends and properties of modern Web applications.

330 P. Bellekens et al.

(1) One aspect that has definitely changed in the recent years is that users no
longer access the Web via PCs only. The Web has become much more a multi-
device environment. Many types of devices can connect to the Web nowadays:
think of PDAs, mobile phones, GPS-systems, TVs, game consoles, etc. As a
consequence, Web applications can no longer be engineered with only one device,
with its inherent properties, in mind. Designing for using an application on
different devices is one step, e.g. allowing the user to choose between PC, PDA or
mobile phone, but the consequent step and the one that we are now confronted
with is to consider the user’s interaction with an application via the current
wealth of devices in an integrated fashion. So, instead of using one device we are
faced with a multi-modal context in which for example the TV-content viewer
uses the PC to manage personal preferences and the mobile phone to carry these
preferences around to pass them then to a TV-set for viewing the content.

The Web applications that operate in such a multi-device setting bring chal-
lenges as well as benefits, particularly when we consider personalized access.
The main challenge is the integration of the different parts of the application,
i.e. to adapt the application aspects to different environments and different ca-
pabilities. Think of differences in video, sound and data processing capabilities:
when distributing the application functionality over the device-related applica-
tion parts these capabilities are leading. A major benefit for personalization is
that we can learn from the user (assess the user’s situation) in a more unobtru-
sive way, since the user will spend more time with all of his devices combined
than with the PC alone. Furthermore, we can utilize online sensing devices like
GPS functionality through a mobile phone, RFID tags, and biometric sensors,
to improve the quality and quantity of the information we have on the user and
therefore improve personalization in a context-sensitive way. If we, for example,
know the user is driving in a car we could infer that we don’t want to bother
him with video messages as his attention is needed elsewhere.

(2) In the integrated context of our applications, the increasing need for
semantic-based reuse of information and application functionality for person-
alization is obvious. In terms of content, one reason is that it is time-consuming
to reproduce data that is already available. Furthermore, specialist data sources
often are created by domain experts or crafted collaboratively, making it hard for
non-domain experts to recreate something of the same quality. Also, one might
want to use external data that can not be under the direct control of the appli-
cation itself and therefore has to be fetched on demand. Think, for example, of
reusing information from Wikipedia1 or IMDB2. When integrating content in an
application we are faced with the typical heterogeneous nature of the content,
specially in the different terminology that is used from the different domains
involved.

Besides reuse of content, also reuse of functionality becomes an even more rele-
vant issue. Being able to share and combine application logic (components) in the
integrated application enables to configure the application and its personalization

1 http://wikipedia.org/
2 http://imdb.com

Engineering Semantic-Based Interactive Multi-device Web Applications 331

on demand. The applications we consider do not just “import” content and func-
tionality, but also “export” aspects to other applications. Most prominently, one
can see this for the sharing and exchange of the user model information that is used
in the personalization process. Applications running on different devices that are
able to share the user’s preferences and situation description can improve their (in-
dividual) service to the user.

(3) A third trend in Web applications is the ever growing demand for richer
user interaction. This interactivity can be used for personalization to offer the
user more control, for example by allowing richer and more detailed feedback on
metadata, both content-metadata and user model data. Modern Web applica-
tions should also no longer suffer from an unresponsive user interface between
page loads, e.g. because of complex time-consuming operations. Instead, they
should move towards the responsiveness of dynamic desktop applications. If a
user triggers a query that gets distributed over different sources on the Web, the
user should not need to wait until the slowest source responds and sends all its
data. It would be much better to show as quickly as possible the first results,
integrating results of slower sources as they arrive.

Enabling personalization in the next generation of these SIM Web applications
where semantics, interactivity and multi-device are important properties, various
new and more elaborate requirements surface. Tackling these challenges in a
natural unobtrusive way is key for the success of such personalized applications.
In the next section we introduce SenSee that helps to illustrate our target class
of applications.

3 SenSee

SenSee is a personalized Web-based recommender for digital television content
and an example of a SIM application that we use to illustrate our case. It is
developed in the context of the Passepartout [8] project, which investigates the
future of digital television. SenSee collects information about TV programs as
well as related data from various sources on the Web. Furthermore, the user can
access his personalized TV guide from various devices at any time, so not only
on the TV itself. To provide high-quality personalization SenSee collects as much
data on the user as possible. It provides the user with direct feedback options
to provide his information manually, but also observes the user’s behavior and
with help of sensor information like GPS determines the user context.

Many related TV recommender systems can be found in literature, like in
[9], [10] and [11]. However, those systems mainly focus on the recommendation
part. In AVATAR [10], for example, the authors make use of a combination
of TV-Anytime [12] metadata fields and a custom-made genre hierarchy. Their
recommendation algorithm is an effective hybrid combination of content-based
and collaborative filtering, although there is no inclusion of any kind of user
context. To get an overview of the various kinds of recommendation strategies
and combinations that exist both for selection, structuring and presentation of
content refer to [11]. In this paper, however, we focus on the properties of the

332 P. Bellekens et al.

Fig. 1. SenSee Architecture

SIM framework which serves as the backbone of the SenSee recommender and
how we can utilize the content metadata together with the user model metadata
to solve the issues at hand.

The SenSee architecture, as depicted in Figure 1, is a layered one. At the
bottom part of the figure, we find the various heterogeneous content sources.
This can include regular TV broadcasts, but also movie clips from the Web, me-
dia stored on the local computer or physical media like DVD and Blu-ray discs.
Metadata about the content originates from the bottom, propagates up while
at each layer gaining semantics and context, and is finally used by an applica-
tion at the top. In this process first information about the content is collected,
and then converted to our internally used vocabulary and aggregated into pack-
ages. In order to do so we use two external services that are specified by the
TV-Anytime specification, namely the CRID Authority for uniquely identifying
multimedia objects and the Metadata Service that maintains metadata on these
objects. Since typically there are numerous content packages available, we use
personalization and recommendation based on the context and the user model
with the aim to prevent that the user gets lost in the information abundance.
Furthermore, we offer the user a user-guided search to assist the user in finding
what he or she is looking for by refining a user query (keywords) with help of
ontological domain knowledge. Both for personalization and user-guided search
we use supporting services, each with their own responsibility and functional-
ity. The User Model Service (UMS) maintains and retrieves data from the user
model (including the current user context), the Filter Service (FS) provides fil-
ters needed to eliminate content unsuitable for the current user, and the Ontology
Service (OS) maintains and manages all vocabularies and ontologies defining the

Engineering Semantic-Based Interactive Multi-device Web Applications 333

Fig. 2. SenSee Connection Architecture

semantics of concepts and properties. Finally, the metadata is shown to the user
in a hierarchically structured way: the user can browse through the data and
select the desired multimedia object. The object can then be retrieved via its
unique CRID identifier [13] for consumption (viewing).

Figure 2 shows how the different parts of the SenSee framework are connected.
The user can access SenSee via a client application. We currently implemented
two client applications: The SenSee Web application3 and a commercial appli-
cation called iFanzy[14] that runs on a set-top box and is controlled by the
television remote control. In this paper we will concentrate on the SenSee Web
application which runs in a Web-browser4.

The SenSee Web application connects to the SenSee server, which besides
the SenSee Service (which contains the main application logic) also contains the
three supporting services: UMS, FS and OS. The TV-Anytime services, CRID
Authority Service and Metadata Service, as well as the content metadata that is
not stored locally, are accessible via the Internet. Sensors and device information
are accessed via external applications which are responsible to reading the sensor
values and adding or updating them in the user model. Having SenSee running
as a service enables these various applications to quickly make a connection and
push their readings to the system. SenSee on its turn processes these readings
and can immediately take them into account in upcoming actions.

For mass multimedia content consumption, people prefer the television as
main target device. Since SenSee targets users from all kinds of social classes and
age groups these sensors could make interactivity easier. Because of the personal
nature of this application, people are required to log in, either by login/password

3 http://wwwis.win.tue.nl:8888/SenSee/
4 Note: Currently only tested in Firefox and Internet Explorer.

334 P. Bellekens et al.

or through an RFID sensor. RFID recognition has been implemented to login
people automatically when they for example enter the living room. Knowing who
is watching, allows SenSee to optimize recommendations, the look-and-feel, and
privileges that are appropriate for the current user or user group.

To personalize access to various online content sources and services, a certain
sense of semantics is required for interpretation of the metadata. The domain
model used by SenSee, to discern between for example ‘actor’ and ‘director’ or a
‘western’- and ‘action’-movie, is specified in the TV-Anytime specification [12].
TV-Anytime was specifically tailored to describe future multimedia content and
provides constructs to describe all kinds of content elements as well as hierar-
chical containers suited to cluster and organize these numerous elements. To be
able to exploit external content, metadata is required for interpretation. How-
ever, using various heterogeneous content sources implies that available meta-
data might be complying with different conceptual schemas which in turn might
be not compatible with the TV-Anytime specification. In such a case SenSee
uses transformations to migrate this content to the TV-Anytime platform. Cur-
rently, SenSee retrieves content from online Electronic Program Guides5, BBC
backstage6 and various Web sites like IMDB and Wikipedia.

Since TV-Anytime focuses on describing multimedia content, which gives a
rather restricted perspective, other concepts related to, for example, time and
geographical locations are less profound. Therefore, in SenSee we fill those gaps
by adding external knowledge coming from publicly available ontologies, schemas
and thesauri by relating their concepts to existing ones in TV-Anytime, giving
the domain more profundity. The most important knowledge structures, which
are all maintained in the Ontology Service (OS), are among others:

– The TV-Anytime and MPEG77 schemas to describe content
– The W3C OWL-Time ontology [15] providing time conceptualizations
– A geographic thesaurus to describe locations like e.g. [16]
– WordNet8,9 to provide synonyms, hyponyms and other lexical relations
– Topic hierarchies to identify e.g. program genres (TV-Anytime provides sev-

eral topic classifications among which are content and action classification)

Maintaining the various RDF[17]/OWL[18] repositories we chose for the meta-
data, such as the user models and the various contexts in the UMS, and the var-
ious ontologies and thesauruses in the OS, is done through a Sesame [19] triple
repository.

4 Web-Service Architecture

The SenSee application shares all of its main parts to encourage interoperability
with others. Web services enable the interconnection between connected devices,
5 http://xmltv.org/wiki/
6 http://backstage.bbc.co.uk/
7 http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm
8 http://wordnet.princeton.edu/
9 http://www.semanticweb.org/library/

Engineering Semantic-Based Interactive Multi-device Web Applications 335

allow third parties to adapt their existing software to the provided interfaces and
enable lightweight sensor devices to provide input.

Communication between all services and clients is established via XML-RPC10.
XML-RPC is a remote procedure call protocol making use of XML to encode its
messages and HTTP as transportation layer. XML-RPC was chosen because of its
simplicity. It is designed to be as simple as possible, while allowing complex data
structures to be transmitted, processed and returned. The implementation we use
is version 3 of Apache XML-RPC11. The main advantage of this implementation is
its ability to transmit any Java object, taken that it is serializable, and its ability
to handle exceptions with ease. SOAP12 was also considered, but discarded again
because of the higher complexity in use, while the functionality was the same. To
handle the various incoming XML-RPC requests and have them executed in such
a way that different calls do not interfere with each other while maintaining good
performance, we chose to use the Jetty Web server13. Jetty is a highly customiz-
able standalone Web server completely build in Java, known for its scalability and
efficiency.

Via this universal communication protocol we enable multiple devices, under-
standing the HTTP protocol, to be able to contact the SenSee server. Choosing
lightweight XML-RPC messages to build and receive requests enables us to even
use devices with limited processor power and bandwidth, like for example mobile
phones. Furthermore, working with services allows us to run multiple instances
of a specific service at the same time in different locations. The advantage of
such a setting is that we enable load balancing, to avoid that one particular
server chokes under too much requests. The disadvantage of such an approach is
that we then also need a synchronization algorithm to keep all service instances
up-to-date.

5 Interface Asynchronicity and Ajax

A SIM application like SenSee uses data and application logic of a fundamentally
distributed nature, so we have to solve distribution-related problems. One of the
main problems is that we cannot rely on those sources. Data and applications
can be taken off-line without notice or might be very badly reachable because
of network problems. However, what we want to minimize is that the user has
to wait indefinitely because of one unavailable or slow source. This problem in
the user interface can be tackled by making use of parallelism. To be able to use
parallelism in a Web interface setting we used the asynchronous Ajax technology.
In this way the user can see results that arrive quickly immediately, while data
that arrives later can be easily blended in within the current user interface,
without reloading the whole page. If the user clicks ‘Submit’ with the keyword
query ‘bike’, different ontologies are checked for possible conceptualizations for
10 http://www.xmlrpc.com/
11 http://ws.apache.org/xmlrpc/
12 http://www.w3.org/TR/soap12-part0/
13 http://jetty.mortbay.org/

336 P. Bellekens et al.

this keyword. Due to the asynchronicity in the interface, we can check various
ontologies at the same time while results arrive in a undetermined order.

For the implementation we used the Google Web Toolkit14 (GWT). GWT
provides a Java API which enables programming in Java, while afterward the
GWT compiles the classes and dynamically converts them to regular HTML and
Javascript that handles both the user interface and the asynchronous XML-RPC
calls.

Fig. 3. SenSee communication pipeline

In Figure 3, we see the communication pipeline from a client Web application
to the SenSee server. The Web browser initiates the communication by loading
a Webpage from the Web server. Via asynchronous RPC calls Java methods are
executed on the Java back-end of the Web server. Each one of those method-
calls themselves, again forward an XML-RPC call to the appropriate service (the
SenSee server, UMS, OS or FS) running on an application server.

6 Semantic-Based Content Integration

When a user fires a request, SenSee responds with an integrated set of content con-
taining pieces from various sources. Like previously mentioned, SenSee retrieves
content and metadata descriptions from these various sources which comply with

14 http://code.google.com/webtoolkit/

Engineering Semantic-Based Interactive Multi-device Web Applications 337

different data schemes. However, since SenSee is completely built around the TV-
Anytime scheme, we chose to transform all incoming content to TV-Anytime. The
TV-Anytime specification consists of two parts, “phases” in TV-Anytime speak.
The first phase consists of a synchronized set of specification documents for meta-
data, content referencing, rights management, and content protection. The second
phase defines open standards that build on the foundations of the first phase and
includes areas such as targeting, redistribution and new content types. A central
concept in the second phase is packaging. A package is a structure which contains
a set of unambiguous identifiers referring to content-elements which are somehow
related. An example would be a ‘Lord of The Rings’ package containing all the
movies, Making-Ofs, the text of the books, images, the soundtracks, etc. To be
able to reuse this generated content we add a sense of context to each package from
which we can benefit in future requests.

Fig. 4. SenSee data integration scheme

In Figure 4 we see the complete SenSee data integration scheme. In this figure
we see that there are two layers visible, namely XML/HTML at the top and
RDF/OWL at the bottom of the figure, depicting a clear separation between the
two. On the right hand side we see our various sources located on the Web, these
sources are typically retrieved in HTML (Wikipedia, IMDB, ...) or XML (XML-
TV and BBC Backstage content) formats. This content is then transformed to
TV-Anytime Phase I (XML). However, in order to apply our semantics available
in the OS which are typically modelled in RDF/OWL, we need to transform the
TV-Anytime XML (Phase I). This second transformation crosses the dashed
line bringing the TV-Anytime Phase I content set into the RDF/OWL layer. All
content here is stored in a Sesame RDF store which serves as a temporal cache
to augment and work with the retrieved data. The advantage of our approach
of using RDF is that the resulting integrated datamodel can be easily adapted
for plugging in and removing data sources and relating those to supporting
ontologies because of the open world nature of RDF. In this way we can use

338 P. Bellekens et al.

inference techniques (e.g. subsumption) to get more useful data for the user and
we can utilize mechanisms like the context feature in Sesame 2.015 to track the
origin of information.

Once here, we can apply the semantics stored in the OS to enrich the current
content set. For example, every TV-Anytime Phase I content set always has a set
of keywords to describe this content in its metadata. The TV-Anytime (TVA)
field for this is:

<element name="Keyword" type="tva:KeywordType" minOccurs="0" maxOccurs="unbounded"/>

We can make a simple enrichment by searching for synonyms of these key-
words, in the WordNet dictionary, and expand the existing set. Similarly, we
can also add semantics to time specifications. In TVA every time-related field is
modeled by an MPEG-7 ‘timePointType’, where a time point is expressed with
the regular expression:

‘-’?yyyy‘-’mm‘-’dd‘T’hh‘:’mm‘:’ss(‘.’s+)?(zzzzzz)?

The date ‘2007-01-01T12:30:05’ is an example. By mapping this string to a
time description in our Time ontology we can obtain the following time specifi-
cation (do note the abbreviated syntax):

<CalendarClockDescription rdf:ID="example">
<second>05</second>
<hour>12</hour>
<minute>30</minute>
<year>2007</year>
<month>01</month>
<week>01</week>
<day>01</day>

</CalendarClockDescription>

This richer time description enables us for example to easily cluster all content
produced in a particular year or all content being broadcasted before or after a
certain point in time.

After this enrichment phase, our content is ready to be used to create a TVA
Phase II package for a particular user query. The retrieval of the content was
triggered by a user query and the package will now be the (rich) answer to this
query. A package is constructed hierarchically and consists out of items, nodes in
the hierarchy to enable browsing and navigation, and components which contain
the effective content like a movie, a piece of text, an audio file or any other
multimedia type.

The simplest package we can generate in SenSee is a package with one item
that contains one component, which is effectively an arrangement of the TVA
Phase I metadata. However, we are also looking into experimenting with more
advanced automatic clustering. We try to cluster content based on relationships
of its metadata with helper ontologies, e.g. we relate the TVA Phase I metadata
to ontology concepts with string matching techniques. Like this we can make
use of the fact that ontologies are well-crafted by domain experts, and therefore
15 http://www.openrdf.org/doc/sesame2/users/ch04.html#d0e836

Engineering Semantic-Based Interactive Multi-device Web Applications 339

the content grouping will be well-structured. Sorting the grouping structure can
be done by applying traditional recommendation techniques, e.g. by taking the
user model into account.

7 Application in User-Guided Search Support

In the previous sections we demonstrated solutions for the SIM issues. However,
the described techniques could also be used to improve the core personalization
functionality of the application. Besides offering ‘passive’ recommendations, the
user can also actively search through the available content. Our approach is based
on semantic faceted browsing techniques (e.g. refer to [20] or [21]). The idea is
to go beyond a pure keyword-based search. Instead the user is assisted to search
through different facets of the data. To accomplish this, additional metadata
fields as defined in TV-Anytime specification were used. Moreover, like previously
mentioned, ontological sources to make a further semantical connection between
the terms in TV-Anytime play a important role. Consider for instance the time
facet, TV-Anytime uses the XML datetime datatype to express the time when a
program is broadcasted. To semantically enrich time information we use the W3C
OWL-Time ontology, adding for instance that the concept ‘afternoon’ ranges
from 1400h-1800h. In this way we can easily search for programs in the afternoon
by looking for all programs broadcast within this 1400h-1800h interval.

By incorporating all these results, as is shown in the screenshot in Figure 5,
we try to close the gap between the keywords the user types in and what the
user intends to search for. As an example, consider a user making the following
keyword request: “sports Scotland ‘Friday evening’” when he looks for Scottish
sports games to watch during Friday evening when his friends come over. The
system reacts by trying to find any ontological matches for these keywords,
through the use of the OS. In Figure 5 the results are shown. Under the tab
‘Genres’ we see that the system found some matches for the keyword ‘sport’ in
the genre classification and in the Geo ontology a match was found for ‘Scotland’.
In the time ontology a match was found for ‘Friday evening’ and automatically
translated to an interval from 18pm until 23pm as shown in the calender under
the ‘Time’ tab. With this system-assistance the user is able to manually refine
the original request. With the genre hierarchy it is possible now to specify a
more particular sport type the user might be looking for, or just select the broad
term ‘sports’. In the geographical hierarchy either a narrower term, like a region
in Scotland, or a broader term like ‘United Kingdom’ can be chosen. Via the
calender the user can revise his time interval.

After the system-assistance, the newly refined query is taken as input for
the retrieval process which tries to find relevant content made available by the
various sources. When the sources start responding with multimedia content,
the retrieved content needs to be filtered and personalized by leaving out items
deemed unsuited, and ranking important item higher up the results list. This
process, which forms the hart of the personalization process, uses mainly the
UMS to find the user’s preferences, the FS to provide the appropriate filter, and

340 P. Bellekens et al.

Fig. 5. User-driven concept refinement

the OS to give correct semantics throughout the complete sequence. The filter
provided by the FS basically acts as the glue between values in the user model
and fields in the content’s metadata. It decides for every content-element whether
or not it should be discarded after comparing its metadata to the interests and
preferences of the user. Lastly, the resulting content set needs to be presented to
the user, by means of the TV-Anytime packaging concept. Packages allow us to
create for example a ‘Marlon Brando’ package were everything known from this
person can be bundled and browsed. Packages can contain all kinds of content-
elements ranging from pure text to full HD (High Definition) movie clips. Like
this, the results are clustered and hierarchically structured to obtain an easy-to-
browse content-container where the user finds what he or she was looking for or
at least is interested in.

8 Conclusion

We have considered a growing class of Web applications that share three charac-
teristic demands that are typical for these emerging applications: semantics for
integration, richer interactivity and multi-device adaptation. We have taken an
illustrative example of such an application, a TV recommender called SenSee,
that tackles these problems with a metadata-driven approach. The main tech-
nologies that have been used in the realization of SenSee were techniques from
Web Services, Web 2.0 (more specific Ajax technology) and Semantic Web. With
Web Services we were able to flexibly connect functional blocks together, e.g.
for dynamically choosing the appropriate modality for the appropriate devices.
Furthermore, we saw that our approach allowed plugging-in new functionality,
but also makes our functionality available to others. Web 2.0 technology like

Engineering Semantic-Based Interactive Multi-device Web Applications 341

Ajax was used to improve the user experience. By applying asynchronicity we
could accommodate external content sources that may be slow or unavailable,
while at the same time the application was staying as responsive as a regular
desktop application. Semantic Web technologies were exploited to relate con-
cepts from various heterogeneous sources to the used TV-Anytime specification
on which SenSee operates. We also showed that we had an extra benefit as we
could use these same semantic techniques to improve the core business of the
recommender: by dynamically plugging-in extra knowledge in form of domain
ontologies we could give the user more control over the process of finding what
they really wanted.

The experience gained in developing SenSee was achieved within the Passep-
artout project where multiple partners were working closely together. In the
project other applications were developed by companies such as Philips Re-
search16, Stoneroos17, V2 18, Henri Tudor19 and CWI20, and we observed that
our solution proved to be valuable as framework to use, and that SenSee could
be extended with new third-party algorithms and add-ons, improving interoper-
ability. The service-based architecture helped us in many ways facilitating these
cooperations. We learned how the growing class of Web applications with SIM
characteristics can be built. Although there might also be other ways to accom-
plish this, the semantic-based, metadata-driven approach we took allows the
application of technologies that can get the job effectively done.

References

1. Allan, J., B.C.(eds.).: Challenges in information retrieval and language modeling.
SIGIR Forum 37(1), pp. 31–47 (2003)

2. Brafman, R.I., Domshlak, C., Shimony, S.E.: Qualitative decision making in adap-
tive presentation of structured information. ACM Trans. Inf. Syst. 22(4), 503–539
(2004)

3. Ardissono, L., Goy, A.: Tailoring the interaction with users in web stores. User
Modeling and User-Adapted Interaction 10(4), 251–303 (2000)

4. Ardissono, L., Console, L., Torre, I.: An adaptive system for the personalized access
to news. AI Communications 14(3), 129–147 (2001)

5. Webster, D., Huang, W., Mundy, D., Warren, P.: Context-orientated news riltering
for web 2.0 and beyond. In: WWW ’06. Proceedings of the 15th international
conference on World Wide Web, New York, NY, USA, pp. 1001–1002. ACM Press,
New York (2006)

6. Millard, D.E., Ross, M.: Web 2.0: hypertext by any other name? In: HYPERTEXT
’06. Proceedings of the seventeenth conference on Hypertext and hypermedia, New
York, NY, USA, pp. 27–30. ACM Press, New York (2006)

16 http://www.research.philips.com/
17 http://www.stoneroos.nl/
18 http://www.v2.nl/
19 http://www.tudor.lu/
20 http://www.cwi.nl/

342 P. Bellekens et al.

7. Jones, M.B.: The identity metasystem: A user-centric, inclusive web authentication
solution. In: Toward a More Secure Web - W3C Workshop on Transparency and
Usability of Web Authentication (2006)

8. Passepartout: Itea passepartout project. (2005-2007) http://wwwis.win.tue.nl/~
ppartout

9. Ardissono, L., Kobsa, A., Maybury, M.T. (eds.): Personalized Digital Television.
Human-Computer Interaction Series, vol. 6. Springer, Heidelberg (2004)

10. Blanco Fernández, Y., Pazos Arias, J.J., Gil Solla, A., Ramos Cabrer, M., López
Nores, M.: Bringing together content-based methods, collaborative filtering and
semantic inference to improve personalized tv. 4th European Conference on Inter-
active Television (EuroITV 2006) (May 2006)

11. van Setten, M.: Supporting people in finding information: Hybrid recommender
systems and goal-based structuring. Telematica Instituut Fundamental Research
Series, No.016 (TI/FRS/016). Universal Press (2005)

12. TV-Anytime. The TV-Anytime Forum, Requirement Series: RQ001v2.0,
TV140. (April 2003) Available at: ftp://tva:tva@ftp.bbc.co.uk/pub/Plenary/
0-Plenary.html

13. Earnshaw, N.: The tv-anytime content reference identifier (crid) (2005)
14. Akkermans, P., Aroyo, L., Bellekens, P.: European Semantic Web Confer-

ence 2006 (demo presentation) (2006), http://www.eswc2006.org/demo-papers/
FD36-Lora.pdf

15. Hobbs, J.R., Pan, F.: An ontology of time for the semantic web. ACM Transactions
on Asian Language Information Processing (TALIP) 3(1), 66–85 (2004)

16. Chipman, A., Goodell, J., Johnson, R., Ward, J.: Getty thesaurus of ge-
ographic names: editorial guidelines (2005) http://www.getty.edu/research/
conducting research/vocabularies/guidelines/tgn 1 contents intro.pdf

17. Manola, F., Miller, E.: Resource Description Framework (RDF).
http://www.w3.org/TR/rdf-primer/

18. McGuinness, D.L., van Harmelen, F.: OWL web ontology language.
http://www.w3c.org/TR/owl-features

19. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture for
storing and querying rdf and rdf schema (2002)

20. Yee, K.P., Swearingen, K., Li, K., Hearst, M.: Faceted metadata for image search
and browsing. In: CHI ’03. Proceedings of the SIGCHI conference on Human factors
in computing systems, New York, NY, USA, pp. 401–408. ACM Press, New York
(2003)

21. Hildebrand, M., van Ossenbruggen, J., Hardman, L.: /facet: A browser for hetero-
geneous semantic web repositories. In: Cruz, I., Decker, S., Allemang, D., Preist, C.,
Schwabe, D., Mika, P., Uschold, M., Aroyo, L. (eds.) ISWC 2006. LNCS, vol. 4273,
pp. 272–285. Springer, Heidelberg (2006)

http://wwwis.win.tue.nl/~ppartout
http://wwwis.win.tue.nl/~ppartout
ftp://tva:tva@ftp.bbc.co.uk/pub/Plenary/0-Plenary.html
ftp://tva:tva@ftp.bbc.co.uk/pub/Plenary/0-Plenary.html
http://www.eswc2006.org/demo-papers/FD36-Lora.pdf
http://www.eswc2006.org/demo-papers/FD36-Lora.pdf
http://www.getty.edu/research/conducting_research/vocabularies/guidelines/tgn_1_contents_intro.pdf
http://www.getty.edu/research/conducting_research/vocabularies/guidelines/tgn_1_contents_intro.pdf
http://www.w3.org/TR/rdf-primer/
http://www.w3c.org/TR/owl-features

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 343–357, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Towards Improving Web Search by Utilizing Social
Bookmarks

Yusuke Yanbe, Adam Jatowt, Satoshi Nakamura, and Katsumi Tanaka

Department of Social Informatics, Kyoto University
 Yoshida-Honmachi, Sakyo-ku, 606-8501

Kyoto, Japan
{yanbe,adam,nakamura,tanaka}@dl.kuis.kyoto-u.ac.jp

Abstract. Social bookmarking services have become recently popular in the
Web. Along with the rapid increase in the amount of social bookmarks, future
applications could leverage this data for enhancing search in the Web. This
paper investigates the possibility and potential benefits of a hybrid page ranking
approach that would combine the ranking criteria of PageRank with the one
based on social bookmarks in order to improve the search in the Web. We
demonstrate and discuss the results of analytical study made in order to
compare both popularity estimates. In addition, we propose a simple hybrid
search method that combines both ranking metrics and we show some
preliminary experiments using this approach. We hope that this study will shed
new light on the character of data in social bookmarking systems and foster
development of new, effective search applications for the Web.

Keywords: Web search, social bookmarks, PageRank, meta-search.

1 Introduction

In the early years of the Web, directory services were utilized in order to arrange the
Web and to make it accessible to users. However, the rapid growth of the Web soon
made this approach impractical. Computing page relevance was also insufficient since
usually too many pages were relevant to user queries. In order to effectively rank
pages the quality of Web documents had to be captured. Thus, came the era of link
based algorithms such as PageRank [18] and HITS [10], which estimate quality of
pages by measuring their relative popularity in the Web. PageRank is currently the
most popular link-based Web page ranking method. It is based on a random surfer
model, where the probability of the surfer reaching a given page is calculated as the
result of a random selection of links. Consequently, the popularity of the page is
determined on the basis of the size of its hypothetical user stream.

Link-based page popularity estimation has, however, several disadvantages. One is
related to the difficulty of creating links as it usually requires some effort and
knowledge from users. Although, recently we observe the explosion of Weblogs or
wikis, which make the link creation relatively easy, yet search engines seem not to
trust links on such pages due to spamming threats. In general, links on majority of

344 Y. Yanbe et al.

pages are still created by a relatively small group of content producers. However,
there is an overwhelming group of content consumers whose opinions cannot be
captured by standard link-based ranking metrics. Additionally, links often serve many
different purposes on Web pages and, hence, should not always be treated as positive
votes for pages [14].

Another disadvantage of link based ranking mechanisms is related to their
temporal aspect. Web is a very dynamic environment and many new pages are
continuously created (see for example, [7,17]). However, pages usually need long
time to acquire links and to become popular among Web authors. In result, PageRank
algorithm is biased against new pages [2,12,23]. Considering the fact that users
usually need fresh information, this bias is a major disadvantage of link-based
algorithms making them weak in providing fresh content or detecting new, hot topics
and trends in the Web.

In general, the conventional link-based ranking approach is still useful, mostly due
to its success in combating spamming, however, we believe that it needs to be
complemented by another reliable metric. Along with the advent of Web 2.0, social
bookmarking systems seem currently to have a potential for improving the
capabilities of existing search engines. Social bookmarking lets users share, classify,
and discover interesting Web pages. In social bookmarking systems, the popularity of
a Web page is usually calculated by the total number of times it has been bookmarked
by users. We call this measure SBRank. As creating bookmarks is relatively easy and
does not require much technological knowledge, thus, in contrast to links, any Web
user can freely vote for pages. This, together with the high level of social interaction
in social bookmarking services, makes SBRank a highly dynamic measure allowing
for detecting high-quality, fresh and hot information on the Web.

Although social bookmarks have many advantages, relying on them alone is still
not advisable in a general purpose Web search. This is because there is currently not
enough data to produce satisfactory results for any arbitrary query 1 . Although,
recently, we are observing a rapid increase in the number of bookmarked pages, yet
we believe that the combination of link structure and social bookmarking based
popularity estimates seems to be currently an optimal strategy. Future search
applications should have at least the scalability of the existing search engines
combined with improved ranking models.

In this paper, we attempt to make a comparative analysis between PageRank and
SBRank metrics. The objective of this investigation is to analyze the feasibility and
potential of a hybrid search method that would combine both popularity measures. In
order to do so, we examine pages in social bookmarking systems and analyze their
popularity using SBRank and PageRank measures. We also investigate the dynamics
of SBRank metric in order to analyze whether it can improve freshness of search
results.

More socially-aware search algorithms that would leverage the content of so-called
Web 2.0 are an attractive vision as users often want to find information that is socially
accepted (recommended by many users) and also recently popular. However,
conventional link-based ranking methods cannot completely fulfill such requirements.

1 Meta-search applications that would increase the amount of data by collecting evidences from

different social bookmarking services have not appeared yet.

 Towards Improving Web Search by Utilizing Social Bookmarks 345

This work attempts at laying foundations towards building Web search applications
that would exploit social bookmarks. We believe that our analysis and other similar
systematic studies are necessary for designing reliable and high-quality Web search
applications.

Previous studies of social bookmarking in the Web focused mostly on its social
and linguistic aspects [6,15,16,19,20,21,22]. For example, the phenomenon of
folksonomy (i.e. community-evolved taxonomy) was analyzed [16,19,21,22], tagging
dynamics was examined [6] or a taxonomy of the current social bookmarking services
was proposed [15]. The aim of our investigation is, however, different from these
works, and has a practical objective, that is, examining the possibility and potential
benefits of complementing traditional Web search with social bookmarking data.

The rest of this paper is organized as follows. Section 2 discusses the related
research. Section 3 demonstrates the results of the analysis that we made. Next,
Section 4 summarizes our findings and discusses the issues involved with building
Web search applications that would utilize social bookmarks. Lastly, Section 5
concludes the paper and provides a brief look at our future work.

2 Related Work

The origins of social bookmarking date back to the work of Keller et al. [9] who in
1997 proposed to enhance Web browsers' bookmarking capabilities by using
collaborative approach. Later, Bry and Wagner [3] also conducted a similar research.
In the end of 2003, Joshua Schachter launched the first social bookmarking service
called del.icio.us 2 . Later, many kinds of social bookmarking systems have been
established and, currently, we are witnessing a rapid increase in their popularity.

Although, already some investigations have been made [6,15,16,19,20,21,22],
social bookmarking is still a relatively new phenomenon that has not been studied
well. Studies that have been made so far focused mostly on the issues related to
folksonomy and social aspects. For example, Zhang et al. [22] introduced a
hierarchical concept model of folksonomies using HACM - a hierarchy-clustering
model. The authors reported that certain kinds of hierarchical and conceptual relations
exist between tags. In another work, Golder and Huberman [6] measured regularities
in user activities, tag frequencies, and bursts in popularity of tags used in social
bookmarks. The authors discussed also dynamics of tagging exhibited in social
bookmarking. In addition, tags were classified into seven categories depending on the
functions they perform for bookmarks. More recently, Marlow et al. [15] introduced
the taxonomy of tagging systems to illustrate their potential benefits. In another work,
Wu et al. proposed a search model for annotated Web resources using social
bookmarks as an example [20]. Nevertheless, none of the previous studies made
comparative analysis of link- and social bookmark-based page ranking methods for
the purpose of their combination.

Recently, several researches have been done on temporal link analysis [1,2,4].
Temporal link analysis focuses on link evolution, discovering link change patterns or
on utilizing link timestamps for improving page ranking. For example, Amitay et al.

2 http://del.icio.us/

346 Y. Yanbe et al.

proposed a method for finding authority pages in time as well as for detecting trends
in the Web by using link timestamps [1]. Baeza-Yates et al. [2] suggested modifying
PageRank by incorporating last-modification dates of pages. The objective was to
eliminate the bias of PageRank towards old pages [2,12,23]. In another paper, Cho et
al. [4] proposed a quality model of pages based on the changes in the amount of in-
bound links of pages in time. According to this model, pages with growing popularity
trends, measured by large increases of in-bound link numbers, should have highest
qualities assigned, especially, if they are still relatively unpopular in the Web. On the
other hand, Yu et al [23] proposed an algorithm called Timed PageRank for
incorporating link duration into page ranking process by exponentially decaying
PageRank scores of linking pages. However, the approaches that use links dynamics
are rather impractical as it is usually difficult to determine link creation dates. In
contrast, social bookmarks usually contain timestamps indicating dates of their
creation. Thus, unlike in the case of link-based ranking, incorporating temporal
aspects into the Web search seems to be generally more feasible by using social
bookmarks.

Lastly, meta-search engines [5,11,13] are also related to our work. Several meta-
search engines have been recently employed on the Web. They provide the advantage
of the increased coverage of the Web as well as more up-to-date results due to
drawing data from multiple search engines. No approach has been, however, proposed
so far to combine the information derived from link structure and social bookmarks
for enabling a joint page ranking metric. This is probably due to different
characteristics of both information sources and the lack of their comparative analysis.
In this paper, we attempt to fill in this gap.

3 Comparative Analysis

3.1 Dataset Characteristics

To analyze characteristics of pages in social bookmarking services we collected two
datasets. As a source of the first dataset we selected del.icio.us since it is currently the
most popular social bookmarking service3 and it was also used by other researchers
for studying social bookmarking [6,22]. Second dataset was created using Hatena
Bookmark4 – the most popular bookmarking service5 in Japan, which was available
online since February 2005.

Both datasets were obtained in the following way. We have utilized popular tags,
which are sets of the most popular and recently used tags. Such tags are continuously
published by del.icio.us6 and Hatena Bookmark7. In total, 140 tags were retrieved on
December 6th, 2006 from del.icio.us and 742 tags on February 16th, 2007 from
Hatena Bookmark. Next, we collected popular URLs from these tags. Usually less

3 In September 2006 it was reported that the service had 1 million registered users:

http://blog.del.icio.us/blog/2006/09/million.html
4 http://b.hatena.ne.jp
5 The service had 60,000 users in October 2006: http://d.hatena.ne.jp/naoya/20061020
6 http://del.icio.us/tag
7 http://b.hatena.ne.jp/t

 Towards Improving Web Search by Utilizing Social Bookmarks 347

than 25 popular pages were listed for each tag in both social bookmarking systems. At
this stage, we obtained 2,673 pages for del.icio.us and 18,377 pages for Hatena
Bookmark. In the last step, we removed duplicate URLs (i.e. URLs listed under
several popular tags). Finally, we obtained 1,290 and 8,029 unique URLs for
del.icio.us and for Hatena Bookmark, respectively. Each URL had two attributes:
firstDate and SBRank. firstDate indicates the time point when a page was introduced
to the social bookmarking system for the first time by being bookmarked by one of its
users. SBRank, as mentioned above, is the number of bookmarks of a given page
obtained at the date of the dataset creation.

In order to detect PageRank values of the URLs, we used Google Toolbar8 which is
a browser toolbar that allows viewing PageRank values of visited pages9. PageRank
values obtained in this way are approximated on the scale from 0 to 10 (0 means the
lowest PageRank value of a page).

To sum up, the obtained datasets are snapshots of the collections of popular pages
in both social bookmarking systems. Each page has its Pagerank and SBRank values
recorded which it had at the time of the dataset creation.

3.2 Distribution of PageRank and SBRank

Figures 1a and 1b show the percentage distribution of PageRank values in both
datasets. We found that more than a half of pages (56.1%) have PageRank values
equal to 0 in the del.icio.us dataset. There are even more such pages in Hatena
Bookmark dataset (81%); probably due to its more local scope. These pages are rather
unpopular according to the link-based ranking and are relatively difficult to be found
using conventional search engines. However, many social bookmarkers considered
them to be of high quality and bookmarked them in the systems. It may imply that the
pages were discovered by users from other sources than conventional Web search
engines. Possibly this could happen by interacting with the social bookmarking
systems, since unlike bookmarks on a personal Web browser, social bookmarks affect
users socially. For example, del.icio.us informs users about popular pages that
recently obtained relatively many bookmarks10. Users can also subscribe to “Inbox” -
a bookmark activity reporting service. From this feedback, pages attracting much
attention can become rapidly known to many users.

In general, we think that there may be two possible reasons that caused the
occurrence of many pages with low PageRank values in the datasets, despite their
high popularity among social bookmarkers.

• The pages were created recently, thus, on average, they have relatively few
inbound links.

• The pages were created long time ago but their quality cannot be reliably
estimated using PageRank measure.

In order to determine which of these two reasons is more probable we did temporal
analysis of the pages, which we will discuss in Section 3.4.

 8 http://toolbar.google.com
 9 We had to use Google Toolbar since Google API does not provide any automatic method for

acquiring PageRank scores.
10 http://del.icio.us/popular/

348 Y. Yanbe et al.

4, 3.6%

5, 5.8%

6, 12.2%

7, 11.1%

8, 4.7%

9, 2.0%
10, 0.2%

0, 56.1%

2, 1.6% 1, 0.3%

3, 2.4%

Fig. 1a. Distribution of PageRank values
(del.icio.us)

0, 81%

6～10, 1%5, 2%
4, 5%

3, 7%

2, 3%

1, 1%

Fig. 1b. Distribution of PageRank values (Hatena
Bookmark)

0%

5%

10%

15%

20%

25%

30%

35%

1 10 50 100 200 300 400 500 1000 5000 10000

SBRank range

%

o
f

p
a
g
e
s

Fig. 2a. Histogram of SBRank (del.icio.us)

0%

10%

20%

30%

40%

50%

60%

1 10 50 100 200 300 400 500

SBRank range

%

o
f

a
ll

p
a
g
e
s

Fig. 2b. Histogram of SBRank (Hatena Book-
mark)

Figures 2a and 2b show the distributions of SBRank values. It can be seen that
quite few pages are bookmarked by many users, while the rest is bookmarked by a
relatively low number of users. This is similar to PageRank metric that features power
law distribution of PageRank values.

3.3 Correlation Between PageRank and SBRank

In this section we examine whether there is any correlation between PageRank and
SBRank values. Figures 3a and 3b show scatter plots of both measures.

We observed a positive correlation coefficient (r=0.53 in del.icio.us and r=0.10 in
Hatena Bookmark datasets) between SBRank and PageRank values. This is an
important result, since, if the correlation coefficient had a very high value, that is, if
generally SBRank values followed PageRank values, it would mean that PageRank
alone adequately measures page quality. Hence, there would be no reason for its
complementation with SBRank. On the other hand, if correlation coefficient between
both measures had a very low absolute value, it would suggest that one of the metrics
likely provides incorrect results. Since the values of the correlation coefficient were
within the acceptable range, we can consider a combination of both rank estimates to
be possible.

 Towards Improving Web Search by Utilizing Social Bookmarks 349

1

10

100

1000

10000

100000

0 1 2 3 4 5 6 7 8 9 10

PageRank

S
B
R
a
n
k

Fig. 3a. Scatter plot of PageRank and
SBRank (del.icio.us) (logarithmic scale)

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8 9 10

PageRank

S
B
R
a
n
k

Fig. 3b. Scatter plot of PageRank and SBRank
(Hatena Bookmark) (logarithmic scale)

3.4 Temporal Analysis

We turn now our attention to temporal aspects of the datasets. Figures 4a and 4b
show plots of pages against the dates of their addition to the social bookmarking
systems (firstDate). To correctly interpret these figures we have to remember that
the datasets contain pages which were popular in both social bookmarking systems
at the dates of the datasets’ creation (December 6th, 2006 for del.icio.us and
February 16th, 2007 for Hatena Bookmark datasets). firstDate indicates a date when
a page had its first bookmark created, hence, when it was added to the social
bookmarking system for the first time. It can be seen from Figure 4a that more than
a half of the pages were listed among popular URLs in the first three months after
being added into del.icio.us. The other half of the pages were bookmarked in the
system for the first time more than three months ago. Hatena Bookmark dataset
contains even more fresh pages. However, Hatena Bookmark is about one year
younger than del.icio.us system. Nevertheless, these figures imply that social
bookmarking users often prefer fresh pages. Additionally, almost all pages with
PageRank values equal to 0 were posted very recently as it can be seen in Figures
5a and 5b. This last observation suggests that the pages with zero PageRank values
are fresh and high-quality pages, which did not have enough time to acquire many
inbound links. However, to be completely sure, one would have to know the actual
origin dates of these pages11.

These results highlight one of the useful aspects of SBRank comparing to link-
based page ranking metrics. The standard link-based page ranking approach is not
effective in terms of fresh information retrieval. This is because pages require
relatively long time in order to acquire large number of in-bound links. Consequently,
PageRank values of pages are highly correlated with their age. Young pages have
difficulties in reaching top search results in traditional search engines even if their

11 Internet Archive (http://www.archive.org) could possibly provide more constraints on the

actual age of the pages. However, we have found that it contains past snapshots of only about
41% of pages from both datasets.

350 Y. Yanbe et al.

quality is quite high. Figures 6a and 6b show that there are quite low negative
values of the correlation coefficients between PageRank and firstDate in our
datasets (r=-0.85 for del.icio.us and r=-0.51 for Hatena Bookmark datasets). The
longer the page existed in the social bookmarking systems, the higher is the
probability that its PageRank value is high. We did similar experiment for SBRank
vs. firstDate (see Figures 7a and 7b). The correlation coefficient, in this case, had
the following values: r=-0.49 for del.icio.us and r=-0.08 for Hatena Bookmark
datasets.

0%

5%

10%

15%

20%

25%

30%

35%

2
0
0
3
/
9

2
0
0
3
/
1
2

2
0
0
4
/
3

2
0
0
4
/
6

2
0
0
4
/
9

2
0
0
4
/
1
2

2
0
0
5
/
3

2
0
0
5
/
6

2
0
0
5
/
9

2
0
0
5
/
1
2

2
0
0
6
/
3

2
0
0
6
/
6

2
0
0
6
/
9

2
0
0
6
/
1
2

firstDate

%

o
f

p
a
g
e
s

Fig. 4a. Histogram of firstDate of pages
(del.icio.us)

0%

10%

20%

30%

40%

50%

60%

2
0
0
3
/
9

2
0
0
3
/
1
2

2
0
0
4
/
3

2
0
0
4
/
6

2
0
0
4
/
9

2
0
0
4
/
1
2

2
0
0
5
/
3

2
0
0
5
/
6

2
0
0
5
/
9

2
0
0
5
/
1
2

2
0
0
6
/
3

2
0
0
6
/
6

2
0
0
6
/
9

2
0
0
6
/
1
2

firstDate

%

o
f

p
a
g
e
s

Fig. 5a. Histogram of firstDate of pages that
have PageRank value equal to 0 (del.icio.us)

0%

10%

20%

30%

40%

50%

60%

2
0
0
5
/
2

2
0
0
5
/
4

2
0
0
5
/
6

2
0
0
5
/
8

2
0
0
5
/
1
0

2
0
0
5
/
1
2

2
0
0
6
/
2

2
0
0
6
/
4

2
0
0
6
/
6

2
0
0
6
/
8

2
0
0
6
/
1
0

2
0
0
6
/
1
2

2
0
0
7
/
2

firstDate

%

o
f

p
a
g
e
s

Fig. 4b. Histogram of firstDate of pages
(Hatena Bookmark)

0%

10%

20%

30%

40%

50%

60%

70%

2
0
0
5
/
2

2
0
0
5
/
4

2
0
0
5
/
6

2
0
0
5
/
8

2
0
0
5
/
1
0

2
0
0
5
/
1
2

2
0
0
6
/
2

2
0
0
6
/
4

2
0
0
6
/
6

2
0
0
6
/
8

2
0
0
6
/
1
0

2
0
0
6
/
1
2

2
0
0
7
/
2

firstDate

%

o
f

p
a
g
e
s

Fig. 5b. Histogram of firstDate of pages that
have PageRank value equal to 0 (Hatena
Bookmark)

To sum up, the results suggest that SBRank has better dynamics than the traditional

link-based page ranking metric. This is because social bookmarks allow for a more
rapid, and unbiased, popularity estimation of pages. Complementing PageRank using
SBRank has thus potential to bring benefits from the viewpoint of the temporal
characteristics of both metrics.

 Towards Improving Web Search by Utilizing Social Bookmarks 351

0

1

2

3

4

5

6

7

8

9

10

28-Jun-

2003

28-Dec-

2003

28-Jun-

2004

28-Dec-

2004

29-Jun-

2005

29-Dec-

2005

30-Jun-

2006

30-Dec-

2006

firstDate

P
a
g
e
 R
a
n
k

Fig. 6a. Scatter plot of firstDate and
PageRank (del.icio.us)

0

1

2

3

4

5

6

7

8

9

10

28-Jan-

2005

29-May-

2005

27-Sep-

2005

26-Jan-

2006

27-May-

2006

25-Sep-

2006

24-Jan-

2007

firstDate

P
a
g
e
R
a
n
k

Fig. 6b. Scatter plot of firstDate and
PageRank (Hatena Bookmark)

Fig.7a. Scatter plot of firstDate and SBRank
(del.icio.us)

Fig. 7b. Scatter plot of firstDate and
SBRank (Hatena Bookmark)

3.5 Hybrid Web Search Proposal

In this section, we demonstrate a simple method for enhancing Web search. Then we
show the results of preliminary experiments that were conducted using this method.
Such improvement could be simply done by re-ranking top N results returned from
conventional search engines using the information about the number of their social
bookmarks. First, in order to examine whether such an approach would be feasible,
we analyzed how many pages in top search results contain at least one social
bookmark. Table 1 shows results obtained using Google search engine and del.icio.us
social bookmarking system for several sample queries. We can see that, on average,
about 79% of pages returned from Google search engine contain any social
bookmarks in del.icio.us and about 23% in Hatena Bookmark.

To implement a joint rank estimation measure we propose a linear combination of
both ranking metrics.

() () ()jNjj

j

jNjj

j
j PageRank

PageRank

SBRank

SBRank
nkCombinedRa

≤≤∀≤≤∀

∗−+∗=
1:1: max

1
max

αα (1)

SBRankj is the number of bookmarks of a page j in del.icio.us, while PageRankj is
a PageRank value of the page acquired using Google Toolbar. We normalize both

352 Y. Yanbe et al.

SBRankj and PageRankj values by dividing them by the maximum values found for all
N pages. α is a mixing parameter with the value ranging from 0 to 1.

In the experiment we have used the following queries: “social network”, “iphone”,
“nintendo wii” and “gardening”. For each query, we collected N=50 top search results
from Google search engine. By accessing the returned results, we evaluated the
relevance, quality and freshness of each page. Before the manual analysis, pages were
randomly ordered to eliminate the potential bias coming from search engine ranking.
Quality measures were decided based on several characteristics of pages such as
professional outlook, informativeness, text size, number of unique colors and similar
features. These characteristics, among others, are usually common for high quality
pages [14]. Freshness was determined by analyzing temporal expressions occurring in
page content and a general impression of the page’s age in case no temporal
expressions could be found. Next, we calculated the average value of these three
evaluation criteria for each returned page. The resulting values were then used for
measuring precision and recall of the results produced by our method.

By applying Equation 1 we could plot precision-recall graphs for each query using
different values of parameter α (see Figures 8 to 11). Precision and recall were
computed analyzing top k (k={10,20,30,40,50}) results within 50 pages returned by
the search engine.

From Figures 8-11 it can be seen that PageRank measure used alone (α=0)
produced better results only for the query “social network” for k={10, 20}. On the
other hand, SBRank measure used alone (α=1) produced the highest quality results
for the remaining values of k for query “social network” and for k={20,30,40} for
query “iphone”. In case of other queries, the hybrid approach was better or at least
equally good as PageRank or SBRank measures used alone.

After averaging the precision-recall graphs for all the queries we noticed that the
combined approach tends to produce better results for k={10} (Figure 12). On the
other hand, there is no improvement of the quality of search results for k={20,30,40}
when comparing to PageRank or SBRank used alone.

Choosing the value of the mixing parameter α is a difficult task. As a possible
solution, we suggest relating it to one of the two factors, the age of pages or the
availability of social bookmarks for pages. Thus, we propose the following three
approaches that could be potentially used, in which αj is a mixing parameter whose
value depends on the characteristics of page j:

add
j

nowj tt −
= 1α

 (2)

cre
j

nowj tt −
= 1α

 (3)

⎪⎩

⎪
⎨
⎧

≤

>
=

jj

jj

j SBRankPageRankif

SBRankPageRankif

1

0
α (4)

Here, tnow is the time of query issuing, tadd
j is the date of the addition of the page j into

a social bookmarking system; tcre
j is the creation date of the page j. However,

detecting creation dates of pages is rather difficult. As a possible solution, creation

 Towards Improving Web Search by Utilizing Social Bookmarks 353

dates could be approximated by choosing the minimum value between tadd
j and the

earliest timestamp of past snapshots of the page j found in any web archive such as
the Internet Archive.

Fig. 8-11. Precision-recall curves for each query: “social network”, “iphone”, “nintendo wii”
and “gardening”

Average Recall Precision Curve

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Recall

P
r
e
c
is
io
n

α=0

α=0.25

α=0.5

α=0.75

α=1

Fig. 12. Average precision-recall curves

Query "gardening" k={10,20,30,40,50}

(left to right)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Recall

P
r
e
c
is
io
n

α=0

α=0.25

α=0.5

α=0.75

α=1

Query "nintendo wii" k={10,20,30,40,50}

(left to right)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Recall

P
r
e
c
is
io
n

α=0

α=0.25

α=0.5

α=0.75

α=1

Query "social network" k={10,20,30,40,50}
(left to right)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Recall

P
r
e
c
is
io
n

α=0

α=0.25

α=0.5

α=0.75

α=1

Query "iphone" k={10,20,30,40,50}

(left to right)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Recall

P
r
e
c
is
io
n

α=0

α=0.25

α=0.5

α=0.75

α=1

354 Y. Yanbe et al.

Table 1. Number of pages having any social bookmarks for the top 100 results returned from
Google search engine for sample queries

query hatena del.icio.us both

graphic design 12 69 69

java 42 92 92

apple 19 83 84

gardening 4 79 79

kyoto 11 61 62

iphone 17 73 74

ipod 37 79 79

steve jobs 26 74 74

ajax 58 86 86

digital library 13 91 91

social network 22 84 84

nintendo wii 14 71 73

Average 22.92 78.5 73

By using Equations 2 and 3, a page would be ranked more by its SBRank measure
the younger is its date of insertion into social bookmarking systems or the younger is
its actual origin age. This approach would favor the social bookmark-based ranking
method in the case of relatively young pages. On the other hand, the approach based
on Equation 4 would select the ranking metric that provides a higher value. Thus,
pages with few social bookmarks would be ranked more by their PageRank values.

4 Discussion

Web search algorithm that would exploit consumer generated input, which constitutes
so-called Web 2.0, is certainly an attractive idea. Several possible directions can be
followed to achieve such a “socially-aware” search. For example, swicky12 is an
application that enables building trustful, vertical search engines by communities of
users. Our approach is different as we focus on employing social bookmarks made by
Web users since they have many advantages over links. Intuitively, there are two
main reasons why users create social bookmarks, making pointers to pages for their
future reuse or sharing information with other users. It means that either the users
expect to revisit bookmarked pages in future or they want to make them known to
others. Both objectives allow us to consider social bookmarks as positive votes for
pages. Additionally, if we roughly divide Web users into content creators and content
consumers, then PageRank can be interpreted as a result of author-to-author
evaluation of Web resources. On the other hand, SBRank can be considered as a

12 http://swicki.eurekster.com/

 Towards Improving Web Search by Utilizing Social Bookmarks 355

result of reader-to-author evaluation. Thus, users who are not capable of creating and
managing Web documents could also cast votes for pages leading to a more
democratic search process. Another advantage of SBRank over PageRank is that it
seems to have better temporal characteristics. SBRank is more dynamic than
PageRank, and it often takes short time for pages to reach their popularity peaks in
social bookmarking systems [6].

Below, we summarize the observations that we made through our analysis:

• More than half of popular pages in the datasets have lowest PageRank values
− This implies that many pages which have low PageRank values can be

incorporated into top search results through a hybrid Web search
− It also suggests that people likely discover bookmarked pages from other

sources rather than from search engines since many pages in our datasets are
relatively difficult to be found by traditional search engines

• Few pages have high SBRank while many pages have rather low SBRank
• There is a weak positive correlation between SBRank and PageRank

− This result suggests the possibility that SBRank can complement PageRank
to enhance Web search

• About half of pages listed as popular in the social bookmarking systems have
been introduced in recent three months
− This indicates high dynamics of SBRank measure and in general of social

bookmarking systems as they enable pages to become rapidly popular
− It also suggests that there are many fresh pages in social bookmarking

systems
• There is a high negative correlation between firstDate and PageRank values

− This result is consistent with the previous observations demonstrating the
strong positive bias of PageRank metric towards old pages

In our analysis, we have not considered page relevance that could be estimated by
using tags assigned to pages. For example, in the context of link structure analysis,
Haveliwala [8] introduced topic-sensitive PageRank. It measures page importance in
relation to selected topics, thereby improving page ranking. Similar approach could be
adapted to social bookmarks. In this paper, however, we focus on popularity
estimation of pages rather than on their relevance.

SBRank is based on user bookmarking activities, however, the importance of each
bookmark may be different. A possible extension of our approach would be, thus, to
incorporate weighting scheme into SBRank calculation that would depend on the
characteristics of users bookmarking pages. This could improve the effectiveness of
the page ranking and could help combat potential spamming. Spamming is a threat for
every Web search algorithm. Although, until now, no significant spamming attacks
have been observed in social bookmarking systems, we think that necessary measures
must be taken to prevent deliberate manipulations of social bookmarks in the future.
Several measures could be undertaken here as possible lines of defense. For example,
user popularity and the history of her or his interactions with the system could be
analyzed or users could report suspected inputs themselves.

Lastly, scalability is another problem related to social bookmarking-based Web
search. We believe that more data will soon become available along with the

356 Y. Yanbe et al.

increasing popularity of social bookmarking. Also we hope that efficient meta-search
approaches will appear in the near future. In the current situation, we think that the
combination of link-based ranking metric and social bookmark-based one is an
optimal strategy.

5 Conclusions

Social bookmarks have potential to complement and improve the traditional search in
the Web as bookmarked pages are manually checked by multiple Web users, who
express their preferences towards pages. Besides improving the quality estimation of
pages, social bookmarks can enhance freshness of search results, which is the quality
that many search engines currently lack.
 In this paper, we investigated the possibility of merging the ranking methods based
on the link analysis with the one based on social bookmarks. We have done
quantitative studies aiming at comparing both popularity measures and their temporal
characteristics. In result of the comparative analysis, we were able to make several
observations which allow us to conclude that a hybrid Web search is feasible and
useful. We believe that such an analysis is important for the creation of novel search
applications considering the weakness of link-based ranking algorithms and the
increasing popularity of social collaboration systems in the Web.

In future, we would like to continue the experiments in order to test the proposed
approaches. We plan also to work on designing meta-search approaches for
improving the search scalability as well as on spam-resistant ranking algorithms.

Acknowledgements

This research was supported by the MEXT Grant-in-Aid for Scientific Research in
Priority Areas entitled: Content Fusion and Seamless Search for Information
Explosion (#18049041, Representative Katsumi Tanaka), and by the Informatics
Research Center for Development of Knowledge Society Infrastructure (COE
program by MEXT) as well as by the MEXT Grant-in-Aid for Young Scientists B
entitled: Information Retrieval and Mining in Web Archives (Grant#: 18700111), and
by “Design and Development of Advanced IT Research Platform for Information”
(Project Leader: Jun Adachi, Y00-01, Grant#: 18049073).

References

1. Amitay, E., Carmel, D., Herscovici, M., Lempel, R., Soffer, A.: Trend Detection Through
Temporal Link Analysis. Journal of The American Society for Information Science and
Technology 55, 1–12 (2004)

2. Baeza-Yates, R., Castillo, C., Saint-Jean, F.: Web Dynamics, Structure and Page Quality.
In: Levene, M., Poulovassilis, A. (eds.) Web Dynamics, pp. 93–109. Springer, Heidelberg
(2004)

3. Bry, F., Wagner, H.: Collaborative Categorization on the Web: Approach, Prototype, and
Experience Report. Forschungsbericht/research report (2003)

 Towards Improving Web Search by Utilizing Social Bookmarks 357

4. Cho, J., Roy, S., Adams, R.: Page Quality. Search of an Unbiased Web Ranking. In:
Proceedings of SIGMOD Conference, pp. 551–562 (2005)

5. Dwork, C., Kumar, R., Naor, N., Sivakumar, D.: Rank Aggregation Methods for the Web.
In: 10th World Wide Web Conference, pp. 613–622 (2001)

6. Golder, S.A., Huberman, B.A.: Usage patterns of collaborative tagging systems, Journal of
Information Science, 198–208 (2006)

7. Gomes, D., Silva, M.J.: Modeling information persistence on the Web. In: Proceedings of
the 6th International Conference on Web Engineering, Palo Alto, CA, USA, pp. 193–200
(2006)

8. Haveliwala, T.H.: Topic-Sensitive PageRank: A Context-Sensitive Ranking Algorithm for
Web Search. IEEE Transactions on Knowledge and Data Engineering, 784–796 (2003)

9. Keller, R.M., Wolfe, R.R., Chen, J.R., Labinowitz, J.L., Mathe, N.: A Bookmarking
Service for Organizing and Sharing URLs. In: Proceedings of the 6th International World
Wide Web Conference, Santa Clara, CA, pp. 1103–1114 (1997)

10. Kleinberg, J.M.: Authoritative Sources in a Hyperlinked Environment. Journal of the
ACM, 604–632 (1999)

11. Lawrence, S., Giles, C.L.: Inquirus, the NECI meta search engine. In: Proceedings of the
7th International World Wide Web Conference, Brisbane, Australia, pp. 95–105 (1998)

12. Liu, B.: Web Data Mining: Exploring Hyperlinks, Contents and Usage Data. Springer,
Heidelberg (2007)

13. Lu, Y., Meng, W., Shu, L., Yu, C., Liu, K.: Evaluation of Result Merging Strategies for
Metasearch Engines. In: Proceedings of Web Information Systems Engineering
conference, pp. 53–66 (2005)

14. Mandl, T.: Implementation and evaluation of a quality-based search engine.
Hypertext2006, pp. 73–84 (2006)

15. Marlow, C., Naaman, M., Boyd, D., Davis, M.: HT06, Tagging Paper, Taxonomy, Flickr,
Academic Article, To Read. Hypertext2006, pp. 31–40 (2006)

16. Mathes, A.: Folksonomies - Cooperative Classification and Communication Through
Shared Metadata. Computer Mediated Communication, LIS590CMC (2004)

17. Ntoulas, A., Cho, J., and Olston, C.: What‘s new on the Web? The evolution of the Web
from a search engine perspective. In: Proceedings of the 13th International World Wide
Web Conference, New York, USA, pp. 1–12 (2004)

18. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing
order to the Web. Technical report, Stanford Digital Library Technologies Project (1998)

19. Strutz, D.N.: Communal Categorization: The Folksonomy. INFO622: Content
Representation (December 2004)

20. Wu, X., Zhang, L., Yu, Y.: Exploring Social Annotations for the Semantic Web. In: World
Wide Web Conference, pp. 417–426 (2006)

21. Wu, H., Zubair, M., Maly, K.: Harvesting Social Knowledge from Folksonomies.
Hypertext2006, pp. 111–114 (August 2006)

22. Zhang, L., Wu, X., Yu, Y.: Emergent Semantics from Folksonomies: A Quantitative
Study. In: Spaccapietra, S., Aberer, K., Cudré-Mauroux, P. (eds.) Journal on Data
Semantics VI. LNCS, vol. 4090, pp. 168–186. Springer, Heidelberg (2006)

23. Yu, P.S., Li, X., Liu, B.: On the temporal dimension of search. In: Proceedings of the 13th
International World Wide Web Conference, New York, USA, pp. 448–449 (2004)

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 358–363, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Designing Interaction Spaces for
Rich Internet Applications with UML

Peter Dolog and Jan Stage

Aalborg University, Department of Computer Science,
Fredrik Bajers Vej 7, DK-9220 Aalborg East, Denmark

{dolog,jans}@cs.aau.dk

Abstract. In this paper, we propose a new method for designing rich internet
applications. The design process uses results from an object-oriented analysis
and employs interaction spaces as the basic abstraction mechanism. State
diagrams are employed as refinements of interaction spaces and task models to
specify synchronization events and follow up actions on the client and server
side. The notation is based on UML.

Keywords: Rich Internet Applications, software design, interaction spaces,
state diagrams.

1 Introduction

Rich internet applications have been introduced as a response to the limitations in
richness that web users experience compared to desktop applications [7, 8]. They
employ technologies such as Flesh from Adobe, ActiveX, or recently AJAX
technology [11]. The term Rich Internet Applications has been launched first by
Macromedia. Later, this technology has also been adopted by others, for example
Google and Flickr.

Such applications introduce additional complexity connected with asynchronous
communication and synchronization problems as some data are being held and
processed at the client side. This influences software engineering methods to build
such applications.

In this paper we propose a method for rich internet application design with UML.
The method combines interaction spaces and task models [10] with UML based
design for adaptive web applications [6]. This combination provides the following
advantages:

• Interaction spaces and task models are natural metaphors for designing user
interface fragments that a web user will interact with and move beyond
traditional web site and web content abstractions.

• The UML statechart diagrams provide means to define user interaction events,
synchronization events between client and server as well as synchronization
events between fragments of the user interface.

 Designing Interaction Spaces for Rich Internet Applications with UML 359

The rest of the paper is structured as follows. Section 2 presents the method for
designing rich internet applications with illustrative examples. Section 3 relates the
method to the other work in the area. Finally, section 4 provides conclusions and
proposals for further work.

2 Design Process and Techniques

Figure 1 is an activity model of our method where:

− Data Model describes the problem domain classes needed for application and that
are used in use cases and tasks;

− Use Case Model provides the context for which the software system is going to be
used;

− Task Model is a refinement of each use case. It describes the activities that are
performed during each use case in terms of a UML statechart diagram.

− Interaction Space Model is a refinement of each task model. It describes
structural details of corresponding task flows where a user interaction is needed.

− Guide Model is a refinement of the task model. It provides navigation and
synchronization details on user interaction from software behaviour point of view.

− Mapping to Implementation maps the design abstractions to the appropriate
implementation according to the UML Guide principles [5] employing tagged
values, side effect actions and transformations to the running code.

Fig. 1. A design process for rich internet applications

Scenario. The discussion in this section is based on an example of a rich internet
application for furniture configuration. The case envisions a website for buying
furniture (like IKEA). Consider for example that a user has found a piece of furniture
that he considers buying for his living room. He would like to see if it fits into the
room with his other furniture and find the model and colour that looks best. He
chooses the model page to accomplish this. In that page, he first draws the living
room by giving sizes of floor and wall. He also gives the walls and floor colours.
Then he puts in furniture sketches of his existing furniture. This is simply done by
selecting types and colours from a palette. Now he puts in the new piece of furniture.
He determines the various properties of this item, e.g. colour and model, by choosing
from the online catalogue. He can change his point of view to see the furniture from
different angles. He is able to change the room by moving the existing furniture

360 P. Dolog and J. Stage

around. When he is finished, he saves the furniture configuration under his own
profile. Once the room is finished, it can be posted to the application server in order to
allow the shop to determine whether the requested items are in stock and if necessary
recommend alternative options.

Data and Use Case Model. Data and Use Case modelling follows traditional object
oriented principles [9] when describing application domain classes, concepts,
associations, aggregations and generalization/specialization.

A number of use cases can be identified from the scenario in above such as Draw a
room with walls and floor, Make a furniture configuration with existing furniture
(Room items), Put in new furniture (Store items), Edit a furniture configuration
(change colour etc.), and so on. Each use case is described in a textual version and
can be depicted in a graphical form on a use case model showing the relationships to
the other use cases.

Fig. 2. An excerpt of a task model for furniture configuration

Task and Interaction Space Model. Each use case can also be expressed as a
statechart diagram [9]. An excerpt of a task model for our scenario is shown in
Figure 3. The transitions are user actions, and the states represent the results of the
user actions displayed at a user interface. In accordance with [10], the task models are
enriched with interaction spaces, forming the elements of user interaction design for
each use case. Interaction spaces are conceptual elements which prescribe how
particular tasks will be supported by a user interface.

RoomConfiguration

Furniture configuration
1 1

Furniture list Room

a) b)

1

RoomBrowser

Room FurnitureListBrowser
FloorPlanViewer

*

Fig. 3. Interaction spaces for room furniture configuration with data model classes: a)
SelectRoom b) SelectItem and move it

 Designing Interaction Spaces for Rich Internet Applications with UML 361

Figure 4 depicts a typical example of interaction spaces with a browser and a view
for a problem domain class. Furthermore, each interaction space is further connected
to data classes that it is using. For each transition and state in the task model, we
consider relevant interaction spaces. For example, we need a Room browser that
shows all the user’s rooms. Selection is made by pointing out one object in the list.
We need a Floor plan viewer and a Furniture list browser to show the contents of the
room. In this list, an object can be selected by pointing it out. Moving around should
be a drag and drop type of function. These two interaction spaces are parts of an
overall interaction space that we call RoomConfiguration. Finally, we need an
interaction space for saving the furniture configuration.

Guide Model. Statechart diagrams are used in the UML-Guide [6] for modelling
user navigation in a hypertext; each state represents the production of a given
information chunk on the device observed by a user, and each state transition
represents an event caused by user interaction that leads to the production of a new
chunk of information. State diagrams therefore provide an abstraction of hypertext
trails, where each trail can be adapted by taking into account the user background,
level of knowledge, preferences and so on [5, 6]. Atomic states, super states, history
states, fork and join are additional symbols to describe composition, concurrent
execution, remembering, and so on. Events, guards, and side effect actions are used to
specify constraints, triggers, operations for example for synchronizing user and
display data as well as adaptation rules.

As each interaction space has already data context through a link to data classes
and to the tasks to be performed, it is sufficient to map set of tasks from task model to
UML states. Functional dependencies between interaction spaces and their states are
modelled as state transitions with parameter passing. These transitions ensure that the
user interface will be in consistent and synchronized state. In case of highly
interactive activities at the user interface the transitions also ensure that the data is
updated according to the user activity.

Fig. 4. An excerpt of the UML guide model for furniture configuration

362 P. Dolog and J. Stage

Figure 4 depicts an excerpt of a navigation model according to UML-Guide. The
model is a refinement of the task model presented in the beginning of this section.
There are two dialog steps: RoomBrowser and Room&Store. The Room&Store
incorporates 3 concurrent regions representing three concurrently presented dialog
steps: RoomItems, StoreItems and RecommendedStoreItems. Whenever a user selects
an item from store items (SelectItem event on the transition from StoreItems), the item
is placed into the room by synchronization invoked Room.addItem function. The
model at the client side is reinitialized and client side functions such as
jsRoom.ShowItems() re-renders the displays considering the added item as part of the
scene. More interesting situation happens whenever user selects an item in a room: an
event occurs which triggers a synchronizing action with a server of furniture shop and
recommended items based on similarity functions and user preferences
(GetRec(selected) function). Additional parameters can be specified such as booking
history and so on.

3 Related Work

A WebML extension for rich internet applications has been proposed in [2] with new
units for the client side operation of a web application. In our approach, we propose
an alternative UML-based design technique focusing user interaction and behavioral
characteristics of navigation with client site business logic and asynchronous
communication between server and client.

Task models have been already employed as a means to model complex processes
for web applications in WSDM [4]. Similarly to our approach, the tasks are used to
describe control flow between user activities and their decompositions to web
application internal operations. In our work we use the tasks model together with the
interaction spaces. Furthermore, we use decomposition techniques to UML Guide for
adaptive navigation design to specify synchronization of different web page
fragments and request the data needed for them.

Interactive Dialog Model (IDM) [1] relates to our approach through its focus on
user interaction. It is based on a map based technique for user dialog specification on
the web connected to data and content.

SHDM [3] uses semantic web conceptual model to specify structural features of
the user interface widgets. Widgets are also a central part of the interaction space
specifications. They are used to specify parts of the interaction space in terms of data
and interaction facilities.

In [12], authors make use of sequence diagrams to synchronize different devices.
The technique might be applicable for the rich internet applications as well in
combination with the techniques proposed in this paper and in our technique.

4 Conclusion

We have proposed a new UML-based design method for rich internet applications. It
is based on the task models, interactions spaces, and web interaction and navigation
specification in the UML-Guide. It provides direct means to analyze user interaction

 Designing Interaction Spaces for Rich Internet Applications with UML 363

as well as asynchronous communication between web client and web server. It
reflects the need to have a part of the business logic at the client side. It provides a
flexibility with respect to the web page design as this decisions are made later in the
design stage according to the UML-Guide principles.

In our further work we plan to conduct larger set of studies about features of this
technique. We would like to also see how to further support a designer with some
tools which would ease the design refinements.

References

1. Bolchini, D., Paolini, P.: Interactive Dialogue Model: A Design Technique for
Multichannel Applications. IEEE Transactions Multimedia 8(3) (2006)

2. Bozzon, A., Comai, S., Fraternali, P., Carughi, G., T.: Conceptual Modeling and Code
Generation for Rich Internet Applications. In: ICWE2006. International Conference on
Web Engineering, Palo Alto, California USA, ACM Press, New York, NY, USA (2006)

3. De Moura, S., Schwabe, D.S.: Interface Development for Hypermedia Applications in the
Semantic Web. In: La-Web 2004 Proceedings. IEEE Press, Orlando, Florida (2004)

4. De Troyer, O., Casteleyn, S.: Modeling Complex Processes for Web Applications using
WSDM. In: Lovelle, J.M.C., Rodríguez, B.M.G., Gayo, J.E.L., Ruiz, M.d.P.P., Aguilar,
L.J. (eds.) ICWE 2003. LNCS, vol. 2722, Springer, Heidelberg (2003)

5. Dolog, P.: Engineering Adaptive Web Applications. Doctoral dissertation. University of
Hannover (March 2006)

6. Dolog, P., Nejdl, W.: Using UML and XMI for Generating Adaptive Navigation
Sequences in Web-Based Systems. In: Stevens, P., Whittle, J., Booch, G. (eds.) «UML»
2003 - The Unified Modeling Language. Modeling Languages and Applications. LNCS,
vol. 2863, Springer, Heidelberg (2003)

7. Driver, M., Valdes, R., Phifer, G.: Rich Internet Applications Are the Next Evolution of
the Web. Technical report, Gartner (May 2005)

8. Duhl, J.: Rich Internet Applications. White Paper, IDC (November 2003)
9. Mathiassen, L., Munk-Madsen, A., Nielsen, P. A., Stage, J.: Object-Oriented Analysis &

Design. Aalborg: Marko (2000)
10. Nielsen, C.M., Overgaard, M., Pedersen, M.B., Stage, J., Stenild, S.: Exploring Interaction

Space as Abstraction Mechanism for Task-Based User Interface Design. In: Coninx, K.,
Luyten, K., Schneider, K.A. (eds.) TAMODIA 2006. LNCS, vol. 4385, Springer,
Heidelberg (2007)

11. Paulson, L.D.: Building Rich Web Applications with Ajax. Computer 38(10), 14–17
(2005)

12. Vandervelpen, C., Vanderhulst, G., Luyten, K., Coninx, K.: Light-Weight Distributed Web
Interfaces: Preparing the Web for Heterogeneous Environments. In: Lowe, D., Gaedke, M.
(eds.) ICWE 2005. LNCS, vol. 3579, pp. 197–202. Springer, Heidelberg (2005)

A Behavioral Model for Rich Internet

Applications

Sara Comai and Giovanni Toffetti Carughi

Dipartimento di Elettronica, Politecnico di Milano
P.zza L. da Vinci, 32 - I20133 Milano

comai@elet.polimi.it, toffetti@elet.polimi.it

Abstract. Rich Internet Applications (RIAs) are reshaping the way in
which the Web works. They change not only the appearance of the Web
interfaces, but also the behavior of applications, permitting novel opera-
tions, like data distribution, partial page computation, and disconnected
work. In this paper we try to understand the differences between the
behavior of traditional dynamic Web applications and RIAs, considering
the WebML modeling language and its actual implementation.

1 Introduction

In a “traditional” dynamic HTML-based application the interface is an HTML
document, computed by the server at each user’s request. When the user inter-
acts with the page, by following an hyperlink or submitting a form, the server is
invoked and the destination page is computed from scratch and sent back to the
client. The role of the client is to intercept the user’s action, deliver the request
to the server, and display the response.

In a Rich Internet Application (RIA), the client is assigned a fraction of the
data and of the computation, so that the user can perform a complex interaction
with the interface without invoking the server, unless data needs to be exchanged.
Furthermore, if the user’s interaction requires a server round-trip for refreshing
some data, the client can selectively retrieve from the server only the information
that need to be changed, update its internal status, and redisplay the modified
content.

This paper investigates RIAs by analyzing their behavior in order to under-
stand if they constitute only a technological improvement over the architecture
of conventional dynamic Web applications or if they can alter significantly the
way in which Web applications behave, and therefore pose novel challenges to
their design, implementation, and evaluation. As a reference model we consider
WebML [2].

2 Traditional Web Application Model

A traditional dynamic Web application is described by its structure and behav-
ior, as defined by the following models.

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 364–369, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Behavioral Model for Rich Internet Applications 365

The structural model comprises a data model, which specifies the content
objects underlying the applications (e.g., represented by an Entity-Relationship
or an UML class diagram), and an interface model (or hypertext model), which
describes the front-end exposed to the user.

The key ingredients of the interface model are: 1) content components1 , 2)
interface containers, 3) parameter passing, and 4) interaction mechanisms.

1) A content component is used to extract content stored in the data layer and is
characterized by: a (possibly empty) set of input parameters, a query, to retrieve
the desired objects, exploiting the values of the input parameters; a population,
storing the result of the query, and a (possibly empty) set of output parameters.
2) Interface containers are structured collections of content components. In the
Web context, they typically represent Web pages, or sub-modules of pages and
can be organized hierarchically.
3) Parameter passing is represented by parameter passing rules. A parameter
passing rule expresses a dependency between a pair of components; it consists
of a source component, a destination component, and a mapping between the
output parameters of the source and the input parameters of the destination.

4) Web interaction mechanisms are specified by means of links, representing
hyperlinks and input submit commands, typically rendered as anchors or form
buttons. A link connects a source and a destination component and is associated
with one parameter passing rule.

The dynamic model of a traditional Web application explains what happens
when the user accesses a page or navigates its internal links. The behavior of
a traditional Web application can be automatically inferred from the structural
model presented above. In this section we present a sketch of the the page com-
putation algorithm adopted by WebML and highlight the main characteristics
of the behavior of traditional Web applications. A formal version of the WebML
semantics defined by means of Statecharts can be found in [3].

In traditional Web applications page computation occurs entirely at the server:
a page request causes the page to be computed from scratch as described by the
following algorithm.

INPUT: page to be computed, initial assignment of input parameters IP
OUTPUT: computed page
CURRENTINPUT=IP; COMPONENTS=FindComputable(CURRENTINPUT);
WHILE (COMPONENTS is not empty) DO {
C=Choose(COMPONENTS);
I=ChooseInput(C);
OutP=Execute(C, I);
FORALL Rule in ParameterPassingRules(C)

CURRENTINPUT += AssignInput(Rule.destination,OutP);
COMPONENTS=FindComputable(CURRENTINPUT);

}

1 For brevity we don’t consider business components (i.e. WebML operations) here.

366 S. Comai and G. Toffetti Carughi

The page computation process starts from the requested page and from an
initial assignment of values to the input parameters of the content components
(e.g., the OID of the object selected from an index, the values input in a form).
The maximal set of content components is then computed, starting from the
received parameters and respecting a partial order imposed by the parameter
passing rules: the set of computable units is determined (procedure FindCom-
putable); one of such units is selected for execution (procedure Choose); the
input parameters to be used are chosen (ChooseInput) and the query/method
of the unit is executed and output parameters are computed (Execute). The
output parameters are then passed through the parameter passing rules to the
destination components (AssignInput).

As an example, consider the hypertext in Figure 1 showing the list of folders,
a selected folder, the list of messages contained in this folder and a selected
message. L1 is a navigation link recording the last selected value (it is an history
link, denoted with h), L2 is a parameter passing rule not associated with a
navigable link, L3 is a navigation link with no history. When the user selects
a new message in the current folder by navigating link L3, the page must be
recomputed. The initial assignment of input parameters contains the id of the
newly selected message, while the history contains the id of the current folder.
In the first iteration, it can evaluate the Folders component, which does not
require input parameters, and the Message component, whose input parameter
comes from the initial assignment. When the Folders component is evaluated, it
provides the value of the input parameter of the Folder component (taken from
the history). After the Folder component is evaluated, the input parameter of
the Messages component becomes available and also this component can be
evaluated, which terminates the page computation process.

Id

Email

Folder
[OID=Id]

Folder
Id Id2

Message
[OID=Id2]

Message

Message
[Folder2

Message(Id)]

Messages

Folder

Folders

h

L1 L2 L3

Fig. 1. An hypertext with four components, three parameter passing rules, and two
navigational links

3 Rich Internet Application Dynamic Model

Rich Internet applications require the extension of the structural model with
a distribution of the data and of the functionalities between the client and the
server (see [1] for details) and a more flexible run-time behavior w.r.t. traditional
applications. Upon the interaction of the user, the client can selectively request
from the server only a portion of the data and maintain unchanged all the pieces
of information that are not affected. Furthermore, the interaction of the user may

A Behavioral Model for Rich Internet Applications 367

cause some pieces of content, which were previously displayed, to be invalidated
because they are no longer consistent with the rest of the page.

A novel dynamic model where each link is associated with the notion of com-
putation sequence (or sequence, for short) is needed; when a link is navigated,
the dynamic model dictates explicitly the effects on all the components of the
page. In a sequence, the following operators are used:

– Evaluate: causes the computation of the input parameters of a component
and of its query. It is denoted by the term ci + +, where ci is a component.

– Refresh: causes the computation of the query. It is denoted by the term ci+.
– Invalidate: discards the input parameters of a component and its population.

It is denoted by the term ci − −.
– Empty: discards the population of a component. It is denoted by ci−.

Given a link, a sequence associated with it is legal if it satisfies the follow-
ing constraints: 1) the operators affect components belonging to the page of
the destination component; 2) each component appears at most once in the se-
quence associated with an Evaluate or a Refresh operator, thus avoiding cyclic
computations; 3) the order of evaluation of the components is such that all the
components that may provide input parameters to a given component are eval-
uated before the dependent component.

The proposed dynamic model subsumes the traditional one, and is able to
express also more complex behaviors.

Examples. Consider the interface model of Figure 1.
The sequence on link L1: Folder++, Messages++, Message– specifies a be-

havior where only the components directly depending on the navigated link are
updated, whereas the remaining components are no longer displayed. In other
words, only the affected information is requested again to the server, as custom-
ary in AJAX and FLASH interfaces.

The sequence on link L1: Folder++, Messages++ specifies instead that when
link L1 is navigated, the Message component is kept fixed and continues to show
the same information irrespective of the (possibly repeated) change of folder.
Such a behavior may be chosen to spare a data request to the server, and defer
the re-evaluation of the displayed message to the time when the user selects a
new message.

Extended page computation algorithm. The page computation process for
the extended model is represented by the following algorithm:

INPUT: page, computation sequence Seq,
navigated link L, initial parameter assignment IP;
OUTPUT: computed page
AssignInput(L.destination,IP);
FOREACH (op in Seq) do {
SWITCH (op.type){

case Evaluate:
(I,AffectedQuery)=ChooseInput(op.component);
OutP=Execute(op.component, I, AffectedQuery); break;

368 S. Comai and G. Toffetti Carughi

case Refresh:
OutP=Execute(op.component); break;

case Invalidate:
op.component.Input=op.component.Population=null;
op.component.Output=null; break;

case Empty:
op.component.Population=null;
op.component.Output=null;

}
FORALL Rule in ParameterPassingRules(op.component)

AssignInput(Rule.destination,null);
}

4 Discussion

The study and the implementation of the page computation algorithms of the
traditional and of the Rich Internet Applications models allowed us to better
evaluate their main differences.

The behavior of the whole application becomes more difficult to understand,
since it is given by the combinations that can be obtained through the applica-
tion of the computation sequences associated with the enabled navigational links.
The specified behavior should always guarantee properties such as computation
termination and determinism, triggerability of links and computability of compo-
nents, and so on. The traditional model presented in Section 2 guaranteed most
of such properties, while the new extended model introduces also new issues. Here
we overview only some properties of the proposed models, summarized in Table 1.

Table 1. Traditional vs RIAs guaranteed properties

Property Traditional Rich Internet Application
Component computability NO (cycles) NO (due to cycles and/or partial computation)
Reachability YES NO (due to partial computation)
Freshness YES NO (due to partial computation)
Consistency YES NO (due to partial computation)

Non-computability of a component can arise in both applications. It occurs
when a component may never receive the needed input parameters: this may
happen in particular configurations with cycles among components. In RIAs,
non-computability may also originate from computation sequences in which ex-
plicit invalidation actions prevent a component from receiving all its needed
parameters. For example, in Figure 1 the computation sequence (L1: Folder++,
Messages–; Message++) associated to the navigation of link (L1) cannot produce
the content of the Message component.

The proposed RIA model is then affected by further issues due to possibility
of specifying partial computations. First of all, partial computations may cause
non-reachability of components and triggerability of links: the set of sequences

A Behavioral Model for Rich Internet Applications 369

associated with the links of a page may not allow to compute components and
therefore trigger their outgoing navigational links. The model for the traditional
Web applications, computing the maximal set of content components and using
the parameter passing rules at each user’s interaction, can instead guarantee
such properties.

Moreover, stale data may be present in the interface. In Figure 1, if the com-
putation sequence associated with link L3 is (Message++), only the Message
component is recomputed. The list of messages is not recomputed and, there-
fore, new messages available at the server are not shown. Data freshness problems
do not arise in traditional dynamic Web applications, because pages are always
entirely recomputed from the data currently stored in the data layer.

Finally, consistency problems may arise. By consistency we mean that if a
component receives inputs from another component, then whenever the popula-
tion of the first component is evaluated and new output parameters are produced,
also the input parameters and the population of the dependent component are
evaluated. This problem does not arise with the proposed algorithm for tradi-
tional Web applications, since the computation always starts from scratch by
evaluating the maximal set of components and parameter passing rules apply;
it may instead occur in RIAs when partial computations are specified. Consider
Figure 1 and the computation sequence (L1: Folder++, Messages++) associated
to the navigation of link L1; consistency is not guaranteed between the Messages
component and the Message component that is not recomputed: indeed, if the
user selects a new folder, a message belonging to a different folder is shown.

5 Conclusions

In this paper we have presented a dynamic model for Web applications, distin-
guishing between traditional Web applications and Rich Internet Applications. In
case of traditional Web applications a default behavior may be associated with the
structural model as it has been done for the WebML language. RIAs can exhibit
richer and more flexible behaviors that cannot be specified through a standard be-
havioral model. In particular, the computation of RIAs typically involves partial
fragments of the interface: this may introduce several new issues that need to be
considered in the design, implementation, and evaluation of RIAs.

References

1. Bozzon, A., Comai, S., Fraternali, P., Toffetti Carughi, G.: Conceptual modeling and
code generation for rich internet applications. In: Wolber, D., Calder, N., Brooks,
C., Ginige, A. (eds.) ICWE, pp. 353–360. ACM Press, New York (2006)

2. Ceri, S., Fraternali, P., Brambilla, M., Bongio, A., Comai, S., Matera, M.: Designing
Data-Intensive Web Applications. Morgan Kaufmann, Seattle, Washington (2002)

3. Comai, S., Fraternali, P.: A semantic model for specifying data-intensive web appli-
cations using webml. In: Semantic Web Workshop, Stanford, USA, July (2001)

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 370–384, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Considering Web Accessibility in Information Retrieval
Systems

Myriam Arrue and Markel Vigo

University of the Basque Country, Informatika Fakultatea, Manuel Lardizabal 1, E-20018,
Donostia, Spain

{myriam,markel}@si.ehu.es

Abstract. Search engines are the most common gateway for information
searching in the WWW. Since Information Retrieval systems do not take web
accessibility into account, results displayed are not useful for users with
disabilities. We present a framework that includes the requirements to
overcome this situation. It is composed of three modules: Content Analysis
Module, Accessibility Analysis Module and Results Collector Module. This
framework facilitates the implementation of search engines which return results
ranked according to accessibility level as well as content relevance. Since
criteria to sort results by their accessibility are necessary, we define accurate
quantitative accessibility metrics which can be automatically calculated
exploiting results yielded by any automatic evaluation tool. A prototype based
on these requirements has been implemented to show the validity of the
proposal.

1 Introduction

The WWW has a great potential to make life easier for disabled people and make
them less dependant on their relatives or friends since users can perform tasks they
hardly could accomplish by themselves (i.e.: do shopping, buy tickets, etc.). However,
as most websites are not accessible, these users come up against design barriers which
do not let them access the information. In order to tackle this situation Web Content
Accessibility Guidelines [7] were proposed by the Web Accessibility Initiative1
(WAI). WCAG 1.0 guidelines define specific testing techniques or checkpoints which
refer to accessibility issues in a more accurate way. Depending on the way a
checkpoint impacts on the accessibility of a web page, each checkpoint has a priority
assigned (1, 2 or 3 from more to less impact). In addition, based on these priorities
three conformance levels are defined:

• Conformance level A: all priority 1 checkpoints are satisfied.
• Conformance level AA: all priority 1 and 2 checkpoints are satisfied.
• Conformance level AAA: all priority 1, 2 and 3 checkpoints are satisfied.

New versions of these guidelines are being currently developed. The last draft of
WCAG second version was released in April 2006 [6] and proposes a new guideline

1 http://www.w3.org/wai

 Considering Web Accessibility in Information Retrieval Systems 371

concept. This set of guidelines incorporate a new accessibility description as it defines
the properties an accessible website has to accomplish. Similarly to the previous
version of WCAG, each checkpoint defines three priority and analogous conformance
levels. According to this description, an accessible website should fulfil these four
guidelines:

• Make content PERCEIVABLE for any user.
• Make content and controls UNDERSTANDABLE to as many users as possible.
• Use ROBUST web technologies that maximize the ability of the content to work

with current and future accessibility technologies and user agents.
• Ensure that interface elements in the content are OPERABLE by any user.

Searching is a significant activity when accessing the WWW. Kobayashi and
Takeda [13] state that 85% of users use search engines when seeking for information
on the Web. However, results are not tailored to the need of users with disabilities and
they may find barriers when trying to access to the websites in results. According to a
study carried out with visually impaired users by Andronico et al. [2] only 38% of
them find search engines results useful while 90% of sighted users do not have any
problem. This may be the reason why only 23% of visually impaired users versus the
70% of sighted users frequently use search engines. Ivory et al. [12] suggest that
providing additional page features and re-ranking according to users visual abilities
would be a way to improve their search experience. In this sense, this paper aims at
exploring web accessibility issues on traditional Information Retrieval mechanisms
such as search engines. It proposes a conceptual framework for including web
accessibility measures in information retrieval processes. In addition, it presents a
prototype implemented based on the proposed framework.

2 Web Accessibility as a Quality Measure

Some research aim at incorporating quality metrics in informational retrieval systems
can be found in the literature such as the one presented in [20]. However, they do not
consider web accessibility as a quality measure of web applications even if they take
into account some usability related properties.

Many authors consider accessibility closely related to usability as they both
enhance user satisfaction, effectiveness and efficiency. According to some of them,
accessibility can be understood as a subset of usability. In fact, the concept of
accessibility is related to the absence of physical or cognitive barriers to using the
functionality implemented in a website, such as navigation, information searching,
etc. Although diverse methods and tools for web usability evaluation exist [11],
accessibility assessment has not been sufficiently developed, even though
accessibility measurement, rating and assessment is essential in determining website
quality. The lack in such accurate measures and tools for automatically calculate them
may be the reason why accessibility is sometimes forgotten.

372 M. Arrue and M. Vigo

As far as standards related to quality are concerned, the ISO 9126-1 standard
[10] defines six software product quality characteristics: functionality, reliability,
efficiency, usability, maintainability and portability. For evaluation purposes, it also
defines a quality model for software product quality and it should be used in
conjunction with the ISO/IEC 14598-1 [9] providing methods for the measurement,
assessment and evaluation of software product quality. When specifically refereeing
to websites, specific models such as 2QCV3Q by Mich et al. [15] have been
proposed. Even if they include several aspects related to both usability and
accessibility, web accessibility is not considered as an important property of
websites.

All the approaches for measuring the quality of software products coincide in the
importance of creating adequate metrics in order to efficiently perform the quality
evaluation process. The most accepted and used web accessibility metrics are
qualitative ones proposed by the WAI in the WCAG 1.0 document. As previously
mentioned, these metrics assign 0, A, AA or AAA value depending on the fulfilment
of the WCAG 1.0 guidelines. They are not accurate enough in order to rate and
classify websites according to their accessibility level. A website fulfilling only all
priority 1 checkpoints would obtain the same accessibility value as another website
fulfilling all priority 1 checkpoints and almost all priority 2 checkpoints: both of them
would get the A level conformance. These criteria seem to be based in the assumption
that if a webpage fails to accomplish one of the guidelines in a level, it is so un-
accessible as if it fails to fulfil all of them. That is true for some users, but in general it
is essential to have not only a reject/accept validation, but a more accurate graduation
of the accessibility. Thus, as stated by Olsina and Rossi [16], defining quantitative
accessibility metrics is necessary in order to overcome this situation. Moreover, they
are essential in order to perform an adequate rating of websites and consequently for
including web accessibility measures in informational retrieval systems. Development
of adequate and accurate metrics will encourage developers to consider accessibility
property as a website quality measure. Consequently, accessibility could be included
in several processes such as information retrieval.

3 Related Work

There are two main components to be included in such a framework for including
web accessibility metrics into informational retrieval systems. As stated in section 2,
development of accurate accessibility metrics is essential as the websites should be
rated and ranked based on them. These metrics will be calculated based on the results
obtained after performing a comprehensive accessibility evaluation according to
existing sets of guidelines. Both components should be automatized processes as the
objective is to include them into other automatic processes which are the information
retrieval systems. The following sections present some of the existing research works
related to both components: web accessibility metrics and automatic accessibility
evaluation.

 Considering Web Accessibility in Information Retrieval Systems 373

3.1 Web Accessibility Metrics

Sullivan and Matson [18] evaluate eight checkpoints from WCAG 1.0. As a result, the
so-called "failure-rate" is a proportion between potential errors and real errors.
Therefore, the result range goes from 0 to 1. It is a naive approximation since other
factors such as error impact, error nature (whether checkpoints are errors, warnings
or general warnings) and other requirements explained in the following section are
not taken into account.

errorspotential

errorsreal
ratefailure

_

_
_ =

Hackett et al. [8] proposed the WAB formula (Web Accessibility Barrier). This
formula uses as input parameters the total pages of a website, total accessibility errors
as well as potential errors in a web page and error priority. However, the returned
marks are not restricted to a limited range of values. Therefore, it can be useful only
for ranking web pages according to their accessibility level. The drawback of this
metric is that considering the result for a unique web page, it is not possible to have
an accessibility reference since there are no boundaries for good or bad accessibility
levels. The formula for a single web page is calculated for all WCAG checkpoints
found in the page:

∑ ×
=

priorityerrorspotential

errorsreal
scoreWAB

_

_
_

Bühler et al. [5] propose aggregation models order to adapt measurement to
different disabilities groups. A simplification of that model is the following:

()∏ −−= ubbSRuA 11)(

Where R is the evaluation report and S is a severity value from 0 to 1 (for each barrier
type b and user group u). However, these metrics are still in a developing stage until
better results are obtained. These metrics are supposed to be integrated in the web
accessibility benchmarking framework defined in [17]. To our best knowledge, there
is not any implemented process for automatically calculating web accessibility
metrics even if there are several proposed in the literature.

3.2 Automatic Accessibility Evaluation

In recent years, a great deal of tools for automatic accessibility evaluation has been
developed2. Even if most of them evaluate predefined sets of general purpose
accessibility guidelines such as WCAG 1.0 or Section 508, they vary in the number
and type of test cases implemented. As stated in [4] evaluation results returned by
different tools for the same website may vary.

In 2004, Abascal et al. [1] proposed the novel approach for automatic accessibility
evaluation: separation of guidelines from the evaluation engine. The usefulness of this

2 http://www.w3.org/WAI/ER/tools/

374 M. Arrue and M. Vigo

approach relies on its flexibility and updating efficiency. Adaptation to new guideline
versions does not imply re-designing the evaluation engine but guidelines editing. The
guidelines specification language is based on XML. Following this approach, in 2005,
Vanderdonckt and Bereikdar proposed the Guidelines Definition Language, GDL [19]
and recently Leporini et al. the Guidelines Abstraction Language, GAL [14].

4 Proposed Framework for Information Retrieval Systems

One of the objectives of this paper is to present an architecture proposal where
information retrieval systems are enriched with web accessibility analysis. We
propose a framework which produces results with the most suitable websites
according to their content and end-user specific characteristics. In this sense, not only
will be relevant the suitability of the web content returned but its accessibility level
also will be taken into account. The implementation should adequately combine
ranking regarding website relevance accessibility analysis. Research has been carried
out on content analysis in order to rate websites but web accessibility has not been
much studied in this sense. Thus, the proposed framework is as modular as possible in
order to guarantee that further add-ons can be easily integrated. The architecture can
be observed in Figure 1.

Fig. 1. Model of the proposed architecture

As can be appreciated, the architecture is composed of three independent modules:

Content Analysis Module (CAM) performs the content analysis based on
information retrieval methods, techniques. It produces a list of websites rated
according to their suitability for a specific query.

Accessibility Analysis Module (AAM) performs web accessibility evaluation. The
previously mentioned automatic accessibility evaluation tools could be adequate for
implementing this module. Integrating quantitative accessibility metrics into this
module is essential in order to obtain accurately ordered lists of websites.

Results Collector Module (RCM) ensures that the information provided by the other
two modules is adequately combined. Then, results according to their content and
accessibility level will be produced and returned to the end-user.

 Considering Web Accessibility in Information Retrieval Systems 375

Due to the modularity of the proposed framework, existing tools such as automatic
accessibility tools, search engines, etc. can easily interoperate. In addition, this
modular architecture will guarantee a correct independent testing for each module in
order to obtain reliable systems.

5 Implementation of a Prototype

A prototype system has been implemented based on the proposed framework in order
to test its usefulness. In this sense, three main tasks have been performed:

• Define accurate quantitative metrics.
• Automatic calculation of metrics.
• Integration of accessibility evaluation, metrics calculation and content analysis.

The following sections describe these tasks.

5.1 Quantitative Metrics for Web Accessibility

Accessibility problems in evaluation reports are classified by evaluation tools are
classified in three main groups:

• Automatic tests (errors): these problems should not require human judgment to
check their validity.

• Manual or semi-automatic tests (warnings): human judgment is necessary to check
potential problems associated to particular fragments of code implementing the
page.

• Generic problems: human judgment is necessary to check potential problems that
cannot be associated to any code fragments; these problems arise in every web
page. E.g. WCAG 1.0 14.1 checkpoint: "Use the clearest and simplest language".

The principal objectives when designing the metric have been the following:

• The value obtained by the metric should be meaningful in terms of accessibility
level prediction.

• The metric should be useful for ranking web pages according to their accessibility
level.

5.1.1 Requirements, Assumptions and Facts
This section defines the requirements, assumptions and facts considered when
developing accessibility metrics.

Requirement 1: The result of the metric should be normalized.
In order to classify websites according to their accessibility a limited ratio scale from
0 to 100 is chosen so that results of the final quantitative accessibility value are
expressed in a percentage scale. The closer the result of the metric is to 0 the less
accessible the website is and the closer to 100 is the more accessible it is. This leads
us to classify web pages according to their accessibility guidelines conformance
percentage.

376 M. Arrue and M. Vigo

Requirement 2: The metric should give one value for each accessibility attribute, as
well as an overall value for each page.

Although automatic accessibility evaluation reports returned by EvalAccess refer
to WCAG 1.0 guidelines, these are mapped into WCAG 2.0 guidelines: Perceivable,
Operable, Understandable and Robust3.

Apart from an accessibility quantitative value for each guideline, an overall
accessibility value based on POUR guidelines is also calculated. However, metric
calculation according to these guidelines is useful to get a general idea of how
accessible a page is.

Assumption 1: Besides total number of errors for each checkpoint in the web page,
the metric should also take into account the total number of times each checkpoint
has been tested.

The metric should not be based on the absolute number of found errors but in the
relative number of found errors in relation to the number of tested cases [18]. That is,
the ratio of errors and number of tested cases. For instance, if we analyze a web page
that contains 5 images without text equivalent and another one containing 10 where 5
of them have a text equivalent, the second web page should obtain better accessibility
score, since the failure percentage is 100% (5 of 5) and 50% (5 of 10) respectively.

Assumption 2: The priority of an unfulfilled checkpoint should be reflected in the
final result [8].

Priority is an ordinal-scale qualitative variable of three levels: priority 1, priority 2
and priority 3. It is stated by the WAI that priority 1 checkpoints have more impact on
the accessibility level of a web page than priority 2 checkpoints and so on.
Consequently, their weight in the value obtained by the metric should be different. In
order to empirically tune the weights, different values are assigned to the weights in
some test files with different accessibility level. The unique restriction when selecting
these weights is that 1 > priority1_weight > priority2_weight > priority3_weight > 0.

These test files have a determined failure rate. In addition, they are simple
enough to manually calculate a quantitative metric. Different values were given to
weights to calculate the quantitative accessibility value of each file using the metric
defined next. The criterion for selecting the most appropriate weights was the
similarity of the accessibility value to the failure rate on test files. The test files
used are the following:

• Low Accessibility level web page (LA): This test file contains images without
text equivalent, tables without summary, some links which open pop-up windows,
auto-refreshing and wrong document language definition.

• Accessible web page (A): This test file contains the same potential errors but such
that they do not cause any accessibility error: images have text equivalent, tables
have summary, links do not open new windows, there is no auto-refresh and
language is well defined.

• Medium Accessibility level web page (MA): Elements in this test file are the
same than in Low Accessibility file but half of potential errors are actual errors.

3 http://www.w3.org/TR/WCAG20/appendixD.html

 Considering Web Accessibility in Information Retrieval Systems 377

• Worse than MA: 3/4 of the previously mentioned potential errors are actual
errors.

• Better than MA: This test file is composed of the same elements but 1/4 of them
have an actual error.

• Empty web page (E): This test file only contains the necessary structural HTML
tags without any content element.

Assumption 3: Generic problems should not have influence on the final metric.
When performing an automatic evaluation, all web pages get the same report of
generic problems in order to manually check the referred checkpoints. Thus, a metric
based on automatic evaluation should not take into account these checkpoints.

Fact 1: The interval where the metric results for lowest ratios of errors and tested
cases are situated has to be spread.
We have empirically tested that in each POUR guideline, the ratio of errors over
potential errors, the failure rate, tends to be very low. Thus, it is difficult to
discriminate among different pages since they all get similar accessibility values. The
function in Figure 3 would be an approach to the ideal hyperbole in Figure 2. In this
hyperbole, the closer to 0 it is the error and tested cases ratio (E/T), the higher it will
be discriminated. The advantage of this approach is that the value of x' can be
empirically assigned, in order to easily control the height allocated to the failure rate
E/T. This feature makes possible to increase or decrease the variability in any interval
depending on the experimental results obtained modifying a and b variables. For this
paper, we used a=20 and b=0.3 following an empirical approach similar to the one
carried out in Assumption 2.

Fig. 2. Ideal hyperbole Fig. 3. An approach to the hyperbole

According to the hyperbole approach, if E/T ratio is less than the intersection point x'
the accessibility will be calculated using S line. Otherwise, V line is used. x' value
depends on variables a, b and tested cases.

bT

a
a

x
100
100

'
−

−=

100
100 +⎟

⎠
⎞

⎜
⎝
⎛ −×=

b
EA

aE
T

a
A +⎟

⎠
⎞

⎜
⎝
⎛ ×−=

x' point calculation S line formula V line formula

378 M. Arrue and M. Vigo

Fact 2: Manual tests (warnings) should be taken into account in the same way than
errors.

Our research concluded that the failure rate is highly correlated for errors and
warnings when checkpoints were grouped by their guideline (POUR) and by their
priority (1, 2, 3). Therefore, tested cases in warning checkpoints will fulfil the
accessibility guidelines with the same ratio than their equivalent errors subgroup.

5.1.2 Variables, Constant Values and Final Metric
Table 1 contains a description of variables, constants and final values of the metric
according to the requirements, assumptions and facts. Some constants are tool
dependent while others are guideline-set dependent.

This metric proved to correlate positively with a research carried out by experts on
Spanish universities’ websites classification according to their accessibility level as
presented in [3].

Table 1. Variables, constants and metric for accessibility quantitative measurement

Variables Description range
E number of accessibility errors in each checkpoint 0-∞
T number of tested cases in each checkpoint 0-∞
A variable for hyperbole approach customization (y axis) 0-100
B variable for hyperbole approach customization (x axis) 0-1
Constants value
N Total number of checkpoints (EvalAccess) 44

Nxy

Number of checkpoints in guideline },,,{ RUOPx ∈ , where P stands for
Perceivable, O for Operable, U for Understandable and R for Robust, and
type { }warningerrory ,∈

Nx number of checkpoints in guideline },,,{ RUOPx ∈
Nx,error total number of automatic tests 18
Nx,warning total number of manual tests 25
NP,error error checkpoints in Perceivable 4
NO,error error checkpoints in Operable 3
NU,error error checkpoints in Understandable 3
NR,error error checkpoints in Robust 7
NP,warning warning checkpoints in Perceivable 11
NO,warning warning checkpoints in Operable 1
NU,warning warning checkpoints in Understandable 6
NR,warning warning checkpoints in Robust 7
Weights value
k1 priority 1 items 0.80
k2 priority 2 items 0.16
k3 priority 3 items 0.04
Metric range

Axyz
Accessibility of priority { }3,2,1∈z in },,,{ RUOPx ∈ guidelines and in

{ }warningerrory ,∈ type of checkpoints.
0-100

Axy
Accessibility of },,,{ RUOPx ∈ guidelines in { }warningerrory ,∈ type of
checkpoints.

0-100

Ax Accessibility of },,,{ RUOPx ∈ guidelines 0-100
A Mean accessibility value 0-100

 Considering Web Accessibility in Information Retrieval Systems 379

5.2 Automatic Metric Calculation

We selected EvalAccess accessibility evaluation tool for integrating the automatic
metric calculation due to its flexible architecture. In addition, the evaluation reports
returned by EvalAccess are formatted based on a specific XML-Schema.
Consequently, gathering of all the necessary data for metric calculation such as
checkpoint type (error or warning), the times a checkpoint is tested (T variable), the
times each test fails to be conformant with the guidelines definition (E variable), and
its priority is straightforward. All these parameters are grouped in 2 groups (errors
and warnings). Each group contains 12 subgroups classified by their priority in
WCAG 1.0 (3 priorities) and their membership in the WCAG 2.0 four POUR
guidelines according to the previously mentioned mapping.

Therefore, the quantitative accessibility metric takes into account the previously
mentioned facts, assumptions and requirements. The quantitative accessibility metric
is calculated by the following algorithm:

for x in each checkpoint in a guideline {P,O,U,R} loop
for y in each type of checkpoint {error, warning} loop

for z in each priority{1,2,3} loop
x'=calculate_x'_point(a,b,T)

if ⎟
⎠
⎞

⎜
⎝
⎛ < 'x

T

E
 then

Axyz=calculate_S_line(b, E)
else

Axyz=calculate_V_line(a, E, T)
end if

end loop

xyz
z

zxy AkA ∑
=

×=
3

1

 Step a

end loop

x

y
xyxy

x N

AN

A
∑ ×

= Step b

end loop

N

AN
A x

xx∑ ×
= Step c

In Step a we get all the Axy values such as AP,error. This means that we get values
for error checkpoints in Perceivable guideline. In Step b an average value for each
POUR guideline is calculated by weighting Axy value with the number of errors and
warnings in x guideline. Finally, we get an overall accessibility value in Step c
weighting each POUR guideline with the number of checkpoints they contain. The
last two steps take into account the number of guidelines in each category (guidelines
and type) in order to distribute the weights in a well-balanced way.

5.3 Integrating Web Accessibility Evaluation and Content Relevance Analysis

In order to verify that the proposed architecture fits in a real world, a customized
search engine has been developed following the described framework. In the

380 M. Arrue and M. Vigo

implemented prototype, the previously mentioned automatic evaluation tool,
EvalAccess, and a conventional search engine interoperate in order to return the
results of the searching tasks ranked by accessibility level and content relevance. Both
services can be easily accessed and used since they are implemented as Web Services
(WS). Therefore, the implemented prototype is based on the interoperation of
different Web Services. The development of each module in this framework is
explained below:

Content Analysis Module: Nowadays, it is unmanageable for a small company to
create an outstanding information retrieval system. Large amounts of infrastructure
(hardware), reliable operative systems, applications to run over servers and prepared
staff is required, which implies a significant economical investment. Thus, we take
advantage of the services offered by one of the most used and known search engines,
Google. Google provides developers with an API4 which facilitates making requests
to its search engine. Therefore, the function of this module is fulfilled by the
techniques and methods implemented in Google since it generates an ordered list of
websites based on the specified query. Thanks to the abstraction layer provided by
this API, the interaction with Google Web Service is performed in a transparent way.
For this reason, there is no need to directly use the SOAP protocol.

Accessibility Analysis Module: EvalAccess [1], the previously mentioned automatic
accessibility evaluation tool has been integrated into the framework. It evaluates web
pages according to the WCAG 1.0 guidelines and returns a machine understandable
accessibility errors report formatted in XML. Web accessibility quantitative metrics
can be easily applied to the information returned in this report. Since it is
implemented as a Web Service, clients using SOAP protocol could get the XML
report and exploit its results.

Results Collector Module: This module coordinates user requests with the different
Web Services. This means coding and decoding data gathered from results of Google
WS query and the XML accessibility evaluation report returned by EvalAccess WS.
Then, each accessibility report is exploited in order to get all the necessary
information and calculate the accessibility value based on the quantitative metrics
explained in the previous section. Finally, it returns the results ordered by its
accessibility.

A user web interface has been integrated into the Results Collector Module. The
system shows a common search engine web interface which communicates with the
core of the modules. This interface provides different options related to accessibility
guidelines defined in WCAG 2.0: results re-ranking according to a value for a
guideline in POUR or their average value. The results page is a list of items ordered
by its accessibility as can be see in the Figure 4. Each item contains a title, a URL, its
accessibility value as well as a snippet where the search keyword is contextualized.

The overall latency when evaluating web accessibility and calculating the metric is
higher than in traditional search. However, the proposed model is still valid since it is
useful in order to remove existing barriers.

4 http://www.google.com/apis/

 Considering Web Accessibility in Information Retrieval Systems 381

Fig. 4. Search result page

6 Results and Discussion

Several tests have been carried out in order to evaluate the performance of this
framework. One testing case is presented in this section for discussing the results
obtained by the implemented system. Firstly, a searching query was defined. In this
case, this query was: "cheap flights". Then, this query has been introduced to Google
search engine as well as to our Customized Search Engine (CSE). Table 2 shows the
first 10 results returned by the system and their order in the results list. In addition,
errors yielded by automatic evaluation are grouped by their priority.

Table 2. Results obtained by Google and CSE. Automatic evaluation results of EvalAccess tool
grouped by their priorities (P1- Priority 1 errors, P2 - Priority 1 errors, P3 - Priority 3 errors) are
also provided.

URL Google CSE P1 P2 P3
www.cheapflights.co.uk 1 5 0 15 265
www.easyjet.com 2 2 0 29 91
www.ryanair.com/site/EN 3 6 45 230 995
www.skyscanner.net 4 8 0 9 69
www.cheapflights.com 5 3 0 7 186
www.flightline.co.uk 6 4 0 6 128
www.flybmi.com/bmi 7 1 0 2 60
www.bmibaby.com 8 10 2 75 169
www.aerlingus.com 9 - 0 5 100
www.openjet.com 10 - 0 1 3
www.bargainholidays.com - 7 29 67 262
www.cheapestflights.co.uk - 9 8 143 198

382 M. Arrue and M. Vigo

It can be appreciated in Table 2 that the results obtained by both search engines
differ, as two websites included in Google result (www.aerlingus.com and
www.openjet.com) are not in CSE results. Other two websites have been included in
CSE results instead of these two websites (www.aerlingus.com and
www.openjet.com). There are discrepancies between Google API and Google.com
results due to the fact that apparently queries are made against different indexes. It
could be discussed whether the trade-off of content ranking versus the accessibility
ranking is really worthy. This is an approach to the conceptual model explained in
Section 4 and the evidence that this model works. However, query results could be
listed according to Google's results and each result could be marked with its
accessibility value without re-ranking it so the user would decide to browse it or not
as proposed in [12].

Web accessibility analysis of these websites has been performed by using the
service provided by one of the automatic accessibility evaluation tool, EvalAccess.
Columns P1, P2 and P3 show the number of automatically detected accessibility
errors in the returned websites. The first website returned by Google
(www.cheapflights.co.uk/) is also included in CSE result but in the fifth position.
Evalbot returns as the first result the website of www.flybmi.com/bmi/. According to
the data, the result obtained by the CSE has less accessibility problems than the one
obtained by Google, since www.cheapflights.co.uk website errors are P1-0, P2–15,
P3–265 whereas www.flybmi.com/bmi website errors are P1-0, P2-2, P3-60. Then,
end-users would easier access to the result obtained by the CSE. However, some
contradictory data can be found in these results. For example, www.cheapflights.com
website accessibility errors are P1-0, P2-7, P3-186 and www.flightline.co.uk website
accessibility errors are P1-0, P2-6, P3-128. According to this data, the
www.flightline.co.uk website would have less accessibility barriers than the other
one. But the CSE results show that it is placed behind in the results list. As explained
in Assumption 1, this is due to the accessibility quantitative metric is based in the
percentage of found errors divided by the number of tested cases (potential errors).

7 Conclusions and Future Work

This paper proposes a framework for incorporating web accessibility information into
information retrieval systems. This significantly improves user's satisfaction when
searching for information in the WWW, as they could obtain search results ordered by
content relevance as well as accessibility level.

The necessity of a quantitative metric for web accessibility assessment has been
demonstrated in this paper. If accurate discrimination among web pages wants to be
done, these measures are key factors. The proposed metric aims at being a general
approach to accessibility awareness in information retrieval processes. The metric
does not take into account specific users grouped by disabilities (hearing, visually or
physically impaired). However, besides an average value, POUR values are given
because the system performs a mapping between WCAG 1.0 and WCAG 2.0 draft.

A prototype based on the proposed framework has also been developed. It enables
users with disabilities making search queries which return websites listed according to
both Google information retrieval criteria and accessibility criteria. The measure of

 Considering Web Accessibility in Information Retrieval Systems 383

web accessibility is based on EvalAccess, an automatic accessibility evaluation Web
Service which returns accessibility reports formatted in XML. This feature facilitates
applying quantitative accessibility metrics to the evaluation results.

The most significant disadvantage when using the prototype is the increase in the
response time comparing with the original search engine. This latency could
discourage users to performing search tasks with this prototype. We are currently
working on the next version of the framework which will improve the response time.

Acknowledgements

Markel Vigo's work is funded by the Department of Education, Universities and
Research of Basque Government.

References

1. Abascal, J., Arrue, M., Fajardo, I., Garay, N., Tomás, J.: Use of Guidelines to
automatically verify web accessibility. International Journal of Universal Access in the
Information Society 3(1), 71–79 (2004)

2. Andronico, P., Buzzi, M., Castillo, C., Leporini, B.: Improving search engine interfaces for
blind users: a case study. International Journal of Universal Access in the Information
Society 5(1), 23–40 (2006)

3. Arrue, M., Vigo, M., Abascal, J.: Quantitative Metrics for Web Accessibility Evaluation.
In: Lowe, D.G., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, Springer, Heidelberg
(2005)

4. Brajnik, G.: Comparing accessibility evaluation tools: a method for tool effectiveness.
International Journal of Universal Access in the Information Society 3(3-4), 252–263
(2004)

5. Bühler, C., Heck, H., Perlick, O., Nietzio, A., Ullveit-Moe, N.: Interpreting Results from
Large Scale Automatic Evaluation of Web Accessibility. In: Miesenberger, K., Klaus, J.,
Zagler, W., Karshmer, A.I. (eds.) ICCHP 2006. LNCS, vol. 4061, pp. 184–191. Springer,
Heidelberg (2006)

6. Caldwell, B., Chisholm, W., Slatin, J., Vanderheiden, G. (eds.). (2006, April 27) Web
Content Accessibility Guidelines 2.0. (Working Draft). http://www.w3.org/TR/WCAG20/

7. Chisholm, W., Vanderheiden, G., Jacobs, I. (eds.) Web Content Accessibility Guidelines
1.0. (May 5, 1999) http://www.w3.org/TR/WAI-WEBCONTENT/

8. Hackett, S., Parmanto, B., Zeng, X.: Accessibility of Internet websites through time. In:
Proceedings of 6th International ACM SIGACCESS Conference on Computers and
Accessibility, pp. 32–39 (2004)

9. International Organization of Standardization (ISO), Information Technology - Software
Product Evaluation (ISO 14598). Geneva, Switzerland (1999)

10. International Organization of Standardization (ISO), Software Engineering - Product
Quality - Part1: Quality Model (ISO 9126-1). Geneva, Switzerland (2001)

11. Ivory, M.Y., Hearst, M.A.: The state of art in automating usability evaluations of user
interfaces. ACM Computing Surveys 33(4), 470–516 (2001)

12. Ivory, M.Y., Yu, S., Gronemyer, K.: Search result exploration: a preliminary study of blind
and sighted users’ decision making and performance. In: CHI Extended Abstracts, pp.
1453–1456 (2004)

384 M. Arrue and M. Vigo

13. Kobayashi, M., Takeda, K.: Information Retrieval on the Web. ACM Computing
Surveys 32(2), 144–173 (2000)

14. Leporini, B., Paternò, F., Scorcia, A.: Flexible tool support for accessibility evaluation.
Interacting with Computers 18(5), 869–890 (2006)

15. Mich, L., Franch, M., Gaio, L.: Evaluating and Designing Web Site Quality. IEEE
Multimedia 10(1), 34–43 (2003)

16. Olsina, L., Rossi, G.: Measuring Web Application Quality with WebQEM. IEEE
Multimedia 9(4), 20–29 (2002)

17. Snaprud, M.H, Ulltveit-Moe, N., Pillai, A.B., Olsen, M.G.: A Proposed Architecture for
Large Scale Web Accessibility Assessment. In: Miesenberger, K., Klaus, J., Zagler, W.,
Karshmer, A.I. (eds.) ICCHP 2006. LNCS, vol. 4061, pp. 234–241. Springer, Heidelberg
(2006)

18. Sullivan, T., Matson, R.: Barriers to use: usability and content accessibility on the Web’s
most popular sites. In: Proceedings of the ACM Conference on Universal Usability 2000,
pp. 139–144 (2000)

19. Vanderdonckt, J., Bereikdar, A.: Automated Web Evaluation by Guideline Review.
Journal of Web Engineering 4(2), 102–117 (2005)

20. Zhu, X., Gauch, S.: Incorporating quality metrics in centralized/distributed information
retrieval on the World Wide Web. In: Proceedings of the 23rd Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, pp. 288–295
(2000)

Fixing Weakly Annotated Web Data

Using Relational Models

Fatih Gelgi, Srinivas Vadrevu, and Hasan Davulcu

Department of Computer Science and Engineering,
Arizona State University,
Tempe, AZ, 85287, USA

{fagelgi,svadrevu,hdavulcu}@asu.edu

Abstract. In this paper, we present a fast and scalable Bayesian model
for improving weakly annotated data – which is typically generated by
a (semi) automated information extraction (IE) system from Web doc-
uments. Weakly annotated data suffers from two major problems: they
(i) might contain incorrect ontological role assignments, and (ii) might
have many missing attributes. Our experimental evaluations with the
TAP and RoadRunner data sets, and a collection of 20,000 home pages
from university, shopping and sports Web sites, indicate that the model
described here can improve the accuracy of role assignments from 40% to
85% for template driven sites, from 68% to 87% for non-template driven
sites. The Bayesian model is also shown to be useful for improving the
performance of IE systems by informing them with additional domain
information.

Keywords: Weakly annotated data, information extraction, classifica-
tion, Bayesian models.

1 Introduction

Recent years have witnessed a huge data explosion on the Web. All kinds of
commercial, government and scientific organizations have been publishing their
data to enable better information sharing. However, heterogeneity at the pre-
sentation, schema and instance levels makes it extremely difficult to find and
relate information from different sources. Recently, there has been some ground
breaking work on (meta) data extraction from template driven Web sites using
semi-automated techniques [1] and ontology-driven automated data extraction
techniques [2] from text. And also, some work exists on fully automated tech-
niques for extracting (meta) data from data rich segments of Web pages [3,4,5].

In this paper, our focus will be on improving weakly annotated data (WAD)
which is typically generated by a (semi) automated information extraction (IE)
system from the Web documents. In WAD, annotations correspond to ontolog-
ical role assignments such as Concept, Attribute, Value or Noise. WAD has two

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 385–399, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

386 F. Gelgi, S. Vadrevu, and H. Davulcu

major problems; (i) might contain incorrect role assignments, and (ii) have many
missing attribute labels between its various entities.

We will use the Web pages in Figure 1 to illustrate WAD that might be
extracted using an IE algorithm such as [3,5]. Each of these pages presents a
single instance of the ‘Digital Camera’ concept. In Figure 1(a), attributes such
as ‘storage media’, and values such as ‘sd memory card’ have uniform and distinct
presentation. However, for an automated system it would be extremely difficult
to differentiate the ‘storage media type’ label as an attribute and ‘sd secure
digital’ as its value due to their uniform presentation in Figure 1(b). On the
other hand, in Figure 1(c) the attribute ‘storage media’ does not even exist, but
only its value ‘sd memory card’ has been reported.

(a) (b)

(c)

Fig. 1. The instance pages for Canon digital camera from three different Web sites.
Digital camera specifications are marked by dashed boxes in each page. In page (a),
attributes are explicitly given as bold whereas in (b) they are not obvious. On the other
hand, the attributes are altogether missing in (c).

Fixing Weakly Annotated Web Data Using Relational Models 387

Florescu [6] indicates that schemas in unstructured data can be very rich and
they might be difficult to model using DTDs or ER models. Schemas can be
derived from the data instead of driving the data generation, or schemas can be
a posteriori overlaid existing data. Motivated by the idea, we first extract a rela-
tional graph from WAD to capture the association strength between labels in the
given document collection. This method is based on the identification of the cor-
relation between labels as co-occurrence constraints emphasized in [6]. Then, we
build a domain specific probabilistic model that utilizes the extracted relational
graph to improve WAD by automatically correcting the role assignments
of the labels and discovering their missing attributes. We also show that
the boost up in the accuracy of the WAD provides additional information for
the IE systems to improve their performance. Note that since we are working on
a huge data set such as the Web, we exploit linear-time algorithms to ensure the
speed and the scalability of our methods while not losing much from the quality.

We formulate the role assignment problem as a classification problem. A
Bayesian model is used due to the robustness of Bayesian models on classifi-
cation tasks [7] with large number of features. Since discovery of the Bayesian
network dependencies on data is a hard problem [8], we stick to the indepen-
dence assumption which also ensures the scalability of the proposed model for
the Web data.

The distinguishing feature of our model from the standard Bayesian models is
the preservation of the structure of the relational graph (see Section 2 for details)
by incorporating the edge probabilities. Furthermore, the number of features (i.e.
tagged labels) are not fixed, as required by conventional classification techniques.

As stated in [9], naive Bayes classifiers perform well on strongly annotated
data, i.e., correctly tagged training data, but they are very sensitive to redundant
and irrelevant features. Therefore, the excessive amount of irrelevant features and
incorrect role assignments inherent in WAD would render a naive Bayes classifier
to be ineffective. A subsection is also included to discuss the weaknesses of naive
Bayes.

Probabilistic Relational Models (PRMs) [10] are powerful methods to learn
the underlying structure of relational data. However, PRMs and other classifica-
tion approaches on relational data such as [11] assume strongly annotated data,
and their scalability is a problem which makes it inappropriate for the Web data.

2 System Overview

In our framework, we assume each label is tagged with one of the four ontological
roles listed below;

– Concept (C): A concept defines a category or a class of similar items. E.g.,
‘books’ and ‘digital camera’ are some of the concepts in the shopping domain.

– Attribute (A): An attribute is a property of an instance or a concept. E.g.,
‘storage media’ is an attribute of the ‘canon powershot sd200’ instance and
the ‘digital camera’ concept.

388 F. Gelgi, S. Vadrevu, and H. Davulcu

– Value (V): A value is a label that provides the value information for an
attribute of a certain concept or an instance of a concept. E.g., ‘storage
media’ attribute of the ‘canon powershot sd200’ instance has the value ‘sd
memory card’.

– Noise (N): Any label that does not have any of the above ontological roles
are assigned to be noise. For example, some of the labels in headers, footers
or navigation aids, such as ‘back to’ shown in Figure 1(c) could be annotated
as noise.

We assume that we can gather “sufficient statistics” for WAD through a col-
lection of domain specific Web sites. From the automatically extracted data we
generate a relational graph of the domain where nodes correspond to the labels
with assigned roles, and the edges correspond to association strengths between
nodes. These annotated labels and relations between them are assumed to be
the output of automated IE systems such as RDF files. Such a graph would cap-
ture the global occurrence statistics of the labels and their associations within a
domain.

Fig. 2. A fragment of the relational graph for the
Shopping domain is shown. Each node is composed of
a 〈label, role〉 pair. The thickness of an edge is propor-
tional to the association strength between its nodes.

In the next phase, for
each label in a given Web
page, we run a Bayesian
classifier that utilizes all the
labels in that Web page as
its context to identify the
best role for that label. The
advantage of our probabilis-
tic model over a naive Bayes
classifier will be discussed in
the next section. We refer
to our probabilistic model
as the Bayesian classifier in
the rest of the paper.

We will briefly explain
how the system operates on
the example given in Figure
1. A fragment of the corresponding relational graph is depicted in Figure 2. Con-
sider the label ‘storage media’ marked in Figure 1. Based on our assumption of
“sufficient statistics”, a collection of Web pages such as those in Figure 1(a),
would yield a strong association between ‘canon sd200’ as an object and ‘stor-
age media’ as an attribute. Whereas, the incorrect annotation, extracted from
Figure 1(b) would yield a weak association between ‘canon a520’ as an object
and the ‘storage media’ as a value. Hence, the Bayesian classifier presented here
would be able to re-assign the attribute role to the ‘storage media’ label by using
the statistics in the relational graph within its context. Similarly, the ‘storage
media’ attribute of the ‘sd card’ value which is missing in Figure 1(c), could be
inferred by utilizing its context and the model.

Fixing Weakly Annotated Web Data Using Relational Models 389

3 Probabilistic Model

In this section, we will first present the notations used for the formal description
of the model. We will formally define the problem of re-annotating the labels
of a Web page and present the probabilistic algorithm. Next, we will define the
missing attribute inference problem and propose a solution. We will also explain
some of the implementation issues and complexity analysis.

The notation used for formalization is given as follows:

– The set of all labels in the domain is denoted as L.
– The ontological roles R is the set of Concept, Attribute, Values or Noise.

Formally, R = {C, A, V, N}.
– A term is a pair 〈l, r〉 composed of a label l and a role r ∈ R. In other

words, terms are tagged labels in the Web pages. Each label in a Web page
is assumed to be tagged with only one of the given ontological roles above.

– In this setting, we consider all the labels in each Web page are tagged with
roles, hence we define a Web page to be a vector of its terms. Formally,
assuming m labels in the Web page W ; W = {〈l1, r1〉, 〈l2, r2〉, . . . , 〈lm, rm〉}.

– The relational graph G is a weighted undirected graph where the nodes
are the terms in the domain, and the weights on the edges represent the
association strength between the terms.

– In our framework, the context of a label l ∈ L in a Web page W is the Web
page W itself.

The nodes in G denote the labels with their ontological roles and the edges
denote the association strengths between the annotated labels. Node weights
are initialized as the counts of the corresponding terms and the edge weights
are the counts of the corresponding edges in the document collection. Formally,
wij which is the weight between the terms i and j is initialized as the number
of times the edge (i, j) appeared in the entire domain. Similarly, wi represents
the weight of the node i and initialized as the occurrence of the corresponding
term in the domain, i.e., term count. Note that the edges are undirected since
association strength between labels is a bi-directional measure.

3.1 Label Role Inference

The role of a label depends on its context. This context of a label is intuitively
defined to be its own Web page. The problem of role assignment for each label
can now be formally defined as follows;

Definition 1. Given a Web page W, the probability of a term 〈l, r〉 where l ∈ L
and r ∈ R is P (〈l, r〉|W).

This corresponds to the probability of the classification of l as r to be correct.
Then, the role with the maximum probability will be the role assignment for the
particular label l that is,

390 F. Gelgi, S. Vadrevu, and H. Davulcu

arg max
r

P (〈l, r〉|W). (1)

For simplicity we use the naive assumption which states that,

Assumption 1. All the terms in G are independent from each other but the
given term 〈l, r〉.

Furthermore, we only utilize the first order relationships of a term in its context,
i.e, neighbors of the term in G. One can easily extend the model for higher order
relationships however the trade-off is the higher complexity which is undesired
for Web data.

(a) (b)

Fig. 3. Ambiguity of the role of the label ‘Instructor’ in the Courses domain. (a) is its
rare occurrence as a concept, and (b) shows its common one as an attribute.

During the role assignment probability calculation of a term, since we would
like to utilize only the label’s context we also assume,

Assumption 2. The prior probabilities of all the roles of a label l are uniform.

Note that, the priors of the roles of the labels other than l in the Web page
are their support values as determined by their frequencies. To motivate the
idea, consider the label ‘Instructor’ in Figure 3. ‘Instructor’ rarely occurs as a
concept in the Courses domain. Its attributes such as ‘Phone’, ‘Fax’, ‘E-mail’
are also presented in Figure 3(a). However, ‘Instructor’ usually appears as an
attribute of a course in other documents as shown in Figure 3(b). Thus, the prior
probability, i.e., P (〈Instructor, A〉) >> P (〈Instructor, C〉), might strongly bias
the role assignment towards its more common role. This would yield an incorrect
tagging for the label as an attribute in Figure 3(a).

Now, with the above assumptions, we can state the following theorem.

Fixing Weakly Annotated Web Data Using Relational Models 391

Theorem 1. Let W = {t1, t2, . . . , tm}. Then,

argmax
r

P (〈l, r〉|W) = arg max
r

m∏

i=1

P (〈l, r〉|ti). (2)

Proof. Let t = 〈l, r〉. By Bayes’s rule,

P (t|W) = P (t|t1, t2, . . . , tm) =
P (t1, t2, . . . , tm|t)P (t)

P (t1, t2, . . . , tm)
.

Using the independence assumption,

=
∏m

i=1 P (ti|t)P (t)
∏m

i=1 P (ti)

Again using Bayes’s rule,

=
∏m

i=1 P (t|ti)P (ti)
P (t)m

.
P (t)

∏m
i=1 P (ti)

=
∏m

i=1 P (t|ti)
P (t)m−1

By Assumption 2, P (t)m−1 will be constant. That is,

argmax
r

P (t|W) = argmax
r

m∏

i=1

P (t|ti).

�

As shown in Figure 2, a conditional probability such as P (t|ti) depends on the
association strength between the terms t and ti in the relational graph G. That
is, P (t|ti) = P (t,ti)

P (ti)
= wtti

wti
by Bayes’s rule where wtti is the weight of the edge

(t, ti) and wti is the weight of the node ti. Our probability model is based on
the methodology of association rules [12]. Hence, the initialization for the above
conditional probabilities is defined analogous to P (t|ti) ≡ Confidence(ti → t)
[13]. This formulation is consistent with Assumption 2 since it is independent
from the prior, P (t).

3.2 Missing Attribute Inference

In WAD, most of the attribute labels are missing, especially in the non-technical
domains and non-template driven Web sites. Discovering missing relations is one
of the crucial tasks during automated meta-data extraction. Our probabilistic
model can also be tailored to infer some of the missing attributes.

Suppose two related entities have a missing attribute in a Web page. The first
entity may be either a concept or an instance of a concept whereas the second
one may be a value or a set of values.

Definition 2. Given two related entities e1 and e2 in a Web page, the probability
of a label l ∈ L to be the attribute between them is P (〈l, A〉|S) where S = e1 ∪e2.

392 F. Gelgi, S. Vadrevu, and H. Davulcu

Thus, the missing attribute can be inferred by the following formula,

arg max
l∈L

P (〈l, A〉|S). (3)

And, with the same assumptions described above,

Theorem 2. Let e1 and e2 be two entities and S = e1 ∪ e2. Then,

arg max
l∈L

P (〈l, A〉|S) = arg max
l∈L

∏

t∈S

P (〈l, A〉|t). (4)

Proof. Follows from the same methodology in the proof of Theorem 1.

�

3.3 Complexity Analysis

Assuming there are n terms and m associations between them, the initialization
phase requires only O(n + m) time by utilizing an adjacency list for the rela-
tional graph. It is also assumed that it takes O(1) time to map a term to its
corresponding node utilizing a hash table. For the rest of the analysis we will
assume that we are working on a very large n and m = O(n), i.e., the average
number of relations for each label is constant, which is expected from the Web
data. Hence, this phase has O(n) time and memory complexity.

For a label with a particular role in a Web page, all conditional probabilities
are calculated depending on the other labels in its Web page. That amounts to
O(|W|). Considering all the labels and all roles the total probability calculations
for each Web page will be O(|R||W|2). We only need the memory to store the
role probabilities for each label in the Web page, that is O(|W|). Supposing
we have p Web pages in a large data set, O(|R||W|2) is also considered to be
constant since the size of a Web page is limited and independent from how large
p is. In other words, classification phase is O(p) time and memory. Finally, the
overall system has O(n + p) time and memory complexity.

While inferring missing attributes, for each 〈entity, attribute, entity〉 triple,
it is not necessary to explore all the attribute labels. Instead, we only check
the labels which are related to both entities which takes only constant time
(due to the assumption of constant number of relations for each label indicated
above). That makes the complexity of attribute inference O(|W|) for each page
W . Similarly, the constant bound on O(|W|) will yield execution time for entire
data set to be O(p). This phase requires only constant memory.

For the entire system, log-probabilities generate a slight overhead that does
not change the complexity. In conclusion, the presented probabilistic framework
is linear in terms of both the number of terms and the number of web pages thus
yielding a fast and scalable model.

Fixing Weakly Annotated Web Data Using Relational Models 393

3.4 Discussion on Naive Bayes

For the WAD, naive Bayes has entirely different characteristics from our Bayesian
classifier. The formulation for the naive Bayes classifier is;

arg max
r

P (〈l, r〉|W) = argmax
r

[
m∏

i=1

P (ti|〈l, r〉)
]

P (〈l, r〉). (5)

Naive Bayes uses the reverse conditional probability;

P (ti|〈l, r〉) =
P (ti, 〈l, r〉)
P (〈l, r〉) . (6)

This violates Assumption 2 since P (ti|〈l, r〉) is conditioned on 〈l, r〉. Hence, it
would not be able to reason with the context of the label alone – instead relies
on the prior probabilities P (〈l, r〉) which yields substantially lower performance
as illustrated in our experimental results.

4 Experiments

The descriptions of the three data sets used in the experiments are as follows:

1. TAP Dataset: Stanford TAP Knowledge Base 2 [1] data set. The selected
categories alone comprise 9, 068 individual Web pages as shown in details in
Table 1.

2. CIPS Dataset: We prepared a data set which is composed of faculty, course
home pages, shopping and sports Web pages consisting of 225 Web sites
and more than 20,000 individual pages. The computer science department
Web sites are meta-data-driven, i.e., they present similar meta-data infor-
mation across different departments. Shopping and sports are some popular
attribute rich domains.

Table 1. TAP data set used in experiments

Web sites # of Web Average # of
pages labels per page

AirportCodes 3829 34

CIA 28 1417

FasMilitary 362 89

GreatBuildings 799 37

IMDB 1750 47

MissileThreat 137 40

RCDB 1637 49

TowerRecords 401 63

WHO 125 21

Overall 9068 200

394 F. Gelgi, S. Vadrevu, and H. Davulcu

3. RoadRunner Dataset: [3]’s data set comprised of 200 pages in 10 cate-
gories.

To overcome the lack of statistics for continuous values, we preprocessed the
common data types of values such as percentage, dates, numbers etc. using
simple regular expressions. In each experiment, we use the entire data set as
training set to exploit global information of the domain, i.e., relational graph of
the domain. Context based role inference, i.e., the Bayesian model is based on
that relational graph.

The reported accuracies are measured according to the following formula:

Accuracy =
of correct annotations

of total annotations

4.1 Experiments with the TAP Data Set

To test our probabilistic method, we converted RDF files in the TAP knowledge
base into triples, then we applied distortions to obtain the inputs. For synthetic
data, we considered real world situations and tried to prepare the input data as
similar as possible to the data on the Web. There are two types of distortion:
deletion and role change. Setting the distortion percentages for both deletion
and role change first, we used the percentages as distortion probabilities for
each tagged label in the Web page in our random distortion program.

Over TAP data set, we prepared test cases for three kinds of distortions. In
the first one, we only applied deletion with different percentages. In the second,
similarly we only applied role changing. And the last one is the mixture of the
previous two; we applied the same amount of deletions and role changes.

The evaluations of TAP data set are done in automated way assuming the
original TAP data set has the correct annotations. We present our results in
two categories: (1) individual Web sites and (2) mixture Web sites. For both
categories, the Bayesian classifier performed with 100% accuracy for distorted
data with only deletions. The reason is, deletion does not generate ambiguity
since the initial data is unambiguous. Thus, we found unnecessary to include
them in the tables and figures. As a baseline method, we used a naive Bayes
classifier.

Experiments with the individual Web sites provided us encouraging results to
start experiments with mixture of Web sites as shown in Figure 4. The figure
displays the final accuracies of Web sites which are initially distorted with {5,
20, 40, 60} percent role changes. Overall results show that there is a huge gap be-
tween the Bayesian and the naive Bayes classifiers. Even for 60% role changes the
Bayesian classifier performed with more than 85% accuracy. The performance
is usually better with the Web sites containing large number of Web pages due
to the high consistency and regularity among the Web pages. Another factor is
the size of the tagged label set in the Web pages. The larger the set, the more
difficult to keep the context concentrated on the related roles in ambiguous

Fixing Weakly Annotated Web Data Using Relational Models 395

data. That played the most important role for the low performance with CIA
and FasMilitary Web sites and, high performance with WHO and AirportCodes.
On the other hand, naive Bayes slightly improved the initial accuracies as shown
in Figure 4(b).

(a)

(b)

Fig. 4. Performance of the Bayesian and the naive
Bayes classifiers for label accuracies in individual Web
sites are shown

In the experiments with
mixture of Web sites, we
tested the Bayesian classi-
fier with {5, 20, 40, 60,
80} percent role changes
and {(5,5), (15,15), (25,25),
(35,35), (45,45)} percent
(deletion, role change) dis-
tortions. Figure 5 shows
the performance of the
Bayesian classifier in terms
of concept, attribute and
value accuracy, and the final
Web site accuracies respec-
tively. The overall perfor-
mance for the mixture Web
sites is slightly lower than
the individual Web sites
due to the fact that mix-
ture Web sites initially have
some ambiguities. Similar
to the results in the in-
dividual Web sites, naive
Bayes has not been success-
ful to increase the accura-
cies of annotations in the
mixture ones. The compar-
ison charts in Figure 5(a)
and (b), clearly presents
the significant difference be-
tween the naive Bayes and
our Bayesian classifier.

In conclusion, the overall results show that our Bayesian model can recover the
TAP data up to 80% even with 60% and (35%,35%) distortion. The results are
not surprising since the data set is simple template driven and also the relations
are not complicated. In addition, the experimental results strongly support our
claims about the unreliability of prior probabilities and weakness of naive Bayes
given in Section 3. Verifying the robustness of the system with template driven
Web sites, next we will give the experimental results with a non-template driven
data set.

396 F. Gelgi, S. Vadrevu, and H. Davulcu

(a) (b)

Fig. 5. The comparison of the Bayesian (BC) and the naive Bayes (NBC) classifiers

4.2 Experiments with the CIPS Dataset

Recalling the motivating examples, one can observe that labels are highly am-
biguous at both the syntactic and the semantic levels. Many labels have different
roles in different Web pages depending on the context.

In this experiment, we used the semantic partitioner [5] to obtain initial anno-
tations of the labels from Web pages. The semantic partitioner system transforms
a given Web page into an XML-like structure by separating and extracting its
meta-data and associated data. For the evaluations, we created a smaller data
set containing randomly selected 160 Web pages from each domain. We divided
samples into 4 groups with 40 pages from each category, and each group is eval-
uated by a non-project member computer science graduate student. The overall
accuracy of each category provided in Figure 6 is based on the total accuracy of
these sample documents.

The accuracies of initial bootstrapping by the semantic partitioner and of the
corrected data by the Bayesian classifier is presented in Figure 6. Since the faculty
and course categories are the sub-categories of computer science departments,
they presented very similar characteristics as shown in Figure 6(a) and (b). The
overall accuracies have been increased roughly from 71% to 89% – a 18% boost.
In the shopping domain, although the increment of the value accuracy is similar
to the previous two, the overall accuracy jumped up from 69% to 93% – a

Table 2. The results of missing attribute inference over CIPS data set

CIPS data set Sampled data set
Category # of # of # of # of # of # of %

sites pages infer. pages infer. crr.

Faculty 60 7617 1232 160 38 26 0.68

Course 60 4228 1009 160 49 35 0.71

Shopping 47 3361 4523 160 198 153 0.77

Sports 58 5805 2877 160 82 51 0.62

Total 225 21011 9621 640 367 265 0.72

Fixing Weakly Annotated Web Data Using Relational Models 397

(a) (b)

(c) (d)

Fig. 6. Performance of the Bayesian classifier in CIPS data set

24% boost. Mistagged concepts and attributes have been corrected with very
high accuracy. Initial taggings for meta-data (concepts + attributes) has the
lowest accuracy among those four categories since the labels are presented more
uniformly than in the other categories as illustrated in Figure 1(b). Fortunately,
the labels used for the meta-data in the domain are more common yielding
strong statistic thus high recovery accuracy. Conversely, the overall accuracy of
the sports category is the lowest among four categories since the jargon of the
domain varies much more than the other domains.

The result of the missing attribute inferences in CIPS dataset is presented in
Table 2. For the overall data set 9641 attributes have been inferred, 72% of which
are correct according to the statistics of the sample data set. The accuracy of
the missing attribute inference in the shopping category is slightly better than
in the other categories due to the usage of more common meta-data labels as
mentioned above. As an example for missing attribute inference, the attributes
‘megapixel’, ‘zoom’, ‘storage media’ and ‘lcd’ are correctly inferred in the web
page in Figure 1(c).

4.3 A Case Study with IE Systems

This experiment was conducted to illustrate the utility of the probabilistic model
for improving the performance of an IE system. With the permission of the

398 F. Gelgi, S. Vadrevu, and H. Davulcu

authors, we modified the semantic partitioner code. The original semantic parti-
tioner operates by first identifying approximate tandem repeats of presentation
information corresponding to the labels within a Web page. Then, it groups and
annotates the labels into XML-like hierarchical structures.

The annotations by the semantic partitioner were used as input for the
Bayesian classifier. Next, the semantic partitioner was modified to utilize the
inferred role probability distributions, in addition to the presentation informa-
tion so that it can identify more tandem repeats and extract data even in the
presence of irregularities. For example in Figure 1(b), the original semantic par-
titioner fails to distinguish the attributes and values in the ‘Technical Specs’
area since they are presented similarly. However, the modified semantic parti-
tioner recognizes the roles of these labels as attributes and values, and correctly
identifies the repeating sequence of attribute-value pairs.

Table 3. Comparison of the performance the RoadRunner algorithm with semantic
partitioner system, before and after utilizing the probabilistic domain model

Classes Comparative Results
site description #pages metadata RoadRunner Sempart Sempart

(before) (after)
amazon.com cars by brand 21 yes 21 - 21
amazon.com music bestsellers by style 20 no - - -

buy.com product information 10 yes 10 10 10
buy.com product subcategories 20 yes 20 20 20

rpmfind.net packages by name 30 no 10 10 10
rpmfind.net packages by distribution 20 no 20 20 20
rpmfind.net single package 18 no 18 18 18
rpmfind.net package directory 20 no - 20 20
uefa.com clubs by country 20 no 20 - 20
uefa.com players in the national team 20 no 20 - -

Table 3 shows the performance of the original and modified semantic parti-
tioner using the public RoadRunner data set. Of the ten categories, the modified
semantic partitioner was able to extract information from three additional cat-
egories. The modified system was also able to extract information in the two
categories (package directory and music bestsellers by style) where RoadRunner
system fails since these pages do not follow a regular grammar. The ‘uefa’ data is
organized in terms of complex tables, RoadRunner was able to infer the template
by using two sample pages whereas the semantic partitioner (both initial and
modified) was unable to extract from such tables using a single page. Overall,
the performance of the modified semantic partitioner is better than the original
one and it is comparable to the RoadRunner system.

5 Future Work and Conclusion

In this paper, we proposed a fast and scalable probabilistic model to improve the
Web data annotations that are generated through (semi) automated IE systems.
Our method can be distinguished by its capability of reasoning with contextual

Fixing Weakly Annotated Web Data Using Relational Models 399

information. Although the initial data contains many incorrect annotations and
missing attributes, the Bayesian model presented here was shown to substantially
improve the Web data annotations for both template driven and non-template
driven Web site collections. We conjecture that the model can be incorporated
into IE systems to improve their performance.

The future work includes the formulation of a generic expectation - maximiza-
tion (EM) framework between an IE system and the Bayesian classifier described
here which iteratively improves the annotations.

References

1. Guha, R., McCool, R.: TAP: A semantic web toolkit. Semantic Web Journal (2003)
2. Dill, S., Eiron, N., Gibson, D., Gruhl, D., Guha, R., Jhingran, A., Kanungo, T.,

McCurley, K.S., Rajagopalan, S., Tomkins, A., Tomlin, J.A., Zien, J.Y.: A case
for automated large-scale semantic annotation. Journal of Web Semantics 1(1),
115–132 (2003)

3. Crescenzi, V., Mecca, G.: Automatic information extraction from large web sites.
Journal of ACM 51(5), 731–779 (2004)

4. Lerman, K., Getoor, L., Minton, S., Knoblock, C.: Using the structure of web
sites for automatic segmentation of tables. In: ACM SIGMOD, Paris, France, pp.
119–130. ACM Press, New York (2004)

5. Vadrevu, S., Gelgi, F., Davulcu, H.: Semantic partitioning of web pages. In: WISE,
New York, NY, USA, pp. 107–118 (2005)

6. Florescu, D.: Managing semi-structured data. Queue 3(8), 18–24 (2005)
7. Murphy, K.: A brief introduction to graphical models and bayesian networks.

Available online at: http://www.cs.ubc.ca/ murphyk/Bayes/bnintro.html (1998)
8. Chickering, D.M.: Learning bayesian networks is NP-complete. Learning from

Data: Artificial Intelligence and Statistics V (1996)
9. Gama, J.: Iterative bayes. Theoretical Computer Science 292(2), 417–430 (2003)

10. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational
models. In: IJCAI, pp. 1300–1309 (1999)

11. Neville, J., Jensen, D.: Iterative classification in relational data. In: AAAI Work-
shop on Learning Statistical Models from Relational Data, pp. 13–20 (2000)

12. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets
of items in large databases. In: ACM SIGMOD, Washington, D.C, pp. 207–216
(1993)

13. Alpaydin, E.: 3. In: Introduction to Machine Learning, pp. 39–59. MIT Press,
Cambridge (2004)

Creating Personal Histories from the Web Using

Namesake Disambiguation and Event Extraction

Rui Kimura1, Satoshi Oyama2, Hiroyuki Toda3, and Katsumi Tanaka2

1 KDDI Corporation
3-10-10 Iidabashi, Chiyoda-ku, Tokyo 102-8460, Japan

ui-kimura@kddi.com
2 Graduate School of Informatics, Kyoto University

Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
{oyama,tanaka}@dl.kuis.kyoto-u.ac.jp

3 NTT Cyber Solutions Laboratories, NTT Corporation
1-1 Hikari-no-Oka, Yokosuka, Kanagawa 239-0847, Japan

toda.hiroyuki@lab.ntt.co.jp

Abstract. We have developed a system for gathering information from
the Web, using it to create a personal history, and presenting it as a chrono-
logical table. It simplifies the task of sorting out the information for vari-
ous namesakes and dealing with information in widely scattered sources.
The system comprises five components: namesake disambiguation, date
expression extraction, date expression normalization and completion, rel-
evant information extraction, and chronological table generation.

Keywords: Web search, namesake disambiguation, event extraction,
clustering, machine learning.

1 Introduction

It is said that queries containing a person’s name account for 5-10% of all Web
searches [1]. Many users consider information about people as search target.
Many Internet users search for information about people, and the number will
increase as Web relationships become more and more common, as evidenced by
the explosion of social networking services such as MySpace1. Users are search-
ing not only for the profiles of people, but also for pictures of them, information
about events in which they participated, gossip and rumors about them, and
anything else related to their history. Gathering such a wide variety of informa-
tion about a person is troublesome.

Efforts to improve this process have led to several interesting alternatives. The
system proposed by Al-Kamha et al. [2] clusters Web pages returned by a search
engine for person-name queries by using three independent measures: attributes
like phone number, e-mail address, and zip code, similarity between Web pages,
and link relationships between Web pages. WebHawk [3], a system developed by
1 http://www.myspace.com/

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 400–414, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Creating Personal Histories from the Web 401

Fig. 1. System overview

Wan et al., extracts personal information, organizations, e-mail addresses, etc.
from Web pages and clusters the pages on the basis of the extracted information.
It then generates an informative description for each cluster so that the user can
quickly identify the target person.

In contrast to these earlier efforts, which extract only basic information, we
have developed a system that generates a more comprehensive summary for
the target person by extracting information about his or her past activities
as well as the basic information. This system enables users to easily obtain a
more complete picture of the target person. Moreover, it presents the temporal
information obtained about the person in a timeline format, as might be found
in a biography or a chronological table. An overview of this automatic generation
of a chronological table is shown in Figure 1.

The system uses the name of the target person to search for and gather Web
pages containing information about the person. It does this using an existing
search engine. If pages are found for different people having the same name,
the system clusters the pages by person. The user then specifies the cluster
corresponding to the target person. The system then collects the activities for
the specified target person from the pages in the corresponding cluster. For the

402 R. Kimura et al.

system to be able to generate a chronological table, a date must be assigned to
each activity. The system does this by identifying the expressions in each page
that represents a date and then extracting the expressions and corresponding
activities. Finally, using the extracted pairs of date expressions and activities, the
system places the activities in chronological order and generates a chronological
table.

2 Namesake Disambiguation

While the previous systems analyze the original Web pages found by the search
engine, our system analyzes only the terms in the snippets shown on the search
results pages. It then clusters the snippets to identify the pages belonging to
each person. Compared with analyzing the original Web pages, our approach
considerably reduces the time taken for downloading the pages and analyzing
them.

Our system takes into account the kinds of terms in the snippets and page
titles to distinguish between namesakes. Related objects and occupation terms
are extracted from the page titles and snippets on the search results pages, and
the search results are clustered using the extracted terms to distinguish the
namesakes.

The names of people and organizations, i.e., “related objects,” are named
entities. According to the definition used by IREX (Information Retrieval and
Extraction Exercise) [4], a named entity consists of eight kinds of terms, ORGA-
NIZATION, PERSON, LOCATION, ARTIFACT, DATE, TIME, MONEY, and
PERCENT. Many efforts have been made to extract named entities from text
over the last decade or two. We use the Named Entity Extraction Tool (NExT)2

developed by Watanabe et al. [5] to extract related objects.
We define occupation terms as terms that can be classified as job, role, or

position in Nihongo Goi Taikei - a Japanese lexicon [6], and that consist of more
than two letters. We add these terms to a dictionary of ChaSen [7], a Japanese
morphological analysis system, and extract them. Example occupation terms are
listed in Table 1.

As a baseline method, we extract nouns from page titles and snippets by using
ChaSen.

We create a document vector based on the vector space model. We use terms
extracted and weight them using term frequency (TF) and inverse document
frequency (IDF). For document d and term mx, the weight is given by

w(d, mx) = tf(d, mx)
1

1 + log (df(mx))
(1)

where tf(d, mx) is the number of occurrences of term mx in document d and
df(mx) is the number of documents including term mx.

2 http://www.ai.info.mie-u.ac.jp/ next/docs/20040116 NExT.pdf

Creating Personal Histories from the Web 403

Table 1. Example occupation terms

Category Examples

Job medical director, analyst, interpreter, graduate student, foreign student,
golfer, goal keeper, Shinto priest, Member of Parliament

Role king, chief cabinet secretary, store manager, auditor, assistant, doctor,
Member of Parliament, assistant general manager, executive director

Position staff, instructor, CEO, screenwriter, closer, starting pitcher,
home-plate umpire, autocrat, puppet

We make document vectors

vnoun(d) = (w(d, l1), w(d, l2), · · · , w(d, lm)) (2)

where w(d, lx) is the weight of term lx in document d and m is the number
of different terms appeared in the document set. We cluster documents using
these document vectors and the single linkage clustering method, which is a
hierarchical clustering method.

3 Date Expression Extraction

To collect timeline information, we have to extract date expressions indicating
when each event happened. Mizobuchi et al. [8] divided terms representing time
into time expressions (representing hours, minutes, and seconds) and date expres-
sions (representing years, months, and days). Since we want to create a historical
timeline for the target person, we define the smallest time period as a day.

Date expressions are named entities. We could extract them using the NExT
named entity extraction tool, which was mentioned above, but this tool cannot
extract date expressions written in Japanese hiragana. Moreover, it extracts
expressions that are of no use in constructing a timeline, such as “the first year”
in “the first year of high school.” Therefore, we constructed specialized rules.

We constructed the extraction rules using regular expressions, like those shown
in Table 3. Examples of target date expressions are shown in Table 2. As shown
in Table 3, the date expressions are categorized as either complete or incom-
plete. A complete expression has the full complement of year, month, and day,
while an incomplete expression lacks one or two of them, indicates a relative
time, such as “two years ago” or “four months later,” or indicates an ambiguous
time, such as “at the end of the year.” Other incomplete expressions include the
seasons, like “summer,” and ambiguous expressions like “early part of October”
or “some years later.” While “at the end of the year” probably means December,
“summer” could mean one of several months. The day is ambiguous in “early
part of October,” and the number of years in “some years” in “some years later”
is unclear. Though these expressions are often used in ordinary texts, we do not
extract them due to the ambiguities.

Using regular expressions, we extract date expressions from the clustered Web
pages (after removing their HTML tags). Terms that indicate a time transition,

404 R. Kimura et al.

Table 2. Example date expressions to be collected

Completeness Type Example

numeric 2005/4/13

Complete
Western May 3, 1999
Japanese Heisei 18 Nen 12 Gatsu 12 Nichi

proper noun New Year’s Day of 2003

relative two years ago

Incomplete
ambiguous expression at the end of the year

year and month abbreviated on Wednesday, 29th
year abbreviated May 3

month and day abbreviated Heisei 18
day abbreviated May 2003

Table 3. Examples of regular expressions used to extract date expressions

Regular Expressions

([0-9]+)[/\.\-]([0-9]+)[/\.\-]([0-9]+)
(Heisei|Syowa|Taisyo|Meiji)\s*([0-9]+|
(ju|hyaku|sen|ichi|ni|san|shi|go|roku|shichi|hachi|ku)+|gan)(nendo|nen)

([0-9]+|(ju|hyaku|sen|ichi|ni|san|shi|go|roku|shichi|hachi|ku)+)
\s*(nendo|nen|getsu|nichi)

([0-9]+|(ju|hyaku|sen|ichi|ni|san|shi|go|roku|shichi|hachi|ku)+)
\s*(nen|kagetsu|getsu|nichi)(mae|ato)

such as “next year” and “two days ago,” are useful, but terms that indicate a time
period, such as “for five days,” are not, so these latter terms are not targeted.

Terms indicating year, month, or day appearing adjacently are combined, and
the combined expression is considered to be one date expression. For example, if
“in October” appears next to “on the last day” or, in Japanese, these two terms
are connected with the Japanese particle “no,” they are combined into “on the
last day in October,” which is then taken as one date expression.

4 Date Expression Normalization and Completion

After the date expressions, like the examples in Table 2, are extracted, the years,
months, and days are normalized. A year is normalized into a four-digit number,
a month into a two-digit number, and a day into a two-digit number. A com-
plete date expression is thus normalized into an eight-digit number. or example,
“1982/5/3” is converted into 19820503 and “Heisei 18 nen 6 gatsu” is converted
into 20060600.

The time transition expressions are incomplete and cannot be normalized.
Instead, their meaning is completed by using the context to estimate the date
represented. More specifically, the meaning of an incomplete expression is com-

Creating Personal Histories from the Web 405

Table 4. Examples of completed date expressions

Incomplete expression Preceding expression Completed
problem information used expression

May 23 April 13, 2005
20050523(year missing) (year)

the fifth day May 3, 1999
19990305(year and month missing) (year and month)

in the same month May 3, 1999
19990500(no time transition) (year and month)

this year Heisei 18 Nen 12 Gatsu
20060000(no time transition) (year)

yesterday 2005/4/13
20050412(time transition) (year, month, and date)

a half year later 2005/4/13
20051000(time transition) (year and month)

pleted by identifying time expressions appearing prior to the incomplete ex-
pression and using the information they contain to complete the expression.
Examples of completed date expressions are shown in Table 4.

Three rules are used for completion. The first rule covers expressions in which
the year or the year and month are abbreviated. Such expressions are completed
by using the corresponding data from a preceding date expression. The second rule
covers expressions without a time transition, for example, “at the same month.”
Such expressions are completed by using a date with the same date in a preced-
ing date expression. The third rule covers expressions with a time transition. If the
expression represents l years and m months and n days later, the expression is com-
pleted using a date that is l years and m months and n days later than the date rep-
resented by the preceding date expression. Similarly, if the expression represents
l years and m months and n days ago, the expression is completed using a date
that is l years and m months and n previous to the date represented by the preced-
ing date expression. In these third rule calculations, the significant values of both
the incomplete date expression and the preceding date expression are considered.
Consider the examples shown in Table 4. The incomplete expression “yesterday” is
completed using the preceding date expression “2005/4/13.” In both expressions,
year, month, and day are significant, so the completion calculation is “subtract one
day from2005/4/13.” In contrast, only year andmonth are significant in the incom-
plete expression “a half year later,”while year,month, andday are significant in the
preceding date expression “2005/4/13.” The completion calculation is thus “add
six months to 2005/4.”

5 Relevant Information Extraction

Since the Web pages often have information for more than one person with the
same name, the system has to identify the information that is relevant to the

406 R. Kimura et al.

target person. Moreover, it has to determine whether the paragraph is informa-
tion is relevant to the person’s history. It does this by using the HTML tree
structure of each page and machine learning.

Previous approaches to exacting information from Web pages are generally
usable only for Web pages with similar structures, design, or contents or for a
few pages with many instances on each page. Our system is designed to extract
information from all Web pages containing relevant information. Therefore, it
must be able to extract information from various types of Web pages. Moreover,
different queries should return different personal histories, so the extracted re-
sults must be query dependent. However, since it is virtually impossible to create
an extraction rule for each query, i.e., each target person name, the extraction
rule must be query independent. We thus use a robust approach to extract-
ing relevant information—the use of a rough context-content model. Using the
HTML tree structure of the retrieved pages, the system can guess the context
in which each paragraph is used.

While XML tags describe the architecture of a page, HTML tags describe the
design. The HTML tag names are not the name of a class, as are XML tags,
so the tags around text do not indicate the meaning of the text. Nevertheless,
many documents, newspaper stories, magazine articles, and so on have a heading
representing the content, so the content can be roughly identify by simply looking
at the heading. Moreover, the heading is usually easily distinguishable from the
text. For example, the heading is generally located above the text. The same is
true of Web pages containing HTML tags. Therefore, estimating whether some
text contains information about the target person can be done by checking the
heading.

The W3C’s HTML Website3 explains that HTML tags are either for block-
level elements or for in-line elements. Block-level elements create larger struc-
tures and begin on a new line. They are more important for the HTML paragraph
structure than the in-line elements, so we use the tags for the block-level elements
and remove those for the in-line elements before extracting relevant information.

The system extracts context CA of text TA, which is enclosed by a pair of
tags, using the following algorithm. The HTML node to which TA belongs is NT ,
and the HTML node to which CA belongs is NC . If NX is an HTML node and
Nroot is the HTML root node,
PreviousNode(NX) is defined as follows.

PreviousNode(NX) =

(i) PreviousSiblingNode(NX)
if PreviousSiblingNode(NX) is not null,

(ii) ParentNode(NX)
if PreviousSiblingNode(NX) is null
AND if ParentNode(NX) is not null

(iii) Nroot

(3)

3 http://www.w3.org/TR/html401/struct/global

Creating Personal Histories from the Web 407

Fig. 2. HTML tree

The node for which the system is searching defined as NS , and at first NS

is the parent node of NT . Using the definition of PreviousNode(NX), NC is
recursively searched as follows.

NC =

(i) RootNode
if PreviousNode(NS)is RootNode,

(ii) PreviousNode(NS)
if PreviousNode(NS)is a text node,

(iii) the child node of PreviousNode(NS)
if PreviousNode(NS)is a node of a heading tag.

(4)

If NC has not been determined, NS is set to PreviousNode (NS) and Formula
4 is repeatedly applied until NC is determined. If NC is determined by Formula
4, the context, CA, is defined as the inner-text of NC .

Using these algorithms, the system can find a context for each text item on
a Web page. Consider the example HTML tree in Figure 2 and a search for the
context of the text “Database Conceptual Modelling,” First, NS is set to
the previous node in the text, the P tag node. Next, NS is searched for and
the H3 tag node is found. Using Formula 4, the system determines that NS is
a node of a heading tag, meaning that NC is a child node of NS, the node for
“RESEARCH INTERESTS.” In this way, the context of “Database Conceptual
Modelling, ...” is determined to be “RESEARCH INTERESTS.”

A feature vector is constructed for each identified context-text pair on a page.
The nouns on the page are extracted using Chasen, and each one is defined as a
feature. The feature value is the number of occurrences of the noun on the page.
Although numbers representing dates would be useful for identifying information
useful for generating the chronological table, if all the numbers on a page were
defined as features, the number of features would be burdensome. Moreover,
number features rarely occur more than once in the data set. This causes feature
sparseness and low classification accuracy. Therefore, the numbers are defined
as one of five features: “one-digit number,” “two-digit number,” “three-digit
number,” “four-digit number,” and “more-than-four-digit number,” as shown in
Table 5. All date expressions are defined as “date expression.”

408 R. Kimura et al.

Table 5. Aggregated features used to train binary classifier

Type Feature Example

one digit number 3
two digit number 32

numbers three digit number 524
four digit number 1999

more-than-five digit number 150,000,000

queried name Hanako Sato
names of people part of queried name Sato

other person’s name Tanaka

date expressions date expression 1999/12/1

Since we want to extract information only for the target person, the query
name, part of the query name, and the names for other people are good features
for extracting relevant information. However, if the names were directly used as
features, the rules would greatly depend on the query names used to collect the
training data of the machine learning; therefore, when the rules were applied to
different data, the accuracy would be low. To make the rules independent of the
queries, we abstract the features. The names of people are defined as one of three
features, “queried name,” “part of queried name,” and “other person’s name.”
This aggregation of features also helps prevent overfitting to the training data
and results in good generalization to other data. Using these features, we train
a binary classifier to classify the segments on a page into relevant and irrelevant
ones.

6 Chronological Table Generation

To generate a chronological table for the target person, it is necessary to collect
pairs of a date and an activity for the person. The sentences extracted likely
include activities for the person. The style of the sentences may vary widely; for
example, some sentences may have no date expressions and some may have more
than one pair of a date and an activity. If a sentence has no date expression, it is
necessary to search among the preceding sentences for a date expression related
to the activity. If a sentence has more than one pair of a date and an activity,
it is necessary to match the dates with the information. We have created four
rules for doing this.

– The system first extracts sentences or parts of sentences that include date
expressions. These expressions are normalized and completed, and the sys-
tem makes a list of candidate texts which are the extracted sentences or
incomplete sentences.

– If an extracted date-expression sentence does not end with a noun that is
linked to a sa-hen verb, the sentence is eliminated from the candidate list.

Creating Personal Histories from the Web 409

– If the first word following a date expression is not “ni,” “yori,” “kara,” or a
space, the sentence is eliminated from the candidate list.

– If a sentence does not have Japanese words, it is eliminated from the candi-
date list.

The candidate texts remaining following the application of these rules are
used to generate a chronological table.

7 Evaluation

7.1 Namesake Disambiguation

As sample queries, we chose 20 Japanese names from a list of names that has
at least three famous people in an article “same last name and first name” of
Wikipedia4. We did a Google search on each name and used the first 100 results
for each one. We regarded a pair of a page title and a snippet search result as one
document. For each name, we made an answer set by manually clustering these
documents so that each cluster corresponded to one person. The average number
of clusters in the answer set was 22.85. The maximum number of clusters in
correct data was 48, the same as the number of clusters for“Yutaka Kobayashi,”
and 12.25% of the clusters had only one document.

The clustering results were evaluated by comparing them to the answer set
(correct clusters), which was prepared manually, using precision, recall, and F-
measure.

F -measure =
precision ∗ recall ∗ 2
precision + recall

. (5)

We used an F-score measure [9] as the metric clustering accuracy.

F -score =
∑

c∈C

|mc|
|m| max

r∈R

2|mr ∩ mc|
|mr| + |mc|

, (6)

where C is the set of clusters in the answer set, c is one cluster in the answer set,
mc is the set of documents belonging to cluster c, R is the set of clusters in the
clustering result, r is one person in a classified result, mr is the set of documents
belong to cluster r, and m is a set of documents in the answer set.

We varied the number of clusters, which was used as the stopping condition for
single-linkage clustering, between 1 and 99. The precision, recall, F-measure, and
F-score for each name were averaged for each number of clusters. We created
document vectors consisting of nouns and related objects and/or occupation
terms and used them for our evaluation.

Figure 3 shows precision-recall curves for the classification results using our
system and the different types of feature vectors as well as for a baseline method
4 http://ja.wikipedia.org/w/index.php?title=%E5%90%8C%E5%A7%93%E5%90

%8C%E5%90%8D&oldid=7825577; dated 08:34, 22 September 2006

410 R. Kimura et al.

Fig. 3. Clustering accuracy

using only nouns as features. For all three types of feature vectors, our system
performed better than the baseline method.

Table 6 shows the highest F-measure and F-score for all cluster numbers (de-
noted by subscript “max”) and those for the actual cluster number in the answer
set (“answer”). All the maximum scores were scored using the feature vectors with
nouns and related objects and occupation terms. Using the vectors with nouns and
occupation terms and the vectors with nouns and related objects and occupation
terms produced significantly better results than the baseline method.

7.2 Date Expression Extraction

We did a Google search on five Japanese names (Katsumi Tanaka, Satoshi
Oyama, Yuri Ebihara, Junichiro Koizumi, and Hidetoshi Nakata) and used the
first 20 results for each one. Then, using the 100 web pages, we evaluated the
accuracy of our extraction component. Table 7 shows the number of automati-
cally extracted date expressions, the number that were correct, and the actual
number manually found. The recall was 71.3%, and the precision was 93.3%.

While the precision was sufficiently high, it can be improved by eliminating
some mistake patterns. One pattern in particular (exemplified by “two days in
Cairns”) accounted for more than half the mistakes. There were also misrecog-
nition problems. For example, the “6.1.1” in “section 6.1.1” was recognized as
“6/1/1.” Problems also occurred because the same Chinese (“kanji”) character
can have more than one meaning. In Japanese, both “moon” and “month” use
the same Chinese character, as do “day” and “sun.” This multiple usage of char-
acters complicates the extraction of date expressions. Other misrecognized terms
are part of a proper noun, which often raise in Japanese text.

Creating Personal Histories from the Web 411

Table 6. Clustering accuracy

Method F -measuremax F -scoremax F -measureanswer F -scoreanswer

nouns 0.509 0.637 0.557 0.629

nouns &
0.514 0.631 0.563 0.631related objects

nouns &
0.513 0.651 0.572 0.632occupation terms

nouns &
related objects & 0.516 0.651 0.575 0.639
occupation terms

Table 7. Precision and recall of date expression extraction

Query Extracted Correct Actual Precision Recall

Katsumi Tanaka 473 468 559 0.989 0.837

Satoshi Oyama 223 205 514 0.919 0.399

Yuri Ebihara 323 317 352 0.981 0.901

Junichiro Koizumi 505 435 557 0.861 0.781

Hidetoshi Nakata 293 271 397 0.925 0.683

Total 1817 1696 2379 0.933 0.713

It is difficult to avoid all extraction mistakes when using regular expressions.
It is not practical to write rules for all patterns of the various proper nouns that
appear in Web pages. We may need to use a morpheme analyzer to determine
whether a term actually represents a date.

The recall was lower than precision because we emphasized precision in order
to get a precise date for each piece of information. We did not extract uncertain
terms, such as “2/3,” which can be either a fraction or a date, and “18,” which
cannot be identified as a year but sometimes means “Heisei 18.” Such date
expressions could possibly be extracted by using words appearing around them.
For example, date expressions tend to be collocated with certain prepositions
like “in” (“in May”) and “on” (“on May 5th”). They also tend to occur with
specific words, like a day of the week, such as “Wednesday.”

7.3 Date Expression Normalization and Completion

We did a Google search on each name in Table 7 and used the first 100 results
for each one. In the obtained data, there were 5264 date expressions, and 1159
of them were incomplete. On average, each of the 500 pages had about 10.5 date
expressions, and about 2.3 of them needed to be completed. This meant that
our objective was to complete one-fourth of the date expressions by using the
other three-fourths. If the first date expression in a text did not have the year,
the three rules defined for completion could not be applied. They could also not

412 R. Kimura et al.

Table 8. Precision of date expression completion

Rule 1 Rule 2 Rule 3
Applied Precision Applied Precision Applied Precision

Katsumi Tanaka 103 0.922 6 0.333 8 0.250

Satoshi Oyama 142 0.951 4 1.000 5 0.200

Yuri Ebihara 141 0.702 11 0.727 8 0.625

Junichiro Koizumi 139 0.626 17 0.353 24 0.583

Hidetoshi Nakata 195 0.610 15 0.867 16 0.250

Total 720 0.743 53 0.623 61 0.426

be applied to subsequent date expressions in that text lacking the year. There
were 325 of these date expressions.

The date expressions to which the rules could not be applied were classi-
fied into “people can complete” (about 61%) and “people cannot complete”
(about 39%) depending on whether a person could estimate the date by using the
URL, title, and/or text on the Web page. For example, if the URL for the page
was “http://blog.example.com/20050602/index.html,” a person could determine
that it was written on 2 June 2005. If the title of the page was “EURO2004,”
a person could determine that the events described on the page happened in
2004. The remaining 834 incomplete date expressions were completed by ap-
plying the rules. About 71.2% of them were completed correctly, so using only
simple completion rules produced relatively good precision.

Table 7 shows the precision of each rule. The precision of the third rule,
which was applied to date expressions with a time transition such as “three
months ago,” was lower than those of the other rules. When constructing our
three completion rules, we assumed that a time transition as one from a date of
adjacent date expressions; however, in blog posts and news articles, most time
transitions are from dates when the post or article was written. This explains
why most of the incorrect completions were for blog posts and news articles.
Since the names of famous people, which are searched for more often than other
names, are frequently used in blog posts and news articles, this is a significant
problem.

Since about 61% of the date expressions to which the rules could not be applied
were classified into “people can complete,” performance could be improved by
using more complex rules and additional information, like the URL.

7.4 Relevant Information Extraction

We conducted a preliminary experiment to compare the relevant information
extraction performance of three machine learning methods: Naive Bayes [10],
C4.5 decision tree learner [11], and SVM [12]. The C4.5 learner had the best
classification accuracy. We thus used it to evaluate the classification accuracy of
our system.

Creating Personal Histories from the Web 413

Table 9. Precision and recall of relevant information extraction

Use context-text model true true false false

Use aggregation of features true false true false

Precision 0.593 0.073 0.546 0.103

Recall 0.143 0.045 0.119 0.007

F-measure 0.231 0.055 0.195 0.013

For experimentation, we use 20 Japanese names used for experimentations in
disambiguation of namesakes. We downloaded ten random web pages from the
first 100 search results for each name. The text elements for each pages were
classified manually to produce an answer set for 200 Web pages.

In this evaluation, we cross-validated the results by dividing the answer set
into 20 subsets. One name out of 20 names was selected, and the 190 pages
corresponding to the other names were used as training data. The ten pages
corresponding to the name were used as test data. We repeated this evaluation
20 times, once for each name and calculated micro averages for precision, recall,
and F-measure.

To evaluate our system, which uses both a context-text model and feature
aggregation, we compared the accuracy for four data sets: one using both the
context-text model and feature aggregation, one using only the context-text
model, one using only feature aggregations, and one using neither. Due to the
computational cost, we counted the number of occurrences in a data set for each
feature and used the top 100 features. The results are shown in Table 9.

The scores for our system using both the context-text model and feature
aggregation were better than those of the other methods. Especially, feature ag-
gregation was very effective for improving both precision and recall. Even for
the best method, however, its recall was not very high. This was probably due
to the great difference between the number of positive examples and negative
examples. The data used contained only 1.55% positive examples. We plan to in-
corporate an existing technique for handling imbalanced data, such as artificially
generated virtual positive data [13].

8 Conclusion

Our proposed system gathers information from the Web, uses it to create a per-
sonal history, and presents the history as a chronological table. It simplifies the
task of sorting out the information for various namesakes and dealing with infor-
mation in widely scattered sources. The system has five components: namesake
disambiguation, date expression extraction, date expression normalization and
completion, relevant information extraction, and chronological table generation.
This system will thus enable efficient creation of personal histories.

414 R. Kimura et al.

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research (Nos.
18049041 and 19700091) from MEXT of Japan and by a MEXT project entitled
“Software Technologies for Search and Integration across Heterogeneous-Media
Archives.”

References

1. Guha, R., Garg, A.: Disambiguating people in search. Stanford University (2004)
2. Al-Kamha, R., Embley, D.W.: Grouping search-engine returned citations for

person-name queries. In: Proc. ACM WIDM 2004, pp. 96–103. ACM Press, New
York (2004)

3. Wan, X., Gao, J., Li, M., Ding, B.: Person resolution in person search results:
Webhawk. In: Proc. ACM CIKM 2005, pp. 163–170. ACM Press, New York (2005)

4. IREX Committee. In: Proceedings of the IREX Workshop, IREX Committee
(1999)

5. Watanabe, I., Masui, F., Fukumoto, J.: Improvement of next performance:
Elavolating precision and userbility of the named entity extraction tool. In: Proc.
NLP 2004, pp. 413–415 (in Japanese) (2004)

6. Ikehara, S., Miyazaki, M., Shirai, S., Yokoo, A., Nakaiwa, H., Ogura, K., Ooyama,
Y., Hayashi, Y.: Nihongo Goi Taikei - A Japanese Lexicon (CD-ROM). Iwanami
Syoten (in Japanese) (1999)

7. Matsumoto, Y., Kitauchi, A., Yamashita, T., Hirano, Y., Matsuda, H., Takaoka,
K., Asahara, M.: Japanese Morphological Analysis System ChaSen version 2.2.1
(2000)

8. Mizobuchi, S., Sumitomo, T., Fuketa, M., Aoe, J.: A method for understanding
time expressions. In: Proc. IEEE SMC 1998, pp. 1151–1155. IEEE Computer So-
ciety Press, Los Alamitos (1998)

9. Zhao, Y., Karypis, G.: Evaluation of hierarchical clustering algorithms for docu-
ment datasets. In: Proc. ACM CIKM 2002, pp. 515–524. ACM Press, New York
(2002)

10. John, G.H., Langley, P.: Estimating continuous distributions in bayesian classifiers.
In: Proc. UAI 1995, pp. 338–345 (1995)

11. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Fran-
cisco (1993)

12. Vapnik, V.: Statistical Learning Theory. Wiley, Chichester (1998)
13. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: Synthetic mi-

nority over-sampling technique. JAIR 16, 321–357 (2002)

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 415–420, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Comparing Clustering Algorithms for the Identification
of Similar Pages in Web Applications

Andrea De Lucia1, Michele Risi1, Giuseppe Scanniello2, and Genoveffa Tortora1

1 Dipartimento di Matematica e Informatica, Università di Salerno, Via Ponte Don Melillo,
84084, Fisciano (SA), Italy

2 Dipartimento di Matematica e Informatica, Università della Basilicata, Viale Dell'Ateneo,
Macchia Romana, 85100, Potenza, Italy

{adelucia,mrisi}@unisa.it, giuseppe.scanniello@unibas.it,
tortora@unisa.it

Abstract. In this paper, we analyze some widely employed clustering
algorithms to identify duplicated or cloned pages in web applications. Indeed,
we consider an agglomerative hierarchical clustering algorithm, a divisive
clustering algorithm, k-means partitional clustering algorithm, and a partitional
competitive clustering algorithm, namely Winner Takes All (WTA). All the
clustering algorithms take as input a matrix of the distances between the
structures of the web pages. The distance of two pages is computed applying
the Levenshtein edit distance to the strings that encode the sequences of HTML
tags of the web pages.

Keywords: Clone detection, clustering algorithms, reverse engineering.

1 Introduction

Code cloning in web applications is one of the factors that make their maintenance
more difficult and time consuming [1][11]. A code clone is a code portion in source
files that is identical or similar to another. Developers introduce clones for various
reasons such as lack of a good design, fuzzy requirements, undisciplined maintenance
and evolution, and reusing code by copy-and-paste.

Recently, researchers have extensively studied clone detection for static web pages,
written in HTML, or dynamic ones [3][11]. Clone detection approaches for web
applications are usually based on similarity measures: two pages will be considered
clones if they are characterized by the same values of the defined measure
[4][5][11][12]. For example, Di Lucca et al. [4] encode the sequences of tags of
HTML and ASP pages into strings and identify pairs of cloned pages at structural
level by computing the Levenshtein string edit distance [9] between these strings. A
pair of web pages is considered a clone if their Levenshtein edit distance is zero.
Ricca and Tonella in [11] enhance the approach based on the Levenshtein edit
distance proposed in [4]. In particular, they adopt a hierarchical clustering algorithm
to identify clusters of duplicated or similar pages to be generalized into a dynamic
page. Similarly, in [12] the authors propose a semiautomatic approach to identify and
align static HTML pages whose structure is the same and whose content is in different

416 A. De Lucia et al.

languages. Pages with similar structures are identified by adopting an agglomerative
hierarchical clustering algorithm. An approach based on a competitive clustering
algorithm to identify similar pages at structural and content level is proposed in [2].
To group pages at structural level, their structures are encoded into strings and then
the Levenshtein algorithm is used to achieve the distances between pairs of pages. De
Lucia et al. [3] also use Levenshtein distance to compute the similarity of two pages
at structure, content, and scripting code level. Clones are characterized by a similarity
threshold that ranges from 0%, for disjoint code, up to 100%, for identical pages.

In this paper, we compare the results of applying some clustering algorithms
belonging to the categories hierarchical and partitional [6] in the identification of
cloned page at structural level (i.e., pages with similar sequences of HTML tags).
Concerning the hierarchical methods we consider the agglomerative [8] and divisive
clustering algorithms [7], while within the partitional category we selected a variant
of k-means [10] algorithm and the Winner Takes All (WTA) [6] algorithm. Web
pages can be both static and dynamic and can be implemented using any kind of
server side scripting code. Similarly to the approaches proposed in [2][4][11], we
consider the Levenshtein string edit distance [9] as basic metric to identify similarity
between pairs of pages. We have compared the selected clustering algorithms on a
case study composed of three web applications developed using JSP technology.

The remainder of the paper is organized as follows. In Section 2 we present the
process to identify page similarity at the structural level, while the results obtained by
applying the considered clustering algorithms are presented in Section 3. Final
remarks conclude the paper.

2 Identifying Cloned Pages at Structural Level

The process we adopted is composed of the following sequential phases:
Preprocessing, Computing Distance Matrix, and Grouping Similar Pages. The
Preprocessing phase aims at turning the page structures implemented by specific
sequences of HTML tags into a more suitable string representation. This
representation is produced by means of a depth-first traversal of the abstract syntax
tree of both static and dynamic page structures. Each node of the syntax tree of a page
is decorated with a HTML tag and with a set of attributes, such as text attribute, target
source code, image attribute, etc. The string representations of the structure of a web
page is obtained encoding the HTML tags into symbols of an alphabet before being
concatenated into the string corresponding to its structure.

The Computing Distance Matrix phase adopts the Levenshtein edit string distance
[9] to obtain similarity measures between pairs of pages. The Levenshtein edit
distance is defined as the minimum cost to align two strings. The Levenshtein
distance between pairs of pages is then used to build the Distance Matrix considering
all the possible pairs of pages of a given web application. The Distance Matrix is then
provided as input to the phase Grouping Similar Pages, which can be instantiated
with different clustering algorithms. In particular, we considered an agglomerative
[8], a divisive [7], k-means [10], and the WTA (Winner Takes All) [6] clustering
algorithms. The agglomerative hierarchical clustering algorithm [8] begins with each
page in a distinct cluster, and then hierarchically merges clusters together. This results

 Comparing Clustering Algorithms for the Identification of Similar Pages 417

in a dendrogram, which represents the nested groups of pages and similarity levels at
which groups change. The dendrogram can be cut at different levels to obtain
different clusters (i.e., the tuning values of our approach). In the divisive hierarchical
clustering algorithm [7], clusters are divided until each page is placed in a distinct
cluster. The choice of the divisive step represents the tuning values of our approach.
The k-means algorithm [10] is used to classify pages of a given data set through a
priori fixed number of disjoint clusters (the tuning value of our approach). The main
idea is to define a centroid for each cluster of pages to identify. The algorithm
iteratively refines the initial centroids, minimizing the average distance of pages to
their closest centroids. Finally, we also considered WTA [6], an Artificial Neural
Network (ANN) clustering algorithm. The used ANN is essentially based on a two
dimensional grid of neurons, which weights are continuously adapted to the vectors of
the distances between the pages of a web application. The number of neurons is
provided as input (i.e., the tuning value of our approach) and represents the number of
clusters that the algorithm should identify (i.e., the number of expected clusters). The
neuron with weight vector most similar to the input vector is called the winner. The
weights of the winner and its closer neurons are then adjusted towards the input
vectors. The training process is concluded either the neurons do not change their
position or a termination threshold for the iteration is reached. Clusters are identified
associating the pages to the closer neuron in the ANN.

3 The Case Study

The clustering algorithms have been compared on web applications implemented
using JSP technology. In particular, we considered the web sites of the 14th
International Conference on Software Engineering and Knowledge Engineering
(SEKE 02) and the 1st International School of Software Engineering (ISSE 03), and
the SRA (Student Route Analysis) web application. Some descriptive statistics of
these web applications are reported in Table 1. The second row contains the number
of files composing the application, while the second and third rows contain the
number of static and dynamic pages, respectively.

Table 1. Descriptive statistics of the analyzed web applications

SEKE 02 ISSE 03 SRA
Number of Component Files 1268 files in 63 folders 66 files in 14 folders 380 files in 45 folders

Number of HTML Pages 49 12 22
Number of JSP Pages 108 7 45

3.1 Assessing the Results

To compare the results achieved by applying the different clustering algorithms we
adopted the precision and recall metrics. In our case the recall is defined as the ratio
between the number of actual pairs of similar pages identified by the tool over the
total number of actual pairs of similar pages in the web application. Differently,
the precision is the number of actual pairs of similar pages identified by the tool over
the total number of identified pairs. The precision and recall values are computed

418 A. De Lucia et al.

turning both actual clusters and the clusters automatically identified by the tool into
pairs of similar pages. In particular, the clones manually identified are reported in a
gold matrix, while those identified by the tool are reported in result matrix.

The evaluation of precision and recall is not straightforward. Thus to better assess
the achieved results we also considered the trade-off between the values of precision
and recall. In particular, we consider the F-measure that is defined as the harmonic
mean of the precision and recall values. The trade-off configuration corresponds to
the tuning value that allows the identification of the larger F-measure value.

Table 2.a and 2.b report the trade-off configurations achieved on the SEKE 02 web
application. In particular, the first columns contain the adopted clustering algorithms,
while the trade-off configurations are reported in the second columns. Concerning the
WTA algorithm these tables also report the number of expected clusters (i.e., the first
number) and the number of clusters that the algorithm actually identified (i.e., the
second number). The precision and recall values are shown in the third and fourth
columns, respectively. Finally, the F-measures of the presented configurations are
contained in the last columns. The precision and recall values corresponding to the
trade-off configurations of the static pages of the SEKE 02 web application (see
Table 2.a) revealed that the k-means clustering algorithm produces better results. The
trade-off configurations are 38 for the divisive clustering algorithm and the
hierarchical clustering algorithms, while is 31 for the WTA clustering algorithm. Note
that the WTA clustering algorithm produced worse results (i.e. the precision and
recall values were 0.523 and 0.578, respectively) than the other clustering algorithms.
Table 2.b shows that the better values of the precision and recall were obtained by
using the divisive hierarchical clustering algorithm (0.695 is the F-measure value).
Indeed, all the clustering algorithms except the WTA clustering algorithm produced
comparable results. We can also observe that the number of clusters identified by the
WTA algorithm is lower than the number of clusters identified by the other
algorithms. The results achieved by employing the trade-off configurations on the
ISSE03 web application are reported in Table 3.a and 3.b, respectively. The results
obtained by applying the considered clustering algorithms are very similar. Indeed, on
the static pages (see Table 3.a) the WTA clustering algorithm produced more relevant
results in terms of recall value (i.e., 0.888). The results obtained by using the trade-off
configurations on the agglomerative clustering algorithm and the k-means algorithm
were the same in terms of precision and recall values.

On the dynamic pages of the ISSE 03 web application better results were achieved
when the WTA and k-means clustering algorithms were adopted (see Table 3.b). For
both the clustering algorithms the precision and recall values are 1 and 0.666,
respectively. Regarding the WTA clustering algorithm, the difference between
expected and identified clusters is 1. Let us also note that the agglomerative and
divisive clustering algorithms produced the same results.

Finally, Table 4.a shows the results achieved by using the trade-off configurations
on the static pages of the SRA web application. This table shows that the divisive
clustering algorithm produced better results (i.e. the precision and recall values were
0.959 and 0.979, respectively). Similar results were achieved by employing the
agglomerative clustering algorithm and WTA (the precision and recall values were
0.921 and 0.974, respectively). Differently, for the k-means the precision value was 1,
while the recall value was 0.812. Regarding the WTA clustering algorithm the

 Comparing Clustering Algorithms for the Identification of Similar Pages 419

Table 2. Results obtained by using the trade-off configurations on SEKE 02

Clusters Prec. Recall F-meas.
Agglom. 38 0.565 0.684 0.619
Divisive 38 0.565 0.684 0.619
k-means 40 0.923 0.631 0.750

WTA 31/31 0.523 0.578 0.549

(a)

Clusters Prec Recall F-meas.
Agglom. 90 0.877 0.574 0.694
Divisive 87 0.820 0.603 0.695
k-means 86 0.781 0.574 0.662
WTA 57/57 0.552 0.660 0.601

(b)

Table 3. Results obtained by using the trade-off configurations on ISSE 03

Clusters Prec. Recall F-meas.
Agglom. 6 0.5 0.666 0.571
Divisive 5 0.437 0.777 0.559
k-means 6 0.5 0.666 0.571
WTA 3/3 0.363 0.888 0.515

(a)

Clusters Prec. Recall F-meas.
Agglom. 4 0.5 0.666 0.571
Divisive 4 0.5 0.666 0.571
k-means 5 1 0.666 0.800
WTA 6/5 1 0.666 0.800

(b)

Table 4. Results obtained by using the trade-off configurations on SRA

Clusters Prec. Recall F-meas.
Agglom. 6 0.921 0.979 0.949
Divisive 7 0.959 0.979 0.969
k-means 9 1 0.812 0.896
WTA 6/6 0.921 0.979 0.949

(a)

Clusters Prec. Recall F-meas.
Agglom. 33 0.437 0.466 0.451
Divisive 33 0.437 0.466 0.451
k-means 31 0.208 0.333 0.256
WTA 27/26 0.206 0.4 0.272

(b)

number of expected and identified clusters coincides. The results of the trade-off
configurations on the dynamic pages are shown in Table 4.b. Let us note that due to
the low number of dynamic pages similar at structural level the clustering algorithms
generally produced bad results.

3.2 Remarks

To identify the trade-off value the software engineer has to try all the possible
configurations and then the clusters identified at each iteration have to be manually
assessed. Hence, methods to automatically filter out surely bad tuning configurations
and to get more quickly the trade-off configuration should be devised in the
identification of similar pages. Indeed, the web application used as case study
provided some directions to better support the software engineer. In particular, we
observed that in most cases the break-even configuration (i.e., the larger number of
expected clusters such that the WTA identifies non empty clusters) is very similar to
the trade-off configuration. In particular, we observed that on the static pages of
SEKE 02 the break-even and the trade-off configurations are nearly identical. On the
other hand, the break-even and trade-off configurations coincide in case WTA is
applied on the structure of the static pages of SRA. We also note that a larger
difference between break-even and trade-off configurations is obtained when the web
applications are composed of few pages (for example, ISSE 03). A larger difference
between the break-even and trade-off configurations was also obtained in case the
web application has a low number of pages similar at structural level.

420 A. De Lucia et al.

4 Conclusions

In this paper we have presented an initial experiment on the use an agglomerative
hierarchical clustering algorithm, a divisive clustering algorithm, a variant of the k-
means partitional clustering algorithm, and a widely employed partitional competitive
clustering algorithm, namely WTA in the identification of web page similarity at the
structural level. These algorithms have been employed to detect similar web pages in
dynamic and/or static web sites according to the Levenshtein string edit distance. This
distance has been used as basic metric to identify similarity between pairs of pages
considering their structures. The selected algorithms have been evaluated on two
medium and one small web applications developed using JSP technology. The results
of the presented case study revealed that all the selected clustering algorithms
generally produce comparable results.

References

[1] Boldyreff, C., Tonella, P.: Web Site Evolution. Special issue of Journal of Software
Maintenance 16(1-2), 1–4 (2004)

[2] De Lucia, A., Scanniello, G., Tortora, G.: Using a Competitive Clustering Algorithm to
Comprehend Web Applications. In: Proc. of 8th IEEE International Symposium on Web
Site Evolution, Philadelphia, Pennsylvania, pp. 33–40. IEEE CS Press, Los Alamitos (2006)

[3] De Lucia, A., Francese, R., Scanniello, G., Tortora, G.: Identifying Cloned Navigational
Patterns in Web Applications. International Journal of Web Engineering 5(2), 150–174,
Rinton Press (2006)

[4] Di Lucca, G.A., Di Penta, M., Fasolino, A.R.: An Approach to Identify Duplicated Web
Pages. In: Proc. of 26th Annual International Computer Software and Application
Conference, Oxford, UK, pp. 481–486. IEEE CS Press, Los Alamitos (2002)

[5] Di Lucca, G.A., Fasolino, A.R., De Carlini, U., Pace, F., Tramontana, P.: Comprehending
web applications by a clustering based approach. In: Proc. of the 10th International
Workshop on Program Comprehension, Paris, France, pp. 261–270. IEEE Computer
Society Press, Los Alamitos (2002)

[6] Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley-Interscience
Publication, JOHN WILEY & SONS, Inc. New York, pp. 576-581

[7] Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data. An Introduction to Cluster
Analysis. Wiley, New York (1990)

[8] King, F.: Step-wise clustering procedures. Journal of the American Statistical
Association 62, 86–101 (1967)

[9] Levenshtein, V.L.: Binary codes capable of correcting deletions, insertions, and reversals.
Cybernetics and Control Theory 10, 707–710 (1966)

[10] Mcqueen, J.: Some methods for classification and analysis of multivariate observations.
In: Proc. of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp.
281–297 (1967)

[11] Ricca, F., Tonella, P.: Using Clustering to Support the Migration from Static to Dynamic
Web Pages. In: Proc. of International Workshop on Program Comprehension, Portland,
Oregon, USA, pp. 207–216 (2003)

[12] Tonella, P., Ricca, F., Pianta, E., Girardi, C.: Restructuring Multilingual Web Sites. In:
Proc. of International Conference on Software Maintenance, Montreal, Canada, pp. 290–
299. IEEE CS Press, Los Alamitos (2002)

Structural Patterns for Descriptive Documents

Antonina Dattolo1, Angelo Di Iorio2, Silvia Duca2,
Antonio Angelo Feliziani2, and Fabio Vitali2

1 Department of Mathematics and Applications R. Caccioppoli,
University of Napoli Federico II, Italy

dattolo@unina.it
2 Department of Computer Science, University of Bologna, Italy

{diiorio,ducas,afelizia,vitali}@cs.unibo.it

Abstract. Combining expressiveness and plainness in the design of web
documents is a difficult task. Validation languages are very powerful and
designers are tempted to over-design specifications. This paper discusses
an offbeat approach: describing any structured content of any document
by only using a very small set of patterns, regardless of the format and
layout of that document. The paper sketches out a formal analysis of
some patterns, based on grammars and language theory. The study has
been performed on XML languages and DTDs and has a twofold goal:
coding empirical patterns in a formal representation, and discussing their
completeness.

Keywords: Patterns, grammars, descriptive schemas, completeness.

1 Introduction

The World Wide Web has become the greatest repository of information ever
existed. The more the centrality of the WWW increases, the more web docu-
ments become heterogeneous and complex. We do not perceive heterogeneity as
a problem, to be solved by flattening all those languages into a plain, unspe-
cific and incomplete one. Neither we want to define ’The’ universal exhaustive
language able to describe any domain and any application. What we are rather
looking for is a general model to design languages and documents, in order to
make them simple, complete and processable.

This work is part of a more ambitious project aiming at defining, separat-
ing and extracting constituents of any document so as to reformulate a few of
them, to reuse some of them in different contexts, or to convert and mix sub-
components. Our overall approach relies on the definition of abstract and generic
formats able to fully describe the most relevant bits of digital documents, re-
gardless of their actual format, layout and storage. In particular, we consider
any document as a composition of five components (dimensions) independent
but connected each other: content, structure, presentation, behavior and meta-
data. We are not interested here in the details of our model (a deeper discussion
can be found in [DDID07]) but we only refer to the structure. Our goal is dis-
cussing how any structured content can be described by a very small set of
objects and composition rules. We already presented in [DIGV05] some patterns

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 421–426, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

422 A. Dattolo et al.

to capture the most common structures of digital documents. What we want
to do here is resuming that analysis and proposing a theoretical framework to
discuss some properties of those patterns.

In particular, this paper sketches out a grammar-based proof of patterns’ com-
pleteness. The interested reader is referred to [DDID07] for the complete proof.
The point here is understanding what ’completeness’ means in the context of
descriptive documents, and how the language theory help us in proving it. Re-
searchers have already used grammars for XML, in different contexts: [MLMK05]
classified and compared schema languages, [Via01] discussed opposition and syn-
ergy between databases and XML, and [BMNS05] studied the relation between
DTDs and XML Schema. Our goal is quite different: proving that any DTD
can be transformed into a descriptive one, based on few patterns but able to
capture the same structural information. Our analysis is performed over XML-
based languages and DTDs, for sake of simplicity, but could be extended to other
languages with appropriate modifications.

The paper is organized as follows: section 2 introduces a taxonomy of different
levels of descriptiveness, section 3 presents our pattern-based model, section 4
defines grammars for (common or pattern-based) DTDs. Finally the complete-
ness of the pattern-based language is sketched out.

2 Structures for Descriptive Documents

The first step of our work consists of understanding which constructs and rules
are really needed for descriptive schemas. The distinction between prescriptive
and descriptive languages have been widely studied in the literature [Ren00].
What these approaches change is the role itself of the validation [Pie01]. Tradi-
tionally validation is strict, because it is used as a ”go/non-go” gauge to verify
in advance whether or not a data set conforms to a set of requirements. A loose
validation is rather used to capture abstract and structural information about a
text. Both strict and loose validations are useful. What is important is designing
languages and schemas by keeping in mind their features and differences, and
applying them in right contexts.

Different levels of descriptiveness exist, depending on what designers reckon
as important, what can be relaxed, what can be omitted, what can be expressed
in a different way. To discuss these levels, we use DTD-based examples since
they are shorter and more direct but we can use any other language, in exactly
the same way. We identify six relevant levels of descriptiveness:

– Prescriptive (PRE): a prescriptive DTD imposes a set of rules which all
matching documents must follow. Prevent errors in a production chain, based
on strict validation.

– Descriptive No Alternatives (DNA): a descriptive DTD without alter-
natives do not allow users to force a choice between two (or more elements).
The basic idea is that alternatives are meant to inhibit incorrect structures,
but they are not required when all documents already exist and the DTD is
used to describe all those documents.

Structural Patterns for Descriptive Documents 423

– Descriptive No Cardinality (DNC): a descriptive DTD without alterna-
tives can be further generalized by relaxing constraints over the cardinality of
each single element. The idea is that by forcing cardinalities some documents
could be considered invalid, even if they belong to the same class.

– Descriptive No Order (DNO): constraints over the order can be relaxed
as well. Imposing order is something extremely useful when invalid docu-
ments obstruct a complex process, but it makes much less sense when the
goal is identifying components. A descriptive document is not meant to say
where each object is located, but which objects compose the document itself.

– Super Descriptive (SD): relaxing both constraints over cardinality and
order, besides alternatives, designers can create abstract DTDs which con-
sider any object as a sequence of repeatable and optional elements. These
DTDs are meant to only define the set of objects of the documents.

– (Un)Descriptive (UD): relaxing any constraint designers could say that
anything includes anything. Not useful in practice, those DTDs are only
mentioned to complete our spectrum.

Table 1 shows a simple DTD declaration, accordingly to each model:

Table 1. Different levels of descriptiveness

Descriptiveness level Content Model
PRE - Prescriptive <!ELEMENT X (A, (B | C), D*)>
DNA - Descriptive No Alternativess <!ELEMENTX (A, (B?, C?), D*)>
DNC - Descriptive No Cardinality <!ELEMENT X (A*, (B*, C*), D*)>
DNO - Descriptive No Order <!ELEMENT X (A & (B? & C?) & D*)>
SD - Super Descriptive <!ELEMENT X (A | (B | C) | D)* >
UD - (Un)Descriptive Any

On the basis of previous analysis [DIGV05], we identify the DNO paradigm
as a good solution to describe documents’ structures. Actually we did not cite
directly DNO but we studied situations where such descriptiveness is enough
to express everything users need. Moreover we proposed and discussed some
patterns, concluding that by adopting these and only these patterns, all those
descriptive situations could be covered.

3 Patterns for Descriptive Documents

The set of patterns we proposed in [DIGV05] is very small:

– Marker: an empty element, in case enriched with attributes, whose meaning
primarily depends on its position within the context.

– Atom: a unit of unstructured information. An atom contains only plain text
and is meant to indicate a specific role or semantics for that information

– Block and Inline: a block of text mixed with unordered and repeatable
inline elements that, in turn, have the same content model. They are used
to model any objects which ultimately carry the text written by the author.

424 A. Dattolo et al.

– Record: a set of heterogeneous, unordered, optional and non-repeatable el-
ements. Records are first used to group simple units of information in more
complex structures, or to organize data in hierarchical subsets.

– Container: a set of heterogeneous, unordered, optional and repeatable el-
ements. The name itself emphasizes the generality of this pattern, used to
group diversified objects, repeated and collected together.

– Table: a sequence of homogeneous elements. Tables are used to group similar
objects into the same structure and, also, to represent repeating tabular data.

A deeper discussion of each pattern is out of the scope of this paper (see our
previous work for details) but some properties deserve some more space. First,
patterns are orthogonal : each of them has a specific role and covers a specific
situation, and no content model is repeated. Second, specific rules are imposed
over the class of objects allowed in each content-model. For instance, an inline
element can be contained only within a block, a container cannot directly contain
plain text, a record or a table cannot be contained in a block, and so on.

Wrappers. Our approach relies on the methodical use of specific elements,
called wrappers, which allow us to transform a generic DTD into a pattern-
based one and to guarantee the homogeneity of content models. Every time a
content model contains a mixed presence of repeated elements and single ones (or
alternatives), a new (wrapper) element is created. It will substitute that ’wrong’
declaration fragment, inheriting the content model. Consider for instance an el-
ement declaration of type <!ELEMENT X (A,(B|C))>; we don’t want a sequence
and a choice at the same time. Then we create a new element W (<!ELEMENT W
(B|C)>) and, substituting it in the previous declaration, we obtain a homoge-
neous declaration <!ELEMENT X (A,W)>.

Moreover, the introduction of wrappers permits to ”by-pass” all those situ-
ations where a constraint among patterns is violated. Consider for instance, a
container element declared as <!ELEMENT C (A|B)*>, when B is an inline. A new
block element, the wrapper W (<!ELEMENT W (#PCDATA|B)*>) can be created and
the C definition can be changed in <!ELEMENT C (A|W)*>.

All changes introduced by wrappers are then targeted to ”clean” (or homog-
enize) structures and to make documents more descriptive.

4 Formal Representation of Patterns

In this section we sketch out a formal analysis of the completeness of our pat-
terns, based on language theory. Complete definitions and proofs can be found
in [DDID07]. The basic idea consists of deriving properties of validation schemas
by analyzing grammars which produce them, as proposed by [MLMK05].

We chose DTDs because they are more direct, but similar considerations
could be extended to other languages like XML-Schemas[TDMM01] or
RelaxNG[Mur00]. Although these languages are more powerful, in fact, creating
and even reading the corresponding grammars would be much more difficult and

Structural Patterns for Descriptive Documents 425

Table 2. Our pattern-based grammar P

[p01] elementdecl ::= markerelementdecl | atomelementdecl | blockelementdecl
| inlineelementdecl | recordelementdecl | containerelementdecl
| tableelementdecl

[p02] markerelementdecl ::= ’<!ELEMENT’ S MarkerName S markercontentspec S? ’>’
[p03] atomelementdecl ::= ’<!ELEMENT’ S AtomName S atomcontentspec S? ’>’
[p04] blockelementdecl ::= ’<!ELEMENT’ S BlockName S blockcontentspec S? ’>’
[p05] inlineelementdecl ::= ’<!ELEMENT’ S InlineName S inlinecontentspec S? ’>’
[p06] recordelementdecl ::= ’<!ELEMENT’ S RecordName S recordcontentspec S? ’>’
[p07] containerelementdecl ::= ’<!ELEMENT’ S ContainerName S containercontentspec S? ’>’
[p08] tableelementdecl ::= ’<!ELEMENT’ S TableName S tablecontentspec S? ’>’

[p09] markercontentspec ::= ’EMPTY’
[p10] atomcontentspec ::= ’(’ S? ’#PCDATA’ S? ’)’
[p11] blockcontentspec ::= maicontentspec
[p12] inlinecontentspec ::= maicontentspec
[p13] maicontentspec ::= ’(’ S? ’#PCDATA’ (S? ’|’ S? maiName)+ S? ’)*’
[p14] recordcontentspec ::= ’(’ S? mabrctName ’?’? (S? ’&’ S? mabrctName’?’?)* S? ’)’
[p15] containercontentspec ::= ’(’ S? mabrctName (S? ’|’ S? mabrctName)* ’)*’
[p16] tablecontentspec ::= ’(’ S? mabrctName S? ’)*’

[p17] maiName ::= MarkerName | AtomName | InlineName
[p18] mabrctName ::= MarkerName | AtomName | BlockName

| RecordName| ContainerName | TableName

time-consuming. More important, the vast majority of existing schemas proved
to be structurally equivalent to DTDs [BMNS05].

We first define a grammar P (shown in Table 2) able to generate all the pattern-
based DTDs. Productions [p01-p08] are used to declare the seven different pat-
terns, while the remaining ones are introduced to specify their content models.

Note that we perform some simplifications to make simpler and clearer the
analysis: we (i) omit attributes declarations, (ii) do not consider some unusual
declarations as (#PCDATA)* (equivalent to(#PCDATA)), (iii) do not consider the
terminal symbol ’+’ both for shortness and because it could be associated to
the terminal ’*’ from a descriptive perspective. Note also that we introduce the
terminal symbol ’&’, that in SGML syntax means that all elements must occur
in any order, in order to better formalize the DNO model.

We then compare our grammar with a general grammar G, provided by the
W3C [BPSMM00], that produces all the possible DTDs.

The result is that for each DTD, producible from G, it exists a pattern-based
DTD, producible from P, which is equally descriptive at DNO level. To do it,
we present a reduction algorithm, which applied to a DTD, generates a pattern-
based DTD, equally descriptive at DNO level. Formally:

Proposition 1. Given L(P) and L(G), let r: L(G) → L(P) be a function that
implements our reduction algorithm; we want to state that

∀d ∈ L(G) ∃p ∈ L(P) �′ d
r→ p (1)

with p and d equally descriptive at DNO level.

The symbol r→ indicates that d is reduced to p applying the function r.

426 A. Dattolo et al.

The proof is a case-by-case analysis of the production rules of G, and, when
needed, a reduction operation (based on wrappers insertion) to transform those
rules into descriptive ones. During this reduction process, we relax some con-
straints, prescribed in grammar G; in this way, the set of documents, accepted
by the pattern-based DTDs, generated by P, is at least large as the set of docu-
ments generated by the original DTD.

5 Conclusions

In this paper we discussed how any document structure can be described by
a very small set of objects and composition rules. Moving off an analysis of
different levels of descriptiveness, we presented a grammar-based formalization
of our patterns and some sketches of a formal proof of their completeness (whose
extended version can be found in [DDID07]). In the future, we plan to inspect,
in the same formal way, other properties like correctness and minimality.

References

[BMNS05] Bex, G.J., Martens, W., Neven, F., Schwentick, T.: Expressiveness of
xsds: from practice to theory, there and back again. In: WWW ’05:
Proceedings of the 14th international conference on World Wide Web,
pp. 712–721. ACM Press, New York (2005)

[BPSMM00] Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E.: Extensible
Markup Language (XML) 1.0 (2000), http://www.w3.org/TR/REC-xml

[DDID07] Dattolo, A., Di Iorio, A., Duca, S., Feliziani, A.A., Vitali, F.:
Patterns for descriptive documents: a formal analysis (2007),
ftp://ftp.cs.unibo.it/pub/techreports/2007/2007-13.pdf

[DIGV05] Di Iorio, A., Gubellini, D., Vitali, F.: Design Patterns for Descriptive
Document Substructures. In: Proceedings of the Extreme Markup Con-
ference, Montreal, Canada (2005)

[MLMK05] Murata, M., Lee, D., Mani, M., Kawaguchi, K.: Taxonomy of xml schema
languages using formal language theory. ACM Trans. Inter. Tech. 5(4),
660–704 (2005)

[Mur00] Murata, M.: Relax (REgular LAnguage description for Xml) (2000),
http://www.xml.gr.jp/relax/

[Pie01] Piez, W.: Beyond the descriptive vs. procedural distinction. In: Proceed-
ings of the Extreme Markup Conference, Montreal, Canada (2001)

[Ren00] Renear, A.: The Descriptive/Procedural Distinction is Flawed. Markup
Languages: Theory and Practice 2(4), 411–420 (2000)

[TDMM01] Thompson, H.S., Beech D., Maloney, M., Mendelsohn, N.: XML Schema
Part 1: Structures (2001), http://www.w3.org/TR/xmlschema-1/

[Via01] Vianu, V.: A web odyssey: from codd to xml. In: PODS ’01. Proceed-
ings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pp. 1–15. ACM Press, New York, NY,
USA (2001)

 http://www.w3.org/TR/REC-xml
ftp://ftp.cs.unibo.it/pub/techreports/2007/2007-13.pdf
http://www.xml.gr.jp/relax/
http://www.w3.org/TR/xmlschema-1/

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 427–441, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Component-Based Content Linking
Beyond the Application

Johannes Meinecke1, Frederic Majer1, and Martin Gaedke2

1 University of Karlsruhe, Institute of Telematics,
Engesserstr. 4, 76128 Karlsruhe, Germany

{Meinecke,majer}@tm.uni-karlsruhe.de
2 Chemnitz University of Technology, Faculty of Computer Science

Straße der Nationen 62, 09111 Chemnitz, Germany
gaedke@cs.tu-chemnitz.de

Abstract. The content of many innovative Web sites today often originates
from beyond the application. This paper is concerned with building Web appli-
cations that heavily integrate and link content from external sources, like e.g.
Web services or RSS feeds. Unlike conventional applications, they are charac-
terized by a very dynamic and distributed information space. In this context,
traditional Web Engineering approaches suffer from the fact that they rely too
much on a-priori knowledge of existing content structures. We present a sup-
port system and a method for building such applications in a very flexible way.
Flexibility is achieved by managing links separately from the content in a dedi-
cated Web service and by composing the application from fine-grained, reus-
able components that realize navigation, presentation, and interaction for the
linked content.

Keywords: Web Engineering, Content Linking, Web Services, Reuse, Triple
Stores.

1 Introduction

Today, Web Engineering is challenged by the construction of a wide variety of Web
application types. As one important trend, sites are evolving from isolated content
providers to functionality providers that are connected to other parts of the Web
beyond simple HTML linking. In particular, Web applications combine their func-
tionality with external services and the content contributed by large communities of
participating Web users [11]. Prominent examples include sites like Google Maps,
Flickr or del.icio.us that, in addition to offering a visible user interface, also provide
programmable interfaces in the form of Web services to enable third parties to build
applications on top of them (also referred to as mash-ups).

However, the existence of standardized Web service technologies only solves a
part of the problem. Beyond just integrating content as e.g. separate sets of resources,
real added value is only achieved, when resources from different sources are linked to
each other. Here, link is understood as the representation of a semantic connection

428 J. Meinecke, F. Majer, and M. Gaedke

between two resources, i.e. not exclusively related to navigation. We are especially
interested in the question of how to account for this linked content when developing
Web applications. In particular, we are addressing the following three challenges:

• Continuous extensions with new content sources: Unlike content sources that
are under the control of the application provider, the set of autonomous sources
that are potentially relevant changes frequently, as old services become obsolete
and new services become popular. Hence, the development process must be capa-
ble of accounting for originally unknown sources, which are integrated and linked
to the existing content later. Ideally, such changes should not require re-
implementing or re-generating the system at code level, in order to achieve short
revision cycles.

• A repetitive implementation effort for content source linking: Web developers
perceive getting content from others as one of the most frequent problems in Web
development work [13]. Concrete problems include distribution, cashing, support
for multiple service interfaces, or the realization of navigation across the linked
content. On the other hand, a considerable part of this functionality does not de-
pend on the application domain, but is rather general in nature.This raises the
question of how we can package generic functionality in reusable components that
abstract from specific applications.

• Content sources that are unprepared to be linked. As they originate from dif-
ferent organizations, they were most likely developed independently from each
other. Without the means to make changes to the external sources, the linking
structure has to be imposed retrospectively. Similarly, little can be assumed in
terms of service capabilities. The interfaces may vary and only provide for basic
data retrieval operations, instead of e.g. semantic query features.

In this paper, we present a support system and a method that aims at flexible solutions
for these challenges by assembling applications from reusable components and ser-
vices. In section 2, we introduce an example scenario to clarify the scope of our work.
Section 3 presents the Linkbase method together with its individual activities and the
architectural outline of the resulting applications. We then describe the implemented 5
contains a brief overview of related work. We conclude with a summary and an out-
line of planned future work in section 6.

2 The Tourism Portal Scenario

To characterize the targeted type of dynamic Web application, we begin by introduc-
ing a fictitious scenario. The scenario is concerned with the development of an ad-
vanced Web portal for tourists to aid them in planning their trips in advance. For this
purpose, the portal provides reports of other people, who have already visited the tra-
vel destinations, as well as all sorts of additional tourist-relevant information. As the
planning of trips generally requires accurate and up-to-date information, which the
site provider organization cannot gather itself, the envisioned application is supposed
to rely on the integration of Web services and other resources offered by third parties.
Examples of relevant content include public geographical information about places,
locally relevant news from multiple providers, weather forecasts, and events from

 Component-Based Content Linking Beyond the Application 429

multiple calendars. As an example for content that is generated and stored at the site
itself, the user community contributes their travel experience in the form of reviews or
travelogues. Furthermore, information about relationships between the users of the
portal, acquired from the service of a networking portal, can be exploited. The last
case of content integration is based on an agreement of the tourism and the network-
ing portal to share services and accounts, and thus allow their respective users to log
on to each other’s sites through single-sign-on mechanisms.

Fig. 1 gives a simplified overview of the possible content structure inside the por-
tal, as the provider might initially plan it. As indicated, most content originates from
outside the portal. In order to make the content more useful, the portal needs some
additional knowledge about how the individual resources relate to each other. For ex-
ample, descriptions about places can be linked to most other resources, as to specify
where a given news article is relevant or where a given event occurs. Users are related
to reports they authored, photos they took, events they participated etc. Furthermore,
there are links that apply to resources of only one source, as e.g. a geographical hier-
archy on the places, or the relations among the users in their networking communities.

Fig. 1. Content in the Tourism Portal Scenario

Based on the linked content, the tourism portal can offer functionality beyond just
letting users browse and contribute reports. For example, users cannot only find out,
what other people say about a certain place, but also, whom of their friends they can
ask for personal travel experiences, or where their friends will travel within the next
year. The benefits produced by the portal can in turn be made available as services to
other applications.

3 The Linkbase Method

This section presents the Linkbase method for building applications by linking auto-
nomous content sources with the help of a support system. Fig. 2 gives an overview of
the implementation architecture and the steps to be performed. The central idea is to

430 J. Meinecke, F. Majer, and M. Gaedke

manage links between arbitrary resources with the help of a central Web service (the
Linkbase service) in a uniform way. Inspired by fundamental principles from the Se-
mantic Web, links are seen as triples, i.e. labeled connections between two resources.
A resource is anything that can be described with a Uniform Resource Identifier
(URI), including conventional Web resources accessible via HTTP and resources que-
ried from Web services. The Web application itself is composed of generic, reusable
components that operate on the links from the Linkbase and the content from the dif-
ferent sources to provide navigation, presentation, and interaction to the user.

Fig. 2. Architectural Overview of the Linkbase Method

In the following subsections, we give more specific definitions of the concepts in
Fig. 2 and discuss three groups of activities that are necessary for building applica-
tions. The information space has to be prepared for integration, the Linkbase has to be
established, and the Web application has to be assembled. These guidances should not
be seen as one-time activities, but more as tasks that become necessary every time the
application is extended. Rather than re-implementing the system in every cycle, the
Linkbase method focuses on reconstructing only the necessary parts (services and
components), as well as their integration with the remaining system at runtime.

3.1 Providing the Content Sources

The aim of the first step is to fulfill the preconditions for the content sources to be
linked to each other effectively by making them available in a uniform way. In the
case of conventional Web resources1, the existing Web standards already provide such
uniform access methods, as e.g. addressing images via URLs over HTTP. Alterna-
tively, Web services offer more advanced capabilities, e.g. related to querying for
specific resources. In this paper, we use the term (content-delivering) Web service for

1 In the sense of RFC 3986.

 Component-Based Content Linking Beyond the Application 431

services that provide access to content to other services and applications via standard-
ized Web protocols, as e.g. SOAP over HTTP or REST.

Along with the more advanced capabilities of Web services as content sources
comes a wider choice of access methods, particularly in terms of Web service inter-
faces. As this variety stands in the way of an effective reuse of content, we propose to
use a uniform interface that abstracts from the particular type of content delivered by
the service. If the application provider organization controls the service, it can imple-
ment the interface directly. Otherwise, the provider creates a wrapping Web service,
which is accessed with the uniform interface, and which in turn delegates the content
requests to the proprietary interfaces of the third-party services. As one alternative,
we propose the specification of an interface in accordance to the CRUDS metaphor
[8]. CRUDS allows the querying and manipulation of arbitrary sets of content objects
through the operations Create, Read, Update, Delete and Search. In cases where there
is just read-only access, it is sufficient to implement the Read and Search operations.
The interface is independent of the content type, as the method signatures contain
XML parameters for passing over content objects. Thus, this service provides uniform
access to e.g. databases, legacy systems, or, like in our case, other third-party
services.

As a second precondition for making the service a part of the information space (in
which resources can be linked to each other), we require a method for addressing the
supplied resources uniformly. The object identifiers used in the CRUDS interface are
inappropriate, as they are not guaranteed to be globally unique. In order to overcome
this disadvantage, we propose their extension to so-called Information Space Identifi-
ers (ISID). ISIDs are special types of Uniform Resource Nominators (URN) that con-
tain, in addition to the local object identifiers of the resource, also an identifier of the
service supplying the resource. The general format of an ISID is:

urn:isid:[service id]:[object id]

The service identifiers should correspond to the same identifiers that are already
used to refer to the service within registries (like e.g. UDDI). Consequently, an appli-
cation can resolve an ISID by first querying the service’s URL from a registry (if not
already known) and then invoking its Read method with the contained object identi-
fier as a parameter.

Referring to the example in section 0, the first step of the Linkbase method would
be to develop a new CRUDS service for handling travel reports, and to create wrapper
services for the remaining content sources (weather report, events, etc.). If photos are
integrated without any metadata (as e.g. provided by a Web service of a photo sharing
site), they can be addressed by URLs, requiring no further implementations. In the
other cases, the wrapping Web services introduce new identifiers. For example, an
event could be identified with:

urn:isid:0a816d35-05fc-41eb-8a76-d54c111c8d2f:20070508-001

Here, 0a816d35-… identifies the wrapping calendar service, and 20070508-001 is the
identifier by which the event is known at the external service.

432 J. Meinecke, F. Majer, and M. Gaedke

3.2 Linking the Content

The second step of the Linkbase method addresses the actual linking of the resources,
within the unified information space. For this purpose, we propose using a Linkbase ser-
vice, which we define as a Web service that provides at least read- and write-access to a
set of links, where each link must at least contain a triple of URIs. Each triple consists of
a subject, a predicate, and an object. In our case, the subject and object URIs refer to re-
sources provided by the autonomous data sources, and the predicate URI serves as a label
for the type of relationship. For the realization of the Linkbase service, there already ex-
ists a wide variety of triple stores, many of them related to Semantic Web projects [1],
that implement the functionality for storing and managing triples.

Generally, triple stores do not only support storage and retrieval, but also the com-
putation of new triples that logically follow from others. Based on an ontology that
captures the necessary knowledge about the types of resources and relationships, the
store can infer new facts from old facts. The Linkbase method focuses not so much on
storing facts between arbitrary (virtual) concepts, but rather on storing links between
concrete resources on the Web. However, reasoning can still be valuable in relieving
the application from the burden of computing links by itself. For example, we can de-
clare the located in relationship from Fig. 1 as transitive, to better reflect the geo-
graphical hierarchy.

So far, we have been concerned with content originating from external sources. In
addition to that, it may also be necessary to retrieve the information about which re-
source is linked to which from the outside. We propose an extension of the triple store
concept to not only provide stored and inferred triples, but also triples extracted from
external sources at runtime (cf. Fig. 3). When such an extended store receives a query
for links, it identifies an appropriate source (like a Web service), queries that source,
and returns the result as a set of triples. The idea resembles in some ways the concept
of distributed triple stores, where the triple space spreads across several connected
stores. However, in this case, the external sources are not restricted to triple stores,
but can e.g. also include legacy systems or third-party Web services.

Fig. 3. Inferred and Extracted Triple Space Extensions

With the mentioned extension, there exist three principal ways of inserting links:

• Links are manually created from inside the application itself, e.g. according to
information given by a large community of users.

• Links are automatically extracted from external sources at runtime. This is espe-
cially applicable when the set of links is very large or changes frequently.

 Component-Based Content Linking Beyond the Application 433

• Links are imported from external sources once, e.g. by applying batch tools.
This is preferable in cases where the source’s availability is unreliable, or where
the procedure of extracting the links takes too long to be performed at runtime.

In the tourism portal scenario, the step linking the content comprises setting up one
Linkbase service that handles instances of all relationships from Fig. 1. For example,
the taken by relationship could result in triples like:

<http://photo.site/photos/P1010023.JPG>
<http://purl.org/dc/elements/1.1/creator>
<urn:isid:77ff72af-…:smithj>.

Here, the triple links the URL of a photo with a description of a person supplied by a
Web service. Assuming that the photo sharing site supplies this information, a plug-in
can be developed for the Linkbase service that extends the triple space with always
up-to-date information about the photos that people took. In contrast, the located in
relationship is relatively stable and can therefore be supplied by a singular import
step. The wrote relationship is an example for triples created by the application itself,
e.g. every time a user contributes a new report.

3.3 Using Linked Content in the Application

Within the third step, the goal lies in allowing developers to construct the (frontend)
Web application without having to program it. To achieve this, the Linkbase method
focuses Component-based Web applications, which we understand as dynamic Web
sites that are composed of server-sided, reusable components, usually assembled with
the help of a framework. An example for such a framework is our previous work, the
WebComposition Service Linking System (WSLS) approach [4], which we adapt to
the challenge of linking content from autonomous sources. The idea behind WSLS is
to provide a runtime environment for visual, interactive components. At runtime,
WSLS allows application developers and administrators to place, rearrange and con-
figure components on pages without recompiling the application. In order to support
separation of concerns, components are developed as fine-grained implementation ar-
tifacts that can be combined with each other by following the Decorator software de-
sign pattern [5].

For the Linkbase method, we supplemented the WSLS approach with a catalogue
of components that are dedicated to dealing with linked content. Since both links and
content sources are provided in a uniform way, we can restrict the number of compo-
nents to be implemented and focus on generic functionality. In the following, we pre-
sent three components from our catalogue to exemplify the support for the three as-
pects navigation, presentation, and interaction: the Fisheye, the Timeline, and the
Content Connector. To be of practical use, they have to be complemented with addi-
tional components, like the ones described in [4]. This includes particularly a compo-
nent that retrieves and caches the content objects from the Web services and that sup-
ports the Web service interface chosen for unification (e.g. the CRUDS interface).

Fisheye Component (Aspect Navigation): The Fisheye allows users to navigate
through the graph formed by the Linkbase, along selected types of links. This is
achieved by decorating the presentation of a currently active object with smaller

434 J. Meinecke, F. Majer, and M. Gaedke

navigatable preview presentations of related objects around it (cf. Fig. 4). The name
Fisheye relates to the impression that the view skims over a web of objects, where the
object in focus is always magnified. Technically, the component queries the Linkbase
for any resources linked to the currently active resource. When a user activates a hy-
perlink, the Fisheye component notifies the content-supplying component of the next
object to focus.

In order to customize the component for a concrete use case, the configuration has
to specify, over which types of links the navigation should occur. In general, it is
more advisable to restrict the navigation on a subgraph formed by certain types of
connections. Depending on the types, we have to configure, where a related object
should be placed (underneath, above, to the left, to the right …) and how it should be
rendered (e.g. with a template).

Example: Given a Linkbase that contains a geographical hierarchy, the Fisheye can
be configured to display hyperlinks to geographical places (continents, countries, re-
gions, cities) above, underneath or next to the currently selected place X, depending
on whether the places contain, are contained by, or are situated near place X. A simi-
lar navigation support can be provided to browse through a network of friends.

Fig. 4. Fisheye Component

Timeline Component (Aspect Presentation): The Timeline visualizes objects related
to a given context in time. To this end, it decorates the presentation of a central object
with a time axis and bars that represent the related objects and the time span of the re-
lation (cf. Fig. 5). Similar to the Fisheye, the Timeline queries the Linkbase for all
links connected to a particular resource, and renders small presentations of the related
objects next to the time bars. The time spans are retrieved either directly from the
Linkbase (if the Linkbase supports time-based links [6]) or from common metadata
attributes contained in the objects that are supplied by the CRUDS service.

Besides presentation aspects of the timeline axis and bars, the configuration has to
specify, how to render the related objects and how to retrieve the time spans.

Example: An application of the Timeline in the running example is to give an
overview of submitted travel reports, that relate to a specific travel destination. Alter-
natively, another interesting view would be to display selected photos and travel
reports related to the user or any friend of a user, in order to provide a personalized
travel history line.

 Component-Based Content Linking Beyond the Application 435

Content Connector Component (Aspect Interaction): The Content Connector facili-
tates the interaction between the user and the links by allowing the user to add new
links with a single mouse click (cf. Fig. 5). Again acting as a decorator, the compo-
nent adds hyperlinks or buttons to the presentation of content objects. When activated,
it creates a new link in the Linkbase between the decorated object and another object,
according to context and configuration. This other object can e.g. be the account of
the logged-in user or a pre-defined URI. Alternatively, the user selects an object
within a second step, from a choice of objects queried from a CRUDS service.

The configuration determines how the rather technical act of adding a link is pre-
sented to the user. Furthermore, it must specify the type of link to add (i.e. the triple
predicate URI) and what to link to (see above).

Example: Applied to a list of travel destinations, the Content Connector can pro-
vide “’Been There”-Buttons, that allow portal users to mark the places they have vis-
ited and the tourist activities they have attended on the fly.

Fig. 5. Timeline Component and Content Connector Component

Based on the described component-based Web application architecture, the third
step of the Linkbase method comprises a number of activities to be conducted that
follow the principle configuring instead of programming. First, the components re-
quired for the construction or extension of the application are provided, either by de-
veloping them or by falling back on existing components (e.g. from a component re-
pository). Components and content sources are then registered at the framework, and
thus become potential building blocks for the application. Following that, the visible
part of the Web application is created or extended by configuring new pages and page
sections where the components are instantiated. In other words, the components be-
come responsible for specific parts of the application’s hyperspace. Finally, the ge-
neric components are configured in accordance to their intended purpose within these
sections. This includes as a vital step the wiring of the component to the registered
content sources. Another example of an aspect to be configured is the specification of
templates for rendering content objects. Apart from the development of new compo-
nents, all activities involved in assembling the application are supported by the
framework’s Web interface.

4 The Linkbase Applied

The Linkbase method relies on support by system to guide the application developer.
In the following section, we present the support system we implemented to validate

436 J. Meinecke, F. Majer, and M. Gaedke

our approach, including a triple store that realizes the extensions discussed in section
0. The Linkbase support system has been used to realize a number of scenarios that
demonstrate the applicability of its standard building blocks in different situations.

4.1 Experiments with an Implemented Support System

The central component of the Linkbase support system is the Linkbase service. Rather
than using an existing triple store, we implemented a Linkbase service especially with
dedicated support for our purposes. The main reason for this was to be able to dy-
namically extend the triple space with triples extracted from external sources, which
is not supported by existing triple stores, and to experiment with extensions to the tri-
ple schema (like e.g. time-based triples).

Fig. 6 displays the architecture of the implemented Linkbase that was developed as
an ASP.NET Web service. To the outside, the service provides a CRUDS interface,
which applications can use for querying (Read, Search) and modifying (Create, Up-
date, Delete) the triple space. Hence, the same service interface can be used to access
both the content objects and the links between the objects, resulting in additional re-
usability. To provide rudimentary support for reasoning, an inference module was in-
cluded that computes and stores implied triples every time the triple space is changed.
Thus, the Linkbase takes into account properties of link types, which can be defined
in an OWL-XML ontology file. For example, the following entry has the effect that
whenever a person is linked to an acquainted person, a link is automatically generated
in the opposite direction:

<owlx:ObjectProperty
owlx:name="http://xmlns.com/foaf/0.1/knows
owlx:symmetric="true" />

This declaration of link types and knowledge about the linked domain is optional,
i.e. links with new types can be added to the Linkbase anytime. Additional triples are
generated by the plug-in module, which delegates queries for selected link types to
external sources. As the mechanism for extracting external links may vary from
source to source (e.g. due to different Web service interfaces), it is performed by
plug-ins that are added to the Linkbase at runtime.

Fig. 6. Linkbase Service Implementation Architecture

 Component-Based Content Linking Beyond the Application 437

To validate the applicability of the support system, we used its various components
for the construction of a Web application. This development was conducted in the
context of the project Software Engineering for Information Appliances at Home,
whose outcome included a Web portal targeted at families at home. Relating to the
step providing the content sources, we developed a number of CRUDS Web services.
Some of them were generated with the help of a custom Visual Studio plug-in, as e.g.
a service for handling personal profiles of family members. Others were programmed
to wrap existing non-Web systems, as e.g. a calendar service that provides read- and
write access to appointments from a Microsoft Exchange server. For example, we
created a CRUDS Web service that provides slides as individually addressable con-
tent objects (JPG images and metadata entries). Then, we filled it with slides from ex-
isting PowerPoint presentation files, including a lecture of 800 slides.

Following that, we set up the Linkbase service to provide the links according to the
three principal ways described in section 0. For instance, the links that make up the
relationships between the family members are specified by the portal users themselves
during the lifetime of the Web site. Here, we took advantage of the built-in reasoning
support, which in this case supplements the user’s input to work out any implied rela-
tionships. As an example for a dynamically extracted link type, we developed a plug-
in that queries a public Web service of the popular photo sharing site Flickr, to pro-
vide links between photos and concepts represented by tags. In the case of the slide
service, the hierarchical structure of the presentations (chapters, sections, learning
units…) was converted to links during the initial import step.

The visible part of the Web application was exclusively assembled and configured
from components, i.e. no code was written to wire the components. Fig. 7 contains a
screenshot of the application in administration mode, together with an extract from
the configuration screen. The depicted page section is composed of a combination of
four components: a CRUDS component to communicate with the profile Web service,
a template presentation component to render the personal profile in HTML, a naviga-
tion component to provide previous- and next-buttons, and finally, a timeline compo-
nent, to decorate the person with an overview of related photos and events.

Fig. 7. Timeline Component: Events and Photos

438 J. Meinecke, F. Majer, and M. Gaedke

Fig. 8 shows the Fisheye component applied for two different purposes. In the first
screenshot, it supports the user in navigating through a family tree and browsing the
profiles of family members. According to the specific configuration, the Fisheye
places links to parents above, links to children bellow and links to partners next to the
current profile. In the second screenshot, the same concept is applied to realize a pres-
entation slide browser. Here, the horizontal dimension lets users skim through slides
on the same level, while the vertical dimension lets them move up and down the lec-
ture hierarchy, e.g. in order to return to the title slide of the current section.

Fig. 8. Fisheye Component: Family Tree and Lecture Slides

All involved content sources were initially unprepared for linking. Some of them
were even beyond our control in a sense that we could not influence their content
structure (like of the Exchange Calendar or the Flickr Web service). Although pro-
gramming was necessary, the implementation was limited to generic, application-
independent components that can be reused later on to save effort in the long run.
Rather then planning everything from the very beginning, we extended the application
in several cycles: The first version only featured family members and photos; then the
calendar was added, and later on the presentation slides. Hence, the chosen scenario
corresponds to the three issues in content linking identified in the introduction.

4.2 Lessons Learned

While the project’s outcome confirmed the approach’s suitability to meet the targeted
problems, we also gained experience related to implementation issues and potential
for improvement. Concerning the data model of the link, applications can benefit
from extensions of the basic triple concept. Additional information, like the already
applied integration of time intervals or the inclusion of standard metadata attributes
enable more advanced ways of using the links.

To increase performance, redundant information about the linked resources can be
stored with the links in cases where the information is unlikely to change. This proved
especially helpful, as it drastically reduced the frequency at which components had to

 Component-Based Content Linking Beyond the Application 439

query the linked resources. Beyond that, the need for caching at the application to
achieve adequate response times became evident. Within the project, this was
achieved with the help of the WSLS framework, which caches content retrieved from
CRUDS Web services at the granularity of individual content objects. For example, in
order to render an object that is linked with l other objects inside a Fisheye or Time-
line component without cashing, the Linkbase is queried once and the content-
supplying service (l+1) times (or once, if the triples contain enough information for
rendering the previews). While these measurements can ease performance problems
caused by the Web service communication overhead, the Linkbase remains a bottle-
neck in the architecture. As the number of linked sources grows, it may become nec-
essary to distribute the Linkbase (e.g. as proposed in [3]) , which was however be-
yond of the scope of the presented work. As a major advantage, the Linkbase
architecture provides for a great degree of flexibility, accounting for changes to the
application’s information space from the very beginning.

5 Related Work

In the following, we give a brief overview of several approaches that are related to the
challenge of linking autonomous content sources in Web application development.

Several model-oriented Web Engineering methods address the aspect of external
content and services. For example, WebML, a visual language for the specification of
data-intensive Web applications, has been extended for the model-driven develop-
ment of Web applications that consume web services as data sources [2]. The focus
here lies on applications with most of the data stored in a database (i.e. under the con-
trol of the provider), whereas the external content only supplements this data. Directly
opposed with respect to this aspect, the HERA methodology targets distributed Web-
based information systems where data is retrieved from Web sources with semantic
query capabilities [16]. While this approach enables the user to perform very intelli-
gent search capabilities over heterogeneous sources, it requires relatively high devel-
opment effort for ontology integration, even in cases where such queries are not nec-
essary. The OOWS method has been conceptually extended with support for Web
Services [14] and content aggregation [15]. Generally speaking, there is a discrepancy
between the very systematic, model-based development methodologies and the dy-
namic nature of the information space exploited by modern Web applications.

From the architectural point of view, the idea of managing content links in a sepa-
rate service is closely related to Open Hypermedia Systems (OHS) and the concept of
the link service found there [12]. This relatively old idea has also been applied to Web
technologies [3] as well as to Web services in particular [10]. In the context of this
field, our approach can be understood as an application of the OHS concept to a uni-
fied information space on top of Web services, and as an alternative method for ex-
ploiting the links in a reusable manner. Related to our idea of dynamically extending
the triple space, [10] proposes the storage of dynamic hypermedia links that contain
queries instead of rigid identifiers, in order to realize stable links on a evolving infor-
mation space. While this approach does not explicitly target Web services, it could be
combined with ours by delegating these queries to the (unified) Web services.

440 J. Meinecke, F. Majer, and M. Gaedke

With respect to the goal of composing functionality and content from existing
Web-based systems, our approach is related to the field of Semantic Web services. As
one example, the WSMX system supports the execution and combination of semanti-
cally described Web services [7]. This approach is very powerful, as the system can
dynamically chose and combine appropriate services to fulfill goals given by the re-
questor. However, it is less suitable for dealing with the specific problem of handling
and linking sets of resources provided by these services in a uniform way. As an ex-
ample for a more manual approach to application composition, [9] proposes the end-
user-driven definition and wiring of components that wrap existing Web applications.
The idea has advantages in cases where there is no Web service interface to build on,
but entails the same problems that are common to all Web site wrapping strategies,
e.g. in terms of sensitivity to layout changes on the wrapped sites.

6 Conclusion

The contribution of this work was a novel way of constructing Web applications that
integrate content from external sources. The development of such applications require
very flexible implementation techniques, as the set of content sources to be integrated
is often unknown at design time and is subject to changes later on. In this paper, we
described a way to support application development with a support system, whose
major component is a Web service for providing links between content objects from
different sources (the Linkbase service). To apply this system, we first unify the ap-
plication’s information space by introducing a standardized interface for (wrapping)
Web services, and a standardized way of addressing content objects. Content objects
are linked by triples of URIs, stored by the Linkbase service. For the application ar-
chitecture, we propose to assemble Web sites from configurable generic components
that work with the unified content sources and links.

We are now working on variations of the triple data model, in order to examine the
added value gained by augmenting the triple with metadata. Another open question
for future research is the applicability of older distribution concepts for link services
to the problem at hand to better address performance issues. Furthermore, dynamic
aspects of the Linkbase, like change management, remain to be investigated, also tak-
ing into account existing approaches.

Demonstration Videos

Demo videos of the described support system are available for download at the
MWRG homepage, http://mwrg.tm.uni-karlsruhe.de/downloadcenter/systems/demos.

Acknowledgements

This material is partially funded by Microsoft Research Cambridge, within the con-
text of the research project 2005-053.

 Component-Based Content Linking Beyond the Application 441

References

1. Beckett, D.: SWAD-Europe Deliverable 10.1: Scalability and Storage: Survey of Free
Software/Open Source RDF storage systems -, W3C: (12-10-2006)http://www.w3.org/
2001/sw/Europe/reports/rdf_scalable_storage_report/

2. Brambilla, M., et al.: Model-driven Development of Web Services and Hypertext Applica-
tions. In: SCI2003, Orlando, Florida (2003)

3. Deroure, D., et al.: A Distributed Hypermedia Link Service. In: Third International Work-
shop on Services in Distributed and Networked Environments: IEEE, pp. 156–161. IEEE
Computer Society Press, Los Alamitos (1996)

4. Gaedke, M., Nussbaumer, M., Meinecke, J.: WSLS: An Agile System Facilitating the Pro-
duction of Service-Oriented Web Applications, in Engineering Advanced Web Applica-
tions, Matera, S.C. M. (eds.), Rinton Press, 26-37 (2005)

5. Gamma, E., et al.: Design patterns: elements of reusable object-oriented software. In: Ad-
dison-Wesley professional computing series, Reading, Mass., vol. xv, p. 395. Addison-
Wesley,London, UK (1995)

6. Gutierrez, C., Hurtado, C., Vaisman, A.: Temporal RDF. In: European Conference on the
Semantic Web (ECSW’05), pp. 93–107 (2005)

7. Haller, A., et al.: WSMX-a semantic service-oriented architecture. In: 2005 IEEE Interna-
tional Conference on Web Services (ICWS 2005), Orlando, Florida, pp. 321–328 (2005)

8. Ibm: Elements of Service-Oriented Analysis and Design -, IBM Homepage: http://www-
128.ibm.com/developerworks/webservices/library/ws-soad1/

9. Ito, K., Tanaka, Y.: A visual environment for dynamic web application composition. In:
ACM Conference on Hypertext and Hypermedia, Nottingham, UK, pp. 184–193. ACM,
New York (2003)

10. Karousos, N., et al.: Offering Open Hypermedia Services to the WWW: A Step-by-Step
Approach for Developers. In: Twelfth International Conference on World Wide Web, Bu-
dapest, Hungary, pp. 482–489 (2003)

11. O’reilly, T.: What Is Web 2.0 - Design Patterns and Business Models for the Next Genera-
tion of Software - (18.10.2005) Online Article: http://www.oreillynet.com/pub/a/oreilly
/tim/news/2005/09/30/what-is-web-20.html

12. Pearl, A.: Sun’s Link Service: A Protocol for Open Linking. In: 2nd Annual ACM Confer-
ence on Hypertext, Pittsburgh, USA, pp. 137–146. ACM Press, New York (1989)

13. Rosson, M.B., et al.: Designing for the Web Revisited: A Survey of Informal and Experi-
enced Web Developers. In: Lowe, D.G., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579,
pp. 522–532. Springer, Heidelberg (2005)

14. Ruiz, M., et al.: A Model Driven Approach to Design Web Services in a Web Engineering
Method. In: 1st International Conference on Advanced Information Systems Engineering
Forum (CAiSE Forum), Porto, Portugal (2005)

15. Valderas, P., Fons, J., Pelechano, V.: Extending Navigation Modeling to Support Content
Aggregation in Web Sites in Fourth International Conference on Web Engineering
(ICWE’04). In: Koch, N., Fraternali, P., Wirsing, M. (eds.) ICWE 2004. LNCS, vol. 3140,
pp. 98–102. Springer, Heidelberg (2004)

16. Vdovjak, R., Barna, P., Houben, G.J.: Designing a Federated Multimedia Information Sys-
tem on the Semantic Web. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS,
vol. 2681, pp. 357–373. Springer, Heidelberg (2003)

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 442–456, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Double-Model Approach to Achieve Effective Model-
View Separation in Template Based Web Applications

Francisco J. García1, Raúl Izquierdo Castanedo2, and Aquilino A. Juan Fuente2

1 Departamento de Matemáticas y Computación (Universidad de La Rioja)
C/ Luis de Ulloa s/n

26004, Logroño (La Rioja), Spain
francisco.garcia@unirioja.es

2 OOTLab: Laboratory of Object Oriented Technology (Universidad de Oviedo)
C/ Calvo Sotelo s/n

33005, Oviedo (Asturias), Spain
{raul, aajuan}@uniovi.es

Abstract. Several works [20,22] have tried to enforce strict isolation between
the model and the view in template based web applications by restricting the
computing possibilities of the used templates. From the point of view of graphic
designers this is a limitation that may make their work difficult. Besides, in this
paper we state that this claimed strict isolation is impossible to achieve in
practice for HTML template systems. We propose another approach to study
and to attain an effective separation between model and view that does not
necessarily restrict the expressive power of the template: the double-model
approach. Finally we present an implementation of this approach in a renewed
template system called JST2.

Keywords: template systems, Web applications, software architectures, MVC.

1 Introduction

When developing a web site with dynamic content, instead of writing the HTML code
directly to the client’s browser, developers have tended to make the most of some
kind of template system (language and engine). Doing so, long and tedious code
writing tasks can be alleviated and, a priori, among other undeniable advantages, it
promotes the separation between presentation and business logic and it increases the
clarity and maintainability of the application. The problem is to decide which is the
more suitable template system, and, what are the more helpful features expected to be
present in the template system. The answer, as usual, depends on the situation. But
simplifying we can find two non exclusive tendencies: to provide the template system
with a complex set of aids to reduce the programming effort, or to provide a reduced
set of functional features, but in turn, contribute to force the separation between
presentation and business logic.

The web developer’s community has released plenty of template systems (at the
time of writing, a simple search at SourceForge.net of the term “template engine”
produces 214 results). We could define a template, in the context of web applications,

 A Double-Model Approach to Achieve Effective Model-View Separation 443

as an HTML document in which several placeholders have been inserted. At
execution time, the template engine replaces these placeholders by the actual dynamic
content taken from the application. The eternal promise of template systems is that the
template meets the rest of the application only at the end of the development. That is,
in theory, graphic designers work on the templates completely independent from
application programmers. But in practice, this is not true for most template systems.

The way the template placeholders are replaced by actual content has been
evolving as the problems related to code inclusion in the template have been detected.
In fact, the first template systems we can refer to (JSP [26], ASP or PHP [23]) allow
the inclusion of code in the template. This code is programmed in the same language
as the application, and it can gain access to the application in order to obtain the
actual data necessary to generate the dynamic content. The possibility of placing code
in the templates is a temptation that developers can hardly overcome. It is a back door
for the inclusion of business logic in the template, a practice that involves evident
coupling problems between business logic and presentation. These problems have
been already evidenced, e.g. in relation to JSP, in the classic reference of Hunter [15].

The coupling problems can also be studied from the point of view of the
relationship maintained between both parts of a typical web application development
team: the graphic designers and the programmers. The use of this kind of template
systems makes this relationship very close, and it is characterized by the constant
flow of information from programmers to designers, who need to know what the
application is like in order to program the access to it in the template. This need of
communication have been already treated by us [16,17] in the context of XML-XSLT
[30], but can be perfectly extrapolated to other environments.

A second step in the template systems evolution leads us to systems in which the
inclusion of native code in the template is not possible. This fact eliminates the
chance of accessing the application business logic, but does create other subtle
coupling problems. Often, these template systems force the designers to learn a
completely new, but equivalent, pseudo programming language in order to develop
the template documents: e.g.: XSLT [30], FreeMarker [11], WebMacro or Velocity
[31,3], Zope Page Templates [34] or Smarty [25]. Other systems, in order to be used,
make necessary the development of special classes or adapters (Tapestry [2] or Tea).
Designers are also compelled to use development tools that they are not familiar with.
In our opinion one of the main objectives of any template system must be to allow
designers to use the tools they are used to using. That is, it should not be necessary to
use any tool apart from HTML (plus JavaScript, and perhaps Flash). This is the
reason why we find interesting the attribute template languages like Zope Page
Templates (ZPT) [34], Tapestry [2] or the one we present in this paper, JST2. In them
the template directives are inserted in the host HTML document in the form of tag
attributes. This feature carries with it one of the more useful aids that a designer may
expect: the previewability, that is, the ability to see how the page will look like
without using neither the template engine, nor tools different from the HTML editor
or browser.

The fact is that, despite the efforts, the coupling between presentation and business
logic, or view and model using MVC terminology [7], still remains. Very few works
have been devoted to analyzing the sense and causes of this coupling in order to
attack them at their root. A good introductory reference can be [10], in which several

444 F.J. García, R. Izquierdo Castanedo, and A.A. Juan Fuente

template systems are analyzed. There is only one paper that formalizes the model and
view separation [20]. In our opinion, the author forgets to consider one factor,
JavaScript, that makes his work hardly applicable. This leads us to provide another
way of facing the model-view separation problem by means of the use of a double-
model, one for the view and another for the application. This can be considered the
main contribution of this paper.

Finally, in the last two years a new breaking idea has emerged in the web
development world, leveraging the development of Rich Internet Applications: AJAX
[12]. Using already existing technologies in conjunction, AJAX has persuaded web
designers to begin thinking of enriching their designs with features more typical of
desktop application, even though this decision implies facing the difficulties derived
from the use of the cryptic JavaScript DOM API or the need of learning how to use
AJAX toolkits such as DoJo [8] or GWT [13], and so on. AJAX drove us to think of
the possibility of processing templates in the user’s browser. As we will show in this
paper this strategy is the key to implement the double-model approach we propose in
our renewed template system: JST2. The impossibility of strictly isolating the view
and the model, the pernicious demands for the graphic designer required by the
existing template systems, and the irruption of AJAX, with its corresponding
processing power in the client side, are all forces that concur on JST2 as double-
model based template system, decoupled, processed in the client, previewable and
familiar to the designer.

Once has been presented the motivation and background, the remainder of the
article is organized as follows. Section 2 deals with the related work. Section 3
presents the double-model approach. Section 4 is devoted to JST2. And to conclude,
section 5 collects several conclusions and future work lines.

2 Related Work

There is plenty of documentation about template systems in the Internet. As for more
academic research papers, the first reference we find is [19], where TML is presented,
a language based on XML tags added to an HTML document. It relies on TRiX, a
framework for TML templates processing, being its extensibility its main advantage.
Mixer is presented in [32], a simple template system for servlet based applications
that superficially analyzes the separation problem. Another reference is [1], where
PageGen, an ASP based template system, is described. In this case the tight coupling
of PageGen to its Data/Control database may prove restrictive. In [14] the
convenience of using “standard templates”, i.e. templates in which no non-HTML
tags are allowed, is discussed. STRUDEL [9], is a framework for intensive data based
Web application that includes its own template language, which can be criticized
because it allows the direct inclusion of java code in the templates. Other interesting
papers are [6,5], in which the <bigwig> language for Web applications is presented.
It includes the DynDoc sublanguage to specify HTML template documents, and the
DynDocDag data structure [5], that allows the representation of the template
document in a way that allows the reconstruction of the document in the client

 A Double-Model Approach to Achieve Effective Model-View Separation 445

browser using a JavaScript processor. DynDocDag was designed to improve the
caching of DynDoc documents, but it does not pay attention to the separation concern.

Related work about model-view separation. Nevertheless, when we look for
bibliography related to the analysis of the coupling between the model and the view
of a web application, only one work stands out. Parr [20] provides a definition for
strict separation between model and view in template engines, as well as a definition
of template and a classification of the different types a template can belong to. From a
more practical point of view, he formulates a set of five rules that a template engine
must follow in order to enforce strict separation and gives an entanglement index that
can be used when evaluating template engines.

We can briefly summarize the Parr contribution enumerating his rules: (1) “the
view can not modify the model”, (2) “the view can not perform computations upon
dependent data values”, (3) “the view cannot compare dependent data values”, (4)
“the view cannot make data type assumptions”, and (5) “data from the model must not
contain display or layout information”. The entanglement index “is the number of
separation rules that a template may violate”, being the minimum 1, since there is no
way to prevent data of the model from containing display or layout information.

Parr warns of template engines that encourage separation and lays the
responsibility of preserving it on the hands of well-intentioned developers. The
essence of Parr’s work is to give the rules to enforce, rather than encourage, the
separation, forbidding, e.g., that views can perform computations of any type upon
model data values. E.g., a view must not either compute book sale prices as
“$price*0.9” (rule 2), or compare a price with a certain limit like in
“$price<25” (rule 3), or index an array of names with the value of another
variable, that is supposedly an integer, like in “$names[$id]” (rule 4).

Despite Parr’s rules being well stated, we think that several of them can not be
imposed upon most template system that produce HTML as output. Parr does not take
into account the possibility of using JavaScript in the HTML documents. It’s
impossible to prevent template expressions to be inserted in the middle of a JavaScript
code, like in:

<html><body>The final book price is
<script>document.write($precio$*0.9)</script> €
</body></html>

The previous code is a StringTemplate [21] sample that, once processed and taking 30
as the price variable value, results in the following HTML output:

<html><body>The final book price is
<script>document.write(30*0.9)</script> €
</body></html>

This fact may cause the violation of rules 2 and 3, and it makes the minimum value
for Parr’s entanglement index be 3. This leads us to state that it is impossible to
enforce strict model-view separation while using HTML template systems. In the next
section we show another approach to the analysis of the separation problem which, if
applied, makes the entanglement index be at most three

446 F.J. García, R. Izquierdo Castanedo, and A.A. Juan Fuente

3 The Double-Model Approach

The essence of model-view separation is that it pursues the protection of both sides of
the application from changes in the other. If separation is not provided, changes in
one part draw the other to be modified. If separation is provided each part can live
isolated, even be developed independently.

Once we have stated that strict separation as Parr defined is impossible to achieve
in HTML templates, we analyze another solution to obtain a weaker, but effective,
degree of isolation in HTML templates.

Fig. 1. MVC versus double-model approach

The foundation of the double-model is that each part of the application has a
different model. On one hand, the view uses its private model that holds the necessary
data to support the functionality of the page. The view is therefore completely
matched up to its model. In fact the view can only use its model. No direct reference
to the application logic is allowed, not even read-only accesses. HTML designers
make up this model as a set of attributes (name-value pairs) that can be simple or
compound, and populate it with test values. These values can be used during
development in order to see the final appearance of the page. This helps achieving the
previously mentioned previewability. Compound values may be structured according
to data structures that clarify the design. We call this model, designer’s model. It is
developed during the graphical design process based on the functional requirements
of the view. Once all these requirements are fulfilled, the model can be considered
stable and it not need to change. E.g.: if the page shows a set of books of a certain
shopping basket, the model will define data structures to hold the data of the books of
the basket, as well as the user’s identification and, perhaps, the current date.

It is important to say that in order to change the appearance of the view the
designer’s model does not need to change, unless a new functional requirement
appears that demands new attributes in the model. It does not need to, but it can be
changed. The subtle difference is that the decision whether to change it or not is only

 A Double-Model Approach to Achieve Effective Model-View Separation 447

taken by the one who created it: the graphic designer.. It is not a change caused by
another change in the application, as it happens in other template systems.

Views are developed apart from the other model, which we call programmer’s
model, because it is developed by programmers. This is the classical application
model, i.e., the M in the MVC acronym, usually implemented as a set of classes
persisted on a data base, or even without classes, i.e. only a data base schema. The
programmer’s model can freely evolve as needed, surely subject to continuous
refactoring during development. But this evolution does not affect the designer’s
model, which remains isolated in the view.

Obviously both models must be integrated so that the views can show actual
information in their pages at execution time. This task is performed by the
programmer, who is the one who knows the actual application model and how to
extract actual data from it. This integration consists of supplying the view with the
actual data from the programmer’s model re-structured as the designer’s model
mandates. It is important to say that the view must be passive with respect to this data
load, that is, the actual data must be pushed into the template, instead of the template
pulling the data from the model. This requirement in favour of the push strategy was
already argued as necessary by Parr in [20], and we adopt it as necessary also.

At this point of the presentation, the versed reader could think that almost any
template system that follows the push strategy, implements the double-model
approach. Consider for example Fremmarker [11] (with its DataModel), WebMacro
or Velocity [31,3], Smarty [25], StringTemplates [21] or HTML::Template [27]. All
of them have templates with attributes that are processed pushing values taken from
the application model.

Push strategy is not enough. So, what is the key aspect that makes us say that we
are in front of a double-model or not? This key is in an above paragraph: “…
supplying the view with the actual data from the programmer’s model re-structured
as the designer’s model mandates”. This transformation between models is
mandatory.

All the previously referenced template systems do not follow the double-model
approach because they allow the designer’s model to adopt data structures from the
programmer’s model. That is, they allow the programmer to suggest to the designer
what the most appropriate designer’s model is so that the models integration does not
require transformation. This allows the programmer to push objects or data structures
directly from its model into the templates, which are irremediably entangled with the
application. Obviously these template systems encourage developers to use
completely different models, but, the fact is that the back door is open, and that under
deadline pressure, developers tend to save work using these kinds of resorts. Of
course, data structures in both models may coincide (a book has a title and an author
anywhere), but this coincidence cannot be used to simplify the transformation, which
is always compulsory. And this must be taken not as a drawback, but as a model-view
coupling vaccine.

Note that if the programmer changes its programmer’s model, he is also
responsible for changing the code that makes the models adaptation, but in no case the
programmer’s model modification is propagated to the view.

448 F.J. García, R. Izquierdo Castanedo, and A.A. Juan Fuente

As a consequence of double-model approach, templates developed following this
can be used in different applications, with the sole requirement that they belong to the
same domain. This is a good test that allows us to state that double-model favours
the separation between model and view. In fact, isolation is so high that the view can
be displayed without a model (which results in a prototype).

3.1 Application Architecture for the Double-Model Approach (MVC+mT)

The transformation of data taken from the programmer’s model into the format
specified by the designer’s model is performed in a new architectural component of
the application, which is very close to the controller (the C in MVC). We call this
component transformer.

The presence of the transformer modifies the typical control flow in MVC (or its
adaptation to web applications, Model-2 [24]). We will refer to the architecture with
the MVC+mT acronym. The control flow is represented in Fig. 2. The Transformer
(T) is activated (3 in Fig.2) once the Controller has updated the Model (1, 2). Then the
transformer loads (4) the suitable template (View), takes (5) the necessary data from
the programmer’s Model (M), and performs (6) the models transformation (the
designer’s model is the ‘m’). Then the transformer pushes (7) the resulting data into
the template, which is sent to the client (8).

Controller (C)

Transformer (T)
Designer’s
model (m)

View (V)

Model (M)
Programmer’s model

1) Request 2) Act on

3) Dispatch

4) Load

5) Take

6) Transform

7) Push

8) Response

Fig. 2. Application flow in MVC+mT architecture

3.2 Double-Model Requirements

As a summary, we enumerate the conditions we require for a certain template system
to be considered double-model compliant:

1. Both parts of the application, model and view, have their own model supporting
their requirements, probably expressed using different languages, even paradigms.

2. The view is not allowed to access the programmer’s model in any way.
3. The designer’s model is initialized with test values.
4. The application uses the push strategy [20] to feed data into the template.
5. Data taken from the programmer’s model can not be pushed directly into the

template. They must be transformed in the way the designer’s model mandates.

 A Double-Model Approach to Achieve Effective Model-View Separation 449

3.3 Double-Model and Entanglement Index

It is possible to relate Parr’s work with the double-model approach. In fact we can
say that a template system that follows the double-model approach has a maximum
entanglement index of 3. This property is equivalent to saying that a template
system that follows the double-model approach observes Parr’s rules 1 and 4.
Compliance of rule 1 is directly deduced from requirement 2 of section 3.2.
Compliance of rule 4 is supported by requirements 1 and 5, because they guarantee
that both parts of the application (classical model and view) use different data types
that must be adapted.

4 JST2

JST2 (JST version 2) is an attribute based, script-driven, double-model based HTML
template system that is processed in the user’s browser. JST2 is an evolution of JST,
previously presented at [16,17].

<html>
 <head> <title>JST example</title>
 <script src="jst.js"></script>
 <script jst="model">

items = [{name:'Umbrella',price:1}, {name:'Suitcase',price:18}];
userName = "Peter"

 </script>
 </head>

 <body>
 <p>My name is $userName$</p>
 Layout and data aren´t merged.

Table contents are on Model section and are written dinamically.

 <table border="1">
 <tr jst="apply" jstSet="items"><td>$e.name$</td><td>$e.price$</td></tr>

</table>
 </body>
</html>

Evaluate the value of the
expression between $.

Apply the element (<tr>) to each member of the
array items, evaluating the expresions between
$; e refers to each member of the array

Designer’s model

Template engine

Fig. 3. JST2 example and its visualization on an internet browser

450 F.J. García, R. Izquierdo Castanedo, and A.A. Juan Fuente

An important feature of JST2 is the use of JavaScript, which is at the foundation of
JST (in such a way that JST stands from JavaScript Templates). JavaScript is used to
define the designer’s model, to populate it with test values, and to fill in the “holes”
that the designer places in the HTML page as placeholders for dynamic data. Actually
JST2 has no associated language, like other HTML templates have. JST2 defines a set
of non-standard HTML-attributes that can be inserted in the HTML elements of the
template. These HTML-attributes are processed by the JavaScript engine to perform
the page rendering1. This is relevant for designers, who do not need to learn any other
template language. They get by with their familiar tools: HTML and JavaScript, as
well as the fact that they can work disconnected from the applications server in order
to see their designs working. In fact, JST2 is valid for the development of standalone
HTML documents. Fig. 3 shows a JST2 example, and its visualization in the Firefox
browser (we stress the fact that the page does not need a server in order to be viewed,
just double-clicking on the template document; this is full-previewability).

4.1 Working with JST2

From the point of view of designers, working with JST2 involves creating the HTML
page by focusing only on the navigation and look and feel. Designers must identify
the dynamic part of the page (in the example in Fig. 3 a user’s name and a table of
items). Then, they must define the variables within an script section that must be
marked with the value model for the HTML-attribute jst. Variables are given a
name and assigned a test value to them. Variables can be simple (of any JavaScript
type), like userName in the example, or compound, like items in the example (an
array of objects). These variables make up the so-called JST model section, which can
be easily identified as the designer’s model in the double-model approach.

A key point is that designer is free to structure his model as he wants, or knows.
This is important for us because, up to certain extent, we do not want to force the
designer to learn any particular syntax or to apply a unique way of doing things. E.g.:
in the example, object literal notation is used to populate the items array, but there
exist other possibilities, such us to use constructors of a JavaScript Item class, or to
use two arrays of simple data (one for names and another for prices).

JST2 expressions. Wherever designers want to insert a data value, they place the
variable name between a couple of $ symbols (e.g., $userName$). A variable
reference can appear alone or as part of a JavaScript expression, like in
$price*0.9$. Therefore, designers have all the JavaScript power at their disposal,

1 A JST2 template is processed by a script loaded with the page. For the processing of the

template, the DOM JavaScript API is used. As was expected, many problems have arisen
during the template engine development due to different browser peculiarities. A lot of tests
have been performed, including form controls, structural elements (tables, divs …), styles,
event handlers, and so on. A total of 112 different versions of browsers have been tested,
resulting that JST2 can be used in Internet Explorer (from version 5.5), Firefox, Mozilla,
SeaMonkey, Netscape (from version 6), Opera (from version 7), DeepNet, Safari (for Mac
platforms) and Konqueror (for Linux). This covers approximately 98% of the available
browsers (depending on the consulted browser statistics).

 A Double-Model Approach to Achieve Effective Model-View Separation 451

without the cost of learning a new programming language. JST2 expressions may
appear as part of the value of HTML elements or attributes.

JST2 non-standard HTML-attributes. The way JST2 expressions are processed is
determined by JST2 HTML-attributes. These attributes contain instructions for the
template engine. Using attributes we get most editing tools not to complain about they
do not understand these attributes, and they will not remove them. Besides, they will
not change the structure or appearance of the template when loaded into a
WYSIWYG editor or a web browser.

The most important JST2 HTML-attribute is jst indeed. Its value specifies the
type of processing that the element that carries it must undergo. We call HTML
elements marked with this jst attribute JST2 elements. There are six values for jst,
which cover evaluations, conditionals, iterations and sub-template inclusions:

− value: the JST2 expressions inserted in the JST2 element, or any of its children,
must be evaluated and their values must replace the expressions.

− if: the JST2 element will be processed only if the value of the conditional expression
contained in an auxiliary HTML-attribute named jstTest is evaluated to true. If
the condition is evaluated to false, the JST2 element is removed from the final
document. All JST2 expressions are also evaluated as in value.

− apply: the JST2 element must be replicated for each one of the values contained
in the array specified in an auxiliary HTML-attribute named jstSet. All JST2
expressions are also evaluated as in value. There are three implicit variables
associated to the underlying iteration process that can be used in the expressions:
i, the iteration index, e the iteration value, and values, the iterated set.

− compApply: like apply, but for a group of JST2 related elements. It also uses
the auxiliary HTML-attributes jstSet and jstTest. For each set value, all the
JST2 elements in the compApply group are evaluated. Only those whose
jstTest expression evaluates to true are included in the final result.

Several simple examples2. Our objective is not to write here a detailed JST2 tutorial.
Nevertheless, we want to illustrate the previously presented JST2 syntax with a few
simple examples. Let’s consider as the designer’s model, the following script block:

<script jst="model">
 items = [{name:'Umbrella',price:1},{name:
 'Suitcase',price:48},{name:'Belt',price:18}];
 userName = "Peter"
 temperature = -2;
</script>

And below the samples:

<button jst="value" onClick="alert('Hello,
$userName$')">Say hello to $userName$</button>
<table border="1">
 <tr jst="apply" jstSet="items">
 <td>$e.name$</td><td>$e.price$ \$</td>
 </tr>

2 JST2 tutorial and samples can be found at http://www.unirioja.es/cu/fgarcia/jst/

452 F.J. García, R. Izquierdo Castanedo, and A.A. Juan Fuente

</table>
<p jst="if" jstTest="temperature<10">
 $userName$, you should wear your coat.
</p>
<table border="1">
 <tr jst="compApply" jstSet="items" jstTest="i%2==0"
 bgcolor="#CCCCCC">
 <td>$e.name$</td><td>$e.price$ \$</td>
 </tr>
 <tr jst="compApply" jstSet="items" jstTest="i%2!=0">
 <td>$e.name$</td><td>$e.price$ \$</td>
 </tr>
</table>

Once processed the resulting document will contain the following HTML:

<button onClick="alert('Hello, Peter')">Say hello to
Peter</button>
<table border="1">
 <tr><td>Umbrella</td><td>1 $</td></tr>
 <tr><td>Suitcase</td><td>48 $</td></tr>
 <tr><td>Belt</td><td>18 $</td></tr>
</table>
<p>Peter, you should wear your coat.</p>
<table border="1">
 <tr bgcolor="#CCCCCC"><td>Umbrella</td><td>1
$</td></tr>
 <tr><td>Suitcase</td><td>48 $</td></tr>
 <tr bgcolor="#CCCCCC"><td>Belt</td><td>18 $</td></tr>
</table>

(a) (b)

Fig. 4. JST2 examples, a) with temperature value -2; b) with temperature value 25

JST2 in the server-side. Once the work of designers is finished, programmers can
proceed. The model section in the JST2 template shows the dynamic data that the page
needs to be displayed, thus reducing the communication need between designers and
programmers. The programmer must implement the code executed when a request for a

 A Double-Model Approach to Achieve Effective Model-View Separation 453

page is received. This code will fetch the final data from an object model, XML, or
DBMS (the programmer’s model) and will generate a string with JavaScript code that
will replace the template model section. The JST2 preprocessor is extremely
lightweight; just string substitution. Other template engines processing are not
comparable in terms of speed and used memory. E.g.: let’s assume that the actual name
is “Mary” and there are three items: a leather belt, a handbag and an umbrella; then the
page sent to the user will be just as before in Fig. 3, except for the model section:

<script>
 name = "Mary"
 items=[{name:'Leather belt',price:1}, {name:
 'Handbag',price:79},{name:'Umbrella',price:18}];
</script>

4.2 JST2 Implements the Double-Model

JST2 follows the double-model approach because it meets all of its requirements: (1)
The designer’s model is constituted by the model section, and the programmer’s
model can be supported by a DBMS, and XML data source, or any type of data
structure in any programming language. (2) The view can not access the
programmer’s model. The view can only access its model section including the
variable names inside JST2 expressions. This is stressed by the fact that the template
can even be processed disconnected from the server where the application resides. (3)
The model section is initialized with test values. (4) The template is passive from the
point of view of its processing. At execution time, the previous test values are
replaced with new data values. In the server side of the application, the part that acts
as the transformer in MVC+mT architecture, collects all the necessary data and
composes a string defining the new JavaScript model section (push strategy). And (5)
during the previous processing, data taken from the programmer’s model can not be
pushed directly into the template, because they belong to different realms, they are
even modelled in a different language. They must be transformed in the way the
model section specifies.

4.3 JST2 Analysis

The use of JST2 effectively separates the model and view of a web application, and
therefore further enhances the extensibility, maintainability, and reusability of the
page templates. Besides of these positive properties, profusely treated in the related
bibliography, we can mention another set of advantages.

Simplicity. JST2 relies on JavaScript, but it is difficult to appreciate it (apart from the
model section and, perhaps, some expressions). This is a great help for designers, who
do not need a lot of knowledge of JavaScript in order to use JST2. Besides, the syntax
of JST2 is very simple and the learning curve is very soft.

Previewability. Thanks to the use of HTML-attributes in the JST2 elements, HTML
editors allow designer to manipulate JST2 elements visually. Designers can work with
JST2 elements as if they were normal HTML. Besides, due to the template engine
being included as a script in the template page, the final appearance of the template
can be observed without needing a server, with the only burden being the

454 F.J. García, R. Izquierdo Castanedo, and A.A. Juan Fuente

visualization of test data instead of actual data. But this is not relevant for the
aesthetics of the template.

Rapid prototyping. As a consequence of the previous feature, JST2 can be used for
rapid prototyping of web applications, reducing deployment time. If fact, JST2 can
even be used to rapidly develop stand-alone HTML.

Independence of the language used in the server-side of the application. JST2
processing consists only in string substitution, and this task can be performed with
any programming language.

Exploitation of the client processing power. JST2 templates are processed in the
client browser, thus relieving the server of this task.

JST2 helps to avoid cross-site-scripting (XSS). The usual technique to avoid XSS
consists of escaping the potentially dangerous characters (such as <,>,&,…) by
replacing them with their corresponding entity (<, >, &, …) . Using
JST2, text is inserted in the JST2 elements as DOM TextNodes, which automatically
escapes those types of characters.

JST2 simplifies AJAX interactions. AJAX processing is very simple with JST2. In
fact, for an AJAX interaction to occur, we only have to record the original JST2
element that is going to be asynchronously changed, ask the server for the new data
values required for the change, and then re-process the JST2 element with the new
values. AJAX data interchanges in JST2 do not require the use of XML, not even
JSON [18]; new data is received in the same format as was specified in the model
section. That is, in the server side, AJAX requests, can be processed by the same
modules that service normal requests.

JST2 problems. But we would not be honest if we did not recognize JST2 problems.
One of the main JST2 drawbacks is precisely one of its foundations. JST2 relies on
JavaScript and therefore it can not be used in browsers that have it disabled (at the
time of writing, 90% of browsers has the use of JavaScript enabled, according to the
last browser statistics). This is a limitation for the use of JST2 in devices such as
mobile telephones or PDAs, which have available simpler browser versions without
JavaScript support. However, it is a matter of time and technological maturity for this
not to be a problem any more. Another potential problem is related to web
accessibility. We have not investigated yet how accessibility tools process a JST2
template, but we can guess that problems may arise. And finally, a JST2 template is
not an XHTML [28] document. Therefore JST2 pages can not show off the W3C
stamp that marks it as XHTML compliant. This can be solved using the XHTML
modularization mechanism described in [29].

5 Conclusions

When developing a web application, it is not enough to use a template system in order
to achieve separation between model and view. The template system must have a set

 A Double-Model Approach to Achieve Effective Model-View Separation 455

of features that prevent developers from using programming shortcuts and backdoors
that reduce their work load in first term, but entangle the view and the model.

Taking as a starting point the work in [20], we have stated that strict separation of
model and view is desirable but impossible to achieve in HTML template systems due
to JavaScript. Existing template systems can not observe all the rules stated in [20],
but this does not mean we be resigned to release entangled web applications.

We have provided another less strict but effective approach for the analysis of the
model-view separation problem, consisting of using two models, one for the view and
another for the application. We have also proposed a modification of the MVC
architecture that supports the double-model approach (MVC+mT). The double-model
approach has been applied in JST2, a template system based on JavaScript. JST2
allows developing templates that are processed in the client browser.

As for future research lines we propose to relate our work to others such us [33],
where a similar adaptation process occurs between the fornt-end and the back-end of a
two-tier MVC based architecture that supports the MODFM methodology for the
development of web applications; or [4] that presents the dual-mvc approach, in
which the controller of a MVC application is split between the client and the server.
The approach reduces client/server interactions in web applications by returning to the
client more data than strictly necessary for page visualization, but that can be used in
response to certain user actions. The idea is that the page in the browser has its own
controller that fetches local model data instead of having to access the server. This
approach has nothing to do with template systems, but shares the idea of having a
double model for the application. The existence of these works leads us to consider
that perhaps we are in front of an architectural pattern, and that it may appear in more
fields apart from web applications. This will be our main line of future work, as well
as to keep working in the study of the accessibility in relation to JST2 and the
extension to make JST2 XHTML compliant.

Acknowledgments. Partially supported by Comunidad Autónoma de La Rioja,
project ANGI-2005/19.

References

1. Al-Darwish, N.: PageGen: An Effective Scheme for Dynamic Generation of Web Pages.
Information and Software Technology 45(10), 651–662 (2003)

2. Apache: Tapestry, http://tapestry.apache.org/
3. Apache: Velocity, http://velocity.apache.org/
4. Betz, K., Leff, A., Rayfield, J.T.: Developing Highly-Responsive User Interfaces with

DHTML and Servlets. In: Proceedings of the 19th IEEE International Performance,
Computing, and Communications Conference – IPCCC-2000, pp. 437–443 (2000)

5. Brabrand, C., Møller, A., Olesen, S., Schwartzbach, M.I.: Language-Based Caching of
Dynamically Generated HTML. World Wide Web: Internet and Web Information
Systems 5, 305–323 (2002)

6. Brabrand, C., Møller, A., Schwartzbach, M.I.: The bigwig Project. ACM Transactions on
Internet Technology 2(2), 79–114 (2002)

7. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented
Software Architecture. In: A System of Patterns, vol. 1, John Wiley & Son, West Sussex,
England (1996)

456 F.J. García, R. Izquierdo Castanedo, and A.A. Juan Fuente

8. Dojo, http://dojotoolkit.org/
9. Fernández, M., Florescu, D., Levy, A., Suciu, D.: Declarative Specification of Web Sites

with STRUDEL. VLDB Journal 9(1), 38–55 (2000)
10. Ford, N.: Art of Java Web Development. Manning Publications Co. (2004)
11. FreeMarker, http://freemarker.sourceforge.net/
12. Garrett, J.J.: Ajax: A New Approach to Web Applications (February 18, 2005)

http://adaptivepath.com/ publications/essays/archives/000385.php
13. Google: Google Web Toolkit,http://code.google.com/webtoolkit/
14. Halasz, S.J.: An Improved Method for Creating Dynamic Web Forms Using APL. In:

Proceedings of the international conference on APL-Berlin-2000 conference, Berlin,
Germany, pp. 104–111 (2000)

15. Hunter, J.: The Problems with JSP (2000), http://www.servlets.com/soapbox/problems-
jsp.html

16. Izquierdo, R., García, F.J., Andrés, M., Juan, A., Manrubia, P.: JST: Towards a Usable
Web Site Development Method. In: Proceedings of the IADIS International Conference
WWW/Internet 2003, vol. 1, pp. 515–522. IADIS Press (2003)

17. Izquierdo, R., Juan, A., López, B., Devis, R., Cueva, J.M., Acebal, C.F.: Experiences in
Web Site Development with Multidisciplinary Teams. In: Lovelle, J.M.C., Rodríguez,
B.M.G., Gayo, J.E.L., Ruiz, M.d.P.P., Aguilar, L.J. (eds.) ICWE 2003. LNCS, vol. 2722,
pp. 459–462. Springer, Heidelberg (2003)

18. JSON: http://www.json.org/
19. Kristensen, A.: Template Resolution in XML/HTML. Computer Networks and ISDN

Systems 30, 139–249 (1998)
20. Parr, T.J.: Enforcing Strict Model-View Separation in Template Engines. In: Proceedings

of the 13th International Conference on World Wide Web, WWW 2004, May 17-20, pp.
224–233. ACM Press, New York (2004)

21. Parr, T.J.: StringTemplates.http://www.stringtemplate.org/
22. Parr, T.J.: Web Application Internationalization and Localization in Action. In:

Proceedings of the 6th International Conference on Web Engineering, ICWE 2006, ACM
Press, New York (2006)

23. PHP: http://www.php.net
24. Seshadri, G.: Understanding JavaServer Pages Model 2 architecture. Exploring the MVC

design pattern. JavaWorld.com (December 1999) http://www.javaworld.com/javaworld/
jw-12-1999/jw-12-ssj-jspmvc.html

25. Smarty.http://smarty.php.net/
26. Sun Microsystems: Java Server PagesTM Specification, Version 2.1. Sun Microsystems,

Palo Alto, USA (2006), http://java.sun.com/products/jsp/
27. Tregar, S.: HTML:Template, http://html-template.sourceforge.net
28. W3C: XHTMLTM 1.0 The Extensible HyperText Markup Language (2nd Edition),

http://www.w3.org/TR/xhtml1/
29. W3C: XHTMLTM Modularization 1.1. http://www.w3.org/TR/xhtml-modularization/
30. W3C: XSL Transformations (XSLT) Version 2.0 (2007), http://www.w3.org/TR/xslt20/
31. WebMacro, http://www.webmacro.org/
32. Wijkman, P., Dissanaike, S., Wijkman, M.: Mixer, Supporting the Model-View-Controller

Design Pattern in Servlets. In: Proceedingds of the IASTED International Conference on
Software Engineering SE 2004, Innsbruck, Austria, February 16-18, pp. 658–661 (2004)

33. Zhang, J., Chung, J-Y.: Mockup-Driven Fast-Prototyping Methodology for Web
Application Development. Software-Practice and Experience 33(13), 1251–1272 (2003)

34. Zope: Zope Page Templates, ZPT, http://zpt.sourceforge.net/

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 457–472, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Model-Driven Development of Web Applications with
UWA, MVC and JavaServer Faces

Damiano Distante1, Paola Pedone2, Gustavo Rossi3, and Gerardo Canfora4

1,4 Research Centre on Software Technology (RCOST), University of Sannio, Italy
{canfora,distante}@unisannio.it

2 Faculty of Engineering, University of Salento, Italy
paola.pedone@unile.it

3 LIFIA, Facultad de Informática, UNLP, La Plata, Argentina
gustavo@lifia.info.unlp.edu.ar

Abstract. This paper presents a model-driven approach to the development of
web applications based on the Ubiquitous Web Application (UWA) design
framework, the Model-View-Controller (MVC) architectural pattern and the
JavaServer Faces technology. The approach combines a complete and robust
methodology for the user-centered conceptual design of web applications with
the MVC metaphor, which improves separation of business logic and data
presentation. The proposed approach, by carrying the advantages of Model-
Driven Development (MDD) and user-centered design, produces Web
applications which are of high quality from the user's point of view and easier
to maintain and evolve.

Keywords: Web Engineering, Model-Driven Development, Model Transforma-
tion, Model Driven Architecture, UWA, UML, MVC, JavaServer Faces.

1 Introduction

Web applications design methodologies available in the literature can be classified
into those which focus on “what” the application is required to do (conceptual design
in the problem domain) and those which focus on “how” the application can satisfy its
requirements and implement the “what” (logical design in the domain of solutions).
UWA [38], OOHDM [36], OOWS [32] and OO-H [9] pertain to the first category;
Conallen’s proposal [13] belongs to the second one; UWE [19][22] and WebML
[10][11][12] can be considered hybrid methodologies, as they cover both conceptual
and logical design.

Conceptual design methodologies abstract from implementation details and offer
an overall view of the system from the view point of the users. Conceptual modeling
is the right starting point to implement complex systems. However, the big distance
between the conceptual model of a web application and its implementation makes the
use of conceptual design methodologies insufficient for the development of a web
application. If intermediate design levels for translating conceptual specification into
implementation design are not provided, then the implementation activities of a web
application may proceed independently from conceptual design, which will thus be
under-exploited or even a waste of effort.

458 D. Distante et al.

The trend of well-known design methodologies to evolve towards Model-Driven
Development (MDD) shows the need for integrated approaches that support the whole
web application lifecycle. Methodologies that have recently moved in this direction
include OO-H [3], OOWS [3], UWE [18][20] and OOHDM [35], discussed more in
detail in the related work section.

This paper presents a model-driven approach to developing web applications based
on the Ubiquitous Web Application (UWA) conceptual design methodology and the
Model-View-Controller architectural design pattern. Compared to others, the UWA
design framework, with its methodology and models, is particularly suited for
designing web applications which are intended to be ubiquitous (accessible by
different user types in different usage contexts and with different goals) and user-
centered. By combining the characteristics of UWA with the advantages of the MVC
architecture and the MDD paradigm, the resulting approach is particularly suited for
developing ubiquitous web applications in a user-centered perspective as well as for
supporting their maintenance and evolution.

UWA models are made at the right abstraction level to be used with application
stakeholders and, at same time, can be detailed enough (design in the small) to provide
useful information to the application developers. The methodology is also supported by a
number of tools for drawing up UWA models and generating application design
documentation. Nevertheless, since UWA models are independent from implementation
details, they do not specify aspects such as the architecture, the software components, nor
the database that the developer should implement to realize the designed application. By
creating an intermediate design model to represent the application being implemented
and a set of heuristics to map the UWA conceptual models onto it, we lay the basis for a
model-driven approach to developing UWA-based web applications.

The intermediate design model (referred to as the logical model in the following) is
based on standard UML diagrams and adopts the Model-View-Controller (MVC)
architectural design pattern [8].

The main contributions of the paper are:

1. The definition of a logical model that describes the application code to be
developed and maps it to the application requirements;

2. The definition of a set of heuristics to translate UWA conceptual models to the
new logical model;

3. The definition of an MDD approach based on UWA to support the entire web
application lifecycle.

The remainder of the paper is organized as follows. The next section discusses the
background and motivations of the work. Section 3 presents the proposed UWA-based
MDD approach and an example of its application. Related work is presented in Section 4
while Section 5 concludes the paper and provides an overview of future work.

2 Background and Motivations

2.1 A General Framework for the Development of Web Applications

Despite the differences between the various methodologies for engineering web
applications found in the literature, a set of common concerns and development steps

 Model-Driven Development of Web Applications 459

can be identified [37]. Fig. 1 graphically represents these common features. Basically
any design methodology models web applications at three construction levels
(content, navigation and presentation) and addresses a number of aspects spanning
from structure to behavior. Aspects are orthogonal to all construction levels. Structure
applies to content (how contents are structured) as well as to navigation (hypertext
structures) and presentation (e.g., page organization). Similarly, behavior (e.g.,
business rules and user operations) can be associated with content, navigation and
presentation.

Content

Navigation

Presentation

Structure

Req
uire

m
en

t

Spec
ifi

ca
tio

n
Conce

ptu
al

Des
ig

n

Logica
l

Des
ig

n

Phys
ica

l
Des

ig
n

Im
plem

en
ta

tio
n

Analisys Design Implementation

PHASES

Behavior

Im
ple

m
en

ta
tio

n

ind
ip
en

de
nt

de
sig

n
Im

pl
em

en
ta
tio

n

de
pe

nd
en

t

de
sig

n
Co

di
ng

from requirements to implementation

Customization

ASPECTS

LEVELS

Req
uir

em
en

ts

Spe
cif

ica
tio

n

an
d
Ana

lis
ys

Fig. 1. A general development framework for web applications

As represented in Fig. 1, the development process starts with requirement
specification and analysis and proceeds through a number of design steps to the
implementation phase. Design steps include:

1. Conceptual design, focused on describing the problem domain and what the
system is expected to do, independently of any technological detail.

2. Logical design, focused on the operation of the system while hiding
implementation details specific to a particular platform.

3. Physical design, which adapts the logical model of the application to obtain
detailed specifications for implementation with the chosen platform.

2.2 Model-Driven Development

Though the use of design methodologies is not yet a common practice in the field of
web engineering, it is known that a model-based approach provides a better
alternative to the ad-hoc development of web applications and its inherent problems

460 D. Distante et al.

[37]. The need for systematic approaches to be adopted when developing complex
systems and for design prior to implementation is now widely accepted.

Model-Driven Development (MDD) [5] sees software development as a process
whereby a high-level abstract model is successively translated into increasingly more
detailed models, in such a way that eventually one of the models can be directly
executed by some platform [3]. The MDD approach not only advocates the use of
models (such as those resulting from the design steps described in the previous
section) for the development of software, but also emphasizes the need for
transformations in all phases of development, from system specification to
implementation and testing [23]. Transformations from one model to the next create a
chain which enables the automated implementation of a system starting from
requirements.

The possibly most well-known initiative of MDD is the Model Driven Architecture
(MDA) proposal [25] defined by the Object Management Group (OMG). The central
idea of MDA is to separate platform-independent design from platform-specific
implementation of applications, delaying the dependence on specific technologies for
as long as possible. Therefore, MDA advocates the construction of platform-
independent models (PIM) and the support of model transformations. The model that
is directly executed by a platform (PSM) which satisfies all requirements, including
non-functional ones, is also called “code”, and is usually the last model in the
refinement chain.

The development of web applications is a specific domain in which MDD can be
successfully applied, due to the web-specific separation of concerns: content,
navigation, presentation and customization.

2.3 UWA

The Ubiquitous Web Applications design framework (UWA) [38] provides a
methodology and a set of models and tools for user-centered conceptual design of
ubiquitous web applications. Mapping UWA models onto the general web application
development framework depicted in Fig. 1, produces the diagram shown in Fig. 2.
UWA covers the phases of requirement specification and analysis and conceptual
design. Requirement elicitation is the activity devoted by UWA for the identification
of the application’s stakeholders, their goals and, through a refinement process, the
resulting requirements for the following design of the application. Requirements are
classified into content, structure of content, access to content, presentation, and
behavior (system and user operations).

Following the requirement elicitation phase, the conceptual user-centered design of
the application is developed. The UWA Information Model, Navigation Model and
Publishing Model cover the three levels of design represented on the vertical axis in
Fig. 1, respectively. Each of these models comprises the structure aspect (e.g., the
Information Model gives information on the application content, their structure, the
structures for accessing content, etc.). The behavior aspect is addressed by two
models: the Transaction Model and the Operation Model, the former addressing the
business process design and the latter the design of more elementary user
functionalities.

 Model-Driven Development of Web Applications 461

Finally, the UWA Customization Design activity, defines the customization rules
that may apply to any of the UWA design models, thus providing the designed
application with the ability to adapt to different usage contexts.

The UWA methodology enables separation of design concerns by devoting a
design activity and a resulting model to each of the levels and aspects which
characterize data- and operation-intensive web applications [34][14]. User-centered
design ability (the perspective in developing the different UWA models is that of the
different user types of the application) and context awareness for the resulting
applications makes UWA one of the most valuable conceptual design methodologies
for web applications. The availability of a MOF-Complaint metamodel for UWA [4]
makes it possible to specify the semantics associated with each modeling concept, the
valid configurations and the constraints that apply. At same time, being the UWA
metamodel MOF-compliant it is possible to create modeling tools that generate
models that can be easily exchanged, imported in different design tools, rendered into
different formats, transformed, and used to generate application code [24].

UWA Information Model
(Hyperbase and Access
Structures)

UWA Navigation Model
(Node and Clusters)

UWA Publishing Model
(Pages and Sections
and Publishing units)

U
W

A
 T

ra
ns

ac
tio

n
M

od
el

&
 O

pe
ra

tio
n

M
od

el

UWA
Conceptual

Design

Analisys Conceptual Design Implementation

Content

Navigation

Presentation

B
eh

av
io

r S
tr

uc
tu

re

UWA
Requirements

Elicitation
(Stakeholders,

Goals,
Sub-Goals,

Requirements)

UWA Customization
Rules

C
on

te
nt

, N
av

ig
at

io
n

an
d

P
ub

lis
hi

ng
st

ru
ct

ur
e

Logical
and Physical Design

PHASES

ASPECTS

LEVELS

ASPECTS

LEVELS

Fig. 2. UWA Requirement Elicitation and Conceptual Modeling overview

3 A UWA-Based MDD Approach

3.1 Process Overview

The proposed UWA-based MDD approach to the development of web applications
uses a series of models and successive model transformations to progressively refine

462 D. Distante et al.

and enrich the application requirements so as to obtain the application source code.
The different models are also the basis for updated project documentation, at different
levels of abstraction.

Fig. 3 depicts the overall development process and the generated models. The
process begins with UWA Requirements Elicitation, to identify the stakeholders of
the application and their goals, from which the application requirements are derived.
Stakeholders, goals, sub-goals and requirements are represented by means of
stereotyped UML use-case diagrams.

The conceptual design is carried out using the UWA methodology and the
conceptual model of the application produced. This model includes the Information
Model, the Transaction Model, the Navigation Model, the Operation Model, the
Publishing Model and Customization Model.

The conceptual design phase is followed by logical design. The UWA conceptual
models are transformed, by means of suitable translation rules, into a logical model
that is closer to the specifics of implementation but still platform-independent. The
adoption of standard UML diagrams and of the MVC architecture for the resulting
application gives the name “UML-MVC” to our proposed logical model.

The final phase of the MDD process consists of specializing the UML-MVC
logical model to the specific platform chosen for implementation, obtaining a

UWA Conceptual
Models

Information
Model

Transaction &
Operation Model

Customization
Model

UML - MVC Logical Models

Struts
Models

.Net
Models

……..

Translating Conceptual Model to
 Logical Model

CIM

PIM

PSM

Model
Class Diagram

View
Class Diagram

Sequence
Diagram

Publishing
Model

Navigation
Model

Mapping
 PIM to PIM

Mapping
 PIM to PSM

Mapping
PSM to Code

Translating
Logical Models to

Physical Models

UWA Requirement
Elicitation

JSF Models

XML
Configuration

Files

Controller

View Model

Business
Object Component

Tree

Fig. 3. An overview of the UWA-based MDD process

 Model-Driven Development of Web Applications 463

platform-specific model. Any implementation of the MVC architectural design
pattern is suitable as the destination platform for the UML-MVC logical model
defined in the previous step. In particular, we detail the case of the JavaServer Faces
(JSF) technology [15][17] which is the technology we chose for experimenting our
approach with an e-commerce web application.

As emphasized by Fig. 3, the proposed process, in addition to be model-driven,
adheres to MDA. The UWA Requirement Elicitation model can, indeed, be
considered a CIM as it focuses on functionalities required for the application. The
UWA conceptual model and the UML-MVC logical model are PIMs, as they do not
imply any specific technology to be used for the implementation. Finally the JSF
model is a PSM as it is the specialization of the UML-MVC PIM for the JavaServer
Faces technology.

In the following of this section we describe the UML-MVC logical model, the
transformation rules to obtain this model from the UWA conceptual models, and the
guidelines that can be used to map the UML-MVC model onto the JavaServer Faces
implementation framework.

3.2 The UML-MVC Logical Model

The logical model we elaborated consists of stereotyped standard UML diagrams and
is intended to model the software components to be developed for each of the three
layers of the MVC architecture [8] as well as the relationships among them.
Specifically, the model is structured into the following UML diagrams:

1. Model Class Diagram (MCD): an UML class diagram modeling the classes
that participate in the Model layer and implement the application business
logic and data persistency.

2. View Class Diagram (VCD): an UML class diagram representing the client
and server pages in the View layer. These pages have the responsibility of
presenting data and content to the user and enabling user interaction with the
system. This diagram also models:

a. Classes making part of the Controller layer;
b. Associations between user interactions (e.g., the “Submit” of a form

of a View page) and methods of classes of the Model that are in
charge to serve them;

c. Associations between attributes of classes of the View (which
correspond to data provided/requested by the application) to
methods of classes of the Model that manage them.

d. Navigation links between pages of the View.
3. One or more UML Sequence Diagram describing the interactions between the

various components of the system and their state transitions during the
execution of complex user activities and web transactions. In addition, this
diagram is used to describe the navigation steps between pages of the View
that are associated with the different return values of the execution of the
methods of Model classes.

The resulting overall model is independent of the specific technologies chosen for
the implementation of the application, thus it is a PIM in the MDA architecture, but it
is already sufficiently detailed to guide the application's development team. The

464 D. Distante et al.

model can be used to create the application with any implementation technology
based on the MVC pattern. On an experimental basis, we used the Java ServerFaces
framework [15].

3.3 Mapping UWA Conceptual Models onto UML-MVC Logical Model

The transformation of UWA conceptual models into UML-MVC logical models is
accomplished by means of a set of mapping heuristics which create appropriate
correspondences between the UWA models and modeling concepts, with the
components of the MVC architecture and the elements of the logical model. Table 1
summarizes these heuristics: the first column lists the UWA conceptual models; the
second lists the main modeling concepts included in each of the UWA models; the
third column reports the layers of the MVC architecture onto which the considered
UWA modeling concept is mapped; finally, the fourth column reports the specific
elements of the logical model that originate from the UWA concept. Elements of the
UML-MVC logical model we defined include: (i) Classes, Class Attributes and Class
Methods of the MCD; (ii) Client and Server Page Classes of the VCD; (iii) Controller
Classes mapping the user interactions with pages of the VCD onto methods of classes
on the MCD; (iv) Associations between Classes of the MCD, (v) Associations

Table 1. Summary of UWA to UML-MVC transformation rules

UWA
Conceptual

Model

UWA modeling
Concept

MVC
Component UML-MVC Modeling Element

Entity Type Model Class into MCD

Entity Component Model Class into MCD aggregated to the Class created for the Entity Type

Slot Model Private Attribute and associated set and get methods into MCD

Semantic Association Model Association between Classes into MCD

Association Center Model Association Class into MCD

Information
Model

Collection Type Model - Class into MCD associated to the Collection Center
- Method added to the Class involved in the collection

Complex Activity Model Class into MCD with a method originated from the Activity PropertySet

Suspendable
Transaction Model

Class into MCD with attributes TransactionHistory, CurrentActivity,
ExecutionState, Suspension and DeviceType

Suspendable Complex
Activity Model

Class into MCD with attributes TransactionHistory, CurrentActivity,
ExecutionState, Suspension and DeviceType

Elementary Activity Model Method added to the involved Class of the MCD to implement the activity

Transaction
Model

Execution Flow Controller
 Sequence Diagram representing the interaction between elements of the

logical model and the navigation rules associated to the different return value
from the execution of methods of Classes of the MCD

Navigation Node View Server Page Class or Client Page Class into VCD

Navigation Cluster View Navigation Links between Pages into VCD

View

- Server Page Class into VCD with input/output attributes
- Associations between input/output attributes of the Server Page Class into

VCD with methods of MCD classes managing the data
- Association between action elements of the Server Page Class (e.g. Submit

button of a Form) and Controller classes to serve them Activity Node

Controller
- Controller Class into VCD with an attribute Result.

- Association between attribute Result and method of the MCD class to be
invoked in correspondence of the user interaction with the page

Navigation
Model

Activity Cluster View - Navigation Links between Pages into VCD

Publishing Unit View Client Page or Server Page Class into VCD

Section View Client Page or Server Page Class into VCD aggregating classes originated
from Publishing Units

Page View Client Page or Server Page Class into VCD aggregating classes originated
from Publishing Sections

Page Template View Frameset Class into VCD

Publishing
Model

Link View Navigation Links between Pages of the VCD

 Model-Driven Development of Web Applications 465

between attributes of Classes of the VCD with methods of MCD classes; (vi)
Navigation Links between Pages of the VCD; (vii) Sequence diagrams representing
the workflow of a transaction and navigation rules to be implemented by the
Controller.

Broadly speaking, the UWA Information and Transaction Models merge into the
MCD, while the UWA Navigation and Publishing Models merge into the VCD.
Associations between attributes and user interaction elements of the View pages with
methods of Model classes originate from the Navigation Model and, indirectly, from
the Transaction Model. In addition, from the UWA Transaction Model the UML
Sequence Diagrams are also created.

3.4 Mapping UML-MVC Logical Model onto JavaServer Faces Platform
 Specific Model

The JSF technology is a Java implementation of the MVC architectural design pattern
which simplifies the building of user interfaces for web applications by assembling
reusable UI components in a page, connecting these components to an application
data source; and wiring client-generated events to server-side event handlers [17].

As synthesized by bottom part of Fig. 3, the JSF architecture is a specialization of
the MVC architecture in which the Model component is realized by means of Java
business objects, the View component is made up of JavaServer Pages (JSP) in which
custom tag libraries are used for expressing the JSF user interface components, and
the Controller is implemented by a Servlet named FacesServlet.

To map the UML-MVC logical models onto the JSF software components the
following guidelines can be used:

1. Classes of the MCD are mapped onto Java Business Objects, such as
JavaBeans (JB) or Enterprise JavaBeans (EJB).

2. Classes of the VCD are implemented by means of Java Server Pages including
the JSF user interface components specified by means of the JSF tags.

3. Associations between pages of the VCD with methods of classes in the MCD
are used to define associations between presentation JSF components included
in the Java Server Pages and attributes and methods of the Java Business
Objects.

4. Associations between Controller classes and classes of the MCD in the VCD,
together with information derived from the Sequence Diagrams on navigation
rules associated with the different return values of the execution of a method
of a Model class are used to define the “faces-config.xml” configuration file
for the FacesServlet Controller.

3.5 An Example Application

The proposed UWA-based MDD approach was applied to the development of an
e-commerce website, of which we report here the portion concerning the order
checkout and visualization. The process involved the analysis of the requirements and
the conceptual design of the application by means of the UWA methodology. The
transformations rules summarized in Table 1 were then used to obtain the logical
UML-MVC model of the application, which was finally specialized for

466 D. Distante et al.

Table 2. An excerpt of the conceptual and logical models generated by the UWA-based MDD
process for developing an e-commerce web application

 Order

1:n,10

Row

- Number
- Order Total
- State
- Date
- Shipping Address
- Management Expenses
- Delivery Expenses
- Transport Expenses

- Product Name
- Quantity
- Unit Price
- Row Total

General
Information

[1..*]

(A) Order UWA Entity Type Diagram

 Order

Order
Information

OrderCheckout

(B) Order UWA Navigation Cluster

SelectPayment

OrderCheckout

<<ACDS Activity>>
<< Requires >>

Login

<<A Activity>>

DefineShipment

BuyLater

<<AD Activity>>

ConfirmOrder

<<ADI Activity>>

<<Requires One >>

<<ACDS Activity>>

<< Visibile -Requires >>

ResumePurchase

<<AD Activity>>

<<Optional >>

(C) Order Checkout UWA Organization
Model

DefineShipment

Login

Succeeded

Retry

SelectPayment

Failed
Abort

CustomerCustomer

ResumePurchase

ABORTED
ACTIVITY

CompleteOrder

Abort

Failed
Succeeded

PayLater

Succeeded

OrderCheckout

S

(D) Order Checkout UWA Execution Model

Order
Checkout

Up
Section

Order
Information

Order
Section

Order

(E) Order UWA Publishing Page

(F) Class Order in the MCD

implementation with the Java ServerFaces technology. Table 2 shows an excerpt of
the different models that were generated during the process and a screenshot of the
final application. More in detail, the table reports the Entity Type diagram (A) and the

 Model-Driven Development of Web Applications 467

Table 2. (Continued)

(G) UML-MVC Sequence Diagram for the checkout transaction

(H) Server page Order in the VCD

(I) A screenshot of the Order View web page

Navigation Cluster (B) associated to an Order made by a customer. The first diagram
models the information characterizing the Order and is part of the UWA Information
Model. The latter models the navigation associated with the Order and the actions that
can be invoked by the user, such as Order Checkout. The Organization Model (C) and
the Execution Model (D) describe the activities in which the Order CheckOut
transaction is organized and represent a portion of the UWA Transaction Model of the
application. Diagram (E) of the table shows the UWA Publishing Model for the Order
Page. By applying the transformation rules, the Entity Type Order of the UWA
conceptual model was transformed into the class Order in the MCD (F) of the logical
model, while the Navigation Cluster and the Publishing Page Order originated the
server page Order in the VCD (H). The UML sequence diagram (G) was derived
from the Order Checkout UWA Execution Model.

Attributes of the Order class were derived from Slots of the Order Entity
Components in the conceptual model. Get and Set methods were automatically
associated to each of the attributes. The set of activities included in the Organization

468 D. Distante et al.

Model of the OrderCheckout transaction were transformed into methods for the class
Order. These methods include: setSelectPayement, setDefineShipment, BuyLater and
ConfirmOrder. The class diagram modeling the server page Order in the View Class
Diagram (H) also reports the associations between attributes of the page (i.e., JSF user
interface components in the implementation) and methods of the class Order in the
Model Class Diagram. To support traceability, class names and methods of the UML-
MVC logical model are prefixed with the acronyms of the UWA model and modeling
concept from which they originate.

The structure of the Navigation and Publishing Models impacted onto the VCD, in
which they appear also the dependency with the respective classes of the MCD apt to
the management of the information. A screenshot of the web page resulting from the
implementation of the prototype of the application with the JSF technology is shown
by figure (I).

3.6 Costs/Benefits of the Approach

The introduction of an additional design phase in the development process of a web
application cause the process to lengthen and complicate, and more effort to be
required if supporting tools towards MDD are not provided.

On the other hand, no matter of if tools for the automatic transformation of
conceptual models into logical models are available, providing developers with
models which are closer to the implementation simplifies implementation choices,
reduces coding time and helps in producing higher quality software. In fact, having a
model which from one hand is directly linked to the conceptual model and from the
other is very close to the implementation details helps the development of
applications which exhibit:

• greater internal consistency, as they fully satisfy the requirements of conceptual
design;

• greater usability, as they are more able to satisfy the expectations of the users;
• greater maintainability, as design and requirements, since the impact on the code

of any changes to the model (or indeed the impact on the model of any changes
to the code) can be traced.

The proposed approach, by defining the UML-MVC logical model, makes it
possible to establish a correspondence between the UWA conceptual design of a web
application and its implementation. Maintenance and evolution operations become
easier, requirements traceability is made possible as well as alignment between
software and documentation during the entire application lifecycle.

4 Related Work

The Model-Driven Development paradigm is applied successfully by a number of
web engineering methods, such as UWE, OO-H, OOHDMDA, and WebML. These
methods use models to separate the platform-independent design of web systems from
the platform-dependent implementations as much as possible. They have associated
development environments that support code generation from model specifications,
either fully or partially automated.

 Model-Driven Development of Web Applications 469

The UWE [23] process to developing web systems follows the MDA principles
and uses the OMG standards [24-29]. The process makes use of model
transformations defined at metamodel level and specified in general purpose
transformation languages, such as QVT [26] and graph transformations. Currently,
many of the transformations have already been automated, thanks to the OpenUWE
[31] tool suite. One of the main characteristics of this suite is its open architecture
based on established standards. These standards are supported by both open-source
and commercial tools. The common data exchange language within this architecture
is based on the extensible UWE meta-model [37].

OO-H [9] supports the transformation-based construction of a presentation model
based on modelling elements of the navigation model, and code generation based on
the conceptual, navigation and presentation models [18]. OO-H transformation rules
are a proprietary part of a CASE tool called VisualWADE [39]. This tool supports
modelling and automatic generation of applications based on XML, ASP, JSP, and
PHP.

OOHDM [36] may be considered as a platform-independent domain-specific
language for web applications that provides an object model, in contrast to other web
application modeling languages. OOHDMDA [35] generates servlet-based web
applications from OOHDM models. The OOHDMDA approach follows MDA
principles by employing the OOHDM conceptual and navigational scheme of a web
application as the basic PIM for the MDA process, using any UML-based design tool,
such as Rational Rose [33], which produces an XMI-file as output. The basic PIM is
transformed into the intermediate PIM, by adding to it the behavioural semantics of
the OOHDM core features and business processes. This transformation is achieved by
modifying the XMI-file of the basic PIM. The PIM is then transformed into a servlet-
based PSM.

WebML [10-12] is a model-driven method for the development of data intensive
web applications, with an associated supporting CASE tool called WebRatio [40].
WebML follows an MDD approach for mapping its modelling elements onto the
components of the MVC Model 2 architecture, which can be transformed into
components for different platforms [11]. The web application generated by WebRatio
is deployed in a runtime framework based on a set of Java components, which can be
configured by use of XML files. The runtime architecture is based on the MVC
design pattern and is suited for the Apache Struts open-source web application
development framework [1] and the JSP tag libraries [30].

Similar to our approach, UWE, OO-H and OOHDMDA adopt an MDD process
that follows MDA principles for the models. Differently from our approach they do
not explicitly adopt the MVC architecture pattern in their PIMs. As above shortly
reported, WebML differs from our and other considered approach in that its process is
MDD but not MDA. Similar to our approach, WebML uses MVC as architectural
pattern for its PIMs. All the considered approaches enable different technologies to be
used for the implementation of the PSMs. Our choice of adopting MVC as
architecture for the PIM logical model guarantees the availability of a wide range of
open-source and commercial technology frameworks to choose from for the different
platforms, such as J2EE, .Net and PHP.

A final as obvious as notable difference between our approach and others proposed
in the literature lies in the conceptual design methodology on which the approach is

470 D. Distante et al.

based. Our UWA-based MDD approach enables the development of web applications
which faithfully implement their UWA conceptual model, thus benefiting from the
UWA peculiarities and the quality design characteristics as summarized in Section
2.3. This difference is the main motivation for the present work.

5 Conclusion

Conceptual design methodologies enable the analyst to abstract from implementation
and technological details and focus on application requirements in the problem
domain. This is referred to as “what” the application has to do.
The UWA design methodology and associated models are particularly suited for the
user-centered design of complex ubiquitous web applications. UWA provides
different related models to design the different levels and aspects characterizing a web
application (content, navigation, presentation, structure, behavior).

Despite the benefits deriving from the use of conceptual design methodologies,
there is a wide gap between the models they generate and the implementation of the
application. A further design step and related models are required to specify “how” to
implement the final application adhering to the conceptual models.

This paper proposed an intermediate model, named UML-MVC logical model, to
be used between UWA conceptual design phase and the implementation phase, and a
set of transforming heuristics.

The UML-MVC logical model is a platform independent model, based on standard
UML diagrams and incorporating the MVC architecture design pattern. The set of
heuristics permits the automatic transformation of the UWA models into the logical ones.
The model and the mapping heuristics are the basis of a Model-Driven Development
approach based on the UWA methodology, for web applications. In addition, the rules to
transform the logical model to a platform specific model for Java ServerFaces
applications has been defined and experimented in an example case study.

Overall, the resulting approach combines the advantages of MDD, such as
requirement traceability and maintenance and evolution better support, with the
ability of UWA to design application in a user-centered perspective and ubiquitous.
The logical model creates a link between the application implementation and the
UWA design models and application requirements.

We are currently working on the specification of our model transformations rules
using the QVT language and on the development of appropriate tools to support the
whole UWA-based MDD approach by extending the design tools provided with the
UWA methodology.

References

1. Apache STRUTS open-source framework: http://struts.apache.org/
2. ArgoUML: http://www.argouml.org
3. Arraes Nunes, D., Schwabe, D.: Rapid Prototyping of Web Applications combining

Domain Specific Languages and Model Driven Design. In: ICWE’06. Proceedings of the
6th International Conference on Web Engineering July 11-14, 2006, Palo Alto, California,
USA (2006)

 Model-Driven Development of Web Applications 471

4. Baresi, L., Garzotto, F., Maritati, M.: W2000 as a MOF Metamodel. In: Proceedings of
World Multiconferemce On Systemics, vol. 1 (2002)

5. Bézivin, J.: In Search of a Basic Principle for Model Driven Engineering. UPGRADE
V(2), Novótica (April 2004)

6. Brambilla, M.: Extending hypertext conceptual models with process-oriented primitives.
In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS,
vol. 2813, pp. 246–262. Springer, Heidelberg (2003)

7. Brambilla, M., Ceri, S., Fraternali, P., Manolescu, I.: Process Modeling in Web
Applications. ACM Transactions on Software Engineering and Methodology (TOSEM) (in
print, 2006)

8. Buschmann, F., Meunier, R., Rohnert, H., Sornmerlad, P., Stal, M.: Patter-Oriented
Software Architecture - A system of pattern, vol. 1. John Wiley & Sons Ltd., West Sussex,
England (2000)

9. Cachero, C., Gómez, J., Pastor, O.: Object-Oriented Conceptual Modeling of Web
Application Interfaces: the OO-H Method Abstract Presentation Model (2000)

10. Ceri, S., Fraternali, P., Matera, M.: Conceptual Modeling of Data-Intensive Web
Applications. IEEE Internet Computing 6(4) (2002)

11. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing Data-
Intensive Web Application. Morgan Kaufmann Publishers, Elsevier Science (USA) (2003)

12. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a Modeling
Language for Designing Web Sites. Computer Networks 33(1-6), 137–157 (2000)

13. Conallen, J.: Building Web application with UML, 2nd edn. Addison Wesley, Redwood
City, CA, USA (2002)

14. Distante, D., Rossi, G., Canfora, G., Tilley, S.: A Comprehensive Design Model for
Integrating Business Processes in Web Applications. International Journal of Web
Engineering and Technology (IJWET) 2(1), pp. 43–72 (2007)

15. Dudney, B., Lehr, J., Willis, B., Mattingly, L.: Mastering JavaServerTM Faces. Wiley, New
York (2004)

16. Gomez, J., Cachero, C., Pastor, O.: Extending a Conceptual Modeling Approach to Web
Application Design. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS, vol. 1789,
pp. 5–9. Springer, Heidelberg (2000)

17. JavaServer Faces Technology: http://java.sun.com/javaee/javaserverfaces/
18. Koch, N.: Transformation Techniques in the Model-Driven Development Process of UWE.

In: MDWE 06. Proceedings of the 2nd Model-Driven Web Engineering Workshop, Palo
Alto, CA, July 11, 2006, ACM Press, New York (2006)

19. Koch, N., Kraus, A.: The expressive Power of UML based Web Engineering. In:
Proceedings of the 2nd International Workshop on Web Oriented Software Technology
(IWWOST02) June 10, 2002, Málaga, Spain (2002)

20. Koch, N., Zhang, G., Escalona, M., j.: Model Transformations from Requirements to Web
System Design. In: ICWE’06, Palo Alto, California, USA, July 11-14, ACM Press, New
York (2006)

21. Langham, M., Ziegeler, C.: Cocoon: Building XML Applications, Sams Publishing (2002)
22. Meliá, S., Gómez, J., Koch, N.: Improving Web Design Methods with Architecture

Modeling. In: 6th International Conference on E-Commerce and Web Technologies (EC-
Web 2005) August 22-26, 2005, Copenhagen, Denmark (2005)

23. Moreno, N., Fraternali, P., Vallecillo, A.: A UML 2.0 Profile for WebML Modeling. In:
MDWE 06. Proceedings of the 2nd Model-Driven Web Engineering Workshop, Palo Alto,
CA, July 11, 2006, ACM Press, New York (2006)

472 D. Distante et al.

24. Object Management Group (OMG) Meta Object Facility Specification (MOF): http://
www.omg.org/mof/

25. Object Management Group (OMG). Model Driven Architecture (MDA):
 www.omg.org/mda/

26. Object Management Group (OMG). Query/Views/Transformations (QVT): www.omg.org/
27. Object Management Group (OMG). UML 2 Object Constraint Language (OCL):

www.omg.org/docs/ptc/03-10-14.pdf
28. Object Management Group (OMG). Unified Modeling Language (UML): Superstructure,

version 2.0 www.uml.org/
29. Object Management Group (OMG): XML Metadata Interchange (XMI) www.omg.org/
30. Open Source JSP Tag Library: http://www.java-source.net/open-source/jsp-tag-libraries
31. OpenUWE: http://www.pst.ifi.lmu.de/projekte/uwe
32. Pastor, O., Abrahão, S., Fons, J.: An Object-Oriented Approach to Automate Web

Applications Development. In: Bauknecht, K., Madria, S.K., Pernul, G. (eds.) EC-Web
2001. LNCS, vol. 2115, pp. 16–28. Springer, Heidelberg (2001)

33. ROSE: IBM Rational Software. Online at www.ibm.com/rational
34. Rossi, G., Gordillo, S., Distante, D.: Improving Web Applications Evolution by Separating

Design Concerns. In: STEP 2005. IEEE Software Technology and Engineering Practice
2005, September 24-25, 2005, Budapest, Hungary, Workshop on Evolution of Software
Systems in a Business Context (2005)

35. Schmid, H.A., Donnerhak, O.: OOHDMDA - An MDA Approach for OOHDM. In: Lowe,
D.G., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, pp. 569–574. Springer, Heidelberg
(2005)

36. Schwabe, D., Rossi, G.: An Object-Oriented Approach to Web-Based Application Design.
Theory and Practice of Object Systems (TAPOS) 4, 207–225 (1998)

37. Schwinger, W., Koch, N.: Modeling Web Applications, in Web Engineering - Systematic
Development of Web-Applications. In: Kappel, G., Pröll, B., Reich, S., Retschitzegger, W.
(eds.) John Wiley & Sons Ltd., West Sussex, England (2006)

38. UWA Consortium, Ubiquitous Web Applications. In: Proceedings of the eBusiness and
eWork Conference 2002, (e2002: October 16-18 2002, Prague, Czech Republic) (2002)

39. VisualWADE. http://www.visualwade.com
40. WebRatio. http://www.webratio.com

On Refining XML Artifacts

Felipe I. Anfurrutia, Oscar Díaz, and Salvador Trujillo

University of the Basque Country - San Sebastián (Spain)
{felipe.anfurrutia,oscar.diaz,struji}@ehu.es

Abstract. Step-wise refinement is a powerful paradigm for developing a com-
plex program from a simple program by adding features incrementally where
each feature is an increment in program functionality. Existing works focus on
object-oriented representations such as Java or C++ artifacts. For this paradigm
to be brought to the Web, refinement should be realised for XML representations.
This paper elaborates on the notion of XML refinement by addressing what and
how XML can be refined. These ideas are realised in the XAK language. A Struts
application serves to illustrate the approach.

1 Introduction

So far, most Web applications are conceived in a one-to-one basis. A recent study indi-
cates a cloning rate (i.e. code repetition throughout the application) of 17-63% within
Web applications of the same organisation [5]. This cloning evidences the existence of
a common, although implicit, theme throughout the applications, and confirms an in-
tuition felt in most organisations: code similarities among applications. These similari-
ties are being handled in various ways such as IFDEFs, configuration files, installation
scripts or cloned software copies à la “copy-paste-modify”. However, these solutions
do not scale and can hinder maintenance as the number of variations increases.

One technique to handle similarities is step-wise refinement [1]. Step-wise refine-
ment is a powerful paradigm for developing a complex program from a simple pro-
gram by incrementally adding details. This approach attempts to depart from current
“clone&own” practise by leveraging reuse of the common parts, and separating variable
and changing parts as program deltas. The final product is obtained through composi-
tion: the common parts are composed with the program deltas that realise the variations
for the product at hand.

Existing works focus on object-oriented representations such as Java or C++ arti-
facts [1]. However, recent studies revealed that the cloning rate of web-specific artifacts
(e.g. mainly XML files) was considerably higher than general artifacts (e.g. Java, C++,
etc) [5]. Indeed, XML artifacts play a preponderant role in current software practises,
specially in the Web setting. This omnipresence of XML vindicates the existence of
modularisation techniques specially tuned for XML. Attempts have been made to bring
object-orientation (OO) and componentisation to the HTML realm [3], [4], [6]. But
in the same way that OO falls short to face the increasing complexity of conventional
software (crosscut handling is a case in point), so does it happen for XML artifacts.

This work addresses the use of refinements as a modularisation technique for XML
artifacts. But, what is meant to refine an XML artifact? Does it mean that we can ar-
bitrarily insert or delete a node anywhere in an XML tree? To this end, a language

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 473–478, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

474 F.I. Anfurrutia, O. Díaz, and S. Trujillo

for defining refinements in XML documents is introduced: XAK (pronounced “sack”).
The language is accompanied by a validator and a composer. The validator checks the
correctness of XML refinements at compile time, whereas the composer builds incre-
mentally a document by composing a base document with a refinement document. XAK
composer is currently available as part of the AHEAD Tool Suite [7].

In this way, an XML artifact can also be conceived incrementally. This accounts for
the following advantages: enhanced reusability of XML artifacts since commonalities
and variabilities can be defined separately; flexibility in the selection of variable content
and their composition; and decoupling validation of XML core artifacts from XML
refinements. First, a brief on the notion of refinement is provided.

2 On the Notion of Refinement

A refinement can be thought of as a function that takes an artifact as an input, and
returns another similar artifact but leveraged to support a given feature (denoted by
Feature1•Base). In other words, a base artifact (e.g. a Java class) can now be incremen-
tally extended (i.e. refined in our parlance) by adding a new module (e.g. a method) that
extends the functionality of the base with a new feature (i.e. Feature1). At first sight,
this resembles regular inheritance, but there is a difference: there are not two classes but
a single class that is being incrementally extended to account for a new feature. Further-
more, the class being extended is not fixed at compile time (like in regular inheritance)
but decided at composition time. In this way, a refinement behaves like a mixin inher-
itance, i.e. a class whose super class is parametrised [2]. Since the super class is not
fixed until composition, distinct refinements on different (and unpredictable) order may
be composed to yield a class. When the artifact is source code, a class refinement can
introduce new data members, methods and constructors to a target class, as well as ex-
tend or override existing methods and constructors of that class. But, what is meant to
refine an XML artifact? The next section introduces a sample case.

3 A Motivating Example Using Struts

Let CurrencyConverter be a web application that facilitates information about convert-
ing distinct currencies1. The application exhibits a J2EE architecture where Apache
Struts is used. Struts follows the MVC pattern where the Controller separates the
control-flow from the Model and the View. Space limitation makes us focus on the
controller. However, similar remarks can be made for the artifacts realising the Model
and the View.

The control-flow of a sample base application is realised through the struts-config
document depicted in figure 1(b). The description so far accounts for the base con-
troller. The term “base” refers to the stable core which is free for any variations. The is-
sue arises when this base functionality needs to be leveraged with additional capabilities
due to either perfective maintenance or versioning. For instance, consider two additional

1 For a working example see www.oanda.com/convert/classic

On Refining XML Artifacts 475

Fig. 1. (a) Schema-based and (b) instance-based modularisation

features: (1) the DateRate feature, which allows end users to introduce a date in order
to make the currency conversion with the rates at the given date. This implies to refine
the base controller with new form properties, and some additions to the control-flow;
(2) the Customisation feature, which permits end users to personalise the application by
providing default values for both the sourceCurrency and the targetCurrency properties.
This simple feature impacts all the model, the view and the controller.

Despite their simplicity, we are unaware of any mechanism that permits to incor-
porate these features incrementally. That is, start with a simple product (i.e. the base)
and compose deltas to progressively add features to the base. Notice, you can add ifdef
tags to the base code that a pre-compiler can leave or remove depending on the features
to be finally exhibited by the application. But, this is more a kind of configuration or
parametrisation mechanism that requires the designer to foresee all possible extensions
where superfluous extensions are removed at configuration time. By contrast, refine-
ments work the other way around: start with a simple product and apply deltas (i.e.
program refinements) to progressively elaborate the desired product. Refinements are
defined separately from the base in both time and space. In time, because the refine-
ment can be added at any time. And in space, since the refinement is handled separately
from the base artifact. Therefore, product synthesis rests in the ability to implement and
compose refinements.

4 The Unit of Refinement

We aim at synthesising XML documents incrementally through refinements. But, what
is the granularity of this refinement? A first approach could be to consider any XML node
as the unit of refinement. However, this implies handling XML documents as mere data
structures where any element node can be subject to refinement. This is too fine-grained
granularity that defers the principle of modularity whereby high level abstractions (i.e.
the modules) encapsulate their low level realisation (i.e. the instructions). Indeed, the

476 F.I. Anfurrutia, O. Díaz, and S. Trujillo

Open-Closed Principle (OCP) states that modules should be both open (for extension
and adaptation) and closed (to protect the content against certain modifications).

To this end, a distinction is made between elements playing the role of modules (and
hence, being subject to refinement) and elements that describe the realisation of these
modules (and hence, protected against punctual updates). Thus, an XML module is
defined as an element of a document that carries out a specific function and is liable to
be re-used by/combined with other modules.

Besides realising abstractions, modules should be univocally identified. Xpath re-
lies on element location. If the position of the element changes, so does it the Xpath
expression output. Therefore, location-based Xpath expressions can not be used for el-
ement identification when the position of this element is liable to be changed, as it is
the case for refinements. The order of refinements (e.g. Feature1•Feature2•Base vs.
Feature2•Feature1•Base) can make the location of a given element to change. Thus,
XML modules must have and preserve an ID property which permits to address this
module unambiguously.

Similar to code artifacts, the identification of the main abstractions (modules) de-
pends on the domain at hand. In an XML setting, this domain is partially defined by vo-
cabularies. W3C XML Schema is one of the most popular schema languages. A schema
states the element, attribute and atomic type names, in addition to structural constraints
that instances of this schema must obey.

Next, we need a way to indicate the elements playing the role of modules. For
our sample case, we want to stay that only element types <struts-config>, <form-
beans>, <form-bean>, <action-mappings> and <action> can be modules (liable to
be refined). The rest of the element types can not be refined (e.g. <controller> served
only for implementation). This is the purpose of the “xak:modularizable” attribute.
Figure 1(a) shows the Struts schema now annotated with this attribute. The attribute in-
dicates whether an element type is eligible to be a module or not. For a given document
instance, this does not force every occurrence of a modularisable element type to be
refined, but prevents non-modularisable element types from being refined.

However, stating modularity at the schema level can be too general. Frequently, the
notion of module depends on the document at hand. Hence, “schema-based” modular-
isation is complemented with “instance-based" modularisation (using the xak:module
attribute). This approach permits to further restrict what can be refined among the mod-
ularisable elements. For our sample case, only “/converter” is a refinable <action>;
whereas /convertNow and /cheatsheet can not be refined. Figure 1(b) illustrates this
situation for our sample case. This moves the decision of what can be refined to the
instance level.

“Schema-based” and “instance-based” approaches to module definition offers a good
balance between the controlled approach that offers the schema, and the freedom that
programmers’ creativity requires. This is akin to the openness and subsidiary way of
working that characterise the XML world (e.g. schema management in XML Schema).
Schema designers can use a schema approach to define the “refinable” element types,
the schema users can work at the instance level by indicating the “refinable” elements,
and finally, the instance users compose the features to synthesise the final application,
refining some element contents, should it be required.

On Refining XML Artifacts 477

Fig. 2. (a) A XAK refinement for the Customisation feature and (b) the resulting document from
the composition customization•base

5 The Ways of Refinement

Product synthesis starts with a base product and apply deltas (i.e. refinements) to pro-
gressively incorporate new features to this product. Thus, there are two kinds of
artifacts: base documents (i.e. values) and refinement documents (i.e. functions).

Base document. Any traditional XML document can be a base document. The only
difference is that now a distinction is made between XML elements, liable to be refined
(i.e. modules), and those that can not be refined (i.e. the implementation). To this end,
the XAK namespace provides three attributes (see figure 1b), namely: @xak:artifact,
which specifies the name of the document that is being incrementally defined;
@xak:feature, which indicates the name of the feature being supported2; and
@xak:module, which identifies those elements that play the role of modules. Notice
that the designer is not forced to turn into modules all elements of a modularisable type.

Refinement documents. A refinement is an increment in program’s functionality. This
is specified through the following XAK elements: <xak:refines> and <xak:keep-
content>. The former is the root element of the refinement document. Its content de-
scribes a set of module refinements (i.e. elements annotated with the xak:module at-
tribute) over a given base document (i.e. the xak:artifact attribute). Moreover, the
<xak:keep-content> attribute indicates the place where the content of the refined mod-
ule will be placed once it is synthesised.

As an example, consider our sample case. The customisation feature enhances the
base by providing default values for both the sourceCurrency and the targetCurrency
properties. Adding this feature impacts on all the aspects: the model, the view and
the controller. Thus, three refinement documents are needed, all with @xak:feature =
“customisation”. Let’s focus on the controller, i.e. “struts-config.xml”. This artifact is

2 For base documents, this attribute keeps the value “base”.

478 F.I. Anfurrutia, O. Díaz, and S. Trujillo

gradually defined as features are being composed. The base is shown in figure 1b where
mForms, mActions and mButtons are set as modules. Customisation implies: (1) adding
the customizeForm form-bean into the mForms module; (2) extending the mButton dis-
patcher action to show the customise.jsp page of the feature, and (3) defining a new ac-
tion. At synthesis time, customisation • base will deliver the enhanced strust-config.xml
file shown in figure 2b.

A refinement realises just an increment, i.e. a delta. Hence, it is most unlikely that the
refinement obeys the schema of the type of document being refined. For instance, our
previous refinement (see figure 2a) is not a valid struts-config document since it holds
and <action> element outside an <action-mappings> element. Moreover, the elements
and attributes of the XAK namespaces are intermingled with the elements of the given
schema vocabulary.

Therefore, the validity of a refinement can not be checked directly against neither
the schema of the document being refined (e.g. struts-config.xsd) nor the XAK schema.
However, the element names, types and some structural constraints still hold. For in-
stance, the elements and attributes used in the refinement should be permitted by the
content model of the module being refined. This implies to define which are the laws of
refinement and develop a tool for checking it.

6 Conclusions

Step-wise refinements permits to conceive artifacts incrementally, hence, distinguish-
ing between stable, base artifacts and refinement artifacts that realise the variations.
This work addresses refinement of XML artifacts. The peculiarities brought by markup
languages as opposed to object-oriented ones have been exposed where the notion of
refinement offers an alternative way to modularise source code for languages where no
other modularisation technique is available.

References

1. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement. IEEE Transactions
on Software Engineering 30(6), 355–371 (2004)

2. Bracha, G., Cook, W.: Mixin-based inheritance. SIGPLAN 25(10), 303–311 (1990)
3. Gellersen, H.-W., Wicke, R., Gaedke, M.: WebComposition: an object-oriented support sys-

tem for the Web engineering lifecycle. Computer Networks and ISDN Systems 29(8-13),
1429–1437 (1997)

4. Klapsing, R., Neumann, G., Conen, W.: Semantics in Web Engineering: Applying the Re-
source Description Framework. IEEE Multimedia 8(2), 62–68 (2001)

5. Rajapakse, D.C., Jarzabek, S.: An investigation of cloning in web applications. In: Lowe,
D.G., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, Springer, Heidelberg (2005)

6. Schranz, M.W., Weidl, J., Goschka, K.M., Zechgmeister, S.: Engineering complex World
Wide Web services with JESSICA and UML. In: Proc. of the 33rd Annual Hawaii Int. Conf.
on System Sciences (HICSS’00), Maui, HI, USA (2000)

7. Trujillo, S., Batory, D., Díaz, O.: Feature Refactoring a Multi-Representation Program into
a Product Line. In: Proc. of the 5th Int. Conf. on Generative Programming and Component
Engineering (GPCE’06) (2006)

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 479 – 484, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Mixup: A Development and Runtime Environment for
Integration at the Presentation Layer

Jin Yu1, Boualem Benatallah1, Fabio Casati2, Florian Daniel3,
Maristella Matera3, and Regis Saint-Paul1

1 University of New South Wales, Sydney NSW 2052, Australia
{jyu,boualem,regiss}@cse.unsw.edu.au

2 University of Trento, Via Sommarive, 14/I-38050, Trento, Italy
casati@dit.unitn.it

3 Politecnico di Milano, Via Ponzio, 34/5-20133, Milano, Italy
{daniel,matera}@elet.polimi.it

Abstract. In this paper we present a development and runtime environment for
creating composite applications by reusing existing presentation components.
The granularity of components is that of stand-alone modules encapsulating re-
usable functionalities. The goal is to allow developers to easily create composite
applications by combining the components' individual user interfaces.

1 Introduction

User interface (UI) development is one of the most time-consuming tasks in the appli-
cation development process [3]. As a result, reusing UI components is critical in this
process. There is a large body of research in areas such as component-based systems,
enterprise application integration and service composition [1], but little work has been
done to facilitate integration at the presentation or UI level. While UI development
today is facilitated by frameworks (such as Java Swing) providing pre-packaged UI
classes such as buttons, menus and the likes, high-level presentation components
encapsulating reusable application functionalities have received little attention.

This demo presents a development and runtime environment, called Mixup, for in-
tegration at the presentation level, that is, integration of components by combining
their presentation front-ends, rather than their application logic or data. The goal is to
be able to quickly build complex user interfaces – and in particular web interfaces –
by dragging and dropping existing web UIs (called components) on a canvas and by
specifying how components should synchronize based on user and application events.
As an example, consider building a US National Park Guide application that includes
a park listing, an image displayer showing images given a point of interest and a map
displaying the location of a given point of interest. The application can be built out of
presentation front-ends such as Google Maps and Flickr.NET1. Once integrated, the
components should present information in an orchestrated fashion, so that for exam-
ple when a user selects a national park from the park listing, the image displayer
shows an image of the selected park, while the map displays its location (Fig. 1).

1 The .NET version of Flickr.

480 J. Yu et al.

Fig. 1. The National Park Guide

In this demo we show how composite applications can be created by combining the
front-ends of existing applications, how to define the orchestration logic among them
as well as their layout, and how all these can be done quickly via a visual editor.

Details on the motivations, rationale, challenges and the proposed approach are
provided in [4]. A slideshow of the demo scenario is available on the web2.

2 The Conceptual Framework

Borrowing lessons from application integration, we argue that integration at the pres-
entation layer needs the definition of four basic elements: component model, compo-
sition model, specification language, and runtime environment.

For the component model, we argue that presentation components are centered
around the notion of presentation state, which is a conceptual, application-specific
description of what the component is showing. For example, for a map component,
the state may describe the location currently being shown. In addition, a component
exposes events to notify state changes (e.g. due to user interaction with the compo-
nent’s UI) and operations to allow other components to request state changes. Finally,
a component has properties to represent appearance characteristics (e.g. text color)
and customization parameters. Note that the Mixup component model is abstract; that
is, it is independent of the technologies used for native component implementations.

The composition model allows the specification of event-based integration logics,
as we argue that presentation integration is mostly event-based for synchronizing UIs.
The integration logics are specified via a set of event listeners, each linking an event
in one component to an operation in another component. For example, the park listing
component fires a park selection changed event when the user selects a different park;
this causes the invocation of an operation on the map component to show a map of the
newly selected park and the invocation of an operation on the image displayer to
show an image of the new park.

2 http://www.cse.unsw.edu.au/~jyu/icwe07/demo.pdf

 Mixup: A Development and Runtime Environment for Integration 481

To model components and compositions, Mixup includes the Extensible Presen-
tation Integration Language (XPIL), which contains a set of XML elements for
describing the component model (i.e. component descriptor), similarly to WSDL for
Web services, and a set of XML elements for specifying the composition model.

Finally, a runtime middleware executes the resulting composite application by
interpreting the specifications in XPIL. In addition, the middleware includes a com-
ponent adapter framework that allows bindings from the abstract component model to
a concrete (native) component implementation. A component adapter thus facilitates
the communication between the runtime middleware and the native component
implemented in a particular component technology (e.g. ActiveX, Java Applet, etc.).

3 Mixup Demo Flow

In this section we demonstrate how the National Park example can be developed and
executed using our framework. To create the composite application, the developer
follows these steps: i) creating abstract component descriptors (if not yet available)
out of UI front-ends of existing applications and save them in a component registry;
ii) creating the composite application by specifying its components, their interactions
and their layout information; iii) generating the XPIL documents and deploy the com-
posite application to the runtime environment.

Creating Component Descriptors. The abstract component descriptors for the three
components in our National Park example can be created either semi-automatically or
manually via the component editor (Fig. 2).

Fig. 2. Development environment

First, if a particular component technology supports abstract descriptions (e.g.
WSRP) or meta-language facilities such as refection (e.g. Java Applet), the compo-
nent editor may call a suitable component inspector to find out the component's
native events, operations and properties and then generate the component model de-
scriptor with the appropriate bindings to the native implementation (this is similar to
automatically generating a WSDL document from a Java class).

482 J. Yu et al.

The component developer may take the automatically generated component
descriptor and directly deposit it into the registry. However, typically not all events,
operations and properties are needed for the integration. The developer may choose to
filter them and to keep only the relevant ones, possibly renamed for better readability.

In cases where meta-language facilities are unavailable, the component editor al-
lows the developer to manually create component descriptors. For the Google Maps
component (as well as other AJAX components), the developer can create an abstract
operation and specify its binding by pointing to the appropriate JavaScript function.

As depicted in Fig. 3, the editing panel (left hand side of the editor) shows the three
components in our National Park example. The yellow flash icon denotes events, and
the red rhombus icon denotes operations. Note that the label under the operation or
event contains the name of the corresponding native method (e.g. JavaScript function,
.NET method) in the component implementation.

Creating Composite Application. To build the National Park example, the developer
needs to specify both composition logic and layout information via the composition
editor (Fig. 2).

First, the developer must select the appropriate components from the registry win-
dow (upper right corner of Mixup Editor in Fig. 3) and places them in the editing
panel (left hand side of the editor). She then defines event listeners by drawing arrows
that link events of one component to operations of other components. For example,
the arrow from the "ParkSelectionChanged" event of the park listing component to
"showPOI" operation of Google Maps implies that once the park selection is changed
by the user, the "showPOI" operation should be called to display the map of the newly
selected park. Similarly, the arrow to the "search" operation of Flickr specifies that
Flickr should display an image of the park newly selected by the user.

Fig. 3. Mixup Editor

 Mixup: A Development and Runtime Environment for Integration 483

If the event parameters and operation inputs do not match (e.g. number of parame-
ters, data types), the editor will request additional input from the developer, such as
XSLT or XQuery statements that can transform the event parameters to operation
inputs. In addition, the developer may also specify additional integration and/or trans-
formation logics in the form of scripts or references to external code.

In Fig. 3, the registry window contains several additional components. Specifically,
we could use Yahoo Maps instead of Google Maps as the map component in our
National Park example. All we need to do is to select Yahoo Maps and drop it into the
editing panel and then link the "ParkSelectionChanged" event of the park listing com-
ponent to the appropriate operation of Yahoo Maps. Similarly, we could also use
PBase image service instead of Flickr. Conversely, presentation components can be
reused in a variety of composite applications. For example, the Google Maps compo-
nent defined as per our framework can be also used in real estate applications and
wherever maps are needed as part of the UI functionality.

Finally, the editor includes a layout view for specifying layout information. Non-
markup based components (e.g. Java applets, ActiveX controls) are represented by
boxes corresponding to their location and size; the developer can move and resize
the boxes to define the components' layout information. For markup-based compo-
nents (e.g. AJAX components), the developer can provide additional CSS state-
ments so that the components can have non-rectangular shapes and can be mixed
and overlapped.

Deployment and Runtime. Once the component descriptors are created and the
composition logic and layout information are fully specified, an XPIL document can
be generated and deployed to the runtime middleware. Our development environment
includes a testing runtime, which consists of a browser and a web server running in
the local development machine (Fig. 2).

Finally, the demo shows the integrated UI at work – when the user interacts with
one component, the other related components will change in a synchronized fashion
according to the specifications in the composition model. The result of executing the
composite application, US National Park Guide, is shown in Fig. 1.

4 Related Work

There are numerous web application frameworks for building composite GUI applica-
tions from reusable modules; for example, Java Portlet, ASP.NET Web Parts, and
WSRP. These frameworks all require the components to be built using their specific
interfaces or APIs. On the other hand, our framework is at a higher level - our com-
ponent model provides an abstract layer on top of any existing component interfaces;
and we do not require or enforce any specific APIs. Furthermore, our component
model is generic enough to model existing presentation components developed in
these frameworks (as a matter of fact, we plan to provide component adapters for the
frameworks mentioned above).

Detailed discussions on related work in this area can be found in [2].

484 J. Yu et al.

References

1. Alonso, G., et al.: Web Services: concepts, architectures, and applications. Springer, Hei-
delberg (2004)

2. Daniel, F., et al.: Understanding UI integration: a survey of problems, technologies, and
opportunities. IEEE Internet Computing (May/June 2007)

3. Myers, B.A., Rosson, M.B.: Survey on user interface programming. In: the Proceedings of
SIGCHI’92, Monterey, California (May 1992)

4. Yu, J., et al.: A framework for rapid integration of presentation components. In: the Pro-
ceedings of WWW’07, Banff, Canada (May 2007)

Squiggle: an Experience in Model-Driven

Development of Real-World
Semantic Search Engines

Irene Celino, Emanuele Della Valle, Dario Cerizza, and Andrea Turati

CEFRIEL – Politecnico of Milano, Via Fucini 2, 20133 Milano, Italy
{celino,dellavalle,cerizza,turati}@cefriel.it

Abstract. Search engines are becoming such an easy way to find tex-
tual resources that we wish to use them also for multimedia content;
however, syntactic techniques, even if promising, are not up to the task:
future search engines must consider new approaches. In order to prove
that Semantic Web technologies provide real benefits to end users in
terms of an easier and more effective access to information, we designed
and developed Squiggle, a Semantic Web framework that eases the de-
ployment of semantic search engines. Following a model-driven approach
to application development, Squiggle makes ontologies part of the run-
ning code. We evaluate the advantages of Squiggle against traditional
approaches in real world deployments.

1 Introduction

Searching everything everywhere is becoming our habit when we need to find
something. We search Web pages in Web search engines, music using search en-
gines integrated in multimedia players, pictures in images organizer applications,
even personal stuff using desktop searches. However, finding what we need is of-
ten a hard job. Current search engine technology is very good in finding complete
Web pages published all over the world, but it lacks the desired precision1 and
recall2 when searching for multimedia resources. For instance, searching “jaguar”
in an image search engine results in a mix of felines and cars, which are difficult
to tell apart. Moreover, current technology is unable to cope with results that
requires either to extract a part of a resource (e.g., a scene from a movie) or to
aggregate numerous resources (e.g., relevant but scattered information regarding
a person).

Furthermore, searching is an expensive activity. For instance, in a medium-
sized enterprise with 100 employees, each one of them would perform around 10
searches per day (some on the Web, some on their mailboxes, etc.), stopping,
successfully or not, in 1-2 minutes. This means that 20-30 hours a day are spent
in searching.

1 Precision is the proportion of relevant data of all data retrieved.
2 Recall is the proportion of retrieved relevant data, out of all available relevant data.

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 485–490, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

486 I. Celino et al.

What we really need is a search engine able to find any kind of multimedia
resource with the required level of granularity; but, how can we achieve this
search engine of the future? We believe that Tim Berners-Lee was right when,
drawing the “Semantic Web Roadmap”[1], he said:

If an engine of the future combines a reasoning engine with a search
engine, it may be able to get the best of both worlds.

Keeping in mind Tim Berners-Lee claim, we conceived, implemented and de-
ployed Squiggle (http://squiggle.cefriel.it) an extensible semantic search
framework designed to add a conceptual flavour at indexing time and to exploit
as much as possible ontological elements to improve searching time.

2 Existing Approaches to Improve Search Engines

A standard “syntactic” search engine’s implementation is mainly based on three
phases [2]: (a) crawling time, the phase in which the resources are collected
in order to build a coherent (and more homogeneous) set; (b) indexing time,
the phase during which the crawled resources are parsed and indexed in some
particular data structures, optimized to quickly answer to queries; (c) searching
time, the run-time phase in which final users submit their queries in order to
retrieve meaningful results, possibly ranked and/or clustered.

When the resources to be indexed are multimedia files instead of Web pages,
the automatic process of their content becomes very difficult and the lack of links
makes crawling a tricky problem and Google PageRank algorithm useless. The
two ways out are the use of smart machines and smart data. By smart machine
we mean a bunch of techniques that includes text processing, audio processing
and image/video processing. Several search engines that exploit smart machines
are appearing (e.g., Retriever or Musipedia3). On the other side, smart data is
the base for search engines that exploits semantics at search time to increase both
recall and precision. I.e., Semantic Web standards offer the possibility of model-
ing the domain both at lexical and at knowledge level. Explicit representation of
semantics gives search engines the ability to disambiguate between homonyms
and expand the search to synonyms, pseudonyms and any other relation.

There are several examples of existing approaches that try to combine Seman-
tic Web technologies with smart machines in search engines. One of the most
interesting is represented by KIM [3], which includes a semantically enhanced
information extraction system, which provides automatic semantic annotation
with references to classes and instances in the ontology.

3 Our Steps Towards the “Search Engine of the Future”

In our opinion, what Tim Berners-Lee calls the “search engine of the future”
should have a structure similar to existing “syntactic” search engines, but should
3 http://labs.systemone.at/retrievr and http://www.musipedia.org/

http://squiggle.cefriel.it
http://labs.systemone.at/retrievr
http://www.musipedia.org/

Squiggle: Model-Driven Development of Semantic Search Engines 487

also be enriched with machine-processable semantics. In our vision, domain on-
tologies can be employed in empowering searching, indexing and also crawling.

At crawling time, a previous knowledge about the domain can assist the col-
lecting of resources, because this “know-how” can drive the crawler to focus on
relevant information even if links are not explicit. At indexing time, the input in-
formation can be analyzed by means of smart machines and tagged with respect
to its meaning before it is processed by the indexer tool. In this way, the tool is
able to index both the syntactic content of an input document and its attached
semantics. At searching time, domain ontologies can be employed to customize
search engine applications and to improve the user experience in terms of value
added and effectiveness of the search. The tool can help the user in refining his
query both by clarifying the matter of his search and by suggesting possible
expansions of his query to related subjects. The result is that the user can find
more easily what he was looking for.

We conceived Squiggle, keeping in mind Tim Berners-Lee claim and the above
analysis. Squiggle is an extensible framework designed to add a conceptual layer
to indexing process and to exploit as much as possible ontological elements to
improve searching time, leaving to each domain-dependent instantiation of the
framework the choice of using ontologies also at crawling time.

4 Conceptual Architecture of the Squiggle Framework

As a result of our analysis and design, Squiggle is:

– a semantic search-engine, i.e. a semantic web application with searching
functionalities; and

– a semantic-search engine, i.e. a search engine that is able to deal with the
“meaning” of the searched information.

While the latter objective concerns the semantics of the data and can be achieved
through an opportune modeling of knowledge, the former purpose is strictly
related to the model-driven development of a semantic web application.

Squiggle is indeed a semantic application, since its design heavily grounds on a
common model, provided by SKOS [4], which permeates all its structure; Squiggle
assumes SKOS as its application model and, therefore, is naturally able to exploit
SKOS’ semantics. Moreover, being SKOS a horizontal ontology (therefore not
bound to any specific subject), Squiggle is completely domain-independent and
can thus serve as a framework to build domain-specific search applications. In
essence, Squiggle is not a search engine itself, but it allows users to customize
their own engine on the basis of a particular domain knowledge.

Squiggle is designed to provide both syntactic and semantic indexing and
searching primitives, seamlessly combining the speed of syntactic search tools
with improved recall and precision, based on the ability to assign alternative
designations and wordings in multiple languages to their meaning. Among the
constituents of Squiggle, Sesame [5] is used as the semantic engine that queries
the knowledge base, whereas the syntactic search engine Lucene [6] is used to

488 I. Celino et al.

quickly perform text searches. Therefore the described architecture lends itself
well both to overcome the limitations of purely syntactic approaches and to
improve the performance of semantic engines.

Technically speaking, Squiggle’s innovation consists in its Conceptual Index-
ing and Semantic Search capabilities. The Conceptual Indexing consists of a
semantic annotation process, during which the input information is scanned
and analyzed in order to identify and extract the concepts that characterize
it (Squiggle expects resources to be annotated with keywords and it searches in
the domain ontology for concepts whose SKOS labels match those keywords),
and of an indexing process, during which these concepts are stored in an index
for subsequent search and retrieval. On the other hand, the Semantic Search
analyzes user’ queries and tries to identify the ontological elements that can
be related to the request, “suggesting” to the user the potential meanings of
his query; the user is therefore presented with both the results of the syntac-
tic search and the available meanings extracted from the query, which can help
him to refine his request, “disambiguating” among its the possible acceptations.
Moreover, when a user query is re-conducted to a specific meaning, Squiggle also
seeks other concepts that could be of interest for the user; this is possible because
Squiggle Semantic Search can navigate across the graph of interconnected ele-
ments of the domain ontology, following “semantic paths” denoted by relations
and attributes.

5 Squiggle Real-World Deployments

In order to prove the feasibility of our approach, we briefly present some test
beds. We successfully developed some search engines on top of the Squiggle
framework, in different application fields.

Squiggle Ski – CEFRIEL, as Official Supplier of the XX Olympic Winter
Games for Applied Academic Research, caught the opportunity to demonstrate
Squiggle in the context of CEFRIEL’s activities related to Torino 20064. Our
aim in deploying Squiggle Ski, a service available on CEFRIEL’s portal, was to
help the international public of Torino 2006 in finding images of the athletes
involved in the alpine skiing races.

Squiggle Ski is on-line at http://squiggle.cefriel.it/ski; during Torino
2006 event, it was visited by almost one thousand visitors searching for the
various athletes that won a medal in the alpine-skiing races. When you open the
home page, you are presented with an ordinary search box. If you try searching
for “Herminator abfahrt” (being “Herminator” a nickname for Hermann Maier
and “abfahrt” the German for downhill), you receive a plain syntactic search, and
in a box on the right Squiggle Ski asks if you mean the athlete “Hermann Maier”
and the discipline “downhill”. If you eventually follow Squiggle Ski suggestions,
all the images of Hermann Maier in a downhill race are retrieved, disregarding

4 See also http://www.cefriel.it/press/olimpiadi2006.html

http://squiggle.cefriel.it/ski
http://www.cefriel.it/press/olimpiadi2006.html

Squiggle: Model-Driven Development of Semantic Search Engines 489

the language used in the initial query; an explanation box shows how Squiggle
Ski expanded the query to achieve the result.

Squiggle Music – Squiggle Music is an instantiation of Squiggle framework
in the music field. We noticed that both very diffuse media-players and pop-
ular sites for buying music fail to retrieve tracks when alternative wordings
or translations are used (e.g. searching “rhcp” does not always retrieve the
list of all Red Hot Chili Peppers tracks in the repository). Squiggle Music
indexes audio files (mainly mp3 files) enriching them with information about
authors, song titles and music genres. Squiggle Music is publicly available at
http://squiggle.cefriel.it/music. Combining the smart data from Mu-
sicBrainz and MusicMoz5 with a smart machine like QuickNamer6 that makes
use of audio fingerprints, we built an automatic semantic annotator that acts as
a domain-dependent plug-in of Squiggle framework during the Conceptual Index-
ing phase. This annotator is therefore able to add to each file all its metadata
(artist, song title, etc.).

From the final user’s point of view, besides the usual “suggestion” of meanings,
Squiggle Music is able to perform a query expansion and to present the user with
other results that could be of his interest. Squiggle Music can suggest related
artists when searching for a performer, songs by the same artist when looking
for a song, broader and narrower styles when asking for a music genre.

6 Conclusions

In this paper, we presented Squiggle, a Semantic Web framework that eases the
deployment of semantic search engines in specific applications. We enlightened
how the employment of Semantic Web technologies to the development of search
engines provides real benefits to end users, enabling an easier and more effec-
tive access to information; a semantic search engine, in facts, improves current
syntactic engines in terms of both precision and recall, thanks to an explicit
characterization of the domain at lexical and conceptual level. Semantic Web
technologies show their whole potentialities in the expansion of queries to in-
clude related meanings: a semantic search engine built on Squiggle appears to
be more usable, in that users are supported with semantic “suggestions”, as our
test-beds demonstrate at a glance.

Moreover, we designed Squiggle foreseeing possible extensions to the frame-
work: for example, the adoption of smart machines allows the exploitation of
their media-dependent capabilities and, in the meantime, the generation and
aggregation of smart data.

Finally, we admit that a semantic search engine developed with Squiggle is
strongly domain-dependent and cannot compete with general-purpose search
engines; however, we definitely believe that such an approach provides better
results, because a focused tool better meets specialized needs, helping you in
finding what you’re really looking for.

5 http://www.musicbrainz.org/ and http://www.musicmoz.org/
6 http://phonascus.sourceforge.net/

http://squiggle.cefriel.it/music
http://www.musicbrainz.org/
http://www.musicmoz.org/
http://phonascus.sourceforge.net/

490 I. Celino et al.

Acknowledgements

This research has been partially supported by the NeP4B Italian-funded FIRB
project (MIUR-2005-RBNE05XYPW).

References

1. Berners-Lee, T.: Semantic Web Road map (1998), Available on the web at
http://www.w3.org/DesignIssues/Semantic.html

2. Brin, S., Page, L.: The Anatomy of a Large-Scale Hypertextual Web Search Engine.
Computer Networks and ISDN Systems 30, 107–117 (1998)

3. Kiryakov, A., Popov, B., Terziev, I., Manov, D., Ognyanoff, D.: Semantic Annota-
tion, Indexing, and Retrieval. Elsevier’s Journal of Web Semantics 2(1) (2005)

4. Miles, A., Brickley, D.: SKOS Core Guide, W3C Working Draft (November 2,
2005), http://www.w3.org/TR/swbp-skos-core-guide

5. Kampman, A., van Harmelen, F., Broekstra, J.: Sesame: A generic architecture for
storing and querying RDF and RDF Schema. In: Horrocks, I., Hendler, J. (eds.)
ISWC 2002. LNCS, vol. 2342, Springer, Heidelberg (2002)

6. Gospodnetic, O., Hatcher, E.: Lucene in action. Manning Publications (2004)

http://www.w3.org/DesignIssues/Semantic.html
http://www.w3.org/TR/swbp-skos-core-guide

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 491 – 495, 2007.
© Springer-Verlag Berlin Heidelberg 2007

WebTE: MDA Transformation Engine for Web
Applications

Santiago Meliá1, Jaime Gómez1, and José Luís Serrano2

1 Universidad de Alicante, Spain
2 Caja de Ahorros de Alicante, Spain

santi@dlsi.ua.es, jgomez@dlsi.ua.es, jlserrano@cam.es

Abstract. Transformations are of crucial importance for the success of Model-
Driven Web Engineering (MDWE) approaches. Therefore, we need transfor-
mation engines to improve and obtain the results of the different approaches.
However, very few model-driven Web approaches provide a transformation
tool which would allow them to obtain an implementation from their models.
In this paper, we present a tool called WebTE (WebSA Transformation En-
gine) which is able to introduce all the input artefacts of the WebSA approach
and to establish a refining process based on model-to-model and model-to-text
transformations which gives us the final implementation of a Web application.

1 Introduction

Model-Driven Engineering (MDE) is becoming a widely accepted approach for Web
Engineering discipline. In fact, existing model-based Web engineering approaches
currently provide excellent methodologies focused on the functional aspects. How-
ever, due to the novelty of this discipline, there are some aspects which have not been
tackled yet: (1) the architectural aspects which would permit to obtain some quality
attributes such as distributed computation, scalability, maintenance, connectivity with
legacy systems, etc. (2) Traceability from the design models to the implementation.
(3) The existence of too many notations to represent the same functional concepts in
the different Web methods. (4) Currently, there is not any tool which allows us to
define a complete model-driven approach based on transformations to obtain the final
implementation.

To overcome these limitations, WebSA [7] defines a specific development process
for Web Applications which regards software architecture artefacts as first-class citi-
zens introducing automation mechanisms that accelerate this process. To do so, this
approach defines a set of architectural models which complements the functional
models of other Web methodologies providing a complete specification of the appli-
cation. From these models, this approach starts an automatic and traceable process
through a set of model-to-model transformations which carries out the integration of
the architectural and functional aspects in a design model. In the last step, the process
defines a set of model-to-text transformations which converts the integrated design
model into different platform implementations. In order to give support to this ap-
proach, we have implemented a Web Tool called WebTE [12] which is basically a

492 S. Meliá, J. Gómez, and J.L. Serrano

Web application which, through Web pages, allows us to introduce WebSA’s models
and transformations into a transformation engine which will execute them and give us
the result of the WebSA process.

Section 2 gives an overview of the WebSA development process. Section 3 pre-
sents the specification of the WebTE tool and its user interface. Finally, section 4
presents some future steps and the conclusions.

2 The WebSA Approach: An Overview

WebSA [7] is a proposal whose main objective is to cover all phases of Web applica-
tion development focusing on software architecture. It contributes to fill the gap cur-
rently existing between traditional Web design models and the final implementation.
In order to achieve this, it defines a set of architectural models to specify the architec-
tural viewpoint which complements current Web engineering methodologies.

The WebSA development process is based on the MDA development process [4],
which includes the same phases as those included in the traditional life cycle of an
application (analysis, design and implementation). However, unlike in the traditional
life cycle, in the MDA approach [10] the artefacts that result from each phase must be
models, which represent the different abstraction levels in the system specification. In
the analysis phase the Web application specification is vertically divided into two
viewpoints. On the one side, the functional-perspective is given by the Web func-
tional models provided by approaches such as WebML [2], OO-H [3] or UWE [6].
On the other side, the Subsystem Model (SM) and the Configuration Model (CM)
define the software architecture of the Web Application. Defining the application
architecture orthogonally to its functionality allows for its reuse in different Web
applications. The models-to-model transformation which goes from analysis models
to platform independent design model provides a set of artefacts in which the concep-
tual elements of the analysis phase are mapped to design elements. It integrates the
information about functionality and architecture in a single Integration Model (IM).
This transformation type will be called T1 in the rest of the article. The Integration
Model is the basis on which several model-to-text transformations, one for each target
platform, can be defined. The output of these mode-to-text transformations is the
implementation of the Web application for a given platform. This transformation type
will be named T2 in the rest of the article.

3 WebTE: WebSA Transformation Engine

To give a support to the WebSA approach, we have implemented a Web tool called
WebTE (WebSA Transformation Engine) [12] which is developed using the J2EE
platform. The WebTE tool is based on the standards provided by the OMG (UML,
XMI, MOF and OCL) mainly for optimizing the implementation effort, through off-
the-shelf components and facilitating the use of any type of UML tool that possesses
the support for class diagrams.

The main characteristic of the WebTE Tool is that it is a Web application and can
therefore be used in a remote way. This is due to the fact that this tool does not need
to provide a modelled graphic interface, because models and transformations are

 WebTE: MDA Transformation Engine for Web Applications 493

specified from any UML tool and it is from them that their representation can be gen-
erated in XMI. Besides, the text transformations are sent using text files.

Fig. 1 describes a complete process execution of the WebTE application, represent-
ing the different artefacts and components, each of which performs a task within the
WebSA process. We will start the description in a gradual form using numbers that
indicate the order of the process from source models to implementation.

Fig. 1. The process of the WebTE Tool

It consists of the following steps:

1. The Web modeller expert defines the UML models of WebSA and the OO-H
functional Web method using a UML tool, and then he/she generates the XMI
representation which is loaded by the XMI parse of the JMI metamodels. The
MOF metamodels of WebSA and the Web approaches are defined in JMI (Java
Metamodel Interface) [4]. The use of JMI has two advantages: (1) it manages the
instances of the MOF metamodel classes, that is, it makes it possible to manage
models which are compliant with the metamodels, and (2) it provides the parses
for reading and writing from XMI documents of UML that represent the models.

2. The Transformation expert establishes the UML transformations using the UPT
language [8] in any UML tool capable of generate XMI documents of UML. The
tool imports the XMI of the UPT transformations and from them creates the in-
stances of the UPT metamodel.

3. It initiates a process of compilation in order to obtain the transformation in Java
code and its subsequent compilation. This step is optional, because once the
WebSA transformations have been generated, the rest of users can reuse them.
However, in some cases, the user could be interested in introducing an extension
of the WebSA transformations for a specific Web application.

494 S. Meliá, J. Gómez, and J.L. Serrano

4. The T1 transformation (models-to-model) is launched to convert the instances of
JMI origin metamodels (WebSA and OOH) into the instances of the JMI target
metamodel that correspond to the WebSA Integration Model.

5. The last phase of the WebSA process starts at this point with the T2 transforma-
tion which transforms the Integration Model into the platform implementation us-
ing model-to-text rules. To do this, the WebSA model-to-text transformation
rules are written and loaded into the WebTE tool using text files. This step is also
optional, because the WebTE tool has a complete set of predefined model-to-text
rules for the most important platforms such as J2EE and .NET. However, a user
could introduce new rules that are specific for his application.

6. Finally, the T2 transformation is executed and the instances of the WebSA
metamodel are queried to generate the implementation of a specific platform
(J2EE or .NET).

Fig. 2. Main Page of WebTE for Petstore Web Application

Fig. 2 depicts a snap-shot of the WebTE tool. This Web page presents the main
page of the well-known Web application Petstore [11] where we find an image of the
application, a description and a resume of its artefacts (models, transformations and
executions) that have been stored in the WebTE tool up to now.

Besides, on the right side, we can see a table which has a set of links with all the
different actions that a user can perform using the WebTE Tool such as: Modify Ap-
plication and Delete Application which allow us to manage a created application. New
Model and Models permit to create and query the models, respectively. New UPT
Transformation and UPT Transformation create and query the new model-to-model
transformations specific for the Petstore application. New Text Transformation and
Text Transformation create and query the new model-to-text transformations specific
for the Petstore application. New T1 starts the execution of the WebSA T1 transfor-
mation as does New T2 for the WebSA T2 transformation. Finally, the Implementa-
tion link permits to query the set of Petstore implementations obtained up to now.

Up to now, WebTE only supports the Web functional models defined in the OO-H
approach. However, WebTE could be easily extended to other functional approaches

 WebTE: MDA Transformation Engine for Web Applications 495

using the Netbeans MDR [9] framework which allows us to obtain automatically a
JMI metamodel from a XMI-MOF metamodel defined in any UML tool.

4 Conclusions and Future Works

In this paper has been presented a Web tool called which WebTE is based on three
main aspects: (1) support of the models and transformations of the WebSA approach.
(2) Extensibility for adding and modifying models and transformations rules specific
for a user or a system. (3) Interoperability between different tools in order to obtain
different artefacts from them using XMI. WebTE offers a great tool compatibility
because the models and transformations can be represented in any UML tool and can
also be shared using XMI.

Today, this tool has been applied to an MDA proposal as WebSA and a Web Func-
tional Method as OO-H but it could be applied to any approach which defines its
metamodel in the standard MOF. In our future work, we will try to increase the num-
ber of possible users of the WebTE tool introducing other Web methodologies meta-
models such as UWE [6], WebML [2] and W2000 [1]. It allows us to introduce their
functional aspects into the WebSA development process.

References

1. Baresi, L., Garzotto, F., Paolini, P.: Extending UML for Modeling Web Applications. In:
Proceedings of the 34th International Conference on System Sciences (2001)

2. Ceri, S., Fraternali, P., Matera, M.: Conceptual Modeling of Data-Intensive Web Applica-
tions. IEEE Internet Computing 6(4), 20–30 (2002)

3. Gómez, J., Cachero, C., Pastor, O.: Conceptual Modeling of Device-Independent Web Ap-
plications. IEEE Multimedia 8(2), 26–39 (2001)

4. Java Metadata Interface (JMI) (2006), http://java.sun.com/products/jmi/
5. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture, Prac-

tice and Promise. Addison-Wesley, London, UK (2003)
6. Koch, N., Kraus, A.: The expressive Power of UML-based Web Engineering. In: 2nd

IWWOST’02, CYTED. June 2002. pp. 105–119 (2002)
7. Meliá, S., Gomez, J.: The WebSA Approach: Applying Model Driven Engineering to Web

Applications. Journal of Web Engineering, © 5(2), Rinton Press, 121–149 (2006)
8. Meliá, S., Gomez, J.: UPT. A Graphical Transformation Language based on a UML Pro-

file. In: Proceedings of European Workshop on Milestones, Models and Mappings for
Model-Driven Architecture (3M4MDA 2006). 2nd European Conference on Model Driven
Architecture (EC-MDA 2006) (July 2006)

9. Metadata Repository Project HOME (MDR) architecture.html (2006),
 http://mdr.netbeans.org/

10. OMG. MDA Guide, OMG doc. ab/2003-05-01
11. TM J2EE Blueprint. Java Petstore 1.1.2 (November 2004) http://developer.java.sun.com/

developer /releases/petstore/petstore1_1_2.html
12. WebTE., http://ebusiness.dlsi.ua.es:8080/WebSATool/

Noodles: A Clustering Engine for the Web

Giansalvatore Mecca, Salvatore Raunich,
Alessandro Pappalardo, and Donatello Santoro

Dipartimento di Matematica e Informatica
Università della Basilicata

Potenza – Italy

Abstract. The paper describes the Noodles system, a clustering engine
for Web and desktop searches. By employing a new algorithm for doc-
ument clustering, based on Latent Semantic Indexing, Noodles provides
good classification power to simplify browsing of search results by casual
users. In the paper, we provide some background about the problem of
clustering search results, give an overview of the novel techniques imple-
mented in the system, and present its architecture and main features.

1 Background

Web and desktop search services are nowadays essential tools for any Internet
user. However, keyword-based, boolean-style search engines like Google usually
fall short when asked to answer rather broad queries – those that are often
posed by less-experienced users – like, for example, to find documents about
the term “power” or the term “amazon”. The poor quality of results in these
cases is mainly due to two different factors: (a) polysemy and/or synonymity in
search terms (b) excessively high number of results returned to the user. As a
consequence, less skilled users are often frustrated in their search efforts.

The Semantic Web promises to solve most of these problems by adding se-
mantics to Web resources. In fact, there have been some proposals in the lit-
erature towards a semantic Web search engine [3]; these proposals assume that
documents can be classified based on their RDF or OWL annotations, and there-
fore are not immediately applicable. As a consequence, at the moment the most
promising efforts along the way to Semantic Web search services are the so-called
clustering engines.

The idea of clustering search results is not new, and has been investigated
quite deeply in Information Retrieval, based on the so called cluster hypothe-
sis [10] according to which clustering may be beneficial to users of an information
retrieval system since it is likely that results that are relevant to the user are
close to each other in the document space, and therefore tend to fall into rela-
tively few clusters. Several commercial clustering engines have recently emerged
on the market. In fact, even Google has experimented for a while with forms
of clustering of their search results [11], and has recently introduced a “Refine
Your Query” feature1 that essentially allows to select one of a few topics to
1 http://www.google.com/help/features.html#refine

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 496–500, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Noodles: A Clustering Engine for the Web 497

narrow a search. Similar experiments are also being conducted by Microsoft [8].
Other well known examples of commercial clustering engines are Vivisimo [9]
and Grokker [7]. These systems share a number of common features with re-
search systems introduced in literature, mainly the Grouper system [12,13] and
Lingo/Carrot Search [5,6]. We summarize these features in the following.

First, these tools are usually not search engines by themselves. On the con-
trary, when a user poses a query, the clustering engine uses one or more tra-
ditional search engines to gather a number of results; then, it does a form of
post-processing on these results in order to cluster them into meaningful groups.
The cluster tree is then presented to the user so that s/he can browse it in order
to explore the result set. It can be seen that such a technique may be helpful to
users, since they can quickly grasp the different meanings and articulations of
the search terms, and more easily select a subset of relevant clusters.

Being based on a post-processing step, all of these clustering engines work by
analyzing snippets, i.e., short document abstracts returned by the search engine,
usually containing words around query term occurrences. The reason for this
is performance: each snippet contains from 0 to 40 words, and therefore can be
analyzed very quickly, so that users do not experience excessive delays due to the
clustering step. However, snippets are often hardly representative of the whole
document content, and this may in some cases seriously worsen the quality of
the clusters.

2 The Noodles System

The Noodles system is a clustering engine for Web and desktop searches. It
is based on a novel algorithm for clustering search results [4]. Figure 1 shows
clusters produced by the system for a Google search on term “amazon”.

One of the main features of the system is that it is not based on snippets, but it
requires access to the whole document contents and uses a different compression
techniques to improve performance. A key objective of the Noodles clustering
technique is to achieve a high level of quality in terms of its ability to correctly
classify documents, i.e., to dynamically build a bunch of clusters that correctly
reflect the different categories in the document collection returned by the search
engine. Similarly to [1], we believe that this ability may assist less-skilled users
in browsing the document set and finding relevant results.

The clustering algorithm that has been developed is called Dynamic SVD
Clustering (DSC) [4], and it is based on Latent Semantic Indexing [2]; the nov-
elty of the algorithm is twofold: (a) first, it is based on an incremental com-
putation of singular values, and does not require to compute the whole SVD
of the original matrix; (b) second, it uses an original strategy to select k, i.e.,
the number of singular values used to represent the “concepts” in the document
space; differently from other proposals in the literature, our strategy does not
assume a fixed value of k, neither a fixed approximation threshold.

In [4], based on experimental results, we show that the algorithm has very good
classification power; in many cases it is able to cluster pre-classified documents

498 G. Mecca et al.

Fig. 1. A Snapshot of the Noodles Search Engine

collections with very good accuracy; it is worth noting that the quality of the
classification severely degrades when snippets are used in place of the whole
document content, thus providing further evidence that snippets are often too
poor and not sufficiently informative.

Note that such good classification power has a cost in terms of computing
times, since the SVD-based computation has higher complexity with respect to
typical phrase analysis algorithms based on snippets. However, the algorithm
has been designed in such a way that in practice it has good performance, and
lends to a very natural clustering strategy based on the minimum spanning tree
of the projected document space. A detailed report on experimental results is
available in [4].

3 Architecture of the System

The system is fully written in Java. It comprises several modules and some well-
known Java libraries, as shown in Figure 2.

Spring2 has been adopted as a dependency-injection framework. This greatly
helped the development in several respects; on the one side it improved the
overall system modularity; on the other side, it helped to experiment different
strategies for various aspects of the clustering algorithm. For the development of
the desktop user interface, we adopted the Spring Rich Client Platform, which

2 http://www.springframework.org

Noodles: A Clustering Engine for the Web 499

Fig. 2. Architecture of the System

is tightly coupled to the dependency-injection framework, and provides further
ease of configuration and an effective binding framework for forms and wizards.

The system supports both Web and desktop searches. Web searches use Google
via its web service API. To simplify the experimental phase, it also incorporates
a module to sample categories in the DMOZ directory (dmoz.org).

Desktop searches use Apache Lucene (lucene.apache.org) as an indexing en-
gine. The Noodles crawler runs as a daemon and incrementally inspects the local
disk to feed files to Lucene for indexing purposes. Its behavior is fully customiz-
able: users may select what portion of the local disk they intend to index.

At the core of the system stands the Noodles clustering engine, which imple-
ments the dynamic SVD clustering algorithm. In order to perform SVD com-
putations, COLT (dsd.lbl.gov/h̃oschek/colt) was selected as a matrix manipu-
lation package, although we are performing further experiments using JScience
(www.jscience.org), the newest math package for the Java language; in our exper-
iments, JScience – which is based on a high performance library called Javolution
(javolution.org) – showed significantly better performance both in terms of com-
puting time and heap usage with respect to COLT and other similar packages.
Unfortunately, JScience currently does not offer support for SVD, although this
might be added to future version. Nevertheless, we believe that JScience might
significantly improve computing times once support for SVD is implemented.

In implementing the system, special care was devoted to reduce computation
times. For example, we developed our user interface in such a way to minimize
the latency associated with the display of clusters. More specifically, when a user
runs a query, the system very quickly returns the ranked search results. At the
same time, it starts to cluster top-ranked results on a background thread, and

500 G. Mecca et al.

shows a “Clustering” button on the screen. If the user wants to see the clusters,
s/he has to select this button. Considering typical user reaction times, the net
effect of such an organization of the user interface is that, in the user perception,
the clustering is almost immediate.

4 Features of the Prototype

We will demonstrate the main features of the prototype by running several
searches, both on the Web and on the local disk, and more specifically: (a)
by performing searches based on typical polysemic terms, like “power”, “ama-
zon”, and “life”, and showing clusters produced by the system; (b) by performing
searches based on pre-classified documents, sampled from DMOZ, and showing
how the system is typically able to correctly reproduce the DMOZ classification.
Free Web and desktop searches will be used to assess the quality of the clustering
based on user feedbacks.

References

1. Chekuri, C., Raghavan, P.: Web Search Using Automatic Classification. In: Pro-
ceedings of the World Wide Web Conference (1997)

2. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Index-
ing by Latent Semantic Analysis. Journal of the American Society for Information
Sciences 41(6), 391–407 (1990)

3. Guha, R., Mc Cool, R., Miller, E.: Semantic Search. In: Proceedings of the World
Wide Web Conference (2003)

4. Mecca, G., Raunich, S., Pappalardo, A.: A New Algorithm to Cluster Search Re-
sults. Data and Knowledge Engineering, Available as Noodles WR–01–2006 (to
appear) at http://-www.-db.-unibas.-it/-projects/-noodles

5. Osinski, S., Stefanowski, J., Weiss, D.: Lingo: Search Results Clustering Algorithm
Based on Singular Value Decomposition. In: Proceedings of the International Con-
ference on Intelligent Information Systems (IIPWM) (2004)

6. Osinski, S., Weiss, D.: A Concept-Driven Algorithm for Clustering Search Results.
IEEE Intelligent Systems 20(3), 48–54 (2005)

7. The Grokker Search Engine: http://www.grokker.com
8. The SRC Search Engine: http://rwsm.directtaps.net/
9. The Vivisimo Search Engine: http://www.vivisimo.com

10. van Rijsbergen, C.J.: Information Retrieval (2nd edn.) London, Butterworths
(1979)

11. Web 2.0 – Exclusive Demonstration of Clustering from Google. http://www.
searchenginelowdown.com/2004/10/web-20-exclusive-demonstration-of.html

12. Zamir, O., Etzioni, O.: Web Document Clustering: A Feasibility Demonstration.
In: Proceedings of the ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR) (1998)

13. Zamir, O., Etzioni, O.: Grouper: A Dynamic Clustering Interface for Web Search
Results. Computer Networks 31(11–16), 1361–1374 (1999)

 http://-www.-db.-unibas.-it/-projects/-noodles
http://www.grokker.com
http://rwsm.directtaps.net/
http://www.vivisimo.com
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www.searchenginelowdown.com/2004/10/web-20-exclusive-demonstration-of.html
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update http://www.searchenginelowdown.com/2004/10/web-20-exclusive-demonstration-of.html

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 501 – 505, 2007.
© Springer-Verlag Berlin Heidelberg 2007

WebRatio 5: An Eclipse-Based CASE Tool
for Engineering Web Applications

Roberto Acerbis1, Aldo Bongio1, Marco Brambilla2, and Stefano Butti1

1 WebModels S.r.l.
Piazzale Gerbetto, 6. I22100 Como, Italy

{roberto.acerbis, aldo.bongio, stefano.butti}@webratio.com
2 Dipartimento di Elettronica e Informazione, Politecnico di Milano

Piazza L. Da Vinci, 32. I20133 Milano, Italy
mbrambil@elet.polimi.it

Abstract. The goal of this work is to present the software WebRatio 5, which is
a good representative of a new generation of CASE tools for model-driven de-
sign of Web applications. WebRatio 5 supports the WebML language and
methodology, and exploits the implementation experience of previous versions
of the software for providing user-friendly application design paradigms and re-
liable code generation engines. The tool is developed as a set of Eclipse plug-
ins and takes advantage of all the features of this IDE framework. Moreover, it
provides new capabilities in terms of support of extensions to the models, pro-
ject documentation, and coverage of new phases of the development lifecycle.
The overall approach moves towards a full coverage of the specification,
design, verification, and implementation of Web applications.

1 Introduction and Motivation

Although new paradigms of Web applications are arising, data-intensive Web ap-
plications still constitute the most diffused class of applications found on the Web.
Since their size and complexity are typically high, the ideal software development
process for this kind of applications should meet two goals: (i) incorporate require-
ments and model driven design in the development lifecycle; (ii) delivering a soft-
ware architecture that meets the non-functional requirements of performance, secu-
rity, scalability, availability, maintainability, usability, and high visual quality. Such
process should also be amenable to automation, to let developers concentrate on
functional requirements and optimization, and delegate the repetitive tasks (such as
code implementation) to software tools.

The model-driven design of this kind of Web applications should start from well
established requirement specifications and involves the definition of a data model (to
specify the data used by the application), a hypertext model (to describe the organiza-
tion of the front-end interface) and a presentation model (to personalize the graphical
aspect of the interface). Afterwards, model verification and model transformations
(e.g., for generating the running code) should be provided to complete the develop-
ment process. Unfortunately, no existing CASE tool can claim to support all these
aspects of the development.

502 R. Acerbis et al.

In this work we present the CASE software WebRatio 5 [10], representing a new
generation of model-driven CASE tools for Web applications. WebRatio 5 supports
the WebML language and methodology, and exploits the implementation experience
of previous versions of the software for providing user-friendly application design
paradigms and reliable transformation engines. The tool is developed as a set of
Eclipse plug-ins and takes advantage of its features. Moreover, it provides new capa-
bilities in terms of support of extensions to the models, project documentation, and
coverage of new phases of the development lifecycle.

The main advantages of the new Eclipse version of WebRatio are the following:

• All the design and development activities are performed through a common in-
terface. This includes the modeling of the Web application, the definition of
the visual identity, and the development of new business components;

• All the design items (models, components, documentation, and so on) are
stored into a common area (the so-called Eclipse workspace) and can be easily
versioned into a versioning system, such as CVS;

• All the existing Eclipse widgets can be reused and integrated in the toolsuite;
• New and existing editors for model and code design can be easily integrated.

The following sections outline the main features of the tool, provide some GUI ex-
amples and describe the overall philosophy of the WebRatio toolsuite, more and more
moving towards a full coverage of development process of Web applications.

2 Supporting the Design of WebML Models

WebRatio 5 fully supports the WebML metamodel [9] [3], including the most re-
cent extensions for workflow-driven Web applications [2] and Web services [8].
WebML is a high-level notation for data-, service-, and process- centric Web appli-
cations. It allows specifying the data model of a Web application and one or more
hypertext models (e.g., for different types of users) used to publish and manipulate
the underlying data. Each hypertext is a graph of pages, consisting of connected
units, representing at a conceptual level the primitives for publishing contents into
pages. Units are connected by links, that define navigation paths and carry data to
allow computation of the hypertext. Hypertexts also include operations that specify
business actions, such as content management operations on the data or other kinds
of tasks.

Fig. 1. Java components and XML descriptors for WebRatio units

 WebRatio 5: An Eclipse-Based CASE Tool for Engineering Web Applications 503

3 WebRatio 5 Architecture

The design-time part of WebRatio 5 is a GUI for application design comprising a set
of editors, a set of transformers and model validators, and some workspace manage-
ment components. Models are saved as XML documents. The model is transformed
into a running Web application through a code generator, which is developed using
the ANT, XSLT, and Groovy technologies. Groovy [7] is an agile language using a
Java-like syntax and fully integrated in the Java Platform. It provides many features
that are inspired by scripting languages. The tool is integrated with CVS [1] for col-
laborative design and visual synchronization of project versions. The architecture is
fully extensible, since it allows to specify new components (units) and include them
in the application design and code generation framework. At design time, the compo-
nents are described through a Java class that implements the service of the component
and by a set of XML descriptor, defining its interface.

The run-time framework exploits a set of off-the-shelf object-oriented components
for organizing the business tier:

• Smart service creation: services that implement units or business actions are
created upon request, cached, and reused across multiple requesters;

• Activity log: a set of pre-built functions for logging each service is provided;
• XML parsing and access: access to the information stored in the XML unit de-

scriptors is granted by standard parsing tools;
• Connection pooling: pre-built functions for dynamically managing a pool of

database connection allow to optimize performance and reliability.

At runtime one single service class is deployed for each type of component (which is
then instantiated with the smart service creation approach). Moreover, one runtime
XML descriptor is deployed for each component used in the design (Fig. 1).

4 WebRatio 5 GUI

WebRatio 5 has been implemented as a set of Eclipse [5] plug-ins. Eclipse is a
framework for IDEs, in the sense that, besides being an IDE itself, it provides the
infrastructure for defining new IDEs, i.e., new plug-ins for a particular programming
language or model. For instance, plug-ins exist for Java, C/C++, Python, Perl, UML,
and many others. Eclipse is an open source multi-platform framework, executable on
Linux, Windows, and Mac OS X.

The WebRatio GUI defines a special Eclipse perspective designed to better suit the
needs of visual modelling. It comprises several panels, which include:

• Model diagram editors for the design of the WebML data model and hypertext
models. The diagram editors are based on the GEF [6] framework and librar-
ies. GEF is a very powerful framework for visually creating and editing mod-
els. Fig. 2 (a) shows a snapshot of the data model editor, comprising the
project tree, the main diagram editor, the component panel (bottom left), the
property panel (center), and the error panel (bottom right);

504 R. Acerbis et al.

 (a) (b)

Fig. 2. Data model editor and HTML editor (with code completion) in WebRatio 5

• Advanced text editors for the design of XML descriptors, Java components,

and so on. The editors provide typical features like syntax highlighting, auto-
completion, and so on. An example is shown in Fig. 2 (b);

• Form-based editors for the specification of new components and for the prop-
erties of components instances. Fig. 3 (a) shows the editor of Indexes;

• Wizards for the support of the most common design tasks (e.g., new projects);
• Documentation editors for refined and customized project documentation gen-

eration. For instance, Fig. 3 (b) shows the editing and the generated documen-
tation for the Index unit component.

The long-term focus of the WebRatio 5 is oriented towards the full coverage of the
development process. In this sense, some new beta pieces are being developed, for
project documentation generation and coverage of new design steps. For instance, a
new fully-integrated Business Process editor and WebML model generator [1] is now
available (Fig. 4 shows a sample snapshot). It generates skeletons of WebML models
that comply with the BP specification and can be refined by the designer.

 (a) (b)

Fig. 3. Component definition editor and project documentation editor in WebRatio 5

 WebRatio 5: An Eclipse-Based CASE Tool for Engineering Web Applications 505

Fig. 4. The BPMN business process editor for Eclipse

5 Conclusions

The proposed demonstration illustrates WebRatio 5, a CASE tool based on the
Eclipse framework that allows the model-driven specification of a complex Web
application, including process management primitives, calls to Web services, and
integration of heterogeneous data sources. The demonstration shows that application
developers can concentrate only on the requirements of the application and on its
high-level design, because code and project documentation are automatically gener-
ated by the CASE tool and correctness is automatically verified.

References

[1] Brambilla, M.: Generation of WebML Web Application Models from Business Process
Specifications. Demo at ICWE2006, pp. 85–86. ACM Press, NewYork (2006)

[2] Brambilla, M., Ceri, S., Fraternali, P., Manolescu, I.: Process Modeling in Web Applica-
tions. In: ACM TOSEM, vol. 15(4), pp. 360–409 (2006)

[3] Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing
Data-Intensive Web Applications. Morgan Kaufmann, San Francisco (2002)

[4] CVS, Concurrent Versions System (2007) http://www.nongnu.org/cvs/
[5] Eclipse (2007) http://www.eclipse.org/
[6] Eclipse GEF (2007) http://www.eclipse.org/gef/
[7] Groovy (2007) http://groovy.codehaus.org/
[8] Manolescu, I., Brambilla, M., Ceri, S., Comai, S., Fraternali, P.: Model-Driven Design

and Deployment of Service-Enabled Web Applications. ACM TOIT 5(3), 439–479
(2005)

[9] WebML.org. (2007) http://www.webml.org
[10] WebRatio 4.3. (2007) http://www.webratio.com/

Extending Ruby on Rails for Semantic Web

Applications

Cédric Mesnage1 and Eyal Oren2

1 Faculty of Informatics
University of Lugano, USI

Lugano, Switzerland
cedric.mesnage@lu.unisi.ch

2 Digital Enterprise Research Institute
National University of Ireland, Galway

Galway, Ireland
eyal.oren@deri.org

Abstract. We extend the Ruby on Rails framework towards a more
complete Semantic Web application framework. The SWORD plugin pro-
vides developers with a set of tools and libraries for managing Semantic
Web data and rapid Semantic Web Application development. We de-
scribe the functionality of the SWORD plugin and demonstrate its use
for rapid development of a social networking application.

1 Introduction

The Semantic Web is a web of data that can be processed by machines, enabling
them to interpret, combine and use Web data [1,2]. The Semantic Web offers a
uniform way of identifying and describing resources in a distributed environment,
and thus increases the interoperability between applications.

On the other hand, web development has evolved recently to a more struc-
tured and abstract way of engineering web applications with the appearance of
frameworks such as Struts1, Ruby on Rails2 and Django3. These frameworks
overcome the problem of the separation of concerns regarding data manipula-
tion, user interaction and business logic by constructing web applications on the
model–view–controller design pattern [7,3].

Although these frameworks ease the development of web applications, they
offer only limited support for interoperability. Since Web applications are mostly
data-driven, we see increasing interoperability and data reuse through “mash-
ups” that combine data from multiple Web applications into new functionality.
Such “mash-ups” are supported only to a limited extent by existing frameworks.
We improve the possibilities of data reuse in Web application frameworks by
using Semantic Web data as a basis for application development.
1 http://struts.apache.org
2 http://rubyonrails.org
3 http://www.djangoproject.com

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 506–510, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://struts.apache.org
http://rubyonrails.org
http://www.djangoproject.com

Extending Ruby on Rails for Semantic Web Applications 507

We focus on the Ruby on Rails, an agile development platform for Web appli-
cations. Ruby on Rails provides solutions for rapid prototyping and is supported
by an active community. Ruby on Rails is currently a popular platform for de-
velopment of Web 2.0 applications; we show how it can be extended to support
Semantic Web application development. In this paper, we review the related
work, we present the functionalities and architecture of the SWORD4 plugin
and demonstrate how SWORD enables rapid prototyping of a social networking
application.

2 Related Work

In [5], Lima and Schwabe present the SHDM (Semantic Hypermedia Design
Method) design approach, an extension of their earlier OOHDM (Object Ori-
ented Hypermedia Design Method) approach. SHDM is targeted for the design
of Web applications for the Semantic Web, replacing the conceptual models of
OOHDM with Semantic Web ontologies. To our understanding, applications de-
signed using the SHDM method keep a relational database in the backend and
use ontologies to structure the metadata used for navigating the data. Our so-
lution is different as we rely only on semantic store as a data backend.

In [9], Vdovjak et al. present Hera, a methodology which supports the design
and engineering of Semantic Web Information Systems. They decompose an
application into three layers, the semantic layer, the application layer and the
presentation layer which correspond to the model–view–controller design pattern
we use in SWORD. Hera focuses mainly on presentation and the interaction
with users is mainly through navigation. In our solution, users can navigate the
semantic web as well as adding information, editing information and deleting.

Corcho et al. introduce a Semantic Web portal using the MVC design pat-
tern [4], but, similarly to Hera and SHDM, do not integrate it with an existing
framework. We extend an existing popular framework (Ruby on Rails), thus
connecting to an existing Web development community, leveraging the existing
ecospace of plugins and extensions, and reducing the adoption barrier. Using
Ruby on Rails and its ecospace leverages its standard functionality such as au-
thentication, Web Services, AJAX support, Web 2.0, templating etc.

3 Semantic Web on Rails Development

We add the following functionality to the Ruby on Rails framework:

Prototyping: we provide a set of generators, inspired by the Ruby on Rails
“scaffolding”[8], which generates models, views and controllers based on a
database schema. In our case, we generate the model, views and controller
based on a given RDF(S) ontology.

Interaction: the generated MVC handles showing, fetching, editing, searching,
and versioning of Semantic Web resources.

4 http://wiki.activerdf.org/SWORD/

http://wiki.activerdf.org/SWORD/

508 C. Mesnage and E. Oren

Fig. 1. SWORD architecture

Versioning and provenance of data: we track the versioning history and
provenance of each statement, allowing human readers to include or exclude
certain sources from their application views.

Semantic Web resource management: we provide libraries to manipulate
Semantic Web resources and statements.

Figure 1 shows the relationships between SWORD and different components.
SWORD integrates with Ruby on Rails as a plugin, and uses the ActiveRDF5

Ruby library [6] to maps RDF(S) resources to Ruby objects.

4 The FOAF Browser Example

We demonstrate the functionalities of SWORD by prototyping a social network-
ing application. This application uses the FOAF6(friend of a friend) ontology
which defines a vocabulary for representing people and their relationships. The
application provides views to search, show, browse and edit personal profiles,
while maintaining the history and provenance of information. The application
integrates data from various, arbitrary, sources using on-demand data collection,
and enables interoperability with other Web applications through the FOAF on-
tology and other RDF vocabularies.

We generate and run the web application as follows:
� �

rails social networking ; cd social networking
./script/generate scabbard person foaf http://xmlns.com/foaf/0.1/
./script/server

� �

Fig. 2 shows the generated files, namely a controller for people, some helpers,
a person model, a shared people layout and several views for displaying the
various actions (the underscored files are partial views used in AJAX actions).

In Figure 3, the generated application is displayed, showing the profile of
Cédric. This personal profile is actually an RDF file on his web page which was
automatically fetched by the application and integrated into the knowledge base.

5 http://www.activerdf.org/
6 http://foaf-project.org/

http://www.activerdf.org/
http://foaf-project.org/

Extending Ruby on Rails for Semantic Web Applications 509

Fig. 2. Generated scaffolding files Fig. 3. Showing Cédric’s FOAF profile

When showing this person, all known statements about him are displayed, using
human-readable labels, defined in an external ontology which is also integrated
on-demand.

As shown at the bottom of the screenshot, the user can display the history
and provenance (source) of any piece of information; in this particular example,
the history of the “workplace homepage” is shown.

The generated application allows users to browse the social network by fol-
lowing any relationship between people, such as the “foaf:knows” relationship
between acquaintances. When clicking on such a relationship, the information
about that person is automatically fetched from the Semantic Web, and the
display is updated to show the particular information of that person. In this ex-
ample, users browse the social network; in general, the application allows users
to browse the Semantic Web.

Fig. 4 displays the automatically generated overview page, showing a list of
people. From this page users can search for all people (resources) related to a
certain term, and for each person the standard CRUD (create, read, update,
delete) actions are available, through the user interface actions: “show”, “edit”,
and “delete”.

Editing as shown in Figure 5 is provided by a view which contains a form
dynamically created according to the available information on the resource to
be edited. Once submitted the update action of the controller is called. It adds

Fig. 4. Searching Fig. 5. Editing Cédric’s foaf profile

510 C. Mesnage and E. Oren

new statements if new information is entered (using the + button in the form)
or edition statements if some existing statements have been edited.

All this behaviour is generated automatically, and can be customised by the
application designer to adapt the generic behaviour to his needs, by changing
actions or by adding new actions and new views.

5 Conclusion

In this paper, we presented SWORD, a plugin for Ruby On Rails which to-
gether with the ActiveRDF Ruby library transforms the popular Web applica-
tion framework in a Semantic Web application framework. We demonstrated the
use of SWORD to create an interoperable social networking application based
on the FOAF ontology.

References

1. Berners-Lee, T.: Weaving the Web – The Past, Present and Future of the World
Wide Web by its Inventor. Texere (2000)

2. Berners-Lee, T., Hall, W., Hendler, J.A.: A Framework for Web Science (Founda-
tions and Trends(R) in Web Science). Now Publishers Inc., (2006)

3. Burbeck, S.: Applications Programming in Smalltalk-80: How to use Model–View–
Controller (1987)

4. Corcho, O., López-Cima, A., Gómez-Pérez, A.: A platform for the development of
semantic web portals. In: ICWE ’06. Proceedings of the 6th international conference
on Web engineering, pp. 145–152. ACM Press, New York (2006)

5. Lima, F., Schwabe, D.: Application modeling for the semantic web. In: Web
Congress, 2003. Proceedings. First Latin American, pp. 93– 102 (2003)

6. Oren, E., Delbru, R., Gerke, S., Haller, A., Decker, S.: ActiveRDF: Object-oriented
semantic web programming. In: Proceedings of the International World-Wide Web
Conference (May 2007)

7. Reenskaug, T.: Models, views, controllers. Tech. rep., Xerox PARC (1979)
8. Thomas, D., Hansson, D., Breedt, L., Clark, M., Davidson, J.D., Gehtland, J.,

Schwarz, A.: Agile Web Development with Rails. Pragmatic Bookshelf (2006)
9. Vdovjak, R., Frasincar, F., Houben, G., Barna, P.: Engineering semantic web infor-

mation systems in hera. Journal of Web Engineering, pp. 3–26 (2003)

Personalized Faceted Navigation

in the Semantic Web�

Michal Tvarožek and Mária Bieliková

Institute of Informatics and Software Engineering,
Faculty of Informatics and Information Technologies,

Slovak University of Technology
Ilkovičova 3, 842 16 Bratislava, Slovakia

{Name.Surname}@fiit.stuba.sk

Abstract. This paper presents the prototype of an adaptive faceted
semantic browser – Factic. Factic implements our novel method of nav-
igation in open information spaces represented by ontologies based on
an enhanced faceted browser with support for dynamic facet generation
and adaptation based on user characteristics. It is developed as part of a
modular framework that supports personalization based on an automat-
ically acquired ontological user model. We describe software tool design
and implementation together with discussion on several problems mostly
related to the general immaturity of current Semantic Web solutions.

1 Concept Overview

minus .1em The Semantic Web as envisioned by Tim Berners-Lee aims to solve
some problems of the current Web related to its constant change and growth by in-
corporating shared semantics i.e. “meaning” thus e.g. significantly improving inter-
operability between systems [1]. Although this idea was proposed several years ago,
it still remains largely unrealized due to various reasons such as the lack of stan-
dards or appropriate software tools. As the need for shared semantics and (web)
data integration grows, the demand for common conceptualizations referred to as
ontologies is also increasing. Some authors argue that the use of ontologies in the
e-science community presages ultimate success for the Semantic Web [1].

Consequently, proper software tools for navigation in the Semantic Web i.e. for
navigation in ontologies (e.g., RDF/RDFS, OWL) are required. While these will
include new types of tools, adding support for ontologies to “classical” tools is
also imperative as these are already widely used in different scenarios. Examples
of existing tools include search engines, web portals or faceted browsers [2].

Furthermore, the size and changeability of the Web and consequently the Se-
mantic Web together with their diverse user base make them prime candidates
for adaptive web-based systems that take advantage of (automatic) user adapta-
tion in order to increase overall effectiveness, productivity and user orientation.
� This work was partially supported by the Slovak Research and Development Agency

under the contract No. APVT-20-007104 and the State programme of research and
development under the contract No. 1025/04.

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 511–515, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

512 M. Tvarožek and M. Bieliková

The concept of the adaptive faceted semantic browser was proposed in [3]. As
such, it is an enhanced faceted browser with support for:

– Ontological representation of the application domain by means of a domain
ontology (e.g., in OWL).

– Logging of user actions with semantics within the browser as defined by an
event ontology. The created user action logs are subsequently used for auto-
matic user modeling, which is performed by external user modeling tools [4].

– Personalization based on an ontological user model derived from the domain
ontology and created and maintained by the aforementioned user modeling
tools. The personalization includes the adaptation of facets, facet restrictions
and search results as well as the recommendation of relevant concepts.

Based on its properties, the adaptive faceted semantic browser is suited for
effective viewing and navigating in large open information spaces represented by
an OWL ontology. It can also be used as an information retrieval tool where the
search query is visually created by means of navigation – selecting restrictions
in the set of available facets, which are dynamically adapted to users’ needs.

2 Faceted Browser Design and Implementation

We designed and implemented the adaptive faceted semantic browser in the
form of a software tool called Factic. It is a presentation tool that allows users
to navigate and search in an information space represented by an OWL ontology.
Therefore, we integrated Factic into the personalized presentation layer [5] of a
web-based information portal [6] (see Figure 1).

Portal

HTML

fragments

Events

Presentation

Adaptation

Presentation tools

Presentation

Adaptation

Input / Feedback

Web

browser

Server-side

logging

Client-side

logging

User

characteristic

evaluation

Events

Events

Presentation

layer

Personalization

layer

User modeling

layer

Server Client

Personalized presentation layer

Application logic layer

Data layer

Events

Fig. 1. Architecture of the personalized presentation layer of a web-based portal

Personalized Faceted Navigation in the Semantic Web 513

The Factic presentation tool is depicted on the top left and can be divided
into two parts – the presentation and the adaptation part. As input, Factic takes
user input/feedback from the Portal module, to which it also sends the results
of its processing in the form of (X)HTML fragments. The portal serves for the
integration of individual presentation tools (e.g., Factic) and acts as a proxy
towards the client web browser depicted on the right.

Presentation tools as well as the Portal tool perform user action logging with
semantics be means of the user modeling layer depicted at the bottom, which
performs both client-side and server-side logging and user characteristic analysis.

Factic is implemented in Java as an Apache Cocoon coplet (i.e. Cocoon port-
let) and uses Sesame to store ontological data, MySQL to store relational data
and as a back-end for Sesame. For the logging service we use Apache Axis as a
web service container and Apache Tomcat as a servlet container.

Cocoon is based on XML and the pipes and filters architectural pattern where
every request is processed by a given pipeline. Each pipeline consists of a single
generator, zero or more transformers and a serializer. Factic itself as a Cocoon
generator takes full advantage of its XML processing capabilities.

Figure 2 depicts the design and request processing of the Factic tool, which
employs a two-step transform view, where the initial logical XML output de-
scription is transformed by a set of XSL transformations into the final XHTML
document (top) and sent to the client web browser (right). Individual user re-
quests are handled as described by the Sequence 1.

Factic

Corporate

Memory

Cocoon Pipeline Processing

Domain Model

User Model

SemanticLog

Log Event

Client

Click

Web

Browser

Log Event

User Logs

XHTMLXML

XSLT

XML

DataProviders

Core

Session

Generator

XSLT

Fig. 2. Design of the Factic presentation tool

514 M. Tvarožek and M. Bieliková

Sequence 1. HandleRequest Input : URL request Output : XHTML response
1. Session: Preprocess request, update session state
2. Core: Process request, create and execute query
3. DataProviders: Retrieve domain and user data
4. Core: Process results, evaluate adaptation and annotation
5. Session: Log event via the SemanticLog logging service
6. Generator : Generate logical output description in XML
7. Cocoon: Transform XML output to formatted XHTML response

3 Discussion and Conclusion

We evaluated Factic in the domain of online job offers1 and in the domain of
scientific publications2. In both cases, we used Factic for the presentation of and
navigation in the respective domain ontology as well as for information retrieval.

Figure 3 shows the experimental results that we achieved. The time and num-
ber of clicks represent the total user effort that was necessary to complete a given
scenario i.e. to find a certain set of ontological instances. The results indicate
that adaptive selection of active facets can significantly improve total processing
time, which depends linearly on the number of displayed facets. Furthermore,
recommendation of suitable ontological concepts based on the user model further
reduces the number of necessary clicks as well as overall task completion time.

While the results that we achieved are promising we also encountered several
problems in the form of several performance bottlenecks:
– The logging of user actions together with the display state of the GUI via web

services was very slow because a lot of data had to be serialized/deserialized
via SOAP. We solved this by using a hybrid logging approach where some
of the data are logged via web services (e.g., client-side logging) and some
data are logged directly by means of an API (e.g., display state of the GUI).

– The cost of ontological queries is high and consequently, the processing of
ontological queries is slow. We were unable to resolve this problem although
we improved overall performance by caching data in Factic. Furthermore, the
ontological repository Sesame is rather immature – it is slow, unoptimized
and contains several bugs, which prevent correct evaluation of queries.

– SeRQL – the recommended query language for Sesame and thus Sesame lack
several important features such as COUNT() or ORDER BY. These must
thus be emulated by our application which further reduces performance.

The primary advantage o‘f our approach lies in the use of ontologies. The
shared conceptualization provided by ontologies improves tool interoperability.
E.g., our automatic user modeling is not hard-coded to the output of specific pre-
sentation tools nor does it require extensive preprocessing as seen in traditional
analysis of web server logs. Furthermore, the stored semantics of user actions
are directly used in the user modeling process to estimate user characteristics.
1 NAZOU Project, http://nazou.fiit.stuba.sk
2 MAPEKUS Project, http://mapekus.fiit.stuba.sk

http://nazou.fiit.stuba.sk
http://mapekus.fiit.stuba.sk

Personalized Faceted Navigation in the Semantic Web 515

0

2

4

6

8

10

12

1 facet 2 facets 3 facets 11 facets

Number of active facets

N
u

m
b

e
r

o
f
c
li
c
k
s

0

50

100

150

200

250

300

350

T
im

e
[s

]

Clicks with recommendation Clicks with adaptation Clicks without adaptation

Time with recommendation Time with adaptation Time without adaptation

Fig. 3. Evaluation results for different adaptation modes (non-adaptive, with adapta-
tion, with recommendation)

The acquired user characteristics are used in the adaptation process to im-
prove efficiency and overall user experience without the need for direct conscious
user involvement. As a result, the user can focus on the tasks at hand without
the need to perform tedious system and/or user model settings.

Lastly, the Cocoon presentation framework allows us to easily integrate addi-
tional presentation tools as well as to further customize the processing pipeline
by using additional transformers. Thus future work will include the integration
with additional presentation/navigation/information retrieval tools and the im-
plementation of new adaptation functions, such as dynamic facet generation.

References

1. Shadbolt, N., Berners-Lee, T., Hall, W.: The semantic web revisited. IEEE Intelli-
gent Systems 21(3), 96–101 (2006)

2. Instone, K.: How user interfaces represent and benefit from a faceted classification
system. In: SOASIST (2004)

3. Tvarožek, M.: Personalized Navigation in the Semantic Web. In: Wade, V., Ashman,
H., Smyth, B. (eds.) AH 2006. LNCS, vol. 4018, pp. 467–471. Springer, Heidelberg
(2006)

4. Andrejko, A., Barla, M., Bieliková, M.: Ontology-based User modeling for Web-
based Information Systems. In: ISD 2006, Budapest, Springer, Heidelberg (2006)

5. Tvarožek, M., Barla, M., Bieliková, M.: Personalized Presentation in Web-Based
Information Systems. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel,
C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 796–807. Springer,
Heidelberg (2007)

6. Barla, M., Bartalos, P., Sivák, P., Szobi, K., Tvarožek, M., Filkorn, R.: Ontology as
an Information Base for Domain Oriented Portal Solutions. In: ISD 2006, Budapest,
Springer, Heidelberg (2006)

WebVAT: Web Page Visualization and Analysis

Tool

Yevgen Borodin, Jalal Mahmud, Asad Ahmed, and I.V. Ramakrishnan

Dept. of Computer Science
Stony Brook University

Stony Brook, NY 11794, USA
{borodin, jmahmud, asada, ram}@cs.sunysb.edu

Abstract. WebVAT is an open-source platform-independent visualiza-
tion tool designed to facilitate Web page analysis. The tool, built on top
of the Mozilla Web browser, exposes Mozilla’s internal representation of
Web pages, Frame Tree, reflecting HTML rendering information. Com-
pared to HTML DOM analyzers, WebVAT provides access to a cleaner,
fuller, and more accurate data structure, which contains layout informa-
tion, reflecting changes made by CSS and some types of dynamic content.
WebVAT provides a framework for experiments and evaluations of algo-
rithms over the Frame Tree. WebVAT also captures user interaction with
the browser and can be used for data collection. WebVAT is a working
tool actively used in the HearSay [10] project. This paper describes the
architecture, design, and some of the applications of WebVAT.

1 Introduction

The expansion of the Web created a large venue for research. A big niche is
taken by Web content analysis, including Web page segmentation, classification,
summarization, etc. Like any other research area, Web content analysis requires
tools to help with experimentation and evaluation. A number of existing tools
allow viewing and editing Web pages, exploring their structure, etc.

Web page analysis often involves examining the internal structure of Web
pages, usually represented by HTML DOM trees [2]. DOM trees are widely used
for Web information extraction [1]. A number of software tools enable DOM
inspection [9,3]. However, a DOM tree does not specify how to render a Web
page, leaving the implementation to Web browsers. HTML DOM trees do not
capture the layout information, unless it is explicitly specified in the HTML code.
They also do not reflect changes made by JavaScript or Cascading Style Sheets
(CSS), limiting the information available to Web engineers and researchers.

At the same time, Web browsers (e.g. FireFox, Internet Explorer, etc.), which
are perfect for rendering Web pages, do not easily expose the layout of Web pages.
Mozilla extensions, such as Web Developer [12] and Firebug [4], can access and
visualize layout information of FireFox. However, because FireFox extensions
are written in XUL and JavaScript, they cannot directly use libraries written in
other languages, e.g. Java. Therefore, using FireFox extensions to test various

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 516–520, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

WebVAT: Web Page Visualization and Analysis Tool 517

algorithms is not feasible. Some Web page segmentation algorithms use Web
browser API’s to obtain page layout (e.g. VIPS [13]), but we are unaware of any
open-source tools that make use of visual layout of Web pages.

In this paper we describe WebVAT, a tool developed specifically for Web
page visualization and analysis in the framework of the HearSay [10] project.
WebVAT, based on the Mozilla Web browser, provides visualization capabilities
and a flexible infrastructure for Web page analysis. WebVAT enables users to
analyze the structure and layout of Web pages as rendered by the browser. We
are actively using WebVAT for visualization and evaluation of our algorithms,
data collection, capturing user interactions - all contributing to the development
of the state-of-the-art non-visual Web browser, HearSay. We next present the
architecture and design of WebVat in Sections 2 and 3 respectively, followed
by some of the applications of the tool in Section 4. We close the paper with
concluding remarks, future work, and acknowledgements in Section 5.

2 WebVAT Architecture

WebVAT, written in Java, is built on top of Mozilla, an open-source cross-
platform Web browser. Thus, WebVAT works on a variety of platforms including

Data Repository

Mozilla Engine

JREX Browser Manager

Browser GUI L
i
b
r
a
r
i
e
s

Controller

Fig. 1. WebVAT Architecture

Windows, Linux, and OsX. The ar-
chitecture of WebVAT is shown in
Figure 1.

Users interact with WebVAT
through an event-driven graphi-
cal user interface provided by the
Mozilla Web browser. Any user in-
teraction with the Browser GUI
is captured and can be processed,
modified, and recorded by the We-
bVAT Controller module. The Con-
troller also interfaces with a num-
ber of Libraries, containing vari-
ous Web content analysis modules.
The Browser GUI and the Con-
troller share a common Data Repos-
itory. Besides using the already im-

plemented functionalities of WebVAT, advanced users can easily extend the Con-
troller and Browser GUI, and test their own algorithms.

WebVAT Controller interacts with Mozilla engine through the JREX Browser
Manager [5]. JREX provides Java interface to the Mozilla engine, allowing to call
the engine’s APIs, define custom event handlers, etc. Mozilla engine supports
standard browser functionalities, such as support of cookies, secure connection,
etc. We have extended the Mozilla engine and JREX to expose and extract a
Frame Tree, Mozilla’s internal representation of a Web page, after the Web
page has been rendered by the browser. This way, Mozilla takes care of any

518 Y. Borodin et al.

dynamic content, cascading style-sheets, malformed HTML, and other rendering
problems. This relieves users from having to deal with heavy DOM-tree objects,
while giving them fuller and more accurate information about the style and
layout of Web pages. While we are using Mozilla for rendering HTML, other
browsers will produce similar data structures.

When the user enters an address or navigates a link, the Controller extracts
the Frame Tree of the Web page from the Mozilla engine. Figure 2 (b) shows
a frame tree corresponding to the Amazon.com Web page. A Frame Tree is
a tree-like data structure that contains Web page content, along with its 2-D
coordinates and formatting information, that specifies how the Web page has to
be rendered on the screen. Frame coordinates refer to the upper-left corners of
the corresponding Web page segments displayed in the browser, independent of
the screen resolution or the size of the browser window.

A frame tree is composed of nested frames1, so that the entire page is a root
frame, containing other nested frames down to the smallest individual objects
on the page. The browser window in Figure 2 (a) shows the Amazon.com Web
page with some of the frames highlighted. The corresponding frame tree nodes
are selected in windows (b) and (c). The frame-trees are partially expanded to
demonstrate the types of frames. We distinguish between the following classes of
frames: text, links, images, image-links, form-elements, XHTML, and non-leaf
frames. We next describe the design of WebVAT.

3 WebVAT Design

WebVAT is designed around the Mozilla Web browser interface, which displays
the browser window with a standard menu extended with Tools, Trees, and
Highlight (see Figure 2).

The Tree menu contains the list of all frame-tree windows that can be dis-
played on the screen. Different frame-tree windows can be used to visualize the
results of experimental algorithms. For example, Figure 2 (b) shows the original
frame tree produced by the Mozilla engine, while window (c) shows a frame tree
that was processed and segmented into blocks (3-D icons) by our geometrical
clustering algorithm [7].

With minimal code changes, WebVAT can support any reasonable number of
frame-tree windows, synchronized by the observer handler (part of Browser GUI
module). Selecting any node in any tree also selects the corresponding nodes in
all other active frame-tree windows, and highlights the corresponding frame in
the browser window, as can be seen in Figure 2 (a), (b), and (c). The Highlight
menu items give additional control over highlighting functionality by allowing to
clear highlighting, use different colors to highlight frames, etc. The experimental
algorithms executed by WebVAT can activate frame-tree windows and highlight
frames to visualize the results.

The Tools menu contains a growing number of useful tools. Among them there
are: search, Figure 2 (e), which allows to find frames by the contained text, or
1 Note, this is different from HTML frames.

WebVAT: Web Page Visualization and Analysis Tool 519

(a)
(b) (c)

(e)

(d)

Fig. 2. WebVAT in action

can use other experimental search algorithms; console window that can be used
for any output, Figure 2 (d); evaluation tool to record questionnaire answers,
user-evaluation results, etc.; and, a data collection tool that allows to save HTML
pages and the corresponding XML frame trees with selected frames. The data
collection tool can also save sequence of pages, recording followed links, and the
action labels (e.g.: addToCart), which can be selected from the combo box in
the menu panel of the main window in Figure 2 (a).

4 WebVAT Application: The HearSay Experience

WebVAT can be used in a number of applications. Here we describe its role in
the research and development of the HearSay non-visual Web browser [10].

WebVAT was used to verify the correctness of the Frame Trees while we
were modifying the Mozilla engine code. The HearSay browser is also based on
Mozilla; HearSay uses a number of algorithms and techniques to clean the frame
trees, analyze their content, and convert them into audible dialogs. WebVAT
helped verify all of the algorithms used in HearSay.

The frame-tree window in Figure 2 (c) displays the results of our Web page
segmentation algorithm [7], which identifies geometrically aligned blocks as se-
mantic clusters of information (marked as 3-D blocks). We are working on ex-
panding our partitioning algorithm to find repeating patterns within blocks [8].

We also used WebVAT as a data collection tool. The participants were asked
to identify and select some links and the information pertaining to the same topic
around them in a number of Web pages. They were also asked to identify the

520 Y. Borodin et al.

information relevant to the links on the pages, to which the links were pointing.
The data was, then, used to test our context collection algorithm. The same
data was used in training an SVM-based statistical model to identify relevant
information in Web pages while following links from one page to another [6,7].
WebVAT helped us visualize and evaluate the results of the algorithms. We are
now using WebVAT to construct a process model for Web transactions [11].

5 Conclusion and Future Work

In this paper we described the architecture, design, and applications of our Web
content visualization and analysis tool, WebVAT, which will be soon publicly re-
leased with the HearSay Web browser (www.cs.sunysb.edu/∼hearsay). We iden-
tify several directions to further enhance this tool.

We used WebVAT to collect the data for off-line training of statistical models.
It may be possible to integrate different machine learning modules with WebVAT
to train statistical models online, while using the tool. For example, we plan to
use WebVAT to collect data to train Bayesian models for transactional concept
detection, such as taxonomy, search results, etc. WebVAT can also be enhanced
to create ontologies – the knowledge underlying the semantic Web. Users will
be able to highlight sections of Web pages, or frame tree nodes, and specify the
corresponding concept name. This will help learning ontologies from examples.

Acknowledgements. This research is supported by NSF Award IIS-0534419.

References

1. Chakrabarti, S.: Integrating the document object model with hyperlinks for en-
hanced topic distillation and information extraction. In: WWW’01 (2001)

2. http://www.w3.org/DOM/DOMTR
3. http://www.dubbeldam.com/DOMSpy.html
4. http://www.getfirebug.com/
5. http://jrex.mozdev.org/
6. Mahmud, J., Borodin, Y., Das, D., Ramakrishnan, I.: Combating information over-

load in non-visual web access using context. In: IUI, Short paper (2007)
7. Mahmud, J., Borodin, Y., Ramakrishnan, I.: Csurf: A context-driven non-visual

web-browser. In: Proceedings of WWW (to Appear)
8. Mukherjee, S., Yang, G., Ramakrishnan, I.: Automatic annotation of content-rich

html documents: Structural and semantic analysis. In: Fensel, D., Sycara, K.P.,
Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, Springer, Heidelberg (2003)

9. http://www.sharewareconnection.com/pagespy.htm
10. Ramakrishnan, I., Stent, A., Yang, G.: Hearsay: Enabling audio browsing on hy-

pertext content. In: WWW (2004)
11. Sun, Z., Mahmud, J., Mukherjee, S., Ramakrishnan, I.V.: Model-directed web

transactions under constrained modalities. In: WWW ’06. Proceedings of the 15th
international conference on World Wide Web, pp. 447–456 (2006)

12. http://chrispederick.com/work/webdeveloper/
13. Yu, S., Cai, D., Wen, J.-R., Ma, W.-Y.: Improving pseudo-relevance feedback in

web information retrieval using web page segnmentation. In: WWW (2003)

http://www.w3.org/DOM/DOMTR
http://www.dubbeldam.com/DOMSpy.html
http://www.getfirebug.com/
http://jrex.mozdev.org/
http://www.sharewareconnection.com/pagespy.htm
http://chrispederick.com/work/webdeveloper/

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 521 – 525, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Smart Tools to Support Meta-design Paradigm for
Developing Web Based Business Applications

Athula Ginige, Xufeng Liang, Makis Marmaridis, Anupama Ginige,
and Buddihma De Silva

University of Western Sydney, Locked Bag 1797, Penrith South DC, 1719, NSW, Australia
a.ginige@uws.edu.au, bdesilva@scm.uws.edu.au

Abstract. Many Small and Medium Enterprises (SMEs) tend to gradually adopt
Web based business applications to enhance their business processes. To
support this gradual adoption we need a framework that supports iterative de-
velopment. Further processes that have been supported by web based business
applications can change and evolve requiring applications to be changed ac-
cordingly. To support these needs we have extended the Component Based E
Application Development and Deployment Shell; CBEADS©. We analysed
many business applications and derived a meta-model. We implemented this
meta-model with in CBEADS© and developed a set of Smart Tools to take the
instance values of the meta-model and generate the web based business applica-
tions. When a new business application is required, a business analyst can cre-
ate a new instance of the meta-model. To change an implemented business ap-
plication the appropriate values of the meta-model instance that corresponds to
the particular application can be changed.

Keywords: Meta-Design, Web Engineering, Smart Tools, rapid development,
model driven software development.

1 Introduction

The AeIMS research group at the University of Western Sydney has been working
with Small to Medium Enterprises (SMEs) in the Western Sydney region to investi-
gate how Web based business applications can be used to enhance their business
processes to become competitive in a global economy [1, 2]. In this research one
challenge was to find a way to develop web based business applications rapidly and in
a cost-effective manner [3]. Also it was necessary to have the ability to change these
applications with evolving business needs [4]. The development approach should
also reduce the gap between what the users actually wanted and what is being
implemented in terms of functionality [5].

In a Business organisation there are many software applications to support its busi-
ness processes such as ordering, inventory management, leave processing, invoicing,
production planning, customer relationship management (CRM) etc. Today most of
these applications tend to be web based. Some of the data used in these processes such
as employee details, customer details, product or service details etc will be common to
many business processes. Thus organisations that have invested in separate systems to

522 A. Ginige et al.

support their business applications are finding it hard to keep the common data stored
in separate systems in sync. Unlike large organisations, SMEs have not got the money
or the time to invest in obtaining a single ERP system to support its business processes
as a one-off project. We have observed often in SMEs one process at a time being
enhanced by the use of web technologies based on some priority criteria. Also these
web applications used to enhance the business processes need to evolve when business
processes change with time.

To meet the above requirements we adopted the concept that software is a medium
to capture knowledge rather than a product [6]. This led us to change our thinking
from looking at methodologies to develop web based business applications to devel-
oping a framework within which web based business applications can evolve. We
adapted the Component Based E-Application Development and Deployment Shell
(CBEADS©) as our framework [3, 7]. CBEADS© has the ability to create new func-
tions within its own framework so that it can evolve. These functions can be grouped
together to form various business applications.

This resulted in a hierarchical model; an organisation can have a shell, the shell
will have many applications, applications consist of many functions (use cases). We
analysed many business applications and found that most of these can be modeled as
a form being routed based on some rules and different actors can have access to dif-
ferent views of the underlying data objects. Thus rather than developing “the applica-
tion” we developed a meta-model of the application and a set of tools within which
the Business Analyst can create the applications that they want [8].

2 Meta-model for Web Based Business Applications

Our meta-model consists of three levels of hierarchical abstraction called Shell,
Application and Function as shown in figure 1. The Shell provides the common

Shell / Framework

Applications

Functions (Actions)

Views

Business Rules
Derived information and actions

Workflows

Application Specific Business Objects

Common Business Objects

Function Level Access Control
Persistent and workflow state dependent

Instance Level Access Control

Templates and Style Sheets

User Management

Navigation

Shell / Framework

Applications

Functions (Actions)

Views

Business Rules
Derived information and actions

Workflows

Application Specific Business Objects

Common Business Objects

Function Level Access Control
Persistent and workflow state dependent

Instance Level Access Control

Templates and Style Sheets

User Management

Navigation

Fig. 1. Hierarchy of Abstraction Levels in Business Application Meta-Model

 Smart Tools to Support Meta-design Paradigm 523

functionality required for any application such as user management, authentication,
access control and overall navigation. The Application provides a set of functions
required to perform a business process and sequencing of functions as required to
create the necessary workflows. Functions provide views or user interfaces required
to perform actions in a business process.

To implement this meta-model within CBEADS© framework we had to first de-
velop a way to specify Business Objects, Views, Business Rules, Function level and
Instance level access control, Workflows, Over all layout and, Look and feel. Then
we had to create a way to generate the physical objects (i.e. databases), functions and
workflows required for the application based on instance values of the meta-model.
For this we developed a set of Smart Tools. We incorporated some computer domain
knowledge into these tools so that a Business Analyst can use these tools to develop
parts of the application without needing to develop detail code as well as databases.

3 Smart Tools

We developed an architecture for Smart Business Objects and two tools; Builder and
UI Generator to create the objects and to generate the required views incorporating
various business rules [9]. We developed a state machine based approach to model
business processes that can evolve with changing business needs and a workflow
engine to enact these business process models [10]. We identified that navigation and
access control are tightly coupled and implemented these two together.

Fig. 2. Generating UIs for leave processing application

3.1 Smart Business Objects (SBO)

Using the SBO builder tool in CBEADS© we can specify business objects using
the SBOML language [9]. Example of a business object used in a leave processing

524 A. Ginige et al.

application is shown below. The SBO builder then generates the Business Objects for
the application.

UI Generator tool allows us to select the business object and necessary attributes to

create different views required for the leave processing application. This tool is shown
in figure 2.

3.2 Workflow Engine

Next we need to sequence the views. This we do using a state table. The workflow
specification for the leave processing application is shown in Table 1.

Table 1. State Table for Leave processing workflow

Current
State

Actor Function Buttons Do Action Next
State

1 Employee Apply_Leave Submit Email Divi-
sion_Manager

2

Approve Email
HR_Manager,

Employee

3 2 Division_Manager Approve_Leave

Reject Email Employee 4
3 HR_Manager Process_Leave Processed Email Employee,

Division_Manager
4

4 HR_Manager View_Applications - 4

3.3 Navigation and Access Control

We have identified the need to provide 2 types of access to various functions; func-
tions that can be accessed any time (workflow state independent access) and functions
that can be accessed based on workflow state such as a manager getting a link to ac-
cess approve leave function only when there is a pending leave application. We also
need to manage instance level access control.

We used role based access control mechanism in CBEADS© to provide state inde-
pendent navigation to functions at shell level. We developed an access control
mechanism based on setting and revoking capabilities to provide access to workflow
state dependent functions. We implemented the notion of a “Project Team” that owns
an object instance to achieve instance level access control.

4 Conclusion

We have developed a set of Smart Tools to rapidly develop Web based Business Ap-
plications based on meta-design paradigm. This approach is well suited to develop

SBOML Specification of the Leave Object
In leavesystem, leave has date, applicant, from (date), to (date), type (which
could be sick or annual or no pay), status (which could be approve or
reject), many approval (has date, approved by, comment)

 Smart Tools to Support Meta-design Paradigm 525

web based business applications for SMEs as it supports iterative development. We
are now in the process of developing another set of tools to empower end users to
develop their own business applications.

References

1. Ginige, A.: Collaborating to Win - Creating an Effective Virtual Organisation. In: Interna-
tional Workshop on Business and Information, Taipei, Taiwan: Shih Chien University and
National Taipei University (2004)

2. Ginige, A.: From eTransformation to eCollaboration: Issues and Solutions. In: 2nd Interna-
tional Conference on Information Management and Business (IMB 2006) Sydney, Austra-
lia (2006)

3. Ginige, A.: Re Engineering Software Development Process for eBusiness Application
Development. In: Fifteenth International Conference on Software Engineering and Knowl-
edge Engineering. San Francisco Bay, USA (2003)

4. Ginige, A.: New Paradigm for Developing Software for E-Buisness. In: IEEE Symposia on
Human-Centric Computing Languages and Environments, Stresa, Italy, IEEE, New York
(2001)

5. Epner, M.: Poor Project Management Number-One Problem of Outsourced E-Projects, in
Research Briefs, Cutter Consortium (2000)

6. Armour, P.G.: The Case for a New Business Model: Is software a product or a medium. In:
Communication of the ACM (2000)

7. Ginige, A.: New Paradigm for Developing Evolutionary Software to Support E-Business.
In: Chang, S.K. (ed.) Handbook of Software Engineering and Knowledge Engineering, pp.
711–725. World Scientific, Singapore (2002)

8. Ginige, A., De Silva, B.: CBEADS©: A framework to support Meta-Design Paradigm. In:
(HCII 2007). 12th International Conference on Human-Computer Interaction, Bejing, P.R.
China. LNCS, vol. 4554, pp. 107–116, Springer, Heidelberg (2007)

9. Liang, X., Ginige, A.: Smart Business Objects: A new Approach to Model Business Ob-
jects for Web Applications. In: 1st International Conference on Software and Data Tech-
nologies. Setubal, Portugal (2006)

10. Ginige, J.A., Uma, S., Ginige, A.: A Mechanism for Efficient Management of Changes in
BPEL based Business Processes: An Algebraic Methodology. In: ICEBE 2006. IEEE In-
ternational Conference on e-Business Engineering, Shanghai China, IEEE, Los Alamitos
(2006)

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 526 – 532, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Next-Generation Tactical-Situation-Assessment
Technology (TSAT): Chat

Emily W. Medina1, Sunny Fugate2, LorRaine Duffy3, Dennis Magsombol4,
Omar Amezcua5, Gary Rogers6, and Marion G. Ceruti7

Space and Naval Warfare Systems Center, San Diego (SSCSD),
1 Code 2734, 2 Code 2725, 3 Code 246207, 4,5,6 Code 246204, 7 Code 246206

53560 Hull Street, San Diego, CA 92152-5001
ewilson@spawar.navy.mil, fugate@spawar.navy.mil,

lorraine.duffy@navy.mil, dennis.magsombol@navy.mil,
omar.amezcua@navy.mil, gary.rogers@navy.mil,

marion.ceruti@navy.mil

Abstract. This paper presents concepts, content, status, applications and chal-
lenges of chat as used in the military context of secure net-centric command
and control. It describes the importance of chat as it contributes to situation as-
sessment and the common operating picture, which presents current collective
knowledge of the battle space. The paper discusses future chat capabilities and
outlines the road ahead for the TSAT project.

Keywords: Chat, collaborative applications, Common Operational Picture,
network-content management, social-network applications.

1 Introduction

Chat is an important tool commonly used on the Web. Chat also is one of the many
tools, including web services that enable net-centric military operations. Chat for net-
centric communications in defense-related situation assessment is one of the primary
activities that drive command and control (C²) or battle-space management. The
Department of Defense uses mostly Internet-Relay Chat (IRC), which is an internet-
based technology. The TSAT research-and-development project is focused on
improving chat using new technology. Chat’s value and maximum benefit can be
realized only with the context in which it was developed.

In distributed C², the primary tool for consistency in operational situation assess-
ment is the Common Operational Picture (COP) and the daily briefings and updates
that define relevant objects, their relationships, their intent and the commander’s re-
sponse to the situation or threat. The COP is geographically oriented, distributed,
shared space for maintaining and presenting the current status and collective knowl-
edge of the battle space. The tactical war fighter usually provides the context for
situation assessment, the maintenance of which depends on moment-to-moment,
daily, and long-term updates of the variables of interest and the time evolution of
these variables. The primary method for capturing this information resides in voice
and written communications, with an increasing reliance on tactical-text chat [3], [9].

 Next-Generation Tactical-Situation-Assessment Technology (TSAT): Chat 527

At the moment, opportunities to improve its policy or practice seem remote, given
the current political and economic outlook.

In this same vein, transfer of understanding relies heavily on improper, unwieldy,
and low-information content methods of communicating context: the written word in
text chat; Defense Message System (DMS) communications; or embedded within
typesetting and presentation software such as Microsoft Word and Powerpoint®
documents. It is alarming that our daily tactical communication updates occur
through the use of high-overhead, low information density, non-interoperable, or
proprietary information formats such as archaic message formats, document typeset-
ting software, or bullet-list presentation software, The simplest of these text formats
generally require the isolation of simplistic and jargon heavy content and the com-
plete disposal of relevant context [11]. Whereas these technologies have valid uses:
the broadcast of official and formal announcements; the publication of documents; or
the presentation of simple concepts to an audience, they will never be suitable me-
dium for tactical communications.

The operational Navy has an urgent requirement for better organization of the
large amount of electronic information. Unorganized and content-heavy information,
like that found in United States Message Text Format (USMTF) messages, chat room
logs, or websites, is altogether too much for one user to assimilate, compare, analyze
and use to initiate an action in a timely manner. A capability needs to be developed to
support information transfer in the form of written context in situation assessment.
New technology provides better ways to transfer information rapidly than the ineffi-
cient text chat and DMS paragraph or text document formats obscured by inane type-
setting information and features.

We can improve the content and methods of delivery of collaborative communica-
tions for command and control in a network-centric environment. Chat is an impor-
tant part of the technical approach to improve the efficiency of knowledge sharing
through communication of situation-assessment context. The importance of chat is
evident considering that the content of chat messages drives real-time targeting and
battle-space management [9]. This content can be enhanced through linguistic re-
search and analysis, thus improving methods for determining chat context themes.
Linguistic research also can help develop a novel approach to acquiring the situ-
ational assessment themes of chat content from their human writers by building a
prototype “chatbot.”

2 Chat Status

Today’s chat is a technology for sharing context. Chat is the primary and often the only
means of communicating situation updates on intermittent and discontinuous networks,
superseding radio communications with text-only descriptions. For example,

(1) Strike-group Concept of Operations (CONOPS) establishes 500 to 800 chat
rooms with between 2,000 and 4,000 users in each “channel” based on functional
roles.

(2) Joint CONOPS establishes hundreds of chat rooms with joint-service participa-
tion based on mission objectives. It enables joint access to service-specific chat rooms
to maintain non-intrusive situation assessment of service-specific activities [9].

528 E.W. Medina et al.

Chat functions include support of the following activities:

(1) Real-time targeting;
(2) Edge users with limitations of low and/or intermittent bandwidth;
(3) Immediate updates to COP context;
(4) General information sharing of updates on a regular basis continuing for

months to establish the management of operational tempo and battle rhythm;
(5) Cross-domain operations.
An example has been observed of Mid-East dynamic target relocation based on

chat interchange between a pilot and a ground-reconnaissance team.This is not an
isolated or unusual case.

3 Chat Development Benefits, Issues, and Challenges

Fleet usage of chat is widespread for current operations but vastly inadequate for
information retrieval and management. As important as it is, chat is too text driven,
slow, and ambiguous. For these reasons, chat cannot provide the best accommoda-
tions to edge (tactical) users operating in extreme and hostile environments, such as:

(1) Chemical-biological war fighters in protective suits called “MOPP gear;”
(2) Special operations personnel in hostile situations;
(3) Clean-up crews and search-and-rescue (SAR) personnel in oil spills, fires,

earthquakes, and tsunamis;
(4) Extreme-edge users on minesweepers and in submarines;
(5) Other users in oxygen-deprived or toxic-atmospheric environments.

Table 1. Benefits and issues of TSAT chat technology development

Technology Properties of each medium Technology shortfalls

COP • Comprehensive
• Visually integrative

• Unavailable in field
• Poorly communicable

Text • Persistent
• Immediate
• Easy to implement & use
• Expressive

• Prevalent operational acceptance

• Poor field interface
• No visual or symbol integration
• Ambiguity issues
• Slow communication rate

• Not stealthy
Voice & Video • Many solved problems

• Immediate
• Ostensive/direct
• Intuitive interfaces
• Mature technology

• Video is gesture capable

• Not persistent
• Not stealthy
• Symbol integration difficult
• Textual integration difficult
• High bandwidth required

• Limited archival access

Observation and statistical analysis of trends in chat-room text constitute a subset

of the larger overall issue of identifying and managing large collections of unstruc-
tured text. The Internet and email are prime examples of such collections. Chat
entries hold vast amounts of information that easily can be misconstrued or forgotten

 Next-Generation Tactical-Situation-Assessment Technology (TSAT): Chat 529

altogether [3]. Therefore, chat-room text itself must be scrutinized and the domain
well defined before any further improvements on military chat commence. Issues
and benefits that relate to secure net-centric chat are summarized in Table 1, showing
how development of augmented chat capabilities can resolve outstanding technology
shortfalls for COP, text, and through multi-modal tactical applications, voice and
video.

Chat users need to integrate their information with other information sources at
their disposal: geographic land-based terrain maps, the COP, and non-geographic
computer-based “terrain” (e.g. global network operations and network topology).
They also must be able to incorporate object relationships and time into a precise
context that can be fused with other data to present an accurate COP and situation
assessment, to serve as a basis for current command decisions, and for later study in
operations analysis.Multiple criteria need to be established to institute rigor in chat-
room text analysis. Metrics must be identified and measured against one another,
and even compared with existing benchmark methods for chat analysis that are used
in academia [1], [2], [4], [5], [6], [7], [10]. A few methods initially seem promising.
For example, a user might be observed in a real-time environment to measure the
amount of time taken to process a message and disseminate its contents to involved
parties. Alternately, a user could be observed in attempts to locate topical informa-
tion in a chat database. Another method might involve comparing the time a user
takes to process a message with English text to the amount of time the user takes if
visual symbols are substituted for text.

4 Chat Content

At the onset of Operations Iraqi Freedom and Enduring Freedom, the joint tactical
community resorted to Internet Relay Chat (IRC) to transmit contextual information.
This represents a late 1980s Internet capability. IRC has seen little or no improve-
ment in the past two decades [3], [9]. With chat becoming more widespread in opera-
tional and tactical communities, the need is growing to understand the following.

(1) The content that is communicated in chat sequences for situation updates;
(2) How to categorize and parse the information more efficiently to various other

repositories, such as databases; and
(3) How to communicate quickly the nuances of evolving situations to distrib-

uted forces in an improved (and more automated) format.

Concomitantly, knowledge of context resides first in the warfighter’s mind. To-
day, this knowledge is communicated in gestures that are outside of computer net-
works and, therefore, are not stored in digital format. The present work includes the
intent to acquire that contextual information using conversational query (in the guise
of a “chatbot”) that constitutes an interesting and novel approach to information
gathering. Traditional data-acquisition technologies have focused on data storage
sites, whereas a key focus of the present work in TSAT is in the human network of
incidental information, or “color commentary” that often is disregarded and rarely is
preserved with other historical accounts unless one can recall and record a personal
conversation with the information source. Whereas few metrics exist for chat-room

530 E.W. Medina et al.

text analysis, to improve the current situation with chat, a statistical analysis of chat
structure, topical organization, and user trends first must be performed.

5 Future Chat Capabilities

The goals of unstructured text chat research are twofold. First, linguistic analysis
must discover statistically the topics that are most likely to reoccur in chat rooms.
After these themes are identified, further study will focus on the best means of man-
aging large databases of chat text. A few approaches have gained popularity when
observing chat-room data, among them topic thread detection, and user-thread detec-
tion [1], [5], [6], [8], [10]. Topic thread detection would aid a user in identifying im-
portant entries, whereas user-thread detection would facilitate error detection and the
identification of anomalous behavior. In the near term, metrics will be identified,
tested, and evaluated. Thus, several near-term efforts need to be accomplished to
advance chat beyond its current state, including short-term goals such as:

(1) Select a chat domain as the focus the study.
(2) Access secure-net-centric chat for content analysis.
(3) Obtain a statistically significant data set.
(4) Identify and test chat metrics.
(5) Perform statistical analysis of chat-room topical content, user trends, and bat-

tle-field themes.
(6) Construct a prototype for a chat-user database
(7) Construct a prototype for topic-thread detection.

In ten years, chat will augment text with an Icon/Visual/Symbolic-based language.
This language will be easy to understand, visual, international, and capable of depict-
ing geographic and non-geographic, network-based battlefields. Future chat will use
very low bandwidth (<300bps) and operate robustly in conditions of intermittent con-
nectivity. The chat of the future will allow the user to portray complex concepts more
efficiently than that of today. These complex concepts will be linguistically derived
from then-current chat content to discipline language development. Tomorrow’s chat
will be keyboard independent because war fighters will use it for chemical and bio-
logical defense in extremely contaminated environments and in any other place
where typing on a keyboard is not an option. For example, environmentally chal-
lenged astronauts will use it in space. Future rescue crews will use future chat in
toxic, fire, or oxygen-deprived environments. Special Forces require stealth and im-
mediate, persistent, line-of-sight independent communication tools, ease of use, and
comprehensive situation updates from a COP in minimum time with minimum effort.
This technology will provide key capabilities for special-operations personnel who
must maintain a low probability of communication interception and detection in very
noisy or stealth environments. The success of chat is tied to other technological ad-
vances. For example, future improvements to graphic user interface, textual represen-
tation, and method of use rely solely on an accurate portrayal of the military-chat
domain.

 Next-Generation Tactical-Situation-Assessment Technology (TSAT): Chat 531

6 The Road Ahead for the TSAT Project

Research goals include the following.

(1) Determine metrics for ease of use, efficiency, and ambiguity resolution.
(2) Answer the following key research question: “Does TSAT net-centric chat in-

crease information capacity or communications efficiency?”
(3) Linguistically analyze current chat content for linguistic “themes.”
(4) Build a prototype candidate language.
(5) Integrate linguistic themes with visual language prototype (new symbols).
(6) Introduce new symbols and visual language elements into chat.
(7) Perform “Visual Language” experiments testing human factors.
(8) Achieve a technology transition in a long-range program in linguistic analysis

technology for tactical communications.
(9) Incorporate some Web-based technologies into chat.

7 Summary

The objective of the TSAT project is to improve the contextual information interface
that accompanies traditional situation assessment. The program focus is to revolu-
tionize the tactical text-chat interface including content, technique, application, net-
work management, and hardware interface. Another important goal is to improve the
transfer of contextual information to the COP and among distributed operational and
tactical war fighters, regardless of the specific context. When completed, this re-
search and development project will offer a significant improvement in the ability of
war fighters at all echelons to share knowledge rapidly and accurately. Not only will
it improve the communication of current contextual information, it will extend the
range of capabilities both in terms of how information is exchanged.

Acknowledgements

The authors thank the Defense Threat Reduction Agency and the SSCSD Science
and Technology Initiative for their support of this work. This paper is the work of
U.S. Government employees performed in the course of employment and no copy-
right subsists therein. It is approved for public release with an unlimited distribution.

References

1. Bengel, J., Gaulch, S., Mittur, E., Vijayaraghavan, R.: ChatTrack: Chat room topic detec-
tion using classification (2004) http://citeseer.ist.psu.edu/bengel04chattrack.html

2. Elnahrawy, E.: Log-based chat room monitoring using text categorization: A comparative
study. In: Proceedings of the International Association of Science and Technology for
Development Conference on Information and Knowledge Sharing (IKS) (November
2002)

532 E.W. Medina et al.

3. Eovito, B.: An assessment of Joint chat requirements from current usage patterns. Thesis,
Naval Postgraduate School (NPS) (June 2006)

4. Hearst, M.: Multi-paragraph segmentation of expository text. In: Proceedings of the 32nd
Annual Meeting of the Association for Computational Linguistics (June 1994)

5. Kolenda, T., Hansen, L.K., Larsen, J.: Signal detection using ICA: Application to chat
room topic spotting (2001) http://citeseer.ist.psu.edu/kolenda01signal.html

6. Lin, C.Y.: Knowledge-based automatic topic identification. In: Proceedings of the Asso-
ciation for Computational Linguistics (ACL) (June 1995)

7. Salton, G., Singhal, A., Buckley, C., Mitra, M.: Automatic text decomposition using text
segments and text themes. In: Proceedings of the 7th ACM Conference on Hypertext
(March 1996)

8. Schmidt, A.P., Stone, T.K.M.: Detection of topic change in IRC chat logs.
http://www.trevorstone.org/school/ircsegmentation.pdf

9. Simpson Jr, M.L.: A user’s epistle on TextChat tool acquisition. In: Proc. of the Com-
mand and Control Research and Technology Symposium (CCRTS 2006) (June 2006)

10. Wayne, C.L.: Topic detection and tracking in English and Chinese. In: proc. of the 5th In-
ternational Workshop on Information Retrieval with Asian Languages (IRAL) (Septem-
ber-October 2000)

11. Tufte, E.: Beautiful Evidence. Graphics Press (July 2006)

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 533 – 538, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Tool Support for Model Checking
of Web Application Designs*

Marco Brambilla1, Jordi Cabot2, and Nathalie Moreno3

1 Dipartimento di Elettronica e Informazione, Politecnico di Milano
Piazza L. Da Vinci, 32. I20133 Milano, Italy

mbrambil@elet.polimi.it
2 Estudis d’Informàtica, Multimèdia i Telecomunicacions, Universitat Oberta de Catalunya

Rbla. Poblenou 156. E08018 Barcelona, Spain
jcabot@uoc.edu

3 Departamento de Lenguajes y Sistemas Informáticos, Universidad de Málaga
Complejo Tecnológicio, Campus de Teatinos. E29071 Málaga, Spain

vergara@lcc.uma.es

Abstract. In this work we report our experience in applying model checking
techniques to the analysis of static and dynamic properties of Web application
models. We propose a mix of tools that facilitate model driven design of Web
applications, automatic code generation, and automatic property verification. As
recommended by current tendencies in the academic field, we bridge the gap be-
tween the tools by devising a set of MDA transformations between the different
models. We show that such approach is feasible although we also highlight how
current state-of-the-art industrial tools are still partially inadequate for providing
seamless support to MDA approaches for industrial Web applications.

1 Introduction

The design of a web application involves the definition of a data model (to specify the
data used by the application), a hypertext model (to describe the organization of the
front-end interface) and a presentation model (to personalize its graphical aspect).

In industrial web applications, data and hypertext models easily become huge and
very complex. Consequently, their definition is an inherently error prone process yet
their correctness is especially important when web designs are used to automatically
derive the implementation of the web application (as in [4]).

Unfortunately, support for web designs verification is rather limited. Common
tools and methods for web application development present poor verification facili-
ties, mainly purely syntax consistency analysis, as the reachability of all pages from
the home page or the existence in the data model of all entity types and attributes
referred in the hypertext model.

* This work has been partial supported by the Italian grant FAR N. 4412/ICT, the Spanish-

Italian integrated action HI2006-0208, the grant BE 00062 (Catalan Government) and the
Spanish Research Projects TIN2005-09405-02-01 and TIN2005-06053.

534 M. Brambilla, J. Cabot, and N. Moreno

A complete verification of web designs requires more formal model checking tech-
niques. Currently, there are very few formal verifiers for web applications. Further-
more, using them properly requires deep knowledge of temporal logic (model check-
ing techniques formalize the design to be verified as a finite state machine while the
properties to check are expressed in temporal logic). The syntax and semantics of
these concepts are completely alien to web designers, who are used to think in terms
of pages, links, forms, and so on. This impairs the applicability of model checking
tools and prevents their wide adoption in industrial web development projects.

We believe that current state-of-the-art technologies and tools makes now feasible
to align Web application modelling and formal model checking so that we can get the
best of both worlds: the usability and expressivity of graphical web modelling lan-
guages together with the verification capabilities of model checking tools. Clearly,
such alignment could boost the adoption of model driven web development methods
in the software industry, cutting down the cost of web application development and, at
the same time, improving its quality.

As a first attempt to fully integrate formal verifiers with web modelling tools we
have devised an MDA framework for the transformation of web models into the for-
mal models expected by model checking tools. In this sense, the aim of this paper is
to report our experience and, based on its results, to analyze the main issues that still
remain to be solved in the tools for design and verification of Web applications.

Our framework comprises a set of tools that support several standards defined by
the OMG. These standards include UML (Unified Modeling Language), MOF (Meta-
Object Facility), XMI (XML Metadata Interchange), and MOF/QVT
(Query/View/Transformations), among others. The choice of this transformation
framework brings a set of benefits with respect to other more direct transformations
(as XSLT or Java implementations): (1) it overcomes the limitations on the complex-
ity of the XSLT transformations; (2) it provides the flexibility (reusability) to easily
include other types of hypertext models in the framework and (3) it brings the possi-
bility of formally verifying the transformation process (since in our approach both the
source and target languages as well as the own transformation are specified by means
of formally specified metamodels)...

The rest of the paper is structured as follows. Sections 2 and 3 present Wave and
WebML, respectively. Section 4 shows the set of tools we combine to support
our approach for web development. Finally section 5 draws some conclusions and
outlines future work.

2 Wave: A Web Application Verifier

Wave [6] is a tool in Java for verifying temporal properties of data-driven Web appli-
cations. Wave takes as inputs the specification of a Web application (written in a
declarative, rule-based specification textual language) and a property (expressed in
first-order temporal logic), and outputs whether the property is true or false for that
Web application together with useful verification information (such as a counter ex-
ample in case of a false property).

A property is true when all possible runs (i.e. run-time executions) of the web appli-
cation satisfy the property. In this sense, Wave goes beyond purely syntactic analysis

 Tool Support for Model Checking of Web Application Designs 535

and permits to verify all common temporal verification properties (e.g. see [7]). As an
example, with Wave we can check that before shipping an order the user has paid that
same order in some previous web page. Instead, with a syntactic analysis we can just
check that the shipping page is not reached before the payment page; we cannot ensure
that the shipped order is the order paid in a previous payment page.

3 WebML

WebML [12][4] is a high-level notation for data-, service-, and process- centric Web
applications. It allows specifying the data model of a Web application and one or
more hypertext models (e.g., for different types of users or for different publishing
devices) used to publish and manipulate the underlying data.

Each hypertext is called site view and is defined as a graph of pages, consisting of
connected units, representing at a conceptual level the primitives for publishing con-
tents into pages: the content displayed by a unit is extracted from an entity type, pos-
sibly filtered. Units are connected by links carrying data from a unit to another, to
allow computation of the hypertext and definition of navigational paths for users.
Hypertext models also include content-management units to specify modification
operations (insert/update/delete) on the data underlying the site.

WebML is supported by the CASE tool called WebRatio [13], which provides fa-
cilities for designing WebML models and for automatically generating the running
code of the application. However, WebRatio provides no support for the verification
of generic user-defined properties for the hypertext. The only checking that is per-
formed is related to the correctness of the Web application with respect to the
WebML syntax and semantics.

4 Tool Framework

Our formal verification of web designs is implemented through collaboration among
several tools. In this section we comment the different steps of the web development
process when using our framework and describe the tools employed in each step. An
overview of the whole process is shown in Fig. 1.The upper part (Fig. 1a), shows the
interactions among the tools and their input and output models. The bottom part (Fig.
1b) sketches the application of the framework over a very simple WebML model.

Step 1. Specification of the web application models with the WebRatio CASE tool
[13]. In our approach, the design of a web application starts with the specification of
the data and hypertext models in WebML [4] using WebRatio. WebRatio stores all
specified models in a single XML file. Bottom left part of Fig. 1 shows a simple hy-
pertext model comprising a page with an index (All stores) and a page with the details
of the selected object (Store details), connected by a link.

Step 2. Transformation of the WebRatio syntax into an XMI representation. The
XML file exported by WebRatio must be transformed into an XMI representation [9]
to fit into the MDA transformation framework. Such transformation is implemented
through XSLT rules. The XML Schema of the XMI representation follows the struc-
ture of the WebML metamodel (see the next step).

536 M. Brambilla, J. Cabot, and N. Moreno

(a)

(b)

Fig. 1. Overall view of the proposed framework and its application over an example model

Step 3. QVT-Transformation of the WebML models into Wave models. This step
bridges the gap between WebRatio and the Wave model checker. The transformation
is formally defined as model-to-model transformation [5], with rules specified using
the standard QVT-Operational language [10]. The execution of the transformation is
performed with the help of the Borland Together Architect tool [3]. Together supports
the QVT-Operational language in the rule specification. Given a transformation defi-
nition and an input model, Together produces the output model according to the
specified transformation rules. Before applying the transformations in Together, we
need to previously perform the following tasks:

- Definition of new metamodels for the WebML and Wave languages. Model-to-

model transformations assume the existence of a metamodel (in particular a MOF
metamodel [11]) for the initial and target languages of the transformation. Based
on the concrete syntax of both languages we have developed and integrated in
Together new WebML and Wave metamodels. The WebML metamodel we use
is a slightly revised version of the one presented in [8].

 Tool Support for Model Checking of Web Application Designs 537

- Definition of the transformation rules to map WebML concepts to Wave
concepts. Each rule transforms a WebML element into its corresponding Wave
element.

In Fig. 1b we show a small transformation excerpt and the Wave model resulting from
applying it over the initial WebML model.

Step 4. Transformation of the Wave XMI representation into the Wave textual syntax.
As a result of the previous transformation, Together stores the generated Wave model
in an XMI file. The structure of this XMI file is compliant with the (Together) Wave
metamodel. In order to load the model into the Wave tool we must first transform this
XMI representation into the (textual) syntax expected by Wave.

Step 5. Model checking of the resulting Wave model. Once the model is loaded in
Wave, the designer can start checking that the model verifies the properties he/she is
interested in. Such properties must be specified in LTL (Linear Temporal Logic). To
facilitate their definition we developed a tool [2] that provides a visual notation to
express LTL formulas. Then, these formulas are translated into LTL textual syntax.

Step 6. Improvement of the WebML models according to the verification feedback. If
the verification determines that some properties are invalid, the designer can refine
the WebML model to solve the issues. Obviously, the designer must be able to under-
stand the feedback. To this purpose, the feedback should be expressed in terms of the
elements of the original WebML models and not in terms of the generated formal
Wave models. This can be achieved through reverse model transformations that high-
light and annotate the original WebML models, to make the issues evident into the
WebRatio tool. Therefore, the designer will see annotations on the WebML elements
corresponding to the Wave elements violating the verified properties. In Fig. 1b,
Property 4 appears to be violated by the link connecting the two WebML units.

5 Conclusions and Further Work

This work presented a framework for the design and verification of Web applications,
based on the WebML visual notation and on the Wave formal language and verifier.
We described the transformation between them and we discussed how the framework
could exploit the benefits of both languages. Indeed, the usability and readability
advantages of WebML are coupled with the formal specification and verifiability
properties provided by Wave. Thanks to Wave, general properties specified by the
user can be checked, included rules on the execution and on the navigation of the
user. Refer to [1] for additional material (as the full transformation rules, the meta-
models description, etc.) regarding this tool framework.

As mentioned in the introduction, our approach is based on a set of tools and stan-
dards defined by the OMG. However, several issues were encountered in using these
OMG standards: poor support for QVT transformations in current CASE tools; com-
patibility problems between the different XMI representations expected by each tool
(i.e., UML tool vendors fail to generate fully XMI-compliant specifications of the

538 M. Brambilla, J. Cabot, and N. Moreno

models); a transformation architecture more complex than we expected at the begin-
ning (a lot of steps are necessary to go from the xml generated by WebRatio to the
textual input of Wave), partially due to incompatibilities between the tools.

From our experience with this framework, we draw two main conclusions: (1) it is
feasible to align web modelling languages and formal verifiers; and (2) much effort is
still necessary to simplify the whole process. Otherwise, it will be difficult to foster
the use of our framework (or similar ones) among industry partners, despite its clear
benefits to improve the web development process. Fortunately, tool support for the
OMG standards is continuously growing, so we can expect than some of the draw-
backs encountered will be lessened in a near future.

Further work goes in the direction of improving the usability of the framework, by
means of a seamlessly integration with the WebRatio tool in a way that allows the
designer to be unaware of the intermediate transformations, thanks to proper visual
interfaces for specifying the properties to be checked and for presenting the obtained
results directly within the CASE tool. Moreover, predefined properties should be
provided to the designer in the form of patterns that when applied over a concrete
hypertext model, generate automatically the appropriate LTL formulae for that
model. Another approach for simplifying the property definition is to allow visual
specification of properties too, like in the solution presented in [2].

References

[1] Brambilla, M., Cabot, J., Moreno, N.: Tool Support for Model Checking of Web Applica-
tion Designs (2007) http://www.elet.polimi.it/upload/mbrambil/webmlwave

[2] Brambilla, M., Deutsch, A., Sui, L., Vianu, V.: The Role of Visual Tools in a Web Appli-
cation Design and Verification Framework: A Visual Notation for LTL Formulae. In:
Lowe, D.G., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, pp. 557–568. Springer,
Heidelberg (2005)

[3] Borland Together Architect (2007) http://www.borland.com/us/products/together/
[4] Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing

Data-Intensive Web Applications. Morgan Kaufmann, Seattle, Washington (2002)
[5] Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches,

IBM Systems Journal, vol. 5(3) (2006)
[6] Deutsch, A., Marcus, M., Sui, L., Vianu, V., Zhou, D.: A Verifier for Interactive, Data-

driven Web Applications. In: SIGMOD’05 (2005)
[7] Holzmann, G.: The Spin Model Checker Primer and Ref. Manual. Addison-Wesley, Lon-

don, UK (2003)
[8] Moreno, N., Fraternali, P., Vallecillo, A.: A UML 2.0 Profile for WebML Modeling,

Model-Driven Web Engineering. In: ICWE’06 Workshops (2006)
[9] OMG. XML Metadata Interchange (XMI) Specification v.2.0. (formal/03-05-02) (2003)

[10] OMG. MOF QVT. Final Adopted Specification (ptc/05-11-01) (2005)
[11] OMG. Meta Object Facility (MOF) Core Specification, (formal/06-01-01)(2006)
[12] WebML.org (2007) http://www.webml.org
[13] WebRatio 4.3 (2007) http://www.webratio.com/

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 539 – 544, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Developing eBusiness Solutions
with a Model Driven Approach: The Case of Acer EMEA

Roberto Acerbis1, Aldo Bongio1, Marco Brambilla2,
Massimo Tisi2, Stefano Ceri2, and Emanuele Tosetti3

1 Web Models
Piazzale Gerbetto, 6. 22100 Como, Italy

{roberto.acerbis, aldo.bongio}@webratio.com
2 Politecnico di Milano

Piazza L. Da Vinci, 32. 20133 Milano, Italy
{mbrambil, tisi, ceri}@elet.polimi.it,

3 Acer Europe Services
Via Lepetit, 40. 20020 Lainate (MI), Italy

emanuele_tosetti@acer-euro.com

Abstract. This paper addresses the problem of developing enterprise-class
eBusiness solutions in a more economically viable and time-effective way, by
adopting Model Driven Development (MDD). Specifically, we report on an ex-
perience of more than six years of collaboration between Acer Inc. (the 4th
branded PC vendor worldwide) and Web Models, an Italian startup company
spinoff of Politecnico di Milano, innovator in the market of software tools and
methodologies for MDD. The results clearly demonstrate that MDD can shorten
the development of complex eBusiness solutions, improve the quality and con-
formance to requirements, and increase the economic profitability of solutions,
by lowering the total cost of ownership and extending the life span of systems.

Keywords: Model Driven Development, WebML, industrial case study.

1 Introduction

The advent of the Web as a universal platform has initially facilitated the shift to-
wards enterprise integrated applications, by offering a standard means of distributing
data and functions. However, the unprecedented speed of evolution typical of the
Web and the fierce competition on technologies among the major ICT players chal-
lenges the long-term sustainability of IT projects, due to a number of cross-cutting
complexity factors: the spectrum of relevant standards and architectures constantly
increases; the learning curve of technologies is higher than their evolution rate; out-
sourced or distributed development challenges classical software project management.

A solution to the growing complexity of IT projects requires a thorough innovation
of the approach to software development, as advocated by the modern research on
software engineering, which proposes Model Driven Development (MDD) as a means
of improving the governance and end-to-end productivity of software [10]. In essence,
MDD promotes a novel approach to software development centered around the

540 R. Acerbis et al.

notions of: platform independent model (PIM), which is a representation of the sys-
tem’s functionality independent of any specific technology, and model transforma-
tion, which is the process of progressively refining high-level models into lower-level
ones, until an executable model on a concrete platform is reached.

This paper elaborates on a six-years experience of applying MDD to a set of enter-
prise-scale applications, developed by the EMEA branch of Acer Inc. using WebRa-
tio, an innovative MDD methodology and tool suite based on the WebML meta-
model[2]. The milestones of the work can be summarized as follows:

1. 2000-2002: The introduction of MDD methods and tools in the company, as a
means of mastering the deep internal reorganization and technology change.

2. 2002-2004: The consolidation of the MDD approach as a key success factor in
mission-critical applications, which led to its diffusion outside the marketing, e.g.,
to the distribution channel management, sales, and financial services sectors.

3. 2004-today: The integration of the MDD approach within the design of a global
Service Oriented Architecture, with the aim of managing large-scale projects, in-
volving not only internal roles, but also distributors and partners.

Model Driven Development seemed the most adequate methodology for bringing
software development to non-IT business units. The idea was to exploit the knowl-
edge about the business processes of the marketing personnel, delegating as much as
possible of the construction of the implementation code to suitable development tools.

The reference model chosen by Acer is WebML, a model-driven methodology that
builds on several previous proposals for hypermedia and Web design notations, in-
cluding HDM, HDM-lite, RMM, OOHDM, and Araneus[1]. The design principles,
notations, and development procedures of WebML are described at large in [2]; HDM
[6] pioneered the model-driven design of hypermedia applications and influenced
several subsequent proposals like RMM [7], Strudel [4], and OOHDM [8]; while
other approaches (e.g., [3]) were inspired by object oriented models. All these meth-
ods offer powerful built-in navigation constructs, as opposed to WebML, which ex-
ploits simple, yet orthogonal, composition and navigation primitives.

2 Case Studies

Acer-Euro. The first version of the Acer-Euro application (Acer-Euro 1.0) aimed at
establishing a software infrastructure for managing and Web-deploying the marketing
and communication contents of 14 countries out of the 31 European Acer national
subsidiaries. The Acer-Euro 1.0 system supported the two main functions of Content
Publishing and Content Management in a seven-steps distributed workflow, illus-
trated in Figure 1, involving Local and Central Product Managers (LPMs and CPMs),
Central Marketing Managers (CMMs), the central IT department, and the Internet
Service Providers (ISPs). In this way, Acer could completely renovate the content and
workflow of the marketing and communication functions, while reusing the existing
national Internet infrastructures and contracts.

Acer-Euro 1.0 had a very tight schedule. Only seven weeks elapsed from the ap-
proval of the new site map and visual identity to the publishing of the 14 national web
sites (plus the CMS). In this period, two distinct prototypes were formally approved

 Developing eBusiness Solutions with a Model Driven Approach 541

by the management: prototype 1, with 50% of functionality (end of week 2), and pro-
totype 2, with 90% of functionality (week 5). Overall, 9 prototypes (2 formal, 7 for
internal assessment) were developed in 6 weeks. The development team consisted of
four persons: one business expert and one junior developer from Acer, and one ana-
lyst and one Java developer from Politecnico di Milano.

Fig. 1. Acer-Euro 1.0 workflow

As Table 1 clearly shows, the most relevant aspect of the development of Acer-
Euro 1.0 is the short time-to-market with respect to the complexity of the application.
Such result has to be ascribed to: (i) the high degree of automation of the process
thanks to the model-driven approach (90% of the code were synthesized automati-
cally); (ii) the overall productivity rate of 131,5 function points/staff month, which is
30% greater than the maximum value expected for traditional programming lan-
guages in the SPR Tables [9]; (iii) the velocity in focusing the requirements, thanks to
the rapid production of realistic prototypes; (iv) immediate stress test and architecture
tuning thanks to code directly generated for the actual delivery platform. Moreover,
the benefits of MDD were even more sensible in the maintenance and evolution
phase, leading to four major releases between 2001 and 2003 and to 13 multi-
language intranet and internet applications, serving additional corporate processes.

Acer Connect. In June 2001, a spin-off project, called Acer Connect was scheduled,
to address the delivery and management to the sales channel operators (Acer part-
ners). This is a multi-actor extranet application characterized by: segmentation of the
users into a hierarchy of user roles; different access privileges and information visibil-
ity to roles; one centralized and several local administration roles, able to perform
advanced administrative and monitoring tasks; several group-tailored Web applica-
tions (e.g., sales, marketing) targeting contents to corporate-specific or partner-
specific communities; a security model for managing group and individual access
rights on single pieces of contents; full-fledged content personalization.

The first version of Acer Connect was deployed in Italy and UK in December
2001, after only seven elapsed months of development and with an effort of 24 man
months. Today, Acer Connect is rolled out in 25 countries, delivering content and
services to a community of over 80.000 users. Acer Connect and Acer-Euro share part
of the marketing and communication content, and therefore the former project was

542 R. Acerbis et al.

realized as an evolution of the latter. The model-driven approach greatly reduced the
complexity of integration, because the high-level models of the two systems were an
effective tool for reasoning about the functionality to reuse and develop.

Besides Acer-Euro and Acer Connect, several other projects were spun-off, to ex-
ploit the customer and partner communities gathered around these two portals, which
collectively totalize over 10.800.000 visits per month. As a remark on the long-term
sustainability of MDD, we note that, despite their complexity and multi-national
reach, both Acer-Euro and Acer Connect are maintained and evolved by one junior
developer each, working on the project at part time.

Table 1. Main dimensional and economic parameters of the Acer-Euro project

Class Dimension Value
Number of elapsed workdays 49
Number of development staff-months (analysts and developers) 6 staff-months
Total number of prototypes 9
Average elapsed man days between consecutive prototypes 5,4

Time &
effort

Average number of development man days per prototype 15,5
Number of localized web applications 14 B2C, 4 CMS
Number of supported languages 12
Number of data entry masks 39
Number of automatically generated database tables 46
Number of automatically generated database views 82
Number of automatically generated database statements 279 queries, 89 updates
Number of automatically generated JSP page templates 48
Number of automatically generated or reused Java classes 250
Number of automatically generated Java lines of code 12500

Size

Number of manually written SQL statements 17 constraints
Percentage of automatically generated SQL code 96%
Number of manually written/adapted Java & JSP components 10% JSP
Percentage of automatically generated Java and JSP code 90% JSP, 100% Java

Degree of
automation

Total cost of software development of first version 75.000 €€
HW, SW licenses, and connectivity cost of first version 70.000 €€ (db)
Return on investment of first version 12-15 months
Average effort of extension to one additional country 0,5 staff-months
Average cost of extension to one additional country 7.500 €€
Average ROI of extension to one additional country 2 months
Number of function points 789

Cost, ROI,
and pro-
ductivity

Average number of function points delivered per staff-month 131,5

3 Results and Critical Considerations

In this section, we summarize the main lessons learned in the application of the MDD
principles to web development. The major effect of MDD is to shift the focus of de-
velopment from implementation to requirement analysis. Almost 80% of the delivery
effort concentrates in the phases of data design, hypertext design and prototyping.
This means that more development time is spent with the application stakeholders, to
refine design models and evaluate prototypes. The result is a better quality of the de-
livered applications and a higher rate of acceptance, because design errors and re-
quirements misinterpretations are eliminated as early as possible. MDD also benefits
the more technical tasks of testing, maintenance, and evolution, because reasoning on
the system is far more effective at the conceptual level than at the physical level.

 Developing eBusiness Solutions with a Model Driven Approach 543

MDD lowers the technical barriers for developing complex Web applications, al-
lowing a more flexible distribution of responsibilities between the IT department and
the business units. When business goals are rapidly evolving, and quick adaptation to
changing environment is a critical factor, the possibility of developing, monitoring
and adjusting the systems directly by the business units greatly improves efficiency.

The deployment consisted of J2EE standard architectures, with the integration of
heterogeneous systems taking place by means of Web services. A well-defined archi-
tectural protocol can be established to integrate systems autonomously developed in
different business units, avoiding the duplication of software functions and data.

Last but not least, MDD has proven an economically profitable and sustainable
way of developing Web systems. The peak productivity rates experienced in the Acer
projects has reached five times the number of delivered function points per staff-
month of a traditional programming language like Java [9].

On the negative side of MDD, the initial training costs must be considered. MDD
requires non-technical knowledge on the modeling of software solutions, which must
be acquired with a mix of conventional and on-the-job training. Acer estimates that it
took from 4 to 6 months to have fully productive developers with MDD, WebML, and
WebRatio. However, as Figure 2 shows, the initial investment in human capital re-
quired by MDD pays off in the mid term. The number of applications developed and
maintained per unit of personnel increases with the developers’ expertise and exceeds
ten fully operational, complex and distributed Web applications per developer.

4 4 4 5 5

24
32

41

56

17
21 24 28 31

0

10

20

30

40

50

60

2001 2002 2003 2004 2005

Number of
developers

Number of served
countries

Number of
maintained
applications

17

Year

Units

Fig. 2. Evolution of manpower versus number of maintained applications and served countries

4 Conclusions

In this paper we have reported on a long-term experience in applying Model Driven
Development to the construction of mission-critical eBusiness solutions, jointly con-
ducted by Acer and WebModels, by exploiting the WebML model. After more than
five years of applying MDD with WebRatio, Acer has gained sufficient experience to
draw some general conclusions. Today, the use of WebRatio has spread from the
Acer-Euro project to most of the Web-based B2C, B2E, and B2B platforms of Acer
EMEA and has been exported from Europe also to Acer PanAmerica. The developed
solutions cover all the most critical sectors of Acer’s business and have given tangible
benefits over the years. The abovementioned portfolio of solutions has been deployed,
and is continuously being maintained, by an internal team consisting of five develop-
ers only. With a traditional development methodology and using conventional pro-
gramming-oriented tools, the company estimates that the construction of the deployed
systems would have required at least three times the resources that have been

544 R. Acerbis et al.

invested. None of the developed systems has been retired or has become obsolete;
new requirements have been smoothly incorporated into the running versions and
rolled out by iteratively extending the deployed systems.

The Acer experience has demonstrated the feasibility of MDD and the efficiency it
introduces into the development lifecycle, largely anticipating the current debate on
the Model Driven Architecture. However, the adoption of a model-based approach
must also extend to the maintenance and evolution steps (which account for over 60%
of the total lifecycle cost), where they provide the best advantages in terms of cost
and productivity.

In conclusion, MDD appears to be a powerful tool for renovating businesses and
taking advantage of the advent of low-cost distributed network infrastructures. How-
ever, the transition requires innovation not only in the business strategies but also in
the IT departments.

Our future work will concentrate on improving and extending the quantitative as-
sessment of the benefits of Model Driven Development in the Web application sector.
A novel software tool for automatically performing the evaluation of software pro-
jects size and effort is under development, which will support the measurement of
different project parameters related to size, effort, and cost.

References

[1] Atzeni, P., Mecca, G., Merialdo, P.: Design and maintenance of data-intensive Web sites.
In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377,
pp. 436–450. Springer, Heidelberg (1998)

[2] Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing
Data-Intensive Web Applications. Morgan Kaufmann, Seattle, Washington (2003)

[3] Conallen, J.: Modeling Web Application Architectures with UML. Communications of
the ACM 42(10), 63–70 (1999)

[4] Fernandez, M., Florescu, D., et al.: Catching the boat with Strudel: Experiences with a
Web-site management system. In: 24th ACM SIGMOD, Seattle, WA (1998)

[5] Fraternali, P.: Tools and approaches for developing data-intensive Web applications: A
Survey. ACM Computing Survey 31(3), 227–263 (1999)

[6] Garzotto, F., Paolini, P., Schwabe, D.: HDM - A Model-Based Approach to Hypertext
Application Design. ACM TOIS 11(1), 1–26 (1993)

[7] Isakowitz, T., Stohr, E., Balasubramanian, P.: RMM: A Methodology for Structured Hy-
permedia Design. CACM 38(8), 34–44 (1995)

[8] Rossi, G., Schwabe, D., Lyardet, F.: Web Application Models are More than Conceptual
Models. In: Kouloumdjian, J., Roddick, J.F., Chen, P.P., Embley, D.W., Liddle, S.W.
(eds.) Advances in Conceptual Modeling. LNCS, vol. 1727, pp. 239–252. Springer, Hei-
delberg (1999)

[9] Software Productivity Research: SPR Programming language Table – Version PLT2005a
(2005) http://www.spr.com

[10] Warmer, J., Bast, W., Pinkley, D., Herrera, M., Kleppe, A.: MDA Explained: The Model
Driven Architecture: Practice and Promise. Addison Wesley, London, UK (2003)

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 545 – 549, 2007.
© Springer-Verlag Berlin Heidelberg 2007

The Challenges of Application Service Hosting

Ike Nassi, Joydip Das, and Ming-Chien Shan

SAP America
3410 Hillview Avenue, Palo Alto, CA 94304

ming-chien.shan@sap.com

Abstract. In this paper, we discuss the major issues associated with the new
model of software delivery – service on demand – and explain why it alters the
economics of software. As this model is expected to deliver fundamental leaps
in cost efficiency, operation performance, infrastructure orchestration and ap-
plication control, we describe the supporting technology required to achieve
these goals. We also highlight those crucial operational processes for enhancing
the quality of software delivery under the service on demand model. We then
briefly outline our research roadmap to develop an on demand operating envi-
ronment based on the fundamental principles: standardization, repetition, and,
ultimately, automation.

Keywords: Service hosting, service on demand, software as a service, service
provisioning, resource virtualization.

1 Introduction

Buying and operating enterprise applications is not like buying traditional durable
goods such as TVs or refrigerators – customers are not just buying a discrete product
and simply plugging it in for use. Instead, they are buying into an R&D stream of
maintenance and operation. Today, the total spent on enterprise IT exceeds one tril-
lion dollars per year. However, amazingly, 75% of that is used for managing existing
systems. IDC cites five major areas that cost companies millions of dollars annually:
“CIOs and their departments really focus on five key aspects to the management and
maintenance of their software systems: availability, performance, security, problems
and change management.” For example, Wachovia Bank has been spending
$700,000-$800,000 a year on consultant fees just to keep their old system up and
running while, similarly, the amount of money spent by 200,000+ Oracle customers
for only managing their Oracle software ranged between $40 and $80 billion per year.
Maintenance and administration costs over time have been a major culprit in the high
spending required to maintain the status quo. “Customers can spend up to four times
the cost of their software license per year to own and manage their applications,” says
Gartner Inc. Furthermore, the cost of any outage can range from $100 to $10,000 per
minute of downtime, according to AMR Research.

As a consequence, customers don’t want to spend money managing their software
environment and prefer someone to take over this responsibility but still provide the

546 I. Nassi, J. Das, and M.-C. Shan

same facility to support their business operations. This led to the advent of new mod-
els that delivers software as a service (SaaS).

In the 1990s, traditional client-server architectures were adapted to the SaaS model
by Application Service Providers (ASPs) with limited success. The trend has contin-
ued with off-shoring of IT operations to take advantage of cheaper globalized re-
sources provided by Business Process Outsourcing (BPO) vendors. However, these
approaches focus on delivering traditional packaged software applications as services.
While economies of scale lower cost, solution implementation and operation cycles
continue to be complex and time consuming and primarily suitable for large enter-
prises. More recently, a new breed of software platforms and applications have
emerged to take advantage of internet scale architectures to provide software on de-
mand. New on-demand vendors are taking advantage of this model to drive signifi-
cant adoption of software in the high-volume small and mid-size enterprise markets.
In effect the software on demand model has become synonymous with the software
as a service moniker.

Gartner, IDC and Fortune Magazine have all cited on demand software as one of
the key megatrends and predicted that up to 40% of all applications will be delivered
over the Internet within the next 2-3 years. As a matter of fact, people have already
been using service on demand in their daily life, without being aware of it, e.g., even
private individuals think nothing of using eBay and PayPal to sell goods to people
half a world away, essentially making them small businesses outsourcing their IT
needs to a sophisticated global vendor. This is an example of delivering enterprise
applications on a needed-base via the Web for the masses.

The on demand model fundamentally alters the economics of software delivery
through operational efficiency and performance, infrastructure orchestration and ap-
plication control. In addition, it changes both the relationships between the software
vendor and the customer, and the economics of purchasing and owning software.
However, the profitable transition to such an on-demand model will require incum-
bent client-server application vendors to adapt and migrate to a new breed of techni-
cal solutions as well as fundamentally different operation models.

2 Basic Issues and Approaches

Service on demand addresses the cost of software delivery at several levels. First,
standardized technology platforms that support internet scale architectures reduce the
initial infrastructure costs. Second, a very high degree of automation with focus on
availability, security and fault tolerance reduces the human cost of delivering soft-
ware. Finally, applications that lend themselves to a high degree of modularization
and non-disruptive change management allow seamless incremental deployments and
pay-as-you go service acquisition.

The technology array used to support service on demand is classified into three
categories:

1. Resource virtualization. This category of technologies aims to provide a single,
consolidated, logical view of and easy access to all available resources in an envi-
ronment. It is the process of presenting computing resources in ways that users

 The Challenges of Application Service Hosting 547

and applications can easily ascertain values from many types of integrated
implementation rather than presenting them in a way dictated by a specific im-
plementation, geographical location, or physical package. A meta-level of im-
plementation views can in some sense describe the overall concept of virtualiza-
tion. However, resource virtualization, specially at the hardware level alone is
insufficient in driving down the cost of delivering service on-demand to create
profitable margins.

2. Service provisioning. This category of technologies makes the right resources
available to the right processes at the right time. The execution resource alloca-
tion and application management should support the adequate level of quality of
service to meet the minimum SLA requirements contracted with customers. It is
the end-to-end capability to automatically deploy and dynamically optimize re-
sources, including servers, storages, network bandwidth, operating systems, mid-
dleware, applications, and third-party connections. It requires tools to manage
service levels, meter system usage and performance, and billing for service us-
age, as well as monitor and optimize service provisioning processes.

3. Application adaptation. This category of technologies reshapes the existing/new
software applications to be able to leverage the virtualized execution environment
and internet scale architectures, achieving the maximum degree of performance
and flexibility. For example, vendors like RightNow have started to build their
software to be delivered as a service. As a result of this effort, the average de-
ployment time of RightNow’s call center solution from customer commitment to
being live is less than 40 days, including integration and customization. Mean-
while, vendors like Oracle and SAP are both on the way to break up their applica-
tion packages into modular components to facilitate service provisioning.

However, the service management and resource virtualization technologies alone
cannot deliver profitability in the on demand service model. As indicated in a Gartner
report, human operations were responsible for more than 50% of process operational
failures. Additionally, numerous studies point to the cost of operations as the primary
contributor to overall IT costs. As a result, in order to ensure a sustainable level of
service quality while maintaining profit margins, we must do three things: First, we
must standardize the fundamental infrastructure and building blocks. Second, we must
develop specialization and repetition of the key availability, security, performance,
problem, and change management processes. If a process is repeated, it can be auto-
mated. The next generation of complex software management cannot be based on
people; it must be based on processes and automation, which is the key to higher
quality and lower cost. Finally, the process can be optimized, meaning data from the
process is used to change and improve the process. In summary, an on demand oper-
ating environment is an open standards-based, heterogeneous world, integrated,
automated and freely enabled with self-managing capabilities.

In addition, we need to develop the operational processes focusing on the support
of key service business operations, including configuration management, availability
management, performance management, security management problem management,
and change management. At SAP, based on our experience of managing thousands of
software systems, a set of key management processes has been identified, including
an event correlation and root cause analysis process, a disaster recovery management

548 I. Nassi, J. Das, and M.-C. Shan

process, a capacity management process, a resource management process, a produc-
tion assessment process, an escalation management process, an update management
process and a proactive problem management process.

To evolve all of the above-mentioned capabilities and deliver more choice in tailor-
ing services to our customers, we at SAP Research Lab are developing a prototype
researching an execution and development framework supporting the business of ser-
vice on demand. We will also study how to codify changes to the existing application
packages facilitating the service on demand operation.

3 Additional Challenges and Directions

The basic business model for service on demand tends toward fixing functionality to
put an upper limit on cost. But businesses change. In today’s dynamic business envi-
ronment, without the ability to innovate, companies will risk watching more nimble
competitors eat into their established markets. Therefore, the business objectives for
customers to move to the service on demand model is not just trying to reduce the
total cost of ownership, but also more critically, to reduce the time of implementation
of new composite services to support their end-to-end business operations. This is
because, in the past, most vendors had constrained the ability to change the software,
providing very basic offering of their services. As the service business continued to
mature, there is a realization that, for larger mid-size companies, there is a need to
extend and tailor the applications to the customer’s business.

In addition, large global service providers always attempt to define what they
called “killer applications.” These killer applications were competitive services pre-
dicted to be highly utilized by a wide variety of customers. Oftentimes, these applica-
tions were time-intensive to create and somewhat costly to maintain. The on demand
business ecosystem must afford creators the ability to quickly create and push out to
their users, virtually eliminating risk from the large enterprise in determining what
best killer application was the target, so as to provide to their customer base the most
robust service.

Based on the observations mentioned above, it becomes clear that the ability of a
service provider to enable the quick response to ever-changing customer demands will
determine who survives in today’s rapidly changing marketplace. It requires a new set
of composite service development technology fabric that can adapt on demand busi-
ness to these ever-changing requirements. Currently, SAP is exploring a new category
of services, called tool on demand, to provide a hosted development environment for
composite service development, deployment, monitoring and maintenance in its
hosted environment in addition to its hosted service on demand environment.

Last, as adoption of its offerings grows, SAP may also consider expanding its ser-
vices to include offering its NetWeaver application server as a service. This next level
of outsourcing, called execution environment on demand, offers customers the flexi-
bility to not only use the framework to tailor the software, but also use independent
software vendors and custom-written applications that run on SAP technology to
provide more flexibility to support their business needs.

 The Challenges of Application Service Hosting 549

References

1. Chou, T.: The hidden cost of Software. ASPNews (May 2003)
2. Fellenstein, C.: On Demand Computing, IBM Press (2005)
3. Murphy, B., Gent, T.: Measuring system and software reliability using an automated data

collection process. Quality and reliability engineering international.
4. Oppenheimer, D., Ganapathi, A., Patterson, D.: Why do Internet services fail, and what can

be done about it?. In: Proc. Of the 4th USENIX Symposium on Internet Technologies and
Systems, Seattle, WA (March 2003)

5. Rowell, J.: A step-by-step guide to starting up SaaS operations. OpSource (2004)

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 550 – 555, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Securing Code in Services Oriented Architecture

Emilio Rodriguez Priego and Francisco J. García

Departamento de Matemáticas y Computación
Universidad de La Rioja

Edificio Vives, Luis de Ulloa s/n
E-26004 Logrono (La Rioja, Spain)

{emilio.rodriguez, francisco.garcia}@unirioja.es

Abstract. SOA proposed security mechanisms are only centered in the data
transmitted between service provider and consumer. However, it’s well known
that the biggest threats to the integrity of the information are precisely focused
not on the data directly but on the code that manages it. Our main statement is
that it will only be possible to reach an acceptable level of security if the protec-
tion mechanisms cover not only the data but also the code that process these
data. In this paper we present a new approach about mobile code security
based on the Services Oriented Architecture Reference Model and Web Ser-
vices technology. This new model allows the development of systems with
end-to-end security, where all elements (code and data) are secure.

Keywords: Web services security, mobile code security, Service Oriented
Architecture.

1 Introduction to the Problem

Nowadays, there is a growing interest in Web Services technology and Service Ori-
ented Architecture (SOA), whose Reference Model has been recently approved as an
OASIS standard [2]. In this model, a consuming entity requests from a supplier entity,
one or more services under a set of conditions (interaction, visibility, execution con-
text, policies and contracts). At the same time, security is one of the aspects that re-
quires more attention due to the application of this technology to environments where
information exchange is made through public networks like Internet, in which there
potentially exists diverse security threats. Recently different standard-based solutions
have been proposed to solve the problem of secure sending and reception of mes-
sages. According to SOA, the performed action details of the supplied service are not
typically visible by the consumer [1, 2]. Therefore SOA does not address the subjects
related to the realization of a service, like, e.g. securing it, delegating the effective
resolution of these problems to the supplier.

The proposed security mechanisms of the SOA model and the technology of web
services are centered in the transmitted data (message), and they put their focus on
end to end integrity, confidentiality, identity and authentication. These mechanisms
work well and in practice they reach the objective. However, it’s well known that the
biggest threats to the integrity of the information are precisely focused not on the data
directly but on the code that manages it [8,9].

 Securing Code in Services Oriented Architecture 551

Therefore, our main statement is that it will only be possible to reach an acceptable
level of security if the protection mechanisms cover not only the data but also the
code that process these data.

Independently of the web services development and SOA model, the security
problem of mobile code and its interaction with the environment in which code is
executed has been studied in the last years, particularly for the singular case of mobile
agents [6]. Both SOA and mobile code have specific and common aspects of security
but until now had not been treated jointly. The main contribution of this article is the
proposal of a new approach to the problem of the security of mobile code, named
“Web Services based Secure Code” (here-in-after WSbSC) that it’s based on SOA
Reference Model and the Web Services Architecture.

WSbSC allows for the improvement of security in a typical interaction between
consumer and provider without forcing the participants to necessarily know the details
of implementation of the services.

Our model is virtually applicable to any SOA situation in which an integral model
of security, involving data and code was required. However, in certain situations code
visibility, integrity and/or portability are more important, because code integrity, the
code in itself, the source of the code or all of these elements, take part or are ex-
changed as part of services provided by the supplier. Typical examples of these appli-
cation environments are distributed processes, hosting or rent of processes, auditing
and validation of code by certification entities, and so on.

Once the problem that we want to address has been stated, the rest of the paper is
organized in two main sections, each one describing its own objectives, resolution
outline and methodology. In Section 2, we provide a general description of the
WSbSC reference model. Section 3 presents the application of the model to a basic
SOA interaction. The last section summarizes the main contribution, related work, the
status of the research and indicates the future work.

2 WSbSC Reference Model

The reference model of WSbSC (here-in-after WSbSC-RM) is an abstract framework
for understanding significant relationships among service entities (providers and con-
sumers) that allows an integral (data and code) secure interaction, enabling the devel-
opment of specific architectures using consistent standards or specifications.

WSbSC-RM relies on SOA-RM and it adds new concepts and relationships to the
modeling of data and code exchange based on services.

The central concept in WSbSC-RM is the code, just as it has been defined tradi-
tionally but with some specific features: (1) the code can be portable: i.e., it can be
sent from one system to another without manual intervention; (2) the code can be
executed in any compatible execution environment; (3) transmission, load and execu-
tion of the code can be carried out in a safe way, applying the same basic principles of
secure transmission of data (identity, integrity and confidentiality); and (4) the code
can be verified in a secure manner.

There have been different proposals related to code portability, validation and exe-
cution in distributed environments [4,5,7]. Most proposals are based on hardware or
software techniques for execution in a local environment.

552 E. Rodriguez Priego and F.J. García

WSbSC-RM states that the transmission, reception, execution, load, compilation
and validity of the code are services that can be offered by systems potentially remote
and weakly coupled. As we see below, with WSbSC code is not only externally veri-
fiable [3], but also externally compilable and externally executable.

WSbSC-RM distinguishes the following actors:

− Author: it's the owner and creator of the code and its legal owner.
− Supplier: provides the code to a consumer and distributes it by author permission.
− Client: uses the code provided by a supplier.
− Verifier: verifies the code according to a security policy previously established.
− Compiler: given a code, it compiles another functional equivalent code.
− Processor: possesses an execution environment that executes the code.

All WSbSC-RM actors are service consumers or providers, from the point of view
of SOA-RM. Besides WSbSC-RM allows the modeling (recursively) of the actions
(local or remote) of a service by composing services offered by these actors and ac-
cording to code-centric policies and contracts. What is a key added factor of our ap-
proach with reference to SOA, is that actors playing the role of consumers in any
relationship to a provider may impose a certain security policy to regulate the service
that the provider is going to perform. This policy, and here is the contribution, does
not only affect the data (message) as SOA does, but also the service implementation.
This policy refers to one or several security aspects (such as integrity, confidentiality,
validity, and so on) and may specify a mechanism or set of mechanisms that the pro-
vider must implement to accomplish the policy. These security requirements can be
used by the consumer to select the most suitable provider in each case, depending on
the mechanisms the former can implement. The response to each service request will
include, as well as the result, metadata about the required, and fulfilled, policy.

Verifier

Author

SupplierClientProcessor

Compiler

[1]

[4]
[5][6][7]

[10]

[8]
[9]

[11]

[2]

[3]

A

BA

Graphical Notation

Entity that offers and/or
uses a service

A uses a service
from B

Fig. 1. General WSbSC-RM scenario

At this point, we have not studied yet all relationships between WSbSC-RM actors
like service actors, but we can illustrate these relationships by describing a general
example that shows some key concepts in SOA-RM: service, interaction, policies and
contracts, real world effect, etc. Fig. 1 shows this general scenario. Interactions in-
volve the following steps: (1) An author creates the code and sends it to a supplier for
distribution. (2) A client localizes and requests the code that satisfies its needs from
the supplier. (3) The supplier delivers the code. (4) The client requests the verification
of the code according to the client policy from a verifier. (5) The verifier delivers the
validated code. (6) If code is not compiled for the architecture in which is going to be

 Securing Code in Services Oriented Architecture 553

executed then the client requests its generation from a compiler. (7) The compiler
returns the compiled code. (8) The client can request validity of the compiled code
from the verifier. (9) The verifier returns the validated code. (10) The client requests
to a processor execution of the code. (11) The processor returns the result of the
process to the client.

At point (9) the code is associated to the verifier's signature that guarantees its in-
tegrity. The Processor can verify code integrity, or even correctness with respect to a
certain specification, before execution by means of that signature. Moreover, the
overall process can be checked if each actor signs its action. As a result, each step
generates metadata signed by the service provider, as well as its signature; e.g., the
result code of the compiler can include metadata related to that compilation. This
means that at the end of the process we can get a code qualified as "secure" since it's
created (author), provided (supplier), validated (verifier) and generated (compiler) by
trusted identified entities. This code, that we'll name Portable Secure Code (PSC) is
formally "portable" and "secure". We have that PSC = Code + PSC-cert (cert stands
from certificate). As you can see in Fig. 2, the PSC-cert accompanies the service re-
sult returned to the service consumer. This PSC-cert allows a client to test that the
code is PSC while the code itself is not revealed.

There can be diverse variations of this general scenario. For example, after the step
(2), the client asks the processor for the execution of the code and the processor man-
ages the communication with the verifier and the compiler to get the PSC.

We will use the following methodology to develop the model outlined here: (1) we
will describe in detail concepts and relationships among actors in the model and (2)
study in more detail the relationships with SOA and Web Services Architecture.

3 Service Implementation by WSbSC

In this section a specific use of WSbSC to offer an advanced level of end-to-end ser-
vice security is described. We consider a consumer entity that uses a service offered
by a provider entity. Fig. 2 shows how a provider entity relies on WSbSC to get a
higher security level.

PSC

Consumer Entity

Author

VerifierCompiler

Processor

Provider Entity

Supplier
[0]

[I]

[II]

[2]
[3][4]

[5] [6][7]

[8]

[9]

[1][10]

Consumer Policy

Result+PSC-Cert

Data input

Fig. 2. Service Implementation with WSbSC

554 E. Rodriguez Priego and F.J. García

Applying WSbSC, interactions in this basic scenario are: (I) a consumer entity
requests a service from a provider entity. The security policy of consumer entity es-
tablishes that the provider entity must implement the service using WSbSC and, there-
fore the provider entity must get a PSC of the service implementation to achieve this
policy. (0-9) The provider entity, if it hasn't done so previously, carries out the proc-
ess of creation, supply, validation and generation of the PSC and executes the service.
(II) It returns the result of the service together with the PSC-cert. Note that (0-9) illus-
trate another case in which the provider entity delegates in the supplier the process to
get the PSC.

By means of PSC-cert, the consumer entity can obtain an extra security level that
certifies that the service was created, supplied, verified, compiled and executed by
trust entities without being necessary to know the code itself. There can be diverse
variations: e.g., the provider entity could submit a copy of the code, encrypted with
the verifier's public key. If we suppose that both the consumer and the provider enti-
ties trust the verifier, then the consumer entity could request code validation to the
verifier. Code confidentiality is guaranteed by encryption, and the verifier's public key
encryption guarantees that only the verifier can decrypt, analyze and evaluate the code
validity. Periodical tests and the use of several verifiers can improve security even
more. To illustrate the work to be performed, the following listing outlines the struc-
ture of a PSC-cert in a simple case.

<wsbsc:psc xmlns:wsbsc=.. xmlns:uddi=.. xmlns:ds..>
<wsbsc:code EncodingType="Base64">cHVibG..</wsbsc:code>
<wsbsc:psc-cert>
 <wsbsc:AuthoredCode> ..</wsbsc:AuthoredCode>
 <ds:Signature ..> ..</ds:Signature>
 <wsbsc:SuppliedCode> (a) </wsbsc:SuppliedCode>
 <ds:Signature ..> ..</ds:Signature>
 <wsbsc:CompiledCode>.(a).</wsbsc:CompiledCode>
 <ds:Signature ..> ..</ds:Signature>
 <wsbsc:VerifiedCode>.(a).</wsbsc:VerifiedCode>
 <ds:Signature ..> ..</ds:Signature>
</wsbsc:psc-cert>
</wsbsc:psc>

AuthoredCode block is added at point 0 together with autor's signature of that
block. The following blocks are added in the same way by each actor when they have
finished their tasks. Note that sections marked with (a) consist of two main parts:
metadata related to the actor (description, e.g., by means of uddi business entity,
credentials, e.g., SAML authorization credentials, etc.) and metadata about its action,
e.g., for the compiler: the compiler environment, the target language, and so on.

This section has outlined one of the alternative interaction scenarios among
consumers and suppliers. In order to finish developing this section, we will (1) study
more alternative interaction scenarios, (2) select the most suitable web services
standards to implement PSC, (3) develop the WSbSC security model extending the
WS-SecurityPolicy model, and (4) we will develop an actual case relevant enough to
illustrate the different alternative scenarios.

 Securing Code in Services Oriented Architecture 555

4 Contribution, Related Work, Status and Future Work

Several solutions about mobile code has been proposed in the last years: e.g., [4,5,6]
focus on execution environment (compiler, verifier and/or processor). [7] and more
recently [10] suggest a contract between producer and consumer of mobile code. [11]
defines a model-driven approach for service-oriented software development.
The main contribution of this paper is the proposal of a new approach to the problem
of the security of mobile code, WSbSC, that it’s based on SOA-RM and the Web
Services Architecture. WSbSC provides a level of security that covers not only the
data but also the code that process these data.

A lot of work must be done, both to specify the demanded policy and the process
that must be preformed to implement it (perhaps using WS-SecurityPolicy or even
BPEL), and in order to select the standards to be used at each part of the PSC-cert
(SAML, WS-Policy, WS-Addressing, UDDI, and so on). As a future line of research
we are planning to extend the model to portable objects, i.e., securing the object state
as well as the code that manages that state (behavior), making this code PSC.

Acknowledgments. Partially supported by Comunidad Autónoma de La Rioja,
project ANGI-2005/19.

References

1. Web Services Architecture (February 2004) http://www.w3.org/TR/ws-arch/
2. Reference Model for Service Oriented Architecture v1.0 October 2006 http://docs.oasis-

open.org/soa-rm/v1.0/soa-rm.pdf
3. Seshadri, A., Luk, M., Perrig, A., van Doorn, L., Khosla, P.: Externally verifiable code

execution. Communications of the ACM (September 2006)
4. Franz, M., Chandra, D., Gal, A., Haldar, V., Reig, F., Wang, N.: A portable Virtual

Machine target for Proof-Carrying Code. In: Proceedings of the 2003 workshop on
Interpreters, virtual machines and emulators (June 2003)

5. Yau, S.S., Prasad, A., Zhou, X.: An Object-Oriented Approach to Containing Mobile and
Active Codes in Large-Scale Networks, words. In: Fourth International Workshop on
Object-Oriented Real-Time Dependable Systems (WORDS’99) (1999)

6. Claessens, J., Preneel, B., Vandewalle, J.: How can mobile agents do secure electronic
transactions on untrusted hosts? A survey of the security issues and the current solutions,
ACM Transactions on Internet Technology (TOIT) (February 2003)

7. Sekar, R., Ramakrishnan, C.R., Ramakrishnan, I.V., Smolka, S.A.: Model-Carrying Code
(MCC): a new paradigm for mobile-code security. In: Proceedings of the 2001 workshop
on New security paradigms (September 2001)

8. Whitman, M.E.: Enemy At The Gate: Threats To Information Security. Communications
of the ACM (August 2003)

9. Sima, C.: Are your web applications vulnerable? (October 2004) http://www. securitydocs.
com

10. Security of Software and Services for Mobile Systems (March 2006) http://www.s3ms.org
11. SENSORIA (October 2004) http://sensoria.fast.de/

Service Level Agreements:

Web Services and Security�

Ganna Frankova

Dept. of Information and Communication Technologies, Univ. of Trento, Trento, Italy
ganna.frankova@unitn.it

Advisor: Prof. Marco Aiello, Co-Advisor: Prof. Fabio Massacci

Abstract. To support the quality of service guarantee from the service
provider side, complex web services require to be contracted through ser-
vice level agreement. State of the art on web services and web service
compositions provides for a number of models for describing quality of
service for web services and their compositions, languages for specify-
ing service level agreement in the web service context, and techniques
for service level agreement negotiation and monitoring. However, there
is no framework for service level agreement composition and composi-
tion monitoring, the existing design methodologies for web services do
not address the issue of secure workflows development. The present re-
search proposal aims to develop concepts and mechanisms for service
level agreement composition and composition monitoring. A methodol-
ogy that allows a business process designer to derive the skeleton of the
concrete secure business processes from the early requirements analysis
would benefit.

1 Introduction

The use of Web Services (WS) requires quality guarantee from the service
provider. Taking into account that the guarantee depends on actual resource
usage, the service client and provider must agree a priori by specifying an agree-
ment. This allows the provider to allocate the necessary recourses to support
the quality of service guarantees. Additionally, the guarantees on service quality
must be monitored and the service client must be notified in case of failure to
meet the guarantees.

The Service Level Agreement (SLA) opens a wide spectrum of challenges.
In this research proposal we address some of them and propose building SLA
framework for SLA composition and composition monitoring. The existing de-
sign methodologies for web services do not address the issue of developing se-
cure web services, secure business processes and secure workflows. The present
research proposal aims to develop a methodology that allows a business process
designer to derive the skeleton of the concrete secure business processes from the
early requirements analysis.

� This work has been partly supported by the IST-FP6-IP-SERENITY project.

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 556–562, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Service Level Agreements: Web Services and Security 557

The work is structured as follows: Section 2 provides background and specifies
the problem area. Section 3 is devoted to the research objectives and directions,
i.e., the problem statement. The approaches and methods to be applied in order
to achieve the objectives, the results obtained so far and a tentative plan for
future work are presented in Section 4.

2 Background and Problem Area

With the term Quality of Service (QoS) we refer to non-functional properties
of services. Although various approaches for modelling quality of service for
web services have been addressed in a number of recent works, in [4] we claim
that current models are far from ideal and there is a lot of space for further
investigation and innovative research.

To optimally select component services for a quality-aware composite service
building Zeng et al. [21] propose to use a global planning approach. In [13]
Lin et al. doubt about the approach and propose a fuzzy way to express QoS
requirements. The feasibility of using workflow patterns to determine the QoS
in a web service composition is demonstrated by Jaeger et al. [8].

There are several proposals addressing the issue of web services design based
on early requirements [12], [18], [9]. The design methodologies do not aim to
design secure web services, secure business processes and workflows. Some ap-
proaches [5], [3] aim to design secure systems. On the negative site, the ap-
proaches do not support the design of software and business processes based on
a service-oriented architecture.

Covering web services with SLA opens new research directions such as SLA
specification and monitoring. Although such languages as SLAng [11], WSOL [19]
and WSLA [15] for specifying SLA have been proposed, specification of SLA
is still a research topic [20,16]. Fundamental concepts of non-functional SLA
monitoring are presented in [17]. Web Service Level Agreement framework for
defining and monitoring SLAs is presented in [10]. CREMONA, an architecture
for creating and monitoring agreements in a context of web services is proposed
in [14]. But all the approaches do not support monitoring SLA with the goal of
anticipating terms violations.

Emergent Questions: SLA Composition and Monitoring
The cornerstone of web services success lies in the ability to compose web services
on the fly in order to build complex added-value services. Dealing with quality
aware web service composition requires the study of a number of problems,
namely:

1. definition of a quality of service model to provide quality of service informa-
tion at the level of individual web services;

2. building complex web services with multiple QoS constraints;
3. ensuring that a promised quality of service is actually provided during

execution;

558 G. Frankova

4. developing secure business processes and secure workflows in the web services
context;

5. finding and monitoring global SLA of a composition of web services.

In [4], we have addressed the first and second issues. A solution to the third
issue was proposed in [1] by using a methodology to handle changes during the
interactions of web services and to prevent the violation of QoS constraints. In
this work, we consider the above problems and focus on the fifth and fourth
issue.

3 Research Objectives and Directions

Problem Statement
Covering web service aggregation with SLAs has opened a number of critical
issues regarding SLA composition and monitoring, namely:
(1) global SLA for web service composition calculation
Assume that a SLA is defined for each web service from a set of n services, i.e.,
SLA1, SLA2,..., SLAn. The services are used to build a web service composition
(see the orchestration unit) and the client needs to know the global SLA of the
whole composition, i.e., SLAG. The scheme depicted on Figure 1 shows the
corresponding scenario.

Fig. 1. “Service Client-Service Provider” interaction scheme

Depending on whether a goal of the clients is specified or not, one can consider
two cases. Case 1 : The client’s goal is not specified. A global SLA SLAG of
web service composition is calculated based on the SLAs SLAi coming from
the individual web services Si, i=1..n to be composed. Calculating the global
SLA should consider the business process BP(S1, ..., Sn). Case 2 : The client’s
goal is specified. Considering the specified SLAG, such a set of web services Si

and SLAs SLAi, i=1..n covering the web services are received that the business
process BP(S1, ..., Sn) guarantees the specified goal. There is an optional input
of a set of web services Sj and SLAs SLAj, j=1..m, m≤n covering the web
services in the scenario.

Service Level Agreements: Web Services and Security 559

Our research will be focused on calculation of global SLA for web service
composition. Technique for composing SLA development are seen as a challenge.
(2) SLA for web service composition monitoring
Usually SLA monitoring techniques consider guaranteeing the fulfillment of a
service term. We claim that how the guarantee is fulfilled should be taken into
account. The answer to the question “Is the guarantee close or far from being
violated?” should be given by the SLA framework. Our SLA framework will
provide monitoring based on the client’s goal described in SLA. It will not only
predict and notify terms violations, but also discover the components of the
composition that are responsible for the violation.
(3) secure workflow design based on early requirements
Requirements engineering has little counterpart in the development of business
processes for web services. The existing design methodologies for web services do
not address the issue of developing secure web services, secure business processes
and secure workflows. This part of the work is devoted designing of secure
business processes and secure workflows for web services. We aim to develop
a methodology that allows a business process designer to derive the skeleton of
the concrete secure business processes from the early requirements analysis.

4 Approaches and Methods

In order to realize the research objectives, a number of issues has been addressed
and the results that fit in the framework of the thesis are obtained, namely:

SLA Analysis
The WS-Agreement [6] protocol has been studied and the earlier missed formal
definition of SLA in a context of web services has been provided. The proposed
set of formal rules ties together agreement terms and the life-cycle of an agree-
ment. From the analysis some shortcomings of the protocol have been discov-
ered. In particular, (i) there is no checking of how close a term to be violated
and (ii) breaking one term of agreement results in terminating the whole agree-
ment, while more flexibility is needed. The possible evaluations of agreements
have been found and ways in which to make an agreement more robust and long
lived have been identified. Two extensions to the specification and supporting
environment have been proposed. The first is used to anticipate violations, while
the second is devoted to run-time renegotiation.

SLA Composition
In the proposed methodology, we use hypergraphs [2] to capture the structure
of business process. We see the problem of finding the global SLA of a business
process as the Business Process Hypergraph (BPH) decomposition path evalu-
ation. Suppose that a BPH is a weighted hypergraph. Each decomposition arc
is associated a set of weights that show contribution of a source node to the
target one. Each leaf node is assigned with a QoS value that corresponds to
the QoS of atomic service. Each decomposition arc is assigned with an aggre-
gation function which calculates the value of a target node taking as arguments

560 G. Frankova

source nodes and the set of weights. In order to evaluate a BPH decomposition
path, one has to design the aggregation functions. In our approach the design of
the aggregation functions depends on the structural activity that represent each
compound service in BPH. The structural activity represents the basic struc-
tural elements of a composition as sequence, parallel execution, switch. Then,
it is possible to perform the aggregation of numerical QoS dimensions in the
spirit of Jaeger et. al [8]. The global SLA of a business process is the cost of
decomposition path of BPH. As an extension of the suggested methodology, we
propose to find the “minimal” decomposition path leading to the global SLA
of the business process fulfilment. At the current moment we are finalizing the
methodology and working with an industrial partner on the aggregation func-
tions design and the mathematic model justification from the business point of
view.

SLA Monitoring
The results of our work [1] will be used to build a monitoring system with an-
ticipate terms violation goal. The proposed requirements for the rules specifying
warning issuing are the following: easy to compute to avoid overloading of the
monitoring system and be fast to provide warnings. In addition they should pro-
vide good performance in detecting as many violations as possible generating the
minimum number of false positives. The linear least squares method was cho-
sen as a forecasting method. We have conducted preliminary experimentation
to show the feasibility of the anticipate violations strategy. In the experimenta-
tion based on synthetic data, more than 92% of violation points are warned in
advance, and 96.5% of thrown warnings are true warnings.

Secure Workflow Design
We address the issue of secure workflows design based on early requirements
analysis, namely, SI*/Secure Tropos [7], by presenting a methodology that
bridges the gap between early requirements analysis and secure workflows for
web services development. The methodology allows a business process designer
to derive the skeleton of the concrete secure business processes from the early
requirements analysis. The proposed refinement methodology, aims to obtain
an appropriate coarse grained secure business process that can be further re-
fined into workflows. We introduce a specification language for secure business
processes Secure BPEL, which is a dialect of WS-BPEL for the functional parts
and abstracts away low level implementation details from WS-Security and WS-
Federation specifications. At this point we have an open “lack of permission”
problem. The “lack of permission” situation appears when there is a chain of
delegation/trust of execution with no corresponding chain of delegation/trust of
permission. In the Secure BPEL language both delegation and trust are modeled
by invocation. In order to address the “lack of permission” problem one needs of
introducing special types of invocation that allow the data to be protected, i.e,
allows message confidentiality and integrity. Currently, we plan to extend the
methodology to derive SLA from early requirements analysis.

Service Level Agreements: Web Services and Security 561

References

1. Aiello, M., Frankova, G., Malfatti, D.: Whats in an agreement? An analysis and an
extension of WS-Agreement. In: Proceedings of the 3rd International Conference
on Service-Oriented Computing (2005)

2. Ausiello, G., Italiano, G.F., Nanni, U.: Optimal traversal of directed hypergraphs.
Technical Report TR-92-073 (1992)

3. Cheng, B.H.C., Konrad, S., Campbell, L.A., Wassermann, R.: Using Security Pat-
terns to Model and Analyze Security Requirements. In: IEEE Workshop on Re-
quirements for High Assurance Systems (2003)

4. Frankova, G.: Web service quality composition modelling. In: Proceedings of the
PhD Symposium at 3rd International Conference on Service-Oriented Computing
(2005)

5. Georg, G., Ray, I., France, R.: Using Aspects to Design a Secure System. In: Pro-
ceedings of IEEE International Conference on Engineering of Complex Computer
Systems, Greenbelt, Maryland, USA (December 2 - 4, 2002)

6. GGF. Web Services Agreement Specification (WS-Agreement) (September 2005)
7. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Requirements Engineering

for Trust Management: Model, Methodology, and Reasoning. International Journal
of Information Security 5(4), 257–274 (2006)

8. Jaeger, M.C., Rojec-Goldmann, G., Mühl, G.: QoS Aggregation for Service Compo-
sition using Workflow Patterns. In: Proceedings of the 8th International Enterprise
Distributed Object Computing Conference (2004)

9. Kazhamiakin, R., Pistore, M., Roveri, M.: A Framework for Integrating Business
Processes and Business Requirements. In: Proceeding of the Enterprise Distributed
Object Computing Conference (2004)

10. Keller, A., Ludwig, H.: Defining and monitoring Service Level Agreements for
dynamic e-business. In: Proceedings of the 16th USENIX System Administration
Conference (2002)

11. Lamanna, D.D., Skene, J., Emmerich, W.: SLAng: A language for defining Service
Level Agreements. In: Proceedings of the 9th IEEE Workshop on Future Trends
of Distributed Computing Systems (2003)

12. Lau, D., Mylopoulos, J.: Designing Web Services with Tropos. In: Proceedings of
the IEEE International Conference on Web Services (2004)

13. Lin, M., Xie, J., Guo, H., Wang, H.: Solving QoS-driven web service dynamic com-
position as fuzzy constraint satisfaction. In: Proceedings of the IEEE International
Conference on e-Technology, e-Commerce and e-Service (2005)

14. Ludwig, H., Dan, A., Kearney, R.: CREMONA: an architecture and library for
creation and monitoring of WS-Agreements. In: Proceedings of the Second Inter-
national Conference on Service-Oriented Computing (2004)

15. Ludwig, H., Keller, A., Dan, A., King, R.P., Franck, R.: Web Service Level Agree-
ment (WSLA) language specification. Version 1.0. IBM Corporation (January
2003), http://www.research.ibm.com/wsla/

16. Molina-Jimenez, C., Pruyne, J., van Moorsel, A.: The role of agreements in IT
management software. Architecting Dependable Systems III, pp. 36–58 (2005)

17. Molina-Jimenez, C., Shrivastava, S.K., Crowcroft, J., Gevros, P.: On the monitor-
ing of contractual Service Level Agreements. In: Proceedings of the First IEEE
International Workshop on Electronic Contracting (2004)

18. Penserini, L., Perini, A., Susi, A., Mylopoulos, J.: From Stakeholder Needs to Ser-
vice Requirements. In: Proceeding of International Workshop on Service-Oriented
Computing: Consequences for Engineering Requirements (2006)

http://www.research.ibm.com/wsla/

562 G. Frankova

19. Tosic, V.: WSOL Version 1.2. Technical Report SCE-04-11, Department of Systems
and Computer Engineering, Carleton University (July 2004)

20. Trienekens, J.J.M., Bouman, J.J., van der Zwan, M.: Specification of Service Level
Agreements: Problems, principles and practices. Software Quality Journal 12(1),
43–57 (2004)

21. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality driven
web services composition. In: Proceedings of the 12th International conference on
World Wide Web (2003)

Risk Management for Service-Oriented Systems

Natallia Kokash

DIT - University of Trento, via Sommarive, 14, 38050 Trento, Italy
natallia.kokash@dit.unitn.it

Abstract. Web service technology can be used for integrating hetero-
geneous and autonomous applications into cross-organizational systems.
A key problem is to support a high quality of service-oriented systems
despite vulnerabilities caused by the use of external web services. One
important aspect that has received little attention so far is risk manage-
ment for such systems. This paper discusses risks peculiar for service-
based systems, their impact and ways of mitigation. In the context of
service-oriented design, risks can be reduced by selection of appropriate
business partners, web service discovery, service composition and Quality
of Service (QoS) management.

Advisors. Vincenzo D’Andrea.

1 Introduction

Rapidly evolving web service technology is a key mechanism for simplifying
large-scale business operations by consumption of ready-to-use services. More
and more software is becoming available as web services, loosely-coupled func-
tional entities accessible via well-defined user interfaces. These interfaces are
published in registries and can be discovered by potential customers. Several
web services from different providers may have to be integrated to implement
real-world business information systems. Such systems, in their turn, can be
available as web services for invocation by end-users or further integration.

Web service implementation details are normally hidden. Their potential
clients reason about service functionalities being unaware of their internal struc-
ture. This spawns a significant challenge for those who want to use existing
services as parts of new web systems. For attracting customers, these systems
must be responsive, robust, and always available. They should support concur-
rency demands and deal gracefully with load variations. Such requirements are
commonly referred to as Quality of Service (QoS). Issues related to QoS support
for composite web services has found considerable research interest.

A composite web service is reactive to any changes in the behavior of con-
stituent services. Service-Oriented (SO) systems are subject to risks caused by
architectural vulnerability (e.g., technical problems, security-level threats) and
by conflicting interests of the involved partners. A mechanism to support de-
signers of service-based applications in vulnerability assessment of their systems
is needed. A way of gathering the requisite data to make a good business or

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 563–568, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

564 N. Kokash

technical judgement is provided by risk management. Among the main steps
of risk management are risk identification (surfacing risks before they become
problems), risk analysis (converting identified risk data into decision-making in-
formation), and risk control (monitoring the status of risk and actions taken to
mitigate them). Regarding SO design, risk management can be applied to decide
whether to entrust a part of functionality to an existing web service, which of
the existing services to choose, how to protect data exchanged between partners,
which additional controls must be implemented, how many alternative services
are required for a particular task, and so on.

The rest of the paper is organized as follows. Section 2 provides main defi-
nitions and basic information about risk management. Section 3 discusses the
distinctive features of risk analysis for SO systems. In Section 4, a high-level
framework for design and reconfiguration of SO systems is proposed. The last
section concludes the paper and outlines future work.

2 Software Risk Management

Risk management operates with notions of assets (objects of the protection
efforts such as system components or data), threats (danger sources), vulnera-
bilities (defects in system design, implementation, or internal controls), threat
probabilities (likelihoods that given negative events will be triggered), and their
impacts on the organization (tangible or intangible, e.g., monetary loss or breach
of reputation, law, regulation, or contract). In order to mitigate risks, coun-
termeasures (management, operational, and technical controls that adequately
protect the system) are applied [1].

Risk r is defined as a probability p of a threat e multiplied by a respective
magnitude q of its impact: r(e) = p(e)q(e). Real-world systems are unlikely to
have a single risk factor. Risk of a set of independent threats can be calculated
as a sum of risks for each particular threat [2]. In more general case, analy-
sis of conditional dependencies among threats (their probabilities and impacts)
is required. Often probability calculation and impact estimation are extremely
rough, but still help to handle technical vulnerabilities of the system.

The goal of risk management frameworks [1][3] is to help designers to man-
age software projects within established time and budget constraints. Several
works examine risk management for business processes [4][5]. A business process
is a structured set of activities designed to produce a specified output for an
organization or a consortium. Business processes are subject to errors in each of
their components: to enable the successful completion of a business process it
is important to manage the risks associated with each sub-activity. A company
can rely on someone else to run certain business functions. A survey of current
practices in risk management for project outsourcing (a formal agreement with
a third party to perform a service) can be found in [6].

There exist a bulk of potential threats for cross-organizational systems. In the
same time, there can be no stakeholders with a full knowledge about the system.
Among the most common risk factors are tasks involving third parties, use of

Risk Management for Service-Oriented Systems 565

Table 1. Risks in service-oriented applications

Event Assessment Mitigation
Loss of service Likelihood and implications

of service unavailability and
network-related problems

Use for non-critical tasks and tasks that can be
suspended. Use of alternative services for criti-
cal tasks. Establishment of trusted relations and
service level agreements. Redesign (own code or
locally deployed components).

Loss of data Likelihood and implications of
data loss

Data replication. Exchange of non-critical data.
Establishment of trusted relations. Service level
agreements.

Loss of users Analysis of user expectations. Warn users about possible problems. Provide dif-
ferent quality layers. Collect feedback from users.

Unexpected ser-
vice behavior

Analysis of consistency and com-
pleteness of published service
specifications.

Service testing. Clarification of the specifications.
Service level agreements.

Specification
changes

Evaluation of implications of for-
mat changes and loss of service.

Use of services on a small-scale and plan for re-
design. Discovery of alternative services.

Performance
problems

Service testing. Likelihood and
implications of inadequate ser-
vice performance

Service performance monitoring. Use for non-
critical tasks. Service level agreements.

Lack of interop-
erability

Likelihood and implications of
application lock-in and integra-
tion loss.

Evaluation of integration capabilities. Use of al-
ternative services. Redesign.

Contract viola-
tion

Reputation of a service. Run-time monitoring. Use of web services for non-
critical tasks. Use of alternative services for crit-
ical tasks.

unfamiliar or emerging technologies, organizational problems, unclear goals, ab-
sence of quality controls and effective management. Being a state-of-the-art in
business process integration techniques, SO systems are subject to the mentioned
risks as well.

3 Risk Management for Service-Oriented Systems

Among a set of risks peculiar for SO systems are risks caused by service providers
(disposal of a service, changes in interface and behavioral logics of a service,
contract violation, obtrusion of a new contract with worse conditions, disclo-
sure of user data) and technical aspects (network or service failures, problems
with semantic interoperability). Table 1 summarizes some common threats for
service-based applications. Security threats (information disclosure, spoofing and
tampering, downgrade, repudiation, denial of service, etc.) and methods for their
prevention are discussed in WS-Policy and WS-Security specifications.

Techniques for risk management fall into five categories: (i) risk avoidance in-
volves altering the original system design to remove particularly risky elements;
risk reduction employs methods that reduce the probability or impact of a risk
occurring (e.g., use of alternative services to reduce the probability of a service
loss, data replication to avoid a loss of data); (iii) risk transfer moves the owner-
ship of the risk to a third party by contract (e.g., contracts stipulating penalties
to web services for information disclosure); (iv) risk deferral entails deferring
decisions to a date when a risk is less likely to happen or less severe; (v) risk
retention implies that certain risks have to be accepted.

566 N. Kokash

Fig. 1. Risk management framework for service-oriented systems

For every accepted risk, a designer must put controls in place that detect the
corresponding event when it triggers. The idea of automatic service composition
implies that service-based applications are created without (or with minimum of)
human intervention: according to the principle of late binding, abstract service
descriptions are mapped to real services on demand. Following this trend, a tool
for automatic risk analysis should be developed.

4 Risk Management Framework

To enable design of reliable SO systems, an appropriate methodology and sup-
porting tools are needed. It is the matter of risk analysis to decide whether a
service-oriented computing can be applied for some business application. Zim-
mermann et al. [7] identify risk mitigation strategies before kicking off any pre-
mature implementation work as one of the most important lessons learnt from
the project involving SO architectures, process choreography, and web services
in the telecommunications industry. In our vision, risk management is a con-
text sensitive and iterative process. Organizations have to perform systematic
risk assessment both for systems being developed and for deployed systems that
support runtime reconfiguration [8].

The proposed risk management framework is shown in Fig. 1. Once the busi-
ness process has been modelled at the abstract level, the further analysis is

Risk Management for Service-Oriented Systems 567

needed to gather information about potential business partners and useful web
services. Principal users and their expectations should be examined and QoS
information about services acquired. The latter can be provided by service own-
ers, other clients or certification agencies. Then, the analysis of system artifacts
is performed. In particular, web services discovered at the previous step must
be tested and their conformance with system requirements, both functional and
non-functional, assessed. At the next step, the initial system configuration is se-
lected or the system is reconfigured. Among possible actions are: service replace-
ment, which means that a component of a composite web service is changed;
structural change, which means the systems logical structure is changed; and
geometrical change, which means that the logical application structure remain
fixed, but the physical structure (hardware, network topology, communication
protocols, etc.) is changed [8]. Risks for the chosen configuration are identified
using a predefined ontology of threats affecting the system.

Probabilities of threats can be estimated quantitatively based on monitored
data. For example, probability of a loss of service is defined by service unavail-
ability rate, percentile of incorrect past executions to total number of invocations
defines probability of unexpected service behavior, normalized incompliance be-
tween a required web service and a discovered one can be seen as a probability
of a lack of semantic interoperability. For assessing an impact of each partic-
ular threat on the system, dependency diagrams, which outline interrelation-
ships of various functional elements, can be involved. The information about
risk assessment (unique ID, description, reason, warning signs, probability, im-
pact, timescale, cost of mitigation, expected level of risk after mitigation, etc.) is
stored to allow for the comparative analysis of different system configurations.

If the overall risk level is not acceptable and/or there exist a potential for its
mitigation, the designers must try to reduce it. Risk prioritization implies that
the identified risks can be segmented into categories (high, medium, and low)
and managed accordingly. Risk mitigation can be achieved either through system
reconfiguration or through contract management. New functional requirements,
such as necessity of data encryption, additional controls, etc. can be unveiled.
Finally, if the overall risk is acceptable, the system configuration is fixed and
the service-based application can be exploited. Predefined controls can detect
important changes in the system or in the business environment and initiate an
evolutional loop when some parts of the system are replaced or adopted to meet
new business requirements.

5 Conclusions and Future Work

Risk management is an essential component for SO design affecting structure of
a system, eliciting requirements for service discovery, selection and contracting.
It can be partially automated to enable design of reliable service-based systems
using automatic service composition techniques.

In our recent work [9] a detailed description of risk-based service evaluation
and selection strategies is given. In [10] an extensible monitoring service able to

568 N. Kokash

collect client reports on service invocations and suggest reliable services to users
with similar needs is presented. It provides a basis for gathering QoS statistics
(e.g., types of possible web service exceptions) and aims at improving quality of
web service discovery [11]. This will allow for the easier integration of existing
functionalities into new software applications.

In our future work we are planning to elaborate the above ideas, supplement-
ing design of service-based business processes with ability to model risks and
infer necessary preventive strategies and controls.

References

1. Verdon, D., McGraw, G.: Risk analysis in software design. IEEE Security and
Privacy, 33–37 (2004)

2. Roy, G.G.: A risk management framework for software engineering practice. In:
ASWEC. Australian Software Engineering Conference, pp. 60–67. IEEE Computer
Society Press, Los Alamitos (2004)

3. Freimut, B., Hartkopf, S., Kaiser, P., Kontio, J., Kobitzsch, W.: An industrial case
study of implementing software risk management. In: ESEC/FSE, pp. 277–287.
ACM Press, New York (2001)

4. zur Muehlen, M., Rosemann, M.: Integrating risks in business process models. In:
Australasian Conference on Information Systems (ACIS) (2005)

5. Neiger, D., Churilov, L., zur Muehlen, M., Rosemann, M.: Integrating risks in busi-
ness process models with value focused process engineering. In: European Confer-
ence on Information Systems (ECIS) (2006)

6. O’Keeffe, F., Vanlandingham, S.: Managing the risks of outsourcing: a
survey of current practicies and their effectiveness. White paper, Protiv-
ity (2004) http://www.protiviti.com/downloads/PRO/pro-us/product sheets/
business risk/Protiviti ORM WhitePaper.pdf

7. Zimmermann, O., Doubrovski, V., Grundler, J., Hogg, K.: Service-oriented ar-
chitecture and business process choreography in an order management scenario:
Rationale, concepts, lessons learned. In: OOPSLA. Conference on Object-oriented
Programming, Systems, Languages and Applications, pp. 301–312. ACM Press,
New York (2005)

8. Li, Y., Sun, K., Qiu, J., Chen, Y.: Self-reconfiguration of service-based systems: A
case study for service level agreements and resource optimization. In: ICWS, pp.
266–273. IEEE Computer Society Press, Los Alamitos (2005)

9. Kokash, N., D’Andrea, V.: Evaluating quality of web services: A risk-driven ap-
proach. In: BIS. International Conference on Business Information Systems. LNCS,
vol. 4439, pp. 180–194. Springer, Heidelberg (2007)

10. Kokash, N., Birukou, A., D’Andrea, V.: Web service discovery based on past user
experience. In: BIS. International Conference on Business Information Systems.
LNCS, vol. 4439, pp. 95–107. Springer, Heidelberg (2007)

11. Kokash, N., van den Heuvel, W.J., D’Andrea, V.: Leveraging web services discovery
with customizable hybrid matching. In: Dan, A., Lamersdorf, W. (eds.) ICSOC
2006. LNCS, vol. 4294, pp. 522–528. Springer, Heidelberg (2006)

http://www.protiviti.com/downloads/PRO/pro-us/product_sheets/business_risk/Protiviti_ORM_WhitePaper.pdf
http://www.protiviti.com/downloads/PRO/pro-us/product_sheets/business_risk/Protiviti_ORM_WhitePaper.pdf

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 569–574, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Framework for Situational Web Methods
Engineering

Sebastian Lahajnar

Pris inženiring d.o.o. Ljubljana, Slovenia
sebastian.lahajnar@pris-inz.si

Abstract. In the past ten years many web application development methods
with their own or from other methods borrowed models, techniques and activi-
ties were proposed in literature. Each of these methods is appropriate for build-
ing several types of web applications on different modeling levels and project
phases. It's unlikely that a single method will ever be capable to cover all as-
pects of web application development. The most appropriate approach for web
application projects is a construction of an organization-specific base method
with the use of reusable method fragments (components) and the adaptation of
the base method in order to support specific project characteristics. For this
purpose, the basis for an appropriate method engineering framework is pro-
posed, which includes a process for method construction and a repository for
methods, method components, configurations, rules and development situations
characteristics storage.

1 Introduction

Nowadays, web applications have an important role in a development of information
systems. As Kiely and Fitzgerald state [8], 33% of development projects can be clas-
sified as E-Commerce, 7% involves building internet sites, while only 25% involves
traditional application development (payroll systems etc.). Comparing two empirical
researches ([8], [7]) of the information systems development environment it can be
noticed, that the use of methods for software development is increasing (from 40% in
1998 to 62% in 2002). Consequently, also the increasing interest in using and building
methods, techniques and tools, designed specially for web application development is
understandable.

In the past ten years many web application development methods based on tradi-
tional and object models, languages and processes such as ER, UML and Unified
Process were proposed. With regard to their origins and purposes, they can be catego-
rized as data, hypertext, object or process oriented [11]. The origin, initial scope and
later extensions influence the usability of methods for various types of web applica-
tions (portals, transactional, document systems etc.) on different levels of modeling
(conceptual, logical) and in different phases (requirements gathering, analysis, design,
realization etc.). In this sense, WebML [5] is suitable for the specification of complex
data intensive web applications at the conceptual level, SOHDM [14] emphasizes a
process driven web applications development, Conallen [6] proposes a development
process based on RUP and advocates the importance of modeling concrete products in

570 S. Lahajnar

the design phase with the use of UML WAE profile, UWE [13] focuses on the navi-
gation and presentation aspects of web applications, the primary purpose of WebSA
[15] method is to define the architectural view of web applications etc.

2 The Problem Domain

From the analysis of current web development methods it is possible to deduce, that
their activities and models are well suited for describing navigational, presentational
and architectural views on different levels. For the description of data view at the
conceptual level, web development methods use traditional models and techniques
such as ER model and UML class diagram. Web development methods mostly don’t
concern with activities for business modeling, project management, testing, mainte-
nance, portfolio management etc., which are part of traditional development proc-
esses. On the other hand, traditional development processes and modeling languages
do not comprehend adequate activities and modeling techniques for the description of
web applications particularity, such as navigation and presentation, and particularity
of other modeling domains as for example business process modeling and data model-
ing. The solution is provided by number of existing UML profiles and other modeling
techniques, which can be included in a development process in order to improve a
reliability of developed products.

Web application development in the context of current organization’s characteris-
tics, complexity of the solution, the size of the project and other factors, may include
a number of more or less important activities with the final goal to deploy a working
web application. The structure, activities and produced artifacts must be adapted to
concrete situations what means, that the method can not be fully defined in advance.
Nevertheless, it is recommended to develop a base organization-specific method,
founded on experiences acquired in previous projects, good practices and organization
culture, which can be used as a reference for a construction of adapted methods for
specific project situations. A base method as all other adapted methods must be com-
posed from a set of best, autonomous and reusable fragments, which will provide
good foundations for successful project progress in given circumstances. Since such
fragments belong to different software development methods and processes, they have
to be re-engineered in order to be successfully included in the new method in con-
struction. Following the reflection in previous paragraphs, two theses are defined: 1)
it's unlikely that a single method will ever be capable to cover all aspects of web ap-
plication development. 2) the most appropriate approach for web application devel-
opment projects is a construction of organization-specific base method on the basis of
reusable method fragments stored in a repository, which is then tailored to support
specific project needs.

3 The Aims and Objectives of the Research

The main objective of the research is to build a common framework for web applica-
tion method engineering. In this context, many traditional and new approaches for
situational method engineering have been already investigated. The effort resulted in

 A Framework for Situational Web Methods Engineering 571

the definition of the framework foundations with the corresponding process of re-
engineering parts of widely recognized methods in method fragments, constructing
base method with method fragments assembly and tailoring base method to project
specific demands.

The proposed framework is supposed to include the most important activities,
models and techniques which nowadays are used in information systems develop-
ment, as also their extensions in the field of web engineering, business processes and
databases, with the emphasis on modern object oriented development processes and
the UML as a main modeling language.

4 The Solution

The discipline to design, construct and adapt methods, techniques and tools for infor-
mation systems development is called method engineering, while its specific direc-
tion, situational method engineering, deals with a development of specific methods,
tailored for concrete organization or project circumstances [2]. The construction of
new methods is founded on standardized assets called method fragments, defined as
coherent pieces of information systems development methods. Brinkkemper [3] clas-
sifies method fragments according to three dimensions: perspective (product, proc-
ess), abstraction (conceptual, technical) and granularity (method, stage, model, dia-
gram and concept). The process and the product view of the method fragment are
inseparable interrelated as products are both results and inputs of the method’s pre-
scribed actions.

Instead of method fragments, Wistrand [19] proposes the concept of method com-
ponent, defined as a self-contained part of the system engineering method expressing
the process of transforming input artifacts into defined target artifacts and a rationale
for such a transformation. In this way, a method component is a special case of a
method fragment with the following characteristics: self-contained, internal consis-
tency and coherency, rationality and applicability. Two views describes each method
component: the internal view addresses the internal structure of the component while
the external view focuses on its relationships with other components which all to-
gether contribute to the overall method goal. For our purpose, the concept of method
component have been chosen as the foundation for the development of the web meth-
ods engineering framework as it emphasizes higher level of granularity, fragments
independence and fragments interconnection through interfaces.

The process of building the method base is based on the re-engineering of existing
methods or their individual fragments and includes the following steps [17]: defining
or reconstructing the initial method process model, identifying method components
and defining method components. The construction of the method base is a continu-
ous process at the beginning of which the method base is populated with an initial set
of method components. The initial set is further enhanced during the process of build-
ing the base method and it’s adaptation to specific projects.

After the initial set of method components has been defined, the construction of the
base method takes place with the use of the assembly strategy following the next three
steps [18]: project characterization, method fragments selection and method frag-
ments assembly. Two basic strategies are defined for method fragments assembly

572 S. Lahajnar

Method base Role baseCharacteristics
base

Configuration
base

Web methods
Agile methods

Strict processes
Business modeling profiles

Database modeling
profiles

CWM
...

Previous projects
Future projects

Organization structure
Organization size

...

Business criticality
Requirements volatility

Level of innovation
Functional complexity

...

Fig. 1. The structure of the framework

[17]: association and integration. The association strategy is appropriate in a case,
when assembled method fragments don’t have common elements, while the integra-
tion strategy is relevant for the assembly of methods with common engineering objec-
tives, but different ways to achieve them.

The combination of two strategies, method configuration [12] and process configura-
tion [1] respectively, has been chosen for the adaptation of the base method to specific
projects. The reusable concepts, a configuration package and a configuration template
form the foundation of this strategy. The configuration package is defined as a configu-
ration of the base method suitable for one specific characteristic’s value and the con-
figuration template is defined as a combined method configuration for a set of recurrent
project characteristics [12]. The process configuration strategy supplements method
configuration by enabling the definition of alternative paths in the context of configura-
tion packages. The process configuration is performed on the basis of a set of rules for
structural and process restrictions, depending on the specific circumstances.

5 Related Work

Works resembling the framework proposed in this paper comes from two disciplines:
web and method engineering. In the area of web engineering, Koch [13] defines a
metamodel for UWE approach, which describes the concepts of the navigation and
presentation model. This and other proposed metamodels for various web methods
could be seen as a foundation for one or more method components, focusing on the
navigational and presentational characteristics of the web application. Caceres [4]
advocates MIDAS, a model-driven methodology for web IS development in which he

 A Framework for Situational Web Methods Engineering 573

incorporates several models and diagram technique from other web and non web
methods for structural PIMs and PSMs. Moreno [16] on the other hand, distinguishes
three main PIMs: user interface, business logic and data. For each of them, he pro-
poses a set of feasible models with appropriate concepts. Both approaches share many
similarities with the proposed framework, as many different models and technique
from different fields are used, and there's also some possibility to tailor the two meth-
ods to suit the project's specific needs. However, the framework proposed in this
paper takes a broader perspective to web application development as it enables the
integration of almost any desired and useful technique, model, concept, activity or
whole method, as long as it's adequate represented following the rules of the method
components metamodel (internal and external view).

From the sphere of method engineering, the OPF framework [9] should be men-
tioned, which besides the common set of elements for the software development proc-
ess, incorporates also some web specific activities, tasks and roles. Nevertheless, OPF
doesn’t address adequately all web applications specific aspects such as navigation and
presentation and furthermore, for each project a completely new instance of the OPF
metamodel has to be instantiated, what increases project overall cost and duration.

6 Future Work and Conclusions

A proper metamodel for the method base as a combination of many existing meta-
models (method components [19], SMSDM [10], method configuration [12] etc.) is
currently under development. After that an already identified set of valuable activities,
work products, models and techniques from different software engineering fields
(web, database, business process etc.) will be further re-engineered in method compo-
nents in concordance to the metamodel specified. Based on the developed set of
method components, a new organization-specific method for web application devel-
opment will be constructed with the application of the assembly strategy on the basics
of defined components interfaces. Finally, the proposed framework and the base
method will be validated on the concrete project, involving a development of many
web portals for different faculties in Slovenia which is already in progress at the
time of this writing. The new method for web application development will be evalu-
ated against the current approach on the basis of a set of predefined criteria, using a
questionnaire and performing interviews with project team members.

References

1. Bajec, M., Vavpotič, D., Krisper, M.: An approach for creating project-specific software
development methodologies. In: Internet and information technology in modern organiza-
tions, IBIMA, pp. 1–15 (2005)

2. Brinkkemper, S.: Method engineering: Engineering of information systems development
methods and tools. Information and Software Technology 38(4), 275–280 (1996)

3. Brinkkemper, S., Saeki, M., Harmsen, F.: Meta-modelling based assembly techniques for
situational method engineering. Information Systems 24 (1999), 209–228 (1999)

4. Cáceres, P., Marcos, E., Vela, B.: A MDA-Based Approach for Web Information System.
In: Workshop in Software Model Engineering, WisME (2004)

574 S. Lahajnar

5. Ceri, S., Fraternali, P., Matera, M.: Conceptual Modeling of Data-Intensive Web Applica-
tions. IEEE Internet Computing 6(4), 20–30 (2002)

6. Conallen, J.: Building Web Applications with UML, 2nd edn. Addison-Wesley, London,
UK (2003)

7. Fitzgerald, B.: An empirical investigation into the adoption of systems development meth-
odologies. Information and Management 34(6), 317–328 (1998)

8. Kiely, G., Fitzgerald, B.: An investigation of the information systems development envi-
ronment: the nature of development life cycles and the use of methods. In: Eighth Ameri-
cas Conference on Information Systems, Baylor, pp. 1289–1296 (2002)

9. Haire, B., Lowe, D., Henderson-Sellers, B.: Supporting Web development in the OPEN
process: Additional roles and techniques. In: Bellahsène, Z., Patel, D., Rolland, C. (eds.)
OOIS 2002. LNCS, vol. 2425, pp. 82–94. Springer, Heidelberg (2002)

10. Henderson-Sellers, B., Gonzalez-Perez, C.: A comparison of four process metamodels and
the creation of a new generic standard. Information & Software Technology 47(1), 49–65
(2005)

11. Kappel, G.: Web Engineering, The Discipline of Systematic Development of Web Appli-
cations. John Wiley & Sons, West Sussex, England (2006)

12. Karlsson, F., Ågerfalk, P.J.: Method configuration: adapting to situational characteristics
while creating reusable assets. Information and Software Technology 46, 619–633 (2004)

13. Koch, N., Kraus, A.: Towards a Common Metamodel for the Development of Web Appli-
cations. In: Lovelle, J.M.C., Rodríguez, B.M.G., Gayo, J.E.L., Ruiz, M.d.P.P., Aguilar,
L.J. (eds.) ICWE 2003. LNCS, vol. 2722, pp. 497–506. Springer, Heidelberg (2003)

14. Lee, H., Lee, C., Yoo, C.: A scenario-based object-oriented methodology for developing
hypermedia information systems. In: Sprague, R. (eds.) Proceedings of 31st Annual Con-
ference on Systems Science (1998)

15. Meliá, S., Gómez, J., Koch, N.: Improving Web Design Methods with Architecture Mod-
eling. In: Bauknecht, K., Pröll, B., Werthner, H. (eds.) EC-Web 2005. LNCS, vol. 3590,
pp. 53–64. Springer, Heidelberg (2005)

16. Moreno, N., Vallecillo, A.: A Model-based Approach for Integrating Third Party Systems
with Web Applications. In: Lowe, D.G., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579,
pp. 441–452. Springer, Heidelberg (2005)

17. Ralyte, J., Rolland, C.: An Assembly Process Model for Method Engineering. In: Dittrich,
K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, Springer, Heidel-
berg (2001)

18. Ralyté, J., Rolland, C.: An approach for method reengineering. In: Kunii, H.S., Jajodia, S.,
Sølvberg, A. (eds.) ER 2001. LNCS, vol. 2224, Springer, Heidelberg (2001)

19. Wistrand, K., Karlsson, F.: Method Components - Rationale Revealed. In: The 16th Inter-
national Conference on Advanced Information Systems Engineering, Riga, Latvia (2004)

Author Index

Acerbis, Roberto 501, 539
Aedo, Ignacio 269
Ahmed, Asad 516
Alalfi, Manar H. 306
Amezcua, Omar 526
Anfurrutia, Felipe I. 473
Ardissono, Liliana 47
Aroyo, Lora 328
Arrue, Myriam 370

Bae, Jeong Seop 53
Bellekens, Pieter 328
Benatallah, Boualem 1, 479
Benbernou, Salima 1
Bertolino, Antonia 17
Betermieux, Stefan 137
Bieliková, Mária 511
Bomsdorf, Birgit 137
Bongio, Aldo 501, 539
Book, Matthias 167
Borodin, Yevgen 516
Bova, Rosanna 1
Bozzon, Alessandro 210
Brambilla, Marco 312, 501, 533, 539
Butti, Stefano 501

Cabot, Jordi 59, 533
Cachero, Cristina 74
Calero, Coral 74
Canfora, Gerardo 457
Casati, Fabio 479
Castanedo, Raúl Izquierdo 442
Ceballos, Jordi 59
Celino, Irene 485
Ceri, Stefano 539
Cerizza, Dario 485
Ceruti, Marion G. 526
Chang, Soo Ho 53
Comai, Sara 364
Cordy, James R. 306

Daniel, Florian 479
Das, Joydip 545
Dattolo, Antonina 421
Davulcu, Hasan 385

De Angelis, Guglielmo 17
De Lucia, Andrea 415
De Silva, Buddhima 248, 521
Dean, Thomas R. 306
Della Valle, Emanuele 485
Di Iorio, Angelo 421
Dı́az, Oscar 473
Dı́az, Paloma 269
Distante, Damiano 152, 457
Dolog, Peter 32, 358
Duca, Silvia 421
Duffy, LorRaine 526

Ebert, Jürgen 194

Facca, Federico M. 312
Feliziani, Antonio Angelo 421
Fialho, André T.S. 188
Frankova, Ganna 556
Fuente, Aquilino A. Juan 442
Fugate, Sunny 526
Furnari, Roberto 47

Gaedke, Martin 427
Garćıa, Francisco J. 442, 550
Gelgi, Fatih 385
Giles, C. Lee 121, 285
Ginige, Anupama 521
Ginige, Athula 248, 521
Ginzburg, Jeronimo 152
Gipp, Torsten 194
Gómez, Cristina 59
Gómez, Jaime 491
Goy, Anna 47
Gruhn, Volker 167
Guerra, Esther 269

Hassas, Salima 1
Houben, Geert-Jan 328
Huang, Tao 105

Iofciu, Tereza 210

Jatowt, Adam 343

576 Author Index

Kim, Soo Dong 53
Kimura, Rui 400
Kokash, Natallia 563

La, Hyun Jung 53
Lahajnar, Sebastian 569
Lee, Wang-Chien 121
Leporini, Barbara 254
Li, Huajing 121
Li, Yang 105
Liang, Xufeng 521
Linaje, M. 226

Magsombol, Dennis 526
Mahmud, Jalal 516
Majer, Frederic 427
Marmaridis, Makis 521
Matera, Maristella 479
Mecca, Giansalvatore 496
Medina, Emily W. 526
Meinecke, Johannes 427
Meliá, Santiago 491
Mendes, Emilia 90
Mesnage, Cédric 506
Miao, Huaikou 301
Mitra, Prasenjit 285
Moreno, Nathalie 533
Mori, Giulio 182

Nakamura, Satoshi 343
Nassi, Ike 545
Nejdl, Wolfgang 32, 210

Oren, Eyal 506
Oyama, Satoshi 400

Paik, Hye-Young 1
Pappalardo, Alessandro 496
Paternò, Fabio 182, 254
Pedone, Paola 457
Pelechano, Vicente 242
Petrone, Giovanna 47
Poels, Geert 74
Polini, Andrea 17
Preciado, Juan C. 226

Ramakrishnan, I.V. 516
Raunich, Salvatore 496
Richter, Jan 167

Risi, Michele 415
Rodriguez Priego, Emilio 550
Rogers, Gary 526
Rossi, Gustavo 152, 457

Saint-Paul, Regis 479
Sánchez-Figueroa, F. 226
Santoro, Carmen 182
Santoro, Donatello 496
Sanz, Daniel 269
Scanniello, Giuseppe 415
Schäfer, Michael 32
Schwabe, Daniel 188
Scorcia, Antonio 254
Segnan, Marino 47
Serrano, José Lúıs 491
Shan, Ming-Chien 545
Sivasubramaniam, Anand 121
Stage, Jan 358

Tan, Qingzhao 285
Tanaka, Katsumi 343, 400
Tisi, Massimo 539
Toffetti Carughi, Giovanni 364
Toda, Hiroyuki 400
Tönnies, Sascha 210
Tortora, Genoveffa 415
Tosetti, Emanuele 539
Trujillo, Salvador 473
Turati, Andrea 485
Tvarožek, Michal 511

Urbieta, Matias 152

Vadrevu, Srinivas 385
Valderas, Pedro 242
van der Sluijs, Kees 328
Vigo, Markel 370
Vitali, Fabio 421

Wei, Jun 105

Yanbe, Yusuke 343
Yu, Jin 479

Zeng, Hongwei 301
Zhong, Hua 105
Zhuang, Ziming 285
Zuo, Lin 105

	Title page
	Preface
	Organization
	Table of Contents
	On Embedding Task Memory in Services CompositionFrameworks
	Introduction
	WS-Advisor: Design Overview
	User Agent
	Concepts and Definitions
	Provisioning Task

	Adviser Agent
	Task Memory
	Making Services Selection Recommendation

	Task Memory Builder Agent
	WS-Advisor: Implementation Architecture
	Discussion and Conclusions
	References

	A QoS Test-Bed Generator forWeb Services
	Introduction
	Specification of Service Level Agreements
	A WS Development and Evaluation Scenario
	Description of the Approach
	Skeleton Generation Process
	Matching WS-Agreement Statements to Java Code

	Working Example
	Related Work
	Conclusions and Future Work

	Engineering Compensations in Web ServiceEnvironment
	Introduction
	Motivating Scenario
	Web Service Environment with Transaction Coordination
	Abstract Service
	Adapter
	Compensation Specifications
	Application on the Client and Provider Side

	Discussion and Experiments
	Related Work
	Conclusions and Further Work

	Context-Aware Workflow Management
	Introduction
	Dimensions in Context-Aware Adaptation
	UI and Workflow Adaptation in the CAWE Framework
	Service-User's Context in Our Medical Application

	The CAWE Framework
	Workflow Representation
	Context-Aware Workflow Execution

	Related Work
	Conclusions

	Practical Methods for Adapting ServicesUsing Enterprise Service Bus
	Introduction
	Related Works
	Types of Service Variability
	Adaptation Managers for Services on EBS
	Workflow Mediator for Workflow Variability
	Service Binder for Composition Variability
	Interface Transformer for Interface Variability
	Logic Broker for Logic Variability

	Conclusion
	References

	On the Quality of Navigation Models withContent-Modification Operations
	Introduction
	Basic Concepts of Data and Navigation Models
	Data Model
	Navigation Model

	Complete and Correct Navigation Models
	Graph Representation
	Completeness of a Navigation Model
	Correctness of a Navigational Model

	Generating a Complete and Correct Navigational Model
	Generation of a Complete Navigation Model
	Generation of a Complete and Correct Navigation Model
	Refactorings for Navigation Models

	Related Work
	Conclusions and Further Work
	References

	Metamodeling the Quality of the Web DevelopmentProcess’ Intermediate Artifacts
	Introduction
	Related Work
	Research Issues

	Definition of WE Quality Models Following an Ontology and a Meta-model
	The WE Software Measurement Meta-Model (WE-SMM)

	WE-SMM Based Definition of WE-Quality Models
	Conclusions and Future Work
	References

	The Use of a Bayesian Network for Web EffortEstimation
	Introduction
	Building the Web Effort BN
	Dataset Description
	Procedure Used to Build the BNs
	The Web Effort BN

	Measuring the Prediction Accuracy of the Web Effort BN
	Conclusions
	References

	Sequential Pattern-Based Cache Replacementin Servlet Container
	Introduction
	Related Works
	Servlet Cache Model
	Basic Definitions
	Servlet Cache Model

	Sequential Patterns in Servlet Container
	Basic Definitions
	Pattern Graphs
	Sequential Patterns Discovery Algorithm

	Replacement Cost Functions
	Traditional Replacement Cost Functions
	Predictive Probability Function

	Evaluation
	Conclusion
	References

	A Hybrid Cache and Prefetch Mechanism for ScientificLiterature Search Engines
	Introduction
	Workload Analysis
	Data Preparation
	Statistical Summary
	Frequency Distribution
	Request Locality
	Correlation Studies
	Summary

	Cache Framework
	Caching Unit
	Cache Replacement Policy
	Architectural Design
	Implementation Issues

	Performance Evaluation
	System Setup
	Effects of Caching
	Cache Size Effects
	Correlation Threshold Effects
	Size Parameter Tuning

	Related Work
	Conclusion

	Finalizing Dialog Models at Runtime
	Introduction
	Task Modelling for Web Applications
	Task Model
	Example

	Domain Model
	Abstract Dialog Model
	Basic Components and Grouping Mechanism
	Connecting the Domain Model
	Abstract Dialog Model Example

	Runtime Architecture
	Task Controller
	Dialog Controller

	Related Work
	Current State of Work

	Transparent Interface Composition in Web Applications
	Introduction
	Integrating Volatile Functionality into OOHDM Models
	Improving Web Interface Composition
	Composing Web Interface Designs
	Using Transformations to Compose XML Documents
	Our Approach in a Nutshell

	Related Work
	Concluding Remarks and Further Work
	References

	Fine-Grained Specification and Control ofData Flows in Web-Based User Interfaces
	Introduction
	Data Flow Specification
	Data Sources and Sinks
	Data Flow Types
	Shared Scope Access
	Summary

	Data Flow Controller
	Data Entity Representation and Provision
	Data Flow Controller Design

	Related Work
	Conclusion

	Authoring Multi-device Web Applications withDatabase Access
	Introduction
	Design of Multi-device Applications with Database Access
	The Task Level
	The Abstract and the Concrete User Interface Description level

	An Example Application and a First Usability Evaluation
	Conclusions and Future Work
	References

	Enriching Hypermedia Application Interfaces
	Introduction
	Background
	Introducing Animations in Hypermedia Applications
	Rhetorical Animation Structure
	Implementation

	Conclusions
	References

	Functional Web Applications
	Introduction
	Benefits
	Functional Web Sites
	Functional Specifications
	Overview
	Content
	Navigation Structure
	Pages
	Queries and Updates
	Presentation
	Dynamics

	Related Work
	Summary and Conclusion

	Integrating Databases, Search Engines and WebApplications: A Model-Driven Approach
	Introduction and Motivation
	Case Study
	Conceptual Modeling for Search Engine in Web Applications
	Modeling the Index Structure
	Modeling Search Engine Interaction in the Hypertext Model

	Implementation and Validation
	Related Work
	Conclusions and Future Work

	A Method for Model Based Design ofRich Internet Application Interactive User Interfaces
	Introduction
	Design Decisions in RUX-Model
	RUX-Model Core
	Connection Rules
	Transformation Rules and the Component Library
	Abstract Interface
	Concrete Interface
	Final Interface

	Conclusions and Future Work
	References

	Improving Communication in Requirements EngineeringActivities for Web Applications
	Introduction
	Facilitating Customers to Describe Their Needs
	Requirements Ontologies
	A Web Application Requirements Elicitation Tool

	Obtaining Textual Requirements Specifications
	Obtaining Task-Based Requirements Models
	Conclusions
	References

	Meta-model to Support End-User Development of WebBased Business Information Systems
	Introduction
	Hierarchical Meta-model of Business Web Applications
	Shell Level
	Application Level
	Function Level

	Meta Model Properties
	Related Work
	Conclusion
	Reference

	Easing Web Guidelines Specification
	Introduction
	Related Work
	The Guideline Abstraction Language
	Guideline Abstraction
	Abstraction Examples

	The Guideline Editor
	Functionalities
	User Interface

	Editor Evaluation
	Method
	Participants
	Tasks
	Questionnaires
	Results

	The New Version of the Tool
	Conclusions
	References

	A Transformation-Driven Approach to the Verificationof Security Policies in Web Designs
	Introduction
	Security Modelling in Web Systems. A Case Study: Labyrinth
	Modelling Example: The ARCE System
	ARCE System Design

	A Transformation-Driven Approach to Security Analysis
	Transformation from Labyrinth into Petri Nets
	Analysis and Back-Annotation
	Tool Support
	Verifying ARCE Access Policy

	Related Work
	Conclusions and Future Work

	Efficiently Detecting Webpage UpdatesUsing Samples
	Introduction
	Related Work
	Sampling-Based Update Detection
	Tuning Download Granularity
	Link-Based Downloading Policy
	Directory-Based Downloading Policy
	Cluster-Based Downloading Policy

	Adaptive Download Probability
	Adapting to Current Change Status
	Adapting to Change History
	Adapting to Webpage Popularity

	Evaluation and Discussion
	Data Collection and Evaluation Metrics
	Results and Discussion

	Conclusion

	Auto-Generating Test Sequences for Web Applications
	Motivation and Related Work
	Modeling Web Applications
	Generating Trap Properties
	Conclusion
	References

	Survey of Analysis Models and Methods inWebsite Verification and Testing
	Introduction
	Desirable Properties for Website Modelling
	Comparison and Categorization Criteria
	Conclusions and Open Problems

	Building Semantic Web Portals with WebML
	Introduction
	Requirements for Semantic Web Engineering
	A Semantic Web Portal for the Music Domain
	WebML: An Overview
	Extending WebML Towards Semantic Web Portals
	Extensions to the Development Process
	Extensions to the Data Model
	Extensions to the Hypertext Model

	Modeling the Semantic Web Portal for Music Domain
	Implementation and Architectural Issues
	Related Works
	Conclusions

	Engineering Semantic-Based InteractiveMulti-device Web Applications
	Introduction
	SIM Web Application Requirements
	SenSee
	Web-Service Architecture
	Interface Asynchronicity and Ajax
	Semantic-Based Content Integration
	Application in User-Guided Search Support
	Conclusion

	Towards Improving Web Search by Utilizing SocialBookmarks
	Introduction
	Related Work
	Related Work
	Comparative Analysis
	Dataset Characteristics
	Distribution of PageRank and SBRank
	Correlation Between PageRank and SBRank
	Temporal Analysis
	Hybrid Web Search Proposal

	Discussion
	Conclusions
	References

	Designing Interaction Spaces forRich Internet Applications with UML
	Introduction
	Design Process and Techniques
	Related Work
	Conclusion
	References

	A Behavioral Model for Rich InternetApplications
	Introduction
	Traditional Web Application Model
	Rich Internet Application Dynamic Model
	Discussion
	Conclusions

	Considering Web Accessibility in Information RetrievalSystems
	Introduction
	Web Accessibility as a Quality Measure
	Related Work
	Web Accessibility Metrics
	Automatic Accessibility Evaluation

	Proposed Framework for Information Retrieval Systems
	Implementation of a Prototype
	Quantitative Metrics for Web Accessibility
	Automatic Metric Calculation
	Integrating Web Accessibility Evaluation and Content Relevance Analysis

	Results and Discussion
	Conclusions and Future Work
	References

	Fixing Weakly Annotated Web DataUsing Relational Models
	Introduction
	System Overview
	Probabilistic Model
	Label Role Inference
	Missing Attribute Inference
	Complexity Analysis
	Discussion on Naive Bayes

	Experiments
	Experiments with the TAP Data Set
	Experiments with the CIPS Dataset
	A Case Study with IE Systems

	Future Work and Conclusion

	Creating Personal Histories from the Web UsingNamesake Disambiguation and Event Extraction
	Introduction
	Namesake Disambiguation
	Date Expression Extraction
	Date Expression Normalization and Completion
	Relevant Information Extraction
	Chronological Table Generation
	Evaluation
	Namesake Disambiguation
	Date Expression Extraction
	Date Expression Normalization and Completion
	Relevant Information Extraction

	Conclusion

	Comparing Clustering Algorithms for the Identificationof Similar Pages in Web Applications
	Introduction
	Identifying Cloned Pages at Structural Level
	The Case Study
	Assessing the Results
	Remarks

	Conclusions
	References

	Structural Patterns for Descriptive Documents
	Introduction
	Structures for Descriptive Documents
	Patterns for Descriptive Documents
	Formal Representation of Patterns
	Conclusions

	Component-Based Content LinkingBeyond the Application
	Introduction
	The Tourism Portal Scenario
	The Linkbase Method
	Providing the Content Sources
	Linking the Content
	Using Linked Content in the Application

	The Linkbase Applied
	Experiments with an Implemented Support System
	Lessons Learned

	Related Work
	Conclusion
	References

	A Double-Model Approach to Achieve Effective Model-View Separation in Template Based Web Applications
	Introduction
	Related Work
	The Double-Model Approach
	Application Architecture for the Double-Model Approach (MVC+mT)
	Double-Model Requirements
	Double-Model and Entanglement Index

	JST2
	Working with JST2
	JST2 Implements the Double-Model
	JST2 Analysis

	Conclusions
	References

	Model-Driven Development of Web Applications withUWA, MVC and JavaServer Faces
	Introduction
	Background and Motivations
	A General Framework for the Development of Web Applications
	Model-Driven Development
	UWA

	A UWA-Based MDD Approach
	Process Overview
	The UML-MVC Logical Model
	Mapping UWA Conceptual Models onto UML-MVC Logical Model
	Mapping UML-MVC Logical Model onto JavaServer Faces PlatformSpecific Model
	An Example Application
	Costs/Benefits of the Approach

	Related Work
	Conclusion
	References

	On Refining XML Artifacts
	Introduction
	On the Notion of Refinement
	A Motivating Example Using Struts
	The Unit of Refinement
	The Ways of Refinement
	Conclusions

	Mixup: A Development and Runtime Environment forIntegration at the Presentation Layer
	Introduction
	The Conceptual Framework
	Mixup Demo Flow
	Related Work
	References

	Squiggle: an Experience in Model-DrivenDevelopment of Real-WorldSemantic Search Engines
	Introduction
	Existing Approaches to Improve Search Engines
	Our Steps Towards the ``Search Engine of the Future''
	Conceptual Architecture of the Squiggle Framework
	Squiggle Real-World Deployments
	Conclusions

	WebTE: MDA Transformation Engine for WebApplications
	Introduction
	The WebSA Approach: An Overview
	WebTE: WebSA Transformation Engine
	Conclusions and Future Works
	References

	Noodles: A Clustering Engine for the Web
	Background
	The Noodles System
	Architecture of the System
	Features of the Prototype

	WebRatio 5: An Eclipse-Based CASE Toolfor Engineering Web Applications
	Introduction and Motivation
	Supporting the Design of WebML Models
	WebRatio 5 Architecture
	WebRatio 5 GUI
	Conclusions
	References

	Extending Ruby on Rails for Semantic WebApplications
	Introduction
	Related Work
	Semantic Web on Rails Development
	The FOAF Browser Example
	Conclusion

	Personalized Faceted Navigationin the Semantic Web
	Concept Overview
	Faceted Browser Design and Implementation
	Discussion and Conclusion
	Introduction
	WebVAT Architecture
	WebVAT Design
	WebVAT Application: The HearSay Experience
	Conclusion and Future Work

	Smart Tools to Support Meta-design Paradigm forDeveloping Web Based Business Applications
	Introduction
	Meta-model for Web Based Business Applications
	Smart Tools
	Smart Business Objects (SBO)
	Workflow Engine
	Navigation and Access Control

	Conclusion
	References

	Next-Generation Tactical-Situation-AssessmentTechnology (TSAT): Chat
	Introduction
	Chat Status
	Chat Development Benefits, Issues, and Challenges
	Chat Content
	Future Chat Capabilities
	The Road Ahead for the TSAT Project
	Summary
	References

	Tool Support for Model Checkingof Web Application Designs
	Introduction
	Wave: A Web Application Verifier
	WebML
	Tool Framework
	Conclusions and Further Work
	References

	Developing eBusiness Solutionswith a Model Driven Approach: The Case of Acer EMEA
	Introduction
	Case Studies
	Results and Critical Considerations
	Conclusions
	References

	The Challenges of Application Service Hosting
	Introduction
	Basic Issues and Approaches
	Additional Challenges and Directions
	References

	Securing Code in Services Oriented Architecture
	Introduction to the Problem
	WSbSC Reference Model
	Service Implementation by WSbSC
	Contribution, Related Work, Status and Future Work
	References

	Service Level Agreements:Web Services and Security
	Introduction
	Background and Problem Area
	Research Objectives and Directions
	Approaches and Methods

	Risk Management for Service-Oriented Systems
	Introduction
	Software Risk Management
	Risk Management for Service-Oriented Systems
	Risk Management Framework
	Conclusions and Future Work

	A Framework for Situational Web MethodsEngineering
	Introduction
	The Problem Domain
	The Aims and Objectives of the Research
	The Solution
	Related Work
	Future Work and Conclusions
	References

	Author Index

