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Abstract. We bring together two recent trends in description logic
(DL): lightweight DLs in which the subsumption problem is tractable
and conservative extensions as a central tool for formalizing notions of
ontology design such as refinement and modularity. Our aim is to in-
vestigate conservative extensions as an automated reasoning problem
for the basic tractable DL EL. The main result is that deciding (de-
ductive) conservative extensions is ExpTime-complete, thus more dif-
ficult than subsumption in EL, but not more difficult than subsump-
tion in expressive DLs. We also show that if conservative extensions are
defined model-theoretically, the associated decision problem for EL is
undecidable.

1 Introduction

In recent years, lightweight description logics (DLs) have gained increased popu-
larity. In particular, a number of useful lightweight DLs have been identified for
which reasoning is tractable even w.r.t. general TBoxes (i.e., sets of subsump-
tions between concepts). Such DLs are used in the formulation of large-scale
ontologies, which usually require a high level of abstraction and consequently
use only limited expressive power from a DL. There are currently two main lines
of research on lightweight DLs: the EL family of tractable DLs investigated in
[5,2] aims at providing a logical underpinning of lightweight ontology languages,
with a special emphasis on life science ontologies. In contrast, the main purpose
of the DL-Lite family of tractable DLs investigated in [7,8] is to allow efficient
reasoning about conceptual database schemas, and to exploit existing DBMSs
for DL reasoning. In this paper, we will be interested in applications of DLs
for ontology design, and thus consider EL as our basic tractable DL. The main
reasoning problem in EL is subsumption, i.e., deciding whether one concept sub-
sumes another one w.r.t. a general TBox. Intuitively, such a TBox can be thought
of as a logical theory providing a description of the application domain. In the
following, we use the terms “general TBox” and “ontology” interchangeably.

There are a number of important life science ontologies that are formulated
in EL or mild extensions thereof. Examples include the Systematized Nomencla-
ture of Medicine, Clinical Terms (Snomed CT), which comprises ∼0.5 million
concepts and underlies the systematized medical terminology used in the health
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systems of the US, the UK, and other countries [16]; and the thesaurus of the
US national cancer institute (NCI), which comprises ∼45.000 concepts and is
intended to become the reference terminology for cancer research [15]. With on-
tologies of this size, a principled approach to their design and maintenance is
indispensible, and automated reasoning support is highly welcome.

Recently, conservative extensions have been identified as a fundamental no-
tion when formalizing central issues of ontology design such as refinement and
modularity [1,10,13,11,12]. Unless otherwise noted, we refer to the deductive
version of conservative extensions: the extension T1 ∪ T2 of an ontology T1 is
conservative if T1 ∪ T2 implies no new subsumptions in the signature of T1, i.e.,
every subsumption C � D that is implied by T1 ∪ T2 and where the concepts
C and D use only symbols (concept and role names) from T1 is already implied
by T1.

We briefly sketch how conservative extensions can help to formalize ontology
refinement and modularity. Refinement means to add more details to a part
of the ontology that has not yet been sufficiently described. Intuitively, such
a refinement should provide more detailed information about the meaning of
concepts of the original ontology, but it should not affect the relationship between
such concepts. This requirement can be formalized by demanding that the refined
ontology is a conservative extension of the original ontology. The main benefits
of modularity of ontologies are that changes to the ontology have only local
impact, and that modules from an ontology can be re-used in other ontologies.
Intuitively, a module inside an ontology should be self-contained in the sense that
it contains all the relevant information about the concepts it uses. Formally, this
can be captured by requiring that a module inside an ontology T is a subset T ′

of T such that T is a conservative extension of T ′. See e.g.[11] for more details.
In [10,13], it was proposed to provide automated reasoning support for con-

servative extensions. For example, if an ontology designer intends to refine his
ontology, he may use an automated reasoning tool capable of deciding conserva-
tive extensions to check whether his modifications really had no impact on rela-
tionships between concepts in the original ontology. The complexity of deciding
conservative extensions is usually rather high. For example, it is 2-ExpTime

complete in expressive DLs such as ALC and ALCQI and even undecidable in
ALCQIO [10,13]; recall that subsumption is decidable in ExpTime and, respec-
tively, NExpTime for those logics.

In this paper, we study conservative extensions in the basic tractable descrip-
tion logic EL. This is motivated by the observation that large-scale ontologies are
often formulated in such lightweight DLs, and large-scale ontologies is also where
issues of refinement and modularity play the most important role. We provide an
alternative characterization of conservative extension in EL, and use this char-
acterization to provide a decision procedure. It is interesting to note that deci-
sion procedures for deciding conservative extensions in more expressive DLs such
as ALC can not be used for EL, see Section 2 for an example illustrating this
effect. We show that our algorithm runs in deterministic exponential time, and
prove a matching lower bound. Thus, deciding conservative extension in EL is
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ExpTime-complete and not tractable like subsumption in EL. However, it is also
not more difficult than subsumption in expressive DLs such as ALC and ALCQI,
problems that are considered manageable in practice. We also consider a stronger,
model theoretic notion of conservative extensions that is useful for query answer-
ing and prove that the associated decision problem for EL is undecidable.

In this version of the paper, many proof details are omitted for brevity. They
can be found in the full version [14].

2 EL and Conservative Extensions

Let NC and NR be countably infinite and disjoint sets of concept names and
role names, respectively. EL-concepts C are built according to the syntax rule
C ::= � | A | C �D | ∃r.C, where A ranges over NC, r ranges over NR, and C, D
range over EL-concepts. The semantics is defined by means of an interpretation
I = (ΔI , ·I), where the interpretation domain ΔI is a non-empty set, and ·I
is a function mapping each concept name A to a subset AI of ΔI and each
role name rI to a binary relation rI ⊆ ΔI × ΔI . The function ·I is inductively
extended to arbitrary concepts by setting �I := ΔI , (C � D)I := CI ∩DI , and
(∃r.C)I := {d ∈ ΔI | ∃e ∈ CI : (d, e) ∈ rI}.

A TBox is a finite set of concept inclusions (CIs) C � D, where C and D
are concepts. An interpretation I satisfies a CI C � D (written I |= C � D)
if CI ⊆ DI . I is a model of a TBox T if it satisfies all CIs in T . We write
T |= C � D if every model of T satisfies C � D. Here is an example TBox T1:

Human � ∃eats.�
Plant � ∃grows-in.Area

Vegetarian � Healthy

A signature Σ is a finite subset of NC ∪ NR. The signature sig(C) (sig(T )) of a
concept C (TBox T ) is the set of concept and role names which occur in C (in
T ). If sig(C) = Σ, we also call C a Σ-concept. Let T1 and T2 be TBoxes. We call
T1 ∪ T2 a conservative extension of T1 if T1 ∪ T2 |= C � D implies T1 |= C � D
for all sig(T1)-concepts C, D. If C, D violate this condition (and thus, T1 ∪T2 is
not a conservative extension of T1), then C � D is called a counter-subsumption.
As an example, consider the following TBox T2:

Human � ∃eats.Food
Food � Plant � Vegetarian

It is not too difficult to verify that T1 ∪ T2 is a conservative extension of T1,
where T1 is the TBox defined above. Unsurprisingly, the notion of a conservative
extension strongly depends on the description logic used. For example, ALC is
the extension of EL with a negation constructor ¬C, which has the obvious
semantics (¬C)I = ΔI \ CI . In ALC, ∀r.C is an abbreviation for ¬∃r.¬C. If we
view the TBoxes T1 and T2 from above as ALC TBoxes, then T1 ∪ T2 is not a
conservative extension of T1, with counter-subsumption

Human � ∀eats.Plant � ∃eats.Vegetarian.
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This shows that we cannot use the existing algorithms for conservative extensions
in ALC [10] to decide conservative extensions in EL.

Another initial observation about conservative extensions in EL is that min-
imal counter-subsumptions may be quite large. Define a TBox T such that it
contains only tautologies and sig(T ) = {A, B, r, s}. For each n ≥ 0, we define
a TBox T ′

n. It has additional concept names X0, . . . , Xn−1 and X0, . . . , Xn−1
that are used to represent a binary counter X : if Xi is true, then the i-th bit is
positive and if Xi is true, then it is negative. Define T ′

n as

A � X0 � · · · � Xn−1

�σ∈{r,s}∃σ.(X i � X0 � · · · � Xi−1) � Xi for all i < n

�σ∈{r,s}∃σ.(Xi � X0 � · · · � Xi−1) � Xi for all i < n
�σ∈{r,s}∃σ.(X i � Xj) � Xi for all j < i < n
�σ∈{r,s}∃σ.(Xi � Xj) � Xi for all j < i < n

X0 � · · · � Xn−1 � B

Observe that Lines 2-5 implement incrementation of the counter X . Then the
smallest new consequence of T ∪ T ′

n is C2n−1 � B, where:

C0 = A
Ci = ∃r.Ci−1 � ∃s.Ci−1

Clearly, C2n−1 is doubly exponentially large in the size of T and T ′
n. If we use

structure sharing (i.e., define the size of C2n−1 as the number of its distinct
subconcepts), it is still exponentially large.

3 Characterizing Conservative Extensions

We provide a characterization of when a TBox T1 ∪ T2 is not a conservative
extension of T1. This characterization is used in the subsequent section to devise
a decision procedure for (non-)conservative extensions in EL.

Let I1 and I2 be interpretations and Σ a signature. A relation S ⊆ ΔI1 ×ΔI2

is a Σ-simulation from I1 to I2 if the following holds:

– for all concept names A ∈ Σ and all (d1, d2) ∈ S with d1 ∈ AI1 , d2 ∈ AI2 ;
– for all role names r ∈ Σ, all (d1, d2) ∈ S, and all e1 ∈ ΔI1 with (d1, e1) ∈ rI1 ,

there exists e2 ∈ ΔI2 such that (d2, e2) ∈ rI2 and (e1, e2) ∈ S.

If d1 ∈ ΔI1 , d2 ∈ ΔI2 , and there is a Σ-simulation S from I1 to I2 with
(d1, d2) ∈ S, then (I2, d2) Σ-simulates (I1, d1), written (I1, d1) ≤Σ (I2, d2). If
Σ = NC ∪NR, we simply speak of a simulation and write ≤ instead of ≤Σ. Let I
be an interpretation, Σ a signature, and d ∈ ΔI . Then we define the abbreviation
dΣ,I := {C | d ∈ CI ∧ sig(C) ⊆ Σ}. The out-degree of an interpretation I is
the supremum of the cardinalities of the sets {d′ | (d, d′) ∈ rI}, for d ∈ ΔI and
r ∈ NR. The following theorem establishes a connection between simulations and
EL formulas. The proof is standard, and therefore omitted, see e.g. [9].
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Theorem 1. If (I1, d1) ≤Σ (I2, d2) , then dΣ,I1
1 ⊆ dΣ,I2

2 . Conversely, if I1 and
I2 have finite out-degree and dΣ,I1

1 ⊆ dΣ,I2
2 , then (I1, d1) ≤Σ (I2, d2).

We use sub(C) to denote the set of subconcepts of a concept C. As usual, this set
contains C itself. For a TBox T , we denote by sub(T ) the set of all subconcepts
of concepts which occur in T . With each concept C and TBox T , we associate
two sets of consequences that will play a central role in what follows.

– KT (C) = {D ∈ sub(T ) | T |= C � D};
– LT (C) = {D ∈ sub(C) | T |= C � D} ∪ KT (C).

By the results in [5], both sets can be computed in time polynomial in the size
of C and T . The canonical model IC,T = (ΔC,T , ·C,T ) of C and T is defined as
follows, where A ranges over all elements of NC and r over all elements of NR:

– ΔC,T = {C} ∪ {C′ | ∃r.C′ ∈ sub(C) ∪ sub(T )};
– D ∈ AIC,T iff A ∈ LT (D);
– (D, D′) ∈ rIC,T iff ∃r.D′ ∈ KT (D) or D = E � ∃r.D′, for some concept E.

The model IC,T is a subtle refinement of the data structure generated by the
algorithms in [5,2] to prove correctness of the algorithm in [2].1 Since the sets
LT (C) and KT (C) can be computed in polytime, the model IC,T can also be
computed in time polynomial in the size of C and T .

Lemma 1. Let T be a TBox and C a concept. For all D ∈ ΔC,T and all E ∈
sub(C) ∪ sub(T ), we have D ∈ EIC,T iff T |= D � E.

Lemma 1 implies that IC,T is a model of T , and that C ∈ CIC,T . The following
lemma summarizes the most important properties of canonical models. Regard-
ing Points 1 and 2, similar (but simpler) lemmas for the case of EL without
TBoxes have been established in [3].

Lemma 2. Let C, C1, C2, D be EL-concepts and T a TBox. Then the following
holds:

1. For all models I of T and all d ∈ ΔI , the following conditions are equivalent:
(a) d ∈ CI ;
(b) (IC,T , C) ≤ (I, d).

2. The following conditions are equivalent:
(a) T |= C � D;
(b) C ∈ DIC,T ;
(c) (ID,T , D) ≤ (IC,T , C).

3. If ∃r.D ∈ (sub(Ci)∪ sub(T )) for all i ∈ {1, 2}, then (IC1,T , D) ≤ (IC2,T , D).

Let T1, T2 be TBoxes, C a sig(T1)-concept, and D a sig(T1) ∪ sig(T2)-concept.
We write C ⇒1 D if, for all sig(T1)-concepts E, T1 ∪ T2 |= D � E implies T1 |=
C � E. Our characterization of non-conservative extensions, as stated by the
following lemma, is based on this relation. The main benefit of this characteri-
zation is that when checking for new subsumptions T1 ∪ T2 |= C � D, it allows
1 Essentially, in those papers we have (D, D′) ∈ rIC,T iff ∃r.D′ ∈ LT (D).
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us to concentrate on concepts D of a very simple form, namely subconcepts of
T1 and T2. This is achieved by considering sig(T1) ∪ sig(T2)-concepts instead of
sig(T1)-concepts as in the definition of conservative extensions. In addition, the
characterization provides a bound on the outdegree of C, i.e., the maximum car-
dinality of any set P of pairs of the form (r, C′), with r a role name and C′ a
concept, such that �(r,C′)∈P ∃r.C′ ∈ sub(C). We use |C| and |T | to denote the
length of a concept C and a TBox T , i.e., the number of symbols needed to write
it.

Lemma 3. T1∪T2 is not a conservative extension of T1 iff there exists a sig(T1)-
concept C and a concept D ∈ sub(T1 ∪ T2) such that

(a) T1 ∪ T2 |= C � D;
(b) C �⇒1 D;
(c) the outdegree of C is bounded by |T1 ∪ T2|.

Proof. “⇐”. Assume that (a) to (c) are satisfied. By (b), there is a concept
E with T1 ∪ T2 |= D � E and T1 �|= C � E. From the former and (a), we get
T1 ∪ T2 |= C � E, which implies that T1 ∪ T2 is not a conservative extension
of T1.

“⇒”. We give only a sketch and refer to the full version [14] for details. Assume
that T1 ∪ T2 is not a conservative extension of T1. In this sketch, we show only
(a) and (b). If there is a counter-subsumption C � D with D ∈ sub(T1), then
conditions (a) and (b) hold for C and D and we are done. Assume that no such
counter-subsumption exists. Let C � D be a counter-subsumption such that
D is of minimal length. Then D can be shown to be of the form ∃r.D′. Using
Lemma 2, it is possible to prove that T1 ∪ T2 |= C � ∃r.D′ implies that one of
the following holds:

1. there is a conjunct ∃r.C′ of C such that T1 ∪ T2 |= C′ � D′;
2. there is ∃r.C′ ∈ sub(T1 ∪T2) s.t. T1 ∪T2 |= C � ∃r.C′ and T1 ∪T2 |= C′ � D′.

It is possible to show that Case 1 actually yields a contradiction to the minimal
length of D. Thus, Case 2 applies. We show that the concepts C and ∃r.C′

(substituted for D) satisfy Conditions (a) and (b). First, T1 ∪ T2 |= C � ∃r.C′

establishes Condition (a). For Condition (b), observe that T1 �|= C � ∃r.D′ and
T1 ∪ T2 |= ∃r.C′ � ∃r.D′. This means C �⇒1 ∃r.C′. ❏

The following lemma characterizes the relation C ⇒1 D semantically and shows
that it can be decided in polytime.

Lemma 4. Let T1, T2 be TBoxes and C, D concepts. Then we have C ⇒1 D
iff (ID,T1∪T2 , D) ≤sig(T1) (IC,T1 , C). Hence, the problem C ⇒1 D is decidable in
polynomial time in the size of C, D, and T1 ∪ T2.

Proof. “⇒”. Let C �⇒1 D. Then there is a sig(T1)-concept E such that T1∪T2 |=
D � E and T1 �|= C � E. By Point 2 of Lemma 2, this yields D ∈ EID,T1∪T2 and
C �∈ EIC,T1 . Hence, by Theorem 1, (ID,T1∪T2 , D) �≤sig(T1) (IC,T1 , C).
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“⇐”. Let (ID,T1∪T2 , D) �≤sig(T1) (IC,T1 , C). By Theorem 1, there exists E
over sig(T1) with D ∈ EID,T1∪T2 but C �∈ EIC,T1 . By Point 2 of Lemma 2,
T1 ∪ T2 |= D � E and T1 �|= C � E. Hence, C �⇒1 D.

It is well-known that computing the largest Σ-simulation between two finite
graphs can be done in polynomial time [9]. ❏

4 The Algorithm

We devise an algorithm for deciding (non)-conservative extensions in EL, which
is based on our characterization of not being a conservative extensions in terms
of “⇒1” (Lemma 3) and of “⇒1” in terms of simulations (Lemma 4). To check
whether T1 ∪ T2 is not a conservative extension of T1, the algorithm searches for
a sig(T1)-concept C such that for some D ∈ sub(T1 ∪ T2), the Points (a)–(c) of
Lemma 3 are satisfied. Intuitively, it proceeds in rounds. In the first round, the
algorithm considers the case where C is a conjunction of concept names. For
every such C and all D ∈ sub(T1 ∪ T2), it checks whether Points (a) and (b)
are satisfied. By Lemma 4, this can be done in polytime. If all tests fail, the
second round is started in which the algorithm considers concepts C of the form
F0 � �(r,E)∈P ∃r.E, where F0 is a conjunction of concept names and P is a set
of pairs (r, E) with r a role name and E a candidate for C from the first round
(i.e., E is also a conjunction of concept names). Because of Point (c), it will be
sufficient to consider sets P of cardinality bounded by |T1 ∪T2|. To check if such
a concept C satisfies Points (a) and (b), we exploit the information that we have
gained about the concepts E in the previous round. If again no suitable C is
found, then in the third round we use the Cs from the second round as the Es
in F0 � �(r,E)∈P ∃r.E, and so on.

For the algorithm to terminate and run in exponential time, we have to intro-
duce a condition that indicates when enough candidates C have been inspected
in order to know that there is no counter-subsumption C � D. To obtain such
a termination condition and to avoid having to deal with double exponentially
large concepts, our algorithm will not construct the candidate concepts C di-
rectly, but rather use a certain data structure to represent relevant information
about C. The relevant information about C is suggested by Lemma 3: for each
C, we take the quadruple

C� = (F, KT1(C), KT1∪T2(C), KT1,T1∪T2(C)),

where F is the conjunction of all concept names occurring in the top-level con-
junction of C (if there are none, then F = �), KT1(C) and KT1∪T2(C) are defined
in the previous section, and KT1,T1∪T2(C) = {D ∈ sub(T1 ∪ T2) | C ⇒1 D}. We
call this the quadruple determined by C.

By Lemma 3, the quadruple C� determined by a concept C gives us enough
information to decide whether C is the left hand side of a counter-subsumption.
In addition, it contains enough information to enable the recursive search de-
scribed above. This is exploited by our algorithm for deciding (non)-conservative
extensions, which is shown in Figure 1. Observe that the Condition Q2 \ Q3 �= ∅
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Imput: TBoxes T1 and T2.

1. Compute the set N0 of quadruples determined by conjunctions of concept names
from sig(T1).

2. if N0 contains a quadruple (F, Q1, Q2, Q3) such that Q2 \ Q3 �= ∅, then output
“not conservative extension”.

3. Generate the sequence N1, N2, . . . of quadruples such that Ni+1 = Ni ∪ N ′
i ,

where N ′
i is the set of quadruples (F0, F1, F2, F3) which can be obtained from a

conjunction F0 of concept names from sig(T1) and a set Q ⊆ (NR ∩ sig(T1)) × Ni

of cardinality not exceeding |T1 ∪ T2| in the following way:

– F1 = KT1(F0 	 �
(r,(F,Q1,Q2,Q3))∈Q

∃r.( �
D∈Q1

D));

– F2 = KT1∪T2(F0 	 �
(r,(F,Q1,Q2,Q3))∈Q

∃r.( �
D∈Q2

D));

– F3 = {D | D ∈ sub(T1 ∪ T2) and

(a) for all A ∈ sig(T1), A ∈ KT1∪T2(D) implies A ∈ F1;

(b) if (D, D′) ∈ rID,T1∪T2 with r ∈ sig(T1), then
(i) there is a tuple (r, (F, Q1, Q2, Q3)) ∈ Q such that D′ ∈ Q3

or (ii) there is ∃r.C′ ∈ F1 with (ID′,T1∪T2 , D′) ≤sig(T1) (IC′,T1 , C′)
}

This is done until Ni contains a quadruple (F, Q1, Q2, Q3) such that Q2\Q3 �= ∅,
or Ni+1 = Ni. Output “not conservative extension” if the first condition applies.
Otherwise, output “conservative extension”.

Fig. 1. Algorithm for deciding (non)-conservative extensions in EL

corresponds to satisfaction of Points (a) and (b) in Lemma 3. Also observe that,
in Point (b) of the definition of F3, we refer to the canonical model ID,T1∪T2 for
the relevant concepts D. These models are constructed in polytime when needed.
To show that this algorithm really implements the initial description given at
the beginning of this section, we make explicit the concepts that we describe by
means of the quadruples constructed in Step 3 of Figure 1. This is done by the
following lemma, which will also be a central ingredient to our correctness proof.

Lemma 5. Let (F0, F1, F2, F3) be the quadruple obtained from F0 and Q in
Figure 1. Let, for each (r, q) ∈ Q, Cr,q be a concept which determines q. Then
C = F0 � �(r,q)∈Q∃r.Cr,q determines (F0, F1, F2, F3).

Proof. Let (F0, F1, F2, F3) and C be as in the lemma. It is trivial to see that F0
is as required. To treat F1 and F2, we prove the following in [14]: for all TBoxes
T and concepts C′ = F ′

0��(r,E)∈P ∃r.E with F ′
0 a conjunction of concept names,

KT (C′) = KT (F ′
0 � �

(r,E)∈P
∃r.( �

D∈KT (E)
D)).

This implies that F1 and F2 are as required. It remains to consider F3. Fix
D ∈ sub(T1 ∪T2). By Lemma 4, C ⇒1 D iff (ID,T1∪T2 , D) ≤sig(T1) (IC,T1 , C). By
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definition of simulations and once more by Lemma 4, to check whether C ⇒1 D
it is sufficient to check both of the following:

1. for all concept names A ∈ sig(T1), A ∈ KT1∪T2(D) implies A ∈ KT1(C);
2. for all r ∈ sig(T1) and D′ with (D, D′) ∈ rID,T1∪T2 there exists C′ with

(C, C′) ∈ rIC,T1 and (ID,T1∪T2 , C
′) ≤sig(T1) (IC,T1 , D

′).

Point 1 is checked under (a) since, as we have seen already, KT1(C) = F1.
For Point 2, (C, C′) ∈ rIC,T1 and the definition of canonical models implies
that we have (i) ∃r.C′ is a conjunct of C or (ii) ∃r.C′ ∈ KT1(C). In Case
(i), C′ = Cr,q for some (r, q) ∈ Q and C′ ⇒1 D′ iff D′ is an element of the
fourth component of q. This is what is checked in (b.i) of the algorithm. In
Case (ii), ∃r.C′ ∈ sub(T1) and thus we can use Point 3 of Lemma 1 to show that
(ID,T1∪T2 , C

′) ≤sig(T1) (IC,T1 , D
′) iff (ID′,T1∪T2 , D

′) ≤sig(T1) (IC′,T1 , C
′). This is

exactly what is checked in (b.ii) of the algorithm. ❏

Theorem 2. The algorithm for deciding non-conservative extensions is sound,
complete, and runs in exponential time.

Proof. Soundness follows from Lemmas 3 and 5. For completeness, assume that
T1 ∪ T2 is not a conservative extension of T1. By Lemma 3, there exists C of
outdegree not exceeding |T1∪T2| and D ∈ sub(T1∪T2) such that T1∪T2 |= C � D
and C �⇒1 D. If C is a conjunction of concept names, then the algorithm outputs
“not conservative extension” in Step 2. Now suppose C has quantifier depth
n ≥ 1. Using Lemma 5, one can easily show by induction on i that for all
i ≥ 0, the set Ni contains all quadruples determined by subconcepts C′ of C of
quantifier depth smaller than i. Hence, the algorithm outputs “not conservative
extension” after computing some Ni with i ≤ n.

For termination and complexity, observe that, by Lemma 4, the quadruple
determined by a conjunction of concept names from sig(T1) can be computed in
polytime. Hence Steps 1 and 2 run in exponential time. For Step 3 observe that
the number of tuples (F, Q1, Q2, Q3) with F a conjunction of concept names from
sig(T1) and Qi ⊆ sub(T1 ∪T2) is bounded by 24|T1∪T2|. It follows that Ni = Ni+1
for some i ≤ 24|T1∪T2|. Hence, the algorithm terminates and to show that it runs
in exponential time it remains to check that Ni+1 can be computed in exponential
time from Ni. This follows from the following: first, the number of pairs (F0, Q),
with F0 a conjunction of concept names from sig(T1) and Q ⊆ (NR∩sig(T1))×Ni

of cardinality not exceeding |T1 ∪ T2|, is still only exponential in |T1 ∪ T2|; and
second, the computation of (F0, F1, F2, F3) from F0 and Q in Figure 1 can be
done in time polynomial in |T1 ∪ T2|. ❏

5 ExpTime-Hardness

We prove ExpTime-hardness of deciding conservative extensions in EL by re-
duction of the problem of determining whether a given player has a winning
strategy in the two-player game Peek introduced in [17] (the version G4). An
instance of Peek is a tuple (Γ1, Γ2, ΓI , ϕ) where:
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– Γ1 and Γ2 are disjoint, finite sets of Boolean variables, with the intended
interpretation that the variables in Γ1 are under the control of Player 1, and
Γ2 is under the control of Player 2;

– ΓI ⊆ (Γ1 ∪ Γ2) are the variables true in the initial state of the game;
– ϕ is a propositional logic formula over the variables Γ1 ∪Γ2, representing the

winning condition.

The game is played in a series of rounds, with the Players i ∈ {1, 2} alternating
(Player 1 moves first) to select a variable from Γi whose truth value is then
flipped to reach the next game configuration. The game starts from the initial
assignment defined by ΓI . Variables that were not changed retain the same truth
value in the subsequent configuration. A player may also make a skip move, i.e.,
not change any of its variables. Any player wins in a given round if he makes
a move such that the resulting truth assignment defined by that round makes
the winning formula ϕ true. The decision problem associated with Peek is to
determine whether Player 1 has a winning strategy in a given game instance
(Γ1, Γ2, ΓI , ϕ). A formal definition of winning strategies for this game can be
found in [14].

Let us make precise the notion of a winning strategy. A configuration of G is a
pair (t, p) where t is a truth assignment for the variables in Γ1∪Γ2 and p ∈ {1, 2}
indicates the player that has moved to reach the current configuration. A winning
strategy for Player 1 is a finite tree (V, E, �) where � is a node labelling function
that assigns to each node a configuration of G. The labelling is such that
1. the root is labelled with (ΓI , 2);
2. if a node is labelled with (t, 2) (i.e., Player 1 is to move), then it has a single

successor labelled (t′, 1), where t′ is obtained from t by switching the truth
value of at most one variable from Γ1;

3. if a node is labelled with (t, 1) (i.e., Player 2 is to move), then its successors
are labelled (t0, 1), . . . , (t�, 2), where t0, . . . , t� are the configurations of G
that can be obtained from t by switching the truth value of at most one
variable from Γ2;

4. if a leaf is labelled (t, i), then i = 1 and t satisfies ϕ.

Note that if �(v) = (t, i), then i is the player that has moved in order to reach
configuration �(v).

Given a game instance G = (Γ1, Γ2, ΓI , ϕ), we define TBoxes TG and T ′
G such

that TG ∪ T ′
G is not a conservative extension of TG iff Player 1 has a winning

strategy in G. More precisely, TG and T ′
G are crafted such that witness subsump-

tions C � D against conservativity are such that (D is a concept name and) C
describes a winning stategy for Player 1. Conversely, every winning strategy can
be converted into a witness subsumption against conservativity. For convenience,
we assume that the set of variables Γ1 ∪Γ2 is of the form {0, . . . , n−1} for some
n ≥ 2. In TG, we use the following concept and role names to describe a winning
strategy (V, E, �):
– the concept names V0, . . . , Vn−1 and V 0, . . . , V n−1 describe the t component

of the configuration �(v) = (t, p) associated with a node v, where Vi indicates
that variable i is true, and V i indicates that it is false;
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– the concept names P1, P2 describe the p component of the configuration
�(v) = (t, p) associated with a node v;

– the concept names F0, . . . , Fn denote the variable that is flipped to reach the
configuration �(v) associated with a node v, with Fn indicating a skip move;

– the role name r represents E.

We also use some auxiliary concept names that are introduced below. Among
them the concept name B plays a special role: we will construct TG and T ′

G such
that if TG ∪ T ′

G is not a conservative extension of TG, then there is a witness
subsumption C � D with D = B.

We now assemble TG. We first say that the players alternate:

∃r.P1 � P2
∃r.P2 � P1

Then, we say that P1 and P2 should be disjoint. The idea is as follows: every
concept C which enforces to make both P1 and P2 true somewhere in the model
subsumes the special concept name B already w.r.t. TG, and thus cannot occur
on the left-hand side of a witness subsumtion C � B. The concept name M is
used as a marker:

P1 � P2 � M ∃r.M � M M � B

We also need disjointness conditions for truth values and flipping markers:

Vi � V i � M for all i < n
Fi � Fj � M for all i, j ≤ n with i �= j

Next, we say that if the marker Fi is set, the variable Vi flips:

∃r.(Fi � Vi) � V i for all i < n

∃r.(Fi � V i) � Vi for all i < n

If a marker Fj for a different variable Vj is set, then Vi does not flip:

∃r.(Fi � Vj) � Vj for all i ≤ n and j < n with i �= j
∃r.(Fi � V j) � V j for all i < n and j < n with i �= j

Additionally, we would like to ensure that at least one of the Fi markers is true.
This cannot be done in a straightforward way in TG. We will use the TBox T ′

G,
which we define next. W.l.o.g., we assume that ϕ is in NNF. We first translate
the formula ϕ into a set of GCIs as follows. For each ψ ∈ sub(ϕ), we introduce
a concept name Xψ. For each ψ ∈ sub(ϕ), we use σ(ψ) to denote

– the concept name Xψ if ψ is a non-literal and
– the concept name from V0, . . . , Vn−1, V 0, . . . , V n−1 corresponding to ψ if ψ

is a literal.

Now we can translate each non-literal ψ ∈ sub(ϕ) into GCIs:
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– if ψ = ϑ ∧ χ, then the GCI is σ(ϑ) � σ(χ) � Xψ;
– if ψ = ϑ ∨ χ, then the GCIs are σ(ϑ) � Xψ and σ(χ) � Xψ.

We introduce concept names N, N ′, N ′′, N0, . . . , Nn−1 that will be used as mark-
ers. Let k be the cardinality of Γ1. First we add markers that will help to ensure
that (i) each variable has a truth value in every configuration, (ii) a least one of
the flipping markers is set in every configuration, and (iii) the flipping marker
denotes a variable controlled by the player whose turn it currently is:

Vi � Ni for all i < n V i � Ni for all i < n
Fi � N ′ for all i ∈ {0, . . . , k − 1, n} Fi � N ′′ for all i ∈ {k, . . . , n}

Next, we set a marker if Player 1 has moved to reach a state in which ϕ is
satisfied:

Xϕ � P1 � N ′ � N0 � · · · � Nn−1 � N

Then, the marker N is pulled up inductively ensuring that if Player 1 is to move,
there is a single successor indicating the move of Player 1 recommended by the
strategy; and if Player 2 is to move, there are n − k + 1 successors, one for each
possible move of Player 2 (including the skip move):

P1 � N ′ � N0 � · · · � Nn−1 � ∃r.N � N

P2 � N ′′ � N0 � · · · � Nn−1 � �
i∈{k,...,n}

∃r.(N � Fi) � N

Finally, we require that Player 1 moves first and that the initial configuration is
labelled as described by ΓI . Only if this is satisfied, the concept name B from
TG is implied:

P2 � N � �
i∈ΓI

Vi � �
i/∈ΓI

V i � B

Lemma 6. Player 1 has a winning strategy in G iff TG∪T ′
G is not a conservative

extension of TG.

We have thus established the following result.

Theorem 3. Deciding conservative extensions in EL is ExpTime-hard, thus
ExpTime-complete.

6 Model Conservativity

In mathematical logic and software specification, there are (at least) two different
kinds of conservative extensions. Until now, we have worked with the deductive
version based on the consequence relation “|=”. The second version is model-
theoretic and defined as follows. Let T1 and T2 be TBoxes. We say that T1 ∪T2 is
a model conservative extension of T1 iff every model I of T1 can be extended to
a model of T1 ∪ T2 by modifying the interpretation of the predicates in sig(T2) \
sig(T1) while leaving the predicates in sig(T1) fixed.
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Model conservative extensions of DL TBoxes have first been analyzed in [13],
where it was argued that model conservative extensions are of interest for query
answering modulo ontologies. For example, assume that we are interested in
computing the certain answers to a first-order query over an ABox A as described
e.g. in [6]. Then T1 ∪ T2 being a model conservative extension of T1 means that
the answers given w.r.t. the TBoxes T1 and T1 ∪T2 are identical. The notion of a
model conservative extension is more strict than the deductive one. If T1 ∪T2 is a
model conservative extension of T1, then it is clearly also a deductive conservative
extension of T1, but the converse does not hold. To show the latter, let T1 =
{A � A} and T2 = {� � ∃r.A}. It is not hard to see that T1 ∪ T2 is a deductive
conservative extension of T1 if EL (or even ALC) is the assumed descripion logic,
but it is not a model conservative extension.

Also in [13], it was shown that deciding model conservative extensions is
undecidable and Π1

1 -complete in ALC. In this section, we show the surprising
result that model conservative extensions are undecidable even in EL (though
we are not able to establish Π1

1 -hardness). The proof is by reduction of the
halting problem for deterministic Turing machines on the empty tape. We assume
w.l.o.g. that our Turing machines are such that the initial state is not reachable
(directly or indirectly) from itself and that the halting state does not allow
any further transitions. Let M = (Q, Σ, Γ, Δ, q0, qh) be a Turing machine. We
construct TBoxes TM and T ′

M such that TM ∪ T ′
M is not a model conservative

extension of TM iff M halts on the empty tape. We use the following concept
and role names for describing computations of M :

– the elements of Q and Γ as concept names;
– concept names head, before, and after to represent the relation of a tape cell

to the head position;
– role names n (for next tape cell) and s (for successor configuration).

Our construction is such that models of TM that cannot be extended to models
of T ′

M describe halting computations of M on the empty tape. Essentially, such
models have the form of a grid, with the vertical edges labelled s and the hori-
zontal ones labelled n. Thus, each row represents a configuration. We will enforce
the roles n and s to be functional, except at row 0 and column 0 (because this
does not seem possible). Therefore, the actual grid representing the computation
of M starts at row 1 and column 1.

We start with the definition of TM . For now, it is easiest to simply assume n
and s to be functional and confluent (which will be enforced later by T ′

M ). We
first set before and after correctly, exploiting the assumed functionality of n:

∃n.before � before ∃n.head � before
head � ∃n.after after � ∃n.after.

Then we say that states are uniform over the tape: for all q ∈ Q,

q � ∃n.q ∃n.q � q.
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Exploiting that q0 cannot reach itself and the above uniformity, we say that the
tape is initially blank (where b ∈ Γ is the blank symbol):

q0 � b.

For each transition δ(q, a) = (q′, a′, L), exploiting confluence of n and s, we set

∃n.(q � head � a) � ∃s.(q′ � head � ∃n.a′),

and for each transition δ(q, a) = (q′, a′, R),

(q � head � a) � ∃s.(a′ � q′ � ∃n.head).

We also say that symbols not under the head do not change: for all a ∈ Γ , put

a � before � ∃s.a, a � after � ∃s.a.

We would like to say that certain concept names such as before and head are
disjoint. Since disjointness cannot be expressed in EL, we revert to a trick that
will become clear when T ′

M is defined. For now, we introduce a concept name
D that serves as a marker for problems with disjointness: for all q, q′ ∈ Q with
q �= q′ and all a, a′ ∈ Γ with a �= a′, put

q�q′ � D a�a′ � D before�head � D head�after � D before�after � D.

Up to now, we simply have assumed the described grid structure, but we did not
enforce it. In TM , we cannot do much more than saying that every point has the
required successors:

� � ∃n.� � ∃s.�.

We now define T ′
M , introducing new atomic concepts N, A, B and a new role u.

The concept name N serves as a marker. It is enforced to be true at the origin of
the relevant part of the grid (point (1,1)) if the described computation reaches
the halting state:

qh � N ∃n.N � N ∃s.N � N

It remains to ensure that a model I of TM cannot be extended to a model of
T ′

M iff (i) r and s are functional (except in row and column 0), (ii) r and s are
confluent, (iii) DI = ∅ (thus no problems with disjointness), (iv) the origin (1, 1)
satisfies N (thus a halting state is reached), and (v) the described computation
starts in the initial state with the head on the left-most cell and reaches the
halting state. Suprisingly, all this can be achieved with two simple CIs:

∃n.∃s.(N � q0 � head) � ∃u.(∃n.∃s.A � ∃s.∃n.B)
A � B � ∃u.D

Observe that any model I of TM can indeed be extended to satisfy these ad-
ditional CIs when any of the conditions (i) to (v) is violated, e.g., when D is
non-empty or the roles n and s are functional anywhere except in row 0 and
column 0. Conversely (and as shown in the proof of the following lemma), any
model I of TM that can be extended to these CIs violates one of (i) to (v).
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Lemma 7. TM ∪ T ′
M is not a model conservative extension of TM iff M halts

on the empty tape

We have thus shown the following.

Theorem 4. Deciding model conservative extensions in EL is undecidable.

7 Conclusion

We have shown that deciding conservative extensions in EL is ExpTime-com-
plete. As a next step, it is desirable to build on this foundation and design
‘practical’ algorithms. This is a serious challenge since conservative extensions
are rather new as a reasoning problem and no experiences with implementing the
associated algorithms have yet been made. (An exception is, of course, classical
propositional logic, for which deciding conservative extensions corresponds to
deciding the validy of quantified Boolean formulas of the form ∀p∃qϕ(p, q)). The
algorithm and results presented in this paper provide useful insights regarding
crucial problems that have to be solve to develop a ‘practical’ procedure. For
example, they indicate that such a procedure will rely on efficient algorithms for
checking the existence of simulations between models.

References

1. Antoniou, G., Kehagias, K.: A note on the refinement of ontologies. Int. J. of
Intelligent Systems 15, 623–632 (2000)

2. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. of the 19th Int.
Joint Conf. on Artificial Intelligence (IJCAI’05), pp. 364–369. Professional Book
Center (2005)
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