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Preface

This volume contains the proceedings of the 21st International Conference on
Automated Deduction, which was held July 17–20, 2007 at the Jacobs University
in Bremen, Germany. CADE is the major forum for the presentation of research
in all aspects of automated deduction. There were also a number of affiliated
workshops on the days preceding CADE, which helped to make the conference
a success.

A total of 28 regular papers and 6 system descriptions were selected for
presentation from 64 submissions. Each submission was reviewed by at least 4
members of the Program Committee, with the help of 115 external referees. I
would like to thank all the members of the Program Committee for their diligent,
careful, and timely work and thoughtful deliberations, and Andrei Voronkov for
providing the EasyChair system which greatly facilitated the reviewing pro-
cess, the electronic Program Committee meeting, and the preparation of the
proceedings.

In addition to the contributed papers, the program contained four invited
talks by Peter Baumgartner, Rustan Leino, Colin Stirling, and Ashish Tiwari.
I would like to thank the invited speakers not only for their presentations, but
also for contributing abstracts or full papers to the proceedings.

During the conference, the 2007 Herbrand Award for Distinguished Contri-
butions to Automated Reasoning was given to Alan Bundy in recognition of his
outstanding contributions to proof planning and inductive theorem proving, as
well as to many other areas of automated reasoning and artificial intelligence.

Many people helped to make CADE-21 a success. I am particularly grateful to
Michael Kohlhase (Conference Chair), Christoph Benzmüller (Workshop Chair),
Amy Felty (CADE Secretary and Publicity Chair), Geoff Sutcliffe (CASC Chair),
and all the individual workshop organizers.

May 2007 Frank Pfenning
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Rajeev Goré Australian National University
Jean Goubault-Larrecq ENS Cachan
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The Bedwyr System for Model Checking over Syntactic Expressions . . . . 391
David Baelde, Andrew Gacek, Dale Miller, Gopalan Nadathur, and
Alwen Tiu

System for Automated Deduction (SAD): A Tool for Proof
Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

Konstantin Verchinine, Alexander Lyaletski, and Andrei Paskevich

Session 11. Invited Talk: Peter Baumgartner

Logical Engineering with Instance-Based Methods . . . . . . . . . . . . . . . . . . . . 404
Peter Baumgartner

Session 12. Termination

Predictive Labeling with Dependency Pairs Using SAT . . . . . . . . . . . . . . . 410
Adam Koprowski and Aart Middeldorp

Dependency Pairs for Rewriting with Non-free Constructors . . . . . . . . . . . 426
Stephan Falke and Deepak Kapur

Proving Termination by Bounded Increase . . . . . . . . . . . . . . . . . . . . . . . . . . 443
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Games, Automata and Matching

Colin Stirling

School of Informatics
University of Edinburgh

cps@inf.ed.ac.uk

Higher-order matching is the problem given t = u where t, u are terms of simply
typed λ-calculus and u is closed, is there a substitution θ such that t θ and u have
the same normal form with respect to βη-equality: can t be pattern matched to
u? The problem was conjectured to be decidable by Huet [4]. Loader showed
that it is undecidable when β-equality is the same normal form by encoding
λ-definability as matching [6].

In previous work, we confirm Huet’s conjecture [12]: a full (and very com-
plicated) proof is in the long version of [12] available from the author’s web
page. It first appeals to Padovani’s and Schubert’s reduction of matching to the
conceptually simpler (dual) interpolation problem [9,8]. It is then inspired by
model-checking games (such as in [10]) where a model, a transition graph, is tra-
versed relative to a property and players make choices at appropriate positions.
We define a game where the model is a closed λ-term t and play moves around
it relative to a (dual) interpolation problem P . The game captures the dynam-
ics of β-reduction on t without changing it (using substitution). Unlike standard
model-checking games, play may arbitrarily jump around a term because of bind-
ing. The principal virtue of the game is that small pieces of a solution term can
be understood in terms of their subplays and how they, thereby, contribute to
solving the problem P . Simple transformations on terms are defined and combi-
natorial properties shown. Decidability of matching follows from the small model
property: if there is a solution to a problem then there is a small solution to it.
The proof of this property uses “unfolding” a λ-term with respect to game play-
ing, analogous to unravelling a transition system in modal logic, followed by its
inverse refolding.

In the talk our interest is with a different, although related, question: can we
independently characterize the set of all solution terms to an interpolation prob-
lem? Part of the hope is that this may lead to a simpler proof of decidability of
matching. Again, we start with the term checking game. However, we slightly re-
formulate it and show that it underpins an automata-theoretic characterization
relative to resource: given a problem P , a finite set of variables and constants the
(possibly infinite) set of terms that are built from those components and that
solve P is regular. The characterization uses standard bottom-up tree automata.
The states of the automaton are built from abstractions of sequences of moves in
the game. The automaton construction works for all orders. Comon and Jurski
define tree automata that characterize all solutions to a 4th-order problem [2].
The states of their automata appeal to Padovani’s observational equivalence
classes of terms [8]. To define the states of their automata at higher-orders, one

F. Pfenning (Ed.): CADE 2007, LNAI 4603, pp. 1–2, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 C. Stirling

would need to solve the problem of how to quotient the potentially infinite set
of terms into their respective finite observational equivalence classes: however,
as Padovani shows this problem is, in fact, equivalent to the matching problem
itself. Ong shows decidability of monadic second-order logic of the tree gener-
ated by an arbitrary higher-order scheme [7]. The proof uses a game-semantic
characterization of a scheme as an infinite λ-term. A property, expressed as an
alternating parity tree automaton, of the tree has to be transferred to the infi-
nite term. A key ingredient of the transition from game to automaton is Ong’s
abstraction “variable profile” that captures a sequence of back-and-forth play
jumping in a term which is also central to our analysis.

References
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Formalization of Continuous Probability

Distributions

Osman Hasan and Sofiène Tahar

Dept. of Electrical & Computer Engineering, Concordia University
1455 de Maisonneuve W., Montreal, Quebec, H3G 1M8, Canada

{o hasan,tahar}@ece.concordia.ca

Abstract. Continuous probability distributions are widely used to
mathematically describe random phenomena in engineering and phys-
ical sciences. In this paper, we present a methodology that can be used
to formalize any continuous random variable for which the inverse of the
cumulative distribution function can be expressed in a closed mathemat-
ical form. Our methodology is primarily based on the Standard Uniform
random variable, the classical cumulative distribution function properties
and the Inverse Transform method. The paper includes the higher-order-
logic formalization details of these three components in the HOL theorem
prover. To illustrate the practical effectiveness of the proposed method-
ology, we present the formalization of Exponential, Uniform, Rayleigh
and Triangular random variables.

1 Introduction

Theorem proving [7] is an interactive verification approach that can be used to
prove mathematical theorems in a computer based environment. Due to its in-
herent soundness, theorem proving is capable of providing precise answers and is
thus more powerful than testing or simulation-based system analysis techniques.
In this paper, we propose to perform probabilistic analysis within the environ-
ment of a higher-order-logic theorem prover in order to overcome the inaccuracy
and enormous CPU time requirement limitations of state-of-the-art simulation
based probabilistic analysis approaches.

The foremost criteria for constructing a theorem-proving based probabilistic
analysis framework is to be able to formalize the commonly used random vari-
ables in higher-order logic. This formalized library of random variables can be
utilized to express random behavior exhibited by systems and the corresponding
probabilistic properties can then be proved within the sound environment of an
interactive theorem prover. Random variables are basically functions that map
random events to numbers and they can be expressed in a computerized envi-
ronment as probabilistic algorithms. In his PhD thesis, Hurd [14] presented a
methodology for the verification of probabilistic algorithms in the higher-order-
logic (HOL) theorem prover [8]. Hurd was also able to formalize a few discrete
random variables and verify their corresponding distribution properties. On the

F. Pfenning (Ed.): CADE 2007, LNAI 4603, pp. 3–18, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



4 O. Hasan and S. Tahar

other hand, to the best of our knowledge, no higher-order-logic formalization of
continuous random variables exists in the open literature so far.

In this paper, we propose a methodology for the formalization of continuous
random variables in HOL. Our methodology utilizes Hurd’s formalization frame-
work and is based on the concept of the nonuniform random number generation
[5], which is the process of obtaining random variates of arbitrary distributions
using a Standard Uniform random number generator. The main advantage of
this approach is that we only need to formalize one continuous random variable
from scratch, i.e., the Standard Uniform random variable, which can be used
to model other continuous random variables by formalizing the corresponding
nonuniform random number generation method.

Based on the above methodology, we now present a framework, illustrated in
Figure 1, for the formalization of continuous probability distributions for which
the inverse of the Cumulative Distribution Function (CDF) can be represented
in a closed mathematical form. Firstly, we formally specify the Standard Uni-
form random variable and verify its correctness by proving the corresponding
CDF and measurability properties. The next step is the formalization of the
CDF and the verification of its classical properties. Then we formally specify
the mathematical concept of the inverse function of a CDF. This formal speci-
fication, along with the formalization of the Standard Unform random variable
and the CDF properties, can be used to formally verify the correctness of the
Inverse Transform Method (ITM) [5], which is a well known nonuniform random
generation technique for generating nonuniform random variates for continuous
probability distributions for which the inverse of the CDF can be represented
in a closed mathematical form. At this point, the formalized Standard Uniform
random variable can be used to formally specify any such continuous random
variable and its corresponding CDF can be verified using the ITM.

The rest of the paper is organized as follows: In Section 2, we briefly review
Hurd’s methodology for the verification of probabilistic algorithms in HOL. The
next three sections of this paper present the HOL formalization of the three
major steps given in Figure 1, i.e., the Standard Uniform random variable, the
CDF and the ITM. In Section 6, we utilize the proposed framework of Figure

Fig. 1. Proposed Formalization Framework
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1 to formalize the Exponential, Uniform, Rayleigh and Triangular random vari-
ables. In Section 7, we discuss potential probabilistic analysis applications for
the formalized continuous random variables. A review of related work in the
literature is given in Section 8 and we finally conclude the paper in Section 9.

2 Verifying Probabilistic Algorithms in HOL

In this section, we provide an overview of Hurd’s methodology [14] for the veri-
fication of probabilistic algorithms in HOL. The intent is to introduce the main
ideas along with some notation that is going to be used in the next sections.

Hurd [14] proposed to formalize the probabilistic algorithms in higher-order
logic by thinking of them as deterministic functions with access to an infinite
Boolean sequence B∞; a source of infinite random bits. These deterministic func-
tions make random choices based on the result of popping the top most bit in
the infinite Boolean sequence and may pop as many random bits as they need
for their computation. When the algorithms terminate, they return the result
along with the remaining portion of the infinite Boolean sequence to be used by
other programs. Thus, a probabilistic algorithm which takes a parameter of type
α and ranges over values of type β can be represented in HOL by the function

F : α → B∞ → β ×B∞

For example, a Bernoulli(1
2 ) random variable that returns 1 or 0 with equal

probability 1
2 can be modeled as follows

� bit = λs. (if shd s then 1 else 0, stl s)

where s is the infinite Boolean sequence and shd and stl are the sequence
equivalents of the list operation ’head’ and ’tail’. The probabilistic programs
can also be expressed in the more general state-transforming monad where the
states are the infinite Boolean sequences.

� ∀ a,s. unit a s = (a,s)
� ∀ f,g,s. bind f g s = let (x,s’)← f(s) in g x s’

The unit operator is used to lift values to the monad, and the bind is the
monadic analogue of function application. All monad laws hold for this definition,
and the notation allows us to write functions without explicitly mentioning the
sequence that is passed around, e.g., function bit can be defined as

� bit monad = bind sdest (λb. if b then unit 1 else unit 0)

where sdest gives the head and tail of a sequence as a pair (shd s, stl s).
Hurd [14] also formalized some mathematical measure theory in HOL in order

to define a probability function P from sets of infinite Boolean sequences to real
numbers between 0 and 1. The domain of P is the set E of events of the prob-
ability. Both P and E are defined using the Carathéodory’s Extension theorem,
which ensures that E is a σ-algebra: closed under complements and countable
unions. The formalized P and E can be used to prove probabilistic properties for
probabilistic programs such as
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� P {s | fst (bit s) = 1} = 1
2

where the function fst selects the first component of a pair. In Hurd’s formal-
ization of probability theory, a set of infinite Boolean sequences, S, is said to be
measurable if and only if it is in E , i.e., S ∈ E . Since the probability measure P

is only defined on sets in E , it is very important to prove that sets that arise in
verification are measurable. Hurd [14] showed that a function is guaranteed to
be measurable if it accesses the infinite Boolean sequence using only the unit,
bind and sdest primitives and thus leads to only measurable sets.

Hurd formalized a few discrete random variables and proved their correct-
ness by proving the corresponding Probability Mass Function (PMF) proper-
ties [14]. The algorithms for these discrete random variables are either guaran-
teed to terminate or satisfy probabilistic termination, meaning that the prob-
ability that the algorithm terminates is 1. Thus, they can be expressed using
Hurd’s methodology by either well formed recursive functions or the probabilis-
tic while loop [14]. On the other hand, the implementation of continuous ran-
dom variables requires non-terminating programs and hence calls for a different
approach.

3 Formalization of the Standard Uniform Distribution

In this section, we present the formalization of the Standard Uniform distribu-
tion that is the first step in the proposed methodology for the formalization of
continuous probability distributions as shown in Figure 1. The Standard Uniform
random variable can be characterized by the CDF as follows:

Pr(X ≤ x) =

⎧
⎨

⎩

0 if x < 0;
x if 0 ≤ x < 1;
1 if 1 ≤ x.

(1)

3.1 Formal Specification of Standard Uniform Random Variable

The Standard Uniform random variable can be formally expressed in terms of
an infinite sequence of random bits as follows [11]

lim
n→∞

(λn.
n−1∑

k=0

(
1
2
)k+1Xk) (2)

where, Xk denotes the outcome of the kth random bit; true or false represented
as 1 or 0, respectively. The mathematical expression of Equation (2) can be
formalized in the HOL theorem prover in two steps. The first step is to define a
discrete Standard Uniform random variable that produces any one of the equally
spaced 2n dyadic rationals, of the form i

2n (0 ≤ i ≤ 2n), in the interval [0, 1−(1
2 )n]

with the same probability (1
2 )n using Hurd’s methodology.
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Definition 3.1:
std unif disc: (num → (num → bool) → (real × (num → bool)))
� (std unif disc 0 = unit 0) ∧
∀ n. (std unif disc (suc n) =

bind (std unif disc n) (λm. bind sdest
(λb. unit (if b then ((1

2 )n+1 + m) else m))))

The function std unif disc allows us to formalize the real sequence of Equation
(2) in the HOL theorem prover. Now, the formalization of the mathematical
concept of limit of a real sequence in HOL [10] can be used to formally specify
the Standard Uniform random variable of Equation (2) as follows

Definition 3.2:
std unif cont: ((num → bool) → real)
� ∀ s. std unif cont s = lim (λn. fst (std unif disc n s))

where, lim is the HOL function for the limit of a real sequence [10].

3.2 Formal Verification of Standard Uniform Random Variable

The formalized Standard Uniform random variable, std unif cont, can be verified
to be correct by proving its CDF to be equal to the theoretical value given
in Equation (1) and its Probability Mass Function (PMF) to be equal to 0,
which is an intrinsic characteristic of all continuous random variables. For this
purpose, it is very important to prove that the sets {s | std unif cont s ≤ x}
and {s | std unif cont s = x} arising in this verification are measurable. The
fact that the function std unif disc accesses the infinite Boolean sequence using
only the unit, bind and sdest primitives can be used to prove

Lemma 3.1:
� ∀ x n. {s | fst (std unif disc n s) ≤ x} ∈ E ∧

{s | fst (std unif disc n s) = x} ∈ E

On the other hand, the definition of the function std unif cont involves the lim
function and thus the corresponding sets cannot be proved to be measurable in
a very straightforward manner. Therefore, in order to prove this, we leveraged
the fact that each set in the sequence of sets (λn.{s | fst(std unif disc n s) ≤
x}) is a subset of the set before it. In other words, this sequence of sets is a
monotonically decreasing sequence. Thus, the countable intersection of all sets
in this sequence can be proved to be equal to the set {s | std unif cont s ≤ x}

Lemma 3.2:
� ∀ x. {s | std unif cont s ≤ x} =

⋂
n (λ n. {s | fst (std unif disc n s) ≤ x})

Now the set {s | std unif cont s ≤ x} can be proved to be measurable
since E is closed under countable intersections [14] and all sets in the sequence
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(λn.{s | fst(std unif disc n s) ≤ x}) are measurable according to Lemma 1.
Using a similar reasoning, the set {s | std unif cont s = x} can also be proved
to be measurable.

Theorem 3.1:
� ∀ x. {s | std unif cont s ≤ x} ∈ E ∧

{s | std unif cont s = x} ∈ E

Theorem 3.1 can now be used along with the real number theories [10] to verify
the correctness of the function std unif cont in the HOL theorem prover by
proving its Probability Mass Function (PMF) and CDF properties [11].

Theorem 3.2:
� ∀ x. P{s | std unif cont s = x} = 0 ∧

P{s | std unif cont s ≤ x} =
if (x < 0) then 0 else (if (x < 1) then x else 1)

4 Formalization of the Cumulative Distribution Function

In this section, we present the verification of classical CDF properties in the
HOL theorem prover, which is the second step in the proposed methodology.

4.1 Formal Specification of CDF

The CDF of a random variable, R, is defined by FR(x) = Pr(R ≤ x) for any
real number x, where Pr represents the probability. It follows from this definition
that the CDF can be formally specified in HOL by a higher-order-logic function
that accepts a random variable and a real argument and returns the probability
of the event when the given random variable is less than or equal to the value
of the given real number.

Definition 4.1:
cdf: (((num → bool) → real) → real → real)
� ∀ R x. cdf R x = P {s | R s ≤ x}

4.2 Formal Verification of CDF Properties

Using the formal specification of the CDF, we are able to verify classical CDF
properties [16] (details are given below) in HOL. The formal proofs for these
properties not only ensure the correctness of our CDF specification but also
play a vital role in proving the correctness of the ITM as will be discussed
in Section 5. The formal proofs of these properties are established using the
HOL set, measure, probability [14] and real number [10] theories and under the
assumption that the set {s | R s ≤ x}, where R represents the random variable
under consideration, is measurable for all values of x. The details of the HOL
verification steps for these properties can be found in [12].



Formalization of Continuous Probability Distributions 9

CDF Bounds. (0 ≤ FR(x) ≤ 1)
This property states that if we plot the CDF against its real argument x, then
the graph of the CDF is between the two horizontal lines y = 0 and y = 1.

Theorem 4.1:
� ∀ R x. (0 ≤ cdf R x) ∧ (cdf R x ≤ 1)

CDF is Monotonically Increasing. (if a < b, then FR(a) ≤ FR(b))
For all real numbers a and b, if a is less than b, then the CDF value of a random
variable, R, at a can never exceed the CDF value of R at b.

Theorem 4.2:
� ∀ R a b. a < b ⇒ (cdf R a ≤ cdf R b)

Interval Probability. (if a < b then Pr(a < R ≤ b) = FR(b) − FR(a))
This property is very useful for evaluating the probability of a random variable,
R, lying in any given interval (a,b] in terms of its CDF.

Theorem 4.3:
� ∀ R a b. a < b ⇒ (P {s | (a < R s) ∧ (R s ≤ b)} =

cdf R b - cdf R a)

CDF at Positive Infinity. ( lim
x→∞

FR(x) = 1; that is, FR(∞) = 1)
This property states that the value of the CDF for any given random variable,
R, always tends to 1 as its real argument approaches positive infinity.

Theorem 4.4:
� ∀ R. lim (λ n. cdf R (&n)) = 1

where lim M represents the formalization of the limit of a real sequence M
(i.e., lim

n→∞
M(n) = lim M) [10] and ”&” represents the conversion function from

natural to real numbers in HOL.

CDF at Negative Infinity. ( lim
x→−∞

FR(x) = 0; that is, FR(−∞) = 0)

This property states that the value of the CDF for any given random variable,
R, always tends to 0 as its real argument approaches negative infinity.

Theorem 4.5:
� ∀ R. lim (λ n. cdf R (-&n)) = 0

CDF is Continuous from the Right. ( lim
x→a+

FR(x) = FR(a))

In this property, lim
x→a+

FR(x) is defined as the limit of FR(x) as x tends to a

through values greater than a. Since FR is monotone and bounded, this limit
always exists.

Theorem 4.6:
� ∀ R a. lim (λ n. cdf R (a + 1

&(n+1))) = cdf R a
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CDF Limit from the Left. ( lim
x→a−

FR(x) = Pr(R < a))

In this property, lim
x→a−

FR(x) is defined as the limit of FR(x) as x tends to a

through values less than a.

Theorem 4.7:
� ∀ R a. lim (λ n. cdf R (a - 1

&(n+1))) = P {s | (R s < a})

5 Formalization of the Inverse Transform Method

In this section, we present the formal specification of the inverse function for a
CDF and the verification of the ITM in HOL. It is the third step in the pro-
posed methodology for the formalization of continuous probability distributions
as shown in Figure 1. The ITM is based on the following proposition [21].

Let U be a Standard Uniform random variable. For any continuous CDF
F, the random variable X defined by X = F−1(U) has CDF F, where
F−1(U) is defined to be the value of x such that F (x) = U .

Mathematically,

Pr(F−1(U) ≤ x) = F (x) (3)

5.1 Formal Specification of the Inverse Transform method

We define the inverse function for a CDF in HOL as a predicate inv cdf fn,
which accepts two functions, f and g, of type (real → real) and returns true if
and only if the function f is the inverse of the CDF g according to the above
proposition.

Definition 5.1:
inv cdf fn: ((real → real) → (real → real) → bool)
� ∀ f g. inv cdf fn f g =

(∀x. (0 < g x ∧ g x < 1) ⇒ (f (g x) = x) ∧
(∀x. 0 < x ∧ x < 1 ⇒ (g (f x) = x))) ∧
(∀x. (g x = 0) ⇒ (x ≤ f (0))) ∧
(∀x. (g x = 1) ⇒ (f (1) ≤ x))

The predicate inv cdf fn considers three separate cases, the first one corre-
sponds to the strictly monotonic region of the CDF, i.e., when the value of the
CDF is between 0 and 1. The next two correspond to the flat regions of the
CDF, i.e., when the value of the CDF is either equal to 0 or 1, respectively.
These three cases cover all possible values of a CDF since according to Theorem
4.1 the value of CDF can never be less than 0 or greater than 1.

The inverse of a function f , f−1(u), is defined to be the value of x such
that f(x) = u. More formally, if f is a one-to-one function with domain X and
range Y, its inverse function f−1 has domain Y and range X and is defined by
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f−1(y) = x ⇔ f(x) = y, for any y in Y. The composition of inverse functions
yields the following result.

f−1(f(x)) = x for all x ∈ X, f(f−1(x)) = x for all x ∈ Y (4)

We use the above characteristic of inverse functions in the predicate inv cdf
fn for the strictly monotonic region of the CDF as the CDF in this region is
a one-to-one function. On the other hand, the CDF is not injective when its
value is either equal to 0 or 1. Consider the example of some CDF, F , which
returns 0 for a real argument a. From Theorems 4.1 and 4.2, we know that
the CDF F will also return 0 for all real arguments that are less than a as
well, i.e., ∀x. x ≤ a ⇒ F (x) = 0. Therefore, no inverse function satisfies the
conditions of Equation (4) for the CDF in these flat regions. When using the
paper-and-pencil proof approach, this issue is usually resolved by defining the
inverse function of a CDF in such a way that it returns the infimum (inf) of
all possible values of the real argument for which the CDF is equal to a given
value, i.e., f−1(u) = inf{x|f(x) = u} [5], where f represents the CDF. Even
though this approach has been shown to analytically verify the correctness of
the ITM [5], it was not found to be sufficient enough for a formal definition in
our case. This is due to the fact that in order to simplify the formalization task,
Hurd [14] used the standard real numbers R, formalized in HOL by Harrison
[10], rather than the extended real numbers R = R

⋃
{−∞,+∞} to formalize

the mathematical measure theory. Thus, if the inf function is used to define the
inverse function, then the problem arises for the case when the value of the CDF
is equal to 0. For this case, the set {x|f(x) = 0} becomes unbounded at the
lower end because of the CDF property given in Theorem 4.5 and thus the value
of the inverse function becomes undefined. In order to overcome this problem,
we used two separate cases for the two flat regions in the predicate inv cdf fn.
According to this definition the inverse function of a CDF is a function that
returns the maximum value of all arguments for which the CDF is equal to 0
and the minimum value of all arguments for which the CDF is equal to 1.

5.2 Formal Verification of the Inverse Transform Method

The correctness theorem for the ITM can be expressed in HOL as follows:

Theorem 5.1:
� ∀ f g x. (is cont cdf fn g) ∧ (inv cdf fn f g) ⇒

(P {s | f (std unif cont s) ≤ x} = g x)

The antecedent of the above implication checks if f is a valid inverse function
of a continuous CDF g. The predicate inv cdf fn has been described in the
last section and ensures that the function f is a valid inverse of the CDF g. The
predicate is cont cdf fn accepts a real-valued function, g, of type (real → real)
and returns true if and only if it represents a continuous CDF. A real-valued
function can be characterized as a continuous CDF if it is a continuous function
and satisfies the CDF properties given in Theorems 4.2, 4.4 and 4.5. Therefore,
the predicate is cont cdf fn is defined in HOL as follows:
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Definition 5.2:
is cont cdf fn: ((real → real) → bool)
� ∀ g. is cont cdf fn g =

(∀ x. (λx. g x) contl x) ∧
(∀ a b. a < b ⇒ g a ≤ g b) ∧
(lim (λ n. g (-&n)) = 0) ∧
(lim (λ n. g (&n)) = 1)

where (∀ x.f contl x) represents the HOL definition for a continuous function
[10] such that the function f is continuous for all x.

The conclusion of the implication in Theorem 5.1 represents the correctness
proof of the ITM given in Equation (3). The function std unif cont in this theo-
rem is the formal definition of the Standard Uniform random variable, described
in Section 3. Theorem 3.2 can be used to reduce the proof goal of Theorem 5.1
to the following subgoal:

Lemma 5.1:
� ∀ f g x. (is cont cdf fn g) ∧ (inv cdf fn f g) ⇒

(P {s | f (std unif cont s) ≤ x} =
P {s | std unif cont s ≤ g x})

Next, we use the theorems of Section 3 and 4 along with the formalized measure
and probability theories in HOL [14] to prove the measurability of the sets that
arise in this verification, i.e., they are in E .

Lemma 5.2:
� ∀ f g x. (is cont cdf fn g) ∧ (inv cdf fn f g) ⇒

({s | f (std unif cont s) ≤ x} ∈ E) ∧
({s | std unif cont s) ≤ g x} ∈ E) ∧
({s | f (std unif cont s) = x} ∈ E)

Lemma 5.1 can now be proved using Lemma 5.2, the theorems from Section 3
and 4 and Hurd’s formalization of probability theory in HOL. The details of the
HOL verification steps can be found in [13]. The main advantage of the formally
verified ITM (i.e., Theorem 5.1) is the simplification of the verification task of
proving the CDF property of a random variable. Originally the verification of
the CDF property involves a reasoning based on the measure, probability and
real number theories and the theorems related to the Standard Uniform random
variable. Using the ITM, the CDF verification goal can be broken down to two
simpler sub-goals, which only involve a reasoning based on the real number
theory; i.e., (1) verifying that a function g, of type (real → real), represents a
valid CDF and (2) verifying that another function f , of type (real → real), is a
valid inverse of the CDF g.

6 Formalization of Continuous Probability Distributions

In this section, we present the formal specification of four continuous random
variables; Uniform, Exponential, Rayleigh and Triangular and verify the
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correctness of these random variables by proving their corresponding CDF prop-
erties in the HOL theorem prover.

6.1 Formal Specification of Continuous Random Variables

All continuous random variables for which the inverse of the CDF exists in a
closed mathematical form can be expressed in terms of the Standard Uniform
random variable according to the ITM proposition given in Section 5. We selected
four such commonly used random variables, i.e., Exponential, Uniform, Rayleigh
and Triangular, which are formally expressed in terms of the formalized Standard
Uniform random variable (std unif cont) in Table 1 as HOL functions exp rv,
uniform rv, rayleigh rv and triangular rv, respectively. The functions ln, exp
and sqrt in Table 1 are the HOL functions for logarithm, exponential and square
root, respectively [10].

Table 1. Continuous Random Variables (for which CDF−1 exists)

Distribution CDF Formalized Random Variable

Exponential(l)
0 if x ≤ 0;
1− exp−lx if 0 < x.

� ∀s l. exp rv l s =
− 1

l
ln(1− std unif cont s)

Uniform(a, b)

0 if x ≤ a;
x−a
b−a

if a < x ≤ b;

1 if b < x.

� ∀s l. uniform rv a b s =
(b− a)(std unif cont s) + a

Rayleigh(l)
0 if x ≤ 0;

1− exp
−x2

2l2 if 0 < x.

� ∀s l. rayleigh rv l s =
l ∗ sqrt(−2ln(1− std unif cont s))

Triangular(0, a)

0 if x ≤ 0;

( 2
a
(x− x2

2a
)) if x < a;

1 if a ≤ x.

� ∀s a . triangular rv l s =
a(1− sqrt(1− std unif cont s))

6.2 Formal Verification of Continuous Random Variables

The first step in verifying the CDF property of a continuous random variable,
using the correctness theorem of the ITM, is to express the given continuous
random variable as F−1(U s), where F−1 is a function of type (real → real) and
U represents the formalized Standard Uniform random variable. For example,
the Exponential random variable given in Table 1 can be expressed as (λx. −
1
l ∗ ln(1 − x))(std unif cont s). Similarly, we can express the CDF of the given
random variable as F (x), where F is a function of type (real → real) and x
is a real data type variable. For example, the CDF of the Exponential random
variable can be expressed as (λx. if x ≤ 0 then 0 else 1 − exp−λx)) x.

The next step is to prove that the function F defined above represents a valid
continuous CDF and the function F−1 is a valid inverse function of the CDF F .
The predicates is cont cdf fn and inv cdf fn, defined in Section 5, can be used
for this verification and the corresponding theorems for the Exponential random
variable are given below
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Lemma 6.1:
� ∀ l. is cont cdf fn

(λx. if x ≤ 0 then 0 else (1 - exp (-l * x)))

Lemma 6.2:
� ∀ l. inv cdf fn (λ x. - 1

l * ln (1 - x))
(λx. if x ≤ 0 then 0 else (1 - exp (-l * x)))

The above lemmas along with Theorem 5.1 and Lemma 5.2 can be used to
verify the CDF and the measurability of the sets corresponding to the given
continuous random variable, respectively. These theorems for the Exponential
random variable are given below

Theorem 6.1:
� ∀ l x. (0 < l) ⇒ cdf (λs. exp rv l s) x =

if x ≤ 0 then 0 else (1 - exp (-l * x))

Theorem 6.2:
� ∀ l x. (0 < l) ⇒ ({s | exp rv r s ≤ x} ∈ E) ∧

({s | exp rv r s = x} ∈ E)

The above results allow us to formally reason about interesting probabilistic
properties of continuous random variables within a higher-order-logic theorem
prover. The measurability of the sets {s| F−1(U s) ≤ x} and {s| F−1(U s) = x}
can be used to prove that any set that involves a relational property with the
random variable F−1(U s), e.g., {s | F−1(U s) < x} and {s | F−1(U s) ≥ x},
is measurable because of the closed under complements and countable unions
property of E . The CDF properties proved in Section 4 can then be used to
determine probabilistic quantities associated with these sets [13].

The CDF and measurability properties of the rest of the continuous random
variables given in Table 1 can also be proved in a similar way [13]. For illustration
purposes the corresponding CDF theorems are given below

Theorem 6.3:
� ∀ a b x. (a < b) ⇒ cdf (λs. uniform rv a b s) x =

if x ≤ a then 0 else (if x < b then x−a
b−a else 1)

Theorem 6.4:
� ∀ x l. (0 < l) ⇒ cdf (λs. rayleigh rv l s) x =

if x ≤ 0 then 0 else (1 - exp(x2)
(2l2) )

Theorem 6.5:
� ∀ a x. (0 < a) ⇒ cdf (λs. triangular rv a s) x =

if (x ≤ 0) then 0 else
(if (x < a) then ( 2

a(x - x2

2a)) else 1)



Formalization of Continuous Probability Distributions 15

7 Applications

A distinguishing characteristic of the proposed probabilistic analysis approach
is the ability to perform precise quantitative analysis of probabilistic systems. In
this section, we first illustrate this statement by considering a simple probabilistic
analysis example. Then, we present some probabilistic systems which can be
formally analyzed using the continuous random variables defined in Section 6.

Consider the problem of determining the probability of the event when there is
no incoming request for 10 seconds in a Web server. Assume that the interarrival
time of incoming requests is known from statistical analysis and is exponentially
distributed with an average rate of requests λ = 0.1 jobs per second. We know
from analytical analysis that this probability is precisely equal to ( 1

exp 1 ). This
result can be verified in the HOL theorem prover by considering the probability
of the event when the value of the Exponential random variable, with parameter
0.1 (i.e., λ = 0.1), lies in the interval [10,∞).

� P {s | 10 < exp rv 0.1 s} = 1
exp 1

The first step in evaluating a probabilistic quantity is to prove that the event
under consideration is measurable. The set in the above proof goal is measurable
since it is the complement of a measurable set {s|exp rv 0.1 s ≤ 10} (Theorem
6.2) and E is closed under complements and countable unions. The next step
is to express the unknown probabilistic quantity in terms of the CDF of the
given random variable. This can be done for the above proof goal by using the
measurability property of the set under consideration and using the complement
law of probability function, i.e., (P(S̄) = 1 − P(S).

� P {s | 10 < exp rv 0.1 s} = 1 - (cdf (λs. exp rv 0.1 s) 10)

The CDF of the Exponential random variable given in Theorem 6.1 can now
be used to simplify the right-hand-side of the above equation to be equal to
( 1

exp 1 ). Thus, we were able to determine the unknown probability with 100%
precision; a novelty which is not available in simulation based approaches.

The higher-order-logic theorem proving based probabilistic analysis can be
applied to a variety of different domains, for instance, the sources of error in
computer arithmetic operations are basically quantization operations and are
modeled as uniformly distributed continuous random variables [24]. A number
of successful attempts have been made to perform the statistical analysis of
computer arithmetic analytically or by simulation (e.g., [15]). These kind of
analysis form a very useful case study for our formalized continuous Uniform
distribution as the formalization of both floating-point and fixed-point numbers
already exist in HOL [1]. Similarly, the continuous probability distributions are
extensively used for the analysis of probabilistic algorithms and network proto-
cols [18]. Using our formalized models, these kind of analysis can be performed
within the sound environment of the HOL theorem prover. The Exponential dis-
tribution in particular, due to its memoryless property and its relationship to
the Poisson process [23], can be used to formalize the Birth-Death process which
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is a Continuous-Time Markov Chain. The higher-order-logic formalization of the
Birth-Death process may open the door for the formalized probabilistic analysis
of a wide range of queuing systems, e.g., the CSMA/CD protocol [6], the IEEE
802.11 wireless LAN protocol [17], etc.

8 Related Work

Hurd’s PhD thesis [14] can be regarded as one of the pioneering works in regards
to formalizing probabilistic programs in a higher-order-logic theorem prover. An
alternative method has been presented by Audebaud et. al [2]. Instead of using
the measure theoretic concepts of probability space, as is the case in Hurd’s ap-
proach, Audebaud et. al based their methodology on the monadic interpretation
of randomized programs as probabilistic distribution. This approach only uses
functional and algebraic properties of the unit interval and has been success-
fully used to verify a sampling algorithm of the Bernoulli distribution and the
termination of various probabilistic programs in the Coq theorem prover. The
main contribution of our paper is the extension of Hurd’s framework to verify
sampling algorithms for continuous probability distributions in HOL, a novelty
that has not been available in any higher-order-logic theorem prover so far.

Another promising approach for conducting formal probabilistic analysis is to
use probabilistic model checking, e.g., [3], [22]. Like traditional model checking,
it involves the construction of a precise mathematical model of the probabilistic
system which is then subjected to exhaustive analysis to verify if it satisfies a
set of formal properties. This approach is capable of providing precise solutions
in an automated way; however, it is limited to systems that can be expressed as
a probabilistic finite state machine. It is because of this reason that probabilistic
model checking techniques are not capable of providing precise reasoning about
quantitative probabilistic properties related to continuous random variables. On
the other hand, it has been shown in this paper that higher-order-logic theorem
proving provides this capability. Another major limitation of probabilistic model
checking is the state space explosion [4], which is not an issue with our approach.

A number of probabilistic languages, e.g., Probabilistic cc [9], λo [19] and
IBAL [20], can be found in the open literature, which are capable of modeling
continuous random variables. These probabilistic languages allow programmers
to perform probabilistic computations at the level of probability distributions
by treating probability distributions as primitive data types. It is interesting to
note that the probabilistic language, λo, is based on sampling functions, i.e., a
mapping from the unit interval [0,1] to a probability domain D and thus shares
the main ideas formalized in this paper. The main benefit of these probabilistic
languages is their high expressiveness but they have their own limitations. For
example, either they require a special treatment such as the lazy list evaluation
strategy in IBAL and the limiting process in Probabilistic cc or they do not
support precise reasoning as in the case of λo. The proposed theorem proving
approach, on the other hand, is not only capable of formally expressing most
continuous probability distributions but also to precisely reason about them.
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9 Conclusions

In this paper, we have proposed to use higher-order-logic theorem proving for
probabilistic analysis as a complementary approach to state-of-the-art simulation
based techniques. Because of the formal nature of the models the analysis is free
of approximation errors, which makes the proposed approach very useful for the
performance and reliability optimization of safety critical and highly sensitive
engineering and scientific applications.

We presented a methodology for the formalization of continuous probabil-
ity distributions, which is a significant step towards the development of formal
probabilistic analysis methods. Based on this methodology, we described the
construction details of a framework for the formalization of all continuous prob-
ability distributions for which the inverse of the CDF can be expressed in a closed
mathematical form. The major HOL definitions and theorems in this framework
have been included in the current paper and more details can be found in [13].
We demonstrated the practical effectiveness of our framework by formalizing four
continuous probability distributions; Uniform, Exponential, Rayleigh and Trian-
gular. To the best of our knowledge, this is the first time that the formalization
of these continuous random variables has been presented in a higher-order-logic
theorem prover.

For our verification, we utilized the HOL theories of Boolean Algebra, Sets,
Natural Numbers, Real Numbers, Measure and Probability. Our results can there-
fore be used as an evidence for the soundness of existing HOL libraries and
the usefulness of theorem provers in proving pure mathematical concepts. The
presented formalization can be utilized for the formalization of a number of
other mathematical theories as well. For example, the CDF properties can be
used along with the derivative function [10] to formalize the Probability Den-
sity Function, which is a very significant characteristic of continuous random
variables and can be used to formalize the corresponding statistical quantities.
Similarly, the formalization of the Standard Uniform random variable can also
be transformed to formalize other continuous probability distributions, for which
the inverse CDF is not available in a closed mathematical form. This can be done
by exploring the formalization of other nonuniform random number generation
techniques such as Box-Muller and acceptance/rejection [5]. Another interesting
area that needs to be explored is the support of multiple independent continuous
random variables.
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Compilation as Rewriting in Higher Order Logic
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Abstract. We present an approach based on the use of deductive rewrit-
ing to construct a trusted compiler for a subset of the native functions
of higher order logic. Program transformations are specified by equal-
ity theorems that characterize the transformations; and the mechanical
application of these rules is directed by programs written in the meta-
language of the logical framework. Each application of a rule ensures that
the transformed code is equivalent to the original one, thus warranting
the correctness of the entire compiler.

1 Introduction

There has recently been a surge of research on verified compilers for imperative
languages like C and Java, conducted with the assistance of logical frameworks
[2,11,10,9]. In these compilers, the syntax and semantics of all languages, from
the source language to various intermediate forms, and finally to the target
language, are defined explicitly as data-types and evaluation relations. The ver-
ification of the transformations between different languages is often performed
by proving semantics preservation for the translation based on these definitions,
e.g., simulation arguments based on rule-induction over the evaluation relation
modeling the operational semantics. However, such compilers do not make full
use of the support provided by the logical framework, e.g. efficient substitution
and automatic renaming of variables. What’s worse, it is hard to reason about
their source and intermediate languages unless laborious work is done to pro-
vide reasoning mechanisms for these languages. Furthermore, they do not isolate
small-step program transformations clearly and verify them individually, thus a
slight modification of the compilation algorithm often leads to a heavy burden
on the revision of the proofs done previously.

In this paper, we present an alternative approach, based on the use of verified
rewrite rules, to construct a certified compiler for a simple functional program-
ming language inherent in a general-purpose logical framework. Specifically, a
subset of the term language dwelling within the higher order logic in HOL [19] is
taken as the source language; and most intermediate languages introduced dur-
ing compilation are specific forms of this language. That is, source programs and
intermediate forms are mathematical functions whose properties can be trans-
parently stated and proved correct using the ordinary mathematics provided by
the logical framework. As a consequence, we do not need to define the syntax
and semantics of these languages in the framework. And, transformations can
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be isolated clearly and specified as term rewrites, making it easy to construct
a “new” certified compiler by applying the rewrites in a different order. The
essence of our approach is: for each rewriting step, a theorem that establishes
the equality of the original program and result of the transformation is given as
by-product (we call this technique compilation by proof ).

Proof producing compilation has already been investigated in a prototype
hardware compiler [5], which synthesizes Verilog netlists, and a software com-
piler [12], which produces ARM code, from first-order HOL functions. In the
software compiler, the core intermediate languages and the target language are
imperative languages with syntax and operational semantics explicitly defined.
And the verification of the translation from an intermediate language L1 to
another one is performed by comparing execution states. Actually, semantics
preservation is proved by inducting on the data types representing the syntax of
L1 programs.

The software compiler [12] also includes simple intermediate languages that
are restricted forms of the term language of HOL. Their operational semantics are
not explicitly defined; and transformations over them are performed by applying
rewrite rules. However, since these rules are designed for generating programs
in imperative intermediate languages, they are far from enough for translating
a source program to a form that is suitable for code generation, not to mention
the lack of optimizations over them. Now in this paper, we extend this method
to construct a compiler by purely applying term rewrites, where no imperative
intermediate languages are introduced.

Namely, we present a new approach based on deductive rewriting to implement
a software compiler with source language similar to that in [12]. The features of
this new approach include: (1) The automation provided by the host logic logical
framework are fully utilized; (2) All intermediate languages except for the one
at the last step can be reasoned directly using ordinary mathematics provided
by the logical framework; (3) Program transformations are cleanly isolated and
specified as certified rewrite rules. This approach overlaps only a little with the
implementations in our previous work [5,12]. In fact, less than 5% of the code is
shared between our previous work and the work presented here.

2 Motivation

It is well-known that higher order logic (HOL) has a simple purely functional
programming language built into it. Most algorithms can be represented by
functional programs in HOL, i.e., as mathematical functions whose properties
can be transparently stated and proved correct using ordinary mathematics.
This feature is a strength of higher order logic and is routinely exploited in
verifications carried out in any HOL implementation (e.g. [17,18]).

We take a large subset of the language built into HOL-4 [19] as the source
language and built a variety of intermediate languages over it. Programs in
these languages represent mathematical functions and can be understood as λ
expressions. This has several benefits:



Compilation as Rewriting in Higher Order Logic 21

1. Proofs about programs in these languages may be conducted in ordinary
mathematics supported by HOL. This supports much flexibility and allows
the meaning of a program to be transparent. In particular, we say that two
programs are equivalent when the mathematical functions represented by
them are equal.

2. Both the syntax and the semantics of these languages are already defined
in HOL. Thus many front end tasks are already provided: lexical analysis,
parsing, type inference, overloading resolution, function definition, and ter-
mination proof.

3. The syntax (see Fig. 1) and semantics of the language resembles the pure
core subset of some widely-used functional programming languages such as
ML and OCAML. Thus our results can be easily extended to these practical
languages.

opb ::= + | − | ∗ | ≫ | � | � | � | & | � | . . . arithmetic / bitwise operator
opr ::= = | �= | < | > | ≤ | ≥ relational operator
opl ::= ∧ | ∨ logic operator
ec ::= � | ⊥ | e opr e | ¬ ec | ; ec opl ec logic expressions
e ::= i | v integer and variable

| (e1, . . . , en) tuple
| e opb e binary operation
| λ v. e anonymous function
| if ec then e else e conditional
| let (v1, . . . , vn) = e in e let definition
| e e1 . . . en function application
| f named function

f ::= fid (v1, . . . , vn) =def e function definition

Fig. 1. Syntax of the source language

Each intermediate language is derived from the source language of Fig. 1
by restricting its syntax to certain formats and introducing new administra-
tive terms to facilitate compilation and validation. In essence, an intermedi-
ate language is a restricted instance of the source language. This leads to an
advantage that intermediate forms can also be reasoned about using ordinary
mathematics.

Our compiler applies transformations such as normalization, inline expansion,
closure conversion, register allocation and structured assembly generation and a
couple of optimizations to translate a source program into a form that is suitable
for machine code generation. The transformations occurring in these translations
are specified rewrite rules whose application is guided by programs written in the
meta language of the logical framework (e.g. LCF-style tactics). Generally, the
process of deciding when and where to apply these rewrites is syntax-directed.
Since each rewrite rule has been formally proven in HOL-4, each rewriting step
ensures that the transformed code is equivalent to the source one. We use two
ways to generate such a proof:
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1. Prove Beforehand. The correctness of a rewrite rule is proven once and for
all: a single object logic theorem establishes that all successful applications
of this rule always generates code that is equivalent to original program.

2. Prove Dynamically. A per-run correctness check is performed. The result of
a rewrite is verified each time it is applied to a program.

The format of a rewrite rule is [name] redex ←→ contractum � P. It specifies
an expression that matches the redex can be replaced with the contractum pro-
vided that the side condition P over the redex holds. The declarative part of the
rule, redex ←→ contractum, is a theorem that characterizes the transformation
to be performed; while the control part, P, specifies in what cases the rewrite
should be applied. When no restriction is put on the application of a rule, P is
omitted. Notation e[v] stands for an expression that has free occurrences of ex-
pression v; and e[v1, . . . , vn] ←→ e[w1, . . . , wn] indicates that, for ∀i. 1 ≤ i ≤ n,
all occurrences of vi in e are replaced with wi. In addition, x ∈fv e indicates
that there is at least one free occurrence of x in e.

3 Compilation by Proof

In this section we state the compilation steps used to bridge the gap between
high-level languages and low-level representations. As an illustration we show
some intermediate forms of a simple program f1 in Fig.2 and Fig.3.

fact i =def

if i = 0 then 1
else i ∗ fact (i − 1)

f1 (k0, k1, k2) =def

let y = k2 + 100 in
let g (x, y) = y − (x ∗ k0) in
let z =
if fact 3 < 10 ∧ y + 2 ∗ k1 > k0

then g (k1, k2) else y
in z ∗ y

(a)
fact =

λv1.
if v1 = 0 then 1
else
let v2 = v1 − 1 in
let v3 = fact v2 in
let v4 = v1 ∗ v3 in v4

(b)

f1 =
letrec v4 = (

λv11λ(v12, v13).
let v14 = v11 ∗ v12 in
let v15 = v13 − v14

in v15)
in
λ(v1, v2, v3).
let v5 = v3 + 100 in
let v6 = 2 ∗ v2 in
let v7 = v5 + v6 in
let v8 = (
if v7 ≤ v1 then v5

else
let v10 = v4 v1 (v2, v3)
in v10)

in
let v9 = v5 ∗ v8 in v9

(c)

Fig. 2. (a) Source programs fact and f1; (b) fact’s intermediate form before register
allocation; (c) f1’s intermediate form after closure conversion
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3.1 Pre-processing

The first step is to pre-process a source program so that subsequent transfor-
mations become easier. For a program, we first simplify those expressions that
contain boolean constants � and ⊥; then apply rewrite rules based on the de
Morgan theorems to moving negations in over the connectives (conjunction,
disjunction and conditional expressions). Meanwhile the decision procedure for
formulas of Presburger arithmetic is called to simplify and normalize arithmetic
expressions (this is essentially a proof-based implementation of constant folding).

[split and] if c1 ∧ c2 then e1 else e2 ←→
let x = e2 in (if c1 then (if c2 then e1 else x) else x)

[split or] if c1 ∨ c2 then e1 else e2 ←→
let x = e1 in (if c1 then x else (if c2 then x else e2))

[if true] if � then e1 else e2 ←→ e1

[if false] if ⊥ then e1 else e2 ←→ e2

[norm gt] if a > b then e1 else e2 ←→ if a ≤ b then e2 else e1

[norm ge] if a ≥ b then e1 else e2 ←→ if b ≤ a then e1 else e2

[norm lt] if a < b then e1 else e2 ←→ if b ≤ a then e2 else e1

3.2 Normalization

In a high level program, the value of a compound expression is computed by
a sequence of low level instructions. By defining every intermediate result of
computation as a variable, we can convert such compound expressions into se-
quences of let-expressions corresponding to assembly instructions.

This leads to our first intermediate language that is a combination of K-normal
forms [1] and A-normal forms [4], where intermediate computations and their
results are made explicit. The core of the transformation is to remove compound
expressions so that every target of basic operations such as arithmetic operations
and function applications is now a variable. After the transformation, the control
flow is pinned down into a sequence of elementary steps.

The first step is to perform a continuation-passing style (CPS) transformation.
It repeatedly rewrites with the following theorems in a syntax-directed manner
to transform a program into its continuation form. Here C e k deontes the
application of the continuation k to an expression e, and its value is equal to
k e.

[C intro] e ←→ C e (λx.x)
[C binop] C (e1 opb e2) k ←→ C e1 (λx.C e2 (λy. C (x opb y) k))
[C pair] C (e1, e2) k ←→ C e1 (λx.C e2 (λy. C (x, y) k))
[C let ANormal] C (let v = e in f v) k ←→ C e (λx.C (f x) (λy. k y))
[C let KNormal] C (let v = e in f v) k ←→ C e (λx.C x (λy. C (f y) (λz. k z)))
[C abs] C (λv. f v) k ←→ C (λv. (C (f v) (λx. x))) k
[C app] C (f e) k ←→ C f (λg.C e (λx. C (g x) (λy. k y)))
[C cond] C (if (c1 opr c2) then e1 else e2) k ←→

C c1 (λp.C c2 (λq. C (if (p opr q) then
C e1 (λx. x) else C e2 (λy. y)) (λz. k z)))
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As apparent from the C cond rule, we translate conditional branches into special
forms combining comparisons and branches. This translation bridges a gap be-
tween high level programs and assembly where branch instructions must follow
comparison instructions.

In order to avoid unnecessary let-expression insertion in subsequent phases,
during this transformation we rewrite an expression e to atom e, where atom =
λx. x, when e is simply a constant or a variable or a function name. The next
step converts the continuation form into a readable, ‘let‘-based normal form using
following theorems. Since the logical framework takes care of program scoping
and substitution implicitly, during the rewriting fresh variables are generated
and bound to the results of intermediate computations automatically.

[atom intro] v ←→ atom v � v is a constant, a variable or a name
[C atom] C (atom v) k ←→ v
[C to let] C e k ←→ let x = e in k x

3.3 Transformations of Normal Forms

SSA (Static Single-Assignment) Form. In the SSA format, each variable has
only one definition in the program text. This format supports subsequent trans-
formations such as inlining and closure conversion; and it is necessary for the
correctness of our register allocation algorithm. The core of this transformation
is to rename all bound variables of a program to fresh names. Initially, all free
variables in a function (i.e. arguments) are replaced with fresh variables be-
ginning with “v”. Then any variable in the lefthand side of a let-expression is
substituted by a fresh new variable. As a result, an α-equivalent expression is
returned with a proof showing that this expression is indeed α-equivalent to the
original expression.

Simplification of Let-expressions. It is often useful both for clarification and for
efficiency, to reduce expressions such as let v1 = v2 in e[v1] to e[v2] by expand-
ing the aliasing of variables. Rule atom let supports such reduction; obviously
it is a special case of inline expansion. Rule flatten let is used to expose the
values of nested let-expressions for subsequent transformations (e.g. closure con-
version). Rule useless let is for eliminating unused variable/function definitions.
It requires that x does not appear free in e2 (thus the execution of expression e1

is unnecessary).

[atom let] let x = atom v in e[x] ←→ e[v]
[flatten let] let x = (let y = e1 in e2[y]) in e3[x, y] ←→

let y = e1 in let x = e2[y] in e3[x, y]
[useless let] let x = e1 in e2 ←→ e2

Constant Folding. After some optimization, an expression may include only con-
stant values, thus creating new opportunities for constant folding. This is accom-
plished by invoking a decision procedure for unquantified Presburger arithmetic,
plus the application of other relevant rules such as if true and if false.
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Inline Expansion. This transformation replaces calls to small functions with their
bodies. If the size of the body e in a function definition let f = e in . . . is less
than a specific threshold t, f will be expanded. Although the variables may have
the same names in the inlining function and inlined function, no problem will be
incurred during substitution since the logical framework will capture program
scope and rename variables automatically. For a recursive function, we avoid
code explosion by expanding its body for only a certain number of times. The
expression obtained from inline expansion is further simplified by applying other
transformations such as the let-expression simplifications and constant folding
until no more simplications can be made.

[fun intro] let v = λx.e1[x] in e2[v] ←→ let v = fun (λx.e1[x]) in e2[v]
� size e1 < t

[unroll rec] let f = fun e1[f ] in e2[f ] ←→ let f = fun (e1[e1[f ]]) in e2[f ]
� size e1 < t

[inline expand] let f = fun e1 in e2[f ] ←→ e2[e1]

3.4 Closure Conversion

Another gap still remaining between the intermediate forms and assembly is
nested function definitions. In this phase we flatten them by closure conversion.
The core of this conversion is to push the values of all free variables in a function’s
body into the closure, then extract from the closure the values of free variables
and supply them as arguments when a function call is made.

As in inline expansion, we identify all function definitions via the fun intro
rule and pretty print them to be a “letrec” format, where letrec f = λx. e1 in e2

is a short hand of let f = fun λx. e1 in e2.

[abs one] letrec f = e1[v] in e2 ←→ let v = atom v in letrec f = e1[v] in e2

[close one] let v = atom v in letrec f = e1 in e2 ←→
letrec f = λv. e1 in e2[f v]

[close all] letrec f = e1[v1, . . . , vn] in e2[f ] ←→
letrec f = λ(v1, . . . , vn). e1[v1, . . . , vn] in e2[f (v1, . . . , vn)]

� vi ∈fv e1 for 1 ≤ i ≤ n
[top level let] let v = e1 in letrec f = e2 in e3[f ] ←→

letrec f = e2 in let v = e1 in e3[f ]
[top level cond 1] if e1 then letrec f = e2 in e3[f ] else e4 ←→

letrec f = e2 in if e1 then e3[f ] else e4

[top level cond 2] if e1 then e3 else letrec f = e2 in e4[f ] ←→
letrec f = e2 in if e1 then e3 else e4[f ]

[top level abs] λx. letrec f = e1 in e2[f ] ←→ letrec f = e1 in λx. e2[f ]

We distinguish functions without free variables from those requiring closure
conversion. Upon seeing a general function definition, we first check whether this
function has no free variables. If yes, no closure conversion is needed. Otherwise,
for each free variable in the function’s body, we add it as the argument of the func-
tion, and replace the application of this function with a new one where the value of
this variable is taken from the closure. As the program is already in SSA format,
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the value of this variable will not be altered since the point where it is defined.
Thus the value taken from the closure equals to its original value. This process
is repeated until no free variable remains in the function body. In practice, a free
variable is identified and abstracted using the abs one rule; then a closure con-
taining its value is passed as the argument to the function (close one). To speed
up this conversion, we can adopt the Prove Dynamically technique as shown in the
close all: in one step we put the values of all free variables into the closure (which
is modeled as a tuple) rather than process only one variable each time (close one).
Finally, we move the definition of a function to the top level; and store its definition
(as a theorem) in the logical framework or inline expand it.

3.5 Register Allocation

One of the most sophisticated processes in the compiler is register allocation.
Although many register allocation algorithms exist for imperative languages, we
find them unnecessarily complicated for our purely functional languages because
variables are never destructively updated, obviating the standard notion of def-
use chains. Operating on the SSA format, our algorithm is a simple greedy
algorithm with backtracking for early spilling.

The basic policy of register allocation is to avoid registers already assigned to
live variables. Variables live at the same time should not be allocated to the same
register. We adopt a naming convention: variables yet to be allocated begin with
v, variables spilled begin with m (memory variable) and those in registers begin
with r (register variable). Notation matches a variable of any of these kinds.
And v̂, r̂ and m̂ stand for a fresh variable, a unused register and a new memory
location respectively. Predicate r ← v specifies that variable v is assigned to
register r; by definition ∀r ∈ Smach. r ← r and ∀r ∈ Smach∀m. r � m (where
Smach is the set of machine registers). Notation avail e returns the set of available
registers after allocating e, i.e., avail e = Smach − {r | ∀w.w ∈ e ∧ r ← w}.
Administrative terms app, save and restore are all defined as λx.x. app is used
to mark function applications. Finally, loc (v, l) = l indicates that variable v is
allocated to location l (where l = r or m).

[assgn reg] let v = e1 in e2[v] ←→ let r̂ = e1 in e2[loc(v, r̂)] � avail e2 �= φ
[spill] let v = e1 in e2[v, loc(w, r)] ←→

let m̂ = save r in let r = e1 in e2[loc(v, r), loc(w, m̂)] � avail e2 = φ
[early spill] let v = e1 in e2[v, loc(w, r)] ←→

let m̂ = save r in let v = e1 in e2[v, loc(w, m̂)] � avail e2 = φ
[restore] e[loc(v, m)] ←→ let v̂ = restore m in e[v̂]
[caller save] let = app f in e[ , loc(w, r)] ←→

let m̂ = save r in let = app f in e[ , loc(w, m̂)]
[spill if] let = if e1 then e2[loc(w, r1)] else e3[loc(w, r2)] in e4[loc(w, r0)] ←→

let m̂ = save r0 in let = if e1 then e2[loc(w, m̂)] else e3[loc(w, m̂)] in
e4[loc(w, m̂)] � ¬(r0 = r1 = r2)

When variable v in expression let v = e1 in e2[v] is to be assigned a register, the
live variables to be considered are just the free variables in e2 excluding v. If
live variables do not use up all the machine registers, then we pick an available
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register and assign v to it by applying rule assgn reg. Otherwise, we spill to
the memory a variable consuming a register, and assign this register to v. In
some cases we prefer to spill a variable as early as possible: in the early spill rule
variable w’s value is spilled from r for future use; but r may not be allocated to
v in the subsequent allocation. When encountering a memory variable in later
phases, we need to generate code that will restore its value from the memory
to a register (the v̂ in rule restore will be assigned a register by the subsequent
application of rule assgn reg).

Saving is necessary not only when registers are spilled, but also when functions
are called. Our compiler adopts the caller-save convention, so every function call
is assumed to destroy the values of all registers. Therefore, we need to, as im-
plemented in the caller save rule, save the values of all registers that are live at
that point. In addition, as we allocate the two branches of a conditional expres-
sion separately, a variable may be assigned different registers by the branches.
This will contradict the convention that a variable should be assigned only one
register. In this case, we will early spill it through the spill if rule.

At the final step, all save, store and loc in an expression are eliminated. This
results in an equivalent expression containing only register variables and memory
variables. In practice, in order to improve the performance we do not have to
perform equivalence check for every rewrite step. Instead, after all the rewrites
are done, by applying the following rules to the produced expression, we will ob-
tain an expression that is α-equivalent to the original expression, thus validating
that the register allocation on the entire expression is correct.

[elim save] let m = save r in e[m] ←→ e[r]
[elim store] let r = store m in e[r] ←→ e[m]

In order to see the effect of spilling and restoring, we specify the number
of available registers to be 3 when running the allocator for f1. The resulting
intermediate form (i.e. FIL) is shown at the left of Fig.3.

f1 =
λ(r0, r1, r2).
let m1 = r2 in let m2 = r0 in
let r0 = m1 in let r0 = r0 + 100 in
let m3 = r0 in let r0 = 2 ∗ r1 in
let r2 = m3 in let r0 = r2 + r0 in
let r2 = m2 in
let r0 = (
if r0 ≤ r2 then let r0 = m3 in r0

else
let r0 = r2 ∗ r1 let r1 = m1 in
let r0 = r1 − r0 in r0)

in
let r1 = m3 in let r0 = r1 ∗ r0

in r0

program: f1
input: (r0, r1, r2)
output: r0

(l1 {m1 := r2} � {m2 := r0} �
{r0 := m1} � {r0 := r0 + 100} �
{m3 := r0} � {r0 := 2 ∗ r1} �
{r2 := m3} � {r0 := r2 + r0} �
{r2 := m2}

l2) �
(l2 ifgoto (r0 ≤ r2) l3 l4) �
(l4 {r0 := r2 ∗ r1} � {r1 := m1} �

{r0 := r1 − r0}
l5) �
(l3 {r0 := m3} l5) �
(l5 {r1 := m3} � {r0 := r1 ∗ r0} l6)

Fig. 3. f1’s FIL (left) and f1’s SAL (right)
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4 Code Generation

After the transformations in Section 3 are over, a source program has been
converted into equivalent form that is much closer to assembly code. This form,
with syntax shown in Fig.4, is called Functional Intermediate Language (FIL).
The transformation presented in this section admits only tail recursive programs.

x ::= r | m | i register variable, memory variable and integer
y ::= r | i register variable and integer
v ::= r | m register and memory variable
e ::= (e1, . . . , en) tuple

| x opb x binary operation
| if r opr y then e else e conditional
| fid x1 . . . xn function application
| let (v1, . . . , vn) = e in e let definition

f ::= fid = λv1 . . . λvn. e function definition

Fig. 4. Syntax of the Functional Intermediate Language (FIL)

For those non-tail recursive programs, we rely on third party translator to turn
them into equivalent tail recursion. A preliminary tool linRec has been developed
to translate linear recursions to tail-recursions [5].

We further convert a tail recursive program into the sequential composition
of its body loop (represented by a tr structure) and its basic base through the-
orem conv tr. Theorem tr ind enables us to reason about tr structures through
induction. At the next step this tail recursive equation is translated to abstract
assembly code.

�def tr c f
.
= λx.if c x then x else tr (f x) [tr def]

�thm (f x = if c x then f1 x else f (f2 x)) ⇔ (f x = let v = tr c f2 x in f1 v) [conv tr]
�thm ∀P. (∀x. (¬c x =⇒ P (f x)) =⇒ P x) =⇒ ∀v. P v [tr ind]

4.1 Structured Assembly Language

Validation of the translation from high-level language programs to low-level
codes is believed to be difficult due to inherent non-modularity the of low-level
programs. This is attributed to low-level code being flat and to the prominent
presence of unrestricted jumps.

Fortunately, although low-level code seems to be just flat finite sets of in-
structions, it is structured by finite unions naturally: a compilation produces
code structurally by combining smaller pieces of code together to generate larger
code. Technically, we can formulate a structured version for a piece of low level
instructions and develop compositional natural semantics for it. With this spirit,
Saabas and Uustalu [20] propose a compositional natural semantics and a Hoare
logic for a structured low-level language. Siminarly, Tan and Appel [23] propose a
continuation-style compositional logic with a rather sophisticated interpretation
of Hoare triples involving explicit fix-point approximations.
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We introduce a structured assembly language (SAL) with a compositional
(natural) semantics as the next intermediate representation. The translation
from FIL to SAL is shown to be correct with respect to this compositional
semantics. This language has the following grammar. For optimization purpose,
some of the labels in a code may be omitted when the control flow is clear (see
section 4.2).

sc ::= (� {v := e} �) | l ifgoto cond � � | � goto � | sc � sc

The natural semantics of SAL is specified as evaluation rules which relate a
piece of code (with entry label and exit label) with the functional expression it
implements. Rule � 〈l1〉 S 〈l2〉 ⇒ (w, v) indicates: (1) Structure S computes
a FIL expression w and stores the result of computation in v; (2) The control
flow starts at label l1 and ends at label l2 (by convention li �= lj if i �= j). In
this case we say S is reducible to (w, v). Roughly (w, v) can be understood as
C w (λv. . . . ) where C is the CPS combinator defined in section 3.2. A code
being reducible to (v, v) means that it computes nothing but moving the control
flow. Actually (v, v) is often abbreviated to be (). If a piece of SAL code c is
reducible to (e, v), then we claim that c implements FIL expression let v = e in v,
and the translation from this expression to c is correct.

The idea behind this natural semantics is an assembly program can be struc-
tured as a union of labeled structures such that the control flow is represented
by the jumps between labels of these structures. Since the composition of these
labeled structures is flat and the only connection between them is labels, the gap
between high level programs (which exhibit complicated control flow structures)
and low level assembly code (which is flat) is met.

As shown in Fig.5, a SAL program is built by composing labeled structures
according to their entry labels and exit labels. Most of these rules are self-
explanatory. Rule loop says if a round of computation of the body of a loop
returns value e[v], and subsequent rounds takes e[v] as arguments and computes
f [e[v]], then the effect of these rounds together is to compute f [v]. Clearly this
rule characterizes the behavior of tail recursions.

� 〈l1〉 l1 {v := w} l2 〈l2〉 ⇒ (w, v) inst
� 〈l1〉 S1 〈l2〉 ⇒ () � 〈l2〉 S2 〈l3〉 ⇒ e

� 〈l1〉 S1 � S2 〈l3〉 ⇒ e
nop

� 〈l1〉 S1 〈l2〉 ⇒ e1 � 〈l3〉 S2 〈l4〉 ⇒ e2
� 〈l1〉 S1 � S2 〈l2〉 ⇒ e1

skip

� 〈l1〉 S1 〈l2〉 ⇒ (e, v) � 〈l2〉 S2 〈l3〉 ⇒ (f v, w)
� 〈l1〉 S1 � S2 〈l3〉 ⇒ (let v = e in f v, w) seq

� 〈l1〉 ifgoto � l2 l3 〈l2〉 ⇒ () ift � 〈l1〉 ifgoto ⊥ l2 l3 〈l3〉 ⇒ () iff

� 〈l1〉 l1 goto l2 〈l2〉 ⇒ () goto

� 〈l1〉 S 〈l1〉 ⇒ (e[v], v) 〈l1〉 S 〈l2〉 ⇒ (f [e[v]], v)
� 〈l1〉 S 〈l2〉 ⇒ (f [v], v) loop

Fig. 5. Compositional semantics of SAL
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Based on the basic rules, we derive some advanced rules for more complicated
control flow structures such as conditional jumps, tail recursions and function
calls:

� 〈l2〉 S1 〈l4〉 ⇒ (e1, v) � 〈l3〉 S2 〈l4〉 ⇒ (e2, v)
� 〈l1〉 (l1 ifgoto c l2 l3) � S2 � S1 〈l4〉 ⇒ (if c then e1 else e2, v) conditional

¬c v =⇒ 〈l3〉 S 〈l4〉 ⇒ (f v, v)
� 〈l1〉 (l1 ifgoto (c v) l2 l3) � S � (l4 goto l1) 〈l2〉 ⇒ (tr c f v, v) tr

� 〈l2〉 S 〈l3〉 ⇒ (f w1, v1)
� 〈l1〉 (l1 {w1 := w2} l2) � S � (l3 {v2 := v1} l4) ⇒ (f w2, v2) fun call

The detailed derivation of them is shown below. The proof of rule conditional
goes by case analysis on the condition c; so does the proof of rule tr. The proof
of rule fun call is based on the fact that the pre-processing and post-processing
for a function call take care of argument passing and result passing respectively.

Derivation of rule conditional

asm1 = � 〈l1〉 l1 ifgoto � l2 l3 〈l2〉 ⇒ () asm2 = � 〈l3〉 S2 〈l4〉 ⇒ (e2, v)
asm3 = � 〈l2〉 S1 〈l4〉 ⇒ (e1, v) asm4 = � 〈l1〉 l1 ifgoto ⊥ l2 l3 〈l3〉 ⇒ ()
lem1 = 〈l1〉 (l1 ifgoto � l2 l3) � S2 〈l2〉 ⇒ ()
thm1 = � 〈l1〉 (l1 ifgoto � l2 l3) � S2 � S1 〈l4〉 ⇒ (e1, v)
lem2 = � 〈l1〉 (l1 ifgoto ⊥ l2 l3) � S2 〈l4〉 ⇒ (e2, v)
thm2 = � 〈l1〉 (l1 ifgoto ⊥ l2 l3) � S2 � S1 〈l4〉 ⇒ (e2, v)

asm1 asm2 skip
lem1 asm3 nop

thm1

asm4 asm2 nop
lem2 asm3 skip

thm2

〈l1〉 (l1 ifgoto c l2 l3) � S2 � S1 〈l4〉 ⇒ (if c then e1 else e2, v)

Derivation of rule tr

body = 〈l1〉 (l1 ifgoto (c v) l2 l3) � S � (l4 goto l1) 〈l2〉
asm1 = � 〈l1〉 l1 ifgoto � l2 l3 〈l2〉 ⇒ () asm2 = � 〈l3〉 S 〈l4〉 ⇒ (e, v)
asm3 = � 〈l4〉 l4 goto l1〈l1〉 lem1 = � 〈l1〉 (l1 ifgoto � l2 l3) � S 〈l2〉 ⇒ ()
thm1 = � c v =⇒ body ⇒ () thm2 = � c v =⇒ body ⇒ (tr c f v, v)
asm4 = � ¬c v =⇒ body ⇒ (tr c f (f v), v)
asm5 = � ¬c v =⇒ 〈l1〉 (l1 ifgoto (c v) l2 l3) � S � (l4 goto l1) 〈l1〉 ⇒ (f v, v)
thm3 = � ¬c v =⇒ body ⇒ (tr c f v, v)

asm1 asm2 skip
lem1 asm3 nop

thm1
tr def

thm2

asm4 asm5
loop, tr def

thm3 case
� body ⇒ (tr c f v, v)

Derivation of rule fun call

pre = l1 {w1 := w2} l2 post = l3 {v2 := v1} l4
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� 〈l1〉 pre 〈l2〉 ⇒ (w2, w1) � 〈l2〉 S 〈l3〉 ⇒ (f w1, v1)
seq

� 〈l1〉 pre � S 〈l3〉 ⇒ (let w1 = w2 in f w1, v1)

〈l3〉 post 〈l4〉 ⇒ (v1, v2)
seq

� 〈l1〉 pre � S � post 〈l4〉 ⇒ (let v1 = (let w1 = w2 in f w1) in v1, v2)
let def� 〈l1〉 pre � S � post 〈l4〉 ⇒ (f w2, v2)

These rules immediately validate the following rewrites whose repeated appli-
cation will convert a FIL program to an equivalent SAL program. Notation l+i

stands for the ith new label introduced during the conversion. As an example,
the SAL of f1 (after the application of rule elim blk lab explained in the next
section) is shown at the right of Fig.3.

[conv exp] conv (l (e, v) l′) ←→ (l, {v := e}, l′)
[conv let] conv (l (let v = e in f v, w) l′) ←→

(conv (l (e, v) l+1)) � conv (l+1 (f v, w) l′)
[conv cond] conv (l (if c then e1 else e2, v) l′) ←→

(l ifgoto c l+1 l+2) � conv (l+2 (e2, v) l′) � conv (l+1 (e1, v) l′)
[conv tr] conv (l (tr c f v, v) l′) ←→

(l ifgoto c l′ l) � conv (l (f v, v) l+1) � (l+1 goto l)
[conv app] conv (l (f w2, v2) l′) ←→

(l {w1 := w2} l+1) � (conv (l+1 bd l+2)) � (l+2 {v2 := v1} l′)
where v1, bd and w1 are the input, body and output of f respectively

4.2 Machine Code Generation

This phase pretty-prints SAL programs into assembly code with respect to the
instruction set of the target machine. Since we do not specify the semantics of
the machine language, this conversion does not go by proof. However, the high
similarity between SAL and realistic assembly language makes the correctness
of this conversion easy to check (e.g. by hand).

One optimization in this phase is to eliminate labels that are not the targets
of existing jumps. For instance, internal labels within a block consisting of se-
quential assignment instructions can be removed safely. And, the exit label of a
structure is superfluous when the control flow after its execution goes directly
to the next structure. Furthermore, since a ifgoto instruction is always followed
immediately by its false block, it is safe to remove its exit label pointing to the
false block.

[elim blk lab] (l1 {v1 := w1} l2) � (l2 {v2 := w2} l3) −→
l1 ({v1 := w1} � {v2 := w2}) l3

[elim seq lab] (l1 S1 l2) � (l2 S2 l3) −→ (l1 S1) � (l2 S l3)
[elim ifgoto lab] (ifgoto c l2 l3) � (l3 S l4) −→ (ifgoto c l2) � (l3 S l4)

The process of producing assembly from an optimized SAL program is trivial:
(1) An assignment instruction with a single variable as target is replaced with a
corresponding machine instruction; (2) A goto instruction is inserted for the exit
label of a structure; (3) A ifgoto instruction is replaced with a comparison in-
struction followed by a jump. When both the target and source of an assignment
are tuple and the machine model does not support parallel move, this assignment
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can be implemented by first pushing the value of source into the stack and then
loading it back from the stack.

We have modeled an ARM machine in HOL and mechanically verify the
translation from an intermediate language similar to the FIG to ARM assembly
[12]. By compiling-by-proof FIG into this intermediate language, we can produce
certified ARM assembly for FIG programs.

5 Related Work

There are systems that use rewrite rules to specify program transformations.
For instance, in the ASF+SDF environment [24] transformations and evaluation
can be specified as rewrite rules. There are also some work that uses logical
frameworks to simplify the construction of compilers. For instance, Liang [13]
implements a compiler for a simple imperative language using a higher-order ab-
stract syntax implementation in λ-Prolog. Boyle, Resler and Winter [8], propose
using rewrites that model code transformation to build trusted compilers. They
also introduce a transformation grammar to guide the application of rewrites
[25]. Similarly, Sampaio [21] uses term rewriting to convert source programs to
their normal forms representing object code. However, these works do not not
address the issue of validation of the compiler.

Hickey and Nogin [7] base on the MetaPRL logical framework to construct
a compiler from a full higher order, untyped, functional language to Intel x86
code, based entirely on higher-order rewrite rules. A set of unverified rewriting
rules are used to convert a higher level program to a lower level program. They
use higher-order abstract syntax to represent programs and do not define the
semantics of these programs. Thus no formal verification of the rewriting rules is
done. Although the source language and intermediate languages of their compiler
are different from ours, our work can be regarded as an extension of their work
by now verifying the rewrite rules for program transformation.

Hannan and Pfenning [6] construct a verified compiler in LF for the untyped λ
calculus. The target machine is a variant of the CAM runtime and differs greatly
from real machines. In their work, programs are associated with operational
semantics; and both compiler transformation and verifications are modeled as
deductive systems.

Leroy [2,11] verifies a compiler from a subset of C, i.e. Clight, to PowerPC
assembly code in the Coq system. The semantics of Clight is completely deter-
ministic and specified as big-step operational semantics. Several intermediate
languages are introduced and translations between them are verified. The proof
of semantics preservation for the translation proceeds by induction over the
Clight evaluation derivation and case analysis on the last evaluation rule used;
in contrast, our proofs proceed by verifying the rewrite rules.

A purely operational semantics based development is that of Klein and Nipkow
[9] which gives a thorough formalization of a Java-like language. A compiler from
this language to a subset of Java Virtual Machine is verified using Isabelle/HOL.
However, that compiler targets fairly high-level code, and assumes an unbounded
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number of registers. The Isabelle/HOL theorem prover is also used to verify the
compilation from a type-safe subset of C to DLX assembly code [10], where a
big step semantics and a small step semantics for this language are defined. In
addition, Meyer and Wolff [14] derive in Isabelle/HOL a verified compilation of
a lazy language (called MiniHaskell) to a strict language (called MiniML) based
on the denotational semantics of these languages.

There has recently been a large amount of work on verifying low-level lan-
guages (e.g. [15]), originally prompted by the ideas of proof carrying code and
typed assembly language [16]. Of course, compiler verification itself is a venerable
topic, with far too many publications to survey (see Dave’s bibliography [3]).

6 Summary and Future Work

We have shown how term rewriting can be used to construct and verify a com-
piler for a subset of the computable functions accepted by the TFL package [22],
i.e., functions definable by well-founded recursion and ML-style pattern match-
ing. This allows a smooth passage from recursively defined logical functions to
assembly code that is guaranteed to implement those functions.

We are considering a systematic way for users to apply the rewrite rules to
obtain a trusted compiler of their own. A simple programming language is being
introduced for users to write programs to guide the application of the verified
rules. By programming such guiding procedures, users will be able to obtain
customized trusted compilers.

We also consider to build compilers for widely-used functional languages like
ML. They have the similar syntax and semantics as our source language, but
have many more advanced features. To start, we need to strengthen the front end
translation to support ML-style datatypes, polymorphism and other features.
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Abstract. Inductive definitions and rule inductions are two fundamen-
tal reasoning tools in logic and computer science. When inductive defi-
nitions involve binders, then Barendregt’s variable convention is nearly
always employed (explicitly or implicitly) in order to obtain simple
proofs. Using this convention, one does not consider truly arbitrary
bound names, as required by the rule induction principle, but rather
bound names about which various freshness assumptions are made. Un-
fortunately, neither Barendregt nor others give a formal justification for
the variable convention, which makes it hard to formalise such proofs. In
this paper we identify conditions an inductive definition has to satisfy so
that a form of the variable convention can be built into the rule induction
principle. In practice this means we come quite close to the informal rea-
soning of “pencil-and-paper” proofs, while remaining completely formal.
Our conditions also reveal circumstances in which Barendregt’s variable
convention is not applicable, and can even lead to faulty reasoning.

1 Introduction

In informal proofs about languages that feature bound variables, one often as-
sumes (explicitly or implicitly) a rather convenient convention about those bound
variables. Barendregt’s statement of the convention is:

Variable Convention: If M1, . . . ,Mn occur in a certain mathematical
context (e.g. definition, proof), then in these terms all bound variables
are chosen to be different from the free variables. [2, Page 26]

The reason for this convention is that it leads to very slick informal proofs—one
can avoid having to rename bound variables.

One example of such a slick informal proof is given in [2, Page 60], proving
the substitutivity property of the −→1−→ (or “parallel reduction”) relation, which
is defined by the rules:

M −→1−→ M
One1

M −→1−→ M ′

lam(y.M) −→1−→ lam(y.M ′)
One2

M −→1−→ M ′ N −→1−→ N ′

app(M, N) −→1−→ app(M ′, N ′)
One3

M −→1−→ M ′ N −→1−→ N ′

app(lam(y.M), N) −→1−→ M ′[y := N ′]
One4

(1)

The substitutivity property states:

F. Pfenning (Ed.): CADE 2007, LNAI 4603, pp. 35–50, 2007.
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Lemma. If M −→1−→ M ′ and N −→1−→ N ′, then M [x := N ] −→1−→ M ′[x := N ′].
In [2], the proof of this lemma proceeds by an induction over the definition of
M −→1−→ M ′. Though Barendregt does not acknowledge the fact explicitly, there
are two places in his proof where the variable convention is used. In case of
rule One2, for example, Barendregt writes (slightly changed to conform with the
syntax we shall employ for λ-terms):

Case One2. M −→1−→ M ′ is lam(y.P ) −→1−→ lam(y.P ′) and is a direct consequence
of P −→1−→ P ′. By induction hypothesis one has P [x := N ] −→1−→ P [x := N ′]. But
then lam(y.P [x := N ]) −→1−→ lam(y.P ′[x := N ′]), i.e. M [x := N ] −→1−→ M ′[x :=
N ′]. ��
However, the last step in this case only works if one knows that

lam(y.P [x := N ]) = lam(y.P )[x := N ] and

lam(y.P ′[x := N ′]) = lam(y.P ′)[x := N ′]

which only holds when the bound variable y is not equal to x, and not free in
N and N ′. These assumptions might be inferred from the variable convention,
provided one has a formal justification for this convention. Since one usually
assumes that λ-terms are α-equated, one might think a simple justification for
the variable convention is along the lines that one can always rename binders with
fresh names. This is however not sufficient in the context of inductive definitions,
because there rules can have the same variable occurring both in binding and
non-binding positions. In rule One4, for example, y occurs in binding position in
the subterm lam(y.M), and in the subterm M ′[y := N ′] it is in a non-binding
position. Both occurrences must refer to the same variable as the rule

M −→1−→ M ′ N −→1−→ N ′

app(lam(z.M), N) −→1−→ M ′[y := N ′]
One′4

leads to a nonsensical reduction relation.
In the absence, however, of a formal justification for the variable convention,

Barendregt’s argument considering only a well-chosen y seems dubious, because
the induction principle that comes with the inductive definition of −→1−→ is:

∀M. P M M

∀y M M ′. P M M ′ ⇒ P (lam(y.M)) (lam(y.M ′))

∀M M ′ N N ′. P M M ′ ∧ P N N ′ ⇒ P (app(M, N)) (app(M ′, N ′))

∀y M M ′ N N ′. P M M ′ ∧ P N N ′ ⇒ P (app(lam(y.M), N)) (M ′[y := N ′])

M −→1−→ N ⇒ P M N

where both cases One2 and One4 require that the corresponding implication
holds for all y, not just the ones with y �= x and y �∈ FV (N,N ′). Nevertheless,
we will show that Barendregt’s apparently dubious step can be given a faithful,
and sound, mechanisation. Being able to restrict the argument in general to a
suitably chosen bound variable will, however, depend on the form of the rules in
an inductive definition. In this paper we will make precise what this form is and
will show how the variable convention can be built into the induction principle.
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The interactions between bound and free occurrences of variables, and their
consequences for obtaining a formal argument, seem to often be overlooked in the
literature when claiming that proofs by rule inductions are straightforward. One
example of this comes with a weakening result for contexts in the simply-typed
λ-calculus.

We assume types are of the form T ::= X | T → T , and that typing
contexts (finite lists of variable-type pairs) are valid if no variable occurs twice.
The typing relation can then be defined by the rules

valid(Γ ) (x :T ) ∈ Γ

Γ � var(x) : T
Type1

Γ � M : T1 → T2 Γ � N : T1

Γ � app(M, N) : T2
Type2

x # Γ (x :T1) ::Γ � M : T2

Γ � lam(x.M) : T1 → T2
Type3

(2)

where (x : T ) ∈ Γ stands for list-membership, and x # Γ for x being fresh for
Γ , or equivalently x not occuring in Γ . Define a context Γ ′ to be weaker than
Γ (written Γ ⊆ Γ ′), if every name-type pair in Γ also appears in Γ ′. Then we
have

Lemma (Weakening). If Γ � M : T is derivable, and Γ ⊆ Γ ′ with Γ ′ valid,
then Γ ′ � M : T is also derivable.

The informal proof of this lemma is straightforward, provided(!) one uses the
variable convention.
Informal Proof. By rule induction over Γ � M : T showing that Γ ′ � M : T
holds for all Γ ′ with Γ ⊆ Γ ′ and Γ ′ being valid.
Case Type1: Γ � M : T is Γ � var (x) : T . By assumption we know valid(Γ ′),
(x :T ) ∈ Γ and Γ ⊆ Γ ′. Therefore we can use Type1 to derive Γ ′ � var (x) : T .
Case Type2: Γ � M : T is Γ � app(M1,M2) : T . Case follows from the
induction hypotheses and rule Type2.
Case Type3: Γ � M : T is Γ � lam(x.M1) : T1 → T2. Using the variable
convention we assume that x # Γ ′. Then we know that ((x :T1) ::Γ ′) is valid and
hence that ((x :T1) ::Γ ′) � M1 : T2 holds. By appealing to the variable convention
again, we have that Γ ′ � lam(x.M1) : T1 → T2 holds using rule Type3 ��

However, in order to make this informal proof work with the induction principle
that comes with the rules in (2), namely

∀Γ xT. valid (Γ ) ∧ (x :T ) ∈ Γ ⇒ P Γ (var (x)) T
∀Γ M N T1 T2. P Γ M (T1 → T2) ∧ P Γ N T1 ⇒ P Γ (app(M,N)) T2

∀xΓ M T1 T2. x # Γ ∧ P ((x :T1) ::Γ ) M T2 ⇒ P Γ (lam(x.M)) (T1 → T2)
Γ � M : T ⇒ P Γ M T

(3)
we need in case of rule Type3 to be able to rename the bound variable to be
suitably fresh for Γ ′; by the induction we only know that x is fresh for the smaller
context Γ . To be able to do this renaming depends on two conditions: first, there
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must exist a fresh variable which we can choose. In our example this means that
the context Γ ′ must not contain all possible free variables. Second, the relation
Γ � M : T must be invariant under suitable renamings. This is because when
we change the goal from Γ ′ � lam(x.M1) : T1 → T2 to Γ ′ � lam(z.M1[x :=
z]) : T1 → T2, we must be able to infer from ((x : T1) :: Γ ′) � M1 : T2 that
((z : T1) :: Γ ′) � M1[x := z] : T2 holds. This invariance under renamings does,
however, not hold in general, not even under renamings with fresh variables. For
example if we assume that variables are linearly ordered, then the relation

v = min{v0, . . . , vn}
({v0, . . . , vn}, v)

that associates finite subsets of these variables to the smallest variable occurring
in it, is not invariant (apply the renaming [v := v′] where v′ is a variable that is
bigger than every variable in {v0, . . . , vn}). Other examples are rules that involve
a substitution for concrete variables or a substitution with concrete terms. In
order to avoid such pathological cases, we require that the relation for which one
wants to employ the variable convention must be invariant under renamings;
from the induction we require that the variable convention can only be applied
in contexts where there are only finitely many free names.

However, these two requirements are not yet sufficient, and we need to im-
pose a second condition that inductive definitions have to satisfy. Consider the
function that takes a list of variables and binds them in λ-abstractions, that is

bind t [ ]
def
= t bind t (x ::xs) def

= lam(x.(bind t xs))

Further consider the relation ↪→, which “unbinds” the outermost abstractions of
a λ-term and is defined by:

var (x) ↪→ [ ], var (x)
Unbind1 app(t1, t2) ↪→ [ ], app(t1, t2)

Unbind2

t ↪→ xs, t′

lam(x.t) ↪→ x ::xs , t′
Unbind3

(4)

Of course, this relation cannot be expressed as a function because the bound
variables do not have “particular” names. Nonetheless it is well-defined, and not
trivial. For example, we have

lam(x.lam(y.app(var(x), app(var(y), var(z)))))
↪→ [x, y], app(var(x), app(var(y), var(z))) and

lam(x.lam(y.app(var(x), app(var(y), var(z)))))
↪→ [y, x], app(var(y), app(var(x), var(z)))

but we also have ∀t′. lam(x.lam(y.app(x, app(var (y), var (z))))) �↪→ [x, z], t′.
Further, one can also easily establish (by induction on the term t) that for

every t there exists a t′ and a list xs of distinct variables such that t ↪→ xs , t′

holds, demonstrating that the relation is “total” if the last two parameters are
viewed as results.

If one wished to do rule inductions over the definition of this relation, one
might imagine that the variable convention allowed us to assume that the bound
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name x was distinct from the free variables of the conclusion of the rule, and
in particular that x could not appear in the list xs . However, this use of the
variable convention quickly leads to the faulty lemma:

Lemma (Faulty). If t ↪→ (x ::xs), t′ and x ∈ FV (t′) then x ∈ FV (bind t′ xs).

The “proof” is by an induction over the rules given in (4) and assumes that the
binder x in the third rule is fresh with respect to xs. This lemma is of course
false as witnessed by the term lam(x.lam(x.var (x))). Therefore, including the
variable convention in the induction principle that comes with the rules in (4),
would produce an inconsistency. To prevent this problem we introduce a second
condition for rules, which requires that all variables occurring as a binder in
a rule must be fresh (a notion which we shall make precise later on) for the
conclusion of this rule, and if a rule has several such variables, they must be
mutually distinct.

Our Contribution. We introduce two conditions inductive definitions must
satisfy in order to make sure they are compatible with the variable convention.
We will build a version of this convention into the induction principles that come
with the inductive definitions. Moreover, it will be shown how these new (“vc-
compatible”) induction principles can be automatically derived in the nominal
datatype package [11,9]. The presented results have already been extensively
used in formalisations: for example in our formalisations of the CR and SN
properties in the λ-calculus, in a formalisation by Bengtson and Parrow for
several proofs in the pi-calculus [3], in a formalisation of Crary’s chapter on
logical relation [4], and in various formalised proofs on structural operational
semantics.

2 Nominal Logic

Before proceeding, we briefly introduce some important notions from nominal
logic [8,11]. In particular, we will build on the three central notions of permuta-
tions, support and equivariance. Permutations are finite bijective mappings from
atoms to atoms, where atoms are drawn from a countably infinite set denoted
by A. We represent permutations as finite lists whose elements are swappings
(i.e., pairs of atoms). We write such permutations as (a1 b1)(a2 b2) · · · (an bn);
the empty list [ ] stands for the identity permutation. A permutation π acting
on an atom a is defined as:

[ ]·a def
= a ((a1 a2) ::π)·a def

=

⎧
⎨

⎩

a2 if π·a = a1

a1 if π·a = a2

π·a otherwise

where (a b) :: π is the composition of a permutation followed by the swapping
(a b). The composition of π followed by another permutation π′ is given by list-
concatenation, written as π′@π, and the inverse of a permutation is given by list
reversal, written as π−1. Our representation of permutations as lists does not
give unique representatives: for example, the permutation (a a) is “equal” to the
identity permutation. We equate permutations with a relation ∼:
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Definition 1 (Permutation Equality). Two permutations are equal, written
π1 ∼ π2, provided π1·a = π2·a, for all a ∈ A.

The permutation action on atoms can be lifted to other types.

Definition 2 (The Action of a Permutation). A permutation action π·(−)
lifts to a type T provided it the following three properties hold on all values x ∈ T

(i) [ ]·x = x

(ii) (π1@π2)·x = π1·(π2·x)

(iii) if π1 ∼ π2 then π1·x = π2·x
For example, lists and tuples can be given the following permutation action:

lists: π·[ ] def
= [ ]

π·(h :: t)
def
= (π·h) :: (π·t)

tuples: π·(x1, . . . , xn)
def
= (π·x1, . . . , π·xn)

(5)

Further, on α-equated λ-terms we can define the permutation action:

π·var(x)
def
= var(π·x)

π·app(M1, M2)
def
= app(π·M1, π·M2)

π·lam(x.M)
def
= lam(π·x.π·M)

(6)

The second notion that we use is that of support (roughly speaking, the sup-
port of an element is its set of free atoms). The set supporting an element is
defined in terms of permutation actions on that element, so that as soon as one
has defined a permutation action for a type, one automatically derives its ac-
companying notion of support, which in turn determines the notion of freshness
(see [11]):

Definition 3 (Support and Freshness). The support of x is defined as:

supp(x)
def
= {a | infinite{b | (a b)·x �= x}}. An atom a is said to be fresh

for an x, written a # x, if a �∈ supp(x).

We will also use the auxiliary notation a # xs, in which xs stands for a collection
of objects x1 . . . xn, to mean a # x1 . . . a # xn. We further generalise this nota-
tion to a collection of atoms, namely as # xs, which means a1 # xs . . . am # xs .

Later on we will often make use of the following two properties of freshness,
which can be derived from the definition of support, the permutation action on
A and the requirements of permutation actions on other types (see [11]).

Lemma 1
• (a) a # x implies π·a # π·x; and
• (b) if a # x and b # x, then (a b)·x = x.

Henceforth we will only be interested in those objects which have finite support,
because for them there exists always a fresh atom (recall that the set of atoms
A is infinite).
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Lemma 2. If x is finitely supported, then there exists an atom a such that a # x.

Unwinding the definitions of permutation actions and support one can often
easily calculate the support of an object:

atoms: supp(a) = {a}
tuples: supp(x1, . . . , xn) = supp(x1) ∪ . . . ∪ supp(xn)

lists: supp([ ]) = ∅, supp(h :: t) = supp(h) ∪ supp(t)

α-equated λ-terms: supp(var(x)) = {x}
supp(app(M, N)) = supp(M) ∪ supp(N)
supp(lam(x.M)) = supp(M) − {x}

We therefore note the following: all elements in A and all α-equated λ-terms are
finitely supported. Lists (similarly tuples) containing finitely supported elements
are finitely supported. The last three equations show that the support of α-
equated λ-terms coincides with the usual notion of free variables. Hence, a # M
with M being an α-equated λ-term coincides with a not being free in M . If b is
an atom, then a # b coincides with a �= b.

The last notion of nominal logic we use here is that of equivariance.

Definition 4 (Equivariance)
• A relation R is equivariant if R (π·xs) is implied by R xs for all π.
• A function f is equivariant provided π·(f xs) = f (π·xs) for all π.

Remark 1. Note that if we regard the term-constructors var , app and lam as
functions, then they are equivariant on account of the definition given in (6).
Because of the definition in (5), the cons-constructors of lists are equivariant.
By a simple structural induction on the list argument of valid, we can establish
that the relation valid is equivariant. By Lem. 1(a) freshness is equivariant. Also
list-membership, (−) ∈ (−), is equivariant, which can be shown by an induction
on the length of lists.

3 Schematic Terms and Schematic Rules

Inductive relations are defined as the smallest relation closed under some
schematic rules. In this section we will formally specify the form of such rules.
Diagrammatically they have the form

premises side-conditions
conclusion

�
(7)

where the premises, side-conditions and conclusions are predicates of the form
R ts where we use the letters R, S, P and Q to stand for predicates; ts stands for
a collection of schematic terms (the arguments of R). They are either variables,
abstractions or functions, namely t ::= x | a.t | f ts where a is a variable
standing for an atom and f stands for a function. We call the variable a in a.t
as being in binding position. Note that a schematic rule may contain the same
variable in binding and non-binding positions (One4 and Type3 are examples).
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Assuming an inductive definition of the predicate R, the schematic rule in (7)
must be of the form

R ts1 . . . R tsn S1ss1 . . . Smssm

R ts
�

(8)

where the predicates Sissi (the ones different from R) stand for the side-
conditions in the schematic rule.

For proving our main result in the next section it is convenient to introduce
several auxiliary notions for schematic terms and rules. The following functions
calculate for a schematic term the set of variables in non-binding position and
the set of variables in binding position, respectively:

vars(x) = {x}
vars(a.t) = vars(t)−{a}

vars(f ts) = vars(ts)

varsbp(x) = ∅

varsbp(a.t) = varsbp(t) ∪ {a}
varsbp(f ts) = varsbp(ts)

(9)

The notation t[as ; xs] will be used for schematic terms to indicate that the vari-
ables in binding position of t are included in as and the other variables of t are
either in as or xs. That means we have for t[as ; xs] that varsbp(t) ⊆ as and
vars(t) ⊆ as ∪ xs hold.
We extend this notation also to schematic rules: by writing �[as ; xs] for (8) we
mean

R ts1[as ; xs ] . . . R tsn[as ; xs ] S1 ss1[as ; xs] . . . Sm ssm[as ; xs]

R ts [as ; xs ]
�

(10)

However, unlike in the notation for schematic terms, we mean in �[as ; xs] that the
as stand exactly for the variables occurring somewhere in � in binding position
and the xs stand for the rest of variables. That means we have for �[as ; xs] that
varsbp(�) = as and vars(�) = xs hold.
assuming suitable generalisations of the functions vars and varsbp to schematic
rules. To see how the schematic notation works out in examples, reconsider the
definitions for the relations One, given in (1), and Type, given in (2). Using our
schematic notation for the rules, we have

One1[−; M ]
One2[y; M, M ′]
One3[−; M, N, M ′, N ′]
One4[y; M, N, M ′, N ′]

Type1[−; Γ, x, T ]
Type2[−; Γ, M, N, T1, T2]
Type3[x; Γ, M, T1, T2]

where ‘−’ stands for no variable in binding position.
The main property of an inductive definition, say for the inductive predicate

R, is that it comes with an induction principle, which establishes a property
P ts under the assumption that R ts holds. This means we have an induction
principle diagrammatically looking as follows

. . .
∀as xs . P ts1[as ; xs ] ∧ . . . ∧ P tsn[as ; xs ] ∧

Sss1[as ; xs ] ∧ . . . ∧ Sssm[as ; xs] ⇒ P ts [as ; xs ]
. . .

R ts ⇒ P ts (11)



Barendregt’s Variable Convention in Rule Inductions 43

where for every schematic rule � in the inductive definition we have to establish
an implication. These implications state that we can assume the property for
all premises and also can assume that the side-conditions hold; we have to show
that the property holds for the conclusion of the schematic rule.

As explained in the introduction, we need to impose some conditions on
schematic rules in order to avoid faulty reasoning and to permit an argument
employing the variable convention. A rule �[as ; xs], as given in (10), is variable
convention compatible, short vc-compatible, provided the following two conditions
are satisfied.

Definition 5 (Variable Convention Compatibility). A rule �[as ; xs ] with
conclusion R ts is vc-compatible provided that:

• all functions and side-conditions occurring in � are equivariant, and
• the side-conditions S1ss1 ∧ . . . ∧ Smssm imply that as # ts holds and

that the as are distinct.

If every schematic rule in an inductive definition satisfies these conditions, then
the induction principle can be strengthened such that it includes a version of
the variable convention.

4 Strengthening of the Induction Principle

In this section we will show how to obtain a stronger induction principle than
the one given in (11). By stronger we mean that it has the variable convention
already built in (this will then enable us to give slick proofs by rule induction
which do not need any renaming). Formally we show that induction principles
of the form

. . .
∀as xs C. (∀C.P C ts1[as ; xs ]) ∧ . . . ∧ (∀C.P C tsn[as ; xs ]) ∧

Sss1[as ; xs ] ∧ . . . ∧ Sssn[as ; xs] ∧ as # C ⇒ P C ts [as ; xs ]
. . .

R ts ⇒ P C ts (12)

can be used, where C stands for an induction context. This induction context
can be instantiated appropriately (we will explain this in the next section). The
only requirement we have about C is that it needs to be finitely supported. The
main difference between the stronger induction principle in (12) and the weaker
one in (11) is that in a proof using the stronger we can assume that the as ,
i.e. the variables in binding-position, are fresh with respect to the context C
(see highlighted freshness-condition). This additional assumption allows us to
reason as in informal “paper-and-pencil” proofs where one assumes the variable
convention (we will also show this in the next section).

The first condition of vc-compatibility implies that the inductively defined
predicate R is equivariant and that every schematic subterm occurring in a rule
is equivariant.
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Lemma 3. (a) If all functions in a schematic term t[as ; xs] are equivariant,
then (viewed as a function) t is equivariant, that is π· t[as ; xs ] = t[π·as ;π·xs].
(b) If all functions and side-conditions in the rules of an inductive definition for
the predicate R are equivariant, then R is equivariant, that is if R ts holds than
also R (π·ts) holds.

Proof. The first part is by a routine induction on the structure of the schematic
term t. The second part is by a simple rule induction using the weak induction
principle given in (11).

We now prove our main theorem: if the rules of an inductive definition are vc-
compatible, then the strong induction principle in (12) holds.

Theorem 1. Given an inductive definition for the predicate R involving vc-
compatible schematic rules only, then a strong induction principle is available
for this definition establishing the implication R ts ⇒ P C ts with the induction
context C being finitely supported.

Proof. We need to establish R ts ⇒ P C ts using the implications indicated in
(12). To do so we will use the weak induction from (11) and establish that the
proposition R ts ⇒ ∀π C.P C (π·ts) holds. For each schematic rule �[as ; xs]

R ts1[as ; xs ] . . . R tsn[as ; xs ] S1 ss1[as ; xs] . . . Sm ssm[as ; xs]

R ts [as ; xs ]
�

in the inductive definition we have to analyse one case. The reasoning proceeds
in each of them as follows: By induction hypothesis and side-conditions we have

(∀π C.P C (π·ts1[as ; xs ])) . . . (∀π C.P C (π·tsn[as ; xs ])) (13)

S1 ss1[as ; xs ] . . . Sm ssm[as ; xs] (14)

hold. Since � is assumed to be vc-compatible, we have by Lem. 3 that (*)
π·ts i[as ; xs] is equal to tsi[π·as ;π·xs ] in (13). For (14) we can further infer
from the vc-compatibility of � that

(a) as # ts[as ; xs] and (b) distinct(as) (15)

hold. We have to show that P C (π·ts[as ; xs]) holds, which because of Lem. 3 is
equivalent to P C ts [π·as ;π·xs].
The proof proceeds by using Lem. 2 and choosing for every atom a in as a fresh
atom c such that for all the cs the following holds:

(a) cs # ts [π·as ; π·xs ] (b) cs # π·as (c) cs # C (d) distinct(cs) (16)

Such cs always exists: the first and the second property can be obtained since
the schematic terms ts[π·as ;π·xs] and π·as stand for finitely supported objects;
the third can also be obtained since we assumed that the induction context C is
finitely supported; the last can be obtained by choosing the cs one after another
avoiding the ones that have already been chosen.
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Now we form the permutation π′ def= (π·as cs) where (π·as cs) stands for the
sequence of swappings (π·a1 c1) . . . (π·aj cj). Since permutations are bijective
renamings, we can infer from (15.b) that distinct(π·as) holds. This and the fact
in (16.d) implies that

π′@π·as = π′·(π·as) = cs (17)

We then instantiate the π in the induction hypotheses given in (13) with π′@π
and obtain using (17) and (*) so that

(∀C.P C ts1[cs ; π′@π·xs ])) . . . (∀C.P C tsn[cs ; π′@π·xs ])) (18)

hold. Since the rule � is vc-compatible, we can infer from (14) and the equivari-
ance of the side-conditions that

S1 ss1[cs ; π′@π·xs ] . . . Sm ssm[cs ; π′@π·xs ] (19)

hold (we use here the fact that π′@π·(ssi[as ; xs]) is equal to ssi[cs ;π′@π·xs]).
From (16.c), (18), (19) and the implication from the strong induction principle
we can infer P C ts [cs ;π′@π·xs] which by Lem. 3 is equivalent to

P C π′·ts [π·as ; π·xs ] (20)

From (15.a) we can by Lem. 1(a) infer that π·as # ts[π·as ;π·xs ] holds. This
however implies by (16.a) and by repeated application of Lem. 1(b) that

π′·ts [π·as ; π·xs ] = ts [π·as; π·xs ] (21)

Substituting this equation into (20) establishes the proof obligation for the rule
�. Provided we analysed all such cases, we have shown R ts ⇒ ∀π C.P C (π·ts).
We obtain our original goal by instantiating π with the identity permutation. ��

5 Examples

We can now apply our technique to the examples from the Introduction.

5.1 Simple Typing

Given the typing relation defined in (2), we must first check the conditions spelt
out in Definition 5. The first condition is that all of the definition’s functions
(namely var , app, lam and ::) and side-conditions (namely valid, ∈ and #) must
be equivariant. This is easily confirmed (see Remark 1). The second condition
requires that all variables in binding positions be distinct (there is just one, the
x in Type3); and that it be fresh for all the terms appearing in the conclusion
of that rule, namely Γ � lam(x.M) : T1 → T2, under the assumption that the
side-condition, x # Γ , of this rule holds.

In this case, therefore, we must check that x # Γ , x # lam(x.M) and x #
T1 → T2 hold. The first is immediate given our assumption; the second follows
from the definition of support for lambda-terms (x # lam(x.M) for all x and
M); and the third follows from the definition of support for types (we define
permutation on types T as π·T def= T and thus obtain that supp(T ) = ∅).
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With these conditions established, Theorem 1 tells us that the strong, or
vc-compatible principle exists, and that it is

∀Γ x T C. valid(Γ ) ∧ (x : T ) ∈ Γ ⇒ P C Γ (var(x)) T

∀Γ M N T1 T2 C. (∀C. P C Γ M (T1 → T2)) ∧ (∀C. P C Γ N T1) ⇒
P C Γ (app(M, N)) T2

∀Γ x M T1 T2 C. x # Γ ∧ (∀C. P C ((x : T1) ::Γ ) M T2) ∧ x # C ⇒
P C Γ (lam(x.M)) (T1 → T2)

Γ � M : T ⇒ P C Γ M T

This principle can now be used to establish the weakening result. The statement
is

Γ � M : T ⇒ Γ ⊆ Γ ′ ⇒ valid(Γ ′) ⇒ Γ ′ � M : T (22)

With the strong induction principle, the formal proof of this statement proceeds
like the informal one given in the Introduction. There, in the Type3 case, we
used the variable convention to assume that the bound x was fresh for Γ ′. Given
this information, we instantiate the induction context C in the strong induction
principle with Γ ′ (which is finitely supported). The complete instantiation of the
vc-compatible induction principle is

P = λΓ M T Γ ′. Γ ⊆ Γ ′ ⇒ valid(Γ ′) ⇒ Γ ′ � M : T
C = Γ ′ Γ = Γ M = M T = T

which after some beta-contractions gives us the statement in (22). The induction
cases are then as follows (stripping off the outermost quantifiers):

(1) valid(Γ ) ∧ (x : T ) ∈ Γ ⇒ Γ ⊆ Γ ′ ⇒ valid(Γ ′) ⇒ Γ ′ � var (x) : T

(2) (∀Γ ′′. Γ ⊆ Γ ′′ ⇒ valid(Γ ′′) ⇒ Γ ′′ � M1 : T1 → T2) ∧
(∀Γ ′′. Γ ⊆ Γ ′′ ⇒ valid(Γ ′′) ⇒ Γ ′′ � M2 : T1) ⇒
Γ ⊆ Γ ′ ⇒ valid(Γ ′) ⇒ Γ ′ � app(M1,M2) : T2

(3) (∀Γ ′′. (x : T1) ::Γ ⊆ Γ ′′ ⇒ valid (Γ ′′) ⇒ Γ ′′ � M : T2) ∧ x # Γ ′ ⇒
Γ ⊆ Γ ′ ⇒ valid(Γ ′) ⇒ Γ ′ � lam(x.M) : T1 → T2

The first two cases are trivial. For (3), we instantiate Γ ′′ in the induction
hypothesis to be (x : T1) :: Γ ′. From the assumption Γ ⊆ Γ ′ we have (x :
T1) :: Γ ⊆ (x : T1) :: Γ ′. Moreover from the assumption valid(Γ ′) we also have
valid((x : T1) ::Γ ′) using the variable convention’s x # Γ ′. Hence we can derive
(x : T1) ::Γ ′ � M : T2 using the induction hypothesis. Now applying rule Type3

we can obtain Γ ′ � lam(x.M) : T1 → T2, again using the variable convention’s
x # Γ ′. This completes the proof. Its readable version expressed in Isabelle’s
Isar-language [12] and using the nominal datatype package [9] is shown in Fig. 1.

By way of contrast, recall that a proof without the stronger induction princi-
ple would not be able to assume anything about the relationship between x and
Γ ′, forcing the prover to α-convert lam(x.M) to a form with a new and suitably
fresh bound variable, lam(z.((z x)·M)), say. At this point, the simplicity of the
proof using the variable convention disappears: the inductive hypothesis is much
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lemma weakening :
assumes a1: Γ � M :T and a2: Γ ⊆ Γ ′ and a3: valid Γ ′

shows Γ ′ � M :T
using a1 a2 a3

proof (nominal-induct Γ M T avoiding : Γ ′ rule: strong-typing-induct)
case (Type3 x Γ T 1 T 2 M )
have vc: x#Γ ′ by fact — variable convention
have ih: (x :T 1)::Γ⊆(x :T 1)::Γ

′=⇒valid ((x :T 1)::Γ
′)=⇒(x :T 1)::Γ

′�M :T 2 by fact
have Γ ⊆ Γ ′ by fact
then have (x :T 1)::Γ ⊆ (x :T 1)::Γ

′ by simp
moreover
have valid Γ ′ by fact
then have valid ((x :T 1)::Γ

′) using vc by (simp add : valid-cons)
ultimately have (x :T 1)::Γ

′ � M :T 2 using ih by simp
with vc show Γ ′ � lam(x .M ) : T 1 → T 2 by auto

qed (auto) — cases Type1 and Type2

Fig. 1. A readable Isabelle-Isar proof for the weakening lemma using the strong in-
duction principle of the typing relation. The stronger induction principle allows us
to assume a variable convention, in this proof x # Γ ′, which makes the proof to go
through without difficulties.

harder to show applicable because it mentions M , but the desired goal is in
terms of (z x)·M .

5.2 Parallel Reduction

In [2], the central lemma of the proof for the Church-Rosser property of beta-
reduction is the substitutivity property of the −→1−→-reduction. To formalise this
proof while preserving the informal version’s simplicity, we will need the strong
induction principle for −→1−→.

Before proceeding, we need two important properties of the substitution func-
tion, which occurs in the redex rule One4. We characterise the action of a per-
mutation over a substitution (showing that substitution is equivariant), and
the support of a substitution. Both proofs are by straightforward vc-compatible
structural induction over M :

π·(M [x := N ]) = (π·M)[(π·x) := (π·N)] (23)

supp(M [x := N ]) ⊆ (supp(M) − {x}) ∪ supp(N) (24)

With this we can start to check the vc-compatibility conditions: the condition
about equivariance of functions and side-conditions is again easily confirmed.
The second condition is that bound variables are free in the relation’s rules’ con-
clusions. In rule One2, this is trivial because y # lam(y.M) and y # lam(y.M ′)
hold. A problem arises, however, with rule One4. Here we have to show that
y # app(lam(y.M), N) and y # M ′[y := N ′], and we have no assumptions to
hand about y.
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It is certainly true that y is fresh for lam(y.M), but it may occur in N . As for
the term M ′[y := N ′], we know that any occurrences of y in M ′ will be masked
by the substitution (see (24)), but y may still be free in N ′.

We need to reformulate One4 to read

y # N y # N ′ M −→1−→ M ′ N −→1−→ N ′

app(lam(y.M), N) −→1−→ M ′[y := N ′]
One′′

4

so that the vc-compatibility conditions can be discharged. In other words, if we
have rule One′′4 we can apply Theorem 1, but not if we use One4. This is annoying
because both versions can be shown to define the same relation, but we have
no general, and automatable, method for determining this. For the moment, we
reject rule One4 and require the user of the nominal datatype package to use
One′′4 . If this is done, the substitutivity lemma is almost automatic:

lemma substitutivity-aux :
assumes a: N−→1N ′

shows M [x :=N ] −→1 M [x :=N ′]
using a by (nominal-induct M avoiding : x N N ′ rule: strong-lam-induct) (auto)

lemma subtitutivity :
assumes a1: M−→1M ′ and a2: N−→1N ′

shows M [x :=N ]−→1M ′[x :=N ′]
using a1 a2 by (nominal-induct M M ′ avoiding : N N ′ x rule: strong-parallel-induct)

(auto simp add : substitutivity-aux substitution-lemma fresh-atm)

The first lemma is proved by a vc-compatible structural induction over M ; the
second, the actual substitutivity property, is proved by a vc-compatible rule
induction relying on the substitution lemma, and the lemma fresh-atm, which
states that x # y is the same as x �= y when y is an atom.

6 Related Work

Apart from our own preliminary work in this area [10], we believe the prettiest
formal proof of the weakening lemma to be that in Pitts [8]. This proof uses
the equivariance property of the typing relation, and includes a renaming step
using permutations. Because of the pleasant properties that permutations enjoy
(they are bijective renamings, in contrast to substitutions which might identify
two names), the renaming can be done with relatively minimal overhead. Our
contribution is that we have built this renaming into our vc-compatible induction
principles once and for all. Proofs using the vc-compatible principles then do not
need to perform any explicit renaming steps.

Somewhat similar to our approach is the work of Pollack and McKinna [6].
Starting from the standard induction principle that is associated with an induc-
tive definition, we derived an induction principle that allows emulation of Baren-
dregt’s variable convention. Pollack and McKinna, in contrast, gave a “weak”
and “strong” version of the typing relation. These versions differ in the way the
rule for abstractions is stated:
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x # M (x : T1) :: Γ � M [y := x] : T2

Γ � lam(y.M) : T1 → T2
weak

∀x. x # Γ ⇒ (x : T1) :: Γ � M [y := x] : T2

Γ � lam(y.M) : T1 → T2
strong

They then showed that both versions derive the same typing judgements. With
this they proved the weakening lemma using the “strong” version of the princi-
ple, while knowing that the result held for the “weak” relation as well. The main
difference between this and our work seems to be of convenience: we can rela-
tively easily derive, in a uniform way, an induction principle for vc-compatible
relations (we have illustrated this point with two examples). Achieving the same
uniformity in the style of McKinna and Pollack does not seem as straightforward.

7 Future Work

Our future work will concentrate on two aspects: first on generalising our defini-
tion of schematic rules so that they may, for example, include quantifiers. Second
on being more liberal about which variables can be included in the induction
context. To see what we have in mind with this, recall that we allowed in the
induction context only variables that are in binding position. However there are
examples where this is too restrictive: for example Crary gives in [4, Page 231]
the following mutual inductive definition for the judgements Γ � s ⇔ t : T
and Γ � p ↔ q : T (they represent a type-driven equivalence algorithm for
lambda-terms with constants):

s ⇓ p t ⇓ q Γ � p ↔ q : T

Γ � s ⇔ t : b
Ae1

(x : T1) ::Γ � s x ⇔ t x :T2

Γ � s ⇔ t : T1 → T2
Ae2

Γ � s ⇔ t : unit
Ae3

(x : T ) ∈ Γ

Γ � x ↔ x : T
Pe1

Γ � p ↔ q : T1 → T2 Γ � s ↔ t : T1

Γ � p s ↔ q t : T2
Pe2

Γ � k ↔ k : b
Pe3

What is interesting is that these rules do not contain any variable in binding
position. Still, in some proofs by induction over those rules one wants to be
able to assume that the variable x in the rule Ae2 satisfies certain freshness
conditions. Our implementation already deals with this situation by explicitly
giving the information that x should appear in the induction context. However,
we have not yet worked out the theory.

8 Conclusion

In the POPLmark Challenge [1], the proof of the weakening lemma is described
as a “straightforward induction”. In fact, mechanising this informal proof is
not straightforward at all (see for example [6,5,8]). We have given a novel rule
induction principle for the typing relation that makes proving the weakening
lemma mechanically as simple as performing the informal proof.

Importantly, this new principle can be derived from the original inductive
definition of the typing relation in a mechanical way. This method extends our
earlier work [10,7], where we constructed our new induction principles by hand.
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By formally deriving principles that avoid the need to rename bound variables,
we advance the state-of-the-art in mechanical theorem-proving over syntax with
binders. The results of this paper have already been used many times in the
nominal datatype package: for example in the proofs of the CR and SN properties
in the λ-calculus, in proofs about the pi-calculus, in proofs about logical relations
and in several proofs from structural operational semantics.

The fact that our technique may require users to cast some inductive defi-
nitions in alternative forms is unfortunate. In the earlier [10], our hand-proofs
correctly derived a vc-compatible principle from the original definition of −→1−→;
we hope that future work will automatically justify comparable derivations.

Acknowledgements. We are very grateful to Andrew Pitts for the many dis-
cussions with him on the subject of this paper.
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Abstract. We present a uniform algorithm for proving automatically a
fairly wide class of elementary facts connected with integer divisibility.
The assertions that can be handled are those with a limited quantifier
structure involving addition, multiplication and certain number-theoretic
predicates such as ‘divisible by’, ‘congruent’ and ‘coprime’; one notable
example in this class is the Chinese Remainder Theorem (for a specific
number of moduli). The method is based on a reduction to ideal mem-
bership assertions that are then solved using Gröbner bases. As well as
illustrating the usefulness of the procedure on examples, and considering
some extensions, we prove a limited form of completeness for properties
that hold in all rings.

1 Introduction

Various classes of mathematical problems, when expressed in formal logic, can
be solved automatically by suitable algorithms. This is often valuable, if only for
dealing with relatively uninteresting subtasks of larger formal proofs. Some al-
gorithms implement decision procedures for theories or logical fragments known
to be decidable, such as Cooper’s algorithm [7] for Presburger arithmetic [17].
Others are more heuristic in nature, e.g. automated induction proofs employ-
ing conjecture generalization [4], though many of these can be understood in a
general framework of proof planning [6].

Here we present a new algorithm for a useful class of elementary number-
theoretic properties. We will introduce and motivate the procedure by focusing
on the integers Z, though we will see later that the procedure is only complete
for properties that hold in the class of all rings. (Thus it is perhaps neither a
heuristic method nor a decision procedure, but rather a heuristic application
of a decision procedure outside its domain of completeness.) The formulas that
can be handled are expressed in a first-order language. The terms can be built
up using integer constants, negation, addition, subtraction and multiplication,
as well as exponentiation with constant nonnegative exponents. (For example,
2x2− y3(w−42z)9 is allowed, but not xy.) The formulas can be built from these
terms using the equality symbol as well as three ‘divisibility’ relationships, all of
which we consider as mere shorthands for other formulas using equality as the
only predicate:

F. Pfenning (Ed.): CADE 2007, LNAI 4603, pp. 51–66, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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– s | t, read ‘s divides t’ abbreviates ∃d. t = sd
– s ≡ t (mod u), read ‘s is congruent to t modulo u’, abbreviates ∃d.t−s = ud
– coprime(s, t), read ‘s and t are coprime’, abbreviates ∃x y. sx + ty = 1.

Over the integers, coprime(m,n) holds precisely if m and n have no common
factors besides ±1. This equivalence is proved in many elementary number theory
texts [2,8].

We attempt to explain any algebraic terminology as it is used, but a reader
may find it helpful to refer to an algebra textbook such as [21] for more on rings,
polynomials and ideals. It is worth noting that we tend to blur the distinction
between three distinct notions of ‘polynomial’: (i) a first-order formula in the
language of rings, (ii) a polynomial itself as an algebraic object, and (iii) a
polynomial function or its evaluation for a specific argument. When we want
to emphasize the polynomial as a function we tend to write the arguments (so
p(x) rather than just p), and when treating it as an element of the ring of
polynomials we tend to omit arguments, and perhaps emphasize that equations
are to be understood as polynomial identities. Sometimes, however, we write
the arguments just to emphasize which variables are involved in the polynomial.
Over an infinite base ring such as Z, two polynomials are equal as algebraic
objects (p = q) if and only if the associated functions are equal on all arguments
(∀x. p(x) = q(x)). By contrast, over a 2-element ring the polynomials x2 +x and
0 are considered distinct even though they determine the same function.

2 Example

We will explain the procedure by a typical example first, proving this ‘cancella-
tion’ property for congruences:

∀a n x y. ax ≡ ay (mod n) ∧ coprime(a, n) ⇒ x ≡ y (mod n)

The first step is to expand away the number-theoretic predicates:

∀a n x y. (∃d. ay − ax = nd)∧
(∃u v. au + nv = 1)
⇒ (∃e. y − x = ne)

and we then pull out the existential quantifiers in the antecedent:

∀a n x y d u v. ay − ax = nd ∧ au + nv = 1 ⇒ ∃e. y − x = ne

We prove this by proving something related, but in general stronger, namely that
over the ring Z[a, n, x, y, d, u, v] the polynomial y − x is contained in the ideal
generated by the polynomials in the antecedent (ay− ax− nd and au+ nv− 1)
and the multiplier (n) for the existentially quantified variable:

(y − x) ∈ Id 〈ay − ax− nd, au + nv − 1, n〉
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i.e. that there exist ‘cofactor’ polynomials p(a, n, x, y, d, u, v), q(a, n, x, y, d, u, v)
and r(a, n, x, y, d, u, v) such that the following is a polynomial identity:

y − x = (ay − ax− nd)p(a, n, x, y, d, u, v)+
(au + nv − 1)q(a, n, x, y, d, u, v)+
nr(a, n, x, y, d, u, v)

To see that the identity implies the original claim, note that if ay − ax = nd
and au + nv = 1, the identity reduces to y − x = nr(a, n, x, y, d, u, v), which
certainly implies ∃e. y − x = ne. In fact, it shows something stronger: there is a
polynomial expression for the witness e in terms of the other variables.

To prove the ideal membership goal, the most natural and straightforward
technique is to apply Buchberger’s algorithm [5] to find a Gröbner basis for
the ideal, and then show that y − x reduces to 0 w.r.t. this basis. A suitably
instrumented version of the algorithm can actually produce the explicit cofactor
polynomials, giving a simple ‘certificate’ of the result. For our example, one
natural possibility for the cofactors is:

p(a, n, x, y, d, u, v) = u

q(a, n, x, y, d, u, v) = x− y

r(a, n, x, y, d, u, v) = ud + vy − vx

We can then verify the polynomial identity simply by normalizing both sides in
some reasonable way.

3 Detailed Procedure

We aim to reduce the initial problem to one or more sub-problems of the following
standard form, where the ei(x), ai(x) and pij(x) are polynomials in variables
x = x1, . . . , xl:

∀x.
m∧

i=1

ei(x) = 0 ⇒ ∃y1 · · · yn. p11(x)y1 + · · · + p1n(x)yn = a1(x)∧
· · · ∧
pk1(x)y1 + · · · + pkn(x)yn = ak(x)

We need to test whether this formula holds over the integers, and we do it
by testing the following ideal membership problem in Z[x1, . . . , xl, u1, . . . , uk],
where the ui are fresh variables not occurring in the original problem:

(a1u1 + · · · + akuk)
∈ Id 〈e1, . . . , em, (p11u1 + · · · + pk1uk), . . . (p1nu1 + · · · + pknuk)〉

(Note that we are considering integer polynomials only in the ideal member-
ship.) In the common special case k = 1, as in the example of the previous
section, we do not need to introduce the auxiliary variables, but can use simply:

a1 ∈ Id 〈e1, . . . , em, p11, . . . , p1n〉
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3.1 Incompleteness over the Integers

The standard problem above takes in the degenerate case (n = 0 and k =
0) of proving that a Diophantine equation has no solutions over the integers:
∀x.

∧m
i=1 ei(x) = 0 ⇒ ⊥. Since this is known to be undecidable [16] while ideal

membership over the integers is decidable [1] it follows that our test based on
ideal membership cannot be both sound and complete. And indeed, it is not
hard to find examples of incompleteness, where the existential assertion holds
over Z but the corresponding ideal membership does not. The following are all
variations on a theme that x2 + x is always even:

– ∀x. ∃a. x2 + x = 2a holds over the integers, yet (x2 + x) �∈ Id 〈2〉.
– ∀x y. y = 1 ⇒ ∃a. x2 + x = (y + 1)a holds over the integers, yet (x2 + x) �∈

Id 〈y − 1, y + 1〉
– ∀x y. ∃a b. x2 + x = (y + 1)a + (y − 1)b yet (x2 + x) �∈ Id 〈y − 1, y + 1〉

Nevertheless, we will show (i) that our procedure is sound, and (ii) that it is
complete for properties that hold in all rings, not just in the integers.

3.2 Soundness

Consider first the special case k = 1, when we just test

a1 ∈ Id 〈e1, . . . , em, p11, . . . , p1n〉

If this ideal membership assertion holds, then concretely there are cofactor
polynomials f1, . . . , fm, g1, . . . , gn such that

e1f1 + · · · + emfm + p11g1 + · · · + p1ngn = a1

Evaluating when
∧m

i=1 ei(x) = 0 we get

p11(x)g1(x) + · · · + p1n(x)gn(x) = a1(x)

which does indeed show that there exist y1, . . . , yn such that

p11(x)yn + · · · + p1n(x)yn = a1(x)

and from the cofactors in the ideal membership, we obtain a simple and ex-
plicit proof of the original formula, with witnesses for the existentially quantified
variables that are polynomials in the other variables. In the general case (not
requiring k = 1), suppose that the ideal membership holds:

(a1u1 + · · · + akuk)
∈ Id 〈e1, . . . , em, (p11u1 + · · · + pk1uk), . . . , (p1nu1 + · · · + pknuk)〉

which means explicitly we have a polynomial identity of the form:

(a1u1 + · · · + akuk) =
e1(x)r1(x, u) + · · · + em(x)rm(x, u)+
(p11u1 + · · · + pk1uk)q1(x, u) + · · · + (p1nu1 + · · · + pknuk)qn(x, u)
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with the qi and ri polynomials in Z[x1, . . . , xl, u1, . . . , uk]. Let us separate each
qi(x, u) into:

qi(x, u) = ci(x) + di(x, u)

where ci(x) does not involve any of the ui, and all monomials in di(x, u) contain
at least one of the ui. Similarly we decompose ri(x, u) into:

ri(x, u) = si(x, u) + ti(x, u)

where each monomial in si(x, u) has degree 1 in exactly one of the ui (e.g. 3u1

or x2
5u2) and each monomial in ti(x, u) either does not involve any ui, involves

more than one, or has a degree higher than 1 in one of them (e.g. 42, 7u1u2,
xu2

3). Now:

(a1u1 + · · · + akuk) =
e1(x)s1(x, u) + · · · + em(x)sm(x, u)+
e1(x)t1(x, u) + · · · + em(x)tm(x, u)+
(p11u1 + · · · + pk1uk)c1(x) + · · · + (p1nu1 + · · · + pknuk)cn(x)+
(p11u1 + · · · + pk1uk)d1(x, u) + · · · + (p1nu1 + · · · + pknuk)dn(x, u)

Note that all terms on the LHS have degree exactly 1 in just one of the ui.
Thus all terms on the right that are not of that form must cancel, leaving:

(a1u1 + · · · + akuk) =
e1(x)s1(x, u) + · · · + em(x)sm(x, u)+
(p11u1 + · · · + pk1uk)c1(x) + · · · + (p1nu1 + · · · + pknuk)cn(x)

Evaluating when
∧m

i=1 ei(x) = 0 gives:

(a1u1 + · · · + akuk) =
(p11u1 + · · · + pk1uk)c1(x) + · · · + (p1nu1 + · · · + pknuk)cn(x)

Successively setting ui = 1 and uj = 0 for all j �= i, we find that for all
1 ≤ i ≤ k the following holds:

ai = c1(x)pi1(x) + · · · + cn(x)pin(x)

which does indeed show that there exist y1, . . . , yn such that

p11(x)y1 + · · · + p1n(x)yn = a1(x)∧
· · · ∧
pk1(x)y1 + · · · + pkn(x)yn = ak(x)

and once again we obtain explicit polynomials yi = ci(x) as witnesses.

3.3 Completeness over All Rings

We will now prove that the ideal membership assertion is equivalent to the
validity of the starting formula in all rings (as usual, we mean commutative
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rings with 1). The reasoning in the previous section extends easily from Z to
an arbitrary ring, showing that the ideal membership implies the validity of the
starting formula in all rings. To establish the other direction, we first recall that
a Horn clause is a first-order formula that is either of the form:

∀v1, . . . , vn. P1[v1, . . . , vn] ∧ · · · ∧ Pn[v1, . . . , vn] ⇒ Q[v1, . . . , vn]

including the degenerate case

∀v1, . . . , vn. Q[v1, . . . , vn]

or
∀v1, . . . , vn. P1[v1, . . . , vn] ∧ · · · ∧ Pn[v1, . . . , vn] ⇒ ⊥

where Q[v1, . . . , vn] and all Pi[v1, . . . , vn] are atomic formulas. In particular, the
axioms for commutative rings with 1 are just (implicitly universally quantified)
equations, and are therefore Horn clauses. In fact, all truly algebraic axioms are
just universally quantified equations, and thus Horn clauses. For example, we can
add the infinite set of axioms xk = 0 ⇒ x = 0 for all k ≥ 1 to axiomatize the class
of reduced rings (rings without nilpotent elements). However neither the integral
domain axiom xy = 0 ⇒ x = 0∨y = 0 nor the field axiom ¬(x = 0) ⇒ x−1x = 1
is a Horn clause, and so the special results we will note for Horn clause theories
are not directly applicable, though analogous results can be derived for general
theories by considering canonical resolution proofs [14].

In order to state these special properties of Horn clause theories, it is more
convenient to consider first-order logic without special treatment of equality. By
a standard result [13], a formula is valid in first-order logic with equality iff
it is a general first-order consequence of the set of equivalence and congruence
properties of equality for the language at issue. In particular, a formula holds in
all rings iff it is a first-order consequence of the following axioms, all of which
are Horn clauses:

x + y = y + x
x + (y + z) = (x + y) + z
x + 0 = x
x + (−x) = 0
xy = yx
x(yz) = (xy)z
x1 = x
x(y + z) = xy + xz
x = x
x = y ⇒ y = x
x = y ∧ y = z ⇒ x = z
x = x′ ⇒ −x = −x′

x = x′ ∧ y = y′ ⇒ x + y = x′ + y′

x = x′ ∧ y = y′ ⇒ xy = x′y′

If Γ is a set of Horn clauses and A an atomic formula or ⊥, then Γ � A if
and only if there is a ‘Prolog-style’ proof of A from Γ , i.e. a tree whose nodes
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are atomic formulas, with A as the top node, such that for every node B in the
tree, there is a clause in the axiom set that can be instantiated so its conclusion
is B and its antecedent atoms are the nodes below B in the tree [10]. This
special canonical proof format for deductions from Horn clauses allows us to
deduce some interesting consequences. We start with a theorem due to Simmons
[19,12,21]:

Theorem 1. Let p1(x), . . . , pr(x) and p(x) be polynomials with integer coeffi-
cients over the variables x = x1, . . . , xl. Then the following holds in all commu-
tative rings with 1:

∀x1, . . . , xl. p1(x) = 0 ∧ · · · ∧ pr(x) = 0 ⇒ p(x) = 0

iff the following ideal membership holds over Z[x]:

p ∈ Id 〈p1, . . . , pr〉

in other words, if there are cofactor polynomials q1(x), . . . , qr(x) with integer
coefficients such that the following is a polynomial identity:

p(x) = p1(x)q1(x) + · · · + pr(x)qr(x)

Proof. (Sketch.) The bottom-to-top direction is immediate, because given that
identity, the right-hand side collapses to zero when all the pi(x) are zero. Con-
versely, if the top result holds in all rings, then there is a Prolog-style proof
from the Horn clause axioms for rings and equality. By induction on this tree,
for every equation s(x) = t(x) deduced, s(x) − t(x) is in the ideal generated by
p1, . . . , pr. ��

The following is essentially Theorem 7.0.6 (“Horn-Herbrand theorem”) in [10]. It
states that for deduction from Horn clauses we can strengthen the usual classical
Herbrand theorem to one with the same ‘existence property’ as in intuitionistic
logic:

Theorem 2. Let T be a set of Horn clauses and Ai[y1, . . . , yn] atomic formulas
(in a language with at least one individual constant). Then

T |= ∃y1, . . . , yn. A1[y1, . . . , yn] ∧ · · · ∧Ak[y1, . . . , yn]

(where ‘Γ |= P ’ means ‘P is a first-order consequence of Γ ’) if and only if there
are ground terms t1, . . . , tn in the language such that:

T |= A1[t1, . . . , tn] ∧ · · · ∧Ak[t1, . . . , tn]

Proof. (Sketch.) The bottom-to-top direction is immediate. For the other direc-
tion, note that the top is equivalent to

T ∪ {(∀y1, . . . , yn. A1[y1, . . . , yn] ∧ · · · ∧Ak[y1, . . . , yn] ⇒ ⊥)} |= ⊥

The usual ‘Prolog style’ backchaining proof for Horn clauses can only apply
the extra clause once, and will give rise to the corresponding instantiation. ��

Thus we can deduce a corollary:
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Theorem 3. The following formula:

∀x.
m∧

i=1

ei(x) = 0 ⇒ ∃y1 · · · yn. p11(x)y1 + · · · + p1n(x)yn = a1(x)∧
· · · ∧
pk1(x)y1 + · · · + pkn(x)yn = ak(x)

holds in all rings iff there are terms q1(x),. . . ,qn(x) in the language of rings (i.e.
polynomials with integer coefficients) such that the following holds in all rings:

∀x.
m∧

i=1

ei(x) = 0 ⇒ p11(x)q1(x) + · · · + p1n(x)qn(x) = a1(x)∧
· · · ∧
pk1(x)q1(x) + · · · + pkn(x)qn(x) = ak(x)

Proof. We can replace the variables x by constants, and regard the ei(x) as new
(Horn) axioms. The result is then an immediate consequence of Theorem 2 and
the Horn nature of the ring and equality axioms. ��

This leads us to the following:

Theorem 4. The following formula:

∀x.
m∧

i=1

ei(x) = 0 ⇒ ∃y1 · · · yn. p11(x)y1 + · · · + p1n(x)yn = a1(x)∧
· · · ∧
pk1(x)y1 + · · · + pkn(x)yn = ak(x)

holds in all rings iff there are terms q1(x),. . . ,qn(x) and r1j(x),. . . ,rmj(x) in
the language of rings (i.e. polynomials with integer coefficients) such that the
following is a polynomial identity for each j with 1 ≤ j ≤ k:

e1(x)r1j(x) + · · · + em(x)rmj(x) + pj1(x)q1(x) + · · · + pjn(x)qn(x) = aj(x)

Proof. Just combine the previous theorem and Theorem 1. ��

The case k = 1 takes a particularly simple form, which was used in the motivating
example of the previous section:

Theorem 5. The formula:

∀x.
m∧

i=1

ei(x) = 0 ⇒ ∃y1 · · · yn. p1(x)y1 + · · · + pn(x)yn = a(x)

holds in all rings iff the following ideal membership holds for integer polynomials:

a ∈ Id 〈e1, . . . , em, p1, . . . , pn〉

Proof. Just a special case of the previous theorem. ��
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The conclusion of Theorem 4 for general k is not just a conjunction of indepen-
dent ideal membership assertions, because we need to constrain the cofactors
qi(x) to be the same for each one. However, by introducing auxiliary variables
u1, . . . , uk we will show:

Theorem 6. The following formula:

∀x.
m∧

i=1

ei(x) = 0 ⇒ ∃y1 · · · yn. p11(x)y1 + · · · + p1n(x)yn = a1(x)∧
· · · ∧
pk1(x)y1 + · · · + pkn(x)yn = ak(x)

holds in all rings iff the following ideal membership assertion, where the ui are fresh
variables not occurring in the original problem, holds in Z[x1, . . . , xl, u1, . . . , uk]:

(a1u1 + · · · + akuk)
∈ Id 〈e1, . . . , em, (p11u1 + · · · + pk1uk), (p1nu1 + · · · + pknuk)〉

Proof. The bottom-to-top direction was dealt with above under ‘soundness’. For
the other direction, note that by Theorem 4, the initial assertion is equivalent to
the existence of q1(x),. . . ,qn(x) and r1j(x),. . . ,rmj(x) such that for all 1 ≤ j ≤ k:

e1(x)r1j(x) + · · · + em(x)rmj(x) + pj1(x)q1(x) + · · · + pjn(x)qn(x) = aj(x)

Multiplying this identity by uj and summing over 1 ≤ j ≤ k we obtain

a1u1 + · · · + akuk =
e1(x)(u1r11(x) + · · · + ukr1k(x)) + · · ·+
em(x)(u1rm1(x) + · · · + ukrmk(x))+
(p11u1 + · · · + pk1uk)q1(x) + · · · + (p1nu1 + · · · + pknuk)qn(x)

which verifies the claimed ideal membership. ��

4 Reduction to Standard Form

In reducing the initial problem to standard form, we expand the number-
theoretic predicates into existentially quantified equations. Note that the equiv-
alence assumed between ∃x y. sx + ty = 1 and coprime(s, t), in the usual sense
of having no non-unit common factors, does not hold over an arbitrary ring
(though it does in all principal ideal domains). For example, x + 1 and 2 are
coprime over the polynomial ring Z[x], but there are no integer polynomials p
and q such that (x + 1)p(x) + 2q(x) = 1. This means that even though the
core reduction is complete w.r.t. the class of all rings, the initial processing into
standard form relies on additional axioms. Moreover, we will sometimes want
to exploit the integral domain property st = 0 ⇔ s = 0 ∨ t = 0 (see below),
which also fails in an arbitrary ring (e.g. 2 · 3 = 0 in Z/6 but 2 �= 0 and 3 �= 0).
This mismatch between a preprocessing step valid only in certain rings and a
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core procedure sound and complete with respect to all rings gives our overall
procedure a somewhat heuristic flavour.

But once we accept the mappings of the basic concepts down to algebraic
statements, then we can translate a wide variety of assertions into the standard
form. In particular, any Horn clause built up from the basic number-theoretic
concepts works, e.g. our first example:

ax ≡ ay (mod n) ∧ coprime(a, n) ⇒ x ≡ y (mod n)

as well as numerous others such as

d|a ∧ d|b ⇒ d|(a− b)
a|b ⇒ (ca)|(cb)
x|y ∧ y|z ⇒ x|z
(xd)|a ⇒ d|a
a|b ∧ c|d ⇒ (ac)|(bd)
coprime(d, a) ∧ coprime(d, b) ⇒ coprime(d, ab)
coprime(d, ab) ⇒ coprime(d, a)
m|r ∧ n|r ∧ coprime(m,n) ⇒ (mn)|r
x ≡ x′ (mod n) ∧ y ≡ y′ (mod n) ⇒ xy ≡ x′y′ (mod n)
x ≡ y (mod m) ∧ n|m ⇒ x ≡ y (mod n)
coprime(a, b) ∧ x ≡ y (mod a) ∧ x ≡ y (mod b) ⇒ x ≡ y (mod (ab))
x2 ≡ y2 (mod (x + y))
x2 ≡ a (mod n) ∧ y2 ≡ a (mod n) ⇒ n|((x + y)(x− y))

It is also clear we can solve problems of the form P ⇔ Q by separating them
into P ⇒ Q and Q ⇒ P ; more generally we can place a problem in conjunctive
normal form and split up the conjuncts. For example, this deals with:

x ≡ y (mod n) ⇒ (coprime(n, x) ⇔ coprime(n, y))
x ≡ 0 (mod n) ⇔ n|x
x + a ≡ y + a (mod n) ⇔ x ≡ y (mod n)
coprime(xy, x2 + y2) ⇔ coprime(x, y)

Additional negated equations can easily be absorbed into the conclusion using
the integral domain property, passing from ¬(t = 0) ∧ P ⇒ ∃y. s(y) = 0 to
P ⇒ ∃y. s(y)t = 0, which allows us to handle things like:

¬(c = 0) ⇒ ((ca)|(cb) ⇔ a|b)

Perhaps more interesting is that we can even handle existential quantifiers
present in the original problem before the algebraic reduction, e.g.

coprime(a, n) ⇒ ∃x. ax ≡ b (mod n)

We will treat a somewhat more general version of that problem in detail below
(‘extension with GCDs’). Here we will run through the basic binary Chinese
Remainder Theorem, which also has an existential quantifier in the conclusion:

∀a b u v. coprime(a, b) ⇒ ∃x. x ≡ u (mod a) ∧ x ≡ v (mod b)
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If we proceed as usual we obtain the goal:

∀a b u v w z. aw + bz = 1 ⇒ ∃x d e. u− x = da ∧ v − x = eb

Since we have multiple equations under the existential quantifier, the reduc-
tion to ideal membership introduces two new variables r and s:

(ur + vs) ∈ Id 〈aw + bz − 1, r + s, ar, bs〉

and this is true since we have

ur+vs = (aw+bz−1)(rv−ru)+(r+s)(v+buz−bvz)+(ar)(uw−vw)+(bs)(vz−uz)

5 Extensions

Although the basic procedure above is already quite powerful, we can extend its
scope by a number of perhaps ad hoc but quite natural refinements.

5.1 Introduction of GCDs

It is often convenient to express properties using greatest common divisors
(GCDs). One simple approach for handling gcd(a, b) is to replace it with a vari-
able g while adding as an additional hypothesis a characterizing theorem:

g | a ∧ g | b ∧ (∃u v. au + bv = g)

This does not characterize g uniquely because of the ambiguity over sign (or
multiplication by a unit in a general ring), but any divisibility relationships are
also invariant under such a change, so this is not a severe obstacle. For example,
consider proving a basic condition for the solvability of a congruence:

gcd(a, n) | b ⇒ ∃x. ax ≡ b (mod n)

After the initial augmentation we get:

g | a ∧ g | n ∧ (∃u v. au + nv = g) ∧ g | b ⇒ ∃x. ax ≡ b (mod n)

and the usual expansion, normalization and prenexing yields:

gq = a ∧ gr = n ∧ au + nv = g ∧ gs = b ⇒ ∃x y. ax + yn = b

giving the ideal membership question

b ∈ Id 〈gq − a, gr − n, au + nv − g, gs− b, a, n〉

which is true since

b = (gq − a)0 + (gr − n)0 + (au + nv − g)(−s) + (gs− b)(−1) + a(su) + n(sv)

The converse implication ∃x. ax ≡ b (mod n) ⇒ gcd(a, n) | b can be proved
in a similar way.
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5.2 Elimination Using Linear Equations

For a motivating example here, consider again the binary Chinese Remainder
Theorem:

∀a b u v. coprime(a, b) ⇒ ∃x. x ≡ u (mod a) ∧ x ≡ v (mod b)

If we proceed as before we obtain the goal:

∀a b u v w z. aw + bz = 1 ⇒ ∃x d e. u− x = da ∧ v − x = eb

Earlier, we introduced auxiliary variables to handle the double equation. How-
ever, in this case it is fairly obvious that we can get an equivalent that just
eliminates x between the two equations:

∀a b u v w z. aw + bz = 1 ⇒ ∃d e. v − u = eb− da

This gives a reduction to the ideal membership goal:

(v − u) ∈ Id 〈aw + bz − 1, b,−a〉

which is true since

v − u = (aw + bz − 1)(u− v) + b(zv − zu) + −a(wu− wv)

This elimination does not help with the ternary Chinese Remainder Theorem,
whereas the method using auxiliary variables still works perfectly. However, on
a heuristic level it seems prudent always to eliminate existentially quantified
variables when there is a simple linear equation that allows us to do so.

5.3 Sequential Treatment of Equations

Our standard form requires each equation to be linear in the existentially quan-
tified variables. However, note that linearity is irrelevant to Theorem 2, and only
appears as a restriction in order to reduce witness-finding to ideal membership.
So we can consider more general means of finding witnesses by building in tech-
niques for nonlinearity. Elimination using linear equations, as in the previous
example, may enable us to get round this restriction in some cases. Otherwise,
we can at least find witnesses for those equations we can, and hope that they
will then in turn allow us to solve the overall problem. For example, consider:

gcd(a, b) �= 0 ⇒ ∃a′ b′. a = a′ gcd(a, b) ∧ b = b′ gcd(a, b) ∧ coprime(a′, b′)

Proceeding in the usual way, eliminating number-theoretic concepts, we obtain:

a = gx∧b = gy∧g = ua+vb∧¬(g = 0) ⇒ ∃a′ b′ w z.a = a′g∧b=b′g∧a′w+b′z=1

and as usual we eliminate the negated equational hypothesis using the integral
domain property:
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a = gx∧b = gy∧g = ua+vb ⇒ ∃a′ b′ w z.ag = a′g2∧bg = b′g2∧a′wg+b′zg = g

This does not fall into our subset because of the nonlinearity: in a′wg we have
two existentially quantified variables a′ and w multiplied together. On the other
hand, we might heuristically try to find witnesses by considering the equations
one at a time. First

a = gx ∧ b = gy ∧ g = ua + vb ⇒ ∃a′. ag = a′g2

gives the ideal membership assertion

(ag) ∈ Id
〈
gx− a, gy − b, ua+ vb− g, g2

〉

from whose solution
ag = (gx− a)(−g) + g2x

we extract the witness a′ = x. Similarly solving the next equation gives us b′ = y.
After inserting those, two equations in the problem are trivial and everything
reduces to:

a = gx ∧ b = gy ∧ g = ua + vb ⇒ ∃w z. xwg + yzg = g

giving the ideal membership

g ∈ Id 〈gx− a, gy − b, ua+ vb− g, xg, yg〉

which is true since

g = (gx− a)(−u) + (gy − b)(−v) + (ua + vb− g)(−1) + (xg)u + (yg)v

and in particular we obtain the witnesses w = u, z = v.

6 Implementation

We have implemented a simple prototype of the routine, containing fewer than
100 lines of code, in the HOL Light theorem prover [9]; in version 2.20, it is
included in the standard release. The implemented version does not yet use the
extension to multiple equations using auxiliary variables, and some of the initial
normalization is a little ad hoc. But it does include all the extensions in the
previous section, and all the examples we have mentioned in this paper can
be proved automatically by it. Here is a typical interaction, proving a slight
generalization of the binary Chinese remainder theorem, not assuming that the
moduli are coprime: if a1 ≡ a2 (mod gcd(n1, n2)) then there is an x such that
x ≡ a1 (mod n1) and x ≡ a2 (mod n2). The user passes the desired result
as a parameter to INTEGER_RULE on the first line, and after some informative
messages, the required theorem is proved automatically:
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# INTEGER_RULE
‘!a1 a2 n1 n2:int.

(a1 == a2) (mod (gcd(n1,n2)))
==> ?x. (x == a1) (mod n1) /\ (x == a2) (mod n2)‘;;

4 basis elements and 1 critical pairs
5 basis elements and 0 critical pairs
1 basis elements and 0 critical pairs
Translating certificate to HOL inferences
val it : thm =

|- !a1 a2 n1 n2.
(a1 == a2) (mod gcd (n1,n2))
==> (?x. (x == a1) (mod n1) /\ (x == a2) (mod n2))

We just use the normal Buchberger algorithm for polynomial ideals over Q,
implemented in HOL via int_ideal_cofactors. Properly speaking, we should
use a version of Buchberger’s algorithm tailored to the ring Z [11]. For example,
consider proving just x+y = 0∧x−y = 0 ⇒ x = 0. This does not hold in all rings
(e.g. set x = y = 1 in the integers modulo 2). The Gröbner basis algorithm over
the rationals, however, would appear to prove it giving coefficients of 1/2 in the
cofactors. However, testing ideal membership over Z is in general somewhat more
difficult [1], and we have found almost no cases where the distinction mattered
(most problems involve no explicit constants |c| > 1, which helps). Because the
actual HOL Light proof proceeds rigorously by logical inference, no false result
could be generated, but the proof construction step will fail if the ideal cofactors
contain rationals.

7 Conclusions and Related Work

We are not aware of any related work on automating problems involving both
multiplication and ‘divisibility’ concepts. Indeed, as we have noted, the problem
is in general unsolvable and our procedure, though remarkably effective, is a
combination of a preprocessing step tailored to the integers followed by a decision
procedure complete only over the class of rings in general.

There are established results for decidability of universal linear formulas in
the language of Presburger arithmetic including divisibility by non-constants
[3,15], though we are not aware of any actual implementation. Allowing a richer
quantifier structure soon leads to undecidability, even in the linear case; for
example multiplication can be defined in terms of divisibility, successor and 1
only [18], so even that theory is undecidable. In contrast, we allow more or less
unrestricted use of multiplication, which in principle leads to undecidability. But
the approach of seeking properties true in all rings seems to work very well.

We have found the procedure very useful in practice. Just as it is convenient to
have automated provers for routine facts of linear arithmetic and propositional
tautologies, being able to generate routine lemmas about divisibility with so
little effort is a considerable help in proofs. In fact, we were inspired to create
this procedure during the formal verification of an arithmetic algorithm, when
we found ourselves repeatedly proving trivialities about divisibility by hand. The
procedure has also been useful in some HOL proofs in pure mathematics, e.g.
quadratic reciprocity.
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In all the examples we have tried, the ideal membership goals are easy: our
straightforward Gröbner basis algorithm works in a fraction of a second. It might
be interesting to try some large (even if artificial) problems, such as n-ary Chinese
remainder theorems for large n. Perhaps in such cases more care would be needed,
e.g. over the monomial order in the Gröbner basis algorithm. At present we order
the monomials by total degree then reverse lexicographic order of variables [21],
ordering the variables themselves alphabetically. Other optimizations might be
worthwhile, e.g. using reduced Gröbner bases or constructing the basis more
incrementally when dealing with equations sequentially.

Also, it would be more satisfactory to use a Gröbner basis algorithm tailored
to the integers. This would open up the possibility of dealing with a wider
range of problems involving specific numbers. It is even conceivable that the
approach could then be used to reason about machine arithmetic modulo 2n

in a useful way. Perhaps the results here could also be used in other situations
where restricted quantifier instantiation is needed, e.g. checking that universally
quantified polynomial equations are invariant over a program block.
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Abstract. We present a novel reasoning calculus for Description Logics
(DLs)—knowledge representation formalisms with applications in areas
such as the Semantic Web. In order to reduce the nondeterminism due
to general inclusion axioms, we base our calculus on hypertableau and
hyperresolution calculi, which we extend with a blocking condition to en-
sure termination. To prevent the calculus from generating large models,
we introduce “anywhere” pairwise blocking. Our preliminary implementa-
tion shows significant performance improvements on several well-known
ontologies. To the best of our knowledge, our reasoner is currently the
only one that can classify the original version of the GALEN terminology.

1 Introduction

Description Logics (DLs) [2]—knowledge representation formalisms with well-
understood formal properties—have been applied to numerous problems in com-
puter science. A central component of most DL applications is an efficient and
scalable reasoner. Modern reasoners, such as Pellet [15], FaCT++ [21], and
RACER [8], are typically based on tableau calculi [2, Chapter 2]. These calculi
demonstrate (un)satisfiability of a knowledge base K via a constructive search
for an abstraction of a model of K. Numerous optimizations have been developed
in an effort to reduce the size of the search space [2, Chapter 9].

Despite major advances in recent years, ontologies are still encountered in
practice that cannot be handled by existing reasoners. This is mainly because
many different models might need to be examined, and each model might be
very large [2, Chapter 3]. The former problem is due to or-branching: given a
disjunctive assertion C �D(s), a tableau algorithm nondeterministically guesses
that either C(s) or D(s) holds. To show unsatisfiability of K, every possible guess
must lead to a contradiction: if assuming C(s) leads to a contradiction, the al-
gorithm must backtrack and assume D(s). This can clearly result in exponential
behavior. General concept inclusions (GCIs)—axioms of the form C � D—are
the main source of disjunctions: to ensure that C � D holds, a tableau algo-
rithm adds a disjunction ¬C �D(s) to each individual s in the model. Various
absorption optimizations [2, Chapter 9][11,20] reduce the high degree of nonde-
terminism in such a procedure; however, they often fail to eliminate all sources of
nondeterminism. This may be the case even for ontologies that can be translated
into Horn clauses (such as GALEN, NCI, and SNOMED), for which reasoning
without any nondeterminism should be possible in principle.
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The size of the model being constructed is determined by and-branching—
the expansion of a model due to existential quantifiers. Apart from memory
consumption problems, and-branching can increase or-branching by increasing
the number of individuals to which GCIs are applied.

In this paper, we present a reasoning calculus that addresses both sources
of complexity. We focus on the DL SHIQ; however, our calculus should be
applicable to most DLs with known tableau algorithms. A SHIQ knowledge
base is first preprocessed into DL-clauses—universally quantified implications
containing DL concepts and roles as predicates. The main inference rule for
DL-clauses is hyperresolution: an atom from the head of a DL clause is derived
only if all atoms from the clause body have been derived. On Horn clauses, this
calculus is deterministic, which eliminates all or-branching. This is in contrast
with existing DL tableau calculi, which often behave nondeterministically on
Horn problems. Our algorithm can thus be viewed as a hybrid of resolution and
tableau, and is related to the hypertableau [3] and hyperresolution [17] calculi.

Hyperresolution decides many first-order fragments (see, e.g., [6,5] for an
overview). Unlike most of these fragments, SHIQ allows for cyclic GCIs of the
form C � ∃R.C, on which hyperresolution can generate infinite paths of succes-
sors. Therefore, to ensure termination, we use the pairwise blocking technique
from [10] to detect cyclic computations. Due to hyper-inferences, the soundness
and correctness proofs from [10] do not carry over to our calculus. In fact, certain
simpler blocking conditions for weaker DLs cannot be applied in a straightfor-
ward manner in our setting. To limit and-branching, we extend the blocking
condition from [10] to anywhere pairwise blocking: an individual can be blocked
by an individual that is not necessarily an ancestor. This significantly reduces
the sizes of the constructed models. Anywhere blocking has already been used
with subset blocking [1]; however, to the best of our knowledge, it has neither
been used with the more sophisticated pairwise blocking nor tested in practice.

We have implemented our calculus in a new reasoner. Even with a relatively
näıve implementation, our reasoner outperforms existing reasoners on several
real-world ontologies. For example, the deterministic treatment of GCIs signif-
icantly reduces the classification time for the NCI ontology. Furthermore, the
pairwise anywhere blocking strategy seems to be very effective in limiting model
sizes. To the best of our knowledge, our reasoner is currently the only one that
can classify the original version of the GALEN terminology.

2 Preliminaries

The DL SHIQ is defined as follows. For NR a set of atomic roles, the set of
roles is NR ∪ {R− | R ∈ NR}. For R ∈ NR, let Inv(R) = R− and Inv(R−) = R.
An RBox R is a finite set of role inclusion axioms R � S and transitivity axioms
Trans(R), where R and S are roles. Let �∗ be the reflexive transitive closure of
{R � S, Inv(R) � Inv(S) | R � S ∈ R}. A role R is transitive in R if a role S
exists such that S �∗ R, R �∗ S, and either Trans(S) ∈ R or Trans(Inv(S)) ∈ R;
R is simple if no transitive role S exists with S �∗ R.
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Table 1. Model-Theoretic Semantics of SHIQ

Semantics of Roles and Concepts Semantics of Axioms

�I = �I ⊥I = ∅
(¬C)I = �I \ CI (R−)I = {〈y, x〉 | 〈x, y〉 ∈ RI}

(C �D)I = CI ∩ DI (C �D)I = CI ∪DI

(∀R.C)I = {x | ∀y : 〈x, y〉 ∈ RI → y ∈ CI}
(∃R.C)I = {x | ∃y : 〈x, y〉 ∈ RI ∧ y ∈ CI}

(≤ n S.C)I = {x | �{y | 〈x, y〉 ∈ SI ∧ y ∈ CI} ≤ n}
(≥ n S.C)I = {x | �{y | 〈x, y〉 ∈ SI ∧ y ∈ CI} ≥ n}

C ! D ⇒ CI ⊆ DI

R ! S ⇒ RI ⊆ SI

Trans(R) ⇒ (RI)+ ⊆ RI

C(a) ⇒ aI ∈ CI

R(a, b) ⇒ 〈aI , bI〉 ∈ RI

a ≈ b ⇒ aI = bI

a �≈ b ⇒ aI �= bI

Note: �N is the number of elements in N , and R+ is the transitive closure of R.

For a set of atomic concepts NC , the set of concepts is the smallest set con-
taining �, ⊥, A, ¬C, C � D, C � D, ∃R.C, ∀R.C, ≥ nS.C, and ≤ nS.C, for
A ∈ NC , C and D concepts, R a role, S a simple role, and n a nonnegative
integer. A TBox T is a finite set of general concept inclusions (GCIs) C � D.

For a set of individuals NI , an ABox A is a finite set of assertions C(a),
R(a, b), and (in)equalities a ≈ b and a �≈ b, where C is a concept, R is a role,
and a and b are individuals. A SHIQ knowledge base K is a triple (R, T ,A).

An interpretation for K is a tuple I = (�I , ·I), where �I is a nonempty set,
and ·I assigns an element aI ∈ �I to each individual a, a set AI ⊆ �I to each
atomic concept A, and a relation RI ⊆ �I × �I to each atomic role R. The
function ·I is extended to concepts and roles as shown in the left-hand side of
Table 1. I is a model of K, written I |= K, if it satisfies all axioms of K as shown
in the right-hand side of Table 1. The basic inference problem for SHIQ is
checking satisfiability of K—that is, checking whether a model of K exists.

The negation-normal form of a concept C, written nnf(C), is the concept
equivalent to C containing negations only in front of atomic concepts; ¬̇C is an
abbreviation for nnf(¬C). |K| is the size of K with numbers coded in unary. The
DL ALCHIQ is obtained from SHIQ by disallowing transitive roles.

3 Algorithm Overview

To see how GCIs can increase or-branching and thus cause performance prob-
lems, consider the following knowledge base K1:

T1 = {∃R.A � A}
A1 = {¬A(a0), R(a0, b1), R(b1, a1), . . . , R(an−1, bn), R(bn, an), A(an)} (1)

To satisfy the GCI, a tableau algorithm derives (∀R.¬A �A)(ai), 0 ≤ i ≤ n and
(∀R.¬A �A)(bj), 1 ≤ j ≤ n. Assuming that ai are processed before bj, the al-
gorithm derives ∀R.¬A(ai), 0 ≤ i ≤ n and ¬A(bi), 1 ≤ i ≤ n, after which it de-
rives ∀R.¬A(bi), 1 ≤ i ≤ n− 1 and ¬A(ai), 1 ≤ i ≤ n. The ABox now contains
a contradiction on an, so the algorithm flips its guess on bn−1 to A(bn−1). This
generates a contradiction on bn−1, so the algorithm backtracks from all guesses
for bi. Next, the guess on an is changed to A(an) and the work for all bi is re-
peated. This also leads to a contradiction, so the algorithm must revise its guess
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for an−1; but then, two guesses are again possible for an. In general, after revis-
ing a guess for ai, all possibilities for aj, i < j ≤ n, must be reexamined, which
results in exponential behavior. Note that none of the standard backtracking op-
timizations [2, Chapter 9] help us avoid this problem. Namely, the problem arises
because the order in which the individuals are processed makes the guesses on ai

independent from the guesses on aj, i �= j. It is difficult to estimate in advance
which order is optimal; in fact, the processing order is typically determined by
implementation side-effects (such as the data structures used to store K).

The GCI ∃R.A � A is not inherently nondeterministic: it is equivalent to the
Horn clause ∀x, y : [R(x, y) ∧A(y) → A(x)]. By hyperresolution, we derive the
facts A(bn), A(an−1), . . . , A(a0), and eventually we derive a contradiction on a0.
These inferences are deterministic, so we can conclude that K1 is unsatisfiable
without any backtracking. This example suggests that the way tableau algo-
rithms handle GCIs can be “unnecessarily” nondeterministic.

Absorption [2, Chapter 9] reduces the nondeterminism introduced by GCIs.
If possible, it rewrites GCIs as B � C with B an atomic concept; then, during
reasoning, it derives C(s) only if the ABox contains B(s). This localizes the
applicability of the rewritten GCIs. Absorption has been extended to binary ab-
sorption [11], which rewrites a GCI to B1 �B2 � C, and to role absorption [20],
which rewrites a GCI to ∃R.� � C. Note, however, that the axiom ∃R.A � A
cannot be absorbed directly. It can be absorbed if it is rewritten as A � ∀R−.A.
In practice, it is often unclear in advance which combination of transformation
and absorption techniques will yield the best results. Therefore, implemented
absorption algorithms are guided primarily by heuristics.

Our algorithm can be seen as a generalization of absorption. It first trans-
lates GCIs into DL-clauses—universally quantified implications of the form∧
Ui →

∨
Vj , where Ui are of the form R(x, y) or A(x), and Vj are of the form

R(x, y), A(x), ∃R.C(x), ≥ nR.C(x), or x ≈ y. DL-clauses are used in hyperres-
olution inferences, which derive some Vj , but only if all Ui are matched to asser-
tions in the ABox. This calculus is quite different from the standard DL tableau
calculi. For example, it has no choose-rule for qualified number restrictions [19],
and it can handle implications such as R(x, y) → B(x) ∨A(y) (obtained from
∃R.¬A � B) that contain several universally quantified variables.

It is easy to see that and-branching can cause the introduction of infinitely
many new individuals. Consider the following (satisfiable) knowledge base:

T2 =
{
A1 � ≥ 2S.A2, . . . , An−1 � ≥ 2S.An, An � A1,
Ai � (B1 � C1) � . . . � (Bm �Cm) for 1 ≤ i ≤ n

}

A2 = {A1(a)} (2)

To check satisfiability of K2, a tableau algorithm builds a binary tree with each
node labeled with some Ai and an element of Π = {B1, C1} × . . .× {Bm, Cm}.
A näıve algorithm would try to construct an infinite tree, so tableau algorithms
employ blocking [10]: if a node a is labeled with the same concepts as some
ancestor a′ of a, then the existential quantifiers for a are not expanded. This en-
sures termination; however, the number of elements in Π is exponential, so, with
“unlucky” guesses, the tree can be exponential in depth and doubly exponential
in total. In the best case, the algorithm can, for example, choose Bj rather than
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Cj for each 1 ≤ j ≤ m. It then constructs a polynomially deep binary tree and
thus runs in exponential time.

To curb and-branching, we extend pairwise blocking [10] to anywhere pairwise
blocking, in which an individual can be blocked not only by an ancestor, but by
any individual satisfying certain ordering requirements. This reduces the worst-
case complexity of the tableau algorithm by an exponential factor; for example,
on K2, after we exhaust all members of Π , all subsequently created individuals
will be blocked. Such blocking can sometimes also improve the best-case com-
plexity; for example, on K2, our algorithm can create a polynomial path and
then use the individuals from that path to block their siblings.

We explain the remaining two aspects of our algorithm. First, the ∀+-rule
traditionally used to deal with transitive roles does not work in our setting, since
we represent concepts of the form ∀R.C as DL-clauses. Therefore, we encode
transitivity axioms using GCIs in a preprocessing step. Second, to avoid an
exponential blowup in the transformation of GCIs to DL-clauses, we apply the
well-known structural transformation [16]. We take special care, however, to
maximize the likelihood that the result can be translated into Horn DL-clauses.
For example, given � � ∀R.(C � ∀S.¬D), if we replace ∀S.¬D with an atomic
concept Q, we obtain the axioms (3), of which the first one does not give us a
Horn DL-clause. If, however, we replace ∀S.¬D with ¬Q′, we obtain the axioms
(4), which can both be translated into Horn DL-clauses.

� � ∀R.(C �Q) � R(x, y) → C(y) ∨Q(y)
Q � ∀S.¬D � Q(x) ∧ S(x, y) ∧D(y) → ⊥ (3)

� � ∀R.(C � ¬Q′) � R(x, y) ∧Q′(y) → C(y)
¬Q′ � ∀S.¬D � S(x, y) ∧D(y) → Q′(x) (4)

In Section 4.1, we present a version of the structural transformation that replaces
a complex concept with either a positive or negative atomic concept, depend-
ing on the polarity of the concept being replaced. We thus bring GCIs into a
normalized form in which no complex concept occurs under implicit negations;
then, we translate such GCIs into DL-clauses.

4 The Satisfiability Checking Algorithm

4.1 Preprocessing

Elimination of Transitivity Axioms. We first encode a SHIQ knowledge
base K into an equisatisfiable ALCHIQ knowledge base Ω(K). Roughly speak-
ing, an axiom Trans(S) is replaced with axioms ∀R.C � ∀S.(∀S.C), for each R
with S �∗ R and C a “relevant” concept from K. This encoding is polynomial
and has been presented several times for various description [19] and modal [18]
logics. Therefore, we omit the details of the transformation and refer the reader
to [14, Section 5.2]. After this transformation, there is no distinction between
simple and complex roles, so, without loss of generality, in the rest of this paper
we treat ∃R.C as a syntactic shortcut for ≥ 1R.C.
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Table 2. The Functions Used in the Structural Transformation

Δ(K) = {�(ι)} ∪
⋃

α∈R∪A Δ(α) ∪
⋃

C1�C2∈T Δ(� ! nnf(¬C1 � C2))

Δ(� ! C � C′) = Δ(� ! C � αC′ ) ∪
⋃n

i=1 Δ(αC′ ! Ci) for C′ =
�n

i=1 Ci

Δ(� ! C � ∀R.D) = Δ(� ! C � ∀R.αD) ∪Δ(αD ! D)
Δ(� ! C � ≥ n R.D) = Δ(� ! C � ≥ n R.αD) ∪Δ(αD ! D)
Δ(� ! C � ≤ n R.D) = Δ(� ! C � ≤ n R.¬̇αD′) ∪Δ(αD′ ! D′) for D′ = ¬̇D

Δ(D(a)) = {αD(a)} ∪Δ(αD ! D)
Δ(R−(a, b)) = {R(b, a)}

Δ(β) = {β} for any other axiom β

αC =

{
QC if pos(C) = true
¬QC if pos(C) = false

where QC is a fresh atomic concept unique for C

pos(�) = false pos(⊥) = false
pos(A) = true pos(¬A) = false

pos(C1 � C2) = pos(C1) ∨ pos(C2) pos(C1 � C2) = pos(C1) ∨ pos(C2)
pos(∀R.C1) = pos(C1) pos(≤ n R.C1) =

{
pos(¬̇C1) if n = 0
true otherwisepos(≥ n R.C1) = true

Note: A is an atomic concept, Ci are arbitrary concepts, C is a possibly empty
disjunction of arbitrary concepts, D is not a literal concept, and ι is a fresh individual.

Structural Transformation. GCIs are next brought into a certain normalized
form, defined as follows:

Definition 1. For A an atomic concept, the concepts A, ¬A, �, and ⊥ are
called literal concepts. A GCI is normalized if it is of the form � �

⊔n
i=1 Ci,

where each Ci is of the form B, ∀R.B, ≥ nR.B, or ≤ nR.B, and B is a literal
concept. A TBox T is normalized if all GCIs in it are normalized. An ABox A is
normalized if ( i) each concept assertion in A is of the form B(s) or ≥ nR.B(s),
for B a literal concept, ( ii) each role assertion in A contains only atomic roles,
and ( iii) A contains at least one assertion. A knowledge base K is normalized
if T and A are normalized.

A knowledge base K can be brought into normalized form Δ(K) as follows:

Definition 2. For K an ALCHIQ knowledge base, Δ(K) is the knowledge base
computed as shown in Table 2.

The difference between the well-known structural transformation [16] and Defi-
nition 2 is as follows. Assume that we need to rename a nonatomic subconcept
D of C. If pos(D) = false, then D can be converted into clauses with only nega-
tive literals, so we rename D by a negative literal concept ¬QD; otherwise, the
clausification of D requires at least one positive literal, so we rename D by a
positive literal concept QD. In this way, the renaming of D in C does not change
the number of positive literals in the clausal representation of C, so renaming
preserves Horn-ness. Furthermore, for a Horn-SHIQ knowledge base K [12], the
knowledge base Δ(K) is guaranteed also to be a Horn-SHIQ knowledge base
that can be translated into Horn DL-clauses.
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Lemma 1. An ALCHIQ knowledge base K is satisfiable if and only if Δ(K) is
satisfiable; Δ(K) can be computed in polynomial time; and Δ(K) is normalized.

Proof. It is easy to see that our transformation is a syntactic variant of the
structural transformation from [16], from which the first two claims follow. Ob-
serve that Δ essentially rewrites each GCI into a form � �

⊔n
i=1 Ci and then

keeps replacing nested subconcepts of Ci as long as the GCI is not normalized.
Furthermore, it adds �(ι) to the ABox so that it is not empty, and it replaces
all inverse role assertions with equivalent assertions on the atomic roles. ��

Translation into DL-Clauses. We next define the notion of DL-clauses:

Definition 3. Let NV be a set of variables disjoint from NI . An atom is an
expression of the form C(s), R(s, t), or s ≈ t, for s and t individuals or variables,
C a concept, and R a role. A DL-clause is an expression of the form

U1 ∧ ... ∧ Um → V1 ∨ ... ∨ Vn (5)

where Ui and Vj are atoms, m ≥ 0, and n ≥ 0. The conjunction U1 ∧ ... ∧ Um is
called the antecedent, and the disjunction V1 ∨ ... ∨ Vn is called the consequent.

Let I = (�I , ·I) be an interpretation and μ : NV → �I a variable mapping.
Let aI,μ = aI for an individual a and xI,μ = μ(x) for a variable x. Satisfaction of
an atom, DL-clause, and a set of DL-clauses N in I and μ is defined as follows:

I, μ |= C(s) if sI,μ ∈ CI

I, μ |= R(s, t) if 〈sI,μ, tI,μ〉 ∈ RI

I, μ |= s ≈ t if sI,μ = tI,μ

I, μ |=
∧m

i=1 Ui →
∨n

j=1 Vn if I, μ |= Vj for some 1 ≤ j ≤ n whenever
I, μ |= Ui for each 1 ≤ i ≤ m

I |=
∧m

i=1 Ui →
∨n

j=1 Vn if I, μ |=
∧m

i=1 Ui →
∨n

j=1 Vn for all mappings μ

I |= N if I |= r for each DL-clause r ∈ N

In the rest of this paper, we assume that each atom s ≈ t (s �≈ t) also stands for
the symmetric atom t ≈ s (t �≈ s). Furthermore, we allow ABoxes to contain the
assertion ⊥, which is false in all interpretations. Finally, we denote the empty
consequents of DL-clauses with ⊥. We now show how to transform a normalized
ALCHIQ knowledge base into a set of DL-clauses.

Definition 4. For a normalized ALCHIQ knowledge base K = (R, T ,A), the
set of DL-clauses Ξ(K) is obtained as shown in Table 3.

To simplify the Hyp-rule in Section 4.2, the role atoms in A and Ξ(K) involve
only atomic roles. Thus, the function ar from Table 3 is used to convert inverse
role atoms R−(s, t) in Ξ(K) into atomic role atoms R(t, s). An inverse role
can occur only in concepts of the form ≥ nR−.C, so the ≥-rule (defined in
Section 4.2) also uses ar to generate atoms with atomic roles.

Lemma 2. Let K be a normalized ALCHIQ knowledge base. Then, I |= K if
and only if I |= Ξ(K) and I |= A.
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Table 3. Translation of Normalized GCIs to DL-Clauses

Ξ(K) = {
[∧n

i=1 lhs(Ci)
]
→

[∨n
i=1 rhs(Ci)

]
| for each � !

⊔n
i=1 Ci in T }∪

{ar(R,x, y) → ar(S, x, y) | for each R ! S in R}

ar(R, s, t) =

{
R(s, t) if R is an atomic role
S(t, s) if R is an inverse role and R = S−

Note: Whenever lhs(Ci) or rhs(Ci) is undefined, it is omitted in the DL-clause.

C lhs(C) rhs(C)

A A(x)
¬A A(x)

≥ n R.A ≥ n R.A(x)
≥ n R.¬A ≥ n R.¬A(x)
∀R.A ar(R, x, yC) A(yC)
∀R.¬A ar(R, x, yC) ∧A(yC)

≤ n R.A
∧n+1

i=1 [ar(R, x, yi
C) ∧A(yi

C)]
∨n+1

i=1
n+1
j=i+1 yi

C ≈ yj
C

≤ n R.¬A
∧n+1

i=1 ar(R,x, yi
C)

∨n+1
i=1 A(yi

C) ∨
∨n+1

i=1
n+1
j=i+1 yi

C ≈ yj
C

Note: Each variable y
(i)
C is unique for C (and i), and it is different from x.

Proof. The following equivalences between DLs and first-order logic are known:

∀R.C(x) ≡ ∀y : ¬R(x, y) ∨ C(y)
≤ nR.C(x) ≡ ∀y1, . . . , yn+1 :

∨n+1
i=1 [¬R(x, yi) ∨ ¬C(yi)] ∨

∨n+1
i=1

n+1
j=i+1 yi ≈ yj

Clearly, Ξ(K) is obtained from normalized GCIs by expanding the concepts
∀R.C and ≤ nR.C according to these equivalences, and then moving all negative
atoms into the antecedent and all positive atoms into the consequent. ��

4.2 The Hypertableau Calculus for DL-Clauses

We now present our hypertableau calculus for deciding satisfiability of A ∪ Ξ(K).

Definition 5. Unnamed Individuals. For a set of named individuals NI , the
set of all individuals NX is inductively defined as NI ⊆ NX and, if x ∈ NX ,
then x.i ∈ NX for each integer i. The individuals in NX \NI are unnamed. An
individual x.i is a successor of x, and x is a predecessor of x.i; descendant and
ancestor are the transitive closures of successor and predecessor, respectively.

Pairwise Anywhere Blocking. A concept is blocking-relevant if it is of the
form A, ≥ nR.A, or ≥ nR.¬A, for A an atomic concept. The label of an indi-
vidual s and of an individual pair 〈s, t〉 in an ABox A are defined as follows:

LA(s) = {C | C(s) ∈ A and C is a blocking-relevant concept}
LA(s, t) = {R | R(s, t) ∈ A}

Let ≺ be a strict ordering (i.e., a transitive and irreflexive relation) on NX

containing the ancestor relation—that is, if s′ is an ancestor of s, then s′ ≺ s.
By induction on ≺, we assign to each individual s in A a status as follows:
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Table 4. Derivation Rules of the Tableau Calculus

Hyp-rule

If 1. U1 ∧ ... ∧ Um → V1 ∨ ... ∨ Vn ∈ Ξ(K),
2. a mapping σ : NV → NA exists, for NA the set of individuals in A,
3. σ(Ui) ∈ A for each 1 ≤ i ≤ m,
4. σ(Vj) �∈ A for each 1 ≤ j ≤ n,

then if n = 0, then A1 = A ∪ {⊥},
otherwise Aj := A ∪ {σ(Vj)} for 1 ≤ j ≤ n.

≥-rule

If 1. ≥ n R.C(s) ∈ A,
2. s is not blocked in A, and
3. there are no individuals u1, . . . , un such that

{ar(R, s, ui), C(ui) | 1 ≤ i ≤ n} ∪ {ui �≈ uj | 1 ≤ i < j ≤ n} ⊆ A,
then A1 := A ∪ {ar(R, s, ti), C(ti) | 1 ≤ i ≤ n} ∪ {ti �≈ tj | 1 ≤ i < j ≤ n}

where t1, . . . , tn are fresh pairwise distinct successors of s.

≈-rule
If 1. s ≈ t ∈ A and

2. s �= t
then A1 := mergeA(s → t) if t is named or if s is a descendant of t,

A1 := mergeA(t → s) otherwise.

⊥-rule
If 1. s �≈ s ∈ A or {A(s),¬A(s)} ⊆ A and

2. ⊥ �∈ A
then A1 := A ∪ {⊥}.

– s is directly blocked by an individual s′ iff both s and s′ are unnamed, s′ is
not blocked, s′ ≺ s, LA(s) = LA(s′), LA(t) = LA(t′), LA(s, t) = LA(s′, t′),
and LA(t, s) = LA(t′, s′), for t and t′ the predecessors of s and s′, resp.

– s is indirectly blocked iff its predecessor is blocked.
– s is blocked iff it is either directly or indirectly blocked.

Pruning. The ABox pruneA(s) is obtained from A by removing all assertions
of the form R(t, t.i), R(t.i, t), C(t.i), u ≈ t.i, and u �≈ t.i, where t is either s or
some descendant of s, i is an integer, and u is an arbitrary individual.

Merging. The ABox mergeA(s → t) is obtained from pruneA(s) by replacing the
individual s with the individual t in all assertions.

Derivation Rules. Table 4 specifies derivation rules that, given an ABox A
and a set of DL-clauses Ξ(K), derive the ABoxes A1, . . . ,An. In the Hyp-rule,
σ is a mapping from NV to the individuals occurring in A, and σ(U) is the atom
obtained from U by replacing each variable x with σ(x).

Derivation. For a normalized ALCHIQ knowledge base K = (R, T ,A), a
derivation is a pair (T, λ) where T is a finitely branching tree and λ is a function
that labels the nodes of T with ABoxes such that ( i) λ(ε) = A for ε the root of
the tree, and ( ii) for each node t, if one or more derivation rules are applicable
to λ(t) and Ξ(K), then t has children t1, . . . , tn such that λ(t1), . . . , λ(tn) are
the result of applying one (arbitrarily chosen) applicable rule to λ(t) and Ξ(K).

Clash. An ABox A contains a clash iff ⊥ ∈ A; otherwise, A is clash-free.
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In [10], the successor relation is encoded using role arcs, which point only
from predecessors to successors. Since our ABoxes contain only atomic roles,
role arcs can point in both directions, so we encode the successor relation in
the individuals. The ordering ≺ ensures that there are no cyclic blocks, so all
successors of nonblocked individuals have been constructed. Ancestor pairwise
blocking from [10] is obtained if ≺ is exactly the descendant relation.

Pruning prevents infinite loops of merge-create rule applications—the so-
called “yo-yo” effect. Consider the following example:

A3 = {A(a), ∃R.�(a), R(a, b), R(a, a)}
Ξ(K3) = {R(x, y1) ∧R(x, y2) → y1 ≈ y2, A(x) ∧R(x, y) → ∃R.�(y)} (6)

By the second DL-clause, we derive ∃R.�(b), which we expand to R(b, b.1). But
then, by the first DL-clause, we derive b ≈ a. Hence, we merge b into a, and
obtain A′

3 = {A(a), ∃R.�(a), R(a, b.1), R(a, a)}. The ABox A′
3 is isomorphic to

A3, so we can repeat the whole process, which clearly leads to nontermination.
To remedy this, we remove all assertions that involve successors of b before
merging b into a; we thus obtain A′′

3 = {A(a), R(a, a), ∃R.�(a)}, after which the
algorithm terminates. Intuitively, merging ensures that no individual “inherits”
successors through merging. In [10], the successors are not physically removed,
but are marked as “not present” by setting their edge labels to ∅. This has
exactly the same effect as pruning.

We next prove that our calculus is sound, complete, and terminating.

Lemma 3 (Soundness). Let A be an ABox and Ξ(K) a set of DL-clauses such
that A ∪ Ξ(K) is satisfiable, and let A1, . . . ,An be obtained by applying a deriva-
tion rule to A and Ξ(K). Then, Ai ∪ Ξ(K) is satisfiable for some 1 ≤ i ≤ m.

Proof. Let I be a model of A ∪Ξ(K), and let us consider all derivation rules.
(Hyp-rule) Since σ(Ui) ∈ A, we have I |= σ(Ui) for all 1 ≤ i ≤ m. But then,

I |= σ(Vj) for some 1 ≤ j ≤ n. Since Aj = A ∪ {σ(Vj)}, we have I |= Aj ∪ Ξ(K).
(≥-rule) Since ≥ nR.C(s) ∈ A, we have I |= ≥ nR.C(s), which means that

α1, . . . , αn ∈ �I exist such that 〈sI , αi〉 ∈ RI and αi ∈ CI for 1 ≤ i ≤ n, and
αi �= αj for 1 ≤ i < j ≤ n. Let I ′ be obtained from I by setting tI

′

i = αi. Clearly,
I ′ |= ar(R, s, ti), I ′ |= C(ti), and I ′ |= ti �≈ tj for i �= j, so I ′ |= A1 ∪ Ξ(K).

(≈-rule) Since s ≈ t ∈ A, we have I |= s ≈ t, so sI = tI . Pruning removes as-
sertions, so I is a model of the pruned ABox by monotonicity. Merging simply
replaces an individual with a synonym, so, clearly, I |= A1 ∪ Ξ(K).

(⊥-rule) This rule is never applicable if A∪ Ξ(K) is satisfiable. ��

The following corollary follows immediately from Lemma 3:

Corollary 1. Each derivation for a satisfiable normalized ALCHIQ knowledge
base K contains a path such that λ(t) is clash-free for each node t on the path.

Lemma 4 (Completeness). If a derivation for a normalized ALCHIQ knowl-
edge base K = (R, T ,A) contains a leaf node labeled with a clash-free ABox A′,
then A ∪ Ξ(K) is satisfiable.
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Proof. We first prove the claim (*): for each ABox A′ occurring in a derivation
for K, (i) for each R(s, t) ∈ A′, t is a predecessor or a successor of s, or both s and
t are named individuals, and (ii) for each s ≈ t ∈ A′, s = t, or s and t are both
named, or t is a successor of a named individual and s is a named individual,
or t and s have a common predecessor, or t is a successor of a successor of s.
The proof is by a simple induction on the application of the derivation rules.
Initially, A contains only named individuals. An application of the ≥-rule clearly
preserves (*). For the ≈-rule, (*) holds because A′ satisfies (ii) and merging never
replaces an individual with a descendant. Finally, let us consider the Hyp-rule.
By Definition 4, each DL-clause from Ξ(K) is of the form (7), for Ai and Bi

atomic concepts, Ri atomic roles, and Ci and Di blocking-relevant concepts:
∧
Ai(x) ∧

∧
ar(Ri, x, yi) ∧

∧
Bi(yi) →

∨
Ci(x) ∨

∨
Di(yi) ∨

∨
yi ≈ yj (7)

For each yi ≈ yj , the antecedent contains ar(R, x, yi)∧ ar(R, x, yj). Since A′ sat-
isfies (i), each σ(yi) is either a successor or a predecessor of σ(x) and, if σ(yi) is
a named individual, then all σ(yj) are either named individuals or successors of
named individuals. Thus, each A′

i obtained by the Hyp-rule satisfies (*).
We now construct a model of Ξ(K) ∪A. A path is a finite sequences of pairs of

individuals p = [x0
x′
0
, . . . , xn

x′
n
]. Let tail(p) = xn, tail′(p) = x′

n, and q = [p | xn+1
x′

n+1
] be

the path [x0
x′
0
, . . . , xn

x′
n
, xn+1

x′
n+1

]; we say that q is a successor of p, and p is a predecessor
of q. The set of all paths P(A′) is defined inductively as follows: (i) [a

a ] ∈ P(A′)
for each named individual a in A′; (ii) [p | s′

s′ ] ∈ P(A′) if p ∈ P(A′), s′ is a
successor of tail(p) in A′, and s′ is not blocked; and (iii) [p | s

s′ ] ∈ P(A′) if
p ∈ P(A′), s′ is a successor of tail(p) in A′, and s′ is directly blocked by s. For
each blocking-relevant concept C and each path p ∈ P(A′), by the definition of
blocking, C(tail(p)) ∈ A′ iff C(tail′(p)) ∈ A′; furthermore, tail(p) is not blocked.
We denote these two properties by (**). Let I be the following interpretation:

�I = P(A′)
aI = [a

a ] for each named individual a in A′

aI = bI if individuals a = c0, c1, . . . , cn = b exist such that ci−1 was merged
into ci in the derivation leading to A′

AI = {p | A(tail(p)) ∈ A′}
RI = {〈[a

a ], [ b
b ]〉 | a and b are named individuals and R(a, b) ∈ A′} ∪

{〈p, [p | s
s′ ]〉 | s′ is a successor of tail(p) and R(tail(p), s′) ∈ A′} ∪

{〈[p | s
s′ ], p〉 | s′ is a successor of tail(p) and R(s′, tail(p)) ∈ A′}

The ABox A′ is normalized, so �I is not empty. We now show that, for each
ps = [qs | s

s′ ] and pt = [qt | t
t′ ] from �I , the following claims hold (***):

– If s′ ≈ t′ ∈ A′, then s′ = t′: Obvious, as the ≈-rule is not applicable to A′.
– If s′ �≈ t′ ∈ A′, then ps �= pt: Since ⊥ �∈ A′ and the ⊥-rule is not applicable

to s′ �≈ t′, we have s′ �= t′, which implies the claim.
– If A(s′) ∈ A′, then ps ∈ AI : By (**), we have A(s) ∈ A′, so ps ∈ AI .
– If ¬A(s′) ∈ A′, then ps �∈ AI . Since ⊥ �∈ A′ and the ⊥-rule is not applicable

to ¬A(s′), we have A(s′) �∈ A′. By (**), this implies A(s) �∈ A′, so ps �∈ AI .
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– If ≥ nR.C(s′) ∈ A′, then ps ∈ (≥ nR.C)I : By (**), ≥ nR.C(s) ∈ A′ and
s is not blocked. The ≥-rule is not applicable to ≥ nR.C(s), so individuals
u1, . . . , un exist such that ar(R, s, ui) ∈ A′ and C(ui) ∈ A′ for 1 ≤ i ≤ n, and
ui �≈ uj ∈ A′ for 1 ≤ i < j ≤ n. By (*), these possibilities exist for each ui:

• ui is a successor of s. If ui is directly blocked by u′
i, let pui = [ps | u′

i

ui
];

otherwise, let pui = [ps | ui

ui
].

• ui is a predecessor of s. Let pui = qs. If tail′(pui) �= ui, this is because
s′ is blocked, but then, by the conditions of blocking, C(tail′(pui)) ∈ A′

and ar(R, s′, tail′(pui)) ∈ A′.
• ui is neither a predecessor nor a successor of s. Then, both s and ui are

named individuals, so let pui = [ui

ui
].

In all cases, we have ar(R, s′, tail′(pui)) ∈ A′, which implies 〈ps, pui〉 ∈ RI ,
and C(tail′(pui)) ∈ A′, which implies pui ∈ CI . Consider now each pair
of paths pui and puj with i �= j. If tail′(pui) �≈ tail′(puj ) ∈ A′, then clearly
pui �= puj . If tail′(pui) �≈ tail′(puj ) /∈ A′, this is because tail′(pui) �= ui, which
is possible only if s′ is directly blocked by s and ui is a predecessor of s.
Since s can have at most one predecessor, no uj with j �= i is a predecessor
of s, so pui �= puj . Thus, we conclude that ps ∈ (≥ nR.C)I .

Clearly, (***) implies that I |= α′ for each assertion α′ ∈ A′ that contains
only named individuals. Consider now each α ∈ A. If α �∈ A′, then some named
individuals in α were merged into other individuals; but then, A′ contains the
assertion α′ obtained by this merging, so I |= α by the definition of I.

It remains to be shown that I |= Ξ(K). Consider each DL-clause r ∈ Ξ(K)
of the form (7) and each variable mapping μ. Let px = μ(x), pyi = μ(yi), and
s′ = tail′(px). Assume now that each atom from the antecedent of r is true in I
and μ—that is, px ∈ AI

i , pyi ∈ BI
i , and 〈px, pyi〉 ∈ RI .

If s′ is not blocked, let s = s′ and ti = tail′(pyi). By the definition of I, we
have Ai(s) ∈ A′, Bi(ti) ∈ A′, and ar(Ri, s, ti) ∈ A′.

If s′ is blocked, let s = tail(px); that is, s is the individual that blocks s′. By
the definition of I, since px ∈ AI

i , we have Ai(s) ∈ A′. If tail′(pyi) is a successor
of s, let ti = tail′(pyi); now pyi ∈ BI

i and 〈px, pyi〉 ∈ RI
i imply Bi(ti) ∈ A′ and

ar(Ri, s, ti) ∈ A′. If tail′(pyi) is not a successor of s, let ti be the predecessor of
s; this predecessor exists by the definition of blocking. Furthermore, pyi ∈ BI

i

and 〈px, pyi〉 ∈ RI
i imply Bi(tail′(pyi)) ∈ A′ and ar(Ri, s

′, tail′(pyi)) ∈ A′; by the
definition of blocking, we have Bi(ti) ∈ A′ and ar(Ri, s, ti) ∈ A′ as well.

Let σ be a mapping such that σ(x) = s and σ(yi) = ti. The Hyp-rule is not
applicable to A′, so some of the atoms from the consequent of σ(r) must be
present in A′. Assume first that Ci(s) ∈ A′ or Di(ti) ∈ A′. By the definition of
blocking, Ci(tail′(px)) ∈ A′ or Di(tail′(pyi)) ∈ A′, respectively; by (***), this im-
plies px ∈ CI

i or pyi ∈ DI
i , respectively. Assume now that ti ≈ tj ∈ A′. By (***),

we have ti = tj . If pyi and pyj are both successors of px, then ti = tail′(pyi) and
tj = tail′(pyj ), so ti = tj implies pyi = pyj . If pyi and pyj are both predecessors
of px, we have pyi = pyj since px can have at most one predecessor. Finally, let
us assume that pyi is a predecessor of px, which is a predecessor of pyj . Then,
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tail′(pyj ) = tj ; furthermore, since ti is not blocked, we have tail′(pyj) �= ti, which
contradicts the assumption that ti = tj . ��

If ≺ coincides with the descendant relationship, the termination proof is anal-
ogous to [10, Lemma 3], so we present here only the intuition. Consider any
ABox A in the derivation. There are at most exponentially many different tu-
ples 〈LA(s),LA(s, t),LA(t, s),LA(t)〉, so an individual can have at most expo-
nentially many nonblocked ancestors. Thus, A can be viewed as a tree with
exponential depth and a linear branching factor, so the number of nonblocked in-
dividuals is at most doubly exponential. When an individual s becomes blocked,
at most double exponentially many nonblocked descendants of s can become
indirectly blocked, so |A| is at most doubly exponential in |K|. Due to pruning,
the ≥-rule can be applied to an individual at most |K| times. We construct the
derivation nondeterministically, so our algorithm runs in 2NExpTime.

If ≺ is total, the number of nonblocked individuals in A is exponential. Anal-
ogously to the previous case, we can conclude that the number of individuals is
at most exponential, so our algorithm runs in NExpTime. The DL SHIQ is
ExpTime-complete [2], so our algorithm is not worst-case optimal. Worst-case
optimal tableau algorithms for fragments of SHIQ have been presented in [7,4].
These algorithms use caching, which is related to anywhere blocking; however,
to obtain the desired complexity result, they use cuts and are thus unlikely to
be practical. Furthermore, we are not aware of any practical implementation of
these calculi. On Horn-SHIQ [12] knowledge bases, however, our algorithm is
deterministic, so it runs in ExpTime. It is known that Horn-SHIQ is ExpTime-
hard [13], so our algorithm gives a worst-case optimal decision procedure.

Lemma 5 (Termination, [10]). For a normalized ALCHIQ knowledge base
K, every derivation from K is finite.

Lemmas 1, 4, 5, and Corollary 1 immediately imply our main theorem:

Theorem 1. A SHIQ knowledge base K is satisfiable if and only if each deriva-
tion from K′ = Δ(Ω(K)) contains a leaf node t such that λ(t) is clash-free; fur-
thermore, the construction of each such derivation terminates.

4.3 Applying the Algorithm to Other DLs

For DLs with inverse roles but without number restrictions, traditional tableau
algorithms can use simpler equality blocking [9]: an unnamed individual s is
blocked by an individual s′ in A iff s′ ≺ s and LA(s) = LA(s′). Such blocking
must be applied with care in our setting. Consider the knowledge base (8), on
which our algorithm produces the ABox (10).

K4 = {C � ∃R.D, D � ∃S−.C, � � ∀R.⊥ � ∀S.⊥, C(a)} (8)

Ξ(K4) = {C(x) → ∃R.D(x), D(x) → ∃S−.C(x), R(x, y1) ∧ S(x, y2) → ⊥} (9)

A4 =
{

C(a),
R(a, a.1), D(a.1),

S(a.1.1, a.1), C(a.1.1),
∃R.D(a), ∃S−.C(a.1), ∃R.D(a.1.1)

}

(10)
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The individual a.1.1 is directly blocked by a, so the algorithm terminates; an
expansion of ∃R.D(a.1.1), however, would reveal that K is unsatisfiable. The
problem arises because the DL-clause R(x, y1) ∧ S(x, y2) → ⊥ contains two role
atoms, which allows it to examine both the successors and the predecessor of
x. Equality blocking, however, does not ensure that both predecessors and suc-
cessors of x have been fully built. We can correct this problem by requiring the
normalized GCIs to contain at most one ∀R.C concept. For example, if we re-
place our DL-clause with R(x, y1) → Q(x) and Q(x) ∧ S(x, y2) → ⊥, then the
first DL-clause additionally derives Q(a), so a.1.1 is not blocked.

For DLs without inverse roles, tableau algorithms typically use subset blocking
[1]: an unnamed individual s is blocked by s′ in A iff s′ ≺ s and LA(s) ⊆ LA(s′).
Subset blocking is not applicable in our setting. Consider the knowledge base
(11), on which our algorithm produces the ABox (13):

K5 = {C � ∃R.C, C � ∃S.D, ∃S.D � E, ∃R.E � ⊥, C(a)} (11)

Ξ(K5) =
{
C(x) → ∃R.C(x), C(x) → ∃S.D(x),
S(x, y) ∧D(y) → E(x), R(x, y) ∧ E(y) → ⊥

}

(12)

A5 =
{

C(a), ∃S.D(a), S(a, a.1), D(a.1), E(a),
∃R.C(a), R(a, a.2), C(a.2), ∃R.C(a.2), ∃S.D(a.2)

}

(13)

Now a.2 is directly blocked by a. If, however, we expanded ∃S.D(a.2) into
S(a.2, a.2.1) and D(a.2.1), we can derive E(a.2); together with R(a, a.2) and
the last DL-clause from Ξ(K5), we get a contradiction. Even without inverse
roles, DL-clauses can propagate information from successors to predecessors.

5 Implementation

Based on the calculus from Section 4, we have implemented a prototype DL
reasoner.1 Currently, it can only handle Horn DL-clauses—our main goal was
to show that significant performance improvements can be gained by exploiting
the deterministic nature of many ontologies.

To classify a knowledge base K, we run our algorithm on Ki = K ∪ {Ci(ai)}
for each concept Ci, obtaining an ABox Ai. If D(ai) ∈ Ai and D(ai) was derived
without making any nondeterministic choices, then K |= Ci � D. Since our test
ontologies are translated to Horn DL-clauses on which our algorithm is determin-
istic, D(ai) ∈ Ai iff K |= Ci � D. Thus, we can classify K with a linear number
of calls to our algorithm. This optimization is also applicable in standard tableau
calculi; the nondeterministic handling of GCIs, however, diminishes its value.

We also employ the following optimization: when applying the calculus to
Ki, we use the nonblocked individuals from Γi as potential blockers, where Γi

is the union of all satisfiable ABoxes Aj for j < i. Namely, assume that we
run our algorithm on K′

i = K ∪ {Ci(ai)} ∪ Γi, where ai is fresh. In SHIQ, ai

cannot interact with Γi; furthermore Γi is satisfiable, so K |= Ci � D iff our

1 http://www.cs.man.ac.uk/∼ bmotik/HermiT/
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Table 5. Results of Performance Evaluation

Ontology HT HT-anc Pellet FaCT++ Racer

NCI 8 s 9 s 44 min 32 s 36 s
GALEN original 44 s — — — —

GALEN simplified 7 s 104 s — 859 s —

algorithm derives D(ai) from K′
i. Thus, due to anywhere blocking, we can use

the nonblocked individuals from Γi as blockers without affecting the correctness
of our algorithm. This optimization is applicable even if nondeterministic choices
were made in deriving Aj , it is easy to implement, and, like caching [2, Chapter
9], it greatly reduces the time needed to classify an ontology since it prevents
the computation of the same subtrees in different runs.

Table 5 shows the times that our reasoner, Pellet 1.3, FaCT++ 1.1.4, and
Racer 1.9.0 take to classify our test ontologies. To isolate the improvements
due to each of the two innovations of our algorithm, we evaluated our system
with anywhere blocking (denoted as HT), as well as with ancestor blocking [10]
(denoted as HT-anc). All ontologies are available from our reasoner’s Web page.

NCI is a relatively large (about 23000 atomic concepts) but simple ontology.
FaCT++ and RACER can classify NCI in a short time mainly due to an opti-
mization which eliminates many unnecessary tests, and the fact that all axioms
in NCI are definitional so they are handled efficiently by absorption. We con-
jecture that Pellet is slower by two orders of magnitude because it does not use
these optimizations, so it must deal with disjunctions.

GALEN has often been used as a benchmark for DL reasoning. The original
version of GALEN contains about 2700 atomic concepts and many GCIs similar
to (2). Most GCIs cannot be absorbed without any residual nondeterminism.
Thus, the ontology is hard because it requires the generation of large models with
many nondeterministic choices. Hence, GALEN has been simplified by removing
273 axioms, and this simplified version of GALEN has commonly been used
for performance testing. As Table 5 shows, only HT can classify the original
version of GALEN. In particular, anywhere blocking prevents our reasoner from
generating the same fragments of a model in different branches.

6 Conclusion

In this paper, we presented a novel reasoning algorithm for DLs that com-
bines hyper-inferences to reduce the nondeterminism due to GCIs with anywhere
blocking to reduce the sizes of generated models. In future, we shall extend our
reasoner to handle disjunction and conduct a more comprehensive performance
evaluation. Furthermore, we shall investigate the possibilities of optimizing the
blocking condition and heuristically guiding the model construction to further
reduce the sizes of the models created. Finally, we shall try to extend our ap-
proach to the DLs SHOIQ and SROIQ, which provide the logical underpinning
of the Semantic Web ontology languages.
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3. Baumgartner, P., Furbach, U., Niemelä, I.: Hyper Tableaux. In: Or�lowska, E.,
Alferes, J.J., Moniz Pereira, L. (eds.) JELIA 1996. LNCS, vol. 1126, pp. 1–17.
Springer, Heidelberg (1996)

4. Donini, F.M., Massacci, F.: EXPTIME tableaux for ALC. Artificial Intelli-
gence 124(1), 87–138 (2000)

5. Fermüller, C., Tammet, T., Zamov, N., Leitsch, A.: Resolution Methods for the
Decision Problem. LNCS, vol. 679. Springer, Heidelberg (1993)

6. Fermüller, C.G., Leitsch, A., Hustadt, U., Tammet, T.: Resolution Decision Proce-
dures. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning
(chapter 25), vol. II, pp. 1791–1849. Elsevier, Amsterdam (2001)
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Abstract. We bring together two recent trends in description logic
(DL): lightweight DLs in which the subsumption problem is tractable
and conservative extensions as a central tool for formalizing notions of
ontology design such as refinement and modularity. Our aim is to in-
vestigate conservative extensions as an automated reasoning problem
for the basic tractable DL EL. The main result is that deciding (de-
ductive) conservative extensions is ExpTime-complete, thus more dif-
ficult than subsumption in EL, but not more difficult than subsump-
tion in expressive DLs. We also show that if conservative extensions are
defined model-theoretically, the associated decision problem for EL is
undecidable.

1 Introduction

In recent years, lightweight description logics (DLs) have gained increased popu-
larity. In particular, a number of useful lightweight DLs have been identified for
which reasoning is tractable even w.r.t. general TBoxes (i.e., sets of subsump-
tions between concepts). Such DLs are used in the formulation of large-scale
ontologies, which usually require a high level of abstraction and consequently
use only limited expressive power from a DL. There are currently two main lines
of research on lightweight DLs: the EL family of tractable DLs investigated in
[5,2] aims at providing a logical underpinning of lightweight ontology languages,
with a special emphasis on life science ontologies. In contrast, the main purpose
of the DL-Lite family of tractable DLs investigated in [7,8] is to allow efficient
reasoning about conceptual database schemas, and to exploit existing DBMSs
for DL reasoning. In this paper, we will be interested in applications of DLs
for ontology design, and thus consider EL as our basic tractable DL. The main
reasoning problem in EL is subsumption, i.e., deciding whether one concept sub-
sumes another one w.r.t. a general TBox. Intuitively, such a TBox can be thought
of as a logical theory providing a description of the application domain. In the
following, we use the terms “general TBox” and “ontology” interchangeably.

There are a number of important life science ontologies that are formulated
in EL or mild extensions thereof. Examples include the Systematized Nomencla-
ture of Medicine, Clinical Terms (Snomed CT), which comprises ∼0.5 million
concepts and underlies the systematized medical terminology used in the health
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systems of the US, the UK, and other countries [16]; and the thesaurus of the
US national cancer institute (NCI), which comprises ∼45.000 concepts and is
intended to become the reference terminology for cancer research [15]. With on-
tologies of this size, a principled approach to their design and maintenance is
indispensible, and automated reasoning support is highly welcome.

Recently, conservative extensions have been identified as a fundamental no-
tion when formalizing central issues of ontology design such as refinement and
modularity [1,10,13,11,12]. Unless otherwise noted, we refer to the deductive
version of conservative extensions: the extension T1 ∪ T2 of an ontology T1 is
conservative if T1 ∪ T2 implies no new subsumptions in the signature of T1, i.e.,
every subsumption C � D that is implied by T1 ∪ T2 and where the concepts
C and D use only symbols (concept and role names) from T1 is already implied
by T1.

We briefly sketch how conservative extensions can help to formalize ontology
refinement and modularity. Refinement means to add more details to a part
of the ontology that has not yet been sufficiently described. Intuitively, such
a refinement should provide more detailed information about the meaning of
concepts of the original ontology, but it should not affect the relationship between
such concepts. This requirement can be formalized by demanding that the refined
ontology is a conservative extension of the original ontology. The main benefits
of modularity of ontologies are that changes to the ontology have only local
impact, and that modules from an ontology can be re-used in other ontologies.
Intuitively, a module inside an ontology should be self-contained in the sense that
it contains all the relevant information about the concepts it uses. Formally, this
can be captured by requiring that a module inside an ontology T is a subset T ′

of T such that T is a conservative extension of T ′. See e.g.[11] for more details.
In [10,13], it was proposed to provide automated reasoning support for con-

servative extensions. For example, if an ontology designer intends to refine his
ontology, he may use an automated reasoning tool capable of deciding conserva-
tive extensions to check whether his modifications really had no impact on rela-
tionships between concepts in the original ontology. The complexity of deciding
conservative extensions is usually rather high. For example, it is 2-ExpTime

complete in expressive DLs such as ALC and ALCQI and even undecidable in
ALCQIO [10,13]; recall that subsumption is decidable in ExpTime and, respec-
tively, NExpTime for those logics.

In this paper, we study conservative extensions in the basic tractable descrip-
tion logic EL. This is motivated by the observation that large-scale ontologies are
often formulated in such lightweight DLs, and large-scale ontologies is also where
issues of refinement and modularity play the most important role. We provide an
alternative characterization of conservative extension in EL, and use this char-
acterization to provide a decision procedure. It is interesting to note that deci-
sion procedures for deciding conservative extensions in more expressive DLs such
as ALC can not be used for EL, see Section 2 for an example illustrating this
effect. We show that our algorithm runs in deterministic exponential time, and
prove a matching lower bound. Thus, deciding conservative extension in EL is
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ExpTime-complete and not tractable like subsumption in EL. However, it is also
not more difficult than subsumption in expressive DLs such as ALC and ALCQI,
problems that are considered manageable in practice. We also consider a stronger,
model theoretic notion of conservative extensions that is useful for query answer-
ing and prove that the associated decision problem for EL is undecidable.

In this version of the paper, many proof details are omitted for brevity. They
can be found in the full version [14].

2 EL and Conservative Extensions

Let NC and NR be countably infinite and disjoint sets of concept names and
role names, respectively. EL-concepts C are built according to the syntax rule
C ::= � | A | C �D | ∃r.C, where A ranges over NC, r ranges over NR, and C,D
range over EL-concepts. The semantics is defined by means of an interpretation
I = (ΔI , ·I), where the interpretation domain ΔI is a non-empty set, and ·I
is a function mapping each concept name A to a subset AI of ΔI and each
role name rI to a binary relation rI ⊆ ΔI ×ΔI . The function ·I is inductively
extended to arbitrary concepts by setting �I := ΔI , (C �D)I := CI ∩DI , and
(∃r.C)I := {d ∈ ΔI | ∃e ∈ CI : (d, e) ∈ rI}.

A TBox is a finite set of concept inclusions (CIs) C � D, where C and D
are concepts. An interpretation I satisfies a CI C � D (written I |= C � D)
if CI ⊆ DI . I is a model of a TBox T if it satisfies all CIs in T . We write
T |= C � D if every model of T satisfies C � D. Here is an example TBox T1:

Human � ∃eats.�
Plant � ∃grows-in.Area

Vegetarian � Healthy

A signature Σ is a finite subset of NC ∪ NR. The signature sig(C) (sig(T )) of a
concept C (TBox T ) is the set of concept and role names which occur in C (in
T ). If sig(C) = Σ, we also call C a Σ-concept. Let T1 and T2 be TBoxes. We call
T1 ∪ T2 a conservative extension of T1 if T1 ∪ T2 |= C � D implies T1 |= C � D
for all sig(T1)-concepts C, D. If C, D violate this condition (and thus, T1 ∪T2 is
not a conservative extension of T1), then C � D is called a counter-subsumption.
As an example, consider the following TBox T2:

Human � ∃eats.Food
Food � Plant � Vegetarian

It is not too difficult to verify that T1 ∪ T2 is a conservative extension of T1,
where T1 is the TBox defined above. Unsurprisingly, the notion of a conservative
extension strongly depends on the description logic used. For example, ALC is
the extension of EL with a negation constructor ¬C, which has the obvious
semantics (¬C)I = ΔI \CI . In ALC, ∀r.C is an abbreviation for ¬∃r.¬C. If we
view the TBoxes T1 and T2 from above as ALC TBoxes, then T1 ∪ T2 is not a
conservative extension of T1, with counter-subsumption

Human � ∀eats.Plant � ∃eats.Vegetarian.
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This shows that we cannot use the existing algorithms for conservative extensions
in ALC [10] to decide conservative extensions in EL.

Another initial observation about conservative extensions in EL is that min-
imal counter-subsumptions may be quite large. Define a TBox T such that it
contains only tautologies and sig(T ) = {A,B, r, s}. For each n ≥ 0, we define
a TBox T ′

n. It has additional concept names X0, . . . , Xn−1 and X0, . . . , Xn−1

that are used to represent a binary counter X : if Xi is true, then the i-th bit is
positive and if Xi is true, then it is negative. Define T ′

n as

A � X0 � · · · �Xn−1

�σ∈{r,s}∃σ.(X i �X0 � · · · �Xi−1) � Xi for all i < n

�σ∈{r,s}∃σ.(Xi �X0 � · · · �Xi−1) � Xi for all i < n
�σ∈{r,s}∃σ.(X i �Xj) � Xi for all j < i < n
�σ∈{r,s}∃σ.(Xi �Xj) � Xi for all j < i < n

X0 � · · · �Xn−1 � B

Observe that Lines 2-5 implement incrementation of the counter X . Then the
smallest new consequence of T ∪ T ′

n is C2n−1 � B, where:

C0 = A
Ci = ∃r.Ci−1 � ∃s.Ci−1

Clearly, C2n−1 is doubly exponentially large in the size of T and T ′
n. If we use

structure sharing (i.e., define the size of C2n−1 as the number of its distinct
subconcepts), it is still exponentially large.

3 Characterizing Conservative Extensions

We provide a characterization of when a TBox T1 ∪ T2 is not a conservative
extension of T1. This characterization is used in the subsequent section to devise
a decision procedure for (non-)conservative extensions in EL.

Let I1 and I2 be interpretations and Σ a signature. A relation S ⊆ ΔI1 ×ΔI2

is a Σ-simulation from I1 to I2 if the following holds:

– for all concept names A ∈ Σ and all (d1, d2) ∈ S with d1 ∈ AI1 , d2 ∈ AI2 ;
– for all role names r ∈ Σ, all (d1, d2) ∈ S, and all e1 ∈ ΔI1 with (d1, e1) ∈ rI1 ,

there exists e2 ∈ ΔI2 such that (d2, e2) ∈ rI2 and (e1, e2) ∈ S.

If d1 ∈ ΔI1 , d2 ∈ ΔI2 , and there is a Σ-simulation S from I1 to I2 with
(d1, d2) ∈ S, then (I2, d2) Σ-simulates (I1, d1), written (I1, d1) ≤Σ (I2, d2). If
Σ = NC ∪NR, we simply speak of a simulation and write ≤ instead of ≤Σ. Let I
be an interpretation, Σ a signature, and d ∈ ΔI . Then we define the abbreviation
dΣ,I := {C | d ∈ CI ∧ sig(C) ⊆ Σ}. The out-degree of an interpretation I is
the supremum of the cardinalities of the sets {d′ | (d, d′) ∈ rI}, for d ∈ ΔI and
r ∈ NR. The following theorem establishes a connection between simulations and
EL formulas. The proof is standard, and therefore omitted, see e.g. [9].
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Theorem 1. If (I1, d1) ≤Σ (I2, d2) , then dΣ,I1
1 ⊆ dΣ,I2

2 . Conversely, if I1 and
I2 have finite out-degree and dΣ,I1

1 ⊆ dΣ,I2
2 , then (I1, d1) ≤Σ (I2, d2).

We use sub(C) to denote the set of subconcepts of a concept C. As usual, this set
contains C itself. For a TBox T , we denote by sub(T ) the set of all subconcepts
of concepts which occur in T . With each concept C and TBox T , we associate
two sets of consequences that will play a central role in what follows.

– KT (C) = {D ∈ sub(T ) | T |= C � D};
– LT (C) = {D ∈ sub(C) | T |= C � D} ∪KT (C).

By the results in [5], both sets can be computed in time polynomial in the size
of C and T . The canonical model IC,T = (ΔC,T , ·C,T ) of C and T is defined as
follows, where A ranges over all elements of NC and r over all elements of NR:

– ΔC,T = {C} ∪ {C′ | ∃r.C′ ∈ sub(C) ∪ sub(T )};
– D ∈ AIC,T iff A ∈ LT (D);
– (D,D′) ∈ rIC,T iff ∃r.D′ ∈ KT (D) or D = E � ∃r.D′, for some concept E.

The model IC,T is a subtle refinement of the data structure generated by the
algorithms in [5,2] to prove correctness of the algorithm in [2].1 Since the sets
LT (C) and KT (C) can be computed in polytime, the model IC,T can also be
computed in time polynomial in the size of C and T .

Lemma 1. Let T be a TBox and C a concept. For all D ∈ ΔC,T and all E ∈
sub(C) ∪ sub(T ), we have D ∈ EIC,T iff T |= D � E.

Lemma 1 implies that IC,T is a model of T , and that C ∈ CIC,T . The following
lemma summarizes the most important properties of canonical models. Regard-
ing Points 1 and 2, similar (but simpler) lemmas for the case of EL without
TBoxes have been established in [3].

Lemma 2. Let C,C1, C2, D be EL-concepts and T a TBox. Then the following
holds:

1. For all models I of T and all d ∈ ΔI , the following conditions are equivalent:
(a) d ∈ CI ;
(b) (IC,T , C) ≤ (I, d).

2. The following conditions are equivalent:
(a) T |= C � D;
(b) C ∈ DIC,T ;
(c) (ID,T , D) ≤ (IC,T , C).

3. If ∃r.D ∈ (sub(Ci)∪ sub(T )) for all i ∈ {1, 2}, then (IC1,T , D) ≤ (IC2,T , D).

Let T1, T2 be TBoxes, C a sig(T1)-concept, and D a sig(T1) ∪ sig(T2)-concept.
We write C ⇒1 D if, for all sig(T1)-concepts E, T1 ∪ T2 |= D � E implies T1 |=
C � E. Our characterization of non-conservative extensions, as stated by the
following lemma, is based on this relation. The main benefit of this characteri-
zation is that when checking for new subsumptions T1 ∪ T2 |= C � D, it allows
1 Essentially, in those papers we have (D, D′) ∈ rIC,T iff ∃r.D′ ∈ LT (D).
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us to concentrate on concepts D of a very simple form, namely subconcepts of
T1 and T2. This is achieved by considering sig(T1) ∪ sig(T2)-concepts instead of
sig(T1)-concepts as in the definition of conservative extensions. In addition, the
characterization provides a bound on the outdegree of C, i.e., the maximum car-
dinality of any set P of pairs of the form (r, C′), with r a role name and C′ a
concept, such that �(r,C′)∈P∃r.C′ ∈ sub(C). We use |C| and |T | to denote the
length of a concept C and a TBox T , i.e., the number of symbols needed to write
it.

Lemma 3. T1∪T2 is not a conservative extension of T1 iff there exists a sig(T1)-
concept C and a concept D ∈ sub(T1 ∪ T2) such that

(a) T1 ∪ T2 |= C � D;
(b) C �⇒1 D;
(c) the outdegree of C is bounded by |T1 ∪ T2|.

Proof. “⇐”. Assume that (a) to (c) are satisfied. By (b), there is a concept
E with T1 ∪ T2 |= D � E and T1 �|= C � E. From the former and (a), we get
T1 ∪ T2 |= C � E, which implies that T1 ∪ T2 is not a conservative extension
of T1.

“⇒”. We give only a sketch and refer to the full version [14] for details. Assume
that T1 ∪ T2 is not a conservative extension of T1. In this sketch, we show only
(a) and (b). If there is a counter-subsumption C � D with D ∈ sub(T1), then
conditions (a) and (b) hold for C and D and we are done. Assume that no such
counter-subsumption exists. Let C � D be a counter-subsumption such that
D is of minimal length. Then D can be shown to be of the form ∃r.D′. Using
Lemma 2, it is possible to prove that T1 ∪ T2 |= C � ∃r.D′ implies that one of
the following holds:

1. there is a conjunct ∃r.C′ of C such that T1 ∪ T2 |= C′ � D′;
2. there is ∃r.C′ ∈ sub(T1∪T2) s.t. T1∪T2 |= C � ∃r.C′ and T1∪T2 |= C′ � D′.

It is possible to show that Case 1 actually yields a contradiction to the minimal
length of D. Thus, Case 2 applies. We show that the concepts C and ∃r.C′

(substituted for D) satisfy Conditions (a) and (b). First, T1 ∪ T2 |= C � ∃r.C′

establishes Condition (a). For Condition (b), observe that T1 �|= C � ∃r.D′ and
T1 ∪ T2 |= ∃r.C′ � ∃r.D′. This means C �⇒1 ∃r.C′. ❏

The following lemma characterizes the relation C ⇒1 D semantically and shows
that it can be decided in polytime.

Lemma 4. Let T1, T2 be TBoxes and C,D concepts. Then we have C ⇒1 D
iff (ID,T1∪T2 , D) ≤sig(T1) (IC,T1 , C). Hence, the problem C ⇒1 D is decidable in
polynomial time in the size of C, D, and T1 ∪ T2.

Proof. “⇒”. Let C �⇒1 D. Then there is a sig(T1)-concept E such that T1∪T2 |=
D � E and T1 �|= C � E. By Point 2 of Lemma 2, this yields D ∈ EID,T1∪T2 and
C �∈ EIC,T1 . Hence, by Theorem 1, (ID,T1∪T2 , D) �≤sig(T1) (IC,T1 , C).
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“⇐”. Let (ID,T1∪T2 , D) �≤sig(T1) (IC,T1 , C). By Theorem 1, there exists E
over sig(T1) with D ∈ EID,T1∪T2 but C �∈ EIC,T1 . By Point 2 of Lemma 2,
T1 ∪ T2 |= D � E and T1 �|= C � E. Hence, C �⇒1 D.

It is well-known that computing the largest Σ-simulation between two finite
graphs can be done in polynomial time [9]. ❏

4 The Algorithm

We devise an algorithm for deciding (non)-conservative extensions in EL, which
is based on our characterization of not being a conservative extensions in terms
of “⇒1” (Lemma 3) and of “⇒1” in terms of simulations (Lemma 4). To check
whether T1 ∪T2 is not a conservative extension of T1, the algorithm searches for
a sig(T1)-concept C such that for some D ∈ sub(T1 ∪ T2), the Points (a)–(c) of
Lemma 3 are satisfied. Intuitively, it proceeds in rounds. In the first round, the
algorithm considers the case where C is a conjunction of concept names. For
every such C and all D ∈ sub(T1 ∪ T2), it checks whether Points (a) and (b)
are satisfied. By Lemma 4, this can be done in polytime. If all tests fail, the
second round is started in which the algorithm considers concepts C of the form
F0 ��(r,E)∈P∃r.E, where F0 is a conjunction of concept names and P is a set
of pairs (r, E) with r a role name and E a candidate for C from the first round
(i.e., E is also a conjunction of concept names). Because of Point (c), it will be
sufficient to consider sets P of cardinality bounded by |T1 ∪T2|. To check if such
a concept C satisfies Points (a) and (b), we exploit the information that we have
gained about the concepts E in the previous round. If again no suitable C is
found, then in the third round we use the Cs from the second round as the Es
in F0 ��(r,E)∈P∃r.E, and so on.

For the algorithm to terminate and run in exponential time, we have to intro-
duce a condition that indicates when enough candidates C have been inspected
in order to know that there is no counter-subsumption C � D. To obtain such
a termination condition and to avoid having to deal with double exponentially
large concepts, our algorithm will not construct the candidate concepts C di-
rectly, but rather use a certain data structure to represent relevant information
about C. The relevant information about C is suggested by Lemma 3: for each
C, we take the quadruple

C� = (F,KT1(C),KT1∪T2(C),KT1,T1∪T2(C)),

where F is the conjunction of all concept names occurring in the top-level con-
junction of C (if there are none, then F = �), KT1(C) and KT1∪T2(C) are defined
in the previous section, and KT1,T1∪T2(C) = {D ∈ sub(T1 ∪ T2) | C ⇒1 D}. We
call this the quadruple determined by C.

By Lemma 3, the quadruple C� determined by a concept C gives us enough
information to decide whether C is the left hand side of a counter-subsumption.
In addition, it contains enough information to enable the recursive search de-
scribed above. This is exploited by our algorithm for deciding (non)-conservative
extensions, which is shown in Figure 1. Observe that the Condition Q2 \Q3 �= ∅
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Imput: TBoxes T1 and T2.

1. Compute the set N0 of quadruples determined by conjunctions of concept names
from sig(T1).

2. if N0 contains a quadruple (F,Q1,Q2,Q3) such that Q2 \ Q3 �= ∅, then output
“not conservative extension”.

3. Generate the sequence N1,N2, . . . of quadruples such that Ni+1 = Ni ∪ N ′
i ,

where N ′
i is the set of quadruples (F0,F1,F2,F3) which can be obtained from a

conjunction F0 of concept names from sig(T1) and a set Q ⊆ (NR ∩ sig(T1))×Ni

of cardinality not exceeding |T1 ∪ T2| in the following way:

– F1 = KT1(F0 � �
(r,(F,Q1,Q2,Q3))∈Q

∃r.( �
D∈Q1

D));

– F2 = KT1∪T2(F0 � �
(r,(F,Q1,Q2,Q3))∈Q

∃r.( �
D∈Q2

D));

– F3 = {D | D ∈ sub(T1 ∪ T2) and

(a) for all A ∈ sig(T1), A ∈ KT1∪T2(D) implies A ∈ F1;

(b) if (D, D′) ∈ rID,T1∪T2 with r ∈ sig(T1), then
(i) there is a tuple (r, (F,Q1,Q2,Q3)) ∈ Q such that D′ ∈ Q3

or (ii) there is ∃r.C′ ∈ F1 with (ID′,T1∪T2 , D′) ≤sig(T1) (IC′,T1 , C′)
}

This is done until Ni contains a quadruple (F,Q1,Q2,Q3) such that Q2\Q3 �= ∅,
or Ni+1 = Ni. Output “not conservative extension” if the first condition applies.
Otherwise, output “conservative extension”.

Fig. 1. Algorithm for deciding (non)-conservative extensions in EL

corresponds to satisfaction of Points (a) and (b) in Lemma 3. Also observe that,
in Point (b) of the definition of F3, we refer to the canonical model ID,T1∪T2 for
the relevant concepts D. These models are constructed in polytime when needed.
To show that this algorithm really implements the initial description given at
the beginning of this section, we make explicit the concepts that we describe by
means of the quadruples constructed in Step 3 of Figure 1. This is done by the
following lemma, which will also be a central ingredient to our correctness proof.

Lemma 5. Let (F0,F1,F2,F3) be the quadruple obtained from F0 and Q in
Figure 1. Let, for each (r, q) ∈ Q, Cr,q be a concept which determines q. Then
C = F0 ��(r,q)∈Q∃r.Cr,q determines (F0,F1,F2,F3).

Proof. Let (F0,F1,F2,F3) and C be as in the lemma. It is trivial to see that F0

is as required. To treat F1 and F2, we prove the following in [14]: for all TBoxes
T and concepts C′ = F ′

0��(r,E)∈P∃r.E with F ′
0 a conjunction of concept names,

KT (C′) = KT (F ′
0 � �

(r,E)∈P
∃r.( �

D∈KT (E)
D)).

This implies that F1 and F2 are as required. It remains to consider F3. Fix
D ∈ sub(T1 ∪T2). By Lemma 4, C ⇒1 D iff (ID,T1∪T2 , D) ≤sig(T1) (IC,T1 , C). By
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definition of simulations and once more by Lemma 4, to check whether C ⇒1 D
it is sufficient to check both of the following:

1. for all concept names A ∈ sig(T1), A ∈ KT1∪T2(D) implies A ∈ KT1(C);
2. for all r ∈ sig(T1) and D′ with (D,D′) ∈ rID,T1∪T2 there exists C′ with

(C,C′) ∈ rIC,T1 and (ID,T1∪T2 , C
′) ≤sig(T1) (IC,T1 , D

′).

Point 1 is checked under (a) since, as we have seen already, KT1(C) = F1.
For Point 2, (C,C′) ∈ rIC,T1 and the definition of canonical models implies
that we have (i) ∃r.C′ is a conjunct of C or (ii) ∃r.C′ ∈ KT1(C). In Case
(i), C′ = Cr,q for some (r, q) ∈ Q and C′ ⇒1 D′ iff D′ is an element of the
fourth component of q. This is what is checked in (b.i) of the algorithm. In
Case (ii), ∃r.C′ ∈ sub(T1) and thus we can use Point 3 of Lemma 1 to show that
(ID,T1∪T2 , C

′) ≤sig(T1) (IC,T1 , D
′) iff (ID′,T1∪T2 , D

′) ≤sig(T1) (IC′,T1 , C
′). This is

exactly what is checked in (b.ii) of the algorithm. ❏

Theorem 2. The algorithm for deciding non-conservative extensions is sound,
complete, and runs in exponential time.

Proof. Soundness follows from Lemmas 3 and 5. For completeness, assume that
T1 ∪ T2 is not a conservative extension of T1. By Lemma 3, there exists C of
outdegree not exceeding |T1∪T2| and D ∈ sub(T1∪T2) such that T1∪T2 |= C � D
and C �⇒1 D. If C is a conjunction of concept names, then the algorithm outputs
“not conservative extension” in Step 2. Now suppose C has quantifier depth
n ≥ 1. Using Lemma 5, one can easily show by induction on i that for all
i ≥ 0, the set Ni contains all quadruples determined by subconcepts C′ of C of
quantifier depth smaller than i. Hence, the algorithm outputs “not conservative
extension” after computing some Ni with i ≤ n.

For termination and complexity, observe that, by Lemma 4, the quadruple
determined by a conjunction of concept names from sig(T1) can be computed in
polytime. Hence Steps 1 and 2 run in exponential time. For Step 3 observe that
the number of tuples (F,Q1,Q2,Q3) with F a conjunction of concept names from
sig(T1) and Qi ⊆ sub(T1 ∪T2) is bounded by 24|T1∪T2|. It follows that Ni = Ni+1

for some i ≤ 24|T1∪T2|. Hence, the algorithm terminates and to show that it runs
in exponential time it remains to check that Ni+1 can be computed in exponential
time from Ni. This follows from the following: first, the number of pairs (F0, Q),
with F0 a conjunction of concept names from sig(T1) and Q ⊆ (NR∩sig(T1))×Ni

of cardinality not exceeding |T1 ∪ T2|, is still only exponential in |T1 ∪ T2|; and
second, the computation of (F0,F1,F2,F3) from F0 and Q in Figure 1 can be
done in time polynomial in |T1 ∪ T2|. ❏

5 ExpTime-Hardness

We prove ExpTime-hardness of deciding conservative extensions in EL by re-
duction of the problem of determining whether a given player has a winning
strategy in the two-player game Peek introduced in [17] (the version G4). An
instance of Peek is a tuple (Γ1, Γ2, ΓI , ϕ) where:
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– Γ1 and Γ2 are disjoint, finite sets of Boolean variables, with the intended
interpretation that the variables in Γ1 are under the control of Player 1, and
Γ2 is under the control of Player 2;

– ΓI ⊆ (Γ1 ∪ Γ2) are the variables true in the initial state of the game;
– ϕ is a propositional logic formula over the variables Γ1∪Γ2, representing the

winning condition.

The game is played in a series of rounds, with the Players i ∈ {1, 2} alternating
(Player 1 moves first) to select a variable from Γi whose truth value is then
flipped to reach the next game configuration. The game starts from the initial
assignment defined by ΓI . Variables that were not changed retain the same truth
value in the subsequent configuration. A player may also make a skip move, i.e.,
not change any of its variables. Any player wins in a given round if he makes
a move such that the resulting truth assignment defined by that round makes
the winning formula ϕ true. The decision problem associated with Peek is to
determine whether Player 1 has a winning strategy in a given game instance
(Γ1, Γ2, ΓI , ϕ). A formal definition of winning strategies for this game can be
found in [14].

Let us make precise the notion of a winning strategy. A configuration of G is a
pair (t, p) where t is a truth assignment for the variables in Γ1∪Γ2 and p ∈ {1, 2}
indicates the player that has moved to reach the current configuration. A winning
strategy for Player 1 is a finite tree (V,E, �) where � is a node labelling function
that assigns to each node a configuration of G. The labelling is such that
1. the root is labelled with (ΓI , 2);
2. if a node is labelled with (t, 2) (i.e., Player 1 is to move), then it has a single

successor labelled (t′, 1), where t′ is obtained from t by switching the truth
value of at most one variable from Γ1;

3. if a node is labelled with (t, 1) (i.e., Player 2 is to move), then its successors
are labelled (t0, 1), . . . , (t�, 2), where t0, . . . , t� are the configurations of G
that can be obtained from t by switching the truth value of at most one
variable from Γ2;

4. if a leaf is labelled (t, i), then i = 1 and t satisfies ϕ.

Note that if �(v) = (t, i), then i is the player that has moved in order to reach
configuration �(v).

Given a game instance G = (Γ1, Γ2, ΓI , ϕ), we define TBoxes TG and T ′
G such

that TG ∪ T ′
G is not a conservative extension of TG iff Player 1 has a winning

strategy in G. More precisely, TG and T ′
G are crafted such that witness subsump-

tions C � D against conservativity are such that (D is a concept name and) C
describes a winning stategy for Player 1. Conversely, every winning strategy can
be converted into a witness subsumption against conservativity. For convenience,
we assume that the set of variables Γ1 ∪Γ2 is of the form {0, . . . , n−1} for some
n ≥ 2. In TG, we use the following concept and role names to describe a winning
strategy (V,E, �):
– the concept names V0, . . . , Vn−1 and V 0, . . . , V n−1 describe the t component

of the configuration �(v) = (t, p) associated with a node v, where Vi indicates
that variable i is true, and V i indicates that it is false;
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– the concept names P1, P2 describe the p component of the configuration
�(v) = (t, p) associated with a node v;

– the concept names F0, . . . , Fn denote the variable that is flipped to reach the
configuration �(v) associated with a node v, with Fn indicating a skip move;

– the role name r represents E.

We also use some auxiliary concept names that are introduced below. Among
them the concept name B plays a special role: we will construct TG and T ′

G such
that if TG ∪ T ′

G is not a conservative extension of TG, then there is a witness
subsumption C � D with D = B.

We now assemble TG. We first say that the players alternate:

∃r.P1 � P2

∃r.P2 � P1

Then, we say that P1 and P2 should be disjoint. The idea is as follows: every
concept C which enforces to make both P1 and P2 true somewhere in the model
subsumes the special concept name B already w.r.t. TG, and thus cannot occur
on the left-hand side of a witness subsumtion C � B. The concept name M is
used as a marker:

P1 � P2 � M ∃r.M � M M � B

We also need disjointness conditions for truth values and flipping markers:

Vi � V i � M for all i < n
Fi � Fj � M for all i, j ≤ n with i �= j

Next, we say that if the marker Fi is set, the variable Vi flips:

∃r.(Fi � Vi) � V i for all i < n

∃r.(Fi � V i) � Vi for all i < n

If a marker Fj for a different variable Vj is set, then Vi does not flip:

∃r.(Fi � Vj) � Vj for all i ≤ n and j < n with i �= j
∃r.(Fi � V j) � V j for all i < n and j < n with i �= j

Additionally, we would like to ensure that at least one of the Fi markers is true.
This cannot be done in a straightforward way in TG. We will use the TBox T ′

G,
which we define next. W.l.o.g., we assume that ϕ is in NNF. We first translate
the formula ϕ into a set of GCIs as follows. For each ψ ∈ sub(ϕ), we introduce
a concept name Xψ. For each ψ ∈ sub(ϕ), we use σ(ψ) to denote

– the concept name Xψ if ψ is a non-literal and
– the concept name from V0, . . . , Vn−1, V 0, . . . , V n−1 corresponding to ψ if ψ

is a literal.

Now we can translate each non-literal ψ ∈ sub(ϕ) into GCIs:
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– if ψ = ϑ ∧ χ, then the GCI is σ(ϑ) � σ(χ) � Xψ;
– if ψ = ϑ ∨ χ, then the GCIs are σ(ϑ) � Xψ and σ(χ) � Xψ.

We introduce concept names N,N ′, N ′′, N0, . . . , Nn−1 that will be used as mark-
ers. Let k be the cardinality of Γ1. First we add markers that will help to ensure
that (i) each variable has a truth value in every configuration, (ii) a least one of
the flipping markers is set in every configuration, and (iii) the flipping marker
denotes a variable controlled by the player whose turn it currently is:

Vi � Ni for all i < n V i � Ni for all i < n
Fi � N ′ for all i ∈ {0, . . . , k − 1, n} Fi � N ′′ for all i ∈ {k, . . . , n}

Next, we set a marker if Player 1 has moved to reach a state in which ϕ is
satisfied:

Xϕ � P1 �N ′ �N0 � · · · �Nn−1 � N

Then, the marker N is pulled up inductively ensuring that if Player 1 is to move,
there is a single successor indicating the move of Player 1 recommended by the
strategy; and if Player 2 is to move, there are n− k + 1 successors, one for each
possible move of Player 2 (including the skip move):

P1 �N ′ �N0 � · · · �Nn−1 � ∃r.N � N

P2 �N ′′ �N0 � · · · �Nn−1 � �
i∈{k,...,n}

∃r.(N � Fi) � N

Finally, we require that Player 1 moves first and that the initial configuration is
labelled as described by ΓI . Only if this is satisfied, the concept name B from
TG is implied:

P2 �N � �
i∈ΓI

Vi � �
i/∈ΓI

V i � B

Lemma 6. Player 1 has a winning strategy in G iff TG∪T ′
G is not a conservative

extension of TG.

We have thus established the following result.

Theorem 3. Deciding conservative extensions in EL is ExpTime-hard, thus
ExpTime-complete.

6 Model Conservativity

In mathematical logic and software specification, there are (at least) two different
kinds of conservative extensions. Until now, we have worked with the deductive
version based on the consequence relation “|=”. The second version is model-
theoretic and defined as follows. Let T1 and T2 be TBoxes. We say that T1∪T2 is
a model conservative extension of T1 iff every model I of T1 can be extended to
a model of T1 ∪ T2 by modifying the interpretation of the predicates in sig(T2) \
sig(T1) while leaving the predicates in sig(T1) fixed.
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Model conservative extensions of DL TBoxes have first been analyzed in [13],
where it was argued that model conservative extensions are of interest for query
answering modulo ontologies. For example, assume that we are interested in
computing the certain answers to a first-order query over an ABox A as described
e.g. in [6]. Then T1 ∪ T2 being a model conservative extension of T1 means that
the answers given w.r.t. the TBoxes T1 and T1∪T2 are identical. The notion of a
model conservative extension is more strict than the deductive one. If T1∪T2 is a
model conservative extension of T1, then it is clearly also a deductive conservative
extension of T1, but the converse does not hold. To show the latter, let T1 =
{A � A} and T2 = {� � ∃r.A}. It is not hard to see that T1 ∪ T2 is a deductive
conservative extension of T1 if EL (or even ALC) is the assumed descripion logic,
but it is not a model conservative extension.

Also in [13], it was shown that deciding model conservative extensions is
undecidable and Π1

1 -complete in ALC. In this section, we show the surprising
result that model conservative extensions are undecidable even in EL (though
we are not able to establish Π1

1 -hardness). The proof is by reduction of the
halting problem for deterministic Turing machines on the empty tape. We assume
w.l.o.g. that our Turing machines are such that the initial state is not reachable
(directly or indirectly) from itself and that the halting state does not allow
any further transitions. Let M = (Q,Σ, Γ,Δ, q0, qh) be a Turing machine. We
construct TBoxes TM and T ′

M such that TM ∪ T ′
M is not a model conservative

extension of TM iff M halts on the empty tape. We use the following concept
and role names for describing computations of M :

– the elements of Q and Γ as concept names;
– concept names head, before, and after to represent the relation of a tape cell

to the head position;
– role names n (for next tape cell) and s (for successor configuration).

Our construction is such that models of TM that cannot be extended to models
of T ′

M describe halting computations of M on the empty tape. Essentially, such
models have the form of a grid, with the vertical edges labelled s and the hori-
zontal ones labelled n. Thus, each row represents a configuration. We will enforce
the roles n and s to be functional, except at row 0 and column 0 (because this
does not seem possible). Therefore, the actual grid representing the computation
of M starts at row 1 and column 1.

We start with the definition of TM . For now, it is easiest to simply assume n
and s to be functional and confluent (which will be enforced later by T ′

M ). We
first set before and after correctly, exploiting the assumed functionality of n:

∃n.before � before ∃n.head � before

head � ∃n.after after � ∃n.after.

Then we say that states are uniform over the tape: for all q ∈ Q,

q � ∃n.q ∃n.q � q.
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Exploiting that q0 cannot reach itself and the above uniformity, we say that the
tape is initially blank (where b ∈ Γ is the blank symbol):

q0 � b.

For each transition δ(q, a) = (q′, a′, L), exploiting confluence of n and s, we set

∃n.(q � head � a) � ∃s.(q′ � head � ∃n.a′),

and for each transition δ(q, a) = (q′, a′, R),

(q � head � a) � ∃s.(a′ � q′ � ∃n.head).

We also say that symbols not under the head do not change: for all a ∈ Γ , put

a � before � ∃s.a, a � after � ∃s.a.

We would like to say that certain concept names such as before and head are
disjoint. Since disjointness cannot be expressed in EL, we revert to a trick that
will become clear when T ′

M is defined. For now, we introduce a concept name
D that serves as a marker for problems with disjointness: for all q, q′ ∈ Q with
q �= q′ and all a, a′ ∈ Γ with a �= a′, put

q�q′ � D a�a′ � D before�head � D head�after � D before�after � D.

Up to now, we simply have assumed the described grid structure, but we did not
enforce it. In TM , we cannot do much more than saying that every point has the
required successors:

� � ∃n.� � ∃s.�.

We now define T ′
M , introducing new atomic concepts N,A,B and a new role u.

The concept name N serves as a marker. It is enforced to be true at the origin of
the relevant part of the grid (point (1,1)) if the described computation reaches
the halting state:

qh � N ∃n.N � N ∃s.N � N

It remains to ensure that a model I of TM cannot be extended to a model of
T ′

M iff (i) r and s are functional (except in row and column 0), (ii) r and s are
confluent, (iii) DI = ∅ (thus no problems with disjointness), (iv) the origin (1, 1)
satisfies N (thus a halting state is reached), and (v) the described computation
starts in the initial state with the head on the left-most cell and reaches the
halting state. Suprisingly, all this can be achieved with two simple CIs:

∃n.∃s.(N � q0 � head) � ∃u.(∃n.∃s.A � ∃s.∃n.B)
A �B � ∃u.D

Observe that any model I of TM can indeed be extended to satisfy these ad-
ditional CIs when any of the conditions (i) to (v) is violated, e.g., when D is
non-empty or the roles n and s are functional anywhere except in row 0 and
column 0. Conversely (and as shown in the proof of the following lemma), any
model I of TM that can be extended to these CIs violates one of (i) to (v).
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Lemma 7. TM ∪ T ′
M is not a model conservative extension of TM iff M halts

on the empty tape

We have thus shown the following.

Theorem 4. Deciding model conservative extensions in EL is undecidable.

7 Conclusion

We have shown that deciding conservative extensions in EL is ExpTime-com-
plete. As a next step, it is desirable to build on this foundation and design
‘practical’ algorithms. This is a serious challenge since conservative extensions
are rather new as a reasoning problem and no experiences with implementing the
associated algorithms have yet been made. (An exception is, of course, classical
propositional logic, for which deciding conservative extensions corresponds to
deciding the validy of quantified Boolean formulas of the form ∀p∃qϕ(p, q)). The
algorithm and results presented in this paper provide useful insights regarding
crucial problems that have to be solve to develop a ‘practical’ procedure. For
example, they indicate that such a procedure will rely on efficient algorithms for
checking the existence of simulations between models.
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Abstract. Automata-based decision procedures commonly achieve op-
timal complexity bounds. However, in practice, they are often outper-
formed by sub-optimal (but more local-search based) techniques, such
as tableaux, on many practical reasoning problems. This discrepancy
is often the result of automata-style techniques global approach to the
problem and the consequent need for constructing an extremely large
automaton. This is in particular the case when reasoning in theories con-
sisting of large number of relatively simple formulas, such as descriptions
of database schemes, is required. In this paper, we propose techniques
that allow us to approach a μ-calculus satisfiability problem in an incre-
mental fashion and without the need for re-computation. In addition, we
also propose heuristics that guide the problem partitioning in a way that
is likely to reduce the size of the problems that need to be solved.

1 Introduction

Propositional μ-calculus, thanks to its high expressive power, is often considered
one of the lingua franca logical formalism among logics with EXPTIME deci-
sion procedures. Indeed, many other modal, dynamic, temporal, and description
logics have been shown to be relatively easily encodable in μ-calculus [8,16,24].

The key technique to showing decidability and complexity bounds for μ-
calculus is based on capturing the language of models of a given formula us-
ing an automaton constructed from the formula—usually an alternating parity
automaton—that accepts infinite tree models of the formula [25,26,27]. Hence,
testing for satisfiability reduces to testing for non-emptiness of an appropriate
automaton.

In practice, however, automata-based decision procedures do not enjoy the
success predicted by the accompanying theory. Indeed, in many cases, theo-
retically sub-optimal approaches, such as the use of tableaux equipped with
appropriate blocking conditions that prevent infinite expansions, are more suc-
cessful [1,12]. This rather surprising observation can be traced to severe diffi-
culties in implementing automata-based decision procedures, in particular when
inherently infinite models are considered. For example, the emptiness test for
alternating parity automaton, in particular when based on Safra’s determiniza-
tion approach [22,23], is rather difficult to implement. This issue, for μ-calculus
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formulas, was addressed by using simpler Safraless decision procedures based
on transforming an alternating parity automaton to a non-deterministic Büchi
automaton while preserving emptiness [19].

However, even this improvement does not yield a practical reasoning proce-
dure. The difficulties inherent in the automata-based approaches are especially
apparent when determining logical consequences of moderately large theories
of the form {ϕ1, . . . ϕn} |= ϕ, are considered. Commonly, more local search
techniques applied to this problem try to discover an inconsistency in the set
{ϕ1, . . . ϕn,¬ϕ}, which in practice rarely involves all the formulas ϕi in the in-
put. Hence, the inconsistency can often be detected much more efficiently than
using the automata-theoretic method which is constructing the automaton for
the formula ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕn ∧ ¬ϕ and then checking for its emptiness. This
problem manifests itself in many important settings, in which theories that de-
scribe system behavior use a large number of relatively simple constraints, such
as database schemes or UML diagrams specified using, e.g., an appropriate de-
scription logic [2,7].

In this paper, we explore techniques that attempt to remedy the above dif-
ficulties by proposing an incremental and interleaved approach to constructing
the automaton corresponding to the logical implication problem while simulta-
neously testing for satisfiability of the so far constructed fragments. The main
contributions of this paper are as follows:

– we show how the decision problem can be split into a sequence of simpler
problems,

– we show that in this incremental process, the larger problems can be con-
structed from the simpler ones, hence avoiding unnecessary recomputation,
and

– we show how top-down query evaluation techniques enhanced with memoing
can be used to drive the incremental computation.

The rest of the paper is organized as follows: Section 2 provides the necessary
definitions and background, Section 3 introduces the incremental approach and
outlines the main results, Section 4 discusses heuristics and optimizations of
the proposed algorithm, and Section 6 concludes outlining directions of further
research.

2 Preliminaries

In this section, we provide definitions needed for the technical development in
the rest of the paper.

2.1 μ-Calculus

The propositional μ-calculus is a propositional modal logic augmented with least
and greatest fixpoint operators [16]. The syntax of μ-calculus [4] is given below:
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Definition 1. Let Var be an (infinite) set of variable names, typically named
X,Y, Z, . . .; Prop a set of atomic propositions, typically named P,Q, . . .; and L
a set of labels, a, b, . . .. The set of Lμ formulas (with respect to Var, Prop, L) is
defined as follows:

– P ∈ Prop and Z ∈ Var are formulas.
– If φ1 and φ2 are formulas, so is φ1 ∧ φ2.
– If φ is a formula, so are [a]φ, ¬φ, and νZ.φ provided that every free occur-

rence of Z in φ occurs positively.

In the rest of the paper we use derived operators, e.g., φ1 ∨φ2 for ¬(¬φ1 ∧¬φ2),
〈a〉φ for ¬[a]¬φ, μZ.φ(Z) for ¬νZ.¬φ(¬Z), [K]φ for

∧
a∈K [a]φ, [−]φ for [L]φ,

etc.
Formulas of Lμ are interpreted with respect to labeled transition systems

over Prop in which nodes are labeled by propositional assignments and edges by
elements of L; for full definition see [4].

2.2 Alternating Automata

Satisfiable Lμ formulas enjoy the tree model property. This property provides a
link to automata theory: satisfiability of a Lμ formula is equivalent to checking
whether a corresponding tree automaton that accepts tree models of the formula
is non-empty.

Definition 2. Given a set D of directions, a D-tree is a set T ⊆ D∗ such that
if x ·c ∈ T (an extension of x with c), where x ∈ D∗ and c ∈ D, then also x ∈ T .
If T = D∗, we say that T is a full D-tree. The empty word ε is the root of T
and the elements of T are called nodes. A path π of a tree T is a set π ⊆ T such
that ε ∈ π and for every x ∈ π either x is a leaf or there exists a unique c such
that x · c ∈ π. Given an alphabet Σ, a Σ-labeled D-tree is a pair 〈T, τ〉 where T
is a tree and τ : T → Σ maps each node of T to a letter in Σ.

For a set X, B+(X) is the set of positive Boolean formulas over X; for a
set Y ⊆ X and a formula φ ∈ B+(X), we say that Y satisfies φ iff assigning
true to elements in Y and assigning false to elements in X \ Y makes φ true.
An alternating tree automaton is A = 〈Σ,D,Q, qi, δ, α〉, where Σ is the input
alphabet, D is a set of directions, Q is a finite set of states, δ : Q × Σ →
B+(D × Q) is a transition function, qi ∈ Q is an initial state, and α specifies
the acceptance condition.

An alternating automaton A runs on Σ-labeled full D-trees. A run of A over
a Σ-labeled D-tree 〈T, τ〉 is a (T ×Q)-labeled tree 〈Tr, r〉 such that:

1. ε ∈ Tr and r(ε) = 〈ε, qi〉.
2. For every y ∈ Tr such that r(y) = 〈x, q〉 there is a set

{(c0, q0), (c1, q1), . . . (cn−1, qn−1)} ⊆ D ×Q

that satisfies δ(q, τ(x)), and for all 0 ≤ j < n, y · j ∈ Tr, r(y · j) = 〈x · cj , qj〉.
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A run 〈Tr, r〉 is accepting if all its infinite paths satisfy an acceptance condition.
The set of states on a path π ⊆ Tr that appear infinitely often is denoted with
inf(π) where inf(π) ⊆ Q and q ∈ inf(π) if and only if there are infinitely many
y ∈ π for which r(y) ∈ T × {q}. The types of acceptance conditions are defined
as follows:

– A path π satisfies Büchi acceptance condition α ⊆ Q if inf(π) ∩ α �= ∅.
– A path π satisfies co-Büchi acceptance condition α ⊆ Q if inf(π) ∩ α = ∅.
– A path π satisfies parity acceptance condition α = {F1, F2, . . . , Fh} with

F1 ⊆ F2 ⊆ . . . ⊆ Fh = Q if the minimal index i for which inf(π) ∩ Fi �= ∅ is
even. The number h of sets in α is called the index of the automaton.

An automaton accepts a tree if there exists a run that accepts it. The set of all
Σ-trees that are accepted by A is denoted by L(A). An alternating automaton is:

– nondeterministic: if the formulas (c1, q1) and (c2, q2) appear in δ and are
conjunctively related, then c1 �= c2,

– universal: if all the formulas that appear in δ are conjunctions of atoms in
D ×Q,

– deterministic: if it satisfies the conditions for being nondeterministic and
universal at the same time.

The connection between Lμ formulas and alternating automata is captured by
the following theorem [9,13,27].

Theorem 1. Let ϕ ∈ Lμ. Then there is an alternating parity tree automaton
Aϕ that can be constructed effectively from ϕ, such that the language of trees
accepted by Aϕ is the set of tree models of ϕ.

Hence, it remains to solve the emptiness problem for alternating automata to
decide the satisfiability of μ-calculus formulas. Logical implication problems can
be solved by using the associated satisfiability problems (possibly with the help
of the greatest fixpoint operator when global axioms are needed).

2.3 From APT to NBT Via UCT

The standard approach for checking the emptiness of an alternating parity tree
automaton (APT) involves Safra’s construction [22] which is complicated and
not very suitable for efficient implementation. An alternative approach to this
problem has been proposed by Vardi and Kupferman [19] and involves the fol-
lowing steps:

1. Translate the APT A representing a μ-calculus formula ϕ to a Universal
Co-Büchi Tree Automaton (UCT) A′,

2. Translate the UCT A′ to a Non-deterministic Büchi Tree Automaton (NBT)
A′′, and

3. Check for emptiness of A′′.
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The above transformations only preserve emptiness for the automata, not the
actual languages of trees accepted. This is, however, sufficient for deciding satis-
fiability. We modify this procedure to operate in an incremental fashion when the
original alternating automaton represents a conjunction of Lμ formulas. First,
we outline the two main steps in the original construction [19]:

From APT to UCT. Consider an APT A = 〈Σ,D,Q, qi, δ, α〉, where δ :
Q×Σ → B+(D ×Q). A restriction of δ is a partial function η : Q → 2D×Q. A
restriction η is relevant to σ ∈ Σ if for all q ∈ Q for which δ(q, σ) is satisfiable,
the set η(q) satisfies δ(q, σ). Let R be the set of restrictions of δ.

For A = 〈Σ,D,Q, qi, δ, α〉 with α = {F1, F2, . . . , F2h}, and F0 = ∅, the UCT
is defined as A′ = 〈Σ′, D,Q× {0, . . . , h− 1}, 〈qi, 0〉, δ′, α′〉 where:

– Σ′ ⊆ Σ ×R such that η is relevant to σ for all 〈σ, η〉 ∈ Σ′.
– For every q ∈ Q, σ ∈ Σ, and η ∈ R:

• δ′(〈q, 0〉, 〈σ, η〉) =
∧

0≤i<h

∧
(c,s)∈(η(q)\(D×F2i))

(c, 〈s, i〉).
• For every 1 ≤ i < h, δ′(〈q, i〉, 〈σ, η〉) =

∧
(c,s)∈(η(q)\(D×F2i))

(c, 〈s, i〉).
– α′ =

⋃
0≤i<h(F2i+1 × {i})

Intuitively, the nondeterminism in A is removed in A′ since Σ′ contains all the
pairs 〈σ, η〉 for which η is relevant to σ (η chooses from all the possible sets of
atoms that satisfy δ). The automaton A′ consists of h copies of A such that the
ith copy checks if a path in a run of A′ visits F2i only finitely often then it also
visits F2i+1 only finitely often by making sure that the run stays in the ith copy
unless it has to move to a state from F2i.

From UCT to NBT. Let A′ = 〈Σ′, D′, Q′, q′i, δ
′, α′〉, and let k = (2n!)n2n3n

(n + 1)/n!. Let R be the set of functions f : Q′ → {0, . . . k} in which f(q) is
even for all q ∈ α′. For g ∈ R, let odd(g) = {q : g(q) is odd}. The definition of
A′′ = 〈Σ′, D′, Q′′, q′′i , δ

′′, α′′〉 is given as follows:

– Q′′ = 2Q′ × 2Q′ ×R
– q′′i = 〈{q′i}, ∅, g0〉, where g0 maps all states to k.
– For q ∈ Q′, σ ∈ Σ′, and c ∈ D′, let γ′(q, σ, c) = δ′(q, σ) ∩ ({c} × Q). For

two functions g and g′ in R, a letter σ, and direction c ∈ D′, we say that g′

covers 〈g, σ, c〉 if for all q and q′ in Q′, if q′ ∈ γ′(q, σ, c). then g′(q′) ≤ g(q).
Then for all 〈S,O, g〉 ∈ Q′′ and σ ∈ Σ′, δ′′ is defined as follows:

• If O �= ∅ then δ′′(〈S,O, g〉, σ)

=
∧

c∈D

∨

gc covers 〈g,σ,c〉
〈γ′(S, σ, c), γ′(O, σ, c) \ odd(gc), gc〉

• If O = ∅ then δ′′(〈S,O, g〉, σ)

=
∧

c∈D

∨

gc covers 〈g,σ,c〉
〈γ′(S, σ, c), γ′(S, σ, c) \ odd(gc), gc〉

– α′′ = 2Q′ × {∅} ×R.
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Intuitively, the automaton A′′ is the result of a subset construction applied to A′

such that for a run of A′ that satisfies a particular co-Büchi condition it guesses
the possible runs that satisfy its dual Büchi condition. The emptiness problem
for NBT is much simpler than the emptiness problem for APT which is shown
to be solved symbolically in quadratic time [17].

3 Incremental Approach to Satisfiability of Conjunctions

In this section, we provide the main contribution of this paper: a decomposition
technique for the APT to NBT construction based on conjunctive formulas and,
in turn, an incremental algorithm for checking the emptiness of an APT A for a
formula ϕ. We also outline a top-down approach for checking the emptiness of
the associated NBT.

Assume that we have a conjunctive formula ϕ = ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕn and ϕ
is represented by an APT A = 〈Σ,D,Q, qi, δ, α〉. We decompose the APT to
NBT translation in such a way that we do not need to construct the complete
automaton for ϕ and we can stop checking for emptiness if ϕ′ = ϕ1∧ϕ2∧ . . .∧ϕk

for k ≤ n is unsatisfiable. Otherwise we are able to reuse the facts we computed
for ϕ′ in the emptiness check of ϕ.

The incremental technique first constructs an automaton A1 for ϕ1 and checks
for its emptiness, if A1 is empty then the procedure stops. Otherwise it continues
with automata for formulas ϕ1 ∧ ϕ2, . . ., ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕn applying the same
technique and reusing the automaton computed in step i for computing the
automaton in step i + 1 as it is shown in Figure 1.

3.1 Decomposition of the APT to NBT Translation

In this section, we describe the proposed decomposition technique for a conjunc-
tion of formulas of the form ϕ = ϕ1∧ϕ2∧. . .∧ϕn. We know that there is an APT
A = 〈Σ,D,Q, qi, δ, α〉 that accepts tree models of ϕ. To define this automaton,
we need the following auxiliary definition:

Definition 3. The closure of a formula φ, cl(φ) is the smallest set of formulas
that satisfies the following:

– φ ∈ cl(φ).
– If φ1 ∧ φ2 ∈ cl(φ), then φ1 ∈ cl(φ) and φ2 ∈ cl(φ).
– If [a]ψ or ¬ψ ∈ cl(φ) then ψ ∈ cl(φ).
– If νZ.ψ ∈ cl(φ), then ψ(νZ.ψ) ∈ cl(φ) and ψ ∈ cl(φ).

Now we define an alternating automaton Ak = 〈Σk, D,Qk, qik
, δk, αk〉 for a

subformula ϕ′ = ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕk of ϕ as follows:

– Σk = 2APk where APk is the set of atomic propositions in ϕ′,
– qik

= ϕ′,
– Qk = cl(ϕ′),
– for all σ ∈ Σk, δ(q, σ) ∈ δk iff q ∈ Qk, and
– αk = {F1 ∩Qk, F2 ∩Qk, . . . , F2h ∩Qk}.
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Emptiness of Ak implies emptiness of A and, in turn, the unsatisfiability of the
original formula ϕ, as Ak represents a subformula ϕ1 ∧ϕ2 ∧ . . .∧ϕk of ϕ. Hence,
we can stop checking for the emptiness of the automaton A early: whenever we
reach an automaton Ak that is empty. Otherwise we use the following theorem
to extend Ak to Ak+1 without the need to recompute all the transitions from
scratch:

Theorem 2. Let A′
k = 〈Σ′

k, D,Qk × {0, . . . h − 1}, 〈qik
, 0〉, δ′k, α′

k〉 be the UCT
translation of Ak, and A′ = 〈Σ′, D,Q× {0, . . . h− 1}, 〈qi, 0〉, δ′, α′〉 be the UCT
translation of A.
Then for every qk ∈ Qk, σk ∈ Σk, ηk ∈ Rk, ηl ∈ Rl:
δ′(〈qk, i〉, 〈σk, ηk ∪ηl〉) = δ′k(〈qk, i〉, 〈σk, ηk〉) for all 0 ≤ i < h where Rk is the set
of restrictions ηk : Qk → 2D×Qk such that for all 〈σk, ηk〉 ∈ Σ′

k, ηk is relevant
to σk, and Rl is the set of restrictions ηl : Q \Qk → 2D×Q.

Proof. For every qk ∈ Qk, σk ∈ Σk, ηk ∈ Rk, ηl ∈ Rl:

– δ′(〈qk, 0〉, 〈σk, ηk ∪ ηl〉) =
∧

0≤i<h

∧
(c,s)∈(ηk(qk)∪ηl(qk)\(D×F2i))

(c, 〈s, i〉)
=

∧
0≤i<h

∧
(c,s)∈(ηk(qk)\(D×F2i))

(c, 〈s, i〉)∧
∧

0≤i<h

∧
(c,s)∈(ηl(qk)\(D×F2i))

(c, 〈s, i〉)
=

∧
0≤i<h

∧
(c,s)∈(ηk(qk)\(D×F2i))

(c, 〈s, i〉)
=

∧
0≤i<h

∧
(c,s)∈(ηk(qk)\(D×(F2i∩Qk)))(c, 〈s, i〉)

= δ′k(〈qk, 0〉, 〈σk, ηk〉), and
– for all 1 ≤ i < h we have

δ′(〈qk, i〉, 〈σk, ηk ∪ ηl〉) =
∧

(c,s)∈(ηk(qk)∪ηl(qk)\(D×F2i))
(c, 〈s, i〉)

=
∧

(c,s)∈(ηk(qk)\(D×F2i))
(c, 〈s, i〉)∧

∧
(c,s)∈(ηl(qk)\(D×F2i))

(c, 〈s, i〉)
=

∧
(c,s)∈(ηk(qk)\(D×F2i))

(c, 〈s, i〉)
=

∧
(c,s)∈(ηk(qk)\(D×(F2i∩Qk)))(c, 〈s, i〉)

= δ′k(〈qk, i〉, 〈σk, ηk〉).

Thus we can reuse the transitions computed for a UCT A′
k (i.e., for ϕ1 ∧ ϕ2 ∧

. . .∧ϕk) when computing the transitions of A′
k+1 for ϕ1∧ϕ2∧ . . .∧ϕk+1. Similar

theorem holds for the UCT to NBT step:

Theorem 3. Let A′′
k = 〈Σ′

k, D,Q′′
k, q

′′
ik
, δ′′k , α

′′
k〉 be NBT translation of A′

k, and
A′′ = 〈Σ′, D,Q′′, q′′i , δ

′′, α′′〉 be the NBT translation of A′.
Then for all 〈S,O, g〉 ∈ Q′′

k, σ′ = 〈σk, ηk〉 ∈ Σ′
k, σ = 〈σk, ηk ∪ ηl〉 ∈ Σ′,

δ′′(〈S,O, g ∪ f〉, σ) = δ′′k (〈S,O, [g ∪ f/g]〉, σ′) where g : Q′
k → {0, . . . , k′} (k′ =

(2nk!)n2nk

k 3nk(nk + 1)/nk! where nk is the number of states in A′
k), and f :

Q′ \Q′
k → {0, . . . , k}.
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Proof. If O �= ∅ then

δ′′(〈S,O, g ∪ f〉, σ)

=
∧

c∈D

∨

gccovers 〈g,σ,c〉
fccovers 〈f,σ,c〉

〈γ′(S, σ, c), γ′(O, σ, c) \ odd(gc ∪ fc), gc ∪ fc〉

=
∧

c∈D

∨

gc covers 〈g,σ,c〉
fc covers 〈f,σ,c〉

〈γ′
k(S, σ′, c), γ′

k(O, σ′, c) \ odd(gc), gc ∪ fc〉

= δ′′k (〈S,O, [g ∪ f/g]〉, σ′)

The proof works analogously for the O = ∅ case.

This result shows that we can reuse the transitions we compute for an NBT A′′
k

used for checking the satisfiability of ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕk when we are computing
the transitions of A′′

k+1 for ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕk+1.

Example 1. Consider a formula ϕ = ϕ1 ∧ ϕ2 such that ϕ1 = νX.(ψ ∧ 〈−〉X)
ϕ2 = ¬νX.(ψ∧〈−〉X) where ψ = μY.(b∨〈−〉Y ). Let Σ = {a, b}, and D = {1, 2},
an APT accepting models (which are tree models that have at least one path
with infinitely many b’s) of ϕ1 is A1 = {Σ,D,Q1, q1, δ1, α1} where:

Q1 = {q0, q1}
δ1(q0, a) = (1, q0) ∨ (2, q0)
δ1(q0, b) = (1, q1) ∨ (2, q1)
δ1(q1, a) = (1, q0) ∨ (2, q0)
δ1(q1, b) = (1, q1) ∨ (2, q1)
α1 = {{q0}, {q0, q1}, {q0, q1}, {q0, q1}}

APT for ϕ2, A2 = {Σ,D,Q2, q2, δ2, α2}:

Q2 = {q2, q3}
δ2(q2, a) = (1, q2) ∧ (2, q2)
δ2(q2, b) = (1, q3) ∧ (2, q3)
δ2(q3, a) = (1, q2) ∧ (2, q2)
δ2(q3, b) = (1, q3) ∧ (2, q3)
α2 = {{}, {q2}, {q2, q3}, {q2, q3}}

and the APT for ϕ is A3 = {Σ,D,Q3, q4, δ3, α3}:

Q3 = Q1 ∪Q2 ∪ {q4}
δ3 = δ1 ∪ δ2 plus the following transitions:
δ3(q4, a) = (1, q0) ∧ (1, q2)
δ3(q4, b) = (1, q0) ∧ (1, q2)
α3 = {{q0}, {q0, q1, q2}, {q0, q1, q2, q3}, {q0, q1, q2, q3}}
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Note that the index of A3 is 4 and A1 and A2 have the same index as A3

according to the definition of αk (for k=1 and k=2 in this case). As a result
some sets in α1 and α2 are repeated at the end.

The incremental strategy used for this formula first checks for the emptiness of
A1 (which is not empty), then checks for the emptiness of A3 (while re-using the
transitions computed for the UCT A′

1 and the NBT A′′
1), e.g.: δ′3(〈q0, 0〉, 〈a, η1 ∪

η2〉) = δ′1(〈q0, 0〉, 〈a, η1〉) for all η1 ∈ R1 and η2 ∈ R2. Here R1 is the set of
restrictions η1 : Q1 → 2D×Q1 such that for all 〈σ1, η1〉 ∈ Σ′

1, η1 is relevant to σ1,
and R2 is the set of restrictions η2 : Q3 \Q1 → 2D×Q3 .

3.2 The Algorithm

Let Ai be the APT for ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕi, and let A′
i be the UCT translation

of Ai, A′′
i [j] be the NBT translation of A′

i where R is the set of functions f :
Q′

i → {0, . . . , j} for 1 ≤ i ≤ n. The algorithm outlined in Figure 1 incrementally

1: initial = 1
2: for i = 1 to n do
3: construct Ai

4: if i > 1 then
5: construct A′

i using A′
i−1

6: end if
7: k = (2n!)n2n3n(n + 1)/n! for A′

i with n states
8: for j = initial to k − 1 do
9: construct A′′

i [j]
10: if A′′

i [j] is not empty then
11: if i = n then
12: return not empty
13: else
14: initial = j
15: go to 2
16: end if
17: end if
18: end for
19: if A′′

i [k] is empty then
20: return empty
21: end if
22: end for

Fig. 1. Pseudo-code for Incremental Satisfaction Algorithm

constructs automata A′′
i [j] representing ϕi for 1 ≤ i ≤ n and looks for the

smallest j, jm ≤ k such that A′′
i [j] is not empty reusing the automaton A′′

i [j]
in the computation of A′′

i [j + 1]. If A′′
i [k] is empty it stops, if not it constructs

A′′
i+1[jm] reusing the automaton A′′

i [jm]. Hence we have two directions first we
are checking for the emptiness of a particular automaton A′′

i [j] for 1 ≤ j ≤ k,
second we are checking for the emptiness of automata A′′

i [j] for 1 ≤ i ≤ n. We
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are using the proposed incremental technique on computing automata reusing
the previous automata in both directions.

Theorem 4. If A′′
i [k′] is not empty then A′′

i−1[k
′] is also not empty where 1 ≤

k′ ≤ (2n!)n2n3n(n + 1)/n! and n is the number of states in A′
i.

Proof. Let A′
i = 〈Σ,D,Q, qi, δ, α〉, and A′

i−1 = 〈Σ1, D,Q1, qi1 , δ1, α1〉 Start-
ing state of A′′

i is q′′i = 〈{〈qi, 0〉}, ∅, g0〉, and starting state of A′′
i−1 is q′′i1 =

〈{〈qi1 , 0〉}, ∅, g1
0〉 where R is the set of functions f : Q → {0, . . . k′} and g0 ∈ R

and g1
0 ∈ R map all the states in Q and Q1 to k′ respectively. For each c ∈ D,

q′′i goes to 〈S,O, g0〉. If we remove all the states Q2 = Q \Q1 from a path π that
start with 〈S,O, g0〉 then we get a path π2 that start with 〈S2, O2, g

1
0〉 where

〈qi1 , 0〉 ∈ S2 and 〈qi1 , 0〉 ∈ O2. For each c ∈ D, q′′i1 goes to 〈S1, O1, g
1
0〉 where

S1 = {〈qi1 , 0〉} and O1 = {〈qi1 , 0〉}. Let a path that start with 〈S1, O1, g
1
0〉 be

π1. If π2 is accepting then π1 is also accepting since O1 ⊆ O2 and we get to ∅
from O1 if we get to ∅ from O2.

This theorem shows that the smallest j such that A′′
i−1[j] is not empty is also

the smallest possible j such that A′′
i [j] is not empty. As a consequence, when

we are constructing A′′
i [j] we can start from the last j. Also, this means we can

directly reuse the information computed at stage i− 1.

3.3 A Top-Down Approach to the APT to NBT Translation and to
the NBT Emptiness Algorithm

We represent the general construction algorithm as a logic program and check
the emptiness using a goal with respect to the program. The outline of the
program for the construction of an NBT A′′

n for a formula ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕn is
as follows:

– sat(A′′
1 [1]) ← check(A′′

1 [1], )
– For all 1 < i ≤ k and 1 < j ≤ n:

sat(A′′
j [i]) ← sat(A′′

j [i− 1])
sat(A′′

j [i]) ← exists(A′′
j [i− 1]), check(A′′

j [i], A′′
j [i− 1])

sat(A′′
j [i]) ← exists(A′′

j−1[i]), check(A′′
j [i], A′′

j−1[i])
exists(A′′

j [i]) ← check(A′′
j [i], )

We ask the following query with respect to this program:

sat(A′′
1 [k]), sat(A′′

2 [k]), . . . , sat(A′′
n[k])

Here, sat(A′′
j [i]) is true if A′′

j [i] is not empty. The predicate check(A′′
j [i], A′′

l [m])
checks the emptiness of A′′

j [i] using A′′
l [m] and returns true if A′′

j [i] not empty. If
an automaton A′′

j [i] is constructed exists(A′′
j [i]) is marked as true. As a result we

check the emptiness of A′′
1 , A′′

2 , . . . A′′
n and stop if we hit an empty one using a

top-down approach with memoing where the automata we compute are kept in
the memo tables to be used whenever needed where the construction rules ensure
that we reuse the automaton we compute at a particular stage in the next stage.
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The proposed NBT emptiness algorithm for a particular automaton (imple-
mentation of the check predicate) checks if subtrees which have only final nodes
in their leaves are repeated infinitely often. The emptiness query works top-down
starting from the transitive closure of the initial state on these types of subtrees
and stops checking when it makes certain that they are repeated infinitely often.
This means that there is a tree accepted by the automaton. We compute only
the transitions that we need to answer the emptiness query. For instance, to
answer the emptiness query on an NBT automaton we only need to compute
the transitions that are reachable from the starting state of the automaton.

Example 2. Consider an NBT automaton A where Σ = {a}, D = {1, 2} Q =
{q0, q1, q2, q3, q4, q5}, qi = q0, δ(q0, a) = (1, q1)∧(2, q2), δ(q1, a) = (1, q2)∧(2, q3),
δ(q2, a) = (1, q1) ∧ (2, q1), δ(q3, a) = (1, q1) ∧ (2, q3), δ(q4, a) = (1, q5) ∧ (2, q5),
δ(q5, a) = (1, q1) ∧ (2, q1), and α = {q2, q3}

When we are running the emptiness algorithm on this automaton we only
compute the first four transitions.

4 Heuristics

In this section, we provide several heuristics and optimizations that can be ap-
plied to the proposed technique. First, we explain the optimizations in translation
of an APT A to a UCT A′ which is an incremental technique on the alphabet
we use for A′. Then we explain the optimizations in translation of a UCT A′ to
an NBT A′′ which is an incremental technique on the size of the functions in
R we use for A′′ which is proposed in [19]. Finally, we describe the heuristics
we can use for rewriting conjunctive formulas (i.e. reordering the subformulas
in a conjunctive formula) so that we have a better chance for detecting possible
contradictions faster.

Optimizations in APT to UCT Translation. First we introduce an opti-
mization used in the translation of APT to UCT.

Since Σ′ ⊆ Σ ×R we can start the construction using a subset Σ′
1 of Σ′. We

proceed with a larger subset, Σ′
2, if the satisfiability query is empty, and repeat

enlarging the alphabet until either the query becomes non-empty or we reach to
the set Σ′. We are also able to reuse the results in the next computation since
Σ′

1 ⊆ Σ′
2.

Theorem 5. Let A′
1 = 〈Σ′

1, D,Q, qi, δ
′
1, α〉 and A′

2 = 〈Σ′
2, D,Q, qi, δ

′
2, α〉 are

UCT translations of an APT A using Σ′
1 as alphabet of A′

1 and using Σ′
2 as

alphabet of A′
2. If Σ′

1 ⊆ Σ′
2, then δ′1 ⊆ δ′2.

Proof. Since we define δ′2(〈q, i〉, 〈σ2, η2〉) for every q ∈ Q, σ2 ∈ Σ2, η2 ∈ R2, and
for all 0 ≤ i < h where R2 is the set of restrictions such that for all 〈σ2, η2〉 ∈ Σ′

2,
η2 is relevant to σ2 the same way as δ′1(〈q, i〉, 〈σ1, η1〉) for every q ∈ Q, σ1 ∈ Σ1,
η1 ∈ R1, and for all 0 ≤ i < h where R1 is the set of restrictions such that for
all 〈σ1, η1〉 ∈ Σ′

1, η1 is relevant to σ1 then if Σ′
1 ⊆ Σ′

2, δ′1 ⊆ δ′2.
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Optimizations in UCT to NBT Translation. In the proposed translation
of UCT to NBT we start from an initial value k1 for k and increase this value
up to k2, as long as the satisfiability query is empty. We continue this process
until either the automaton becomes non-empty or we reach the upper bound
of (2n!)n2n3n(n + 1)/n! for n the number of states in the UCT automaton.
This approach has been proposed in [19]. Our decomposition, however, allows
an incremental implementation that reuses the transitions computed for k1 in
the subsequent construction for k2.

Theorem 6. Let A′′
1 [k1] and A′′

2 [k2] are NBT translations of an APT A, using
k1 as the maximum range of functions in R1 for A′′

1 and k2 as the maximum
range of functions in R2 for A′′

2 . If k1 ≤ k2, then δ′′1 ⊆ δ′′2 .

Proof. Since R1 is the set of functions f1 : Q′ → {0, . . . , k1} and R2 is the set
of functions f2 : Q′ → {0, . . . , k2} and k1 ≤ k2 then R1 ⊆ R2 which means
Q′′

1 ⊆ Q′′
2 . Thus δ′′1 ⊆ δ′′2 .

Example 3. Consider an alternating automaton A such that: Σ = {a}, D =
{1, 2}, Q = {q0, q1, q2, q3}, qi = q0, δ(q0, a) = (1, q1) ∧ (2, q2), δ(q1, a) = (1, q3) ∧
(2, q3), δ(q2, a) = (1, q3) ∧ (2, q3), δ(q3, a) = (1, q3), and α = {{}, {q0, q1, q2, q3}}
We have calculated the actual number of transitions in the UCT translation
of A, A′ and the NBT translation of A, A′′, and the number of transitions we
need to answer the satisfiability query after we apply the above optimizations.
The set of restrictions is R and the set of restrictions we used for answering
the satisfiability query is R1. The number of transitions computed for A′ with
R is 4 × 232 and the number of transitions computed for A′ with R1 is 4. The
results for the NBT translation are given in Figure 2 where k = 220 · 42525, and
k1 = 1.

# of transitions computed for A′′[k] 256 · k4

# of transitions computed for A′′[k1] 256

# of transitions computed for A′′[k1] with top-down evaluation 70

Fig. 2. Number of transitions in the NBT automata A′′[k] and A′′[k1]

Heuristics for Ordering of Conjunctive Formulas. Consider a logical
consequence question {ϕ1, ϕ2, . . . , ϕn} |= ψ, such that the formula ψ is al-
ready inconsistent with a subset of formulas in {ϕ1, ϕ2, . . . , ϕn}. As we use an
incremental technique we can use rewriting heuristics to generate a formula
¬ψ ∧ ϕi1 ∧ ϕi2 ∧ . . . ∧ ϕin such that [i1, i2, . . . in] is a permutation of [1, 2, . . . n].
For instance, the formulas ϕ1, ϕ2, . . . , ϕn can be ordered according to the num-
ber of free variables they share with ψ. Hence we improve our chances of finding
a possible contradiction faster if we use this formula instead of the original one
in the proposed algorithm. The following examples demonstrate the effect of
ordering of the subformulas of a conjunctive formula.
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Example 4. Consider a formula ψ = ϕ ∧ ϕ4 where ϕ is the formula given in
Example 1, ϕ4 = νX.(ψ ∧ 〈−〉X) such that ψ = μY.(a∨ 〈−〉Y ), Σ = {a, b}, and
D = {1, 2}, an APT for ϕ4 is A4 = {Σ,D,Q4, q5, δ4, α4} where:

Q4 = {q5, q6}
δ4(q5, a) = (1, q5) ∨ (2, q5)
δ4(q5, b) = (1, q6) ∨ (2, q6)
δ4(q6, a) = (1, q5) ∨ (2, q5)
δ4(q6, b) = (1, q6) ∨ (2, q6)
α4 = {{q6}, {q5, q6}, {q5, q6}, {q5, q6}}

APT for ψ, A5 = {D,Σ,Q5, q7, δ5, α5}:

Q5 = Q3 ∪Q4 ∪ {q7}
δ5 = δ3 ∪ δ4 plus the following transitions:
δ5(q7, a) = (1, q4) ∧ (1, q5)
δ5(q7, b) = (1, q4) ∧ (1, q5)
α5 = {{q0, q6}, {q0, q1, q2, q5, q6}, {q0, q1, q2, q3, q5, q6}, {q0, q1, q2, q3, q5, q6}}

Using the proposed strategy we first check whether A1 defined in Example 1
is empty (it is not empty), then we check the emptiness of A3 which is empty
and thus we do not need to construct A′

5 and A′′
5 . The estimated number of

transitions is 10 × 250 for A′
3, and 16 × 2128 for A′

5. The estimated number of
transitions for A′′

3 and A′′
5 are given in Figure 3 where k3 = 20! ·1020 ·310 ·11/10!,

k5 = 32! · 2128 · 316 · 17/16!.

estimated # of transitions for A′′
3 2× 210 × 210 × k10

3

estimated # of transitions for A′′
5 2× 216 × 216 × k16

5

Fig. 3. Number of transitions in the NBT automata A′′
3 and A′′

5

Example 5. Consider a logical consequence problem {ϕ2, ϕ3, ϕ4, ϕ5} |= ϕ1 where
ϕ1 and ϕ2 are given in Example 1, ϕ3 = νX.(ψ1 ∧ 〈−〉X) such that ψ1 =
μY.(a∨〈−〉Y ), Σ3 = {a, b}, ϕ4 = νX.(ψ2∧〈−〉X) such that ψ2 = μY.(c∨〈−〉Y ),
Σ4 = {c, b}, ϕ5 = νX.(ψ3 ∧ 〈−〉X) such that ψ3 = μY.(d ∨ 〈−〉Y ), Σ5 = {d, b},
and D = {1, 2}, an APT for ϕ3 is A3 = {Σ,D,Q3, q5, δ3, α3} where:

Q3 = {q5, q6}
δ3(q5, a) = (1, q5) ∨ (2, q5)
δ3(q5, b) = (1, q6) ∨ (2, q6)
δ3(q6, a) = (1, q5) ∨ (2, q5)
δ3(q6, b) = (1, q6) ∨ (2, q6)
α3 = {{q6}, {q5, q6}, {q5, q6}, {q5, q6}}
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The APT A4 for ϕ4 and the APT A5 for ϕ5 are the same as A3 except that
the state names are changed and the letter a is replaced with c in A4 and d in
A5, respectively.

Using the proposed strategy we first check if A1 defined in Example 1 is empty
(it is not empty), then we check the emptiness of the intersection automaton A1,2

of A1 and A2 which is empty. Hence, we do not need to construct the complete
intersection automaton A for A1, A2, A3, A4, and A5. The estimated number of
transitions for A′′

1,2 and A′′ are given in Figure 4 where k1 = 20!·1020 ·310 ·11/10!,
k2 = 56! · 2856 · 328 · 29/28!.

estimated # of transitions for A′′
1,2 2× 210 × 210 × k10

1

estimated # of transitions for A′′ 5× 228 × 228 × k28
2

Fig. 4. Number of transitions in the NBT automata A′′
1,2 and A′′

5 Related Work

The connection between logic and automata was first considered by Büchi [5]
and Elgot [10]. They have shown that monadic second-order logic over finite
words and finite automata have the same expressive power, and we can trans-
form formulas of this logic to finite automata and vice versa. Later, Büchi [6],
McNaughton [18], and Rabin [21] proved that monadic second-order logic over
infinite words (and trees) and finite automata also have the same expressive
power. The practical use of this connection was investigated for temporal logics
and fixed-point logics which led to the theory of model checking [3,28]. In ad-
dition, μ-calculus formulas can be translated to alternating automata [9,13,27].
Unfortunately, the standard way of checking for emptiness of an alternating
automaton involves Safra’s construction [22]. An alternative approach to this
problem is proposed by Vardi and Kupferman [19] that does not use Safra’s
theorem. An extensive survey on automata and logic can be found in [25].

The connection between logics and automata theory has been used for imple-
menting decision procedures for numerous logics, for example the MONA system
[11,14] for deciding monadic second order logics on finite words and trees. It is
argued that the success of these procedures relies on efficient operations on a
compact representation of automata based on BDDs [14,15]. Recently, an ex-
tension of Safraless decision algorithm that is amenable to implementation was
proposed for LTL formulas [20] which also improved the complexity of the algo-
rithm.

6 Conclusions and Future Work

In this paper, we have developed an incremental approach to an automata-based
decision procedure for μ-calculus. The proposed technique and optimizations are
sufficiently general to be applicable to other automata-based techniques. Future
research will follow several directions:
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1. we attempt to reduce the part of the automaton needed to show satisfia-
bility/unsatisfiability by introducing additional heuristics in the incremental
construction,

2. for particular classes of problems, for which other techniques exhibit better
performance due to reduced search space, we attempt to modify the proposed
incremental approach to mimic those approaches, and

3. we study how the proposed incremental technique can take advantage of
the structure of problems formulated in more restricted formalisms such as
description logics.
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Abstract. We present a multi-context focused sequent calculus whose
derivations are in bijective correspondence with normal natural deduc-
tions in the propositional fragment of the intuitionistic modal logic IS4.
This calculus, suitable for the enumeration of normal proofs, is the start-
ing point for the development of a sequent calculus-based bidirectional
decision procedure for propositional IS4. In this system, relevant de-
rived inference rules are constructed in a forward direction prior to
proof search, while derivations constructed using these derived rules
are searched over in a backward direction. We also present a variant
which searches directly over normal natural deductions. Experimental
results show that on most problems, the bidirectional prover is compet-
itive with both conventional backward provers using loop-detection and
inverse method provers, significantly outperforming them in a number of
cases.

1 Introduction

Intuitionistic modal logics are constructive logics incorporating operators of ne-
cessity (�) and possibility (�). Fitch [7], Prawitz [16], Satre [18], and more
recently Simpson [19], Bierman and de Paiva [1], and Pfenning and Davies [15]
have investigated a broad range of proof-theoretical properties of various log-
ics of this kind. Recently, such logics have also found applications in hardware
verification [6] and proposed type systems for staged computation [3] and dis-
tributed computing [13]. A logic frequently used in these settings is either the
intuitionistic variant of the classical modal logic S4, which we will call IS4, or a
logic that can be expressed through IS4, such as Fairtlough and Mendler’s lax
logic [6] (see for instance [15] for the relationship between IS4 and lax logic).

In this light, it is surprising that proof search in IS4 has not received more
attention. Howe has investigated proof enumeration and theorem proving in lax
logic [12] and, coming closer to our work, has presented a backward decision
procedure for the fragment of propositional IS4 without the possibility modal-
ity [11]. His system performs loop-detection using a history mechanism, but is
encumbered by a large number of rules and related provisos (21 axioms and in-
ference rules). It would only grow with the addition of the possibility modality,
which would also require a different loop-detection mechanism.

F. Pfenning (Ed.): CADE 2007, LNAI 4603, pp. 116–131, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Our contributions begin with a sequent calculus for propositional IS4 suitable
for the enumeration of normal proofs. This forms the basis for the development
of a sequent calculus-based bidirectional IS4 decision procedure, in which de-
rived inference rules relevant to the query are constructed in a forward direction
prior to proof search, while derivations constructed using these derived rules
are searched over in a backward direction. We also demonstrate that this ap-
proach corresponds very closely to an elegant bidirectional decision procedure
that searches directly over normal natural deductions. The key to our theo-
retical justification of both of these decision procedures is a refinement of the
well-known subformula property, which we use to restrict nondeterminism in
focused proof search in the presence of multiple contexts. To evaluate our ap-
proach empirically, we have put together a set of 50 benchmark formulas for
IS4. Experimental results show that on most problems, the bidirectional prover
is competitive with both conventional backward provers using loop-detection
and inverse method provers, significantly outperforming them in a number of
cases. Although we concentrate on propositional IS4 in this paper, we believe
that the techniques presented are general enough to find applications in other
constructive logics, such as the contextual modal logic of Nanevski, Pfenning,
and Pientka [14]. Finally, while this paper contains only proof sketches of many
of our results, we provide the full proofs in the accompanying technical report
[10].

In Sect. 2 we summarize the relevant background and introduce our core
natural deduction formalism, while Sect. 3 presents corresponding sequent calculi
for proof search in both backward and forward directions, followed by a more
detailed discussion of some of the intricacies of focused forward proof search.
In Sects. 4 and 5 we describe our bidirectional decision procedure in both a
sequent calculus and a natural deduction setting. Experimental results are given
in Sect. 6, while Sect. 7 concludes with related and future work.

2 Natural Deduction

Formulas in the propositional fragment of IS4 are given by the grammar

A ::= P | ⊥ | A ⊃ A | A ∧A | A ∨A | �A | �A

where P is taken from a countable set of atomic propositional constants and
negation and truth are defined notationally in the usual way. Our starting point
is a multi-context natural deduction formulation for IS4 similar to ones pro-
posed by Pfenning and Davies [15] and Bierman and de Paiva [1], except that
we impose a restriction that only natural deductions in normal form can be
constructed. This is achieved by annotating judgements with their intended di-
rection of reasoning:

Δ;Γ � A ↑ A has a normal proof under hypotheses Δ and Γ ,

Δ;Γ � A ↓ A can be extracted from hypotheses in Δ and Γ using
only elimination rules,
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Δ; Γ1, A, Γ2 � A ↓ hyp1 Δ1, A, Δ2; Γ � A ↓ hyp2
Δ; Γ � ⊥ ↓
Δ; Γ � C ↑ ⊥E

Δ; Γ, A1 � A2 ↑
Δ; Γ � A1 ⊃ A2 ↑ ⊃I

Δ; Γ � A1 ⊃ A2 ↓ Δ; Γ � A1 ↑
Δ; Γ � A2 ↓ ⊃E

Δ; Γ � A1 ↑ Δ; Γ � A2 ↑
Δ; Γ � A1 ∧ A2 ↑ ∧I

Δ; Γ � A1 ∧ A2 ↓
Δ; Γ � Aj ↓

∧Ej

Δ; Γ � Aj ↑
Δ; Γ � A1 ∨A2 ↑

∨Ij
Δ; Γ � A1 ∨A2 ↓ Δ; Γ, A1 � C ↑ Δ; Γ, A2 � C ↑

Δ; Γ � C ↑ ∨E

Δ; · � A ↑
Δ; Γ � �A ↑ �I

Δ; Γ � �A ↓ Δ, A; Γ � C ↑
Δ; Γ � C ↑ �E

Δ; Γ � A ↑
Δ; Γ � �A ↑ �I

Δ; Γ � �A ↓ Δ; A � �C ↑
Δ; Γ � �C ↑ �E

Δ; Γ � A ↓ A is atomic

Δ; Γ � A ↑ ↑↓

j ∈ {1, 2}

Fig. 1. NJN
IS4

where Γ = A1, . . . , An is a context of true hypotheses and Δ = B1, . . . , Bm is a
modal context of valid hypotheses. Valid hypotheses are hypotheses whose truth
does not depend on the truth of other formulas, that is, hypotheses that are in
some sense “always” or necessarily true. The resulting system, which we will call
NJN

IS4, is shown in Fig. 1. Although the contexts of this system are formally
ordered lists, we can afford to be flexible with them, as NJN

IS4 has the usual
structural properties of weakening, contraction, and exchange for both contexts.
For convenience, we will generally think of contexts in NJN

IS4 as multisets.
The inference rules of NJN

IS4 are largely standard, but to glean some intuition
about the modal rules and the two contexts, it is useful to think of the modalities
as quantifying truth over worlds in some universe, with some reachability relation
defined on the worlds. To say that �A is true is to say that A is true in all worlds
reachable from the current one, while to say that �A is true is to say that A is
true in some world reachable from the current one. The current world represents
the environment in which the provability of the succedent is to be established.
Under this interpretation, the hypotheses in the modal context can be used in
all reachable worlds, while those in the regular context can only be used in the
current world.

Note that while NJN
IS4 defines the normal forms that we are interested in

during proof search, an unrestricted variant NJIS4 can be obtained by dropping
the arrow annotations and the rule ↑↓. In the accompanying technical report
[10], we show that the two systems NJIS4 and its “normalized” cousin NJN

IS4

are equivalent in terms of provability. For the interested reader, we also provide
a common Hilbert-style axiomatization of IS4 in [10], along with a proof that
the unrestricted system NJIS4 and the axiomatization are equivalent. This lends
support to the claim that we are indeed dealing with the intuitionistic variant
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of S4. Finally, we would like to point out that the separation between modal
and ordinary hypotheses is not strictly necessary. Building on work by Bierman
and de Paiva [1], we obtain a faithful embedding into a single-context system
simply by providing every valid hypothesis with a � operator and merging the
two contexts. The details of this embedding are beyond the scope of this paper,
but are presented in [10].

While Girard, Lafont, and Taylor suggest that we should think of natural
deductions as the “true ‘proof’ objects” [9], natural deduction systems have
traditionally not seen much use as formalisms for proof search, mainly as a
result of their lack of syntax-directedness. Although we will ultimately return
to natural deduction in our search for bidirectional decision procedures, the
relationship between backward and forward proof search is perhaps most vividly
demonstrated in a sequent calculus setting, which we turn to next.

3 Sequent Calculi

Following the approach of Dyckhoff and Pinto [5], we can construct a focused
sequent calculus for propositional IS4 whose derivations are in bijective cor-
respondence with normal natural deductions. This system, which we will call
MJIS4, is shown in Fig. 2 and involves two forms of sequents:

Δ;Γ → C C can be proved from assumptions Δ,Γ ,

Δ;Γ � A → C
C can be proved from assumptions Δ,Γ,A, focusing on
the assumption A.

If a sequent is focused on a formula A, then the only applicable rules are those
with A as a principal formula. Following Girard [8], we will call the position of the
focused formula the stoup. As in the natural deduction formulations, contexts
in MJIS4 are technically ordered lists, but the usual structural properties of
weakening, exchange, and contraction hold here as well, so an interpretation of
contexts as multisets is reasonable. The following key result establishes the close
correspondence between MJIS4 and NJN

IS4. The soundness and completeness of
MJIS4 with respect to NJN

IS4 follow from it.

Theorem 1 (Bijection between MJIS4 and NJN
IS4 derivations). Deriva-

tions of unfocused sequents in MJIS4 correspond bijectively to derivations of ↑
judgements in NJN

IS4.

Proof. We define functions mapping derivations from NJN
IS4 to MJIS4 and vice

versa. Inductive arguments on the structures of the argument derivations show
that the functions are bijections. ��

Although MJIS4 is suitable for proof search in a backward direction, a naive
approach still requires loop-detection to achieve a decision procedure. We will
not pursue this direction further here, but instead concentrate on forward proof
search, and on how we can combine ideas from backward and forward search to
perform bidirectional proof search.
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A is atomic
Δ; Γ � A → A

init
Δ; Γ �⊥ → C

⊥L

Δ; Γ1, A, Γ2 � A → C

Δ; Γ1, A, Γ2 → C
ch1

Δ1, A, Δ2; Γ � A → C

Δ1, A, Δ2; Γ → C
ch2

Δ; Γ, A1 → A2

Δ; Γ → A1 ⊃ A2
⊃R

Δ; Γ → A1 Δ; Γ � A2 → C

Δ; Γ � A1 ⊃ A2 → C
⊃L

Δ; Γ → A1 Δ; Γ → A2

Δ; Γ → A1 ∧A2
∧R

Δ; Γ � Aj → C

Δ; Γ � A1 ∧ A2 → C
∧Lj

Δ; Γ → Aj

Δ; Γ → A1 ∨A2
∨Rj

Δ; Γ, A1 → C Δ; Γ, A2 → C

Δ; Γ � A1 ∨A2 → C
∨L

Δ; · → A

Δ; Γ → �A
�R

Δ, A; Γ → C

Δ; Γ � �A → C
�L

Δ; Γ → A

Δ; Γ → �A
�R

Δ; A → �C

Δ; Γ � �A → �C
�L

j ∈ {1, 2}

Fig. 2. MJIS4

Constructing MJIS4 proofs in a forward direction — from the top down —
is complicated by the presence of multiple contexts, making MJIS4 less than
ideal for forward proof search. All MJIS4 derivations begin, at the leaves, with
focused sequents of the form Δ;Γ � A → A, with A atomic. After a sequence
of (possibly zero) left-rule applications, the stoup formula is dropped from the
stoup into one of the contexts by an application of ch1 or ch2. In a focused
forward calculus used as the basis for the inverse method [4], we would proceed
in a similar way, but it is not clear which context a stoup formula should be
dropped into.

To address this uncertainty, we refine the idea of focusing and develop the
system MJF

IS4, which is suitable for forward proof search and features sequents
of three kinds, involving both modal and nonmodal stoups:

Δ;Γ &→ C C can be proved using all assumptions in Δ,Γ ,

Δ;Γ � A &→ C
C can be proved using all assumptions in Δ,Γ,A, with
A assumed true,

Δ;Γ � �A &→ C
C can be proved using all assumptions in Δ,Γ,A, with
A assumed valid.

Note that the forms of the focused sequents reveal which context the stoup
formula will drop into. For brevity, we write Δ;Γ �i A &→ C, i ∈ {1, 2} for either
form of focused sequent.

The inference rules of MJF
IS4, shown in Fig. 3, are obtained by reinterpreting

the rules of MJIS4 in a forward fashion and by defining the chi rules to behave
as sketched above. The contexts of MJF

IS4, however, are interpreted differently,
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A is atomic

·; · �i A &→ A
initi ·; · �i ⊥ &→ C

⊥Li
Δ; Γ � A &→ C

Δ; Γ, A &→ C
ch1

Δ; Γ � �A &→ C

Δ, A;Γ &→ C
ch2

Δ; Γ, A1 &→ A2

Δ; Γ &→ A1 ⊃ A2
⊃R1

Δ; Γ &→ A2

Δ; Γ &→ A1 ⊃ A2
⊃R2

Δ1; Γ1 &→ A1 Δ2; Γ2 �i A2 &→ C

Δ1, Δ2; Γ1, Γ2 �i A1 ⊃ A2 &→ C
⊃Li

Δ1; Γ1 &→ A1 Δ2; Γ2 &→ A2

Δ1, Δ2; Γ1, Γ2 &→ A1 ∧A2
∧R

Δ; Γ �i Aj &→ C

Δ; Γ �i A1 ∧ A2 &→ C
∧Li,j

Δ; Γ &→ Aj

Δ; Γ &→ A1 ∨A2
∨Rj

Δ1; Γ1, A1 &→ C Δ2; Γ2, A2 &→ C

Δ1, Δ2; Γ1, Γ2 �i A1 ∨A2 &→ C
∨Li

Δ; · &→ A

Δ; · &→ �A
�R

Δ, A; Γ &→ C

Δ; Γ �i �A &→ C
�Li

Δ; Γ &→ A

Δ; Γ &→ �A
�R

Δ; A &→ �C

Δ; · �i �A &→ �C
�Li

i, j ∈ {1, 2}

Fig. 3. MJF
IS4

in that sequents Δ;Γ &→ C and Δ;Γ �i A &→ C, i ∈ {1, 2} assert that all
assumptions in Δ and Γ , as well as A if the sequent is focused, are needed to
prove C. General weakening, which holds in MJIS4, is thus disallowed, but local
weakening is incorporated in the rule ⊃R2. Contexts in MJF

IS4 are treated as
sets rather than multisets, and we write Γ1, Γ2 and Γ,A for Γ1∪Γ2 and Γ ∪{A},
respectively.

Theorem 2 (Soundness and completeness of MJF
IS4 with respect to

MJIS4)

1. (Soundness)
(a) If Δ;Γ &→ C, then Δ;Γ → C.
(b) If Δ;Γ �i A &→ C, i ∈ {1, 2}, then Δ;Γ � A → C.

2. (Completeness)
(a) If Δ;Γ → C, then Δ′;Γ ′ &→ C for some Δ′ ⊆ Δ, Γ ′ ⊆ Γ .
(b) If Δ;Γ � A → C and A is a subformula of a formula in Γ , then either

Δ′;Γ ′ &→ C or Δ′;Γ ′ � A &→ C for some Δ′ ⊆ Δ, Γ ′ ⊆ Γ .
(c) If Δ;Γ � A → C and A is a subformula of a formula in Δ, then either

Δ′;Γ ′ &→ C or Δ′;Γ ′ � �A &→ C for some Δ′ ⊆ Δ, Γ ′ ⊆ Γ .

Proof. In both cases by simultaneous induction on the structure of the given
derivation, using weakening in MJIS4 where necessary. ��

Note that the more fine-grained focusing mechanism of MJF
IS4 could just as well

have been introduced in a sequent calculus suitable for backward reasoning, such
as MJIS4. Indeed, the single type of focused sequent in MJIS4 has the role of
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both types of focused sequents in MJF
IS4, making the focusing mechanism of

MJIS4 in some sense “overloaded”.
The forward calculus MJF

IS4 suggests itself immediately as a basis for an
implementation of the inverse method [4], fundamental to which is the classifi-
cation of the subformulas of a query formula into positive and negative classes.
The sign of a subformula determines where in a sequent it may occur (for in-
stance as a goal formula or in the context) and restricts nondeterminism during
proof search. We will refine this notion by classifying subformulas as either

1. positive (+) subformulas, which may occur as goal formulas,
2. negative (−) subformulas, which may occur in the nonmodal context,
3. negative focused (∼) subformulas, which may occur in the nonmodal stoup,
4. valid (=) subformulas, which may occur in the modal context, or
5. valid focused (≈) subformulas, which may occur in the modal stoup.

With this intended interpretation, it is straightforward to read the formal defi-
nition of refined signed subformulas directly from the inference rules of MJF

IS4.

Definition 1 (Signed subformulas). A signed subformula A∗ is a formula
A with a sign ∗ ∈ {+,−,∼,=,≈}. The subformula relation ≤ is the smallest
reflexive and transitive relation between signed subformulas satisfying the follow-
ing.

A−
1 , A

+
2 ≤ (A1 ⊃ A2)+ A+

i ≤ (A1 ∧A2)+ A+
i ≤ (A1 ∨A2)+

A+ ≤ (�A)+ A+ ≤ (�A)+ A∼ ≤ A−

A+
1 , A

∼
2 ≤ (A1 ⊃ A2)∼ A∼

i ≤ (A1 ∧A2)∼ A−
i ≤ (A1 ∨A2)∼

A= ≤ (�A)∼ A− ≤ (�A)∼ A≈ ≤ A=

A+
1 , A

≈
2 ≤ (A1 ⊃ A2)≈ A≈

i ≤ (A1 ∧A2)≈ A−
i ≤ (A1 ∨A2)≈

A= ≤ (�A)≈ A− ≤ (�A)≈

i ∈ {1, 2}

Note that for every negative subformula A− of a signed formula C∗, C∗ also
has, as a subformula, the corresponding negative focused subformula A∼. The
converse, however, is not true in general. A similar relation holds for valid and
valid focused subformulas. Also, the usual signed subformula property extends to
encompass our refined signing scheme, where we write Γ− and Δ= for contexts
of signed subformulas of the forms A−

1 , . . . , A
−
n and B=

1 , . . . , B=
m, respectively.

Theorem 3 (Signed subformula property). Every sequent in an MJF
IS4

derivation of

Δ=;Γ− &→ C+ or Δ=;Γ− �i A∗ &→ C+, i ∈ {1, 2}

where ∗ is ∼ or ≈ if i = 1 or i = 2, respectively, is of the form

1. D=
1 , . . . , D

=
n ;E−

1 , . . . , E−
m &→ F+,
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2. D=
1 , . . . , D

=
n ;E−

1 , . . . , E−
m � E∼ &→ F+, or

3. D=
1 , . . . , D

=
n ;E−

1 , . . . , E−
m � �D≈ &→ F+,

where all D=
j , E−

k , and E∼, D≈, and F+ are signed subformulas of Δ=, Γ−,
C+, and A∗.

Proof. By simultaneous induction on the structure of the given derivation. ��

Theorem 3 guarantees, for instance, that in any MJF
IS4 derivation of the sequent

Δ=;Γ− &→ C+, all leaves are of the forms

A is atomic
·; · �i A∗ &→ A+

initi or ·; · �i ⊥∗ &→ B+
⊥Li i ∈ {1, 2}

where ∗ is ∼ or ≈ if i = 1 or i = 2, respectively, and A∗, A+, ⊥∗ and B+ must
be signed subformulas of Δ=, Γ−, and C+. In general, every rule application
considered by an implementation of the inverse method must abide by the con-
ditions set forth by the extended signed subformula property. This provides a
foundation for a focused inverse method prover for IS4 with nondeterminism
restricted more strongly than by the usual subformula property.

However, pure forward proof search techniques such as the inverse method also
have shortcomings. For instance, the existence of two ⊃R rules is a concession to
the need for localized weakening, something usually handled more elegantly in
backward decision procedures by general weakening. Also, the refined focusing
we have introduced strongly restricts what rules are applicable, something that
a decision procedure should be able to exploit in order to generate fewer inter-
mediate sequents. These issues are addressed in the next section by combining
ideas from forward and backward proof search.

4 Bidirectional Proof Search in Sequent Calculus

The idea behind the bidirectional sequent calculus method is that given a query
formula A, we can, by exploiting forward proof search techniques, but before per-
forming proof search itself, construct a set of derived inference rules for MJIS4

which conceal all left-rule applications that could be needed in a proof of A. We
then carry out backward proof search over these relevant derived rules and the
usual right-rules of MJIS4. By design, our derived inference rules will correspond
exactly to the notion of focused threads in MJF

IS4 derivations, defined as follows.

Definition 2 (Focused threads). A focused thread of an MJF
IS4 derivation

is a segment of the derivation that begins, at the top, with an application of initi,
⊥Li, ∨Li, �Li, or �Li, i ∈ {1, 2} (raising a formula into a stoup), includes only
focused sequents, and ends with an application of chi (dropping a formula from
the stoup).

In any MJF
IS4 derivation of an unfocused sequent, left-rule applications must

occur in focused threads, so we can think of derivations as consisting of focused
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threads strung together using right-rule applications. The key insight is that
all focused threads possibly needed in an MJF

IS4 proof of a formula A can be
deterministically constructed prior to proof search by inspecting the structure
of A. To justify this claim, we will use our refined subformula property.

First note that it is straightforward to uniquely label subformula occurrences
of a formula to be proved, and that the definition of signed subformulas, the
signed subformula property, and the inference rules of MJF

IS4 can be adjusted to
operate on labels rather than formulas, thus differentiating between subformula
occurrences.

To give some intuition as to how to construct all the focused threads possibly
needed for a proof of a formula, we will illustrate the approach on the following
small example:

L+
0

︷ ︸︸ ︷

L−
1 ,L∼

1
︷ ︸︸ ︷

�(

L=
2 ,L≈

2
︷ ︸︸ ︷
L+

3
︷︸︸︷
A ⊃

L≈
4

︷︸︸︷
B ) ⊃

L+
5

︷ ︸︸ ︷

�(

L+
6

︷ ︸︸ ︷
L−

7 ,L∼
7

︷︸︸︷
A ⊃

L+
8

︷︸︸︷
B )

with subformulas

L+
0 , L

+
3 , L

+
5 , L

+
6 , L

+
8 , L−

1 , L
−
7 , L∼

1 , L
∼
7 , L=

2 , and L≈
2 , L

≈
4 .

The signed subformula property guarantees that in a proof of the sequent ·; · &→
L+

0 , the only axioms we require are

·; · � L∼
7 &→ L+

3

init1 and ·; · � �L≈
4 &→ L+

8

init2

Consider the first of these axioms. Every left-rule either drops the stoup formula
into a context or expands it. The immediate parent of L∼

7 in the subformula
hierarchy is L−

7 , indicating that dropping L7 into the context is a permissible
operation. In fact, it is the only operation permitted by the signed subformula
property operating on labels. We can collapse this short focused thread into a
single derived inference rule:

·; · � L∼
7 &→ L+

3

init1

·;L−
7 &→ L+

3

ch1
� ·;L−

7 &→ L+
3

(1)

Considering the second axiom, we notice that the parent subformula of L≈
4 is

L≈
2 , also a focused subformula. The next rule application should then be ⊃L2,

with L≈
2 as the principal formula. In fact, it is not difficult to see that since every

subformula occurrence has a unique parent subformula, the signed subformula
property operating on labels always uniquely dictates which rule may be applied.
This game continues until the end of the focused thread. In the case of the second
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axiom, the immediate parent of L≈
2 is L=

2 , signalling an application of ch2 and
the end of the thread:

Δ;Γ &→ L+
3 ·; · � �L≈

4 &→ L+
8

init2

Δ;Γ � �L≈
2 &→ L+

8

⊃L2

Δ,L=
2 ;Γ &→ L+

8

ch2

�
Δ;Γ &→ L+

3

Δ,L=
2 ;Γ &→ L+

8

(2)

Note that this thread, unlike the one concealed by (1), has open premises and
is parametric in the contexts Δ and Γ . Finally, the signed subformula property
allows one more focused thread, starting with

Δ,L=
2 ;Γ &→ M+

Δ;Γ � L∼
1 &→ M+

�L1

The immediate parent subformula of L∼
1 is L−

1 , so this thread ends here, yielding
the derived rule

Δ,L=
2 ;Γ &→ M+

Δ;Γ � L∼
1 &→ M+

�L1

Δ;Γ,L−
1 &→ M+

ch1

�
Δ,L=

2 ;Γ &→ M+

Δ;Γ,L−
1 &→ M+

(3)

Notice that this big step rule is schematic not only in the contexts Δ and Γ , but
also in the goal formula M+. Since the signed subformula property allows no
other focused threads, the remainder of the proof, if one exists, may only chain
the derived rules (1), (2), and (3) together with right-rule applications. In this
case, completing the proof is straightforward:

·;L−
7 &→ L+

3

(1)

L=
2 ;L−

7 &→ L+
8

(2)

L=
2 ; · &→ L+

6

⊃R

L=
2 ; · &→ L+

5

�R

·;L−
1 &→ L+

5

(3)

·; · &→ L+
0

⊃R

In general, to cover all focused threads, the construction of derived rules must
begin with focused sequents of the following kinds, where ∗ is ∼ or ≈, depending
on whether i = 1 or i = 2:

1. ·; · �i L∗
j &→ L+

k , where Lj and Lk denote the same atomic formula,
2. ·; · �i L∗

j &→ M+, where Lj denotes ⊥ and M is schematic,
3. Δ;Γ �i L∗

j &→ M+, where Lj denotes some A1 ∨A2 and M is schematic,
4. Δ;Γ �i L∗

j &→ M+, where Lj denotes some �A and M is schematic, and
5. Δ;Γ �i L∗

j &→ M+, where Lj denotes some �A and M denotes some �C, C
being schematic.
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Moreover, the constructed derived rules must end with a stoup formula being
dropped into one of the contexts.

The question now is how these forward-constructed derived rules can comple-
ment backward proof search. The key observation is that every focused thread of
an MJF

IS4 derivation can be converted into a focused thread of an MJIS4 deriva-
tion by applying weakening, reducing valid focused sequents to focused sequents,
and omitting the now unnecessary signs of subformula labels. For instance,

Δ;Γ &→ L+
3 ·; · � �L≈

4 &→ L+
8

init2

Δ;Γ � �L≈
2 &→ L+

8

⊃L2

Δ,L=
2 ;Γ &→ L+

8

ch2

can be converted into the MJIS4 derivation segment

Δ1, L2, Δ2;Γ → L3 Δ1, L2, Δ2;Γ � L4 → L8
init

Δ1, L2, Δ2;Γ � L2 → L8
⊃L

Δ1, L2, Δ2;Γ → L8
ch2

This makes it possible to construct derived rules for MJIS4. The benefit of
performing backward proof search over these derived rules and the remaining
right rules is that it requires no conventional loop-detection. However, some
bookkeeping is still required, since our bidirectional decision procedure has one
important termination requirement: that every derived rule that every derived
rule instance — characterized by the identity of the schematic derived rule and
the concrete goal formula, if applicable — is used is used at most once along
every branch of the proof, from root to leaf. The following result of MJIS4

guarantees that this requirement does not cost us completeness.

Theorem 4 (Uniqueness of stoup and goal formula occurrences on
branches). If a sequent Δ;Γ → L is derivable, then it has a derivation with the
property that no branch (from root to leaf) contains more than one application of
chi, i ∈ {1, 2} with the same stoup and goal formula occurrences, and the same
formula occurrence raised into the stoup at the top of the thread terminated by
this application of chi.

Proof. A derivation with loops of this kind can be shortened by collapsing seg-
ments between repeated applications of chi, i ∈ {1, 2}. ��

Since the identity of a focused thread depends on the identities of the focused
formula occurrences it contains, and on its goal formula occurrence, we obtain
the following important corollary.

Corollary 1. If a sequent Δ;Γ → L is derivable, then it has a derivation with
the property that no focused thread instance occurs more than once along a
branch.
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The consequence of this result is that if a sequent is provable in MJIS4, then
it is provable without using any derived rule instances more than once along
a branch. With the observation that every right rule of MJIS4 reduces the
complexity of the goal formula, this means that every rule application during
backward proof search in MJIS4 with derived rule instances either reduces the
number of available derived rule instances along the current branch, or leaves
the number of available derived rules unchanged but reduces the complexity
of the goal formula. This measure gives an immediate termination guarantee
without the need for conventional loop-detection. All that is needed is a way of
keeping track of which derived rules have been applied along a branch. While
this bookkeeping apparatus is reminiscent of a history mechanism, we expect it
to be far more lightweight than maintaining histories of previously encountered
sequents or goal formulas, as is common in standard loop-detection schemes.
Our expectations will, for the most part, be vindicated by our experimental
results. Note that the idea of constructing relevant derived rules prior to proof
search can also be exploited in forward proof search, where the derived rules
described above can take the place of left rules in the inverse method. The main
advantages here are that the derived rules are more relevant to proof search for
the given query formula, and that the number of intermediate sequents added
to the knowledge base during proof search is reduced, since no focused sequents
need to be maintained.

5 Bidirectional Proof Search in Natural Deduction

In the backward bidirectional sequent calculus method, we construct derived
rules to conceal all required focused threads. Notice that the focused threads of
MJF

IS4 correspond naturally to segments of NJN
IS4 proofs consisting of elimina-

tion rule applications, that is, ↓ judgements. The beginnings of focused threads,
where formulas are placed into the stoup, correspond to reversing rules in NJN

IS4.
These are the ↑↓ rule, as well as all elimination rules with ↑ judgements as their
conclusions. The ends of focused threads, on the other hand, where the stoup
formula is dropped into a context, correspond to using a hypothesis with appli-
cations of hyp1 or hyp2.

This means that the process of building a derived MJF
IS4 rule in a top-down

way corresponds to building a natural deduction derived rule by beginning with
an application of a reversing rule, and growing it upwards until we reach a leaf.
Just as the construction of derived rules in the sequent calculus is determined
uniquely by the form of the query formula, so these natural deduction derived
rules can be deterministically constructed before proof search even begins.

This approach is best demonstrated by an example such as the one given in
Sect. 4. For instance, given the pair L≈

4 and L+
8 from that example, we begin

with the coercion
Δ;Γ � L≈

4 ↓
Δ;Γ � L+

8 ↑
↑↓
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Since the immediate parent of L≈
4 in the signed subformula hierarchy is L≈

2 ,
denoting A ⊃ B, the rule application above this coercion must be an application
of ⊃E:

Δ;Γ � L≈
2 ↓ Δ;Γ � L+

3 ↑
Δ;Γ � L≈

4 ↓ ⊃E

Δ;Γ � L+
8 ↑

↑↓

The focused thread continues along the first premise, but the parent of L≈
2 is

L=
2 , indicating the end of this focused thread by an application of hyp2:

L=
2 ∈ Δ

Δ;Γ � L≈
2 ↓ hyp2 Δ;Γ � L+

3 ↑
Δ;Γ � L≈

4 ↓ ⊃E

Δ;Γ � L+
8 ↑

↑↓
�

Δ1, L
=
2 , Δ2;Γ � L+

3 ↑
Δ1, L

=
2 , Δ2;Γ � L+

8 ↑
(2)

In similar constructions, the pair L∼
7 , L+

3 and L∼
1 , the latter denoting �(A ⊃ B),

produce, respectively, the natural deduction derived rules

L−
7 ∈ Γ

Δ;Γ � L∼
7 ↓ hyp1

Δ;Γ � L+
3 ↑

↑↓ � Δ;Γ1, L
−
7 , Γ2 � L+

3 ↑
(1)

and
L−

1 ∈ Γ

Δ;Γ � L∼
1 ↓ hyp1 Δ,L=

2 ;Γ � M+ ↑
Δ;Γ � M+ ↑ �E

�
Δ,L=

2 ;Γ1, L
−
1 , Γ2 � M+ ↑

Δ;Γ1, L
−
1 , Γ2 � M+ ↑

(3)

The rest of the proof then uses only these derived rules and introduction rules:

L=
2 ;L−

1 , L
−
7 � L+

3 ↑
(1)

L=
2 ;L−

1 , L
−
7 � L+

8 ↑
(2)

L=
2 ;L−

1 � L+
6 ↑

⊃I

L=
2 ;L−

1 � L+
5 ↑ �I

·;L−
1 � L+

5 ↑
(3)

·; · � L+
0 ↑

⊃I

In general, the approach for constructing natural deduction derived rules is anal-
ogous to the method for the backward bidirectional sequent calculus, only turned
upside-down, in the sense that the rule at the beginning of an MJF

IS4 focused
thread determines the reversing rule at the bottom of the natural deduction fo-
cused thread, while the final application of hypi dictates the “principal formula”
of the ensuing derived natural deduction rule.

Proof search over natural deductions can then be performed in a backward
direction. The only nondeterminism is in whether to apply a derived rule or an
introduction rule, the premises of which are uniquely determined by their con-
clusions. Note that to guarantee termination, we again disallow using a derived
rule instance more than once along any branch of a proof.
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Table 1. Selection of experimental results

Histories Inverse Bidirectional
Formula Size Modalities Provable Time Time Rules Time Rules

32 49 0 N > 1000 1.36 33 0.01 33
36 175 0 Y 0.08 > 1000 159 > 1000 592
37 68 9 Y 84.79 1.18 60 < 0.01 28
39 42 3 N 8.46 1.83 31 < 0.01 15
44 49 14 Y 75.13 > 1000 51 37.11 21
50 44 7 Y 7.38 > 1000 49 48.76 25

6 Experimental Results

While benchmark formulas are available for intuitionistic propositional logic and
classical modal logics, we are not aware of any benchmark libraries specific to
propositional IS4. In order to evaluate the performance of our bidirectional
approach, we put together a benchmark set of 50 formulas for IS4, mostly prob-
lems from Raths et al.’s Intuitionistic Logic Theorem Proving (ILTP) library
[17] to which we introduced modalities. Our full benchmark set is provided as
an appendix to the accompanying technical report [10].

We implemented three IS4 decision procedures in SML: (1) an MJIS4-based
backward prover with a history mechanism for loop-detection, (2) an MJF

IS4-
based inverse method prover without derived rules, and (3) our bidirectional
natural deduction prover. The loop-detection prover maintains two histories to
detect repeated modal and nonmodal rule applications, respectively. This ap-
proach is a generalization of Howe’s decision procedure [11] extended to full
IS4. Note that the behaviour of our backward bidirectional sequent calculus
prover corresponds exactly to that of the bidirectional natural deduction prover,
so we have only implemented the more elegant natural deduction prover.

On many of the smaller problems, there was little measurable difference in
the performance of the provers, but some of the problems that did elicit notice-
ably different performances are highlighted in Table 1. The size column shows
the complexity of each formula, computed inductively in the usual way, while
the modalities column shows the number of modal operators. Times are in sec-
onds.1 For the inverse method and bidirectional provers, we show the num-
ber of inference rules generated (derived rules in the case of the bidirectional
prover).

As the results demonstrate, the bidirectional natural deduction prover is a
competitive alternative to the more conventional provers, equalling or outper-
forming them on most problems. Comparing the average proving time for prob-
lems that were solved, it is noticeably superior, although we found two formu-
las on which it was significantly outperformed (formulas 36 and 50 in Table 1).

1 All timing results were obtained on a Pentium III 850 MHz with 256 MB of RAM,
running SML/NJ version 110.60.
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Interestingly, there is not always a clear connection between the number of de-
rived rules generated and the time required to solve a problem. Presumably, the
problematic cases were those whose derived rules were the shortest and least use-
ful. Note also that as derived rules are associated with subformula occurrences,
those formulas with many repeated subformulas (e.g. formula 36) caused a very
large number of duplicate derived rules to be generated.

7 Related and Future Work

Although IS4 has undergone thorough proof-theoretical studies, there has been
little work in developing proof search strategies specific to it. We have presented
a comprehensive study of proof search formalisms for IS4, highlighting the du-
ality between backward and forward search. Moreover, we have demonstrated
how to combine the benefits of both to yield bidirectional decision procedures
based on sequent calculi and natural deduction. Our experimental results re-
veal that combining the two traditionally disparate paradigms can be fruitful.
Although our implementations are naive and unoptimized, we hope that our
results might encourage further study of bidirectional proof search, particularly
in other logics.

For instance, in the contextual modal logic of Nanevski, Pfenning, and Pientka
[14], structural modality is generalized by relativizing the validity judgement and
the modal operators. The techniques discussed in this paper extend very natu-
rally to contextual modal logic, yielding sequent calculi suitable for backward and
forward proof search, but the exact nature of how such a generalization affects
proof search is yet to be explored. The reconciliation of forward and backward
proof search has recently also been investigated by Chaudhuri and Pfenning [2],
who, in the context of linear logic, propose a focusing inverse method prover
incorporating derived rules constructed in a backward way and searched over in
a forward direction, precisely opposite to our approach.

In the future, we plan to explore extensions to the first-order case. Although
the idea of derived rules extends, in principle, to first-order quantifiers, the
constructed derived rules become parametric in terms. The useful property of
MJIS4 that eliminated the need for conventional loop-detection in our bidirec-
tional method now only holds for particular instantiations of the terms of the
parametric derived rules. Unfortunately, requiring the storage of rule instantia-
tions introduces another layer of bookkeeping. How to efficiently overcome this
problem and what the proof-theoretical relationship between first-order bidi-
rectional decision procedures and natural deduction provers is remains to be
investigated.

Acknowledgements. We would like to thank Daniel Pomerantz for discussions
on forward proof search and for the implementation of the inverse method prover,
and the reviewers for their insightful comments and suggestions.
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A Labelled System for IPL with Variable

Splitting
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Abstract. The paper introduces a free variable, labelled proof system
for intuitionistic propositional logic with variable splitting. In this sys-
tem proofs can be found without backtracking over rules by generating a
single, uniform derivation. We prove soundness, introduce a construction
that extracts finite countermodels from unprovable sequents, and formu-
late a branchwise termination condition. This is the first proof system for
intuitionistic propositional logic that admits goal-directed search proce-
dures without compromising proof lengths, compared to corresponding
tableau calculi.

1 Introduction

Connection-based search methods for intuitionistic logic were enabled by
Wallen’s introduction of a matrix characterization for intuitionistic logic [16].
Roughly, Wallen’s idea was to encode the rule dependencies in Gentzen-style
calculi for intuitionistic logic as term dependencies and to satisfy these depen-
dency constraints by unification. On this basis one can design calculi with only
nondestructive rules, in the sense that the rules generate single proof objects,
without backtracking over the inference rules. At the time of writing the fastest
theorem prover for first-order intuitionistic logic, ileanCoP [9, 10], is connection-
based and designed over a matrix-based calculus.

However, for intuitionistic propositional logic (IPL) the connection-based
methods do not have easily definable termination conditions, and none of the
connection-based provers implement efficient termination conditions. Such con-
ditions can easily be formulated for traditional destructive, multi-succedent cal-
culus (in [13] called m-G3i) [11], and for the contraction-free calculi for IPL [4, 7].
In both these types of calculi one can decide termination by a branchwise condi-
tion. Currently the best decision procedures for IPL implement a contraction-free
calculus [10].

The source of this lies in the variable dependencies imposed by the matrix
characterization, a point which is discussed in [14] in relation to a labelled se-
quent calculus for intuitionistic logic. More precisely, two ways of introducing
free variables are discussed: variable-pure and variable-sharing. In the former
case fresh variables are introduced in each inference that generates a free vari-
able, a constraint which enables an exact simulation of m-G3i-proofs in the
variable-pure calculus [14, Lemma 4.16]. However, the variable-pure calculus is

F. Pfenning (Ed.): CADE 2007, LNAI 4603, pp. 132–146, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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sensitive to the order of rule applications in a way that effectively blocks the
possibility of connection-based search procedures.

Variable-sharing derivations are produced if the free variables are generated
from formulas, that is, a given formula generates the same free variable in every
branch in which it is expanded. Used in this way the labelled sequent calculus can
be viewed as a rendition of the matrix characterization. Variable-sharing deriva-
tions are freely permuting and hence admits connection-based search methods.
However, the variable dependencies give rise to redundancies in proof objects
which, in the general case, make the proofs longer than in traditional Gentzen-
style calculi.

In this paper we propose a proof system1 for IPL that remedies the situation for
the matrix-based camp. In particular, the proof system that we introduce admits
both a local termination condition and goal-directed proof procedures. The proof
system utilizes variable splitting, a technique which we recently proposed for first-
order logic [1, 2]. The idea behind variable splitting is to identify conditions under
which different occurrences of the same variable can be taken as independent,
and hence treated as distinct variables. Technically, variables that occur in the
leaf of a branch are labelled with the name of the branch; the branch is said to
color the variables that occur in its leaf. The admissibility condition for proofs
is formulated in terms of a relation on the nodes of the formula trees, called a
reduction ordering. (A solution is admissible if the associated reduction ordering
is irreflexive.) A property that is not explored in this paper, but worthwhile to
mention, is that the admissibility condition entails that a variable splitting proof
can be transformed, or even permuted, into a variable-pure proof.

After presenting the proof system, we first prove its soundness, and then intro-
duce a construction that is used to generate finite countermodels for unprovable
sequents. This construction incorporates a local termination condition which can
be stated independently of the rule application order and which is just as tight
as for the variable-pure calculi. Since we are addressing a limit case of termi-
nation for unprovable sequents, we are content with using ground substitutions.
However, the results pave the way for unification-based proof procedures based
on the proposed proof system.

2 Language, Indexing and Derivations

The proof system is formulated in the style of block tableaux [12], and we adopt
an indexing system for formulas similar to that used by Wallen [16] and Otten
and Kreitz [8].

The language of IPL is defined in the standard way from a nonempty set of
proposition letters by means of the logical symbols ¬, ∧, ∨, and →. A signed for-
mula is a formula with a polarity, � or ⊥. Typically, assumptions have positive
polarity and conclusions have negative polarity. A signed formula has a principal
type, α or β, determined by its main connective and its polarity according to
1 Even though what we introduce is really a matrix characterization of logical validity

for IPL, we will follow usual terminology and refer to it as a proof system.
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α α1 α2

(A ∧B)� A� B�

(A ∨B)⊥ A⊥ B⊥

(A → B)⊥ A� B⊥

(¬A)� A⊥ A⊥

(¬A)⊥ A� A�

β β1 β2

(A ∧B)⊥ A⊥ B⊥

(A ∨B)� A� B�

(A → B)� A⊥ B�

φ

(A → B)�

(¬A)�

ψ

(A → B)⊥

(¬A)⊥

Fig. 1. Types and polarities

the tables in Fig. 1. For a given signed formula, the polarities of its immediate
subformulas are as specified in the tables, from which the polarities of its subfor-
mulas are defined by recursion. The subformulas β1 and β2 of a β-formula have
an additional secondary type, β0, and signed formulas with the main connective
→ or ¬ have an additional intuitionistic type, φ or ψ, as given in the tables. The
intuitionistic types are commonly used for special formulas of IPL, formulas that
yield properties of non-permutability when expanded [14, 16].

In derivations φ-formulas are generative; when they are expanded, a copy is
retained for further expansion. We need a fine-grained system to distinguish
different formula occurrences within derivations. This is achieved by means of
an indexing system for all potential formula occurrences. Specifically, different
copies of formulas will be indexed differently. Think of an indexed formula tree as
a representation of a signed formula as a tree, where all copies of φ-formulas are
made explicit and all nodes are marked with an index . For every index there is
a unique indexed formula and vice versa. When a rule is applied to a φ-formula,
one of the premisses is always a copy of the formula itself. This copy of a φ-
formula is denoted φ′, and has an index different from φ. The indices of φ- and
ψ-formulas are called variables and parameters , respectively. The letters u, v, w
etc., are used for variables, and the letters a, b, c etc., are used for parameters.
If a formula F has polarity P and index i, we write FP

i for the corresponding
indexed formula. From now on, unless otherwise specified, we assume all formulas
to be signed and indexed.

A set of formulas is called a sequent . A derivation of a sequent Γ is a finite
tree, with root node Γ , obtained by iteratively applying the derivation rules in
Fig. 2.

The rules should be read bottom-up; for example, if Γ, α is the leaf sequent of a
derivation, then Γ ∗, α1, α2 is a new sequent added above Γ, α. The sequent below
the horizontal line is called the conclusion of the inference, and the sequents
above are called the premisses . The formulas α and β below the horizontal line

Γ ∗, α1, α2

Γ, α

Γ ∗, β1 Γ, β2

Γ, β

Fig. 2. Derivation rules. If the expanded formula is of type φ, then Γ ∗ = Γ ∪ {φ′},
otherwise Γ ∗ = Γ
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are said to be expanded in a derivation. Sequents are for readability displayed in
the form Γ� � Γ⊥, where Γ P is the set of formulas with polarity P, and selected
indices are sometimes displayed below the root sequent.

For a derivation to be a proof of its root sequent in classical logic, there must
be a pair of complementary formulas in each of the leaves in the derivation.
This is equivalent to the matrix characterization of logical validity [3, 16]. In
order to extend this characterization to intuitionistic logic, one usually associates
prefixes with formulas and requires the prefixes of complementary formulas to be
unifiable. The following ordering is important and used throughout the paper.

The ordering ' is a partial ordering on indices that captures the subformula
ordering, or the order in which formulas must be expanded in a derivation.
It is defined as the transitive closure of '1, where i '1 j holds if Gj is an
immediate subformula, or the copy of, Fi. Intuitively, the formulas occurring in
the root sequent of a derivation always have the least indices with respect to the
ordering. For example, in Fig. 3, the '1-ordering is displayed for the formula
¬(¬P → Q)⊥a .

¬(¬P → Q)⊥a

(¬P → Q)�u (¬P → Q)�v (¬P → Q)�w

(¬P )⊥b Q�
2 (¬P )⊥c Q�

4 (¬P )⊥d Q�
6

P�
1 P�

3 P�
5

Fig. 3. The �1-ordering for ¬(¬P → Q)⊥
a . If Fa Fb, then a �1 b holds.

For the purpose of defining prefixes, we do not want to relate copies of indices
to each other, so let i�1 j if Gj is an immediate subformula of Fi, or the copy of
an immediate subformula of Fi. For example, in Fig. 3 we have that a �1 v and
v �1 c, but neither that u �1 v nor that u �1 c. Let � be the transitive closure
of �1. The prefix of a formula Fi, or more generally the prefix of i, is the string
a1 . . . an, where a1 � . . . � an are all the indices of type φ or ψ that are �-less
than i. The empty string is denoted ε. For example, in Fig. 3, the prefix of P�

3

is avc. The prefix of a formula is displayed in square brackets, like in P [avc]. We
require that all formulas in a root sequent of a derivation have the empty prefix.
In general, a string over variables and parameters is called a label , and a label
is called ground if it contains only parameters. If p is an initial substring of q,
we write p ( q; if p is an initial proper substring of q, we write p ≺ q.

For a derivation to be a proof of its root sequent in intuitionistic logic, there
must be a pair of complementary formulas for each of the leaves in the deriva-
tion, as for classical logic. Additionally, there must exist a single substitution
that makes p an initial substring of q for each such pair F [p]� and F [q]⊥ of
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complementary formulas [16]. Intuitively, this enforces an order constraint on
the expansion of φ- and ψ-formulas in calculi without free variables [13, 15] due
to the fact that the φ- and ψ-rules in such calculi do not permute. A proof of a
formula F is simply a proof of the sequent � F .

Example 1. The following derivation, together with the substitution {u/a, v/b},
is an intuitionistic proof.

¬(P ∨ Q)[ε], P [a] � P [u], Q[u]
¬(P ∨ Q)[ε] � ¬P [ε], P [u], Q[u]

¬(P ∨ Q)[ε], Q[b] � P [u], Q[u], P [v], Q[v]
¬(P ∨ Q)[ε], Q[b] � P [u], Q[u], (P ∨ Q)[v]
¬(P ∨ Q)[ε], Q[b] � P [u], Q[u]

¬(P ∨ Q)[ε] � ¬Q[ε], P [u], Q[u]
¬(P ∨ Q)[ε] � ¬P ∧ ¬Q[ε], P [u], Q[u]
¬(P ∨ Q)[ε] � ¬P ∧ ¬Q[ε], (P ∨ Q)[u]
¬

u/v
(P ∨ Q)[ε] � ¬

a
P ∧ ¬

b
Q[ε]

)

However, in this example, it is sound to substitute u with a in the left branch and
u with b in the right branch, thus making it possible to obtain a proof without
the two last expansions in the right branch. The variable splitting technique
generalizes this idea and is presented in the following section. For a richer and
more detailed account of this technique, consult [2].

Because prefixes are defined from indices, the leaf sequents are invariant un-
der permutation of the inferences. The prefix of a formula only depends on the
formula itself, not the other formulas, or the branch in which the formula occurs.
Thus, for any two expanded formulas that occur in the same branch, and that
are not subformula-related, it is possible to permute the derivation into a form
where one formula is expanded below the other, or the other way around. More
generally, for any relation < such that the transitive closure of ' ∪ < is irreflex-
ive, a derivation can be permuted such that it conforms to <, that is, if a < b,
then a is expanded below b in every branch where both a and b are expanded.
For a more thorough explanation of permutability properties, see [14].

There is in fact a proviso for this permutability claim, which is caused by
the asymmetry of the β-rule, namely, that an expanded φ-formula (F → G)�

is copied into the left premiss and not into the right. If we copy the formula
into the right premiss as well, we gain full permutability. This can, however, also
be achieved without the copy in the right premiss; we shall, however, spare the
reader for these details.

3 Variable Splitting and Admissibility

Variable splitting allows us to assign a value to a variable relative to the branch
in which it occurs, so that a variable receives a particular value in one branch
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and a different value in another. A simple way to do this is to annotate a variable
with a name of the branch in which it occurs. For each branch of a derivation
there is a set B of all the formulas contained in it, and we use the set of indices
of the β0-formulas in B as the name of the branch. For example, if (P ∨ Q)�

is expanded in a derivation, one set contains the index of P and the other set
contains the index of Q. In examples, these sets are written as strings. A colored
variable is a variable u together with the name A of a branch, written uA. If p
is the prefix of a formula in the leaf sequent of a branch B, then p̂ denotes the
colored prefix where all variables u have been replaced by uB (the branch will
always be always be clear from the context when the notation p̂ is used.)

A substitution is a function σ from colored variables to ground labels, which
is extended to arbitrary labels in the standard way. The application of σ to an
argument p is written in the postfix notation pσ. For the sake of simplicity, we
are here assuming that all substitutions are total and ground. It is sometimes
convenient to define substitutions relative to a branch B, and in this case we
simply ignore the colors and view the substitutions as functions from uncolored
variables.

Definition 2. Let D be a derivation of Γ . A substitution σ closes a leaf sequent
Γ ′ of D if there are formulas F [p]� and F [q]⊥ in Γ ′ such that p̂σ ( q̂σ. It closes
D if it closes every leaf sequent of D. )

In order to characterize intuitionistic validity, it is clearly not sufficient to have
a closing substitution, as can be seen from the following example. From now on
we omit the copies of φ-formula for readability.

Example 3. The following is a derivation of a non-valid root sequent. The
variable u occurs in both branch 1 and branch 2, so we obtain the colored
variables u1 and u2. The derivation is closed by the substitution {u1/a, u2/b}.
We shall soon see that this substitution is not admissible.

P [a], Q[b] � P [u] P [a], Q[b] � Q[u]
P [a], Q[b] � (P ∧Q)[u]
P [a], Q[b] �

P [a] � ¬Q[ε]
� ¬P [ε],¬Q[ε]

¬
u
(P

1
∧Q

2
)[ε] � ¬

a
P ∨ ¬

b
Q[ε]

u

(1�2)

)

Definition 4. If b1 and b2 are the indices of the immediate subformulas β1 and
β2 of a β-formula, then b1 and b2 are called dual , and (b1�b2) denotes the index
of the β-formula. A relation � from β-indices to variables is called a splitting
relation if the following condition holds: if uAσ �= uBσ, then there are dual
elements a ∈ A and b ∈ B such that (a� b) � u. The natural way to read
(a�b) � u is “u depends on (a�b)” or “u is split by (a�b)”. If � is a splitting
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relation, then the transitive closure of (' ∪ �), denoted �, is called a reduction
ordering. We say that a substitution is admissible if there exists an irreflexive
reduction ordering for it. If D is a derivation of Γ and σ is a substitution, then
the tuple 〈D,σ〉 is called a proof of Γ if σ closes D and is admissible. )

For a given substitution, there can be more than one splitting relation and
therefore also more than one reduction ordering. In Example 3, there is only one
possible splitting relation and the corresponding reduction ordering is cyclic, as
illustrated in the figure on the right-hand side.

A splitting relation can be interpreted as an order constraint on the expansion
of β- and φ-formulas in calculi where every φ-formula introduces a fresh free
variable. For instance, if (a�b) � u, then the formula with index (a�b) should
be expanded before the formula with index u, resulting in two occurrences of
the u-formula which can introduce different variables.

Example 5. The following is a derivation of a valid root sequent.

P [ua], Q[ua] � P [bv]
(P ∧Q)[ua] � P [bv]

(P ∧Q)[ua],¬P [b] �
(P ∧Q)[ua] � ¬¬P [ε]

P [ua], Q[ua] � Q[cw]
(P ∧Q)[ua] � Q[cw]

(P ∧Q)[ua],¬Q[c] �
(P ∧Q)[ua] � ¬¬Q[ε]

(P ∧Q)[ua] � ¬¬P ∧ ¬¬Q[ε]
� ¬¬P ∧ ¬¬Q[ε],¬(P ∧Q)[u]

¬
u
¬
a
(P ∧Q)[ε] � ¬

b
¬
v
P ∧ ¬

c
¬
w
Q[ε]

u

a

�

b c

v w

Since (b�c) is the index of the right conjunction, the two branches are named b
and c. The leaf sequent of branch b contains P [ua]� and P [bv]⊥. The colored pre-
fixes are ûa = uba and b̂v = bvb, and this leaf sequent is closed by {ub/b, vb/a}.
The substitution σ = {ub/b, vb/a, uc/c, wc/a} closes the whole derivation. Let
�= 〈(b�c), u〉. It is a splitting relation, since ubσ = b �= c = ucσ trivially implies
that (b�c) � u. The irreflexivity of the reduction ordering can be seen from
the right-hand illustration, where � u stands for (b�c) � u. We have thus
established the admissibility of σ. )

4 Labelled Formulas and Semantics

A labelled formula is a formula F together with a label p, written F [p]. Until
now we have only used square brackets to display prefixes of formulas, but from
this point we consider all formulas to be labelled. This enables us to apply
substitutions to formulas, sequents, and branches.

An intuitionistic model is a triple 〈W,R, V 〉, where W is non-empty, R is a
partial ordering on W , and V is a function from proposition letters to subsets of
W , such that R satisfies the monotonicity condition: if x ∈ V (P ) and xRy, then
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y ∈ V (P ). The forcing relation � is inductively defined for unsigned formulas in
the following way.

x � P iff x ∈ V (P ), where P is a proposition letter,
x � F ∧G iff x � F and x � G,
x � F ∨G iff x � F or x � G,
x � F → G iff for all y such that xRy, either y �� F or y � G, and
x � ¬F iff for all y such that xRy, y �� F .

The monotonicity condition transfers from proposition letters to arbitrary for-
mulas: if x � F and xRy, then y � F . A formula is intuitionistically valid if
x � F for every x in every model.

For signed formulas, let x � F� iff x � F , and x � F⊥ iff x �� F . A label
interpretation function is a function ι from the set of ground labels to W such
that if p ( q, then (ιp)R(ιq). A ground sequent is falsifiable if there is a model
and a label interpretation function ι such that ι(p) � F for all formulas F [p] in
Γ (all formulas in Γ have a polarity, by we do not display polarities unless it
is needed). In this case we say that Γ is falsified under ι and that the model is
a countermodel for Γ . Note that a formula F is valid exactly when � F is not
falsifiable, that is, there is no model such that x �� F for some x.

5 Soundness

In this section we establish the soundness of the variable splitting proof system,
that is, we prove that if a formula is provable, it is intuitionistically valid. In
brief, we show that if the root sequent of a derivation is falsifiable, then at
least one of its leaf sequents is also falsifiable, and therefore not closable by an
admissible substitution. In [2] we prove soundness for a similar proof system for
first-order logic by an induction over the reduction ordering. While it is perfectly
possible to do this also for the current intuitionistic system, we will instead use
an alternative, and simpler, approach. Instead of an induction on the reduction
ordering, we first permute the derivation into a certain form and then argue by
induction on construction of the derivation, that is, we show that each inference
preserves falsifiability. As pointed out in Section 2, if the reduction ordering �
is irreflexive, a derivation can be permuted such that it conforms to �.

To facilitate the argument, we say that a label interpretation function ι is
canonical if the following two conditions hold.

– if ι(p) �� ¬Fa, then ι(pa) � F
– if ι(p) �� (F → G)a, then ι(pa) � F and ι(pa) �� G

Lemma 6. If a root sequent Γ is falsifiable, then there is a canonical label
interpretation function ι such that Γ is falsified under ι. )

Proof. The proof is by induction on ground labels. Since Γ is falsifiable, and all
formulas in Γ have the empty prefix, there must be an x such that x � F for all
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formulas F in Γ . Let ι(ε) = x. For all formulas ¬F⊥ with index a, if ι(p) �� ¬F ,
then there is a y such that ι(p)Ry and y � F , so let ι(pa) = y; otherwise, let
ι(pa) = ι(p). Similarly for all formulas (F → G)⊥.

Lemma 7 (Falsifiability). If the root sequent of a derivation is falsifiable and
σ is an admissible substitution, then there is a leaf sequent Γ such that Γ̂σ is
falsifiable. )

Proof. Since σ is admissible, there is a splitting relation � and a reduction order-
ing � such that � is irreflexive. Permute the derivation such that it conforms to
�. We shall show that every inference preserves a falsifiability property. In order
to state this property, and finally to establish that Γ̂ σ is falsifiable for some leaf
sequent Γ , we shall use σ to assign ground labels to all variables occurring in the
derivation. Since σ is defined only for colored variables, we need to propagate the
values to uncolored variables. If a variable u occurs in a sequent Γ in a branch
B, map this occurrence to uBσ. This mapping is well-defined, for suppose for a
contradiction that there is a sequent Γ that occurs in both branch B1 and B2

and that Γ contains an occurrence of u that is mapped to two different values
for the two branches. Then, uB1σ �= uB2σ, so there are dual elements b1 from B1

and b2 from B2 such that (b1�b2) � u. The formula with index (b1�b2) must
have been expanded, otherwise the indices b1 and b2 would not be in B1 and B2,
and this expansion must be somewhere above Γ , since both branches contain Γ .
But then, the derivation does not conform to �, contrary to the assumption.

By this mapping we can assume that there are only ground labels in the
derivation, and by Lemma 6, there is a canonical label interpretation function
ι. We proceed to show that if the conclusion of an inference is falsified under ι,
then at least one of the premisses is falsified under ι.

– Suppose that the expanded formula is of type φ, say (F → G)[p]�. Then,
there is a label pq such that one branch contains F [pq]⊥ and one branch
contains G[pq]�. By assumption, ι(p) � (F → G). Since ι(p)Rι(pq), either
ι(pq) � F or ι(pq) �� G, so one of the premisses is also falsified under ι.

– Suppose that the expanded formula is of type ψ and that its index is a, say
(F → G)[p]⊥a . Then, the premiss contains F [pa]� and G[pa]⊥. By assumption
ι(p) �� (F → G)a. Since ι is canonical, ι(pa) � F and ι(pa) �� G, so the
premiss is also falsifiable under ι.

– The remaining cases are simpler, and left to the reader.

Finally, this yields a branch B with a falsified leaf sequent. If Γ denotes the
sequent prior the mapping, and Γσ denotes the result of the mapping, then Γσ

equals Γ̂σ, and we are finished.

6 Completeness and Termination

In this section we show how one can construct models from derivations over
unprovable sequents. In order to extract information for the model construction
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in a smooth way we shall restrict the set of substitutions to a set that reflects
(parts of) the structure of Kripke models. We also state a property which ensures
that the derivation is sufficiently large for the model construction. Since this
property always can be satisfied by a finite derivation (we do not prove this in this
paper), we shall refer to the property as a termination condition. The termination
condition stated in this section is defined branchwise and independent of the
order of rule application. That the condition is correct follows directly from the
completeness theorem.

The condition is defined by constraining the substitutions in a structured way.
To this end, let us say that the weight of a parameter is 1, that the weight of a
variable that is not a copy is 0, and that the weight of the nth copy of a variable is
n. Let the weight of a prefix be the sum of the weights of its indices, in particular
let the weight of ε be 0. For the remainder of the paper, we will only consider
substitutions that preserve weights, that is, that map variables of weight n to
ground labels of length n. We shall be particularly interested in ground labels
that arise on a given branch from substitutions that preserve weights.

Definition 8. The set of points for a branch B is inductively defined as follows.

– The empty label, ε, is a point for B.
– If p is a point for B, qa is the prefix of a formula in B, and qσ = p for a

weight-preserving substitution σ, then pa is also a point for B.

For each point p for B, the associated linear substitution σp is defined by

σp =
⋃

{σ | qσ ( p, q a prefix in B, and σ weight-preserving}. )

Note that the linear substitution maps uncolored variables. Since it is defined
branchwise this is just a matter of taste (as a variable u in the domain of σp can
readily be colored to uB). Observe that if p ( q, then σp ⊆ σq.

Example 9. Let the sequent ¬
u0
¬P, ¬

v0
¬Q � be indexed in the following way.

u0 u1 u2 v0 v1 v2

a c e b d f

After maximally expanding the formulas with indices u0, u1, v0 and v1, we obtain
the following leaf sequent Γ .

¬
u2
¬P, ¬

v2
¬Q,P [u0a], Q[v0b], P [u1c], Q[v1d] �

– The points for the branch are: ε, a, b, ac, ad, bc, bd.
– The linear substitution σa is {u0/ε, v0/ε}.
– The linear substitution σac is {u0/ε, v0/ε, u1/a, v1/a}.

We will frequently use the result of mapping linear substitutions to sequents.
For example:
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– Γσa equals ¬¬P,¬¬Q,P [a], Q[b], P [u1c], Q[v1d] �.
– Γσac equals ¬¬P,¬¬Q,P [a], Q[b], P [ac], Q[ad] �.

In particular, we will be interested in the formulas labelled with p in Γσp; for
example, the formula P [a]� in Γσa and the formula P [ac]� in Γσac. )

Definition 10. Let B be a branch with leaf sequent Γ . We define, by induction
on points, the set of active points for B. The empty label, ε, is always active.
Furthermore, if F [p]� is in Γσp, then p is active if

– all points p′ ≺ p are active, and
– there is no formula F [p′]� in Γσp such that p′ ≺ p.

If p is active, we say that p is active for the φ-formula F [q]�u in Γ if (qu)σ = p
for some weight-preserving substitution σ. )

Returning to Example 9, we have the following facts.

– a is active, since Γσa contains P [a]�, but not P [ε]�, and since ε is active.
– a is not active for any of the φ-formulas in Γ , since there is no weight-

preserving σ such that u2σ = a or v2σ = a.
– ac is not active, since Γσac contains both P [a]� and P [ac]�.
– ad is active, since Γσad contains Q[ad]�, but neither Q[ε]� nor Q[a]�, and

since both ε and a are active.

Definition 11 (Termination Condition). A derivation is finished if each leaf
sequent contains only proposition letters and φ-formulas for which there are no
active points. )

The derivation from Example 9 is not finished, since the points ad and bc still are
active for both φ-formulas. After another expansion of the φ-formulas, however,
the derivation is finished, since there are no active points of length 3.

Recall that an index has a unique prefix. Let the degree of an index i, denoted
d(i), be the weight of its prefix, plus the weight of i itself, if i is a variable or
a parameter. Let the degree of an inference be the degree of the index of the
expanded formula. Observe that the degree of an inference equals the weight of
the prefix of the formulas introduced in the premisses.

In order to construct the model, we shall assume that a finished derivation
is permuted into a form where the inferences are ordered by their degree, that
is, if r is above r′, then d(r) ≥ d(r′), or equivalently, no inference decreases the
maximum weight of prefixes. Although the size of the derivation may blow up
in the permutation process, this is harmless for the sake of the argument since
fulfillment of the termination condition is invariant under permutation.

Furthermore, we will restrict the set of admissible substitutions and exploit
the fact that if a derivation is not closable with an admissible substitution, then
it is not closable with a restricted substitution either. To this end, let B1, . . . , Bm

be all the branches of a derivation. For each i let pi be a maximal point for Bi

such that if the uppermost common β-inference of Bi and Bj is of degree n,
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then pi and pj agree on their first n symbols. The linear substitutions σi can
now be combined into a single substitution in the following way. Let σB denote
the substitution obtained from σ by coloring all variables in the domain with B.
Then, the union of σBi

pi
, for 1 ≤ i ≤ n, is called a combined substitution.

When working with combined substitutions we can ignore the admissibility
condition for the following reason.

Lemma 12. A combined substitution σ =
⋃
σBi

pi
is admissible. )

Proof. Let b � u iff d(b) < d(u). Since the resulting reduction ordering must
be irreflexive, it suffices to show that this is a splitting relation. Suppose that
uB1σ �= uB2σ. Let (b1� b2) be the index, say of degree n, of the uppermost
expanded β-formula such that b1 ∈ B1 and b2 ∈ B2. By assumption, p1 and p2

agree on their first n symbols. If q is the prefix of u, then (qu)σp1 �= (qu)σp2 , so
d(u) must be of degree greater than n. Consequently, (b1�b2) � u.

Definition 13. Let Γ be a sequent, and let p be a point for some branch con-
taining Γ . We say that the linear substitution σp is compatible with a combined
substitution σ if σB

p ⊂ σ for all branches B containing Γ . The sequent Γ is called
open-ended for p if every combined substitution compatible with σp fails to close
at least one leaf sequent above Γ . )

Example 14. In Example 3, if we require that the variable u has weight 0, all
the sequents are trivially open-ended for the points ε, a and b. The derivation is
not finished, since the leaf sequents contain φ-formulas with active points. Let us
expand the φ-formula, and its β-subformula, in both branches. The derivation
becomes finished, and the leftmost part of the derivation is the following.

P [a], Q[b] � P [u1] P [a], Q[b] � Q[u1]
P [a], Q[b] � (P ∧Q)[u1]

¬
u1

(P
3
∧Q

4
)[ε], P [a], Q[b] � P [u]

The left leaf sequent is open-ended for b and the right leaf sequent is open-ended
for a. The sequent below is open-ended for both a and b. )

Lemma 15. Let Γ be open-ended for a point p of length n.

– If q is a point such that p ≺ q, then Γ is open-ended for q.
– If Γ is the conclusion of an inference of degree n, then at least one premiss

of the inference is open-ended for p. )

Proof. For the first claim, note that if Γ can be closed with a combined substitu-
tion compatible with σq , then it can also be closed with a combined substitution
compatible with σp, since σp ⊆ σq. For the second claim, it suffices to prove that
if all premisses can be closed with combined substitutions compatible with σp,
then so can the conclusion. This is trivial for an α-inference; to see that it also
holds for a β-inference, suppose that there is a combined substitution σ1 that
closes all leaf sequents above the left premiss and a combined substitution σ2
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that closes all leaf sequents above the right premiss. Let σ′
1 be the restriction

of σ1 to the branches above the left premiss and let σ′
2 be the restriction of σ2

to the branches above the right premiss. Since both σ1 and σ2 are compatible
with σp, we have that σ′

1 ∪ σ′
2 is a combined substitution compatible with σp.

By construction, it closes the derivation.

Theorem 16. If a derivation is finished and not closed by any combined sub-
stitution, then the root sequent has a countermodel. )

Proof. By repeated applications of Lemma 15 we inductively construct a set O
of pairs 〈Γ, p〉 such that Γ is open-ended for p and the following conditions hold.

– 〈Γ, ε〉 ∈ O, where Γ is the root sequent of D.
– If 〈Γ, p〉 ∈ O, the point p is of length n, and Γ is the conclusion of an inference

of degree n, then 〈Γ ′, p〉 ∈ O for exactly one premiss Γ ′ of the inference.
– If 〈Γ, p〉 ∈ O, the maximal weight of a prefix in Γ equals the length of p, and

pa is a point for a branch containing Γ , then 〈Γ, pa〉 ∈ O.

There is an interdependency between the last two conditions with the effect
that one eventually reaches a leaf sequent Γ and a maximal point p. The last
condition ensures that the lengths of the points are incremented by one, which
makes the second condition apply in cases where the inference increases the
maximum weight of prefixes. By induction on the construction of O, one can
show that if 〈Γ, p〉 and 〈Γ ′, p′〉 are in O, and p′ ( p, then Γ and Γ ′ occur in the
same branch.

In fact, the set O now contains enough information to construct a counter-
model for the root sequent. We will here only give the outline of a proof. For a
full proof in a similar situation, see [14].

From O we define a set S of ground labelled formulas and show that S is
falsifiable. Let F [p] ∈ S iff there is a pair 〈Γ, p〉 in O such that F [q] ∈ Γ and
qσp = p. Let 〈W,(, V 〉 be the model defined in the following way.

– Let W be the set of active points occurring as labels in S.
– Let p ∈ V (F ) iff F [p′]� ∈ S for some p′ ( p.

The label interpretation function ι is defined as follows. If p is an active point,
let ι(p) = p. Otherwise, let ι(p) be the largest active point such that p′ ≺ p. By
induction on the length of formulas, we show the following two statements.

– If F [p]� ∈ S, then ι(p) � F , and
– if F [p]⊥ ∈ S, then ι(p) �� F .

The base case for P [p]⊥, where P is a proposition letter, is trivial. Suppose
that P [p]⊥ ∈ S. Then, there is a pair 〈Γ, p〉 ∈ O such that P [q]⊥ ∈ Γ and
qσp = p. It suffices to show that there is no p′ ( p such that P [p′]� ∈ S, for
then p �� P . So, suppose for a contradiction that such a p′ exists. Then, there
is a pair 〈Γ ′, p′〉 ∈ O with P [q′]� ∈ Γ ′ and q′σp′ = p′. Since Γ and Γ ′ must
occur in the same branch and P is a proposition letter, either Γ is below Γ , and
then P [q′]� ∈ Γ , or Γ ′ is below Γ , and then P [q]⊥ ∈ Γ ′. Both cases lead to a
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contradiction from the assumptions that Γ and Γ ′ are open-ended for p and p′,
respectively.

Suppose that (F → G)[p]� ∈ S and that p ( q for some q ∈ W . If there is a
q′ ( q such thatG[q′]� ∈ S, then ι(q′) � G by the induction hypothesis, and hence
ι(q) � G. Otherwise, since the derivation is finished, there must by construction
exist a pair 〈Γ, q〉 ∈ O with F [q]⊥ ∈ Γσq. By induction hypothesis, q �� F .

Suppose that (F → G)[p]⊥a ∈ S. By construction, there is a pair 〈Γ, pa〉 ∈ O
such that both F [pa]� and G[pa]⊥ are in Γσpa. We can conclude that ι(pa) � F
and ι(pa) �� G (also in the case that pa is not active).

7 Conclusion and Future Work

We have successfully introduced a free variable proof system for IPL with vari-
able splitting, and proved soundness, completeness, and correctness of a local
termination condition. This forms the basis for the design of unification-based
goal-directed search procedures.

The variable splitting technique enables us to completely avoid dependence
on the order of rule applications. Variable splitting for first-order logic also per-
mits significantly shorter proofs than free variable calculi without variable split-
ting [2]. An interesting problem is whether there exists a variable splitting system
for IPL which also reduces proof lengths and, if so, whether this can be exploited
in an even tighter termination condition.

The characterization that we propose is easy to motivate with respect to
variable-sharing calculi, but there are also connection-based calculi, like the
one used in the ileanCoP implementation [9], that use renaming of variables
to achieve some of the same effects as variable splitting, as variables introduced
in new branches always are renamed. Some of the problems that variable split-
ting solves for variable-sharing calculi simply do not arise when variables are
renamed. The exact relationship between variable splitting and variable renam-
ing is unknown at the time of writing.

We have made some technical simplifications in this paper in order to simplify
proofs and increase readability. In particular, we are only considering ground and
total substitutions, and the reduction ordering is formulated with respect to the
“full” '-relation. These restrictions can however be lifted; see [2] for some of the
details.

Future work includes the study and implementation of connection-based proof
procedures with variable splitting. In particular, we hope to be able to extend
the incremental closure technique for first-order logic [5, 6] to the system in this
paper. We also plan to exploit the idea of using the classical kernel of the proof
objects to first check for classical provability and only upon success invoke the
intuitionistic prefix machinery, as already done in [9].

It seems straightforward to adapt this proof system, with its soundness, com-
pleteness and termination condition, to propositional modal logics. We also
plan to address an extension of it, with minor modifications, to intuitionistic
first-order logic in a follow-up work.
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Abstract. This paper presents the foundations for using automated de-
duction technology in static program analysis. The central principle is
the use of logical lattices – a class of lattices defined on logical formulas in
a logical theory – in an abstract interpretation framework. Abstract in-
terpretation over logical lattices, called logical interpretation, raises new
challenges for theorem proving. We present an overview of some of the
existing results in the field of logical interpretation and outline some
requirements for building expressive and scalable logical interpreters.

1 Introduction

Theorem proving has been one of the core enabling technologies in the field of
program verification. The traditional use of theorem proving in program anal-
ysis is based on the concept of deductive verification, where the program is
sufficiently annotated with assertions and verification conditions are generated
that, if proved, will establish that the annotated assertions are indeed invariants
of the program. The generated verification conditions are discharged using a the-
orem prover [6]. This traditional approach of integrating theorem proving with
program analysis requires theorem provers in the form of satisfiability checkers
for various theories and combination of theories.

While deductive verification attempts to verify given annotated invariants,
abstract interpretation seeks to generate invariants for programs. Static analysis
and abstract interpretation techniques have seen recent success in the field of
software verification. For example, the Slam project and the Astree tool demon-
strated effectiveness of static analysis techniques in verifying large pieces of de-
vice driver and aerospace code. However, static analysis techniques can verify
only simple properties. Most of the current tools based on these techniques target
a specific class of programs and prove only specific kinds of properties of these
programs. The working hypothesis of this paper is that theorem proving tech-
nology can push static analysis techniques to handle larger classes of properties
for larger classes of systems.
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The process of going from checking annotated invariants (deductive verifica-
tion) to generating the invariants (abstract interpretation) is akin to going from
type checking to type inference. While traditional theorem provers, which are
essentially satisfiability solvers, can naturally help in invariant checking, how can
they be extended to help in this new task of invariant generation?

Shankar [24] proposed the general paradigm of using theorem proving technol-
ogy in the form of “little engines of proof”. The idea was to use components of
monolithic theorem provers, such as decision procedures, unification and match-
ing algorithms, and rewriting, as embedded components in an application. This
idea gained remarkable traction and lead to the development of several little
engines, mostly in the form of satisfiability modulo theory, or SMT, solvers. Con-
tinued research and development has resulted in dramatic improvements in the
performance of these little engines of proof.

Satisfiability checking procedures, while useful in the context of deductive ver-
ification, are insufficient for building abstract interpreters. This paper considers
the approach of embedding theorem proving technology, in the form of little
engines, as an embedded component in modern software verification tools based
on abstract interpretation. This integration uses theorem proving technology in
a new role and raises several interesting new questions.

How do we formally understand this new approach of integrating theorem
proving and program analysis? What little engines are required for this purpose
and how can they be built? What is the interface that is required to smoothly
embed a little engine inside a static analysis tool based on abstract interpreta-
tion?

This paper answers these questions by laying the foundations of logical inter-
pretation – the process of performing abstract interpretation on logical lattices. A
logical lattice is a lattice whose domain consists of formulas and whose ordering
relation is (a refinement of) the logical implication relation ⇒T in some logical
theory T. We present an overview of the existing results in the area of logical
interpretation and outline directions for future work.

We start by defining the assertion checking problem in Section 2. We intro-
duce logical lattices in Section 3. In Section 4 we use logical interpretation to
solve the assertion checking problem in an intraprocedural setting for various
program models. Results for interprocedural analysis are presented in Section 5.
In Section 6, we consider the problem of assertion generation using a (forward)
logical abstract interpreter. Finally, we briefly discuss richer program models
that include heaps in Section 6.2, and the interface of a logical lattice that en-
ables modular construction of quantified logical abstract domains for reasoning
about these richer program models in Section 6.3.

2 Problem Definition

We first present the program model and its semantics in Section 2.1, followed
by a quick introduction to abstract interpretation in Section 2.2. Section 2.3 will
formally define the assertion checking problem.
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Non−deterministic
Conditional Node

Join Node

Edge Label Name of Edge

(a) x := e Assignment
(b) x :=? Non-det. Assgn.
(c) skip Skip
(d) Assume(e1 �= e2) Assume
(e) Call(P ) Procedure Call

Fig. 1. Conditional and join nodes in flowcharts and various types of edge labels

2.1 Program Model

A program is a directed graph whose edges are labeled by one of the five labels
in Figure 1. Each connected component of such a graph, called a procedure, is
assumed to have a marked entry node with no incoming edges and a marked
exit node with no outgoing edges. Each procedure is labeled with a name (of the
procedure). Without loss of generality, we assume that, for each node, either its
indegree or its outdegree is at most one.

The program model is parameterized by a theory T. We assume, henceforth,
that T is some theory over a signature Σ. Let Terms(Σ ∪X) denote the set of
terms constructed using signature Σ and variables X . Examples of T that will
be used particularly in this paper are the theory of linear arithmetic, the theory
of uninterpreted symbols, the combination of these theories, and the theory of
commutative functions.

Let X be a finite set of program variables. The edges of a program are labeled
by either (a) an assignment (x := e), or (b) a non-deterministic assignment
(x :=?), or (c) a skip, or (d) an assume (Assume(e1 �= e2)), or (e) a procedure
call (Call(P )). Here x ∈ X , e, e1, e2 ∈ Terms(Σ ∪ X), and P is a name for a
procedure in the program.

A non-deterministic assignment x :=? denotes that the variable x can be
assigned any value. Such non-deterministic assignments are used as a safe ab-
straction of statements (in the original source program) that can not be precisely
expressed in the simplified program model.

A join node is a node with two (or more) incoming edges. A non-deterministic
conditional node is a node with two (or more) outgoing edges. This denotes that
the control can flow to either branch irrespective of the program state before the
conditional. Such nodes can be used as a safe abstraction of guarded conditionals
that cannot be expressed precisely in the simplified program model. We assume,
without loss of generality, that all (incoming or outgoing) edges incident on a
join or non-deterministic conditional node are labeled with skip.

Assume edges, Assume(e1 �= e2), can be used to partially capture conditionals.
Note that a program conditional of the form e1 = e2 can be reduced to a non-
deterministic conditional and assume statements Assume(e1 = e2) (on the true
side of the conditional) and Assume(e1 �= e2) on the false side of the conditional.
The presence of disequality assume edges allows us to capture the false branch
precisely in this case. Assume labels of the form Assume(e1 = e2) are disallowed
in the simplified model.
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Our definition of a program is quite restrictive. The extension to richer pro-
gram models is briefly discussed in Section 6.2. Nevertheless, this simplied pro-
gram model is also useful for program analysis. It is used by abstracting a given
original program using only the edge labels shown in Figure 1 and then using the
results described in this paper on the abstracted program. A second motivation
for studying the simplified program model is to study the theoretical aspects
of static program analysis and characterize the “precision” of static program
analysis that is achievable using abstract interpretation techniques.

Semantics of Programs. The semantics of programs in the above program model
is given in the standard way. Let States denote the set of all possible mappings
from X to Terms(Σ). In other words, States is the set of ground substitu-
tions. Let (Pow (States),⊆) be the complete lattice1 defined over the domain
Pow (States), which is the collection of all subsets of States, by the usual set
operators. Let Pow (States) &→ Pow (States) denote the collection of all functions
from Pow (States) to Pow (States). The preorder in the lattice (Pow (States),⊆)
induces a (lattice) preorder on the domain Pow (States) &→ Pow (States).

The semantics of each node in the program, say π, is given as a function [[π]]
in Pow (States) &→ Pow (States). Intuitively, [[π]](ψ) is the set of program states
reached at program point π starting from some program state in ψ at the entry
point of the procedure containing π. Formally, if π is the set of all program
points in a program, then the vector of functions ([[π]])π∈π is obtained as the
least fixpoint of a set of fixpoint equations obtained from the program (using
the semantics of the edge labels); that is, ([[π]])π∈π = F (([[π]])π∈π), where F
is the monotone function representing the strongest post-condition transformer.
Note that for a join node π with parents π1 and π2, [[π]] is the join (union) of
[[π1]] and [[π2]]. See [4] for further details.

2.2 Abstract Interpretation

Abstract interpretation [4] is a generic framework for describing several static
program analyses. The idea is to evaluate the program semantics over more ab-
stract or simpler lattices, rather than the lattices over which the semantics is
defined. Thus, abstract interpretation is parameterized by the choice of the ab-
stract lattice. Its effectiveness is dependent on the expressiveness of the abstract
lattice and the computational complexity of computing fixpoints in that lattice.

Let (A,�) be a complete lattice. Such a lattice will be called an abstract lattice
if there is a Galois connection between (A,�) and (Pow (States),⊆) defined by
the monotone abstraction function α : Pow (States) &→ A and the monotone con-
cretization function γ : A &→ Pow (States). Abstract interpretation involves solv-
ing the fixpoint equations defining the semantics of the program, but over such
an abstract lattice (A,�) (and the induced extension on A &→ A), rather than on
the concrete lattice Pow (States). Formally, ([[π]]A)π∈π = FA(([[π]]A)π∈π), where
1 A lattice (A,!) is identified by its domain A and its preorder !. The meet (�A) and

join (�A) are defined as the greatest lower bound and least upper bound respectively.
The top and bottom elements are denoted by �A and ⊥A.
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FA is the strongest (post-condition) transformer on the abstract domain such
that F ⊆ γ ◦ FA ◦ α. Note that, since the lattice (A,�) is assumed to be com-
plete, fixpoints exist (without requiring any widening to achieve convergence),
and [[π]]A are well-defined.

Given an abstract domain (A,�), the interprocedural abstract interpretation
problem seeks to compute [[π]]A for each program point π. If we consider a
program model where there are no edges labeled by Call(P ), then we obtain
the simpler problem of intraprocedural analysis. In the case of intraprocedural
analysis, we can work on the lattice (A,�) directly by just focusing on computing
[[π]]A(�A).

We remark here that the requirement that (A,�) be a complete lattice can
be relaxed. Abstract interpretation based analysis can be performed on semi-
lattices A that are not closed under (arbitrary) join. In such a case, the join is
over-approximated by some element of the lattice A. However, if we insist that
there is a unique least fixpoint solution of the semantic equations in A, then we
need to assume that A is a complete lattice.

2.3 The Assertion Checking Problem

We now define the assertion checking problem for programs.

Definition 1 (Assertion Checking Problem). Let T be a theory and P be
a program using the expression language of T. Given an assertion e1 = e2 at
a program point π in P , the assertion checking problem seeks to determine if
e1σ =T e2σ for every substitution σ in [[π]](�).

In general, an assertion φ can be any set of states, φ ∈ Pow(States), and then
the assertion checking problem seeks to determine if [[π]](�) ⊆ φ. If the assertion
checking problem has a positive solution, we say the assertion holds at the given
program point.

The term e1σ is just the evaluation of e1 along some path in the program.
Thus, assertion checking problem essentially seeks to determine if e1 and e2 are
equal at the end of every path to program point π.

Example 1. Consider the program P containing two sequential assignments:
{π0;x := f(z);π1; y := f(z);π2}, where X = {x, y, z} are program variables
and the signature Σ = {f, a} contains an uninterpreted function symbol f and
constant a. We are interested in checking the assertion x = y at program point
π2. Now, [[π2]](�) is the set containing all ground instances of the substitution
σ := {x &→ fz, y &→ fz}. Clearly, xσ = yσ in the theory of uninterpreted sym-
bols, and hence, x = y holds at π2.

Since computing [[ ]] is often intractable, the assertion checking problem is often
solved using abstract interpretation over some abstract domain. However, this
can lead to incompleteness.

Example 2. Following up on Example 1, let Φ denote the set of all finite conjunc-
tions of all variable equalities. The relation ⇒EQ, where EQ is the pure theory of
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equality, induces a natural ordering on Φ. This ordering defines a lattice structure
(Φ,⇒EQ). Note that [[π2]]Φ = [[π1]]Φ = true. This is because no variable equality
holds at point π1. Even though x = y holds at π2, the lattice Φ is not expressive
enough to prove it. However, if Φ contains all (conjunctions of) equalities on
Σ ∪X , then [[π2]]Φ will be x = y ∧ y = f(z).

An abstract lattice (A,�), with corresponding concretization function γ, is suf-
ficiently expressive for assertion checking if for every element φ ∈ A such that
the assertion γ(φ) holds at point π in a program P , it is the case that [[π]]A � φ.

The following result, which is central to many results in this paper, relates
unification [2] and program analysis for the simplified program model. The no-
tation Unif(E), where E is some conjunction of equalities, denotes the formula
that is a disjunction of all unifiers in some complete set of unifiers for E.

Lemma 1 ([10]). Let T be a convex finitary theory and P be a program built
using edge labels (a)–(e) from Figure 1 and using the expression language of T.
Let π be a program point in P and let φi be some conjunction of equalities. Then,∨

i

φi holds at π iff
∨

i

UnifT(φi) holds at π.

We will study the assertion checking problem for different choices of the program
model. Our approach will be based on using an appropriate choice of the abstract
lattice A and using abstract interpretation over A.

3 Logical Interpretation

We now introduce a class of abstract lattices called logical lattices. Abstract
interpretation over logical lattices will be used as an approach to solve the asser-
tion checking problem (Sections 4 and 5) and the invariant generation problem
(Section 6). The definition below is a generalization of the definition in [9].

Let T be a theory over signature Σ and Φ be a class of formulas over Σ ∪X .
We shall assume that ⊥ and �, representing false and true respectively, are
present in Φ. For example, Φ could be the set of conjunctions of atomic formulas
over Σ ∪X .

Definition 2 (Logical Lattice). A (semi-, complete) lattice (A,�) is a logical
(semi-, complete) lattice over some theory T if the domain A is Φ and the partial
order � is contained in the implication relationship ⇒T in theory T, i.e., if
E �A E′ then E ⇒T E′.

We first note that a complete logical lattice is an abstract lattice. This fact is
demonstrated by the concretization function, γ(E) := {s ∈ States | s |= E}, and
the abstraction mapping, α(σ) := �{E | ∀s ∈ σ.s |= E} (since A is assumed to
be a complete lattice, this is well-defined). Note that the concretization function,
γ, is monotone, since E � E′ implies E ⇒T E′ (by definition), which in turn
implies γ(E) ⊆ γ(E′).

In this paper, we will mainly use logical lattices in which � is equal to ⇒T.
The first part of this paper will focus on intraprocedural analysis, whereas the
second part will consider interprocedural analysis.
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4 Intraprocedural Logical Interpretation

In this section we use logical interpretation to solve intraprocedural assertion
checking problem. We shall consider different assertion checking problems pa-
rameterized by (a) the theory T which interprets the expressions e that occur
in the assignment and assume statements in the program model and (b) the
language of the assertions.

4.1 The Theory of Uninterpreted Symbols

Let Σ be a finite set of uninterpreted function symbols and constants. Let TUFS
be the theory of uninterpreted function symbols. Let X be a set of program
variables. We are given a program with edge labels (a)–(c) from Figure 1, where
the expression e is any term in Terms(Σ ∪ X). We are interested in checking
assertions of the form x = e at some program point π. Informally, the problem
is to determine if the assertion x = e evaluates to true on each program path.

We use a logical lattice defined by the theory TUFS to solve this asser-
tion checking problem. The class Φ of formulas we consider is the set of finite
substitutions, that is, Φ contains formulas of the form,

∧
i xi = ti, such that

ti ∈ Terms(Σ ∪X |≺xi) where ≺ is some total order on the program variables
xi’s. We first observe that we can define a lattice over this choice of Φ.

Proposition 1 ([13]). The set Φ under the ⇒UFS forms a lattice. If X is finite,
then this is a complete lattice.

The following theorem states that the assertion checking problem is decidable
in polynomial time.

Theorem 1 ([7,10]). Let P denote the class of programs built using edge la-
bels (a)–(c) and using the expression language Terms(Σ ∪ X), where X is a
finite set of program variables. Let Φ be as defined above. The assertion checking
problem for programs in class P and assertions in Φ is solvable in PTIME .

Gulwani and Necula [7] presented a polynomial-time forward abstract interpreter
over the lattice (Φ,⇒UFS) to prove Theorem 1. A naive forward interpreter was
shown to blow-up the size of generated facts, and hence, Gulwani and Necula
had to prune large facts that were not relevant to the assertion. This process
of making the forward interpreter goal-directed was crucial in proving the above
PTIME result. Prior to that, there were other either incomplete, or exponential,
procedures to solve the above assertion checking problem [1,23]. All these pro-
cedures were based on forward abstract interpretation. It should be noted that
to prove completeness of forward interpreter for the assertion checking problem,
one needs to show that the above abstract domain is sufficiently expressive.

Gulwani and Tiwari [10] provided a new proof of a result that is more general
than Theorem 1. In contrast to earlier procedures, the result in [10] is based on
backward propagation. Backward propagation is naturally goal-directed. Unfor-
tunately, backward propagation through assignment edges may create equations
that are not of the form x = e anymore. This is illustrated below.
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Example 3. Let P be {π0;x := a; y := f(a);π1;while(∗){π2;x := f(x); y :=
f(y); };π}. Suppose we wish to check the assertion y = f(x) at point π. We
perform a backward propagation in the logical lattice (Φ,⇒UFS) defined above.
To prove y = f(x) at π, we need to prove fy = ffx ∧ ffy = fffx ∧ · · · at π1.
This conjunction is not finite and is not in Φ.

Both these problems are solved by Lemma 1, which notes that e1 = e2 can be
replaced by Unif(e1 = e2) during the backward propagation without any loss
of soundness (or completeness) [8,10]. This converts arbitrary e1 = e2 into the
form of equalities in Φ. Moreover, it also helps to show that the conjunction will
be finite and fixpoint is reached in n steps. The soundness of Lemma 1 provides
an alternate proof of the fact that the lattice (Φ, UFS) is sufficiently expressive
for the assertion checking problem described above.

Example 4. By applying Unif to the assertion fy = ffx, we get y = fx as
the assertion at π1. Thus, in Example 3, backward propagation enhanced with
unification gives the assertion y = fx at π1 and π2, and true at π0 - thus proving
that y = fx holds at π.

The backward procedure is now seen to terminate in PTIME since the most-
general unifier of a set of equations contains atmost n equations and a substitu-
tion can be strengthened at most n times.

If we enrich the programming model to include assume edges, Assume(e1 =
e2), then the problem of assertion checking can be easily shown to be undecid-
able [16]. This is partly the reason why we do not consider guarded conditionals
in our program model. Coincidentally, Lemma 1 fails to hold in the presence of
such assume edges.

Example 5. Consider the program {Assume(fx = fy);π} with just one assume
edge. It is evident that fx = fy holds at π, but it is clear that x = y, which is
Unif(fx = fy), does not hold at π.

4.2 The Theory of Linear Arithmetic

Let Σ be the signature of linear arithmetic (without inequality predicates). Let
X be the program variables. Let TLAE denote the theory of linear arithmetic
equalities. Let Φ be the class of formulas containing all finite conjunction of
linear equations of the form,

∑
x∈X cxx = c, where cx, c are integer constants.

We are given a program with edge labels (a)–(c) from Figure 1, where the
expression e is any term in Terms(Σ ∪X). We are also given an assertion from
the set Φ at some program point π. The following theorem states that this
assertion checking problem is decidable in polynomial time.

Theorem 2 ([10]). Let P denote the class of programs built using edge la-
bels (a)–(c) and using the expression language Terms(Σ ∪ X), where X is a
finite set of program variables. Let Φ be as defined above. The assertion checking
problem for programs in class P and assertions in Φ is solvable in PTIME .
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The approach to solving this problem is based on using logical interpretation on
the lattice (Φ,⇒LAE). Karr [14] presented a forward abstract interpreter over
this logical lattice. To prove Theorem 2 using a forward interpreter requires that
we also show that this abstract domain is sufficiently expressive.

A simple backward propagation algorithm gives a simple proof of Theorem 2.
It is easy to see that Φ is closed under backward propagation through assign-
ment edges. This shows that the above logical lattice is sufficiently expressive.
Termination of backward propagation follows from the observation that there
can be at most n linearly independent (linear) equations. We note here that we
do not need to explicitly use unification since it is inbuilt in the theory LAE.

We remark here that the assertion checking problem becomes undecidable if
we include assume edges, Assume(e1 = e2), in the program model [17].

Theorem 1 and Theorem 2 give the complexity of the decision version of the
problem of abstract interpretation over logical lattices defined by the theories
UFS and LAE.

4.3 Unitary Theory

Theorem 1 and Theorem 2 are special cases of a more-general theorem for unitary
theories. Let T be a unitary theory defined over a signature Σ. Let X be the
program variables. The class Φ of formulas consists of conjunctions representing
substitutions.

Theorem 3 ([10]). Let T be a unitary theory. Assume that for any sequence of
equations e1 = e′1, e2 = e′2, . . ., the sequence of most-general unifiers Unif(e1 =
e′1), Unif(e1 = e′1 ∧ e2 = e′2), . . . contains at most n distinct unifiers where n
is the number of variables in the given equations. Suppose that TUnif(n) is the
time complexity for computing the most-general T-unifier of equations given in
a shared representation. 2 Then the assertion checking problem for programs of
size n that are specified using edge labels (a)-(c) and whose expressions are from
theory T, can be solved in time O(n4TUnif(n2)).

The proof of this theorem can be obtained by generalizing the proofs of The-
orem 1 and Theorem 2. Specifically, we perform backward propagation on the
logical lattice (Φ,⇒T). Using unification (Lemma 1), the generated intermedi-
ate assertions are always strengthened to elements of Φ. This shows that we
are essentially doing an (backward) abstract interpretation over the logical lat-
tice (Φ,⇒T). The assumption in the statement of Theorem 3 guarantees that
fixpoint is reached in n iterations. Thus, Theorem 3 characterizes the complex-
ity of (the decision version of) the abstract interpretation problem over certain
logical lattices induced by unitary theories.

4.4 Checking Disequality Assertions Is Intractable

It is natural to wonder about the complexity of checking a disequality assertion
in a program containing restricted kinds of edges. Unfortunately, it is easy to
2 We assume that the T-unification procedure returns true when presented with an

equation that is valid (true) in T.
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see that this problem is undecidable even for the simple case of programs using
only uninterpreted symbols.

Theorem 4. Checking disequality assertions is undecidable for programs with
edge labels (a)-(c) and whose expression language is restricted to unary uninter-
preted function symbols and one constant.

Proof. Given an instance {(ui, vi) : i = 1, . . . , n} of PCP, consider the program:

1 u := ε; v := ε;
2 switch (*)
3 case 1: u := u1(u); v := v1(v);
4 case 2: u := u2(u); v := v2(v);

5
...

6 case n: u := un(u); v := vn(v);
7 if (*) then { goto line number 2 } else { }

This program can be implemented using only edge labels (a)-(c). It non-
deterministically generates (encodings of) all possible pairs (u, v) of strings such
that u = ui1 . . . uik

and v = vi1 . . . vik
. The disequality u �= v holds at the end of

the program iff the original PCP does not have a solution.

4.5 Checking Disjunctive Assertions

We briefly consider the problem of checking if disjunctive assertions of the form
e1 = e2 ∨ e3 = e4 ∨ · · · hold at program points. The following simple program
shows that this problem is coNP-hard even for programs over a very simple
expression language containing just two distinct (uninterpreted) constants.

IsUnSatisfiable(ψ)
% Suppose ψ has n variables x1, . . . , xn and m clauses # 1, . . . ,m
% Suppose xi occurs in positive form in clauses # Ai[0], . . . , Ai[ci]
% and in negative form in clauses # Bi[0], . . . , Bi[di].
for i = 1 to m do

ei := 0; % ei represents whether clause i has been satisfied.
for i = 1 to n do

if (*) then % set xi to true
for j = 0 to ci do eAi[j] := 1;

else % set xi to false
for j = 0 to di do eBi[j] := 1;

Assertion(e1 = 0 ∨ e2 = 0 ∨ · · · ∨ em = 0);

We note that the above program can be easily written as a program using
edge labels (a)-(c) by simply unrolling the loop and converting it into a loop-free
program. It is easy to see that in the above program, the disjunctive assertion
at the end of the program holds iff the given 3-CNF formula is unsatisfiable.
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Theorem 5. The problem of checking disjunctive equality assertions in pro-
grams with edge labels (a)-(c) and over an expression language containing (at
least) two constants is coNP-hard.

4.6 The Combined Theory of UFS+LAE

We now consider the problem of assertion checking (equality assertions) in pro-
grams whose expression language comes from the union of UFS and LAE theories.
This problem can be shown to be coNP-hard [8] by creating a program – very
similar to the program in Section 4.5 – whose expression language is that of
UFS+LAE and in which an equality assertion is valid iff a given 3-CNF formu-
las is unsatisfiable. A crucial component of the coNP-hardness proof is the fact
that an equality assertion in UFS+LAE can encode a disjunctive assertion. Specif-
ically, note that x = a∨ x = b can be encoded as the (non-disjunctive) assertion
F (a) + F (b) = F (x) + F (a + b − x). This idea can be generalized to encode
x = a1∨x = a2∨x = a3∨· · ·. Note that, by Lemma 1, Fa+Fb = Fx+F (a+b−x)
holds at a program point π iff Unif(Fa+Fb = Fx+F (a+ b−x)) holds at π. In
the theory UFS+ LAE, Unif(Fa+Fb = Fx+F (a+ b− x)) is just x = a∨ x = b.
By recursively using this same idea, we can find an equation whose complete
set of unifiers is a disjunction of the form x = a1 ∨ x = a2 ∨ · · · ∨ x = an. This
observation, combined with Theorem 5, proves the following result.

Theorem 6 ([8]). Let P denote the class of programs built using edge labels (a)–
(c) and using the expression language Terms(Σ ∪X), where Σ is the signature
of UFS+ LAE and X is a finite set of program variables. The problem of checking
equality assertions for programs in class P is coNP-hard.

4.7 Bitary Theories

The proof of coNP-hardness of assertion checking on programs whose expres-
sion language comes from UFS+LAE can be generalized to a class of non-unitary
theories that can encode the disjunction x = a ∨ x = b as (the complete set of)
unifiers of some equality.

Specifically, we define a theory T to be bitary if there exists an equality e = e′

in theory T such that y &→ z1 and y &→ z2 form a complete set of unifiers for
e = e′, where y, z1 and z2 are some variables. In other words, Unif(e = e′) is
y = z1 ∨ y = z2. In addition, we also require that for new variables y′ and z′1, it
is the case that Unif(e = e[y′/y, z′1/z1]) and Unif(e′ = e′[y′/y, z′1/z1]) are both
y = y′ ∧ z1 = z′1. It is easy to see that UFS+LAE is a bitary theory. The proof of
Theorem 6 can be generalized for any bitary theory.

Theorem 7 ([10]). Let T be a bitary theory over signature Σ. Let P denote the
class of programs built using edge labels (a)–(c) and using the expression language
Terms(Σ ∪ X), where X is a finite set of program variables. The problem of
checking an equality assertion for programs in class P is coNP-hard.
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Some examples of bitary theories are the theories of a commutative function,
combination of linear arithmetic and a unary uninterpreted function, and com-
bination of two associative-commutative functions [10].

4.8 Revisiting the Combined Theory of UFS+LAE

We revisit the problem of checking equality assertions for programs built using
expressions from UFS+ LAE. The fact that there is no single most-general unifier
of an equation in UFS+LAE suggests that the logical lattice defined over the
domain of substitutions by ⇒UFS+LAE is not sufficiently expressible for assertion
checking (of x = e assertions) in programs over UFS + LAE. One option would
be to consider a more general lattice whose domain elements are conjunctions of
arbitrary equations (e1 = e2). Unfortunately, the ordering relation ⇒UFS+LAE
does not induce a lattice structure over this domain. This fact is already true
for UFS [13] and is illustrated in two examples below.

Example 6. If Φ is the set of finite conjunctions of ground equations, then there
is no least upper bound element φ ∈ Φ such that

x = y ⇒UFS φ

fx = x ∧ fy = y ∧ gx = gy ⇒UFS φ

The proof of this claim can be found in [13].

Example 7. If Φ is the set of finite conjunctions of ground equations on the
signature of UFS + LAE, then there is no least upper bound element φ ∈ Φ such
that

x = a ∧ y = b ⇒UFS+LAE φ

x = b ∧ y = a ⇒UFS+LAE φ

The reason for the nonexistence of a least upper bound φ ∈ Φ is that any such
φ would have to imply the infinite set of facts C[x] + C[y] = C[a] + C[b], where
C[ ] is an arbitrary context.

As observed before, this is not a serious obstacle for assertion checking in pro-
grams defined using only uninterpreted symbols – as the logical lattice defined
over the domain of substitutions, rather than conjunctions of arbitrary equa-
tions, is still sufficiently expressive with respect to assertion checking. However,
in the case of programs containing symbols from UFS and LAE, this forces us
to search for a logical lattice defined over a domain that is more general than
just substitutions, and less general than conjunctions of arbitrary equations. A
natural choice is the disjunction of substitutions.

Let Φ be the set of formulas that are disjunctions of substitutions. Let
⇒UFS+LAE be an ordering relation on Φ. It is easy to see that ⇒UFS+LAE in-
duces a lattice structure on Φ. We can show that the assertion checking problem
is decidable on this logical lattice, even for program models that include edge
label (d) from Figure 1.
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Theorem 8 ([8]). Let P denote the class of programs built using edge labels (a)–
(d) and using the expression language Terms(Σ ∪ X), where Σ is a signature
containing uninterpreted symbols and linear arithmetic symbols, and X is a fi-
nite set of program variables. Let Φ be the set of disjunctions of substitutions.
The assertion checking problem for programs in class P and assertions in Φ is
decidable.

Proof. (Sketch) The procedure works by backward propagating formulas in Φ
through the flowchart nodes. Due to Lemma 1, we can use unification to
strengthen the formulas at each point. Since the UFS+LAE theory is finitary
(every equation has a finite complete set of unifiers), it follows that each inter-
mediate assertion obtained in the backward propagation can be converted to
a formula in Φ. The remaining part is showing termination (of fixpoint across
loops). Note that when a formula φ1∨· · ·φk in Φ is strengthened by conjuncting
with another formula in Φ, then, in the result φ′, for each i ∈ {1, . . . , k}, it is
either the case that (1) φi appears as a disjunct in φ′, or (2) φi gets strengthened
in multiple different ways and these strictly stronger forms appear as disjunct
in φ′. Note that the strictly stronger forms necessarily instantiate some more of
the finitely many program variables. If it is case (1) for all i, then this indicates
that we have reached a fixpoint. If not, then we can see that we are smaller in
some appropriately defined multiset extension of the well-founded ordering > on
natural numbers.

4.9 Convex and Finitary Theories

The proof of Theorem 8 depends on two critical ingredients: (1) Unification can
be used to replace an arbitrary equation by a formula in Φ without compromising
soundness; and (2) Unification always returns a finite complete set of unifiers.
Property (1) and (2) can be shown to hold for any convex finitary theory. The
combined theory of UFS and LAE is just one example of a convex and finitary
theory.

Theorem 9 ([10]). Let T be a convex finitary theory over signature Σ. Let
P denote the class of programs built using edge labels (a)–(d) and using the
expression language Terms(Σ∪X), where X is a finite set of program variables.
Let Φ be the set of disjunctions of substitutions. The assertion checking problem
for programs in class P and assertions in Φ is decidable.

The (rich) theory obtained by combining (some or all) of the theories of linear
arithmetic, uninterpreted functions, commutative functions, associative-
commutative functions is finitary and convex. Hence, Theorem 9 shows that
the assertion checking problem is decidable for programs that contain symbols
from this large class of theories.

5 Interprocedural Logical Interpretation

In this section, we study the assertion checking problem for program mod-
els that additionally contain procedure call edges. Interprocedural analysis is
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considerably more difficult than intraprocedural analysis [21]. A modular way to
do interprocedural analysis is by means of computing procedure summaries [25].
A summary of procedure P is an abstraction [[P ]]A of its meaning [[P ]] (which
is a mapping from the subsets of input states to subsets of output subsets) in
some abstract domain A.

5.1 The Theory of Linear Arithmetic

We first consider the logical lattice defined by the theory of linear arithmetic
(LAE). The abstract domain Φ is the set of conjunctions of linear arithmetic
equalities of the form

∑n
i=1 cixi = c, where ci, c are integer constants and xi’s

are program variables. The ordering relation is ⇒LAE. A summary of a procedure
in this abstract lattice would be a mapping from Φ to Φ.

Since the set Φ has an infinite number of elements, we can not hope to enu-
merate Φ and compute this abstract mapping. Consider the generic equation
∑n

i=1 αixi = α0, where αi’s are variables. The important property of the equa-
tion

∑n
i=1 αixi = α0 is that every element in Φ can be obtained by appropriately

instantiating the αi’s by integer constants. Thus, a symbolic representation of
the abstract summary can be obtained by backward propagating such a generic
equation.

Backward propagation of a generic assertion,
∑n

i=1 αixi = α0, will result in
(a conjunction of) equation of the general form,

n∑

i=1

n∑

j=1

cijαixj +
n∑

i=1

diαi = α0.

This can be seen as a linear equation over n2 + n + 1 variables: n2 variables
representing the unknown product terms αixj and n + 1 variables representing
the unknown terms αi. Since there can be at most n2+n+1 linearly independent
equations of the above form, the backward propagation computation would reach
fixpoints in polynomial number of steps. This observation is the main ingredient
in the proof of the following result.

Theorem 10 ([18,11]). Let LAE be the theory of linear arithmetic and Σ be its
signature. Let P denote the class of programs built using edge labels (a)–(c),(e)
and using the expression language Terms(Σ ∪ X), where X is a finite set of
program variables. Let Φ be the set of conjunctions of linear equations over X.
The assertion checking problem for programs in class P and assertions in Φ is
solvable in polynomial time, assuming that the arithmetic operations can be done
in O(1) time.

5.2 The Theory of Unary Uninterpreted Symbols

Consider the logical lattice defined by the theory of unary uninterpreted symbols
(UUFS). The abstract domain Φ we used before is the set of substitutions, that is,
conjunctions of equations of the form xi = ti, where ti is a term (not containing
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xi). The ordering relation is ⇒UUFS. A summary of a procedure in this abstract
lattice would be a mapping from Φ to Φ.

Again, the set Φ has an infinite number of elements, and hence we can not
hope to enumerate Φ and compute this abstract mapping. Since we assume only
unary symbols in the signature, the term ti above can be seen as a string α (of
unary symbols) applied to a program variable xj or a designated constant ε. In
other words, ti can be seen as αxj or αε.

Consider the n(n − 1) generic equations xi = αijxj , for i �= j ∈ {1, . . . , n},
along with the n generic equations xi = βiε, for i ∈ {1, . . . , n}, where αij ’s and
βi’s are string variables. The important property of these total n2 equations is
that every equation in Φ can be obtained by appropriately instantiating one of
the αij ’s or βi’s by an appropriate string. Thus, a symbolic representation of the
abstract summary can be obtained by backward propagating each of these n2

generic equations.
Backward propagation of a single generic assertion, xi = αijxj , will result in

(a conjunction of) equations of the general form,

Cxk = αijDxl,

where C,D are concrete strings over Σ and xk, xl are either some program vari-
ables or ε. A technical lemma is now required to show that any conjunction of
such equations can be simplified to contain at most a quadratic (in n) number of
equations. The simplification procedure is only required to preserve the unifiers
(and not preserve logical equivalence). A side-effect of the proof of the techni-
cal lemma shows that fixpoints are reached in quadratic number of iterations.
Putting all these observations together, we get a proof of the following result.

Theorem 11 ([11]). Let UUFS be the theory of unary uninterpreted symbols and
Σ be its signature. Let P denote the class of programs built using edge labels (a)–
(c),(e) and using the expression language Terms(Σ ∪ X), where X is a finite
set of program variables. Let Φ be the set of substitutions over X. The assertion
checking problem for programs in class P and assertions in Φ is solvable in
polynomial time, assuming that string operations can be done in O(1) time.

All string operations that arise in the proof of Theorem 11 can indeed be shown
to be computable in polynomial using Plandowski’s result on singleton context-
free grammars [20,11].

5.3 Unitary Theories

Given the identical approach employed in the proofs of Theorem 10 and Theo-
rem 11, it is naturally evident that these results can be generalized to a class of
unitary theories that satisfy certain specific conditions. The theory of unary un-
interpreted symbols and that of linear arithmetic can then be seen as members of
this class. This generalization has been developed in [11]. This generalization is
based on defining the concept of a generic equation using context variables. In the
general case, the backward propagation approach requires solving (performing
unification on) equations containing context variables.
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Unification type of theory Edge Complexity of Examples Refs.
of program expressions Labels assertion checking

Strict Unitary (a)–(c) PTIME LAE, UFS [7,16,17]

Bitary (a)–(c) coNP-hard LAE+UFS, C [8]

Finitary,Convex (a)–(d) Decidable LAE+UFS+C+AC [16,8]

Unitary (a)-(c),(e) Decidable LAE,UUFS [11]

Fig. 2. Summary of results. If the program model consists of edges with labels given
in Col 2 and the theory underlying the program expressions belongs to the class given
in Col 1, then its assertion checking problem has time complexity given in Col 3. Row
1,4 require some additional technical assumptions. Col 4 contains examples of theories
for which the corresponding result holds, where C denotes commutative functions, and
AC denotes associative-commutative functions.

6 Forward Abstract Interpretation over Logical Lattices

In the previous sections, we have discussed approaches based on backward prop-
agation on abstract logical lattices. In the case of intraprocedural analysis (Sec-
tion 4), we were able to perform complete backward propagation on rich logical
lattices, but we always required the specification of a goal assertion. In the case
of interprocedural analysis (Section 5), we did not need a goal assertion explic-
itly (since the backward propagation could be done on generic assertions), but
we were able to obtain complete procedures for only very simple logical lattices.
While these theoretical results are useful in understanding the limits and issues
in abstract interpretation over logical lattices, they are of limited help in practice.
This is because, in practice, often there is no specification of goal assertions and
often the programs use expressions over richer theories. Hence, it is important
to consider the problem of generating invariants by performing forward abstract
interpretation over logical lattices.

We restrict our discussion to an intraprocedural setting in this section. It
is evident that building an efficient forward logical abstract interpretation on
programs with edge labels (a)-(c) over a logical lattice (A,�) requires:

R1. Given two elements E1 and E2 in A, the join E1 � E2 should be efficiently
computable,

R2. Given E ∈ A, and a program variable x, the best over-approximation not
containing x, that is, �{E′ | E � E′, E′ does not contain x}, is efficiently
computable,

R3. Given E ∈ A, and a ground equation x = e where x does not occur in E,
E � {x = e} is efficiently computable,

R4. Given E,E′ ∈ A, the relation E � E′ is efficiently decidable.

Requirements R1 and R2 ensure that assertions can be propagated forward,
respectively, at join points and across non-deterministic assignments. Require-
ments R2 and R3 together guarantee that assertions can be propagated for-
ward across assignments. Requirement R4 helps in detecting when a fixpoint is
reached.



Logical Interpretation: Static Program Analysis 163

Finding expressive logical lattices for which the Requirements R1–R4 can
be satisfied is one of the challenges in building expressive and scalable abstract
interpreters. Since, by Definition 2, � is generally (some refinement of) the impli-
cation relation ⇒T in a logical theory T, Requirement R4 is often easily fulfilled
using existing decision procedures for various theories. Requirement R3 is also
easy to satisfy for many logical lattices since the domain of a logical lattice is
frequently closed under conjunction. Requirement R2 asks for a quantifier elim-
ination procedures, but the result is expected to lie in a restricted subclass A of
logical formulas. The problems mentioned in Requirements R1 and R2 are not so
well-studied in the theorem proving community. We mention some of the known
results here. Karr [14] presented a join algorithm for the linear arithmetic logical
lattice. Mine [15] discussed the logical lattice on the octagon abstract domain.
Join algorithms for nonlinear polynomial abstract domain were studied by [22],
and those for initial term algebra by [7,23,13]. We note here that computing join
is often more difficult than deciding � (satisfiability decision procedure) since
E � E′ reduces to checking equivalence of E �E′ and E.

The intuitive choice for the domain of a logical lattice is the conjunction of
atomic formulas in the theory. The natural choice for the ordering relation � is
the logical implication relation ⇒T in the theory. Unfortunately, as we saw in
Example 6 and Example 7, these common choices, when put together, need not
yield a lattice. This problem can often be solved by restricting the domain or
the ordering relation.

6.1 Combining Logical Interpreters

One attractive feature of logical lattices is that there is a natural notion of
combination of logical lattices that corresponds directly to the notion of com-
bination of logical theories. This notion is called the logical product of logical
lattices [9]. The logical product is more expressive than the direct product or
reduced product [5,3] of lattices.

A natural question related to logical product of logical lattices is the following:
Given abstract interpreters for the individual logical lattices (in the form of, say,
witnesses for the satisfiability of the four Requirements R1–R4, can we obtain
an abstract interpreter for the logical product?

A positive answer for this question, under certain assumptions on the logical
theories underlying the logical lattices, was provided in [9]. This combination
result (and the assumptions on the logical theories) are inspired by the Nelson-
Oppen combination method for decision procedures [19]. Specifically, we require
the individual logical theories to be disjoint, convex, and stably-infinite.

6.2 Richer Logical Lattices

We briefly discuss extensions to the program model to make it more realis-
tic. In the program model discussed above, conditionals were abstracted as
non-deterministic choices. In reality, conditionals are important when reason-
ing about programs. This is, however, easily fixed as forward propagation based
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logical interpreters can use the meet operation to handle conditionals. As pointed
out above, adding conditionals makes the assertion checking problem undecid-
able in many cases. Hence, abstract interpretation approaches necessarily lose
either completeness or termination on this rich program model.

A second crucial feature absent in the program model of Section 2.1 is the
heap and assignments that manipulate the heap. Modeling the heap and ana-
lyzing the properties of data-structures in the heap is important for verifying
real programs. In programs that manipulate the heap, the lvalue lval of an as-
signment, lval := e, need not always be a variable. In such a case, one of the
first hurdles to overcome is the issue of aliasing. For example, using C notation,
an assignment to x→p can change the value of y→p, if x and y contain the
same value. As a result, propagating assertions through assignment edges be-
comes highly nontrivial in presence of aliasing. A second hurdle when analyzing
heap manipulating programs is that all interesting invariants of such programs
are about unbounded data-structures in heaps. For example, an invariant could
state that all elements of an array or list are initialized. Simpler abstract do-
mains like the ones discussed in previous sections are not expressive to represent
such invariants.

These two issues can both be resolved using a very carefully designed logical
lattice that can express quantified formulas. Quantified formulas can be used
to represent aliasing information. Furthermore, it can also be used to represent
invariants of unbounded data-structures. Logical interpretation, but over these
richer abstract domains, is a promising approach for designing analysis tools for
verification of real and complex code.

While designing useful logical abstract domains, one has to make sure that,
in an effort to improve expressiveness, the computational aspects outlined as
Requirements R1– R4 are not compromised. The reader is referred to [12] for
an abstract domain that includes quantified formulas, but that is parameterized
by a base abstract domain. A logical interpreter over the rich domain is built
using a logical interpreter over the simpler base domain. A good choice of base
domain gives an expressive and efficient quantified abstract domain [12].

6.3 Interface for a Logical Lattice: The Boolean Interface

In the effort to built new logical interpreters by using existing logical interpreters,
we realized that we need a richer interface from an existing logical interpreter.
Apart from the ability to (a) compute meet (which is an over-approximation
of conjunction) and join (which is an over-approximation of disjunction) on
the logical lattice and (b) check for the ordering relation (which is often just
a satisfiability checking procedure), we also need functions that (c) compute
good over-approximations of join and meet (especially in lattices that are not
complete), and (d) good under-approximations of meet (conjunction) and join
(disjunction). Additionally, we require the ability to (e) compute good over- and
under-approximations of the operation of projecting out a variable (quantifier
elimination on a class of formulas that form the domain of the logical lattice).
These operations are often required to be done under some context, that is,
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under the assumption that certain formulas are known to be true. The exact
utility of these interface functions in designing new logical interpreters is beyond
the scope of this paper.

7 Conclusion

This paper presents logical interpretation - a static analysis approach to check-
ing and generating rich invariants based on using logical lattices. Logical inter-
pretations provide a new paradigm for embedding theorem proving techniques
in program analysis tools. The various satisfiability modulo theory solvers pro-
vide just one of the essential interface functions, and many others are required
to build logical interpreters. These other little engines of proof are procedures
that perform unification, context unification, matching, and compute over- and
under-approximations of conjunction, disjunction, and quantifier elimination on
a class of formulas in some theory. The design of effective logical interpreters
tries to achieve a balance between expressiveness and computational efficiency.
Well-designed logical abstract domains have the potential of making significant
impact on automatically verifying the partial correctness of significant parts of
domain-specific software components.

Acknowledgments. The authors thank N. Shankar for helpful feedback.
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Abstract. First order logic provides a convenient formalism for describ-
ing a wide variety of verification conditions. Two main approaches to
checking such conditions are pure first order automated theorem proving
(ATP) and automated theorem proving based on satisfiability modulo
theories (SMT). Traditional ATP systems are designed to handle quan-
tifiers easily, but often have difficulty reasoning with respect to theories.
SMT systems, on the other hand, have built-in support for many useful
theories, but have a much more difficult time with quantifiers. One clue
on how to get the best of both worlds can be found in the legacy system
Simplify which combines built-in theory reasoning with quantifier in-
stantiation heuristics. Inspired by Simplify and motivated by a desire to
provide a competitive alternative to ATP systems, this paper describes a
methodology for reasoning about quantifiers in SMT systems. We present
the methodology in the context of the Abstract DPLL Modulo Theories
framework. Besides adapting many of Simplify’s techniques, we also in-
troduce a number of new heuristics. Most important is the notion of
instantiation level which provides an effective mechanism for prioritizing
and managing the large search space inherent in quantifier instantiation
techniques. These techniques have been implemented in the SMT system
CVC3. Experimental results show that our methodology enables CVC3
to solve a significant number of benchmarks that were not solvable with
any previous approach.

1 Introduction

Many verification problems can be solved by checking formulas in first order
logic. Automated theorem proving (ATP) systems are much more powerful than
those of just a few years ago. However, practical verification conditions often
require reasoning with respect to well-established first order theories such as
arithmetic. Despite their power, ATP systems have been less successful in this
domain. A new breed of provers, dubbed SMT solvers (for Satisfiability Modulo
Theories) is attempting to fill this gap.
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Solvers for SMT are typically based on decision procedures for the satisfiability
of quantifier-free formulas in certain logical theories of interest. As a result, they
have been traditionally rather limited in their ability to reason about quantifiers,
especially when compared to ATP systems. A notable exception is the prover
Simplify [7] which combines a Nelson-Oppen style prover with heuristics for
instantiation of quantifiers. Simplify has been successfully applied in a variety
of software verification projects including ESC/JAVA [9], and, despite its age, it
is still considered state-of-the-art for SMT reasoning with quantifiers.

However, Simplify has a number of drawbacks. Chief among them is the fact
that it is old and no longer supported. Additionally, there are several weaknesses
in Simplify’s heuristics, so that often users must spend considerable manual ef-
fort rewriting or annotating their input formulas before Simplify can successfully
prove them. Finally, modern SMT solvers have a host of performance and feature
enhancements that make them more appealing for use in applications. Unfor-
tunately, users of SMT solvers have had to choose between these improvements
and effective quantifier support.

In this paper we discuss efforts to update and improve quantifier reasoning in
SMT solvers based on the DPLL(T ) architecture [10]. We begin by extending the
Abstract DPLL Modulo Theories framework [11], a convenient abstract frame-
work for describing such systems, with rules for quantifiers. We then explain the
main heuristics employed by Simplify as strategies within this framework, and
introduce several improvements to Simplify’s strategies. Most novel is the notion
of instantiation level which is an effective means of prioritizing and managing
the many terms that are candidates for quantifier instantiation.

The techniques discussed in the paper have been implemented in CVC3, a
modern DPLL(T )-style solver based on a variant of the Nelson-Oppen combi-
nation method [3,4]. We conclude with experimental results demonstrating the
effectiveness of our heuristics in improving the performance of CVC3 and in solv-
ing verification conditions (in particular, several from the NASA suite introduced
in [6]) that no previous ATP or SMT system has been able to solve.

2 Background

We will assume the usual notions and adopt the usual terminology in first order
logic with equality. We also assume familiarity with the fundamentals of unifi-
cation theory (see, e.g., [1]). For brevity, when it is clear from context, we will
refer to an atomic formula also as a term. If ϕ is a first-order formula or a term,
t is a term, and x is a variable, we denote by ϕ[x/t] the result of substituting t
for all free occurrences of x in ϕ. That notation is extended in the obvious way
to tuples x of variables and t of terms. The notation ∃x.ϕ stands as usual for a
formula of the form ∃x1.∃x2. · · · ∃xn.ϕ (similarly for ∀x.ϕ).

The Satisfiability Modulo Theories problem consists of determining the satis-
fiability of some closed first order formula ϕ, a query, with respect to some fixed
background theory T with signature Σ. Often it is also desirable to allow the
formula to contain additional free symbols, i.e. constant, function, and predicate
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symbols not in Σ. We say that ϕ is T -satisfiable if there is an expansion of a
model of T to the free symbols in ϕ that satisfies ϕ. Typical background theories
in SMT are (combined) theories T such that the T -satisfiability of ground formu-
las (i.e. closed quantifier-free formulas possibly with free symbols) can be decided
by a special-purpose and efficient procedure we call a ground SMT solver.

Most modern ground SMT solvers integrate a propositional SAT solver based
on the DPLL procedure with a theory solver which can check satisfiability of
sets of literals with respect to some fragment of T . The Abstract DPLL Modulo
Theories framework [2,11] provides a formalism for this integration that is ab-
stract enough to be simple, yet precise enough to model many salient features of
these solvers. The framework describes SMT solvers as transition systems, i.e.,
sets of states with a binary relation =⇒ over them, called the transition relation,
defined declaratively by means of transition rules. A state is either the distin-
guished state Fail (denoting T -unsatisfiability) or a pair of the form M || F ,
where M is a sequence of literals currently assumed to hold and F is a formula
in conjunctive normal form (CNF) which is being checked for satisfiability.

Assuming an initial state of the form ∅ || F0, the goal of the transition rules
is to make progress towards a final state while maintaining equisatisfiability of
the formula F0. A final state is either Fail or a state M || F such that (i) the
set of literals in M is T -satisfiable, and (ii) every clause in F is satisfied by the
assignment induced by M (i.e., assuming that the literals in M are all true).
In the latter case, the original formula F0 is T -satisfiable. We refer the reader
to [2,11] for a complete description of the framework. As a sample of its rules
we describe here the propositional and the theory propagation rule:

UnitPropagate : M || F, C ∨ l =⇒ M l || F, C ∨ l if
{
M |= ¬C
l is undefined in M

T-Propagate : M || F =⇒ M l || F if

⎧
⎨

⎩

M |=T l
l or ¬l occurs in F
l is undefined in M

In the above rules, a comma is used to separate clauses of the CNF formula, C
and l respectively denote a clause and a literal, |= is propositional entailment,
and |=T is first-order entailment modulo the background theory T .

3 Reasoning with Quantifiers in SMT

While many successful ground SMT solvers have been built for a variety of
theories and combinations of theories, extending SMT techniques to quantified
queries has proven so far quite difficult. This mirrors the difficulties encoun-
tered in first order theorem proving, where quantified queries are the norm, in
embedding background theories efficiently into existing refutation-based calculi.

Following Stickel’s original idea of theory resolution [15], several first order
calculi have been given sound and complete theory extensions that rely on the
computation of complete sets of theory unifiers. These nice theoretical results
have, however, failed to generate efficient implementations thus far, mostly due
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to the practical difficulty, or the theoretical impossibility, of computing theory
unifiers for concrete background theories of interest.

Recently, attempts have been made to embed ground SMT procedures into
successful first-order provers, most notably Vampire [14] and SPASS [18], while
aiming at practical usefulness as opposed to theoretical completeness (see, e.g.,
[12]). The work described here follows the alternative, also incomplete, approach
of extending SMT solvers with effective heuristics for quantifier instantiation.

3.1 Modeling Quantifier Instantiation

The Abstract DPLL Modulo Theories framework can be easily extended to in-
clude rules for quantifier instantiation. The key idea is to also allow closed quan-
tified formulas wherever atomic formulas are allowed. We define an abstract
atomic formula as either an atomic formula or a closed quantified formula. An
abstract literal is either an abstract atomic formula or its negation; an abstract
clause is a disjunction of abstract literals. Then, we simply replace ground lit-
erals and clauses with their abstract counterparts. For instance, non-fail states
become pairs M || F where M is a sequence of abstract literals and F is a
conjunction of abstract clauses.

With this slight modification, we can add the two rules below to Abstract
DPLL to model quantifier instantiation. For simplicity and without loss of gen-
erality, we assume here that abstract literals in M appear only positively (if
they are negated, the negation can be pushed inside the quantifier) and that the
bodies of abstract atoms are themselves in abstract CNF.

∃-Inst : M || F =⇒ M || F, ¬∃x.ϕ ∨ ϕ[x/c] if
{
∃x.ϕ is in M
c are fresh constants

∀-Inst : M || F =⇒ M || F, ¬∀x.ϕ ∨ ϕ[x/s] if
{
∀x.ϕ is in M
s are ground terms

The ∃-Inst rule identifies a quantified abstract literal ∃x.ϕ currently in M . This
formula is then instantiated with fresh constants c to get ϕ[x/c]. A clause is
then added that is equivalent to the implication ∃x.ϕ → ϕ[x/c]. Note that we
cannot just add ϕ[x/c] because the Abstract DPLL Modulo Theories framework
requires that the satisfiability of F be preserved by every rule. The ∀-Inst rule
works analogously except that the formula is instantiated with ground terms
rather than fresh constants.

Example 1. Suppose a and b are free constant symbols and f is a unary free
function symbol. We show how to prove the validity of the formula (0 ≤ b ∧
(∀x. x ≥ 0 → f(x) = a)) → f(b) = a in the union T of rational arithmetic, say,
and the empty theory over {a, b, f}. We first negate the formula and put it into
abstract CNF. Three abstract unit clauses are the result: 0 ≤ b ∧ ∀x. (x �≥
0 ∨ f(x) = a) ∧ f(b) �= a. Let l1, l2, l3 denote the three abstract literals in the
above clauses. Then the following is a derivation in the extended framework:
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∅ || l1, l2, l3 (initial state)
=⇒∗ l1 l2 l3 || l1, l2, l3 (by UnitPropagate)
=⇒ l1 l2 l3 || l1, l2, l3, ¬l2 ∨ b �≥ 0 ∨ f(b) = a (by ∀-Inst)
=⇒ l1 l2 l3 b ≥ 0 || l1, l2, l3, ¬l2 ∨ b �≥ 0 ∨ f(b) = a (by T-Propagate)
=⇒ Fail (by Fail)

The last transition is possible because M falsifies the last clause in F and contains
no decisions (case-splits). As a result, we may conclude that the original clause
set is T -unsatisfiable, which implies that the original formula is valid in T .

It is not hard to see, using an analysis similar to that in [2], that the ∃-Inst and
∀-Inst rules preserve the satisfiability of F and therefore the soundness of the
transition system. It is also clear that termination can only be guaranteed by
limiting the number of times the rules are applied. Of course, for a given existen-
tially quantified formula, there is no benefit to applying ∃-Inst more than once.
On the other hand, a universally quantified formula may need to be instantiated
with several different ground terms to discover that a query is unsatisfiable. For
some background theories (e.g., universal theories), completeness can be shown
for exhaustive and fair instantiation strategies that consider all possible quan-
tifier instantiations by ground terms. This result, however, is of little practical
relevance because of the great inefficiency of such a process. In this paper we
focus on strategies for applying ∀-Inst that forgo completeness in the interest of
efficiency, and simply aim at good accuracy, understood ideally here as the ratio
of proved over unproved unsatisfiable queries in a given set.

4 Strategies for Instantiation

4.1 Instantiation Via Matching

A naive strategy for applying rule ∀-Inst is the following: once ∀-Inst has been
selected for application to an abstract literal ∀x.ϕ, the rule is repeatedly applied
until x has been instantiated with every possible tuple of elements from some
finite set G of ground terms. A reasonable choice for G is the set of ground
terms that occur in assumed formulas (i.e., in M). We call this approach naive
instantiation. A refinement of this strategy for sorted logics is to instantiate x
with all and only the ground tuples of G that have the same sort as x. Somewhat
surprisingly, naive instantiation is sufficient for solving a large number of quan-
tified verification conditions (see Section 6). Still, there are many verification
conditions for which naive instantiation is hopelessly inefficient because of the
large number of candidates for instantiation.

The Simplify prover uses a better heuristic, that still applies ∀-Inst exhaus-
tively to an abstract atom, but selects for instantiation only ground terms that
are relevant to the quantified formula in question, according to some heuristic
relevance criteria. The idea is as follows: given a state M || F and an abstract
literal ∀x.ϕ in M ,1 try to find a subterm t of ∀x.ϕ properly containing x, a
1 The general case of an abstract literal of the form ∀x.ϕ is analogous.
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ground term g in M , and a subterm s of g, such that t[x/s] is equivalent to g
modulo the background theory T (written t[x/s] =T g). In this case, we expect
that instantiating x with s is more likely to be helpful than instantiating with
other candidate terms. Following Simplify’s terminology, we call the term t a
trigger (for ∀x.ϕ). In terms of unification theory, the case in which t[x/s] =T g
is a special case of T -matching between t and g.

In general, in the context of SMT, given the complexity of the background
theory T , it may be very difficult if not impossible to determine whether a trigger
and a ground term T -match. The simplest solution is to check only for syntactic
matching, by attempting to unify each trigger with each ground term. Simplify
implements a simple extension of syntactic matching based on the congruence
closure of the ground equations in M (see [7] for details).

Example 2. Consider again the formula in Example 1. At the point where ∀-Inst
is applied, M consists of the following sequence of literals: 0 ≤ b, ∀x. (x �≥
0 ∨ f(x) = a), f(b) �= a. There are four ground terms appearing in M : 0, a,
b, and f(b). Thus, naive instantiation would apply ∀-Inst four times, once for
each ground term. On the other hand, Simplify’s matching heuristic would first
identify a trigger in ∀x. (x �≥ 0 ∨ f(x) = a). Since a trigger must be a term
properly containing the quantified variable, the only candidate is f(x). Now the
trigger is compared with the set of ground terms. There is a single match, with
f(b), obtained when x is bound to b. Thus, the matching heuristic selects the
ground term b for instantiation.

4.2 Eager Instantiation Versus Lazy Instantiation

So far, we have been concerned with the question of how to apply the rule
∀-Inst to a given abstract atom. An orthogonal question is when to apply it.
One strategy, which we call lazy instantiation, is to apply ∀-Inst only when it is
the only applicable rule. At the opposite end of the spectrum, another strategy,
which we call eager instantiation, is to apply ∀-Inst to a universally quantified
formula as soon as possible (i.e., as soon as it is added to the current M).

In Simplify, propositional search and quantifier instantiation are interleaved.
When Simplify has a choice between instantiation and case splitting, it will gen-
erally favor instantiation. Thus, Simplify can be seen as employing a form of
eager instantiation. Others [8] have advocated the lazy approach. One advan-
tage of lazy instantiation is that an off-the-shelf SAT solver can be used. Eager
instantiation typically requires a more sophisticated SAT solver that can accept
new variables and clauses on the fly. We compare eager and lazy instantiation
in Section 6 below.

5 Improving Instantiation Strategies

In this section we describe several improvements to the basic strategies discussed
above. These strategies are implemented in CVC3 and evaluated in Section 6.
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5.1 Triggers

Consider a generic quantified formula ∀x.ϕ. The first step in the matching strat-
egy described above is to find triggers within ϕ. CVC3 improves on Simplify’s
automated trigger generation methods in several ways. In CVC3, every subterm
or non-equational atom t of ϕ that contains all the variables in x and at least
one function or predicate symbol is considered a viable trigger. For example, if
x = {x1, x2}, then x1 ≤ x2 and g(f(x1 + y), x2) are legal triggers, but 0 ≤ x1

and f(x1) + 1 = x2 are not. Simplify is slightly more restrictive: it requires
that a trigger contain no additional variables besides those in x. For example,
in the formula ∀x.(f(x) → ∀y.g(x, y) < 0), the term g(x, y) is not a viable
trigger for Simplify because it contains y which is not bound by the outermost
quantifier. Our experiments show that this restriction is unnecessary and does
cause a loss of accuracy in some cases (in particular, CVC3’s better performance
on the nasa benchmarks described in Section 6.3 is partly due to relaxing this
restriction).

Avoiding instantiation loops. Simplify uses a simple syntactic check to prevent
its instantiation mechanism from diverging; specifically, it discards a potential
trigger t if certain (syntactical) instances of t occur elsewhere in the formula. For
example, in ∀x.P (f(x), f(g(x))), the term f(x) will not be selected as a trigger
because an instance of f(x), namely f(g(x)) occurs in the formula. While simple
and inexpensive, this static filtering criterion is unable to detect more subtle
forms of loops. For example, consider a state M || F with M containing the
abstract literal ψ = ∀x. (x > 0 → ∃y. f(x) = f(y) + 1) where f is free. The only
trigger for ψ is f(x) and Simplify has no reason to reject this trigger. Now, if the
set of ground terms contains f(3), say, then with an application of ∀-Inst, it is
possible to add the abstract clause ¬ψ∨∃y. f(3) = f(y)+1 to F . Then, with an
application of UnitPropagate and of ∃-Inst the literal f(3) = f(c1) + 1, with c1
fresh, can be added to M . The introduction of f(c1) in the set of ground terms
can now give rise to a similar round of rule applications generating a new term
f(c2), and so on. In order to prevent such loops, in addition to Simplify’s static
loop detection method, CVC3 also implements a general method for dynamically
recognizing loops (including loops caused by groups of formulas together) and
disabling the offending triggers. We do not describe that method here, partly
due to space constraints but mainly because the instantiation level heuristic
described in Section 5.4 below is much more effective.

Multi-trigger generation. Sometimes, there are no triggers that contain all the
variables in x. In this case, Simplify generates multi-triggers: small sets of terms
in ϕ which together contain all (and exactly) the free variables in x. CVC3
has essentially the same mechanism but it limits the number of multi-triggers
composed of atomic formulas of ϕ. It does this by putting together in a multi-
trigger only atoms having the same polarity in the overall abstract CNF for-
mula F—where polarity is defined as usual for negation normal form formulas
like F .
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5.2 Matching Algorithm

Like all DPLL(T ) systems, CVC3 checks the satisfiability of a query modulo some
background theory T by maintaining at all times a current set M of assumed
abstract literals. Ideally, when looking for matches for triggers, one would want
to apply theory matching modulo the union of T and M . As mentioned earlier,
however, because of the richness of T alone, in general this is highly impractical,
if possible at all. CVC3 instead uses a (rather) incomplete theory matching
procedure which is easier to implement efficiently, and, as we show in the next
section, provides good results experimentally.

As M is modified, CVC3 also computes and stores in its data structures the
congruence closure E of the positive ground literals of M over the set G of all
ground terms in M . For any theory T , any two terms equal modulo E are also
equal modulo T ∪M . Then, to apply the rule ∀-Inst to an abstract literal ∀x.ϕ,
CVC3 generates ground instantiations for x by matching modulo E the triggers
of ∀x.ϕ against the terms in G. CVC3 implements a sound and terminating E-
matching procedure by extending the standard rule-based syntactic unification
algorithm as explained below.

Given a trigger t of the form f(t1, . . . , tn) where f is a free symbol, we select
from G all terms of the form f(s1, . . . , sn); for each of these terms we then try to
solve the (simultaneous) unification problem {t1 =? s1, . . . , tn =? sn}. Standard
unification fails when it encounters the case g(t) =? g′(s) (where g and g′ are
distinct symbols). In contrast, we do not immediately fail in this case.

In general, when we select an equation of the form g(t) =? s, we do not fail in
the following two subcases: (i) g(t) is ground and g(t) =E s,2 and (ii) g is a free
symbol and there is a term of the form g(u) in G such that s =E g(u). In the
first case, we just remove the equation g(t) =? s; in the second case, we replace
it by the set of equations t =? u.

For a simple example, consider matching a trigger like f(h(x)) with a ground
term f(a) where f, h, a are free symbols and x is a variable. Suppose that a =
h(s) ∈ E for some s. Then the procedure above can generate the non-syntactic
unifier {x &→ s}.

It is not difficult to see using standard soundness and termination arguments
that this unification procedure converges, and when it does not fail it produces
a grounding E-unifier (in fact, an E-matcher) for the problem f(t1, . . . , tn) =?

f(s1, . . . , sn). This unifier is applied to the body of the abstract atom ∀x.ϕ to
obtain the clause for ∀-Inst. The procedure is clearly incomplete because E-
matching is usually non-unitary3, but the procedure returns only one solution,
chosen arbitrarily, just for simplicity and speed. This source of incompleteness,
however, has not shown to be a major limitation in practice so far.

The instantiation mechanism above applies to triggers whose top symbol is a
free function symbol. Triggers whose top symbol is a theory symbol are currently
2 Due to the way the congruence closure E is maintained in CVC3, checking that

g(t) =E s takes nearly always constant time.
3 In other words, E-matching problems can have multiple, incomparable solutions.

Consider the previous example with also a = h(s′) ∈ E for some s′ �=E s.
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treated the same way unless the symbol is an arithmetic symbol. Triggers starting
with + or ∗ are just discarded because treating those symbols syntactically is
ineffectual and treating them semantically, as AC symbols say, is too onerous. A
trigger t of the form t1 < t2 or t1 ≤ t2, is processed as follows.4 For every ground
atom p of the form s1 < s2 or s1 ≤ s2 in M , CVC3 generates the E-matching
problem {t1 =? s2, t2 =? s1} if t has positive polarity and p occurs in M , or t
has negative polarity and ¬p occurs in M ; otherwise it generates the problem
{t1 =? s1, t2 =? s2}.

5.3 Special Instantiation Heuristics

In addition to E-matching, CVC3 also employs some specialized instantiation
heuristics that have proven useful on the kinds of formulas that appear in prac-
tical verification conditions. For simplicity, we will refer to these heuristics too
as “trigger matching” even if they are not based on matching in the techni-
cal sense of unification theory. Some of these heuristics depend on recognizing
that a certain free predicate symbol is defined in the query as an antisymmetric
or a transitive symbol. Special multi-triggers are set up for these symbols that
take those properties into account to improve the usefulness of the instances
generated.

Another heuristic applies to formulas involving CVC3’s built-in theory of
arrays, which defines a read and a write operator. All triggers of the form
read(write(a, x, v), i) where x is one of the quantified variables, in addition to
acting as normal triggers, also cause x to be instantiated to the index term j
of any ground term of the form read(a, j) or write(a, j, u). The rationale is that
when instantiating a variable that is used as an index to an array, we want to
consider all known ground array index terms. Usually there are not too many of
these terms and the standard matching techniques do not discover all of them.

5.4 Trigger Matching by Instantiation Levels

In SMT problems coming from verification applications, one of the main targets
of CVC3, the query is a formula of the form Γ ∧ ¬ϕ where ϕ is a verification
condition and Γ is a large and more or less fixed T -satisfiable collection of (quan-
tified) axioms about a number of relations and functions that are relevant to the
verification application but for which there is no built-in solver. A large number
of these axioms typically have no bearing on whether the negation of a partic-
ular verification condition is T -satisfiable with Γ . With heuristic instantiation,
this entails that too many resources might be easily spent in producing and
processing instances of axioms unrelated to the formula ϕ.

Simplify uses a matching depth heuristic to try to address this problem. Each
time a new clause is generated by quantifier instantiation, it is assigned a nu-
merical value which is one greater than the largest value assigned so far. This

4 In CVC3, atoms using > and ≥ are normalized internally to < and ≤ atoms, respec-
tively.
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value is the matching depth of the clause. Later, when a literal must be chosen
for a case-split, literals from clauses with a lower matching depth are preferred
to those with a higher matching depth.

CVC3 uses a different approach, better suited to systems with a DPLL(T )
architecture—where case splitting is not necessarily clause-based. Instead of giv-
ing a score to clauses, CVC3 assigns an instantiation level to every ground term
it creates. Intuitively, an instantiation level n for a term t indicates that t is
the result of n rounds of instantiations. More precisely, all terms in the original
query are given an instantiation level of 0. If a formula ∀x.ϕ is instantiated with
the ground terms s, and n is the maximum instantiation level of the terms in s,
then all the new terms in ϕ[x/t] (as well as any new terms derived from them
via theory reasoning) are given the instantiation level n + 1.

CVC3 provides as an option a trigger matching strategy that visits ground
terms by instantiation levels. With this strategy, CVC3 matches triggers only
against ground terms whose instantiation level is within a current upper bound b.
This bound, whose initial value can be set by the user, is increased, by one, only
when CVC3 reaches a (non-fail) state M || F where ∀-Inst is the only applicable
rule and all terms with instantiation level less than or equal to b have already
been considered.

Trigger matching by instantiation levels has proved very effective in our ex-
periments, discussed in the next session. Here we point out that its inherent
fairness has also the derived benefit of neutralizing the possible harmful effects
of instantiation loops in the eager instantiation strategy. The reason is simply
that each of the new ground terms generated within an instantiation level be-
longs by construction to the next level, and so will not be considered for matching
until all other terms in the current level have been considered. As a consequence,
checking for instantiation loops, either statically or dynamically, is completely
unnecessary. Moreover, using instantiation levels allows us to enable by default
those triggers that static or dynamic loop detection would have disabled. Signif-
icantly, we discovered that such triggers are actually necessary to prove many
examples.

6 Experimental Results

All tests were run on AMD Opteron-based (64 bit) systems, running Linux, with
a timeout of 5 minutes (unless otherwise stated) and a memory limit of 1 GB.
For our comparisons, we used the latest versions of each prover available to us at
the time: CVC3 version 1.1; Vampire 8.1; SPASS 2.2, yices 1.0, and the version
of Fx7 available online at http://nemerle.org/∼malekith/smt/en.html as of
February 2007. A more detailed version of all the results discussed here can be
found at http://www.cs.nyu.edu/∼barrett/cade07.

6.1 Benchmarks

The benchmarks for our evaluation are from the SMT-LIB library [13] of bench-
marks for SMT solvers. It consists of 29004 benchmarks from three different SMT

http://nemerle.org/~malekith/smt/en.html
http://www.cs.nyu.edu/~barrett/cade07
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divisions: AUFLIA (arrays, uninterpreted functions, and linear integer arith-
metic); AUFLIRA (arrays, uninterpreted functions, and mixed linear integer
and real arithmetic); and AUFNIRA (arrays, uninterpreted functions, and mixed
non-linear integer and real arithmetic). They are further subdivided according to
families. In AUFLIA, there are five families: Burns, misc (we lumped the single
benchmark in the check family in with misc), piVC, RicartAgrawala, and sim-
plify. In AUFLIRA, there are two families: misc and nasa. And in AUFNIRA,
there is a single family: nasa. We will comment more specifically on two of these
families, nasa and simplify, below. For more information on the other bench-
marks and on the SMT-LIB library, we refer the reader to the SMT-LIB website:
http://www.smtlib.org.

The nasa families make up the vast majority of the benchmarks with a total of
28065 benchmarks in two families. These cases are safety obligations automati-
cally generated from annotated programs at NASA. Following their introduction
in [6], these benchmarks were made publicly available in TPTP format [17], a
format for pure first-order logic. We then undertook the task of translating them
into the SMT-LIB format and contributing them to the SMT-LIB library. In or-
der to adapt these benchmarks for SMT, several steps were required. First, we
removed quantified assumptions that were determined to be valid with respect to
the background theories ,5 in this case arrays and arithmetic, and made sure to
use the built-in symbols defined in the SMT-LIB standard. Second, since SMT-
LIB uses a many-sorted logic, we had to infer sorts for every symbol. We used
the following rules to infer types: (i) The index of an array is of type of integer;
(ii) The return type of functions cos, sin, log, sqrt is real; (iii) The terms on
both sides of infix predicates =, <=, >=, < and >, must have the same type;
(iv) If the type of a term cannot be deduced by the above rules, it is assumed
to be real. According to [6], of the 28065 cases, only 14 are supposed to be sat-
isfiable (the rest are unsatisfiable). However, after running our experiments and
carefully examining the benchmarks in their present form in the TPTP library,
our best guess is that somewhere around 150 of the cases are actually satisfiable
(both in the SMT-LIB format and in the original TPTP format). It is difficult
to know for sure since for these cases, no tool we are aware of can reliably dis-
tinguish between a truly satisfiable formula and one that is simply too difficult
to prove unsatisfiable, and determining this by hand is extremely tedious and
error-prone. We suspect that some assumptions present in the benchmarks from
[6] were lost somehow before their submission to the TPTP library, but we do
not know how this happened. In any case, most of the benchmarks are definitely
unsatisfiable and while many are easy, a few of them are very challenging.

The other major family is the simplify family, which was translated (by oth-
ers) from a set of over 2200 benchmarks introduced in [7] and distributed with
the Simplify theorem prover. Only a selection of the original benchmarks were

5 These are assumptions that were added by hand to enable better performance by
ATP systems. They were removed by using CVC3 to automatically check for validity.
Note that this returns the benchmarks to a state more faithfully representing the
original application.

http://www.smtlib.org


178 Y. Ge, C. Barrett, and C. Tinelli

translated. According to the translator, he excluded benchmarks that were too
easy or involved non-linear arithmetic [5]. There are 833 benchmarks in this
family, all of which are unsatisfiable.

6.2 Evaluating the Heuristics

We began by running CVC3 using only naive instantiation (trying both the
lazy and eager strategies) on all SMT-LIB benchmarks. Of 29004 benchmarks,
23389 can be solved in negligible time by both the eager and the lazy naive
strategies. As a result, these benchmarks are not helpful for evaluating our more
sophisticated heuristics and so we have chosen to exclude them from the tables
below. Also, there are 16 benchmarks that are known to be satisfiable, including
all of the benchmarks in the AUFLIRA/misc family, so we have excluded them
as well (we did not exclude any of the nasa benchmarks since we do not know
for sure which of them are actually satisfiable).

For the remaining 5599 benchmarks that could not be solved using the naive
strategy, we tried the following instantiation strategies: (i) basic trigger/matching
algorithm (BTBM) with none of the heuristics described in Section 5; (ii) basic
triggers with the smarter matching (BTSM) described in Section 5.2; (iii) same as
(ii) except with smart triggers (STSM) as described in Section 5.1; and finally (iv)
same as (iii) but with the instantiation level (IL) heuristic activated. The results
are shown in Table 1. Each table lists the number of cases by family. Then, for each

Table 1. Lazy vs. eager instantiation strategy in CVC3

Lazy strategy (i) BTBM (ii) BTSM (iii) STSM (iv) IL

Category #cases #unsat time #unsat time #unsat time #unsat time

AUFLIA/Burns 12 12 0.013 12 0.013 12 0.014 12 0.020

AUFLIA/misc 14 10 0.010 14 0.022 14 0.021 14 0.023

AUFLIA/piVC 29 25 0.109 25 0.109 29 0.119 29 0.117

AUFLIA/RicAgla 14 14 0.052 14 0.050 14 0.050 14 0.050

AUFLIA/simplify 769 471 1.751 749 3.846 762 0.664 759 0.941

AUFLIRA/nasa 4619 4113 1.533 4113 1.533 4113 1.551 4113 1.533

AUFNIRA/nasa 142 46 0.044 46 0.043 46 0.043 46 0.044

Total 5599 4691 1.521 4973 1.849 4990 1.402 4987 1.409

Eager strategy (i) BTBM (ii) BTSM (iii) STSM (iv) IL

Category #cases #unsat time #unsat time #unsat time #unsat time

AUFLIA/Burns 12 12 0.012 12 0.020 12 0.019 12 0.019

AUFLIA/misc 14 10 0.008 12 0.013 12 0.013 14 0.047

AUFLIA/piVC 29 25 0.107 25 0.108 29 0.127 29 0.106

AUFLIA/RicAgla 14 14 0.056 14 0.058 14 0.056 14 0.041

AUFLIA/simplify 769 25 18.24 24 39.52 497 30.98 768 0.739

AUFLIRA/nasa 4619 4527 0.072 4527 0.071 4527 0.074 4526 0.014

AUFNIRA/nasa 142 72 0.010 72 0.010 72 0.011 72 0.012

Total 5599 4685 0.168 4686 0.273 5163 3.047 5435 0.117
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of the four strategies, and for each family, we list the number of cases successfully
proved unsatisfiable and the average time spent on these successful cases.

As can be seen, the basic matching strategy is quite effective on about 4/5 of
the benchmarks, but there are still nearly 1000 that cannot be solved without
more sophisticated techniques. Another observation is that the eager strategy
generally outperforms the lazy strategy, both on average time taken and on num-
ber of cases proved. The notable exception is the simplify family. On this family,
the lazy strategy performs much better for all except the very last column. This
can be explained by the fact that the simplify benchmarks are especially sus-
ceptible to getting lost due to looping. However, the lazy strategy is not subject
to looping, so it does much better (this also explains why the last column is no
better than the third column for the lazy strategy–in fact it’s a bit worse, which
we suspect is simply due to random differences in the order of instantiations).
For the other benchmarks, however, eager instantiation is usually helpful and
sometimes critical for finding the proof (this is especially true of the nasa fam-
ilies). Thus, the instantiation level heuristic can be seen as a way of combining
the advantages of both the eager and lazy strategies. There is one nasa case
which is particularly difficult and falls just inside the time limit for the first
three columns and just outside the time limit in the last column. This is why
one fewer nasa case is proved in the last column.

6.3 Comparison with ATP Systems

One of our primary goals in this paper was to evaluate whether SMT solvers
might be able to do better than ATP systems on real verification applications
that require both quantifier and theory reasoning. The nasa benchmarks pro-
vide a means of testing this hypothesis as they are available in both TPTP
and SMT-LIB formats (this was, in fact, one of the primary motivations for
translating the benchmarks). We also translated the benchmarks into Simplify’s
format so as to be able to compare Simplify as well. Table 2 compares CVC3
with Vampire, SPASS, and Simplify on these nasa benchmarks. For these tests,
the timeout was 1 minute. We chose Vampire and SPASS because Vampire and
SPASS are among the best ATP systems: Vampire is a regular winner of the
CASC competitions [16], and SPASS was the best prover of those tried in [6].
For easier comparison to [6], the benchmarks are divided as in that paper into
seven categories: T∅, T∀,→, Tprop, Teval, Tarray, Tpolicy, Tarray∗. The first cate-
gory T∅ contains the most difficult verification conditions. The other categories
were obtained by applying various simplifications to T∅. For a detailed descrip-
tion of the categories and how they were generated, we refer the reader to [6]. We
also exclude in this breakdown (as was also done in [6]) the 14 known satisfiable
cases, so there are 28051 benchmarks in total.

The first observation is that all solvers can prove most of the benchmarks, as
most of them are easy. The ATP systems do quite well compared to Simplify:
while Simplify is generally much faster, both Vampire and SPASS prove more
cases than Simplify. Since at the time these benchmarks were produced, Simplify
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Table 2. ATP vs SMT

Vampire SPASS Simplify CVC3

Category #cases #unsat time #unsat time #unsat time #unsat time

T∅ 365 266 9.2768 302 1.7645 207 0.0679 343 0.0174

T∀,→ 6198 6080 2.1535 6063 0.6732 5957 0.0172 6174 0.0042

Tprop 1468 1349 4.3218 1343 1.0656 1370 0.0339 1444 0.0058

Teval 1076 959 5.6028 948 0.7601 979 0.0423 1052 0.0077

Tarray 2026 2005 1.4438 2000 0.2702 1943 0.0105 2005 0.0048

Tarray∗ 14931 14903 0.6946 14892 0.2323 14699 0.0101 14905 0.0035

Tpolicy 1987 1979 1.4943 1974 0.2716 1917 0.0101 1979 0.0050

Total 28051 27541 1.5601 27522 0.4107 27072 0.0145 27902 0.0043

was the only SMT solver that could support quantifiers, this can be seen as a
validation of the choice of ATP systems over SMT solvers at the time.

However, CVC3 dominates the other systems in both time and number of
cases solved. There are only 149 cases that CVC3 cannot solve (as mentioned
above we suspect most of these are actually satisfiable) and the average time
is less than a hundredth of a second. For the most challenging cases, those in
T∅, CVC3 was able to solve 343 out of 365 cases, significantly more than the
provers evaluated in [6] (the best system solved 280). As far as we know, this is
the best result ever achieved on these benchmarks. This supports our hypothesis
that with the additional quantifier techniques introduced in this paper, modern
SMT solvers may be a better fit for verification tasks that mix theory reasoning
and quantifier reasoning.6

6.4 Comparison with Other SMT Systems

As we prepared this paper, we knew of only two other SMT systems that include
support for both quantifiers and the SMT-LIB format: yices and Fx7. Yices was
the winner of SMT-COMP 2006, dominating every category. Fx7 is a new system
recently developed by Michal Moskal. Unfortunately, the quantifier reasoning
techniques used in these systems are not published, but our understanding is
that they also use extensions of the matching algorithms found in Simplify.

Table 3 compares Fx7, yices, and CVC3 on the same subset of benchmarks
used in the first set of experiments. While yices is sometimes faster than CVC3,
CVC3 can prove as many or more cases in every category. In total, CVC3 can
prove 34 more cases than yices (yices does not support the AUFNIRA division,
so we don’t count the additional 72 cases CVC3 can prove in this division). Also,
CVC3 is significantly faster on the simplify and nasa benchmarks.

We were also naturally very curious to know how CVC3 compares to Simplify.
Results on the nasa benchmarks were given above. The other obvious set of

6 It is worth mentioning that the majority of TPTP benchmarks do not contain sig-
nificant theory reasoning and on these, ATP systems are still much stronger than
SMT systems.
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Table 3. Comparison of SMT systems

Fx7 yices CVC3

Category #cases #unsat time #unsat time #unsat time

AUFLIA/Burns 12 12 0.4292 12 0.0108 12 0.0192

AUFLIA/misc 14 12 0.6817 14 0.0500 14 0.0479

AUFLIA/piVC 29 15 0.5167 29 0.0300 29 0.1055

AUFLIA/RicAgla 14 14 0.6400 14 0.0257 14 0.0407

AUFLIA/simplify 769 760 3.2184 740 1.4244 768 0.7386

AUFLIRA/nasa 4619 4187 0.4524 4520 0.0824 4526 0.0138

AUFNIRA/nasa 142 48 0.4102 N/A N/A 72 0.0118

Total 5599 5048 0.8696 5329 0.2681 5435 0.1168

benchmarks to compare on is the simplify benchmarks. Not surprisingly, Simplify
can solve all of these benchmarks very fast: it can solve all 2251 benchmarks in
its suite in 469.05 seconds, faster than both yices and CVC3 which take much
longer to solve just the 833 benchmarks that were translated into SMT-LIB
format. However, Simplify only achieves these impressive results by relying on
special formula annotations that tell it which triggers to use. If these annotations
are removed, Simplify can only prove 444 of the original 2251 benchmarks. Since
the SMT-LIB benchmarks do not have any such annotations, the ability to
prove most of the simplify benchmarks automatically represents a significant
step forward for SMT solvers.

Ideally, we would have run Simplify on all of the SMT-LIB benchmarks. Un-
fortunately, Simplify does not read the SMT-LIB format and we did not have the
chance to translate the other benchmarks into Simplify’s language. Such trans-
lation is non-trivial as it involves moving from a sorted to an unsorted language
(translating the nasa cases into Simplify’s format was easier because both TPTP
and Simplify formats are unsorted).

7 Conclusion

In this paper, we presented new formalisms and techniques for quantifier reason-
ing in the context satisfiability modulo theories. Significantly, our results indicate
that these techniques make SMT solvers a better choice than ATP systems on
some classes of verification conditions that make use of both theory reasoning
and quantifiers. Our techniques are also competitive with other state-of-the art
SMT solvers. Indeed, there are several benchmarks from the SMT-LIB library
that have been solved for the first time using these techniques.

In future work, we plan to explore extensions of these techniques that allow
for more substantial completeness claims. In particular, we plan to explore more
sophisticated kinds of theory matching and integration of complete techniques
such as quantifier elimination for those theories for which it is applicable.
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Abstract. Satisfiability Modulo Theories (SMT) solvers have proven
highly scalable, efficient and suitable for integrating theory reasoning.
However, for numerous applications from program analysis and verifi-
cation, the ground fragment is insufficient, as proof obligations often
include quantifiers. A well known approach for quantifier reasoning uses
a matching algorithm that works against an E-graph to instantiate quan-
tified variables. This paper introduces algorithms that identify matches
on E-graphs incrementally and efficiently. In particular, we introduce an
index that works on E-graphs, called E-matching code trees that combine
features of substitution and code trees, used in saturation based theo-
rem provers. E-matching code trees allow performing matching against
several patterns simultaneously. The code trees are combined with an
additional index, called the inverted path index, which filters E-graph
terms that may potentially match patterns when the E-graph is updated.
Experimental results show substantial performance improvements over
existing state-of-the-art SMT solvers.

1 Introduction

SMT solvers based on a DPLL(T) [1] framework have proven highly scalable,
efficient and suitable for integrating theory reasoning. However, for numerous
applications from program analysis and verification, an integration of decision
procedures for the ground fragment is insufficient, as proof obligations often
include quantifiers for capturing frame conditions over loops, summarizing aux-
iliary invariants over heaps, and for supplying axioms of theories that are not
already equipped with ground decision procedures. A well known approach for
incorporating quantifier reasoning with ground decision procedures is used in the
Simplify theorem prover [2]. Simplify uses an E-matching algorithm that works
against an E-graph to instantiate quantified variables, where the E-matching
problem is defined as:

input: A set of ground equations E, a ground term t and a term p possibly
containing variables.
output: The set of substitutions θ, modulo E, over the variables in p, such that
E |= t , θ(p). Two substitutions are equivalent if their right hand sides are
pairwise congruent modulo E.

The E-graph, which maintains congruence relations, is modified during a back-
tracking search. Each modification to the E-graph may enable new instantia-
tions. E-matching is also used in the several other state-of-the-art SMT solvers:

F. Pfenning (Ed.): CADE 2007, LNAI 4603, pp. 183–198, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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CVC3 [3], Fx7 [4], Verifun [5], Yices [6], Zap [7]. The Stanford Pascal Verifier [8]
already included patterns for generating ground instances of axioms. These ap-
proaches are also tightly coupled with software verification applications, as found
in for instance ESC/Java [9] and Boogie [10,11].

This paper introduces algorithms that identify matches on E-graphs efficiently
and incrementally. In particular, we introduce an index that works on E-graphs,
called E-matching code trees that combines features of substitution and code
trees, used in saturation based theorem provers. E-matching code trees allow
performing matching against several patterns simultaneously. The code trees
are combined with an additional index, called the inverted path index, which
filters E-graph terms that may potentially match patterns after modifications
in the E-graph. The choice and design of these indices reflect upon measured
runtime overheads. While E-matching is in theory NP-hard [12], and the number
of matches can be exponential in the size of the E-graph, the practical overhead
of using E-matching for quantifier instantiation turns out to be searching and
maintaining sets of patterns that can efficiently retrieve new matches as soon as
E-graph operations introduce them.

Quantifier reasoning is native to saturation based theorem provers where res-
olution and superposition are the main mechanisms for producing inferences.
However, few implementations and experiments have been reported in these sys-
tems for reasoning in the context of theories, despite long running attention [13].
Theory resolution [14] provides a framework for adding theory reasoning (as for
instance, unification modulo associativity and commutativity) to such systems.
In practice, some decision procedures are included in SNARK, including Allen’s
Interval Temporal Logic and theories used in the Amphion system [15]. Re-
cently [16] investigated an integration of CVC-lite and SPASS, and combinations
with super-position calculi and DPLL and BDDs are investigated in haRVey [17].

2 Background

Let Σ be a signature consisting of a set of function symbols, and V be a set of
variables. Each function symbol f is associated with a nonegative integer, called
the arity of f , denoted arity(f). If arity(g) = 0, then g is a constant symbol.
The set of terms T (Σ,V) is the smallest set containing all constant and variable
symbols such that f(t1, . . . , tn) ∈ T (Σ,V) whenever f ∈ Σ, arity(f) = n, and
t1 . . . tn ∈ T (Σ,V). A f-application is a term of the form f(t1, . . . , tn). The set of
ground terms is defined as T (Σ, ∅). In our context, the set of non ground terms
is called patterns. We use p, f(p1, . . . , pn), and x, y, z to range over patterns,
and t, f(t1, . . . , tn), and a, b, c to range over ground terms.

In our context, a substitution is a mapping from variables to ground terms.
Given a substitution β, we denote by β(p) the ground term obtained by replacing
every variable x in the pattern p by β(x).

A binary relation R over T is an equivalence relation if it is reflexive, symmet-
ric, and transitive. An equivalence relation induces a partition of T into equiv-
alence classes. Given a binary relation R, its equivalence closure is the smallest
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equivalence relation that contains R. A binary relation R on T (Σ, ∅) is mono-
tonic if 〈f(t1, . . . , tn), f(t′1, . . . , t

′
n)〉 ∈ R whenever f ∈ Σ and 〈ti, t′i〉 ∈ R for all

i in 1 . . . n. A congruence relation is a monotonic equivalence relation. Given a
binary relation R on T (Σ, ∅), its congruence closure is the smallest congruence
relation that contains R.

An E-graph data-structure maintains the congruence closure of a binary re-
lation E = {(t1, t′1), . . . , (tk, t′k)} given incrementally (on-line) as a sequence of
operations union(t1, t′1), . . . , union(tk, t′k). Each equivalence class is represented
by its representative. For each term t in the E-graph, find(t) denotes the rep-
resentative of the equivalence class that contains t, class(t) denotes the equiva-
lence class that contains t, appsf (t) denotes the set of terms f(t1, . . . , tn) such
that f(t1, . . . , tn) ∈ class(t), apps(f) denotes the set of all f -applications in
the E-graph, parents(t) denotes the set of terms f(. . . , t′, . . .) in the E-graph
such that t′ ∈ class(t), parentsf (t) is a subset of parents(t) which contains only
f -applications, and parentsf.i(t) is a subset of parentsf (t) which contains only f -
applications where the i-th argument ti is in class(t). The set ancestors(t) is the
smallest set such that parents(t) ⊆ ancestors(t), and ancestors(tp) ⊆ ancestors(t)
whenever tp ∈ ancestors(t). We suppress references to E-graphs from the above
functions, as there is always only one E-graph during proof search.

2.1 SMT Solvers

Modern SMT solvers combine boolean satisfiability solvers based on the Davis-
Putnam-Logemann-Loveland (DPLL) procedure, and T -solvers capable of de-
ciding the satisfiability of conjunctions of T -atoms. In this paper, T -atoms are
equalities between ground terms, and quantified formulas. A T -solver maintains
a state that is an internal representation of the atoms asserted so far. This solver
must provide operations for updating the state by asserting new atoms, checking
whether the state is consistent, and backtracking. The solver maintains a stack
of checkpoints that mark consistent states to which the solver can backtrack.

Most SMT solvers incorporate quantifier reasoning using E-matching. Se-
mantically, the formula ∀x1, . . . , xn.F is equivalent to the infinite conjunction∧

β β(F ) where β ranges over all substitutions over the x’s. In practice, solvers
use heuristics to select from this infinite conjunction those instances that are
“relevant” to the conjecture. The key idea is to treat an instance β(F ) as rel-
evant whenever it contains enough terms that are represented in the current
E-graph. That is, non ground terms p from F are selected as patterns, and β(F )
is considered relevant whenever β(p) is in the E-graph. An abstract version of the
E-matching algorithm is shown in Fig. 1. The set of relevant substitutions for a
pattern p can be obtained by taking

⋃
t∈E match(p, t, ∅). The abstract matching

procedure returns all substitutions that E-match a pattern p with term t. That
is, if β ∈ match(p, t, ∅) then E |= β(p) = t, and conversely, if E |= β(p) = t, then
there is a β′ congruent (when interpreted as a set of equalities) to β such that
β′ ∈ match(p, t, ∅). In [18], this claim is justified in more detail by observing that
the abstract matcher may be viewed as a congruence proof search procedure.
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match(x, t, S) = {β ∪ {x &→ t} | β ∈ S, x �∈ dom(β)} ∪
{β | β ∈ S,find(β(x)) = find(t)}

match(c, t, S) = S if c ∈ class(t)

match(c, t, S) = ∅ if c �∈ class(t)

match(f(p1, . . . , pn), t, S) =
�

f(t1,...,tn)∈class(t)
match(pn, tn, . . . ,match(p1, t1, S))

Fig. 1. E-matching (abstract) algorithm

3 E-Matching Abstract Machine

It is usual in automated deduction to compile terms into code that can be effi-
ciently executed at retrieval time. The compiler produces code for a real machine,
or for a virtual machine as in the case of Prolog’s WAM [19]. In this section,
we propose an abstract machine for E-matching, its instructions, compilation
process, and interpretation. Memory of the abstract machine is divided in the
following way:

– register pc for storing the current instruction.
– an array of registers reg[] for storing ground terms.
– a stack bstack for backtracking.

The basic instruction set of our abstract machine consists of: init, bind, check,
compare, choose, yield, and backtrack. The semantics of these instructions, shown
in Fig. 2, corresponds closely to the steps used by the abstract matching pro-
cedure; so if a pattern p is compiled into a code sequence starting with the
instruction instr , then the set match(p, t, ∅) is retrieved by storing t in reg[0],
setting pc to instr , and executing the instruction stored in pc. This claim is
justified in more detail in [18], by observing, for instance, that the compare in-
struction handles repeated variable occurrences in a pattern. At the moment
choose is not relevant, it will be used when we discuss the case of matching
against many patterns simultaneously. The instruction bind creates a backtrack-
ing point, the idea is to try all f -applications in the equivalence class of the
term stored in reg[i]. The effect of the backtrack instruction is to pop the top of
the backtracking stack, bstack, and perform the instruction stored in top. The
abstract machine terminates when the backtracking stack bstack is empty. For
convenience, we define the function cont on instructions. On all above instruc-
tions but yield, cont returns next; for example, cont(check(i, t,next)) = next . The
pattern f(x1, g(x1, a), h(x2), b) can be compiled in the following code sequence:

init(f, check(4, b, bind(2, g, 5, compare(1, 5, check(6, a, bind(3, h, 7, yield(1, 7)))))))

In the rest of the paper, we represent code sequences using labeled instructions.
A labeled instruction will be written as a pair of the form n : instr , where n is
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init(f,next) assuming reg[0] = f(t1, . . . , tn)
reg[1] := t1; . . . ; reg[n] := tn

pc := next
bind(i, f, o, next) push(bstack, choose-app(o,next, appsf (reg[i]), 1))

pc := backtrack
check(i, t,next) if find(reg[i]) = find(t) then pc := next

else pc := backtrack
compare(i, j, next) if find(reg[i]) = find(reg[j]) then pc := next

else pc := backtrack
choose(alt,next) if alt �= nil then push(bstack, alt)

pc := next
yield(i1, . . . , ik) yield substitution {x1 &→ reg[i1], . . . , xk &→ reg[ik]}

pc := backtrack
backtrack if bstack is not empty then

pc := pop(bstack )
else stop

choose-app(o,next, s, j) if |s| ≥ j then
let f(t1, . . . , tn) be the jth term in s.

reg[o] := t1; . . . ; reg[o + n− 1] := tn

push(bstack, choose-app(o,next, s, j + 1))
pc := next

else pc := backtrack

Fig. 2. Semantics of abstract machine instructions

the label/address, and instr is the instruction itself. Using labeled instructions,
the code sequence above is represented as:

init(f, n1), n1 : check(4, b, n2), n2 : bind(2, g, 5, n3), n3 : compare(1, 5, n4),
n4 : check(6, a, n5), n5 : bind(3, h, 7, n6), n6 : yield(1, 7)

In the function compile(W,V, o), W (working set) is a mapping from register
indices to patterns, V (variables) is mapping from variables to register indices,
and o (offset) contains the value of the next available register index. The elements
of the working set W can be processed in any order, but in our implementation
an entry i &→ f(p1, . . . , pn) is only processed when W does not contain an entry
i &→ t or i &→ xk. The idea is to give preference to instructions that do not
produce backtracking points.

4 E-Matching Code Trees

The time spent on matching patterns with shared structures can be minimized
by combining different code sequences in a code tree. Code trees were intro-
duced in [20] in the context of saturation based theorem provers. They are used
for forward subsumption and forward demodulation in the Vampire theorem
prover [21]. The code trees presented in this section are similar to substitution
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compile(f(p1, . . . , pn)) = init(f, compile({1 �→ p1, . . . , n �→ pn}, ∅, n + 1))

compile({i �→ t} ∪ W,V, o) = check(i, t, compile(W, V, o)), when t is a ground term.

compile({i �→ xk} ∪ W,V, o) = compile(W,V ∪ {xk �→ i}, o), if xk �∈ dom(V )

= compare(i, V (xk), compile(W, V, o)), otherwise.

compile({i �→ f(p1, . . . , pn)} ∪ W,V, o) = bind(i, f, o, compile(W ′
, V, o + n)),

where W
′ = W ∪ {o �→ p1, . . . , (o + n − 1) �→ pn}

compile(∅, {x1 �→ i1, . . . , xk �→ ik}, o) = yield(i1, . . . , ik)

Fig. 3. Algorithm for compiling patterns into code sequences

init(f, n1)

n1 : choose(n9, n2), n2 : bind(2, g, 3, n3)

n3 : choose(n6, n4), n4 : check(3, a, n5), n5 : yield(1, 4)

n6 : choose(nil, n7), n7 : compare(1, 3, n8), n8 : yield(1, 4)

n9 : choose(nil, n10), n10 : check(2, b, n11), n11 : bind(1, h, 5, n12)

n12 : choose(n14, n13), n13 : yield(5, 6)

n14 : choose(nil, n15), n15 : bind(6, g, 7, n16), n16 : compare(5, 7, n17), n17 : yield(5, 8)

Fig. 4. Code tree for {f(x, g(a, y)), f(x, g(x, y)), f(h(x, y), b), f(h(x, g(x, y)), b)}

trees [22], also used in saturation based theorem provers. The key advantage of
using code and substitution trees is that matching work common to multiple
patterns is “factored out.” This advantage results in substantial speedups over a
naive approach that would repeatedly match a term against each pattern. A code
tree for a small set of patterns is shown in Fig. 4. Each line can be viewed as node
(or code block) in the tree, indentation is used to suggest a parent-child relation-
ship between nodes, the instruction choose is used to create branches/choices in
the tree. The node starting at label n1 (n9) contains the instruction(s) common
for matching the first and second (third and fourth) patterns. In E-matching
code trees, the yield instruction must also store the quantifier that should be
instantiated with the yielded substitution, this information is suppressed to sim-
plify the exposition. Our code trees are also very similar to context trees [23].
The main differences with other code, substitution, and context trees, include
the use of a stack to handle both backtracking and the branching that arize from
matching in the context of an E-graph.

In general, to maintain a code tree C for a dynamically changing set of pat-
terns P , one has to implement operations for integrating and removing code
from the tree. In our context, patterns are added to the code tree when the
DPLL(T) engine asserts an atom that represents a quantified formula, and are
removed when the DPLL(T) engine backtracks. This usage pattern simplifies the
insertion and removal operations. In our implementation, each function symbol
is mapped to a unique code tree headed by an init instruction. The algorithm
for insertion of new patterns into a code tree is shown in Fig. 5.
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insert(init(f, n), f(p1, . . . , pm)) = try(n, {1 �→ p1, . . . , m �→ pm}, nreg(init(f, n)), [init(f, n)], [ ])

try(choose(a, n), W, o, C, I) = ⊥, if C = [ ]

= seq(C,firstfit(choose(a, n), W, o)), if I = [ ],

= branch(C, seq(I, choose(a, n)), W, o), otherwise.

try(yield(i1, . . . , ik), W, o, C, I) = ⊥, if C = [ ],

= branch(C, seq(I, yield(i1, . . . , in)),W, o), otherwise.

try(instr, W, o, C, I) = try(cont(instr), W, o, C, I ˆ[instr]), if compatible(instr, W ) = ⊥,

= try(cont(instr), compatible(instr, W ), C ˆ[instr], I), otherwise.

firstfit(choose(a, n), W, o) = choose(a, try(n, W, o, [ ], [ ])), if try(n, W, o, [ ], [ ]) �= ⊥,

= choose(firstfit(a, W, o), n), otherwise.

firstfit(nil, W, o) = choose(nil, compile(W, ∅, o))

seq([ ], fchild) = fchild

seq(check(i, t, n) : I, fchild) = check(i, t, seq(I, fchild))

seq(compare(i, j, n) : I, fchild) = compare(i, j, seq(I, fchild))

seq(bind(i, f, o, n) : I, fchild) = bind(i, f, o, seq(I, fchild))

branch(C, fchild, W, o) = seq(C, choose(choose(nil, compile(W, ∅, o)), fchild))

compatible(check(i, t, n), {i �→ t
′} ∪ W ) = W, if find(t) = find(t′)

compatible(compare(i, j, n), {i �→ x, j �→ x} ∪ W ) = {i �→ x} ∪ W

compatible(bind(i, f, o, n), {i �→ f(p1, . . . , pm)} ∪ W ) = W ∪ {o �→ p1, . . . , (o + m − 1) �→ pm}

compatible(instr, W ) = ⊥, otherwise.

Fig. 5. Algorithm for insertion into an E-matching code tree

Function try(instr,W, o, C, I) traverses a code block accumulating instructions
compatible (incompatible) with the working set W in the list C (I), it returns
⊥ if the code block does not contain any instruction compatible with W . A code
block always terminates with a choose or yield instruction. When the code block
is fully compatible (i.e., I is empty), the insertion should continue in one of its
children. Like substitution trees, there may be several different ways to insert a
pattern. The algorithm presented uses a first fit (function firstfit) strategy when
selecting a child block. In our concrete implementation, all children are inspected
and the one with the highest number of compatible instructions is used. Func-
tion seq(C, fchild) returns a code block composed of the instructions in C, whose
first child is fchild, branch(C, fchild,W, o) returns a code block composed of the
instruction in C, and two children: fchild, and the code block produced by the
compilation of the working set W . Function compatible(instr,W ) returns ⊥ if
the instruction instr is not compatible with the working set W , otherwise it re-
turns an updated W by factoring in the effect of instr. Function nreg(c) returns
the maximum register index used in the code tree c plus one. The yield instruc-
tion is always considered incompatible because, as mentioned before, each one is
associated with a different quantifier. The init instruction is always compatible
because we use a different code tree for each root function symbol. In the context
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of DPLL(T), removal of code trees follow a chronological backtracking discipline,
so it suffices to store old instructions from modified next fields in a trail stack.

5 Incrementality

The operation union(t1, t2) has a potential side-effect of producing new matches.
For example, a term f(a, b) matches the pattern f(g(x), y) with a potentially
new substitution whenever the operation union(a, g(c)) is executed.

The Simplify theorem prover [2, page 409] uses two techniques to identify new
terms and patterns that become relevant for matching: mod-time optimization
and pattern-element optimization. Mod-time optimization is used to identify rel-
evant terms, and is based on the fact that the operation union(t1, t2) may change
the set of terms congruent to tp ∈ ancestors(t1)∪ancestors(t2). The time needed
to traverse the ancestors of a term t can be minimized by marking already visited
terms. Marks are removed after every round of matching. When experimenting
with this approach we found that most of the ancestors do not produce new
matches, and the overhead of traversing them is significant. Pattern-element op-
timization is used to identify relevant patterns. The main idea is to identify
when the operation union is not relevant for a pattern. A pair of function sym-
bols (f, g) is a parent-child pair (pc-pair) of a pattern p, if p contains a term of
the form:

f(. . . , g(. . .), . . .)

A pair (not necessarily distinct) of function symbols (f, g) is a parent-parent pair
(pp-pair) of a pattern p, if p contains two distinct occurrences of the variable x
of the form:

f(. . . , x, . . .), g(. . . , x, . . .)

A union(t1, t2) is pc-relevant for some pc-pair (f, g) of a pattern p whenever

(parentsf (t1) �= ∅ ∧ appsg(t2) �= ∅) ∨ (parentsf (t2) �= ∅ ∧ appsg(t1) �= ∅)

A union(t1, t2) is pp-relevant for some pp-pair (f, g) of a pattern p whenever

(parentsf (t1) �= ∅ ∧ parentsg(t2) �= ∅) ∨ (parentsf (t2) �= ∅ ∧ parentsg(t1) �= ∅)

Assuming that any ground term occurring in a pattern is viewed as a constant
symbol, then a union(t1, t2) cannot produce new instances for a pattern p if
it is not relevant for any pc-pair or pp-pair of p. The cost of this optimization
is minimized using approximated sets, as they are called in [2], these are also
known as Bloom filters [24], which are like real sets except that membership and
overlap tests may return false positives. Each equivalence class representative
t is associated with two approximated sets of function symbols: funs(t) and
pfuns(t), where funs(t) is the approximated set of function symbols in class(t),
and pfuns(t) is the approximated set of functions symbols in parents(t).
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5.1 Inverted Path Index

{4}

{4}

f

1

{1, 3} {2}

f

1 2

f h

1 2

Fig. 6. Inverted path index for pc-pair (f, g)
and patterns f(f(g(x), a), x), h(c, f(g(y), x)),
f(f(g(x), b), y), f(f(a, g(x)), g(y))

Even with mod-time and pattern-
element optimizations, many of
the matches found are redun-
dant. In this section, we propose
a new technique to identify new
terms and patterns that become
relevant for matching.

An inverted path string over a
signature Σ is either the empty
string Λ, or f.i.π, where π is
an inverted path string, f ∈
Σ, and i is an integer. Intu-
itively, we can view inverted
path strings as a child-to-root
path. For example, the inverted
path string g.1.f.2 is a path to
term f(a, g(h(x), c)) from sub-
term h(x).

Given a set of terms T and an inverted path string π, collect(π, T ) is the set
of ancestor terms reached from T following the path π. This set comprises a
super-set of terms that participate in new E-matches after a union operation.
We furthermore seek a sufficiently tight set to avoid redundant E-matching calls.

The function collect can be formalized as:

collect(Λ, T ) = T

collect(f.i.π, T ) = collect(π, {f(t1, . . . , tn) | f(t1, . . . , tn) ∈ parentsf.i(t), t ∈ T })

For example, suppose pfuns(t1) = {f}, funs(t2) = {g}, and h(x, f(g(y), a)) is
a pattern. Then, collect(h.2.f.1, {t1}) contains all terms that may produce new
instances for h(x, f(g(y), a)) after executing union(t1, t2). Collecting the set of
potentially useful candidates for matching per pattern is wasteful when a set
of patterns share the same pc/pp-pairs and furthermore share portions of the
inverted paths. We therefore share repeated prefixes from inverted path strings
in an inverted path index, which has the form of a trie τ . The nodes of τ consist
of a list of branches pointing to children together with a set of patterns (corre-
sponding to a code tree) that share the path down to the node. Thus, a node
is of the form 〈[f1.i1.τ1, . . . , fk.ik.τk], P 〉, where τj are nodes, fj .ij are different
function, integer pairs, and P is a set of patterns. An example of an inverted
path index is given in Fig. 6. Adapting a definition of collect to inverted path
indices is immediate:

collect(〈[f1.i1.τ1, . . . fk.ik.τk], P 〉, T ) = {(P, T ) | P �= ∅} ∪
k⋃

j=1

collect(τj , {fj(t1, . . . , tn) | fj(t1, . . . , tn) ∈ parentsfj .ij
(t), t ∈ T })
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Inverted path indices are particularly useful in situations where one has, for
example, different instances of frame axioms using similar patterns: f(t1, y, g(z)),
. . . , f(tn, y, g(z)).

6 Additional Instructions

6.1 Multi-patterns

Sometimes it makes sense to instantiate a set of quantified variables only when
a set of patterns, called multi-pattern is matched. In order to support multi-
patterns, a new kind of instruction has been added: continue. The semantics of
this instruction is given in Fig. 7. The instruction continue(f, o,next) chooses
an f -application and updates the registers from o to o + arity(f) − 1 with its
arguments. For example, the multi-pattern 〈f(x, a, y), g(z, x)〉 is compiled in the
following code sequence:

init(f, n1), n1 : check(2, a, n2), n2 : continue(g, 4, n3), n3 : compare(1, 5, n4),
n4 : yield(1, 3, 4)

In our experiments, we observed that a considerable amount of time was spent
matching multi-patterns. The problem is that the instruction continue(f, o,next)
is re-executed too many times when the number of f -applications in the E-graph
is significant. Considering the code sequence above, a g-application chosen by the
continue instruction is only useful to yield an instance if the compare instruction
succeeds, that is, the second argument of the chosen g-application is in the same
equivalence class of the term stored in register 1. Based on this observation, we
added another instruction for compiling multi-patterns: join. The semantics of
this instruction is given in Fig. 7. The instruction join(i, π, o,next) chooses a can-
didate from a set of terms reachable from the term stored in register i following
the inverted path string π. When a multi-pattern 〈p1, . . . , pn〉 is compiled, if pi

contains a variable x that also occurs in pj for j < i, then a join can be used
instead of a continue instruction, and π is the path from x to pi. If there is more
than one variable, then we select the one with the shallowest path. Using the
join instruction the multi-pattern 〈f(x, a, y), g(z, x)〉 is compiled in the following
code sequence:

init(f, n1), n1 : check(2, a, n2), n2 : join(1, g.2, 4, n3), n3 : yield(1, 3, 4)

The instruction compare(1, 5, n4) is unnecessary, since the join will only select
g-applications which the second argument is in the same equivalence class of the
term stored in register 1.

6.2 Filters

Consider the pattern f(g(x), h(y)); it is compiled in the following sequence of
instructions:

init(f, 2, n1), n1 : bind(1, g, 3, n2), n2 : bind(2, h, 4, n3), n3 : yield(3, 4)
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continue(f, o,next) push(bstack, choose-app(o,next, apps(f), 1))
pc := backtrack

join(i, π, o, next) push(bstack, choose-app(o,next, collect(π, {reg[i]}), 1))
pc := backtrack

filter(i, fs,next) if fs ∩ funs(reg[i]) �= ∅ then pc := next
else pc := backtrack

Fig. 7. Semantics of additional instructions

Suppose we are trying to match term f(a, b), and class(a) contains n g-applica-
tions, but class(b) does not contain any h-application. In this scenario, a lot of
wasteful work is performed when interpreting the instructions above, the second
bind will fail n times. We address this problem by introducing a new instruction
that performs forward pruning: filter. The semantics of this new instruction is
shown in Fig. 7. The idea of the new instruction is to use the approximated
set funs(t) to quickly test whether the equivalence class of a term t contains
an f -application or not. Using the new instruction, the pattern f(g(x), h(y)) is
compiled as:

init(f, n1), n1 : filter(1, {g}, n2), n2 : filter(2, {h}, n3), n3 : bind(1, g, 3, n4),
n4 : bind(2, h, 4, n5), n5 : yield(3, 4)

The filter instruction is also used for saving unnecessary backtracking prior to a
sequence of choose instructions each followed by a bind to a function in fs .

7 Implementation Issues

Relevancy. Simplify retains some of the structure of the input formula as an
and-or tree. It then implements a tableau style search: to refute a disjunction,
each disjunct is refuted independently. Refuting a conjunction only requires re-
taining each conjunct. In tableau form, the proof rules used by Simplify are:

∨
{�1, . . . �k}

�1 | . . . | �k

¬
∨
{�1, . . . , �k}

¬�1, . . . ,¬�k

¬¬�
�

The tableau search has the side-effect of eliminating irrelevant literals from the
scope of a branch. DPLL(T) based solvers do not have this property, as the
search assigns a boolean value to potentially all atoms appearing in a goal. For
example, when clausifying �1∨ (�2 ∧ �3) using a Tseitin [25] style algorithm we
obtain the set of clauses:

{�1, �aux}, {�aux,¬�2,¬�3}, {�2,¬�aux}, {�3,¬�aux}

Now, suppose that �1 is assigned true. In this case, �2 and �3 are clearly irrelevant
and truth assignments to �2 and �3 need not be used, but the Tseitin encoding,
which creates a set of clauses, makes the act of discovering this difficult.
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The advantage of using relevancy is profound if literals that are pruned from
the scope of a branch may produce new quantifier instantiations. We have there-
fore retained some of the traits of relevancy in our DPLL(T) solver. Our solution
does not change how the SAT solver works with respect to case-split heuristics,
unit propagation, conflict resolution, etc. Instead, we convert to CNF using a
variation of Tseitin algorithm, keep the input formula, and map every (Tseitin)
auxiliary variable to a node in the original formula.

Initially, only the auxiliary variable corresponding to the root in the original
formula is marked as relevant. Relevancy is then propagated to subformulas
using the following rules, which effectively simulate the tableau rules. Assume �
is marked as relevant. First let � be shorthand for

∨
{�1, . . . , �k}, if � is assigned

true, then the first child �i that gets assigned true is marked relevant. If � is
assigned false, then all children are marked relevant. If � is shorthand for ¬�′,
then �′ is marked as relevant as well.

Congruent terms. If two terms f(t1, . . . , tn) and f(t′1, . . . , t′n) are congruent,
then it is wasteful to try to match both of them, since the set of substitutions
produced for each of them will be equivalent. Therefore, it suffices to consider
only one term from each set of congruent applications for the bind, continue and
join instructions, and when considering new candidates for matching.

Eager vs. Lazy instantiation. Finding the right instantiations prior to case
splits can have the effect of pruning the search space dramatically. On the other
hand, eager instantiation of quantifiers that are not helpful in closing branches
may amplify the search space. A bi-polar approach to instantiation tactics does
not seem to work in general; we found that benchmarks where patterns were
supplied by the tools generating the quantified formulas worked best with eager
instantation, whereas benchmarks that do not include patterns cannot be solved
by eagerly instantiating all quantifiers whenever some subterm can be matched.
We therefore collect run-time statistics for when quantifiers are useful for closing
branches. Useful quantifiers are promoted to eager instantations, while quanti-
fiers that were not useful are demoted to a lazy instantiation round when other
options have been exhausted. The detailed description of the priority queues
used for this scheme is elaborated upon in [18].

Deleting clauses. Quantifier instantiation has a side-effect of producing new
clauses containing new atoms into the search space. Retaining these clauses over
backtracking is useless if the new clauses were not helpful in closing the branch.
A two-tiered [26] combination of SAT solvers address this problem by using
different solvers after (a lazy) quantifier instantiation. Work that was poten-
tially useful for other branches has to be reproduced using other means. In our
implementation, we use a single SAT solver, but delete clauses generated from
quantifier instantiation when backtracking. Conflict clauses and their literals are
on the other hand not deleted.
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8 Experiments

The experiments were conducted using a 32bit Pentium 4 processor running at
3.6Ghz, 2Gb of memory, and 2Mb of cache. The timeout was set to 10 min-
utes. We compared our prover, Z3, against CVC3 1.0, Simplify, Yices 1.0, and
Zap 2.0. The comparison used more than 3000 publically available benchmarks.
It includes the SMT-LIB [27] AUFLIA/simplify, ESC/Java, and Boogie bench-
marks.1 The first set is in SMT-LIB format, and the other two in Simplify
format. The most challenging benchmarks from the SMT-LIB AUFLIA bench-
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Fig. 8. SMT-LIB Benchmarks
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Fig. 9. ESC/Java Benchmarks

marks were derived from the ESC/Java benchmarks. At the time of writing, the
SMT-LIB format did not have a standard for specifying patterns for quantified
formulas. Most of the benchmarks use linear arithmetic. Fig. 8, 9 and 10 compare
Z3 with the other provers, the choice of prover/benchmark set is based on the
limitations of the input format accepted by each prover. Each point on the plots
represents a benchmark. On each plot the y-axis is the CPU time, in seconds,
1 The benchmarks are also available at http://research.microsoft.com/
~leonardo/CADE07

http://research.microsoft.com/~{}leonardo/CADE07
http://research.microsoft.com/~{}leonardo/CADE07
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Fig. 10. Boogie Benchmarks

ESC/Java Boogie S-expr Simplifier

# valid time # valid time # valid time

Simplify 2331 499.03 903 1851.29 18 10985.80

Zap 2222 6297.04 901 2612.64 22 777.78

Z3 (lazy) 2331 212.81 907 157.2 32 2904.27

Z3 (lazy wo. code trees) 2331 224.14 907 240.44 28 2369.00

Z3 (eager wo. inc.) 2331 1495.07 907 229.2 10 2410.52

Z3 (eager mod-time) 2331 85.1 907 39.79 32 1341.38

Z3 (eager wo. code trees) 2331 48.28 907 26.85 32 654.62

Z3 (default) 2331 45.22 907 18.47 32 194.54

Fig. 11. Experimental results: summary

taken by our prover, and x-axis is for the other prover. Points below the diagonal
are then benchmarks where our prover is faster. Points on the rightmost vertical
edge are problems where a solver ran out of memory or time. Fig. 11 contains
a summary of the experimental results. It also includes a Boogie (non trivial)
program verification task: an s-expression simplification module which contains
500 lines of code and 32 procedures. The default quantifier instantiation strategy
in Z3 uses: code trees, inverted path index, and eager instantiation. The table
includes other five different settings for Z3: lazy quantifier instantiation (lazy),
lazy quantifier instantiation without code trees (lazy wo. code trees), eager in-
stantiation without any support for incremental E-matching (eager wo. inc.),
eager instantiation using the mod-time optimization (eager mod-time), eager
instantiation using inverted path index but without code tress (eager wo. code
trees). For each set of benchmarks, the table contains the number of successfully
proved instances, and the total time in seconds spent on instances where the
solver did not timeout. As can be seen, the Z3 default strategy is very effective.
E-matching code trees and the inverted path index are particularly useful in non
trivial instances such as the s-expression simplifier.
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9 Conclusion

We have introduced an abstract machine for E-matching. It combines two in-
dices: the E-matching code trees which could efficiently handle matching a term
against a large set of patterns simultaneously, and inverted path indexing, which
narrowly and efficiently finds a superset of terms that will match a set of patterns.
Other results of the paper are a new approach for handling multi-patterns, and
the use of filters inside of an E-matching procedure. Simple and useful heuris-
tics for handling quantifiers in SMT solvers were also presented. Experimental
results show that our new solver outperforms the most competitive SMT solvers
that support quantifiers. Possible extensions to the approach include using con-
text trees [23] for additional sharing, adding instructions to optimize for large
alphabets, and extending inverted path indexing to a perfect filter for linear
patterns.
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Abstract. Much research concerning Satisfiability Modulo Theories is
devoted to the design of efficient SMT-solvers that integrate a SAT-
solver with T -satisfiability procedures. The rewrite-based approach to
T -satisfiability procedures is appealing, because it is general, uniform
and it makes combination of theories simple. However, SAT-solvers are
unparalleled in handling the large Boolean part of T -decision problems
of practical interest. In this paper we present a decomposition frame-
work that combines a rewrite-based theorem prover and an SMT solver
in an off-line mode, in such a way that the prover “compiles the the-
ory away,” so to speak. Thus, we generalize the rewrite-based approach
from T -satisfiability to T -decision procedures, making it possible to use
the rewrite-based prover for theory reasoning and the SAT-solver in
the SMT-solver for Boolean reasoning. We prove the practicality of this
framework by giving decision procedures for the theories of records, in-
teger offsets and arrays.

1 Introduction

Decision procedures are at the heart of formal verification tools, which invoke
them to decide the validity of logical formulæ. In software or hardware verifica-
tion problems, the validity of a formula is to be tested modulo a background the-
ory T ; such problems are called T -decision problems. Relevant theories include
linear arithmetic, or fragments thereof, theories of data structures, and combina-
tions of simpler theories. Decision procedures for these problems are commonly
called SMT-solvers, where SMT stands for Satisfiability Modulo Theories.

Due to the typically large Boolean part of the formulæ to be tested, most
SMT-solvers combine sophisticated extensions of the so-called DPLL procedure
(see, e.g., [18]) for propositional satisfiability, with T -satisfiability procedures,
that decide the T -satisfiability of sets of unit clauses (see, e.g., [13]). A main
issue with this approach is the combination of theories, that is, the case where
T consists of several simpler theories. Most systems resort to the Nelson-Oppen
combination scheme [12], so that the theory solver is a Nelson-Oppen reasoner for
the combination T of the smaller theories. However, the Nelson-Oppen scheme
works without backtracking only if all involved theories are convex, otherwise,
also the theory solver requires case analysis by backtracking. This makes the
design of an SMT-solver that efficiently overlaps the case analysis required by

F. Pfenning (Ed.): CADE 2007, LNAI 4603, pp. 199–214, 2007.
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the theory solver with that required by the DPLL procedure a complex engi-
neering problem. Much work is being invested on this issue, for various theories,
combinations of theories and classes of clauses. For instance, several of the sys-
tems that take part in the SMT competition1 showcase clever techniques for this
integration.

There are several reasons that make a generic theorem prover attractive to
solve SMT problems. From a practical point of view, theorem provers offer a well-
balanced trade-off of robustness, reliability and efficiency, as a result of years of
research on data structures and algorithms (e.g., those for indexing techniques).
Thus, one can take a theorem prover “off the shelf” to solve SMT problems,
without worrying about “false negatives” (lack of soundness) or “false positives”
(lack of completeness). From a theoretical point of view, theorem provers are
theory-independent and expressive, since the presentation of the considered the-
ory is part of the input. Combination of theories becomes conceptually simple
for the same reason: it suffices to provide the theorem prover with the union of
the presentations of the theories to be combined.

The rewrite-based inference system SP was applied to T -satisfiability in
[3,1,2,6], by showing that it is guaranteed to terminate on T -satisfiability prob-
lems in several theories. Experimental results and a theorem of modularity of
termination were also obtained [1,2]. The modularity theorem shows that if SP
terminates on T -satisfiability problems in each theory, then it terminates also
on T -satisfiability problems in their union, provided the theories are variable-
inactive and do not share function symbols. Under the same assumption of
variable-inactivity, an approach to generalize the termination results for SP
from T -satisfiability problems to the more general T -decision problems, that
involve ground formulæ, was presented in [5]. However, generic theorem provers
are not designed to deal with the Boolean part of a formula as efficiently as
possible. Hence, they do not seem to be suited to solve T -decision problems that
feature a heavy Boolean part, although this is the case for most problems of
practical interest. This issue can be addressed by integrating the theorem prover
with a SAT solver, as it is done for instance in the haRVey system2. However,
state-of-the-art SMT-solvers rely on a tight integration of the SAT-solver and
the T -satisfiability procedures, which is very problematic if the T -satisfiability
procedure is a theorem prover with a proof-confluent inference system that does
not require search by backtracking. Furthermore, if the integration were tight,
the advantage of using the prover “off the shelf” would be lost.

In this paper, we propose a new framework where a T -decision problem is
decomposed in such a way that it can be solved by stages, by pipe-lining a first-
order reasoner and an SMT-solver. Intuitively, a ground formula is decomposed
into two parts: one that interacts with the theory, and another that contains the
Boolean structure of the formula. In some sense, such a decomposition corre-
sponds to the separation of the definitional part of a program (i.e., the part that
consists of statements such as “let x = f(y) in . . .”), from its operational part.

1 http://www.csl.sri.com/users/demoura/smt-comp
2 http://www.loria.fr/equipes/cassis/softwares/haRVey/

http://www.csl.sri.com/users/demoura/smt-comp
http://www.loria.fr/equipes/cassis/softwares/haRVey/
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The first-order reasoner is applied to the first part and it “compiles” the theory
away, by performing as much theory reasoning as possible. All that remains to
do is to test the satisfiability of the union of the boolean part of the formula and
the result of this process. In this approach, the call to the theorem prover can
be viewed as a reduction. However, since this reduction is achieved by generic
inferences, it is proof-theoretic in nature and, unlike model-theoretic reductions,
it is independent of the specific theory or combination of theories under con-
sideration. This new framework may lead to the design of a new generation of
SMT-solvers, that will only need to incorporate theory reasoners for the theories
left after the reduction, and will thus be easier to implement.

The decomposition framework is general, in that it does not depend on a
specific first-order inference system or theorem prover or SMT-solver. In the
second part of the paper, we instantiate it to construct T -decision procedures
based on SP , and we give specific procedures for the theories of records, integer
offsets and arrays. We also show how this scheme enables the system to postpone
the treatment of a theory: when T is of the form T1∪T2, it is possible to process T1

first and then deal with T2. This is especially important when T2 is a theory that
cannot be handled by a theorem prover, such as linear arithmetic: its treatment
is passed on to the SMT-solver.

This paper is organized as follows: Section 2 recalls some basic definitions.
Section 3 presents the abstract decomposition framework. Section 4 contains its
concrete instantiation with the inference system SP . Section 5 shows how the
above-mentioned theories of data structures fit into the framework and yield
decision procedures. Due to the space limits, all proofs are omitted and can be
found in the full version [7].

2 Preliminaries

Given a signatureΣ, we assume the standard definitions ofΣ-terms,Σ-predicates,
Σ-literals and Σ-clauses. As usual, clauses are variable-disjoint. For notation, ,
is unordered equality, � is either , or �,, the letters l, r, s, u, v and t denote terms,
a, b and c denote constants, w, x, y, z variables, and all other lower-case letters de-
note constants or function symbols. A theory is presented by a set of sentences,
called its presentation or axiomatization. Given a presentation T , T -satisfiability
is the problem of deciding whether a set of ground unit clauses is satisfiable in T .
The more general T -decision problem is the problem of deciding the satisfiability
of any ground formula in T . Without loss of generality, we can assume that the
considered ground formulæ are sets of clauses.

For sets of clauses S and S′, we write S ≡s S′ to say that S and S′ are
equisatisfiable, that is, S has a model if and only if S′ has a model. For a term
t, the depth of t, denoted by depth(t), is 0 if t is a constant or variable, and
depth(f(t1, . . . , tn)) = 1 + max{depth(ti) | i = 1, . . . , n} otherwise. For literals,
we define depth(l � r) = depth(l)+depth(r). A positive literal is flat if its depth
is 0 or 1, a negative literal is flat if its depth is 0. A literal is strictly flat if its
depth is 0, and a clause is flat (resp. strictly flat) if all its literals are.
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The operation of flattening consists of transforming a finite set of ground
clauses S over a signature Σ, into a finite set of ground clauses S′ over a signature
Σ′, in such a way that:

– Σ′ is obtained by adding a finite number of constants to Σ;
– every non-unit clause in S′ is strictly flat;
– every unit clause in S′ is flat and
– for all presentations T , T ∪ S and T ∪ S′ are equisatisfiable.

For example, if we flatten the set {f(a) �, f(b) ∨ f(a) �, f(c)}, we obtain the
equisatisfiable set {f(a) , a′, f(b) , b′, f(c) , c′, a′ �, b′ ∨ a′ �, c′} by
introducing fresh constants a′, b′ and c′.

A simplification ordering - is an ordering that is stable, monotonic and con-
tains the subterm ordering: if s - t, then c[s]σ - c[t]σ for any context c and
substitution σ, and if t is a subterm of s then s - t. A complete simplification
ordering, or CSO, is a simplification ordering that is total on ground terms. We
write t ≺ s if s - t. More details on orderings can be found in surveys such
as [10]. An inference system Inf consists of a set of inference rules, separated
into expansion rules, that generate clauses, and contraction rules, that delete or
simplify clauses. If the inference system is based on a CSO -, we write Inf� for
Inf equipped with -. An Inf�-derivation is a sequence

S0 �Inf� S1 �Inf� . . . Si �Inf� . . . ,

where each Si is a set of clauses, obtained by applying an expansion or a contrac-
tion rule to clauses in Si−1. The limit of such a derivation is the set of persistent
clauses : S∞ =

⋃
j≥0

⋂
i≥j Si. If a derivation is finite and of length n, we may

write S0 �n
Inf�

Sn.
The superposition calculus, or SP , is a refutationally complete rewrite-based

inference system for first-order logic with equality (see, e.g., [14]). It consists of
expansion and contraction inference rules. Since it is based on a CSO on terms,
extended to literals and clauses in a standard way, we write SP� to specify
the ordering. A strategy, denoted by S, is given by an inference system and a
search plan that controls the application of the inference rules. A strategy with
inference system SP� is called an SP�-strategy.

3 The Decomposition Framework

When approaching SMT problems in the context of generic first-order reasoning,
a problem has the form T ∪P , where T is the presentation of the theory and P is
a set of ground clauses, since the theory is not necessarily built into the inference
system. We propose an approach that consists in “compiling” the theory away,
so that a problem T ∪P is transformed into the satisfiability problem of another
set of clauses, which does not mention T . Such a problem transformation can be
viewed as a reduction, with the distinction that the problem is approached from
a proof-theoretic point of view and does not depend on the considered theory.
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In order to investigate under what conditions this problem transformation is
correct, we solve a more general problem:

Question: For a presentation T and sets of clauses S, S′, A and A′ such that
T ∪S ≡s A and T ∪S′ ≡s A

′, what conditions guarantee that T ∪S∪S′ ≡s A∪A′?

3.1 Supported Strategies and T -Compatibility

In order to separate the clauses in T from the other clauses, we adopt a supported
strategy (cf. Section 2.6 in [4]), with an inference system Inf�, that works on pairs
(T , SOS) of sets of clauses, where SOS stands for set-of-support. We assume
that all inference rules in Inf� are either unary or binary, all expansion inferences
have at least one premise from SOS, all clauses generated by expansion are added
to SOS, and Inf� is refutationally complete for T . In what follows, when a clause
D is generated by a binary expansion rule applied to C and C′, we will need
to distinguish between the first and the second premise of the applied inference
rule, hence the following definition:

Definition 1. A clause D is generated from parents C and C′ if it is generated
by a binary expansion rule applied to C and C′, with C as first premise and C′

as second premise.

A ≡s T ∪ S and A′ ≡s T ∪ S′ do not imply that A ∪ A′ ≡s T ∪ S ∪ S′, since
equisatisfiability is not preserved by the union operation. A näıve solution would
be to impose that A and T ∪ S (resp. A′ and T ∪ S′) are logically equivalent,
but this would be too strong a requirement, satisfied by choosing A = T ∪S and
A′ = T ∪S′, which would defeat the purpose. Thus, we relax the model-theoretic
condition of logical equivalence by still requiring T ∪ S |= A and T ∪ S′ |= A′,
while replacing A |= T ∪ S and A′ |= T ∪ S′ with weaker requirements. Then,
we define proof-theoretic conditions that suffice to retain equisatisfiability.

Definition 2. Let C be a clause and S and T be sets of clauses. The set of
T -children of C is defined by:

G(C, T ) = {F | ∃Q ∈ T : F is generated from parents C and Q}.

The set Di(C, T ) of i-steps T -descendants of C is defined inductively as follows:

D0(C, T ) = {C} and Di+1(C, T ) =
⋃

F∈Di(C,T ) G(F, T ), for i ≥ 0.

The sets of T -descendants of C and T -descendants of S are defined by:

D(C, T ) =
⋃

i≥0 Di(C, T ) and D(S, T ) =
⋃

C∈S D(C, T ).

Instead of imposing that A and A′ logically entail T ∪S and T ∪S′ respectively,
we only require that they entail the T -descendants of S and S′. This property
is termed T -compatibility:

Definition 3. Given a set of clauses A, a clause C (resp. a set of clauses S) is
T -compatible with A if A |= D(C, T ) (resp. A |= D(S, T )).
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The name T -compatibility is meant to convey the intuition that this relation
between sets is weaker than logical equivalence but stronger than equisatisfia-
bility. Strictly speaking, the notions of T -descendant, T -compatibility, and all
those that depend on them, should be parametric with respect to the inference
system: for example, a set of clauses may be T -compatible with a given set for
one inference system but not for another one. Nevertheless, for the sake of read-
ability, we let the dependence on the inference system remain implicit. We also
use the notion of T -compatibility to specify formally what it means for a set
of clauses not to “interact” with T . This property is captured by the notion of
T -disconnection:

Definition 4. A set of clauses S is T -disconnected if D(S, T ) = S. If S = {C},
we may also write that C is T -disconnected.

Intuitively, if a set of clauses S is T -compatible with itself, it means that it does
not need to interact with T . The notion of T -disconnection entails this property:

Proposition 1. If S is T -disconnected, then S is T -compatible with itself.

3.2 Preserving T -Compatibility

We define a few restrictions guaranteeing that if a set of clauses S is T -compatible
with A and (T , S) �Inf� (T , S′), then S′ is also T -compatible with A. As we
introduce them by considering the possible Inf�-inferences, we start with con-
traction inferences.

Definition 5. A set of clauses S is T -contraction-compatible if for all sets A,
for all contraction inferences (T , S) �Inf� (T , S′), if S is T -compatible with A
then S′ is also T -compatible with A.

T -compatibility is clearly preserved by contraction rules that delete a clause in
S, such as subsumption and tautology deletion. On the other hand, the behavior
of rules such as simplification depends on T and the given set of clauses:

Example 1. Let T = {f(a) , b}, S = {f(c) , d, c , a}, and assume that
D(S, T ) = S, that is, S is T -compatible with itself. Suppose that (T , S) �Inf�

(T , S′), where S′ is obtained from S by the simplification of f(c) , d by c , a,
i.e., S′ = {f(a) , d, c , a}. If Inf� features a rule generating d , b from
parents f(a) , d and f(a) , b, then b , d ∈ D(S′, T ). In this case, S′ is not
T -compatible with S, since S �|= {b , d}.

We proceed with expansion inferences, distinguishing between unary and binary
ones.

Unary Expansion Inferences. The property of T -neutrality is sufficient to
control unary inferences. Intuitively, this notion prevents clauses generated by
unary inferences from interacting with clauses in T .
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Definition 6. A clause C is T -neutral if, for every clause D generated from C
by a unary inference, D is T -disconnected. A set of clauses is T -neutral if all
its clauses are.

Proposition 2. Let A be a set of clauses such that S is T -compatible with
A, and suppose that S is T -neutral. If (T , S) �Inf� (T , S ∪ {D}), where D is
generated from a clause in S by a unary inference, then S∪{D} is T -compatible
with A.

Binary Expansion Inferences Between a Clause in T and One in S.
With Definitions 1, 2 and 3, we defined T -compatibility for binary expansion
inferences involving a clause in S as first premise and a clause in T as second
premise. We require these to be the only binary expansion inferences that can
take place between clauses in S and clauses in T . This leads to the notion of
T -orientation:

Definition 7. A clause C is T -oriented if no binary expansion inference applies
with a clause in T as first premise and C as second premise. A set of clauses is
T -oriented if all its clauses are.

Proposition 3. Let A be a set of clauses such that S is T -compatible with A
and suppose S is T -oriented. If (T , S) �Inf� (T , S ∪{D}), where D is generated
by a binary inference applied to a clause in S and one in T , then S ∪ {D} is
T -compatible with A.

Example 2. Let T = {a , b}, S = {f(b) , c}, and let Inf� be an inference
system featuring a rule that generates f(a) , c from parents a , b and f(b) , c.
Then S is not T -oriented, since this rule involves a clause in T as first premise
and a clause in S as second premise. Suppose further that S is T -compatible
with itself. Since (T , S) �Inf� (T , S′), with S′ = {f(b) , c, f(a) , c}, and
S �|= S′, the set S′ is not T -compatible with S.

This example shows how, for inference systems such as SP where the binary
expansion rules are superposition and paramodulation, the notion of first and
second premise instantiates to the traditional notion of clauses paramodulated
from and into, respectively. In such a context, C is T -oriented if no clause of
T paramodulates into C. This property is satisfied by all persistent clauses
generated by SP from T -satisfiability problems in the theories of in [3,2,6].

Binary Expansion Inferences Within S. These are the inferences that re-
quire the most control. For this purpose, we define a notion of associativity, that
lends itself to an easy symbolic representation: informally, let C → C′ denote a
clause generated from parents C and C′, then C is [C′, D′]-associative if either
(C → C′) → D′ = C → (C′ → D′), or (C → C′) → D′ is subsumed by C′ → D′.
This property is relevant when D′ is an axiom in T . Intuitively, it means that
if an inference between two clauses yields another inference with an axiom as
second premise, then an inference with an axiom as second premise could have
been done before hand. This disentangles inferences into axioms from the others,
allowing us to do them first.
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Definition 8. Given the clausesC,C′ andD′, the clauseC is [C′, D′]-associative
if for every clause D generated from parents C and C′, and for every clause E
generated from parentsD andD′, there exists a clauseE′ generated from parentsC′

and D′ such that either E can be generated from parents C and E′, or E′ subsumes
E. The clause C is weakly T -associative for C′ if for every Q ∈ T , C is [C′, Q]-
associative. C is T -associative for C′ if it is weakly T -associative for every E′ ∈
D(C′, T ). A set of clauses S is weakly T -associative (resp. T -associative) if for
all C,C′ ∈ S, C is weakly T -associative for C′ (resp. T -associative for C′).

One can prove that if S is T -associative, it is also T -contraction-compatible3.
This requires to instantiate Inf� to a concrete inference system (cf. Lemma 29
in [7] for this result for the system U� of Sec. 5). Since T -associativity is defined
using subsumption, to ensure that T -compatibility is preserved by binary infer-
ences between clauses in S, we need subsumption to preserve T -compatibility:

Definition 9. A clause C is T -subsumption-preserving if for all sets A that C
is T -compatible with and for all clauses C′ subsumed by C, clause C′ is also
T -compatible with A. A set of clauses S is T -subsumption-preserving if all its
clauses are T -subsumption-preserving.

T -subsumption-preservation, together with T -associativity, guarantees that if
D is generated by a binary expansion inference applied to two clauses in S,
then S ∪ {D} is T -compatible with A. The statement of the following lemma
is actually stronger and is also used to prove that T -compatible sets can be
combined, provided they are T -associative:

Lemma 1. Let C, C′ and D be clauses such that D is generated from parents
C and C′, and let A (resp. A′) be a set of clauses such that C is T -compatible
with A (resp. C′ with A′). If D(C′, T ) is T -subsumption-preserving and C is
T -associative for C′, then D is T -compatible with A ∪A′.

3.3 T -Stability

In order to ensure that all relevant properties are preserved by all rules in Inf�,
we introduce T -closure and T -stability:

Definition 10. Given a presentation T , a set of clauses S is T -closed under
Inf� if all clauses generated by an inference applied to (T , S) are in S.

Definition 11. Given a presentation T , a set of clauses B is T -stable for Inf�
if every subset of B is T -contraction-compatible and the set B is (i) T -oriented,
(ii) T -neutral, (iii) weakly T -associative, (iv) T -subsumption-preserving and (v)
T -closed under Inf�.

We are now in a position to state the main theorem:

Theorem 1. Given a presentation T , let B be a set of clauses that is T -stable
for Inf� and consider sets of clauses S, S′ ⊆ B. If A and A′ are sets of clauses
such that (i) T ∪ S |= A, (ii) T ∪ S′ |= A′, (iii) S is T -compatible with A and
(iv) S′ is T -compatible with A′, then T ∪ S ∪ S′ and A ∪A′ are equisatisfiable.
3 The set of clauses S of Example 1 satisfies neither property.
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4 T -Decision Procedures Based on SP

Let T be a presentation such that a fair SP�-strategy is a T -satisfiability pro-
cedure. We outline how an SP-based T -decision procedure can be designed by
applying the decomposition framework. The binary expansion rules of SP are su-
perposition and paramodulation. We use paramodulation for both for simplicity.
In a typical theory presentation (e.g., those considered in [3,2,6]), no paramodu-
lation applies from a non-ground axiom into a strictly flat clause. This, together
with the fact that every set of ground clauses can be flattened into an equisatis-
fiable set containing flat unit clauses and strictly flat clauses, is used to test the
satisfiability of T ∪ P as shown in Fig. 1. The set P is decomposed into S . S′,
where S only contains flat unit clauses. A fair SP�-strategy is applied to T ∪S,
to generate a finite limit set T ∪ S̄. Then the satisfiability of S̄ ∪ S′ is tested.
To guarantee that this process is correct, we must prove that T ∪ P and S̄ ∪ S′

are equisatisfiable. Therefore we check whether the hypotheses of Theorem 1 are
satisfied. For this purpose, we define first an inference system Inf�, such that S
is T -compatible with S̄ and S′ is T -disconnected. Then, we verify that there ex-
ists a set BT that includes S and S′ and is T -stable for Inf�. If these conditions
are met, Theorem 1 applies with A instantiated to S̄ and A′ instantiated to S′.
Indeed, we have T ∪ S |= S̄, S′ |= S′, S is T -compatible with S̄, and since S′ is
T -disconnected, it is T -compatible with itself by Proposition 1. It follows that
T ∪ P ≡s S̄ ∪ S′.

If T is a combination of theories, that is, T = T1 ∪ T2, the scheme of Fig. 1
can be used again, under the assumption that T2 is T1-disconnected. Indeed, T2

is then contained in S′, and the sets T1 ∪ T2 ∪ P and S̄ ∪ S′ are equisatisfiable.
This is especially useful when T2 is a presentation that SP cannot handle, such
as the (infinite) axiomatization of linear arithmetic: the theory is ignored by the
prover and dealt with by the specialized procedure of the SMT solver. On the

T ∪ P

Decompose

T ∪ S S′

SP-strategy

T S̄

SMT solver

Fig. 1. T -decision procedures based on SP
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T1 ∪ T2 ∪ P

Decompose

T1 ∪ S1 T2 ∪ S2 S′
2

SP-strategy SP-strategy

T1 S̄1 T2 S̄2

SMT solver

Fig. 2. T -decision procedure in a combination of theories

other hand, if the inference system can handle both theories, the more specialized
scheme of Fig. 2 applies:

The 2-theories scheme. Assume that a fair SP�-strategy is also a T2-
satisfiability procedure and S̄ is T2-disconnected. The set of clauses P is decom-
posed into S1 and T2∪S′

1, in such a way that S1 only contains flat unit T1-clauses.
In turn, S′

1 is decomposed into S2 and S′
2, in such a way that S2 only contains flat

unit T2-clauses. The SP�-strategy applied to T1 ∪ S1 generates the limit T1 ∪ S̄1,
and, by hypothesis, S̄1 is T2-disconnected. The SP�-strategy applied to T2 ∪ S2

generates the limit T2 ∪ S̄2. By Theorem 1,

T1 ∪ T2 ∪ P ≡s (T1 ∪ S1) ∪ (T2 ∪ S′
1) ≡s S̄1 ∪ [(T2 ∪ S2) ∪ S′

2]
≡s (T2 ∪ S2) ∪ (S̄1 ∪ S′

2) ≡s S̄1 ∪ S̄2 ∪ S′
2,

so that the resulting procedure is correct. In the sequel, we shall see that the
2-theories scheme applies to the theories of records, integer offsets and arrays.

5 Some T -Stable Sets

In this section we apply our design of T -decision procedures to the theories of
records, integer offsets and arrays. It was already proved in [3,2] that a fair
SP�-strategy is a T -satisfiability procedure for these theories. We first define an
inference system U� that will be the adopted inference system when determining
T -stable sets. Then for each of the considered theories, we prove that the scheme
described above can be applied to decide the satisfiability of T ∪ P , for all sets
of ground clauses P . More specifically, we describe how P is decomposed into
S .S′, and then prove there exists a T -stable set for U� that contains S and S′.
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5.1 The Inference System U�

Superposition and paramodulation in SP are restricted in such a way that only
maximal sides of maximal literals are paramodulated from and into. We define
an SP-based supported strategy that relaxes this restriction to some extent:

Definition 12. Let U� be the strategy that works on pairs of sets (T , S), con-
tains all the contraction rules of SP�, and such that (T , S) �U� (T , S ∪ {D}),
if D is generated by:

– a unary inference rule of SP� applied to a clause in S,
– a binary inference rule of SP� applied from a clause in T into one in S,
– a binary inference rule of SP� applied to two clauses in S, with the relaxation

that if u , v ∨D paramodulates into C = l[u′] � r ∨C′, neither l[u′] � r is
required to be a maximal literal in C nor l[u′] is required to be maximal in
this literal.

Proposition 4. Let T be a presentation. For all sets of flat literals S, if S∞ =
T ∪ S̄ is the limit generated by a fair SP�-strategy from T ∪ S, then S is
T -compatible with S̄ for U�. Furthermore, if no SP�-inference applies from
a clause C into a clause in T , then C is T -disconnected for U�.

5.2 The Theory of Records

The theory of records with n fields assumes a signature Σ that contains, for all
i, 1 ≤ i ≤ n, the function symbol rstorei, which stores a value in the ith-field of
a record, and rselecti, which extracts a value from the ith-field of a record. It is
defined by the following (saturated) presentation, denoted by R:

∀x, v. rselecti(rstorei(x, v)) , v for all 1 ≤ i ≤ n, (1)
∀x, v. rselectj(rstorei(x, v)) , rselectj(x) for all 1 ≤ i �= j ≤ n. (2)

The theory of records with extensionality is axiomatized by the (saturated) pre-
sentation Re, which consists of the previous axioms together with:

∀x, y. (
∧n

i=1 rselecti(x) , rselecti(y)) → x , y.

An Re-satisfiability problem can be reduced to an R-satisfiability problem:

Lemma 2 (Lemma 1 of [2]). Let S = S1 . S2 be a set of ground flat literals,
such that S2 contains the literals of the form l �, r, where l and r are records.
For all L = l �, r ∈ S2 let CL denote the clause

∨n
i=1 rselecti(l) �, rselecti(r).

Then Re ∪ S ≡s R∪ S1 ∪ {CL | L ∈ S2}.

Since an Re-decision problem can be reduced to an Re-satisfiability problem by
reduction to disjunctive normal form, this reduction holds also for Re-decision
problems. A given set of ground clauses P is decomposed into S and S′ as fol-
lows: P is flattened; among the resulting clauses, the unit clauses of the form
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rstorei(a, e) , b go into S and all other clauses go into S′. Indeed, the decompo-
sition scheme of Fig. 1 only requires that S is made of flat unit clauses, so that
decomposition does not coincide with flattening. It is simple to check that S′ is
R-disconnected for U�.

Definition 13. Let BR denote the set of ground clauses consisting of:

i) all strictly flat clauses,
ii) all clauses of the form rstorei(a, e) , b∨B where 1 ≤ i ≤ n and B is ground

and strictly flat,
iii) all clauses of the form rselecti(a) , e ∨B where 1 ≤ i ≤ n and B is ground

and strictly flat,
iv) all clauses of the form rselecti(a) , rselecti(b) ∨B, where 1 ≤ i ≤ n and B

is ground and strictly flat.

Theorem 2. BR is R-stable for U�.

Since BR contains S .S′ and is R-stable for U�, the scheme of Fig. 1 applies to
R. Since BR only contains ground clauses and is T -closed under U�, not only S
and S′, but also S̄ is ground. Thus, S̄ ∪S′ is ground, and its satisfiability can be
decided by a decision procedure for the theory of Equality with Uninterpreted
Function symbols (EUF).

5.3 The Theory of Integer Offsets

The theory of integer offsets is a fragment of the theory of integers. Its signature
Σ contains two unary function symbols s and p, that represent the successor
and predecessor functions, respectively. This theory is presented by the following
(infinite) set of axioms I:

∀x. s(p(x)) , x,
∀x. p(s(x)) , x,
∀x. si(x) �, x for i > 0,

where s0(x) = x and si+1(x) = s(si(x)) for i ≥ 0. For the sake of convenience,
we also define for all n ∈ N

AI = {s(p(x)) , x, p(s(x)) , x},
Ac(n) = {si(x) �, x | 0 < i ≤ n},

Ac =
⋃

n≥0 Ac(n).

It was proved in [5] that if S is a set of flat ground literals, then for all n
greater or equal to the number of occurrences of the function symbols s and p
in S, AI ∪ Ac ∪ S ≡s AI ∪Ac(n) ∪ S. We deduce a similar result for I-decision
problems:

Proposition 5. Let P be an I-decision problem containing n occurrences of the
function symbols s and p. Then AI ∪ Ac ∪ P ≡s AI ∪ Ac(n) ∪ P .
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Given n ∈ N, let As(n) denote the set {si(x) �, pj(x) | 1 ≤ i + j ≤ n}. The
saturated limit of AI ∪ Ac(n) has the form AI ∪ As(n). Let Is[n] denote this
saturated set. A set of ground clauses P is decomposed as follows: P is flattened;
all the resulting unit clauses go into S and all strictly flat clauses go into S′.
Thus, in this case, decomposition coincides with flattening.

Definition 14. Let BIs[n] denote the set consisting of:

i) all strictly flat clauses,
ii) all clauses of the form p(a) , b ∨B where B is ground and strictly flat,
iii) all clauses of the form s(a) , b ∨B where B is ground and strictly flat,
iv) all clauses of the form si(a) �, pj(b) ∨B, where 0 ≤ i + j ≤ n− 1 and B is

ground and strictly flat.

Theorem 3. BIs[n] is Is[n]-stable for U�.

Since BIs[n] only contains ground clauses, by the same observation made for
the theory of records, the satisfiability of S̄ ∪ S′ can be decided by a decision
procedure for EUF.

5.4 The Theory of Arrays

The theory of arrays is defined by the following (saturated) presentation A:

∀x, z, v. select(store(x, z, v), z) , v, (3)
∀x, z, w, v. (z , w ∨ select(store(x, z, v), w) , select(x,w)). (4)

The theory of arrays with extensionality Ae is defined by axioms (3) and (4),
along with the following extensionality axiom:

∀x, y. (∀z. select(x, z) , select(y, z) → x , y). (5)

It was proved in [3] that satisfiability of sets of ground literals in Ae can be
reduced to satisfiability of sets of ground literals in A by replacing every negative
literal of the form a �, a′, where a and a′ are arrays, by a literal select(a, sk) �,
select(a′, sk), where sk is a fresh (Skolem) constant. Such a reduction also holds
for sets of ground clauses. A set of ground clauses P is decomposed as follows:
P is flattened; S contains all the unit clauses of the form store(a, i, e) , a′, and
S′ contains all the other clauses.

Definition 15. Consider the set BA consisting of:

i) all strictly flat clauses,
ii) all clauses of the form store(a, i, e) , a′ ∨B where B is strictly flat,
iii) all clauses of the form select(a, i) , e ∨B where B is strictly flat,
iv) all clauses of the form select(a, x) , select(a′, x) ∨ x , i1 ∨ . . .∨ x , in ∨B,

where the ij’s are constants and B is strictly flat.

Theorem 4. BA is A-stable for U�.
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Note that the set BA does not contain only ground clauses, and testing the
satisfiability of the set S̄ ∪ S′ requires to rely on the ability of SMT-solvers to
handle quantifiers (cf. Section 5 in [11]). The non-ground clauses in this set have
the form

select(a, x) , select(a′, x) ∨ x , i1 ∨ . . . ∨ x , in ∨B,

where B is strictly flat and ground. Borrowing the notation of [17, Definition 2]
for so-called partial equations, this clause can be rewritten as a ≈D a′∨B, where
D denotes the set {i1, . . . , in}. Such a clause states that under the guard ¬B,
the uninterpreted terms select(a, x) and select(a′, x) are identical for all x /∈ D.
Since arrays can be regarded as representing functions, and a term select(a, x)
has the same intuitive meaning of apply(a, x), the uninterpreted functions a and
a′ agree for all values of x except those in D.

5.5 Combination of Records, Integer Offsets and Arrays

We conclude by showing how the 2-theories scheme applies to combine these
theories. In [2], the termination of SP on T -satisfiability problems T ∪S, where
S is a set of flat unit clauses, is proved by analyzing all possible kinds of clauses
in the limit T ∪ S̄, generated by a fair derivation from T ∪ S. Let T ∪ S be a
problem in one of these three theories, either records, or integer offsets or arrays,
and let T ∪ S̄ be the corresponding limit. Based on those analyses, no clause in
S̄ paramodulates into a clause of either one of the two other presentations. In
other words, S̄ is disconnected from either one of the two other presentations4.
We deduce that:

Theorem 5. The 2-theories scheme is correct for any combination of the theo-
ries of records, integer offsets and arrays.

6 Discussion

In this paper we introduced a decomposition framework that consists in using
a generic theorem prover to “compile a theory away” from a T -decision prob-
lem, before invoking an SMT-solver on the resulting problem. After presenting
a set of sufficient conditions collectively termed T -stability, that guarantee the
correctness of this scheme, we showed how it applies to the superposition cal-
culus and the theories of records, integer offsets and arrays. This rewrite-based
approach to T -decision problems is more efficient than one based on feeding the
entire formula to theorem provers, that are not designed to handle its Boolean
part efficiently, and it is simpler than a lazy approach that would require a tight
integration of a theorem prover and a SAT-solver. The compilation stage can be
viewed also as a reduction: in essence, our results reduce the theories of records
and integer offsets to that of equality with uninterpreted functions (EUF). Thus,
4 Technically, this follows from the fact that the theories are variable-inactive and

share no function symbols.
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concrete T -decision procedures can be implemented simply by interfacing a the-
orem prover implementing SP , such as E [16], with a decision procedure for
EUF, such as DPLL(=) (e.g., [13]). Similarly, the theory of arrays is reduced,
as expected, to a theory of partial functions, with axioms stating that some
uninterpreted functions are equal everywhere except on a given domain.

We also showed that this framework can be used to deal with combinations of
theories under the T -disconnection condition: if the theorem prover can handle
all the theories in the problem, they can all be compiled away; if it cannot handle
some of them, as it would be the case, for instance, with linear arithmetic or the
theory of bitvectors (e.g., [9]), these are simply passed on to the SMT solver. In
this scheme, the theorem prover plays the role of a procedure that reduces the
SMT problems in a uniform manner. After such a sifting process, the SMT-solver
only needs to solve “simpler” problems that are equisatisfiable to the original
ones.

We are currently investigating how to adapt the techniques of [8] to devise a
generic theory reasoner for a theory of partial functions, that may be generated
by SP from a problem involving the theory of arrays. After integrating such
a theory reasoner into an SMT-solver and interfacing the resulting tool with a
theorem prover implementing SP , we intend to run experiments to evaluate the
efficiency of the system thus obtained.

For future work, we plan to investigate which other theories or inference
systems satisfy the requirements of the decomposition framework. Indeed, the
framework was presented in such a way to be as abstract as possible, so that it
does not depend on a particular inference system. Thus, it is likely that more
theories can be captured, with SP or other inference systems. Another direc-
tion for future research is to explore how to integrate automated model building
methods into this framework, with the goal of designing SMT-tools capable of
constructing both proofs and counterexamples, a highly desirable feature in ap-
plications. To this end, we intend to study how hybrid model building techniques
(e.g., [15]), that try simultaneously to prove unsatisfiability or compute a model
of a formula, could be applied within our approach.
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Abstract. Boolean Algebra with Presburger Arithmetic (BAPA) is a
decidable logic that combines 1) Boolean algebra of sets of uninterpreted
elements (BA) and 2) Presburger arithmetic (PA). BAPA can express
relationships between integer variables and cardinalities of unbounded
sets. In combination with other decision procedures and theorem provers,
BAPA is useful for automatically verifying quantitative properties of
data structures. This paper examines QFBAPA, the quantifier-free frag-
ment of BAPA. The computational complexity of QFBAPA satisfiabil-
ity was previously unknown; previous QFBAPA algorithms have non-
deterministic exponential time complexity due to an explosion in the
number of introduced integer variables.

This paper shows, for the first time, how to avoid such exponential ex-
plosion. We present an algorithm for checking satisfiability of QFBAPA
formulas by reducing them to formulas of quantifier-free PA, with only
O(n log(n)) increase in formula size. We prove the correctness of our
algorithm using a theorem about sparse solutions of integer linear pro-
gramming problems. This is the first proof that QFBAPA satisfiability is
in NP and therefore NP-complete. We implemented our algorithm in the
context of the Jahob verification system. Our preliminary experiments
suggest that our algorithm, although not necessarily better for proving
formula unsatisfiability, is more effective in detecting formula satisfiabil-
ity than previous approaches.

1 Introduction

This paper considers the satisfiability problem for a logic that allows reason-
ing about sets and their cardinalities. We call this logic quantifier-free Boolean
Algebra with Presburger Arithmetic and denote it QFBAPA. Our motivation
for QFBAPA is proving the validity of formulas arising from program verifica-
tion [12,13,14], but QFBAPA constraints also occur in mechanized set theory [7],
constraint data bases [24,25], as a fragment of other logics [19,21,1] and in the se-
mantic analysis of natural language [16]. Figure 1 shows the syntax of QFBAPA.
The logic contains 1) arbitrary boolean algebra (BA) expressions denoting sets,
supporting operations such as union, intersection and complement, 2) arbitrary
quantifier-free Presburger arithmetic (PA) expressions, supporting addition of
integers and multiplication by constants, and 3) a cardinality operator |B| for
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computing the the size of a BA expression B and treating it as a PA expression.
The constant MAXC denotes the size of the finite universal set U , so |U| = MAXC.
The expression K dvdT means that an integer constant K divides an integer ex-
pression T , whereas Bc denotes the complement of the set B.

F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F

A ::= B1 = B2 | B1 ⊆ B2 | T1 = T2 | T1 < T2 | K dvd T

B ::= x | ∅ | U | B1 ∪B2 | B1 ∩B2 | Bc

T ::= k | K | MAXC | T1 + T2 | K · T | |B|

K ::= . . .−2 | −1 | 0 | 1 | 2 . . .

Fig. 1. Quantifier-Free Boolean Algebra with Presburger Arithmetic (QFBAPA)

Using QFBAPA in software verification. We implemented the algorithm
described in this paper in the Jahob data structure verification system [12]. Fig-
ure 2 shows some of the verification conditions expressible in QFBAPA that we
encountered and proved using our decision procedure. In these verification con-
ditions, sets such as content, C, and C1 represent the contents of dynamically
allocated data structures. (For more examples, see [14, Chapters 2 and 7].) The
formulas in Figure 2 are in HOL syntax, where cardinality of a set is denoted
by card. Jahob soundly maps such formulas into stronger BAPA, using a simple
syntactic translation that represents individual variables as singleton sets and
approximates constructs unsupported by BAPA. Section 5 describes our prelimi-
nary experience with using our algorithm on formulas such as those in Figure 2,
showing that the new algorithm is promising for detecting formula satisfiability.
QFBAPA and BAPA. The logic QFBAPA is the quantifier-free fragment of
Boolean Algebra with Presburger Arithmetic (BAPA). In addition to the con-
structs in Figure 1, full BAPA supports arbitrary set and integer quantifiers.
Feferman and Vaught [9, Section 8, Page 90] showed the decidability of a vari-
ant of BAPA and used it to show the decidability of generalized products of
first-order structures. In [13,14] we formalize a decision procedure for BAPA and
show that BAPA has the same complexity as the complexity of Presburger arith-
metic (PA), namely alternating doubly exponential time with a linear number of

alternations, denoted STA(∗, 22nO(1)

, n) in [4], [11, Lecture 24].
BAPA admits quantifier elimination, which implies that QFBAPA formulas

define the same class of relations on sets and integers as BAPA formulas, so they
essentially have the same expressive power. Quantifier elimination also makes
BAPA interesting as a potential shared language for combining multiple reasoning
procedures [10].

1.1 Challenges in Checking QFBAPA Satisfiability

QFBAPA satisfiability is clearly NP-hard, because QFBAPA supports arbitrary
propositional operators. Moreover, QFBAPA contains Boolean algebra of sets,
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VC# verification condition property being checked

1 x /∈ content ∧ size = card content −→
(size = 0 ↔ content = ∅)

using invariant on size to
prove correctness of an
efficient emptiness check

2 x /∈ content ∧ size = card content −→
size + 1 = card({x} ∪ content)

maintaining correct size
when inserting fresh
element

3 size = card content ∧
size1 = card({x} ∪ content) −→

size1 ≤ size + 1

maintaining size after
inserting any element

4 content ⊆ alloc ∧
x1 /∈ alloc ∧
x2 /∈ alloc ∪ {x1} ∧
x3 /∈ alloc ∪ {x1} ∪ {x2} −→
card (content ∪ {x1} ∪ {x2} ∪ {x3}) =
card content + 3

allocating and inserting
three objects into a
container data structure

5 content ⊆ alloc0 ∧ x1 /∈ alloc0 ∧
alloc0 ∪ {x1} ⊆ alloc1 ∧ x2 /∈ alloc1 ∧
alloc1 ∪ {x2} ⊆ alloc2 ∧ x3 /∈ alloc2 −→
card (content ∪ {x1} ∪ {x2} ∪ {x3}) =
card content + 3

allocating and inserting at
least three objects into a
container data structure

6 x ∈ C ∧ C1 = (C \ {x}) ∧
card(alloc1 \ alloc0) ≤ 1 ∧
card(alloc2 \ alloc1) ≤ cardC1 −→

card (alloc2 \ alloc0) ≤ cardC

bound on the number of
allocated objects in a
recursive function that
incorporates container C into
another container

Fig. 2. Examples proved using our QFBAPA decision procedure

which has its own propositional structure, so even the satisfiability of individual
atomic formulas is NP-hard. The challenge is therefore proving the membership
in NP. Membership in NP means that there are short certificates for satisfiability
of QFBAPA formulas, or, dually, that invalid QFBAPA formulas have short coun-
terexamples. Despite the widespread occurrence of QFBAPA constraints, this
result was not known until now. To understand why existing approaches fail to
establish membership in NP, consider the following example QFBAPA formula:

|U| = 100 ∧
∧

0≤i<j≤10

|xi ∪ xj | = 30 ∧
∧

0≤i≤10

|xi| = 20 (E)

Explicitly specifying set contents. The formula (E) has 10 set variables.
Each of these variables represents a subset of the universe of 100 elements. There-
fore, a straightforward certificate of satisfiability of this QFBAPA formula re-
quires 100 bits for each set to indicate whether each element is in the set. Such
certificate is therefore exponential in the size of the formula (we assume that
100 is represented using log2 100 bits). Such certificates therefore yield merely a
membership of QFBAPA in NEXPTIME. Note that, even if we restrict the con-
stants K in QFBAPA language to be 0 and 1, Presburger arithmetic expressions
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such as k1 = 1, ki+1 = ki + ki can efficiently encode large constants. Funda-
mentally, the reason we are interested in large set cardinalities is because they
arise from small model theorem for Presburger arithmetic [20]; supporting them
is necessary for verifying symbolic cardinality bounds and constraints such as
|x ∩ y| = |z|.

Abstraction using sizes of partitions. An alternative to examining set
interpretations up to a certain size is to consider a complete partitioning of sets
into disjoint Venn regions xc

1 ∩ . . . ∩ xc
10, x

c
1 ∩ . . . ∩ x10, . . . , x1 ∩ . . . ∩ x10, and

introduce one integer variable for the size each of these partitions, yielding 210

variables l0,...,0, l0,...,1, . . . , l1,...,1. We can then represent cardinality of any set
expression as a sum of finitely many of these integer variables. This approach
is widely known [19], [7, Chapter 11] and is often used to illustrate the very
idea of Venn diagrams. It has the advantage of not being exponential in the
cardinalities of sets, because it reasons about these cardinalities symbolically. It
also naturally integrates with the PA structure of QFBAPA and allows reducing
QFBAPA to quantifier-free PA, as we explain below. Unfortunately, its direct use
introduces a number of integer variables that is exponential in the number of
sets. This approach is the essence of previous algorithms for QFBAPA [29,24,19]
and appears as a special case of our algorithm for quantified BAPA [13, 14]. All
these algorithms would yield exponentially large certificates for satisfiability of
QFBAPA, specifying the values of exponentially many integer variables.

1.2 Our Results

We can summarize the results of this paper as follows:

1. The key contribution of this paper is an encoding of QFBAPA formulas into
polynomially-sized quantifier-free PA formulas. Instead of using exponen-
tially many Venn region cardinality variables l0,...,0, l0,...,1, . . . , l1,...,1, we use
polynomially many “generic” variables along with polynomially many indices
that determine the region that each generic variable represents. In the exam-
ple (E) above, which has 56 equations, we would introduce N = g(56) = 502
generic integer variables lpi

1,...,pi
10

for 1 ≤ i ≤ N that are a function of propo-
sitional variables (pi

1, . . . , p
i
10) ∈ {0, 1}10 for 1 ≤ i ≤ N . The polynomially

bounded function g is given by the equation (6) below. We assume that the
remaining 210 − g(56) Venn regions are all empty, which allows us to express
any set expression b as a sum of those of the N integer variables lpi

1,...,pi
10

whose indices pi
1, . . . , p

i
10 identify Venn regions that belong to b.

2. The computation of a sufficient polynomial value for N is the second contri-
bution of this paper. We start with the result [8] that if an element is in an
integer cone generated by a set of vectors X of dimension d, then it is also in
an integer cone generated by a “small” subset of X of size N(d). This result
implies that a system of equations with bounded coefficients, if satisfiable,
has a sparse solution with only polynomially many non-zero variables, even
if the number of variables in the system is exponential. As a consequence,
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every satisfiable QFBAPA formula has a witness of polynomial size, which
indicates the values of integer variables in the original QFBAPA formula,
lists the Venn regions that are non-empty, and indicates the cardinalities
of these non-empty regions. This application of [8] gives the membership of
QFBAPA in NP, but, given the NP-hardness of satisfiability of the generated
formulas, it is desirable to obtain as tight a bound on N(d) as possible. We
make the following steps towards the computation of a precise bound: 1) we
compute the exact bound N(d) = d for d ≤ 3; 2) we identify a lower bound
N(d) ≥ d+

⌊
d
4

⌋
for d ≥ 4; 3) we provide several equivalent characterizations

of vectors that achieve the optimal bound for any d; 4) we provide a more
precise bound in the presence of cardinality constraints of the form |b| ≤ c
and |b| = c for a small constant c.

3. We describe our implementation of the algorithm in the context of the Jahob
verification system and present preliminary experiments on the examples of
Figure 2 and their variations.

Our previously reported results. We suggested the possibility of the exis-
tence of sparse solutions in the final version of [14], where we also established the
complexity of quantified BAPA. In a previous technical report [17] we identified
a PSPACE algorithm for QFBAPA, but the techniques used there are different
and not needed for the results of this paper. A preliminary version of the current
result is described in [12, Section 7.9].

2 Constructing Small Presburger Arithmetic Formulas

Given a QFBAPA formula, this section shows how to construct an associated
polynomially larger quantifier-free PA formula. Section 3 then proves that the
constructed formula is equisatisfiable with the original one.

Consider an arbitrary QFBAPA formula in the syntax of Figure 1. To analyze
the problem, we first separate PA and BA parts of the formula by replacing
b1 = b2 with b1 ⊆ b2 ∧ b2 ⊆ b1, replacing b1 ⊆ b2 with |b1 ∩ bc

2| = 0, and then
introducing integer variables ki for all cardinality expressions |bi| occurring in
the formula. With a linear increase in size, we obtain an equisatisfiable QFBAPA
formula of the form G ∧ F where G is a quantifier-free PA formula and F is of
the form

p∧

i=0

|bi| = ki (1)

We assume b0 = U and k0 = MAXC, i.e., the first constraint is |U| = MAXC.
Let y1, . . . , ye be the set variables in b1, . . . , bp. If we view each Boolean algebra

formula bi as a propositional formula, then for β = (p1, . . . , pe) where pi ∈ {0, 1}
let �bi�β ∈ {0, 1} denote the truth value of bi under the propositional valuation
assigning the truth value pi to the variable yi. Let further sβ denote the Venn
region associated with β, given by sβ = ∩e

j=1y
pj

j where y0
j = yc

j is set complement
and y1

j = yj. Because bi is a disjoint union of its corresponding Venn regions, we
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have |bi| =
∑

β|=bi
|sβ |. For the sake of analysis, for each β ∈ {0, 1}e introduce

a non-negative integer variable lβ denoting |sβ |. Then (1) is equisatisfiable with
the exponentially larger PA formula

p∧

i=0

∑{
lβ | β ∈ {0, 1}e ∧ �bi�β=1

}
= ki (2)

Instead of this exponentially large formula where β ranges over all 2e propo-
sitional assignments, the idea of our paper is to check the satisfiability of an
asymptotically smaller formula

p∧

i=0

∑{
lβ | β ∈ {β1, . . . , βN} ∧ �bi�β=1

}
= ki (3)

where β ranges over a set of N assignments β1, . . . , βN for βi = (pi1, . . . , pie) and
pij are fresh free variables ranging over {0, 1}. Let d = p + 1. We are interested
in the best upper bound N(d) on the number of non-zero Venn regions over all
possible systems of equations. In the sequel we show that N(d) is polynomial
in d and therefore polynomial in the size of the original QFBAPA formula. This
result implies that QFBAPA is in NP and gives an effective bound on how to
construct a quantifier-free PA formula for checking the satisfiability of a given
QFBAPA formula.

Encoding generic cardinality variables in PA. Formula (3) uses some PA
constructs along with some meta-notation. We next explain how to write (3) as a
polynomially large quantifier-free PA formula. Because there are only N distinct
assignments βj considered, we introduce one variable lj for each 1 ≤ j ≤ N , for a
total of N integer variables. Let cij = �bi�βj for 1 ≤ i ≤ p and 1 ≤ j ≤ N . Then
each conjunct of (3) becomes

∑N
j=1 cij lj = ki. It therefore suffices to show how

to efficiently express sums with boolean variable (as opposed to constant) co-
efficients. For this we can use the standard conditional expression ite(p, t1, t2),
where p is a propositional formula and t1, t2 are integer terms. The ite(p, t1, t2)
expression evaluates to t1 when p evaluates to true, and evaluates to t2 when p
evaluates to false. It can be efficiently eliminated by flattening the formula to
contain no nested terms and then replacing t = ite(p, t1, t2) with the formula
(p → t = t1) ∧ (¬p → t = t2). (It is also directly available in the SMT-LIB
format [23].) Using ite, we can express cij lj as ite(cij , lj , 0). Then (3) becomes
∧p

i=0

∑N
j=1 ite(�bi�βj , lj , 0) = ki. Note that we can substitute the values ki back

into the original PA formula G, so there is no need to perform the separation into
G ∧ F in practice. We obtain the following simple summary of our algorithm:

substitute each expression |bi| with
N∑

j=1

ite(�bi�βj , lj , 0). Note that this transla-

tion of QFBAPA into PA is parameterized by N . Sufficiently large values of N
guarantee soundness and are the subject of the following sections, which show
that a polynomial value suffices. However, any value of N can be used to try
to prove the existence of a satisfying assignment for QFBAPA formulas. because
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a satisfying assignment for N0 implies the existence of satisfying assignments
for all N ≥ N0, letting lj = 0 for N0 + 1 ≤ j ≤ N . This suggests an iterative
algorithm of Figure 3 that starts with N = 0 and increases N until a counterex-
ample is found or a provably sufficient bound is reached. ’break symmetry’ is
a symmetry breaking predicate that imposes a lexicographical order on propo-
sitional variables βj . ’set expressions into card’ transforms all boolean algebra
expressions into form |bi| = 0.

let findN(f : QFBAPA) : bool =
let d = #atomic formulas(f)
let s0 = #formulas with 0 rhs(f)
let s1 = #formulas with 1 rhs(f)
let d1 = d − s0 − s1

let N1 = if (d1 ≤ 3) d1

else max{n | 2n ≤ (n + 1)d1}
return N1 + s1

let makePA(f : QFBAPA, N : int) : QFPA =

let f1 = f [|bi| &→
N∑

j=1
ite(�bi�βj , lj , 0)]i

return
((
∧

j lj ≥ 0) ∧ break symmetry) → f1

let valid(f0 : QFBAPA) : bool =
let f = negation normal form(

set expressions into card(f0))
let N0 = findN(f);
N := 0;
while(N ≤ N0) do

let fPA = makePA(f, N)
if ¬validPA(fPA) return false;
else N := N + 1;

return true;

Fig. 3. Our algorithm for deciding QFBAPA formulas

3 Upper Bound on the Number of Non-zero Regions

We next prove that the number N(d) of non-zero Venn regions can be assumed
to be polynomial in d. Let Z denote the set of integers and Z≥0 denote the set
of non-negative integers. We write

∑
X for

∑

y∈X

y.

Definition 1. For X ⊆ Zd a set of integer vectors, let

int cone(X) = {λ1x1 + . . . + λtxt | t ≥ 0 ∧ x1, . . . , xt ∈ X ∧ λ1, . . . , λn ∈ Z≥0}

The following result is established as Theorem 1(ii) in [8].

Fact 1 (Eisenbrand, Shmonina (2005)). Let X ⊆ Zd be a finite set of in-
teger vectors and M = max{(maxd

i=1 |xi
j |) | (x1

j , . . . , x
d
j ) ∈ X} be the bound on

the coordinates of vectors in X. If b ∈ int cone(X), then there exists a subset
X̃ ⊆ X such that b ∈ int cone(X̃) and |X̃ | ≤ 2d log2(4dM).

To apply Fact 1 to formula (2), let X = {xβ | β ∈ {0, 1}e} where xβ ∈ {0, 1}e is
given by

xβ = (�b0�β , �b1�β , . . . , �be�β).

Fact 1 implies is that if (k0, k1, . . . , kp) ∈ int cone(X) where ki are as in for-
mula (2), then (k0, k1, . . . , kp) ∈ int cone(X̃) where |X̃| = 2d log2(4d) (note that
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M = 1 because xβ are {0, 1}-vectors). The subset X̃ corresponds to selecting
a polynomial subset of N Venn region cardinality variables lβ and assuming
that the remaining ones are zero. This implies that formulas (2) and (3) are
equisatisfiable.

A direct application of Fact 1 yields N = 2d log2(4d) bound, which is sufficient
to prove that QFBAPA is in NP. However, because this bound is not tight, in the
sequel we prove results that slightly strengthen the bound and provide additional
insight into the problem.

4 Bounds and Nonredundant Integer Cone Generators

Definition 2. Let X ⊆ Zd. We say that X is a nonredundant integer cone
generator for b, and write NICG(X, b), if both 1) b ∈ int cone(X), and 2) b /∈
int cone(X \ {y}) for every y ∈ X.

In the sequel we consider only vectors of non-negative integers, so X ⊆ Zd
≥0.

Lemma 1 says that if NICG(X, b) for some b, then the sums of vectors
∑

Y
for Y ⊆ X are uniquely generated elements of int cone(X).

Lemma 1. Suppose NICG(X, b) for X ⊆ Zd
≥0. If λ1, λ2 : X → Z≥0 such that

∑

x∈X

λ1(x)x =
∑

x∈X

λ2(x)x (4)

and λ1(x) ∈ {0, 1} for all x ∈ X, then λ2 = λ1.

Proof. Suppose NICG(X, b). Then (0, . . . , 0) /∈ X . Let λ1, λ2 : X → Z≥0 such
that (4) holds and λ1(x) ∈ {0, 1} for all x ∈ X , but λ2 �= λ1. If there are vectors
x on the left-hand side of (4) that also appear on the right-hand side, we can
cancel them. We obtain an equality of the form (4) for distinct λ′

1, λ
′
2 with the

additional property that λ′
1(x) = 1 implies λ′

2(x) = 0. Moreover, not all λ′
1(x)

are equal to zero (otherwise the left-hand side would be zero vector and the
right-hand side a vector with a strictly positive coordinate since (0, . . . , 0) /∈ X).
By b ∈ int cone(X), let λ : X → Z≥0 such that b =

∑
x∈X λ(x)x. Let x0 be

such that λ′
1(x0) = 1 and λ(x0) = min{λ(x) | λ′

1(x) = 1}. By construction,
λ′

1(x0) = 1 and λ′
2(x0) = 0. We then have, with x in sums ranging over X :

b =
∑

λ′
1(x)=1

λ(x)x +
∑

λ′
1(x)=0

λ(x)x

=
∑

λ′
1(x)=1

(λ(x) − λ(x0))x + λ(x0)
∑

λ′
1(x)=1

x +
∑

λ′
1(x)=0

λ(x)x

=
∑

λ′
1(x)=1

(λ(x) − λ(x0))x + λ(x0)
∑

λ′
2(x)x +

∑

λ′
1(x)=0

λ(x)x

In the last sum, the coefficient next to x0 is zero in all three terms. Because all
coefficients are non-negative, we conclude b ∈ int cone(X \ {x0}), contradicting
NICG(X, b).
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We write NICG(X) as a shorthand for NICG(X,
∑

X). Theorem 1 gives several
equivalent characterizations of NICG(X). The equivalence of 1) and 4) is inter-
esting because it justifies the use of NICG(X) independently of the generated
vector b.

Theorem 1. Let X ⊆ Zd
≥0. The following statements are equivalent:

1) there exists a vector b ∈ Zd
≥0 such that NICG(X, b);

2) If λ1, λ2 : X → Z≥0 are non-negative integer coefficients for vectors in X
such that ∑

x∈X

λ1(x)x =
∑

x∈X

λ2(x)x

and λ1(x) ∈ {0, 1} for all x ∈ X, then λ2 = λ1.
3) For {x1, . . . , xn} = X (for x1, . . . , xn distinct), the system of d equations

expressed in vector form as

λ(x1)x1 + . . . + λ(xn)xn =
∑

X (5)

has (λ(x1), . . . , λ(xn)) = (1, . . . , 1) as the unique solution in Zn
≥0.

4) NICG(X).

Proof. 1) → 2): This is Lemma 1.
2) → 3): Assume 2) and let λ1(xi) = 1 for 1 ≤ i ≤ n. For any solution λ2

we then have
∑

x∈X λ1(x)x =
∑

x∈X λ2(x)x, so λ2 = λ1. Therefore, λ1 is the
unique solution.

3) → 4): Assume 3). Clearly
∑

X ∈ int cone(X); it remains to prove that X is
minimal. Let y ∈ X . For the sake of contradiction, suppose

∑
X ∈ int cone(X \

{y}). Then there exists a solution λ(x) for (5) with λ(y) = 0 �= 1, a contradiction
with the uniqueness of the solution.

4) → 1): Take b =
∑

X .

Corollary 1 is used in [8] to establish the bound on the size of X with NICG(X).
We obtain it directly from Lemma 1 taking λ2(x) ∈ {0, 1}.

Corollary 1. If NICG(X) then for Y1, Y2 ⊆ X, Y1 �= Y2 we have
∑

Y1 �=
∑

Y2.

Every set contains a NICG subset that generates a given element. To establish
the existence of sparse solutions, it therefore suffices to establish bounds on the
cardinality of X such that NICG(X).

Lemma 2. If b ∈ int cone(X), then there exists X̃ ⊆ X with b ∈ int cone(X̃)
and NICG(X̃, b).

Proof. If b ∈ int cone(X) then by definition b ∈ int cone(X0) for a finite X0 ⊆ X .
If not NICG(X0, b), then b ∈ int cone(X1) where X1 is a proper subset of X0.
Continuing in this fashion we obtain a finite maximal sequence X0 ⊃ X1 ⊃ . . . ⊃
Xk where NICG(Xk, b), so we let X̃ = Xk.

Lemma 3. If NICG(X) and Y ⊆ X, then NICG(Y ).
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Define
g(d) = max{n | 2n ≤ (n + 1)d} (6)

Theorem 2. Let X ⊆ {0, 1}d, NICG(X), and N = |X |. Then for d ≥ 2,

N ≤ g(d) ≤ (1 + ε(d))(d log2 d) (7)

where ε(d) ≤ 1 and lim
d→∞

ε(d) = 0.

Proof. Let X ⊆ {0, 1}d, NICG(X) and N = |X |. We prove 2N ≤ (N + 1)d.
Suppose that, on the contrary, 2N > (N +1)d. If

∑
Y = (x1, . . . , xd) for Y ⊆ X ,

then 0 ≤ xj ≤ N because Y ⊆ {0, 1}d and |Y | ≤ N . Therefore, there are only
(N+1)d possible sums

∑
Y . Because there are 2N subsets Y ⊆ X , there exist two

distinct subsets U, V ∈ 2X such that
∑

U =
∑

V . This contradicts Corollary 1.
Therefore, 2N ≤ (N + 1)d. We next show that any n for which 2n ≤ (n + 1)d is
bounded by (1 + ε(d))(d log2 d). Using elementary reasoning, from 2n ≤ (n + 1)
we obtain n ≤ 2d log2(2n) (see [8], [12, Section 7.9.3] for details). Substituting
this bound on n back into n ≤ d log2(n + 1) we obtain

n ≤ d log2(n + 1) ≤ d log2(2d log2(2d) + 1) = d log2(2d(log2(2d) + 1
2d))

= d(1 + log2 d + log2(log2(2d) + 1
2d)) = d log2 d(1 + 1+log2(log2(2d)+ 1

2d )

log2 d )

so we can let ε(d) = (1 + log2(log2 d + 1 + 1
2d ))/ log2 d.

Define N(d) = max{|X | | X ⊆ {0, 1}d ∧ NICG(X)}. We have shown N(d) ≤
g(d). Thanks to the monotonicity of g, we can compute g(d) efficiently using
binary search.

4.1 Lower Bounds

Although we currently do not have tight bounds for N(d), in this section we
show several observations about lower bounds for N(d).

We first show d ≤ N(d).

Lemma 4. Let X = {(x1
i , . . . , x

d
i ) | 1 ≤ i ≤ n} and

X+ = {(x1
i , . . . , x

d
i , 0) | 1 ≤ i ≤ n} ∪ {(0, . . . , 0, 1)}

Then NICG(X) if and only if NICG(X+).

Corollary 2. N(d) + 1 ≤ N(d + 1) for all d ≥ 1.

Proof. Let X ⊆ {0, 1}d, NICG(X), and |X | = N(d). Then NICG(X+) by
Lemma 4 and |X+| = N(d) + 1, which implies N(d + 1) ≥ N(d) + 1.

Lemma 5. d ≤ N(d). Specifically, NICG({e1, . . . , ed}) where ei are unit
vectors.
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Note that for X = {e1, . . . , ed} we have int cone(X) = Zd
≥0, which implies that

X is a maximal NICG, in the sense that no proper superset W ⊃ X has the
property NICG(W ).

N(d) = d for d ∈ {1, 2, 3}. We next show that for d ∈ {1, 2, 3} not only
d ≤ N(d) but also N(d) ≤ d.

Lemma 6. N(d) = d for d ∈ {1, 2, 3}.

Proof. By Corollary 2, if N(d+ 1) = d+ 1, then N(d) + 1 ≤ d+ 1 so N(d) ≤ d.
Therefore, N(3) = 3 implies N(2) = 2 as well, so we can take d = 3.

If N(d) > d, then there exists a set X with NICG(X) and |X | > d. From
Lemma 3, a subset X0 ⊆ X with |X0| = d+1 also satisfies NICG(X0). Therefore,
N(3) = 3 is equivalent to showing that there is no set X ⊆ {0, 1}3 with NICG(X)
and |X | = 4.

Consider a possible counterexample X = {x1, x2, x3, x4} ⊆ {0, 1}3 with b ∈
int cone(X). By previous argument on real-valued relaxation, NR(3) = 3, so b
is in convex cone of some three vectors from X , say b ∈ cone({x1, x2, x3}). On
the other hand, b /∈ int cone({x1, x2, x3}). If we consider a system λ1x1 +λ2x2 +
λ3x3 = b this implies that such system has solution over non-negative reals, but
not over non-negative integers. This can only happen if the absolute value of the
determinant of the matrix [x1, x2;x3] is greater than 1. The only set of three
vectors for which this can occur is X1 = {(0, 1, 1), (1, 0, 1), (1, 1, 0)}. We then
consider all possibilities for the fourth vector in X , which, modulo permutations
of coordinates, are (0, 0, 0), (1, 1, 1), (1, 1, 0), and (1, 0, 0). However, adding any
of these vectors violates the uniqueness of the solution to λ1x1 + λ2x2 + λ3x3 +
λ4x4 =

∑
X , so NICG(X) does not hold by Theorem 1, condition 3).

N = 5
4
d − 3

4
lower bound. We next show that there exists an example

X5 ⊆ {0, 1}4 with NICG(X5) and |X5| = 5. From this it follows that N(d) > d
for all d ≥ 4.

Consider the following system of 4 equations with 5 variables, where all
variable coefficients are in {0, 1}. (We found this example by narrowing down
the search using the observations on minimal counterexamples in the proof of
Lemma 6.)

λ1 + λ2 + λ3 = 3

λ2 + λ3 + λ4 = 3

λ1 + λ3 + λ4 + λ5 = 4

λ1 + λ2 + λ4 + λ5 = 4

(8)

It is easy to see that the system has (1, 1, 1, 1, 1) as the only solution in the
space of non-negative integers. Note that all variables are non-zero in this solu-
tion. The five columns of the system (8) correspond to the set of vectors X5 =
{(1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0), (0, 1, 1, 1), (0, 0, 1, 1)} such that NICG(X5). The
set X5 is also a maximal NICG, because adding any of the remaining 9 non-zero
vectors in {0, 1}4 \X5 results in a set that is not NICG.
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This argument shows that there exist maximal NICG of size larger than d for
d ≥ 4. As we have remarked before, the set of d unit vectors is a maximal NICG
for every d, which means that, unlike linearly independent sets of vectors over a
field or other independent sets in a matroid [28], there are maximal NICG sets
of different cardinality. Nevertheless, Lemma 2 and Lemma 3 show that some of
the properties of independent sets do hold for vectors in X where NICG(X).

Note also that X5 is not a Hilbert basis [26]. Namely, we have that
(1, 1, 1, 1) ∈ cone(X5) \ int cone(X5) because (1, 1, 1, 1) = 1/3((1, 0, 1, 1) +
(1, 1, 0, 1) + (1, 1, 1, 0) + (0, 1, 1, 1)). This illustrates why previous results on
Hilbert bases do not directly apply to the notion of NICG.

Using k identical copies of X5 (with 4 equations in a group mentioning a
disjoint set of 5 variables) we obtain systems of 4k equations with 5k variables
such that the only solution is a vector (1, . . . , 1) of all ones. By adding p unit
vector columns for 1 ≤ p ≤ 3, we also obtain systems of 4k + p equations with
5k + p variables, with N = 5

4d − p
4 = d +

⌊
d
4

⌋
≥ 5

4d − 3
4 , which, in particular,

shows that N = d upper bound is invalid for all d ≥ 4.

4.2 Better Upper Bounds for Small Cardinalities

Consider a QFBAPA formula in separated form G ∧ F as in Section 2, where G
is a PA formula and F is given by (2). Our bounds on N so far are a function of
d alone. For many formulas arising in practice we can reduce N using bounds on
the values that ki can take, as explained in this section. In our experience, this
improvement significantly reduced the overall running time of our algorithm.

Improved bound. Suppose that we can conclude that if the formula F ∧G is
satisfiable, then there exists a satisfying assignment for variables where 0 ≤ ki ≤
ci (if we do not have a bound for some i, we let ci = ∞). We can often obtain
such a bound ci by transforming G to negation-normal form and checking if ki

occurs in literals such as ki = 0 or ki < ci. Given the bounds ci, we have the
following inequality that generalizes the one in Theorem 2:

2N ≤
d∏

i=1

(1 + min(ci, N)) (9)

The reasoning follows the proof of Theorem 2.

Consequences for common cases. Two common cases that we can easily take
advantage of are bounds ci = 0 and ci = 1. Suppose that for i ∈ I0 we have ci = 0
and for i ∈ I1 (where I1 ∩ I0 = ∅) we have ci = 1. Let |I0| = s0 and |I1| = s1.
Letting ci = ∞ for i /∈ I0 ∪ I1, from (9) we obtain 2N ≤ 2s1(N + 1)d−s0−s1 .
For ci = 0 and ci = 1 we can in fact obtain a slightly stronger bound from the
condition 2N ≤ 2s1(N−s1+1)d−s0−s1 , which can be justified as follows. Consider
a satisfying assignment for G ∧ F . When i ∈ I0, we can eliminate the equation
|bi| = ki in (2) and remove all lβ such that �bi�β=1 from the remaining equations,
while preserving the property that all vectors in the matrix corresponding to (2)



Towards Efficient Satisfiability Checking for Boolean Algebra 227

are in {0, 1}. The bound on non-zero variables for the resulting system with d−s0

equations therefore applies to the original system as well. Similarly, if i ∈ I1 and
the right-hand side ki = 1, then we know that in the satisfying assignment there
is exactly one β1 such that �bi�β1=1, so we can remove the equation |bi| = 1,
and for all j such that �bj�β1=1 subtract 1 from kj and remove lβ1 . The result
is again a system with {0, 1} coefficients, but one less equation. Increasing the
bound for the resulting system by one (to account for lβ1 = 1) we obtain the
bound for the original system, which proves our claim.

These observations are important in practice because they imply that pure
boolean algebra expressions (such as b1 ⊆ b2 and b1 = b2) do not increase N when
they occur positively, since for them ci = 0. The bound ci = 1 also frequently
occurs in our examples because we encode elements as singleton sets.

5 Preliminary Experiments

Figure 4 shows formula sizes and running times for the original BAPA algorithm
and our new QFBAPA algorithm (Figure 3) on formulas of Figure 2 and their
variations.1

VC#
(∗=invalid)

BAPA QFBAPA

PA size(nodes) total time(s) PA size(nodes) iteration of N total time(s)

1 39 < 0.1 190 3 < 0.1
2 57 < 0.1 220 4 0.1
2a 1049 1.8 840 5 15.4
∗2b 946 1.4 87 1 < 0.1
3 51 < 0.1 131 3 < 0.1
3a 532 0.4 688 5 7.3
∗3b 532 0.4 92 1 < 0.1
4 546 0.5 1328 8 > 100.0

∗4b 554 0.5 284 2 0.1
5 2386 13.6 1750 8 > 100.0

∗5b 2318 13.4 570 3 0.4
6 442 0.4 2613 18 > 100.0
6a 10822 > 100.0 8401 23 > 100.0
∗6b 10822 > 100.0 1021 3 0.8
∗6c 10563 > 100.0 990 3 0.9

Fig. 4. Results for variations of formulas in Figure 2

The examples 2a, 3a, 6a are more realistic versions of examples 2, 3, 6 because
they contain some unnecessary assumptions that would normally appear in an
automatically generated verification condition. Syntactically determining which
assumptions are useful is a difficult problem [6], so it is reasonable to leave this

1 The examples are available from http://lara.epfl.ch/∼kuncak/cade07examples

http://lara.epfl.ch/~kuncak/cade07examples
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task to the the decision procedure. Formulas 1 − 6, 2a, 3a, 6a are all valid. For-
mulas 2b, 3b, 4b, 5b, 6b, 6c are obtained from 2a, 3a, 4, 5, 6a, 6a, respectively,
by dropping one of the necessary assumptions or changing the relation between
integers to make the formula invalid. All invalid formulas are marked by ∗ in
Figure 4. In addition to the running time, the figure shows the number of ab-
stract syntax tree nodes in the generated quantifier-free Presburger arithmetic
formulas. For the QFBAPA algorithm, the “iteration of N” column indicates the
number of non-empty Venn regions for which a counterexample was found, in
the case when the formula is invalid. For valid formulas this column indicates the
bound that was computed as being sufficient to establish formula validity; this
bound is actually explored whenever validity checking terminates in the given
timeout. In any case, the size of the generated PA formula corresponds to this
value of N . The running time for QFBAPA is the sum of running times over all
iterations, corresponding to the overall running time of the algorithm. We ran
the experiments on 3GHz, 1MB cache, 2GB RAM workstation. As a decision
procedure for quantifier-free PA we used CVC3 version 20070217 [3].

Discussion. These results suggest that our new algorithm is more effective than
the previous algorithm for finding counterexamples of invalid formulas. On large
valid formulas our algorithm generates more compact quantifier-free PA formu-
las than the introduction of exponentially many variables, but the complexity of
generated formulas makes them difficult to solve, leading to worse overall perfor-
mance. Nevertheless, on small formulas our new algorithm terminates, reaching
the computed upper bound on N and thus establishing formula validity.

6 Related Work

We have presented the the first decision procedure for a logic with sets and car-
dinality constraints that does not explicitly construct all set partitions. Using a
new form of small model representation property, the “small number of non-zero
variables” property, we obtained a non-deterministic polynomial-time algorithm
that can be solved by producing polynomially large quantifier-free Presburger
arithmetic formulas. A polynomial bound sufficient for NP membership can be
derived from [8]. In addition to improvements in the bounds that take into ac-
count small cardinalities, we introduced the notion of non-redundant integer
cone generators and established their properties. Previous results, such as [26],
consider matroids and Hilbert bases. As we remark in Section 4.1, the sets of
vectors X with NICG(X) do not form a matroid, and maximal NICG(X) need
not be a Hilbert basis. The equations generated from QFBAPA problems are
more difficult than set packing and set partitioning problems [2], because our
partition cardinality variables are not restricted to {0, 1}.

Relationship to counting SAT. Although similarly looking, QFBAPA sat-
isfiability is different from the #SAT problem [27]. Solving QFBAPA formula
differs from counting the number of satisfying assignments of propositional for-
mulas because set partitions may possibly be empty. An immediate consequence
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of our results is that there is no QFBAPA formula of size polynomial in n that
would express the property “all 2n partitions of n sets are non-empty”.

Reasoning about sets. The quantifier-free fragment of BA is shown NP-
complete in [18]; see [15] for a generalization of this result using the parameter-
ized complexity of the Bernays-Schönfinkel-Ramsey class of first-order logic [5,
Page 258]. The decision procedure for quantifier-free fragment with cardinalities
in [7, Chapter 11] introduces exponentially many integer variables to reduce the
problem to PA.

Using first-order provers. With appropriate axioms and decision procedures,
first-order provers can also be used to reason about QFBAPA-like constraints,
as shown, for example, by SPASS+T [22]. Our decision procedure by itself is
not nearly as widely applicable as SPASS+T, but is complete for its domain
(for example, it proves a formulation of problem number (73) from [22] in 0.1
seconds whereas SPASS+T is reported to time out in [22]).

Acknowledgements. Alexandr Andoni suggested using binary search instead
of an analytical expression to compute the inverse of N/ log(N + 1). Stefan
Andrei and Bruno Marnette made remarks about result [17]. Emina Torlak used
her Kodkod constraint solver to search for counterexamples of the conjecture
N(3) = 3 (Section 4.1 shows that this conjecture is true). We thank Zoran
Džunić, Michael Sipser, and the anonymous reviewers for useful feedback.
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Improvements in Formula Generalization
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Abstract. For proofs by induction it is often necessary to generalize
statements to strengthen the induction hypotheses. This paper presents
improved heuristics to generalize away subterms, unnecessary conditions
and function symbols in a formula. This resolves shortcomings that we
encountered within an experimental evaluation of generalization heuris-
tics from the literature. Our generalization method has been imple-

mented in the verification tool �eriFun. An evaluation with examples
from the literature as well as several case studies of our own demonstrates
the success of our development.

1 Introduction

When proving statements within a first-order theory that includes induction,
one frequently needs to invent and prove auxiliary statements to obtain a proof
of the original statement. This process is known as lemma discovery [7]. A spe-
cial case of lemma discovery is generalization. This is the process of deriving a
statement ϕgen from a proof obligation ϕ such that ϕgen entails ϕ and—in con-
trast to ϕ—the generalization ϕgen can be proved by induction. Here we consider
heuristics that aim at computing such generalizations automatically.

Formally, a generalization can be obtained by applying first-order inference
rules in the inverse direction [14]. In this paper, we consider the generalization
rules inverse substitution, inverse weakening, and inverse functionality. We re-
solve the indeterminism of this rule system by developing heuristics for when
and how to apply these rules. The challenge in the design of such heuristics is
to avoid over-generalizations (where ϕgen is false) and at the same time not to
be overly cautious and miss useful generalizations. We improve upon existing
heuristics [4, 5, 8, 9] by making our heuristics more liberal and by using a dis-
prover [3] to detect over-generalizations. The disprover tries to find an instance
of ϕgen that renders the formula false. Despite its incompleteness, the disprover
helps to find over-generalizations that slipped through the heuristics.

Our generalization heuristics have been integrated and proved successful in
�eriFun [1,16,17], an interactive system for verifying statements about programs
written in the functional programming language L [15]. This language consists of
definition principles for freely generated polymorphic data types, for procedures
operating on these data types based on recursion, case analyses, let-expressions
and functional composition, and for statements (called “lemmas”) about the data
types and procedures. Lemmas are defined by universally quantified Boolean

F. Pfenning (Ed.): CADE 2007, LNAI 4603, pp. 231–246, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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structure bool <= true, false
structure N <= 0, +(− : N)

structure list [@A] <= ε, [infix] ::(hd : @A, tl : list [@A])

function [infix] >(x, y : N) : bool <=
if x = 0 then false else if y = 0 then true else −(x)> −(y) end end
function [infix] <>(k, l : list [@A]) : list [@A] <=
if k = ε then l else hd(k) :: (tl(k) <> l) end
function rev(k : list [@A]) : list [@A] <=
if k = ε then ε else rev(tl(k)) <> hd(k) :: ε end
lemma rev rev <= ∀k : list [@A] rev(rev(k)) = k

Fig. 1. A simple L-program

terms using case analyses and truth values to represent connectives. We use the
functional notation if {B,A1, A2} instead of if B then A1 else A2 end in lemma
definitions; e. g., if {B,A, true} represents the implication B → A.

Figure 1 shows an example of an L-program that defines a polymorphic data
type list [@A], list concatenation <>, and list reversal rev . In this program, the
symbols true and false are constructors of type bool . N denotes the data type
of natural numbers with constructors 0 and +(. . .) (denoting the successor func-
tion). Likewise, ε and :: construct lists. Each argument position of a constructor is
assigned a selector function. For example, −(. . .) (denoting the predecessor func-
tion) is the only selector of +(. . .), and hd and tl are the selectors of constructor ::
for lists. Expressions of the form ?cons(t) for a constructor cons and correspond-
ing selectors sel i are used as shorthand notation for t = cons(sel1(t), . . . , seln(t)),
so ?::(k) holds if k =/ ε, for example.

Subsequently, we let Σ(P ) denote the signature of all function symbols defined
by an L-program P . An operational semantics for L-programs P is defined by
an interpreter evalP : T (Σ(P )) &→ T (Σ(P )) which either maps a ground term1

to a constructor ground term or returns a so-called stuck computation (e. g.,
evalP (hd(ε)) = hd(ε)), using the definitions of the procedures and data types
in P , cf. [13,15,18]. A lemma lemma name <= ∀x1 : τ1, . . . , xn : τn b is true if each
constructor ground instance of the lemma body b is evaluated to true by evalP ,
see [13, 15, 18] for formal details.

In �eriFun, lemmas are proved using a sequent calculus, called the HPL-
calculus [17]. A sequent of the form 〈H, IH &→ goal 〉 consists of a finite set H
of literals2 (defining the base or step case of an induction), a finite set IH of
induction hypotheses (given by Boolean terms), and a Boolean goal term goal .
A sequent is true if each constructor ground instance of goal is evaluated to true
whenever the corresponding instances of H and IH are evaluated to true. A
proof is represented by a finite proof tree whose nodes are labeled with sequents.
For a lemma with body b, the root node is given by the initial sequent 〈∅, ∅ &→ b〉.
1 As usual, T (Σ(P ),V) denotes the set of all terms over Σ(P ) and a set V of variables.

We write T (Σ(P )) instead of T (Σ(P ), ∅) for the set of all ground terms over Σ(P ).
2 An atom is an if -free Boolean term. A literal is an atom A or a negated atom ¬A,

where the latter abbreviates if{A, false, true}.
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Child nodes are obtained by applying a proof rule of the HPL-calculus to a se-
quent. Each proof rule is sound in the sense that the truth of all child sequents
entails the truth of the parent sequent. If each leaf of the proof tree is of the
form 〈. . ., . . . &→ true〉, the proof tree is closed, and we thus have a proof of the
lemma.

In our context, the following proof rules are of particular interest (for fur-
ther proof rules see [13, 17]): Induction creates the base and step sequents for
an initial sequent wrt. an induction axiom. Simplification symbolically evalu-
ates the goal term goal of a sequent by pure first-order reasoning, yielding an
equivalent goal term s-evalP (goal ). Use Lemma applies a lemma or induction
hypothesis to a sequent, and Apply Equation replaces a subterm of goal with an
equal term.

�eriFun’s Verify Tactic builds a proof tree by heuristically applying some
proof rules. A proof typically starts with Induction wrt. an induction axiom
suggested by the system’s induction heuristic. Then the tactic tries to close the
proof tree by applying Simplification to the child nodes. It also employs Use
Lemma and Apply Equation to use heuristically helpful induction hypotheses if
they have not already been used by the previous Simplification. If it fails to close
the proof tree, it is usually beneficial to generalize the sequent of a leaf node
before trying to prove the remaining proof obligation by another induction.

A proof by induction without prior generalization can fail if some subterm
blocks the application of an induction hypothesis. For instance, when trying to
prove ∀n, y, z : N fac(n) + (y + z) = (fac(n) + y) + z by induction on either n,
y or z, it is impossible to apply the induction hypothesis if procedure “+” is
defined recursively in its first argument [14]. The solution is to use the general-
ization rule inverse substitution to replace the occurrences of fac(n) with a fresh
variable x, yielding ∀x, y, z : N x + (y + z) = (x + y) + z. This is a goal-directed
generalization: For a procedure f we define RP(f) as the set of recursion po-
sition sets of f . The elements of each recursion position set I ∈ RP(f) denote
the indices of the formal parameters of f that are relevant to prove termina-
tion of f ; e. g., RP(+) = {{1}} and RP(>) = {{1}, {2}}.3 A subterm ti of
f(t1, . . . , tn) occurs in a recursion position if there is some I ∈ RP(f) such that
i ∈ I. Variables in recursion positions are good candidates for induction [4, 14],
because this allows for the application of the definitions of procedures. As fac(n)
occupies a recursion position in the above formula, generalizing fac(n) to a
fresh variable x offers the new possibility to induct on x. We will develop sepa-
rate heuristics for inverse substitution to generalize selector terms (e. g., −(n)),
other non-variable terms (e. g., fac(n)), or variables. As a proof can also fail if
the formula contains unnecessary (pre-)conditions or function symbols, we will
furthermore design heuristics for inverse weakening and inverse functionality,
respectively.

Section 2 describes our generalization heuristics in detail. We compare the
approach with other proposals in Sect. 3 and evaluate our heuristics on numerous
examples in Sect. 4. Section 5 concludes with an outlook on future work.

3 RP(f) is computed by the system’s algorithm for termination analysis.
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2 Generalization Heuristics

If the sequent 〈H, IH &→ goal 〉 to be generalized contains helpful induction hy-
potheses, we assume that �eriFun’s Verify Tactic or some user interactions have
already used them to modify the goal term. Therefore, our heuristics ignore the
set IH and start with 〈H, ∅ &→ goal〉, which is a common first generalization
step [5,8, 9]. The rationale behind this is that unused induction hypotheses are
heuristically useless.

We apply inverse substitution to eliminate selectors (Sect. 2.1) and get a new
sequent 〈H ′, ∅ &→ goal ′〉. Then we iteratively consider the other generalization
heuristics for the formula ϕ := s-evalP

(∧
H ′ → goal ′

)
. In each iteration we

apply the first heuristic to ϕ that succeeds:

1. inverse weakening to remove unnecessary conditions (Sect. 2.4)
2. inverse substitution to generalize apart variable occurrences (Sect. 2.3)
3. inverse substitution for common non-variable subterms (Sect. 2.2)
4. inverse functionality to remove unnecessary function symbols (Sect. 2.5)

When one of these heuristics has transformed ϕ into another formula ϕgen , we
use ϕ := s-evalP (ϕgen) for the next iteration. If none of the heuristics has found
a generalization, we return formula ϕ and terminate the generalization process.

The motivation for the order of the heuristics is that selector elimination first
tidies up the result of a previous destructor style induction. As unnecessary
conditions may mislead the remaining heuristics (e. g., they change the number
of subterm occurrences), they should be removed as early as possible by inverse
weakening. Inverse substitution prefers generalizing apart variable occurrences to
generalizing away non-variable subterms, so that k <> (k <>k) = (k <>k)<>k
is generalized to k′ <> (k <>k) = (k′ <>k)<>k without considering the over-
generalization k<> l = l <>k first. Inverse functionality is not needed too often
and tends to suggest over-generalizations, so we assign it the lowest priority.

2.1 Inverse Substitution: Selector Elimination

In destructor style induction [6, 14], induction hypotheses are basically formed
by replacing the induction variable(s) with selector terms (e. g., n with −(n) or
k with tl(k)). When the proof of a step case fails, we typically have a goal term
left that involves many selector calls stemming from an attempt of applying the
induction hypotheses. Selector elimination is the first step towards a generalized
formula that is ready for a subsequent proof by induction.

Example 1. During a proof of ∀n :N, k : list [N] if {n∈ isort(k), n∈ k, true} (i. e.,
that insertion sort does not add new elements to the input list), in the induction
step we eventually get a sequent 〈{¬k = ε}, {. . .} &→ goal〉, where goal is

if {n =hd(k), true,
if {n∈ tl(k), true,

if {n∈ isort(tl(k)), true, ¬n∈ insert(hd(k), isort(tl(k)))}}} .
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Algorithm eliminateSelectors(〈H, ∅ &→ goal〉)
while there is a variable v : α that does not occur in a recursion position in goal

and H � ?cons(v)5 for some constructor cons(sel1:β1, . . . , seln:βn) : β

θ := matchTypes(β, α)
σ := {v/cons(x1, . . . , xn)} for fresh variables xi of type θ(βi)
H := s-evalP (σ(H)); goal := s-evalP (σ(goal))

return 〈H, ∅ &→ goal〉

Fig. 2. Selector elimination

As the set of hypotheses ensures that k is non-empty, we can safely replace
hd(k) and tl(k) with fresh variables m and l, respectively. “Safe” means that
this replacement preserves equivalence. If there were occurrences of k in other
subterms than hd(k) or tl(k), we could replace those with m :: l. This eliminates
all occurrences of k, so we drop the hypothesis ¬k = ε and get the new goal term

if {n =m, true, if {n∈ l, true, if {n∈ isort(l), true,¬n∈ insert(m, isort(l))}}}.

This formula is not yet general enough to be provable by induction. However,
m and l are two fresh variables that we could in principle use for induction.
Furthermore, the replacement of hd(k) and tl(k) with fresh variables will make
it easier to identify unnecessary conditions in subsequent generalization steps.

Example 2. Consider the simplified induction step for the proof of the formula
∀n : N dbl(n) =n + n: 〈{¬n = 0}, {. . .} &→ +(−(n) + −(n)) =−(n) + n〉. Replacing
n with +(m) and subsequent simplification yields +(m + m) =m + +(m).

The next example shows that elimination of selectors is not always desirable.

Example 3. In the following sequent 〈{¬k = ε}, {. . .} &→ goal〉, resulting from the
induction step of ∀n : N, k : list [N] n# k =n# bsort(k) for a bubble sort proce-
dure bsort , the selectors for k should not be eliminated, because the subgoal can
be directly proved by another induction on k:4

if {n =hd(k), if {n = last(bubble(k)),
n# tl(k) = n# but last(bubble(k)),
+(n# tl(k)) = n# but last(bubble(k))}, . . .}

In general, we should not replace selector calls sel(v) if variable v directly
occurs in a recursion position in goal . For instance, the occurrence of vari-
able k in bubble(k) should inhibit the replacement of hd(k) and tl(k). This leads
to the algorithm shown in Fig. 2. As s-evalP (?cons(cons(x1, . . . , xn))) = true
and s-evalP (sel i(cons(x1, . . . , xn))) = xi, this effectively eliminates selector calls
sel i(v) and removes hypotheses that are no longer necessary when they have
been simplified to true.
4 n # k denotes the number of occurrences of n in k.
5 H � ?cons(v) is true if ?cons(v) ∈ H or if ¬ ?cons ′(v) ∈ H for all constructors

cons ′ �= cons of the same type as cons . E. g., we can infer {¬k = ε} � ?::(k).
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Algorithm generateProposals (t, ϕ)

P := ∅
if t = f(t1, . . . , tn) for some function symbol f �= = and some terms ti then

for each I ∈ RP(f) do
S := { ti | i ∈ I}
if seemsSuitable(S, ϕ) then P := P ◦ 〈S〉

for each i ∈ {1, . . . , n} do
P := P ◦ generateProposals (ti, ϕ)

if t = t1 = t2 for some terms t1, t2 then
for each i ∈ {1, 2} do

Pi := generateProposals (ti, ϕ)
if seemsSuitable({ti}, ϕ) then Pi := Pi ◦ 〈{ti}〉
P := P ◦ 〈S′ ∈ Pi | ∃t′ ∈ S′. t′ occurs in t3−i or at least twice in ti〉

return P

Fig. 3. Finding common non-variable subterms to generalize

2.2 Inverse Substitution: Common Non-Variable Subterms

If a term t /∈ V occupies a recursion position of a procedure call in a formula, gen-
eralizing all occurrences of t to a fresh variable xt offers the possibility to prove
the formula by induction on xt. The following terms are considered generalizable:

Definition 1. A term t is generalizable if the following holds:

(1) t has a recursively defined type (as there is no induction principle for non-
recursively defined types such as bool),

(2) t is not a variable (we deal with this case in Sect. 2.3),
(3) t does not contain constructors (as these generate only a subset of a type),
(4) t does not contain selectors (we use selector elimination instead).

Generating proposals. Intuitively, a proposal S for a formula ϕ is a set of
some generalizable subterms of ϕ. To generate proposals, we examine formula ϕ
recursively as depicted in Fig. 3.6 Proposals are stored in a list P so that we can
count how often a proposal was suggested later on. If the current subterm t of
ϕ is of the form f(t1, . . . , tn), we propose the simultaneous generalization of the
subterms ti in recursion positions with respect to some I ∈ RP(f) if this seems
to be a “suitable proposal” with respect to formula ϕ:

Definition 2. A set S of terms is called a suitable proposal for some formula ϕ
if each t′ ∈ S is a generalizable subterm of ϕ and if there is some t′ ∈ S that
occurs at least twice in ϕ.

This definition avoids many over-generalizations of single occurrences of sub-
terms. For equations, the algorithm only adds those proposals S′ that include a
term t′ that also occurs on the other side of the equation or that occurs more
than once on one side.
6 ◦ denotes list concatenation, and 〈S1, . . . , Sn〉 represents a list of n elements.
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Example 1 (continued). The singleton {isort(l)} is proposed twice, which leads
to ϕgen = if {n =m, true, if {n∈ l, true, if {n∈ l′, true,¬n∈ insert(m, l′)}}} for a
fresh variable l′. Although insert(m, isort(l)) occurs in a recursion position,
{insert(m, isort(l))} is not a suitable proposal, because this subterm occurs only
once in the formula.

Example 4. The following formula results after eliminating the selectors for k
in the induction step of ∀n :N, k : list [N] if{n	 k, n	 qsort(k), true} to ascertain
that the quicksort procedure qsort preserves upper bounds:

if {m>n, true, if {n	 l,
if {n	 larger (m, l),

if {n	 qsort(larger (m, l)),
if {n	 smaller (m, l),

if {n	 qsort(smaller (m, l)),
n	 qsort(smaller (m, l))<>m :: qsort(larger (m, l)), true},

n	 qsort(smaller (m, l))<>m :: qsort(larger (m, l))}, true},
if {n	 smaller (m, l),

if {n	 qsort(smaller (m, l)),
n	 qsort(smaller (m, l))<>m :: qsort(larger (m, l))}, true},

n	 qsort(smaller (m, l))<>m :: qsort(larger (m, l))}, true}}

P contains eight proposals {smaller (m, l)}, six proposals {larger(m, l)} and
{qsort(smaller (m, l))} each, and one proposal {qsort(larger (m, l))}.

Example 5. For x + y ∗ z = y ∗ z + x, we get one proposal {y ∗ z}, because this
subterm occurs on both sides of the equation and occupies one recursion position.
The generalization is the commutativity law for addition.

Example 6. For (y ∗ z + x) − y ∗ z = x, the single proposal {y ∗ z} leads to the
easily provable formula (n + x) − n =x.

Proposals for recursive calls. Boyer and Moore’s motivation for generalizing
subterms is that some subterms have often already “played their role” and now
are merely “place holders for arbitrary objects” [5]. We found that recursive calls
frequently are such arbitrary leftovers from a previous induction [2]. Therefore we
add proposals to directly generalize recursive calls, which can significantly speed
up the generalization process: The additional proposals may either be “better”
(e. g., combined) proposals or can support existing proposals. In either case, this
may reduce the number of calls to the disprover to check for over-generalizations.

If the substitution σ that summarizes the preceding generalization steps is one-
to-one, we check for each proposal S = {f(t1, . . . , tn)} in P if σ(f(t1, . . . , tn)) is
an instance of a recursive call in f ’s body, and if so, we propose the simultaneous
generalization of all instantiated (and by σ−1 generalized) recursive calls. We
illustrate this process with an example; the precise algorithm is given in [2].

Example 4 (continued). Substitution σ = {m/hd(k), l/tl(k)} (determined by the
preceding selector elimination for k) is one-to-one, and σ(qsort(smaller (m, l)))
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is one of the two recursive calls of the quicksort procedure qsort . This leads
to six proposals {qsort(smaller (m, l)), qsort(larger (m, l))} (one for each pro-
posal {qsort(smaller (m, l))}). As we can similarly trace back the single proposal
{qsort(larger (m, l))}, we get a seventh proposal of the recursive calls.

Organizing the proposals. The proposals in P are organized into a new list P ′

so that each proposal occurs exactly once in the resulting list. Furthermore, P ′

is sorted lexicographically wrt. the following priority list of criteria:

1. proposals that pass the induction test (see below),
2. proposals that have been suggested more often,
3. proposals S with more occurrences of the subterms t ∈ S of ϕ,
4. some more tie-breaking criteria that favour less complex proposals and pro-

duce a deterministic ranking of the proposals, see [2] for details.

The induction test for a proposal S checks if the induction heuristic suggests
an induction on at least one of the fresh variables xt after tentatively replacing
the occurrences of each t ∈ S in ϕ with xt. In this case the proposal receives
a boost so that it is considered before proposals that fail the induction test.
As the induction heuristic is used as a black box, our algorithm can be easily
integrated in various theorem provers. (Note that our algorithm does not require
an induction heuristic, but may profit if one is present.)

Example 4 (continued). The only proposal that passes the induction test is
{qsort(smaller (m, l)), qsort(larger (m, l))}, because the induction heuristic sug-
gests induction on the fresh variable that replaces qsort(smaller (m, l)). So this
proposal is considered first and yields a useful generalization which states that
smaller , larger , and <> preserve upper bounds, see [2] for details. Without the
induction test, we would examine the over-generalization of smaller (m, l) first.
Without the proposals for recursive calls, we would consider the over-generaliza-
tions of smaller (m, l) and larger (m, l) first. Avoiding these over-generalizations
leads to a speed-up factor of about 3 (depending on the disprover configuration).

Figure 4 summarizes the overall algorithm that tries to replace generalizable
subterms of a formula ϕ. The generalization itself is carried out by applying the
inverse substitution σ−1

gen (which replaces each occurrence of t ∈ S in ϕ with
xt, see [2] for technical details on inverse substitutions). The first generaliza-
tion ϕgen that is not rejected by the disprover is returned as result, along with
the substitution σgen indicating how to use the generalization.

2.3 Inverse Substitution: Generalizing Apart Variables

In some formulas, e. g., x + (x + x) = (x + x) + x, it is necessary to generalize
apart the occurrences of a variable to facilitate an inductive proof. Generally, it
is beneficial to separate the occurrences in recursion positions from occurrences
in non-recursion positions [4].7

7 For the sake of brevity, we also use some artificial examples to illustrate our algo-
rithm. However, formulas such as (x+ −(y) ∗x)+x=x+(x+ −(y) ∗x) may actually
occur in realistic examples (e. g., when proving the distributivity of ∗ over +).
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Algorithm generalizeCommonSubterms (ϕ, σ)

P := generateProposals (ϕ, ϕ)
if σ is one-to-one then P := P ◦ recCallProposals(ϕ, σ, P )
P ′ := organizeProposals(ϕ, P )

for each S ∈ P ′ do
σgen :=

⋃
t∈S{xt/t} for fresh variables xt

ϕgen := σ−1
gen(ϕ)

if disprover does not find a counter-example for ϕgen then return (ϕgen , σgen )

return ⊥

Fig. 4. Generalizing common non-variable subterms

The first two lines of the algorithm in Fig. 5 form a heuristic filter to predict
whether generalizing apart is necessary. The algorithm fails if it cannot find
values for f , I, i, and j. Hence, although variables k and m occur in recursion
and non-recursion positions in Examples 3 and 4, the algorithm correctly fails
at this early stage, while allowing the generalization in the above formula. If
formula ϕ passes this filter, we use the values for f , I, i, and j to generalize
apart in a goal-directed way, thus improving upon existing heuristics [4, 9].

The subalgorithms separate and replace share the meta-variables f , v, ρ, and
all-rpos. Function ρ : Σ(P ) → 2IN maps each function symbol to a set of (recur-
sion) positions and thus controls which occurrences of v are to be replaced with
the fresh variable v′. The algorithm first tries to generalize apart the occurrences
of variable v in recursion positions of a procedure f from the other occurrences:

Example 2 (continued). In ϕ = +(m + m) =m + +(m) we generalize apart wrt.
v := m and f := +. Assuming that + is defined recursively in its first parameter,
we have ρ(+) = {{1}} and generalize to ϕgen = +(m′+m) =m′++(m). Similarly,
we generalize ϕ = x+ (x+ x) = (x+ x) + x to ϕgen = x′ + (x+ x) = (x′ + x) + x.

Example 7. In ϕ = x ∗ (x + x) = x ∗ x + x ∗ x, we generalize apart wrt. v := x
and f := ∗. Assuming RP(∗) = {{1}}, on the left-hand side we replace the first
occurrence of x with x′. On the right-hand side, we recurse into both arguments
of + and get ϕgen = x′ ∗ (x + x) = x′ ∗ x + x′ ∗ x.

Example 8. In ϕ = (x+ x)− x =x, we generalize apart wrt. v := x, f := +, and
ρ(+) = {{1}}. This leads to (x′ +x)−x = x′, which can be proved with a single
induction on x using the commutativity of +.

We say that a term t was generalized apart successfully if t = v′ or if at least one,
but not all occurrences of v in t were replaced with v′. For equations, we addi-
tionally demand that both sides be generalized apart successfully. Formula ϕgen

is considered a useful generalization if (1) it was generalized apart successfully,
(2) each equation in ϕ was either left unchanged or generalized apart successfully,
and (3) the disprover did not find a counter-example for ϕgen .

If ϕgen is not considered a useful generalization, we also allow the replacement
of v in recursion positions of procedure calls g(. . .) with g �= f (all-rpos := true).
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Algorithm generalizeApart (ϕ)

find a procedure f , some set I ∈ RP(f), some procedure calls f(t1, . . . , tn) and
f(t′

1, . . . , t
′
n) in ϕ, and i, j ∈ {1, . . . , n} such that ti = t′

j ∈ V, i ∈ I and j /∈ I

all-rpos := false; v := ti; ρ(f) := I ; ϕgen := separate(ϕ)
if ϕgen is considered a useful generalization then return ϕgen

for each ρ with ρ(f) = I , ρ(g) ∈ RP(g) for all procedures g and
ρ(h) = IN for all other function symbols h do

all-rpos := true ; ϕgen := separate(ϕ)
if ϕgen is considered a useful generalization then return ϕgen

return ⊥

Subalgorithm separate(t), sharing variables f , ρ, and all-rpos

if all-rpos and t = g(t1, . . . , tm) for some terms ti then
return g(replace(t1, 1∈ ρ(g)), . . . , replace(tm, m∈ ρ(g)))

else if t = t1 = t2 then
return replace(t1, true) = replace(t2, true)

else if t = f(t1, . . . , tn) for some terms ti then
return f(replace(t1, 1∈ ρ(f)), . . . , replace(tn, n∈ ρ(f)))

else if t = g(t1, . . . , tm) for some terms ti then
return g(separate(t1), . . . , separate(tm))

else return t

Subalgorithm replace(t, rpos), sharing variable v

if ¬ rpos then return t
else if t = v then return v′

else return separate(t)

Fig. 5. Generalizing apart variable occurrences

Therefore we need to choose recursion position sets ρ(g) for these procedures.
For constructors, selectors, if, and =, ρ(h) = IN lets the algorithm recursively
examine all argument positions. Looking for an appropriate ρ leads to at most∏

g∈Σproc(ϕ)\{f} |RP(g)| further iterations, which is usually a very small number,
because only few procedures have more than one set of recursion positions.

Example 9. In ϕ = |k<>k| = |k|+ |k|, we successfully generalize apart wrt. v :=
k, f := <>, and ρ(<>) = {{1}} on the left-hand side, yielding |k′ <>k|. The
right-hand side remains unchanged and thus is not generalized apart successfully
at first. Using the only choice ρ(+) := ρ(|) := {{1}} we successfully generalize
both sides on the second attempt, which leads to ϕgen = |k′ <>k| = |k′| + |k|.

Note that our heuristic solves all these examples with just a single disprover call.
We are not aware of a heuristic in the literature that is equally goal-directed. For
instance, Aubin’s heuristic requires “a few attempts” [4] to solve Example 7. Our
heuristic could be improved further by trying some more experimental alterna-
tives to generalize formulas such as rev(k <>k) = rev(k)<> rev (k). However, we
did not find “naturally occurring” examples that would need such an extension
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and therefore do not consider additional arbitrary choices of variable occurrences
for replacement.

2.4 Inverse Weakening

Generalization by inverse weakening allows us to remove an unnecessary con-
dition B from a formula if {B,A1, A2} by generalizing the conditional to the
conjunction of A1 and A2, i. e., if {A1, A2, false}.

In Example 1 (p. 237), the information that n does not occur in l is irrelevant,
so it would be useful to drop the condition n∈ l. The isolated occurrence of
variable l gives us a hint that this condition might be unnecessary:

Definition 3. A variable v occurs insignificantly in a literal � if no other vari-
able occurs in � (i. e., V(�) = {v}) and if no procedure is used in �. A condition B
in a subterm if {B,A1, A2} of a term t is probably unnecessary if all occurrences
of a variable v in B, in the conditions on the path in t to B, and in the literals
in A1 and A2 are insignificant. Condition B is deemed possibly unnecessary if

(1) there exists a variable v ∈ V(B) such that all further occurrences of v (if
any) in the conditions on the path in t to B and in the literals in A1 and A2

are insignificant, and
(2) neither A1 nor A2 is equal to “false”.

We remove probably unnecessary conditions right away, whereas after the removal
of a possibly unnecessary condition the result is checked by the disprover.

Example 1 (continued). Condition n∈ l is deemed possibly unnecessary, giving
the final touch to the formula: if {n =m, true, if {n∈ l′, true,¬n∈ insert(m, l′)}}.

Example 10. Our heuristic is liberal enough to iteratively remove the two proba-
bly unnecessary conditions in if {?::(k), if {?::(tl(k)), A, true}, true} if k does not
occur in A. For instance, this happens in a generalization with merge sort, where
A = if {ordered(l1), if {ordered(l2), ordered(merge(l1, l2)), true}, true}.

2.5 Inverse Functionality

We adopt the heuristic for inverse functionality presented in [14] in the following
way: For each equation f(t1, . . . , tn) = f(t′1, . . . , t′n) in formula ϕ that does not
occur as condition of some conditional statement, we check whether the argument
lists differ in only one position, i. e., if tj �= t′j for some j ∈ {1, . . . , n} and ti = t′i
for all i �= j. In this case we replace the equation with tj = t′j. If the disprover
finds a counter-example for the resulting formula, we try to generalize another
equation instead (if there is one); otherwise the heuristic fails.

Example 11. Formula |rev (rev(k))| = |k| is generalized to rev(rev (k)) = k, while
the over-generalization isort(k) = k of isort(isort(k)) = isort(k) is rejected by the
disprover. (Section 4 gives examples for this heuristic in more realistic proofs.)
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3 Related Work

Even though some generalization heuristics were proposed about 30 years ago [4,
5], these techniques are still used in today’s theorem provers. Therefore we will
discuss their features before describing the modifications that more recent im-
plementations added to them.

The Nqthm system (and its current successor ACL2)8 features generaliza-
tion heuristics without a disprover [5]. Its destructor elimination allows more
sophisticated generalizations than pure selector elimination. However, the user
then needs to assist the system by providing so-called elimination lemmas for
destructors such as quotient and remainder . The heuristic does not prevent the
counterproductive selector elimination from Example 3. Nqthm generalizes com-
mon minimal subterms. In Example 4, this would delete qsort(smaller (m, l)) and
qsort(larger (m, l)) from further consideration, since these terms properly con-
tain smaller (m, l) and larger (m, l), which unfortunately lead to non-theorems.
The heuristic also fails to generalize equations such as (y ∗ z + x) − y ∗ z =x,
because y ∗ z occurs on one side only. Nqthm’s heuristic to “eliminate irrele-
vance” removes disconnected, probably falsifiable literals from a clause. Literals
are connected if they share variables. In Example 1, this heuristic is too weak
to remove the unnecessary condition n∈ l, because all of the literals share vari-
able n. Generalizing apart and inverse functionality are not supported.

Aubin’s search strategy for inverse substitution focuses on subterm occur-
rences in recursion positions [4]. This heuristic is unable to produce the gen-
eralization from Examples 5 and 6, because it would require y ∗ z to occur in
recursion positions on both sides of the equation.9 Aubin’s heuristic can gen-
eralize apart variable occurrences and identifies wrong choices of variable oc-
currences by a disprover. His system does not support inverse weakening, while
inverse functionality is basically the same heuristic that we use. Aubin presents
a heuristic for inverse replacement called indirect generalization for statements
about procedures with accumulator parameters that occur in recursive formula-
tions of iterative algorithms. For instance, it generalizes fac(n) = it fac(n, 1) to
fac(n) ∗m = it fac(n,m) if the lemma fac(n) ∗ 1 = fac(n) has been proved before.

Hummel extends Aubin’s heuristics for the INKA system [9]. Her heuristic for
inverse substitution also considers whether a subterm is able to “generate” all
possible values of the domain. While x + y can represent any natural number,
+(x) does not have this property. We do not generalize constructor terms anyway
and leave the check for over-generalization of subterms to the disprover. Hummel
generalizes y ∗ z in (y ∗ z+x)− y ∗ z =x, because it does not share variables with
other subterms of the formula. However, this fails on (y ∗ z+ y)− y ∗ z = y, which
our heuristic handles successfully. Inverse weakening in INKA is an improved
version of Boyer and Moore’s “elimination of irrelevance” that allows the removal
of n∈ l in Example 1, but fails if no variable occurs in just a single literal, cf.
Example 10. Inverse functionality also works for implications in INKA. As this
8 Personal communication with J S. Moore.
9 Aubin gives the example (n+m ∗n) ∗ p =n ∗ p+(m ∗n) ∗ p in [4], where his heuristic

fails to generalize m ∗ n in contrast to our heuristic.
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produces fairly strong generalizations and in our experience does not occur too
often, we do not generalize in implications.10

Dixon developed an inductive theorem prover for Isabelle within his proof
planning framework [8]. It supports generalization by inverse substitution, based
on Boyer and Moore’s heuristic, and inverse functionality. His system does not
use a disprover, so it may produce over-generalizations. In contrast to Nqthm,
Dixon chooses a maximal generalization with more than one occurrence. While
this works for Example 4, it simply ignores smaller subterms and would for
instance over-generalize in a proof of ∀n :N, k : list [N] n ∈ k → n ∈ isort(k).

Bundy et al. use generalization as a subsidiary algorithm in an approach to
lemma discovery in CLAM [7] that builds upon rippling, a heuristic to guide
an inductive proof. Proof critics analyze the failure of rippling. To discover a
lemma, unknown term structures are represented by second-order meta variables
and instantiated during subsequent rewrite steps. A disprover checks for invalid
instantiations. The final generalization step involves inverse replacement and
generalizing apart (cf. Aubin) as well as inverse substitution in the Nqthm style.

The RRL system follows a similar approach and uses term schemes that are
instantiated by attempting to prove the generalized schema [10, 11]. It avoids
second-order unification by more specialized heuristics. To generalize formulas,
it employs inverse substitution and inverse weakening in conjunction with a
disprover. As RRL’s heuristic for inverse substitution requires occurrences of
the subterm on both sides of an equation, it cannot generalize Example 6 as
well as formulas that need generalizing apart variable occurrences. Like CLAM,
RRL is particularly strong at generalizations with accumulators but has less
sophisticated heuristics (if at all) for inverse substitution, inverse weakening,
and inverse functionality compared to our approach.

The generalization command in PVS [12] is basically just a text processing
feature without any heuristic support. It replaces all occurrences of a user-defined
subterm in a sequent with a fresh variable.

4 Evaluation of the Generalization Heuristics

To evaluate our generalization heuristics, we integrated them into the �eriFun
system.11 The user can now invoke the tactic by simply clicking a button. With-
out any user interaction, the system will try to generalize the current sequent.
In order to check for over-generalizations, �eriFun’s disprover [3] is used.

The quality of a generalization feature is determined by both its success rate
and the number of proposed over-generalizations. Table 1 shows a selection of
20 formulas that �eriFun could prove using our generalization heuristics. Out
10 E. g., in the proof of even(|k <>k|), even(|tl(k) <> tl(k)|) → even(+(|tl(k)<> k|))

would be over-generalized to |tl(k) <> tl(k)| =+(|tl(k) <>k|).
11 An experimental version of �eriFun that includes our generaliza-

tion heuristics (along with example files) can be downloaded from
http://www.inferenzsysteme.informatik.tu-darmstadt.de/∼aderhold/. Our
improvements will be available in the next official release of the system.

http://www.inferenzsysteme.informatik.tu-darmstadt.de/~aderhold/
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Table 1. Selected examples for the generalization heuristics. A reference “ [7]:Tnn”
indicates that this is example Tnn from [7], Table 3.1.

No. Formula Sequence Checks Reference

1 dbl(n) =n + n SV 1 (0) [7]:T1

2 |rev(k)| = |k| SC 1 (0) [7]:T5

3 |rev(k <> l)| = |k| + |l| SCC 2 (0) [7]:T6

4 nth(nth(nth(k, w), x), y) =nth(nth(nth(k, y), x), w) ScF 2 (1) [7]:T9

5 rev(rev(k)) = k SC 1 (0) [7]:T10

6 rev(rev(k)<> rev(l)) = l <>k SCC 2 (0) [7]:T11

7 half (x + x) =x SVF 2 (0) [7]:T13

8 half (|k <> l|) = half (|l <> k|) Ff 2 (1) [7]:T23

9 x∈A → x∈A ∪B SW 1 (0) [7]:T42

10 A ∪ (B ∪ C) = (A ∪B) ∪ C SWWWc 4 (1)

11 |isort(k)| = |k| SC 1 (0) [7]:T48

12 n∈ isort(k) → n∈ k SCW 2 (0) [7]:T49

13 n∈ k → n∈ isort(k) SCWc 3 (1)

14 n # k =n # isort(k) SCf 2 (1) [7]:T50

15 n 	 k → n 	 qsort(k) SCc 2 (1)

16 ordered (mergesort(k)) CWW 1 (0)

17 (x + y) ∗ z =x ∗ z + y ∗ z SC 1 (0) [10]

18 x ∗ (y ∗ z) = (x ∗ y) ∗ z SC 1 (0) [4]

19 rev(k <> l) = rev(l)<> rev(k) SCC 2 (0) [4]

20 k ⊂ k SV 1 (0) [4]

of 50 examples in [7], �eriFun could prove 11 formulas even without generaliza-
tion. With our generalization heuristics, this number almost tripled to 32 proved
examples. 5 examples (e. g., T25, even(|k <> l|) ↔ even(|l| + |k|)) could easily
be solved by inverse functionality for implications (but do not look as though
they occured in everyday examples). The remaining 13 examples are specific to
CLAM’s proof critics for rippling and its heuristic for inverse replacement that
we did not consider.

In the selection of examples, we were especially interested in “naturally oc-
curring” generalization problems: The formulas we focused on state correctness
properties of common sorting algorithms (e. g., insertion sort, bubble sort, merge
sort, quicksort) and properties of common arithmetic or list operations (e. g.,
monotonicity of + and ∗, associativity of ∩ and ∪). A collection of case studies
that we also use as motivating examples in graduate and undergraduate courses
can be found in [1, 17]. Table 1 contains some examples from our case stud-
ies and some further examples from the literature. In total, we investigated 40
generalization examples.

Letters S, C, V, W, and F denote applications of our heuristics for Selector
elimination, inverse substitution for Common non-variable subterms or Varia-
bles, inverse Weakening, and inverse Functionality, respectively. Capital letters
represent successful applications, lower-case letters denote attempts that were
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rejected by the disprover. We also include the number of generalization conjec-
tures that were checked by the disprover. The number in parentheses gives the
number of rejected conjectures.

The results show that our heuristics rarely suggest an over-generalization.
Less than 12% of the suggestions were rejected by the disprover. In particular,
our heuristic for inverse weakening successfully removes unnecessary conditions
and never attempts to over-generalize in these examples.

5 Conclusion

We presented improved heuristics for a generalization algorithm that uses the
generalization rules inverse substitution, inverse weakening, and inverse func-
tionality in a goal-directed way.

For inverse substitution, we eliminate selectors to tidy up the result of a pre-
vious destructor style induction only if this does not heuristically impede a
subsequent inductive proof. For common non-variable subterms, our heuristic
is more liberal than other techniques and does not commit to only minimal or
maximal subterms. By using recursion information about the involved proce-
dures, we typically find the correct subterms to be generalized at once. We also
generalize apart variable occurrences in many naturally occurring generalization
problems without having to try out many different combinations. Similarly, we
made inverse weakening more widely applicable in order to remove unnecessary
conditions and get easily reusable generalizations. For inverse functionality, we
selected a compromise that does not attempt to over-generalize often.

The evaluation within the �eriFun system shows that our improvements in
fact pay off and solve many examples we found in the literature as well as in our
case studies. Although we relaxed the preconditions for inverse substitution and
inverse weakening in comparison to other approaches, the disprover rarely has
to reject a generalization attempt.

To our knowledge, �eriFun now offers the best performing heuristics for these
generalization rules among publicly available theorem provers. Since our ap-
proach is flexible—it does not rely on a specific induction selection or rewriting
strategy (e. g., rippling)—, other verification systems can benefit from the im-
proved heuristics as well.

As a next step in our development, we are experimenting with an automatic
invocation of our generalization algorithm. The goal is to suggest a generalization
only when this seems beneficial and not in all cases where the verification tactic
fails. Preliminary experiments with suggesting only “substantial” generalizations
(that is, generalizations that involve more than selector elimination) have been
quite promising.

Acknowledgment. I am grateful to Christoph Walther and the anonymous
CADE referees for constructive feedback on earlier versions of this paper.
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Abstract. Computation with a term rewrite system (TRS) consists of
the application of rules from a given starting term until a normal form
is reached. Two natural questions arise from this the definition: whether
all terms can reach at least one normal form (normalization property),
and whether all terms can reach at most one normal form (unique nor-
malization property).

We study the decidability of these properties for two syntactically
restricted classes of TRS: for (i) shallow right-linear TRS, and for (ii)
linear right-shallow TRS.

We show that the normalization property is decidable for both cases
(i) and (ii), and that the unique normalization property is undecidable for
case (ii), whereas for case (i) remains unknown. Nevertheless, for case (i),
if the normalization property is satisfied, then the unique normalization
property becomes decidable. Hence, whether all terms reach exactly one
normal form for TRS of kind (i) is decidable.

These results are based on known constructions of tree automata with
constraints and rewrite closure, and on reducing the normalization prop-
erty to normalization from a concrete finite set of terms.

1 Introduction

Term rewriting is a Turing-complete model of computation that specifies rules
for replacing certain patterns in terms by equivalent, in some cases simpler, other
terms. Computation with a rewrite system consists of the application of rules
from a given starting term until a normal form is reached, i.e. a term that can
not be rewritten any more.

Two natural questions arise from this the definition: whether all terms can
reach at least one normal form (normalization property, sometimes called weak
normalization) for a given TRS, and whether all terms can reach at most one
normal form (unique normalization property).
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These properties are difficult to deal with, but often can be obtained as a con-
sequence of other properties. For example, termination (sometimes called strong
normalization) is a much studied property of TRS. It states that no infinite
rewrite derivation exists, and in particular implies normalization. Another well
known property is confluence, which states that any two terms derived from a
common one can also be derived into another common one term. Confluence im-
plies in particular unique normalization, and in fact, when a TRS is normalizing,
confluence and unique normalization are equivalent properties.

The normalization and unique normalization properties are undecidable in
general. In [16] a polynomial-time algorithm for checking whether a ground
rewrite system has the unique normalization property is presented. In [13] it
is shown that normalization is decidable for left-linear growing TRS.

In this paper we study the decidability of these properties for two syntactically
restricted classes of TRS. On the one hand, for (i) shallow right-linear TRS, i.e.,
for TRS where the variables occur at depth 0 or 1 in the rules, and such that the
variables occur at most once in the right-hand sides of the rules. On the other
hand, for (ii) linear right-shallow TRS, i.e., for TRS where the variables occur at
most once in every side of the rules, and such that the variables occur at depth
0 or 1 in the right-hand sides of the rules.

For the normalization property we obtain decidability in both cases (i) and (ii),
but for unique normalization the answer is negative for case (ii), and we give a
reduction proving its undecidability, whereas for case (i) (un)decidability remains
unknown. Nevertheless, for case (i), if the normalization property is satisfied,
then the unique normalization property becomes decidable, as a consequence of
the fact that confluence is known to be decidable [7] for TRS of kind (i).

These results are obtained by proving, on the one hand, that normalization is
equivalent to normalization restricted to a finite set of terms, and on the other
hand, that normalization from a given starting term is decidable. The latter
is proved by making an adequate use of already known constructions on tree
automata with constraints.

The paper is structured as follows. In Section 2 we introduce some basic
notions and notations. In Section 3 we present normalization-preserving trans-
formations that replace the shallow terms by flat terms, and allow us to simplify
the arguments in the rest of the paper. In Sections 4 and 5 we show how to
reduce normalization of linear right-flat, and flat right-linear TRS, respectively,
to normalization from a given finite set of terms. In Section 6 we use the previous
characterizations and tree automata techniques for deciding the normalization
property for both cases. Finally, in Section 7 we show that unique normalization
is undecidable for linear right-shallow TRS.

2 Preliminaries

We use standard notation from the term rewriting literature. A signature Σ is a
(finite) set of function symbols, which is partitioned as ∪iΣi such that f ∈ Σn if
the arity of f is n. Symbols in Σ0, called constants, are denoted by a, b, c, d, with
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possible subscripts. The elements of a set V of variable symbols are denoted
by x, y, z with possible subscripts. The set T (Σ,V) of terms over Σ and V ,
position p in a term, subterm t|p of term t at position p, and the term t[s]p
obtained by replacing t|p by s are defined in the standard way. For example, if
t is f(a, g(b, h(c)), d), then t|2.2.1 = c, and t[d]2.2 = f(a, g(b, d), d). The empty
sequence, denoted by λ, corresponds to the root position. By Pos(t) we denote
the set of all positions p such that t|p is defined. We write p1 > p2 (equivalently,
p2 < p1) and say p1 is below p2 (equivalently, p2 is above p1) if p2 is a proper
prefix of p1, that is, p1 = p2.p

′
2 for some nonempty p′2. Positions p and q are

disjoint if p �≥ q and q �≥ p. When p1 is of the form p2.p
′
2, p1 − p2 denotes p′2. By

Vars(t) we denote the set of all variables occurring in t. Usually we will denote
a term f(t1, . . . , tn) by the simplified form ft1 . . . tn, and t[s]p by t[s] when p
is clear by the context or not important. The height of a term s is 0 if s is a
variable or a constant, and 1 + Maxi(height(si)) if s = fs1, . . . , sm. The depth
of an occurrence at position p of a term t in a term s, i.e. s = s[t]p, is |p|. The
size of a term s = fs1 . . . sm, denoted by |s|, is 1 + Σm

i=1|si|, and the size of a
constant or a variable is 1.

A substitution σ is sometimes presented explicitly as {x1 &→ t1, . . . , xn &→ tn}.
Let Vn be a set of n variables. A linear term C ∈ T (Σ,Vn) is called a context
and the expression C[t1, ...tn] denotes the term in T (Σ) obtained from C by
replacing variable xi by ti for each 1 ≤ i ≤ n. We assume standard definitions
for a rewrite rule l → r, a rewrite system R, the one step rewrite relation at
position p induced by R →R,p, or →l→r,p,σ if we make explicit the used rule
l → r and substitution σ, and the one step rewrite relation induced by R (at any
position) →R. For a rule l → r, l is the left-hand side (lhs for short) and r is the
right-hand side (rhs). If p = λ, then the rewrite step →R,p is said to be applied
at the topmost position (at the root); and it is denoted by s →R,>λ t otherwise.
We make the usual assumptions for the rules l → r of a rewrite system R, i.e.
l is not a variable, and all variables occurring in r also occur in l. The size of a
TRS R, denoted by |R|, is the sum of all the terms in their rules.

The notations ↔, →+, and →∗, are standard [4]. R is terminating if no infinite
derivation s1 →R s2 → · · · exists. A term t is reachable from s by R (or, R-
reachable) if s →∗

R t. A term t is reachable from a set of terms S by R if t is
reachable from all terms in S. A term t is a descendant of a set of terms S by
R if t is reachable from at least one term in S. A term s is R-irreducible (or, in
R-normal form) if there is no term t such that s →R t. A term s is R-normalizing
if s R-reaches a normal form, and in this case we also say that s has a normal
form. It is R-uniquely normalizing if it R-reaches at most one normal form.

A (rewrite) derivation (from s) is a sequence of rewrite steps (starting from
s), that is, a sequence s →R s1 →R s2 →R . . .. With s →∗

R t we will denote that
t is R-reachable from s, or a concrete derivation from s to t, depending on the
context.

A term t is called ground if t contains no variables. It is called shallow if all
variable positions in t are at depth 0 or 1. It is flat if its height is at most 1. It
is called linear if every variable occurs at most once in t.
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A rule l → r ∈ R is called shallow (flat, linear) if both l, r are shallow (flat,
linear). It is called right-shallow (right-flat, right-linear) if r is shallow (flat,
linear). It is called left-shallow (left-flat, left-linear) if l is shallow (flat, linear).
It is called collapsing if r is a variable.

A rule l → r is called decreasing if height(l) > height(r), increasing if
height(l) < height(r), and preserving if height(l) = height(r). A rewrite step
application s →l→r t is decreasing (increasing, preserving) if l → r is.

A TRS R satisfies the normalization property, or, equivalently, R is normaliz-
ing, if all terms are R-normalizing. It satisfies the unique normalization property,
or, equivalently, R is uniquely normalizing, if all terms are R-uniquely normal-
izing. Note that unique normalization does not imply normalization.

A tree automaton -fta in short- over Σ is a tuple A = (Q,Σ,Qf , Δ) where Q
is a set of states, Qf ⊆ Q is a set of final states, and Δ is a set of transition rules
of the form f(q1, ..., qn) → q. The set of rules define a ground TRS and the move
relation in the fta can be viewed as the corresponding rewrite relation which will
be denoted →∗

A. L(A) = {t ∈ T (Σ)|t →∗
A q, q ∈ Qf} is the language recognized

by A. A deterministic automaton (dfta in short) is an automaton where no two
rules share the same left-hand side.

3 Simplifying Assumptions

In this section we comment on some simplifying assumptions on the signature
and the rewrite system, and possible transformations of them in order to sat-
isfy the assumptions when initially this is not the case. Similar transformations
have appeared in other previous works [10,8]. We just comment them and give
sketched proofs in the appendix showing that they preserve the normalization
property.

We will always assume that all terms are constructed over a given fixed sig-
nature Σ that contains several constants and only one non-constant function
symbol f . If this was not the case, we can define a transformation T from terms
over Σ into terms over a new signature Σ′ as follows. Let m be the maximum
arity of a symbol in Σ plus 1. We choose a new function symbol f with arity
m and define the new signature Σ′ = Σ′

0 ∪ Σ′
m as Σ′

0 = Σ and Σ′
m = {f}.

Note that all symbols of Σ appear also in Σ′ but with arity 0. Now, we recur-
sively define T : T (Σ,V) → T (Σ′,V) as T (c) = c and T (x) = x for constants
c ∈ Σ0 and variables x ∈ V , and T (gt1 . . . tk) = f(T (t1), . . . , T (tk), g, . . . , g) for
terms headed with g ∈ Σk, for k > 0. Given a TRS R, by T (R) we denote
{T (l) → T (r)|l → r ∈ R}.

Lemma 1. R is normalizing if and only if T (R) is normalizing.

For the case where the TRS R is left-shallow we will assume that R is indeed
left-flat. If this was not the case, we can modify R by applying the following
transformation whenever it is possible.

– If there is a non-constant ground term t that is a subterm at depth 1 of
a left-hand side of a rule in R, then create a new constant c, replace all
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occurrences of t in the left-hand sides of the rules of R by c, and add the
rule t → c to R. If it is the case that t is not a normal form, then add also
the rule c → t.

Lemma 2. Let R be a left-shallow TRS and R∞ be the resulting TRS obtained
from R by the above transformation

Then R is normalizing if and only if R∞ is normalizing.

Finally, we will also assume that all right-hand sides in R are flat. If this was
not the case, but R is right-shallow, we can modify R by applying the following
transformation whenever it is possible.

– If there is a non-constant ground term t that is a subterm at depth 1 of
a right-hand side of a rule in R, then create a new constant c, replace all
occurrences of t at depth 1 in the right-hand sides of the rules of R by c,
and add the rule c → t to R.

Note that the previous transformation converts right-shallow TRS’s into right-
flat TRS’s, but also preserves the possible left-flatness obtained by the previous
transformation. The proof of the following lemma is analogous to the previous
one, and even simpler.

Lemma 3. Let R be a right-shallow TRS and R∞ the resulting TRS of the
above transformation.

Then R is normalizing if and only if R∞ is normalizing.

4 Characterizing Normalization of Linear Right-Flat
TRS

In this section we show that normalization of a linear right-flat TRS R is equiv-
alent to the R-normalization of all ground terms of height 0 or 1. To this end,
we first obtain a rewrite closure presentation of R, which is only necessary for
simplification purposes in the argumentation, but not for the decision procedure
of normalization.

4.1 Rewrite Closure

We present a rewrite closure transformation for linear right-flat TRS that is a
straightforward variation of others presented before, like for the special case of
ground TRS [14], for rule-linear shallow TRS [15], and for flat linear TRS [9].
The process of saturation, in this context, can be interpreted as asymmetric
completion [12].

A linear right-flat TRS can be saturated under the following ordered chaining
inference rule to give an enlarged linear right-flat TRS with some nice properties.

Ordered Chaining:
l → r s[u] → t

s[l]σ → tσ
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where this inference rule is only applied if l → r is either an increasing or
preserving rule, s[u] → t is a decreasing rule, σ is the most general unifier of r
and u, and neither r nor u is a variable.

Note that these restrictions ensure that ordered chaining preserves linearity
and right-flatness. Note also that height(s[l]σ) ≤ height(s[u]), and hence, the
saturation process terminates, since only a finite number of rules can be generated.

Application of ordered chaining preserves the normalization property, since it
just adds new rules that can be emulated by several applications of the original
ones. In fact, it preserves the rewrite relation →+

R.

Lemma 4. Let R be a linear right-flat TRS saturated under the ordered chaining
inference rules. If s →∗

R t, then there is a derivation of the form s →∗
R u →∗

R t
where the subderivation s →∗

R u contains only applications of decreasing rules,
and the subderivation u →∗

R t contains only application of preserving or increas-
ing rules.

Lemma 4 can be easily established using proof simplification arguments [1].

4.2 Characterization

In this subsection we assume that R is now the linear right-flat TRS resulting
from the previous rewrite closure transformation.

We need a definition for depth 1 positions, that are then denoted asnatural num-
bers i, j. Recall that m is the arity of the only non-constant function symbol f .

Definition 1. We define that position i goes to position j in a derivation s →∗
R

t, where all rewrite rules l → r applied at position λ satisfy |l|, |r| > 0, recursively
as follows:

– if s →∗
R t has 0 steps then every position i in {1 . . .m} goes to i.

– if s →∗
R t is of the form s →∗

R t′ →R,>λ t and i goes to j in s →∗
R t′, then i

goes to j in s →∗
R t.

– if s →∗
R t is of the form s →∗

R t′ →fl1...lm→fr1...rm,λ t, i goes to j in s →∗
R t′,

and lj = rk is a variable, then i goes to k in s →∗
R t.

The following lemma is straightforward from the previous definition.

Lemma 5. Let R be a linear right-flat TRS resulting from the previous rewrite
closure transformation. If i goes to j in s →∗

R t, then t|j is reachable from s|i
and s[u]i →∗

R t[u]j for any term u.

Lemma 6. Let R be a linear right-flat TRS resulting from the previous rewrite
closure transformation. If s satisfies that s|i is a variable x that occurs only once
in s, and s →∗

R t, then the variable x occurs at most once in t. Moreover, if x
occurs just once in t and the rewrite steps at λ in s →∗

R t are always preserving,
then there exists a depth 1 position j such that t|j = x and i goes to j in s →∗

R t.

Definition 2. A rewrite step s →l→r,λ t eats position i if height(l) > 1 and
height(l|i) > 1
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Note that, in particular, if a rewrite step eats some position, then it uses a
decreasing rule.

Lemma 7. Let R be a linear right-flat TRS resulting from the previous rewrite
closure transformation. If i goes to j in a derivation s →∗

R t where only pre-
serving and increasing rules are used, the rewrite step t →l→r,λ u eats position
j, and no height 0 term is reachable from s|i, then, there exists a rewrite rule
application s →R,λ s′ that eats position i.

Lemma 8. Let R be a linear right-flat TRS resulting from the previous rewrite
closure transformation, and suppose that all constants and height 1 terms can
reach a normal form. Then all terms can reach a normal form by R.

Proof. Let t be the minimal term in size that can not reach any normal form.
By the assumptions of the lemma, the height of t is at least 2. We write t of the
form ft1 . . . tm. For every ti we define t′i to be as ti if it is a constant, or to be
a new variable xi if ti is not a constant. Note that the ti’s of the second case
can not reach a constant, by the minimality of t. The term t′ = ft′1 . . . t

′
m is flat,

and hence, by the assumptions of the lemma, it can reach a normal form u. By
Lemma 4 there exists a derivation t′ →∗

R u, with a first part with only decreasing
rules and a second part without them. The only possible decreasing rewrite step
in t′ →∗

R u can occur then at the beginning. But in fact it can not occur, since
the rule would also be applicable on t producing a smaller term than t, which
can not reach a normal form since t can not, and this is a contradiction with the
minimality of t. Hence, all the rewrite steps in t′ →∗

R u are either preserving or
increasing, and the ones at position λ are preserving.

Now, for every ti that is not a constant we define t′′i to be a normal form
reachable from ti. Note that such a t′′i must exist since t is the minimal term
having no normal form reachable from it. Moreover, a derivation ti →∗

R t′′i with
a first part with decreasing rules and a second part without them, can only have
preserving and increasing rewrite steps, again by the minimality of t. We define
a substitution σ on the previously new introduced variables xi as xiσ = t′′i . The
derivation t′ →∗

R u instantiated with σ gives a derivation t′′ = ft′′1 . . . t
′′
m →∗

R uσ,
and we have also the derivation t →∗

R t′′ with no rewrite steps at λ. Both
derivations have preserving and increasing rewrite steps. Combining the two
derivations we have a derivation t →∗

R uσ, such that a position i goes to j in it
if and only if i goes to j in t′′ →∗

R uσ. By Lemma 6 applied on the derivation
t′ →∗

R u, if one of the new variables xi occurs in u, then it occurs at a depth
1 position j such that i goes to j. Since u is a normal form and uσ can not be
a normal form, there exists a rewrite step at position λ on uσ such that eats
some of these positions j. On the other hand, instantiation of a derivation does
not affect the goes to property, and hence, if a position i goes to j in t′ →∗

R u,
then i also goes to j in t′′ →∗

R uσ, but also in t →∗
R uσ. From all these facts

we conclude that there exists a depth 1 position i in t that goes to a depth 1
position j in uσ, such that a rewrite step at position λ in uσ eats position j.
Moreover, t|i can not reach a constant. By Lemma 7 it follows that then there
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exists a rewrite rule application in t that eats position i. But this rewrite step is
then decreasing, and contradicts the minimality of t. ��

5 Characterizing Normalization of Flat Right-Linear
TRS

In this section we show that normalization of a flat right-linear TRS R is equiva-
lent to the R-normalization of a finite set of terms. These terms are constructed
over other sets of terms that we describe as follows.

Let S ⊆ Σ0. We define N(S) to be the set of all non-constant normal forms
reachable from S and not reachable from any constant in Σ0−S. We assume that
we have computed sets N ′(S) for every S ⊆ Σ0 satisfying that N ′(S) ⊆ N(S)
and |N ′(S)| = min(m, |N(S)|) (the computation of a concrete N ′(S) for every
S is postponed to Section 6). Recall that m is the arity of the only non-constant
function symbol f . The idea is that only a small subset N ′(S) of examples of
normal forms reachable from S suffices to decide normalization.

We assume also that there are at least m new constants not occurring in R
(note that the addition of new constants preserves normalization).

Lemma 9. If there exists a term from which no normal form is reachable, then
there exists one ground term t′ that is either a constant or of the form ft′1 . . . t

′
m,

where all t′i are either constants or terms in some N ′(S), such that no normal
form is reachable from t′.

Proof. Assume that for every ground term t′ that is either a constant or of the
form ft′1 . . . t

′
m, where all t′i are either constants or terms in some N ′(S), some

normal form is reachable from t′. Assume also that t is a minimal term in height
from which no normal form is reachable. Then t is of the form ft1 . . . tm, and all
ti have at least one normal form. Replacing every ti by a corresponding normal
form we get a term reachable from t, and hence, a term from which no normal
form is reachable. Hence, we can assume directly that all ti’s are normal forms
(at this point we lose the minimality assumption for t).

Before continuing we need a technical definition based on the ti’s. We consider
the set T = {ti|i ∈ {1 . . .m}} and define a function F : T → T (Σ,V) as follows.
For every constant u ∈ T we define F (u) := u. For every u ∈ T that is not a
constant, let S be the set containing just all the constants that reach u. If S is
empty then we choose F (u) to be a constant not occurring in R and different
from all the rest of F (u′)’s for u �= u′ ∈ T (this is always possible since there
exist at least m constants not occurring in R). Otherwise, if S is not empty, then
either u ∈ N ′(S) or u �∈ N ′(S). In the first case we define F (u) := u. In the
second case we know that N ′(S) contains at least m elements, and we chose F (u)
to be one element in N ′(S) different from all the rest of F (u′)’s for u �= u′ ∈ T .
With this definition, F is injective, and F (u) �= u implies F (u) �∈ T . Hence,
considering F−1 as its inverse on the image F (T ), it holds that F ′ = F ∪F−1 is
a bijective function from T ∪ F (T ) to T ∪ F (T ). Now, we consider F ′ extended
to all terms by the identity for the ones not in T ∪ F (T ).
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We comment some properties of F ′. First note that F ′ is its own inverse, i.e.
F ′(F ′(v)) = v for all terms v. Moreover, if v is a normal form, then F ′(v) is also
a normal form. Finally, if a constant reaches a term v, then it also reaches F ′(v).
But also note that for the depth 1 subterms ti of t, F ′(ti) is either a constant or
a term in some N ′(S),

We show now that any derivation starting from s = fF ′(t1) . . . F ′(tm) into
a term v = fv1 . . . vm and such that all the rewrite steps at λ are preserving
can be converted into a derivation from t into fF ′(v1) . . . F ′(vm). We write the
original derivation as s = s1 →∗

>λ s′1 →λ s2 →∗
>λ s′2 →λ s3 . . . s

′
n−1 →λ sn →∗

>λ

s′n = v, and use it for constructing a new derivation of the form u = u1 →∗
>λ

u′
1 →λ u2 →∗

>λ u′
2 →λ u3 . . . u

′
n−1 →λ un →∗

>λ u′
n. We define the explicit

terms starting from u′
n and going backwards. The term u′

n is obtained from
s′n by replacing every subterm at depth 1 by its image by F ′. Formally, u′

n =
fF ′(s′n|1), . . . , F ′(s′n|m). Now, every ui is obtained from si and u′

i as follows.
Let {j1 . . . jk} be the positions at depth 1 in si that are not constants. Then
ui = si[u′

i|j1 ]j1 . . . [u′
i|jk

]jk
. Every u′

i−1 is obtained from ui as follows. Let l → r
be the applied rule at λ and σ the used substitution for obtaining si from s′i−1.
Let σ′ be the substitution defined only on Vars(r) and such that rσ = ui. We
extend σ′ to the variables x occurring in l and not in r as xσ′ = F ′(xσ), and
define u′

i−1 = lσ′.
It is not difficult to prove inductively on the previous construction that, for

every i in {1 . . . n} and every depth 1 position j, it holds that si|j →∗
R F ′(ui|j)

and that s′i|j →∗
R F ′(u′

i|j). To this end the important fact is that F ′ is its own
inverse, and that if a constant reaches a term v, then it also reaches F ′(v).
Moreover, the previous derivation is a correctly defined derivation.

Now we look at the term u = u1. It has been defined from s = s1 and from
u′

1. By this definition, if s|j is a constant, then u|j = s|j , and in particular,
F ′(s|j) = u|j . If s|j is not a constant, then, by the original definition of s, s|j is
a normal form. But we have also the property stating that s|j →∗

R F ′(u|j), and
since s|j is a normal form, it is exactly F ′(u|j), which implies that F ′(s|j) =
F ′(F ′(u|j)) = u|j. Therefore, for any depth 1 position j, F ′(s|j) = u|j holds.
This and the original definition of s implies u = t.

We come back to analyze t = ft1 . . . tm and note that s = fF ′(t1) . . . F ′(tm)
satisfies that all the F ′(ti)’s are either constants or terms in some N ′(S). Hence,
by the initial assumptions, there exists a derivation from s into a normal form.
Assume first that there is no decreasing rewrite step at λ in this derivation. Then,
if fv1 . . . vm is the reached normal form, it holds that fF ′(v1) . . . F ′(vm) is also a
normal form, and it is reachable from t, which contradicts our initial assumption.
Hence, assume that there is at least one decreasing rewrite step at λ in the
derivation from s into a normal form. We write this derivation making explicit
the first of such rewrite decreasing steps at λ as s →∗

R fv1 . . . vm →λ v →∗
R u,

where either v is a constant or v is in {v1 . . . vm}, depending on whether the
applied rule has a constant as right-hand side or is collapsing. Note that all
rewrite steps at position λ in s →∗

R fv1 . . . vm are preserving. Again we have
t →∗

R fF ′(v1) . . . F ′(vm), but also fF ′(v1) . . . F ′(vm) →λ F ′(v). If v is a normal
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form then F ′(v) is also a normal form, and hence t reaches a normal form,
contradicting the initial assumption. If v is not a normal form, then F ′(v) = v,
and hence, t reaches v, and v reaches u, which is a normal form, contradicting
again our initial assumption. ��

6 Deciding with Automata

6.1 The Right-Flat Linear Case

By Lemma 8, for deciding normalization for right-flat linear TRSs, we have just
to decide whether a given constant or height 1 term can reach a normal form in a
right-flat linear TRS. We will see that this can be done by using tree automata.

First, it is well known that the set of normal forms of a left-linear TRS is
recognizable by a finite tree automaton. Let V be a finite set of variables and
NF (R,V) be the set of irreducible terms of T (Σ,V) w.r.t. R:

Lemma 10. Let R be a right-flat linear TRS. A dfta whose number of states
is O(2|R|) which recognizes NF (R,V) can be computed. Furthermore, if the sig-
nature is fixed, it can be computed in time O(|R| ∗ m ∗ 2|R|∗m) where m is the
maximal arity of the signature.

Proof. Let P = {(i, p) | p ∈ Pos(li), (li, ri) ∈ R}. It is easy to compute for
NF (R,V) a dfta where the set of states is 2P and the set of final states is
{S ⊂ P |∀i, (i, λ) �∈ S}. Furthermore, let us note that if the TRS is also left-flat,
the number of states can be reduced to O(|R|). ��

It is also well known that for a fta A and a right-flat linear TRS R, the set of
descendants of L(A) by R is recognizable [6,11,3]. Indeed, for computing from
A a fta for the set of descendants by R of L(A), we saturate the rules of A as
follows: for any rewrite rule l → r of R, for any substitution σ from V to Q
(restricted to accessible states) s.t. σl →∗

A q, we add rules for enabling σr →∗
A q.

We can suppose w.l.o.g. that for any constant c occurring in a rhs of R, there
is one state qc which accepts exactly {c}. Then, as R is right-flat, for enabling
σr →∗

A q, just one rule has to be added: e.g. let g((h(a, x), h(y, a)) → f(a, y, b, x)
be a rule of R and q1, q2, q states of A s.t. g(h(a, q1), h(q2, a)) →∗

A q; for enabling
f(a, q2, b, q1) →∗

A q, the rule f(qa, q1, qb, q2) → q is added. Let us note that the
construction works also for non-ground terms (with V finite). If L(A) is included
in T (Σ,V), the set of terms reachable from at least one term of L(A) is also
included in T (Σ,V), as each variable occurring in a rhs of a rule occurs in the
corresponding lhs, and we can consider variables as new constants. Therefore,
adapting the precise complexity analysis of [5] we obtain:

Lemma 11. Let R be a right-flat linear TRS, and let t be a constant or term
of height 1. Then, Lt, the set of terms reachable from t is recognizable and a fta
recognizing it can be computed in O(|R|2 ∗ (|R|+m)4|R|) where m is the maximal
arity of the signature. Furthermore its number of states is O(|R| + m).
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Hence, let t be a constant or term of height 1 in T (Σ,V). By the preceding
lemmas, we can compute ftas for Lt and NF (R,V). Then, by intersecting them
and testing emptiness, we can decide whether a normal form can be reached
from t. Therefore, by Lemma 8, we can decide whether R is normalizing.

Theorem 1. Normalization of a linear right-shallow TRS is decidable.

6.2 The Flat Right-Linear Case

Whereas the set of normal forms of a left-linear TRS is recognizable by a fta, it
is of course no more the case when the TRS is not left-linear. Hence, in order
to represent the set of normal forms of a flat TRS, we will need more powerful
class of automata which enable to test equality or disequality between sibling
subterms.

Tree automata with disequality and equality constraints between
brothers. An elementary equality constraint (resp. disequality constraint) be-
tween brothers is a predicate on T (Σ) written i = j (resp. i �= j) where i, j ∈ N∗.
Such a predicate is satisfied on a term t, which we write t |= i = j, if i, j ∈ Pos(t)
and t|i = t|j (resp. i �= j is satisfied on t if i = j is not satisfied on t).

The satisfaction relation |= is extended as usual to any Boolean combination of
equality and disequality constraints. The empty conjunction and disjunction are
respectively written � (true) and ⊥ (false). A constraint will be such a boolean
combination. Let π be a partition of [1..n] and ≡π the associated equivalence
relation. It defines a constraint ∧i≡πji = j ∧ ∧i�≡πji �= j. A constraint definable
by a partition is called strong. Two constraints are said compatible if they can
simultaneously be satisfied. Two constraints are equivalent if they have the same
models. A constraint is said compatible with a partition if it is compatible with
(actually implied by) the constraint defined by the partition.

An automaton with disequality and equality constraints between brothers
(a.w.c.b.b. in short) is a tuple (Q,Σ,Qf , Δ) where Σ is a finite ranked alphabet,
Q is a finite set of states, Qf is a subset of Q of finite states and Δ is a set of
transition rules of the form f(q1, . . . , qn) c−→ q where f ∈ Σ, q1, . . . , qn, q ∈ Q,

and c is a Boolean combination of equality (and disequality) constraints between
brothers.

Let A = (Q,Σ,Qf , Δ). The move relation →A is defined as for fta modulo
the satisfaction of equality and disequality constraints: let t, t′ ∈ F (Σ ∪ Q,X),
then t→A t′ if and only if:

. there is a context C ∈ C(Σ ∪Q) and some terms u1, . . . , un ∈ T (Σ)

. there exists a rule f(q1, . . . , qn) c−→ q ∈ Δ s.t.

t = C[f(q1(u1), . . . , qn(un)] and t′ = C[q(f(u1, . . . , un))]
f(u1, . . . , un) |= c

∗→A is the reflexive and transitive closure of →A. A term t is accepted iff t→A q
for some q in Qf .
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An a.w.c.b.b. is deterministic if there are no two rules f(q1, . . . , qn) c−→ q ,

f(q1, . . . , qn) c′
−→ q′, with c and c′ compatible and q �= q′. If an automaton is

deterministic, we can suppose for any rule f(q1, . . . , qn) c−→ q, that if c implies
i = j, then qi = qj .

A normalized a.w.c.b.b. is an automaton where all constraints are strong.
Note that, we can always normalize an a.w.c.b.b.: one rule f(q1, . . . , qn) c−→ q

will correspond to all the rules f(q1, . . . , qn)
cp−→ q with cp strong and compatible

with c. This transformation can multiply the number of rules by Bn the number
of partitions of [1 . . . n]. A normalized automaton can be determinized by the
usual subset construction.

An a.w.c.b.b. recognizing the intersection of two languages recognized by
a.w.c.b.b.s can be computed by a standard product construction: the constraint
associated with the by-product of two rules is the conjunction of the constraints
of the two rules. Emptiness of the language recognized by an a.w.c.b.b. is de-
cidable and polynomial for normalized deterministic automata [2]. Let us note
that if the automaton is normalized but not deterministic, the complexity of the
problem becomes EXPTIME-complete. If the automaton is deterministic but
not normalized, the problem is polynomial for fixed signature, (as the normal-
ization explained above is polynomial), NP-complete otherwise. Here, we will
need a stronger result:

Lemma 12. Let A be a deterministic normalized a.w.c.b.b. and m greater or
equal to the maximal arity. Deciding whether L(A) is of cardinality greater or
equal to m and computing min(|L(A)|,m) terms of L(A) can be done in time
complexity O(m3 ∗ |Δ| ∗ |Q|).

Proof. The idea is just to memorize for each state q, Ex(q) a set of at most m
terms reaching q. The Ex(q) are initialized to the empty sets. At each iteration,
we compute for every state q a new set Ex(q) from the previous sets Ex(s): let
q be a state, r a rule f(q1, . . . , qn) c−→ q, with c expressed by a partition π, [i]π
denoting the class of i in the equivalence relation defined by π. For each s in Q,
let needr(s) = |{[i]π|s = qi}|: needr(s) is the number of different terms reaching
s you need to apply the rule and is bounded by the maximal arity, so by m.
If nex(s) denotes the cardinality of Ex(s), the rule r produces Πs∈QP

nex(s)
needr(s)

examples, where P k1
k2

expresses permutations of k2 elements chosen from a set
of k1 elements without repetition.

Hence let Rq be the set of rules whose target state is q: the number of
examples available at this step for q is

∑
r∈Rq

Πq′∈QP
nex(q′)
needr(q′) and you build

min(m,
∑

r∈Rq
Πq′∈QP

nex(q′)
needr(q′)) terms reaching q. Computation stops when one

iteration keeps unchanged the cardinality of the Ex(q).
Therefore there are at most m ∗ |Q| iterations, with each iteration in O(|Δ| ∗

m2). ��
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Ground normal forms of a left-flat TRS. An a.w.c.b.b. can be used for
representing the set of ground normal forms of a left-flat TRS:

Lemma 13. Let R be a left-flat TRS; we can compute a deterministic normal-
ized a.w.c.b.b. which recognizes NF (R). Its number of states will be in O(|R|),
its size in O(|Σ| ∗ |R|m+1 ∗Bm) where Bm is the number of partitions of {1..m}.
The computation can be done in time O(|Σ| ∗ |R|m+2 ∗Bm).

Proof. Let Sub be the set of ground irreducible constants occurring in lhs of R;
Q = Sub ∪ {OK,⊥} will be the set of states. Every state except ⊥ is final. The
rules are defined as follows:

for any constant a, a −→ a is a rule if a is irreducible, otherwise a −→ ⊥ is a
rule.

f(q1, . . . , qn) c−→ q with c a constraint defined by a partition π is a rule iff one
of the following conditions is satisfied:

(1) some qi = ⊥ and q = ⊥.
(2) All qi are different from ⊥, q is either ⊥ or OK, and for all i, j, c |= i = j
implies qi = qj . Moreover, q is ⊥ iff there exists a rule fl1 . . . lm → r satisfying
that, if li is a constant then li = qi, and if lj = lk are the same variable then
c |= j = k.

The number of states is |Sub|+2, so in O(|R|). Let us note that the number of
rules is O(|Σ|∗|R|m+1∗Bm) as here we require- in order to simplify the proof- the
automaton to be normalized. However, this restriction can be weakened which
would decrease the number of rules. ��

Preservation of recognizability for right-linear right-shallow TRS has been proved
by Nagaya and Toyama [5,13]. The construction is a little more critical than
in the linear case as you have to ensure determinism of the automaton along
the construction. E.g., when you saturate the rules for taking in account the
rewrite rule f(x, x) → g(x), determinism ensures that you can consider only
the rules whose lhs are of the form f(q, q). Once more, a precise analysis of
the construction can be found in [5]. We adapt here the construction to our
particular necessities:

Lemma 14. Let R be a right-linear flat TRS, and S ⊆ Σ0 a set of constants.
We can compute a dfta which recognizes the set of terms reachable from S by R
and not reachable from any constant in Σ0 −S by R. The number of states is in
O(2|Σ0|). The computation can be done in O(|Σ| ∗ |R|2 ∗ 2(|Σ0|∗O(m)) time.

Proof. We will build a complete dfta A = (Q,Σ,Qf , Δ) with Q = 2Σ0, Qf =
{S}.

The set of transitions is initialized by Δ = {s → {s}/s ∈ Σ0}∪{f(q1, ..., qn) →
∅/f ∈ Σ −Σ0}..

Then, the rules are saturated in order to simulate rewriting by R. The objec-
tive is to get, for any set of constants B, t ∗→A B Iff t is reachable from B by
R and not reachable from any constant in Σ0 − B. More precisely, let l → r be
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a rule of R, σ a substitution from Vars(l) ∪ Vars(r) into Q (restricted to the
accessible states), and B the state s.t. lσ ∗→A B; rσ = f(r1, ..., rp) with ri either
a state or a constant. Let A1 . . . Ap be accessible states satisfying that Ai = ri,
if ri is a state, Ai containing ri if ri is a constant. The rule f(A1, ..Ap) → A,
will be transformed into f(A1, ..Ap) → A ∪B.

As saturation increases cardinality of the rhs of rules (considered as a set
of constants), the process clearly terminates, the number of iterations being
bounded by |Σ0| ∗ 2|Σ0|∗(1+m) ∗ |Σ|.

Then, it can be proven by induction that the language accepted by A in the
state C, i.e. the set of terms t s.t. t ∗→A C ,is the set of terms reachable from
C, not reachable from any constant in Σ0 − C. In particular, as Qf = {S}, the
automaton recognizes the set of terms reachable from S by R and not reachable
from any constant in Σ0 − S by R.

As each iteration is in time O(|R|2 ∗2|Σ0|∗2m), the algorithm is in time O(|Σ|∗
|R|2 ∗ 2|Σ0|∗O(m)). ��

The preceding lemmas provide us tools for computing for each subset S of con-
stants a set N ′(S) of non-constant normal forms reachable from S and not
reachable from any other constant, whose cardinality is min(m, |N(S)|).

Lemma 15. Let R be a flat right-linear TRS, m a positive integer and S a
set of constants. We can compute a subset N ′(S) of N(S) whose cardinality is
min(m, |N(S)|). Furthermore, this can be done in polynomial time for a fixed
signature.

Proof. We first compute by Lemma 14 a dfta for the terms reachable from S
and not reachable from any constant in Σ0 − S; Then we intersect it with the
normalized deterministic automaton with constraints recognizing the set of non
constant normal forms obtained from Lemma 10 (this can be done by the product
construction as for fta). We obtain a deterministic normalized automaton with
constraints whose number of states is O(|R|∗2|Σ0|) and then we apply Lemma 12
to compute N ′(S). For a fixed signature, it can be done in polynomial time. ��

Once the N(S′) have been computed, we can generate all the ground terms t
that are either constant or of the form ft1 . . . tm, where all ti are either constants
or terms in some N ′(S). Then, for each such t, we can check whether there is
a normal form reachable from t, by computing the set of terms reachable from
t (with a similar construction to the one in the proof of Lemma 13, but for a
term t instead of for a set of constants S), intersecting with the set of ground
normal forms and testing emptiness. Therefore, by Lemma 9, and by applying
simplification lemmas 2 and 3, we get:

Theorem 2. Normalization of a shallow right-linear TRS is decidable.

We have also the following result, as a consequence of the previous theorem, the
fact that confluence is known decidable for shallow right-linear TRS [7], and the
fact that, when a TRS is normalizing, confluence and unique normalization are
equivalent properties.
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Theorem 3. It is decidable to determine if a given shallow right-linear TRS
satisfies both the normalization and the unique normalization properties simul-
taneously.

7 Undecidability of Unique Normalization in the Linear
Right-Shallow Case

Lemma 16. Unique normalization is undecidable for linear right-shallow TRSs.

We will associate with a PCP problem a linear right-shallow TRS which is
uniquely normalizing iff the problem has no solution. Let PCP = {(ui, vi)|1 ≤
i ≤ n} a Post Correspondence problem over {a, b}. Let R the TRS defined by:

pcp(x, y) → eq(x, y), pcp(x, y) → pair(x, y),
eq(a(x), a(y)) → eq(x, y), eq(b(x), b(y)) → eq(x, y)

eq(c, c) → nf1
pair(ui(x), vi(y)) → pair(x, y), 1 ≤ i ≤ n,

pair(ui(c), vi(c)) → nf2, 1 ≤ i ≤ n,

a(x) → loop, b(x) → loop, c → loop

pair(x, y) → loop, eq(x, y) → loop, pcp(x, y) → loop

loop → loop

Then, as any term different from nf1, nf2 can be rewritten to loop, the only
two irreducible terms are nf1, nf2. It can be easily proven by induction on the
length of the derivation that t →∗

R nf1 iff t = nf1 or t = eq(u, u) or t = pcp(u, u)
with u in (a + b)∗(c). Similarly, t →∗

R nf2 iff t = nf2 or t = pair(u, v) or
t = pcp(u, v) with u = ui1 ...uipc and v = vi1 ...vipc for some i1, ...ip with p > 0.
Hence, there is some t such that t →∗

R nf1 and t →∗
R nf2 iff there is a solution

to the PCP problem, i.e. R is not uniquely normalizing iff there is a solution to
the PCP problem.
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Abstract. Polymorphism has become a common way of designing short
and reusable programs by abstracting generic definitions from type-
specific ones. Such a convenience is valuable in logic as well, because
it unburdens the specifier from writing redundant declarations of logical
symbols. However, top shelf automated theorem provers such as Sim-
plify, Yices or other SMT-LIB ones do not handle polymorphism. To
this end, we present efficient reductions of polymorphism in both un-
sorted and many-sorted first order logics. For each encoding, we show
that the formulas and their encoded counterparts are logically equiva-
lent in the context of automated theorem proving. The efficiency keynote
is to disturb the prover as little as possible, especially the internal deci-
sion procedures used for special sorts, e.g. integer linear arithmetic, to
which we apply a special treatment. The corresponding implementations
are presented in the framework of the Why/Caduceus toolkit.

1 Introduction

Polymorphism allows a single definition to be used with different types of data:
a polymorphic function’s definition generalizes several type-specific ones. Obvi-
ously, polymorphism is not reduced to the foundation of basic arithmetic opera-
tors (e.g. + deals naturally with integers, reals, vectors, . . . ), but it is a common
feature of object-oriented and functional languages. For instance, a function
append which concatenates two lists of elements of the same type can be con-
structed without taking care of the elements’ type: let α be any type and let
α list denote the type of lists with elements of type α. append can then be typed
α list× α list → α list.

In the context of program verification by analysis of assertions and genera-
tion of proof obligations, formalizing the features of a programming language
involves a large collection of definitions and axioms, some of them being poly-
morphic. Even when the language, like C, does not have polymorphism, memory
modelization makes use of polymorphic types and definitions. In these cases,
polymorphism becomes critical since it allows specifications to be both typed
and short: types can be used to guide the prover and avoid ill-sorted deductions,
which often pollute the proof search of unsorted provers.
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Then, it is definitely a challenge to automatically discharge the verification
conditions expressed in a polymorphic first order language: only interactive
higher-order proof assistants like Isabelle/Hol [1] or Coq [2] are amenable to
such polymorphic logic goals. Among automated provers, some deal with un-
sorted First Order Logic (FOL), e.g. Simplify [3] or haRVey [4] and others treat
many-sorted FOL, e.g. SMT-LIB [5] provers and among them Yices [6] or CVC-
lite [7], but none of them allows the definition of uninterpreted polymorphic
symbols.

The main contribution of this work is a correct and complete reduction of
polymorphic many-sorted FOL to unsorted FOL that preserves the sorting in-
formations (Sect. 3). The second contribution is an equally powerful reduction
targeting many-sorted FOL (Sect. 4), which takes advantage of sorted provers to
provide an ad hoc translation for interpreted terms, e.g. arithmetic terms. The
third contribution is an implementation of both approaches and their application
on a full scale benchmark (Sect. 5). Section 2 presents some formal preliminaries
about polymorphism, gives a running example and shows how inefficient some
coarse techniques of polymorphism reduction are. Section 6 discusses works re-
lated to our study, concludes and presents future work. Note that proofs are
sketched in this paper to fit within the space constraints. An extended version [8]
details them.

2 Preliminaries

Our polymorphic logic is built on classical first order logic and its usual connec-
tives ∨,¬, ∃, . . . Atoms are built on a signature Σ = (S,Fs,Xs,X ,F) where S
is the set of constant sorts, Fs is the set of sort functions (e.g. list or array),
Xs is the set {α, β, . . .} of type variables, X is the set of term variables and F is
the set of all functional and predicative symbols (including constant symbols).

Each symbol in Fs comes with an integer number n of parameters and the
set of all sorts Ω is the smallest set containing type variables and constant
sorts such that if f ∈ Fs is a sort function of arity n and s1, . . . , sn ∈ Ω, then
f(s1, . . . , sn) ∈ Ω.

Similarly, each functional symbol in F comes with an arity s1 × . . .× sn → s
where each si, 1 
 i 
 n, is in Ω and s is either in Ω or the special propositional
sort o. When n = 0, the symbol is a constant of type s. Variables from X and
functional symbols from F are then used to build terms in the usual manner.
Among these terms, those of type o form the atoms of our propositional language.

Since we are only interested in well-typed atoms and well-typed formulas, we
define a well-typing relation Γ � e : τ where Γ is a typing context (i.e. a mapping
from X to Ω) and τ is a sort. Inference rules for this typing system are given
in Fig. 1. The rules for ∀, ¬ and ∧ are similar to rules (Exists) and (Or) and
are not shown. In the following, unless we specify otherwise, we only consider
well-typed formulas φ, that is, such that � φ : o. Finally, type variables that
appear in formulas are implicitly universally quantified.
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Γ (x) = τ

Γ 	 x : τ
(Var)

σ substitution from Xs to Ω

f : s1 × . . . × sn → s

for all i, Γ 	 ei : siσ

Γ 	 f(e1, . . . , en) : sσ
(App)

x ∈ X Γ, x : s 	 e : o

Γ 	 ∃x : s.e : o
(Exists)

Γ 	 φ : o Γ 	 ψ : o

Γ 	 φ ∨ ψ : o
(Or)

Fig. 1. Typing system

Let us now explain why the simplest encodings that come to mind for re-
moving typing information are not adequate. First of all, instead of dealing
with sorts, one may think that we can omit sorting information, but unfortu-
nately, this method is unsound. For instance, consider the following formula:
∀x : unit . x = void. It states that sort unit is a singleton whose only member is
void. Removing sorts in this formula gives ∀x . x = void which states that every
term is equal to void, and in turn easily yields things like 1 = 2.

Secondly, the reader who is familiar with polymorphism can think that a poly-
morphic theory can be reduced to a many-sorted one by instantiating the type
variables in polymorphic symbols according to the contexts they are applied to,
and generating as many instances as necessary to “monomorphize” the original
theory.

However, the computation of these mandatory monomorphic instances can be
an infinite process: for instance, consider the symbol cons : α×α list → α list,
which adds an element in front of a list, and nested : int → α list, which is
axiomatized by:

nested(0) = cons(0, nil)
∀x : int . nested(x + 1) = cons(nested(x), nil)

If nested is then applied to some arithmetic function f whose result is not
statically predictable, one can see that there is no way to adequately monomor-
phize this theory since a potentially infinite number of instantiations of cons (on
int list, (int list) list, and so on) may be required. Even if this shortcoming
does not appear often in practical cases, monomorphization always returns theo-
ries that are much bigger than the original ones, which dramatically slows down
provers. Therefore, this approach is not satisfactory in our context.

Finally, a potentially good reduction of polymorphic logic to unsorted logic
is suggested by a reduction from many-sorted logic to unsorted logic devel-
oped in [9, p. 277]: it suffices to take a language with the same symbols as
in the many-sorted language being translated, augmented with a predicate sym-
bol P used to ensure the type of variables. P has two parameters: the first
one is the term being sorted and the second one is its sort, given as a term.
For instance, the formula ∀l : α list . append(l, nil) = l would be translated to
∀α, l . P (l, list(α)) ⇒ append(l, nil) = l.
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Similarly, sorts in existentially quantified formulae are replaced by a conjunc-
tion and axioms are added for all symbols so that P (t, τ) is provable iff t has
type τ . For instance, the following axioms are added for lists:

∀α . P (nil, list(α))
∀α, x, l . (P (x, α) ∧ P (l, list(α))) ⇒ P (cons(x, l), list(α))

Altogether, this new typing predicate P and the axioms ensure soundness and
completeness. However, this translation cannot be used in our context since it
strongly modifies the boolean structure of formulas, especially by introducing
useless disjunctions, that are often inefficiently handled by SMT solvers (see
benchmarks in Sect. 5).

Notice that this encoding is not a solution for many-sorted logic with built-in
types: we cannot give a type for P that is compliant both with terms of built-in
sorts and user ones. Adding one predicate pt for each sort t is not a solution
either since it does not allow one to deal with polymorphism.

We now present the running example, used in the following to illustrate non-
obvious steps. Let acc : αarray × int → α and upd : αarray × int × α →
αarray be the functional symbols of an array theory [10], axiomatized by:

∀a : αarray, i : sint, e : α . acc(upd(a, i, e), i) = e (1)
∀a : αarray, i : int, j : int, e : α . i �= j

⇒ acc(upd(a, i, e), j) = acc(a, j). (2)

Intuitively, a being an int-indexed array and i an integer, acc(a, i) represents the
ith element of a while upd(a, i, e) represents the array a where the ith element
has been changed to an (α-sorted) element e.

Running example. We want to check whether the formula

acc(upd(k, 3, x), 3) + 2 = 7 (3)

is satisfiable modulo the theory built as the union of {(1), (2)} and a theory of
linear arithmetic, where x (resp. k) has the sort int (resp. intarray).

3 Reduction to Unsorted Logic

Unsorted FOL is a special case of polymorphic FOL where there is only one con-
stant sort u (for unsorted elements) and neither sort functions, built-in types
nor type variables. We now present an encoding from a polymorphic logic with
built-in types to an unsorted logic: the idea behind this encoding is to syntacti-
cally type expressions by adding the sort information directly in terms and rely
on the fact that unification will guide the prover and ensure that instantiations
remain well-typed. We also illustrate how to deal with interpreted symbols, as
we consider the case of arithmetic terms.
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3.1 Translation

In the polymorphic signature Σ = (S,Fs,Xs,X ,F) we translate, we assume F
contains an equality predicate = of arity α× α → o. We also consider a built-in
sort int ∈ S and FA ⊂ F the set of arithmetic symbols (i.e. built-in operations
and predicates on integers, but not =). The translation of signature Σ is the
monosorted signature Σ∗ = ({u}, ∅, ∅,X ∗,F∗) defined by:

– X ∗ = X ∪ {tα |α ∈ Xs} where the tα are fresh term variables
– F∗ = F ∪ S ∪ Fs ∪ F̂A ∪ {sort} where this union is supposed disjoint and

• symbols from F have the same arity as before where all sorts from Ω
have been replaced by u (e.g. cons : u× u → u)

• symbols from S have arity u

• symbols from Fs with n parameters have arity u × . . .× u
︸ ︷︷ ︸

→ u

n times
• F̂A = {f̂ | f ∈ FA} where each symbol f̂ is fresh in F , has the same

arity as f and where int has been replaced by u (e.g. +̂ : u× u → u)
• the new special symbol sort has arity u× u → u

The idea behind this new function symbol sort is that it is used to associate
a term with its type: the first argument is a syntactic sort and the second a
term whose type is the first argument in the context. Unlike the P-predicate of
Enderton ([9]), it is a function symbol and not a predicate symbol. Also, treating
arithmetic symbols in a special way is mandatory to ensure completeness and is
discussed below.

The translation (.)∗ of sorts from Ω into terms of Σ∗ is inductively defined
on the structure of a sort:

s ∈ S � s∗ = s ∈ F∗

α ∈ Xs � α∗ = tα ∈ X ∗

f(s1, . . . , sn) ∈ Ω � f(s∗1, . . . , s∗n) a term on Σ∗.

The propositional structure of formulas is not affected by our encoding: merely,
sorts in quantifiers are all replaced by u since our signature is monosorted, and
we will omit these sorts hereafter. Thus, we are left to define the translation of an
atom t. Since a translation of a term depends on its type and since a term may
have many different types in a polymorphic logic, we have to be careful as to the
choice of the type. To translate a well-typed formula, we consider the most general
typing derivation of this formula: such a derivation always exists and is unique up
to a renaming of type variables (see [11, p. 33 – 35]). A subterm t of the formula
is then translated with respect to its type τ : in other words, the translation is
inductively defined on the most-general typing derivation of the formula.

Since the well-typing rules are syntax-directed, the different cases can be de-
scribed by the following rules, where τ is the type on the right-hand side of the
sequent:

1. If t is a variable x, then t∗ = sort(τ∗, x)
2. If t is a functional term f(t1, . . . , tn) and f ∈ FA, t∗ = sort(int, f̂(t∗1, . . . , t

∗
n))
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3. If t is a functional term f(t1, . . . , tn) and f /∈ FA, t∗ = sort(τ∗, f(t∗1, . . . , t
∗
n))

4. If t is a predicative term p(t1, . . . , tn) and p ∈ FA, t∗ = p̂(t∗1, . . . , t
∗
n)

5. Otherwise, t is an atom p(t1, . . . , tn) with p /∈ FA and t∗ = p(t∗1, . . . , t
∗
n)

sort

+̂

sort

2int

sort

acc

sort

3int

sort

upd

sort

xint

sort

3int

sort

karray

int

array

int

int

int

Fig. 2. Syntactic tree view of the translation of acc(upd(k, 3, x), 3) + 2

For instance, Fig. 2 represents the translation of acc(upd(k, 3, x), 3) + 2 as a
syntactic tree. In that tree the term is globally unchanged, except that layers of
sorts (in gray) have been introduced at each junction in the original syntactic
tree, which is why we say this is a stratified encoding.

There are a couple of things to note about this translation. First, translated
formulas are not necessarily closed because type variables that were implicitly
universally quantified are now free term variables, and this can be accounted for
by universally quantifying over these variables as well (which we will do in the
next section when we describe the translation of a theory). Second, arithmetic ex-
pressions were encoded with new special symbols and are not interpreted expres-
sions anymore, so we need axioms to define the meaning of these new symbols.

Each arithmetic symbol in FA is defined by one of the following axioms de-
pending on whether it is a functional symbol f or a predicative symbol p:

φf ≡ ∀x1 . . . xn . f̂(sort(int, x1), . . . , sort(int, xn)) = f(x1, . . . , xn)
φp ≡ ∀x1 . . . xn . p̂(sort(int, x1), . . . , sort(int, xn)) ⇔ p(x1, . . . , xn).

They aim at stripping away type information from encoded arithmetic expres-
sions. Simiarly, there is also a need for an instance of φp where p is the equality
on integers, i.e.

∀x1, x2 . sort(int, x1) = sort(int, x2) ⇔ x1 = x2 (4)

This axiom corresponds to the injectivity of the function x &→ sort(int, x). We
write P (as prelude) for the set of all these axioms and we will later add this
prelude to the solvers’ context when trying to prove a translated formula.
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The introduction of rules 2., 4. together with axioms φf and φp accounts for
the completeness of the encoding: for arithmetic expressions, provers usually
have dedicated decision procedure. Therefore, we need a logical link between
encoded and original arithmetic expressions in order for a prover to be able
to dispatch them to the decision procedure. This is not a solution specific to
arithmetic : the same method could be used for other built-in types.

Without these axioms, a prover might for instance conclude that the formula
sort(int, 2) � sort(int, 3) is satisfiable whereas it is not. Another obvious al-
ternative would be to add the axiom ∀x . sort(int, x) = x, but this results in a
dramatic loss of efficiency for provers based on ground instantiation of quanti-
fiers (which is currently the rule for SMT solvers), because they could instantiate
this equality everytime an integer term is encountered, although there are many
integers that do not require this because they are not applied on a symbol from
FA.

Running example. The translation of (3) is

sort(int, sort(int,
acc(sort(array(int),
upd(sort(array(int), k), sort(int, 3), sort(int, x)), sort(int, 3))))

+̂ sort(int, 2)) = sort(int, 7).

(5)

By instantiating the counterpart of axiom (1), i.e.

∀α, a, i, e .
sort(α, acc(sort(array(α),

upd(sort(array(α), a), sort(int, i), sort(α, e)), sort(int, i))))
= sort(α, e)

with α = int, a = k, i = 3 and e = x, the formula (5) simplifies to
sort(int, sort(int, x)+̂sort(int, 2)) = sort(int, 7)

which is again reduced to sort(int, x + 2) = sort(int, 7) thanks to the axiom φf

and to x + 2 = 7 thanks to (4).

3.2 Translation Proofs

To prove results about our encoding, we use the natural deduction system for
polymorphic FOL described in [13]. We slightly adapt this formalism by consid-
ering a theory T = (Σ,Ax, Γ ) as the tuple of a signature Σ, a set of axioms Ax
and a typing context Γ . When φ is a monomorphic formula1, the sequent T |= φ
expresses the fact that φ is a formula on Σ which is well-typed in Γ and valid
given the axioms in Ax. Finally, axioms in Ax are written ∀α[P ] where P is a
formula and α its polymorphic parameters. Figure 3 recalls rules of [13] which
are used in the following proofs.

1 Which is not a restriction, since a polymorphic goal can be monomorphized by
replacing each type variable by a fresh uninterpreted sort, without loss of generality.
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T 	 t : τ

T |= t = t
(Eq1)

T |= x = y T |= Q[x/z]

T |= Q[y/z]
(Eq2)

T |= P ∧ Q

T |= P
(And2)

axiom ∀α [P ] ∈ T

T |= σ(P )
(Ax)

T |= ∀x : τ . P T 	 t : τ

T |= P [t/x]
(Forall2)

x1, . . . , xn |=A P

T |= ∀x1 : int . . . . ∀xn : int . P
(Arith)

In rule (Ax), σ is a ground substitution from α to sorts. In rule (Arith),
the formula P is exclusively built with variables and constants of sort int,
symbols from FA and equality. If x1, . . . , xn are the free variables in P ,
we write x1, . . . , xn |=A P as soon as P is valid (this is decidable, cf. for
instance by the Omega test in [12]).

Fig. 3. Natural deduction system for polymorphic FOL (excerpt from [13])

The encoded version T ∗ of such a theory T is the tuple (Σ∗,Ax∗, Γ ∗) where:

– Ax∗ = {[∀tα1 : u . . . .∀tαk
: u . P ∗] | ∀α1 . . . αk[P ] ∈ Ax} ∪ P

– Γ ∗ is Γ where all bindings are replaced by the unique sort u

Note that Ax∗ is made out of closed monomorphic encoded versions of the
earlier axioms, and also contains the prelude we described in the previous section.
Thanks to the axioms in this prelude, we can show the following results on
arithmetic terms and their encoded versions:

Lemma 1 (Arithmetic terms). Let t be an arithmetic term on Σ, that is, a
term built exclusively with arithmetic symbols, integer constants and variables.
Then T ∗ |= sort(int, t) = t∗.

Proof. The proof proceeds by structural induction on t. The case of a variable is
obviously handled by the reflexivity rule (Eq1). A functional term f(t1, . . . , tn)
is treated by first applying the induction hypothesis to all the ti, 1 ≤ i ≤ n,
which transforms f̂(t∗1, . . . , t

∗
n) to f̂(sort(int, t1), . . . , sort(int, tn)), and next by

instantiating the additional axiom φf to transform this term to f(t1, . . . , tn),
which is the desired result. �

Lemma 2 (Arithmetic predicates). Let P be an arithmetic formula in a
theory T , that is, an atom built exclusively with arithmetic symbols, equality and
arithmetic terms. Then, T ∗ |= P ⇔ P ∗.

Proof. The proof is done by induction on the structure of a formula. The only
non-trivial case is for an arithmetic atom p(t1, . . . , tn). By applying the previous
lemma to all the ti, 1 ≤ i ≤ n, we transform the encoded predicate p̂(t∗1, . . . , t

∗
n)

to p̂(sort(int, t1), . . . , sort(int, tn)), which is equivalent to p(t1, . . . , tn) by virtue
of the added axiom φp. �
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Theorem 1 (Completeness). Let T be a theory and P a monomorphic for-
mula on T . Then, T |= P implies T ∗ |= P ∗.

Proof. We proceed by structural induction on the proof derivation of T |= P
and we only present non obvious cases.

Rule (Ax): An application of the rule (Ax) can be translated in the following
derivation where the application of the substitution σ is replaced by k applica-
tions of the rule (Forall2), one for each type variable:

axiom ∀tα1 : u . . . . ∀tαk
: u . P ∗ ∈ T ∗

(Ax)
··· T ∗ � σ(αk)∗ : u

T ∗ |= P ∗[σ(α1)∗/tα1 ] . . . [σ(αk)∗/tαk
]

(Forall2)
(6)

Rule (Forall2): By definition, we clearly have (P [t/x])∗ = P ∗[e/x] where t∗ =
sort(τ∗, e). This property makes the translation of the rules (Forall2) straightfor-
ward:

T ∗ |= ∀x : u . P ∗ T ∗ � e : u where t∗ = sort(τ∗, e)
T ∗ |= P ∗[e/x]

(Forall2)

Rule (Arith): In this rule, P is only composed of arithmetic symbols (including
integer constants) and integer variables. Therefore, P is true in the theory of
arithmetic and is true in T ∗. The lemma 2 about the encoding of arithmetic
atoms tells us that P is equivalent to P ∗ in T ∗, therefore it is obvious to build
a proof for P ∗. �

The soundness of the encoding is expressed by the fact that T ∗ |= P ∗ implies
T |= P .

Since we have erased type from quantifiers, a prover may a priori make ill-
typed substitutions of the variables in translated formulae. Indeed, we empha-
sized in Sect. 2 that erasing types was not sound at all. Now, solvers do not
instantiate a variable by any term but rather try to find an existing term that
matches the context around the variable. Since our encoding ensures that the
context around a variable contains its sort information, only terms with the same
sort can be used for the instantiation. For instance, if a variable x was quanti-
fied over a sort τ in the original formula, every occurrence of x in the encoded
formula is actually an occurrence of sort(τ∗, x): when trying to intanstantiate x,
solvers will match ground terms with that pattern and will only substitute x by a
certain term e if the term sort(τ∗, e) has already been encountered. If the ground
terms have not been obtained by ill-typed instantiations (which is the case at
first), this term e corresponds to a term t of type τ such that t∗ = sort(τ∗, e).
The substitution of x by e in the encoded formula then corresponds to the sub-
stitution of x by t in the original formula, and this ensures that the property
that all ground terms are well-formed is preserved when new instantiations are
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made by the solver. A formalization of that matching process and a proof of that
result are presented in [11, p. 53 – 58].

The conclusion of that discussion is that we can consider a restriction of the
deduction system |=, later called |=∗, where instantiations of variables in rules
for quantifiers are correct with respect to the types in the original formulas: if x
appears as sort(τ∗, x) in the formula, it can only be replaced with the translation
of a ground term of sort τ , and otherwise it must be replaced with the translation
τ∗ of a ground sort τ . Therefore, our soundness theorem takes the following form:

Theorem 2 (Soundness). Let T be a theory and P a monomorphic formula
on T . Then, T ∗ |=∗ P ∗ implies T |= P .

Proof. We proceed by induction on a minimal proof derivation for T ∗ |=∗ P ∗

but it is less straightforward than completeness. Indeed, consider elimination
rules for logical connectives, like (And2). When trying to reason by induction,
we cannot apply the induction hypothesis to the second premise Q if it is not of
the form Q∗

0. By taking a minimal proof, in particular without cuts, we ensure the
connective ∧ cannot come from an introduction rule, but only from an axiom in
the theory, which means that the conjunction P ∗∧Q is a – possibly instantiated –
subformula of an axiom in the theory. There are two cases to distinguish there:
if the axiom comes from P , the result is straightforward (either the connective
does not appear in these axioms, or the proof of P is trivial); otherwise, the
axiom comes from Ax∗ and since they are translations of axioms in Ax, P ∗ ∧Q
is a subterm of an instantiation of a translated axiom, and that implies that Q
has the expected form Q∗

0.
All introduction rules are straightforward and rely only on applying the induc-

tion hypothesis to all premises. We have also discussed elimination rules above.
Among the remaining rules, we only detail the non obvious ones:

Rule (Forall2): We have P ∗ = Q[t/x] and
T ∗ |=∗ ∀x : u.Q T ∗ � t : u

T ∗ |=∗ Q[t/x]
(Forall2)

As argued above, the universal quantifier comes from an axiom rule and corre-
sponds either to a quantification on a type variable, or to a quantification on a
variable x of type τ in the original formula. In the first case, P can be proved in
T by replacing the instantiations of type variables by a type substitution in the
premises of the rule (Ax). In the second case, Q = Q∗

0 and P ∗ = (Q0[u/x])∗ for

some u of type τ , hence the following derivation:
T |= ∀x : τ.Q0 T � u : τ

T |= Q0[u/x]
.

Rule (Eq2): Since the proof is minimal, the equality x = y comes from an axiom
and has the form t∗ = u∗. Also, Q[y/z] is a translated formula P ∗ = (P0[u/z])∗,
so Q[x/z] = P0[t/z]∗ is also a translated formula and we can apply the induction

hypothesis to create the following derivation
T |= t = u T |= P0[t/z]

T |= P0[u/z]
.
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4 Reduction to Many-Sorted Logic

In this section, we address the case of a prover that works in many-sorted logic.
One may think that there is no need to do so since we have already presented an
encoding to unsorted FOL and it is obvious that unsorted FOL is a special case
of many-sorted FOL. Unfortunately, trying to use the previous encoding with
a many-sorted prover raises the issue of how to type the new symbol sort and
the built-in symbols +, <, etc. Indeed, built-in symbols and integer constants
have the sort int and cannot be considered as being of sort u. Taking u = int

would be a solution, but this would not be easily adaptable to a case with several
different built-in types and decision procedures (arithmetic + lists + . . .).

Such a solution should not only translate polymorphic formulas to many-
sorted logics in a generic way, but should also take advantage of the many-sorted
logic to avoid to encode linear arithmetic as we did in the previous section,
since it is a source of inefficiency. In the following, we present an encoding that
solves this issue by only encoding integer expressions when they are used in a
polymorphic context.

In addition to int, there are three sorts s, t, u whose meaning is as follows:
each term, except those of sort int, is translated into a term sort( , ) which has
the sort s (for syntactically sorted terms). The function sort has arity t×u → s

where t is the sort of type and where u is the sort of terms not built with sort.

4.1 Translation

The polymorphic signature is translated into the monomorphic many-sorted sig-
nature Σ∗ = (S∗, ∅, ∅,X ∗,F∗) defined by:

– S∗ is {u, s,t, int},
– X ∗ is X ∪ {tα | α ∈ Xs} as in the unsorted case,
– F∗ is F ∪ Fs ∪ {sort} ∪ Fcast ∪ S \ {int} where

• a symbol from F with arity s1 × . . . × sn → s now has the arity
s′1 × . . . × s′n → s′ where s′ is int if s is int and u otherwise and
where s′i, 1 
 i 
 n, is int if si is int and s otherwise (e.g the function
upd : αarray× int×α → αarray now has the arity s× int×s → u),

• symbols from Fs with n parameters have arity t × . . .× t
︸ ︷︷ ︸

→ t,

n times
• Fcast is {int2u : int → u, s2int : s → int},
• each symbol of S \ {int} is now a constant of sort t.

The translation t∗ of a term t of type τ depends on the context.

1. If t is a predicate term p(t1, . . . , tn), t∗ = p(t∗1, . . . , t
∗
n)

2. if t is a functional term or a variable, then it is the ith parameter of some
symbol g: g(. . . , t, . . .). We call τi the type of the ith argument in g’s arity
and the translation depends on τ and τi being int or not:
(a) if neither τ nor τi are int, then

– if t is a variable x, t∗ = sort(τ∗, x)
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– if t is a term f(t1, . . . , tn), t∗ = sort(τ∗, f(t∗1, . . . , t
∗
n))

(b) if τ and τi are int,
– if t is a variable x, t∗ = x
– if t is a term f(t1, . . . , tn), t∗ = f(t∗1, . . . , t

∗
n)

(c) if τ is not int but τi is int, then
– if t is a variable x, t∗ = s2int(sort(τ∗, x))
– if t is a term f(t1, . . . , tn) then t∗ = s2int(sort(τ∗, f(t∗1, . . . , t

∗
n)))

(d) finally, if τ is int but τi is not int, then
– if t is a variable x, t∗ = sort(int, int2u(τ∗, x))
– if t is a term f(t1, . . . , tn) then t∗ = sort(int, int2u(f(t∗1, . . . , t

∗
n))))

It is straightforward to check that encoded expressions are still well-typed in
Σ∗. Compared to the previous translation, exploiting sorts unburdens the terms
sort int from being encoded (rule 2b). However, rules 2c and 2d use casting
functions int2u and s2int which have to be defined by the axioms

∀x : b . s2int(sort(int, int2u(x))) = x (7)
∀x : u . int2u(s2int(sort(int, x))) = x. (8)

In this section, the prelude is defined by P = {(7), (8)}.

Running example. By encoding (3) we obtain

s2int(sort(int, acc(sort(array(int),
upd(sort(array(int), k), 3, sort(int, int2u(x)))), 3)))

+2 = 7

which reduces to s2int(sort(int, int2u(x))) + 2 = 7, by applying the translation
of the axiom (1) and to x + 2 = 7 thanks to the axiom (7).

4.2 Translation Proofs

We prove in this section the same theorems with the same notations as in Sect. 3.

Proof of Theorem 1. With this encoding, the proof is again achieved by
structural induction on the proof derivation. The only non-obvious cases are
the axiom rule and rules which infer a substitution: a term that appears in two
hypotheses of an inference rule can generate two distinct translations according
to its sort and its position in a logical symbol. Notice that unlike the proof
detailed in Sect. 3.2, the arithmetic rule is obviously obtained since this encoding
preserves pure arithmetic terms by definition.

An application of the rule (Ax) is replaced by a derivation similar to (6) where
sort u is replaced by t.

For rules (Forall2) and (Exists1), if τ is not int or if τ is int and t∗ has the
sort int, then the result is straightforward. Otherwise, τ is int, t∗ = sort(int, e),
and we have the following inference:
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...
T ∗ |= ∀x : int . P ∗

...
Σ∗ � sort(int, e) : s s2int : s → int

Σ∗ � s2int(t∗) : int

(T2)

T ∗ |= P ∗[s2int(sort(int, e))/x]
(Forall2)

However, if the generated predicate P ∗[s2int(sort(int, e))/x] contains some
int2u(s2int(sort(int, e))), it can be simplified by applying axiom (8) through
rules (Forall2) and (Eq2).

For the rule (Eq2), the proof is similar. If τ is not int or if τ is int and x∗

has the sort int, then the result is direct. Otherwise, τ is int and the coun-
terpart of x = y is sort(int, int2u(x∗)) = y∗; it suffices to deduce the equality
s2int(sort(int, int2u(x))) = s2int(y∗) by applying (Eq2) which is then simplified
into x∗ = s2int(y∗) by applying axiom (7) through (Forall2) and (Eq2). �

Proof of Theorem 2. The proof, which relies on the same arguments than
those of the proof of soundness in Sect. 3.2, is omitted. �

5 Experiments

All the encodings presented in this work are implemented as modules in the
Why [14] tool. The benchmark we exploit has 1272 valid proof obligations
(PO). They are built by the Caduceus tool [15] from 55 annotated C programs.
They aim at certifying that each function implementation is consistent with its
specification and that the program is free of null pointer dereferencing and
out-of-bounds array access. To do so, it widely relies on linear arithmetic and
polymorphism coming from the memory model axiomatization.

Results of benchmarks for several provers and several different encodings are
summarized in the tables represented in Fig. 4. More precisely, Figure 4(a) shows
experiments with the unsorted prover Simplify [3] whereas figure 4(b) shows
experiments with many-sorted ones: Yices [6] and CVC-lite [7]. Rows labeled
“Without encoding”, “With typing predicates” and “With monomorphization”
are the coarse ones detailed in Sect. 2 and “Stratified encoding” of the Fig. 4(a)
and of the Fig. 4(b) correspond to encodings given in section 3 and 4 respectively.

Each prover got 10 seconds for each obligation, on an Intel Xeon 3.20GHz with
2Gb of Memory. The results represent the percentage of obligations proved valid
within these 10 seconds. Also, the average time only takes proved obligations
into account and not timeouts.

The first observation for unsorted provers is that the best results are obtained
without any encoding (by just removing types), but we have seen that this
method is unsound. Among the other encodings, differences are pretty important:
the encoding with typing predicates is pretty poor (as we discussed in section 2)
while our stratified encoding proves almost as many obligations as the prover
without encoding.

Another remark is that the difference between the average times in bench-
marks with and without encoding is really significant, whereas only a very small
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Simplify
Without encoding Percentage 99.6%
(no types at all) Avg Time 60ms

With Percentage 66.2%
typing predicates Avg Time 171ms

Stratified Percentage 98.8%
encoding Avg Time 243ms

(a) Unsorted Encodings

Yices CVCLite
With mono- Percentage 49. % 36.9 %

-morphization Avg Time 772ms 752ms
Stratified Percentage 99.1% 69.8%
encoding Avg Time 430ms 1312ms

(b) Many-Sorted Encodings

Fig. 4. Benchmarks of different encodings

percentage of the obligations cannot actually be proved within the 10 seconds.
Of course, encoded formulas are slightly longer to prove because they are bigger
and arithmetic requires more steps of instantiation than without encoding. But
another possible and less obvious source of inefficiency (and even incomplete-
ness) is that the encoding can disrupt other specificities of the inner mechanism
of a prover, namely triggers (see for instance the description of Simplify triggers
in [3]). Triggers are patterns used to trigger the instantiation of axioms in the
theory, by matching them to existing ground terms. They can be declared by the
user (e.g. Simplify) or automatically determined by some heuristics (in Simplify
or Yices). In the latter case, nothing guarantees that the inferred triggers will be
the same before and after encoding. For instance, an axiom like ∀x : t . pred(x)
would have pred(x) as unique trigger; the encoded version ∀x . pred(sort(t, x))
may have the trigger sort(t, x) which would be instantiated much more often
than the original since it is smaller and matches more terms than the bigger
one, resulting in inefficiencies.

Concerning sorted provers, the monomorphization, does not terminate for 6
problems (corresponding to 625 POs). The percentage of proven obligations and
the corresponding average time show that the stratified encoding allows Yices
to discharge about twice as many proof obligations with the monomorphiza-
tion. Furthermore, each of them is faster discharged than when encoded by the
monomorphization. Note, though, that this encoding suffers from the same inher-
ent inefficiencies than the first one (bigger theories, slower arithmetics, problems
with triggers) but this is not visible on the benchmark because the monomor-
phized theories are already many times bigger than the original theories.

6 Related Works and Conclusion

Translating polymorphic logic to first order logic has been previously presented,
but as far as we know, without considering dedicated cases for interpreted func-
tional symbols as we do.

Encoding with predicates has been studied in [16,17]. A generic translation
from Mizar Mathematical Library [18] into first order logic is studied in the for-
mer. In the latter, the authors show how they integrate a first-order intuitionistic
prover into the Nuprl [19] proof assistant.

In [20], Joe Hurd proposes the Metis tactic to discharge subgoals from higher-
order logic (HOL4) into first order proof procedures. This task is achieved by
firstly omitting sort information and trying to find an untyped proof. Such a



Handling Polymorphism in Automated Deduction 277

proof is then checked to be typable by HOL. In the case of a failure, a com-
plete translation is done, which corresponds to our unsorted stratified encoding
without any optimization. Similarly, the authors of [21,22] address the task of
proving higher-order formulas using first order resolution provers [23,24] and rely
on Isabelle to check the proof’s soundness.

In [25], L.C. Paulson introduces the Isabelle Blast tactic which integrates a
tableau-based procedure. This procedure internally stores types of some symbols
to avoid ill-sorted deductions whereas the approach we developped is applicable
to a broad range of SMT solvers. In [26], the considered proof obligations are
expressed in a specific many-sorted first order language, reduced to contain only
two disjoint sorts. In such a context, the authors prove that sorts can be omitted
without loosing soundness. This reduced context is not directly applicable here
since we claim to present a generic approach.

To conclude, we have presented in this paper two close efficient reductions
of polymorphism in unsorted logic and many-sorted logic. In both cases, the
main idea is to syntactically type expressions by adding the sorts information
directly into terms. Soundness is ensured by the way solvers produce ground
instantiations of quantified variables, as argued in Sect. 3.2. The fact that our
method depends on the intricacies of the solver’s procedure is definitely a short-
coming. However, judging by the number of provers it applies to, we believe that
the advantages of our method over other encodings, both performance-wise and
flexibility-wise, sufficiently outweigh its shortcoming for this encoding to be of
practical interest to others in the community.

In order to exploit as much as possible the decision procedures dedicated to
linear arithmetic, the encodings also have special cases for arithmetic terms. Our
large experiments show that the method is very efficient in the context of a repre-
sentative panel of POs issued from software verification. An extension to several
constant sorts should be straightforward, because we were as generic as possible.
It is planned as a future work. That way, we could also benefit from decision
procedures dedicated to other constant sorts (e.g. for reals, arrays, WS1S).
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15. Filliâtre, J.C., Marché, C.: Multi-Prover Verification of C Programs. In: Davies, J.,

Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 15–29. Springer,
Heidelberg (2004)

16. Dahn, I.: Interpretation of a mizar-like logic in first-order logic. In: Selected Papers
from Automated Deduction in Classical and Non-Classical Logics, pp. 137–151.
Springer, London (2000)

17. Schmitt, S., Lorigo, L., Kreitz, C., Nogin, A.: Jprover: Integrating connection-
based theorem proving into interactive proof assistants. In: Goré, R.P., Leitsch, A.,
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Abstract. It has often been claimed that model checking, special pur-
pose automated deduction or interactive theorem proving are needed
for formal program development. We demonstrate that off-the-shelf au-
tomated proof and counterexample search is an interesting alternative
if combined with the right domain model. We implement variants of
Kleene algebras axiomatically in Prover9/Mace4 and perform proof ex-
periments about Hoare, dynamic, temporal logics, concurrency control
and termination analysis. They confirm that a simple automated analy-
sis of some important program properties is possible. Particular benefits
of this approach include “soft” model checking in a first-order setting,
cross-theory reasoning between standard formalisms and full automa-
tion of some (co)inductive arguments. Kleene algebras might therefore
provide light-weight formal methods with heavy-weight automation.

1 Introduction

Formal systems verification and computer mathematics requires the integration
of domain-specific knowledge. This is usually achieved through higher-order the-
orem proving at the expense of computational power or through model checking
at the expense of expressive power. For automated deduction, however, this
task is still a challenge. Over the last decades, considerable effort has been put
into the development of special purpose calculi for automated deduction with
algebraic theories, but the practical impact of this approach on formal meth-
ods has been rather limited. Nevertheless, the specific balance of expressive and
computational power and the user-friendliness of automated deduction could
considerably increase the practical applicability of formal software verification.

This paper proposes an alternative approach to automated deduction for
systems verification: domain-specific algebras for standard provers instead of
domain-specific provers for standard algebras. More concretely, we investigate
the potential of automated reasoning in Kleene algebra with the resolution- and
paramodulation-based Prover9 and the counterexample generator Mace4 [2].

Over the last few years, variants of Kleene algebras emerged as fundamen-
tal structures in computing. They found widespread applications ranging from
program analysis and semantics to combinatorial optimisation and concurrency
control. Kleene algebras seem particularly suitable for our task: They offer a
concise syntax for modelling actions, programs or state transitions under non-
deterministic choice, sequential composition and iteration. They provide a uni-
form semantics for various program analysis tasks that supports cross-theory
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reasoning with modal, relational, trace-based, language-based and event-based
approaches. They come with a simple first-order equational calculus that yields
particularly short and abstract proofs, and they are supported by powerful
automata-based decision procedures. Kleene algebras have already been inte-
grated into higher-order theorem provers [22,15,3] and their applicability as a
formal method has successfully been demonstrated in that setting. But their
potential for automated deduction has not yet been explored.

At first sight, feeding an automated prover with the Kleene algebra axioms
and some meaningful conjecture might seem hopeless: Kleene algebras contain
a commutative idempotent additive monoid and a multiplicative monoid that
interact via distributivity. So one would rather expect the prover to get lost
in term rearrangements and complex unifications. But our proof experiments
on program verification, logics of programs and modal correspondence theory
support the opposite, and perhaps surprising conclusion: The combination of
Kleene algebra and state-of-the-art theorem proving technology makes it often
possible to prove theorems of considerable complexity and practical relevance.

Our main contributions are as follows: First, we specify Kleene algebras [16],
omega algebras [6] and their modal extensions [9,19] in Prover9 and Mace4. We
chose this particular tool primarily because it integrates automated deduction
with counterexample search. Any other paramodulation-based theorem prover
should lead us to similar conclusions. We can automatically verify the standard
calculus of these structures. We can prove more than 100 theorems, most of them
from scratch, and fail on a very small number of statements. Second, we apply
our approach to a number of program analysis and computer mathematics tasks:
Proof automation of separation and reduction theorems in concurrency control;
automated program verification in Hoare logic; automated verification of the
axioms of propositional dynamic logic and linear temporal logic; an automated
modal correspondence proof of Löb’s formula.

These experiments confirm the feasibility of our approach. Many proofs were
fully automatic, interaction (introduction of lemmas) was only needed for some
more complex statements. The example tasks, which are rather advanced, have
been chosen for particular reasons: The concurrency control examples show some
(co)inductive arguments and termination analysis within first-order logic. The
examples from Hoare, dynamic and temporal logic demonstrate the versatility
and practical relevance of the approach. The correspondence proof shows that
some non-trivial mathematics (viz. a second-order frame property) can be au-
tomated and that abstraction is often a key to success. We believe that the
approach can be extended to a light-weight formal method with a particularly
high degree of automation.

Our experiments also pose some interesting research questions for automated
deduction and formal methods. A further discussion can be found in the conclu-
sion and the respective sections.

The emphasis of this paper is rather on the universality of Kleene algebra
than on a detailed particular application. We will therefore only survey the
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specifications and concrete proofs with Prover9 and Mace4. The complete input
and output files for each proof discussed can be found at a web-site [1].

Also, to further underpin the applicability for non-experts in automated de-
duction, we consistently use a rather näıve black-box approach to theorem prov-
ing and avoid sophisticated encodings, refined proof orderings, hints or proof
planning, and excessive running times. Much stronger results could therefore be
obtained with reasonable additional effort.

2 Idempotent Semirings

Idempotent semirings form the algebraic basis for the proof experiments of this
paper. They provide the appropriate level of abstraction for modelling actions,
programs or state transitions under non-deterministic choice and sequential com-
position in a first-order equational calculus. This makes them very suitable for
resolution-based and paramodulation-based theorem proving.

A semiring is a structure (S,+, ; , 0, 1) such that (S,+, 0) is a commutative
monoid, (S, ; , 1) is a monoid, multiplication distributes over addition from the
left and right and 0 is a left and right zero of multiplication. A semiring S is
idempotent (an i-semiring) if (S,+) is a semilattice with x + y = sup(x, y). We
usually omit the multiplication symbol. The semilattice-order ≤ on S has 0 as
its least element; addition and multiplication are isotone with respect to it.

The specification for Prover9/Mace4 is

x+y = y+x. % additive commutative monoid
x+0 = x.
x+(y+z) = (x+y)+z.
x;1 = x & 1;x = x. % multiplicative monoid
x;(y;z) = (x;y);z.
x+x = x. % additive idempotence
0;x = 0 & x;0 = 0. % multiplicative zeroes
x;(y+z) = x;z+x;y. % distributivity laws
(x+y);z = x;z+y;z.

The definition of ≤ can be added, x<=y <-> x+y=y, but we usually work with
equations to profit from the rewrite-based simplification techniques of Prover9.
In contrast, human reasoning with i-semiring is largely order-based.

Every semiring comes with an opposite semiring in which the order of multi-
plication is swapped. The associated duality gives theorems for free.

Tests of a program or sets of states of a transitions system can also be modelled
in this setting. Such objects are needed, e.g., for expressing conditions in if-
then-else statements or loops, or the propositions of modal logics. It is natural
to assume that these objects form a Boolean algebra. They can be integrated
into i-semirings as follows: A test in an i-semiring S is an element of a Boolean
subalgebra test(S) ⊆ S (the test algebra of S) such that test(S) is bounded by
0 and 1 and multiplication coincides with lattice meet. We will write x, y . . . for
arbitrary semiring elements and p, q, . . . for tests. Idempotent semirings admit
at least the test algebra {0, 1} and can have different test algebras. We use
predicates for embedding tests; c(p) represents the complement ¬p in Prover9.
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test(p) -> p;c(p) = 0 & p+c(p) = 1.
test(0) & test(1).
test(p) -> c(c(p)) = p.
test(p) & test(q) -> c(p+q) = c(p);c(q).
test(p) & test(q) -> c(p;q) = c(p)+c(q).
test(p) -> test(c(p)).

The first line expresses existence and uniqueness of complements. The remain-
ing lines induce the Boolean algebra of tests from a given set of tests. This can
be verified with Prover9.

Idempotent semirings with tests are expressive enough for (indirectly) encod-
ing Hoare logic without the assignment and the loop-rule [17]. Validity of a Hoare
triple {p}x{q} is captured by px¬q = 0: no action x transforms a precondition
p into a postcondition ¬q. We will discuss an automation of Hoare logic and the
associated weakest liberal precondition semantics in Section 5 and 7.

The standard calculus of i-semirings and tests can automatically be verified
with Prover9. A non-trivial example is the equivalence of

px¬q = 0, px ≤ xq, x¬q ≤ ¬px, px = pxq.

This equivalence is important, e.g., for reasoning in Hoare logic and with modal
Kleene algebras.

3 Iteration Algebras

More interesting behaviours of programs and transition systems arise from finite
and infinite iteration.

A Kleene algebra [16] is an i-semiring S extended by an operation ∗ : S → S
that satisfies the star unfold and the star induction axiom

1 + xx∗ = x∗, y + xz ≤ z ⇒ x∗y ≤ z

and their duals with respect to opposition. The induction axioms are encoded as
equations, e.g, (y+x;z)+z = z -> x*;y+z = z. The expression x∗ abstractly
represents the reflexive transitive closure of x. The transitive closure of x is
defined as x+ = xx∗.

An omega algebra [6] is a Kleene algebra S extended by an operation ω : S → S
that satisfies the omega unfold and the omega coinduction axiom

xω ≤ xxω , z ≤ y + xz ⇒ z ≤ xω + x∗y.

By these definitions, x∗y and xω + x∗y are the least and greatest fixed points of
λz.y + xz. The elements x∗ and xω arise as special cases.

The following facts are interesting for automated deduction: First, the induc-
tion axioms act as star and omega elimination rules that simplify expressions.
Second, these axioms formalise (co)induction without external measures (e.g.
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length of a sequence) in first-order equational logic. Third, there are strong
connections with standard automata-based decision procedures: While the equa-
tional theory of Kleene algebra is that of regular expressions [16], the uniform
word problem is undecidable. Similar results hold for omega algebras and ω-
regular expressions [6].

The following identities, e.g., can be proved automatically: 0∗ = 1 = 1∗, 1 ≤
x∗, xx∗ ≤ x∗, x∗x∗ = x∗, x ≤ x∗, x∗x = xx∗, x∗∗ = x∗, 1 + xx∗ = x∗ = 1 + x∗x,
x(yx)∗ = (xy)∗x and (x+y)∗ = x∗(yx∗)∗. 0ω = 0, x ≤ 1ω, xω = xω1ω, xω = xxω ,
xωy ≤ xω, x∗xω = xω, x+ω = xω and (x + y)ω = (x∗y)ω + (x∗y)∗xω .

While these identities could as well be decided by automata, automated de-
duction can also verify implications such as

x ≤ y ⇒ x∗ ≤ y∗, x ≤ y ⇒ xω ≤ yω, xz ≤ zy ⇒ x∗z ≤ zy∗.

We sometimes need some simple intermediate lemmas, obtained from proofs by
hand, for proving more complex statements, but nothing beyond.

We can also detect some non-theorems, e.g. xω∗ = xω, with the model gener-
ation tool Mace4, but only one statement considered, xωxω = xω, could neither
be proved nor refuted (automatically or by hand); Mace4 can generate all idem-
potent semirings, Kleene algebras and omega algebras with < 20 elements. This
conjecture and refutation game with Prover9 and Mace4 is very helpful in gen-
eral. Table 1 shows that the number of Kleene algebras grows very fast with the
number of elements.

Table 1. Enumeration of Kleene algebras

#elements #KAs #KAs #KAs with test
(up to iso.) (up to iso.)

1 1 1 1
2 1 1 1
3 3 3 3
4 39 20 21
5 753 149 149
6 23357 1488 1491
7 1052475 18554
8 69199211

Mace4 can check all Kleene algebras with less than 15 elements in a few
minutes on a desktop PC1. It takes, for example, ∼ 20s to check that px¬q = 0
and px + xq = xq are equivalent in all Kleene algebras with 15 elements.

Generation of Kleene algebras with Mace4 requires isomorphism checking and
therefore storing models (7 elements need > 2GB RAM). Interestingly, Conway’s
classical book on regular algebras [7] lists 21 Kleene algebras with four elements.
We found that his examples (5.) and (7.) are flawed and another one is missing.
According to the Mace4 manual, the integrated isomorphism checking should be
1 We used a Pentium 4 CPU, 1.6GHz, 384MB RAM.
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taken with a grain of salt. But our numbers for < 7 elements are confirmed by
Jipsen’s computations with the GAP system [14].

4 Automating Concurrency Control

In this and the following sections we only aim at illustrating the main ideas,
achievements and difficulties of the approach. All technical details of all proofs in
this paper, including the Prover9 and Mace4 input and output files, that provide
complete information about the the proof search and the time and memory used,
can be found at a web-site [1]. All proofs have been done from scratch, i.e., with
the full sets of axioms plus isotonicity of addition, multiplication, star and omega,
but without any further assumptions, unless otherwise stated.

The expressions (x + y)∗ or (x + y)ω can be interpreted as the repeated con-
current execution of two processes x and y. In this context, reduction laws such
as (x + y)∗ = x∗(yx∗)∗ connect concurrency with interleaving while separation
laws infer global system properties from those of the particular processes. Kleene
algebras are very useful for deriving such laws [6,23]. We present two examples
that show how such derivations can be automated.

Our first example is the reduction law

y∗x∗ ≤ x∗y∗ ⇒ (x + y)∗ ≤ x∗y∗

which says that repeated concurrent executions of x and y can be reduced to
an x-sequence followed by a y-sequence (both possibly void) if all x-sequences
have priority over y-sequences. This statement abstracts the relational encoding
of the Church-Rosser theorem for abstract reduction systems.

The Church-Rosser theorem is usually proved by induction over the number
of y∗x∗-peaks that arise from (x + y)∗, i.e., with an external induction measure
(cf. [24]). However, equational proofs with the internal induction provided by
Kleene algebra can also be given [23]. We can automatically prove the reduction
law in about 3s; we can also automate an abstraction of the proof by induction
on the number of peaks.

This result is a first step towards further proof automation that seems now
feasible, viz. an automated proof of (the abstract part of) the Church-Rosser
theorem of the λ-calculus. Equational proofs in Kleene algebra have already been
given [23]. An essential feature of the proof method is abstraction. Properties
about λ-terms are proved separately (e.g. in a higher-order prover [20]) and
represented abstractly as bridge lemmas within Kleene algebra. These are then
used as hypotheses at the algebraic level that is suitable for automation.

Reasoning about abstract reduction systems is traditionally diagrammatic.
Kleene algebra provides a semantics for a considerable part of diagrammatic
reasoning [10] which can therefore be verified by using a theorem prover in the
background.

Our second example is a separation theorem due to Bachmair and Der-
showitz [4]. It states that, in the presence of a suitable commutation condition,
concurrent processes terminate iff individual processes do. The theorem can be
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specified and proved by hand in omega algebra [23]. In this setting, termination
of a process x can be expressed as xω = 0 (absence of infinite iteration). The
separation theorem can therefore be stated as

yx ≤ x(x + y)∗ ⇒ (xω + yω = 0 ⇔ (x + y)ω = 0). (1)

The implication (x+y)ω = 0 ⇒ xω +yω = 0 does not depend on the hypothesis.
It can be proved in less than one second.

The converse direction requires a series of lemmas, at least with our näıve
approach. Our search for automation lead us to a simpler proof than that in [23].
First, we can prove automatically that the hypothesis is equivalent to y+x ≤
x(x + y)∗ and to y∗x ≤ x(x + y)∗. We then attempted to prove that

xω = 0 ∧ yx ≤ x(x + y)∗ ⇒ y∗x ≤ x+y∗, (2)

but failed. The essential part is proving x(x + y)∗ ≤ x+y∗(= xω + x+y∗) from
the hypotheses. By omega coinduction, it suffices to show that x(x+y)∗ ≤ xy∗+
xx(x + y)∗, which can be done automatically, but using the identity (x + y)∗ =
y∗ + y∗x(x + y)∗, which itself can be done automatically. The coinduction step,
however, let the search explode.

This proof is essentially a step-wise replay of a proof by hand. The main
problem of proving is that applications of isotonicity, which are trivial in an in-
equational context, require intricate unifications in the equational case. A com-
bination of equational and inequational reasoning would be very beneficial here.
Equation (2) allows us to replace the hypothesis yx ≤ x(x + y)∗ by the compu-
tationally simpler y∗x ≤ x+y∗ whenever x terminates.

The remaining lemmas for (1), x∗(x∗y)ω = (x∗y)ω, and that xω = 0 and
yx ≤ x(x+ y)∗ imply (y∗x)ω = 0, are again automatic. Our separation theorem
is then immediate from the lemmas.

This second example shows that it is possible to reason automatically about
program termination in a first-oder setting, although finiteness cannot be ex-
pressed within first-order logic. The proofs are essentially coalgebraic and use
the coinduction axiom of omega algebra. Explicit (bi)simulation is not needed.

These two proof experiments show that in many cases, despite the associativ-
ity and commutativity laws involved, Prover9 can prove some impressive facts.
Some proofs, however, require an amount of interaction that is similar to higher-
order proof checkers: proving individual lemmas automatically first and then
using them as hypotheses for the main goal in a second round.

5 Automating Hoare Logic: A First Attempt

It is well-known that the programming constructs of Dijkstra’s guarded com-
mand language can be encoded in Kleene algebra [17]. In particular,

if p then x else y = px + ¬py and while p do x = (px)∗¬p.
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Using the above encoding of Hoare triples, validity of the rules of Hoare logic (ex-
cept assignment) can then be expressed—although quite indirectly—and verified
in Kleene algebra [17]. Validity of the while-rule

{p ∧ q} x {q}
{q} while p do x {¬p ∧ q}

for instance, is expressed as pqx¬q = 0 ⇒ q(px)∗¬(p + q) = 0. We could not
prove from scratch that this implication is a theorem of Kleene algebra. However,
we can immediately prove that qyq = qy ⇒ qy∗q = qy∗, from which the above
implication follows by isotonicity and substitution. Again, an encoding based on
inequalities and in particular a theorem prover that can handle chaining rules
for transitive relations might resolve this problem.

This negative result illustrates the fact that choosing the right algebra and
the appropriate level of abstraction is important for a successful automation.
First, the rules of Hoare logic are superfluous for verifying programs with Kleene
algebra, but they are sound with respect to the algebraic semantics. Therefore,
we don’t even need to bother about verifying them. Second, the difficulty with
proving validity of the while-rule reflects the general problems with verifying
programs in this setting. In the following sections, we will show that a modal
extension of Kleene algebra considerable simplifies this purpose.

6 Modal Semirings

The scope of Kleene algebras can be considerably extended by adding modalities.
As we will see, the resulting formalism is similar to propositional dynamic logic
but also strongly related to temporal logics.

An i-semiring S is called modal [19] if it can be endowed with a total (forward)
diamond operation |x〉 : test(S) → test(S), for each x ∈ S, that satisfies

|x〉p ≤ q ⇔ xp ≤ qx and |xy〉p = |x〉|y〉p.

Intuitively, |x〉p characterises the set of states with at least one x-successor in p,
i.e., the preimage of set p under the action x. According to the aforementioned
property xp ≤ qx ⇔ xp = qxp and the fact that xp models the right-restriction of
an action (e.g. a relation) by a set p, |x〉p is the least set from which every element
of p can be reached via action x. Therefore, the above definition of diamonds
captures the usual Kripke semantics with the modal syntax at the left-hand side
and the relational semantics at the right-hand side of the equivalence.

A domain operation dom : S → test(S) is obtained from the diamond operator
as dom(x) = |x〉1. Alternatively, domain can be axiomatised on i-semirings,
even equationally, from which diamonds are defined as |x〉p = dom(xp). By this
axiomatisation, dom(x) is the least set that does not restrict action x from the
left, which is indeed a natural condition for a domain operation.

Dually, backward diamond operators can be defined via semiring opposition,
〈x|p ≤ q ⇔ px ≤ xq and 〈xy|p = 〈y|〈x|p, and related with a notion of codomain.
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Modal boxes can be defined, as usual, via de Morgan duality: |x]p = ¬|x〉¬p
and [x|p = ¬〈x|¬p. Modal semirings can be extended to modal Kleene algebras
without any further modal axioms.

The equational axioms of (co)domain can easily be implemented in Prover9,
boxes and diamonds can be defined relative to them. Modal operators must
be totalised to functions of type S × S → test(S) by setting, e.g., |x〉y = 0 if
y �∈ test(S).

Modalities enjoy a rich calculus and symmetries that are expressed by Galois
connections and conjugations [19], for instance, |x〉p ≤ q ⇔ p ≤ [x|q and p|x〉q =
0 ⇔ q〈x|p = 0. These and further standard laws can be proved automatically
from the axioms. While dualities transform theorems, Galois connections and
conjugations generate them. We therefore need not prove statements that follow
generically from Galois connections or that are duals of other statements. This
particular advantage of the algebraic approach saves a lot of work in practice.

Our experiments confirm that the number of axioms introduced through the
different layers considerably inhibits proof search. Particular sources of complex-
ity are the complementation axioms of the test algebra and the domain axioms
that are computationally not sufficiently meaningful. In contrast, the following
laws for modalities are very useful in practice.

|x〉(p + q) = |x〉p + |x〉q, |x + y〉p = |x〉p + |y〉p, |xy〉p = |x〉|y〉p, |x〉0 = 0,
p + |x〉|x∗〉p = |x∗〉p |x〉p ≤ p ⇒ |x∗〉p ≤ p.

They can be automatically verified; only the last implication requires a simple in-
termediate lemma. The relevance of this alternative approach to modalities over
Kleene algebras has further been explored in [11]. Essentially, the above laws de-
fine a Kleene module, a two-sorted structure over a Kleene algebra and a Boolean
algebra in which the diamond operator acts as a scalar product. By using Kleene
modules, we can completely dispense with domain (and even with Boolean com-
plements, if necessary) and thereby considerably guide the proof search.

7 Automating Hoare Logic

We will now use modal Kleene algebra—instead of the previous non-modal
approach—to show that the rules of Hoare logic (except the assignment rule)
are theorems of modal Kleene algebra that can easily be automated. We also
argue that the rules of the weakest liberal precondition calculus come for free
by dualising the calculus of modal diamonds, which has to a large extent been
automated. Finally, we show how partial correctness proofs of concrete programs
can be automated in Kleene algebra up to domain specific calculations.

Encodings of validity of the Hoare rules in modal Kleene algebras can be
found in [19]. In particular, validity of the while-rule is encoded as

〈x|pq ≤ q ⇒ 〈(px)∗¬p|q ≤ ¬pq. (3)

Dualisation yields |xp〉q ≤ q ⇒ ¬p|(xp)∗〉q ≤ ¬pq and we can now apply the rules
of our forward diamond calculus for Prover9. Obviously, there is almost nothing
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to prove. (3) follows immediately and automatically from the diamond induc-
tion law of Kleene modules and isotonicity of multiplication in an inequational
encoding.

Validity of the remaining rules (except assignment) follows immediately from
the Kleene module laws, too. The weakening rule, for instance, reduces to an
isotonicity property. Up to a trivial induction over proofs in Hoare logic, this
yields an automation of the soundness proof of Hoare logic with respect to the
Kleene algebra semantics given in [19].

The standard completeness proof uses Hoare’s weakest liberal precondition
semantics. For each postcondition p and terminating action x it computes the
weakest precondition (or the greatest set) for which each x-transition leads to
p. This is precisely captured by |x]p. The calculus of weakest liberal precondi-
tions therefore is just the calculus of forward box operators. It can be obtained
without proof by dualising the diamond calculus. Based on these results, a sim-
ple calculational completeness proof of Hoare logic has been given, but it uses
structural induction with respect to the programming constructs [19]. A partial
automation is certainly possible. While the induction is schematic, the base case
and the induction step are entirely equational and can be automated.

The previous considerations about Hoare logic abstracted from the assignment
rule {p[e/x]} x := e {p} which can be encoded as 〈{x := e}| p[e/x] ≤ p or, by
the Galois connection, as

p[e/x] ≤ |{x := e}]p.

Using this rule, we will now completely verify an algorithm for division of a non-
negative integer n by a positive integer m in modal Kleene algebra. We will use
abstraction for the Kleene algebra part and the assignment rule at the leaves of
the proof tree as an interface to the specific calculations with integers.

funct Div ≡ k := 0; l := n;
while m ≤ l do k := k + 1; l := l −m;

We will consistently write arithmetic expressions in brackets and therefore over-
load arithmetic notation. Setting

x1=̂{k := 0}, x2=̂{l := n}, y1=̂{k := k + 1}, y2=̂{l := l −m}, r=̂{m ≤ l}

and using the precondition and the postconditions

p=̂{0 ≤ n}, q1=̂{n = km + l}, q2=̂{0 ≤ l}, q3=̂{l < m} = ¬r

yields the Hoare triple {p} x1x2(ry1y2)∗¬r {q1q2¬r}. Its translation to modal
Kleene algebra obliges us to prove

〈x1x2(ry1y2)∗¬r|p ≤ q1q2¬r.

This can easily be done automatically from the hypotheses

p ≤ |x1]|x2](q1q2) and q1q2r ≤ |y1]|y2](q1q2).
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The assumptions themselves have precisely the form of the assignment rule;
they cannot be further analysed by Prover9. We give a proof by hand, but a full
automation could be achieved by integrating a solver for a suitable fragment of
arithmetics. For the first hypothesis we calculate

|x1]|x2](q1q2) = |{k := 0}] |{l := n}](q1q2) ≥ ({n = km + l}{0 ≤ l})[k/0][l/n]
= {n = 0m + n}{0 ≤ n} = {0 ≤ n} = p.

For the second hypothesis we calculate

|y1]|y2](q1q2) ≥ ({n = km + l}{0 ≤ l})[l/(l−m)][k/(k + 1)]
= {n = (k + 1)m + (l −m)}{0 ≤ (l −m)}
≥ {n = km + l}{0 ≤ l}{m ≤ r}.

This shows that partial correctness proofs can be fully automated in modal
Kleene algebra in the presence of domain-specific solvers. This particular case
would require a solver for simple arithmetics. Other proofs might require solvers,
e.g., for data structures like lists, arrays or stacks or for more complex numeric
domains. Integrating such solvers into state of the art theorem provers would
therefore have immediate practical relevance for program analysis and verifica-
tion. The special syntax and the specific inference rules of the Hoare calculus
are not at all needed.

8 Automating Dynamic Logics

Modal Kleene algebras are very similar to propositional dynamic logics. More
precisely, they are strongly related to variants of dynamic algebras developed by
Kozen, Parikh and Pratt (cf. [12]). The axioms of dynamics algebras look like
those of Kleene modules, but the induction axiom of Kleene modules is replaced
by Segerberg’s induction axiom

|x∗〉p− p ≤ |x∗〉(|x〉p− p), (4)

with p − q defined as p¬q. However, while dynamic algebras use a Boolean
algebra in the second argument of diamonds, there is no Kleene algebra in the
first argument, only a term algebra of Kleenean signature (cf. [11,19]).

It has been shown that (4) is a theorem of modal Kleene algebra, which means
that propositional dynamic logic is subsumed by modal Kleene algebra. We can
give a step-wise automated proof of (4). We can prove that

p ≤ |x∗〉q + p, |x〉|x∗〉q ≤ |x∗〉q + p, q ≤ |x∗〉q

where q replaces |x〉p − p. With these hypotheses we can show that (4) follows
from distributivity, the induction law of Kleene modules and the Galois connec-
tion p− q ≤ r ⇔ p ≤ q + r, which holds in Boolean algebra.

Another variant of dynamic algebra uses the additional axiom |p?〉q = pq
where ? : B → K embeds tests into actions. In Kleene algebra, the embedding
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of tests is left implicit and this axiom reduces to |p〉q = pq. The proof can be
automated from scratch as well.

Automated deduction with propositional dynamic logic is now available via
modal Kleene algebras. This treatment of modal logic is completely axiomatic
whereas previous approaches usually translate the Kripke semantics for modal
logics more indirectly into first-order logic (cf. [21,8]). These translational ap-
proaches therefore reason in one particular model whereas ours, beyond relations,
also covers models based on traces, paths and languages. Finally, an extension
to first-order dynamic logics seems feasible.

9 Automating Linear Temporal Logics

It is well known that the operators of linear temporal logics can be expressed
in propositional dynamic logics. The operators of next-step and until can be
defined by Xp = |x〉p and pUq = |(px)∗〉q; the operators for finally and globally
are Fp = |x∗〉p and Gp = |x∗]p, where x stands for an arbitrary action. We can
also define the initial state by initx = [x|0; it is the set of states with no x-
predecessors. A set of axioms has been proposed by Manna and Pnueli [18] and
further been adapted and explained by von Karger [25] to a setting of second-
order quantales. However, von Karger’s axioms can easily be translated to the
first-order setting of modal Kleene algebras.

|(px)∗〉q = q + p|x〉|(px)∗〉q, 〈(xp)∗|q = q + p〈(xp)∗|〈x|q,
|(px)∗〉0 ≤ 0, 〈x|0 = 1,

|x∗](p → q) ≤ |x∗]p → |x∗]q, [x∗|(p → q) ≤ [x∗|p → [x∗|q,
|x∗]p ≤ p|x]|x∗]p, |x∗](p → |x]p) ≤ |x∗](p → |x∗]p),

p ≤ [x||x〉p, p ≤ |x]〈x|p,
initx ≤ |x∗](p → [x|q) → |x∗](p → [x∗|q), initx ≤ |x∗]p → |x∗][x|p,

|x](p → q) = |x]p → |x]q, [x|(p → q) = [x|p → [x|q,
〈x|p ≤ [x|p, |x〉p = |x]p.

These axioms split into two groups. Those in the first five lines are theorems of
modal Kleene algebra; the remaining ones express the particular properties of
the underlying model and therefore need not be proved. But also for the first five
lines there is nothing to prove: a closer inspection shows that they are instances
of general theorems of Kleene algebras that have already been automated, e.g,
|x〉p−|x〉q ≤ |x〉(p−q). The axioms in the fifth line, in particular, are instances of
generic cancellation laws of Galois connections. The second axiom in the fourth
line is a dual variant of Segerberg’s induction axiom (4).

Adding the axioms in the three last lines to those of modal Kleene algebras
allows one to perform automated proofs in linear temporal logics in this setting
with Prover9. These axioms encode relational properties in the sense of modal
correspondence theory. Those in the sixth line encode confluence of x, the re-
maining ones encode linearity of x and the fact that there is no upper endpoint.
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We did not attempt to further automate this analysis. Instead we will provide a
more significant correspondence result in the next section.

Since variants of Dijkstra’s guarded command language can also be specified in
Kleene algebra, our approach could provide a kind of “soft model checking” in a
first-order setting. System specifications can be written in the guarded command
language, system properties can be specified in linear temporal logic. Proofs or
refutations can then be attempted in Prover9 and Mace4. Again, our approach
seems to allow an extension to first-order linear temporal logic.

10 Automating Modal Correspondence Theory

We will now consider an example from modal logics to further demonstrate the
balance between expressive and computational power of modal Kleene algebras.

We will automate a modal correspondence proof of Löb’s formula (cf. [5]),
which in modal logic expresses well-foundedness of a transitive relation. In its
usual form Löb’s formula is written as �(�p → p) → p. To represent it al-
gebraically, we first replace � by |x] and then dualise the result to forward
diamonds. This yields

|x〉p ≤ |x〉(p − |x〉p). (5)

We must express transitivity and well-foundedness. An element x is transitive if
xx ≤ x, which implies that |x〉|x〉p ≤ |x〉p. Furthermore, x is well-founded if

p− |x〉p = 0 ⇒ p = 0. (6)

This notion coincides with the usual set-theoretic notion. The expression p−|x〉p
abstractly represents the x-maximal elements of a set p, i.e., the set of elements
of p from which no further x-transition is possible. Formula (6) therefore says
that only the empty set has no x-maximal element, whence x is well-founded
(with respect to increasing chains).

A deeper discussion of these notions and a proof by hand can be found in [9].
The proof has two steps. The first one shows that a transitive element is equal to
its transitive closure. We can automatically prove |x〉|x〉p ≤ |x〉p ⇒ |x+〉p ≤ |x〉p.
The second one shows that well-foundedness of x is equivalent to

|x〉p ≤ |x+〉(p− |x〉p). (7)

Equivalence of (6) and (5) for transitive elements is then obvious.
While the proof that (7) implies (6) is immediate with Prover9, the converse

implication is more complex. First, note that the antecedent of (6) is equivalent
to p ≤ |x〉p. So if we can show that

|x〉p− |x+〉(p− |x〉p) ≤ |x〉(|x〉p − |x+〉(p− |x〉p)) (8)

then (7) follows from (6). We can do a step-wise proof from the Kleene module
axioms in which p − q is consistently replaced by p¬q. The arising difficulties
show that we do not work at the right level of abstraction.



292 P. Höfner and G. Struth

Since a modal operator |a〉 operates on the Boolean algebra of tests, we can lift
our considerations to the function space. As usual, this is done by stipulating,
for all f, g : test(S) → test(S), that f ≤ g iff ∀p ∈ test(S).f(p) ≤ g(p). The
operations of Kleene algebras can be lifted as well, e.g., (f +g)(p) = f(p)+g(p),
(fg)(p) = f(g(p)) and 1(p) = p. It can be shown that the structure induced on
the function space is again a Kleene algebra (except for one induction axiom) [19].
The structure induced is even richer. In particular, we obtain (f − g)(p) =
f(p) − g(p). Lifting (8) and setting f = |a〉 yields

f − f+(1 − f) ≤ f(f − f+(1 − f)).

We can now prove automatically that f−f+(1−f) ≤ f((1−(1−f))−f+(1−f)).
The remaining step requires an application of the inequality 1 − (1 − f) ≤ f ,
which we can prove automatically in Boolean algebra. However, this isotonicity
step requires an intricate matching in our equational encoding, which could not
be done by the prover in a reasonable amount of time.

This experiment illustrates the benefits of the abstraction and lifting tech-
niques that come with the algebraic approach. It also illustrates the limitations
of our näıve equational encoding that cannot sufficiently cope with isotonicity.

The standard correspondence result for Löb’s formula is model-theoretic; it
strongly uses implicit set theory and infinite chains and its frame property is
second-order. In contrast, our approach is entirely calculational and therefore
more suitable for automation. In particular, modal Kleene algebra allows us
to express syntax and semantics in one and the same formalism. Beyond this
example, further modal correspondence results can easily be automated.

11 Conclusion

We implemented variants of Kleene algebras in the automated deduction system
Prover9 and the associated counterexample generator Mace4. We automatically
verified the standard calculus of these algebras and proved some non-trivial
statements that are relevant to systems verification and modal correspondence
theory. We used the theorem-proving technology in a rather näıve way and did
not put much effort into tuning syntactic orderings or using the selection and
hint mechanisms provided. We usually stopped the prover after searching for a
few minutes and introduced step-wise proofs when proofs from scratch were not
successful with this approach. The immediate benefit of the black-box approach
is that it yields a very conservative estimation of the possibilities and limitations
of the approach, which is very valuable with respect to industrial applicability.

Compared to our initial expectations, the number and difficulty of the theo-
rems we could prove came as a surprise. The Church-Rosser proof from scratch
in a few seconds, for instance, seems quite impressive. We chose our experiments
due to their practical relevance for computer mathematics and formal methods
as well as due to their complexity. They support our claim that domain-specific
algebras can successfully be combined with general purpose theorem provers; a
direction that certainly deserves further investigation.
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For mathematicians, our experiments underpin that automated deduction
with complex algebraic structures is feasible, sometimes surprisingly simple and
fast. Routine proofs can often be fully automated even by non-experts in auto-
mated deduction. In the context of formal methods, automated proof support,
e.g. for B or Z, is still a challenge. Our approach has the potential to improve
this situation. Our experiments suggest that modal Kleene algebras provide the
appropriate level of abstraction to formalise and reason about programs and
systems in a simple, concise and efficient way. While special purpose theorem
provers have often been deemed necessary this task, our experiments suggest
that off the shelf theorem proving technology can be very successful if combined
with the appropriate algebra. The approach therefore seems very promising as a
light-weight formal method with heavy-weight automation. In particular, the in-
terplay of conjectures and refutations—a kind of “soft model checking”—seems
very useful in practice.

Our experiments also pose some interesting research questions for automated
deduction. First, equational reasoning should be complemented by reasoning
with inequalities (viz. chaining calculi), an issue that has so far rather been
neglected in implementations. During the submission phase of this paper, we
have encoded inequalities as predicate in Prover9 together with the obvious
axioms. Using this alternative approach, we could automatically verify some key
refinement laws for concurrent systems, which are far more sophisticated than
the examples treated in this paper [13]. The equational coding failed on most of
these examples. Second, an integration of domain-specific solvers and decision
procedures promises a full automation of partial correctness analysis of programs
and beyond. Third, we cannot sufficiently exploit the symmetries and dualities
of Kleene algebra within Prover9, and, although some forms of (co)induction are
supported by Kleene algebra, structural induction is not possible. A combination
of other tools that support these tasks would be very helpful.

In this paper we could only outline the first steps of our new approach to
automated program analysis. In the future, we plan to build up a library of au-
tomatically verified theorems of Kleene algebra. The development of a tool that
combines diagrammatic reasoning about transition systems with formal verifica-
tion through automated deduction seems very interesting. We will also further
pursue the specification and automated verification of programs and protocols
via the guarded command language and the modal apparatus provided by Kleene
algebra. And, last but not least, we are planning to continue transforming our
approach into an applicable and strongly automated formal method.
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Abstract. This paper describes the design, implementation, and testing
of a system for selecting necessary axioms from a large set also containing
superfluous axioms, to obtain a proof of a conjecture. The selection is
determined by semantics of the axioms and conjecture, ordered heuristi-
cally by a syntactic relevance measure. The system is able to solve many
problems that cannot be solved alone by the underlying conventional
automated reasoning system.

1 Introduction

In recent years the ability of systems to reason over large theories – theories in
which there are many functors and predicates, many axioms of which typically
only a few are required for the proof of a theorem, and many theorems to be
proved from the same set of axioms – has become more important. Large theory
problems are becoming more prevalent as large knowledge bases, e.g., ontologies
and large mathematical knowledge bases, are translated into forms suitable for
automated reasoning [14,28,16], and mechanical generation of automated rea-
soning problems becomes more common, e.g., [3,10]. Over the years there have
been regular investigations into techniques for the a priori selection of the nec-
essary axioms, e.g., [11,23,9,27,13], and the use of externally provided lemmas,
e.g., [30,5,6,32,27,12]. Performances on large theory problems in the TPTP li-
brary [25] and the associated CADE ATP System Competition [22] show that
automated reasoning systems have improved their ability to select and use the
necessary axioms.

The work described in this paper addresses the issue of selecting necessary
axioms, from a large set also containing superfluous axioms, to obtain a proof of
a conjecture. It is based on the idea in Petr Pudlak’s PhD research [13] (which
he attributes to Jǐŕı Vyskočil), to iteratively select axioms using semantics to
guide the selection. This work diverges from that of Pudlak in that it focuses on
extensions that improve the implemented performance of the basic idea, while
Pudlak extends the basic idea towards finding a minimal adequate set of axioms.

The use of semantics to select axioms is in contrast to previous work (see
the citations above) that uses syntactic characteristics both to estimate the
potential usefulness of axioms, and to select which axioms to use in a proof
attempt. While this work does use a syntactic relevance measure to determine

F. Pfenning (Ed.): CADE 2007, LNAI 4603, pp. 295–310, 2007.
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the order in which axioms are considered, semantics is used to select axioms.
Further, no proof attempts need be made until the semantic selection of axioms
is completed, at which point theoremhood of the conjecture has probably already
been established.

The results obtained by the implementation show that the system is able
to solve problems that cannot be solved alone by the underlying automated
reasoning system. Additionally, in some cases where the underlying considered
automated reasoning system is able to find a proof from the full axiom set, the
axiom selection improves performance in terms of time taken and proof size.

This paper is organized as follows: Section 2 explains the semantic selection
technique. Section 3 describes the syntactic relevance evaluation. Section 4 pro-
vides details of the implementation. Section 5 gives test results, with commen-
tary. Section 6 concludes and discusses possible future research. In this paper all
semantic statuses are given in terms of the SZS ontology [26].1

2 Semantic Relevance Axiom Selection

2.1 The Basic Process

The definition of logical consequence provides the intuitive basis for the semantic
relevance axiom selection technique:

A conjecture is a logical consequence of a set of axioms (i.e., a theorem
of the axioms) iff every model of the axioms is a model of the formula.

The selection starts with an empty set of selected axioms. At each iteration the
process looks for a model of the selected axioms and the negation of the conjec-
ture. If no such model exists then the conjecture is a logical consequence of the
selected axioms. If such a model exists then an unselected axiom that is false
in the model is moved to the set of selected axioms. The newly selected axiom
excludes the model (and possibly other models) from the models of the selected
axioms and negated conjecture, eventually leading to the situation where there
are no models of the selected axioms and the negated conjecture. Figure 1 shows
the idea.2 The plane represents the space of interpretations, the rectangle en-
compasses the models of the conjecture C, and an oval encompasses the models
of the corresponding axiom Ai. In the first iteration, when the set of selected
axioms is empty, the model M0 of the negation of the conjecture, ¬C, is found.
That leads to the selection of the axiom A1, which is false in the model. Iter-
atively, the model M1 of {A1,¬C} is found, leading to the selection of A2, the
model M2 of {A1, A2,¬C} is found, leading to the selection of A3, at which point
there is no model of {A1, A2, A3,¬C}, proving that C is a logical consequence
of {A1, A2, A3}. In the last part of the figure this is seen by the intersection of
the axiom ovals lying within the conjecture rectangle. Note that the model may
be finite or infinite, provided that formulae can be evaluated with respect to the
1 See the most recent version online at http://www.tptp.org/TSTP/
2 This way of representing the idea was taken from Petr Pudlak’s PhD [13].
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Fig. 1. The Basic Process

model. (In the implementation described in Section 4 a finite model builder is
used, but this is not an “in principle” limitation.)

Example.3 Consider the simple propositional problem, to prove the conjecture
C = b from the axioms E1 = a | b, E2 = b ⇒ a, E3 = (¬a & (b | c)) |
(a & ¬b & ¬c). and E4 = b | (a ⇔ c). The conjecture C can be proved from E3

and E4, i.e., E1 and E2 are superfluous. The following table shows a possible
sequence of models and selected axioms. Note how E1, E2, and E3 are true in
the first model, so only E4 can be selected. E1 and E3 are false in the second
model, but E1 is found first. E2 is true in every model of ¬C, and thus can never
be selected. If the model {a,¬b, c} had been used in the second iteration, then
E3 would have been selected, leading to immediate success.

Selected set Model Axiom
1 { } {a,¬b,¬c} E4 = b | (a ⇔ c)
2 {E4} {¬a,¬b,¬c} E1 = a | b
3 {E1, E4} {a,¬b, c} E3 = (¬a & (b | c)) | (a & ¬b & ¬c)
4 {E1, E3, E4} - -

The basic process described above assumes that the axioms are consistent and
non-redundant, and that the conjecture is a logical consequence of (some subset
of) the axioms.

Inconsistent Axioms. If the axioms are inconsistent, then a situation such as
that shown in the upper left of Figure 2 exists, There is no model of the selected
axioms {A1, A2, A3}. In this case the conjecture is a logical consequence of the
selected axioms, and the process described above still reports logical consequence.

3 Thanks to Josef Urban for his Prolog program that cooked up this illustrative ex-
ample.
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Fig. 2. Exceptional Cases

Redundant Axioms. If the axioms are redundant (i.e., some can proved from
others, which is worse than being superfluous), then a situation such as that
shown in the upper right of Figure 2 exists. AR is selected because it is false in
M1, but is redundant after the selection of A2. Retaining redundant axioms is
(typically) deleterious to subsequent processing of the selected axiom set. This
situation can be detected by attempting to prove any axiom that is not selected
(because it is found to be true in the current model) from the selected axioms,
and after selecting an axiom, by attempting to prove each previously selected
axiom from the remaining selected axioms. A negative aspect of this approach
to detecting redundant axioms is that it requires an “expensive” proof attempt
on each unselected axiom that is true in each model.

CounterSatisfiable Conjecture. If the conjecture is not a logical consequence
of the axioms, then a situation such as that shown in the lower left of Figure 2
exists. All the unselected axioms A3 . . . An are true in the current model M2.
This situation is detected in the above process when looking for an unselected
axiom that is false in the current model, by noticing that all the unselected
axioms are true in the current model.

2.2 The Extended Process

While the basic process described in Section 2.1 provides a complete solution
to the axiom selection problem, it does not (and cannot in general) ensure that
each selected axiom is not superfluous, and it ignores implementation issues. In
this section the basic process is extended to improve performance, and to cope
with practical issues that arise in implementation. All these extensions have been
implemented, as described in Section 4.
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Initial Proof Attempt. While axiom selection is a useful technique, there are
many problems with superfluous axioms that can be easily solved using conven-
tional automated reasoning. It is possible that the overhead of axiom selection
may even prevent the solution of such problems in a resource limited environ-
ment. In order to detect such easily solved problems, an initial proof attempt
may be made using conventional automated reasoning. If this is successful then
no further processing is required.

Relevance Ordering. At each iteration of the basic process it is necessary
to search through the unselected axioms to find one that is false in the cur-
rent model (and similar searches turn out to be necessary in other situations
described below). The chances of selecting a useful axiom are increased if the
unselected axioms are considered in decreasing order of potential usefulness. This
is necessarily a heuristic ordering. The implementation described in Section 4
uses a syntactic relevance score to order the unselected axioms. The details of
the relevance scoring system are given in Section 3. The heuristic ordering also
has the practical effect of increasing the chances of finding a false axiom early
in each search through the unselected axioms, resulting in faster progress. The
results in Section 5 show that the syntactic relevance ordering is a key to the
success of the implemented system.

Efficient Termination. The basic process terminates when it determines that
there is no model of the selected axioms and negated conjecture. This can be
more efficiently established by testing if the selected axioms and negated con-
jecture are unsatisfiable (although these two are logically the same, different
techniques may be used to establish the two conditions). As this will be the case
only when sufficient axioms have been selected, i.e., the test will normally fail,
it is prudent to first check if the selected axioms and negated conjecture are
satisfiable - if they are, then the unsatisfiability test is unnecessary.

Greedy Termination. A greedy approach may be taken to detect the situation
when only one more axiom needs to be selected, by looking for an unselected
axiom whose negation can be proved from the selected axioms and negated
conjecture, i.e., the axiom is a counter theorem of the selected axioms and negated
conjecture. This situation is seen in the last part of Figure 1 (and in the case
of inconsistent axioms, in the upper left of Figure 2), with A3 being the final
axiom. Note how A3’s oval does not intersect with any part of the area containing
the models of the selected axioms and negated conjecture (the area containing
M2). In the example in Section 2.1, at the start of the second iteration, greedy
termination detects that ¬E3 can be proved from {E4,¬C}. Greedy termination
is reminiscent of the unit conflict strategy found in some automated reasoning
systems, e.g., Otter [8]. A negative aspect of using greedy termination is that it
fails until an adequate set of axioms has been selected, so that at each iteration
before the last one there is an expensive wasted proof attempt for each unselected
axiom.

Incomplete Models. In practice, the model found at each iteration might be
able to interpret only the symbols found in the selected axioms and negated
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conjecture. If so, it might be impossible to evaluate unselected axioms that use
other symbols. In the example in Section 2.1, given only the negated conjecture
C = ¬b in the first iteration, the model {¬b} might be found. Axiom E2 might be
evaluated as true in the model, but the other three axioms cannot be evaluated.
To deal with this situation the basic process is extended: If no unselected axiom
is evaluated as false in the model, then look for an unselected axiom that cannot
be evaluated as true in the model. Such an axiom is called a not-true axiom.

Inadequate Models. In practice, it might not be possible to find a model
for a given set of selected axioms and negated conjecture, even if one exists,
because of resource limits, or because a finite model builder is used and only
infinite models exist. If this occurs then the unselected axioms cannot be evalu-
ated as false or not-true. Remedial steps, e.g., increasing the resources assigned
to model finding, may optionally be taken. Even if a model can be found, it may
still not be possible to evaluate an unselected axiom as false or not-true, because
of resource limits, or because the model is incomplete. To deal with situations
in which axioms cannot be evaluated with respect to a model, the process is
further extended: If no unselected axiom is evaluated as false or not-true, then
look for an unselected axiom that cannot be proved from the selected axioms
and the negated conjecture, i.e., the axiom is counter satisfiable with respect to
the selected axioms and negated conjecture. This is implemented by looking for
a model of the selected axioms, the negated conjecture and the negation of an
unselected axiom. This extension is thus a converse of the basic process – the
basic process finds a model and then looks for a false axiom, while this exten-
sion selects an axiom and then looks for a model in which the axiom is false.
This extension can be used alone, but is less successful alone because it allows
the axioms to determine the models rather than vice versa. The following table
shows a possible sequence of models and selected axioms for the example in Sec-
tion 2.1, with incomplete models, and no evaluation if the model is incomplete
for the formula. Note how in the first and second iteration none of the unse-
lected axioms can be evaluated as false or not-true in the model. In the second
iteration E2 cannot be selected as counter satisfiable because there is no model
of {E1,¬C,¬E2}.

False Not-true CSA CSA
Selected set Model Axiom Axiom Model Axiom

1 { } {¬b} - - {¬a,¬b} E1 = a | b
2 {E1} {a,¬b} - - {a,¬b, c} E3 = (¬a & (b | c)) |

(a & ¬b & ¬c)
3 {E1, E3} {a,¬b,¬c} E4 = b | (a ⇔ c)
4 {E1, E3, E4} - - - -

This extension can be efficiently implemented because it is not necessary to
actually build a model of the selected axioms, the negated conjecture, and the
negation of an unselected axiom. It is merely necessary to establish the existence
of such a model, i.e., to establish that selected axioms, the negated conjecture,
and the negation of the unselected axiom are satisfiable. However, this again
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might not be possible. To deal with this situation the process is finally extended:
If no unselected axiom is evaluated as false or not-true, and no unselected axiom
is counter satisfiable with respect to the selected axioms and negated conjecture,
then select the axiom that has the highest syntactic relevance.

Aggressive Selection. The goal of the process is to select a set of axioms so
that every model of the axioms is a model of the conjecture, or, put another way,
the intersection of the sets of models of the axioms is a subset of the set of models
of the conjecture. This is shown in the last part of Figure 1. When selecting an
axiom at each iteration, an axiom for which there is a model of its negation,
the selected axioms, and the conjecture, might be preferred over an axiom that
is true in every model of the selected axioms and the conjecture. The intuitive
reason is that the former axiom reduces the size of the intersection (of the sets
of models of the selected axioms) within the set of models of the conjecture.
This is shown in the lower right of Figure 2, where the axiom AS is necessarily
superfluous if used with A1, while axiom A2 is seen to be potentially useful due
to the existence of the model MU . In the example in Section 2.1, in the second
iteration both E1 and E3 are false in the model, but aggressive selection prefers
E3 over E1 because there is a model of {¬E3, E4, C} (e.g., {a, b, c}) but no model
of {¬E1, E4, C}. Of course an MU does not necessarily exist for every selected
axiom, e.g., in the first iteration of the example there is no model of {C,¬E4}. If
there are axioms that meet the semantic requirements for selection, but all are
rejected by aggressive selection, then aggressive selection can no longer be used.

Batch Selection. The extended process described so far selects a single axiom
at each iteration. The effort required to make the selection in each iteration
may be quite significant. In order to make faster progress it is possible to select
multiple axioms at each iteration, by selecting muliple axioms that are false in
the model, and then, if more are required, multiple not-true axioms, and so on.
This reduces the effort-per-axiom selected, and is particularly useful when large
numbers of axioms are necessary for a proof of the conjecture. The disadvantage
of batch selection is that the selection is less focussed, because the set of selected
axioms and model upon which decisions are predicated are not updated for the
second and subsequent axioms of each batch.

Limited Selection. For each of the alternative methods of selecting an ax-
iom (false in the model, not-true in the model, . . . ), in the default process each
method considers all of the unselected axioms before progressing to the next
method. This might lead to an axiom of low syntactic relevance being selected
by an earlier method, while it may be preferable to select a more syntactically
relevant axiom by a later method. In order to balance these alternatives the
number of unselected axioms that is considered by each method can be lim-
ited. Limiting the number of axioms considered by methods with high resource
requirements also produces faster progress.

Final Proof Attempt. The selection terminates normally when it is estab-
lished that the conjecture is a logical consequence of the selected axioms – theo-
remhood has been established but no proof has been generated. It is also possible



302 G. Sutcliffe and Y. Puzis

for all axioms to be selected without theoremhood being established, because
of resource limits on the tests, or because all axioms are necessary. Therefore,
when the axiom selection process terminates, a final proof attempt is made us-
ing conventional automated reasoning, to build a proof. If this succeeds then
theoremhood is established and the proof can be output.

3 Syntactic Relevance Ordering

A syntactic relevance measure uses the syntax of axiom formulae to gauge the
extent to which the formulae may contribute to a proof of a given conjecture.
Syntactic relevance measurement, like semantic axiom selection, is necessarily
heuristic. The syntactic relevance measure described here is a measure of the
extent to which the formulae use the same predicates and functors. The notion
of using the language of formulae to gauge connections between the formulae
has also been used to guide the use of formulae as parents of inferences, e.g., in
partition-based reasoning [7], in axiom selection, e.g., [9], and more generally in
information retrieval applications, e.g., web queries [17].

The direct relevance between two formulae is the ratio of how many predicates
and/or functors they have in common to how many predicate and/or functors
they use overall. Let sym(F ) be the set of predicates and/or functors that occur
in the formula F . The direct relevance between two formulae Fa and Fc is

|sym(Fa) ∩ sym(Fc)|
|sym(Fa) ∪ sym(Fc)|

The contextual direct relevance between two formulae replaces the intersection
in the numerator by contextual intersection, which places the two formulae in
the context of a set of formulae. The contextual intersection � of two formulae
Fa and Fc in the context of the set of all formulae (all the axioms and the
conjecture) S is

∑

s∈(sym(Fa)∩sym(Fc))

(

1 − |{f : f ∈ S, s ∈ sym(f)}|
|S|

)

and the contextual direct relevance is

|sym(Fa) � sym(Fc)|
|sym(Fa) ∪ sym(Fc)|

Contextual relevance captures the intuitive notion that if a symbol occurs in
many formulae, then the fact that it appears in two given formulae does not
indicate any special connection between the two formulae.

In addition to (contextual) direct relevance between two formulae, there may
be (contextual) indirect relevance, by virtue of both being relevant to some other
formula. The (contextual) indirect relevance between two formulae Fa and Fc is
determined by examining the (contextual) direct relevances between intermedi-
ate formulae Fi and Fi+1, in all paths Fa = F1 · F2 · . . . · Fn = Fc from Fa to
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Fc. The relevance measure for such a path is the smallest relevance on the path
divided by the length of the path. This reflects the idea that a path is only as
strong as its weakest link, and that relevance decreases with distance. The (con-
textual) indirect relevance between two formulae is the maximal (contextual)
indirect relevance over all paths connecting the two formulae.

4 Implementation

The processes described in Sections 2 and 3 have been implemented as the sys-
tem SRASS. The various tests required by the process are all implemented us-
ing conventional automated reasoning systems: a theorem prover to test for
(counter)theoremhood, test for unsatisfiability, and to find explicit proofs; a fi-
nite model builder to test for (counter)satisfiability and build models; and a
saturating system to further test for (counter)satisfiability in cases where the
finite model builder fails and it is necessary only to establish the existence of a
model, e.g., for selecting counter satisfiable axioms. Contextual indirect syntactic
relevance is used to order the axioms. This implementation places SRASS along-
side other work based around a combination of component reasoning systems,
e.g., [34,33,20].

The evaluation of an unselected axiom with respect to a model is done by
representing the model as a set of formulae [24], and the unselected axiom (or
its negation) as a conjecture. An axiom is evaluated as false in the model if its
negation can be proved from the model (the axiom is a counter theorem of the
model), evaluated as not-true in the model if its negation and the model are
satisfiable (the axiom is counter satisfiable with respect to the model), and is
evaluated as true in the model if it can be proved from the model (the axiom is a
theorem of the model). This method of evaluation is slightly resource intensive,
but allows consistent use of automated reasoning for all tests.

The implementation is in C, built on top of the JJParser library of TPTP
compliant functions, and using the SystemOnTPTP harness [21] for calling the
component automated reasoning systems. The various features of SRASS are
parameterized, thus allowing the various features of the process to be enabled
and disabled, different resource limits to be imposed, different forms of out-
put to be reported, and different automated reasoning systems to be used. The
implementation algorithm is shown in Figure 3.

5 Results

SRASS has been tested on several problem sets. The first problem set is in the
domain of logical calculi – the 132 TPTP problems LCL448+1 to LCL578+1. The
problems come from research into mechanically proving relationships between
different axiomatizations of various modal logic systems [19,15]. The modal logic
formulae are encoded as first-order terms, and modal inference rules as first-order
implications. The problems include equivalence definitions for all the modal ax-
ioms in the problem suite, in the form axiom name ⇔ encoded form, which are
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Sort axioms into descending order of syntactic relevance;1

if Initial Proof Attempt is successful then2

Report “Theorem”;3

Report proof;4

exit;5

end6

while SZS status not established & Some axioms are unselected do7

if Theoremhood established by Efficient Termination then8

break;9

else if Theoremhood established by Greedy Termination then10

break;11

else if Can find model of {¬C} ∪ Selected then12

Select axioms that are counter theorems of the model;13

if CounterSatisfiable Conjecture then14

break;15

end16

if Batch Selection is not complete then17

Select axioms that are counter satisfiable wrt the model;18

end19

else20

Optionally increase resources for finding models;21

end22

if Batch Selection is not complete then23

Select axioms that are counter satisfiable wrt {¬C} ∪ Selected;24

end25

if Batch Selection is not complete then26

if An axiom was rejected by Aggressive Selection then27

Select that axiom;28

Cancel Aggressive Selection;29

else30

Select most syntactically relevant axioms;31

end32

end33

end34

if Problem not solved & All axioms are selected then35

Check if conjecture proved by Efficient Termination;36

end37

if Theoremhood established then38

Report “Theorem”;39

end40

if Final Proof Attempt is successful then41

Report proof;42

end43

if Countersatisfiability established then44

Report “CounterSatisfiable”;45

end46

Fig. 3. SRASS Algorithm
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“activated” by asserting or conjecturing the axiom name. Many of the defini-
tions are not relevant to a given problem, and hence not asserted or conjectured,
and within each problem it is typically the case that many of the modal axioms
(and hence their encoded forms) are superfluous. The second problem set is in
the domain of set theory – the 253 TPTP problems SET866+1 to SEU118+1. The
problems come from a first-order encoding of theorems in the Mizar library [28].
The problems are generated by a process that attempts to automatically detect
what background knowledge in the Mizar library is relevant to the conjecture,
and then encodes the Mizar form into first-order logic. The process of accumu-
lating background information cannot be precise, and therefore conservatively
adds background so that problems have superfluous axioms. The third problem
set is in the domain of software verification – the 109 TPTP problems SWV022+1
to SWV130+1. The problems come from certification of auto-generated aerospace
software [3]. The certification approach uses Hoare-style techniques that pro-
duce safety obligations in the form of first-order problems that are provable if
and only if the software is safe. The safety obligations have superfluous axioms
as a result of their mechanical production. Problems that E 0.99 cannot solve
in 20s were used, giving 75 logical calculi problems, 103 set theory problems,
and 61 software verification problems. Of these 239 problems, either E 0.99 or
SRASS could solve 71: 22 logical calculi problems, 28 set theory problems, and
21 software verification problems. The results for these 71 problems are reported
below.

For the testing SRASS was configured conservatively: no Initial Proof Attempts
were made4, no tests for CounterSatisfiable Conjectures were done, Greedy Termi-
nation and Aggressive Selection were disabled, and no Batch Selection or Limited
Selection was used. The automated reasoning systems used were: E 0.99 [18] to test
for (counter)theoremhood and unsatisfiability, EP 0.99 to find explicit proofs, FM-
Darwin 1.3g [1] to build models, Paradox 2.0b [2] to test for (counter)satisfiability,
and SPASS 2.2 [31] to further test for (counter) satisfiability. The CPU limits im-
posed were 600s overall, 10s for (counter)theoremhood tests, 120s for unsatisfi-
ability tests, 600s for finding explicit proofs, 10s for building models, and 2s for
(counter)satisfiability tests. The testing was done on a 2.8GHz Intel Xeon com-
puter with 1GB memory, and running Linux 2.6.

Table 1 summarizes the results. The columns provide the TPTP problem
name, the number of axioms in the problem, the time taken by EP to find a
proof (or, if no proof is found, the time taken by E to establish theoremhood),
the number of axioms used in EP’s proof, the time taken by SRASS to find a proof
(or, if no proof is found, the time taken to establish theoremhood), the number of
axioms selected, the time taken by EP to find the proof from the selected axioms,
and the number of axioms in the proof from the selected axioms. There are 71
problems. EP finds proofs for 18 problems, and E establishes theoremhood for a
further 21, for a total of 39. SRASS finds proofs for 47 problems, and establishes

4 The manual selection of problems that E 0.99 cannot solve in 20s could be replaced
by making Initial Proof Attempts with a 20s CPU limit. Thus for black-box testing,
add 20s to all the SRASS times in the results table below.
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theoremhood for a further 7, for a total of 54. SRASS and EP both find proofs
for 15 problems, and SRASS is faster than EP in 11 of these 15 cases. SRASS
and E both establish theoremhood for 22 problems (including the cases where
both find proofs), and SRASS is faster than E in 12 of these 22 cases.

For 9 of the 15 problems for which SRASS and EP both find proofs, the
proofs use a different number of axioms. Of particular interest are LCL524+1,
where SRASS uses 17 axioms and EP uses 36, and the four SWV problems where
SRASS uses no axioms while EP uses 2 axioms. Generally SRASS outperforms
EP on the SWV problems because SRASS finds that a proof is possible with just
a few axioms (often none).

As mentioned in Section 2.2, the syntactic relevance ordering is a key to the
success of SRASS. Without syntactic relevance ordering SRASS solves only 36
of the problems (compared to the 54 solved with syntactic relevance ordering).
Interestingly, there are five problems that are solved without the relevance order-
ing that are not solved with the relevance ordering. Aggressive selection, on the
other hand, is of less utility – SRASS solves 52 of the problems with aggressive
selection enabled. However there are some cases where use of aggressive selection
results in fewer axioms being selected.

In order to confirm the utility of building and using models to guide axiom
selection, SRASS was configured to simply take the best axiom according to the
syntactic relevance ordering, at each iteration. Efficient termination remained in
use, i.e., at each iteration a test was made for the satisfiability of the selected
axioms and negated conjecture, and if that failed a test for unsatisfiability was
made. In this configuration only 37 problems were solved. Two problems were
solved that could not be solved by the model guided configuration. In all of
the 35 problems solved by both configurations, the model guidance resulted in
selection of fewer axioms. For 21 problems the absence of model guidance resulted
in lower solution times (as might be expected), but typically the time saved was
not significant. For 14 problems the failed unsatisfiability tests resulted in higher
solution times, often an order of magnitude greater than the model guided times.

In addition to the three problem sets described above for which SRASS ob-
tained positive results, SRASS was also tested in the conservative configuration
on three other problem sets: problems from Art Quaife’s development of NBG
set theory [14] – the 52 TPTP problems SET016+1 to SET122+1, number theory
problems that simulate human arithmetic – the 84 TPTP problems NUM290+1
to NUM373+1, and software creation problems regarding software component re-
trieval [4] – the 586 TPTP problems SWC001+1 to SWC423+1. These tests give
less impressive results, with SRASS and EP solving similar numbers of problems,
although not always the same problems.

SRASS was tested in a less conservative configuration on the MPTP Challenge
problems [29]. The challenge is divided into two divisions: the bushy division,
and the chainy division, each of which has 252 problems. The bushy problems
have from 6 to 340 axioms - average 76, some of which are superfluous due
to the way in which background axioms are added. The chainy problems are
the bushy problems augmented by lemmas that are superfluous but sometimes
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Table 1. SRASS Results

Problem Ax EP.t .ax S.t S.axs SP.t .ax Problem Ax EP.t .ax S.t S.axs SP.t .ax

LCL461+1 52 305 — — — — — LCL462+1 42 444 — — — — —
LCL466+1 42 188 — — — — — LCL467+1 42 187 — — — — —
LCL468+1 42 447 — — — — — LCL473+1 42 23 — 210 21 — —
LCL476+1 42 102 — 479 28 — — LCL480+1 42 187 — — — — —
LCL481+1 42 188 — — — — — LCL485+1 44 21 — 98 15 4 15
LCL486+1 44 — — 86 15 0 9 LCL489+1 44 35 — 164 24 — —
LCL495+1 44 88 — — — — — LCL496+1 44 — — 90 15 0 9
LCL498+1 44 74 15 244 26 3 17 LCL502+1 42 86 — — — — —
LCL504+1 42 30 — — — — — LCL519+1 42 107 — 184 20 — —
LCL524+1 81 44 36 411 33 1 17 LCL528+1 87 434 — 599 51 — —
LCL533+1 87 52 45 — — — — LCL541+1 94 493 — — — — —

SET946+1 11 — — 26 5 — — SET964+1 12 — — 159 6 1 3
SET973+1 25 50 9 — — — — SET982+1 7 84 3 — — — —
SET992+1 35 — — 21 2 0 2 SET994+1 31 241 — 41 11 0 8
SEU003+1 36 106 3 54 14 1 3 SEU005+1 40 — — 19 6 1 4
SEU012+1 38 — — 589 14 0 3 SEU013+1 34 — — 36 10 3 5
SEU017+1 39 460 — — — — — SEU024+1 40 0 4 33 8 0 3
SEU027+1 36 — — 15 4 0 3 SEU028+1 44 — — 119 11 0 8
SEU029+1 40 0 4 28 6 0 3 SEU031+1 42 37 4 11 4 0 4
SEU043+1 41 — — 21 5 — — SEU048+1 34 — — 29 7 0 4
SEU049+1 35 — — 24 3 5 2 SEU055+1 39 — — 211 13 0 4
SEU064+1 33 — — 58 9 0 3 SEU065+1 39 — — 256 9 160 4
SEU076+1 33 — — 38 8 0 3 SEU077+1 35 — — 36 10 0 3
SEU078+1 42 209 — — — — — SEU105+1 47 — — 22 11 0 4
SEU110+1 33 170 6 22 4 0 3 SEU114+1 35 590 — — — — —

SWV025+1 99 233 2 15 0 0 0 SWV026+1 99 271 2 10 0 0 0
SWV027+1 99 247 2 10 0 0 0 SWV028+1 91 199 0 10 0 0 0
SWV034+1 91 79 2 10 0 0 0 SWV036+1 84 — — 175 9 91 3
SWV038+1 84 — — 10 1 0 1 SWV089+1 84 — — 41 4 0 4
SWV090+1 84 — — 68 2 17 2 SWV091+1 84 — — 75 2 18 2
SWV093+1 101 — — 10 0 0 0 SWV094+1 101 — — 10 0 0 0
SWV095+1 101 125 0 10 0 0 0 SWV096+1 101 123 0 10 0 0 0
SWV097+1 91 — — 10 0 0 0 SWV099+1 91 113 0 10 0 0 0
SWV103+1 84 — — 27 2 9 2 SWV109+1 101 — — 10 0 0 0
SWV115+1 101 — — 10 0 0 0 SWV116+1 101 — — 10 0 0 0
SWV122+1 93 — — 10 0 0 0

useful. The chainy problems have from 12 to 1233 axioms - average 403. The
conservative configuration of SRASS was extended to make an Initial Proof At-
tempt with a CPU limit of 30s, to Batch Select 3 axioms in each iteration, and
to have a Limited Selection from the 10 most syntactically relevant axioms in
each iteration. An overall CPU limit of 300s was imposed. The testing aimed
only to establish theoremhood for each problem, without proofs being found.
In the bushy division, E establishes theoremhood for 141 problems, and SRASS
establishes theoremhood for 171. SRASS and E both establish theoremhood for
138 problems, E establishes theoremhood for 3 problems that SRASS does not,
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and SRASS establishes theoremhood for 33 problems that E does not. In the
chainy division, E establishes theoremhood for 91 problems, and SRASS estab-
lishes theoremhood for 127. SRASS and E both establish theoremhood for 83
problems, E establishes theoremhood for 8 problems that SRASS does not, and
SRASS establishes theoremhood for 44 problems for E does not.

6 Conclusion

This paper has shown how semantics can be used to determine the selection of
necessary axioms from a large set also containing superfluous axioms, to obtain a
proof of a conjecture. While the selection is a fairly resource intensive process, the
results show that benefits can often be obtained. Axiom selection is appropriate
when it is known that the axiom set contains superfluous axioms. Axiom selection
cannot help when the axiom set is already minimal, and the difficulty of the
problem stems from a deep proof or highly explosive search space.

Future work will be to determine appropriate configurations with respect to
problem characteristics, investigating the practical options for using both finite
and infinite models, and examining the performance in the face of axioms sets
that are orders of magnitude larger than those used in the testing so far – for
such axiom sets it is possible that further extensions to the basic process will
need to be devised and implemented.

SRASS is available for use online through the SystemOnTPTP interface ...
http://www.tptp.org/cgi-bin/SystemOnTPTP.
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Abstract. We add labels to first-order clauses to simultaneously apply
superpositions to several proof obligations inside one clause set. From
a theoretical perspective, the approach unifies a variety of deduction
modes. These include different strategies such as set of support, as well
as explicit case analysis, e.g., splitting. From a practical perspective, la-
belled clauses offer advantages in the case of related proof obligations
resulting from multiple conjectures over the same axiom set or from a
single conjecture that is a large conjunction. Here we can share clauses
(e.g., the axioms and clauses deduced from them, share Skolem sym-
bols), share deduced clause variants, and transfer lemmas between the
different obligations. Motivated by software verification, we have created
a prototype implementation of labelled clauses that supports multiple
conjectures, and we provide convincing experiments for the benefits.

1 Introduction

Our work in program analysis and software verification using the TVLA sys-
tem [10] has led us to explore the use of theorem provers for computing the
effects of program statements [25]. Recently, we explored the possibility of us-
ing first-order automated theorem provers for the task [9]. A major obstacle
in using existing automated theorem provers, such as E [18], Spass [21] and
Vampire [16], is that of performance. TVLA requires many calls to the theorem
prover to compute the effect of a single program statement. Therefore, the overall
time required for analyzing even a simple program is prohibitive. This situation
is common in other program analysis methods such as Cartesian Abstraction [1].

In the process of computing the effect of a program statement, TVLA gen-
erates multiple conjectures that share a common axiom set. However, current
theorem provers can only attempt to prove a single conjecture at a time. Running
the theorem prover multiple times, once for each conjecture, has three problems:
� Supported by an Adams Fellowship through the Israel Academy of Sciences and
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(1) if the conjectures are proven sequentially, any inferences/reductions made
between clauses from the axiom set are reconstructed and no synergies between
the proof attempts can be exploited, (2) because not all the conjectures are
valid and first-order logic is only semi-decidable, we are required to use time-
outs, which may cause us to give up on valid conjectures, (3) if a conjecture is
validated by a proof attempt, there is no automatic way inside the prover to
transfer the result to other proof attempts.

To overcome these obstacles, we devised algorithms to prove different conjec-
tures simultaneously inside one proof attempt. We chose to modify the calculus
used by the theorem prover to support deduction in parallel, i.e., for multiple
conjectures, via a methodology of labelled clauses. The idea is to label each
clause with the conjectures for which it is relevant, and update these labels dur-
ing deduction. As a consequence, we solved the above problems: (1) inferences on
axiom clauses are no longer duplicated but are shared — as are variant clauses
derived from separate conjectures and reductions, (2) a fair strategy among all
proof attempts (with one global timeout parameter) replaces the use of separate
timeouts, and (3) valid conjectures can be naturally transferred to other proof
attempts.

We have created a prototype implementation of labelled clauses for the purpose
of proving multiple conjectures within the automated theorem prover Spass, and
report on convincing experimental results in the context of our original applica-
tion.

After having seen the success of labelled clauses for multiple conjectures, we
believe that the methodology of labelled clauses has more potential in the con-
text of first-order theorem proving. Labelled deductive systems (see e.g., [2]) as
have been pushed forward by Dov Gabbay in the last fifteen years and have
become recognized as a significant component of the logic culture, in particular
in the context of non-classical logics. There labels are used on the one hand
to bring the semantics into the syntax by naming possible worlds using labels
(e.g., a Kripke structure) and on the other hand they can act as proof-theoretic
resource labels. Our motivation of using labels is different. We suggest to use la-
bels to study and implement variants of classical first-order-logic (superposition-
based) theorem-proving calculi to eventually improve automation. We show that
the methodology of labels carries over beyond proving multiple conjectures by
instantiating the methodology for clausal splitting (see e.g., [20]), slicing (see
e.g., [23]), and the set-of-support strategy (see e.g., [24]).

We use labels to summarize the derivation tree of a clause. For example, when
using labelled clauses for clausal splitting, the labels represent the splits the
clause depends on, and when using labelled clauses for multiple conjectures, the
labels represent the conjectures for which the clause is valid. The purpose of the
abstract framework described in Sect. 2 is to generalize the different applications
of labelled clauses and give a common presentation for all of them. We believe
that the abstract framework has interesting properties of its own, which we plan
to investigate as future work.
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1.1 Related Work

For the general methodology of labelled clauses there is a huge literature related
to our approach in the sense that the work can be reformulated and explored
via a labelled-clause discipline. A discussion of this general aspect is beyond the
scope of this paper. Therefore, we concentrate on work related to our approach
of proving multiple conjectures via labelled clauses.

Similar techniques for enhancing a theorem prover (for classical logic) to work
with multiple goals have been developed by A. Voronkov, and are being incor-
porated into Vampire [19]. However, his approach is based on an extension of
splitting, as described in [15].

A logical candidate for proving conjectures in parallel is to use additional
predicates [6]. In our setting, this would mean replacing each negated conjecture
¬ϕi with the disjunction bi ∨¬ϕi where bi is a fresh propositional variable (i.e.,
nullary relation). Now if the prover deduces the unit clause bi, the conjecture
ϕi is valid. The main problem with this approach is that it will also explore
disjunctions between different bi’s, i.e., between different conjectures, which un-
necessarily increases the search space by an exponential factor. Furthermore,
the literals added to the clauses block any reductions from (derived) conjecture
clauses in the axioms’ clauses.

Symbolic decision procedures [8] are a technique for finding all possible dis-
junctions of conjectures for a given axiom set. The technique is limited to spe-
cific theories, such as uninterpreted functions and difference logic. Furthermore,
because it is described in the context of the Nelson-Oppen method [13] for com-
bining decision procedures, its usability in the case of quantifiers is limited.

In the Boolean satisfiability community there is a related idea of incremental
solvers (see e.g., [22]). There, it is possible to add and remove clauses from the
theorem prover without restarting it. On the other hand, labelled clauses allow
us to attempt to prove multiple conjectures simultaneously.

1.2 Contributions

The main contributions of this paper are as follows:

– We introduce a deduction technique for working on multiple related proof
attempts simultaneously. We have successfully created a first prototype im-
plementation within Spass.

– We describe applications of the method in software verification, and provide
experimental results to demonstrate the improvement.

– We propose the concept of superposition with labels as a general framework
for the study of deduction techniques and their combination.

– We demonstrate several instantiations of this general framework for imple-
menting different ideas, including clause splitting and slicing.

In Sect. 2, we present a labelled superposition calculus as an extension of
the standard superposition calculus. In Sect. 3, we present several instantiations
of the general calculus including one for multiple conjectures. In Sect. 4, we
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present applications of multiple conjectures in software verification and present
experimental results from using our extension of Spass for handling multiple
conjectures. We conclude in Sect. 5.

The tool as well as the input files used for the experiments are available at [11].

2 Superposition with Labels

For the presentation of the superposition calculus, we refer to the notation and
notions of [20]. We write clauses in implication form Γ → Δ where comma to
the left means conjunction and comma to the right disjunction. Upper Greek
letters denote sequences of atoms (Γ,Δ), lower Greek letter substitutions (σ, τ),
lower Latin characters terms (s, r, t) and upper Latin characters atoms (A,B,E)
where ≈ is used as the equality symbol. The notations s[l]p (E[l]p) expresses that
the term s (the atom E) contains the term l at position p. Replacing a subterm
at position p with a term r is denoted by s[p/r] (E[p/r]).

We distinguish inference from reduction rules, where the clause(s) below the
bar, the conclusions, of an inference rule are added to the current clause set,
while the clause(s) below the bar of a reduction rule replace the clause(s) above
the bar, the premises. For example,

I Γ1 → Δ1 Γ2 → Δ2

Γ3 → Δ3
R Γ ′

1 → Δ′
1 Γ ′

2 → Δ′
2

Γ ′
3 → Δ′

3

an application of the above inference adds the clause Γ3 → Δ3 to the current
clause set, while the above reduction replaces the clauses Γ ′

1 → Δ′
1, Γ ′

2 → Δ′
2

with the clause Γ ′
3 → Δ′

3. Note that reductions can actually be used to delete
clauses, if there are no conclusions.

For the introduction and proofs of the properties of our label discipline, sorts,
ordering or selection restrictions are not of importance. Therefore, we leave them
out of the presentation of the superposition inference and reduction rules. They
can all be added in a straightforward way.

To each superposition clause Γ → Δ we add a label m resulting in m : Γ →
Δ. Then the standard calculus rules are extended by conditions and operations
on the labels. We use a binary operation ◦ to combine labels for inferences,
and a binary operation • to combine labels for reductions. Both operations are
commutative and associative. We use � as a special label to indicate when an
inference or a reduction should be blocked.1 Finally, a preorder, ≤, is used to
define when labels are compatible for clause deletion.

The interpretation of the labels and label operators depends on the instantia-
tion of the superposition-with-labels calculus. We will give examples in Section 3.
In particular, the standard superposition calculus is obtained if all clauses are
labelled by the set {1} and ◦, •, ≤, and � are instantiated by the standard set
operations ∩, ∩, ⊆, and ∅, respectively.

1 We require that, for any label m, � ◦m = � and � •m = �.
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Below we present the extended inference rule superposition right. The missing
binary inference rules superposition left, merging paramodulation, and ordered
resolution are defined accordingly.

Definition 1 (Superposition Right). The inference

I m1 : Γ1 → Δ1, l ≈ r m2 : Γ2 → Δ2, s[l′]p ≈ t

(m1 ◦m2 : Γ1, Γ2 → Δ1, Δ2, s[p/r] ≈ t)σ

where
1. m1 ◦m2 �= �
2. σ is the mgu of l′ and l
3. l′ is not a variable

and the usual ordering/selection restrictions apply is called a superposition right
inference.

For the unary inference rules equality resolution, ordered factoring, and equality
factoring on a clause labelled with m, the resulting clause is labelled with m ◦
m, and the rule has an extra condition that m ◦ m �= �. For inference rules
with multiple premises, such as hyper resolution, the label computations are
straightforward extensions of the binary case.

Definition 2 (Ordered Hyper Resolution). The inference

I m1 : E1, . . . , En → Δ m2,i :→ Δi, E
′
i (1 ≤ i ≤ n)

(m1 ◦m2,1 ◦ . . . ◦m2,n :→ Δ,Δ1, . . . , Δn)σ

where
1. m1 ◦m2,1 ◦ . . . ◦m2,n �= �
2. σ is the simultaneous mgu of E1, . . . , En, E

′
1, . . . , E

′
n,

and the usual ordering restrictions apply is called an ordered hyper resolution
inference.

Below we present matching replacement resolution, weak contextual rewriting,
and subsumption deletion as examples of how to extend reduction rules by labels.
In contrast to the standard superposition calculus, one or more premises of a
reduction rule are typically retained.

The reason for this is illustrated by the application of labelled clauses to
splitting (see Sect. 3.2), where the label describes the clause splittings on which
a given clause depends. Here it is clear that when a reduction is performed from
a clause C1 to a clause C2 that depends on fewer splittings, we must keep C1.

Definition 3 (Matching Replacement Resolution). The reduction

R m1 : Γ1 → Δ1, E1 m2 : Γ2, E2 → Δ2

m1 : Γ1 → Δ1, E1

m2 : Γ2, E2 → Δ2

m1 •m2 : Γ2 → Δ2
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where
1. m1 •m2 �= �
2. E1σ = E2

3. (Γ1 → Δ1)σ subsumes Γ2 → Δ2, where all variables in the co-domain of
σ are treated as constants for both clauses

is called matching replacement resolution.

This presentation of the matching replacement resolution rule is non-standard,
because the parent clause m2 : Γ2, E2 → Δ2 is kept. However, in many applica-
tions it can then be subsequently deleted by subsumption deletion (see below).
For example, in the case of simulating the standard calculus where all labels
are identical to {1}, the clause {1} : Γ2, E2 → Δ2 is always subsumed by
{1} ∩ {1} : Γ2 → Δ2, yielding the standard rule.

We present a variant of the rewriting rule; other variants are modified sim-
ilarly. Two versions of the rule are supplied. The first one is a reduction that
can be used when the resulting label is smaller than the parent clause to be
deleted. In the second version, the clause is simplified, but the parent clause is
not deleted.

Definition 4 (Weak Contextual Rewriting). The reductions

R m1 : Γ1 → Δ1, s ≈ t m2 : Γ2 → Δ2, E[s′]p
m1 : Γ1 → Δ1, s ≈ t

m1 •m2 : Γ2 → Δ2, E[p/tσ]

and

R m1 : Γ1 → Δ1, s ≈ t m2 : Γ2 → Δ2, E[s′]p
m1 : Γ1 → Δ1, s ≈ t
m2 : Γ2 → Δ2, E[s′]p

m1 •m2 : Γ2 → Δ2, E[p/tσ]

where
1. m1 •m2 �= �
2. sσ = s′

3. Γ1σ ⊆ Γ2, Δ1σ ⊆ Δ2

4. For the first variant, m1 •m2 ≤ m2

5. For the second variant m1 •m2 �≤ m2

and the usual ordering restrictions apply are called weak contextual rewriting.

The unary simplification rules, such as trivial literal elimination or condensation,
are handled similarly to unary inference rules; i.e., given a clause labelled with
m, the resulting clause is labelled with m•m and the rule has an extra condition
that m •m �= �.

For rules that actually delete clauses, such as tautology deletion and sub-
sumption deletion, we need to guarantee the compatibility of labels, as shown
for subsumption deletion below. Tautology deletion is never blocked by the labels
because ≤ is reflexive.
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Definition 5 (Subsumption Deletion). The reduction

R m1 : Γ1 → Δ1 m2 : Γ2 → Δ2

m1 : Γ1 → Δ1

where
1. m2 ≤ m1

2. Γ2 → Δ2 is subsumed by Γ1 → Δ1

is called subsumption deletion.

3 Instantiations

3.1 Multiple Labelled Conjectures

The starting point are n different proof obligations Ψ1, . . . , Ψn (dependent or
independent) with respect to a theory Φ. We want to check for which i Φ |= Ψi

holds. Labels are subsets of {1, . . . , n}. All clauses resulting from Φ receive the
label {1, . . . , n}, and all clauses resulting from Ψi receive the label {i}. The label
indicates for which proof obligations the clause may be used. The operations
◦, •, ≤, and � are instantiated by the standard set operations ∩, ∩, ⊆, and ∅,
respectively.

Proposition 1. From Φ ∧ ¬Ψi we can derive →  by superposition iff we can
derive {i} :→  by labelled superposition.

Proof. (Sketch) By induction on the length of the superposition derivation doing
a case analysis over the different rules. For all labelled inference and simplifica-
tion rules it holds that the conclusion of a rule is labelled with a number i iff all
premises are labelled with i. If a clause can be removed by labelled subsump-
tion deletion, there exists a more general clause labelled with a superset, i.e.,
subsumption deletion can be applied to the standard subproofs.

3.1.1 Refinements
Labelled subsumption deletion is actually weaker than subsumption deletion.
For example, in the form shown in Definition 5 it does not enable subsumption
of axiom clauses by conjecture clauses. Furthermore, the calculus considered so
far for multiple labelled conjectures does not consider sharing of clauses resulting
(from inferences) from different conjectures. Both problems can be overcome by
adding the following rules to the calculus.

Definition 6 (Join). The reduction

R m1 : Γ1 → Δ1 m2 : Γ2 → Δ2

m1 ∪m2 : Γ1 → Δ1

where
1. m1 �= ∅ and m2 �= ∅
2. Γ2 → Δ2 and Γ1 → Δ1 are variants2

is called join.
2 Equal with respect to variable renaming.
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Definition 7 (Subsumption Separation). The reduction

R m1 : Γ1 → Δ1 m2 : Γ2 → Δ2

m1 : Γ1 → Δ1

m2 \m1 : Γ2 → Δ2

where
1. m1 ∩m2 �= ∅
2. m2 �⊆ m1

3. Γ2 → Δ2 is subsumed by Γ1 → Δ1

is called subsumption separation.

Subsumption separation can be built into other reduction rules that rely on
subsumption. For example, when m2 �⊆ m1 we can turn matching replacement
resolution, Definition 3, into a reduction, keeping the first parent clause and
reducing the second parent clause to m2 \m1 : Γ2, E2 → Δ2.

Note that using labels allow us to perform reductions of the axiom clauses
using conjecture clauses. This would not be possible when using extra predicates
for handling multiple conjectures.

When adding the Join rule, the correctness claim needs to be refined as well.

Proposition 2. From Φ ∧ ¬Ψi we can derive →  by superposition iff we can
derive m :→  by labelled superposition for some label m that contains i.

When deriving an empty clause with a label that contains a certain conjecture,
we know that the conjecture is valid given the axiom set. It is sometimes useful
to then clausify the conjecture and add the result as new axioms to the axiom
set so that it can be used by the other conjectures not yet proven.

Reusing Skolem Functions. We can use the labels to devise a better Skolemiza-
tion process for our setting that results in more clauses being shared between the
different proof obligations and thereby avoids duplicate work. Our experimental
results is Sect. 4.3 show that this is valuable in practice. The idea is that two
Skolem functions of the same arity can be merged if all the clauses they appear
in have disjoint labels: any inference between such clauses is blocked, and thus
the terms containing the merged functions will never be unified.

In general, we would want to merge Skolem functions in a way that allows
the Join rule to share the most active clauses. Lacking a way to predict this,
we use a heuristic that ensures that at least some clauses will be shared as a
result of the process. The heuristic searches for clauses that will be variants after
Skolem functions are merged. The heuristic guarantees that the merge is allowed
by maintaining for each symbol the set of conjectures it is currently used in.

Example 1. Let conjecture 1 be ∀v . p(v) ∨ q(v) and conjecture 2 be ∀v . p(v) ∨
¬q(v). The usual Skolemization of the negated conjectures would result in the
following four clauses: {1} : p(c1) →, {1} : q(c1) →, {2} : p(c2) →, {2} :
→ q(c2). However, by sharing Skolem constants the following clauses suffice:
{1, 2} : p(c1) →, {1} : q(c1) →, {2} :→ q(c1).
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Note that although {1} : q(c1) → and {2} :→ q(c1) are resolvable if labels
were ignored (resulting in the empty clause), they will never be resolved because
their labels are disjoint. As the number and complexity of the conjectures in-
creases, more of the shared structures can be used.

Conjunction Conjectures. When trying to prove a conjecture composed of a large
conjunction of formulas, the standard practice of negation and then Skolemiza-
tion creates large clauses and is typically intractable. Instead, the conjunction
can be split into a conjecture per conjunct and processed using the refined calcu-
lus above. Now, proving a contradiction for all the labels is equivalent to proving
the validity of the original formula.

Proposition 3. From Φ ∧ ¬(
∧

1≤i≤n Ψi) we can derive →  by superposition
iff we can derive {1, . . . , n} :→  by labelled superposition for multiple labelled
conjectures.

Theory Consistency. When proving that Φ → Ψ is valid, it is possible that
the reason for the validity is that Φ is inconsistent. In the framework of the
standard superposition calculus we cannot distinguish between the two cases
without inspecting proofs. However, it is easy to support such a consistency
check in the context of labelled superposition. We simply add to the label of the
axioms a new number 0 resulting in the extended set {0, . . . , n} for n conjectures.
Then the theory is inconsistent iff we can derive m :→  for some label m that
contains 0.

3.1.2 Implementation
We have a prototype implementation of the labelled clauses calculus for multiple
conjectures within the Spass theorem prover (available at [11]). Labels were im-
plemented using bit-vectors attached to each clause. The inference and reduction
rules were modified to correctly maintain the labels during derivations. The Join
rule and Skolem function reuse were also implemented.

The most challenging part in modifying Spass to support labelled clauses
is updating the forward reduction rules, which can now generate many clauses
instead of only reducing the given clause. We used a naive approach for im-
plementing these reductions and yet the result is still effective, as can be seen
in Sect. 4.3. Backward reduction rules were modified to perform separation to
correctly handle, for example, reduction of axiom clauses by conjecture clauses.

We can prevent one conjecture from starving the rest by once in a while
selecting a clause from a conjecture that was missing from the labels of the
recently selected given clauses. We have implemented this idea as a runtime
option in the new version, but do not yet have experimental results concerning
its effectiveness.

3.2 Labelled Splitting

Let us consider how labels can be used to model splitting with a single conjecture.
For splitting we use a different type of label: sequences of (overlined) clauses with
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an extra label �. We use the labels to record the path in the derivation tree of
splits required to generate the clause. We say that m1 ≤ m2 when m2 is a prefix
of m1, or m1 = �. The combine operations are simply the greatest lower bound
of ≤, i.e., m1◦m2 = m1 if m1 ≤ m2, m1◦m2 = m2 if m2 ≤ m1, and m1◦m2 = �
otherwise (we define • to be the same is ◦). Initially, all clauses are labelled with
the empty sequence, denoted by ε.

In addition to the labelled superposition rules the extra rules implementing
labelled splitting are:

Definition 8 (Splitting). The inference

I m : Γ1, Γ2 → Δ1, Δ2

m.Γ1, Γ2 → Δ1, Δ2 : Γ1 → Δ1

m.Γ1, Γ2 → Δ1, Δ2 : Γ2 → Δ2

where
1. vars(Γ1 → Δ1) ∩ vars(Γ2 → Δ2) = ∅
2. Δ1 �= ∅ and Δ2 �= ∅

is called splitting.

Definition 9 (Branch Closing). The inference

I m.C :→  m.C :→ 
m :→ 

is called branch closing.

Proposition 4. From a clause set N we can derive a contradiction by super-
position with splitting iff we can derive ε :→  by labelled superposition with
splitting.

Proof. (Sketch) By induction on the length of the superposition derivation, via
a case analysis over the different rules. The Splitting rule needs special con-
sideration: we have to show that no inference (reduction) between two clauses
m.C.m1 : Γ1 → Δ1 and m.C.m2 : Γ2 → Δ2 is possible. This holds by the
definitions of the two combination operations (◦ and •): combining any two se-
quences m.C.m1 and m.C.m2 results in �. On the other hand, the combination
of m.C (or m.C) and any prefix of m results in m.C (m.C), which corresponds
to the standard clause set copy and separation of the standard splitting rule.

3.2.1 Refinements
Once the labels are available and the different branches of the derivation tree
spanned by the splitting rule can be investigated simultaneously, it is easy to
define and employ the well-known refinements for splitting and tableau proofs.
By studying the labels of clauses used in the derivation of an empty clause,
refinements like branch condensing (implemented in Spass, splittings from the
most recent backtracking empty clause that did not contribute to the current
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empty clause can be removed from the label) or the generation of more suit-
able “backtracking clauses” (see e.g., [14]) are straightforward to integrate. The
lemma-generation rules invented in the context of tableau [7], for example, the
folding up rule can also be integrated.

An obvious refinement of splitting is to add the negation of the first clause
part Γ1 → Δ1 to the second part, labelled with the second part (or the other
way round). For example, applying this refined version of splitting to the clause
C = m :→ A,B yields m.C :→ A, m.C :→ B, and m.C : A →.

3.2.2 Implementation
In addition to the above mentioned refinements, implementing Splitting via la-
belled clauses seems to be less effort and as efficient as a standard implementation
via a depth-first search and clause copy, as it is done, e.g., in Spass. For exam-
ple, branch closing becomes a standard inference/reduction rule application of
the calculus while in the context of the depth-search algorithm implemented in
Spass it is a procedure running orthogonal to the standard saturation process,
complicating the overall implementation.

3.3 Strategies

Labelled clauses can also be used to model well-known strategies and new strate-
gies. For example, the set-of-support strategy forbids inferences between axiom
clauses. This can be easily established by the labelled superposition framework
using the label set {0, 1,�} and labelling all axiom clauses with 0, all conjecture
clauses with 1. We instantiate m1 ≤ m2 to always be true and use the following
combination operations:

◦ 0 1 �
0 � 1 �
1 1 1 �
� � � �

• 0 1 �
0 0 1 �
1 1 1 �
� � � �

Thus any inferences between clauses for the axiom set are blocked, but reduc-
tions are allowed, keeping the 0 label.

3.4 Slicing

When trying to prove a conjecture in a given time limit, it can be a good heuristic
to try different strategies for a fixed period of time. For example, strategies might
differ in the selection strategy for negative literals (no selection, always select
a negative literal, etc.) or the heuristic to pick the next clauses for inferences
(lightest weight, heaviest weight, lowest age). Labelled superposition offers here
a framework where these runs can be done simultaneously and benefit from each
other.

We simply run the same conjecture simultaneously with different labels for the
different strategies. Given n strategies, we give each one a number from {1, . . . , n}.
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Initially we label all clauses with {1, . . . , n}. We extend the labelled superposition
calculus of Section 2 to also consider the strategy label, say m′ for inference com-
putation. Then the newly generated clause gets the label m1 ◦ m2 ◦ m′ and we
have to check the condition m1 ◦m2 ◦m′ �= �. Nevertheless, common clauses can
be shared via the Join rule as in the case of multiple labelled conjectures.

Because the reduction (and simplification) combinator • is different from the
inference combinator, it can be used to implement different strategies concerning
reductions and simplifications between clauses generated by different strategies.
This provides a high potential for synergy between the different proof attempts.
Note that because different strategies may use different orderings, by considering
the strategy label at inference rule level, the ordering used by the rule conditions
can also be chosen by that label.

4 Applications in Software Verification

We present two applications that motivated our interest in labelled clauses. Both
concern the application of abstract interpretation [4] in software verification.
Abstract interpretation provides a way to obtain information about the possible
states that a program reaches, without actually running the program on specific
inputs; instead, the program is “run abstractly”, using descriptors that represent
collections of many states. Each different family of descriptors (or “abstract
domain”) that is used can typically be characterized by means of a restricted class
of formulas (presented in some normal form). Abstract interpretation provides
a way to synthesize loop invariants (albeit only ones expressible in a given class
of formulas), and hence sidesteps the need for a user to supply loop invariants.

4.1 Cartesian Abstraction

Predicate abstraction [5] abstracts a program into a Boolean program that conser-
vatively simulates (i.e., overapproximates) all potential executions of the original
program. Thus, every safety property that holds for the Boolean program is guar-
anteed to hold for the original program. A predicate p in predicate abstraction is
defined by a closed formula ψp that evaluates to true or false for each concrete pro-
gram state. An abstract state is a conjunction of (possibly negated) predicates; it
represents the set of concrete states that satisfy each (possibly negated) predicate.
A set of abstract states corresponds to a disjunction of the individual abstract
states. The best approximation of a set of concrete states C is the strongest set of
abstract states such that every c ∈ C is satisfied (or, equivalently, the strongest
Boolean combination of predicates that holds for every c ∈ C).

The operational semantics of a statement st in a program can be defined using
a formula τst over the pre-state and the post-state. A post-state S′ can be the
result of a given pre-state S if τst holds for S

⊎
S′. The predicate p′ defined using

formula ψp, but applied to the post-state, is called the primed version of p. The
effect of st on an abstract pre-state A can be computed using a theorem prover by
checking which combinations of primed-predicate formulas are satisfiable when
conjoined with A ∧ τst.
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A less-costly, but less-precise, variant of predicate abstraction is called Carte-
sian Abstraction [1]. Instead of using a Boolean combination of predicates to
represent a set of states C, this uses a single conjunction of (possibly negated)
predicates. Thus, a predicate p should appear in abstract state AC (i) positively
when ψp holds for every c ∈ C; (ii) negatively when ψp does not hold for any
c ∈ C; and (iii) otherwise should not appear.

With Cartesian Abstraction, it is possible to compute the effect of a state-
ment via a set of validity queries to a theorem prover. In each query, the axiom
set contains the pre-state A, the transformer τst, and any background theory we
have. The conjecture is either a primed predicate or a negated primed predicate.
This makes computing transformers for Cartesian Abstraction a good target for
our method. All the primed predicates and their negations can be added as con-
jectures to the same axiom set, and the effect of the statement can be computed
using a single call to the theorem prover; any shared structure between the dif-
ferent predicates or similarities among the proofs of the different conjectures will
be exploited by the theorem prover.

4.2 Shape Analysis and Canonical Abstraction

Shape analysis aims to discover information (in a conservative way) about the
possible “shapes” of heap-allocated data structures to which a program’s pointer
variables can point. The method of Canonical Abstraction [17] provides a fam-
ily of abstract domains for capturing certain classes of memory configurations.
Canonical Abstraction uses first-order (FO) logic with transitive closure (TC),
in which individuals are heap-cells and predicate symbols of the vocabulary are
interpreted via relations on heap-cells. A background theory is used to formalize
the properties of these predicates (e.g. a pointer variable can point to at most
one location). TVLA [10] is a parametric framework for building analyzers for
canonical-abstraction-based abstract domains.

In Canonical Abstraction, the heap is partitioned according to conjunctions
of unary predicates. Only universal information about these partitions is saved;
that is, if formulas such as node1(v), node2(v), etc. are conjunctions of unary
predicates that characterize the various subsets that partition the heap-cells,
and p is a binary predicate symbol from the vocabulary, we can only record
information of the form

∀v1, v2.nodei(v1) ∧ nodej(v2) ⇒ [¬]p(v1, v2). (1)

To control the abstraction, the designer of an abstraction (or an automatic
tool for discovering abstractions [12]) can define auxiliary unary predicates with
FO+TC formulas that are added to the background theory.

Similar to Sect. 4.1, the operational semantics of a statement is defined using
a formula over the pre-state and the post-state; to determine the effect of a
statement, we need to determine which formulas in form Eq. (1) hold for the
primed predicates.3 In this setting, it is again possible to compute the effect of
3 See [9] for methods that can be used to handle formulas that involve the TC operator.
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a statement via a set of validity queries, which may be answered en masse by
a theorem prover using our method.4 This allows the theorem prover to exploit
similarities among the proofs of the different conjectures.

4.3 Experiments

We have integrated the prototype implementation of labelled clauses for multiple
conjectures in Spass into TVLA, i.e., the validity queries required to compute
the result of applying a transformer are performed by Spass. In this section, we
present a comparison between the performance of the improved version and run-
ning the original Spass version 2.2 on each conjecture sequentially. The results
presented here are from the queries generated by the analysis of several heap-
manipulating programs, including reversal of a singly-linked list, insert sort of
a singly-linked list, insertion into a doubly-linked list, and the mark phase of a
simple mark-and-sweep garbage collector.

To make the comparison fair, we removed three types of queries: (i) any conjec-
ture that is not valid, (ii) queries in which the common axioms are inconsistent,
and (iii) queries in which there is only one valid conjecture. When also consid-
ering invalid conjectures, the advantage of the labelled-clauses method is even
more apparent because the sequential approach has to wait for a timeout for
each invalid conjecture. Similarly, when considering queries with an inconsistent
axiom set, the improved version can detect that the original axioms are inconsis-
tent, while the sequential approach will have to prove it again and again for each
conjecture. Finally, for a single conjecture the labelled-clauses version behaves
almost exactly the same as the original version, both in terms of the clauses
generated and the time required.

The test set includes 125 queries, with a minimum of 2 conjectures, a maxi-
mum of 32 conjectures, and an average of 9.3 conjectures per query. To improve
the statistical significance of the results, we took to the test set only queries in
which the total time taken by the sequential prover was less than one second. We
compare the provers according to three criteria: the number of derived clauses,
the number of kept clauses (i.e., which were not forward subsumed), and the
time. Table 1 has a comparison of the maximum, minimum, and average values
for these three criteria for the two provers.

Fig. 1 presents a histogram for each criterion showing the values of the
labelled-clauses prover as a percentage of the appropriate value for the sequen-
tial prover. In most cases we have a least 2-fold improvement in all criteria. The
number of kept clauses never increases. The number of derived clauses increases
in one case, but only by 6%. There are three examples in which the sequential
version was faster; we believe that this is a result of the quality of the current
prototype implementation, because the number of derived and kept clauses in
these cases is lower in the labelled-clauses version.

4 One technical point: case splits are performed externally to the theorem prover (and
before the theorem prover is called), by the “focus” operation of [17], hence we do
not have to be concerned about disjunctions of the different conjectures.
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Table 1. Comparison between the labelled-clauses Spass and running the original
Spass sequentially

Criteria Sequential Labelled Clauses
Min. Max. Avg. Min. Max. Avg.

Derived 3569 408837 83657.1 1408 140679 33088.5
Kept 3882 70463 22672.1 1366 26238 7357.2
Time (sec) 1.0 74.0 8.1 0.2 29.0 3.8

Because our conjectures are based on formulas in the normal form shown in
Eq. (1), the negated conjectures are sets of ground unit clauses. This makes the
technique of reusing Skolem constants between conjectures very lucrative. We
have checked the improvements brought about by the Join rule and by reusing
the Skolem constants. Introducing the Join rule to a vanilla implementation
of the labelled-clauses approach makes it run 1.7 times faster. Reusing Skolem
constants added, on average, an extra speedup of 1.7, which produced about
a 3-fold speedup in total. When considering only cases in which 10 or more
conjectures are used, the average speedup is 7-fold.
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Fig. 1. Histograms for each criterion showing the percentage of the values for the
labelled-clauses version compared with the sequential version: (a) derived clauses, (b)
kept clauses, (c) running time

5 Conclusion

We suggested the methodology of labelled clauses for the study and implementa-
tion of superposition-based classical first-order-logic calculi. We believe that us-
ing labelled clauses as an extension of ordinary ones will become as fruitful for ad-
vances in automated theorem proving as it is in the context of non-classical logics.

Our work on labelled clauses offers new possibilities to study saturation and
tableau-like calculi in a common framework. This might also be fruitful for ad-
vances in theorem-proving search strategies, as, e.g., suggested by Bonacina [3].

We have shown how to instantiate the general framework of labelled clauses
for several interesting cases, including clause splitting and slicing. For the case
of proving multiple conjectures simultaneously, we have also implemented the
calculus as an extension of the Spass theorem prover and report on convincing
experimental results in the context of software verification.
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We believe that there are other techniques in the world of theorem prov-
ing that can benefit from the idea of labelled clauses. Investigating them is the
subject of future work. In particular, the combination of theorem proving tech-
niques represented in the labelling methodology simplifies to the combination of
the labelling disciplines.
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Abstract. We present an inference system for clauses with ordering
constraints, called Schematic Paramodulation. Then we show how to
use Schematic Paramodulation to reason about decidability and stable
infiniteness of finitely presented theories. We establish a close connec-
tion between the two properties: if Schematic Paramodulation for a the-
ory halts then the theory is decidable; and if, in addition, Schematic
Paramodulation does not derive the trivial equality X = Y then the
theory is stably infinite. Decidability and stable infiniteness of com-
ponent theories are conditions required for the Nelson-Oppen combi-
nation method. Schematic Paramodulation is loosely based on Lynch-
Morawska’s meta-saturation but it differs in several ways. First, it uses
ordering constraints instead of constant constraints. Second, inferences
into constrained variables are possible in Schematic Paramodulation. Fi-
nally, Schematic Paramodulation uses a special deletion rule to deal with
theories for which Lynch-Morawska’s meta-saturation does not halt.

1 Introduction

Satisfiability procedures for theories of data types such as lists, arrays or integers
are at the core of many state-of-the-art verification tools. The task of designing,
proving correct, and implementing such procedures is far from simple. One of
the main problems is proving their correctness. To overcome this difficulty, an
approach to flexibly build satisfiability procedures based on saturation has been
proposed in [2]. The key idea is that proving correctness of the procedure for a
theory T reduces to showing the termination of the fair and exhaustive applica-
tion of the rules of the paramodulation calculus [8] on an axiomatization of T
plus an arbitrary set S of (ground) literals. An automated method to check the
termination of paramodulation for a theory T is given in [6] by using a meta-
saturation calculus simulating the inferences of the standard paramodulation
calculus relevant to solve the satisfiability problem of T .

The idea of using meta-saturation to automatically check decidability is highly
original, however contrary to what was advocated in [6], there are theories for
which meta-saturation cannot always simulate every inference in the saturation
process. Therefore the decidability and complexity results stated in [6] do not
hold for every theory (cf. Example 1, Section 4). The first contribution of this pa-
per is a Schematic Paramodulation inference system using ordering constraints
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to simulate the inferences of the standard paramodulation calculus. Schematic
Paramodulation differs from meta-saturation in the following ways. First, in-
ferences into constrained variables are possible in Schematic Paramodulation,
unlike meta-saturation which excludes every inference into variables, no mat-
ter whether the variables are constrained or unconstrained. As a consequence,
Schematic Paramodulation is now capable of simulating every inference in the
saturation process, in contrast with meta-saturation. Another interesting feature
of Schematic Paramodulation is the use of a special deletion rule to prove de-
cidability of theories for which meta-saturation fails (cf. Example 2, Section 4).
Finally, we can also derive an upper bound on the number of clauses generated
in paramodulation by using Schematic Paramodulation.

Since most verification problems require reasoning in a combination of theo-
ries, there is a need to modularly build decision procedures for combined theories
by re-using available procedures for the component theories. To this end, we can
adopt the general and flexible method for combining decision procedures given
by Nelson-Oppen in [7]. It is well known that the Nelson-Oppen combination
method is correct if the component theories are stably infinite. In [5], the authors
give an automatic method using meta-saturation for checking stable infiniteness
of finitely presented theories.

The second contribution of this paper concerns the generalization of the results
of [5] to automatically check stable infiniteness. In [5], the authors define the
notion of variable-active clause so that if, for given a theory T , meta-saturation
halts, and does not infer any variable-active clauses, then T is stably infinite.
Basically, a variable-active clause is a clause containing a maximal equality in
which there is a maximal variable. However, it turns out that the absence of
variable-active clauses in meta-saturation is too strong a requirement because
there exist theories not satisfying this requirement which are stably infinite (cf.
Example 3, Section 5). In this paper, we prove a stronger result: if Schematic
Paramodulation for a theory halts and does not derive the trivial equality X = Y
then that theory is stably infinite (cf. Section 5). Moreover, all the results stated
in this paper do not assume any restrictions on the selection function used in
the paramodulation calculus, but fairness. This is contrary to [5], in which it
is required to use a negative selection strategy, i.e. negative literals are always
selected first by the selection function.

2 Preliminaries

We assume the usual first-order syntactic notions of signature, term, position,
and substitution, as defined, e.g., in [4]. If l and r are two terms, then l = r
is an equality and ¬(l = r) (also written as l �= r) is a disequality. A literal is
either an equality or a disequality. A first-order formula is built in the usual way
over the universal and existential quantifiers, Boolean connectives, and symbols
in a given first-order signature. We call a formula ground if it has no variables.
A clause is a disjunction of literals. A unit clause is a clause with only one
disjunct, equivalently a literal. The empty clause is the clause with no disjunct,
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equivalently an unsatisfiable formula. For a term t, depth(t) = 0, if t is a constant
or a variable, and depth(f(t1, . . . , tn)) = 1+max{depth(ti) | 1 ≤ i ≤ n}. A term
is flat if its depth is 0 or 1. For a literal, depth(l � r) = depth(l) + depth(r),
where � ∈ {=, �=}. A positive literal is flat if its depth is 0 or 1. A negative literal
is flat if its depth is 0.

We also assume the usual first-order notions of model, satisfiability, validity,
logical consequence. A first-order theory (with finite signature) is a set of first-
order formulae with no free variables. When T is a finitely axiomatized theory,
Ax(T ) denotes the set of axioms of T . All the theories in this paper are first-
order theories with equality, which means that the equality symbol = is always
interpreted as the equality relation. A formula is satisfiable in a theory T if it is
satisfiable in a model of T . The satisfiability problem for a theory T amounts to
establishing whether any given finite conjunction of literals (or equivalently, any
given finite set of literals) is T -satisfiable or not. A satisfiability procedure for T
is any algorithm that solves the satisfiability problem for T (the satisfiability of
any quantifier-free formula can be reduced to the satisfiability of sets of literals
by converting to disjunctive normal form and then splitting on disjunctions).

3 Paramodulation-Based Satisfiability Procedure

Below, = is (unordered) equality, ≡ is identity, l, r, u, t are terms, v, w, x, y, z
are variables, all other lower case letters are constant or function symbols. A
fundamental feature of PC is the usage of a reduction ordering - which is total on
ground terms, for example the lexicographic path ordering [4]. We also assume
that if a term t is not a variable or constant, then for any constant c we have
that t - c. The ordering - is extended to positive literals by considering them
as multisets of terms, and then to the clauses by considering them as multisets
of positive literals.

The inference system PC uses a selection function sel such that for each clause
C, sel(C) contains a negative literal in C or all maximal literals in C wrt. -.
A clause C is redundant with respect to a set S of clauses if either C ∈ S or S
can be obtained from S ∪ {C} by a sequence of application of the contraction
rules of Figure 2. An inference is redundant with respect to a set S of clauses
if its conclusion is redundant with respect to S. A set S of clauses is saturated
with respect to PC if every inference of PC with a premise in S is redundant
with respect to S. A derivation is a sequence S0, S1, . . . , Si, . . . of sets of clauses
where at each step an inference of PC is applied to generate and add a clause
(cf. expansion rules in Figure 1) or to delete or reduce a clause (cf. contraction
rules in Figure 2). A derivation is characterized by its limit, defined as the set of
persistent clauses S∞ =

⋃
j≥0

⋂
i>j Si. A derivation S0, S1, ..., Si, ... with limit

S∞ is fair with respect to PC if for every inference in PC with premises in S∞,
there is some j ≥ 0 such that the inference is redundant in Sj .

Theorem 1 ([8]). If S0, S1, . . . is a fair derivation of PC, then ( i) its limit S∞
is saturated with respect to PC, ( ii) S0 is unsatisfiable iff the empty clause is in
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Right paramodulation
Γ ⇒ Δ, l[u′] = r Π ⇒ Σ, u = t

σ(Γ,Π ⇒ Δ, Σ, l[t] = r)
(i), (ii), (iii), (iv)

Left paramodulation
Γ, l[u′] = r ⇒ Δ Π ⇒ Σ, u = t

σ(l[t] = r, Γ, Π ⇒ Δ, Σ)
(i), (ii), (iii), (iv)

Reflection
Γ, u′ = u ⇒ Δ

σ(Γ ⇒ Δ)
(v)

Eq. Factoring
Γ ⇒ Δ, u = t, u′ = t′

σ(Γ, t = t′ ⇒ Δ, u = t′)
(i), (vi)

where a clause ¬A1 ∨ · · · ∨ ¬An ∨ B1 ∨ · · · ∨ Bn is written in sequent style as
{A1, . . . , An} ⇒ {B1, . . . , Bm} (where the Ai’s and Bj ’s are equalities), equality is the
only predicate symbol, σ is the most general unifier of u and u′, u′ is not a variable in
Left paramodulation and Right paramodulation, L is a literal, and:

(i) σ(u) �) σ(t), (ii) u = t is selected in its clause, (iii) σ(l[u′]) �) σ(r), (iv)
l = r is selected in its clause, (v) u′ = u is selected in its clause, (vi) u = t is selected
in its clause and σ(t) �) σ(t′) and σ(u′) �) σ(t′).

Fig. 1. Expansion Inference Rules of PC

Subsumption
S ∪ {C, C′}

S ∪ {C} if for some substitution θ, θ(C) ⊆ C′

Simplification
S ∪ {C[l′], l = r}

S ∪ {C[θ(r)], l = r}
if l′ ≡ θ(l), θ(l) + θ(r), and C[l′] +
(θ(l) = θ(r))

Tautology Deletion
S ∪ {Γ ⇒ Δ, t = t}

S

where C and C′ are clauses and S is a set of clauses.

Fig. 2. Contraction Inference Rules of PC

Sj for some j, and ( iii) if such a fair derivation is finite, i.e. it is of the form
S0, . . . , Sn, then Sn is saturated and logically equivalent to S0.

The paramodulation-based methodology [2] for satisfiability modulo a theory T
(or T -satisfiability) consists of two phases:

1. Flattening: all ground literals are flattened by introducing new constants,
yielding an equisatisfiable flat problem.

2. Ordering selection and termination: any fair derivation of PC is shown to be
finite when applied to a flat problem together with the axioms of T , provided
that - satisfies a few properties depending on T .

If T is a theory for which the paramodulation-based methodology applies, a T -
satisfiability procedure can be built by implementing the flattening (this can be
done once and for all), and by using a prover mechanizing PC with a suit-
able ordering -. If the final set of clauses returned by the prover contains
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the empty clause, then the T -satisfiability procedure returns unsatisfiable; oth-
erwise, it returns satisfiable.

4 Automatic Decidability

Like meta-saturation [6], Schematic Paramodulation works by saturating the
axioms Ax(T ) of a theory T together with the set GT

0 schematizing any finite
set of ground flat literals built out of symbols in the signature of T , with re-
spect to the inference system SPC (see Figures 3 and 4). Therefore if Schematic
Paramodulation halts for the theory T , then any saturation of Ax(T ) ∪ S is
finite and consequently the T -satisfiability problem is decidable. Below, we give
the formal concepts underlying the Schematic Paramodulation approach with
ordering constraints.

Definition 1 (Constraint). An atomic constraint is of the form t ( t′ or
t �( t′. A constraint is a conjunction of atomic constraints.

A substitution λ satisfies a constraint φ if λ(φ) is true. A constraint φ is satisfiable
if there exists a substitution λ satisfying φ. In the sequel, by c�, we mean the
biggest constant wrt. -. For example, a constraint of the form t ( c� is true
if t is a constant, it is false if t is a term of depth at least 1 (i.e. containing a
function symbol) and it is satisfiable if t is a variable.

Definition 2 (Constrained clause). A constrained clause is of the form C ‖
φ, where C is a (unconstrained) clause and φ is a constraint.

We say that λ(C) is an instance of C ‖ φ if λ is a substitution satisfying φ.

Definition 3 (Constrained variable). A variable x is constrained in a con-
strained clause C ‖ φ if φ contains x ( c�, otherwise it is unconstrained.

Definition 4 (Constrained variant). Let C ‖ φ and C′ ‖ φ′ be two con-
strained clauses. We say that C is a constrained variant of C′ if there exists
a renaming λ such that λ(C) = λ(C′) and the domain of λ only contains con-
strained variables.

Definition 5 (Constraint instance). We say that λ(C) is a constraint in-
stance of C ‖ φ if the domain of λ contains all the constrained variables in
C ‖ φ, the range of λ contains only contains constants and λ(φ) is satisfiable.

Ordering on constrained clauses can be defined so that a clause C is bigger than
a clause D if all constraint instances of C are bigger than all constraint instances
of D.

For a given theory T with the signature ΣT , we define GT
0 as follows:

GT
0 ={x = y ‖ x ( c� ∧ y ( c�} ∪ {x �= y ‖ x ( c� ∧ y ( c�}∪

⋃

f∈ΣT

{f(x1, . . . , xn) = x0 ‖
n∧

i=0

xi ( c�}
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Right paramodulation
Γ ⇒ Δ, l[u′] = r ‖ φ Π ⇒ Σ, u = t ‖ ϕ

σ(Γ,Π ⇒ Δ, Σ, l[t] = r ‖ φ ∧ ϕ ∧ u �) t ∧ l[u′] �) r)
(i), (ii),

(iii), (iv)

Left paramodulation
Γ, l[u′] = r ⇒ Δ ‖ φ Π ⇒ Σ, u = t ‖ ϕ

σ(l[t] = r, Γ, Π ⇒ Δ, Σ ‖ φ ∧ ϕ ∧ u �) t ∧ l[u′] �) r)
(i), (ii),

(iii), (iv)

Reflection
Γ, u′ = u ⇒ Δ ‖ φ

σ(Γ ⇒ Δ ‖ φ)
(v)

Eq. Factoring
Γ ⇒ Δ, u = t, u′ = t′ ‖ φ

σ(Γ, t = t′ ⇒ Δ, u = t′ ‖ φ ∧ u �) t ∧ u′ �) t′)
(i), (vi)

where σ is the most general unifier of u and u′, u′ is not an unconstrained variable in
Left paramodulation and Right paramodulation, L is a literal, and:

(i) σ(u) �) σ(t), (ii) u = t is selected in its clause, (iii) σ(l[u′]) �) σ(r), (iv)
l = r is selected in its clause, (v) u′ = u is selected in its clause, (vi) u = t is selected
in its clause and σ(t) �) σ(t′) and σ(u′) �) σ(t′).

Fig. 3. Constrained Expansion Inference Rules of SPC

Subsumption
S ∪ {C, C′ ‖ φ′}

S ∪ {C}

if C ∈ Ax(T ) and for some substitution
θ, θ(C) ⊆ C′, or if C and C′ ‖ φ′ are
renamings of each other.

Simplification
S ∪ {C[l′] ‖ φ, l = r}

S ∪ {C[θ(r)] ‖ φ, l = r}
if l = r ∈ Ax(T ), l′ ≡ θ(l), θ(l) + θ(r),
and C[l′] + (θ(l) = θ(r))

Tautology Deletion
S ∪ {Γ ⇒ Δ, t = t ‖ φ}

S

Schematic Deletion
S ∪ {Γ ⇒ Δ ‖ φ}

S
if φ is unsatisfiable

S ∪ {C}
S

(i)

where C and C′ are clauses and S is a set of clauses, and:

(i) if C ≡ D ∨ l1 ∨ . . . ∨ ln ‖ φ where n ≥ 0, D is a constrained variant of D′

of some clause D′ ‖ φ′ in S, and

– either for i = 1, . . . , n li is a constrained variant of some non maximal literal in D,
– or D ∨ l1 ∨ . . . ∨ ln is a non-unit clause containing only equalities or disequalities

between constrained variable.

Fig. 4. Constrained Contraction Inference Rules of SPC

The inference system SPC (see Figures 3 and 4) is almost identical to PC,
except that all clauses now have constraints (unconstrained clauses have empty
constraints) and applicability conditions are slightly different. Constraints of
clauses contain two parts. The first part aims to constrain variables to be in-
stantiated with constants and the second part captures the ordered selection of
terms and literals in a saturation of Ax(T )∪S. Obviously constraints are inher-
ited by the conclusions of an inference. Also, an atomic constraint not containing
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any variables in the clause part will be deleted from its constrained clause. Notice
that inferences into constrained variables are now allowed in some constrained
expansion rules in order to simulate inferences into constants. Constrained con-
traction rules have different applicability conditions. This is because we cannot
simulate every subsumption, deletion or simplification since we cannot assume
that ground literals are always present in a saturation of Ax(T ) ∪ S, on which
such contraction inferences depend.

For the sake of simplicity, we sometimes omit the second part of constraints
of persisting constrained clauses, which is not important because a constrained
clause persisting actually means that the second part of its constraint is always
satisfiable.

Schematic Paramodulation is heavily based on the meta-saturation of [6].
Meta-saturation inference system uses constraints of the form const(t1) ∧ . . . ∧
const(tn) to constrain variables to be instantiated with constants, and it excludes
every inference into variables, no matter they are constrained or unconstrained.
However excluding every inference into constrained variables implies that meta-
saturation cannot simulate every inference into constants anymore. The following
example illustrate this problem.

Example 1. Let T be a theory with the presentation

X = Y ∨ Y = Z ∨ Z = X

f(X) = g(X)

Following [6], GT
0 contains the following clauses

x = y ‖ const(x) ∧ const(y)
x �= y ‖ const(x) ∧ const(y)

f(x) = y ‖ const(x) ∧ const(y)
g(x) = y ‖ const(x) ∧ const(y)

Since no inference into variables is possible in meta-saturation, it is easy to see
that GT

∞ is exactly Ax(T ) ∪ GT
0 . Now let us consider the set S = {f(c) = c′}.

The saturation of Ax(T ) ∪ S by PC generates the clause

f(Y ) = c′ ∨ Y = Z ∨ Z = c

which is neither subsumed by any other clause nor schematized by any clause in
GT

∞.
We have experimented on this example with Spass [10]. The saturation process

of Ax(T )∪S not only generates clauses not schematized by the meta-saturation
but also it seems to diverge (actually we do not know if it will halt). And the
number of persisting clauses (at the moment we stop the saturation process) is
by far greater than the bound 2|S|2 given in [6]. The problem is that in meta-
saturation, paramodulations between variables are excluded, no matter whether
they are constrained or unconstrained, but in a saturation of Ax(T ) ∪ S there
might be paramodulations between a constant and a variable.
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In our settings, Schematic Paramodulation for this example will not halt be-
cause of paramodulations between constrained variables. ��

Contrary to meta-saturation Schematic Paramodulation allows inferences into
constrained variables. One might think this kind of inferences is rather prolific
but in fact this is not the case. Whenever a term with a function at the top po-
sition paramodulates into a constrained variable, the conclusion of the inference
will be immediately deleted because the constraint of the conclusion is unsatis-
fiable. Also, if a constrained variable x in a clause x = f(y) ∨ C ‖ x ( c� ∧ y (
c� ∧ φ is used in an inference, then the constraint of the conclusion contains
x ( c� ∧ y ( c� ∧ x �( f(y), which is clearly unsatisfiable.

Schematic Paramodulation also differs from meta-saturation by the second
case of the Schematic Deletion rule. The key idea is the following. We would like
to schematize every clause generated in paramodulation but we do not know
in advance how many constants there are in the input. On the other hand we
would like to avoid inferences introducing new constrained variables because
that might render Schematic Paramodulation non terminating. This happens
when inferences introduce unlimited duplications of literals obtained by renam-
ing constrained variables within the same clause. Therefore, we use the second
case of Schematic Deletion to contract them. However if contracting a clause is
performed carelessly, we may loose literals on which inferences may apply; and
thereby we may loose track of the conclusion of such inferences. That is the rea-
son why we use a disjunction of a clause in Schematic Paramodulation and non
maximal literals in this clause or (dis)equalities between constant to schematize
clauses generated in paramodulation. To have a better idea about how it works,
let us consider the following example.

Example 2. The theory T of arrays is axiomatized by the following finite set
Ax(T ) of axioms, where A, I, J, E are implicitly universally quantified variables:

select(store(A, I, E), I) = E

I = J ∨ select(store(A, I, E), J) = select(A, J)

It is shown in [2] that for every set S of ground flat ΣT -literals, any saturation
of Ax(T ) ∪ S by PC is finite. But meta-saturation generates the clause

select(x, I) = select(z, I) ∨ y = I ‖ const(x) ∧ const(y) ∧ const(z)

which will paramodulate with a renamed version of itself, i.e.

select(x′, I ′) = select(z′, I ′) ∨ y′ = I ′ ‖ const(x′) ∧ const(y′) ∧ const(z′)

to generate a clause of a new form, namely

select(x, I)=select(z, I)∨y=I∨w = I ‖ const(x)∧const(y)∧const(z)∧const(w)

The process continues so on and meta-saturation will diverge.
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In our settings, clauses generated by self-paramodulations, i.e. clauses of the
form

select(x1, I) = select(x2, I) ∨ x3 = I ∨ . . . ∨ xn = I ‖ x1 ( c� ∧ . . . ∧ xn ( c�

will be deleted by applying the second case of Schematic Deletion. This is so
because the clause select(x, I) = select(z, I)∨ y = I ‖ x ( c� ∧ y ( c� ∧ z ( c�

already persists and the literals x3 = I, . . . , xn = I are actually constrained
variants of the non maximal literal y = I.

Also the clause x = y∨x′ = y′ ‖ x ( c�∧y ( c�∧x′ ( c�∧y′ ( c�, generated
by a Right paramodulation inference of Figure 3 between select(x, I) = z ∨ y =
I ‖ x ( c� ∧ y ( c� ∧ z ( c� and select(x, I) = y ‖ x ( c� ∧ y ( c�, will be
deleted

Finally, Schematic Paramodulation will contain Ax(T )∪GT
0 and the following

clauses:

select(x, I) = select(z, I) ∨ y = I ‖ x ( c� ∧ y ( c� ∧ z ( c�

select(x, I) = z ∨ y = I ‖ x ( c� ∧ y ( c� ∧ z ( c�

��
We are now in a position to show that Schematic Paramodulation can be used
to automatically check decidability of finitely presented theories.

Theorem 2. Let T be a theory axiomatized by a finite set Ax(T ) of clauses,
which is saturated with respect to PC. Let GT

∞ be the set of all clauses in a
finite saturation of Ax(T ) ∪ GT

0 by SPC. Then for every set S of ground flat
ΣT -literals, every clause in a saturation Ax(T )∪S by PC is a clause of the form

C ∨ l1 ∨ . . . ∨ ln

where n ≥ 0, C is a constraint instance of some clause C′ in GT
∞, and for

i = 1, . . . , n

– either li is non maximal, and is a constraint instance of some literal in C′

or a (dis)equality between constant,
– or li is a (dis)equality between constant, and C contains an equality between

constant.

Proof (Sketch). The proof is by induction on the length of saturation inferences
by PC. For the base case, it is true because all the clauses in Ax(T ) ∪ S satisfy
the theorem. For the inductive case, we need to show three facts:

1. each clause added in the process of saturation of Ax(T ) ∪ S is of the men-
tioned form, and

2. if a clause is deleted by Subsumption or by Tautology Deletion of Figure
4 from (resp. simplified by Simplification of Figure 4 in) the saturation of
Ax(T ) ∪ GT

0 by SPC, then all clauses containing a constraint instances of
the latter will also be deleted from (resp. simplified in) the saturation of
Ax(T ) ∪ S by PC, and



Automatic Decidability and Combinability Revisited 337

3. if a clause is deleted by Schematic Deletion of Figure 4 from the saturation
of Ax(T ) ∪ GT

0 by SPC, then each clause in the process of saturation of
Ax(T ) ∪ S is still in the form mentioned in the theorem.

For the first case, consider Right paramodulation of Figure 1. Assume that Γ ⇒
Δ, l[u′] = r and Π ⇒ Σ, u = t have the mentioned form. Then there are some
clause D in GT

∞ and a substitution θ such that θ(D∨l1∨. . .∨ln) ≡ Γ ⇒ Δ, l[u′] =
r, and some clause D′ in GT

∞ such that θ(D′ ∨ l′1 ∨ . . . ∨ l′m) ≡ Π ⇒ Σ, u = t.
If the Right paramodulation inference of Figure 1 is performed at θ(D) part
and the θ(D′) part, then there must exist a Right paramodulation inference of
Figure 3 in the saturation of Ax(T ) ∪ GT

0 by SPC, whose premises are D, D′

and conclusion D′′ such that we can then extend θ so that θ(D′′ ∨ l1 ∨ . . . ∨
ln ∨ l′1 ∨ . . . ∨ l′m) ≡ σ(Γ,Π ⇒ Δ,Σ, l[t] = r). And hence the conclusion of the
Right paramodulation inference of Figure 1 is still in the form mentioned in
the theorem. If the Right paramodulation inference of Figure 1 is performed at
θ(l1∨ . . .∨ ln) and θ(l′1∨ . . .∨ l′m), then θ(D∨ l1∨ . . .∨ ln) and θ(l′1∨ . . .∨ l′m) must
only contain constants or variables (no function symbols). We must have that
D ≡ D1 ∨ x1 = y1 and D′ ≡ D′

1 ∨ x′
1 = y′1, where x1, x2, x

′
1, x

′
2 are constrained

variables. There must exist a Right paramodulation inference of Figure 3 in the
saturation of Ax(T )∪GT

0 by SPC, whose premises areD, D′ and conclusion (D1∨
D′

1)[x′
1 → x1] ∨ y1 = y′1. But then, the conclusion of the Right paramodulation

inference of Figure 1 between θ(D∨ l1∨ . . .∨ ln) and θ(D′∨ l′1∨ . . .∨ l′m) is still in
the form mentioned in the theorem. If the inference is performed at θ(l1∨. . .∨ln)
and θ(D′), then D ≡ D1∨x1 = y1. If D contains an unconstrained variable, GT

∞
will be infinite because of inferences from constrained variables into constrained
variables, which introduce new unconstrained variables. If D does not contains
any unconstrained variable, then θ(D∨l1∨. . .∨ln) only contains constants, which
means that the conclusion of the Right paramodulation inference of Figure 1
inference is still in the right form.

The rule Left paramodulation of Figure 1 is handled exactly in the same way
as Right paramodulation of Figure 1.

For Reflection of Figure 1, if the inference is performed in the C part then it
is simulated by a Reflection inference of Figure 3 applied to C′. If the inference
is performed at the l1∨ . . .∨ ln part, then the conclusion is still in the right form.

Eq. Factoring of Figure 1 can be handled similarly to Right paramodulation
of Figure 1.

For the second case, let us consider Subsumption of Figure 4. The second case
of Subsumption is just a matter of deleting duplicates. For the first case, assume
that there is a clause A deleted from the saturation of Ax(T ) ∪ GT

0 by SPC
and there is a clause B in the saturation of Ax(T ) ∪ S by PC, which contains a
constraint instance of A. Then there must exist a clause C ∈ Ax(T ) and some
substitution θ such that θ(C) ⊆ A. Since all the clauses in Ax(T ) persist, there
must be a substitution θ′ such that θ′(C) ⊆ B. Thereby B must also be deleted
from the saturation of Ax(T ) ∪ S by PC. A similar argument can be given for
Simplification of Figure 4. For the Tautology Deletion rule of Figure 4, it is easy
to see that a constraint instance of a tautology is also a tautology.
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For the third case it is sufficient to argue that the deleted clause has no con-
straint instance, or contains exactly a constrained variant of a clause in GT

∞, or
contain exactly a constrained variant a clause C in GT

∞ and constrained vari-
ants of non maximal literals or constrained variants of maximal (dis)equalities
between constrained variables in C. Therefore all clauses in a saturation of
Ax(T ) ∪ S still have one of the forms mentioned in the theorem. ��

We can also determine, by Schematic Paramodulation, an upper bound on the
number of clauses generated in paramodulation by simply counting the number
of possible ground instantiations of constrained variables, given a finite set of
constants. We have that the number of possible instantiations polynomially de-
pends on the number of constants in the input set of ground flat literals. This
quickly leads us to the following result.

Theorem 3. Let T be a theory axiomatized by a finite set Ax(T ) of clauses,
which is saturated with respect to PC. Let GT

∞ be the set of all clauses in a finite
saturation of Ax(T )∪GT

0 by SPC. Then for every set S of ground flat ΣT -literals,
the number of clauses in a saturation Ax(T ) ∪ S by PC is bounded by

– |GT
∞| × |S|V if Ax(T ) only contains unit clauses, and

– 2|G
T
∞|×|S|V if Ax(T ) contains non-unit clauses,

where |S| is the number of constants in S, |GT
∞| is the number of literals in GT

∞
and V is the number of constrained variables in GT

∞.

Proof. Since there are |S|V ways to instantiate constrained variables in GT
∞.

There are at most |GT
∞| × |S|V literals in a saturation of Ax(T ) ∪ S by PC.

We can conclude following Theorem 2 that there are at most |GT
∞| × |S|V unit

clauses and 2|G
T
∞|×|S|V non-unit clauses built out of |GT

∞| × |S|V literals. ��

5 Automatic Combinability

The Nelson-Oppen combination method [7] allows us to combine satisfiability
procedures for the class of stably infinite theories (cf. Definition 6 below) in a
modular way. Although stable infiniteness is undecidable in general (see, e.g., [3]
for more details), it is interesting to develop automated techniques to prove it for
a subclass of first order theories, in particular those admitting paramodulation-
based satisfiability procedures.

Definition 6 (Stably infinite theory). Let T be a consistent theory. T is sta-
bly infinite iff every T -satisfiable conjunction ϕ of ground literals is T -satisfiable
in an infinite model.

In [5], the authors define the notion of variable-active clause so that if, for given
a theory T , any saturation of Ax(T ) ∪ S halts, and does not infer any variable-
active clauses, then T is stably infinite. In essence, a variable-active clause is a
clause containing a maximal equality in which there exists a maximal variable.
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However, the absence of variable-active clauses in any saturation is rather too
strong a requirement because there exist theories not satisfying this requirement
but which are stably infinite. Let us consider the following example.

Example 3. The theory presented by the clause

f(X) = a ∨X = Y ∨ f(Y ) = a

is stably infinite, but we cannot detect it by using the method of [5] because the
given clause is variable-active. ��

Moreover, the method of [5] needs to assume that the paramodulation inference
system uses a negative selection function. This is again a rather strong require-
ment, which narrows the applicability scope of the method because there exist
theories where Schematic Paramodulation halts with one special ordering but
not with others. Let us consider the following example.

Example 4. The theory presented by the clause

Nat(X) �= True ∨Nat(s(X)) = True

is stably infinite. However if we consider negative selection, then the clause
Nat(x) = y ‖ x ( c� ∧ y ( c� will paramodulate with the theory axiom to
generate the clause y �= True ∨Nat(s(x)) = True ‖ x ( c� ∧ y ( c� to which
Reflection applies to yield Nat(s(x)) = True ‖ x ( c�. The new clause will again
paramodulate with the axiom and the process continue so on. Consequently, the
Schematic Paramodulation will not halt. ��

We now develop a much more general technique for automatically checking stable
infiniteness by using Schematic Paramodulation. Our technique is not based on
variable-inactivity condition anymore and it does not require using negative
selection.

Definition 7 (Finite cardinality clause). A clause is a finite cardinality
clause if it has the form ∨

0≤j �=k≤n

(xj = xk)

where n is a positive integer and xi (for i = 0, . . . , n) is a variable.

Definition 8 (Elementary clause). An elementary clause is a a clause of the
form x1 = y1 ∨ . . .∨ xn = yn, where xi, yi are distinct constants or variables for
i = 1, . . . , n. A constrained clause is elementary if one of its constraint instance
is elementary.

The following result follows from the compactness of first order logic (see, e.g.,
[9]).

Lemma 1. Let T be a satisfiable set of formulae. If T has no infinite models
then T entails a finite cardinality clause.
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The following result applies to paramodulation calculi, which are stable under
signature extension1, for instance PC, meaning that extending the initial signa-
ture with new symbols does not destroy completeness.

Lemma 2. Let T be a consistent theory axiomatized by a finite set Ax(T ) of
clauses and S be a finite T -satisfiable set of ground literals. If T ∪ S entails a
finite cardinality clause, then any saturation of Ax(T ) ∪ S by PC contains a
non-ground elementary clause.

Proof. The proof uses the model generation technique (see, e.g., [8] for more
details). Let S bet a set of ground clauses and C be a clause in S. Then Gen(C) =
{l → r}, and C is said to generate the rule {l → r}, if and only if, C is of the
form Γ ⇒ Δ, l = r and the following conditions hold:

1. R∗
C �|= C,

2. l - r and l - Γ and l = r -mul u = v for all u = v ∈ Δ, where -mul is the
multiset extension of - (see, e.g., [8] for more details),

3. l is irreducible by RC ,
4. R∗

C �|= r = t′ for every l = t′ ∈ Δ,

where RC =
⋃

C�D Gen(D), and R∗
C is the congruence induced by RC . In all

other cases, Gen(C) = ∅. Finally, R denotes the set of all rules generated by
clauses of S, that is R =

⋃
D∈S Gen(D).

Now assume that T ∪ S entails a finite cardinality clause with n distinct
variables. Let S′ be the saturation of Ax(T )∪S by PC. Since S′ and Ax(T )∪S
are logically equivalent, we have that S′ entails the same finite cardinality clause.
This also means that S′∪

⋃
1≤j �=k≤n+1{cj �= ck} is also unsatisfiable, where cj , ck

are new constants. Let RS′ be the set of all rules generated by all the clauses in
grd(S′), where grd(S′) denotes the set of all ground instances of all the clauses
in S′. Then, S′ ∪

⋃
1≤j �=k≤n+1{cj �= ck} is unsatisfiable only if there exists a

smallest constant ci such that ci is reducible by RS′ .
Assume that ci is reduced by a rule ci → r in RS′ . Then ci → r must be

in a clause C which generates ci → r. Since ci is a constant r must also be
constants and thereby C must be a disjunction of equalities or disequalities
between constants. Assume that C is a ground instance of some clause C′ in S′.
Because ci is a fresh constant and hence it is not in S′, C generates the rule
ci → r only if C′ contains an equality of the form x = y, where at least x must
be a variable. Therefore, C′ must have the form x = y∨x1 � y1∨ . . .∨xn � yn ,
where n ≥ 0, x, y, x1, y1, . . . , xn, yn are constants or variables, at least x is a
variable, and � ∈ {=, �=}.

We prove that C′ is a non-ground elementary clause. To this end, we only
need to show that C′ does not contain any disequalities. Since ci is the smallest
reducible constant, C′ must not contain any disequalities containing a constant
1 This is not restrictive because most of state of the art paramodulation-based provers

enjoy this property, except those which interpret ordering constraints as symbolic
constraint solving problems in the original signature (see [8,3] for a more detailed
discussion).
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(occurring in S′), otherwise the condition 2 of model generation would not be
satisfied and thereby ci → r would not be generated. Assume that C′ contains
a disequality between variable, says xi �= yi (i ∈ {1, . . . , n}). If xi ≡ x or yi ≡ x
then C contains both ci = r and ci �= r′. In this case, the condition 2 of model
generation would again not be satisfied and consequently C could not generate
ci → r. So xi, yi are different from x. But then Reflection applies to C′ to infer
a smaller clause C′′ containing x = y. This means that C could not generate
ci → r because a ground instance of C′′ will generate ci → r. Summing up, in
all cases C′ must not contain any disequalities and this completes the proof of
the lemma. ��

Since any saturation of a set S of ground flat literal together with Ax(T ) can
be simulated by Schematic Paramodulation, we have an automatic method for
checking stable infiniteness of finitely presented theories, as stated in the follow-
ing theorem.

Theorem 4. Let T be a consistent theory axiomatized by a finite set Ax(T ) of
clauses, which is saturated with respect to PC. Let GT

∞ be the set of all clauses
generated in a finite saturation of Ax(T )∪GT

0 by SPC. If GT
∞ does not contain

X = Y , then T is stably infinite.

Proof. Assume by contradiction that T is not stably infinite. Then there exists
a T -satisfiable set S of ground flat ΣT -literals such that T ∪ S has no infinite
models. By Lemma 1, T ∪ S must entail a finite cardinality constraint. Let S′

be the saturation of Ax(T ) ∪ S by PC. By Lemma 2, S′ contains a non-ground
elementary clause C. We consider two cases:

1. C is a unit clause, i.e. C ≡ x = y where x is a variable and y is a variable
or a constant. If y is a variable then x = y is a trivial equality. But then, by
Theorem 2, x = y must be a constraint instance of some clause in GT

∞, which
must be a trivial equality. Now, consider that case where y is a constant.
Then again by Theorem 2, x = y is a constraint instance of the clause
X = y ‖ y ( c�. But X = y ‖ y ( c� will paramodulate with a renamed
version of itself to generate the trivial equality X = X ′ in GT

∞. And the
theorem is proved.

2. C is a non-unit clause. By Theorem 2, C is a clause of the form D ∨ l1 ∨
. . . ∨ ln, where D is a constraint instance of some clause D′ in GT

∞, and
(for i = 1, . . . , n and n ≥ 0) either li is constraint instance of some literal
in D′ or a (dis)equality between constant. We argue that D′ is non-ground
elementary (i.e. containing an unconstrained variable) because otherwise D
will be ground. We can assume wlog. that every equality in D′ is non-ground,
because otherwise it will paramodulate with x �= y ‖ x ( c� ∧ y ( c� to
infer a clause in the desired form. If D′ is an unit clause, then we are in the
case 1. Let us consider D′ to be non-unit, then D′ has one of the following
forms, where X,Y, Z are unconstrained variables:
(a) X = x ∨X = y ∨D1 ‖ x ( c� ∧ y ( c� ∧ φ: then D′ will paramodulate

with a renamed version of itself, i.e. X ′ = x′ ∨ X ′ = y′ ∨ D′
1 ‖ x′ (
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c�∧y′ ( c�∧φ′, to infer the clause X = X ′∨Y = y∨Y ′ = y′∨(D1[x →
x′]) ∨ D′

1 ‖ ((x ( c� ∧ y ( c� ∧ φ ∧ φ′)[x → x′]). This new clause will
again paramodulate with a renamed version of itself to generate a clause
of yet another new form. And Schematic Deletion cannot apply to the
new clause since it contains new unconstrained variables. The process
continues so on and GT

∞ will be infinite.
(b) X = x ∨ X = Z ∨ D1 ‖ x ( c� ∧ φ: then D′ will paramodulate with

x′ = y′ ‖ x′ ( c�∧y′ ( c� to infer the clause X = x∨X = y′∨(D1[Z →
x′]) ‖ ((x ( c� ∧ x′ ( c� ∧ y′ ( c� ∧ φ)[Z → x′]), which is in the first
form. By a similar argument GT

∞ will be infinite.
(c) X = Y ∨X = Z ∨D1 ‖ φ: then D′ will paramodulate with x = y ‖ x (

c� ∧ y ( c� to generate the clause X = y ∨ X = Z ∨ (D1[Y → x]) ‖
((x ( c� ∧ y ( c� ∧ φ)[Y → x]), which is in the second form. But then
GT

∞ will also be infinite.

Summing up, in all cases if T is not stably infinite, then either the trivial equality
X = Y is in GT

∞ or GT
∞ is infinite, which will contradict the hypothesis of the

theorem. And this completes the proof of the theorem. ��

Now, considering again Example 3, it is easy to see that Schematic Paramodu-
lation contains the axiom clause, GT

0 and the following set of clauses

X �= x ∨ f(y) = a ∨ f(X) = a ‖ x ( c� ∧ y ( c�

f(x) = a ‖ x ( c�

f(x) = a ∨ f(y) = a ‖ x ( c� ∧ y ( c�

X = y ∨ x = a ∨ f(X) = a ‖ x ( c� ∧ y ( c� ∧ f(x) �( y

X = y ∨ x = a ∨ f(X) = a ∨ f(z) = a ‖ x ( c� ∧ y ( c� ∧ z ( c�

The saturated set is finite and does not contain the trivial equality X = Y . By
Theorem 4, the theory is stably infinite.

For Example 4, since we do not assume any restriction on the selection func-
tion but fairness, we can freely consider an ordered selection such that

sel(Nat(X) �= True ∨Nat(s(X)) = True) = {Nat(s(X)) = True}

It is easy to see that Schematic Paramodulation will contain the theory axiom,
GT

0 and the following set of clauses

Nat(x) �= True ‖ x ( c�

Nat(x) = True ‖ x ( c�

Nat(x) = True ∨Nat(y) �= True ‖ x ( c� ∧ y ( c�

The saturated set is finite and does not contain the trivial equality X = Y . Thus
the theory is stably infinite by Theorem 4.
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6 Conclusion

We consider our work as an improvement and an extension of previous work.
Our Schematic Paramodulation improves the meta-saturation of [6] in several
ways. First, Schematic Paramodulation simulates every paramodulation infer-
ence unlike meta-saturation (cf. Example 1). Second, the Schematic Deletion
rule makes Schematic Paramodulation halt more often than meta-saturation,
and therefore allows us to prove decidability and stable infiniteness of theories
for which meta-saturation fails (cf. Example 2). In [1] the authors define the class
of variable-inactive theories so that modular termination of saturation holds. The
work of [5] provides an automatic check of variable-inactivity condition of finitely
presented theories and goes beyond that by showing that variable-inactive theo-
ries are actually stably infinite. The result about stable infiniteness of this paper
generalizes the one of [5]. Theorem 4 demonstrates that it is, in fact, sufficient
to only check whether the trivial equality X = Y persists. Therefore, even when
some theories are not variable-inactive we might still combine them using the
Nelson-Oppen method because they might be stably infinite, as shown in Ex-
ample 3. Furthermore, we could observe that no requirement is made on the
selection function, but fairness. This should make clear that our method for au-
tomatically checking stable infiniteness is definitely much more general than the
one proposed in [5].
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Abstract. Software verification technology has the potential to improve
the quality of software. The basic technique is to generate verification
conditions for a given program and to discharge these proof obligations
using a theorem prover. Encoding the verification conditions is a delicate
process, not just because it must capture the intended programming
semantics, but also because it must yield formulas that a theorem prover
can process effectively.

In this talk, I will discuss the process of generating verification con-
ditions in the program verifier for the object-oriented language Spec#.
I will highlight design decisions we have made in modeling programs
and targeting SMT solvers, lessons we have learned, and challenges that
remain ahead.
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Abstract. We present an encoding of LTL bounded model checking
problems within the Bernays-Schönfinkel fragment of first-order logic.
This fragment, which also corresponds to the category of effectively
propositional problems (EPR) of the CASC system competitions, al-
lows a natural and succinct representation of both a software/hardware
system and the property that one wants to verify.

The encoding for the transition system produces a formula whose size
is linear with respect to its original description in common component
description languages used in the field (e.g. smv format) preserving its
modularity and hierarchical structure. Likewise, the LTL property is en-
coded in a formula of linear size with respect to the input formula, plus
an additional component, with a size of O(log k) where k is the bound,
that represents the execution flow of the system.

The encoding of bounded model checking problems by effectively
propositional formulae is the main contribution of this paper. As a side
effect, we obtain a rich collection of benchmarks with close links to real-
life applications for the automated reasoning community.

1 Introduction

Model checking is a technique suitable for verifying that a hardware or software
component works according to some formally specified expected behaviour. This
is usually done by building a description of the system, often modelled as a finite
state machine in a formal language suitable for further deployment, and using a
temporal logic to specify properties that the system is expected to satisfy.

One of the first advances in model checking consists of the use of symbolic
model checkers [9], where the transition system of the finite state machine is
represented symbolically. These symbolic representations, which usually take
the form of a binary decision diagram (BDD), provide significant improvements
over previous techniques; but some formulae are still hard to encode succinctly
using BDDs and, moreover, the encoding itself is often highly sensitive to the
variable order used to create the representation.

Another significant achievement in the state of the art of model checking
came when Biere et al. [1] proposed a technique now widely known as bounded
model checking (BMC). In bounded model checking instead of trying to prove
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the correctness of the given property, one searches for counterexamples within
executions of the system of a bounded length. A propositional formula is created
and a decision procedure for propositional logic, such as DPLL [5], is used to
find models which in turn represent bugs in the system. When no models are
found the bound is increased trying to search for longer counterexamples.

Although the basic method is not complete by itself, i.e. it can only disprove
properties, it has been found as a useful tool for finding simple bugs in systems
[1, 4, 11] and a good complement to other BDD based techniques. A significant
amount of research has been spent recently on extending this technique to more
expressive temporal logics [6], obtaining better propositional encodings [7], and
proposing termination checks to regain completeness [10]. A recent survey on
the state of the art is found in the work of Biere et al. [2].

Bounded model checking has been largely focused on generating and solving
problems encoded in propositional logic. We observe, however, that BMC prob-
lems can also be easily and naturally encoded within the Bernays-Schönfinkel
class of formulae. One of our motivations is to obtain a new source of problems
for first-order reasoners able to decide the class. Problems in this class are also
known as EPR (effectively propositional) problems in the CASC competition
[12]. These problems are non-propositional but have a finite Herbrand Universe.

Moreover, we believe that the EPR encoding has several advantages over the
propositional approach. First, it gives a more succinct and natural description
of both the system and the property to verify. It is not needed, for example, to
replicate copies of the temporal formula for every step of the execution trace.
Furthermore, it is possible to directly translate systems descriptions written in
a modular way, without requiring to flatten or expand module definitions before
the encoding. A prover could potentially use this information to better organise
the search for a proof or counterexample.

On the other hand, our encoding may also turn out to be useful for proposi-
tional, SAT-based, approaches to bounded model checking. Indeed, it preserves
the structure of the original bounded model checking problem in the obtained
effectively propositional formula and reduces the problem of finding an optimised
propositional encoding to the problem of finding an optimised propositional in-
stantiation of the EPR description.

After introducing a number of formal definitions in Section 2, we present in
Section 3 two different encodings of linear temporal logic (LTL) into effectively
propositional formulae. The first encoding takes an LTL formula and a bound k,
and produces a set of constraints that captures the execution paths satisfying
the temporal property. The second encoding is an improvement that produces
two sets of constraints: one that depends on the LTL formula only (i.e. not the
bound) and its output is linear with respect to its input; and another, with a
size of O(k), that depends on the bound k only. Compare with propositional
encodings where, if n is the size of the LTL formula, the output is typically of
size O(nk) instead of O(n + k) with our approach. Furthermore, with a binary
encoding of states, the size of the later component can be reduced to O(log2 k).
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We also present, in Section 4, an approach to the encoding of modular descrip-
tions of model checking problems preserving their modularity and hierarchical
representation. We show in particular how several features of a software/hard-
ware description language such as smv [3] can be easily represented within the
effectively propositional fragment. Using the ideas depicted here, it is also possi-
ble to develop a tool to automatically translate system descriptions in industry
standard formats (e.g. smv or verilog) into a format such as tptp [13] suitable for
consumption by first order theorem provers.

2 Background

In this section we introduce the main formal definitions that are used throughout
this paper. We first define the linear temporal logic (LTL) in a way that closely
follows the standard definitions found in literature but with a few modifications
to better represent the notion of bounded executions.

Definition 1. Let V = {p1, . . . , pn} be a set of elements called state variables.
A subset s ⊆ V is known as a state.

A path π = s0s1 . . . is a, finite or infinite, sequence of states. The length of a
finite path π = s0 . . . sk, denoted by |π|, is k + 1; while, for an infinite path, we
define |π| = ω, where ω > k for every number k.

A k-path is either a finite path of the form π = s0 . . . sk, or an infinite path
with a loop of the form π = s0 . . . sl−1sl . . . sksl . . . sk . . . , in the sequel also
written as π = s0 . . . sl−1(sl . . . sk)ω. ��

We will assume that system executions are always infinite paths, i.e. there are no
deadlock states. Finite paths, however, are also needed to represent the prefix of
an execution of the system up to a bounded length. With this intuition in mind
we now define the semantics of LTL formulae in negation normal form; these
are formulae built using propositional and temporal connectives, but negation is
only allowed in front of atomic propositions.

Definition 2. A path π = s0, s1, . . . is a model of an LTL formula φ at a state
si, where i < |π|, denoted by π |=i φ, if

π |=i p iff p ∈ si,
π |=i ¬p iff p /∈ si,
π |=i ψ ∧ φ iff π |=i ψ and π |=i φ,
π |=i ψ ∨ φ iff π |=i ψ or π |=i φ,
π |=i Xφ iff i + 1 < |π| and π |=i+1 φ,
π |=i Fφ iff ∃j, i ≤ j < |π|, π |=j φ,
π |=i ψWφ iff either: π is infinite and ∀j, i ≤ j, π |=j ψ,

or: ∃j′, i ≤ j′ < |π|, π |=j′ φ and ∀j, i ≤ j < j′, π |=j ψ.

Also π is a model of � for every state si with i < |π|, and of ⊥ for no state. We
write π |= φ to denote π |=0 φ. ��
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Note that we introduced the weak until, W, as a primary connective of our
temporal logic. Other standard temporal connectives —such as until, release and
globally— can be introduced as abbreviations of the other existing connectives:
ψUφ = Fφ ∧ (ψWφ), ψRφ = φW(ψ ∧ φ), and Gφ = φW⊥.

If we consider infinite paths only, then the definition given matches the stan-
dard definition of LTL that can be found in literature; in particular dualities
such as ¬Fφ ≡ G¬φ do hold. Since we assume that system executions are al-
ways infinite, one can make use of these identities to put formulae into negation
normal form without any loss of generality.

The finite case is defined so that if π |=i φ then, for all possible infinite paths
π′ extending π, it is also the case that π′ |=i φ. Here we deviate a little from
usual definitions of LTL and dualities such as the above-mentioned do not hold
anymore. For example, neither Fφ nor G¬φ hold in a finite path where ¬φ holds
at all states. In particular, since finite paths in the temporal logic defined are
interpreted as prefixes of longer paths, one cannot write a formula to test for the
end of a path.

Definition 3. A Kripke structure over a set of state variables V is a tuple
M = (S, I, T ) where S = 2V is the set of all states, I ⊆ S is a set whose
elements are called initial states, and T is a binary relation on states, T ⊆ S×S,
called the transition relation of the system. We also make the assumption that
the transition relation is total, i.e. for every state s ∈ S there is a state s′ ∈ S
such that (s, s′) ∈ T .

A path π = s0s1 . . . is in the structure M if s0 ∈ I and for every 0 < i < |π|
we have (si−1, si) ∈ T . We say that a path π in M is a prefix path if it is finite,
and a proper path otherwise.

An LTL formula φ is satisfiable in a Kripke structure M if there is a proper
path π in M such that π |= φ. Similarly, a formula φ is valid in M if, for every
proper path π in M , π |= φ. ��

Note that, if π is a prefix path in M and π |= φ, then for every extension π′

of π we also have π′ |= φ, thus prefix paths are enough for testing satisfiability.
Observe, however, that formulae such as Gψ or ψWφ (where φ never holds) are
never satisfied by (finite) prefix paths.

We proceed now to formally introduce the fragment of quantifier free predicate
logic which is the target language of our main translation. This fragment, also
known as the Bernays-Schönfinkel class of formulae, does not allow the use of
function symbols or arbitrary quantification. Only variables and constant sym-
bols are allowed as terms, and variables are assumed to be universally quantified.
We also define its semantics using Herbrand interpretations.

Definition 4. We assume given a set of predicate symbols P , a finite set of
constant symbols D = {s0, . . . , sk}, and a set of variables which we will usually
denote by uppercase letters: X , Y , . . . . The set D is sometimes referred to as the
domain of the logic. A term is either a variable or a constant symbol. An atom
is an expression of the form p(t1, . . . , tn) where p ∈ P and each ti is a term. A
ground atom is an atom all whose terms are constant symbols.
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Quantifier-free predicate formulae are built from atoms using the standard
propositional connectives (�, ⊥, ∧, ∨, ¬). Other connectives can be introduced
as abbreviations: F → G ≡ ¬F ∨ G. A ground formula is a formula built using
only ground atoms. A ground instance of a formula F is any ground formula
obtained by uniformly replacing the variables in F with constant symbols.

A Herbrand interpretation is a set of ground atoms. The notion of whether a
Herbrand interpretation I is a model of a ground formula F , denoted by I |= F ,
is defined in the usual way:

I |= A iff A ∈ I, I |= F ∧G iff I |= F and I |= G,
I |= ¬F iff I �|= F, I |= F ∨G iff I |= F or I |= G.

Also I is always a model of � and never of ⊥. Now a Herbrand interpretation I
is said to be a model of a non-ground formula F if it is a model of every ground
instance of F , and a model of a set of formulae if it is a model of every formula
in the set. A set of formulae, also referred to as a set of constraints, is called
satisfiable if it has at least one model. ��

Since we will only be dealing with quantifier-free formulae and Herbrand in-
terpretations, we will often simply say predicate formula when we refer to a
quantifier-free predicate formula and interpretation when we refer to a Herbrand
interpretation. Also note that, while the symbol si represents a state in a path, si

represents a constant symbol in a predicate formulae. The similar notation was
chosen intentionally since a constant si will be used as a symbolic representation
of a state si. The intended meaning should always be clear by context, but a
different typeface is also used as a hint to distinguish the two possibilities.

Similarly, it is assumed throughout this paper that P contains a unary pred-
icate symbol p for every state variable p ∈ V . The atom p(si) symbolically
represents the fact that a variable p is true at the state si of a path (i.e. p ∈ si),
and the symbol PV denotes the set of predicates representing state variables. Our
next aim is to define a notion of symbolic representation of Kripke structures
along the lines of representations commonly used in the propositional case.

Let us define the canonical first-order structure for PV , denoted by CV . This
structure is an interpretation which, instead of the symbolic representations si

used elsewhere, draws constant symbols from the domain 2V , its signature the
set of predicate symbols PV , and the interpretation of every predicate p ∈ PV is
defined as CV |= p(s) iff p ∈ s.

Definition 5. Let I(X) and T (X,Y ) be predicate formulae of variables X and
X,Y , respectively, using predicate symbols PV and no constants. We say that
this pair of formulae symbolically represents a Kripke structure M if

1. a state s is an initial state of M iff CV |= I(s).
2. a pair (s, s′) belongs to the transition relation of M iff CV |= T (s, s′). ��

The idea used in this definition extends to represent paths in a Kripke structure
M by Herbrand interpretations as follows.
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Definition 6. Given an interpretation I over the domain D = {s0, . . . , sk},
we define the k-path induced by I, denoted by πI , by πI = sI0 . . . sIk , where
sIi = {p ∈ V | I |= p(si)}, for all 0 ≤ i ≤ k. We will rather informally refer to
the states sIi as induced states. For the induced k-path πI we will often omit the
superscripts on the induced states and simply write πI = s0 . . . sk.

Given a value l with 0 ≤ l ≤ k, we also introduce the notation πl,I to denote
the infinite k-path s0 . . . sl−1(sl . . . sk)ω with a loop starting at sl. ��

In the sequel we will assume that the set of initial states I and the transition
relation T of our Kripke structures are always symbolically described in this
way. Also, we will normally consider only interpretations I over the domain
D = {s0, . . . , sk}. Then sIi means the induced state along the k-path sI0 , . . . , s

I
k

induced by I. Definition 6 immediately implies the following fact.

Lemma 1. Let M = (S, I, T ) be a Kripke structure and I an interpretation.

1. I |= I(si) iff sIi is an initial state of M .
2. I |= T (si, sj) iff (sIi , s

I
j ) belongs to the transition relation of M . ��

3 Encoding of Temporal Properties

In this section we present a translation that allows one to encode an LTL formula
as a quantifier free predicate formula. Following the results from Biere et al. [1],
it has been shown that, if one wants to check the satisfiability of an LTL formula,
it is enough to search for k-paths that satisfy this formula.

Theorem 1 (Biere et al. [1]). An LTL formula φ is satisfiable in a Kripke
structure M iff, for some k, there is a k-path π in M with π |= φ. ��

Our translation makes use of this result by creating, for a given value k and a
Kripke structure M , a predicate formula whose models correspond to k-paths
of the system satisfying the original LTL formula (the details of such corre-
spondence are given later in Proposition 2). We give a set of constraints that
characterise the k-paths of Kripke structures and define some auxiliary symbols,
which are used later in the translation.

Definition 7. Let M = (S, I, T ) be a Kripke structure, and also let k ≥ 0. The
predicate encoding of k-paths, denoted by |[ k ]|, is defined as the set of constraints:

succ(s0, s1)
succ(s1, s2)
. . .
succ(sk−1, sk)
succ(X,Y ) → less(X,Y )
succ(X,Y ) ∧ less(Y, Z) → less(X,Z)
succ(X,Y ) → trans(X,Y )
hasloop→ trans(sk, s0) ∨ · · · ∨ trans(sk, sk)
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And the predicate encoding of the structure M , denoted by |[M ]|, is defined as:

trans(X,Y ) → T (X,Y )
I(s0)

We also define |[M,k ]| = |[M ]| ∪ |[ k ]|. Note that the predicates succ(X,Y ),
less(X,Y ), trans(X,Y ) and hasloop are fresh new predicates not in PV . ��

The intuition behind the predicates introduced in the previous definition is to
model paths in the Kripke structure. It easily follows, for example, that if an
interpretation I satisfies trans(si, sj) then the pair (sIi , s

I
j ) is in the transition

relation of the structure. The encoding of temporal formulae can then use the
hasloop predicate as a trigger to enforce paths accepted as models to be infi-
nite, since it would make trans(sk, sl) true for some l. The following proposition
summarises important properties of the models of |[M,k ]|.

Proposition 1. Let M be a Kripke structure, and let I be a model of the set of
constraints |[M,k ]|. Then for every 0 ≤ i, j, l ≤ k:

1. If i < j then I |= less(si, sj).
2. The induced k-path πI = s0 . . . sk is a finite path in M .
3. If I |= trans(sk, sl) then the induced k-path πl,I = s0 . . . sl−1(sl . . . sk)ω is an

infinite path in M . ��

The following two definitions give the translation of an LTL formula φ into a
predicate encoding following an approach similar to structural clause form trans-
lations: a new predicate symbol is first introduced to represent each subformula,
here denoted by Θφ(X) in Definition 8, and then a set of constraints, given in
Definition 9, are added to give Θφ(X) its intended meaning.

Definition 8. We define the symbolic representation of an LTL formula γ, a
predicate formula Θγ(X), as follows:

Θ�(X) = � Θ⊥(X) = ⊥
Θp(X) = p(X) Θ¬p(X) = ¬p(X)

Θψ∧φ(X) = Θψ(X) ∧Θφ(X) Θψ∨φ(X) = Θψ(X) ∨Θφ(X)
ΘXφ(X) = nextφ(X) ΘFφ(X) = eventlyφ(X)

ΘψWφ(X) = weakψ,φ(X)

where nextφ(X), eventlyφ(X) and weakψ,φ(X) are fresh new predicates, not al-
ready in PV , introduced as needed for subformulae of γ. ��

Definition 9. For every pair of LTL formulae ψ, φ and a value k ≥ 0, we define
the following sets of constraints:

Φk
Xφ: x1: nextφ(X) ∧ trans(X,Y ) →Θφ(Y )

x2: nextφ(sk) → hasloop
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Φk
Fφ: f1: eventlyφ(X) → eventφ(X, s0) ∨ · · · ∨ eventφ(X, sk)

f2: eventφ(X,Y ) →Θφ(Y )
f3: eventφ(X,Y ) ∧ less(Y,X) → hasloop
f4: eventφ(X,Y ) ∧ less(Y,X) ∧ trans(sk, L) ∧ less(Y, L) →⊥

Φk
ψWφ: w1: weakψ,φ(X) →Θφ(X) ∨ xweakψ,φ(X)

w2: xweakψ,φ(X) ∧ trans(X,Y ) → weakψ,φ(Y )
w3: xweakψ,φ(X) →Θψ(X)
w4: xweakψ,φ(sk) → hasloop

Again eventφ(X,Y ) and xweakψ,φ(X) are fresh new predicates not in PV .
We finally introduce the set of structural definitions of an LTL formula γ (with

depth k), denoted by |[ γ, k ]|, as the union of the sets Φk
φ for every temporal

subformula φ of the original γ. ��

Later in Proposition 2 we show how the models of such formulae relate to the
k-paths satisfying an LTL formula. We need first to introduce the concept of a
rolling function which will be used as a tool in the proof of such proposition.

Definition 10. Given a k-path π we define its rolling function δ, a function
defined for every 0 ≤ i < |π| and with range {0, . . . k}, as follows:

– If π is of the form s0 . . . sl−1(sl . . . sk)ω , then

δ(i) =

{
i i ≤ k

l + [(i− l) mod (k + 1 − l)] otherwise .

– Otherwise, if π = s0 . . . sk, then δ(i) = i for every 0 ≤ i < |π|. ��

The rolling function is a notational convenience used to unfold an infinite k-path
π = s0 . . . sl−1(sl . . . sk)ω as the sequence π = sδ(0)sδ(1) . . . , without explicitly
showing the loop. We emphasise the fact that the rolling function is defined only
when 0 ≤ i < |π|; in particular, if π is finite, the function is not defined for
indices outside of the path. Also notice that, for both finite and infinite paths,
the rolling function acts as the identity for all i with 0 ≤ i ≤ k. Moreover, for
0 ≤ i < |π|, it is always the case that si = sδ(i); in fact, the following stronger
result holds.

Lemma 2. Let π be a k-path, φ an LTL formula, i < |π| and δ the rolling
function of π. Then it follows that π |=i φ if and only if π |=δ(i) φ. ��

We can now prove one of the main propositions, which shows how from models
of the encoded formula, one can obtain a k-path in the given Kripke structure
that, moreover, satisfies the original LTL formula at a particular state.

Proposition 2. Let M be a Kripke structure, γ an LTL formula, and I a model
of the formula |[M,k ]|∪|[ γ, k ]| with domain D = {s0, . . . , sk}. We define a path
π according to the following two cases:
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1. If I |= trans(sk, sl), for some 0 ≤ l ≤ k, then let π = πl,I for any such l.
2. If I �|= trans(sk, sl), for every 0 ≤ l ≤ k, then let π = πI .

Let i < |π|, and let δ be the rolling function of π. If I |= Θγ(sδ(i)) then π |=i γ.
��

The previous proposition shows that, under the given assumptions, if we have
I |= Θφ(sδ(i)) then there is a path π, determined by I, such that π |=i φ.
Note, however, that the converse is not always true, e.g. I �|= Θφ(sδ(i)) does not
necessarily imply π �|=i φ for the possible induced paths.

Additional constraints could be added to the set |[φ, k ]| in order to make
the converse hold but, since we are mostly interested in satisfiability of the LTL
formulae, this is not required for the correctness of our main result. Whether
the addition of such constraints would be helpful for the solvers to find solutions
more quickly, is an interesting question for further research.

What we do need to show is that, if there is a path that satisfies an LTL
formula, we can also find an interpretation that satisfies its symbolic represen-
tation. The following definition shows how to build such an interpretation and
later in Proposition 3 we prove that it serves the required purpose.

Definition 11. Let π be a k-path and δ its rolling function. We define an in-
terpretation Iπ with domain D = {s0, . . . , sk}, for every si, sj ∈ D and pair of
LTL formulae ψ, φ, as follows:

Iπ |= p(si) iff p ∈ si, for p ∈ V .
Iπ |= less(si, sj) iff i < j.
Iπ |= succ(si, sj) iff i + 1 = j.
Iπ |= trans(si, sj) iff δ(i + 1) = j.
Iπ |= hasloop iff π is an infinite path.
Iπ |= nextφ(si) iff π |=i Xφ.
Iπ |= eventlyφ(si) iff π |=i Fφ.
Iπ |= eventφ(si, sj) iff π |=j φ and there is a j′ ≥ i with δ(j′) = j.
Iπ |= weakψ,φ(si) iff π |=i ψWφ.
Iπ |= xweakψ,φ(si) iff π |=i ψWφ ∧ ¬φ. ��

Proposition 3. Let π be a k-path in a Kripke structure M , and δ its rolling
function. Also let γ be an arbitrary LTL formula, and let i < |π|.

1. Iπ |= Θγ(sδ(i)) iff π |=i γ,
2. Iπ |= |[M,k ]| ∪ |[ γ, k ]|. ��

With this results being put in place we can now show, in Theorem 2, how the
problem of testing the satisfiability of an LTL formula in a Kripke structure can
be translated into the problem of checking satisfiability of predicate formulae.

Definition 12. Let M be a Kripke structure, φ an LTL formula and k ≥ 0. The
predicate encoding of M and φ (with depth k), denoted by |[M,φ, k ]|, is defined
as the set of constraints |[M,k ]| ∪ |[φ, k ]| ∪ {Θφ(s0)}. ��



Encodings of Bounded LTL Model Checking 355

Theorem 2. Let φ be an LTL formula, and M a Kripke structure.

1. φ is satisfiable in M iff |[M,φ, k ]| is satisfiable for some k ≥ 0.
2. φ is valid in M iff |[M,NNF(¬φ), k ]| is unsatisfiable for every k ≥ 0. ��

3.1 Implicit Bound Encoding

As can be seen in Definition 9, the encoding just presented makes explicit use
of the bound k in order to build the symbolic representation of an LTL formula.
Notice that, in particular, a constraint of size O(k) is created for every subfor-
mula of the form Fφ of the property to be checked. In this section we present
an alternate encoding, which only uses the bound in an implicit way.

Definition 13. Given pair of LTL formulae ψ, φ, we define the following sets
of constraints:

Φ′
Fφ: f1’: eventlyφ(X) →Θφ(X) ∨ xeventlyφ(X)

f2’: xeventlyφ(X) ∧ succ(X,Y ) → eventlyφ(Y )
f3’: xeventlyφ(X) ∧ last(X) → hasloop
f4’: xeventlyφ(X) ∧ last(X) ∧ trans(X,Y ) → evently2φ(Y )

f5’: evently2φ(X) →Θφ(X) ∨ xevently2φ(X)
f6’: xevently2φ(X) ∧ succ(X,Y ) → evently2φ(Y )
f7’: xevently2φ(X) ∧ last(X) →⊥

The sets Φ′
Xφ and Φ′

ψWφ are identical to Φk
Xφ and Φk

ψWφ, except for the following
constraints which replace x2 and w4 respectively.

Φ′
Xφ: x2’: nextφ(X) ∧ last(X) → hasloop

Φ′
ψWφ: w4’: xweakψ,φ(X) ∧ last(X) → hasloop

We finally introduce the set of implicit structural definitions of an LTL for-
mula γ, denoted simply by |[ γ ]|, as the union of the sets Φ′

φ for every temporal
subformula φ of the original γ. ��
Note that the newly defined sets Φ′

φ, do not explicitly use the value of the bound
k anymore. We replaced the explicit references to sk with a predicate last(X)
which should be made true for the constant symbol representing the last state.
Moreover, since the size of Φ′

Fφ is constant, the size of the encoding |[ γ ]| is now
linear with respect to the size of γ.

The k-paths that satisfy an LTL formula φ can therefore now be captured with
the set of constraints |[ k ]| ∪ {last(sk)} ∪ |[φ ]| ∪ {Θφ(s0)}. This representation is
convenient since it breaks the encoding in two independent parts, one depending
on the bound only and the other on the LTL formula only. Moreover it has a
size of O(n + k) where n is the size of the original temporal formula.

A complete instance of the bounded model checking problem would be then
represented, analogous to Definition 12, as

|[M,φ, k ]|∗ = |[M ]| ∪ |[ k ]| ∪ {last(sk)} ∪ |[φ ]| ∪ {Θφ(s0)}

and, for such set of constraints, the statement of Theorem 2 also holds.
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This encoding is particularly useful when searching for counterexamples in an
incremental setting, since both the system description and the temporal formula
have to be encoded only once. Just the small set |[ k ]| ∪ {last(sk)} needs to be
updated while testing for increasing bounds. If we are using a model finder that
supports incremental solving features, then one only needs to add succ(sk, sk+1)
and replace last(sk) with last(sk+1).

3.2 Logarithmic Encoding of States

As can be seen in the previous section, the only part of the translation where
there is an increase of size with respect to the input is in |[ k ]|, because of the
series of facts of the form succ(si, si+1) and the constraint

hasloop→ trans(sk, s0) ∨ · · · ∨ trans(sk, sk) . (1)

This group of constraints, which is of size O(k), can be more compactly en-
coded by representing the names of states in binary notation. For this we intro-
duce a pair of constant symbols {b0, b1} so that we can write, for example when
k = 24, the following definition for the succ predicate:

succ(X3, X2, X1, b0 , X3, X2, X1, b1 )
succ(X3, X2, b0 , b1 , X3, X2, b1 , b0 )
succ(X3, b0 , b1 , b1 , X3, b1 , b0 , b0 )
succ( b0 , b1 , b1 , b1 , b1 , b0 , b0 , b0 )

In general we only need w = 0log k1 constraints, with a total size of O(log2 k).
On the other hand, the constraint (1) can be rewritten as:

hasloop→ loopafter(b0)
loopafter(X) ∧ last(Y ) → trans(Y ,X) ∨ xloopafter(X)
xloopafter(X) ∧ succ(X,Y ) → loopafter(Y )
xloopafter(X) ∧ last(X) →⊥

where b0 is a string of w symbols b0, X = Xw−1, . . . , X0 and similarly for Y .
One also has to replace everywhere else occurrences of s0 with b0, the constant

symbol sk with its binary representation (e.g. for k = 13 use b1, b1, b0, b1), and
variables such as X and Y with the corresponding X or Y . The resulting set of
constraints, which we denote by |[M,k, φ ]|b, is of size O(n log k+ log2 k), where
n is the compound size of M and φ, and satisfies the statement of Theorem 2.

4 Encoding of the System Description

Generating an instance of the bounded model checking problem requires three
parameters as input: a system description M , a temporal formula φ and a
bound k. In the previous section we showed how to encode an LTL formula
as a predicate formula (w.r.t. the bound), but we generally assumed that the
system (a Kripke structure M) was already symbolically described.
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In this section we deal with how a system, which is originally given in some
industry standard format suitable to describe software/hardware components,
can be also be encoded in the form of a predicate formula. An advantage of using
a predicate rather than a propositional encoding is that important features for
component development, such as the ability to describe systems in a modular
and hierarchical way, can be directly represented in the target language. There
is no need, for example, to perform a flattening phase to create and instantiate
all modules of a system description before doing the actual encoding.

We will show now, by means of an example, how a system described in the
smv language can be succinctly and naturally encoded within the effectively
propositional fragment. Although we would prefer to formally define the frag-
ment of smv considered here, the number of different smv variants and the lack
of documentation on the formal semantics in existing implementations made this
task particularly difficult. Anyway, the explanation of the ideas presented in this
section is always general enough so that they can be applied to other arbitrary
systems, not only the one in the example, and even implemented to be performed
in an automated way.

For our running example we consider a distributed mutual exclusion (DME)
circuit first described by Martin [8] and then made available in the smv format
with the distribution of the NuSMV model checker [3]. The system description
is fragmented in a number of modules, each being a separate unit specifying
how a section of the system works. The DME, for example, organises modules
in a hierarchical way: the most basic modules are gates which perform simple
logical operations, then a number of gate modules are replicated and assembled
together to form the module of a cell, finally a number of cells are also replicated
and linked together in the main module which represents the entire system.

4.1 Module Variables

A module usually defines a number of variables and describe how their values
change in time. In the DME example, a typical gate module looks like:

module and−gate ( in1 , in2 )
var

out : boolean ;
assign

in i t ( out ) := 0 ;
next ( out ) := ( in1 & in2 ) union out ;

This is a module named ‘and−gate’ which defines two boolean variables as
input (‘in1’ and ‘in2’) and an output boolean variable (‘out’). The initialisation
part causes the output of all ‘and−gate’ instances to hold the value zero (i.e.
false) when the system starts to execute. At each step the module nondetermin-
istically chooses to compute the logical and of its inputs and update the output,
or keep the output from the last clock cycle.1 Note that this is the model of
1 The ‘union’ operator in smv effectively creates a set out of its two operands and

nondeterministically chooses an element of the set as the result of the expression.



358 J.A. Navarro-Pérez and A. Voronkov

an asynchronous logic gate; fairness constraints (which can also be encoded as
LTL formulae) could be added to ensure, for example, that the gate eventually
computes the required value.

In the symbolic description we represent each of these variables with a pred-
icate symbol such as, in this particular example, and gate in1(I1, I2, X). The
variable name is prefixed with the module name so that variables of different
modules do not interfere with each other. Since, moreover, several instances of
the ‘and−gate’ can be created, the first arguments I1, I2 serve to distinguish
among such instances, the following section explains this in more detail. The
last argument X represents a time step within the execution trace. Using this
naming convention, the module can then be described as follows:

¬and gate out(I1, I2, s0)
trans(X,Y )→

(and gate out(I1, I2, Y ) ↔ and gate in1(I1, I2, X) ∧ and gate in2(I1, I2, X))
∨ (and gate out(I1, I2, Y ) ↔ and gate out(I1, I2, X))

Note that, although the original smv description distinguishes between inputs
and outputs of the module, our proposed encoding does not need to.

4.2 Submodel Instances

Modules can also create named instances of other modules and specify how its
own variables and the variables of the its submodule instances relate to each
other. There is also one designated ‘main’ module, an instance of which repre-
sents the entire system to verify. One has to distinguish between the notions of a
module (the abstract description of a component) and its possibly many module
instances, which actually conform the complete system. In our running example,
the DME circuit, part of the definition of a cell module looks like:

module c e l l ( l e f t , r ight , token )
var

ack : boolean ;
c : and−gate ( a . out , ! l e f t . ack ) ;
d : and−gate (b . out , ! u . ack )
...

Here two submodule instances ‘c’ and ‘d’ are created, both instances of the
‘and−gate’ module. The elements ‘a, b: mutex half’ and ‘u: user’ are instances
of other modules also created within the cell, with definitions of other internal
variables such as ‘out’ and ‘ack’. The elements ‘ left ’ and ‘right’ are references
to other ‘ cell ’ instances, these are explained later in the following section.

Symbolically, we can describe the relations between the inputs and outputs
of these modules using the constraints:

and gate in1(I, c, X) ↔ mutex half out(I, a, X)
cell left(I, J) → and gate in2(I, c, X) ↔¬cell ack(J,X)

and gate in1(I, d, X) ↔ mutex half out(I, b, X)
and gate in2(I, d, X) ↔¬user ack(I, u, X)

(2)
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Here the variable I stands for a particular cell instance, the second argument of
the predicates is now filled in with the instance names of the different modules.

In general, if a module M1 creates instances of a module M2, we say that
M2 is a submodule of M1. The submodule relation must then create a directed
acyclic graph among the modules of a system; and the submodule depth of a
module is the length of the longest path that can reach it from the designated
‘main’ module. The depth of the ‘main’ module, for example, is always 0; and
the depth of a module is strictly less than the depth of its submodules.

In a module of depth d we will therefore use d+1 arguments in the predicates
that represent the module’s boolean variables. The last argument always denotes
time, and the interpretation of the other d arguments is the string of names that
represent each created instance in a chain of submodules. Consider for example
the ‘out’ variable of a module ‘some−gate’ which corresponds to an instance
with the fully qualified name of ‘main.sub1.sub2.sub3.sub4.out’; symbolically
we would represent such variable with the predicate

some gate out(sub1, sub2, sub3, sub4, X) .

Finally note that instances of the same module could be reached from the
main module by paths of different lengths.2. Consider for example a module of
depth d that creates an instance named ‘sub’ of another module of depth d′; if
a sequence of constant symbols m1, . . . ,md is used to identify an instance of the
first module, then the sequence of d′ constant symbols m1, . . . ,md, . . . , o, . . . , sub
—where a number of dummy constant symbols ‘o’ (unused anywhere else) serve
as padding to get the required length— is used to identify the second.

4.3 Module References

Another feature of the smv language is that modules can receive references to
other modules as parameters (e.g. ‘ left ’ and ‘right’ in the cell example). This
feature is encoded introducing a new predicate, c.f. cell left(I, J) in (2), that
establishes these relation between the two modules. References are used in our
running example to communicate three different cells ‘e−1’, ‘e−2’ and ‘e−3’:

module main
var

e−3: process c e l l ( e−1,e−2 ,1) ;
...

which is encoded as: {cell left(e 3, e 1), cell right(e 3, e 2), cell token(e 3, X)}. In
general, the reference from a ‘module1’ to another ‘module2’ is encoded as:

module1 link(I, J) → (module1 var1(I,X) ↔ module2 var2(J,X)),

where I and J are sequences of variables of appropriate lengths according to the
depths of each module, and ‘ link’ is the local name which the first module uses
to reference the second. Compare this with the relevant constraint in (2).
2 Consider a module ‘m1’ that creates instances of ‘m2’ and ‘m3’, but ‘m2’ also creates

instances of ‘m3’. As long as the submodule relation is acyclic, this is possible.
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4.4 Enumerated Types

Finally, another common feature of component description languages is the use of
enumerated types, e.g. ‘colour : {red, green, blue}’. Using standard encodings,
such variables are represented with an additional argument to denote the value
currently hold. Also, a number of constraints have to be added in order to ensure
that one (and only one) value of an enumerated variable holds at a time.

5 Conclusions and Future Work

In this paper we presented different strategies to encode instances of the bounded
model checking problem as a predicate formula in the Bernays-Schönfinkel class.
We showed a translation which, given a linear temporal logic formula and a
bound k, produces a set of constraints whose models represent all the possible
paths (of bounded length k) which satisfy the given property. We also discussed
how to further improve this translation and generate an output of size O(n+ k)
where n is the size of the input LTL formula. The translation is also further
improved by using a binary representation to denote the states.

We then proceeded to show how to efficiently describe transition systems as
effectively propositional formulae, and demonstrated how many features com-
monly found in software/hardware description languages are succinctly and nat-
urally encoded within our target language. Most significantly, modular and hier-
archical system descriptions are directly encoded without a significant increase
in the size; unlike propositional encodings where a preliminary, and potentially
exponential, flattening phase needs to be applied to the system description.

We are also currently working in the development of a tool that —taking as
input a smv description, an LTL formula, and a bound k— produces an EPR
formula in the tptp format suitable for use with effectively propositional and
first-order reasoners.3 Directions for future work include the extension to more
general forms of temporal logics (such as μTL), the inclusion of more features to
describe systems (such as arrays and arithmetic) and the application of similar
encoding techniques to other suitable application domains.
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Abstract. Manna and Pnueli have extensively shown how a mixture of
first-order logic (FOL) and discrete Linear time Temporal Logic (LTL) is
sufficient to precisely state verification problems for the class of reactive
systems. Theories in FOL model the (possibly infinite) data structures
used by a reactive system while LTL specifies its (dynamic) behavior.
In this paper, we derive undecidability and decidability results for both
the satisfiability of (quantifier-free) formulae and the model-checking of
safety properties by lifting combination methods for (non-disjoint) theo-
ries in FOL. The proofs of our decidability results suggest how decision
procedures for the constraint satisfiability problem of theories in FOL
and algorithms for checking the satisfiability of propositional LTL for-
mulae can be integrated. This paves the way to employ efficient Satis-
fiability Modulo Theories solvers in the model-checking of infinite state
systems. We illustrate our techniques on two examples.

1 Introduction

In [12] and many other writings, Manna and Pnueli have extensively shown how
a mixture of first-order logic (FOL) and discrete Linear time Temporal Logic
(LTL) is sufficient to precisely state verification problems for the class of re-
active systems. Theories in FOL model the (possibly infinite) data structures
used by a reactive system while LTL specifies its (dynamic) behavior. The com-
bination of LTL and FOL allows one to specify infinite state systems and the
subtle ways in which their data flow influences the control flow. Indeed, the ca-
pability of automatically solving satisfiability and model-checking problems is
of paramount importance to support the automation of verification techniques
using this framework. In this paper, our approach is to reduce both problems to
first-order combination problems over non-disjoint theories.

Preliminarily, we describe our framework for integrating LTL operators with
theories in FOL (cf. Section 2.1): we fix a theory T in a first-order signature Σ
and consider as a temporal model a sequence M1,M2, . . . of standard (first-
order) models of T and assume such models to share the same carrier (or,
equivalently, the domain of the temporal model is ‘constant’). Following [15],
we consider symbols from a subsignature Σr of Σ to be rigid, i.e. in a temporal
model M1,M2, . . . , the Σr-restrictions of the Mi’s must coincide. The sym-
bols in Σ \ Σr are called ‘flexible’ and their interpretation is allowed to change
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over time (free variables are similarly divided into ‘rigid’ and ‘flexible’). For
model-checking, the initial states and the transition relation are represented by
first-order formulae, whose role is that of (non-deterministically) restricting the
temporal evolution of the model (cf. Section 4).

The first contribution (cf. Theorem 3.1 in Section 3) of the paper is a reduc-
tion of the satisfiability problem for quantifier-free LTL formulae modulo the
background theory T to an instance of the Nelson-Oppen combination problem
for first-order theories (the combination being disjoint if the rigid subsignature
is empty). More precisely, we consider a theory T whose constraint satisfiability
problem consists of non-deterministically solving one of the (decidable) con-
straint satisfiability problem of two signature-disjoint theories T1, T2. Although
the satisfiability problem of T is decidable, it is possible to write a quantifier-free
LTL formula which is equisatisfiable to a constraint of T1 ∪ T2, whose satisfia-
bility problem turns out to be undecidable if T1 and T2 are chosen as shown
in [1]. The undecidability of the safety model-checking problem follows (under
mild hypotheses) from a well-known reduction to the reachability problem for
Minsky machines [13].

Since the satisfiability problem for quantifier-free LTL formulae modulo a
background theory T looks very much like a non-disjoint combination problem,
the hope is that the same (or similar) requirements yielding the decidability
of the constraint satisfiability problem in unions of theories [8], will also give
decidability here. The second contribution (cf. Theorem 3.2 in Section 3) of the
paper is to show that this is indeed the case: we derive the decidability of the
satisfiability problem for quantifier-free LTL formulae modulo T , in case T has
decidable universal fragment and is Tr-compatible [8], where Tr is the restriction
of the universal fragment of T to the rigid subsignature. For termination, one
must also assume Tr to be locally finite [8].

The third (and main) contribution (Theorem 4.1 in Section 4) of the paper
is that (under the same hypotheses of Tr-compatibility and local finiteness) the
model-checking problem for quantifier-free safety properties is also decidable.
The proof of this result suggests how decision procedures for the constraint satis-
fiability problem of theories in FOL and algorithms for checking the satisfiability
of propositional LTL formulae can be integrated. This paves the way to employ
efficient Satisfiability Modulo Theories (SMT) solvers in the model-checking of
infinite state systems, as previous proposals have suggested their use for bounded
model-checking [4]. Finally, we illustrate our techniques on two examples.

For lack of space, the proofs of our results are omitted: they can be found in
the on-line version of the paper and also in the Technical Report [9].

2 Background

We assume the usual first-order syntactic notions of signature, term, position,
atoms, formula, and so on. Let Σ be a first-order signature; we assume the
equality symbol ‘=’ to be part of the language (‘equality is a logical constant’),
so that it can be used to build formulae, but it is not explicitly displayed in
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a signature. A Σ-constraint is a set of Σ-literals (intended conjunctively). A
positive Σ-clause is a disjunction of Σ-atoms. A Σ-theory T is a set of sen-
tences in the signature Σ; the sentences in T are also called axioms. A theory
is universal iff it has universal closures of open formulas as axioms. We also
assume the usual first-order notions of interpretation, satisfiability, validity, and
logical consequence. The equality symbol ‘=’ is interpreted as the identity. If
Σ0 ⊆ Σ is a subsignature of Σ and if M is a Σ-structure, the Σ0-reduct of M
is the Σ0-structure M|Σ0 obtained from M by forgetting the interpretation of
function and predicate symbols from Σ \ Σ0. A Σ-structure M is a model of a
Σ-theory T (in symbols, M |= T ) iff all the sentences of T are true in M. A
Σ-theory T admits elimination of quantifiers iff for every formula ϕ(x) there is a
quantifier-free formula ϕ′(x) such that T |= ϕ(x) ↔ ϕ′(x). Standard versions of
Linear Arithmetics, Real Arithmetics, acyclic lists, and any theory axiomatizing
enumerated datatypes admit elimination of quantifiers. Let Σ be a finite signa-
ture; an enumerated datatype theory in the signature Σ is the theory consisting
of the set of sentences which are true in a finite given Σ-structure M = (M, I);
we also require that for every m ∈ M there is c ∈ Σ such that cM = m. It
is easy to see that an enumerated datatype theory has a finite set of universal
axioms and admits elimination of quantifiers.

The (constraint) satisfiability problem for the theory T is the problem of de-
ciding whether a Σ-sentence (Σ-constraint, resp.) is satisfiable in a model of T .
We will use free constants instead of variables in constraint satisfiability prob-
lems, so that we (equivalently) redefine a constraint satisfiability problem for
the theory T as the problem of establishing the satisfiability of T ∪Γ (or, equiv-
alently, the T -satisfiability of Γ ) for a finite set Γ of ground Σa-literals (where
Σa := Σ ∪ {a}, for a finite set of new constants a). For the same reason, from
now on, by a ‘Σ-constraint’ we mean a ‘ground Σa-constraint’, where the free
constants a should be clear from the context.

A Σ-embedding (or, simply, an embedding) between two Σ-structures M =
(M, I) and N = (N,J ) is any mapping μ : M −→ N among the corresponding
support sets satisfying the condition

(∗) M |= ϕ iff N |= ϕ,

for all ΣM -atoms ϕ (here M is regarded as a ΣM -structure, by interpreting
each additional constant a ∈ M into itself and N is regarded as a ΣM -structure
by interpreting each additional constant a ∈ M into μ(a)). If M ⊆ N and if
the embedding μ : M −→ N is just the identity inclusion M ⊆ N , we say that
M is a substructure of N or that N is an extension of M. In case condition
(*) holds for all first order formulas, the embedding μ is said to be elementary.
Correspondingly, in case μ is also an inclusion, we say that M is an elementary
substructure of N or that N is an elementary extension of M.

The T0-compatibility notion is crucial for the completeness of combination
schemas [8].

Definition 2.1 (T0-compatibility [8]). Let T be a theory in the signature Σ
and T0 be a universal theory in a subsignature Σ0 ⊆ Σ. We say that T is T0-
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compatible iff T0 ⊆ T and there is a Σ0-theory T �
0 such that (1) T0 ⊆ T �

0 ; (2) T �
0

has quantifier elimination; (3) every model of T0 can be embedded into a model
of T �

0 ; and (4) every model of T can be embedded into a model of T ∪ T �
0 .

If T0 is the empty theory over the empty signature, then T �
0 is the theory axiom-

atizing an infinite domain and (4) above can be shown equivalent to the stably
infinite requirement of the Nelson-Oppen schema [14,19].

Local finiteness yields termination of combination schemas [8].

Definition 2.2 (Local Finiteness [8]). A Σ0-theory T0 is locally finite iff
Σ0 is finite and, for every finite set of free constants a, there are finitely many
ground Σ

a
0 -terms t1, . . . , tka such that for every further ground Σ

a
0 -term u, we

have that T0 |= u = ti (for some i ∈ {1, . . . , ka}). If such t1, . . . , tka are effectively
computable from a (and ti is computable from u), then T0 is effectively locally
finite.

If T0 is effectively locally finite, for any finite set of free constants a it is pos-
sible to compute finitely many Σ

a
0 -atoms ψ1(a), . . . , ψm(a) such that for any

Σ
a
0 -atom ψ(a), there is some i such that T0 |= ψi(a) ↔ ψ(a). These atoms

ψ1(a), . . . , ψm(a) are the representatives (modulo T0-equivalence) and they can
replace arbitrary Σ

a
0 -atoms for computational purposes. For example, any theory

in a purely relational signature is locally finite (this will be used in Example 4.1).
The following technical Lemma is the key combination result allowing us to

reduce satisfiability in first-order LTL to satisfiability in first-order logic.

Lemma 2.1. Let Σc,ai

i (here i ranges over a given set I of indexes) be signatures
expanded with free constants c∪ ai, whose pairwise intersections are all equal to
a certain signature Σ

c
r (i.e. Σc,ai

i ∩Σ
c,aj

j = Σ
c
r, for all distinct i, j ∈ I). Suppose

we are also given Σi-theories Ti which are all Tr-compatible, where Tr ⊆
⋂

i Ti

is a universal Σr-theory; let finally {Ni = (Ni, Ii)}i∈I be a sequence of Σ
c,ai

i -
structures which are models of Ti and satisfy the same Σ

c
r-atoms. Under these

hypotheses, there exists a
⋃

i(Σ
c,ai
i )-structure M |=

⋃
i Ti such that Ni has a

Σ
c,ai

i -embedding into M, for each i ∈ I.

2.1 Temporal Logic

We assume the standard syntactic and semantic notions concerning Proposi-
tional LTL (PLTL), such as PLTL-formula and PLTL-Kripke model. Follow-
ing [12], we fix a first-order signature Σ and we consider formulae obtained
by applying temporal and Boolean operators (but no quantifiers) to first-order
Σ-formulae.

Definition 2.3 (LTL(Σa)-Sentences). Let Σ be a signature and a be a (pos-
sibly infinite) set of free constants. The set of LTL(Σa)-sentences is inductively
defined as follows: (i) if ϕ is a first-order Σa-sentence, then ϕ is an LTL(Σa)-
sentence and (ii) if ψ1, ψ2 are LTL(Σa)-sentences, so are ψ1 ∧ ψ2, ¬ψ1, Xψ1,
ψ1Uψ2.
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We abbreviate ¬(¬ψ1∧¬ψ2),�Uψ,¬♦¬ψ,¬(¬ψ1U¬ψ2) as ψ1∨ψ2,♦ψ,ψ, and
ψ1Rψ2, respectively. Notice that free constants are allowed in the definition of a
LTL(Σa)-sentence.

Definition 2.4. Given a signature Σ and a set a of free constants, an LTL(Σa)-
structure (or simply a structure) is a sequence M = {Mn = (M, In)}n∈N of
Σa-structures. The set M is called the domain (or the universe) and In is called
the n-th level interpretation function of the LTL(Σa)-structure.

So, an LTL(Σa)-structure is a family of Σa-structures indexed over the natu-
rals. When considering a background Σ-theory T , these structures will also be
models of T . What should the various Σa-structures of the family share? Our an-
swer (according to Definition 2.4) is that they should share their domains or,
equivalently, we assume Mn to be constant.

Definition 2.5. Given an LTL(Σa)-sentence ϕ and t ∈ N, the notion of “ϕ
being true in the LTL(Σa)-structure M = {Mn = (M, In)}n∈N at the instant
t” (in symbols M |=t ϕ) is inductively defined as follows:

– if ϕ is a first-order Σa-sentence, M |=t ϕ iff Mt |= ϕ;
– M |=t ¬ϕ iff M �|=t ϕ;
– M |=t ϕ ∧ ψ iff M |=t ϕ and M |=t ψ;
– M |=t Xϕ iff M |=t+1 ϕ;
– M |=t ϕUψ iff there exists t′ ≥ t such that M |=t′ ψ and for each t′′,

t ≤ t′′ < t′ ⇒ M |=t′′ ϕ.

We say that ϕ is true in M or, equivalently, that M satisfies ϕ (in symbols
M |= ϕ) iff M |=0 ϕ.

Which is the relationship between the interpretations In in an LTL(Σa)-structure?
Following [15], our answer is that certain symbols are declared rigid (i.e. their
interpretation is time independent) while the remaining are considered flexible
(i.e. time dependent). There are various reasons supporting this choice. The
most important is that our framework allows us more flexibility in solving cer-
tain problems: actions from the environment on a reactive systems are some-
what unpredictable and can be better modelled by flexible function symbols, as
demonstrated by the following Example.

Example 2.1. Suppose we want to model a a water level controller. To this aim,
we need two functions symbols in(flow)/out(flow) expressing the water level
variations induced by the environment and by the opening action of the valve,
respectively: these functions depend both on the current water level and on the
time instant, thus the natural choice is to model them by just unary function
symbols, which are then flexible because the time dependency becomes in this
way implicit. On the other hand, the constants expressing the alarm and the
overflow level should not depend on the time instant, hence they are modeled as
rigid constants; for obvious reasons, the arithmetical binary comparison symbol
< is also time-independent, hence rigid too. Having chosen these (flexible and
rigid) symbols, we can express constraints on the behavior of our system by
introducing a suitable theory (see Example 4.1 below for details).
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There is also a more technical (but still crucial) reason underlying our distinction
between rigid and flexible symbols: we can avoid some undecidability problems
by carefully choosing problematic function or predicates to be flexible. In fact, if
we succeed to keep the rigid part relatively simple (e.g., a locally finite theory),
then we usually do not lose decidability.

Definition 2.6. An LTL-theory is a 5-tuple T = 〈Σ, T,Σr, a, c〉 where Σ is a
signature, T is a Σ-theory (called the underlying theory of T ), Σr is a subsig-
nature of Σ, and a, c are sets of free constants.

Σr is the rigid subsignature of the LTL-theory; the constants c will be rigidly
interpreted, whereas the constants a will be interpreted in a time-dependant
way. The constants a are also (improperly) called the system variables of the
LTL-theory, and the constants c are called its system parameters. The equality
symbol will always be considered as rigid. A LTL-theory T = 〈Σ, T,Σr, a, c〉 is
totally flexible iff Σr is empty and is totally rigid iff Σr = Σ.

3 The Satisfiability Problem

We formally state the satisfiability problem for LTL(Σa)-sentences.

Definition 3.1. An LTL(Σa,c)-structure M = {Mn = (M, In)}n∈N is appro-
priate for an LTL-theory T = 〈Σ, T,Σr, a, c〉 iff we have

Mn |= T, In(f) = Im(f), In(P ) = Im(P ), In(c) = Im(c).

for all m,n ∈ N, for each function symbol f ∈ Σr, for each relational symbol
P ∈ Σr, and for all constants c ∈ c. The satisfiability problem for T is the
following: given an LTL(Σa,c)-sentence ϕ, decide whether there is an LTL(Σa,c)-
structure M appropriate for T such that M |= ϕ. When ϕ is ground, we speak
of ground satisfiability problem for T .

In the following, it is useful to distinguish two classes of LTL-theories.

Definition 3.2. An LTL-theory T = 〈Σ, T,Σr, a, c〉 is

1. finite state iff it is totally rigid and T is an enumerated datatype theory;
2. locally finite compatible iff there is a Σr-universal and effectively locally

finite theory Tr such that T is Tr-compatible;

Enumerated datatype theories are locally finite, but not conversely (for instance,
the theory of dense linear orders is locally finite but cannot be the theory of a
single finite structure, because finite linear orders are not dense).

In the hope to derive decidability results for the satisfiability of first-order LTL
formulae, we restrict ourselves to consider only ground formulae and assume the
decidability of the constraint satisfiability problem of the theory underlying any
LTL-theory (cf. Assumption 1 in Figure 1). Unfortunately, this assumption alone
is not sufficient to guarantee the decidability of the ground satisfiability problem
(cf. Definition 3.1).
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Assumptions

1. We assume the underlying theory T of an LTL-theory T = 〈Σ, T, Σr, a, c〉 to have
decidable constraint satisfiability problem.

2. For any LTL-system specification (T , δ, ι), the transition relation δ and the initial
state description ι in a system specification (T , δ, ι) are assumed to be ground
sentences. Furthermore, we assume all our LTL-systems specifications to be serial.

Fig. 1. The main assumptions of the paper

Theorem 3.1. There exists a totally flexible LTL-theory T whose ground sat-
isfiability problem is undecidable.

There are two key observations underlying the proof of our undecidability re-
sult. First, we build a theory T whose constraint satisfiability problem consists
of non-deterministically solving the constraint satisfiability problem among two
signature-disjoint theories T1, T2. It is easy to see that the decidability of the
constraint satisfiability problem transfer from T1, T2 to T . The second observa-
tion is that for every constraint Γ it is possible to write an LTL(Σa)-sentence
whose satisfiability is equivalent to the satisfiability of Γ in T1 ∪ T2. In [1], it is
shown that such a problem is undecidable for suitable T1 and T2.

These arguments suggest that the undecidability of the ground satisfiability
problem for a given LTL-theory T = 〈Σ, T,Σr, a, c〉 arises precisely for the
same reasons leading to the undecidability of combined constraint satisfiability
problems in the first-order framework. It turns out that the requirements yielding
the decidability of the constraint satisfiability problem in unions of theories will
also give the decidability of the ground satisfiability problem for T .

Theorem 3.2. The ground satisfiability problem for a locally finite compatible
LTL-theory is decidable.

Below, we give two constructive proofs of this Theorem (cf. Proposition 3.1 and
Corollary 3.1).

For the rest of this Section, we fix a locally finite compatible LTL-theory
T = 〈Σ, T,Σr, a, c〉. A syntactic relationship between (ground) first-order and
propositional LTL-formulae can be introduced as follows.

Definition 3.3 (PLTL-Abstraction). Given a signature Σa and a set L of
propositional letters (of the same cardinality as the set of ground Σa-atoms),
let [[ · ]] be a bijection from the set of ground Σa-atoms into L. By translating
identically Boolean and temporal connectives, the map is inductively extended to
a bijective map (also denoted with [[ · ]]) from the set of LTL(Σa)-sentences onto
the set of propositional L-formulae.

Given a ground LTL(Σa)-sentence ϕ, we call [[ϕ ]] the PLTL-abstraction of ϕ; if
Θ is a set of ground LTL(Σa)-sentences, then [[Θ ]] := {[[ϕ ]] | ϕ ∈ Θ}.

Eager Reduction to Propositional LTL-Satisfiability. The key of our reduction
to the satisfiability problem in PLTL is guessing.
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Definition 3.4 (Guessing). Let Σ be a signature Σ and S be a finite set of
Σ-atoms. A S-guessing G is a Boolean assignment to members of S. We also
view G as the set {ϕ | ϕ ∈ S and G(ϕ) is assigned to true} ∪ {¬ϕ | ϕ ∈ S and
G(ϕ) is assigned to false}.

Indeed, guessing must take into account rigid constants. Since T is locally finite
compatible, there must exist a Σr-theory Tr such that Tr ⊆ T is effectively
locally finite. So, given a finite subset c0 of c, it is possible to compute a finite
set S of ground Σ

c0
r -atoms which are representative modulo T -equivalence: for

this choice of S, an S-guessing is called a rigid c0-guessing. Now, let S̃ be any
finite set of Σa,c-atoms and let G be a rigid c0-guessing: an S̃-guessing G̃ is
G-compatible iff G ∪ G̃ is T -satisfiable. The set of G-compatible S̃-guessing is
denoted by C(S̃,G). Theorem 3.2 is an immediate consequence of the fact that
PLTL-satisfiability is decidable and the following Proposition.

Proposition 3.1. Let T = 〈Σ, T,Σr, a, c〉 be a locally finite compatible LTL-
theory. Let L be a set of propositional letters and [[ · ]] be a PLTL-abstraction
function mapping ground LTL(Σa,c)-sentences into propositional L-formulae. A
ground LTL(Σa,c)-sentence ϕ is satisfiable in an LTL(Σa,c)-structure M ap-
propriate for T iff there exists a rigid c0-guessing G such that the propositional
formula

[[ϕ ]] ∧ 
∧

ψ∈G
[[ψ ]] ∧  (

∨

G̃∈C(At(ϕ),G)

∧

ψ∈G̃

[[ψ ]]) (1)

is satisfiable in a PLTL-Kripke model (here c0 ⊆ c is the set of system parameters
occurring in ϕ and At(ϕ) is the set of Σa,c-atoms occurring in ϕ).

To prove this Proposition, we use Lemma 2.1 with I := N, Ti := T (symbols from
Σ \Σr are disjointly renamed when building the signature Σi for the i-th copy
of T ). The Σi-structures Mi required to build a temporal model are obtained by
signature restrictions from the model of

⋃
Ti which is provided by Lemma 2.1.

The main advantage of the eager reduction algorithm suggested by Propo-
sition 3.1 is that decision procedures for the constraint satisfiability problem
of the underlying locally finite theory and PLTL-decision procedures (based on
tableau, automata, or temporal resolution) can be used ‘off-the-shelf’. Its main
drawback is that the resulting PLTL-satisfiability problem may be quite large.

A Lazy Tableau Procedure. Avoiding the up-front generation of possibly very
large PLTL-formulae should allow one to scale up more smoothly. The price to
pay is a finer grain integration between the constraint reasoner for the underlying
locally finite theory and the PLTL satisfiability solver.

A ground LTL(Σa,c)-sentence is in Negation Normal Form (NNF) iff it is built
up from LTL(Σa,c)-literals by using ∨,∧, X,R, U . It can be shown that every
ground LTL(Σa,c)-sentence is logically equivalent to one in NNF. If ϕ is a ground
LTL(Σa,c)-sentence in NNF, then the closure of ϕ is the set cl(ϕ) containing: (i)
all subformulae of ϕ and all negations of atoms occurring in ϕ; (ii) the formulae
X(ψUχ), where ψUχ is a subformula of ϕ; (iii) the formulae X(ψRχ), where
ψRχ is a subformula of ϕ and, most importantly, (iv) a representative set (modulo
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T -equivalence) of Σ
c0
r -literals, where c0 is the finite set of system parameters

occurring in ϕ.

Definition 3.5. Given a ground LTL(Σa,c)-sentence ϕ in NNF, a Hintikka set
for ϕ is a subset H ⊆ cl(ϕ) such that: (i) H contains a maximal T -satisfiable set
of literals from cl(ϕ); (ii) if ψ1 ∧ψ2 ∈ H, then ψ1, ψ2 ∈ H; (iii) if ψ1 ∨ψ2 ∈ H,
then ψ1 ∈ H or ψ2 ∈ H; (iv) if ψ1Uψ2 ∈ H, then ψ2 ∈ H or (ψ1 ∈ H and
X(ψ1Uψ2) ∈ H); (v) if ψ1Rψ2 ∈ H, then ψ1, ψ2 ∈ H or ψ2, X(ψ1Rψ2) ∈ H.

To design the lazy reduction procedure, we extend the tableaux-based approach
to PLTL-satisfiability by lifting the definition of Hintikka sets to take into ac-
count ground LTL(Σa,c)-sentences in NNF.

Definition 3.6. The Hintikka graph H(ϕ) of ϕ is the directed graph having
as nodes the Hintikka sets for ϕ and as edges the pairs H → H ′ such that (i)
H ′ ⊇ {ψ | Xψ ∈ H} and (ii) H and H ′ contain the same ground Σ

c0
r -literals.

A strongly connected subgraph (scs) of H(ϕ) is a set C of nodes of H(ϕ) such
that for every H,H ′ ∈ C there is a (non-empty) H(ϕ)-path from H to H ′ whose
nodes belong to C. An scs C is fulfilling [12] iff for every ψ1Uψ2 ∈ cl(ϕ) there is
H ∈ C such that either ψ1Uψ2 �∈ H or ψ2 ∈ H . A node H in H(ϕ) is initial iff
ϕ ∈ H .

Corollary 3.1. A ground LTL(Σa,c)-formula ϕ in NNF is satisfiable in an
LTL(Σa,c)-structure M appropriate for T iff there is an H(ϕ)-path leading from
an initial node into a fulfilling scs.

This Corollary is a consequence of Proposition 3.1 and basic properties of Ta-
bleaux (see, e.g., Section 5.5 of [12]). When the set of representative Σ

c0
r -atoms

has polynomial size, the decision procedure derived from Corollary 3.1 is in
PSPACE (provided that the T -constraint satisfiability problem is in PSPACE
too): the key to achieve this is to explore the Hintikka graph ‘on-the-fly’ by using
well-known techniques of the PLTL literature without explicitly constructing it.

4 The Model-Checking Problem

Given two signatures Σr and Σ such that Σr ⊆ Σ, we define the one-step
signature as Σ⊕Σr Σ := ((Σ \ Σr) . (Σ \ Σr)) ∪ Σr, where . denotes disjoint
union. In order to build the one-step signature Σ⊕Σr Σ, we first consider two
copies of the symbols in Σ \ Σr; the two copies of r ∈ Σ \ Σr are denoted by
r0 and r1, respectively. Notice that the symbols in Σr are not renamed. Also,
arities in the one-step signature Σ⊕Σr Σ are defined in the obvious way: the
arities of the symbols in Σr are unchanged and if n is the arity of r ∈ Σ \ Σr,
then n is the arity of both r0 and r1. The one-step signature Σ ⊕Σr Σ will be
also written as

⊕2
Σr

Σ; similarly, we can define the n-step signature
⊕n+1

Σr
Σ for

n > 1 (our notation for the copies of (Σ \ Σr)-symbols extends in the obvious
way, that is we denote by r0, r1, . . . , rn the n + 1 copies of r).
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Definition 4.1. Given two signatures Σr and Σ such that Σr ⊆ Σ, two Σ-
structures M0 = 〈M, I0〉 and M1 = 〈M, I1〉 whose Σr-reducts are the same,
the one-step (Σ⊕Σr Σ)-structure M0 ⊕Σr M1 = 〈M, I0 ⊕Σr I1〉 is defined as
follows:

– for each function or predicate symbol s ∈ Σ \ Σr, (I0 ⊕Σr I1)(s0) := I0(s)
and (I0 ⊕Σr I1)(s1) := I1(s);

– for each function or predicate symbol r ∈ Σr, (I0 ⊕Σr I1)(r) := I0(r).

If ϕ is a Σ-formula, the Σ⊕Σr Σ formulae ϕ0, ϕ1 are obtained from ϕ by
replacing each symbol r ∈ Σ \ Σr by r0 and r1, respectively. The one-step
theory T ⊕Σr T is taken to be the combination of the theory T with a partially
renamed copy of itself:

Definition 4.2. Given two signatures Σr and Σ such that Σr ⊆ Σ, the
(Σ⊕Σr Σ)-theory T ⊕Σr T is defined as {ϕ0 ∧ ϕ1 | ϕ ∈ T }.

We will write
⊕2

Σr
T instead of T ⊕Σr T ; the n-step theories

⊕n+1
Σr

T (for n > 1)
are similarly defined.

Let now T = 〈Σ, T,Σr, a, c〉 be an LTL-theory with finitely many param-
eters and system variables. A transition relation for the LTL-theory T is a
(Σa,c ⊕Σ

c
r
Σa,c)-sentence δ: we write such formula as δ(a0, a1) to emphasize that

it contains the two copies of the system variables a (on the other hand, the sys-
tem parameters c are not duplicated and will never be displayed). An initial state
description for the LTL-theory T = 〈Σ, T,Σr, a, c〉 is simply a Σa,c-sentence ι(a)
(again, the system parameters c will not be displayed).

Definition 4.3 (LTL-System Specification and Model-Checking). An
LTL-system specification is a LTL-theory T = 〈Σ, T,Σr, a, c〉 (with finitely many
system variables and parameters) endowed with a transition relation δ(a0, a1)
and with an initial state description ι(a). An LTL(Σa,c)-structure M = {Mn =
(M, In)}n∈N is a run for such an LTL-system specification iff it is appropriate
for T and moreover it obeys the initial state description ι and the transition
δ, i.e. (1) M0 |= ι(a), and (2) Mn ⊕Σ

c
r
Mn+1 |= δ(a0, a1), for every n ≥ 0.

The model-checking problem for the system specification (T , δ, ι) is the follow-
ing: given an LTL(Σa,c)-sentence ϕ, decide whether there is a run for (T , δ, ι)
such that M |= ϕ.1 The ground model-checking problem for (T , δ, ι) is similarly
defined for a ground ϕ.

The (syntactic) safety model-checking problem is the model-checking problem
for formulae of the form ♦υ, where υ is a Σa,c-sentence. Since υ is intended to
describe the set of unsafe states, we say that the system specification (T , δ, ι) is
safe for υ iff the model-checking problem for ♦υ has a negative solution. This
implies that ¬υ is true for all runs of (T , δ, ι).

1 In the literature, the model-checking problem is the complement of ours, i.e. it is the
problem of deciding whether a given sentence is true in all runs.
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In the literature about model-checking (especially, for finite-state systems),
it is usually assumed the seriality of the transition relation: every state of the
system must have at least one successor state (see, e.g., [3] for more details).

Definition 4.4. An LTL-system specification (T , δ, ι), based on the LTL-theory
T = 〈Σ, T,Σr, a, c〉, is said to be serial iff for every Σa,c-structure M0 = (M, I0)
which is a model of T , there is another Σa,c-structure M1 = (M, I1) (still a
model of T ) such that (M0)|Σr

= (M1)|Σr
and M0 ⊕Σ

c
r
M1 |= δ(a0, a1).

Although the notion of seriality defined above is non-effective, there exist sim-
ple and effective conditions ensuring it. For example, if the transition relation
δ consists of the conjunction of (possibly guarded) assignments of the form
P (a0) → a1 = t0(a0) where P is the condition under which the assignment
is executed, then δ is serial (see, e.g., Example 4.1). The standard trick [3] of
ensuring seriality by a 0-ary predicate describing error states works in our frame-
work too.

Definition 4.5. An LTL-system specification (T , δ, ι), based on the LTL-theory
T = 〈Σ, T,Σr, a, c〉, is finite state or locally finite compatible iff so is T .

Finite state system specifications are investigated by traditional symbolic model-
checking methods [3]. Since we are interested in ground safety model-checking
problems we assume Assumption 2 in Figure 1, besides Assumption 1. Unfor-
tunately, these two hypotheses are not sufficient to guarantee the decidability,
even in the case the underlying LTL-theory is totally rigid. In fact, it is possi-
ble to reduce the ground safety model-checking problem to the the reachability
problem of Minsky machines, which is known to be undecidable (see, e.g., [9]).

Fortunately, the safety model-checking problem is decidable for locally fi-
nite compatible LTL-system specifications. In the rest of this Section, let T =
〈Σ, T,Σr, a, c〉 be a locally finite compatible LTL-theory, (T , δ, ι) be an LTL-
system specification based on T , and υ(a) be a ground Σa,c-sentence. The re-
lated safety model-checking problem amounts to checking whether there exists
a run M = {Mn}n∈N for (T , δ, ι) such that M |=n υ(a) for some n ≥ 0: if this
is the case, we say that the system is unsafe since there is a bad run of length n.

We can ignore bad runs of length n = 0, because the existence of such runs
can be preliminarily decided by checking the ground sentence ι(a) ∧ υ(a) for
T -satisfiability. So, for n ≥ 1, taking into account the seriality of the transition,
a bad run of length n + 1 exists iff the ground (

⊕n+2
Σ

c
r

Σa,c)-sentence

ι0(a0) ∧ δ0,1(a0, a1) ∧ δ1,2(a1, a2) ∧ · · · ∧ δn,n+1(an, an+1) ∧ υn+1(an+1) (2)

is
⊕n+2

Σ
c
r

T -satisfiable, where ι0(a0) is obtained by replacing each flexible symbol
r ∈ Σ \Σr with r0 in ι(a) (the system variables a are similarly renamed as a0);
δi,i+1(ai, ai+1) is obtained by replacing in δ(a0, a1) the copy r0 and r1 of each
flexible symbol r ∈ Σ \ Σr with ri and ri+1 respectively (the two copies a0, a1

of the system variables a are similarly renamed as ai, ai+1); and υn+1(an+1) is
obtained by replacing each flexible symbol r ∈ Σ \ Σr with rn+1 in υ(a) (the
system variables a are similarly renamed as an+1). For the sake of simplicity,
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we will write formula (2) by omitting the superscripts of ι, δ, and υ (but we
maintain those of the system variables a).

Now, for a given n+1, an iterated application of the main combination result
in [8] and the fact that T0-compatibility is a modular property (see again [8])
yield the decidability of the satisfiability of formula (2). Unfortunately, this is
not sufficient to solve the model-checking problem for LTL-system specifications
since the length of a bad run is not known apriori. To solve this problem, we
reduce the existence of a satisfiable formula of the form (2) to a reachability
problem in a safety graph (see Definition 4.7 below).

Definition 4.6. A ground (Σa,c ⊕Σ
c
r
Σa,c)-sentence δ is said to be purely left

(purely right) iff for each symbol r ∈ Σ \ Σr, we have that r1 (r0, resp.) does
not occur in δ. We say that δ is pure iff it is a Boolean combination of purely
left or purely right atoms.

Given a formula δ(a0, a1), it is always possible (see, e.g., [8]) to obtain an eq-
uisatisfiable formula δ̃(a0, a1, d0) which is pure by introducing “fresh” constants
that we call d0 (i.e., d0 ∩ (a0 ∪ a1) = ∅) to name “impure” subterms. Usu-
ally, δ̃ is called the purification of δ. Let A1, . . . , Ak be the atoms occurring
in δ̃(a0, a1, d0). A δ̃-assignment is a conjunction B1 ∧ · · · ∧ Bk (where Bi is
either Ai or ¬Ai, for 1 ≤ i ≤ k), such that B1 ∧ · · · ∧ Bk → δ̃ is a proposi-
tional tautology. Since δ̃ is pure, we can represent a δ̃-assignment V in the form
V l(a0, a1, d0) ∧ V r(a0, a1, d0), where V l is a purely left conjunction of literals
and V r is a purely right conjunction of literals. As a consequence, a bad run of
length n + 1 exists iff the ground sentence

ι(a0) ∧
n∧

i=0

(V l
i+1(a

i, ai+1, di) ∧ V r
i+1(a

i, ai+1, di)) ∧ υ(an+1) (3)

is
⊕n+2

Σr
T -satisfiable, where d0, d1, . . . , dn are n+1 copies of the fresh constants

d0 and V1, . . . , Vn+1 range over the set of δ̃-assignments. Since Tr is locally
finite, there are finitely many ground Σ

c,a0,a1,d0

r -literals which are representative
(modulo Tr-equivalence) of all Σc,a0,a1,d0

r -literals. A guessing G(a0, a1, d0) (cf.
Definition 3.4) over such literals will be called a transition Σr-guessing.

Definition 4.7. The safety graph associated to the LTL-system specification
(T , δ, ι) based on the locally finite compatible LTL-theory T is the directed graph
defined as follows:

– the nodes are the pairs (V,G) where V is a δ̃-assignment and G is a transition
Σr-guessing;

– there is an edge (V,G) → (W,H) iff the ground sentence

G(a0, a1, d0) ∧ V r(a0, a1, d0) ∧W l(a1, a2, d1) ∧H(a1, a2, d1) (4)

is T -satisfiable.
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The initial nodes of the safety graph are the nodes (V,G) such that ι(a0) ∧
V l(a0, a1, d0) ∧ G(a0, a1, d0) is T -satisfiable; the terminal nodes of the safety
graph are the nodes (V,G) such that V r(a0, a1, d0) ∧ υ(a1) ∧ G(a0, a1, d0) is T -
satisfiable.

The decision procedure for safety model-checking relies on the following fact.

Proposition 4.1. The system is unsafe iff either ι(a) ∧ υ(a) is T -satisfiable or
there is a path in the safety graph from an initial to a terminal node.

The idea behind the proof is the following: by contradiction, assume there is
a path from an initial to a terminal node and the system is safe. Repeatedly,
compute Σr-ground interpolants of (3) between T and

⊕j
Σr

T , for j = n+1, ...., 1
(an argument based on Lemma 2.1 guarantees they exist). This yields the T -
unsatisfiability of the final node (formula) in the graph; a contradiction.

Theorem 4.1. The ground safety model-checking problem for a locally finite
compatible LTL-system specification is decidable.

For complexity, the same remarks after Corollary 3.1 apply here too.

Example 4.1 ([18]). Consider a water level controller such that (i) changes in
the water level by in(flow)/out(flow) depend on the water level l and on the
time instant; (ii) if l ≥ lalarm at a given state (where lalarm is a fixed value), then
a valve is opened and, at the next observable instant, l′ = in(out(l)); and (iii) if
l < lalarm then the valve is closed and, at the next observable instant, l′ = in(l).

Let us now consider the LTL-theory T = 〈Σ, T,Σr, a, c〉 where l is the only
system variable (a := {l}) and there are no system parameters (c := ∅); Σr =
{lalarm, loverflow, <}, lalarm, loverflow are two constant symbols and < is a binary
predicate symbol; Σ := Σr ∪ {in, out}; Tr is the theory of dense linear orders
without endpoints endowed with the additional axiom lalarm < loverflow; and

T := Tr ∪
{
∀x (x < lalarm → in(x) < loverflow),
∀x (x < loverflow → out(x) < lalarm)

}

It can be shown that the constraint satisfiability problem for T is decidable, Tr

admits quantifier elimination, and Tr is effectively locally finite. From these, it
follows that T is a locally finitely compatible LTL-theory. We consider now the
LTL-system specification (T , δ, ι) where ι := l < lalarm and

δ :=
(
lalarm ≤ l0 → l1 = in0(out0(l0))

)
∧
(
l0 < lalarm → l1 = in0(l0)

)
.

Notice that δ is a purely left (Σa ⊕Σr Σ
a)-formula.

We consider the safety model-checking problem specified by the LTL-system
above and whose unsafe states are described by υ := loverflow < l. Using the
procedure suggested by Theorem 4.1 we can prove that the system is safe, i.e.
that there is no run M for (T , δ, ι) such that M |= ♦υ. We can observe that
the task in practice is not extremely hard computationally. It is sufficient to
consider just 50 nodes (modulo T -equivalence) of the safety graph that are T -
satisfiable (i.e. the nodes (V,G) such that V ∧G is T -satisfiable). Also, instead
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of considering all the edges of the safety graph, it is sufficient to build just the
paths starting from the initial nodes or ending in a terminal node (namely to
apply a forward/backward search strategy). In the first case, only 26 nodes of
the safety graph are reachable from an initial node. In the latter, just 12 nodes
are backward reachable from a terminal node. Hence the the problem is clearly
amenable to automatic analysis by combining a decision procedure for T with a
SAT-solver which is able to enumerate the δ̃-assignments needed to traverse the
safety graph.

Example 4.2. The aim of this example is to use our techniques to analyze the
safety of the well-known Lamport’s mutual exclusion “Bakery” algorithm. If
the number of involved processes is unknown, we can build for the problem
an appropriate LTL-system specification T which violates our assumptions in
Figure 1 because it has universal (instead of ground) transition relation and
initial state description. More in detail, we use a language with two sorts, one for
the individuals (i.e the involved processes), the other for the tickets. The tickets
are ruled by the theory of dense total order with named distinct (rigid) endpoints
0 and 1; moreover, a (flexible) function for the ticket assignment is constrained by
an “almost-injectivity” axiom (i.e., people cannot have the same ticket with the
exception of the ticket 1 that means being out of the queue). Finally, a flexible
constant models the current ticket bound and a flexible predicate captures the
served individuals. The transition says the following: (i) the values of the current
ticket bound are strictly increasing; (ii) every individual is removed from the
queue immediately after being served; (iii) if an individual is in the queue and is
not served, then its ticket is preserved; (iv) if an individual is not the first in the
queue, it cannot be served; (v) if an individual is not in the queue, either remains
out of the queue or takes a ticket lying in the interval between two consecutive
values of the current ticket bound (without being immediately served). The
initial state description says that no one is in the queue and the current ticket
bound is set to 0, whereas the unsafe states are the ones in which at least two
people are served at the same time.

By Skolemization and instantiation, we produce out of T a locally finite com-
patible LTL-system specification T ′ which is safe iff T is safe. Safety of T ′ can
then be easily checked through our techniques (see [9] for details). We point
out that the features of T that make the whole construction to work are purely
syntactic in nature: they basically consist of the finiteness of the set of terms of
certain sorts in the skolemized Herbrand universe.

5 Discussion

The undecidability of quantified modal logics over a discrete flow was discovered
by D. Scott already in the sixties. Recent works isolated quite interesting frag-
ments of quantified LTL which are computationally better behaved (see [7] for
a survey). However such fragments are often insufficient for verification; in this
respect, a more promising restriction is to prohibit the interplay between quanti-
fiers and temporal operators [12]. In this paper, we have taken a similar approach
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by enriching the extensional part of the language so to be able to model infinite
data structures manipulated by systems. This lead us to consider satisfiability of
quantifier-free LTL formulae built up from a first-order signature Σ and models
with constant domain consisting of a sequence {Mi}i of first-order models of
a Σ-theory T . Furthermore, symbols in Σ and free variables were divided into
two groups. The former are interpreted rigidly whereas the latter flexibly in the
Mi’s. This approach was already taken in the seminal paper [15] by Plaisted,
who established a decidability result when the quantifier-free fragment of T is
decidable and the flexible symbols are considered as free symbols by the theory
T . By using recent techniques and results from the combination literature, we
were able to attack the problem in its full generality and derive both the unde-
cidability in the unrestricted case and the decidability under the ‘combinability’
hypotheses for T of [8]. Such hypotheses, besides decidability of the universal
first-order fragment, were compatibility over a locally finite subtheory in the
rigid subsignature (local finiteness may be replaced by the weaker requirement
of Noetherianity, but this result has been omitted in the paper for lack of space
and can be found in [9]).

In the second part of the paper we considered model-checking problems un-
der the same ‘combinability’ hypotheses on T . We were able to derive positive
decidability results for the safety properties and we plan to extend our results
to different kinds of properties (such as liveness) as well as to full LTL model-
checking. Our framework generalizes finite state model-checking in two respects.
First, the rigid symbols are constrained by a locally finite theory, not just by
an enumerated datatype theory. Second, we do not impose limitations on the
flexible symbols, whose interpretation is only constrained by the axioms of T .

The literature on infinite state model-checking is extremely vast (see [20,16,2]
to name but a few approaches). For lack of space, we consider works which
are closely related to ours. The paper [5] extensively reviews constrained LTL,
which can be the basis for model checking of infinite state systems but it does
not allow for flexible symbols (apart from system variables). Furthermore, fixed
purely relational structures play there the same role of the models of the theory
T in our approach. However, [5] is not limited to safety properties. If our results
can be extended beyond safety (as it seems likely), some of the results in [5] could
be seen as specializations of our work to totally rigid system specifications. Other
results and techniques from [5] (and also from the recent [6]) should be taken
into account for integration in our framework so to be able to handle richer
underlying theories such as Linear Arithmetic.

An integration of classic tableaux and automated deduction techniques is
presented in [17,11]. While using a similar approach, [17] only provides a uni-
form framework for such an integration with no guarantee of full automation,
whereas [11] focuses on the decidability of the model-checking problem of partic-
ular classes of parametrized systems. Both works do not use combination tech-
niques. The approach in [4] proposes the reduction of bounded model-checking
problems to SMT problems. Theorem 4.1 identifies precise conditions under
which our reduction yields a decision procedure: our safety graph is not just an
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approximation of the set of reachable states. With [4], we share the focus on using
SMT solvers, which is also a common feature of the “abstract-check-refine” ap-
proach to infinite-state model-checking (see the seminal work in [10]). However,
our work is foundational whereas abstract-check-refine techniques focus more on
practical usability.
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Abstract. The KeY system is a development of the ongoing KeY proj-
ect, whose aim is to integrate formal specification and deductive
verification into the industrial software engineering processes. The de-
ductive component of the KeY system is a novel interactive/automated
prover for first-order Dynamic Logic for Java. The KeY prover features
a user-friendly graphical interface, a backtracking-free free-variable se-
quent calculus, a simple and powerful theory formalization language
called “taclets,” solution procedures for linear and non-linear integer
arithmetic, external theorem prover integration, and facilities for proof
reuse, among other aspects. The system is publicly available.

Introduction. The KeY system is the main software product of the KeY
project, a joint effort between the University of Karlsruhe, Chalmers Univer-
sity of Technology in Göteborg, and the University of Koblenz. The KeY system
is a formal software development tool that aims to integrate design, implemen-
tation, formal specification, and formal verification of object-oriented software
as seamlessly as possible. At the core of the system is a deductive verification
component, which also can be used as a stand-alone prover. It employs a free-
variable sequent calculus for first-order Dynamic Logic for JAVA. The calculus is
proof-confluent, i.e., no backtracking is necessary during proof search.

While we constantly strive to increase the degree of automation, user interac-
tion remains indispensable in deductive program verification. The main design
goal of the KeY prover is thus a seamless integration of automated and interac-
tive proving. Efficiency must be measured in terms of user plus prover, not just
prover alone. Therefore, a combination of a good user interface for proof state
presentation and rule application, a high level of automation, extensibility of the
rule base, and a calculus without backtracking is the strong point of KeY.

In this paper we concentrate on the description of the KeY prover and the
reasoning techniques it employs. The prover consists of ca. 124,000 lines1 of
JAVA code. The standard rule base consists of 1,725 rules that are written in
about 15,000 lines of KeY’s “taclet” rule description language. About 1,300 of
these formalize the semantics of the JAVA programming language. The system
has been created by 14 implementors since 1999, who spent a total of about
1 Not counting comments. These numbers are based on our estimates and the results

of the SLOCCount tool (www.dwheeler.com/sloccount).
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30 person years. Recently, version 1.0 of the KeY system has been released in
connection with the KeY book [2]. The KeY tool is available under GPL and can
be downloaded from www.key-project.org.

The KeY Program Verification System. The architecture of the KeY sys-
tem is shown in Fig. 1. Optional plugins to the popular Eclipse IDE and to the
Borland Together CASE tool suite have been developed to lower the entry hurdle
for users with no or little training in formal methods. KeY supports several lan-
guages for specifying properties of object-oriented models. Many people working
with UML or model-driven development have familiarity with the specification
language OCL (Object Constraint Language), a part of UML 2.0. Another sup-
ported specification language, which enjoys popularity among JAVA developers,
is JML (Java Modeling Language). KeY can also translate OCL expressions to
natural language (English and German).

The target programming language for verification in KeY is JAVA CARD 2.2.1.
KeY is the only publicly available verification tool that supports the full JAVA

CARD standard including the persistent/transient memory model of the card de-
vices and the atomic transactions. Rich specifications of the JAVA CARD API are
available both in OCL and JML. JAVA 1.4 programs that respect the limitations
of JAVA CARD (no floats, no reflection, no dynamic class loading) can be verified
as well. A first prototype for verifying (restricted) multi-threaded programs is
also available.

The system is not a classical verification condition generator (VCG), but a
theorem prover for program logic that combines a variety of automated rea-
soning techniques. The KeY prover is distinguished from most other deductive
verification systems in that symbolic execution of programs, first-order reason-
ing, arithmetic simplification, external decision procedures, and symbolic state

Lightweight Usage of Formal Methods FM expert Logic xpgWizard g

English OCL/UML gJML g Logic gTaclets g

Borland
Together CC

Eclipse
IDE

OCL/NL
Tool

JML
BrowserKeY Plugin KeY Plugin

OCL/FOL
Translation

JML/FOL
Translation

Synthesis of Proof Obligations

KeY Prover

Rule Base

a

Fig. 1. Architecture and interfaces of the KeY system

www.key-project.org
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simplification are interleaved. For loop- and recursion-free programs, symbolic
execution typically is performed in a fully automated manner.

Syntax and Semantics of the KeY Logic. The foundation of the KeY logic
is a typed first-order predicate logic with subtyping. This foundation is extended
with parameterized modal operators 〈p〉 and [p], where p can be any sequence of
legal JAVA CARD statements. The resulting multi-modal program logic is called
JAVA CARD Dynamic Logic or, for short, JAVA CARD DL [2, Chapt. 3].

As is typical for dynamic logic, JAVA CARD DL integrates programs and for-
mulas within a single language. The modal operators refer to the final state of
program p and can be placed in front of any formula. The formula 〈p〉φ expresses
that the program p terminates in a state in which φ holds, while [p]φ does not
demand termination and expresses that if p terminates, then φ holds in the final
state. For example, “when started in a state where x is zero, x++; terminates in
a state where x is one” can be expressed as x .= 0 −> 〈x++;〉(x .= 1). The states
used to interpret formulas are first-order structures sharing a common universe.

The type system of the KeY logic is designed to match the JAVA type system
but can be used for other purposes as well. The logic includes type casts (changing
the static type of a term) and type predicates (checking the dynamic type of a
term) in order to reason about inheritance and polymorphism [2, Chapter 2].
The type hierarchy contains the types such as boolean, the root reference type
Object, and the type Null, which is a subtype of all reference types. It contains a
set of user-defined types, which are usually used to represent the interfaces and
classes of a given JAVA CARD program. Finally, it contains several integer types,
including both the range-limited types of JAVA and the infinite integer type Z.

Beside built-in symbols (such as type-cast functions, equality, and operations
on integers), user-defined functions and predicates can be added to the signa-
ture. They can be either rigid or non-rigid. Intuitively, rigid symbols have the
same meaning in all program states (e.g., the addition on integers), whereas the
meaning of non-rigid symbols may differ from state to state.

Finally, there is another kind of modal operators called updates. They can be
seen as a language for describing program transitions. There are simple function
updates corresponding to assignments in an imperative programming language,
which in turn can be composed sequentially and used to form parallel or quanti-
fied updates. Updates play a central role in KeY: the verification calculus trans-
forms JAVA CARD programs into updates. KeY contains a powerful and efficient
mechanism for simplifying updates and applying them to formulas.

Rule Formalization and Application. The user can easily interleave the
automated proof search implemented in KeY and interactive rule application.
For interactive rule application, the KeY prover has an easy to use graphical user
interface that is built around the idea of direct manipulation (Fig. 2). To apply a
rule, the user first selects a focus of application by highlighting a (sub-)formula
or a (sub-)term in the goal sequent. The prover then offers a choice of rules
applicable at this focus. This choice remains manageable even for very large rule
bases. Rule schema variable instantiations are mostly inferred by matching.
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Another simple way to apply rules and give instantiations is by drag and drop.
If the user drags an equation onto a term the system will try to rewrite the term
with the equation. If the user drags a term onto a quantifier the system will try
to instantiate the quantifier with this term.

The interaction style is closely related to the way rules are formalized in the
KeY prover. There are no hard-coded rules; all rules are defined in the taclet
language instead. Besides the conventional declarative semantics, taclets have a
clear operational semantics, as the following example shows—a “modus ponens”
rule in textbook notation (left) and as a taclet (right):

φ, ψ, Γ � Δ
φ, φ → ψ, Γ � Δ

\find (p −> q ==>) // implication in antecedent
\assumes (p ==>) // side condition
\replacewith(q ==>) // action on found focus
\heuristics(simplify) // strategy information

The find clause specifies the potential application focus. The taclet will be
offered to the user on selecting a matching focus and if the formula mentioned
in the assumes clause is present in the sequent. The action clauses replacewith
and add allow modifying (or deleting) the formula in focus, as well as adding
additional formulas (not present here). The heuristics clause provides priority
information to the parameterized automated proof search strategy.

The taclet language is quickly mastered and makes the rule base easy to
maintain and extend. Taclets can be proven correct against a set of base taclets.
A full account of the taclet language is given in [2].

Confluent Calculus. In order to simplify the proof construction, which is typ-
ically partly automated and partly interactive, we have developed and employ a
proof confluent sequent calculus. This means that automated proof search does

Fig. 2. Screenshot of the KeY prover user interface
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not require backtracking over rule applications, which is advantageous for ana-
lyzing failed proof attempts. The automated search for quantifier instantiations
uses rigid free variables (called meta variables) like in a free-variable tableau cal-
culus. Instead of backtracking over meta-variable instantiations, instantiations
are postponed to the point where the whole proof can be closed, and an incre-
mental global closure check is used. To minimize the confusion of novice users,
meta variables are not visible in normal interactive use, if the user provides
all required instantiations. Rule applications requiring particular instantiations
(unifications) of meta variables are handled by attaching unification constraints
to the resulting formulas [2, Sects. 4.3 and 10.2.2]. Equations are handled by
ordered rewriting (currently in an incomplete way, which we have not, however,
found to be a limiting factor so far).

The taclet language is designed in such a way that the user can only write rules
with local effects on sequents, and the handling of meta variables, skolemization,
constraints, etc. is taken care of automatically, to reduce the risk of inadvertently
introducing rules that are unsound or damage confluence.

Handling Arithmetics. As the theory of integer arithmetic is omnipresent in
program verification, KeY directly provides a number of automatic solution and
simplification procedures for different fragments of arithmetic. All procedures
are formulated in terms of taclets, which have been verified against a small set
of base axioms. The implemented methods target both proving (showing that
equations are unsolvable) and construction of counterexamples (finding solutions
of equations) for ground integer formulas.

The most basic method is a sequent calculus formulation of integer Gaussian
elimination, which is a complete method for solving linear equations. As a pre-
requisite of the procedure, integer expressions are always fully expanded and
sorted. Linear inequalities are handled by Fourier-Motzkin variable elimination,
which we combine with systematic case distinctions in order to obtain a complete
procedure over the integers.

Reasoning in non-linear integer arithmetic is mainly carried out by heuristic
cross-multiplication of inequalities, similar to the approach of the ACL2 prover.
In order to reduce expressions as far as possible and handle non-linear equations
more efficiently, KeY also computes Gröbner bases over the integers.

The KeY system also features a component for easy integration of exter-
nal automated theorem provers and (semi-)decision procedures. Proof goals are
translated into the standardized input format SMT-LIB and discharged by call-
ing any tool that understands this format, such as Yices or CVC Lite. A similar
connector for the theorem prover Simplify is also available. The user benefits
from the particular abilities of these tools to decide fragments of arithmetics,
heuristically instantiate quantifiers, etc.

Applications. The main application of the KeY prover is to support program
verification in the KeY system. Among the major achievements in this field so
far are the treatment of the Demoney case study (an electronic purse application
provided by Trusted Logic S.A.) and the verification of a JAVA implementation of
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the Schorr-Waite graph marking algorithm. This algorithm, originally developed
for garbage collectors, has recently become a popular benchmark for program
verification tools. Chapters 14 and 15 of the KeY book [2] are devoted to a
detailed description of these case studies. A case study [6] performed within the
HIJA project has verified with KeY the lateral module of the flight management
system, a part of the on-board control software from Thales Avionics.

Lately we have applied the KeY system also to issues of security analysis [3],
and in the area of model-based test case generation [1,4] where, in particular,
the prover is used to compute path conditions and to identify infeasible paths.
The flexibility of KeY w.r.t. the used logic and calculus further manifests itself
in the fact that the prover has been chosen as a reasoning engine for a vari-
ety of other purposes. These include the mechanization of a logic for Abstract
State Machines [7] and the implementation of a calculus for simplifying OCL
constraints [5].

KeY is also very useful for teaching logic, deduction, and formal methods.
Its graphical user interface makes KeY easy to use for students. They can step
through proofs with different degrees of automation (using the full verification
calculus or just the first-order core rules). The authors have been successfully
teaching courses for several years using the KeY system. An overview and course
materials are available at www.key-project.org/teaching.
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Abstract. We present KeY-C, a tool for deductive verification of C pro-
grams. KeY-C allows to prove partial correctness of C programs relative
to pre- and postconditions. It is based on a version of KeY that sup-
ports Java Card. In this paper we give a glimpse of syntax, semantics,
and calculus of C Dynamic Logic (CDL) that were adapted from their
Java Card counterparts, based on an example. Currently, the tool is in
an early development stage.

1 Introduction

We present KeY-C, a variant of the software verification tool KeY [1] that sup-
ports a subset of C as its target language. KeY is an interactive theorem proving
environment and allows one to prove properties of imperative/object-oriented se-
quential programs. The central concept is an axiomatization of the operational
semantics of the target language in the form of a sequent calculus for dynamic
logic, i.e., a program logic. The rules of the calculus that axiomatize program for-
mulae define a symbolic execution engine for C. The system provides heuristics
and proof strategies that automate large parts of proof construction, for example,
first-order reasoning, arithmetic simplification, and symbolic execution of loop-
free non-recursive programs is performed mostly automatically. The remaining
user input typically consists of occasional existential quantifier instantiations.
The main creative part is to specify a program including loop (in)variants. KeY
was designed to ease interactive proof construction (see screenshot Fig. 1) and to
lower the gradient of the learning curve. For example, Java/C Dynamic Logic
formulae contain executable source code, not a logic encoding or abstraction.

The existing KeY system can handle Java Card and most of sequential Java,
allowing verification of complex programs [1, Part IV]. Its calculus contains
over 1000 rules of which about half are language-independent Dynamic Logic
(DL) rules. We are working on adding gradual support for a portable type-safe
subset of C, axiomatized in C Dynamic Logic (CDL). As a side-product of this
work we expect to generalize the KeY architecture such that support for further
programming languages can be easily added.

In Section 2 we give a taste of CDL and illustrate some of the problems that
had to be solved during its design by working through a simple, but non-trivial,
example that computes the sum of integer elements in a linked list (see Fig. 2).
Section 3 describes the current status and further work, and in Section 4 we
conclude with related work and a summary.
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Fig. 1. KeY graphical user interface

struct Node {
struct Node∗ next ;
int elem ;

} ;

int sum( register struct Node∗ f i r s t ) {
register struct Node∗ ptr = f i r s t ;
int psum = 0 ;
while ( ptr != 0) {

psum = psum + ptr−>elem ;
ptr = ptr−>next ;

}
return psum ;

}

Fig. 2. Example C program

2 C Dynamic Logic by Example

Dynamic Logic (DL) is based on First-Order Logic (FOL) extended with a type
system—function and predicate arguments and function results are equipped
with a type. In order to arrive at a reasonable calculus, the subtyping relationship
⊂ must form a lattice. In the formal semantics all elements of the semantic
domain also receive a type. In order to represent different states during program
execution, function and predicate symbols are split into rigid and non-rigid
symbols. Rigid symbols behave the same as in FOL, while non-rigid symbols
can have different values in different execution states.

CDL is a modal logic with a parametric modality [P] for every (compilable) C

program P. The semantics is defined in terms of deterministic Kripke structures,
where states (worlds) are determined by the values of non-rigid symbols and
transitions are defined by the semantics of C programs. A formula is valid iff it
is true in all possible states. The formula [P]φ is true in a state s iff φ holds in
the final state reached when P is started in s provided that P terminates at all.
In other words, [P]φ asserts partial correctness of [P] w.r.t. postcondition φ.



KeY-C: A Tool for Verification of C Programs 387

Locations are special non-rigid functions that can have an arbitrary value in
different states of the Kripke structure and are used to model modifiable memory
locations of the program. I.e., there exists a state for every combination of the
values of the locations, while the value of other non-rigid symbols in some state
may, for instance, depend on the values of some locations in this state.

The type system and the signature of CDL reflect the peculiarities of the
C language. To represent integer rvalues we introduce an integer type int with
the signature and semantics of mathematical integers ZZ. Further, we need a
supertype of all object types Void. Objects are memory locations that hold val-
ues and can be referenced by pointers (and consequently are lvalues). Symbols
representing pointer rvalues will have a type which is either Void or one of its
subtypes. To represent pointer null rvalues we introduce the subtype of all object
types Null. The semantics of this type consists of exactly one element represented
by the constant null. All concrete object types are a subtype of Void and a su-
pertype of Null. All types T are equipped with a scalar object type T@ and
value location T@::value : T@ → T. In the example, these are int@ and $Node@,
where $Node is a structure object type with rigid member accessor functions
$Node::next : $Node → $Node@ and $Node::elem : $Node → int@. In the follow-
ing we use the more compact notation i.value, n.next, etc.

Program variables are represented by location symbols. In the example, their
types are ptr : $Node and psum : int@. We use the storage class register of
variable ptr to denote that it cannot be referenced by a pointer and consequently
can have an rvalue type as opposed to an lvalue type. We left the variable psum
without this storage class to illustrate the challenge of having to prove non-
aliasing of arbitrary object references of the same type, e.g., psum and ptr.elem.
Otherwise, the type of psum would simply be int.

We create a proof obligation expressing that function sum actually computes
the sum of the elements in a linked list. In general, proof obligations for (partial)
correctness have the form pre ⇒ [F]post, where pre specifies assumptions about
the initial state and post specifies the requirements for the state if function body
F terminates. In order to express the precondition that the function argument
first refers to a linked list we need to introduce two fresh rigid functions len : int
and list : int → $Node. A possible precondition is now

len ≥ 0 ∧ list(0) = first ∧
∀ int i; ((0 ≤ i) ∧ (i < len) ⇒ list(i).next.value = list(i + 1)) ∧
∀ int i; ((0 ≤ i) ∧ (i < len) ⇒ list(i) �= null) ∧ list(len) = null

and the postcondition becomes psum.value = sumSpec(len), where sumSpec :
int → int is a fresh rigid function and sumSpec(i) gives the sum of the first i
elements of list. Its properties are axiomatised in the precondition:

sumSpec(0) = 0 ∧
∀ int i; (i > 0 ⇒ sumSpec(i) = sumSpec(i− 1) + list(i− 1).elem.value) .

A sequent calculus is used for performing deduction. A sequent is of the form
Γ � Δ, where Γ and Δ are sets of formulae. The semantics of a sequent is
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the same as that of the formula
∧
Γ ⇒

∨
Δ. The CDL calculus builds upon

standard FOL with equality and arithmetic. DL calculus rules that work on
program modalities always modify the first active statement of the programs in
the modalities.

The main principle of CDL is to reduce program modalities to so-called up-
dates. An atomic update has the form U = {loc := val}, where loc is a location
expression and val is its new value term. Semantically, the validity of Uφ in
state s is defined as the validity of φ in state s′, which is state s where the
values of locations are modified according to the update U . There are operations
for sequential and parallel composition of updates as well as for quantification,
where the update is quantified by a free variable satisfying some condition. An
update applied to a pure FOL formula can be automatically transformed into a
pure FOL formula without an update. Typically, most loop- and recursion-free
sequences of program statements can be turned into updates fully automatically.

For instance, symbolic execution of the first two lines of the function body in
the sequent pre � [F]post results in pre � U [W]post, where W is the remaining
program starting with the while-loop and U is the following update:

{ ptr := first; psum := int@::〈lookup〉(next); next := next + 1; psum.value = 0 } .

This update illustrates object allocation in CDL: psum is assigned
int@::〈lookup〉(next) (the object lookup function 〈lookup〉 is rigid) and the non-
rigid object counter next, pointing to the non-allocated object with lowest index,
is incremented. As explained above, the value location of the scalar object type
int@ is accessed with the function value.

When a loop or a recursive function call is encountered, one must perform
induction or use a loop invariant. In our case a suitable invariant I is:

∃ int i; (0 ≤ i ∧ i ≤ len ∧ ptr = list(i) ∧ psum.value = sumSpec(i)) .

To establish partial correctness of our loop using an invariant rule for imperative
languages [2] one proves that the invariant holds initially, i.e., pre � UI, as well
as formulae

pre � UV(I ⇒ [register int b = ptr != 0](b = 1 ⇒ [B]I)) ,
pre � UV(I ⇒ [register int b = ptr != 0](b = 0 ⇒ post)) ,

where statement B is the loop body. V is a so called anonymous parallel update
{ ptr = c1 || psum.value = c2 } that resets the variables modified within the
loop body B to unknown values represented by fresh skolem symbols. To ensure
soundness one is generally required to reset all locations as the loop body must
preserve the invariant I for any initial state satisfying I. This requirement can
be relaxed in a sound manner to those locations that are modifiable in the loop
body, resulting in easier proof obligations.

The resulting program modalities are unrolled into updates over modality-free
FOL formulae, which can be reduced into pure FOL formulae. The latter are
proven using the rules of typed FOL sequent calculus and the rules expressing
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the properties of the particular Kripke structure. For instance, we need axioms
expressing the C heap’s forest-like structure, such as:

∀ $Node n; ∀ int i; (n.elem �= int@::〈lookup〉(i)),
∀ $Node n1, n2; (n1 = n2 ⇔ n1.elem = n2.elem),

∀ $Node n1, n2; (n1.elem �= n2.next) .

3 Current Status and Further Work

At this time, the type system, the signature, and the calculus outlined above are
implemented in KeY-C and we are at the stage of debugging the calculus and
improving its usability. In essence, we can work with a large subset of C variable
declarations, expressions, and we support while and if statements. However,
recall that we restrict ourselves to a type-safe, portable subset of C with no raw
memory access.

Compared to the presentation used in our example the actually implemented
CDL calculus is somewhat more complicated. First, C specification introduces
the concept of undefined behavior. Further, there are unspecified behavior and
values: the C language specification lists the possible options for interpretation,
but does not tell which one is actually used. Finally, we need to model trap val-
ues. These are invalid values whose attempted access leads to undefined behavior.
For instance, a pointer to a deleted object is a trap value, but there can also be
integer trap values. Our approach requires to prove, before reducing statements
to updates, that conditions leading to undefined behavior cannot occur. Unspec-
ified behavior and values are modeled by introducing fresh skolem symbols. The
order of evaluation of some C expressions is undefined. Our approach requires
ensuring by external means (for example, by static analysis) that the result of
an expression evaluation does not depend on the order.

C integer types cannot be represented in CDL by the type int, because the
same integer value can have multiple bit representations (e.g., negative zero). In
reality, we have for each C integer type (e.g., signed int) a corresponding logic
type (e.g., SINT) with corresponding conversion functions (e.g., SINT::toInt and
SINT::fromInt). Note that SINT::toInt might not be injection.

Creating a calculus for C pointer expressions contains many technical chal-
lenges. In C, objects can be deleted and C pointers may point to local variables
that eventually go out of scope. C allows arithmetic operations on pointers to
the elements of the same array or to the element past the last element. Finally,
C supports deep value assignments o1 = o2 of objects, where all member values
of o2 are copied into o1. Such assignments can be modeled by just rewriting
them into a sequence of scalar assignments, but we reduce them to an update.

Supporting full C of course, requires a lot more work to model numerous
minor and major features of the C language: for loops, const and volatile modi-
fiers, string literals, typedefs, enumerations, const expressions, unions, bit-fields,
varargs, and different forms of jump statements just to name a few.

Another conceptual extension is introducing modularity: translation units,
extern and static variables, function calls, and function pointers. Luckily the
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C module system can be viewed as a special case of the Java module system,
so taking over the calculus from the KeY for Java should be straightforward,
although laborious. Calling function pointers can be implemented in the same
way as polymorphic method calls in Java which is fully realized in KeY.

4 Related Work and Summary

There are several automatic and interactive verification tools for C including
approaches based on abstraction and model checking. In addition, tools such as
SLAM (research.microsoft.com/slam) concentrate on bug finding. For lack
of space we only mention the most relevant. In the Caduceus tool [3] correctness
assertions over C programs are compiled into an intermediate programming lan-
guage for which verification condition generators and FOL prover backends are
available. Interleaving of symbolic execution and first-order reasoning is not pos-
sible and interaction takes place on the level of intermediate code, not C source
code. As part of the Verisoft project (www.verisoft.de) a Hoare calculus and
formal semantics of the C subset C0 on top of Isabelle/HOL were developed [5],
however, verification of C programs is less automated than in KeY.

In this paper we briefly described the ongoing effort to develop KeY-C, the
C target version of the verification system KeY. The implementation is done in
Java and we are using the Cetus framework [4] for parsing and analysing C pro-
grams. As a side-product of this work we expect to generalize KeY architecture
for easily adding the support for new programming languages. The Java target
version of KeY is available from www.key-project.org. KeY-C is available from
the authors on request.

Acknowledgements. We benefited from many discussions with the members of
the KeY project. The remarks of the reviewers led to several clarifications.
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1. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

2. Beckert, B., Schlager, S., Schmitt, P.H.: An improved rule for while loops in deduc-
tive program verification. In: Lau, K.-K., Banach, R. (eds.) ICFEM 2005. LNCS,
vol. 3785, pp. 315–329. Springer, Heidelberg (2005)
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1 Overview

Bedwyr is a generalization of logic programming that allows model checking di-
rectly on syntactic expressions possibly containing bindings. This system, written
in OCaml, is a direct implementation of two recent advances in the theory of
proof search. The first is centered on the fact that both finite success and finite
failure can be captured in the sequent calculus by incorporating inference rules
for definitions that allow fixed points to be explored. As a result, proof search
in such a sequent calculus can capture simple model checking problems as well
as may and must behavior in operational semantics. The second is that higher-
order abstract syntax is directly supported using term-level λ-binders and the
∇ quantifier. These features allow reasoning directly on expressions containing
bound variables.

2 Foundations

The logical foundation of Bedwyr is the logic called LINC [12], an acronym for
“lambda, induction, nabla, and co-induction” that is an enumeration of its major
components. LINC extends intuitionistic logic in two directions.

Fixed points via definitions. Clauses such as A
�= B are used to provide (mutu-

ally) recursive definitions of atoms. Once a set D of such definition clauses has
been fixed, LINC provides inference rules for introducing atomic formulas based
on the idea of unfolding definitions. Unfolding on the right of the sequent arrow
is specified by the following definition-right rule:

Σ : Γ � Bθ
Σ : Γ � A

, provided A′ �
= B ∈ D and A′θ = A.

This rule resembles backchaining in more conventional logic programming lan-
guages. The definition-left rule is a case analysis justified by a closed-world read-
ing of a definition.

{Σθ : Γθ,Bθ � Gθ | A′ �
= B ∈ D and θ ∈ csu(A,A′)}

Σ : Γ,A � G

F. Pfenning (Ed.): CADE 2007, LNAI 4603, pp. 391–397, 2007.
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Notice that this rule uses unification: the eigenvariables of the sequent (stored
in the signature Σ) are instantiated by θ, which is a member of a complete set
of unifiers (csu) for atoms A and A′. Bedwyr implements a subset of this rule
that is restricted to higher-order pattern unification and, hence, to a case where
csu can be replaced by mgu. If an atom on the left fails to unify with the head
of any definition, the premise set of this inference rule is empty and, hence, the
sequent is proved: thus, a unification failure is turned into a proof search success.

Notice that this use of definitions as fixed points implies that logic specifi-
cations are not treated as part of a theory from which conclusions are drawn.
Instead, the proof system itself is parametrized by the logic specification. In
this way, definitions remain fixed during proof search and the closed world as-
sumption can be applied to the logic specification. For earlier references to this
approach to fixed points see [3,11,4].

Nabla quantification. Bedwyr supports the λ-tree syntax [6] approach to higher-
order abstract syntax [9] by implementing a logic that provides (i) terms that
may contain λ-bindings, (ii) variables that can range over such terms, and
(iii) equality (and unification) that follows the rules of λ-conversion. Bedwyr
shares these attributes with systems such as λProlog. However, it additionally
includes the ∇-quantifier that is needed to fully exploit the closed-world aspects
of LINC. This quantifier can be read informally as “for a new variable” and is
accommodated easily within the sequent calculus with the introduction of a new
kind of local context scoped over formulas. We refer the reader to [7] for more
details. We point out here, however, that ∇ can always be given minimal scope
by using the equivalences ∇x.(Ax∗Bx) ≡ (∇x.Ax)∗(∇x.Bx) where ∗ may be ⊃,
∧ or ∨ and the fact that ∇ is self-dual: ∇x.¬Bx ≡ ¬∇x.Bx. When ∇ is moved
under ∀ and ∃, it raises the type of the quantified variable: in particular, in the
equivalences ∇x∀y.Fxy ≡ ∀h∇x.Fx(hx) and ∇x∃y.Fxy ≡ ∃h∇x.Fx(hx), the
variable y is replaced with a functional variable h. Finally, when ∇ is scoped
over equations, the equivalence ∇x(Tx = Sx) ≡ (λx.Tx) = (λx.Sx) allows it to
be completely removed. As a result, no fundamentally new ideas are needed to
implement ∇ in a framework where λ-term equality is supported.

3 Architecture

Bedwyr implements a fragment of LINC that is large enough to permit interesting
applications of fixed points and∇. In this fragment, all the left rules are invertible.
Consequently, we can use a simple proof strategy that alternates between left and
right-rules, with the left-rules taking precedence over the right rules.

Two provers. The fragment of LINC implemented in Bedwyr is given by the
following grammar:

L0 ::= � | A | L0 ∧ L0 | L0 ∨ L0 | ∇x. L0 | ∃x. L0
L1 ::= � | A | L1 ∧ L1 | L1 ∨ L1 | ∇x. L1 | ∃x. L1 | ∀x. L1 | L0 ⊃ L1
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The formulas in this fragment are divided into level-0 formulas, given by L0
above, and level-1 formulas, given by L1. Implicit in the above grammar is the
partition of atoms into level-0 atoms and level-1 atoms. Restrictions apply to
goal formulas and definitions: goal formulas can be level-0 or level-1 formulas,
and in a definition A

�
= B, A and B can be level-0 or level-1 formulas, provided

that the level of A is greater than or equal to the level of B.
Level-0 formulas are essentially a subset of goal formulas in λProlog (with

∇ replacing ∀). Proof search for a defined atom of level-0 is thus the same as
in λProlog (and Bedwyr implements that fragment following the basic ideas

described in [2]). We can think of a level-0 definition, say, p x
�
= B x, as defining

a set of elements x satisfying B x. A successful proof search for p t means that
t is in the set characterized by B. A level-1 statement like ∀x.p x ⊃ Rx would
then mean that R holds for all elements of the set characterized by p. That is,
this statement captures the enumeration of a model of p and its verification can
be seen as a form of model checking. To reflect this operational reading of level-1
implications, the proof search engine of Bedwyr uses two subprovers: the Level-0
prover (a simplified λProlog engine), and the Level-1 prover. The latter is a usual
depth-first goal-directed prover but with a novel treatment of implication. When
the Level-1 prover reaches the implication A ⊃ B, it calls the Level-0 prover on
A and gets in return a stream of answer substitutions: the Level-1 prover then
checks that, for every substitution θ in that stream, Bθ holds. In particular, if
Level-0 finitely fails with A, the implication is proved.

As with most depth-first implementations of proof search, Bedwyr suffers from
some aspects of incompleteness: for example, the prover can easily loop during
a search although different choices of goal or clause ordering can lead to a proof,
and certain kinds of unification problems should be delayed instead of attempted
eagerly. For a more detailed account on the incompleteness issues, we refer the
reader to [14]. Bedwyr does not currently implement static checking of types and
the stratification of definitions (which is required in the cut-elimination proof
for LINC). This allows us to experiment with a wider range of examples than
those allowed by LINC.

Higher-order pattern unification. We adapt the treatment of higher-order pat-
tern unification due to Nadathur and Linnell [8]. This implementation uses the
suspension calculus representation of λ-terms. We avoid explicit raising, which is
expensive, by representing ∇-bound variables by indices and associating a global
and a local level annotation with other quantified variables. The global level
replaces raising over existential and universal variables. The local level replaces
raising over ∇-bound variables. For example, the scoping in ∀x.∃y.∇n.∀z.Fxynz
is represented by the following annotation: Fx0,0Y 1,0#0z

2,1 (we use lowercase
letters for universal variables, uppercase for existentials, the index #n for the
n-th ∇-bound variable, and write in superscript the annotation (global, local)).
Using this annotation scheme, the scoping aspects of ∇ quantifiers are reflected
into new conditions on local levels but the overall structure of the higher-order
pattern unification problem and its mgu properties are preserved.
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Tabling. We introduced tabling in Bedwyr to cut-down exponential blowups
caused by redundant computations and to detect loops during proof-search. The
first optimization is critical for applications such as weak bisimulation checking.
The second one proves useful when exploring reachability in a cyclic graph.

Tabling is currently used in Bedwyr to experiment with proof search for in-
ductive and co-inductive predicates. A loop over an inductive predicate that
would otherwise cause a divergence can be categorized using tabling as a fail-
ure. Similarly, in the co-inductive case, loops yield success. This interpretation
of loops as failure or success is not part of the meta-theory of LINC. Its sound-
ness is currently conjectured, although we do not see any inconsistency of this
interpretation on the numerous examples that we tried.

Inductive proof-search with tabling is implemented effectively in provers like
XSB [10] using, for example, suspensions. The implementation of tables in Bed-
wyr fits simply in the initial design of the prover but is much weaker. We only
table a goal in Level-1 when it does not have free occurrences of variables in-
troduced by an existential quantifier; and in Level-0 when it does not have any
free variable occurrence. Nevertheless, this implementation of tabling has proved
useful in several cases, ranging from graph examples to bisimulation.

4 Examples

We give here a brief description of the range of applications of Bedwyr. We refer
the reader to http://slimmer.gforge.inria.fr/bedwyr and the user manual
for Bedwyr [1] for more details about these and other examples.

Finite failure. Let false be an atom that has no definition. Negation of a level-0
formula G can then be written as the level-1 formula G ⊃ false and this negation
is provable in the level-1 prover if all attempts to prove G in the level-0 prover
fail. For example, the formula ∀y[λx.x = λx.y ⊃ false] is a theorem: i.e., the
identity abstraction is always different from a constant-valued abstraction.

Model-checking. If the two predicates P and Q are defined using Horn clauses,
then the Level-1 prover is capable of attempting a proof of ∀x. P x ⊃ Q x.
This covers most (un)reachability checks common in model-checking. Related
examples in the Bedwyr distribution include the verification of a 3 bits addition
circuit and graph cyclicity checks.

Games and strategies. Assuming that a transition in a game from position P to
position P ′ can be described by a level-0 formula step P P ′ then proving the
level-1 atom win P defined by

win P
�
= ∀P ′. step P P ′ ⊃ ∃P ′′. step P ′ P ′′ ∧ win P ′′

will determine if there is a winning strategy from position P . If all win-atoms are
tabled during proof search, the resulting table contains an actual winning strategy.

http://slimmer.gforge.inria.fr/bedwyr
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Simulation in process calculi. If the level-0 atom P
A

−−→ Q specifies a one-step
transition (process P does an A-action and results in process Q), then simulation
can be written in Bedwyr as follows [5].

sim P Q
�
= ∀A∀P ′. P

A
−−→ P ′ ⊃ ∃Q′. Q

A
−−→ Q′ ∧ sim P ′ Q′

In dealing with the π-calculus, where bindings can occur within one-step transi-
tions, there are two additional transitions that need to be encoded: in particular,

P
↓X
−−⇀ P ′ and P

↑X
−−⇀ P ′, for bound input and bound output transitions on

channel X . In both of these cases, P is a process but P ′ is a name abstraction
over a process. The full specification of (late, open) simulation for the π-calculus
can be written using the following [7].

sim P Q
�
= [∀A∀P ′ . P

A
−−→ P ′ ⊃ ∃Q′. Q

A
−−→ Q′ ∧ sim P ′ Q′] ∧

[∀X∀P ′ . P
↓X
−−⇀ P ′ ⊃ ∃Q′. Q

↓X
−−⇀ Q′ ∧ ∀w.sim (P ′w) (Q′w)] ∧

[∀X∀P ′ . P
↑X
−−⇀ P ′ ⊃ ∃Q′. Q

↑X
−−⇀ Q′ ∧∇w.sim (P ′w) (Q′w)]

Notice that the abstracted continuation resulting from bound input and bound
output actions are treated by the ∀-quantifier and the ∇-quantifier, respectively.
In a similar way, modal logics for the π-calculus can be captured [13]. If sim-
atoms are tabled during proof search, the resulting table contains an actual sim-
ulation. Bisimulation is easily captured by simply adding the symmetric clauses
for all those used to define sim.

Meta-level reasoning. Because Bedwyr uses the ∇ quantifier and the λ-tree ap-
proach to encoding syntax, it is possible to specify provability in an object logic
and to reason to some extent about what is and is not provable. Consider the
tiny fragment of intuitionistic logic with the universal quantifier ∀ and the impli-
cation ⇒ in which we only allow atoms to the left of implications. If the formula
∀x. (p x r ⇒ ∀y. (p y s ⇒ p x t)) is provable in this logic then one would expect r
and t to be syntactically equal terms. In searching for a proof of this formula, the
quantified variables are replaced by distinct eigenvariables: therefore, the only
way the formula could have been proved is for p x t to match p x r, hence r = t.
Provability of a formula B from a list of atomic formulas L can be specified by
the following meta-level (Bedwyr-level) judgment pv L B:

pv L B
�
= memb B L. pv L (∀B)

�
= ∇x. pv L (B x).

pv L (A ⇒ B)
�
= pv (A :: L) B.

Here, memb and :: are the usual predicate for list membership and the non-empty
list constructor. Object-level eigenvariables are specified using the meta-level
∇-quantifier. The above observation about object-logic provability can now be
stated in the meta-logic as the following formula, which is provable in Bedwyr:

∀r∀s∀t. pv nil (∀x. (p x r ⇒ ∀y. (p y s ⇒ p x t))) ⊃ r = t.
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5 Future Work

We are working on several improvements to Bedwyr, including more sophisti-
cated tabling and allowing the suspension of goals containing non-higher-order-
pattern unification (rescheduling them when instantiations change them into
higher-order pattern goals). We will also explore using tables as proof cer-
tificates: for example, when proving that two processes are bisimilar, the ta-
ble stores an actual bisimulation, the existence of which proves the bisimilar-
ity. Bedwyr is an open source project: more details about it can be found at
http://slimmer.gforge.inria.fr/bedwyr/.
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Abstract. In this paper a proof assistant called SAD is presented. SAD
deals with mathematical texts that are formalized in the ForTheL lan-
guage (a brief description of which is also given) and checks their correct-
ness. We give a short description of SAD and a series of examples that
show what can be done with it. Note that abstract notion of correctness
on which the implementation is based, can be formalized with the help
of a calculus (not presented here).

1 Introduction

The idea to use a formal language along with formal symbolic manipulations
to solve complex “common” problems has a long history. We only mention
G.W. Leibniz’s writings (1685) and the pioneering paper of Hao Wang [1]. It
is worth noting the ambitious title of Wang’s article! Numerous attempts to
“mechanize” mathematics have led to the less ambitious and more realistic idea
of “computer aided” mathematics as well as to the notion of “proof assistant”
— a piece of software that is able to do complex deductions for you.

The mathematical text SAD deals with is a complex object that contains
axioms, definitions, theorems, and proofs of various kinds (by contradiction, by
induction, by case analysis, etc). The formal semantics of a text can be given
by packing the whole text in a single statement and transforming it to the
corresponding logical formula (which we call the formula image of the text).
Then the text is declared correct whenever its formula image is deducible in the
underlying logic. This approach would be simple and theoretically transparent
but obviously impractical. The SAD system implements a more intricate notion
of text correctness which is formalized with the help of a logical calculus and
can serve as a formal specification of a “correctness verifier”.

The SAD project is the continuation of a project initiated by academician
V. Glushkov at the Institute for Cybernetics in Kiev more than 30 years ago

F. Pfenning (Ed.): CADE 2007, LNAI 4603, pp. 398–403, 2007.
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[2]. Its original title was “Evidence Algorithm”. Three main components had to
be developed: an inference engine (we call it prover below) that implements the
basic level of evidence, an extensible collection of tools (we call it reasoner) to
reinforce the basic engine, and a formal input language which must be close to
natural mathematical language and easy to use. A working version of SAD is
implemented [3,4,5] and available online at http://ea.unicyb.kiev.ua.

In a general setting, SAD may be positioned as a declarative style proof as-
sistant/verifier that accepts input texts written in the formal language ForTheL
[6,5], uses an automated first-order prover as the basic inference engine and pos-
sesses an original reasoner. The closest to our approach is the Mizar system
[7] — the oldest and most well-known proof assistant working with proofs of
declarative style.

2 ForTheL Language

Like usual mathematical text, a ForTheL

Theorem.

proof.

proof.

end.

qed.

Lemma.

Definition.
preliminaries

Fig. 1. ForTheL text’s structure

text consists of definitions, axioms, hypothe-
ses, conjectures, proofs. ForTheL is a con-
trolled natural language: its syntax follows
the rules of English grammar. ForTheL sen-
tences are of three kinds: assumptions (“Let
S be a finite set.”, “Assume that m is
less than n.”), selections (“Take an even
prime number X.”), and affirmations (“If
p divides n-p then p divides n.”). Series
of transformations which convert a ForTheL
statement to its formula image determine the
semantics of the statement. For example, the
formula image of the statement “all closed
subsets of any compact set are compact”
is: ∀ A ((A is a set ∧ A is compact) ⊃ ∀ B
((B is a subset of A ∧ B is closed) ⊃ B
is compact)). Sentences, compound sections
and a ForTheL text itself are given formula images, too.

Affirmations and selections can be accompanied with a proof. ForTheL sup-
ports various proof schemes like proof by contradiction, by case analysis, and by
general induction. Proofs need not to be ultimately detailed: reasoning “steps”
can be as large as the deductive facilities of a verifier (e.g. SAD) can manage.
Consider for example an excerpt of a verified formalization of the Tarski’s fixed
point theorem:

Definition DefCLat. A complete lattice is a set S such that
every subset of S has an infimum in S and a supremum in S.

Definition DefIso. f is isotone iff for all x,y << Dom f
x <= y => f(x) <= f(y).
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Theorem Tarski.
Let U be a complete lattice and f be an isotone function on U.
Let S be the set of fixed points of f. S is a complete lattice.

Proof.
Let T be a subset of S.
Let us show that T has a supremum in S.
Take P = { x << U | f(x) <= x and x is an upper bound of T in U }.
Take an infimum p of P in U.
f(p) is a lower bound of P in U and an upper bound of T in U.
Hence p is a fixed point of f and a supremum of T in S.

end.
Let us show that T has an infimum in S.
Take Q = { x << U | f(x) >= x and x is a lower bound of T in U }.
Take a supremum q of Q in U.
f(q) is an upper bound of Q in U and a lower bound of T in U.
Hence q is a fixed point of f and an infimum of T in S.

end.
qed.

3 System for Automated Deduction

The principal components of SAD are shown in Figure 2.
The parser accepts a ForTheL text, checks its syntactical correctness and

converts the text into a normalized form that will be convenient for further
processing (e.g. all synonyms are replaced with their canonical representatives).

The verification manager goes through the normalized text section by section,
checking the ontological and logical correctness. If a section (say, A) is a sentence,

fortified
sentence

text
ForTheL

Moses Vampire

E Prover

SPASS

Otter

parser

proof task

evidence collector

ontological check

simplify

split prove

unfold

filter

sentence

verification manager

proof taskreasoner

SAD
ForTheLFOL

TPTP

prover

sequent

Fig. 2. Architecture of SAD
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then it is first sent to the evidence collector that accumulates so called term
properties for the term occurrences in the formula image of A.

Term properties are literals that tell us something important about a given
term occurrence. A literal (i.e. an atomic formula or its negation) L is considered
to be a property of a term t in a context Γ , whenever t is a subterm of L and
L is deducible in Γ . The most important purpose of term properties is to hold
information about term “types”, which is usually expressed by an atomic state-
ment of the form “t is a 〈class〉”. Some simple properties, like non-emptiness,
are highly useful, too.

Fortified with the found properties, occurrences of terms and atoms are passed
to the ontological checker. For each symbol occurrence, the checker looks through
the text processed so far for an appropriate definition or signature extension. The
deductive core of the system, the so-called reasoner, is used to prove the instan-
tiated guards. The results of ontological checking (the applicable definitions)
together with the collected properties are used in evidence collection for outer
occurrences.

Then the verification manager processes the section A according to the rules of
the special Calculus of Text Correctness, CTC, which we do not describe in this
paper. Generally, if A contains a statement to prove, then a new verification cycle
is started to verify the submitted proof, possibly empty. This statement becomes
the initial thesis of the new cycle. The thesis may be gradually simplified as the
proof proceeds: when the thesis is an implication and we assume its antecedent,
or when it is a conjunction and we affirm its part. At the end of the proof
(i.e. immediately, if there was no proof in the text), the current thesis is sent to
the reasoner. In other words, a ForTheL proof provides hints to the verification
manager on how to split the statement being proved into several proof tasks and
the rules of thesis transformation guarantee the soundness of splitting.

The reasoner deals with proof tasks of the form Γ � F . This module can be
viewed as a kind of automated heuristic based prover, supplied with a collection
of proof task transformation rules. This collection is not intended to form a
complete logic calculus. The purpose of the reasoner is not to find the entire
proof on its own, but rather to simplify inference search for the background
prover.

At present, the capabilities of the reasoner are as follows: propositional goal
splitting, formula simplification with respect to accumulated term properties,
simple filtering of premises according to explicit references in the text, incre-
mental definition expansion.

The reasoner of SAD uses term properties to simplify goal formulas and for-
mulas which arise from definition expansion: any literal that appears to hold as
a property of some of its subterms can be replaced by logical constant “truth”
(indeed, it can be deduced from the current context and, hence, is redundant).
Similarly, a literal can be replaced by “false”, if its complement occurs among
the properties of its subterms.

The background prover is a combinatorial automated prover in classical first-
order logic, whose duty is to complete the proofs started by the reasoner. If the
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background prover fails to find the inference at some instant, the reasoner may
continue the proof task transformation or try an alternative way, or reject the
text.

The background prover is independent from SAD by design, so that an exter-
nal theorem prover can be used. Our experiments (see below) were performed
with Otter [8], SPASS [9], Vampire [10], and E [11]. Note that this feature of SAD
provides us with a (yet another) scale to compare automated theorem provers:
trying them on relatively simple problems in complex and heavily redundant con-
texts rather than on hard problems with a pre-adjusted set of relevant premises
(mostly the case for problems in the famous TPTP library [12]).

Also there exists the native background prover of SAD, called Moses. It is
based on an original goal-driven sequent calculus [4,5].

4 Experiments

In the course of development of SAD, we have conducted a number of experi-
ments in the formalization and verification of non-trivial mathematical results:

– Ramsey’s Finite and Infinite theorems.
– Stability of a refinement relation over a number of operations on program

specifications [13].
– Cauchy-Bouniakowsky-Schwarz inequality.
– The square root of a prime number is irrational: 30 statements in prelim-

inaries (integer numbers), 5 definitions, 7 lemmas, about 50 sentences in
the proof of the main lemma (any prime dividing a product divides one of
the factors), 10 sentences in the proof of the theorem (see [5] for detailed
explanation of this experiment).

– Chinese remainder theorem and Bezout’s identity in terms of abstract rings:
25 statements in preliminaries (ring axioms, operations on sets), 7 definitions
(ideal, principal ideal, greatest common divisor, etc), 3 lemmas, 8 sentences
in the proof of CRT, about 30 sentences in the proof of Bezout’s identity.

– Tarski’s fixed point theorem (cited above): 11 statements in preliminaries
(ordered sets), 7 definitions (upper and lower bounds, supremum, infimum,
complete lattice, isotone function, fixed point), 2 lemmas, 18 sentences in
the proof of the theorem.

The texts listed above were written in ForTheL and automatically verified in
SAD using different background provers. The best results were obtained with
SPASS. This is due, in particular, to its original technique of handling sort-like
information, which abounds in mathematical texts.

5 Conclusion

SAD is a powerful system and its power lies in its reasoning facility. Experi-
ments show that, for example, the specific strategy of definition processing con-
tributes a lot to the success of the whole verification process. If we use definitions
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straightforwardly — convert them into formula images and add the correspond-
ing premises to the sequent that goes into a prover — we have no chance to
verify the proof of Tarski fixed-point theorem as it is formulated above, even
when the winner of CASC competitions is chosen as the background prover.

SAD is not a perfect system (if any!). One can easily see how it may be
improved and developed. Our research and implementation plans with respect
to SAD are: extend ForTheL and SAD with some means to talk and reason
about second-order objects (functions, vectors, sequences) and operations on
them; develop and implement a mathematical library of SAD to accumulate
verified portions of mathematical knowledge and to support further (deeper)
advances in formalization.
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1 Instance Based Methods

The term “instance based methods” (IMs) refers to a certain family of meth-
ods for first-order logic theorem proving. IMs share the principle of carrying out
proof search by maintaining a set of instances of input clauses and analyzing
it for satisfiability until completion. IMs are conceptually essentially different
to well established methods like resolution or free-variable analytic tableaux.
(See [Pla94] for a comparison of various calculi and strategies, including an
instance based method.) Also, IMs exhibit a search space and termination be-
haviour (in the satisfiable case) different from those methods, which makes them
attractive from a practical point of view as a complementary method.

The idea behind IMs is already present in a rudimentary way in the work
by Davis, Putnam, Logemann and Loveland, and others, in the early sixties of
the last century [DP60,DLL62b,DLL62a,Dav63,CDHM64]. The contemporary
stream of research on IMs was initiated with the Lee and Plaisted’s Hyper-
linking calculus [PL90, LP92] Since then, other methods have been developed
by Plaisted and his coworkers [CP94,PZ97,PZ00]; Billon’s disconnection calcu-
lus [Bil96] was picked up by Letz and Stenz and has been significantly developed
further since then [LS01, LS02, SL04, LS07]. New methods have been described
in [Bau98,BEF99], by Hooker [HRCS02], and by Ganzinger and Korovin [GK03,
GK04,GK06]. See [JW07] for a thorough comparison of some of these IMs.

The author introduced a first-order version of the propositional DPLL proce-
dure, FDPLL [Bau00,Bau02], which is now subsumed by the Model Evolution
(ME) calculus [BT03, BT05, BFT06b]. The model representation formalism in
the ME calculus has been studied in [FP05].

Some quite sophisticated implementations are available, two of which, Dar-
win [BFT06a] and DCTP [Ste02], regularly participate in the CASC competition.

Open research questions concern, for example, better understanding of the-
oretical properties and comparison with other methods, implementation tech-
niques, extensions for reasoning modulo fixed background theories, variants for
deciding more fragments of first-order logic than currently known, and adaption
for specific applications, as outlined in the following section.
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2 Logical Engineering

The term logical engineering is meant to refer to the strategy to exploit the
properties of the logical calculus or proof procedure at hand to solve a given
problem or class of problems. This may involve translating the problem into a
suitable logical language and also specific tailoring the calculus or tuning the
proof procedure.

For example, in the context of IMs, the ME calculus when applied to range-
restricted [MB88] clause sets can be used as a bottom-up model-generation
method similar to hyper tableau [BFN96] or hyper resolution (with splitting).
This setup has applications, e.g., for reasoning in modal logics (in conjunction
with certain translations into first-order clause logic) [GHS02, SH05, e.g.]. Any
such application is thus amenable to Model Evolution, too.

An interesting property of all (known) instance based methods is that they
provide natural decision procedures for the Bernays-Schönfinkel fragment of first-
order logic, or, more precisely, function-free clause logic (FFCL).1 In contrast,
most other first-order methods, including free-variable tableau and resolution
methods cannot be used as decision procedures for FFCL.2 This suggests to
capitalize on this distinguishing property of IMs and to investigate reduction of
application problems into FFCL.

For instance, the optimized functional translation of modal logics [OS97] leads
directly to FFCL [Sch99]. Many benchmark problems obtained this way are
contained in the TPTP problem library [SS98], and implementations of instance
based methods consistently score very well on them. In the description logic con-
text, [MSS04] show how to translate the expressive description logic SHIQ(D)
to FFCL (with a different motivation, though).

Another “generic” application area is finite model computation. Most ap-
proaches for finite model computation essentially work by stepwise reduction
to formulas in propositional logic [Sla92,McC94,ZZ95,CS03, e.g.].3 In [BF+07]
we have shown how the MACE-style model computation paradigm can be rooted
in the Model Evolution calculus instead of a SAT solver, which can lead to space
advantages.

In a similar spirit, IMs might be usable within a SMT architecture (satisfia-
bility modulo theories, see [RT06] for a recent overview). For instance, one could
design a DPLL(T) solver [Tin02,NOT06] based on the ME calculus, which would
thus be equipped with a first-order variant of a DPLL solver instead of a proposi-
tional one. The then available native first-order reasoning capabilities could turn
out to be useful for various purposes, such as guiding the search for a candidate
model by adding (redundant) theory axioms to the clause set, solving problems
over an extended background theory, or going beyond quantifier-free problems.
The latter will typically require an heuristic approach, though, as no complete
1 i.e., first-order clause logic without function symbols of arity > 0.
2 Not counting approaches that are based on reduction to ground clause logic.

See [BS06] for recent improvements of that approach.
3 But see [FL96,BT98,Pel03b,Pel03a,BS06,dNM06, e.g.] for direct first-order methods;

[FLHT01] is a more general overview.
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calculus can exist already for rather simple decidable arithmetic theories when
extended with free predicate symbols [MHM98].

Other (potential) applications of the FFCL fragment and IMs lie within the
constraint programming area. Perhaps IMs are not the preferred choice as solvers
for search problems (in NP), as this is the domain of the traditional constraint
programming paradigm. More appropriate seems the application to, e.g., model
expansion problems [MTHM06] (with NEXPTIME combined query/data com-
plexity), which can be reduced to FFCL in a way similar to finite model com-
putation mentioned above. Another application is to reason about constraint
specifications for the purpose to prove “interesting” properties, like functional
dependencies and symmetries [CM05, CM04]. Quite often, the resulting proof
obligations lie within FFCL.
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Abstract. This paper combines predictive labeling with dependency
pairs and reports on its implementation. Our starting point is the method
of proving termination of rewrite systems using semantic labeling with in-
finite models in combination with lexicographic path orders. We replace
semantic labeling with predictive labeling to weaken the quasi-model
constraints and we combine it with dependency pairs (usable rules and
argument filtering) to increase the power of the method. Encoding the re-
sulting search problem as a propositional satisfiability problem and call-
ing a state-of-the-art SAT solver yields a powerful technique for proving
termination automatically.

1 Introduction

Termination is an important topic in term rewriting and over the years many
techniques have been developed for proving termination. Recently the emphasis
in the field is on automation and since 2004 an annual termination competition
is being organized in which automatic termination provers compete on a set of
termination problems.

One of the techniques for proving termination is a transformational method
of semantic labeling due to Zantema [20]. The idea of this method is to give
semantics to function symbols and use the semantics to label the function sym-
bols in order that simpler termination methods become applicable. At first in
automatic termination provers this method was used, if at all, with finite (typi-
cally two elements) model. In [14] the method of automating semantic labeling
over infinite domains has been worked out and implemented in the termination
prover TPA [13]. The approach was to find a quasi-model for the given rewrite
system, transform it to a labeled rewrite system, and apply the recursive path
order using the information in the labels to distinguish different occurrences of
function symbols depending on their context.

The recent development of predictive labeling [11] aims at improving semantic
labeling by weakening the quasi-model constraints—it allows to consider only
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usable rules instead of all rules of the rewrite system under consideration when
checking the quasi-model condition and it requires semantics only for the relevant
part of the signature.

The first contribution of this paper is to increase the power of predictive la-
beling with natural numbers by incorporating it in the framework of dependency
pairs [1,6]. This requires an extension of the theory of predictive labeling which
in [11] was presented for ordinary termination only. Furthermore, since labeling
with natural numbers produces infinite systems over infinite signatures, power-
ful ingredients of the dependency pair method like usable rules with argument
filterings are not directly applicable.

The second contribution is to extend the approach of automatically proving
termination using semantic labeling with natural numbers, as in [14], to incor-
porate the improvement of predictive labeling. This is not completely straight-
forward due to the fact that apart from choosing semantics for function symbols
one now also needs to decide which symbols to label which in turn influences
the set of usable rules. This greatly enlarges the search space.

The third contribution is the presentation of insights used in the implementa-
tion of this approach in TPA. This is the first implementation of the predictive
labeling method ever. It uses the increasingly popular method of encoding the
search problems resulting from an application of a termination technique as
propositional formulas and handing them over to a SAT solver.

The remainder of this paper is organized as follows. In the next section we
recall basic notions and starting points of this paper. In Section 3 we present the
combination of predictive labeling with dependency pairs. Section 4 describes the
SAT encoding of the combination. In Section 5 we present experimental results
and we conclude in Section 6.

2 Preliminaries

We begin by briefly recalling a few basic notions and refer to [2] for further
details on term rewriting. This is followed by a presentation of dependency pairs
in Section 2.1 and semantic and predictive labeling in Section 2.2.

We assume a signature F and a set of variables V and denote by T (F ,V) the
set of terms over F and V . By Fun(t) we denote the set of function symbols
and by Var(t) the set of variables occurring in a term t. The root symbol of a
term t is denoted by root(t). A rewrite rule is a pair (l, r), written l → r, with
l, r ∈ T (F ,V), l /∈ V , and Var(r) ⊆ Var(l). A term rewriting system (TRS for
short) is a set of rewrite rules. Given a TRS R and a function symbol f , the
subset of R consisting of those rules that have f as root of the left-hand side is
denoted by Rf : Rf = {l → r ∈ R | root(l) = f}. The subterm relation on terms
is denoted by �. The rewrite relation →R of a TRS R is defined as follows:
s →R t if there exists a rewrite rule l → r ∈ R, a substitution σ, and a context
C such that s = C[lσ] and t = C[rσ]. A TRS R is called terminating if there is
no infinite reduction t1 →R t2 →R · · · .
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We write SN for the subset of T (F ,V) consisting of all terminating terms
and T∞ for the set of minimal non-terminating terms, that is, non-terminating
terms all of whose arguments are terminating. For a TRS R and a relation -
we define R� = {s → t ∈ R | s - t}.

Example 1. We will use the following TRS from [17] (AProVE/rta1.trs in TPDB
[21]) to illustrate various developments throughout this paper:

(1) plus(0, y) → y (5) plus(s(s(x)), y) → s(plus(x, s(y)))
(2) plus(s(0), y) → s(y) (6) plus(x, s(s(y))) → s(plus(s(x), y))
(3) ack(0, y) → s(y) (7) ack(s(x), s(y)) → ack(x, plus(y, ack(s(x), y)))
(4) ack(s(x), 0) → ack(x, s(0))

2.1 Dependency Pairs

The dependency pair method [1] is a powerful approach for proving termination
of TRSs. The dependency pair framework [6] is a modular reformulation and
improvement of this approach. We present a simplified version which is sufficient
for our purposes. For further information on dependency pairs and more detailed
explanations of the concepts introduced below the reader is referred to [1,6,7,12].

Let R be a TRS over a signature F . The set of defined symbols is defined
as DR = {root(l) | l → r ∈ R}. The signature F is extended with symbols f �

for every symbol f ∈ DR, resulting in the signature F �. If t ∈ T (F ,V) with
root(t) defined then t� denotes the term that is obtained from t by replacing
its root symbol with root(t)�. If l → r ∈ R and t � r with root(t) defined then
the rule l� → t� is a dependency pair of R. The set of dependency pairs of R
is denoted by DP(R). A DP problem is a pair of TRSs (P ,R). The problem is
said to be finite if there is no infinite sequence t1 →∗

R s1
ε−→P t2 →∗

R s2
ε−→P · · ·

such that all terms t1, t2, . . . are terminating with respect to R. Here ε in ε−→P
denotes that the application of the rule in P takes place at the root position.
The main result underlying the dependency pair approach states that a TRS R
is terminating iff the DP problem (DP(R),R) is finite.

Example 2. For the TRS presented in Example 1 there are six dependency pairs:

(8) ack�(s(x), 0) → ack�(x, s(0))

(9) plus�(s(s(x)), y) → plus�(x, s(y))

(10) plus�(x, s(s(y))) → plus�(s(x), y)

(11) ack�(s(x), s(y)) → ack�(x, plus(y, ack(s(x), y)))

(12) ack�(s(x), s(y)) → plus�(y, ack(s(x), y))

(13) ack�(s(x), s(y)) → ack�(s(x), y)

In order to prove finiteness of a DP problem a number of so-called DP proces-
sors have been developed. DP processors are functions that take a DP problem



Predictive Labeling with Dependency Pairs Using SAT 413

as input and return a set of DP problems as output. In order to be employed
to prove termination they need to be sound, that is, if all DP problems in a set
returned by a DP processor are finite then the initial DP problem is finite.

Below we shortly introduce three key concepts of the dependency pair method
that are important for our approach: reduction pairs, argument filtering, and
usable rules [1,7].

A reduction pair (�, >) consists of a preorder � which is closed under contexts
and substitutions and a well-founded order > which is closed under substitutions
such that the inclusion � · > ⊆ > or the inclusion > · � ⊆ > holds. We say that
a reduction pair (�, >) is CE -compatible iff c(x, y) � x and c(x, y) � y, where c
is a new binary function symbol.

An argument filtering is a mapping π that assigns to every n-ary function sym-
bol f an argument position i ∈ {1, . . . , n} or a (possibly empty) list [i1, . . . , im]
of argument positions with 1 
 i1 < · · · < im 
 n. Every argument filtering π
induces a mapping on terms:

π(t) =

⎧
⎪⎨

⎪⎩

t if t is a variable,
π(ti) if t = f(t1, . . . , tn) and π(f) = i,
f(π(ti1), . . . , π(tim)) if t = f(t1, . . . , tn) and π(f) = [i1, . . . , im].

Given a binary relation - and an argument filtering π, we write s -π t iff
π(s) - π(t).

Next we introduce the concept of usable rules modulo argument filtering. Let
(P ,R) be a DP problem and π an argument filtering. We define the set of usable
rules for (P ,R) modulo π as

Uπ(P ,R) =
⋃

s→t∈P
Uπ(t,R)

with Uπ(t,R) = ∅ if t is a variable and

Uπ(t,R) = Rf ∪
⋃

l→r∈Rf

Uπ(r,R \Rf ) ∪
⋃

i : π(f)=i∨ i∈π(f)

Uπ(ti,R \Rf )

if t = f(t1, . . . , tn). We illustrate usable rules on our leading example.

Example 3. Consider the TRS R from Example 1 and its dependency pairs P ,
as presented in Example 2. Given argument filtering π(ack�) = 1 and π(f) =
[1, . . . , n] for the remaining symbols f ∈ F �, where n is the arity of f . Then
applying the above definition yields Uπ(P ,R) = {3, 4, 7}.

Theorem 4 (Reduction Pair Processor). Let P and R be (possibly infinite)
TRSs. Let (�, >) be a CE -compatible reduction pair and let π be an argument
filtering. If R is finitely branching, P = P�π ∪ P>π , and Uπ(P ,R) ⊆ �π then
the DP processor (P ,R) &→ {(P \ P>π ,R)} is sound. ��

In [7] the above theorem is stated and proved for finite TRSs P and R. In
our setting we deal with infinite TRSs obtained by labeling finite TRSs. So
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finiteness of R is too restrictive. A careful inspection of the proof in [7] as well
as the proofs of related statements in [12,18] reveals that it is sufficient that R
is finitely branching. The reason is that then the sets {t | s →∗

R t} of reducts of
terminating terms s are still guaranteed to be finite.

2.2 Semantic and Predictive Labeling

We start by presenting semantic labeling [20] in the setting of monotone algebras.
Let R be a TRS over signature F and let A = (A, {fA}f∈F , >,�) be a well-
founded weakly monotone F -algebra, that is a quadruple consisting of

– a non-empty carrier set A,
– a set of algebra operations on A that are weakly monotone in all coordi-

nates: fA(a1, . . . , ai, . . . , an) � fA(a1, . . . , b, . . . , an) for all n-ary f ∈ F ,
a1, . . . , an, b ∈ A, and i ∈ {1, . . . , n} with ai � b,

– a well-founded order > on A, and
– a relation � such that > · � ⊆ > or � · > ⊆ >.

A weakly monotone labeling � for A consists of a set of labels Lf ⊆ A together
with a mapping �f : An → Lf for every n-ary function symbol f ∈ F such that
�f is weakly monotone in all coordinates. The labeled signature Flab consist of
n-ary function symbols fa for every n-ary function symbol f ∈ F and every label
a ∈ Lf together with all function symbols f ∈ F such that Lf = ∅. We extend an
assignment of variables α : V → A to the mapping labα : T (F ,V) → T (Flab,V)
in the following way:

labα(t) =

⎧
⎪⎨

⎪⎩

t if t is a variable,
f(labα(t1), . . . , labα(tn)) if t = f(t1, . . . , tn) and Lf = ∅,
fa(labα(t1), . . . , labα(tn)) if t = f(t1, . . . , tn) and Lf �= ∅

where a denotes the label �f([α]A(t1), . . . , [α]A(tn)). We extend the relation >
on A to >A on T (F ,V) as follows: s >A t if [α]A(s) > [α]A(t) for all vari-
able assignments α; � is similarly extended to �A. We say that A is a quasi-
model for R if R ⊆ �A. We define the TRS Dec to consist of all rewrite rules
fa(x1, . . . , xn) → fb(x1, . . . , xn) with f ∈ F an n-ary function symbol, a, b ∈ Lf

with a > b, and pairwise different variables x1, . . . , xn.
The following is the straightforward generalization of the result for ordinary

termination from [20] to DP problems. The only observation is that interpre-
tations of dependency pair symbols do not contribute to labels so by choosing
them to be the same constant we get the quasi-model constraints for DP rules
for free. We omit the easy proof.

Theorem 5. Let R be a TRS, A a weakly monotone quasi-model for R, and �
a weakly monotone labeling for A. The DP problem (DP(R),R) is finite iff the
DP problem (DP(R)lab,Rlab ∪ Dec) is finite. ��

In the remainder of this subsection we recall some definitions pertinent to pre-
dictive labeling that are needed for the developments in the next section. Let R
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be a TRS. For function symbols f and g we write f �d g if there exist a rewrite
rule l → r ∈ R such that f = root(l) and g is a function symbol in Fun(r). Let
� be a labeling and t a term. We define

G�(t) =

⎧
⎪⎨

⎪⎩

∅ if t is a variable,
Fun(t1)∗ ∪ · · · ∪ Fun(tn)∗ if t = f(t1, . . . , tn) and Lf �= ∅,
G�(t1) ∪ · · · ∪ G�(tn) if t = f(t1, . . . , tn) and Lf = ∅

where F ∗ denotes the set {g | f �∗
d g for some f ∈ F}. Furthermore we define

G�(R) =
⋃

l→r∈R
G�(l) ∪ G�(r)

and the set of usable rules for � is defined as U(�) = {l → r ∈ R | root(l) ∈
G�(R)}. Typically, U(�) is a proper subset of R. The point of predictive labeling
is to replace the condition R ⊆ �A in semantic labeling by the easier to satisfy
condition U(�) ⊆ �A. We illustrate this on an example.

Example 6. Consider the TRS R from Example 1. Suppose Ls �= ∅ and Lplus =
Lack = ∅. Then applying the above definition gives G�(R) = {plus, s} and
U(�) = {1, 2, 5, 6}.

The weakly monotone algebras A = (A, {fA}f∈F , >,�) used to determine the
labeling and to satisfy the quasi-model constraints in connection with predictive
labeling (i.e., U(�) ⊆ �A), must satisfy the additional property that for every
finite subset X ⊆ A there exists a least upper bound

⊔
X of X in A (with

respect to �). Such algebras are called �-algebras in [11]. The main result of [11]
can now be stated.

Theorem 7. Let R be a finitely branching TRS, A a weakly monotone �-
algebra, and � a weakly monotone labeling for A such that U(�) ⊆ �A. If
Rlab ∪ Dec is terminating then R is terminating. ��

Due to the restriction to �-algebras, predictive labeling is less powerful than
semantic labeling in theory. However, since the algebras used in current termi-
nation tools are �-algebras, in practice predictive labeling is to be preferred as
it has the clear advantage of weakening the quasi-model condition; instead of all
rules only the usable rules need to be oriented, which brings improvements in
proving power as well as efficiency.

3 Predictive Labeling and Dependency Pairs

The following theorem constitutes the main theoretical result of this paper.

Theorem 8. Let R and P ⊆ DP(R) be TRSs. Let A be a weakly monotone
�-algebra and � a weakly monotone labeling for A such that U(�) ⊆ �A. If R is
finitely branching then the DP processor (P ,R) &→ {(Plab,Rlab ∪Dec)} is sound.
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Before presenting a proof sketch, we make some clarifying remarks. The condition
P ⊆ DP(R) ensures that the root symbols of the rules in P are dependency pair
symbols that occur nowhere else. This implies that we do not have to worry about
the semantics of the rules P and thus U(�) will be a subset of R. Nevertheless,
dependency pair symbols in P can be labeled and this may influence the usable
rules. It follows that the definition of U(�) given in the preceding section has to
be slightly modified: U(�) = {l → r ∈ R | root(l) ∈ G�(P ∪ R)}. The Dec rules
are computed for all labeled symbols in F �, where F is the signature of R.

Proof (sketch). Suppose the DP processor (P ,R) &→ {(Plab,Rlab ∪ Dec)} is not
sound. So the DP problem (Plab,Rlab∪Dec) is finite whereas (P ,R) is not. Hence
there exists an infinite sequence

t1 →∗
R u1

ε−→P t2 →∗
R u2

ε−→P · · ·

such that the terms t1, t2, . . . are terminating with respect to R. Let α be an
arbitrary assignment. We recall the following definitions from [11].

– Let t ∈ SN . The interpretation [α]∗A(t) is inductively defined as follows:

[α]∗A(t) =

⎧
⎪⎨

⎪⎩

α(t) if t is a variable,
fA([α]∗A(t1), . . . , [α]∗A(tn)) if t = f(t1, . . . , tn) and f ∈ G�,
⊔
{[α]∗A(u) | t →+

R u} if t = f(t1, . . . , tn) and f /∈ G�.

– Let t ∈ SN ∪T∞. The labeled term lab∗α(t) is inductively defined as follows:

lab∗α(t) =

⎧
⎪⎨

⎪⎩

t if t is a variable,
f(lab∗α(t1), . . . , lab∗α(tn)) if Lf = ∅,
fa(lab∗α(t1), . . . , lab∗α(tn)) if Lf �= ∅

where a = �f([α]∗A(t1), . . . , [α]∗A(tn)).
– Given a substitution σ such that σ(x) ∈ SN for all variables x, the assign-

ment α∗
σ is defined as [α]∗A ◦ σ and the substitution σlab∗

α
as lab∗α ◦ σ.

We will apply lab∗α(·) to the terms in the above sequence. Fix i � 1. Repeated
application of Lemma 17 in [11] yields lab∗α(ti) →∗

Rlab∪Dec lab∗α(ui). We have
ui = lσ and ti+1 = rσ for some l → r ∈ P . We use Lemma 15 in [11] to obtain

lab∗α(lσ) →∗
Dec labα∗

σ
(l)σlab∗

α
.

Since labα∗
σ
(l) → labα∗

σ
(r) ∈ Plab, labα∗

σ
(l)σlab∗

α

ε−→Plab labα∗
σ
(r)σlab∗

α
. A variation

of Lemma 16 in [11] gives labα∗
σ
(r)σlab∗

α
= lab∗α(rσ). Putting things together

yields lab∗α(ti) →∗
Rlab∪Dec · ε−→Plab lab∗α(ti+1). Hence, the above infinite sequence

is transformed into

lab∗α(t1) →∗
Rlab∪Dec ·

ε−→Plab lab∗α(t2) →∗
Rlab∪Dec ·

ε−→Plab · · ·
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If we can show that the terms lab∗α(t1), lab∗α(t2), · · · are terminating with respect
to Rlab ∪ Dec then the DP problem (Plab,Rlab ∪Dec) is not finite, providing the
desired contradiction. Suppose lab∗α(ti) for some i admits an infinite reduction
with respect to Rlab ∪ Dec. Because Dec is a terminating TRS, there must be
infinitely many Rlab-steps in this sequence. If we remove all labels, the Dec-steps
disappear and the Rlab-steps are turned into R-steps. It follows that ti is not
terminating with respect to R. This completes the proof. ��

4 SAT Encoding

We start this section by giving an outline of the main steps of our termination
proving procedure. Afterwards we explain which parts are encoded in SAT and
how this is actually achieved.

1. First the dependency pairs of R are computed. Then the strongly connected
components (SCCs) in an over-approximation of the dependency graph of R
are determined.

2. In the next step the subterm criterion [12] is applied in connection with the
recursive SCC algorithm [10]. The purpose of this step is to quickly remove
components which do not pose a challenge for the termination proof.

3. At this point we deal with a number of problems of the form (P ,R) where
P is a set of dependency pairs of the original TRS R. Both P and R are
finite systems over a finite signature. Each of these problems is subjected to
the following steps.

4. Predictive labeling (Theorem 8) transforms (P ,R) into (Plab,Rlab ∪ Dec).
This new problem generally consists of infinite systems over infinite signa-
tures.

5. Next we apply the reduction pair processor with argument filtering (The-
orem 4). In our implementation this step is specialized by taking LPO as
the underlying reduction order. In order to make progress, there must be at
least one rule in P with the property that all its labeled versions in Plab are
strictly decreasing.

6. In the next step we return to the problem (P ,R) and remove those rules from
P that were identified in the preceding step. Then we repeat the algorithm
on the resulting problem from step 2 onward.

We illustrate this procedure on an example.

Example 9. We continue with our leading example. The estimated dependency
graph has two SCCs: {(8), (11), (13)} and {(9), (10)}. The former is taken care
of by two applications of the subterm criterion, first with projection π(ack�) = 1
and then with π(ack�) = 2. So in step 3 the problem (P ,R) with P = {(9), (10)}
and R = {(1), . . . , (7)} remains. We will label function symbol plus�, so G�(P ∪
R) = {s} and thus U�(R) = ∅. Taking the successor function as semantics for
s together with the labeling function �plus�(x, y) = x+ y produces in step 4 the
DP problem (Plab,Rlab ∪ Dec) with Plab consisting of the rules
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plus�
i+j+2(s(s(x)), y) → plus�i+j+1(x, s(y))

plus�
i+j+2(x, s(s(y))) → plus�i+j+1(s(x), y)

for all i, j � 0, Rlab = R, and Dec = {plus�i(x, y) → plus�j(x, y) | i > j � 0}. The
DP problem (Plab,Rlab∪Dec) is taken care of in step 5 by the argument filtering
π(plus�

i) = [ ] for all i in combination with the well-founded LPO precedence
plus�i - plus�j whenever i > j. Note that the rules in Rlab are ignored as they are
not usable. Since all rules in Plab are strictly decreasing, there is nothing left to
do in step 6.

We use SAT for steps 4 and 5 of our algorithm. The starting point of our encoding
is the approach to semantic labeling with natural numbers and LPO from [14]
and the encoding of specific instances of Theorem 4 in [3,19]. The main challenges
are the encoding of

– the search for interpretations fA and labeling functions �f ,
– the choice of function symbols to be labeled and the corresponding compu-

tation of usable rules,
– the induced quasi-model constraints,
– the precedence constraints over the infinite signature of the labeled system,

and
– the finite branching condition in Theorem 4.

For the first problem, we adopt the SAT encoding of matrix interpretations [5].
To address the second problem we introduce a new propositional variable Lf

for every function symbol f that will indicate whether Lf �= ∅. Given those
variables we need to compute the set of usable rules for predictive labeling ac-
cording to the definitions at the end of Section 2.2. To this end we introduce
propositional variables Uf for every defined symbol f of R indicating whether
the rewrite rules defining f are usable. For a DP problem (P ,R) the encoding
of usable rules is expressed as:

ωUR(P ,R) =
∧

f∈F�

(
Lf =⇒

∧

g∈Δf (P,R)∗

Ug

)

where

Δf (P ,R) =
⋃

l→r∈P∪R
{g ∈ Fun(t) | root(t) = f and t � l or t � r}.

Now the encoding of quasi-model constraints can easily be expressed as

ωQM(R) =
∧

f∈DR

(
Uf =⇒

∧

l→r∈Rf

�[l]A �A [r]A�
)
.

Here �. . .� converts inequalities into formulas. For that we need to be able
to compute term interpretations in the algebra A and compare them by �A.
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To that end we can use any technique following the weakly monotone algebra
approach from Section 2.2, like polynomial interpretations [15] or matrix inter-
pretations [5]. In our implementation we use matrix interpretations with dimen-
sions 1 (which correspond to linear polynomial interpretations) and 2. The reader
is referred to [5] for details on how the corresponding constraints can be encoded.
We note that both polynomial and matrix interpretations give �-algebras, which
is required for the soundness of predictive labeling (Theorem 8).

Note that we encode quasi-model constraints for R but not for P . The reason is
that every DP problem (P ,R) encountered during the execution of our algorithm
has the property that the root symbols of the left- and right-hand sides of rules
in P are dependency pair symbols, which do not occur elsewhere in the problem.
Hence they are not part of G�(P ∪R) and consequently no rule from P is usable.

The next question is how to restrict the spectrum of possible precedence rela-
tions for infinite labeled TRSs in such a way that they have finite representation,
can be searched for easily, and ensuring their well-foundedness is feasible. With
every (unlabeled) function symbol f we associate a pair of natural numbers
(fL, fSL), the level and sublevel of f . Such an assignment induces a precedence
-Flab on labeled function symbols in the following way. Firstly, no matter what
the labels are, if the level of f is greater than the level of g then f -Flab g. If
two symbols have the same level but the label of f is greater (with respect to
>A) than that of g then again f -Flab g. Finally, if the levels and labels of f
and g are equal but the sublevel of f is bigger than the sublevel of g then again
f -Flab g. Note that -Flab is well-founded since it is obtained as the lexicographic
comparison of three well-founded orders.

The straightforward encoding of the (strict) precedence comparisons is pre-
sented below. For the computation of labels and their comparison with >A and
�A we may use any approach following the weakly monotone algebra framework.

�fi -Flab gj� = �fL >N gL� ∨
(
�fL =N gL� ∧ Lf ∧ Lg ∧

(
�i >A j� ∨

(�i �A j� ∧ �fSL >N gSL�)
))

�fi -Flab fj� = Lf ∧ �i >A j�

The use of sublevels allows us to represent more precedences on the signatures of
infinite labeled TRSs, which increases the termination proving power with only
a small reduction in efficiency.

A natural question is how this setting for precedences compares to the one
from [14]. It is easy to observe that every precedence in our setting has a coun-
terpart in the setting of [14]. The converse is also true. More precisely, for every
well-founded precedence -Flab from [14] there exists a precedence -′

Flab
in our

setting (well-founded by definition), such that -Flab ⊆ -′
Flab

. So the expressive
power of the two approaches is the same.

The last challenge that we address is the requirement of Theorem 4 that
the TRS Rlab is finitely branching. For the type of infinite but well structured,
parameterized TRSs obtained by labeling finite TRSs this is easy to check. The
only source of violation may be a parameterized (labeled) rule where a single
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labeled instance of a left-hand sides has infinitely many corresponding labeled
right-hand sides. In the case of weakly monotone polynomial interpretations this
means that a variable must be present in some labels in the right-hand side but
not in any label in the corresponding left-hand side. So we define

ωFB(R) =
∧

l→r∈R

∧

x∈Var(r)

(
Φx(r) =⇒ Φx(l)

)

with

Φx(t) =
∨

f(t1,...,tn)�t

Lf ∧ a > 0

Here a is the coefficient of x when (symbolically) computing the label of f in
f(t1, . . . , tn). So Φx(t) evaluates to true when the variable x occurs in some label
in term t. Thus ωFB(R) expresses that if the value of x is used for obtaining
the label of a function symbol occurring in r then this must also be true for a
function symbol occurring in l, for every rule l → r ∈ R and every variable x
occurring in r.

When using matrix interpretations instead of polynomial interpretations we
obtain a similar formula ωFB(R), only now variables are interpreted as finite
vectors of natural numbers. So in addition to x we must also propagate the
position in the vector on which the label depends. We omit the straightforward
details.

Combining all ingredients gives us now the final formula for executing steps
4 and 5 of our termination procedure simultaneously:

ωUR(P ,R) ∧ ωQM(R) ∧ ωFB(R) ∧ ωLAB(P ,R) ∧ ωLPO(P ,R)

Some clarifying remarks are in order.
The subformula ωLAB(P ,R) takes care of computing the labels for all occur-

rences of all function symbols. (Since the choice of which symbols will be actually
labeled is left to the SAT solver, the calculation of labels needs to be encoded for
all symbols.) This is very similar to the encoding of the algebra computations
in ωQM(R) and actually we can share most of the code.

The subformula ωLPO(P ,R) is the encoding of the specialization of Theorem 8
to LPO. We adopt the encoding given in [3] but since we deal with infinite
systems we use as basic building blocks the precedence comparisons sketched on
page 419. We compute usable rules with respect to original (unlabeled) system
and assume that all labeled versions of a usable unlabeled rule are usable. This
gives a correct over-approximation of the usable rules of the labeled TRS.

One thing that seems to be missing in the above formula is the treatment of
the rules in Dec. Indeed they are not part of the formula in any way and that
is because in the present setting they can be ignored. Regardless of the argu-
ment filtering and the precedence (within the constraints of the level/sublevel
encoding), the rules in Dec are all (weakly) oriented, do not contribute to
the computation of usable rules, and cannot make the system infinitely
branching.
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The above formula is given to a SAT solver. Three things can happen as a
result:

– the SAT solver returns a satisfying assignment, which is translated back to
obtain concrete parameters required to execute steps 4 and 5 of our algo-
rithm, or

– the SAT solver returns “unsatisfiable”, in which case we know that our ap-
proach is not applicable, or

– the SAT solver runs out of time or other resources, in which case we give up
without being able to conclude anything.

5 Experimental Results

We implemented the technique described in the preceding section in the termi-
nation prover TPA, using the MiniSat SAT solver [4]. In this section we evaluate
our method on a number of examples from the Termination Problem Database
(TPDB, see [21]). All experiments involving TPA were performed on a machine
equipped with an Intel � XeonTM 2.80 GHz processor. Experimental data for
other termination tools are taken from the respective publications (due to the dif-
ficulty of obtaining those tools in the configuration required for our experiments).

A very natural benchmark for our approach would be the comparison with
results from [14]. Unfortunately the substantial difference in the approach to se-
mantic labeling with natural numbers makes any decent comparison difficult. We
are convinced however that the direct approach from [14] would be absolutely
infeasible for exploring the much larger search space resulting from using arbi-
trary interpretations with bounded coefficients instead of only a small number
of predefined interpretations.

We begin by evaluating two basic ingredients of our implementation, matrix
interpretations and LPO with argument filtering (both without semantic or pre-
dictive labeling), against reference implementations: [5] for the former and [3] for
the latter. Both implementations use more or less the same setup: dependency
pairs with usable rules and subterm criterion. The results in Table 1 are based on
version 2.0 of the TPDB, more precisely on the 773 TRSs from the termination
category of this database. The columns “yes”, “time”, and “timeout” indicate
the number of successful termination proofs, the total time (in seconds) spent
on the TRSs in the problem set and the number of timeouts that occurred. We
used a 60 seconds time limit.

The experiments for matrix interpretations use 2 × 2 matrices, 2 bits for the
matrix entries, and 3 bits to represent the values of intermediate results. The
slightly lower score of TPA compared to Jambox is probably due to a more
sophisticated approximation of the dependency graph in the latter. No timing
information is given in [5] but the authors write “[...] we took the time limit of
1 minute [...] this time was hardly ever consumed [...] average computation time
for all proofs is around 1 second”. This suggests that our implementation is far
from optimal. Indeed, we did not invest much time in optimizing the encoding.
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Table 1. Comparison to other tools

technique tool yes time timeout

matrix interpretations
Jambox 505 N/A N/A

TPA 498 3541 30

LPO
AProVE 380 193 0

TPA 372 191 0

Table 2. Experiments with TPA on TPDB version 3.2

60 seconds timeout 10 minutes timeout

technique yes time timeout yes time timeout

1×1

SL 440 1178 2 440 1351 0

PL 456 1193 2 456 1316 0

PL′ 426 752 1 426 893 0

2×2

SL 503 6905 51 506 24577 30

PL 527 6906 53 532 25582 32

PL′ 522 5211 33 524 11328 8

This seems to be a good starting point for improving the results for predictive
labeling presented below.

The slightly higher score of AProVE in the LPO experiments is likely due to
a different graph approximation algorithm. The execution speeds are almost the
same but one needs to keep in mind that the results were obtained on different
machines and hence cannot be compared directly.

Table 2 summarizes the experiments performed with TPA on the 864 TRSs
in version 3.2 of the TPDB. All experiments were performed with time limits
of 60 seconds and 10 minutes. The first group of results is based on seman-
tic/predictive labeling with matrix interpretations of dimension 1 (equivalent to
linear polynomials) used for both interpretations and labels:

– SL means semantic labeling (Theorem 5) where all symbols are labeled and
all rules are considered for the quasi-model requirement,

– PL stands for predictive labeling and corresponds to the approach described
in this paper,

– PL′ is a variant with a simple heuristic for the choice of labeled symbols;
instead of leaving this decision to SAT all dependency pair symbols are
labeled and only them.

A first observation is that predictive labeling is more powerful than semantic
labeling—it proves termination of an additional 16 TRSs—without incurring
any significant increase in execution speed. The heuristic brings a considerable
speedup at the expense of termination proving power.
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For the second group of results we use the same methods as for the first group
but now 2× 2 matrices are used for interpretations and labels. Again predictive
labeling performs better than semantic labeling. It is interesting to observe that
the price in termination proving power of the heuristic is much less than for
dimension 1. This can be intuitively explained by the more powerful algebraic
structure used for the labeling functions, which makes it possible to put more
information in the labels and hence counter the reduced flexibility in the choice
of function symbols to label. A similar line of reasoning could lead to the belief
that in this case it is also easier to satisfy quasi-model constraints and thereby
diminishing the improvement of predictive labeling but the difference of 26 TRSs
between SL and PL proves this hypothesis wrong.

It is worth noting that even for the slowest variant (PL with matrices of
dimension 2 × 2) the average time for successful proof is around 3 seconds.
Moreover, there are three TRSs which can be proved terminating using this
method but not with any tool that participated in the 2006 Termination Com-
petition: Ex26 Luc03b Z, Ex49 GM04 FR, and ExSec11 1 Luc02a GM from the
TRCSR subcollection.

6 Conclusion and Further Research

In this paper we extended the theory of predictive labeling to a dependency pair
setting and we presented the ideas behind the SAT based implementation of this
technique in the termination prover TPA. Experimental results confirm the fea-
sibility of our approach. Our technique extends the earlier TPA implementation
of semantic labeling with infinite quasi-models described in [14] in several ways:

– the quasi-model restriction is relaxed by using predictive labeling,
– the integration with dependency pairs makes the approach more powerful,
– the SAT encoding enables the use of unrestricted polynomial and matrix

interpretations for function symbols, whereas in [14] the interpretations were
restricted to a small predefined set in order not to blow up the search space.

There is however one extension in [14] that we fail to cover here and that is
the possibility of using min and max as interpretations for binary symbols. This
feature really adds power to the whole approach, allowing for instance to easily
prove termination of the TRS SUBST [9]. The approach in [14] is to allow at most
one binary function symbol to be interpreted as min or max, and to perform a
case analysis on all occurrences of that symbol in combination with rule splitting.
This approach seems to be difficult to incorporate in our new setting as the whole
search procedure is encoded as a SAT problem and we have no way of knowing
for which symbols min or max will be chosen and hence cannot do this case
analysis and rule splitting in advance. We leave this issue as future work.

An important theoretical question is whether the finite branching condition
in Theorem 4 is essential. Disabling the ωFB(R) conjunct in our encoding allows
to “prove” the termination of two more TRSs from the TPDB. One of these
TRSs is presented below.
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Example 10. Consider the following TRS (Thiemann/factorial1.trs) computing
the factorial function:

plus(0, x) → x plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0 times(s(x), y) → plus(y, times(p(s(x)), y))

p(s(0)) → 0 p(s(s(x))) → s(p(s(x)))
fac(0, x) → x fac(s(x), y) → fac(p(s(x)), times(s(x), y))

factorial(x) → fac(x, s(0))

There are ten dependency pairs and the estimated dependency graph contains
four single node SCCs. Only one of them, consisting of the dependency pair

fac�(s(x), y) → fac�(p(s(x)), times(s(x), y))

is problematic. It could be solved using matrices of dimension 2 by labeling s
and p, but it is essential that the interpretation of plus depends on its second
argument. Then the label of the root symbol of the right-hand side of the rule
plus(s(x), y) → s(plus(p(s(x)), y)) depends on the assignment to y whereas in the
left-hand side there is only one labeled s symbol with x as its argument so its
label is necessarily independent of the value of y. This makes Rlab non-finitely
branching and hence the termination proof is out of reach with our approach.

At the end of Section 2.1 we already remarked that the proof of Theorem 4
relies on the finite branching condition. The key idea in the proof goes back
to a modularity result for termination of Gramlich [8], in which the same finite
branching condition is required. By using a much more complicated construction,
Ohlebusch [16] showed that the finite branching condition in the modularity
result is not essential. It is worthwhile to investigate whether the proof technique
in [16] can be used to generalize Theorem 4.

Needless to say, it is not a single technique but rather a careful combina-
tion of techniques that makes a successful termination tool. Hence the effect of
combining our approach with other techniques should be investigated.
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Abstract. A method based on dependency pairs for showing termina-
tion of functional programs on data structures generated by construc-
tors with relations is proposed. A functional program is specified as an
equational rewrite system, where the rewrite system specifies the pro-
gram and the equations express the relations on the constructors that
generate the data structures. Unlike previous approaches, relations on
constructors can be collapsing, including idempotency and identity rela-
tions. Relations among constructors may be partitioned into two parts:
(i) equations that cannot be oriented into terminating rewrite rules,
and (ii) equations that can be oriented into terminating rewrite rules,
in which case an equivalent convergent system for them is generated.
The dependency pair method is extended to normalized rewriting, where
constructor-terms in the redex are normalized first. The method has been
applied to several examples, including the Calculus of Communicating
Systems and the Propositional Sequent Calculus. Various refinements,
such as dependency graphs, narrowing, etc., which increase the power of
the dependency pair method, are presented for normalized rewriting.

1 Introduction

Algorithms in a functional programming style can be specified elegantly within
the framework of term rewrite systems. This is the approach taken by ELAN
[14], Maude [3], and theorem provers such as RRL [13], where a function defini-
tion is given as a terminating rewrite system on data structures generated using
constructors. We will follow that approach in this paper as well, i.e., we assume
that a functional program is represented in the form of a term rewrite system.
While automated termination methods (a collection of recent papers on termi-
nation is [7]) work well for establishing termination of rewrite systems defined on
data structures generated using free constructors (such as natural numbers, lists,
trees, etc.), they do not extend well to cases where the constructors of the data
structures are related. For example, the data structure of finite sets has set union
“∪” as a constructor which is not only associative (A) and commutative (C), but
also idempotent (x∪x ≈ x) and has the other constructor, the empty set “∅”, as
an identity (x∪∅ ≈ x). Methods for showing termination of AC-rewrite systems
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based on recursive path orderings and dependency pairs have been developed
[12,20,16,18]. In [6], the dependency pair method was generalized to equational
rewriting with the restriction that equations need to be non-collapsing and have
identical unique variables (i.e., each variable occurs exactly once on each side).
So termination of rewrite systems defined on a data structure such as finite sets
cannot be established using any of these previous approaches.

In this paper, we extend the dependency pair method in order to establish
termination of equational rewrite systems in which equations may be collaps-
ing. However, if collapsing relations are included in the equational system, then
equational rewriting does not necessarily terminate in cases where this would
intuitively be expected. The key idea to handle this problem is to partition the
equational system relating the constructors of the data structures into two parts:
(i) equations which can be oriented and completed into a convergent subsystem,
and (ii) the remaining equations. Rewriting in an equational rewrite system is
then done using normalized rewriting1 à la Marché [17]. Before rewriting a term,
the constructor-terms in the redex are first normalized, and rewriting is thus
performed on normalized terms. This approach towards equational rewriting
has the major advantage that algorithms can be specified elegantly since, in the
specification, the constructor-terms can be assumed to be in normalized form.

Example 1. As an example, we consider the data structure of integers that are
built using the constructors 0, s (successor), and p (predecessor). We have the
relations E = {p(s(u)) ≈ s(p(u)), p(s(u)) ≈ u} between these constructors.
Defining a simple predicate pos, which checks whether an integer is strictly
positive, is highly nontrivial with ordinary equational rewriting. Using the ap-
proach of normalized rewriting, we can split E into E1 = {p(s(u)) ≈ s(p(u))}
and E2 = {p(s(u)) ≈ u}, where E2 can be oriented into S = {p(s(u)) → u},
which is convergent modulo E1. Using normalized rewriting, it is now straight-
forward to define pos by the rewrite rules R = {pos(0) → false, pos(s(x)) →
true, pos(p(x)) → false}. The predicate pos indeed correctly determines whether
its argument is strictly positive for constructor ground terms since normaliz-
ing produces a term of the form 0, si(0), or pi(0) for some i > 0. In contrast,
evaluation with ordinary equational rewriting using R and E does not yield
the desired result since, for example, pos(s(p(p(0)))) can be rewritten to true,
although s(p(p(0))) represents the negative integer −1. ♦

The results in this paper rely on the property that no equations involving defined
symbols (i.e., outermost symbols of left sides of rules in the rewrite system) are
allowed. Firstly, this allows us to permit collapsing equations as well, which
are not permitted in [6]. Note that orientable equations need not be treated as
rewrite rules. Instead, our method provides a uniform framework for termination
analysis in both cases. Secondly, even though we allow collapsing equations, the
proposed approach is conceptually simpler than the one in [6] since we do not
need to consider instantiations of rewrite rules. These instantiations are needed
1 Strictly speaking this should be called normalized equational rewriting. We are fol-

lowing Marché’s convention of calling it normalized rewriting.
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for correctness of the method in [6] and can cause problems since they may
generate a huge number of rules. Thirdly, using normalized rewriting also enables
us to consider equations that do not have identical unique variables, which is
another severe restriction of the method in [6]. We allow equations that do
not have identical unique variables as long as they can be oriented into rewrite
rules. All of these features significantly increase the scope of applicability of the
dependency pair approach. The proposed method for showing termination of
normalized rewriting has not been implemented yet, but we believe that it can
be easily incorporated into a termination tool implementing the dependency pair
framework such as AProVE [8].

The paper is organized as follows. In Section 2, we review equational rewriting
and, in particular, the distinction between rewriting modulo E and E-extended
rewriting. Normalized rewriting is then discussed in Section 3. It is argued that
algorithms can be specified elegantly and in a natural way using S-normalized
E-extended rewriting, in which constructor-terms in the redex are first normal-
ized using S modulo E , where S is a convergent system capturing (some of the)
relations on constructors. In Section 4, the dependency pair method is extended
to normalized rewriting. It is shown that if there are no infinite chains of de-
pendency pairs, then S-normalized E-extended rewriting is terminating. A first
method for automatically showing that there are no such chains is presented.
It uses so-called reduction pairs, which are widely used in the dependency pair
approach. Reduction pairs have the advantage that they do not need to be mono-
tonic. In Section 5, we extend the recently formulated dependency pair frame-
work to the context of normalized rewriting. This allows flexibility in establishing
the termination of complex rewrite systems including the sequent calculus, CCS,
etc. In Section 6, dependency pair (DP) processors are discussed. A DP processor
transforms a DP problem into a finite set of simpler DP problems in such a way
that termination of the simpler DP problems implies termination of the origi-
nal DP problem. The DP processors presented make use of dependency graphs,
reduction pairs, removal of rules, and narrowing.

The method has been applied to interesting and nontrivial examples, many
of which cannot be handled otherwise. The Appendix includes an equational
rewrite system for the Propositional Sequent Calculus, whose termination can
be established using the proposed approach. Due to lack of space, many proofs
and detailed discussion of the nontrivial examples are omitted. They may be
found in the extended version of this paper [5].

2 Equational Rewriting

We assume familiarity with the concepts of term rewriting [2] and fix some no-
tation in the following. For a finite signature F and an infinite set V of variables
the set of terms over F and V is denoted by T (F ,V). We often write s∗ to denote
a tuple of terms s1, . . . , sn for some n ≥ 0. The set of function symbols occurring
in the term t is denoted by F(t). Similarly, V(t) denotes the variables occurring
in t. These operations naturally extends to sets of terms, pairs of terms, and sets
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of pairs of terms. The outermost function symbol of the term t is denoted by
root(t).

An equational system (ES) is a finite set E = {u1 ≈ v1, . . . , um ≈ vm} of
equations, and a term rewrite system (TRS) is a finite set of oriented equations
(called rules) R = {l1 → r1, . . . , ln → rn}, where li �∈ V and V(ri) ⊆ V(li) for all
1 ≤ i ≤ n. The defined symbols of a TRS R are the symbols occurring as root(l)
for some rule l → r in R. The set of defined symbols of R is denoted by D(R).
The remaining symbols of F(R) are constructors.

For an ES E (resp. TRS R), we write s →E t (resp. s →R t) iff there exist an
equation l ≈ r in E (resp. rule l → r in R), a substitution σ, and a position p
in s such that s|p = lσ and t = s[rσ]p. The symmetric closure of →E is denoted
by �)E , and the reflexive-transitive closure of �)E is denoted by ∼E . For tuples
s∗, t∗ of the same length n, we write s∗ ∼E t∗ iff si ∼E ti for all 1 ≤ i ≤ n.

Definition 2 (Rewriting Modulo E). Let R be a TRS and let E be an ES.
The term s rewrites modulo E to the term t, written s →R/E t, iff s′ →R t′ for
some terms s′ ∼E s and t′ ∼E t.

Thus, in order to determine whether a term s is reducible w.r.t. →R/E , a term
that is equivalent to s up to ∼E and reducible by →R has to be found. If the
E-equivalence classes are impractically large or even infinite this is not feasible.
To avoid this problem, virtually all implementations (e.g., ELAN [14] and Maude
[3]) use E-extended rewriting, which builds the equivalence up to ∼E into the
matching process.

Definition 3 (E-Extended Rewriting). Let R be a TRS and let E be an ES.
The term s rewrites E-extended to the term t, written s →E\R t, iff s|p ∼E lσ
and t = s[rσ]p for some rule l → r in R, substitution σ, and position p in s.

An equation u ≈ v is collapsing iff u ∈ V or v ∈ V , and an ES is said to be
collapsing iff it contains a collapsing equation.

Definition 4 (Identical Unique Variables). Let E be an ES. Then E has
identical unique variables (E is i.u.v.) iff u, v are linear and V(u) = V(v) for all
equations u ≈ v in E.

In this paper we restrict ourselves to i.u.v. ESs. Note, however, that we do allow
collapsing equations, in contrast to [6]. Two important cases of i.u.v. ESs are
the following, which state that a binary function symbol f is associative and
commutative, possibly with a unit 0.

ACf = {f(u, f(v, w)) ≈ f(f(u, v), w), f(u, v) ≈ f(v, u)}
ACUf,0 = ACf ∪ {f(u, 0) ≈ u}

Note that equations like f(u, u) ≈ u, f(u, 0) ≈ 0 and f(u, u) ≈ 0 are not allowed
since they are nonlinear and/or not variable-preserving.

The reason for the restriction to i.u.v. ESs is the following lemma, which
does not hold true if E is not i.u.v. Intuitively, it states that subterms t with
root(t) �∈ F(E) persist (modulo E) in terms that are equivalent up to ∼E .
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Lemma 5. Let E be an i.u.v. ES and let C[f(s∗)] ∼E t for some context C,
some term f(s∗) with f �∈ F(E), and some term t. Then t = C′[f(s′∗)] for some
context C′ ∼E C and some term f(s′∗) such that s∗ ∼E s′∗.

3 S-Normalized Rewriting

In this paper we are concerned with proving termination of rewriting with a TRS
R and an i.u.v. ES E , where F(E) does not contain any defined symbols from
R. Thus, E is an ES of constructors which specifies some properties of the data
structures that the functions defined by R operate on. The first problem that
is encountered is that E-extended rewriting does not terminate in many cases
where E is an i.u.v. ES of constructors that is collapsing.

Example 6. Let E = ACU+,0 and R = {(x + y) · z → x · z + y · z}. Then →E\R
is not terminating since

0 · z ∼E (0 + 0) · z →R 0 · z + 0 · z ∼E (0 + 0) · z + 0 · z →R . . .

is an infinite →E\R reduction. ♦
To overcome problems like this, the notion of normalized rewriting was intro-
duced by Marché in [17]. In the following we use a slight variation of this notion.
The idea is to split an ES E , which does not necessarily need to be i.u.v., into ESs
E1 and E2 such that E1 is i.u.v. and E2 contains the remaining equations. Then,
E2 is completed2 into a TRS S that is convergent modulo E1. Here, convergence
modulo E1 is defined as follows.

Definition 7 (Confluence and Convergence Modulo E). Let S be a TRS
and let E be an ES. Then S is confluent modulo E iff whenever t →∗

S/E t1 and
t →∗

S/E t2 for some terms t, t1, t2, then there exist terms s1, s2 with s1 ∼E s2 such
that t1 →∗

S/E s1 and t2 →∗
S/E s2 (thus, ←∗

S/E ◦ →∗
S/E ⊆ →∗

S/E ◦ ∼E ◦ ←∗
S/E)3.

The TRS S is convergent modulo E iff →S/E is terminating and S is confluent
modulo E.

Note that t ∼E1 t′ implies t↓S/E1 ∼E1 t′ ↓S/E1 if S is convergent modulo E1,
where t↓S/E1 denotes the normal form of t w.r.t. →S/E1 . We write t →!

S/E1
q iff

t →∗
S/E1

q and q is a normal form of t.
In the following table we list how some commonly occurring, not necessarily

i.u.v., ESs E can be split into an i.u.v. ES E1 and a TRS S that is convergent
modulo E1.

E E1 S
ACf ACf ∅
ACUf,0 ACf {f(u, 0) → u}
ACIf = ACf ∪ {f(u, u) ≈ u} ACf {f(u, u) → u}
ACUIf,0 = ACIf ∪ ACUf,0 ACf {f(u, 0) → u, f(u, u) → u}
AC0f,0 = ACf ∪ {f(u, 0) ≈ 0} ACf {f(u, 0) → 0}
ACNf,0 = ACf ∪ {f(u, u) ≈ 0} ACf {f(u, u) → 0}

2 In general, this requires E1-unification.
3 Here, ◦ denotes composition of relations, i.e., t ��1 ◦ ��2 q iff t ��1 s ��2 q for some s.
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As mentioned in Section 2, rewriting with →R/E tends to be infeasible and
rewriting with →E\R should be used instead. Now →E\R is clearly contained
in →R/E , but the converse is not true in general4. For a certain class of TRSs,
however, →E\R and →R/E are essentially the same.

Definition 8 (Complete TRSs). Let R be a TRS and let E be an i.u.v. ES.
Then R is complete modulo E iff →R/E ⊆ →E\R ◦ ∼E , i.e., whenever s →R/E t,
then there exists a t′ ∼E t such that s →E\R t′.

In the following we assume that S is complete modulo E . For S to satisfy
Definition 8, an extension using ExtE(S) might be needed, see [19,6]. In case
E =

⋃
f∈G ACf for some set G of binary functions the extension can be achieved

by adding rules f(l, z) → f(r, z) for all rules l → r ∈ S with root(l) = f ∈ G,
where z is a fresh variable. If the rule l → r AC-matches the extended rule
f(l, z) → f(r, z), then the extended rule does not need to be added, see [4,
Lemma 6.3]. For example, the extension of f(u, u) → u for an AC-symbol
f is f(f(u, u), v) → f(u, v) for a fresh variable v. Similarly, the extension of
f(u, 0) → u is f(f(u, 0), v) → f(u, v) for a fresh variable v, but this extension
does not need to be added since the rule f(u, 0) → u AC-matches it.

Since we are only interested in rewriting with non-free constructors, neither
S nor E contain any defined symbols from R. We thus have the following case.

Definition 9 (Equational Systems). An equational system (R,S, E) consists
of two TRSs R and S and an i.u.v. ES E such that S is complete and convergent
modulo E and F(E) ∩D(R) = F(S) ∩ D(R) = ∅.
Now S-normalized E-extended rewriting is done with an equational system
(R,S, E), and intuitively the arguments to a defined function f need to be nor-
malized with →E\S before an f -rule from R may be applied.

Definition 10 (S-Normalized E-Extended Rewriting). Let (R,S, E) be an
equational system. The term t rewrites S-normalized E-extended to the term q,
written t

S→E\R q, iff t|p↓E\S ∼E lσ and q = t[rσ]p for some rule l → r in R,
some position p with root(t|p) = root(l) in t, and some substitution σ.

Our notion of S-normalized rewriting differs from [17] in that we only normalize
the redex w.r.t. →E\S before the rule from R is applied, while in [17] the whole
term needs to be normalized w.r.t. →E\S .

Example 11. Continuing Example 6, we can split E into E1 = AC+ and E2 =
{u + 0 ≈ u}. Then E2 can be completed into the TRS S = {u + 0 → u}, which
is convergent modulo E1 and does not need to be extended. Thus, (R,S, E1) is
an equational system and the infinite reduction from Example 6 is not possible
anymore if S→E1\R is used since 0 · z is in normal form w.r.t. →E1\S and no rule
of R applies. Also, the infinite reduction starting with (0 + 0) · z is not possible
anymore since (0 + 0) · z would need to be normalized w.r.t. →E1\S first, which
again gives 0 · z. ♦
4 Consider E = {f(a) ≈ f(b)} and R = {a → c}. Then f(b) →R/E f(c), but f(b) is not

reducible by →E\R.
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Apart from resulting in a terminating rewrite process in cases where →E\R is
not terminating, S-normalized rewriting also has the advantage of giving rise
to “natural” function definitions since we can assume that the arguments to a
function are in normal form w.r.t. →E\S before the function is evaluated. This
would not be true if →E\R∪S is used instead.

Example 12. Example 1 already showed an equational system where →E\R∪S

gives “wrong” results, while S→E\R is correct. Even more severely, →E\R∪S might

not terminate while S→E\R does terminate. We define a function for determining
whether an integer is non-negative by R = {nonneg(0) → true, nonneg(s(x)) →
nonneg(p(s(x)), nonneg(p(x)) → false}, and let E1 and S be as in Example 1.
Then →E1\R∪S does not terminate since

nonneg(s(x)) →E1\R∪S nonneg(p(s(x)))
→E1\R∪S nonneg(p(s(p(x))))
→E1\R∪S . . .

In contrast, S→E1\R is terminating since p(s(x)) in the recursive call of nonneg is
normalized to x before the nonneg-rule can be applied again. ♦

4 Dependency Pairs

In this section we present a termination criterion for normalized rewriting with
equational systems that is based on dependency pairs. As usual in any approach
based on dependency pairs (see, e.g., [1,6]), we extend F by a fresh tuple symbol
f � for each defined symbol f ∈ D(R), where f � has the same arity as f . For any
term t = f(t∗), we denote the term f �(t∗) by t�. The notion of a dependency pair
is the standard one [1]. Due to the restriction to equations between constructors
only we do not need to add instantiations of rules, which is needed in [6].

Definition 13 (Dependency Pairs). The set of dependency pairs for a TRS
R is DP(R) = {l� → t� | l → r ∈ R, t is a subterm of r with root(t) ∈ D(R)}.

In order to verify termination we rely on the notion of chains. Intuitively, a
dependency pair corresponds to a recursive call, and a chain represents a pos-
sible sequence of calls in a reduction. In the following we always assume that
different occurrences of (dependency) pairs are variable disjoint, and we consider
substitutions whose domain may be infinite.

Definition 14 ((P ,R,S, E)-Chains). Let P be a set of pairs and let (R,S, E)
be an equational system. A (possibly infinite) sequence of pairs s1 → t1, s2 →
t2, . . . from P is a (P ,R,S, E)-chain iff there exists a substitution σ such that
tiσ

S→E\R→∗ ◦ →!
E\S ◦ ∼E si+1σ and siσ is in normal form w.r.t. →E\S for all

i ≥ 1.

Here, tiσ
S→E\R→∗ ◦ →!

E\S ◦ ∼E si+1σ means that tiσ can be rewritten to a term
to which the dependency pair si+1 → ti+1 can be applied.



Dependency Pairs for Rewriting with Non-free Constructors 433

Example 15. We consider the following equational system (R,S, E):

R : p(0) → 0 S : u + 0 → u
p(s(x)) → x u + s(v) → s(u + v)
x− 0 → x (u + s(v)) + w → s(u + v) + w

x− s(y) → p(x− y) E : u + (v + w) ≈ (u + v) + w
u + v ≈ v + u

Here, S and E were obtained from the ES {u+0 ≈ u, u+ s(v) ≈ s(u+v)}∪AC+,
which specifies properties of the natural numbers in Peano representation. The
third rule in S is the extension of the second rule. Then DP(R) contains the
dependency pairs

x−� s(y) → x−� y, x−� s(y) → p�(x− y).

Using the first dependency pair twice, we can construct the chain

x1 −� s(y1) → x1 −� y1, x2 −� s(y2) → x2 −� y2

by considering the substitution σ with x1σ = 0, x2σ = 0, y1σ = s(0), y2σ = 0. For
this substitution, the instantiated right side of the first pair is 0−� s(0), the same
as the instantiated left side of the second pair. Furthermore, both instantiated
left sides, 0 −� s(s(0)) and 0 −� s(0), are in normal form w.r.t. →E\S . ♦

Using chains, we obtain the following termination criterion, which is the key
result of the dependency pair approach.

Theorem 16. Let (R,S, E) be an equational system. If there are no infinite
(DP(R),R,S, E)-chains, then S→E\R is terminating.

The proof of this theorem is similar to the proof of the corresponding theorem
for regular rewriting ([1, Theorem 6]). In our framework, we need the following
important property of normalized rewriting with an equational system: if s S→E\R

t and s′ ∼E s, then s′
S→E\R t′ for some t′ ∼E t. For a full proof see [5].

Theorem 16 gives rise to a termination criterion which uses reduction pairs
[15], which are commonly used in conjunction with dependency pairs.

Definition 17 (Reduction Pairs). Let � be reflexive, transitive, monotonic,
and stable5. Let - be well-founded and stable. Then (�,-) is a reduction pair
iff - is compatible with �, i.e., iff � ◦ - ⊆ - or - ◦ � ⊆ -. We denote the
equivalence part � ∩ �−1 by ∼.

Note that - does not need to be monotonic in a reduction pair. This is the main
advantage of the dependency pair approach which enables proving termination
of many rewrite systems where simplification orders fail. In order to generate
reduction pairs automatically, (monotonic) simplification orders are often used.

5 A relation �� on terms is monotonic iff s �� t implies C[s] �� C[t] for all contexts C.
It is stable iff s �� t implies sσ �� tσ for all substitutions σ.
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To benefit from the possibility that - does not need to be monotonic, argument
filterings (which allow the deletion of certain function symbols and arguments)
are commonly used in combination with monotonic orders (see [1]).

In the following, let P�� = {(s, t) ∈ P | s � t} for any set P of pairs of
terms and any relation � . Thus, for example, R� = R means that l � r for all
l → r ∈ R.

Theorem 18. Let (R,S, E) be an equational system. Then S→E\R is terminating
if there exists a reduction pair (�,-) such that
(i) DP(R)� = DP(R), (ii) R� = R, (iii) S� = S, and (iv) E∼ = E.

Proof. Assume there exists an infinite (DP(R),R,S, E)-chain s1 → t1, s2 →
t2, . . .. Thus, there exists a substitution σ such that tiσ

S→E\R→∗ ◦ →!
E\S ◦ ∼E

si+1σ for all i ≥ 1.
Since l � r for all l → r ∈ R ∪ S and u ∼ v for all u ≈ v ∈ E , we have

tiσ � si+1σ. Hence, the infinite chain gives rise to

s1σ - t1σ � s2σ - t2σ � . . .

since si - ti for all pairs si → ti ∈ DP(R). Using the compatibility of - with
�, this contradicts the well-foundedness of -. Thus, there are no infinite chains
and S→E\R is terminating by Theorem 16. ��

Example 19. We now apply Theorem 18 in order to show that S→E\R is termi-
nating, where (R,S, E) is the equational system from Example 15. Thus, we
need to find a reduction pair (�,-) such that

x−� s(y) - x−� y u + 0 � u
x−� s(y) - p�(x− y) u + s(v) � s(u + v)

x− 0 � x (u + s(v)) + w � s(u + v) + w
x− s(y) � p(x− y) u + (v + w) ∼ (u + v) + w

p(0) � 0 u + v ∼ v + u
p(s(x)) � x

Using the reduction pair based on the polynomial order induced by Pol(0) =
0,Pol(s(x)) = x + 1,Pol(x + y) = x + y,Pol(p(x)) = x,Pol (p�(x)) = x,Pol(x −
y) = x + y, and Pol(x−� y) = x + y, these constraints are satisfied. ♦

5 Dependency Pair Framework

Theorem 16 provides a first method for proving termination, but this method
is inflexible. For regular rewriting, a huge number of techniques has been devel-
oped atop the basic dependency pair approach (see, e.g., [9,11,10]). In order to
show soundness of these techniques independently, and in order to be able to
freely combine them in a flexible manner in implementations like AProVE [8],
the notions of DP problems and DP processors were introduced in the context of
regular rewriting in [9], giving rise to the DP framework. In [21] the DP frame-
work was extended to equational rewriting under the restrictions of [6]. Here, we
extend these notions to normalized rewriting.
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Definition 20 (DP Problems). A DP problem is a tuple (P ,R,S, E) where
P is a set of pairs and (R,S, E) is an equational system.

DP problems are now classified according to whether they allow the construction
of infinite chains.

Definition 21 (Finite DP Problems). A DP problem (P ,R,S, E) is finite
iff there do not exist infinite (P ,R,S, E)-chains. Otherwise, the DP problem is
infinite6.

According to Theorem 16 we are interested in showing that the DP problem
(DP(R),R,S, E) is finite for an equational system (R,S, E). In order to show
the finiteness of a DP problem, it is transformed into a set of DP problems
whose finiteness has to be shown instead. This transformation is done by DP
processors.

Definition 22 (DP Processors). A DP processor is a function Proc which
takes a DP problem as input and returns a set of DP problems as output. Proc
is sound iff for all DP problems (P ,R,S, E) the finiteness of all DP problems in
Proc(P ,R,S, E) implies the finiteness of (P ,R,S, E).

Note that Proc(P ,R,S, E) = {(P ,R,S, E)} is possible. This can be interpreted
as a failure of Proc on its input and indicates that a different DP processor
should be applied. The following is immediate from Definition 21, Definition 22,
and Theorem 16.

Corollary 23. Let (R,S, E) be an equational system. Assume there exists a tree
whose nodes are labelled with DP problems or “yes” and whose root is labelled
with (DP(R),R,S, E) such that for every internal node r labelled with the DP
problem d there is a sound DP processor Proc satisfying one of the following
conditions:

• Proc(d) = ∅ and r has just one child, labelled with “yes”, or
• Proc(d) �= ∅ and for each DP problem d′ ∈ Proc(d) the node r has a child

labelled with d′.

If all leaves of the tree are labelled with “yes”, then S→E\R is terminating.

6 DP Processors

In this section we introduce a variety of DP processors and prove their soundness.
Most DP processors are inspired by similar DP processors in the context of
regular rewriting (see [9,10]).

6 Note that this definition of (in)finite DP problems is simpler than the one used in
[9]. This simpler notion is sufficient for our purposes.
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6.1 A DP Processor Based on Dependency Graphs

The DP processor introduced in this section decomposes a DP problem into
several independent DP problems by determining which pairs of P may follow
each other in a (P ,R,S, E)-chain. The processor relies on the dependency graph,
which is also used in regular rewriting (see [1]).

Definition 24 (Dependency Graphs). Let (P ,R,S, E) be a DP problem. The
nodes of the (P ,R,S, E)-dependency graph DG(P ,R,S, E) are the pairs in P and
there is an arc from s1 → t1 to s2 → t2 iff s1 → t1, s2 → t2 is a (P ,R,S, E)-chain.

A set P ′ ⊆ P of pairs is a cycle iff for all pairs s1 → t1 and s2 → t2 in P ′

there exists a path from s1 → t1 to s2 → t2 that only traverses pairs from P ′.
A cycle is a strongly connected component (SCC) if it is not a proper subset of
any other cycle7. Now, every infinite (P ,R,S, E)-chain corresponds to a cycle in
DG(P ,R,S, E), and it is thus sufficient to prove the absence of infinite chains
for all SCCs.

In general DG(P ,R,S, E) cannot be computed exactly since it is undecidable
whether two pairs form a chain. Thus, an estimation has to be used instead.
The idea of the estimation is that subterms of t1 with a defined root symbol
are abstracted by a fresh variable. Then, it is checked whether this term and
s2 are E ∪ S-unifiable. This computation of the estimated dependency graph
EDG(P ,R,S, E) also makes use of the information that certain terms in a chain
are in normal form w.r.t. →E\S .

Definition 25 (Estimated Dependency Graphs). Let (P ,R,S, E) be a DP
problem. The estimated (P ,R,S, E)-dependency graph EDG(P ,R,S, E) has the
pairs in P as nodes and there is an arc from s1 → t1 to s2 → t2 iff cap(t1) and
s2 are E ∪ S-unifiable with an unifier μ such that s1μ and s2μ are in normal
form w.r.t. →E\S . Here, cap is defined as

cap(x) = y for variables x

cap(f(t1, . . . , tn)) =

{
y if f ∈ D(R)
f(cap(t1), . . . ,cap(tn)) if f �∈ D(R)

where y is the next variable in an infinite list y1, y2, . . . of fresh variables.

Example 26. With P = {x −� s(y) → x −� y, x −� s(y) → p�(x − y)} and R,S
and E as in Example 15 we obtain the following EDG(P ,R,S, E). Since terms
headed by p� do not E ∪ S-unify with terms headed by −�, there is no arc from
the lower dependency pair to itself or to the upper dependency pair.

x−� s(y) → p�(x− y)

x−� s(y) → x−� y

♦

7 Note that the notions of cycle and SCC are different from the ones used in graph
theory. We follow the notions used in the dependency pair literature.



Dependency Pairs for Rewriting with Non-free Constructors 437

In this example, EDG(P ,R,S, E) and DG(P ,R,S, E) coincide, but in general
EDG(P ,R,S, E) is a supergraph of DG(P ,R,S, E). The following DP processor
is sound for DG(P ,R,S, E), and hence also for EDG(P ,R,S, E).

Theorem 27 (DP Processor Based on Dependency Graphs). Let Proc be
a DP processor with Proc(P ,R,S, E) = {(P1,R,S, E), . . . , (Pn,R,S, E)}, where
P1, . . . ,Pn are the SCCs of (E)DG(P ,R,S, E)8. Then Proc is sound.

Proof. After a finite number of pairs in the beginning, any infinite (P ,R,S, E)-
chain only contains pairs from some SCC. Hence, every infinite (P ,R,S, E)-chain
gives rise to an infinite (Pi,R,S, E)-chain for some 1 ≤ i ≤ n. ��

Example 28. Continuing Example 26 we have Proc(P ,R,S, E) = {({x−� s(y) →
x−� y},R,S, E)}. ♦

6.2 A DP Processor Based on Reduction Pairs

The DP processor presented in this section is closely related to the first termina-
tion criterion given in Theorem 18. It now, however, operates on DP problems
(P ,R,S, E), and we do not require all pairs in P to be strictly decreasing.

Theorem 29 (DP Processor Based on Reduction Pairs). Let (�,-) be a
reduction pair. The DP processor Proc is sound, where Proc(P ,R,S, E) returns

• {(P − P�,R,S, E)}, if
(i) P� ∪ P� = P, (ii) R� = R, (iii) S� = S, and (iv) E∼ = E.

• {(P ,R,S, E)}, otherwise.

Proof. The proof for the first case is similar to the proof of Theorem 18. Since
P is finite, any infinite (P ,R,S, E)-chain has to traverse at least one pair from
P infinitely often. These pairs cannot be in P� since this would contradict the
well-foundedness of -. In the other case soundness is obvious. ��

Example 30. We consider the DP problem (P ,R,S, E) with P = {x −� s(y) →
x −� y} from Example 28. Using the reduction pair based on the polynomial
order induced by Pol(0) = 0,Pol(s(x)) = x + 1,Pol(x + y) = x + y,Pol(p(x)) =
x,Pol(x − y) = x + y, and Pol(x −� y) = x + y the constraints for the first
case of Theorem 29 are satisfied and the (only) pair x −� s(y) → x −� y is
strictly decreasing. It can thus be removed and we obtain the trivial DP problem
(∅,R,S, E). ♦

6.3 A DP Processor Based on Removal of Rules

In this section we present a DP processor for the modular removal of rules. For
this, a DP problem (P ,R,S, E) may be processed with a monotonic reduction
pair (�,-). Then, rules l → r ∈ R satisfying l - r may be removed. For regular
rewriting a corresponding DP processor was introduced in [22].
8 Note, in particular, that Proc(∅,R,S ,E) = ∅.
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Theorem 31 (DP Processor Based on Removal of Rules). Let (�,-) be
a reduction pair where - is monotonic. The DP processor Proc is sound, where
Proc(P ,R,S, E) returns

• {(P − P�,R−R�,S, E)}, if
(i) P� ∪ P� = P, (ii) R� ∪R� = R, (iii) S� = S, and (iv) E∼ = E.

• {(P ,R,S, E)}, otherwise.

Removing rules has several advantages. Firstly, it might be possible to remove
“problematic” rules which prevent finding a reduction pair which yields a strict
decrease in at least one pair of P . Secondly, it might happen that P contains no
cycle anymore after some rules are removed from R since some defined symbols
might become constructors.

Example 32. We take the equational system from Example 15, but replace the
second “−”-rule by

x− s(y) → p(x− p(s(y)))

After computing the estimated dependency graph, we obtain the DP problem
(P ,R,S, E) with P = {x −� s(y) → x −� p(s(y))}. In order to apply the DP
processor from Theorem 29 we need to find a reduction pair (�,-) such that
x −� s(y) - x −� p(s(y)) and p(s(x)) � x. It can be shown that there does not
exist a reduction pair based on a simplification order with an argument filtering
that satisfies these constraints, i.e., an automated proof will most likely fail.

Instead, we may apply the DP processor from Theorem 31 with the mono-
tonic polynomial order induced by Pol(0) = 0,Pol(s(x)) = x + 1,Pol(p(x)) =
x,Pol(x + y) = Pol(x − y) = Pol(x −� y) = x + y. Then all of P ,R and S
are at least weakly decreasing, and the rule p(s(x)) → x is strictly decreasing
and can thus be removed. Next, we can apply the DP processor from Theorem
29 with the polynomial order based on Pol(0) = Pol(p(x)) = 0,Pol(s(x)) =
x + 1,Pol(x + y) = Pol(x − y) = Pol(x −� y) = x + y. Then, the pair in P is
strictly decreasing and all rules in R and S are at least weakly decreasing, i.e.,
we obtain the trivial DP problem (∅,R,S, E). ♦

As mentioned in [22], the DP processor from Theorem 31 can be automated
efficiently by using monotonic polynomial orders induced by linear polynomials.

6.4 A DP Processor Based on Narrowing

In the context of regular rewriting it is often necessary to apply transformations
to the dependency pairs in a cycle in order to obtain a successful termination
proof (see [1,10]). In this section we introduce one such transformation within
our framework.

First, note that S→E\R is contained in →E\R∪S , and we may thus show absence
of infinite (P ,R∪ S, E)-chains instead of absence of infinite (P ,R,S, E)-chains.
Here, a (P ,R ∪ S, E)-chain is defined similarly to a (P ,R,S, E)-chain by using
→E\R∪S instead of S→E\R. The DP processors of Sections 6.1–6.3 can easily be
adapted to handle these two kinds of DP problems. For details see [5].



Dependency Pairs for Rewriting with Non-free Constructors 439

If it now can be ensured that for each (P ,R ∪ S, E)-chain containing a pair
s → t, the reduction from the instantiation of t to the instantiation of the left
side of the next pair in the chain requires at least one →E\R∪S-step, then we
can perform all possible →E\R∪S-reductions in order to obtain new pairs that
replace the pair s → t. Since we need to determine the instantiations of t, we
use narrowing. Narrowing of dependency pairs has also been considered in [1,4].

Theorem 33 (DP Processor Based on Narrowing). The DP processor
Proc is sound, where Proc(P ∪ {s → t},R∪ S, E) returns

• (P ∪ {sμ → t′ | t �μ
E\R∪S t′},R∪ S, E)9, if

– t is linear, and
– t is not E-unifiable with any (variable-renamed) left side of a pair in

P ∪ {s → t}.
• (P ∪ {s → t},R∪ S, E), otherwise.

Example 34. We again consider the DP problem (P ,R,S, E) from Example 32.
As mentioned above, it suffices to show absence of infinite (P ,R∪ S, E)-chains.
For this we first apply the DP processor from Theorem 33 to the only pair
x−� s(y) → x−� p(s(y)), which has a linear right side that does not E-unify with
the (variable-renamed) left side. We can thus replace that pair by its narrowings.
The only narrowing of the pair is the pair x−� s(y) → x−� y, resulting in a DP
problem that can be handled like the one in Example 30. ♦

7 Conclusions

We have proposed normalized rewriting as an alternative to E-extended rewrit-
ing for equational rewrite systems in which equations only relate constructors.
The paper extends the dependency pair framework in order to establish termi-
nation of normalized rewriting for such equational rewrite systems. It is shown
that whereas E-extended rewriting for such systems may not terminate, nor-
malized rewriting often does terminate. Based on our experience in specifying a
number of examples on data structures generated by non-free constructors, we
are convinced that algorithms can be specified naturally and elegantly as rewrite
systems for normalized rewriting (pos is one such example). Unlike previous re-
lated work [6], the equations relating constructors may be collapsing and, in
some cases, do not need to have identical unique variables. In particular, prop-
erties such as idempotency, identity, etc., of constructors on data structures are
allowed.

Many functional programming languages use eager evaluation as the evalua-
tion strategy. Then, termination of the functional program corresponds to inner-
most termination of the equational rewrite system. We believe that our method
can be extended to show innermost termination, similarly to how this can be
done for regular rewriting [1]. This needs to be investigated. An implementation
of the proposed approach in AProVE [8] is planned.
9 Here, t �μ

E\R∪S t′ denotes that t narrows to t′ using the substitution μ. For full

details see [5].
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A Propositional Sequent Calculus

We consider the propositional sequent calculus for formulas built from ∧ and
¬. Sequents are built from two sets of formulas using =⇒. Sets of formulas are
built from the empty set ∅ using “,” to add a formula to a set. Similarly, sets of
sequents are built using  and •. Properties of sets are modelled using

E : u, (v, w) ≈ v, (u,w) S: u, (u, v) → u, v
u • (v • w) ≈ v • (u • w) u • (u • v) → u • v

Now the sequent calculus rules for ∧ and ¬ are specified by

R: eval() → 
eval((x, y =⇒ x, z) • s) → eval(s)
eval((¬x, y =⇒ z) • s) → eval((y =⇒ x, z) • s)
eval((x =⇒ ¬y, z) • s) → eval((y, x =⇒ z) • s)

eval((x ∧ y, z =⇒ z′) • s) → eval((x, (y, z) =⇒ z′) • s)
eval((x =⇒ y ∧ z, z′) • s) → eval((x =⇒ y, z′) • ((x =⇒ z, z′) • s))

For example, the last rewrite rule in R corresponds to the sequent calculus rule

(=⇒ ∧)
Γ =⇒ Δ,ψ Γ =⇒ Δ,φ

Γ =⇒ Δ,ψ ∧ φ

Now evaluation w.r.t. S→E\R provides a way to prove validity of sequents, pro-

vided that S→E\R is terminating.
The TRS R has the following five dependency pairs.

eval�((x, y =⇒ x, z) • s) → eval�(s)
eval�((¬x, y =⇒ z) • s) → eval�((y =⇒ x, z) • s)
eval�((x =⇒ ¬y, z) • s) → eval�((y, x =⇒ z) • s)

eval�((x ∧ y, z =⇒ z′) • s) → eval�((x, (y, z) =⇒ z′) • s)
eval�((x =⇒ y ∧ z, z′) • s) → eval�((x =⇒ y, z′) • ((x =⇒ z, z′) • s))

These dependency pairs form an SCC in the (estimated) dependency graph.
Termination can now be shown using the DP processor of Theorem 29 three
times, with different reduction pairs based on polynomial orders.

We first apply the polynomial order induced by Pol(x ∧ y) = xy + x + y + 1,
Pol(¬x) = x, Pol(x =⇒ y) = xy + x + y, Pol(x, y) = xy + x + y, Pol() =
0, Pol(x • y) = x + y, Pol(eval(x)) = 0, Pol(eval�(x)) = x. In this order, all
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dependency pairs are at least weakly decreasing. The fourth and fifth dependency
pairs are strictly decreasing and may thus be removed.

Next, using the polynomial order induced by Pol(x∧y) = 0, Pol(¬x) = x+1,
Pol(x =⇒ y) = x + y, Pol(x, y) = x + y, Pol() = 0, Pol(x • y) = x + y,
Pol(eval(x)) = 0, Pol(eval�(x)) = x, the second and third dependency pairs can
be removed.

Finally, the polynomial order induced by Pol(x ∧ y) = 0, Pol(¬x) = 0,
Pol(x =⇒ y) = 0, Pol(x, y) = 0, Pol() = 0, Pol(x•y) = y+1, Pol(eval(x)) = 0,
Pol(eval�(x)) = x orients the remaining (first) dependency pair. This concludes
the proof of termination of S→E\R.
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Abstract. Most methods for termination analysis of term rewrite sys-
tems (TRSs) essentially try to find arguments of functions that decrease
in recursive calls. However, they fail if the reason for termination is that
an argument is increased in recursive calls repeatedly until it reaches
a bound. In this paper, we solve that problem and show how to prove
innermost termination of TRSs with bounded increase automatically.

1 Introduction

In programming, one often writes algorithms that terminate because a value is in-
creased until it reaches a bound. Hence, to apply termination techniques of TRSs
in practice, they must be able to deal with those algorithms successfully. But un-
fortunately, all existing methods and tools for automated termination analysis of
TRSs fail on such examples. Therefore, proving termination of TRSs with boun-
ded increase was identified as one of the most urgent and challenging problems
at the annual International Competition of Termination Tools 2006 [16].

Example 1. As an example consider a TRS for subtraction. TRSs of this form
often result from the transformation of conditional TRSs or from functional,
logic, or imperative programs.

minus(x, y) → cond(gt(x, y), x, y) (1) gt(0, v) → false (4)
cond(false, x, y) → 0 (2) gt(s(u), 0) → true (5)
cond(true, x, y) → s(minus(x, s(y))) (3) gt(s(u), s(v)) → gt(u, v) (6)

To handle TRSs like Ex. 1, we propose to use polynomial interpretations [14].
But instead of classical polynomial interpretations on natural numbers, we use
interpretations on integers. Such interpretations can measure the difference be-
tween the first and second argument of minus. Indeed, minus is terminating since
this difference decreases in each recursive call. However, using integer polynomial
interpretations is unsound in the existing termination techniques for TRSs.

This is also true for the dependency pair (DP) method [1], which is a powerful
method for automated termination analysis of TRSs that is implemented in
virtually all current automated termination tools. This method relies on the use
of reduction pairs (�,-) to compare terms. Here, � is a stable quasi-order and -
� Supported by the Deutsche Forschungsgemeinschaft DFG under grant GI 274/5-1

and by the DFG Research Training Group 1298 (AlgoSyn).
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is a stable order, where � and - are compatible (i.e., - ◦ � ⊆ - or � ◦ - ⊆ -).
Moreover, � and - have to satisfy the following properties:

(a) � is monotonic (b) - is well founded

After recapitulating the DP method in Sect. 2, in Sect. 3 we extend it to
general reduction pairs (without requirements (a) and (b)). Then one can also
use reduction pairs based on integer polynomial interpretations, which violate
the requirements (a) and (b).

In Sect. 4 we extend the DP method further to exploit implicit conditions.
This is needed to prove that an increase is bounded. For instance, the recursive
call of minus in Ex. 1 only takes place under the condition gt(x, y) = true.1 With
our extensions, termination provers based on DPs can handle most algorithms
with bounded increase that typically occur in practice. In Sect. 5, we discuss the
implementation of our method in our termination tool AProVE [9].

2 Dependency Pairs

We assume familiarity with term rewriting [2] and briefly recapitulate the DP
method. See [1,8,10,12,13] for further motivations and extensions.

Definition 2 (Dependency Pairs). For a TRS R, the defined symbols D are
the root symbols of left-hand sides of rules. All other function symbols are called
constructors. For every defined symbol f ∈ D, we introduce a fresh tuple symbol
f � with the same arity. To ease readability, we often write F instead of f �, etc.
If t = f(t1, . . . , tn) with f ∈ D, we write t� for f �(t1, . . . , tn). If � → r ∈ R and t
is a subterm of r with defined root symbol, then the rule �� → t� is a dependency
pair of R. The set of all dependency pairs of R is denoted DP(R).

Ex. 1 has the following DPs, where MINUS is the tuple symbol for minus, etc.

MINUS(x, y)→COND(gt(x, y), x, y) (7) COND(true, x, y)→MINUS(x, s(y)) (9)
MINUS(x, y)→GT(x, y) (8) GT(s(u), s(v))→GT(u, v) (10)

In this paper, we only focus on innermost termination, i.e., we only regard the
innermost rewrite relation i→. The reason is that proving innermost termination
is considerably easier than proving full termination and there are large classes
of TRSs where innermost termination is already sufficient for termination. In
particular, this holds for non-overlapping TRSs like Ex. 1.
1 Proving termination of TRSs like Ex. 1 is far more difficult than proving termi-

nation of programs in a language where one uses a predefined function gt. (For
such languages, there already exist termination techniques that can handle certain
forms of bounded increase [5,15].) However, if a function like gt is not predefined but
written by the “user”, then the termination technique cannot presuppose any knowl-
edge about gt’s semantics. In contrast, the termination technique has to deduce any
needed informations about gt from the user-defined gt-rules.
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The main result of the DP method for innermost termination states that
a TRS R is innermost terminating iff there is no infinite minimal innermost
(DP (R),R)-chain. For any TRSs P and R, a minimal innermost (P ,R)-chain
is a sequence of (variable renamed) pairs s1 → t1, s2 → t2, . . . from P such that
there is a substitution σ (with possibly infinite domain) where tiσ

i→∗
R si+1σ,

all siσ are in normal form, and all tiσ are innermost terminating w.r.t. R.
Termination techniques are now called DP processors and they operate on sets

of dependency pairs (which are called DP problems).2 Formally, a DP processor
Proc takes a DP problem as input and returns a set of new DP problems which
then have to be solved instead. A processor Proc is sound if for all DP problems
P with infinite minimal innermost (P ,R)-chain there is also a P ′ ∈ Proc(P)
with infinite minimal innermost (P ′,R)-chain. Soundness of a DP processor is
required to prove innermost termination and in particular, to conclude that there
is no infinite minimal innermost (P ,R)-chain if Proc(P) = {∅}.

So innermost termination proofs in the DP framework start with the initial
DP problem DP (R). Then the DP problem is simplified repeatedly by sound
DP processors. If all resulting DP problems have been simplified to ∅, then
innermost termination is proved. In Thm. 3, we recapitulate one of the most
important processors of the framework, the so-called reduction pair processor.

For a DP problem P , the reduction pair processor generates inequality con-
straints which should be satisfied by a reduction pair (�,-). The constraints
require that all DPs in P are strictly or weakly decreasing and all usable rules
U(P) are weakly decreasing. Then one can delete all strictly decreasing DPs.

The usable rules include all rules that can reduce the terms in right-hand sides
of P when their variables are instantiated with normal forms. More precisely,
for a term containing a defined symbol f , all f -rules are usable. Moreover, if
the f -rules are usable and g occurs in the right-hand side of an f -rule, then the
g-rules are usable as well. In Thm. 3, note that both TRSs and relations can be
seen as sets of pairs of terms. Thus, “P \-” denotes {s → t ∈ P | s �- t}.
Theorem 3 (Reduction Pair Processor and Usable Rules). Let (�,-)
be a reduction pair. Then the following DP processor Proc is sound.

Proc(P) =
{
{P \-} if P ⊆ -∪ � and U(P) ⊆ �
{P } otherwise

For any function symbol f , let Rls(f) = {� → r ∈ R | root(�) = f}. For any
term t, the usable rules U(t) are the smallest set such that

• U(x) = ∅ for every variable x and
• U(f(t1, . . . , tn)) =Rls(f) ∪

⋃
�→r∈Rls(f) U(r) ∪

⋃n
i=1 U(ti)

For a set of dependency pairs P, its usable rules are U(P) =
⋃

s→t∈P U(t).

For the TRS of Ex. 1, according to Thm. 3 we search for a reduction pair
with s (�)t for all dependency pairs s → t ∈ DP (R) = {(7), . . . , (10)} and with
� � r for all usable rules � → r ∈ U(DP (R)) = {(4), (5), (6)}.
2 To ease readability we use a simpler definition of DP problems than [8], since this

simple definition suffices for the presentation of the new results of this paper.
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A popular method to search for suitable relations � and - automatically is
the use of polynomial interpretations [14]. A polynomial interpretation Pol maps
every n-ary function symbol f to a polynomial fPol over n variables x1, . . . , xn.
Traditionally, one uses polynomials with coefficients from N = {0, 1, 2, . . .}. This
mapping is then extended to terms by defining [x]Pol = x for all variables x
and by defining [f(t1, . . . , tn)]Pol = fPol([t1]Pol, . . . , [tn]Pol). If Pol is clear from
the context, we also write [t] instead of [t]Pol. Now one defines s -Pol t (resp.
s �Pol t) iff [s] > [t] (resp. [s] ≥ [t]) holds for all instantiations of the variables
with natural numbers. It is easy to see that (�Pol,-Pol) is a reduction pair.

As an example, consider the polynomial interpretation Pol1 with GTPol1 = x1,
MINUSPol1 = x1 + 1, CONDPol1 = x2 + 1, sPol1 = x1 + 1, and fPol1 = 0 for all
other function symbols f . Then the DPs (8) and (10) are strictly decreasing. The
reason for GT(s(x), s(y)) -Pol1 GT(x, y) is that [GT(s(x), s(y))] = x + 1 is grea-
ter than [GT(x, y)] = x for all natural numbers x. Moreover, all other DPs and
the usable rules are weakly decreasing w.r.t. �Pol1 . Thus, the DPs (8) and (10)
can be removed and the reduction pair processor transforms the initial DP prob-
lem DP (R) into {(7), (9)}. We refer to [4,7] for efficient algorithms to generate
suitable polynomial interpretations automatically. However, it is impossible to
transform the problem further into the empty DP problem ∅. More precisely,
there is no reduction pair based on polynomial interpretations (or on any other
classical order amenable to automation) where one of the DPs (7) and (9) is
strictly decreasing and the other one and the usable rules are weakly decreasing,
cf. [11]. Indeed, up to now all implementations of the DP method failed on Ex. 1.

3 General Reduction Pairs

Our aim is to handle integer polynomial interpretations. More precisely, we
want to use polynomial interpretations where all function symbols except tuple
symbols are still mapped to polynomials with natural coefficients, but where
tuple symbols may be mapped to polynomials with arbitrary integer coefficients.
For such integer polynomial interpretations, we still define s -Pol t (resp. s �Pol

t) iff [s] > [t] (resp. [s] ≥ [t]) holds for all instantiations of the variables with
natural (not with integer) numbers. If F is the original signature without tuple
symbols, then the relations -Pol and �Pol are F -stable, i.e., s (�)Pol

t implies
sσ (�)Pol

tσ for all substitutions σ with terms over F . It is easy to show that F -
stability is sufficient for the reduction pairs used in the reduction pair processor.

To solve the remaining DP problem {(7), (9)}, we want to use the integer
polynomial interpretation Pol2 where MINUSPol2 = x1 − x2, CONDPol2 = x2 −
x3, sPol2 = x1 + 1, and fPol2 = 0 for all other symbols f . Then DP (9) would
be strictly decreasing and could be removed. The resulting DP problem {(7)} is
easy to solve by Pol3 with MINUSPol3 =1 and fPol3 =0 for all other symbols f .

But such integer interpretations may not be used, since (�Pol2 , -Pol2) is no
reduction pair: �Pol2 is not monotonic (e.g., s(0) �Pol2 0, but MINUS(s(0), s(0))
��Pol2 MINUS(s(0), 0)). Moreover, -Pol2 is not well founded (e.g., MINUS(0, 0)
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-Pol2 MINUS(0, s(0)) -Pol2 MINUS(0, s(s(0))) -Pol2 . . .). So integer interpreta-
tions violate both requirements (a) and (b) for reduction pairs, cf. Sect. 1.

Indeed, using such polynomial interpretations in Thm. 3 is unsound. As -Pol2

is not well founded (i.e., as it violates requirement (b)), Pol2 could be used for a
wrong innermost termination proof of the TRS {minus(x, y) → minus(x, s(y))}.
But even if requirement (b) were not violated, a violation of requirement (a)
would still render Thm. 3 unsound. We demonstrate this in Ex. 4.

Example 4. Consider the following TRS which is not innermost terminating.
Here, round(x) = x if x is even and round(x) = s(x) if x is odd.

minus(s(x), x) → minus(s(x), round(x)) (11) round(0) → 0 (12)
round(s(0)) → s(s(0)) (13)

round(s(s(x))) → s(s(round(x))) (14)

We use a modification Pol′2 of Pol2, where MINUSPol′2
= (x1−x2)2, roundPol′2

= x1 + 1, and ROUNDPol′2
= 0. Now requirement (b) is satisfied. The MINUS-

DPs are strictly decreasing (i.e., MINUS(s(x), x) -Pol′2
MINUS(s(x), round(x))

and MINUS(s(x), x) -Pol′2
ROUND(x)) and the ROUND-DP and the usable rules

are weakly decreasing. Thus, if we were allowed to use Pol′2 in Thm. 3, then we
could remove the MINUS-DPs. The remaining DP problem is easily solved and
thus, we would falsely prove innermost termination of this TRS.

Ex. 4 shows the reason for the unsoundness when dropping requirement (a).
Thm. 3 requires � � r for all usable rules � → r. This is meant to ensure that all
reductions with usable rules will weakly decrease the reduced term (w.r.t. �).
However, this only holds if the quasi-order � is monotonic. In Ex. 4, we have
round(x) �Pol′2

x, but MINUS(s(x), round(x)) ��Pol′2
MINUS(s(x), x).

Therefore, one should take into account on which positions the used quasi-
order � is monotonically increasing and on which positions it is monotonically
decreasing. If a defined function symbol f occurs at a monotonically increasing
position in the right-hand side of a dependency pair, then one should require
� � r for all f -rules. If f occurs at a monotonically decreasing position, then
one should require r � �. Finally, if f occurs at a position which is neither
monotonically increasing nor decreasing, one should require � ≈ r. Here, ≈ is
the equivalence relation associated with �, i.e., ≈ = � ∩ �.

So we modify our definition of usable rules.3 When computing U(f(t1, ..., tn)),
for any i ∈ {1, ..., n} we first check how the quasi-order � treats f ’s i-th argu-
ment. We say that f is �-dependent on i iff there exist terms t1, ..., tn, t

′
i where

f(t1, . . . , ti, ..., tn) �≈ f(t1, ..., t′i, . . . , tn). Moreover, f is �-monotonically increas-
ing (resp. decreasing) on i iff ti � t′i implies f(t1, ..., ti, ..., tn) � f(t1, ..., t′i, ..., tn)
(resp. f(t1, ..., ti, ..., tn) � f(t1, ..., t′i, ..., tn)) for all terms t1, ..., tn and t′i.

Now if f is not �-dependent on i, then U(ti) does not have to be included in
U(f(t1, . . . , tn)) at all. (This idea was already used in recent refined definitions

3 Now U(t) is no longer a subset of R. We nevertheless refer to U(t) as “usable” rules
in order to keep the similarity to Thm. 3.
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of the “usable rules”, cf. [10].) Otherwise, we include the usable rules U(ti) if f is
�-monotonically increasing on i. If it is �-monotonically decreasing, we include
the reversed rules U−1(ti) instead. Finally, if f is �-dependent on i, but neither
�-monotonically increasing nor decreasing, then we include the usable rules of ti
in both directions, i.e., we include U2(ti) which is defined to be U(ti)∪ U−1(ti).

Definition 5 (General Usable Rules). For any function symbol f and any
i ∈ {1, . . . , arity(f)}, we define

ord(f, i) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if f is not �-dependent on i
1, otherwise, if f is �-monotonically increasing on i

−1, otherwise, if f is �-monotonically decreasing on i
2, otherwise

For any TRS U , we define U0 = ∅, U1 = U , U−1 = {r → � | � → r ∈ U},
and U2 = U ∪U−1. For any term t, we define U(t) as the smallest set such that4

• U(x) = ∅ for every variable x and
• U(f(t1, . . . , tn)) = Rls(f) ∪

⋃
�→r∈Rls(f) U(r) ∪

⋃n
i=1 Uord(f,i)(ti)

For a set of dependency pairs P, we again define U(P) =
⋃

s→t∈P U(t).

So in Ex. 4, if MINUSPol′2
= (x1−x2)2 then MINUS is �Pol′2

-dependent on 2, but
neither �Pol′2

-monotonically increasing nor decreasing. Hence, the usable rules
include � → r and r → � for all round-rules � → r ∈ {(12), (13), (14)}. Thus, we
cannot falsely prove innermost termination with Pol′2 anymore. Indeed, with the
modified definition of usable rules above, Thm. 3 can also be used for reduction
pairs where � is not monotonic, i.e., where requirement (a) is violated.

We now also show how to omit the requirement (b) that the order - in a
reduction pair has to be well founded. Instead, we replace well-foundedness by
the weaker requirement of non-infinitesimality.

Definition 6 (Non-Infinitesimal). A relation - is non-infinitesimal if there
do not exist any t, s0, s1, . . . with si - si+1 and si - t for all i ∈ IN.

Any well-founded relation is non-infinitesimal. Thm. 7 shows that integer poly-
nomial orders (which are not well founded) are non-infinitesimal as well.5

Theorem 7 (Non-Infinitesimality of Integer Polynomial Orders). Let
Pol be an integer polynomial interpretation. Then -Pol is non-infinitesimal.

Note that non-infinitesimality of -Pol does not hold for polynomial interpreta-
tions on rational numbers. To see this, let aPol = 1, bPol = 0, and fPol = x1

2 .
For si = fi(a) and t = b, we get the infinite sequence a -Pol f(a) -Pol f(f(a))
-Pol . . . (i.e., si -Pol si+1 for all i) and fi(a) -Pol b (i.e., si -Pol t) for all i.

We now extend the reduction pair processor from Thm. 3 to general reduction
pairs. A general reduction pair (�,-) consists of an F -stable quasi-order � and
4 To ease readability, for k ∈ {−1, 0, 1, 2} we write “Uk(t)” instead of “(U(t))k”.
5 All proofs can be found in [11].
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a compatible F -stable non-infinitesimal order -, where F is the original signa-
ture of the TRS, i.e., without tuple symbols. Moreover, the equivalence relation
≈ associated with � must be monotonic (i.e., s ≈ t implies u[s]π ≈ u[t]π for
any position π of any term u). But we do not require monotonicity of � or well-
foundedness of -, i.e., both requirements (a) and (b) are dropped. So for any
integer polynomial interpretation Pol, (�Pol,-Pol) is a general reduction pair.

In contrast to the reduction pair processor from Thm. 3, the new processor
transforms a DP problem into two new problems. As before, the first problem
results from removing all strictly decreasing dependency pairs. The second DP
problem results from removing all DPs s → t from P that are bounded from
below, i.e., DPs which satisfy the inequality s � c for a fresh constant c.

Theorem 8 (General Reduction Pair Processor). Let (�,-) be a general
reduction pair. Let c be a fresh constant not occurring in the signature and let
Pbound = {s → t ∈ P | s � c}. Then the following DP processor Proc is sound.
Here, U(P) is defined as in Def. 5.

Proc(P) =
{
{P \-, P \ Pbound } if P ⊆ -∪ � and U(P) ⊆ �
{P } otherwise

Example 9. To modify Ex. 4 into an innermost terminating TRS, we replace rule
(11) by minus(s(x), x) → minus(s(x), round(s(x))). We regard the interpretation
Pol′′2 with MINUSPol′′2

= x1 − x2, sPol′′2
= x1 + 1, 0Pol′′2

= 0, roundPol′′2
= x1,

ROUNDPol′′2
= 0, and cPol′′2

= 0. Then the MINUS-DPs are strictly decreas-
ing and the ROUND-DP and the usable rules are weakly decreasing. Here, the
usable rules are the reversed round-rules, since MINUS is �-monotonically de-
creasing on 2. Moreover, all dependency pairs are bounded from below (i.e.,
MINUS(s(x), x) �Pol′′2

c and ROUND(s(s(x))) �Pol′′2
c). Thus, we can transform

the initial DP problem P = DP (R) into P \ Pbound = ∅ and into P \-, which
only contains the ROUND-DP. This remaining DP problem is easily solved and
thus, we can prove innermost termination of the TRS.

Since U(P) now depends on �, the constraints that the reduction pair has to
satisfy in Thm. 8 depend on the reduction pair itself. Nevertheless, if one uses re-
duction pairs based on polynomial interpretations, then the search for suitable re-
duction pairs can still be mechanized efficiently. More precisely, one can reformu-
late Thm. 8 in a way where one first generates constraints (that are independent
of �) and searches for a reduction pair satisfying the constraints afterwards. We
showed in [10, Sect. 7.1] how to reformulate “f is �-dependent on i” accordingly
and “f is �-monotonically increasing on i” can be reformulated by requiring
that the partial derivative of fPol w.r.t. xi is non-negative, cf. [1, Footnote 11].

There have already been previous approaches to extend the DP method to
non-monotonic reduction pairs. Hirokawa and Middeldorp [13] allowed interpre-
tations like MINUSPol = max(x1 − x2, 0).6 However, instead of detecting �-
monotonically increasing and decreasing positions, they always require � ≈ r for
6 While such interpretations always result in well-founded orders, they are difficult to

generate automatically. In contrast, the search for integer polynomial interpretations
is as for ordinary polynomial interpretations, e.g., by using SAT solving as in [7].
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the usable rules. Therefore, their technique fails on Ex. 9, since their constraints
cannot be fulfilled by the interpretations considered in their approach, cf. [11].

Another approach was presented in [1, Thm. 33] and further extended in
[6]. Essentially, here one permits non-monotonic quasi-orders � provided that
f is �-monotonically increasing on a position i whenever there is a subterm
f(t1, ..., ti, ..., tn) in a right-hand side of a dependency pair or of a usable rule
where ti contains a defined symbol. Then Thm. 3 is still sound (this also follows
from Def. 5 and Thm. 8). However, this approach would not allow us to handle
arbitrary non-monotonic reduction pairs and therefore, it also fails on Ex. 9.

4 Conditions for Bounded Increase

With Thm. 8 we still cannot use our desired integer polynomial interpretation
Pol2 with MINUSPol2 = x1 −x2, CONDPol2 = x2 −x3, sPol2 = x1 +1, and fPol2

= 0 for all other function symbols f to prove innermost termination of Ex. 1.
When trying to solve the remaining DP problem {(7), (9)}, the DP (9) would
be strictly decreasing but none of the two DPs would be bounded. The reason is
that we have neither MINUS(x, y) �Pol2 c nor COND(true, x, y) �Pol2 c for any
possible value of cPol2 . Thus, the reduction pair processor would return the two
DP problems {(7)} and {(7), (9)}, i.e., it would not simplify the DP problem. (Of
course since {(7)} ⊆ {(7), (9)}, it suffices to regard just the problem {(7), (9)}.)

The solution is to consider conditions when requiring inequalities like s (�)t or
s � c. For example, to include the DP (7) in Pbound, we do not have to demand
MINUS(x, y) � c for all instantiations of x and y. Instead, it suffices to require the
inequality only for those instantiations of x and y which can be used in potential-
ly infinite minimal innermost chains. So we require MINUS(x, y) � c only for in-
stantiations σ where (7)’s instantiated right-hand side COND(gt(x, y), x, y)σ re-
duces to an instantiated left-hand side uσ for some DP u → v.7 Here, u → v
should again be variable renamed. As our DP problem contains two DPs (7) and
(9), we get the following two constraints (by considering all possibilities u → v ∈
{(7), (9)}). If both constraints are satisfied, then we can include (7) in Pbound.

COND(gt(x, y), x, y) = MINUS(x′, y′) ⇒ MINUS(x, y) � c (15)
COND(gt(x, y), x, y) = COND(true, x′, y′) ⇒ MINUS(x, y) � c (16)

Def. 10 introduces the syntax and semantics of such conditional constraints.

Definition 10 (Conditional Constraint). For given relations � and -, the
set C of conditional constraints is the smallest set with

• {TRUE , s � t, s - t, s = t} ⊆ C for all terms s and t
• if {ϕ1, ϕ2} ⊆ C, then ϕ1 ⇒ ϕ2 ∈ C and ϕ1 ∧ ϕ2 ∈ C
• if ϕ ∈ C and y ∈ V, then ∀y ϕ ∈ C

7 Moreover, COND(gt(x, y), x, y)σ must be innermost terminating, COND(gt(x, y), x, y)σ
i→∗

R uσ, and uσ must be in normal form, since we consider minimal innermost chains.
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Now we define which normal F-substitutions8 σ satisfy a constraint ϕ ∈ C,
denoted “σ |= ϕ”:

• σ |= TRUE for all normal F-substitutions σ
• σ |= s � t iff sσ � tσ and σ |= s - t iff sσ - tσ
• σ |= s = t iff sσ is innermost terminating, sσ i→∗

R tσ, tσ is a normal form
• σ |= ϕ1 ⇒ ϕ2 iff σ �|= ϕ1 or σ |= ϕ2

• σ |= ϕ1 ∧ ϕ2 iff σ |= ϕ1 and σ |= ϕ2

• σ |= ∀y ϕ iff σ′ |= ϕ for all normal F-substitutions σ′ where σ′(x) = σ(x)
for all x �= y

A constraint ϕ is valid (“ |=ϕ”) iff σ |=ϕ holds for all normal F-substitutions σ.

Now we refine the reduction pair processor by taking conditions into account.
To this end, we modify the definition of Pbound and introduce P� and P�.

Theorem 11 (Conditional General Reduction Pair Processor). Let (�,
-) be a general reduction pair. Let c be a fresh constant and let

P� = { s → t ∈ P | |=
∧

u→v∈P (t = u′ ⇒ s- t) }
P� = { s → t ∈ P | |=

∧
u→v∈P (t = u′ ⇒ s� t) }

Pbound = { s → t ∈ P | |=
∧

u→v∈P (t = u′ ⇒ s�c) }

where u′ results from u by renaming its variables into fresh variables. Then the
following DP processor Proc is sound. Here, U(P) is defined as in Def. 5.

Proc(P) =
{
{P \ P�, P \ Pbound } if P� ∪ P� = P and U(P) ⊆ �
{P } otherwise

To ease readability, in Thm. 11 we only consider the conditions resulting from
two DPs s→ t and u→v which follow each other in minimal innermost chains.
To consider also conditions resulting from n+1 adjacent DPs, one would have to
modify P� as follows (of course, P� and Pbound have to be modified analogously).

P ={s→ t∈P | |=
∧

u1→v1,...,un→vn∈P
(t = u′

1 ∧ v′
1=u′

2 ∧ . . . ∧ v′
n−1=u′

n ⇒ s+ t)}

Here, the variables in u′
i and v′i must be renamed in order to be disjoint to the

variables in u′
j and v′j for j �= i. Moreover, instead of regarding DPs which follow

s → t in chains, one could also regards DPs which precede s → t. Then instead
of (or in addition to) the premise “t = u′”, one would have the premise “v′ = s”.

The question remains how to check whether conditional constraints are valid,
since this requires reasoning about reductions resp. reachability. We now in-
troduce a calculus of seven rules to simplify conditional constraints. For ex-
ample, the constraint (15) is trivially valid, since its condition is unsatisfiable.
The reason is that there is no substitution σ with σ |= COND(gt(x, y), x, y) =

8 A normal F-substitution σ instantiates all variables by normal forms that do not
contain tuple symbols (i.e., for any x ∈ V, all function symbols in σ(x) are from F).
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MINUS(x′, y′), since COND is no defined function symbol (i.e., it is a constructor)
and therefore, COND-terms can only be reduced to COND-terms.

This leads to the first inference rule. In a conjunction ϕ1∧. . .∧ϕn of conditional
constraints ϕi, these rules can be used to replace a conjunct ϕi by a new formula
ϕ′

i. Of course, TRUE ∧ ϕ can always be simplified to ϕ. Eventually, the goal is
to remove all equalities “p = q” from the constraints. The soundness of the rules
is shown in Thm. 14: if ϕi is replaced by ϕ′

i, then |= ϕ′
i implies |= ϕi.

I. Constructor and Different Function Symbol
f(p1, ..., pn) = g(q1, ..., qm)∧ϕ ⇒ ψ

TRUE
if f is a constructor and f �= g

Rule (II) handles conditions like COND(gt(x, y), x, y) = COND(true, x′, y′)
where both terms start with the constructor COND. So (16) is transformed to

gt(x, y) = true ∧ x = x′ ∧ y = y′ ⇒ MINUS(x, y) � c (17)

II. Same Constructors on Both Sides
f(p1, ..., pn) = f(q1, ..., qn) ∧ ϕ ⇒ ψ

p1 = q1 ∧ . . . ∧ pn = qn ∧ ϕ ⇒ ψ
if f is a constructor

Rule (III) removes conditions of the form “x = q” or “q = x” by applying the
substitution [x/q] to the constraint.9 So (17) is transformed to

gt(x, y) = true ⇒ MINUS(x, y) � c (18)

III. Variable in Equation

x=q ∧ ϕ ⇒ ψ

ϕσ ⇒ ψ σ

if x ∈ V and
σ = [x/q]

q=x ∧ ϕ ⇒ ψ

ϕσ ⇒ ψ σ

if x∈V , q has no
defined symbols,
σ=[x/q]

Of course, one can also omit arbitrary conjuncts from the premise of an impli-
cation. To ease notation, we regard a conjunction as a set of formulas. So their
order is irrelevant and we write ϕ′ ⊆ ϕ iff all conjuncts of ϕ′ are also conjuncts
of ϕ. The empty conjunction is TRUE (i.e., TRUE ⇒ ψ can be simplified to ψ).

IV. Delete Conditions
ϕ ⇒ ψ

ϕ′ ⇒ ψ
if ϕ′ ⊆ ϕ

Rule (IV) is especially useful for omitting conditions q = x where x is a va-
riable which does not occur anywhere else. So one could also transform (17) to
(18) by Rule (IV). The meaning of (18) is that MINUS(x, y)σ � c must hold

9 To remove the condition q = x, we must ensure that for any normal F-substitution δ,
the term qδ is normal, too. Otherwise, Rule (III) would not be sound, cf. [11].
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whenever gt(x, y)σ is innermost terminating and gt(x, y)σ i→∗
R true holds for a

normal F -substitution σ. To simplify this constraint further, the next inference
rule performs an induction on the length of gt(x, y)σ’s reduction.10 Since gt(x, y)
and true do not unify, at least one reduction step is needed, i.e., some rule
gt(�1, �2) → r must be applied. To detect all possibilities for the first reduction
step, we consider all narrowings of the term gt(x, y). We obtain

gt(x, y) �[x/0,y/v] false, gt(x, y) �[x/s(u),y/0] true, gt(x, y) �[x/s(u),y/s(v)] gt(u, v)

Thus, we could replace (18) by the following three new constraints where we
always apply the respective narrowing substitution to the whole constraint:

false = true ⇒ MINUS(0, v) � c (19)
true = true ⇒ MINUS(s(u), 0) � c (20)

gt(u, v) = true ⇒ MINUS(s(u), s(v)) � c (21)

So to transform a constraint f(x1, . . . , xn) = q ∧ ϕ ⇒ ψ, we consider all rules
f(�1, . . . , �n) → r. Then the constraint could be replaced by the new constraints

r = qσ ∧ ϕσ ⇒ ψσ, where σ = [x1/�1, . . . , xn/�n]. (22)

However, we perform a better transformation. Suppose that r contains a recur-
sive call, i.e., a subterm f(r1, . . . , rn), and that the ri do not contain defined
symbols. Obviously, f(r1, . . . , rn)σ’s reduction is shorter than the reduction of
f(x1, . . . , xn)σ. Thus for μ = [x1/r1, . . . , xn/rn] one can assume

∀y1, . . . , ym f(r1, . . . , rn) = qμ ∧ ϕμ ⇒ ψμ (23)

as induction hypothesis when requiring (22).11 Here, y1, . . . , ym are all occurring
variables except those in r. Of course, we may assume that variables in rewrite
rules (i.e., in r) are disjoint from variables in constraints (i.e., in q, ϕ, and ψ).
So instead of (22), it suffices to demand (23) ⇒ (22), or equivalently

r = qσ ∧ ϕσ ∧ (23) ⇒ ψσ. (24)

This leads to Rule (V). Here, x1, . . . , xn denote pairwise different variables.

10 More precisely, we use an induction on i→R ◦ �, where � is the subterm relation. The
idea for this inference rule was inspired by our earlier work on termination of simple
first-order functional programs [3]. But [3] only considered a very restricted form of
functional programs (left-linear, sufficiently complete, non-overlapping constructor
systems without defined symbols in arguments of recursive calls), whereas we regard
arbitrary TRSs. Moreover, we integrate this idea of performing induction into the
whole framework of termination techniques and tools available for TRSs. Finally, in
contrast to [3], we do not need an underlying induction theorem prover. Nevertheless,
our approach is significantly stronger (e.g., [3] fails on examples like Ex. 12, cf. [11]).

11 If there are more recursive calls in r, then one can obtain a corresponding induction
hypothesis (23) for each recursive call. But similar to Footnote 9, if the ri contain
defined symbols, then one may not assume (23) as induction hypothesis.
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V. Induction (Defined Symbol with Pairwise Different Variables)

f(x1, ..., xn) = q ∧ ϕ ⇒ ψ
∧

f(�1,...,�n)→r∈R
( r = q σ ∧ ϕσ ∧ ϕ′ ⇒ ψ σ )

if f is a defined symbol and
f(x1, ..., xn) does not unify
with q

where σ = [x1/�1, ..., xn/�n]

and ϕ′ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∀y1, ..., ym f(r1, . . . , rn) = qμ ∧ ϕμ ⇒ ψ μ, if
• r contains the subterm f(r1, ..., rn),
• there is no defined symbol in any ri,
• μ = [x1/r1, ..., xn/rn], and
• y1, ..., ym are all occurring variables except V(r)

TRUE , otherwise

In our example, the above rule transforms the original constraint (18) into
the three new constraints (19), (20), and (25). Here, (25) is obtained from the
narrowing step gt(x, y) �[x/s(u),y/s(v)] gt(u, v), i.e., we have σ = [x/s(u), y/s(v)],
r1 = u, r2 = v, and μ = [x/u, y/v]. There are no variables y1, . . . , ym.

gt(u, v) = true
∧ (gt(u, v) = true ⇒ MINUS(u, v) � c) ⇒ MINUS(s(u), s(v)) � c (25)

To simplify (25) further, now we can “apply” the induction hypothesis, since
its condition gt(u, v) = true is guaranteed to hold. So we can transform (25) to

gt(u, v) = true ∧ MINUS(u, v) � c ⇒ MINUS(s(u), s(v)) � c. (26)

In general, to simplify conditions one may of course also instantiate universally
quantified variables.12 This leads to the following rule.

VI. Simplify Condition

ϕ ∧ (∀y1, . . . , ym ϕ′ ⇒ ψ′ ) ⇒ ψ

ϕ ∧ ψ′ σ ⇒ ψ

if DOM(σ) ⊆ {y1, . . . , ym},
there is no defined symbol and
no tuple symbol in any σ(yi),
and ϕ′ σ ⊆ ϕ

To simplify the remaining constraints (19), (20), and (26), note that (19) can
be eliminated by Rule (I) since it has an unsatisfiable condition false = true.
Moreover, Rule (II) can delete the trivial condition true = true of the constraint
(20). For (26), with Rule (IV) one can of course always omit conditions like
gt(u, v) = true from conditional constraints. In this way, all conditions with
equalities p = q are removed in the end.

So to finish the termination proof of Ex. 1, we can include the DP (7)
in Pbound if the constraints MINUS(s(u), 0) � c and MINUS(u, v) � c ⇒
MINUS(s(u), s(v)) � c are satisfied. Of course, these constraints obviously hold

12 As in Footnote 9, one may only instantiate them by terms without defined symbols.
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for Pol2 if we choose cPol2 = 1. Then the DP (9) is strictly decreasing and (7)
is bounded from below and thus, the reduction pair processor transforms the
remaining DP problem {(7), (9)} into {(7)} and {(9)}. Now the resulting DP
problems are easy to solve and thus, innermost termination of Ex. 1 is proved.

The rules (I) - (VI) are not always sufficient to exploit the conditions of a
constraint. We demonstrate this with the following example.

Example 12. We regard a TRS R containing the gt-rules (4) - (6) together with

plus(n, 0) → n f(true, x, y, z) → f(gt(x, plus(y, z)), x, s(y), z)
plus(n, s(m)) → s(plus(n, m)) f(true, x, y, z) → f(gt(x, plus(y, z)), x, y, s(z))

The termination of gt and of plus is easy to show. So the initial DP problem
can easily be transformed into {(27), (28)} with

F(true, x, y, z) → F(gt(x, plus(y, z)), x, s(y), z) (27)
F(true, x, y, z) → F(gt(x, plus(y, z)), x, y, s(z)) (28)

To include (27) in Pbound, we have to impose the following constraint:

F(gt(x, plus(y, z)), x, s(y), z) = F(true, x′, y′, z′) ⇒ F(true, x, y, z) � c (29)

With the rules (II) and (IV), it can be transformed into

gt(x, plus(y, z)) = true ⇒ F(true, x, y, z) � c (30)

Now we want to use induction. However, Rule (V) is only applicable for con-
ditions f(x1, . . . , xn) = q where x1, . . . , xn are pairwise different variables. To
obtain such conditions, we use the following rule. Here, x denotes a fresh variable.

VII. Defined Symbol without Pairwise Different Variables
f(p1, . . . , pi, . . . , pn) = q ∧ ϕ ⇒ ψ

pi =x ∧ f(p1, . . . , x , . . . , pn) = q ∧ ϕ ⇒ ψ

if f is a defined symbol and
( pi /∈V or pi =pj for a j �= i )

So the constraint (30) is transformed into

plus(y, z) = w ∧ gt(x,w) = true ⇒ F(true, x, y, z) � c

Example 13. To continue, we can now perform induction on gt which yields

plus(y, z) = v ∧ false = true ⇒ F(true, 0, y, z) � c (31)
plus(y, z) = 0 ∧ true = true ⇒ F(true, s(u), y, z) � c (32)

plus(y, z) = s(v) ∧ gt(u, v) = true ∧ (34) ⇒ F(true, s(u), y, z) � c (33)

Here, (34) is the induction hypothesis:

∀y, z plus(y, z) = v ∧ gt(u, v) = true ⇒ F(true, u, y, z) � c (34)
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With Rule (I) we delete constraint (31) and Rule (II) simplifies constraint (32)
to “plus(y, z) = 0 ⇒ F(true, s(u), y, z) � c”. Similar to our previous example,
by induction via plus and by removing the constraint with the unsatisfiable
condition s(plus(n,m)) = 0, we finally transform it to

F(true, s(u), 0, 0) � c (35)

The other constraint (33) is simplified further by induction via plus as well:

n = s(v) ∧ gt(u, v) = true ∧ (34) ⇒ F(true, s(u), n, 0) � c (36)
s(plus(n,m))=s(v) ∧ gt(u, v)= true ∧ (34) ∧ ϕ′ ⇒ F(true, s(u), n, s(m))�c (37)

where ϕ′ is the new induction hypothesis. We apply Rules (III) and (IV) on (36)
to obtain “gt(u, v) = true ⇒ F(true, s(u), s(v), 0) � c”. By another induction on
gt and by applying Rules (I), (II), (IV), and (VI) we get the final constraints

F(true, s(s(i)), s(0), 0) � c (38)
F(true, s(i), s(j), 0) � c ⇒ F(true, s(s(i)), s(s(j)), 0) � c (39)

In the only remaining constraint (37) we delete ϕ′ with Rule (IV) and by
removing the outermost s in the first condition with Rule (II), we get

plus(n,m) = v ∧ gt(u, v) = true ∧ (34) ⇒ F(true, s(u), n, s(m)) � c

Now we can simplify the condition by applying the induction hypothesis (34).
In (34), the variables y and z were universally quantified. We instantiate y
with n and z with m. With Rule (VI) we replace (34) by the new condition
F(true, u, n,m) � c. By deleting the first two remaining conditions we finally get

F(true, u, n,m) � c ⇒ F(true, s(u), n, s(m)) � c (40)

So to summarize, the constraint (29) can be transformed into (35), (38), (39),
and (40). These constraints are satisfied by the interpretation Pol where FPol =
x2 − x3 − x4, sPol = x1 + 1, 0Pol = 0, and cPol = 1. Therefore, we can include
the DP (27) in Pbound. For a similar reason, the other DP (28) is also bounded.
Moreover, both DPs are strictly decreasing and there are no usable rules since
F is not �Pol-dependent on 1. Hence, the reduction pair processor can remove
both DPs and innermost termination of Ex. 12 is proved.

We define ϕ � ϕ′ iff ϕ′ results from ϕ by repeatedly applying the above inference
rules to the conjuncts of ϕ. Thm. 14 states that these rules are sound.

Theorem 14 (Soundness). If ϕ � ϕ′, then |= ϕ′ implies |= ϕ.

With Thm. 14 we can now refine the reduction pair processor from Thm. 11.

Corollary 15 (Conditional General Reduction Pair Processor with In-
ference). Let (�,-) be a general reduction pair and let c be a fresh constant.
For every s → t ∈ P and every inequality ψ ∈ { s - t, s � t, s � c },
let ϕψ be a constraint with

∧
u→v∈P(t = u′ ⇒ ψ) � ϕψ. Here, u′ re-

sults from u by renaming its variables into fresh variables. Then the processor
Proc from Thm. 11 is still sound if we define P� = {s → t ∈ P | |= ϕs�t },
P� = {s → t ∈ P | |= ϕs�t }, and Pbound = {s → t ∈ P | |= ϕs�c }.
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For automation, one of course needs a strategy for the application of the rules
(I) - (VII). Essentially, we propose to apply the rules with the priority (I), (II),
(IV)′, (VI), (III), (VII), (V), cf. [11]. Here, (IV)′ is a restriction of (IV) which only
deletes conditions q = x where x is a variable which does not occur anywhere
else. Moreover, to ensure termination of the inference rules, one has to impose a
limit on the number of inductions with Rule (V). In the end, we use Rule (IV)
to remove all remaining conditions containing “=” or “⇒”. Moreover, if there
are several conditions of the form s (�)t, we remove all but one of them.

Thus, the constraints ϕψ in Cor. 15 are conjunctions where the conjuncts have
the form “t1 (�)t2” or “s1 (�)s2 ⇒ t1 (�)t2”. However, most existing methods
and tools for the generation of orders and of polynomial interpretations can only
handle unconditional inequalities [4,7]. To transform such conditional constraints
into unconditional ones, note that any constraint “s � c ⇒ t � c” can be
replaced by “t � s”. More generally, if one uses polynomial orders, then any
constraint “s1 (�)s2 ⇒ t1 (�)t2” can be replaced by “[t1]− [t2] ≥ [s1]− [s2]”. So
in Ex. 13, instead of (39) and (40), we would require [F(true, s(s(i)), s(s(j)), 0)] ≥
[F(true, s(i), s(j), 0)] and [F(true, s(u), n, s(m))] ≥ [F(true, u, n,m)].

In practice, it is not recommendable to fix the reduction pair (�,-) in ad-
vance and to check the validity of the constraints of the reduction pair processor
afterwards. Instead, one should leave the reduction pair open and first simplify
the constraints of the reduction pair processor using the above inference rules.
Afterwards, one uses the existing techniques to generate a reduction pair (e.g.,
based on integer polynomial interpretations) satisfying the resulting constraints.

More precisely, we start the following procedure REDUCTION PAIR(P) with
P = DP (R). If REDUCTION PAIR(DP (R)) returns “Yes”, then innermost ter-
mination is proved. Of course, this procedure can be refined by also applying
other DP processors than just the reduction pair processor to P .

Procedure REDUCTION PAIR(P)
1. If P = ∅ then stop and return “Yes”.
2. Choose non-empty subsets P� ⊆ P and Pbound ⊆ P . Let P� = P \ P�.
3. Generate the following constraint ϕ (where � and - are not yet fixed):
∧

s→t∈P�, u→v∈P (t = u′ ⇒ s- t) ∧
∧

s→t∈Pbound, u→v∈P (t = u′ ⇒ s�c) ∧
∧

s→t∈P�, u→v∈P (t = u′ ⇒ s� t) ∧
∧

�→r∈U(P) (��r)

4. Use Rules (I) - (VII) to transform ϕ to a constraint ϕ′ without “=”.
5. Generate an integer polynomial interpretation satisfying ϕ′, cf. e.g. [7].
6. If REDUCTION PAIR(P�) = “Yes” and REDUCTION PAIR(P \ Pbound) =

“Yes”, then return “Yes”. Otherwise, return “Maybe”.

5 Conclusion

We have extended the reduction pair processor of the DP method in order to
handle TRSs that terminate because of bounded increase. To be able to mea-
sure the increase of arguments, we permitted the use of general reduction pairs
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(e.g., based on integer polynomial interpretations). Moreover, to exploit the
bounds given by conditions, we developed a calculus based on induction which
simplifies the constraints needed for the reduction pair processor.

We implemented the new reduction pair processor of Cor. 15 in our termina-
tion prover AProVE [9]. To demonstrate the power of our method, [11] contains a
collection of typical TRSs with bounded increase. These include examples with
non-boolean (possibly nested) functions in the bound, examples with combina-
tions of bounds, examples containing increasing or decreasing defined symbols,
examples with bounds on lists, examples with different increases in different ar-
guments, increasing TRSs that go beyond the shape of functional programs, etc.
Although AProVE was the most powerful tool for termination analysis of TRSs
in the International Competition of Termination Tools, up to now AProVE (as
well as all other tools participating in the competition) failed on all TRSs from
our collection. In contrast, with the results from this paper, the new version of
AProVE can prove innermost termination for all of them. Thus, these results rep-
resent a substantial advance in automated termination proving. To experiment
with our implementation, the new version of AProVE can be accessed via the
web at http://aprove.informatik.rwth-aachen.de/eval/Increasing/.
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Abstract. We develop a formalization of the Size-Change Principle
in Isabelle/HOL and use it to construct formally certified termination
proofs for recursive functions automatically.

1 Introduction

Program termination plays an important role in verification, and in particular
in theorem provers based on logics of total functions, where termination proofs
are usually necessary to ensure logical consistency.

Although there has been continuous progress in the field of automated termi-
nation proofs, only few of the results have been applied to interactive theorem
proving. One possible reason is that many existing methods are relatively com-
plex, often combining several different criteria and heuristics. Another is that
they do not usually produce proofs that can be checked by an independent sys-
tem. This makes their integration difficult, especially when following the LCF
approach, where all inferences must be checkable by a minimal logical core.

In this paper, we formalize the size-change principle [14] and prove it correct
in Isabelle/HOL [16]. Then we apply it to recursive function definitions in the
logic itself, essentially following an approach by Manolios and Vroon [15], but
with full proofs. We integrate the results to a fully automated proof procedure
to certify size-change termination of Isabelle/HOL functions.

To our knowledge, this is the first formalization of the size-change principle,
and also the first mechanically verified implementation. Our results show that it
is practically feasible to combine the power of state-of-the-art termination crite-
ria with the high assurance of LCF-style theorem proving. Moreover, we think
that the formalization also gives a better insight in the structure of termination
proofs, and in particular in the relation between the analysis of Manolios and
Vroon and the size-change principle.

As a practical benefit, a significant class of previously hard termination proofs
are now automatic.

1.1 Size-Change Termination - Abstractly

“A program is size-change terminating iff every infinite execution of the program
would cause an infinite descent in some well-founded data value.” Although its
first presentation by Lee, Jones and Ben-Amram [14] was in the context of a
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simple functional language, this criterion, called size-change termination (SCT),
is independent from the actual language or programming paradigm used.

We will emphasize this generality, which leads to a neat abstraction boundary
in our formalization, by using slightly more general terminology than the original
paper.

SCT abstracts from the actual program by viewing it as a set of control points
and transitions between them, forming a directed graph (the control graph). Each
control point has a finite set of abstract data positions associated to it, which
can be seen as slots, where runtime data is passed around.

Each transition is labeled by a size-change graph, which contains information
about how the values in the data positions are related. The size-change graph
contains an edge p

↓→ q, if the value at data position q (after the transition) is

always smaller than the value at position p (before the transition), and p
↓=→ q if

it is smaller or equal. Size-change graphs are usually drawn as bipartite graphs.
Fig. 1 shows a simple graph with two control points A and B, with two and
three data positions.

A B

GAB

GBA

1
↓� 1 1 1

GAB : GBA :
2 2

=↓
�

2

↓ �

2

3

=↓
�

3

Fig. 1. A simple size-change problem

By connecting the size-change graphs along a control flow path, the data flow
becomes visible. Chains of such connected edges are called threads. A thread has
infinite descent iff it contains infinitely many

↓→-edges.

Definition. A control graph A satisfies SCT iff every infinite path has a thread
with infinite descent.

The example in Fig. 1 satisfies SCT, since the only infinite path is A,B,A,B, . . .
and it has a thread going through data positions 1, 2, 1, 2, . . ., which has infinite
descent.

SCT is decidable:

Theorem. A control graph A satisfies SCT iff for every edge in A+ of the form
n

G−→ n with G = G ·G, G has an edge of the form p
↓→ p.

Here, A+ denotes the transitive closure of A, where the composition of two
graphs is defined in the obvious way (for details see §2). This theorem suggests
an algorithm which simply computes the transitive closure and checks the above
property.



462 A. Krauss

Since SCT is a purely combinatorial graph problem, generating size-change
problems from programs is a separate issue.

Here lies the power of the abstraction: Since nothing is said about what the
control points and data positions actually are, we can talk about different types
of programs. The original paper treated simple functional programs, and used
functions as control points. Function calls were the transitions, and the data
positions were given by the sizes of the function arguments. For imperative
programs, one could take program instructions as control points and program
variables as data positions.

Other interpretations are equally valid, as long as (a) infinite executions of the
program correspond to infinite paths in the control graph, and (b) the informa-
tion in the size-change graphs reflects actual size-changes in some well-founded
data. Then a non-terminating execution would imply an infinitely decreasing
sequence of data values, which is impossible.

Since the
↓=→- and

↓→-edges in a size-change graph reflect knowledge about the
data flow in the program, a suitable analysis is required to derive this informa-
tion. The authors of [14] apparently had some syntactic size analysis in mind,
but in fact we have the choice of weapons here, and we choose theorem proving,
which does very well on this task.

1.2 Function Definitions and Termination Proofs in Isabelle/HOL

Recursive functions are defined in Isabelle/HOL following the definitional ap-
proach: An automated package [13] transforms the recursive specification into a
non-recursive form, which can be processed by existing means. Then the original
specification is proved from this definition. Internally, the package constructs the
call relation of the function and a domain predicate characterizing values where
the function terminates.

Although the package has some support for partial (i.e. non-terminating) func-
tions (for details, see [13]), reasoning with partial functions is more complicated
than with total ones. Specifically, the recursive equations are constrained by the
domain predicate.

Now “proving termination” just means showing that the domain predicate is
always true or, equivalently, that the call relation is wellfounded.

1.3 No Simple Certificates

Things would be simpler and more elegant, if we could just generate short certifi-
cates of some kind, which can be easily checked and which prove that a function
is size-change terminating. Then just the checking would have to be proved cor-
rect and executed in the theorem prover, while the certificates could be generated
by untrusted (but probably more efficient) code.

However, by a complexity argument, such certificates are unlikely to exist,
due to the PSPACE-hardness result for SCT [14]:
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Corollary 1. If there were certificates proving x ∈ SCT that could be checked in
polynomial time, then PSPACE = NP, which complexity theorists find unlikely
[18].

Proof. Assume such certificates exist, then SCT ∈ NP by a simple guess-and-
check argument. But SCT is PSPACE-hard, thus PSPACE ⊆ NP.

This result shows that size-change termination is fundamentally different from
many other methods in that it does not produce simple and short termination ar-
guments (like simple wellfounded relations). Instead, it is more like an exhaustive
search for possible sources of non-termination, ruling them out systematically.

1.4 Related Work

The quest for automated termination proofs is continously receiving a large
amount of attention, way too much to be cited here.

But when it comes to full formal certification of termination proofs, the air
gets thin: Termination proofs in major proof assistants like Coq [4], PVS [17]
and Isabelle are usually based on user-specified measure functions. HOL4 [7],
HOL Light [10] and ACL2 [11] support a rudimentary automatic guessing of
measures.

Recently, Manolios and Vroon [15] successfully combined the size-change prin-
ciple with theorem proving to obtain a powerful termination checker for the
ACL2 system. They make the following modifications to standard SCT:

– Instead of using the functions as control points, they used the function calls
and also take the context of a recursive call into account. This allows to
analyze reachability between calls.

– Instead of using a syntactic analysis to generate size-change graphs, they use
the ACL2 prover.

– Instead of just looking at the size of concrete data values, they are able to
use arbitrary measure functions.

– In an additional processing step, calls can be substituted into one another.
This step (called context merging) allows for a limited treatment of problems
where a temporary increase of data happens.

However, the non-trivial analysis is part of the trusted code base and even if
the metatheory is sound, it is not clear if it can be justified within the first-
order framework of ACL2. In this paper, we essentially follow their approach
(excluding context merging), but we formally verify both the underlying theory
and the implementation, which allows us to produce Isabelle proofs.

The CoLoR project [5] aims to provide the formal basis and the tools to certify
termination proofs in Coq. Proofs can be imported from various other systems,
all from the area of term rewriting. However, since these tools only work on a
formalization of term rewriting inside Coq, they cannot easily be applied to Coq
function definitions.
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1.5 Overview of This Paper

In §2, we describe a formalization of the size-change principle. We formalize
Kleene algebras, graphs, paths and threads and define the SCT predicate. Then
we present the main theorem, which states the equivalence between the declar-
ative and the algorithmic version of SCT.

In §3, we apply the principle to Isabelle function definitions: We formalize
what it means that a control graph approximates a relation. Then we show that
for such an approximation, the size-change property implies wellfoundedness of
that relation.

It then remains to provide an algorithm for building and inspecting the tran-
sitive closure of a graph. In §4 we give a simple implementation and prove it
correct. From these three ingredients we obtain a fully automated method to
prove termination of recursive functions in Isabelle.

We present some small example applications in §5 and discuss practical im-
plications in §6.

2 Formalizing SCT

2.1 Kleene Algebras

Since the core of SCT checking is the computation of a transitive closure, we
will start by defining an axiomatic type class [20] of Kleene algebras, which
provide the most general structure for such an operation. With this approach, the
formulation of the algorithm is kept seperate from the concrete data structures.

Following the axiomatization by Kozen [12], Kleene algebras are idempotent
semirings with an order defined as (a ≤ b) = (a + b = b). Additionally, they
include a star-operation satisfying the following four laws:

1 + a·a∗ ≤ a∗ a·x ≤ x =⇒ a∗·x ≤ x
1 + a∗·a ≤ a∗ x ·a ≤ x =⇒ x ·a∗ ≤ x

These axioms follow from a stronger property, called *-continuity:

a·b∗·c = (SUP n. a·bn·c)

where bn denotes iterated multiplication. We define transitive closures as a+ =
a∗·a.

In §4, we will give the transitive closure algorithm in terms of arbitrary Kleene
algebras, which allows us to reason in a very abstract way, using simple alge-
braic laws. Since our graphs will be special Kleene algebras, the corresponding
theorems simply follow as instances.

2.2 Graphs

We represent directed edge-labeled graphs as sets of triples. Graphs may have
self-edges, and between two nodes there may be several edges:

datatype. (α, β) graph = Graph ((α × β × α) set)
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Instead of using the set type directly, we wrap graphs into their own type
constructor. This will allow us to use axiomatic type classes to overload common
notation for graph composition (written as multiplication), exponentiation and
transitive closure. We write x e−−→

G
y if G has an edge between nodes x and y,

which is labeled with e. If we do not care about the label, we just write x −→
G

y.

If the type of the edges has a multiplication and unit operation, these can be
lifted to graphs, preserving monoid structure:

p b−−−−→
G·H

q = ∃ k e e ′. p e−−→
G

k e ′
−−→

H
q ∧ b = e·e ′

p b−−→
1

q = p = q ∧ b = 1

With addition defined as set union, we get a semiring structure with additive and
multiplicative identity. Moreover, by taking the corresponding set operations for
supremum and infimum, graphs form a complete lattice and we can define the
star operation as G∗ = (SUP n. Gn). It is then not hard to show that graphs
form a (*-continuous) Kleene algebra.

2.3 Paths

We represent infinite paths as sequences of node-edge-pairs:

types α sequence = nat ⇒ α
(α, β) ipath = (α × β) sequence

The paths of a graph G are characterized by the predicate has-ipath:

has-ipath :: (α, β) graph ⇒ (α, β) ipath ⇒ bool

has-ipath G p = (∀ i . fst (p i)
p[i]−−→
G

fst (p (i + 1 )))

Here, p[i] just abbreviates snd (p i), yielding the value of the i-th edge in p.
For the proofs for size-change termination we also need to talk about finite

paths and relate them to infinite paths (by taking sub-paths, constructing infinite
paths from finite loops). We omit these details for space reasons, as they are
essentially straightforward.

2.4 Size-Change Graphs

Size-change graphs have ↓ and =↓ as edge labels, and natural numbers as nodes,
representing data positions. Control graphs have size-change graphs as their
edges.

datatype sedge = LESS (↓) | LEQ (=↓)
types

scg = (nat , sedge) graph
acg = (nat , scg) graph
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Given an infinite path in the control graph, a thread is a sequence of natural
numbers denoting argument positions for every node in the path, such that
there are corresponding connected edges. A thread is descending, if it contains
infinitely many ↓-edges:

is-desc-thread :: nat sequence ⇒ (nat , scg) ipath ⇒ bool

is-desc-thread θ p = ((∃n. ∀ i≥n. θ i −−→
p[i]

θ (i + 1 )) ∧ (∃∞i . θ i ↓−−−→
p[i]

θ (i + 1 )))

Note that threads may also start at a later point in the path. Now the size-change
property is defined as

SCT A = (∀ p. has-ipath A p −→ (∃ θ. is-desc-thread θ p))

The second characterization, which will be proved equivalent, is the basis of the
size-change algorithm:

SCTex A = (∀n G. n G−−−→
A+

n ∧ G·G = G −→ (∃ p. p
↓−−→
G

p))

Then the following is our main equivalence result, which corresponds to [14,
Thm. 4]:

Theorem 1. finite-acg A =⇒ SCT A = SCTex A

The condition finite-acg A expresses that the control graph and all its size-change
graphs are finite. In the original development it is implicit.

The formal proof of Thm. 11 consists of about 1200 lines of proof script in the
Isar structured proof language, mainly following the informal development in
[14], but with many parts spelled out in much more detail. Like in the informal
version, the proof uses Ramsey’s Theorem, which is already present in Isabelle’s
Library (the formalization is due to Paulson).

Our proof uses classical logic, including the (infinite, but countable) axiom
of choice. It would be interesting to investigate if the proof can be modified to
work in a weaker framework.

3 Generating Size-Change Problems

We will now apply the size-change principle to termination problems of a specific
form, namely the termination of recursive function definitions in Isabelle itself.
For that, we must make the abstract notion of control points and data positions
concrete, and give meaning to the size-change graphs and control graphs.

There are multiple possibilities for doing this. In the spirit of the original au-
thors, we could equate control points with functions and transitions with function
calls. Instead we take the same route as Manolios and Vroon [15]: We take the

1 The proof can be found in recent versions of the Isabelle library.
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calls as control points. A transition is a pair of calls, where one call is reachable
from the other. This approach allows to analyze the recursive behaviour at a
finer granularity.

As a running example, consider the following function definition2:

f (n, 0 ) = n
f (0 , Suc m) = f (Suc m, Suc m)
f (Suc n, Suc m) = f (m, n)

When the definition is made, Isabelle will internally define the recursion re-
lation (or call relation) Rf of the function. In the recursion relation, arguments
of recursive calls are “smaller” than the corresponding left hand sides. In this
case, Rf is defined as:

Rf =
(λx1 x2.

(∃m. x1 = (Suc m, Suc m) ∧ x2 = (0 , Suc m)) ∨
(∃n m. x1 = (m, n) ∧ x2 = (Suc n, Suc m)))

It is our goal to show that Rf is well-founded.

3.1 Call Descriptors

Recursion relations generated from function definitions are always disjunctions
of existential clauses, each corresponding to a recursive call. By providing explicit
descriptions for such call relations, we will make this structure accessible to the
logic.

A call descriptor is a triple (Γ , r , l), which describes a recursive call in a func-
tion definition: r is the argument of the recursive call, l is the original argument
(from the left hand side of the equation) and Γ is the condition under which the
call occurs. All three values depend on variables (the pattern variables), which
we replace by a single variable (possibly containing a tuple).

types
(α, γ) cdesc = (γ ⇒ bool) × (γ ⇒ α) × (γ ⇒ α)

Here, α is the argument type of the function and γ is the type of the pattern
variable.

A list of call descriptors describes a relation in the obvious way:

in-cdesc :: (α,γ) cdesc ⇒ α ⇒ α ⇒ bool
in-cdesc (Γ , r , l) x y = (∃ q. x = r q ∧ y = l q ∧ Γ q)

mk-rel :: (α,γ) cdesc list ⇒ α ⇒ α ⇒ bool
mk-rel [] x y = False
mk-rel (c # cs) x y = in-cdesc c x y ∨ mk-rel cs x y

2 The function does not compute anything useful.
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We can now describe Rf by such a list of call descriptors:

Rf =
mk-rel
[(λ(m, n). True, λ(m, n). (Suc m, Suc m), λ(m, n). (0 , Suc m)),
(λ(m, n). True, λ(m, n). (m, n), λ(m, n). (Suc n, Suc m))]

Transforming the definition to this form is easily automated by a suitable
tactic. The main task here is to determine the type of γ which must be a product
large enough to express all the variables in the different clauses. The equivalence
to the original version simply follows by unfolding the definitions of mk-rel and
in-cdesc.

3.2 Measure Functions

To each call (i.e. each control point in the graph), we will assign a list of measure
functions, which correspond to the data positions.

Measure functions capture the notion of size. The whole analysis is indepen-
dent from the exact form of the measure functions. and any function mapping
into a wellfounded domain can be used. For simplicity, our measure functions
map into the natural numbers:

types
α measure = α ⇒ nat

Choosing measure functions is a separate problem not addressed here. As a
default choice we use just the structural size functions which Isabelle provides
for each inductive data type. Product types are split into their components. So
for example for an argument type S × T we use the projections sizeS ◦ fst and
sizeT ◦ snd as measure functions. Manolios and Vroon [15] describe some other
heuristics for choosing measure functions.

3.3 Approximating the Control Graph

We will now show how to construct a size-change problem that corresponds to
a relation given by a list of call descriptors.

For two call descriptors Ci and Cj , the predicate no-step is true if a Ci-call
can never be followed by a Cj-call:

no-step :: (α,γ) cdesc ⇒ (α,γ) cdesc ⇒ bool

no-step (Γ 1, r1, l1) (Γ 2, r2, l2) =
(∀ q1 q2. Γ 1 q1 ∧ Γ 2 q2 ∧ r1 q1 = l2 q2 −→ False)

If we can prove no-step C i C j , then we can be sure that these calls can
never occur in sequence. Otherwise we must add an edge between i and j to our
control graph. This edge will carry a size change graph which approximates the
size change behaviour of the call.

The predicates step< and step≤ capture strict and non-strict decrease of mea-
sures from one call to the next:
step< :: (α,γ) cdesc ⇒ (α,γ) cdesc ⇒ α measure ⇒ α measure ⇒ bool
step≤ :: (α,γ) cdesc ⇒ (α,γ) cdesc ⇒ α measure ⇒ α measure ⇒ bool
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step< (Γ 1, r1, l1) (Γ 2, r2, l2) m1 m2 =
(∀ q1 q2. Γ 1 q1 ∧ Γ 2 q2 ∧ r1 q1 = l2 q2 −→ m2 (l2 q2) < m1 (l1 q1))

step≤ (Γ 1, r1, l1) (Γ 2, r2, l2) m1 m2 =
(∀ q1 q2. Γ 1 q1 ∧ Γ 2 q2 ∧ r1 q1 = l2 q2 −→ m2 (l2 q2) ≤ m1 (l1 q1))

Now consider a size-change graph G and functions M 1 and M 2 which assign
measures to the data positions of C 1 and C 2. We say that G approximates the
pair of calls, if the claimed inequalities are actually satisfied by the respective
measures. This is expressed by the approx predicate:

approx :: scg ⇒ (α,γ) cdesc ⇒ (α,γ) cdesc
⇒ (nat ⇒ α measure) ⇒ (nat ⇒ α measure) ⇒ bool

approx G C 1 C 2 M 1 M 2 =

(∀ i j . (i
↓−−→
G

j −→ step< C 1 C 2 (M 1 i) (M 2 j )) ∧

(i
=↓−−→
G

j −→ step≤ C 1 C 2 (M 1 i) (M 2 j )))

Now, a control graph A is a sound description of a given list of call descriptors
and measure functions, if between any two calls, either no step is possible, or
A contains the corresponding edge with a size-change graph approximating the
call combination3:

sound-desc :: acg ⇒ (α,γ) cdesc list ⇒ (nat ⇒ α measure) list ⇒ bool

sound-desc A D M =
(∀n<|D |. ∀m<|D |. no-step D[n] D[m] ∨ (∃G. n G−−→

A
m ∧ approx G D[n] D[m] M[n]

M[m]))

Now, it is straigtforward to prove the following:

Theorem 2. If sound-desc A D M and SCT A then mk-rel D is wellfounded .

With this theorem, which is basically a formal version of the results in [15], we
are able to prove wellfoundedness of a relation, provided we can express it in
terms of a list of call descriptors and find an A which satisfies SCT and is a
sound estimation of the relation.

3.4 Building Size-Change Problems

It is not hard to build a custom proof tactic to construct A and prove sound-desc
A D M :

– For each pair of calls C i and C j , try to prove no-step C i C j .
– If this succeeds, no edge needs to be added to A.

3 Here, xs[i] denotes the i-th element of the list xs.
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– If it fails, construct a size-change graph G, by proving as many of the step<

and step≤ estimations as possible. For each successful proof, the correspond-
ing edge can be added to the G.

For the “try to prove . . . ” steps in the above algorithm, we simply call Is-
abelle’s auto tactic, which combines rewriting, classical reasoning and some
arithmetic. Of course, other proof methods could easily be plugged in here.

The result for our example function is given in Fig. 2. The 1
↓→ 1 arrow in

G2 is surprising at first: The automated prover discovered that when going from
C2 to C1, the first argument must get smaller, since for C1, the first argument
must be zero, but before it was nonzero. Also note that there is no arrow from
C1 to itself, which is essential for the termination of the function.

C1

C2

G1

G2

G3

1 1 1
↓� 1 1 1

G1 : G2 : G3 :

2
=↓�

=↓ �

2 2

↓ �

2

↓�

2

↓ �

2

↓�

Fig. 2. The control graph and size change graphs for f

4 Implementation Prototype

Finally, an algorithm for checking the predicate SCT ex (cf. §2.4) must be im-
plemented and proved correct. We will present a naive implementation without
any optimizations. While this does limit the performance of our system, it is
sufficient to explain the ideas and demonstrate the overall approach.

We can use Isabelle’s code generator to translate the algorithm into ML. The
code generator (originally developed by Berghofer [3]) was recently redesigned
by Haftmann [9] to generate code for definitions involving type classes. Type
classes are compiled into dictionaries as it is done in Haskell compilers.

The code generation framework also supports the execution of functions in-
volving (finite) sets, which are compiled to lists. By using this functionality,
it takes just a few steps to produce a working prototype from our specifica-
tion.

Recall that our definition of graph composition (cf. §2.2) involves existential
quantification, which is of course undecidable in general. However, it is easy
to make graph composition executable by proving the following equations and
making them available to the code generator:

joinable ((n, e, m), (n ′, e ′, m ′)) = (m = n ′)
connect ((n, e, m), (n ′, e ′, m ′)) = (n, e·e ′, m ′)
Graph G·Graph H = Graph (connect ‘ {x ∈ G × H . joinable x})

Note that the bounded comprehension and the image operation (‘) are exe-
cutable, as they are compiled to an expression involving map and filter.
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The following function, overloaded on the type class of Kleene algebras, com-
putes transitive closures by a simple iteration:

mk-tcl A X = (if X ·A ≤ X then X else mk-tcl A (X + X ·A))

Note that mk-tcl need not always terminate. However, since the SCT problems
we consider are always finite, termination can be proved for these cases.

By straigtforward induction, we can prove that mk-tcl computes transitive
closures of finite graphs:

finite-acg A =⇒ mk-tcl A A = A+

Then the following function checks SCT ex:

test-SCT A =
(let T = mk-tcl A A
in ∀ (n, G, m)∈dest-graph T .

n �= m ∨ G·G �= G ∨ (∃ (p, e, q)∈dest-graph G. p = q ∧ e = ↓))

where dest-graph (Graph G) = G.

We prove that the function is correct:

Theorem 3. finite-acg A =⇒ SCT ex A = test-SCT A

Note that the bounded universal and existential quantifiers in the definition of
test-SCT do not prevent code generation: They are translated to the correspond-
ing predicates on lists. Hence, test-SCT can be translated to ML and executed.

4.1 Putting Everything Together

Connecting the results of the previous sections, we obtain a method to formally
certify the termination of functions in Isabelle:

– Define the function as usual, and create a list of call descriptors, representing
the call relation.

– Assign suitable measures to each call, and, following the steps outlined in
§3.4, construct a size-change problem A.

– Apply Thm. 2. It remains to prove SCT A.
– Apply Thm. 1. By construction, A is finite, so it remains to show SCT ex A.
– Apply Thm. 3, obtaining an executable goal.
– Evaluate the goal to True, either using the simplifier (which is currently only

feasible for small examples), or by translating to ML first.

5 Examples

While our SCT implementation handles all forms of structural recursion and
their lexicographic combinations, we are most interested in examples, where
simpler analyses fail. The following example is adapted from [14]:
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p m n r = (if 0 < r then p m (r − 1 ) n else if 0 < n then p r (n − 1 ) m else m)

Since the argument is permuted in each recursive call, simple size measures or
lexicographic combinations are not sufficient to prove termination. The function
from §3 is of a similar nature.

A different example shows the ability of the analysis to detect reachability
between calls. The function has a boolean argument which eventually becomes
False, and then the recursion descends on a different argument:

foo True (Suc n) m = foo True n (Suc m)
foo True 0 m = foo False 0 m
foo False n (Suc m) = foo False (Suc n) m
foo False n 0 = n

A third example is taken from the WST termination competition problem
database [2]. The key observation here is that a recursive call can never occur
more than once, which is again detected by the reachability analysis between
calls, which yields a control graph with no edges.

bar 0 (Suc n) m = bar m m m
bar (Suc v) n m = 0
bar k 0 m = 0

These examples have a certain artificial flavour, as their only reason of exis-
tence seems to be to demonstrate termination proofs. So are there also practical
examples where size change termination is useful?

The following example comes from a formalization of a descision procedure
for equalities in a commutative ring, adapted from similar work in Coq [8] (the
Isabelle version was done by Bernhard Häupler). The function adds two polyno-
mials, represented by a datatype with three constructors Pc, Pinj and PX:

add (Pc a) (Pc b) = Pc (a + b)

add (Pc c) (Pinj i P) = Pinj i (add P (Pc c))

add (Pc c) (PX P i Q) = PX P i (add Q (Pc c))

add (Pinj x P) (Pinj y Q) =
(if x = y then mkPinj x (add P Q)
else if y < x then mkPinj y (add (Pinj (x − y) P) Q)

else add (Pinj y Q) (Pinj x P))

add (Pinj x P) (PX Q y R) =
(if x = 0 then add P (PX Q y R)
else if x = 1 then PX Q y (add P R) else PX Q y (add (Pinj (x − 1 ) P) R))

add (PX P1 x P2) (PX Q1 y Q2) =
(if x = y then mkPX (add P1 Q1) x (add P2 Q2)
else if y < x then mkPX (add (PX P1 (x − y) (Pc 0 )) Q1) y (add P2 Q2)

else add (PX Q1 y Q2) (PX P1 x P2))

add (Pinj i P) (Pc c) = add (Pc c) (Pinj i P)

add (PX P i Q) (Pc c) = add (Pc c) (PX P i Q)

add (PX Q y R) (Pinj x P) = add (Pinj x P) (PX Q y R)
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In the underlined cases the function just calls itself with permuted arguments.
This avoids duplicating the code from other clauses – a sensible programming
pattern for commutative functions. However, without an analysis dealing with
argument permutation, it is extremely hard to convince Isabelle to accept this
definition, which is why the function had to be rewritten in the original version,
just for the sake of the termination proof, resulting in significant code duplica-
tion.

Note that such duplication does not only concern the function specification,
but will turn up again in induction proofs about the function, as the induc-
tion rule is generated from the definition. This leads to redundant cases, whose
“analogous” proofs have to be copy-and-pasted.

With our prototype, we could automatically prove termination of add.

6 Discussion

6.1 Scope of the Method

It is hard to describe the class of problems that can be solved by our tool. While
SCT itself is well-understood, the success of the overall method also depends on
the quality of the estimations in the size change graphs, which is again deter-
mined by the capabilities of Isabelle’s auto tactic.

While this makes it hard to predict if the method will succeed on a given
problem, the advantage is that auto can make use of lemmas already present in
the current theory. Most static analyses would have a hard time speculating and
proving these lemmas, especially when induction is required. In Isabelle, such
lemmas can be provided by the user and then used by automated tools.

This shows how interactive theorem proving and automated methods can
benefit from each other, when combined: The user can help establishing difficult
lemmas and SCT, with its strengths in combinatorics, provides the automated
path analysis.

6.2 Practical Applications

Manolios and Vroon tested their system against a large corpus of ACL2 defini-
tions, and observed an impressive gain in automation.

Interestingly, when looking at the function definitions in the current Isabelle
distribution and the Archive of Formal Proofs [1], most of the definitions can
already be handled by a much simpler search for lexicographic orderings [6]. SCT
does solve all these problems, but its real strengths are not used.

A possible explanation could be that users, knowing about Isabelle’s limi-
tations in that area, tried to avoid function definitions that would require a
difficult manual termination proof, and used other modeling techniques like in-
ductive relations instead. It remains to see whether this changes when SCT
becomes generally available in Isabelle. But the add function discussed above
already shows the potential of SCT.
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6.3 Efficiency

Especially in the light of the PSPACE-hardness result, efficiency is a concern.
In our setup, there are two critical operations:

First, in order to approximate the size-change problem, many proof goals must
be generated and tried by the automated prover, one for each possible edge in
each size-change graph. For the add function this takes about 2 minutes on a
1GHz laptop. As an improvement, one can implement a more efficient tactic,
which is specialized on the kind of inequalities that actually occur, or add a
heuristic to filter out subgoals that are likely to be unprovable.

Second, computing the transitive closure can take long. However, our minimal-
istic implementation represents graphs very inefficiently using sets (implemented
by lists). First experiments showed that a better representation (e.g. matrices,
implemented by quadtrees) leads to a significant speedup and we plan to inte-
grate such an algorithm soon. Note that the proofs of the metatheory (§2) need
not be changed.

7 Conclusion

By formalizing the size-change principle, we made an important termination
criterion available for Isabelle. The implemented algorithm is only a proof-of-
concept, but it should not be difficult to develop and integrate a more efficient
implementation.

Recursive functions are an important application, but they are not the only
one: It would be interesting work to apply SCT to other sorts of termination
problems. One example is the framework for hoare-logic style verification of
imperative programs [19], where termination proofs for loops and recursive pro-
cedures currently also need a user-specified well-founded relation. In fact, due to
the modularity of SCT, much of the present work should be reusable with little
or no change.

Acknowledgements. I want to thank Tobias Nipkow, Christian Sternagel and
Lukas Bulwahn for helpful comments on a previous draft of this paper, and
Amine Chaieb for pointing me to the add example. The anonymous referees
provided valuable feedback.

References

1. Archive of Formal Proofs. http://afp.sourceforge.net/
2. Termination Competition.

http://www.lri.fr/∼marche/termination-competition/
3. Berghofer, S., Nipkow, T.: Executing higher order logic. In: Callaghan, P., Luo, Z.,

McKinna, J., Pollack, R. (eds.) TYPES 2000. LNCS, vol. 2277, pp. 24–40. Springer,
Heidelberg (2002)
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Abstract. We present a method for proving rigid first order theorems
by encoding them as propositional satisfiability problems. We encode the
existence of a first order connection tableau and the satisfiability of uni-
fication constraints. Then the first order theorem is rigidly unsatisfiable
if and only if the encoding is propositionally satisfiable. We have imple-
mented this method in our theorem prover CHEWTPTP, and present
experimental results. This method can be useful for general first order
problems, by continually adding more instances of each clause.

1 Introduction

There are two strands of thought in first order theorem proving today. One
line of research is to design general theorem provers which address all of first
order logic. The second line is to design general purpose algorithms for decidable
problems and combine them together. In this paper, we attempt to design an
efficient algorithm for the specialized rigid theorem proving problem, which can
be used as an end in itself, or can be used incrementally to address all of first
order logic.

In standard refutational theorem proving problems we attempt to prove the
unsatisfiability of a set of clauses, and allow an unbounded number of renamed
instances of each clause. In rigid theorem proving, only one instance of each
clause is allowed. Rigid theorem proving has been studied as early as [20,1], and
is used in some tableau style theorem provers[12]. In this case, the rigid theorem
proving problem is used as a means of solving the general theorem proving
problem. But, as we argue in [8] the rigid theorem proving problem is useful in
itself for modeling behavior that only occurs a bounded number of times, such
as cryptographic protocols with a bounded number of sessions.

The most impressive success recently in theorem proving has been the effi-
ciency of SAT solving methods based on the DPLL method[7]. The success of
these methods seems to be based on the fact that the search space is defined in
advance. This means that an exponential number of possibilities can be explored
in polynomial space. It also means that the data structures can be predetermined
in such a way that the algorithm can access everything efficiently. In this paper,
we try to take advantage of such techniques in first order theorem proving. The
obvious idea is to try to incorporate a SAT solver, and also to use it in such
a way that it is not called often, because calling it too many times loses the
advantages mentioned above.

F. Pfenning (Ed.): CADE 2007, LNAI 4603, pp. 476–491, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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In our method, we encode a proof of first order unsatisfiability with proposi-
tional clauses. Obviously, we cannot encode full first order unsatisfiability, since
that is an undecidable problem. So we chose to encode rigid first order satis-
fiability. In order to do this, we need to decide what kind of proof should be
encoded. One possibility would be to encode a resolution proof, as has been
done in [16], although in that paper propositional proofs were encoded and not
first order proofs. We chose instead to encode a connection tableau proof. The
reason we chose this method is because the number of clauses that are encoded
remains fixed for connection tableau whereas resolution proofs introduce clauses
not contained in the original set. For that reason, we think a SAT solver will
be more directed in the encoding of a connection tableau proof, as opposed to a
resolution proof.

Given a propositional encoding of a rigid connection tableau proof (which we
describe in this paper), the encoding is sent to a SAT solver (we used MiniSat[9])
which will return RIGIDLY SATISFIABLE if a rigid connection tableau exits,
and RIGIDLY UNSATISFIABLE if a closed rigid connection tableau does not
exist. If satisfiable, we can recover the tableau from the truth assignment re-
turned by the SAT solver.

The idea of the encoding is the following. We encode the existence of a clause
as the root of the connection tableau. We encode the fact that every literal
assigned to a non-leaf node is extended with a clause containing a complementary
literal. Those things are easy to encode, and do not take up much space. There
are three things which are more costly to encode.

First, we must encode the fact that two literals are complementary, in other
words that their corresponding atoms are unifiable. For that, we basically have
to encode a unification algorithm. In our encoding of unification, we leave out
the occurs check, because it is expensive, and because it rarely occurs. We add a
check for this after the SAT solver returns the truth assignment. If there really
is an occurs check, we add a propositional clause and call MiniSat again.

Second, the above encoding leaves open the possibility that the connection
tableau is infinite. Therefore, we must encode the fact that the connection
tableau is finite, i.e., that the connection tableau contains no cycle.

Third, we must encode the fact that every literal assigned to a leaf node is
closed by a previous literal. Our encoding is simpler for the Horn case, because
it is only necessary to close a literal with the previous one on the branch. For
the non-Horn case, we must encode the fact that there is a complementary
literal higher up in the tree. Since the same clause may occur on two different
branches, and a literal on that clause may close with different literals on different
branches, we may need to add more than one copy of a clause in the rigid non-
Horn case, because of the fact that the literal is closed differently. But we still
try to get as much structure sharing in our tree as possible. Note that rigid Horn
clause satisfiability is NP -complete, but Rigid non-Horn clause satisfiability is
Σp

2 -complete[11]. So it is not surprising that a SAT solver cannot solve rigid
non-Horn clause satisfiability directly.
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The original contributions in this paper are to define an encoding of closed
rigid connection tableau proofs as a SAT problem; provide rigid-horn, rigid/non-
horn, and non-rigid algorithms and proofs of their completeness and soundness;
and discuss our implementation along with initial experimental results.

2 Preliminaries

2.1 First Order Logic

We use standard notation to represent classical first order logic formula. Our al-
phabet consists of variables, constants, functions symbols, predicates, the quan-
tifiers ∀ (universal) and ∃ (existential), logical connectives ∨ (disjunction),∧
(conjunction), ¬ (negation) and parentheses. Terms are defined inductively as
follows. Variables and constants are terms. If f is a function with arity n and
t1..tn are terms then f(t1, ..., tn) is a term. Atoms are of the form P (t1, ...tn)
where P is a predicate of arity n and t1, ..., tn are zero or more terms. A literal is
defined as a positive or negative atom and a clause is a disjunction of literals. We
consider a formula to be constructed from elements in the alphabet according
to the standard rules for constructing formula. See [4] for a detailed description
of first order logic and a background discussion on the validity of a first order
logic formula.

We consider a literal to be ground if it contains no variables. And we define
a Horn clause as a clause which contains at most one positive literal. A clause
which contains only negative literals is called a negative clause.

A formula is in conjunctive normal form (CNF) if it is a conjunction of literals
such that negations are applied only to atoms and all variables are universally
quantified.

A substitution σ for F is a map from the set of variables of F to a set of terms.
We can view a substitution as a set of equations x = t where x is a variable and t
is a term. We call a single equation of a substitution σ an assignment of σ. Given
a substitution σ, an application of σ on a formula F is denoted Fσ. We say that a
substitutions, σ, is a unifier of formulas G and H if Gσ = Hσ. If σ unifies G and
H and for every unifier α of G and H there exists some θ such that σθ = α then
we call σ a most general unifier (mgu) of G and H . A ground instance of G is an
instance of G in which all variables are replaced by ground terms.

2.2 Propositional Logic

The alphabet for propositional logic formula consists of propositional variables
and the logical connectives ∨ (disjunction), ∧ (conjunction), ¬ (negation) and
parentheses. As with first order logic, we will consider propositional logic for-
mulas to be in CNF and conform to the standard rules for constructing valid
propositional logic formulas[4].

2.3 Connection Tableaux

We define rigid clausal tableau as follows.
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Definition 1. Rigid clausal tableaux are trees with nodes labeled with literals,
branches labeled either open or closed, and edges labeled with zero or more as-
signments. Rigid clausal tableaux are inductively defined as follows. Let S =
{C1...Cn} be a set of clauses. If T is a tree consisting of a single unlabeled node
(the root node) N then T is a rigid clausal tableau for S. The branch consisting
of only the root node N is open. If N is a leaf node on an open branch B in
the rigid clausal tableaux T for S and one of the following inference rules are
applied to T then the resulting tree is a rigid clausal tableaux for S.

(Expansion rule) Let Ck = Lk1 ∨ ... ∨Lki be a clause in S. Construct a new
tableaux T ′ by adding i nodes to N and labeling them Lk1 through Lki. Label
each of the i branches open.

(Closure rule) Suppose Lij is the literal at N and for some predecessor node M
with literal Lpq there exists some most general unifier σ such that Lijσ = ¬Lpqσ
and the assignments of σ are consistent with the assignments of T . Construct
T ′ from T by labeling the edge from Lpq to Lij with the assignments used in the
unification and by closing the branch of N .

We call the clause which is added to the root node the start clause and we say
that a clause is in a tableau if the clause was used in an application of the
expansion rule.

Definition 2. A clausal tableaux is connected if each clause (except the start
clause) in the tableaux contains some literal which is unifiable with the negation
of its predecessor [13].

Connection tableaux use an additional macro inference rule called the extension
rule.

Definition 3. (Extension Rule) Let N be a node in the tableau T and let Ck

be a clause in S such that there exists a literal Lki in Ck which is unifiable with
the negation of N . Apply the expansion rule with Ck and immediately apply the
closure rule with Lki.

The calculus for connection tableaux (or model elimination tableau [13]) there-
fore consists of the expansion rule (for the start clause only), the closure rule,
and the extension rule. We call a tableau closed if each leaf node has been closed
by an application of the closure rule.

By [13] we can require that the start clause be a negative clause since there
exists a negative clause in any minimally satisfiable set.

2.4 Rigid Unsatisfiability

Unless otherwise stated, we let F be a set of first order logic formulas. The main
problem in Automated Theorem Proving is to determine if the set of hypotheses
in F implies the conclusion in F . For our purposes we assume that all formula
in a problem are in CNF and the conclusion is negated. Therefore we seek to
determine if F is (equivalently) unsatisfiable, i.e. there does not exist a model for
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F . The problem of rigid unsatisfiability of F seeks to determine whether there
exists a ground instance of F which is unsatisfiable.

A result of Tableau Theory is the completeness and soundness of closed (rigid)
connection tableaux.

Theorem 1. There exists a closed (rigid) connection tableau for F iff F is
(rigidly) unsatisfiable[12].

3 Tableau Encoding

Our method to determine the rigid satisfiability of F generates a set of proposi-
tional logic clauses for F which encodes a closed rigid connection tableau for F .
We provide two encoding, the first for problems which contain only Horn clauses
and the second for those containing non-Horn clauses. Given F , we give unique
symbols to each of the clauses in F and each of the literals in each clause. We
represent clause i by Ci. We represent the jth literal in clause i by Lij (which is
used to label the tableaux). Note that as multiple copies of a clause may appear
in a rigid connection tableau, multiple nodes may have the same literal label.
And whereas the same literal may appear in distinct clauses, they are identified
with different labels. We denote Aij to be the atom of Lij . Therefore Lij is either
of the form Aij or ¬Aij .

3.1 Encoding for Horn Clauses

We define the variables cm, lmn, emnq, uk, pmq as follows: Define cm = T iff
Cm appears in the tableau. Define lmn = T iff Lmn is an internal node in the
tableau. Define emnq = T iff Cq is an extension of Lmn. Define uτ = T iff τ
is an assignment implied by the substitutions used in the closure rules. Define
pmq = T iff there exists a path from a literal in Cm to Cq.

Below we list the set of clauses that we generate and provide their meaning.
At least one clause containing only negative literals appears in the tableau:

∨

Cm is a negative clause
cm (1)

If Cm appears in the tableau and Lmn is a negative literal then Lmn is an
internal node in the tableau:

¬cm ∨ lmn (2)

If Lmn is an internal node in the tableau then for some qj , Cqj is an extension
of Lmn:

¬lmn ∨ emnq1 ∨ ... ∨ emnqk
(3)

where {Cq1 ...Cqk
} represents the set of all clauses whose positive literals are

unifiable with Lmn

If Cq is an extension of Lmn then Cq exists in the tableau:

¬emnq ∨ cq (4)
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If Cq is an extension of Lmn and τ is an assignment of the mgu used to unify
Aqr with Amn then τ is implied by the mgu:

¬emnq ∨ uτ where τ ∈ mgu(Amn, Aqr) (5)

If for two assignments x = s and x = t there does not exist a mgu θ such that
sθ = tθ then both assignments can not be true:

¬ux=s ∨ ¬ux=t where s and t are not unifiable (6)

If x = s, x = t, σ = mgu(s, t) and y = r ∈ σ then y = r:

¬ux=s ∨ ¬ux=t ∨ uy=r where y = r ∈ mgu(s, t) (7)

If Cq is an extension of Lmn then there is a path from Cm to Cq:

¬emnq ∨ pmq (8)

Transitivity of the path relation:

¬pmq ∨ ¬pqs ∨ pms (9)

There are no cycles in the tableau:

¬pmm (10)

3.2 Encoding for Non-horn Clauses

For non-Horn problems we use an alternative set of variables and generate a
different set of clauses. We say that two literals are complementary if they have
opposite signs and their atoms are unifiable.

We define the variables sm, cmn, lmn, emnqj , uk, pmq, and qmnij as follows.
Define sm = T iff Cm is the start clause. Define cmn = T iff Cm appears in
the tableau and Lmn is used to close its parent. Define lmn = T iff Lmn is
a node in the tableau and is not a leaf node created by an application of the
closure rule. Define emnqj = T iff Cq is an extension of Lmn and Lmn is used
to close Lqi. Define uτ = T iff τ is an assignment implied by the unifiers used
in the applications of the closure rules. Define oijkl = T iff Lkl is used to close
Lij . Define pmq = T iff there exists a path from a literal in Cm to Cq. Define
qmnij = T iff Lmn is a leaf and Lmn is closed by a literal between the root node
and Lij .

The clauses are as follows.
There exists a start clause in the tableau which only contains negative literals:

∨

sm is a negative clause
sm (11)

If Cm is the start clause in the tableau then each literal Lmn of Cm is in the
tableau:

¬sm ∨ lmn (12)



482 T. Deshane et al.

If Ci appears in the tableau and Lij is the complement of a literal in its parent
then all other literals of Ci are in the tableau:

¬cij ∨ lik where j �= k (13)

If Lij exists in the tableau and is not a leaf node created by an application of
the closure rule then either Lij is closed by a literal between the root and Lij

or there is an extension of Lij :

¬lij ∨ qijij

∨

k,l

eijkl (14)

If Lij is extended with Ck then Ck is in the tableau and some Lkl of Ck is
closed by Lij :

¬eijkl ∨ ckl (15)

If clause Cm is an extension of Lij and τ is an assignment of the mgu used to
unify Aml with Aij then τ is true:

¬eijml ∨ uτ where τ ∈ mgu(Aml, Aij) (16)

If for two assignments x = s and x = t there does not exist a mgu θ such that
sθ = tθ then both assignments can not be true:

¬ux=s ∨ ¬ux=t where s and t are not unifiable (17)

If x = s, x = t, σ = mgu(s, t) and y = r ∈ σ then y = r:

¬ux=s ∨ ¬ux=t ∨ uy=r where y = r ∈ mgu(s, t) (18)

If Lij is used to close Lkl then their atoms must be unifiable by some unifier
σ, hence each assignment of σ is true:

¬oijkl ∨ uτ where τ ∈ mgu(Aij , Akl) (19)

If Lij has the same sign as Lkl or their respective atoms are not unifiable then
Lij is not used to close Lkl:

¬oijkl where Lij and Lkl have the same sign or Aij and Akl are not unifiable
(20)

If leaf Lij is closed by a literal between the root and Lkl and clause Ck is an
extension of Lmn then Lij is closed by some literal between the root and Lmn:

¬qijkl ∨ ¬emnkl ∨ oijmn ∨ qijmn (21)

If Ck is an extension of Lij then there is a path from clause Ci to clause Ck:

¬eijkl ∨ pik (22)

Transitivity for paths:
¬pij ∨ ¬pjk ∨ pik (23)
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There are no cycles in the tableau:

¬pii (24)

If Ci is the start clause then there are no extensions into any of the literals in
Ci:

¬si ∨ ¬eklij (25)

If Ci is the start clause and Lmn is a leaf which is closed by a literal between
the root node and Lij , then Lmn must be closed with Lij :

¬si ∨ ¬qmnij ∨ omnij (26)

4 Tableau Encoding Algorithm(TE)

We provide three algorithms, each with subtle differences. The first algorithm
HTE attempts to find a rigid proof and takes as an argument a problem contain-
ing only Horn clauses. The second, NHTE, also attempts to find a rigid proof
and takes as an argument a non-Horn problem. The last algorithm, NRTE,
seeks to finds a non-rigid proof and takes either a Horn or non-Horn problem as
an argument.

The rigid algorithm for non-Horn problems may require additional copies of
the clauses in F in order to generate a proof for F and the non-rigid algorithm
may also require additional instances of clauses. In the case of the former, copies
of clauses in F are added to the set of problem clauses. The number of copies
required can be bounded by kn where n is the number of clauses in F and k is
the maximum number of literals in any clause in F . In the case of the non-rigid
algorithm, new instances of clauses in F which are standardized apart are added
to the problem clauses.

Each algorithm initially enters a while loop. While in the loop the set of clauses
S, which encode the closed rigid connection tableau, is given to an external
SAT solver. The SAT solver returns satisfiable or unsatisfiable and if the set
of clauses is satisfiable, the SAT solver returns a model M . If the SAT solver
returns satisfiable we check if the assignments which are assigned true in M are
constent. If not, we add additional clauses to S to resolve these inconsistencies
and call the SAT solver again. If the algorithm determines that S is satisfiable
and the assignments which are assigned true are consistent, the algorithm returns
an indication that F is rigidly unsatisfiable.

The function Unify-Substitutions takes as an argument the model M gener-
ated by the SAT solver and generates additional clauses to rectify inconsistencies
in the assigments used in the proof. The only inconsistency that can occur among
assignments is due to cycles. For example, {x1 = f(x2), x2 = f(x3), x3 = f(x1)}.
If a cycle is found, a clause is created which prevents the conflict. These clauses
are added to the original set of clauses generated by the algorithm which are
again checked by the SAT solver.
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Algorithm 1. Rigid Algorithm For Horn Problems(HTE)
Input: F , a set of FO formula in conjunctive normal form.
Output: RIGIDLY UNSATISFIABLE or RIGIDLY SATISFIABLE
HTE(F )
(1) Generate S, the set of encodings for F

(2) S
′
= ∅

(3) while true

(4) SAT-Solver(S ∪ S
′
)

(5) if SAT-Solver returns SATISFIABLE and and the assignments set true in
M are consistent

(6) return (RIGIDLY UNSATISFIABLE)
(7) else if SAT-Solver returns SATISFIABLE

(8) S
′

= Unify-Substitutions(M)
(9) else
(10) return (RIGIDLY SATISFIABLE)

Algorithm 2. Rigid Algorithm For Non-Horn Problems(NHTE)
Input: F , a multi-set of FO formula in conjunctive normal form.
Output: RIGIDLY UNSATISFIABLE
NHTE(F )

(1) F
′
= F

(2) S
′
= ∅

(3) while true

(4) generate S, the set of encodings for F
′

(5) M = SAT-Solver(S ∪ S
′
)

(6) if SAT-Solver returns SATISFIABLE and the assignments set true in M
are consistent

(7) return (RIGIDLY UNSATISFIABLE)
(8) else if SAT-Solver returns SATISFIABLE

(9) S
′

= Unify-Substitutions(M)
(10) else
(11) F

′
= F

′ ∪ F

5 Completeness and Soundness Theorems for HTE

In the following proofs we refer to the sets of clauses generated by HTE by the
enumeration given in Section 3.1.

Theorem 2. (Completeness) Let F be a set of first order logic Horn clauses. If
F is rigidly unsatisfiable, then HTE will return RIGIDLY UNSATISFIABLE.

Proof. Assume F is rigidly unsatisfiable and let S be the set of clauses for
F generated by HTE. As F is rigidly unsatisfiable then by Theorem 1 there
exists a closed rigid connection tableaux T . It also follows that the start node
of T contains only negative literals. From T we will construct a map from the
variables in S to {true, false} so that S is satisfiable.
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Algorithm 3. Non-Rigid Algorithm(NRTE)
Input: F , a set of FO formula in conjunctive normal form.
Output: UNSATISFIABLE
NRTE(F )

(1) F
′
= F

(2) S
′
= ∅

(3) while 1

(4) generate S, the set of encodings for F
′

(5) M = SAT-Solver(S ∪ S
′
)

(6) if SAT-Solver returns SATISFIABLE and the assignments set true in M
are consistent

(7) return (UNSATISFIABLE)
(8) else if SAT-Solver returns SATISFIABLE

(9) S
′

= Unify-Substitutions(M)
(10) else
(11) generate set of new instances, A, of F using variables not occurring in

F
′

(12) F
′
= F

′ ∪A

If Cm appears in the tableau set cm = true otherwise set cm = false. If Lmn

is an internal node in the tableau set lmn = true otherwise set lmn = false. If
Cq is an extension of Lmn set emnq = true otherwise set emnq = false. If τ is
an assignment implied by the unifiers used applications of the closure rule set
uτ = true otherwise set uτ = false and if there exists a path from Cm to Cq set
pmq = true otherwise set pmq = false.

As T has a start node containing only negative literals, there exists a variable
in Set 1 which is true. Thus Set 1 of S is satisfiable.

As T is a connection tableau and each extension of T closes the branch con-
taining the positive literal of a clause, and since each clause contains at most
one positive literal, then each negative literal in T is an interal node. Hence each
variable representing a clause in T is true iff its negative literal variables are also
true. Thus Set 2 is satisfiable.

Since each negative literal in T must be extended it follows that each variable
representing a negative literal in T is true iff the variable representing its exten-
sion is true. Therefore Set 3 is satisfiable. Furthermore since each extension of T
extends a literal to all the literals in a clause, an extension variable is true iff the
clause variable associated with the extension is true. Thus Set 4 is satisfiable.

Since each extension in T unifies complementary literals, it follows that an
extension variable is true iff each of the variables representing the assignments in
the unifier used in the unification of the complementary literals are true. Hence
Set 5 is satisfiable. It also follows by the consistency of T that inconsistent
assignments can not both be true, thus for each pair of variables representing
inconsistent assignments we have one is true iff the other is false. Hence Set 6
is satisfiable. In addition if two assignments map the same variable to unifiable
terms s and t then the assignments used in the unification of s and t must be
true. Therefore Set 7 is satisfiable.
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Now as there exists paths between literals and clauses via extensions in T ,
if a variable representing an extension is true then the variable representing
the path is true. Thus Set 8 is satisfiable. And since the paths in T have a
transitive relation and no cycles exist in T , Sets 9 and 10 are satisfiable respec-
tively.

Therefore since each of the sets of clauses in S are satisfiable, then the SAT
solver called in HTE returns a satisfiable model with consistent assignments,
hence HTE returns RIGIDLY UNSATISFIABLE. ��

Theorem 3. (Soundness) If HTE on F returns RIGIDLY UNSATISFIABLE
then F is rigidly unsatisfiable.

Our proof of soundness uses the satisfiability map produced by HTE to construct
a tableau for F .

Proof. Suppose HTE on F returns RIGIDLY UNSATISFIABLE. Then there ex-
ists a set of clauses S generated by HTE and a model M for which S is satisfiable.
Furthermore the set of assignment variables that are true in M correspond to a
consistent set of assignments. We construct a closed rigid connection tableau T
for F using M and S as follows.

Since S is satisfiable the clause C = c1 ∨ ... ∨ cn in Set 1 of S, is satisfiable.
Since C is satisfiable at least one of the variables in C are assigned true. Let cm

where m ∈ [1..n] be a variable of C such that cm = true. We begin constructing
T by setting Cm as the start clause of T . 1

Now as cm = true and Set 2 is satisfiable, each of the variables corresponding
to the literals in Cm are true. Thus for each literal Lmn in Cm we create a node
directly off the root and label it Lmn.

Let Lmn be a literal in Cm. Now as lmn is true and Set 3 is satisfiable there
exists some variable emnqi which is true and as Set 4 is satisfiable emnqi = true
implies cqi = true. We therefore expand the node labeled Lmn in T with clause
Cqi . We continue this process until all literal, clause, and extention variables
which are assigned true have been addressed. By the satisfiability of Sets 2 − 4,
T is closed.

Now let emnqi be a variable in M which is set to true. Since Set 5 is satisfiable,
emnqi implies that a set of assignments are true. We label the edge from Lmn to
the positive literal in Cqi with these assignments. Since each extension unifies
adjacent complementary literals and the assignments in M are consistent, T is
connected and consistent.

The satisfiability of Sets 8 − 10 ensure that there are no cycles in T , hence
T is a tree. It follows then that T is a closed connection tableau. Since
each clause in T is in F , T is a closed rigid connection tableau for F . Thus
by the soundness theorem for closed rigid connection tableaux, F is rigidly un-
satisfiable. ��

1 It may be the case that more than one variable of C is assigned true. This corresponds
to the fact that there may be more than one closed rigid connection tableau for F .
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6 Completeness and Soundness Theorems for NHTE

Here we provide the completeness theorem of NHTE which takes as input non-
Horn problems. In the proofs, we refer to the sets of clauses generated by NHTE
by the enumeration given in Section 3.2.

Theorem 4. (Completeness) Let F be a set of first order clauses. If F is rigidly
unsatisfiable, then NHTE will return RIGIDLY UNSATISFIABLE.

Proof. Assume F is rigidly unsatisfiable and let S be the set of clauses for F
generated by NHTE. By Theorem 1, as F is unsatisfiable, there exists a closed
rigid connection tableaux T for F . It also follows that the start node of T contains
only negative literals. Let S be the set of clauses generated by NHTE. Given
T we will construct a map from the variables in S to {true, false} so that S is
satisfiable.

Set sm = T iff Cm is the start clause. Set cmn = T iff Cm appears in the
tableau and Lmn is closed by an application of the extension rule. Set lmn = T
iff Lmn is a node in the tableau but is not closed by an application of the
extension rule. Set emnqj = T iff Cq is an extension of Lmn and Lqj closes Lmn.
Set uτ = T iff τ is a assignment implied by substitutions used in the closure
rules. Set oijkl = T iff Lkl is used to close Lij but not during an application of
the expansion rule. Set pmq = T iff there exists a path from a literal in Cm to
Cq. Set qmnij = T iff Lmn is a leaf and is closed by a literal between the root
node and Lij .

As T has a start node containing only negative literals, there exists a variable
in Set 11 which is true, thus Set 11 of S is satisfiable. Since each of the literals in
the start clause are in T and are not closed by an application of the expansion
rule then their respective variables are true, therefore Set 12 is satisfiable.

Now as each clause in T (except for the start clause) is the result of an
expansion rule, and only one literal in each clause is closed in the process of
using the expansion rule, all the other literals are in the tableau but are not
closed by an application of the expansion rule. Hence Set 13 of S is satisfiable.

Suppose Lij is in T such that Lij is not closed by an application of the expan-
sion rule. Then either Lij is extended or Lij has been closed by a complementary
literal on its path. It follows that Set 14 is satisfiable.

Since each extension in T adds a clause to T , Set 15 is satisfiable. Since
each extension in T unifies complementary literals, it follows that an extension
variable is true iff each of the variables representing the assignments in the unifier
used in the unification of the complementary literals are true. Hence Set 16 is
satisfiable. It also follows by the consistency of T that inconsistent assignments
cannot both be true, thus for each pair of variables representing inconsistent
assignments, one is true iff the other is false. Hence Set 17 is satisfiable. In
addition if two assignments map the same variable to unifiable terms s and t
then the assignments used in the unification of s and t must be true. Therefore
Set 18 is satisfiable.

As each pair of literals which are used in a non-extension closure are comple-
ments, if a variable representing the non-extension closure between two literals
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is true then the variables representing the assignments implied by unification of
their atoms are true. Hence Set 19 is satisfiable. Since no two literals with have
the same sign or which have atoms that are not unifiable cannot be used in a
non-extension closure, Set 20 is satisfiable.

Suppose Lij is a leaf and is closed by a literal between the root and Lkl. If
the clause containing Lkl is an extension of some node Lmn then either Lmn is a
complement of Lij or Lij is closed by a literal between the root node and Lmn.
It follows that Set 21 is satisfiable.

Now as there exists paths between literals and clauses via extensions in T , if
a variable representing an extension is true then the variable representing the
path is true. Thus Set 22 is satisfiable. And since the paths in T have a transitive
relation and no cycles exist in T , Sets 23 and 24 are satisfiable respectively.

As the start clause has no expansions into it, Set 25 is satisfiable. And since if
a leaf, say Lij in T is closed by a non-extension closure by a literal between the
root and Lmn of the start clause, since there are not literals between the root
and the literals of the start clause, then Lij must be closed by Lmn. Hence Set
26 is satisfiable.

Therefore as each of the sets of clauses in S are satisfiable, then the SAT
solver called in NHTE returns SATISFIABLE. It follows that as T is a tableau
the assignments implied by the closure rule are consistent. Hence, NHTE returns
RIGIDLY UNSATISFIABLE.

Theorem 5. (Soundness) If NHTE on F returns RIGIDLY UNSATISFIABLE
then F is rigidly unsatisfiable.

7 CHEWTPTP Implementation

We have implemented our tableau encoding method in a command line program
written in C++ called CHEWTPTP. The default options assume the input file
is in TPTP CNF format[18]. By default the program assumes the input problem
is non-Horn and uses the non-Horn algorithm with one instance of the clauses in
the input file. The user may specify alternate settings by including the following
flags. The flag -h indicates the problem is Horn, -r specifies the user wishes the
program to run one of the rigid algorithms, -i allows the user to input the number
of instances of the problem to use, and -p instructs the program to print a proof.
Other options are provided to control input and output.

The program initially parses the input file and constructs a data structure
to hold the clauses in memory. The program then constructs the sets of clauses
defined in section 3. While generating the clauses, a data structure is kept which
maps each variable to a unique integer. We use the integers to format the clauses
in a MiniSat[9] readable format. CHEWTPTP then forks a process and invokes
MiniSat on the set of generated clauses and MiniSat determines the satisfiability
of the set. When MiniSat returns, we inspect the file output by MiniSat. If
the file contains an indication of satisfiability we check that the substitutions
are unifiable and if so, we use the model provided by MiniSat to construct a
proof. If MiniSat returns back an indication of unsatisfiable, the program returns
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SATISFIABLE in the rigid Horn case, and may add additional clauses and repeat
the process in the other cases.

Preliminary results on 1365 Horn and non-Horn CNF problems without equal-
ity in the TPTP Library show that 221 of them have rigid proofs requiring a
single instance. We have found that CHEWTPTP was able to solve some prob-
lems which many theorem provers could not within a 600 second time limit, e.g.
the non-Horn problems ANA003-4.p and ANA004-4.p. And although we have
not tested the library extensively by adding additional instances, CHEWTPTP
was successful solving non-rigid problems that others were unable, e.g. ANA003-
2 was proved with 2 instances in less than 5 seconds.

Below are some statistics on the problems mentioned above and a few other
problems. The first column identifies the name of the problem in the TPTP
library and the second column identifies whether or not the problem is Horn.
The third column identifies the number of instances that were required to prove
the problem. The fourth column gives the number of seconds CHEWTPTP took
to generate the tableau encoding(s) and the fifth column gives the total time (in
seconds) that MiniSat ran on the problem. The sixth and last columns give the
number of clauses and variables respectively that were input to MiniSat when
MiniSat returned SATISFIABLE.

Table 1. Statistics on Selected Problems

Name Horn Instances Clause Gen MiniSat Clauses Variables
(sec) (sec)

ALG002-1 N 2 1.2 65.93 411020 13844
ANA003-2 Y 2 .1 4.88 183821 7238
ANA003-4 N 1 1.1 .06 34774 2616
ANA004-4 N 1 1.61 .3 44142 3160
COL121-2 Y 1 1.35 .16 47725 2322
GRP029-2 Y 1 .08 1.41 241272 7943
PUZ031-1 N 1 .24 .71 662145 14672

8 Conclusion

This is not the first paper to suggest an encoding of a proof in propositional logic.
[16] has explored the idea of encoding a propositional resolution proof itself in
propositional logic. Our emphasis is different from that paper. That paper is
interested in using local search methods to find a proof. Since they are only
considering propositional proofs, they do not encode unification. In our case, we
encode tableau proofs, because we suspect that SAT solver will be able to direct
its search better in that case.

We can also compare our recent work with recent papers on instantiation-
based theorem proving, which either try to use a SAT solver to create a first
order model[6], or else try to use DPLL-like methods directly on first order
clauses [3,5,14,19,2]. Those are completely different approaches. They do not try
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to encode the proof. They try to find a model instead. We argue that the benefit
of our approach is that the SAT solver is called rarely. Based on the reasons we
understand for the success of SAT solvers, we think this is a big advantage of
our method.

In our implementation, we sometimes generate large files for MiniSat to solve.
Minisat usually solves them very quickly. Our implementation is still preliminary,
but we think it shows promise, given that it can solve some problems quickly
that many other theorem provers cannot solve. We do not have a good handle yet
on which problems our method does better on. Obviously, it will perform best
on problems that do not need many instances of the clauses. From our results,
it appears that more than 15% of the problems without equality in the TPTP
library are rigidly unsatisfiable, with only one instance of each clause.

For future work, there are several things that need to be done. We need to
make our implementation more efficient. There are also several useful extensions.
We need to find a good way to represent equality. We need to find a good way to
decide exactly which clauses should be copied. We would like a method to decide
satisfiability from rigid satisfiability. It would be useful to have an encoding of
rigid clauses modulo a non-rigid theory, as discussed in [8]. This way, we could
immediately identify some clauses as non-rigid, and work modulo those clauses.

Finally, the most interesting idea to improve the efficiency is to replace the
SAT solver by a SAT solver modulo theories. Crude analysis of the input files
to the SAT solver shows that for the Horn case less than 1% of the clauses
generated are to determine the structure of the tableau whereas nearly 70% are
to encode the unification. Instead of encoding the unification problem, we could
work modulo a background unification theory. Besides unification, the other
things that generate a lot of clauses are the encoding of no cycle in the tree (as
much as 30%), and the existence of a complementary literal previously in the
tree (as much as 70% in the non-Horn case). They are both somehow concerned
with finding cycles. A unification algorithm could also be employed here if it had
an efficient occurs check. The existence of a cycle can be succinctly encoded as a
unification problem. Unification has a deterministic algorithm. Since this would
remove the bulk of our propositional clauses and replace them by a deterministic
algorithm, we expect it would improve the efficiency a lot.
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Abstract. In most theorem proving applications, a proper treatment of
equational theories or equality is mandatory. In this paper we show how
to integrate a modern treatment of equality in the hyper tableau calcu-
lus. It is based on splitting of positive clauses and an adapted version of
the superposition inference rule, where equations used for paramodula-
tion are drawn (only) from a set of positive unit clauses, the candidate
model. The calculus also features a generic, semantically justified sim-
plification rule which covers many redundancy elimination techniques
known from superposition theorem proving. Our main results are sound-
ness and completeness, but we briefly describe the implementation, too.

1 Introduction

Tableau calculi play an important role in theorem proving, knowledge represen-
tation and in logic programming. Yet, for automated first-order theorem proving
the influence of tableau calculi decreased in the last decade. The CASC competi-
tion [SS06] is dominated by saturation-based provers, and a tableau system like
SETHEO, which was several times among CASC winners, is not even entering
the competition any more. Among the reasons are the problems tableau calculi
have with efficient handling of equality. Of course there are numerous papers on
equality handling in tableau calculi. Various approaches have been discussed, for
instance, in [Bec97]. It is not clear, however, whether they can be a basis for high
performance theorem proving. This has to do with the usage of free variables in
most semantic tableau calculi. The nature of these free variables, their rigidness,
seems to be a major source for difficulties to define efficient proof procedures,
even without equality. For instance, proof procedures often suffer from excessive
backtracking and enumerate whole tableaux in an iterative-deepening fashion,
typically based on the number of γ-rule applications in a tableau.

To avoid the problems of rigid variables for equality reasoning, in [DV96] the
authors combine a superposition based equality reasoning system with a top
down semantic tableau reasoner. Yet, certain substitutions still have to be ap-
plied globally to all variables in the tableau, which thus are still treated rigidly.
As with most free-variable tableau calculi, the important property of proof con-
fluence does not hold or is not known to hold.

Other free-variable tableau methods are based on solving (simultaneous) rigid
E-unifiability problems [DV98] but still face the same problem of not exploiting
proof confluence.

F. Pfenning (Ed.): CADE 2007, LNAI 4603, pp. 492–507, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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A more recent stream of equality handling in free-variable tableaux has been
initiated by Martin Giese. It is (also) motivated by addressing the excessive back-
tracking of the methods mentioned above. In [Gie02] the author gives a calculus
for free variable tableaux with superposition-type inference and proves complete-
ness by adapting the model generation technique for superposition [BG98,NR01].
One improvement, compared with [DV96] and other free-variable methods is that
unification constraints leading to a closed tableau are now held locally together
with tableau literals. This allows one to avoid backtracking over the tableaux
generated in a derivation, but instead amounts to combining local substitutions
in a compatible way for the purpose to witness a closed tableau (see [Gie01] for
details). A drawback of this approach is its potentially high memory consump-
tion, as, in essence, it does not admit a one-branch-at-a-time proof procedure.

In [Gie03], simplification rules and reasoning with universal variables1 are
added to the framework of [Gie02], but without equality. Equality aside, the most
relevant contribution in [Gie03] from the viewpoint of this paper is the instantia-
tion of the calculus there to a variant of the hyper tableau calculus [BFN96].2 An
important difference to [BFN96] is that [Gie03] uses rigid variables for variables
that are shared between positive literals in clauses. For instance, a clause like
∀x, y (p(x, y)∨q(x)) then is treated by β-expansion with the formulas ∀y p(X, y)
and q(X), where X is a rigid variable shared between branches. In contrast, the
hyper tableaux of [BFN96] would branch out on the formulas ∀y p(t, y) and q(t),
where t is some “guessed” ground term of the input signature.3

In this paper we stick with the hyper tableau calculus and its “obviously in-
efficient” approach of guessing ground terms for shared variables, as opposed
to using free variables. More precisely, we show how to incorporate efficient
ordering-based equality inference rules and redundancy elimination techniques
from the superposition calculus [BG98, NR01] into a tableau calculus. We be-
lieve the hyper tableau calculus [BFN96] is a good basis for doing that, for the
following reasons.

– All variables in a hyper tableau are universally quantified in the branch literal
they occur. This facilitates the adaption of the superposition framework and
enables powerful redundancy criteria.

– As far as we know, none of the free-variable calculi mentioned above can be
used as a non-trivial decision procedure for function-free clause logic. The
same holds true for any known resolution refinement.
On the other hand, our calculus is a non-trivial decision procedure for this
fragment (with equality), which captures the complexity class NEXPTIME.

1 Variables that are local to a clause or literal and that are universally quantified.
2 Hyper tableaux is a tableau model generation method, which is applied to clauses

and needs only one inference rule, which can be seen as a tableaux β-rule. It is
applied in a “hyper-way”, such that all negative literals are “resolved away” by
positive literals in the branch. The remaining literals are positive and are split after
that. This basic idea stems from SATCHMO [MB88], which is extended in hyper
tableaux by making better use of universally quantified variables.

3 Notice that Resolution- or Superposition calculi, also those with Splitting [Wei01],
do not split ∀x, y (p(x, y) ∨ q(x)).
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Many practically relevant problems are NEXPTIME-complete, e.g. first-
order model expansion (relevant for constraint solving).

– Advanced techniques are available to restrict the domain of the guessed
ground terms (like t above). For instance, the preprocessing technique in
[BS06] can readily be used in conjunction with our calculus without any
change.4

– Specific to the theory of equality and in presence of simplification inference
rules, that domain can even be further reduced. This occasionally shows
unexpected (positive) effects, leading to termination of our system, where
e.g. superposition based systems do not terminate. See Section 5 for details.

– The hyper tableau calculus is the basis of the KRHyper prover, which is used
in various applications [FO06,?,BFGHS04, e.g.] from which we learned that
an efficient handling of equality would increase its usability even more.

The closest approximation of the superposition calculus to E-hyper tableaux
is obtained by using a selection function that selects all negative literals and
using a prover that supports splitting, like SPASS [Wei01]. Even then, there
remain differences. We discuss these issues in Section 5.

In [BT05], the model evolution calculus is extended by equality. Model evo-
lution is a lifting of propositional DPLL to the first order case. The model con-
struction method behind admits semantically justified redundancy elimination
criteria. This calculus, as well as other instance-based methods (with equality,
like [LS02]) are conceptually rather different to resolution- or tableau calculi as
considered here.

This paper is organised as follows: we start with preliminaries in the following
section. In Section 3 we present superposition inference rules for clauses together
with a static completeness result. In Section 4 we introduce E-hyper tableaux and
soundness and completeness properties. In Section 5 we consider improvements
for splitting and discuss the relation with splitting in the SPASS prover. Section 6
describes the implementation of the E-KRHyper system. Detailed proofs of all
results can be found in the long version of this paper.

2 Preliminaries

Most of the notions and notation we use in this paper are the standard ones in
the field. We report here only notable differences and additions.

We will use an infinite set of variables X , and x and y denote elements of X .
We fix a signature Σ throughout the paper. Unless otherwise specified, when we
say term we will mean Σ-term. If t is a term we denote by Var(t) the set of t’s
variables. A term t is ground iff Var(t) = ∅.

The notation s[t]p denotes the replacement of a subterm of s at position p
with a term t, as usual. We leave away the subscript p if clear from the context.
All of the above is extended from terms to literals in the obvious way.
4 For example, the calculus described here does not admit a finite (fair) derivation

from the clause set {∀x p(x)∨ q(x), r(f(c))}, but in conjunction with the techniques
in [BS06] it does.
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In this paper we restrict ourselves to equational clause logic. Therefore, and
essentially without loss of generality, we assume that the only predicate symbol
in Σ is ,. Any atom A that is originally not an equation can be represented
as the equation A , t, where t is some distinguished constant not appearing
elsewhere. (But we continue to write, say, P (a) instead of the official P (a) , t.)
This move is harmless, in particular from an operational point of view.5 An
atom then is always an equation, and a literal then is always an equation or
the negation of an equation. Literals of the latter kind, i.e., literals of the form
(s , t) are also called negative equations and generally written s �, t instead.
We call a literal trivial if it is of the form t , t or t �, t.

We denote atoms by the letters A and B, literals by the letters K and L and
by L the complement of a literal L.

A clause is a finite multiset of literals, written as a disjunction A1∨· · ·∨Am∨
¬B1 ∨ · · · ∨ ¬Bn or an implication A1, . . . , Am ← B1, . . . , Bn, where m,n ≥ 0.
Each atom Ai, for i = 1, . . . ,m, is called a head atom, and each atom Bj , for
j = 1, . . . , n, is called a body atom. We write A,A ← B,B to denote a clause with
head atoms {A} ∪ A and body atoms {B} ∪ B, where A and B are multisets
of atoms. As usual, clauses are implicitly universally quantified.

We suppose as given a reduction ordering - that is total on ground Σ-terms.6

The non-strict ordering induced by - is denoted by 5, and ≺ and ( denote the
converse of - and 5. The reduction ordering - has to be extended to rewrite
rules, equations and clauses. Following usual techniques [BG98, NR01, e.g.], to
a given ground clause A ← B we associate to each head atom s , t in A
the multiset {s, t} and to each body atom u , v in B the multiset {u, u, v, v}.
Two atoms then (head or body) are compared by using the multiset extension
of -, which is also denoted by -. This will have the effect of a lexicographic
ordering, where, first, the bigger terms of two equations are compared, then the
sign (body atoms are bigger) and at last the smaller sides of the equations. To
compare clauses the two-fold multiset extension of - is used, likewise denoted
by -. When comparing ground rewrite rules they are treated as unit clauses.

A central notion for hyper tableaux is that of a pure clause [BFN96]: a clause
A1, . . . , Am ← B1, . . . , Bn is called pure iff Var(Ai) ∩ Var(Aj) = ∅, for all
1 ≤ i, j ≤ m with i �= j. That is, in a pure clause variables are not shared among
head literals. (In the rest of this paper we will need this concept for positive
clauses only.) Any substitution that turns a clause C into a pure instance Cπ is
called a purifying substitution (for C).

A (Herbrand) interpretation I is a set of ground Σ-equations—those that are
true in the interpretation. Satisfiability/validity of ground Σ-literals, Σ-clauses,

5 Strictly speaking, one has to move to a two-sorted signature with different signatures
for function symbols and predicate symbols, and all variables are of the sort of
terms. We ignore this aspect throughout the paper because it does not cause any
complications.

6 A reduction ordering is a strict partial ordering that is well-founded and is closed
unter context i.e., s + s′ implies t[s] + t[s′] for all terms t, and liftable, i.e., s + t
implies sδ + tδ for every term s and t and substitution δ.
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and clause sets in a Herbrand interpretation is defined as usual. We write I |= F
to denote that I satisfies F , where F is a ground Σ-literal or a Σ-clause (set).

Since every interpretation defines in effect a binary relation on ground Σ-
terms, and every binary relation on such terms defines an interpretation, we will
identify the two notions in the sequel.

An E-interpretation is an interpretation that is also a congruence relation on
the Σ-terms. If I is an interpretation, we denote by IE the smallest congruence
relation on the Σ-terms that includes I. We say that I E-satisfies F iff IE |= F .
Instead of IE |= F we generally write I |=E F . We say that F E-entails F ′,
written F |=E F ′, iff every E-interpretation that satisfies F also satisfies F ′. We
say that F and F ′ are E-equivalent iff F |=E F ′ and F ′ |=E F .

Redundant Clauses. Intuitively, a clause is redundant iff it follows from a set of
smaller clauses. We will formalize this now, following [BG98]. There is a related
notion of “redundant inference” which will be introduced in Section 3.1 below.

If D is a ground clause and C is a set of ground clauses then let CD = {C ∈
C | D - C}. When C is a set of non-ground clauses and when writing CD we
identify C with the set of all ground instances of all its clauses.

Now, a ground clause D is redundant wrt. a set of clauses C iff CD |=E D.
That is, D is redundant wrt. C iff D follows from smaller clauses taken from
C.7 When D is a non-ground clause we say that D is redundant wrt. C iff every
ground instance of D is redundant wrt. C. For instance, using any simplification
ordering, P (f(a)) ← is redundant wrt. {P (a) ← , f(x) , x ← }, because
{P (a) ← , f(a) , a ← } |=E P (f(a)) ← and each clause in the premise is
smaller than P (f(a)) ← .

3 Inference Rules on Clauses

The following three inference rules are taken from the superposition calcu-
lus [BG98] and adapted to our needs. We need in addition a splitting rule that
will be defined afterwards. All rules will later be embedded into the hyper tableau
derivation rules.

An equation l , r always also denotes its symmetric version r , l.
The sup-left rule (superposition left8) applies a superposition step to a body

literal:

sup-left(σ)
A ← s[l′] , t,B l , r ←

(A ← s[r] , t,B)σ
if

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

l′ is not a variable,

σ is a mgu of l and l′,

lσ �) rσ, and

sσ �) tσ

7 By compactness, even from a finite set of clauses.
8 With our notation for clauses, the name superposition left is actually counterintu-

itive, but we keep it for compatibility with corresponding rules in the superposition
calculus.
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The last condition can be dropped, and the resulting inference rule is then called
ordered paramodulation left.

The unit-sup-right rule (unit superposition right) applies a superposition step
to a positive unit clause:

unit-sup-right(σ)
s[l′] , t ← l , r ←

(s[r] , t ←)σ
if

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

l′ is not a variable,

σ is a mgu of l and l′,

(s - t)σ �) (l - r)σ,

lσ �) rσ, and

sσ �) tσ

The last condition can be dropped, and the resulting inference rule is then called
ordered unit paramodulation right.

The general superposition right inference rule of [BG98] between non-unit
clauses is not needed, essentially due to the presence of the splitting rule below.

The ref rule (reflexivity) eliminates a body literal on the grounds of being
trivially true (after applying a substitution).

ref(σ)
A ← s , t,B
(A ← B)σ

if σ is a mgu of s and t

Finally, the announced splitting rule. It takes a disjunctive fact, applies a puri-
fying substitution π to it and returns the instantiated head atoms, one conclusion
per head atom.

split(π)
A1, . . . , Am←

A1π← · · · Amπ←
if

{
m ≥ 2, and

π is a purifying substitution for A1, . . . , Am←

3.1 Redundant Inferences and Saturation

We write C,D ⇒sup-left(σ) E to denote a sup-left inference, i.e., an instance of
the sup-left inference rule with left premise C, right premise D, conclusion E
and substitution σ that satisfies the rule’s side condition. We use analogous
notation for an application of the sup-right inference rule, and for an application
of ref we write, similarly, C ⇒ref(σ) E. Likewise, C ⇒split(π) A1 ← , . . . , Am ←
denotes a split inference with premise C, purifying substitution π and conclusions
A1 ← , . . . , Am ← .

An R-inference, with R ∈ {sup-left, unit-sup-right, ref} is ground iff its con-
stituent clauses C,D and E are ground. The substitution σ in a ground inference
is irrelevant and may be assumed, without loss of generality, to be the empty
substitution ε.

If C,D ⇒R(σ) E is an R-inference (with D absent in the case of ref) and γ
is a substitution such that Cσγ,Dσγ ⇒R(ε) Eγ is a ground inference, then the
latter inference is called a ground instance of the inference C,D ⇒R(σ) E.

For instance, by taking γ = {x &→ a} one sees that the ground inference

(P (f(a)) ← ), (f(a) , a ← ) ⇒sup-right(ε) P (a) ←
is a ground instance of the inference
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(P (f(x)) ← ), (f(y) , y ← ) ⇒sup-right({y �→x}) P (x) ← .

In contrast,

(P (f(f(a))) ← ), (f(a) , a ← ) ⇒sup-right(ε) P (f(a)) ←

is not a ground instance of the inference above, for any substitution γ. Intu-
itively, only such ground inferences can be ground instances of inferences where
paramodulation takes place at positions that exist also at the non-ground level.
This excludes ground inferences that are not liftable because they would require
paramodulation into or below variables. We can define these notions for the
split rule analogously: a split inference is ground if the premise is ground (and
hence all its conclusions are ground). Similarly as above for the other rules, the
purifying substitution π can always be assumed to be the empty substitution
then.

If C ⇒split(π) A1 ← , . . . , Am ← is a split inference and γ is a substitution
such that Cπγ ⇒split(ε) A1γ ← , . . . , Amγ ← is a ground split inference, then
the latter inference is called a ground instance of the former inference.

Let D be a set of (possibly non-ground) clauses. A ground inference
C,D ⇒sup-left(ε) E or C,D ⇒sup-right(ε) E is redundant wrt. D iff E is redun-
dant wrt. DC ∪ {D}. A ground inference C ⇒ref(ε) E is redundant wrt. D iff E
is redundant wrt. DC . And a ground inference C ⇒split(ε) A1 ← , . . . , Am ← is
redundant wrt. D iff there is an i with 1 ≤ i ≤ m such that Ai ← is redundant
wrt. DC .

For all inference rules sup-left, unit-sup-right, ref and split, a (possibly non-
ground) inference is redundant wrt. D iff each of its ground instances is redundant
wrt. D.

Intuitively a ground inference is redundant wrt. D iff its conclusion follows
from a set of smaller clauses than the left premise, while fixing the right premise.
Because all (ground) inferences work in a strictly order-decreasing way, adding
the conclusion of an inference to the clause set the premises are taken from
renders the inference redundant wrt. that set.9 For instance, adding P (a) ← to
the set {(P (f(a)) ← ), (f(a) , a ← )} renders the obvious sup-right inference
redundant wrt. the resulting set.

It is not only redundant inferences that can be neglected. Also inferences where
one or both parent clauses are redundant can be neglected. This is captured by
the following definition.

Definition 3.1 (Saturation up to redundancy). A clause set C is saturated
up to redundancy iff for all clauses C ∈ C such that C is not redundant wrt. C
all of the following hold:

1. Every inference C ⇒split(π) A1 ← , . . . , Am ← such that Cπ is not redundant
wrt. C, is redundant wrt. C.

2. Every inference C,D ⇒R(σ) E, where R ∈ {sup-left, unit-sup-right} and D
is a fresh variant of a positive unit clause from C, such that neither Cσ nor
Dσ is redundant wrt. C, is redundant wrt. C.

9 This property makes it obvious that fair derivations, as defined later, exist.
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3. Every inference C ⇒ref(σ) E such that Cσ is not redundant wrt. C, is redun-
dant wrt. C.

For instance, the (satisfiable) propositional clause set C = {(A,B ← ), ( ← A)}
is not saturated up to redundancy. By an application of the split rule to A,B ←
one can infer A ← and B ← , and adding, say, B ← to C renders the clause
A,B ← redundant.

As an example for a non-ground split inference consider a clause P (x), Q(x) ←
from some clause set. One may want to avoid applying all purifying substitutions
to it. Fortunately, Definition 3.1-1 does not prescribe that at all. For instance,
when the clause set includes an equation a , b ← (where a - b), then purifying
P (x), Q(x) ← by π = {x/b}, yielding P (b), Q(b) ← , and adding P (b) ← to the
clause set is sufficient to render the split inference with purifying substitution
{x/a} redundant, as the clause P (a) ← follows from P (b) ← and a , b ← ,
both of which are smaller than P (a), Q(a) ← .

Theorem 3.2 (Static Completeness). Let C be a clause set saturated up to
redundancy. If  /∈ C then C is E-satisfiable.

The proof employs the model-construction technique originally developed for
the superposition calculus, but adapted to our needs. The difference come from
the facts that in our case all side premises are unit clauses, and so there is no
equality factoring (or merging paramodulation) inference rule, and that we need
a splitting rule.

Notice that Theorem 3.2 applies to a statically given clause set C. The con-
nection to the dynamic derivation process of the E-hyper tableau calculus will
be given later, and Theorem 3.2 will be essential in proving the completeness of
the E-hyper tableau calculus.

4 E-Hyper Tableaux

In [BFN96], based on [LMG94], hyper tableau have been introduced as labeled
trees over literals (which are universally quantified, and hence can be seen as
unit clauses). For our purposes, however, a generalization towards trees over
clauses is better suited. This is, because new clauses can now be derived as the
derivation proceeds, and these clauses are context dependant (branch local), and
tableaux are an obvious data structure to deal with this context dependency.

A labeled tree over a set M is a pair (T , λ) consisting of a finite, ordered tree
T and a labeling function λ that maps each node of T to some element from M .
A (clausal) tableau over a signature Σ is a labeled tree over the set of Σ-clauses.

We use the letter T to denote tableaux.
Let B be a branch of a tableau T of length n, i.e., a sequence of nodes

(N1, . . . ,Nn), for some n ≥ 0, where N1 is the root and Nn is the leaf of B.
Each of the clauses λ(Ni), for i = 1, . . . , n, is called a (tableau) clause of B.

Occasionally it is convenient to read a branch B as the multiset of its tableau
clauses λ(B) := {D | D is a tableau clause of B}. This allows us to write, for
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instance, C ∈ B instead of C ∈ λ(B). Furthermore, if B is a branch of a tableau
T we write B · C and mean the tableau obtained from T by adding an edge
from the leaf of B to a fresh node labeled with C. Furthermore, we write B ·B′

to denote the branch obtained by concatenating the branch B and the node
sequence B′.

4.1 Extension Rules

We define two derivation rules for extending branches in a given tableau.
The Split rule branches out on an instance of a positive clause; its conclusions

are labeled as “decision clauses”, as indicated by the annotation d. The role of
this labeling will become clear below in Section 4.2.

Split
B

B · A1 ←d · · · B · Am ←d
if

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

there is a clause C ∈ B and

a substitution π such that

C ⇒split(π) A1 ← , . . . , Am ← and

B contains no variant of Ai ← ,

for each i = 1, . . . , m

The clause C is called the selected clause (of a Split inference).
The Equality rule applies an inference rule for equality reasoning from Section 3

to a body literal.

Equality
B

B · E
if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

there is a clause C ∈ B,

a fresh variant D of a positive unit clause in B, and

a substitution σ such that

C, D ⇒R(σ) E with R ∈ {sup-left, unit-sup-right} or

C ⇒ref(σ) E, and

B contains no variant of E

In both rules, the test for the conclusion(s) being not contained in B is needed
in interplay with deletion of clauses based on non-proper subsumption (see the
Del below).

For later use, we say that an application of a Split, Sup-left, Unit-sup-right or
Ref derivation rule to a branch B is redundant iff its conclusion (at least one of
its conclusions, in the case of Split) is redundant wrt. B.

4.2 Deletion and Simplification Rules

From a practical point of view, deletion of redundant clauses and simplification
operations on clauses are crucial. We will introduce these now. Adding such rules
is a major addition to the hyper tableau calculus and involves a more sophisticted
technical treatment than that in [BFN96]. This is, because hyper tableau as
defined in [BFN96] are non-destructive, in the sense that extending a branch
goes along with increasing the set of its corresponding labels (unit clauses). This
is no longer the case in presence of, for instance, the Del rule (deletion) below,
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which removes a clause that is redundant in a branch or subsumed by another
clause in the branch.

Also, to preserve the calculus’ soundness, arbitrary deletion of redundant
clauses is not possible. A clause can be deleted only on the condition that none
of the clauses which make the clause redundant is a clause which has been in-
troduced at a later “decision level” (i.e. one that occurs further down in the tree
below a more leafwards decision clause). This is formalized next.

Del
B · C(d) ·B1 ·B2

B · t , t ←(d) · B1 · B2

if

⎧
⎪⎨

⎪⎩

(1) C is redundant wrt. B ·B1, or some

clause in B ·B1 non-properly subsumes C, and

(2) B1 does not contain a decision clause

The notation (d) is meant to say that if there is a label d, it is preserved when
replacing C by t , t ← .

Observe that our redundancy notion does not cover non-proper subsump-
tion.10 For instance, the clause P (a) ← is not redundant wrt. {P (x) ← } (and
neither is the clause P (y) ← ). Therefore, deletion of non-properly subsumed
clauses has been taken care of explicitly.

The next rule, Simp (simplification), replaces a clause by another one that is
smaller in the ordering:

Simp
B · C(d) · B1 ·B2

B ·D(d) · B1 · B2

if

⎧
⎪⎨

⎪⎩

(1) B · C ·B1 |=E D,

(2) C is redundant wrt. B · D ·B1, and

(3) B1 does not contain a decision clause

The Simp rule covers, for instance, standard rewriting by unit clauses.
The condition (2) in Del is needed for completeness reasons, and the condition

(3) in Simp is needed for both completeness and soundness reasons. They make
sure that no deletion or simplification step is justified by a clause from a decision
level further down in the tableau. Such a step would in general be justified only
in the branch containing the used clauses, but not in the other branches. For
illustration consider the following clause set.

P (a) ← (1) ← P (b) (2) a , b, Q ← (3)

After a Split with clause (3) a branch containing the decision clause a , b ←
comes up. If condition (3) in Simp were dropped (and a - b), then clause (1)
could be simplified to P (b) ← , leading to a refutation. This would be unsound
because the simplification is not justified in the branch containing Q ← although
it would contain the simplified literal. But with the restrictions in place we arrive
at the following lemma.

Lemma 4.1. For each of the derivation rules Split, Equality, Del and Simp, if
the premise of the rule is E-satisfiable, then one of its conclusions is E-satisfiable
as well.
10 A clause C non-properly subsumes a clause D iff Cσ = D for some substitution σ.
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For similar reasons as for Simp, the Del rule cannot just delete the clause Cd

mentioned in the premise, as the deletion would remove the separation of B
and B1 by a decision clause (while the replacement by t , t ← d preserves the
separation).

A different approach to deletion and simplification is implemented in the
SPASS prover [Wei01]. The corresponding rules in SPASS are even more gen-
eral than ours as they allow to ignore the decision levels. But then, in general,
a deleted or simplified clause must be reinserted on backtracking to an earlier
decision level. This is never necessary in our case, essentially because of disallow-
ing “backward” deletion and simplification steps across decision levels, as just
discussed in the previous example.

4.3 Derivations

We say that a branch of a tableau is closed iff it contains the empty clause .11

A branch that is not closed is also called open. A tableau is closed iff each of
its branches is closed, and it is open iff it is not closed (i.e., if it has an open
branch).

An (E-hyper tableau) derivation from a set {C1, . . . , Cn} of Σ-clauses is a
possibly infinite sequence of tableaux D = (Ti)0≤i<κ such that

1. T0 is the clausal tableau over Σ that consists of a single branch of length n
with tableau clauses C1, . . . , Cn.12, and

2. for all i > 0, Ti is obtained from Ti−1 by a single application of one of the
derivation rules in Sections 4.1 and 4.2 to some open branch of Ti−1, called
the selected branch.

Recall that a tableau T is of the form (T , λ), where T is a tree, i.e., a pair
(N , E) where N is the set of the nodes of T and E is the set of the edges of T .

A derivation D = ((Ni, Ei), λi)i<κ determines a limit tree ((
⋃

i<κ Ni,
⋃

i<κ Ei).
It is easy to show that a limit tree of a derivation D is indeed a (possibly infinite)
tree.

Now let T be the limit tree of some derivation, let B = (Ni)i<κ be a (possibly
infinite) branch in T with κ nodes, and let Bi = (N1, . . . ,Ni) be the initial
segment of B with i nodes, for all i < κ. Define B∞ =

⋃
i<κ

⋂
i≤j<κ λj(Bj), the

set of persistent clauses (of B).

Definition 4.2 (Exhausted Branch). Let T be a limit tree, and let B =
(Ni)i<κ be a branch in T with κ nodes. The branch B is exhausted iff it does
not contain the empty clause, and for every clause C ∈ B∞ and every fresh
variant D of every positive unit clause in B∞ such that neither C nor D is
redundant wrt. B∞ all of the following hold, for all i < κ such that C ∈ Bi and
D is a variant of a clause in Bi:
11 We write  instead of “ ← ”.
12 The order does not matter, as the collection of tableau clauses of a branch will be

seen as sets. For technical reasons we assume that no clause Ci is a variant of a
clause Cj , for all 1 ≤ i < j ≤ n, but this is obviously not an essential restriction.
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1. if Split is applicable to Bi with underlying inference
C ⇒split(π) A1 ← , . . . , Am ← and Cπ is not redundant wrt. Bi, then there
is a j < κ such that the inference C ⇒split(π) A1 ← , . . . , Am ← is redundant
wrt. Bj.

2. if Equality is applicable to Bi with underlying inference C,D ⇒R(σ) E, for
some R ∈ {sup-left, unit-sup-right}, and neither Cσ nor Dσ is redundant wrt.
Bi, then there is a j < κ such that the inference C,D ⇒R(σ) E is redundant
wrt. Bj.

3. if Equality is applicable to Bi with underlying inference C ⇒ref(σ) E and
Cσ is not redundant wrt. Bi, then there is a j < κ such that the inference
C ⇒ref(σ) E is redundant wrt. Bj.

A refutation of a clause set C is a finite derivation of C that ends in a closed
tableau.

A derivation is fair iff it is a refutation or its limit tree has an exhausted
branch.

In the preceeding definition, actually carrying out a Split inference with a
clause C and (irreducible) purifying substitution π, when applicable, will achieve
the conclusion, i.e. make Cπ redundant wrt. Bj . The analogous holds for the
Equality inferences in items 2 and 3. This observation indicates that proof pro-
cedures implementing fair derivations indeed can be given.

Theorem 4.3 (Soundness of E-Hyper Tableaux). Let C be a clause set that
has a refutation. Then C is E-unsatisfiable.

For the completeness direction we need the following result:

Proposition 4.4 (Exhausted branches are saturated up to redundancy).
If B is an exhausted branch of a limit tree of some fair derivation then B∞ is
saturated up to redundancy.

Proposition 4.4 and Theorem 3.2 entails our main result:

Theorem 4.5 (Completeness of E-Hyper Tableaux). Let C be a clause set
and T be the limit tree of a fair derivation D of C. If D is not a refutation then
C is satisfiable.

Because the proof of this theorem refers to the proof of Theorem 3.2, the model
constructed in the proof of Theorem 3.2 provides a strengthening of Theorem 4.5
by being more specific.

Corollary 4.6 (Bernays-Schönfinkel Class with Equality). The E-hyper
tableau calculus can be used as a decision procedure for the Bernays-Schönfinkel
class with equality, i.e., for function free formulae with the quantifier prefix ∃∗∀∗.

The proof of Corollary 4.6 follows from the soundness and completeness results,
and the facts that the calculus cannot derive clauses that grow in length, or
that grow in term depth (using the assumption that no non-nullary function
symbols are present) or that are variants of clauses already contained in the
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branch. Therefore any (exhausted) branch derivable must be finite.13 Because of
the finite branching of hyper tableaux and by Koenig’s Lemma it follows that
any (limit) derivation must be finite.

5 Restricting Split and the Relation to Splitting in SPASS

For performance reasons it is mandatory to restrict the search space induced
by having to apply purifying substitutions in Split rule applications. The fair-
ness criteria in Definition 4.2 already support that. For instance, one can take
advantage of avoiding purifying substitutions that are reducible, as they lead to
redundant inferences.

Definition 5.1 (Reducible substitution). Let C be a clause set and σ a sub-
stitution. We say that σ is reducible wrt. C iff there is a term t ∈ Ran(σ)14, a
unit clause l , r ← ∈ C and a (matching) substitution μ such that lμ occurs in
t and lμ - rμ.

We say that σ is irreducible wrt. C if σ is not reducible wrt. C.
Obviously, for each (positive) clause C = A1, . . . , Am ← in a branch B and

each purifying substitution π0 for C there is a maximal chain Cπ0 - Cπ1 - · · · -
Cπn, for some n ≥ 0, where πi is obtained from πi−1 by one-step rewriting a term
of its range with a positive unit clause from B and such that πn is irreducible
wrt. B. It is not difficult to see that, by equality, applying Split with Cπn renders
the Split inferences with Cπ0, . . . , Cπn−1 redundant (wrt. all branches obtained
by splitting Cπn). No reducible purifying substitution need therefore ever be
considered in Split inferences to obtain an exhausted branch.

An example of such a situation is C = P (x), Q(x) ← , a , b ← ∈ B, a - b,
π0 = {x/a} and π1 = {x/b}. Split with P (b), Q(b) ← alone to extend B is
sufficient.

A significantly different split rule is implemented in the SPASS prover [Wei01].
It does not apply a purifying substitution to force partitioning a clause into
variable disjoint parts. Instead, it can split on clauses only that are already
partitioned.

We do not claim that our approach is always preferrable in practice. Yet,
there are situations where indeed it is. By way of example, consider the following
clauses

f(a) , a ← (1)
g(a) , a ← (2)

f(g(x)) , g(f(x)) ← (3)
p(f(x)), p(g(x)) ← (4)

Suppose a precedence f - g - a (or g - f - a, as the problem is symmetric
in f and g), lifted to any simplification ordering. All superposition inferences
among the clauses 1-3 are redundant, and a prover like SPASS will detect that.

13 The situation is slightly more complicated due to the Simp and Del rules.
14 As usual, the range of a substitution σ is Ran(σ) = {xσ | xσ �= x}.
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Among others, there is a superposition inference between clause 4 and 3, which
yields the clause

p(g(f(x))), p(g(g(x))) ← . (5)

In fact this inference is redundant, too. To see this, consider any ground sub-
stitution γ. It must map x to some term comprised of a combination of fs, gs
and (one) a, e.g. γ = {x/f(f(g(f(a))))}. Now, any ground instance obtained
from clause 5 in this way can be reduced by the unit clauses 1-3 in one or more
steps to the clause p(f(a)), p(g(a)) ← (they can be reduced even further), which
is a ground instance of clause 4 and which is smaller in the ordering than the
ground instance of clause 5 we started with. By this argument the superposition
inference leading to clause 5 is redundant (and need not be carried out).

Notice that this argumentation takes the clause set’s signature into account.
However, the commonly implemented redundancy criteria do not do that. In
particular, for instance, SPASS does not find a finite saturation of the clause set
above. In contrast, E-hyper tableaux are aware of the input signature and the
redundancy criteria based on irreducible purifying substitutions, as mentioned
above, are strong enough to achieve termination.15 To see this, it is enough
to observe that every purifying substitution, like π = {x/f(f(g(f(a))))}, is re-
ducible (to π = {x/a}) wrt. every branch containing clauses 1 and 2. Thus, the
only instance of clause 4 to be considered for splitting (in presence of 1-3) is
p(f(a)), p(g(a)) ← (which can be simplified further). Moreover, this can easily
be achieved by adding the following “logic program”

ran(a) ← (6) ran(f(x)) ← ran(x) (7) ran(g(x)) ← ran(x) (8)

which, in combination with rewriting by unit clauses will enumerate in its
ran predicate the ground terms of the input signature that are irreducible wrt.
the orientable current positive unit clauses. In presence of clauses 1 and 2 this
is the singleton {a}. The general form of the “logic program” has, of course,
already been used within SATCHMO [MB88] and some descendants. To our
knowledge, though, it was never observed before that equational reasoning can
help to confine the ran-predicate.

6 Implementation

We have implemented the E-hyper tableau calculus by extending our existing
KRHyper system. KRHyper is a hyper tableaux theorem prover, and as such
it lacked equality handling in the original version. The modified system, called
E-KRHyper, adapts the methods of its precursor to accommodate the new in-
ferences, while at the same time retaining the original functionality.

The derivation proceeds in a bottom-up manner. Internally, clauses are di-
vided into three sets, one containing the positive non-equational units (facts),

15 More precisely, there is a finite derivation in the E-hyper tableau calculus, and any
reasonable implementation, like our E-KRHyper system, will find it.
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the other consisting of the positive non-unit clauses (disjunctions), and the third
including both the unit equations and the clauses with negative literals (rules).
The hyper extension inference of KRHyper is equivalent to a series of Sup-left,
Ref and Split applications, and therefore it is kept in place in E-KRHyper as
a shortcut inference for the resolution of non-equational atoms. The E-hyper
tableau is generated depth first, with the current state of the three clause sets
always representing a single branch. The Split on a disjunction is only executed
when the other inference possibilities have been exhausted. An iterative deepen-
ing strategy with a limit on the maximum term weight of generated clauses is
employed. This ensures the refutational completeness and a fair search control,
as it prevents splitting from being delayed indefinitely by other inferences.

Clauses are derived by a loop iterating over the rules, with each rule in turn
accessing indexes in the search for inference partners. The inferred clauses are
added to their respective sets after having passed the weight and subsumption
tests. The dynamic nature of the rule set represents a major change compared
to the previous system version. As the hyper tableaux calculus has no inferences
that generate new rule clauses, this set remained fixed throughout the deriva-
tion of KRHyper, and many optimizations on the input could be delegated to
preprocessing. Operations like the clause subsumption test are necessary for the
new calculus, and they are now employed to optimize the input clauses as well.

The superposition inferences utilize a discrimination-tree based index [McC92]
over the subterms of clauses, and terms are ordered according to the recursive
path ordering (RPO). As an option, the backtracking mechanism allows the
removal of redundant clauses from the entire current branch, beyond the limits
set in Section 4.2. More details about the system can be found in [PW07]; it
is available under the GNU Public License from the E-KRHyper website at
http://www.uni-koblenz.de/~bpelzer/ekrhyper.

7 Conclusion

We have presented a tableau calculus with equality, by integrating superposition
based inference rules into the hyper tableau calculus rules. Our main result is its
soundness and completeness, the latter in combination with redundancy criteria.
The calculus is implemented in the E-KRHyper system, an extension of our
existing KRHyper prover.

Acknowledgements. We thank the anonymous reviewers for their useful com-
ments on improving the paper’s presentation.
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Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083,
Springer, Heidelberg (2001)

[Gie02] Giese, M.: A Model Generation Style Completeness Proof For Con-
straint Tableaux With Superposition. In: Egly, U., Fermüller, C. (eds.)
TABLEAUX 2002. LNCS (LNAI), vol. 2381, Springer, Heidelberg (2002)

[Gie03] Giese, M.: Simplification Rules for Constrained Formula Tableaux. In:
Mayer, M.C., Pirri, F. (eds.) TABLEAUX 2003. LNCS, vol. 2796,
Springer, Heidelberg (2003)

[LMG94] Letz, R., Mayr, K., Goller, C.: Controlled Integrations of the Cut Rule
into Connection Tableau Calculi. J. of Aut. Reasoning 13 (1994)

[LS02] Letz, R., Stenz, G.: Integration of Equality Reasoning into the Discon-
nection Calculus. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002.
LNCS (LNAI), vol. 2381, Springer, Heidelberg (2002)

[MB88] Manthey, R., Bry, F.: SATCHMO: a Theorem Prover Implemented in
Prolog. In: Lusk, E.R., Overbeek, R. (eds.) 9th International Conference
on Automated Deduction. LNCS, vol. 310, Springer, Heidelberg (1988)

[McC92] McCune, W.: Experiments with Discrimination-Tree Indexing and Path
Indexing for Term Retrieval. J. of Aut. Reasoning 9(2), 147–167 (1992)

[NR01] Nieuwenhuis, R., Rubio, A.: Paramodulation-based Theorem Proving. In:
Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning,
Elsevier and MIT Press (2001)

[PW07] Pelzer, B., Wernhard, C.: System Description: E-KRHyper. In: Pfenning,
F. (ed.) CADE-21. LNCS, Springer, Heidelberg (2007)

[SS06] Sutcliffe, G., Suttner, C.: The State of CASC. AI Communications 19(1),
35–48 (2006)

[Wei01] Weidenbach, C.: Combining Superposition, Sorts and Splitting. In:
Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning.
North Holland (2001)



System Description: E-KRHyper

Björn Pelzer and Christoph Wernhard

Universität Koblenz-Landau, Koblenz, Germany
{bpelzer,wernhard}@uni-koblenz.de

Abstract. The E-KRHyper system is a model generator and theorem
prover for first-order logic with equality. It implements the new E-hyper
tableau calculus, which integrates a superposition-based handling of
equality into the hyper tableau calculus. E-KRHyper extends our previ-
ous KRHyper system, which has been used in a number of applications
in the field of knowledge representation. In contrast to most first order
theorem provers, it supports features important for such applications, for
example queries with predicate extensions as answers, handling of large
sets of uniformly structured input facts, arithmetic evaluation and strat-
ified negation as failure. It is our goal to extend the range of application
possibilities of KRHyper by adding equality reasoning.

1 Introduction

E-KRHyper is a theorem proving and model generation system for first-order
logic with equality. It is an implementation of the E-hyper tableau calculus [1],
which integrates a superposition-based handling of equality [2] into the hyper
tableau calculus [3]. If E-KRHyper terminates without finding a refutation, it
leaves a finite set of positive unit clauses representing a model of the input.
Continued operation effects that alternative models are enumerated, allowing
the use of E-KRHyper as a model generator for answer set computation.

E-KRHyper is an extended version of our KRHyper system [4], which is based
on the original hyper tableau calculus and therefore lacks a dedicated mechanism
for equality reasoning. So far KRHyper has been used as an embedded knowl-
edge processing engine in several applications including content composition for
e-learning [5,6], document management [7], database schema processing [8], se-
mantic information retrieval [9], ontology reasoning [10], and planning [11]. An
excerpt of KRHyper has been ported to Mobile Java and is employed for user
profile matching on mobile devices [12]. We intend to further this usage with the
enhanced reasoning capabilities of our upgraded system. This includes reasoning
in modal and description logics, which is only possible in a restricted way with
the original KRHyper [13], and which will allow a more accurate modelling of
application domains.

2 Language, Usage and Availability

E-KRHyper accepts formulas of first order logic in clausal form. The system
supports several language extensions, including stratified negation as failure and

F. Pfenning (Ed.): CADE 2007, LNAI 4603, pp. 508–513, 2007.
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a stratified set abstraction construct. The arithmetic constant types, evaluable
arithmetic functors and arithmetic built-ins specified in the ISO standard for
Prolog are provided. The input syntax is the Protein format, which is supported
by the TPTP tools. The syntax of in- and output complies with ISO standard
Prolog. Proofs of refutations and derivations of facts in models can be out-
put as terms which can be visualized with the Graphviz tool. The system is
implemented in the functional/imperative language OCaml with additional pre-
processing scripts in SWI-Prolog. E-KRHyper runs on Unix and MS-Windows
platforms and is available under the GNU Public License from the E-KRHyper
website at http://www.uni-koblenz.de/~bpelzer/ekrhyper.

3 E-Hyper Tableaux

An E-hyper tableau [1] is a tree whose nodes are labeled with clauses and which is
built up by the application of the inference rules of the E-hyper tableau calculus.
The calculus rules are designed such that most of the reasoning is performed
using positive unit clauses. A branch can be extended with new clauses that
have been derived from the clauses of that branch.

A positive disjunction can be used to split a branch, creating a new branch for
each disjunct. No variables may be shared between branches, and if a case-split
creates branches with shared variables, then these are immediately substituted
by ground terms. The grounding substitution is arbitrary as long as the terms in
its range are irreducible: the branch being split may not contain a positive equa-
tional unit which can simplify a substituting term, i.e. rewrite it with one that is
smaller according to a reduction ordering [2,15]. When multiple irreducible sub-
stitutions are possible, each of them must be applied in consecutive splittings in
order to preserve completeness.

Redundancy rules allow the detection and removal of clauses that are redun-
dant with respect to a branch.

4 Model Generation and Theorem Proving Method

The E-hyper tableau is generated depth-first, with E-KRHyper always working
on a single branch. Refutational completeness and a fair search control are en-
sured by an iterative deepening strategy with a limit on the maximum term
weight of generated clauses.

E-KRHyper maintains the clauses on the working branch grouped into two
sets, the first containing positive non-equational units and the second containing
equational units and clauses that include negative literals. A third set is used to
maintain positive non-unit clauses. If all other inference possibilities have been
exhausted, the spliting rule picks a clause from this set and extends the working
branch by attaching a child for each disjunct to its leaf node. One of the resulting
branches is then selected as the new working branch.

If the computation of a branch reaches a fixed point, then a model has been
found. If on the other hand a contradiction within a branch is detected, then
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that branch is abandoned, and the computation backtracks to the next branch.
If there is no next branch, computation halts with the result that there is no
[more] model.

C1 = a,b.
C2 = q(a).
C3 = r(d).
C4 = p(x) ∨ c,d ← q(b).

Fig. 1. Example Input

A model is represented by a set of positive
unit clauses. These correspond to a convergent
rewrite system that is complete with respect
to the equational theory represented by the set of
input clauses [1]. For example, consider the input
clauses displayed in Fig. 1. At the first fixed point
of E-KRHyper’s derivation, the branch con-
tains the positive unit clauses {C1, C2, C3, p(x)},
which corresponds to the model M1 = {a, b, q(a), r(d), p(x)}. The second and
final fixed point corresponds to the model M2 = {q(a), r(c), c, d} – note that
C3 has been simplified into the atom r(c).

Optionally two refinements of theorem proving methods based on model gen-
eration are employed: level cut [3], a form of dependency directed backtracking,
and complement splitting [17], which also can be used for the computation of
minimal models. The hyper extension inference from the original hyper tableau
calculus is equivalent to a series of E-hyper tableau calculus inference applica-
tions. Therefore the implementation of the hyper extension in KRHyper by a
variant of semi-naive evaluation [16] is retained in E-KRHyper, where it serves
as a shortcut inference for the resolution of non-equational literals.

5 Comparison to KRHyper

Both KRHyper and E-KRHyper are written in OCaml. The integration of the
new calculus in E-KRHyper has required approximately 10,500 lines of additional
code compared to KRHyper, representing a size increase of 79 percent. Apart
from implementing the new inference rules, it was also necessary to modify a
number of original operations. KRHyper only ever adds positive unit clauses to
its hyper tableaux, and the indexing is similarly confined to positive units. Also,
there is no support for destructive tableau modifications, as the original calculus
does not include any such operations. In E-KRHyper the clause indexing has
been extended to cover the full range of clauses, and both the derivation loop
and the indexing take into account the dynamically growing and shrinking clause
sets of the new calculus. On problems without equality, the changes result in
E-KRHyper being 24 percent slower than KRHyper.

6 Related Systems and Performance Evaluation

The SPASS system is a superposition-based theorem prover for first-order logic,
that however cannot straightforwardy be used for model computation. Like
E-KRHyper, SPASS splits on disjunctions. SPASS can only split when the result-
ing parts are variable disjoint, though. This inability to split on all disjunctions
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is responsible for failing to decide certain classes of formulas that are decided by
E-KRHyper [1].

The basic concept of theorem proving by model generation, as employed in
E-KRHyper, stems from Satchmo [17]. Satchmo Compiler [19] and MGTP [20]
have been earlier efforts to implement such a system efficiently. GEO [21] is
a recent system for theorem proving and computation of finite models in first
order logic, which, like E-KRHyper, works by integrating equality processing
into model based search. The approach in GEO is not based on superposition
and has no redundancy treatment, and while the splitting method is similar to
the one in E-KRHyper, the number of eligible grounding substitutions is not
limited to those that are irreducible. Smodels [22] and DLV [23] are systems
which efficiently compute stable models but can handle first-order features such
as nested terms and nonground terms only in very restricted ways.

Table 1. Results on CASC J3 problems

Problem class NNE HEQ NEQ UEQ

Number of problems 20 20 70 100

Solved by E-KRHyper 6 9 18 2
Solved by Otter 3.3 10 12 20 28

We have tested E-KRHyper
on several problem groups eli-
gible for the CASC 2006 [24].
The tests were carried out on
a 1.5 GHz Pentium M com-
puter with 1.5 GB RAM and
a timeout limit of 400 seconds.
Table 1 shows the results for those
problems finally selected for the competition. As a comparison the official com-
petition results of the Otter 3.3 system [25] are listed as well.1 In comparision
with the competition entrants, E-KRHyper ranks in the middle for Horn and
Non-Horn problems with equality (HEQ and NEQ) and in the lower ranges for
Non-Horn problems without equality (NNE). For unit equation problems (UEQ)
the system is uncompetitive. E-KRHyper retains the general characteristics of
KRHyper and thus performs well on certain problem classes without equality [4].
So far the development of the KRHyper line has focused more on the applica-
tion possibilities than on competition performance, but we hope to optimize the
operation in the future. More detailed information and test results are provided
on the E-KRHyper website.

7 Conclusion

KRHyper has successfully been deployed in real-world applications for knowl-
edge representation. However, its lack of dedicated equality handling has been a
limitation in certain areas like reasoning with description logics. The implemen-
tation of the new calculus with equality in E-KRHyper has cleared this obstacle
and opened the way for new integration opportunities. Given that the field of
automated theorem proving has come to be dominated by saturation based sys-
tems in recent years, we also hope that E-KRHyper will be a first step towards
an efficient and competitive tableau based theorem prover with equality.

1 The Otter system represents the state of the art in first-order theorem proving around
1996 and regularly participates in the CASC to provide a stable benchmark.
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Abstract. Spass is an automated theorem prover for full first-order
logic with equality and a number of non-classical logics. This system
description provides an overview of our recent developments in Spass 3.0,
including support for dynamic modal logics, relational logics and
expressive description logics, additional renaming and selection strate-
gies, and significant interface enhancements for human and machine
users.

1 Introduction

New in Spass 3.0 are facilities for supporting automated reasoning in a large
class of related logics which we refer to as EML logics (extended modal logics).
These include (traditional) propositional modal logics such as K(m), KD(m),
KT4(m) etc., which are widely used for studying and formalizing e.g. multi-agent
systems, but have many applications in other areas of computer science as well
as mathematics, linguistics and philosophy. EML logics also include dynamic
modal logics which are PDL-like modal logics in which the modal operators
are parameterized by relational formulas [6]. These can be used to formalize
dynamic notions such as actions or programs and are useful in linguistic and
AI applications. Examples of dynamic modal logics are Boolean modal logic,
tense logic, information logics, logics expressing inaccessibility and sufficiency
as well as a large class of description logics. The EML class further includes
relational logics, i.e. logical versions of Tarski’s relation algebras. Spass handles
these logics by translation to first-order logic, see Sect. 2.

For most decidable EML logics, Spass is actually a decision procedure on
the first-order formulas resulting from the translation. For some logics, e.g.,
description logics including negation of roles, it is currently the only avail-
able decision procedure. Spass is competitive even with special-purpose sys-
tems.

Further enhancements in Spass 3.0 are additional renaming and selection
strategies, see Sect. 3, and an improved user/machine interface including an
extended formula-clause relationship handling, input and output of saturated
clause sets and documentation, see Sect. 4 and 5.

F. Pfenning (Ed.): CADE 2007, LNAI 4603, pp. 514–520, 2007.
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2 Modal Logics, Relational Logics and Description Logics

The facilities in Spass 3.0 for supporting automated reasoning in EML logics
were first implemented from 1998 onwards in the Mspass theorem prover [2,4]
as an extension of Spass 1.0. This code has been upgraded and integrated into
Spass 3.0 (and Flotter 3.0) so that support for modal, relational and descrip-
tion logic reasoning is now immediately available to Spass users and the latest
Spass technology is immediately available to Mspass users.

The dfg input language of Spass was extended to support the input of EML
problems without changing the syntax for formulas in first-order logic or clause
form. There are three types of EML formulas which can be used simultaneously in
one file: first-order formulas, Boolean type formulas and relational type formulas.
Boolean and relational type formulas can be constructed using common modal,
relational and description logic operators. The predefined logical operators are:

– the standard Boolean operators (for all three types of formulas): true, false,
not, and, or, implies (subsumed by), implied (subsumes), equiv,

– multi-modal operators with atomic or complex relational arguments: dia
and box (synonyms are some and all), as well as domain and range,

– additional relational operators: comp (composition), sum (relative sum), conv
(converse), id (the identity relation), div (the diversity relation), and

– test (test), domrestr (domain restriction) and ranrestr (range restriction).

We give three examples of EML formulas, two Boolean type formulas and one
relational type formula.

prop formula( implies(box(bel1,p), box(know1,box(bel1,p))) ). (1)
concept formula( implies(expert AR, (2)

not(some(not(has studied),proof methods))) ).

rel formula( implies(comp(r,r), r) ). (3)

(1) is an example from modal logic and says that if agent 1 believes p then it
knows that it believes p, i.e. it is aware that it believes p. The example (2) is
a description logic example; it says that an expert in automated reasoning is
someone who has studied every proof method. This kind of example cannot be
handled by current tableau-based description logic provers because it requires
negation of roles. (3) expresses transitivity of a relation in relational logic (or in
description logics).

Table 1 summarizes the implemented translation methods. The different trans-
lation methods are based on first-order encodings of the different ways of defining
the semantics of the logics. The basis for the relational translation method, or
standard translation method, is the standard set-theoretic semantics of EML
logics. It is implemented for all Boolean and relational EML formulas.

The basis for the different functional translations is the functional semantics of
traditional modal logics. The optimized functional translations are obtained from
the functional translations by a non-standard quantifier exchange operation,
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Table 1. Available translation methods

Translation method Options

relational translation -EMLTranslation=0 (default)
(monadic) functional translation -EMLTranslation=1
polyadic functional translation -EMLTranslation=1 -EMLFuncNary=1
(monadic) optimized functional translation -EMLTranslation=2
polyadic optimized functional translation -EMLTranslation=2 -EMLFuncNary=1
semi-functional translation -EMLTranslation=3
relational-functional translation -EMLTranslation=0 -EMLFuncNary=1
relational-relational translation -EML2Rel=1 [-EMLTranslation=0]

which is implemented by replacing non-constant Skolem terms by Skolem con-
stants. The polyadic functional translation methods are variations of functional
translation methods and differ in the way they encode world paths (transition
sequences). The polyadic translations avoid the use of an extra function sym-
bol by using n-ary predicates of different arities. The semi-functional translation
approach is a mixture of the relational and functional translation approaches. It
translates box modalities in the standard relational way, while diamond modal-
ities are translated functionally. The (monadic) functional translations and the
semi-functional translation are implemented for the basic multi-modal logic K(m)

possibly with serial (total) modalities, plus frames or models, and non-logical
axioms. The corresponding description logics are ALC with concept ABox and
TBox statements, possibly with total roles. The polyadic functional translations
are implemented for the basic multi-modal logic K(m) possibly with D (serial)
modalities. The corresponding description logic is ALC possibly with total roles.

The relational-functional translation method, or tree-layered relational trans-
lation, is a variation of the relational translation specialized for the basic modal
logic K(m). The relational-relational translation converts Boolean EML formulas
into the relational formulas via a cylindrification operation. This translation is
implemented for K(m).

All translation methods are sound and complete for the logics they are imple-
mented for and have linear time complexity.

There are various additional EML options. For example, the -EMLTheory op-
tion can be used to add standard relational properties to the background the-
ory. There are also options for varying the translation methods and the pre-
processing done on EML formulas. The functional translations can be varied
slightly with the two options -EMLFuncNdeQ and -EMLFFSorts. With the op-
tion -EMLElimComp=1 top-level occurrences of relational composition in modal
parameters can be eliminated as part of preprocessing. When enabled, the op-
tion -QuantExch=1 causes non-constant Skolem terms in the clausal form to be
replaced by constants. The option is automatically set for the optimized func-
tional translation methods. The option can also be used for classical formulas
and clauses, but it is not sound in general and therefore switched off by default.

With the new EML facilities Spass supports reasoning for EML logics with
the following additional additional features.
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1. For dynamic modal logics and relational logics: non-logical axioms, modal
operators characterized by any first-order frame correspondence properties
and accessibility relations satisfying any first-order properties, specification
of concrete worlds as constants, (first-order) relationships between concrete
worlds, specifications of frames and models.

2. For description logics: the corresponding features, including in particular
terminological axioms, TBox and RBox statements, and ABox statements
for concept and role expressions.

Because Spass is a first-order superposition based prover its capabilities as a
modal, relational or description logic prover are very different and more varied
than those of other provers for these logics. It is possible to use Spass as a deci-
sion procedure for a large class of EML logics. For instance, it decides extensions
of Boolean modal logic with converse, domain/range restriction, and positive
occurrences of composition, and the corresponding description logics, i.e. ex-
tensions of ALB with positive occurrences of composition. No other (special-
purpose) prover currently decides these logics. Spass can be used as a decision
procedure for many solvable first-order fragments including the guarded frag-
ment, Maslov’s class K, first-order logic in two variables, the clausal class DL*,
and many decidable quantifier prefix classes. Using the new features it is possible
to approximate the behavior of modal and description logic tableau provers with
Spass. Additionally, it can be used as a model finder.

For definitions of the different translation methods and further details, the
various applications and references to original work, the reader is invited to con-
sult the survey paper [6]. The paper [3] surveys decidable first-order fragments
relevant to description logics. References to resolution decision procedures of
EML logics and first-order fragments can be found in both [6] and [3].

3 Renaming and Selection Enhancements

Renaming transformations, or structural transformations, are not standard in
current first-order theorem provers but have various advantages. They are es-
sential for linear conversion of first-order formulas into clausal form. They are
useful to control the way the search is performed in order to enhance the perfor-
mance of a prover or to define decision procedures. They preserve the structure of
the input formulas and make it easier to read resolution derivations and translate
them back into first-order logic or the original EML logic. Renaming transfor-
mations introduce new predicate symbols for subformulas in the input problem.
The renaming strategy available in Spass 2.2 [7] is aimed at minimizing the
number of eventually generated clauses [5]. A subformula is renamed if the re-
placement of the subformula by an atom headed with a new Skolem predicate
plus the definition of the Skolem atom eventually results in fewer clauses. We
added two more renaming strategies to Spass 3.0: complex formula renaming
and quantified formula renaming. Complex formula renaming introduces a new
Skolem predicate for any subformula that is not an atom and does not start
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with a negation symbol. Quantified formula renaming introduces a new Skolem
predicate for any subformula that starts with an existential or universal quanti-
fier. The definition formulas for the Skolem predicates are generated in a polarity
dependent way for all three versions. The renaming strategy is controlled via the
-CNFRenaming=n flag where n = 1 selects minimizing renaming, n = 2 selects
complex renaming, and n = 3 selects quantified renaming.

For the finite saturation of many first-order theories it is indispensable to
select certain literals in order to protect variables in different literals of the same
clause. An example is the (simplified) formalization of LAN router functionality
that contains clauses of the form below. The clause states that if a packet is
to be routed to the destination xdst and there is a route entry saying that all
destination addresses “anded” with the mask xmsk produce the network xnet
can be forwarded to xhop, then the packet is actually forwarded to xhop.

[RouteIP(packet(xsrc, xdst, xpld)), RouteEntry(xmsk, xnet, xhop),
ipand(xdst, xmsk) ≈ xnet] → Send(xhop, packet(xsrc, xdst, xpld))

As all symbols starting with ‘x’ are variables, superposition left inferences can
produce many clauses with the clause above and the theory for logical “and”
on bit vectors (the function ipand). If the literals RouteIP and RouteEntry are
selected then these inferences can be avoided.

Such situations are supported by enhanced selection mechanisms in Spass 3.0.
First, via the command set selection a list of predicates can be defined in the
input file to be candidates for selection. Second, this list can be combined with
the following selection strategies that are set via the -Select=n option. For n = 1
in any clause with more than one maximal literal one negative literal is selected.
Either a negative literal with a predicate from the selection list is chosen or if no
such negative literal is available, a negative literal with maximal weight is chosen.
For n = 2 in any clause containing at least one negative literal, a negative literal
is selected. Again, either a negative literal with a predicate from the selection
list is chosen or if no such negative literal is available, a negative literal with
maximal weight is chosen. For n = 3 in any clause containing negative literals
with predicates specified by the selection list, one negative literal out of these is
selected.

In Spass 3.0 we changed the heuristic for selecting splitting clauses. Spass

now selects the clause with the highest unit reduction potential after splitting.

4 Interface Enhancements

Starting with Spass 3.0, Flotter writes the formula-clause relation into the
setting part of the clause normal form output file. When processing such a .cnf
file Spass is now also able to tell which input formulas were used in an eventually
found proof.

When Spass finitely saturates a set of clauses, the result can be output to
a file via the -FPModel option. So far the generated file did not contain any
information about the selection of literals. Hence, it could happen that running
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Spass again on such a file would produce further clauses by inferences. With
Spass 3.0 we have defined an additional clause input format that is similar to
the clause output given by Spass at run time and includes the possibility to
mark negative literals in clauses to be selected. In Spass 3.0 this format is used
when -FPModel is set and inferences on saturated sets produce no additional
clauses when such sets are resubmitted to Spass.

At run time, Spass now selects literals before it prints the Given clause.
This improves manual inspection of the Spass output.

5 Conclusion and Future Work

Finally, we want to point the reader to the new handbook [8] distributed with
Spass. It contains detailed descriptions of the most important features and facil-
ities implemented in the prover, covering the sophisticated reasoning technology,
the superposition calculus implemented in Spass, the theory and implementa-
tion details for the translation methods for EML logics, and the theory behind
the clause set transformations of dfg2dfg. A detailed, formal specification of
the extended input language can be found in the Spass documentation [9]. It
also includes examples of input files for the different EML logics supported by
Spass.

A start has been made at implementing the techniques introduced and studied
in [1] for the bottom-up model generation paradigm in Spass. Moreover, we are
developing efficient superposition based reasoning techniques for finite domains,
further improving the performance of the prover for several EML logics.

Spass 3.0 is available from http://spass.mpi-sb.mpg.de.
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ment requests as well as bug reports, and the reviewers for their comments.
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