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Abstract. We develop a formalization of the Size-Change Principle
in Isabelle/HOL and use it to construct formally certified termination
proofs for recursive functions automatically.

1 Introduction

Program termination plays an important role in verification, and in particular
in theorem provers based on logics of total functions, where termination proofs
are usually necessary to ensure logical consistency.

Although there has been continuous progress in the field of automated termi-
nation proofs, only few of the results have been applied to interactive theorem
proving. One possible reason is that many existing methods are relatively com-
plex, often combining several different criteria and heuristics. Another is that
they do not usually produce proofs that can be checked by an independent sys-
tem. This makes their integration difficult, especially when following the LCF
approach, where all inferences must be checkable by a minimal logical core.

In this paper, we formalize the size-change principle [14] and prove it correct
in Isabelle/HOL [16]. Then we apply it to recursive function definitions in the
logic itself, essentially following an approach by Manolios and Vroon [15], but
with full proofs. We integrate the results to a fully automated proof procedure
to certify size-change termination of Isabelle/HOL functions.

To our knowledge, this is the first formalization of the size-change principle,
and also the first mechanically verified implementation. Our results show that it
is practically feasible to combine the power of state-of-the-art termination crite-
ria with the high assurance of LCF-style theorem proving. Moreover, we think
that the formalization also gives a better insight in the structure of termination
proofs, and in particular in the relation between the analysis of Manolios and
Vroon and the size-change principle.

As a practical benefit, a significant class of previously hard termination proofs
are now automatic.

1.1 Size-Change Termination - Abstractly

“A program is size-change terminating iff every infinite execution of the program
would cause an infinite descent in some well-founded data value.” Although its
first presentation by Lee, Jones and Ben-Amram [14] was in the context of a
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simple functional language, this criterion, called size-change termination (SCT),
is independent from the actual language or programming paradigm used.

We will emphasize this generality, which leads to a neat abstraction boundary
in our formalization, by using slightly more general terminology than the original
paper.

SCT abstracts from the actual program by viewing it as a set of control points
and transitions between them, forming a directed graph (the control graph). Each
control point has a finite set of abstract data positions associated to it, which
can be seen as slots, where runtime data is passed around.

Each transition is labeled by a size-change graph, which contains information
about how the values in the data positions are related. The size-change graph
contains an edge p

↓→ q, if the value at data position q (after the transition) is

always smaller than the value at position p (before the transition), and p
↓=→ q if

it is smaller or equal. Size-change graphs are usually drawn as bipartite graphs.
Fig. 1 shows a simple graph with two control points A and B, with two and
three data positions.
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Fig. 1. A simple size-change problem

By connecting the size-change graphs along a control flow path, the data flow
becomes visible. Chains of such connected edges are called threads. A thread has
infinite descent iff it contains infinitely many

↓→-edges.

Definition. A control graph A satisfies SCT iff every infinite path has a thread
with infinite descent.

The example in Fig. 1 satisfies SCT, since the only infinite path is A, B, A, B, . . .
and it has a thread going through data positions 1, 2, 1, 2, . . ., which has infinite
descent.

SCT is decidable:

Theorem. A control graph A satisfies SCT iff for every edge in A+ of the form
n

G−→ n with G = G · G, G has an edge of the form p
↓→ p.

Here, A+ denotes the transitive closure of A, where the composition of two
graphs is defined in the obvious way (for details see §2). This theorem suggests
an algorithm which simply computes the transitive closure and checks the above
property.
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Since SCT is a purely combinatorial graph problem, generating size-change
problems from programs is a separate issue.

Here lies the power of the abstraction: Since nothing is said about what the
control points and data positions actually are, we can talk about different types
of programs. The original paper treated simple functional programs, and used
functions as control points. Function calls were the transitions, and the data
positions were given by the sizes of the function arguments. For imperative
programs, one could take program instructions as control points and program
variables as data positions.

Other interpretations are equally valid, as long as (a) infinite executions of the
program correspond to infinite paths in the control graph, and (b) the informa-
tion in the size-change graphs reflects actual size-changes in some well-founded
data. Then a non-terminating execution would imply an infinitely decreasing
sequence of data values, which is impossible.

Since the
↓=→- and

↓→-edges in a size-change graph reflect knowledge about the
data flow in the program, a suitable analysis is required to derive this informa-
tion. The authors of [14] apparently had some syntactic size analysis in mind,
but in fact we have the choice of weapons here, and we choose theorem proving,
which does very well on this task.

1.2 Function Definitions and Termination Proofs in Isabelle/HOL

Recursive functions are defined in Isabelle/HOL following the definitional ap-
proach: An automated package [13] transforms the recursive specification into a
non-recursive form, which can be processed by existing means. Then the original
specification is proved from this definition. Internally, the package constructs the
call relation of the function and a domain predicate characterizing values where
the function terminates.

Although the package has some support for partial (i.e. non-terminating) func-
tions (for details, see [13]), reasoning with partial functions is more complicated
than with total ones. Specifically, the recursive equations are constrained by the
domain predicate.

Now “proving termination” just means showing that the domain predicate is
always true or, equivalently, that the call relation is wellfounded.

1.3 No Simple Certificates

Things would be simpler and more elegant, if we could just generate short certifi-
cates of some kind, which can be easily checked and which prove that a function
is size-change terminating. Then just the checking would have to be proved cor-
rect and executed in the theorem prover, while the certificates could be generated
by untrusted (but probably more efficient) code.

However, by a complexity argument, such certificates are unlikely to exist,
due to the PSPACE-hardness result for SCT [14]:
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Corollary 1. If there were certificates proving x ∈ SCT that could be checked in
polynomial time, then PSPACE = NP, which complexity theorists find unlikely
[18].

Proof. Assume such certificates exist, then SCT ∈ NP by a simple guess-and-
check argument. But SCT is PSPACE-hard, thus PSPACE ⊆ NP.

This result shows that size-change termination is fundamentally different from
many other methods in that it does not produce simple and short termination ar-
guments (like simple wellfounded relations). Instead, it is more like an exhaustive
search for possible sources of non-termination, ruling them out systematically.

1.4 Related Work

The quest for automated termination proofs is continously receiving a large
amount of attention, way too much to be cited here.

But when it comes to full formal certification of termination proofs, the air
gets thin: Termination proofs in major proof assistants like Coq [4], PVS [17]
and Isabelle are usually based on user-specified measure functions. HOL4 [7],
HOL Light [10] and ACL2 [11] support a rudimentary automatic guessing of
measures.

Recently, Manolios and Vroon [15] successfully combined the size-change prin-
ciple with theorem proving to obtain a powerful termination checker for the
ACL2 system. They make the following modifications to standard SCT:

– Instead of using the functions as control points, they used the function calls
and also take the context of a recursive call into account. This allows to
analyze reachability between calls.

– Instead of using a syntactic analysis to generate size-change graphs, they use
the ACL2 prover.

– Instead of just looking at the size of concrete data values, they are able to
use arbitrary measure functions.

– In an additional processing step, calls can be substituted into one another.
This step (called context merging) allows for a limited treatment of problems
where a temporary increase of data happens.

However, the non-trivial analysis is part of the trusted code base and even if
the metatheory is sound, it is not clear if it can be justified within the first-
order framework of ACL2. In this paper, we essentially follow their approach
(excluding context merging), but we formally verify both the underlying theory
and the implementation, which allows us to produce Isabelle proofs.

The CoLoR project [5] aims to provide the formal basis and the tools to certify
termination proofs in Coq. Proofs can be imported from various other systems,
all from the area of term rewriting. However, since these tools only work on a
formalization of term rewriting inside Coq, they cannot easily be applied to Coq
function definitions.
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1.5 Overview of This Paper

In §2, we describe a formalization of the size-change principle. We formalize
Kleene algebras, graphs, paths and threads and define the SCT predicate. Then
we present the main theorem, which states the equivalence between the declar-
ative and the algorithmic version of SCT.

In §3, we apply the principle to Isabelle function definitions: We formalize
what it means that a control graph approximates a relation. Then we show that
for such an approximation, the size-change property implies wellfoundedness of
that relation.

It then remains to provide an algorithm for building and inspecting the tran-
sitive closure of a graph. In §4 we give a simple implementation and prove it
correct. From these three ingredients we obtain a fully automated method to
prove termination of recursive functions in Isabelle.

We present some small example applications in §5 and discuss practical im-
plications in §6.

2 Formalizing SCT

2.1 Kleene Algebras

Since the core of SCT checking is the computation of a transitive closure, we
will start by defining an axiomatic type class [20] of Kleene algebras, which
provide the most general structure for such an operation. With this approach, the
formulation of the algorithm is kept seperate from the concrete data structures.

Following the axiomatization by Kozen [12], Kleene algebras are idempotent
semirings with an order defined as (a ≤ b) = (a + b = b). Additionally, they
include a star-operation satisfying the following four laws:

1 + a·a∗ ≤ a∗ a·x ≤ x =⇒ a∗·x ≤ x
1 + a∗·a ≤ a∗ x ·a ≤ x =⇒ x ·a∗ ≤ x

These axioms follow from a stronger property, called *-continuity:

a·b∗·c = (SUP n. a·bn·c)

where bn denotes iterated multiplication. We define transitive closures as a+ =
a∗·a.

In §4, we will give the transitive closure algorithm in terms of arbitrary Kleene
algebras, which allows us to reason in a very abstract way, using simple alge-
braic laws. Since our graphs will be special Kleene algebras, the corresponding
theorems simply follow as instances.

2.2 Graphs

We represent directed edge-labeled graphs as sets of triples. Graphs may have
self-edges, and between two nodes there may be several edges:

datatype. (α, β) graph = Graph ((α × β × α) set)
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Instead of using the set type directly, we wrap graphs into their own type
constructor. This will allow us to use axiomatic type classes to overload common
notation for graph composition (written as multiplication), exponentiation and
transitive closure. We write x e−−→

G
y if G has an edge between nodes x and y,

which is labeled with e. If we do not care about the label, we just write x −→
G

y.

If the type of the edges has a multiplication and unit operation, these can be
lifted to graphs, preserving monoid structure:

p b−−−−→
G·H

q = ∃ k e e ′. p e−−→
G

k e ′
−−→

H
q ∧ b = e·e ′

p b−−→
1

q = p = q ∧ b = 1

With addition defined as set union, we get a semiring structure with additive and
multiplicative identity. Moreover, by taking the corresponding set operations for
supremum and infimum, graphs form a complete lattice and we can define the
star operation as G∗ = (SUP n. Gn). It is then not hard to show that graphs
form a (*-continuous) Kleene algebra.

2.3 Paths

We represent infinite paths as sequences of node-edge-pairs:

types α sequence = nat ⇒ α
(α, β) ipath = (α × β) sequence

The paths of a graph G are characterized by the predicate has-ipath:

has-ipath :: (α, β) graph ⇒ (α, β) ipath ⇒ bool

has-ipath G p = (∀ i . fst (p i)
p[i]−−→
G

fst (p (i + 1 )))

Here, p[i] just abbreviates snd (p i), yielding the value of the i-th edge in p.
For the proofs for size-change termination we also need to talk about finite

paths and relate them to infinite paths (by taking sub-paths, constructing infinite
paths from finite loops). We omit these details for space reasons, as they are
essentially straightforward.

2.4 Size-Change Graphs

Size-change graphs have ↓ and =↓ as edge labels, and natural numbers as nodes,
representing data positions. Control graphs have size-change graphs as their
edges.

datatype sedge = LESS (↓) | LEQ (=↓)
types

scg = (nat , sedge) graph
acg = (nat , scg) graph
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Given an infinite path in the control graph, a thread is a sequence of natural
numbers denoting argument positions for every node in the path, such that
there are corresponding connected edges. A thread is descending, if it contains
infinitely many ↓-edges:

is-desc-thread :: nat sequence ⇒ (nat , scg) ipath ⇒ bool

is-desc-thread θ p = ((∃n. ∀ i≥n. θ i −−→
p[i]

θ (i + 1 )) ∧ (∃ ∞i . θ i ↓−−−→
p[i]

θ (i + 1 )))

Note that threads may also start at a later point in the path. Now the size-change
property is defined as

SCT A = (∀ p. has-ipath A p −→ (∃ θ. is-desc-thread θ p))

The second characterization, which will be proved equivalent, is the basis of the
size-change algorithm:

SCTex A = (∀n G. n G−−−→
A+

n ∧ G·G = G −→ (∃ p. p
↓−−→
G

p))

Then the following is our main equivalence result, which corresponds to [14,
Thm. 4]:

Theorem 1. finite-acg A =⇒ SCT A = SCTex A

The condition finite-acg A expresses that the control graph and all its size-change
graphs are finite. In the original development it is implicit.

The formal proof of Thm. 11 consists of about 1200 lines of proof script in the
Isar structured proof language, mainly following the informal development in
[14], but with many parts spelled out in much more detail. Like in the informal
version, the proof uses Ramsey’s Theorem, which is already present in Isabelle’s
Library (the formalization is due to Paulson).

Our proof uses classical logic, including the (infinite, but countable) axiom
of choice. It would be interesting to investigate if the proof can be modified to
work in a weaker framework.

3 Generating Size-Change Problems

We will now apply the size-change principle to termination problems of a specific
form, namely the termination of recursive function definitions in Isabelle itself.
For that, we must make the abstract notion of control points and data positions
concrete, and give meaning to the size-change graphs and control graphs.

There are multiple possibilities for doing this. In the spirit of the original au-
thors, we could equate control points with functions and transitions with function
calls. Instead we take the same route as Manolios and Vroon [15]: We take the

1 The proof can be found in recent versions of the Isabelle library.
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calls as control points. A transition is a pair of calls, where one call is reachable
from the other. This approach allows to analyze the recursive behaviour at a
finer granularity.

As a running example, consider the following function definition2:

f (n, 0 ) = n
f (0 , Suc m) = f (Suc m, Suc m)
f (Suc n, Suc m) = f (m, n)

When the definition is made, Isabelle will internally define the recursion re-
lation (or call relation) Rf of the function. In the recursion relation, arguments
of recursive calls are “smaller” than the corresponding left hand sides. In this
case, Rf is defined as:

Rf =
(λx1 x2.

(∃m. x1 = (Suc m, Suc m) ∧ x2 = (0 , Suc m)) ∨
(∃n m. x1 = (m, n) ∧ x2 = (Suc n, Suc m)))

It is our goal to show that Rf is well-founded.

3.1 Call Descriptors

Recursion relations generated from function definitions are always disjunctions
of existential clauses, each corresponding to a recursive call. By providing explicit
descriptions for such call relations, we will make this structure accessible to the
logic.

A call descriptor is a triple (Γ , r , l), which describes a recursive call in a func-
tion definition: r is the argument of the recursive call, l is the original argument
(from the left hand side of the equation) and Γ is the condition under which the
call occurs. All three values depend on variables (the pattern variables), which
we replace by a single variable (possibly containing a tuple).

types
(α, γ) cdesc = (γ ⇒ bool) × (γ ⇒ α) × (γ ⇒ α)

Here, α is the argument type of the function and γ is the type of the pattern
variable.

A list of call descriptors describes a relation in the obvious way:

in-cdesc :: (α,γ) cdesc ⇒ α ⇒ α ⇒ bool
in-cdesc (Γ , r , l) x y = (∃ q. x = r q ∧ y = l q ∧ Γ q)

mk-rel :: (α,γ) cdesc list ⇒ α ⇒ α ⇒ bool
mk-rel [] x y = False
mk-rel (c # cs) x y = in-cdesc c x y ∨ mk-rel cs x y

2 The function does not compute anything useful.
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We can now describe Rf by such a list of call descriptors:

Rf =
mk-rel
[(λ(m, n). True, λ(m, n). (Suc m, Suc m), λ(m, n). (0 , Suc m)),
(λ(m, n). True, λ(m, n). (m, n), λ(m, n). (Suc n, Suc m))]

Transforming the definition to this form is easily automated by a suitable
tactic. The main task here is to determine the type of γ which must be a product
large enough to express all the variables in the different clauses. The equivalence
to the original version simply follows by unfolding the definitions of mk-rel and
in-cdesc.

3.2 Measure Functions

To each call (i.e. each control point in the graph), we will assign a list of measure
functions, which correspond to the data positions.

Measure functions capture the notion of size. The whole analysis is indepen-
dent from the exact form of the measure functions. and any function mapping
into a wellfounded domain can be used. For simplicity, our measure functions
map into the natural numbers:

types
α measure = α ⇒ nat

Choosing measure functions is a separate problem not addressed here. As a
default choice we use just the structural size functions which Isabelle provides
for each inductive data type. Product types are split into their components. So
for example for an argument type S × T we use the projections sizeS ◦ fst and
sizeT ◦ snd as measure functions. Manolios and Vroon [15] describe some other
heuristics for choosing measure functions.

3.3 Approximating the Control Graph

We will now show how to construct a size-change problem that corresponds to
a relation given by a list of call descriptors.

For two call descriptors Ci and Cj , the predicate no-step is true if a Ci-call
can never be followed by a Cj-call:

no-step :: (α,γ) cdesc ⇒ (α,γ) cdesc ⇒ bool

no-step (Γ 1, r1, l1) (Γ 2, r2, l2) =
(∀ q1 q2. Γ 1 q1 ∧ Γ 2 q2 ∧ r1 q1 = l2 q2 −→ False)

If we can prove no-step C i C j , then we can be sure that these calls can
never occur in sequence. Otherwise we must add an edge between i and j to our
control graph. This edge will carry a size change graph which approximates the
size change behaviour of the call.

The predicates step< and step≤ capture strict and non-strict decrease of mea-
sures from one call to the next:
step< :: (α,γ) cdesc ⇒ (α,γ) cdesc ⇒ α measure ⇒ α measure ⇒ bool
step≤ :: (α,γ) cdesc ⇒ (α,γ) cdesc ⇒ α measure ⇒ α measure ⇒ bool
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step< (Γ 1, r1, l1) (Γ 2, r2, l2) m1 m2 =
(∀ q1 q2. Γ 1 q1 ∧ Γ 2 q2 ∧ r1 q1 = l2 q2 −→ m2 (l2 q2) < m1 (l1 q1))

step≤ (Γ 1, r1, l1) (Γ 2, r2, l2) m1 m2 =
(∀ q1 q2. Γ 1 q1 ∧ Γ 2 q2 ∧ r1 q1 = l2 q2 −→ m2 (l2 q2) ≤ m1 (l1 q1))

Now consider a size-change graph G and functions M 1 and M 2 which assign
measures to the data positions of C 1 and C 2. We say that G approximates the
pair of calls, if the claimed inequalities are actually satisfied by the respective
measures. This is expressed by the approx predicate:

approx :: scg ⇒ (α,γ) cdesc ⇒ (α,γ) cdesc
⇒ (nat ⇒ α measure) ⇒ (nat ⇒ α measure) ⇒ bool

approx G C 1 C 2 M 1 M 2 =
(∀ i j . (i

↓−−→
G

j −→ step< C 1 C 2 (M 1 i) (M 2 j )) ∧

(i
=↓−−→
G

j −→ step≤ C 1 C 2 (M 1 i) (M 2 j )))

Now, a control graph A is a sound description of a given list of call descriptors
and measure functions, if between any two calls, either no step is possible, or
A contains the corresponding edge with a size-change graph approximating the
call combination3:

sound-desc :: acg ⇒ (α,γ) cdesc list ⇒ (nat ⇒ α measure) list ⇒ bool

sound-desc A D M =
(∀n<|D |. ∀ m<|D |. no-step D[n] D[m] ∨ (∃ G. n G−−→

A
m ∧ approx G D[n] D[m] M[n]

M[m]))

Now, it is straigtforward to prove the following:

Theorem 2. If sound-desc A D M and SCT A then mk-rel D is wellfounded .

With this theorem, which is basically a formal version of the results in [15], we
are able to prove wellfoundedness of a relation, provided we can express it in
terms of a list of call descriptors and find an A which satisfies SCT and is a
sound estimation of the relation.

3.4 Building Size-Change Problems

It is not hard to build a custom proof tactic to construct A and prove sound-desc
A D M :

– For each pair of calls C i and C j , try to prove no-step C i C j .
– If this succeeds, no edge needs to be added to A.

3 Here, xs[i] denotes the i-th element of the list xs.
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– If it fails, construct a size-change graph G, by proving as many of the step<

and step≤ estimations as possible. For each successful proof, the correspond-
ing edge can be added to the G.

For the “try to prove . . . ” steps in the above algorithm, we simply call Is-
abelle’s auto tactic, which combines rewriting, classical reasoning and some
arithmetic. Of course, other proof methods could easily be plugged in here.

The result for our example function is given in Fig. 2. The 1
↓→ 1 arrow in

G2 is surprising at first: The automated prover discovered that when going from
C2 to C1, the first argument must get smaller, since for C1, the first argument
must be zero, but before it was nonzero. Also note that there is no arrow from
C1 to itself, which is essential for the termination of the function.

C1
C2

G1

G2

G3

1 1 1
↓� 1 1 1

G1 : G2 : G3 :

2
=↓�

=↓ �

2 2

↓ �

2

↓�

2

↓ �

2

↓�

Fig. 2. The control graph and size change graphs for f

4 Implementation Prototype

Finally, an algorithm for checking the predicate SCT ex (cf. §2.4) must be im-
plemented and proved correct. We will present a naive implementation without
any optimizations. While this does limit the performance of our system, it is
sufficient to explain the ideas and demonstrate the overall approach.

We can use Isabelle’s code generator to translate the algorithm into ML. The
code generator (originally developed by Berghofer [3]) was recently redesigned
by Haftmann [9] to generate code for definitions involving type classes. Type
classes are compiled into dictionaries as it is done in Haskell compilers.

The code generation framework also supports the execution of functions in-
volving (finite) sets, which are compiled to lists. By using this functionality,
it takes just a few steps to produce a working prototype from our specifica-
tion.

Recall that our definition of graph composition (cf. §2.2) involves existential
quantification, which is of course undecidable in general. However, it is easy
to make graph composition executable by proving the following equations and
making them available to the code generator:

joinable ((n, e, m), (n ′, e ′, m ′)) = (m = n ′)
connect ((n, e, m), (n ′, e ′, m ′)) = (n, e·e ′, m ′)
Graph G·Graph H = Graph (connect ‘ {x ∈ G × H . joinable x})

Note that the bounded comprehension and the image operation (‘) are exe-
cutable, as they are compiled to an expression involving map and filter.
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The following function, overloaded on the type class of Kleene algebras, com-
putes transitive closures by a simple iteration:

mk-tcl A X = (if X ·A ≤ X then X else mk-tcl A (X + X ·A))

Note that mk-tcl need not always terminate. However, since the SCT problems
we consider are always finite, termination can be proved for these cases.

By straigtforward induction, we can prove that mk-tcl computes transitive
closures of finite graphs:

finite-acg A =⇒ mk-tcl A A = A+

Then the following function checks SCT ex:

test-SCT A =
(let T = mk-tcl A A
in ∀ (n, G, m)∈dest-graph T .

n �= m ∨ G·G �= G ∨ (∃ (p, e, q)∈dest-graph G. p = q ∧ e = ↓))

where dest-graph (Graph G) = G.

We prove that the function is correct:

Theorem 3. finite-acg A =⇒ SCT ex A = test-SCT A

Note that the bounded universal and existential quantifiers in the definition of
test-SCT do not prevent code generation: They are translated to the correspond-
ing predicates on lists. Hence, test-SCT can be translated to ML and executed.

4.1 Putting Everything Together

Connecting the results of the previous sections, we obtain a method to formally
certify the termination of functions in Isabelle:

– Define the function as usual, and create a list of call descriptors, representing
the call relation.

– Assign suitable measures to each call, and, following the steps outlined in
§3.4, construct a size-change problem A.

– Apply Thm. 2. It remains to prove SCT A.
– Apply Thm. 1. By construction, A is finite, so it remains to show SCT ex A.
– Apply Thm. 3, obtaining an executable goal.
– Evaluate the goal to True, either using the simplifier (which is currently only

feasible for small examples), or by translating to ML first.

5 Examples

While our SCT implementation handles all forms of structural recursion and
their lexicographic combinations, we are most interested in examples, where
simpler analyses fail. The following example is adapted from [14]:
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p m n r = (if 0 < r then p m (r − 1 ) n else if 0 < n then p r (n − 1 ) m else m)

Since the argument is permuted in each recursive call, simple size measures or
lexicographic combinations are not sufficient to prove termination. The function
from §3 is of a similar nature.

A different example shows the ability of the analysis to detect reachability
between calls. The function has a boolean argument which eventually becomes
False, and then the recursion descends on a different argument:

foo True (Suc n) m = foo True n (Suc m)
foo True 0 m = foo False 0 m
foo False n (Suc m) = foo False (Suc n) m
foo False n 0 = n

A third example is taken from the WST termination competition problem
database [2]. The key observation here is that a recursive call can never occur
more than once, which is again detected by the reachability analysis between
calls, which yields a control graph with no edges.

bar 0 (Suc n) m = bar m m m
bar (Suc v) n m = 0
bar k 0 m = 0

These examples have a certain artificial flavour, as their only reason of exis-
tence seems to be to demonstrate termination proofs. So are there also practical
examples where size change termination is useful?

The following example comes from a formalization of a descision procedure
for equalities in a commutative ring, adapted from similar work in Coq [8] (the
Isabelle version was done by Bernhard Häupler). The function adds two polyno-
mials, represented by a datatype with three constructors Pc, Pinj and PX:

add (Pc a) (Pc b) = Pc (a + b)

add (Pc c) (Pinj i P) = Pinj i (add P (Pc c))

add (Pc c) (PX P i Q) = PX P i (add Q (Pc c))

add (Pinj x P) (Pinj y Q) =
(if x = y then mkPinj x (add P Q)
else if y < x then mkPinj y (add (Pinj (x − y) P) Q)

else add (Pinj y Q) (Pinj x P))

add (Pinj x P) (PX Q y R) =
(if x = 0 then add P (PX Q y R)
else if x = 1 then PX Q y (add P R) else PX Q y (add (Pinj (x − 1 ) P) R))

add (PX P1 x P2) (PX Q1 y Q2) =
(if x = y then mkPX (add P1 Q1) x (add P2 Q2)
else if y < x then mkPX (add (PX P1 (x − y) (Pc 0 )) Q1) y (add P2 Q2)

else add (PX Q1 y Q2) (PX P1 x P2))

add (Pinj i P) (Pc c) = add (Pc c) (Pinj i P)

add (PX P i Q) (Pc c) = add (Pc c) (PX P i Q)

add (PX Q y R) (Pinj x P) = add (Pinj x P) (PX Q y R)
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In the underlined cases the function just calls itself with permuted arguments.
This avoids duplicating the code from other clauses – a sensible programming
pattern for commutative functions. However, without an analysis dealing with
argument permutation, it is extremely hard to convince Isabelle to accept this
definition, which is why the function had to be rewritten in the original version,
just for the sake of the termination proof, resulting in significant code duplica-
tion.

Note that such duplication does not only concern the function specification,
but will turn up again in induction proofs about the function, as the induc-
tion rule is generated from the definition. This leads to redundant cases, whose
“analogous” proofs have to be copy-and-pasted.

With our prototype, we could automatically prove termination of add.

6 Discussion

6.1 Scope of the Method

It is hard to describe the class of problems that can be solved by our tool. While
SCT itself is well-understood, the success of the overall method also depends on
the quality of the estimations in the size change graphs, which is again deter-
mined by the capabilities of Isabelle’s auto tactic.

While this makes it hard to predict if the method will succeed on a given
problem, the advantage is that auto can make use of lemmas already present in
the current theory. Most static analyses would have a hard time speculating and
proving these lemmas, especially when induction is required. In Isabelle, such
lemmas can be provided by the user and then used by automated tools.

This shows how interactive theorem proving and automated methods can
benefit from each other, when combined: The user can help establishing difficult
lemmas and SCT, with its strengths in combinatorics, provides the automated
path analysis.

6.2 Practical Applications

Manolios and Vroon tested their system against a large corpus of ACL2 defini-
tions, and observed an impressive gain in automation.

Interestingly, when looking at the function definitions in the current Isabelle
distribution and the Archive of Formal Proofs [1], most of the definitions can
already be handled by a much simpler search for lexicographic orderings [6]. SCT
does solve all these problems, but its real strengths are not used.

A possible explanation could be that users, knowing about Isabelle’s limi-
tations in that area, tried to avoid function definitions that would require a
difficult manual termination proof, and used other modeling techniques like in-
ductive relations instead. It remains to see whether this changes when SCT
becomes generally available in Isabelle. But the add function discussed above
already shows the potential of SCT.
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6.3 Efficiency

Especially in the light of the PSPACE-hardness result, efficiency is a concern.
In our setup, there are two critical operations:

First, in order to approximate the size-change problem, many proof goals must
be generated and tried by the automated prover, one for each possible edge in
each size-change graph. For the add function this takes about 2 minutes on a
1GHz laptop. As an improvement, one can implement a more efficient tactic,
which is specialized on the kind of inequalities that actually occur, or add a
heuristic to filter out subgoals that are likely to be unprovable.

Second, computing the transitive closure can take long. However, our minimal-
istic implementation represents graphs very inefficiently using sets (implemented
by lists). First experiments showed that a better representation (e.g. matrices,
implemented by quadtrees) leads to a significant speedup and we plan to inte-
grate such an algorithm soon. Note that the proofs of the metatheory (§2) need
not be changed.

7 Conclusion

By formalizing the size-change principle, we made an important termination
criterion available for Isabelle. The implemented algorithm is only a proof-of-
concept, but it should not be difficult to develop and integrate a more efficient
implementation.

Recursive functions are an important application, but they are not the only
one: It would be interesting work to apply SCT to other sorts of termination
problems. One example is the framework for hoare-logic style verification of
imperative programs [19], where termination proofs for loops and recursive pro-
cedures currently also need a user-specified well-founded relation. In fact, due to
the modularity of SCT, much of the present work should be reusable with little
or no change.
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