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Abstract. Object invariants describe the consistency of object states,
and are crucial for reasoning about the correctness of object-oriented
programs. However, reasoning about object invariants in the presence
of object abstraction and encapsulation, arbitrary object aliasing and
re-entrant method calls, is difficult.

We present a framework for reasoning about object invariants based
on a behavioural contract that specifies two sets: the validity invari-
ant—objects that must be valid before and after the behaviour; and the
validity effect—objects that may be invalidated during the behaviour.
The overlap of these two sets is critical because it captures precisely
those objects that need to be re-validated at the end of the behaviour.
When there is no overlap, no further validity checking is required.

We also present a type system based on this framework using owner-
ship types to confine dependencies for object invariants. In order to track
the validity invariant, the type system restricts updates to permissible
contexts, even in the presence of re-entrant calls. Object referencing and
read access are unrestricted, unlike earlier ownership type systems.

1 Introduction

The flexibility and extensibility offered in object-oriented programming is both
a boon and a curse. Classes provide an encapsulated definition of object data
and behaviour; subclassing allows the extension of existing definitions with reuse
of code that depends on a parent class; heap-based allocation allows objects to
persist beyond the scope of their creator; object references provide a disciplined
use of pointers. However this programming flexibility comes at a cost. Reasoning
about the behaviour of objects is difficult. More specifically, the presence of
complex object dependencies, object aliasing, and arbitrary method call-backs
(re-entrant calls) makes it difficult to reason about object-oriented code. The
particular problem we focus on in this paper is how we can guarantee the validity
of objects within such a programming context.

Formal verification techniques for structured programming encapsulate the
program state within local variables and arguments of procedures. This makes it
feasible to provide a complete axiomatic semantics based on a pre/post-condition
style of reasoning about code. A critical assumption in such reasoning systems, is
that the program state that is being reasoned about is encapsulated within code
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blocks—a stack-based memory model is assumed. Such reasoning techniques
cannot directly cope with reasoning about programs with pointers—the essen-
tial problem is that heap-based data may be accessed and modified indirectly
via pointers. Currently the most promising approach for formally dealing with
pointers appears to be Separation Logic [6,29,15,7] which supports reasoning
about the distinctness of regions of the heap.

Design by contract is a technique for reasoning about objects introduced
by Meyer [21] and provided with programming language support in Eiffel [20].
Design by contract relies on the specification of object behaviours via the combi-
nation of object invariants describing valid object states, and pre/post-conditions
for object behaviours. Although design by contract does provide a good concep-
tual basis for assisting designers, its formal basis is weakened by the presence of
inter-object dependencies, aliasing and call-backs.

We extend an example used by Leino and Müller [17] to illustrate the effect
of call-backs on object invariants. If P calls back on m then a divide-by-zero error
may occur. The problem is that P is called when the current invariant is broken,
and cannot be relied on in subsequent re-entrant calls. On the other hand, if Q
in n is re-entrant there is no harm, assuming it maintains invariants.

class C {
int a, b; invariant: 0 <= a < b;
C() { a = 0; b = 3; }
void m() { int k = 100/(b-a);

a = a+3; P(...); b = (k+4)*b; }
void n() { int k = 100/(b-a); Q(...); } }

In order to reason about this type of code, we need to be able to track the
effect and dependency of possible call-backs on the current object invariant. This
is our goal.

The difficulty of modular verification of object-oriented programs has been
recognized for a long time [16]. Recently researchers have made some in-roads,
with the use of fixed ownership-based schemes in Universe Types [24,22,13,26],
and dynamic ownership used to track object validity in the Boogie methodology,
as manifested in Spec# [3,17,27,4]. Our own work draws strongly on the ideas
of object validity of this work. Further comparisons will follow in Section 5.

In this paper we present a general framework for tracking validity within ob-
ject systems which is independent of any particular language framework. The
motivation for adopting a language-free approach is to emphasize the underlying
principles. The key idea of our model is to capture the effect of code blocks (such
as method bodies) on the validity of the objects in the system. The approach
we take requires code blocks to specify a pair of object sets 〈I, E〉. I is the va-
lidity invariant for the code, which specifies those objects that must be valid
before and after the code executes. E is the validity effect which specifies those
objects that may be invalidated during execution of the code. During execution,
nested code blocks or method calls 〈I ′, E′〉 must satisfy some consistency cri-
teria with respect to their calling context. When the sets I and E are disjoint,
there is nothing to check, other than consistency criteria for the code—system
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validity is automatically guaranteed to hold. If I and E are not disjoint, validity
of the objects within their overlap must be established by other means (pre-
sumably relying on a more detailed program logic). It is this ability to hone in
on a restricted critical set of objects whose validity must be established after
code execution which provides the novelty in our model. When object validity is
specified via object invariants, our model imposes certain structural constraints
that relate the form of I and E to the dependencies inherent in the object in-
variants.

A general model is only useful if it can be realized in some concrete form.
To that end, we offer a small language, Oval, that realizes the model using an
ownership-based type system. In Oval, an object’s invariant can only depend
on its own fields, and on other objects that it contains, as determined by the
ownership structure. For simplicity, we restrict the overlap between I and E to be,
at most, a single object which is always the current active object. Consequently,
only local (per-object) reasoning is necessary to establish system-wide validity.

Within Oval, we do not impose restrictions on object reference or read access;
our system does not rely on alias protection. Instead, interpreting the consistency
criteria of nested code blocks (method calls) from our general model, we restrict
what write access is allowed in different contexts. It is this mechanism that allows
us to keep track of which objects are valid at any particular time; for example,
if a call-back requires an object to be valid, we can prohibit it if that object may
be invalid but allow it if we know it must be valid.

Interestingly, it is straightforward to create immutable objects in Oval. Ob-
jects high up in the ownership hierarchy are more accessible for update (and
more likely to be invalid). For us, immutable objects are those created at the
very bottom of the ownership hierarchy, where nothing has write access. Note
that immutability is determined by the object’s creation type (instantiating the
object’s owner to be bot) rather than the object’s class (where the owner is a
formal parameter, rather than a concrete context). Our system also provides a
more general model than approaches based on read-only annotations. In Oval,
the context of the reference holder determines its update capability.

Our system is also able to express encapsulation-aware read-only references.
They typically use hidden contexts (equivalent to existentially abstract contexts)
to forbid access to methods that have some write capability on the objects en-
capsulated by the context where the reference is held.

In summary, specific contributions of this paper include:
– a validity specification for blocks of code—defining a set of objects I that

must be valid before and after, and a set of objects E that may be invalidated
during code execution;

– identification of where explicit validity checks are required within code blocks,
and where validity can be assumed to hold;

– a model of structure based on the object dependency implied by object
invariants;

– a small language, Oval, with an ownership-based type system—where an
object’s invariant can only depend on an its own fields and its owned objects,
and system validity can be achieved with per-object checks;
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– immutable objects and a generalization of read-only annotations arise as a
special case of the type system.

This paper is organized as follows. Section 2 details our general approach
for describing system validity and the behavioural abstraction 〈I, E〉 introduced
above. In particular we outline the consistency conditions for nested code with
the underlying rationale. Our initial model is descriptive, rather than focused
on specific language mechanisms for programming objects. Section 3 introduces
the Oval language with examples. Here, our intention is to illustrate language
mechanisms and type rules to support our general model of Section 2 rather than
to design a realistic programming language. Unlike most previous ownership
schemes [12,11,9,8,10], we do not use the object ownership structure to restrict
object references and aliasing, but rather, we use it to specify the sets of objects
that must be valid, or may be invalid, during method calls. This use of ownership
builds on earlier work extending the use and flexibility of ownership type systems
[19,18]. With Oval we have opted for simplicity rather than a fully expressive
model. Oval requires that object invariants are only invalidated one object at a
time; possible extensions avoiding this limitation are discussed in this section.
In Section 4 we provide a static and dynamic semantics for our language and
formalize properties that demonstrate how this language implements the general
model. Section 5 addresses other related work, including Boogie/Spec# and
Universes, Ownership Types and read-only systems. Section 6 briefly concludes
the paper.

2 A Model for Object Validity

2.1 The Validity Contract 〈I, E〉

The key idea for our model is very simple: whenever an object is active, it may
be invalid. If an object is not active (and still alive) then it must be valid. But
what determines when an object is valid? For now, it suffices to consider an
object to be valid when it satisfies its specified invariant—this is the standard
notion of object validity. Later on, in Subsection 2.3, we will refine this notion
somewhat, in order to handle object invariants that depend on more than one
object. So, for the moment, to maintain consistency with the refined notion, we
will simply assume that there is some notion of object validity, and at any time,
there is a set of all valid objects, that we call the validity set Valid.

For any particular structured block of code, we specify a behavioural abstrac-
tion: the validity contract 〈I, E〉. The validity invariant I specifies a set of objects
that must be valid both before and after the code executes. Clearly this imposes
an obligation on the caller (see Subsection 2.2) and the code itself (see below).
The validity effect E specifies those objects that may be invalidated during exe-
cution of the code.

A given validity contract 〈I, E〉 for a block of code provides constraints on
Valid at different execution timepoints as shown in Table 1. In the following
we denote the validity set at the start of code execution by Valid0, so that at
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any timepoint, Valid0 − Valid represents invalidated objects—those that were
initially valid, but are currently invalid. Interpreting constraints, we first have,
immediately before the code executes, that all objects in I must be valid. During
execution, only those objects in E may become invalid, and so the remainder,
I − E must still be valid. At the end of execution, we have a proof obligation for
the code: the validity of the critical set of objects I ∩ E must be checked. Then,
immediately after execution, we have ensured that all objects in I are still valid,
and that only objects in E− I may have been invalidated. These constraints will
be the basis for the rules for subcontracting, coming up next.

We have chosen our model to be flow insensitive for simplicity. It is indeed
possible to provide a stronger validity contract in which we provide separate pre-
and post-conditions for validity. For consistency, the post-condition would need
to be stronger than the disjunction of the pre-condition and the validity effect.
We leave the pursuit of this more general form of validity contract for another
time.

Table 1. Validity Contract: Constraints on the Validity Set

Before: I ⊆ Valid

During: I − E ⊆ Valid

Valid0 − Valid ⊆ E

At End: I ∩ E ⊆ Valid to be checked

After: I ⊆ Valid

Valid0 − Valid ⊆ E − I

2.2 Validity Subcontract for Nested Behaviours

With structured code, we can nest behaviours in various ways, such as by mak-
ing method calls, or entering nested blocks. From a caller’s perspective, we can
also think of a method override as being a nested version of the overridden
method. Method calls must respect the validity contract of their calling context;
nested code blocks may have their own contract, but must respect the contract
of their containing block; and the contract for a method override must be con-
sistent with the contract for the method being overridden. All of these nested
behaviours must conform to the contract for the surrounding behaviour in the
same way.

In Design by Contract [21] there is a notion of subcontracting for subclasses,
and in particular, for overridden methods. The subcontract rules (preconditions
may only be weakened, postconditions may only be strengthened) provide a
guarantee that the overriding behaviour conforms to the contract of the overrid-
den method, which allows clients to reason about method calls without worrying
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about whether the method has been overridden in a subclass. In formal specifica-
tion this notion corresponds to that of operation refinement. We adopt a similar
approach for validity subcontracts, but we take into account the constraints on
validity imposed by a contract, as formulated above.

Within the context of a particular validity contract 〈I, E〉, suppose we execute
code that is known to meet another validity contract 〈I ′, E′〉. According to the
constraints of Table 1, on entry to 〈I ′, E′〉 we require I ′ ⊆ Valid, but we know
that during the execution of 〈I, E〉 that I−E ⊆ Valid. We therefore require that
I ′ ⊆ I − E. From the perspective of 〈I, E〉, we do not care what becomes invalid
during execution of 〈I ′, E′〉, provided that it exits satisfying the constraints im-
posed by 〈I, E〉. When 〈I ′, E′〉 exits, we know that the only objects to have been
invalidated by its execution, Valid

′
0 − Valid, lie within E′ − I ′. However we

know that before 〈I ′, E′〉 executes, that Valid0 − Valid
′
0 is within E. It follows

that Valid0 − Valid will be within E as required, provided E′ − I ′ ⊆ E. This
reasoning leads us to the following definition for a validity subcontract. Note that
the definition makes no mention of the validity set Valid. The subcontract def-
inition simply relates two different validity contracts, irrespective of what the
validity set may be.

Definition 1 (Validity Subcontract). 〈I ′, E′〉 is a validity subcontract of
〈I, E〉 if:

I ′ ⊆ I − E

E′ − I ′ ⊆ E

Fig. 1. Validity Subcontracts: The Relationship between Nested Contracts. Validity of
objects in Ei ∩ Ii (shaded) must be separately established.

Figure 1 captures the nesting properties of the validity invariants and effects,
for subcontracts. Here 〈I3, E3〉 is a subcontract of 〈I2, E2〉, which is, in turn, a
subcontract of 〈I1, E1〉. Intuitively, we think of this in terms of nested method
calls. The validity invariant is weakened, the deeper the call structure. On suc-
cessive calls it is safe to reduce the size of the validity effect. However, most
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interesting is where the effect may be increased. This critical set is the overlap
of the validity invariant and effect for the new call. It is precisely this critical set
of objects whose validity must be re-established at the end of the call.

Before introducing our language Oval, we will discuss the relationship between
the validity set and object invariants for our general model.

2.3 Object Invariants and Dependency Structure

In abstract terms an object’s invariant captures the commonality between the
pre- and post-conditions for all of the object’s methods. By specifying an ob-
ject invariant, we effectively constrain the allowable behaviours of the object,
thereby defining the safe or consistent states of the object. An object’s invariant
ultimately resolves to constraints on fields, not only of the current object, but
also, possibly, of other objects. It is therefore possible for an object’s invariant
to be satisfied, even though it depends on another object whose invariant does
not hold. To avoid this worrisome situation, we refine the idea of object validity.

Definition 2 (Object Dependency). An object (transitively) depends on an-
other if it’s invariant depends directly, or indirectly, on the fields of the other
object. We write � for this preorder between objects.

Definition 3 (Object Validity). An object is valid if it’s invariant is satisfied
and if all of the objects that it depends on are also valid. The validity set Valid

is the largest set of objects that are valid.

Because the definition of valid object is recursive, we have specified the validity
set to be the largest possible set of objects satisfying the constraint.

It is possible to have objects whose invariant holds, but that are not valid by
our definition. For us, the important point is that from a system-wide perspec-
tive, validity is a closed property. The validity of an object only depends on its
own state, and the validity of other objects that its invariant depends on.

Property 1 (Validity Closure). If o ∈ Valid and o � o ′ then o ′ ∈ Valid.

This asserts that the validity set is down-closed with respect to the object depen-
dency induced by the invariants. Consequently in specifying validity contracts, it
makes sense to insist that the validity invariant I (valid objects) is down-closed,
and that the validity effect E (possibly invalid objects) is up-closed with respect
to object dependency. Figure 1 was drawn to illustrate the closure properties of
I and E, assuming that object dependency is downwards in the diagram.

We now begin to see some hope of how to achieve a syntactic representation
of validity contracts in programming languages. Assuming we can explicitly list
the objects at the top of I and the bottom of E, and assuming we can capture
the object dependency, then we should be able to reason about validity contracts
syntactically. In Section 3 we do so by using ownership types to constrain the
object dependency, and specifying the extrema of I and E as single objects, that
is, as ownership contexts I and E respectively.



Validity Invariants and Effects 209

3 Oval: A Language with Ownership-Based Validity

Oval is a simple object-oriented programming language that incorporates owner-
ship types to support validity contracts. Oval realises our general model by using
object ownership to provide the structure for specifying validity invariants and
effects. Oval presumes that object dependency (for invariants) is constrained by
object ownership.

3.1 Ownership Types and Effect Encapsulation

Object encapsulation techniques hide an object’s internal representation and
force any access from outside to be made via the object’s interface. Ownership
types [28,12,11,9] improve on previous work on full encapsulation techniques
[14,2] by allowing outgoing references while still preventing representation expo-
sure; objects cannot be referenced from outside of the encapsulation.

In ownership type systems, each object has one fixed owning object, given at
the time of creation. The ownership relation partitions objects into an ownership
tree, whose root is a conceptual object called top in this paper. Objects are con-
fined so that they can only reference or access objects owned by their (transitive
and reflexive) owners.

Ownership type systems are essentially access control systems where accessi-
bility is determined by the position of the target object in the ownership tree.
Such systems achieve a form of information hiding. However, the problem of
maintaining object validity is fundamentally a problem of effects: only updates
can break object invariants. In other words, read access can always be consid-
ered safe. Our earlier work on effect encapsulation [19] has provided a technique
for encapsulating side-effects on an object without restricting referenceability or
read access. Our work in this paper provides a significant extension to effect
encapsulation; we allow each method to specify the validity invariant, that is,
what object invariants can be expected to hold. By tracking permissible updates
via the validity effect, the type system checks if each expected validity invariant
can be met.

3.2 Overview of Oval

In Oval, we use ownership types to structure objects, specify validity contracts
and confine dependencies for object invariants.

Oval programs specify a validity invariant and effect for each method as a
validity contract, 〈I, E〉. I and E are ownership contexts in our type system.
The corresponding validity invariant I is the context I and all contexts owned
(transitively) by I; the corresponding effect E is the context E and all owning
contexts of E; in the ownership order, I is the top of the down-set I, and E is the
bottom of the up-set E (which is a branch of the ownership tree). The only overlap
allowed for I and E is the local context this. This yields just two interesting cases.
When the validity invariant and effect are disjoint, the critical set is empty, and I

must be strictly within E in the ownership order. Otherwise, when they overlap,
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they must satisfy I = E = this; the critical set just contains the current object.
As we shall see, the type system also checks that the subcontract rule is satisfied
by any method calls. Consequently when the critical set is empty, there is no
further reasoning about object validity required in the current method body.
When the critical set is a single object, only the validity of the current object
needs to be re-established at the end of the method body. By incorporating the
idea of validity contracts in the type system, Oval provides a frame for localized
reasoning about object validity.

The constraint that I and E can only overlap at the current object, allows
us to keep both the syntax and type system simple in Oval. Allowing a bigger
overlap is feasible: it is a trade-off between greater expressiveness and increased
complexity. The added complexity arises from syntactic issues (describing sets
of contexts rather than singletons), the type system (the static dependency or-
dering is trickier), and reasoning for re-establishment of invariants with multiple
objects simultaneously. These sorts of extensions have been made for Spec#
where objects may have peers, and whole peer sets can be simultaneously inval-
idated.

An object’s invariant may only depend on its member fields and fields of
(transitively) owned objects. For expressiveness, we allow fields that are not
part of the object’s representation to be declared nonrep. nonrep fields cannot
be mentioned in the class invariant. Fields which are not explicitly declared
nonrep are part of the object’s representation and may participate in its object
invariant. Some other languages have a similar design, for instance, Javari [5] uses
the keyword mutable to annotate those nonrep fields. Because there is no object
ownership structure in Javari, object invariants can never depend on mutable
fields. In our language, we do allow the owning object’s invariant to depend on
any fields of owned objects (including nonrep fields). An object’s invariant can
only depend on its rep fields and objects that it (transitively) owns. So updates
on rep fields may affect the target’s invariant, and so (in Oval) should only be
allowed by the target’s own methods. Updates on nonrep fields can only affect
an owner’s invariant, and that owner must already have an active method that
is responsible for re-establishing the owner’s invariant.

A constructor must always establish its object’s invariant. For simplicity, we
consider constructors to have no effect on validity—they simply initialize the
object in a valid state.

In addition to the usual top context, we introduce another context bot. The bot
context is the bottom of the ownership hierarchy; it is inside/owned by all other
contexts. We syntactically restrict its use in Oval to the validity invariant part
of a contract. When a method’s validity invariant is bot, it neither requires nor
ensures any object validity; it provides a vacuous constraint for the validity set.

3.3 Oval by Example

The validity contract allows us to solve the re-entrancy problem discussed in the
Introduction section.
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class C {
int a, b;
invariant: 0 <= a < b;
C() { a = 0; b = 3; }
void m() <this, this> { int k = 100/(b-a);

a = a+3; P(...); b = (k+4)*b; }
void n() <this, top> { int k = 100/(b-a);

Q(...); } }

In the above example, the validity contract for method m is <this,this>,
which means the method requires the current object (this) to be valid and
the method is allowed to break this’s invariant via either direct assignment or
indirect method calls. What is interesting here is that our type system guarantees
P cannot callback on m. In order for P to callback on m, P must meet the required
validity invariant—this must be valid. However, object this is invalid in P
because the validity effect of m has invalidated this.

On the other hand, the contract for method n is <this,top>. It does expect
the current object (this) to be valid, but it does not invalidate any object
except the conceptual context top. This time, Q may callback on n, because this
is valid in Q and so it will be able to satisfy the required validity invariant of n
on re-entry.

A method can require a validity invariant other than its target object (this),
as in the following code using class C from above.

class D { nonrep int f; ... }

class G [p, q] where p < q {
void ie(C<p> x, D<q> y) <p, q> { y.f = 100/(x.b-x.a); } }

Every class has a formal parameter which refers to the owner of the current
object. By default, when the owner parameter is not used by the class definition,
it may be omitted, as for class D. Moreover, since field f is declared as nonrep,
updates on field f will not break the invariant of class D, because the local
invariant cannot depend on its nonrep fields. But updates on f may break the
invariant of its owning object, whose invariant is allowed to depend on any field
of owned objects. In fact, in our type system, fields not declared to be nonrep
can only be updated by the object itself.

As part of its validity contract, method ie states that p is the validity invariant;
since the parameter x is owned by p, x must be valid, that is, its invariant must
hold—so we know there will be no divide-by-zero error. Note that, to reason in
this way, the programmer needs to know class C’s invariant—C’s invariant needs
to be visible. We will discuss this in Section 5.

The method contract of ie specifies its validity effect as q; this permits q
to be invalidated. Since the object in y is owned by q; assignment on y may
invalidate q and any objects owning q; this is allowed by the method’s validity
effect.

To illustrate a more realistic use of our type system, we adopt an example
from a tutorial on Spec# [30].
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class Person {
int freeday;
Meeting<this> next;
invariant: if next!=null then next.day!=freeday;
int travel(int d) <this, this> {

freeday = d;
if (next!=null) next.reschedule((d+1)%7); } }

class Meeting {
int day;
invariant: 0 <= day < 7;
Meeting(int d) { day = d; }
void reschedule(int d) <this, this> { day = d; } }

The invariant of Person depends on the day field of the Meeting object next.
Consequently, if the day field of the Meeting object is changed, the invariant of
the Person may be broken. Ownership types capture this kind of dependency
by enforcing the Meeting object to be owned by Person—the owner argument
of next is this which refers to the current Person object.

Both the validity invariant and effect of the method reschedule in class
Meeting are the current object this. The method is allowed to update its day
field, and it will require and ensure its local invariant holds before and after the
method call.

Back to the travel method in class Person whose validity contract is also
<this, this>. The method is allowed to call next.reschedule because it can
meet reschedule’s validity invariant requirement, and next.reschedule can
meet travel’s requirement for validity effect. Method next.reschedule requires
next to be valid before calling it; within the method travel the local invariant
of the Person object may be violated, but all objects owned by the Person
object, including the object in next, are valid. On the other hand, method
travel’s validity effect insists that only objects (transitively and reflexively)
owning this may be invalidated within its body, more precisely for this case, it
insists that the object in next must be valid after the call to next.reschedule.
The validity invariant on method next.reschedule ensures that the object in
next is validated after the call.

Linked lists are a popular example for illustrating language features deal-
ing with restricted use of references. Ownership type systems are known to be
inadequate for expressing cross-encapsulation references such as needed by iter-
ators, because of their restrictive reference containment. We show how iterators
are expressed in our language, explaining how our type system is able to relax
the usual ownership restriction on reference containment while still keeping the
iterators safe.

class List[o, d] {
Node<this, d> head;
void insert(Data<d> data) <this, this> { head.insert(data); }
Iterator<o, this, d> getIterator() <bot, top> {

return new Iterator<o, this, d>(head); } }
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class Node[l, d] {
nonrep Data<d> data; nonrep Node<l, d> next;
Node(Node<l, d> next, Data<d> data) {

this.next = next; this.data = data; }
void insert(Data<d> data) <bot, l> {

next = new Node<l, d>(next, data); } }

class Iterator[o, l, d] {
nonrep Node<l, d> current;
Iterator(Node<l, d> node) { current = node; }
void next() <bot, o> { current = current.next; }
int element() <bot, top> { return current.data; }
void insert(Data<d> data) <bot, l> { current.insert(data); } }

// client code
List<o, d> list = ...; Data<d> data = ...; list.insert(data);
Iterator<o, *, d> iterator = list.getIterator();
while iterator.element() {
int data = iterator.element(); iterator.next(); }

list.insert(data) // OK
iterator.insert(data); // error, effect is unknown in current context
Node<*, d> node = list.head; // OK, * can abstract any context
node.next = ... // error, owner of node.next is hidden

The List class provides methods for adding new elements to the list and
for returning iterators for the list. The implementation of the List class is al-
most the same as for ownership types except the methods have been annotated
with a validity contract. Method insert will update the current object and can
be called by clients, so its validity invariant and effect are the current object.
Method getIterator’s validity contract is <bot,top>; it makes no assumptions
about validity (by the bot invariant), and does not invalidate any object (by the
top effect).

In the Node class, the field next is declared to be nonrep so that it is part of
its owner’s representation (the owner being the list, in this example). We can
allow the field next to be part of the node’s representation if the programmer
wants that—this is an explicit design choice: if the field is part of the object’s
representation, then the iterator will not be able to insert objects into the list,
because it will not be able to specify the required effect on the node as part of
its validity contract.

The field current in class Iterator may refer to the node objects owned by
list (note that the class parameter l is bound to the list object). The method
insert may add new elements into the list. The method next allows the iterator
to step to the next link in the list object. Method element will return the
data at the current position of traversal. None of these methods constrain the
validity, because the iterator has no internal representation: its fields are owned
by the list, and any invariant will be associated with the list rather than the
iterator.
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3.4 Abstract Contexts and Mutability from Top to Bot

In the list example above, the client can give the correct types for list and data
objects, but it cannot give the precise type for iterators. This is because the
second formal parameter of the iterators is bound to the internal context of the
list, which cannot be named from the client outside. To solve this problem, we
use the context abstraction techniques introduced in our earlier papers [19,18]
to abstract the name of list’s internal context, so that the client can declare the
correct type to hold a reference to the iterators. This is how our type system
frees programs from the restrictive reference containment enforced by ownership
type system. We allow arbitrary reference structure, yet, we ensure safety of
these references. In this example, the client cannot use the iterators to insert
elements into the list, because this will mutate and break the list’s invariant. In
order for the client to insert new elements, it must use the list’s interface which
allows the list’s local invariant to be re-established by itself. The last two lines
of the client code illustrate that the nodes of the list can be referenced by the
external client code, but they cannot directly update the nodes because they
cannot specify a concrete context for the owner of the nodes’ fields (the list in
this case).

However, our iterators are not read-only references. Iterators are able to re-
turn Data objects which can be mutated by the client. This is very different to
previous read-only systems which use read-only references to allow iterators to
cross the boundary of object encapsulation. More precisely, read-only references
can only call pure (side-effect free) methods and return references in read-only
mode. For instance, the Data objects returned by their read-only iterators cannot
be mutated.

Moreover, our iterators are able to mutate the list’s representation in its
insert method depending on the caller’s context. In this example, the client
sits outside of the list context so it cannot use iterators to mutate the list.
But objects inside the list may call insert on iterators to modify the list. In
this sense, all references in our language are context-aware, they can be used to
read anything, but write capability depends on the contexts where the references
are held.

Oval provides the ability to create immutable objects explicitly. Immutable
objects cannot be mutated after initialization. In Oval, immutable objects are
those objects whose owner is the special context bot. By declaring an object to
have bot as owner, the system allows any other object’s invariant to depend on
this object. Consequently, mutation of an object owned by bot could break the
invariants of those objects. This is disallowed by prohibiting bot from being used
as a validity effect. No well-formed method is capable of mutating objects owned
by bot—effectively they become immutable.

There are some notable special cases for validity contracts. The validity con-
tract for the main method is <top, top>. Validity invariant top means all objects
in the heap are valid. At the beginning of the main method (before execution of
the program), there is no object in the heap. At the end of the main method (af-
ter execution of the program), all objects created by the program must be valid.
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Another special contract is <bot,top>. Methods with a <bot,top> contract do
not require any objects to be valid, and do not break any validity that objects
may have. By the subcontracting rule, any calls within such methods must obey
the same contract. The <bot,top> contract can be used to default the validity
contract of methods in legacy code such as Java programs; any callbacks from
legacy code must be restricted to <bot,top> methods.

4 The Oval Type System

We present a type system for a core part of the Oval language to demonstrate
that the general object validity model of Section 2 is realizable within a type
system. The Oval type system is based on our earlier effective ownership type
system [19]. There, methods are declared with an effective owner, E, which serves
two purposes: it determines the write capability of the method body, and it
restricts access to call contexts where E is known. In Oval, we replace the effective
owner, E, with a validity contract 〈I, E〉. The Oval type system adopts our earlier
scheme [19,18], based on abstraction of ownership contexts, which provides for
liberal read access to owned objects in an ownership type systems.

The most important rules of the Oval type system are field assignment and
method call. Method call is constrained by the subcontracting rules of Sec-
tion 2.2. We do not formalize the expression of object invariants and their depen-
dence on fields; informally, we simply require that object invariants only depend
on the object’s owned fields (those declared without nonrep) and on fields of other
objects that it (transitively) owns. However we do formalize object validity by
presenting a dynamic semantics which tracks a set Σ of valid objects, assum-
ing that the object invariant is re-established for critical method calls (where
I = E = this).

4.1 Syntax and Static Semantics

The abstract syntax is given in Table 2. X ranges over formal context parameters;
and x ranges over variable names including this used to reference the target object
for the current call. Note that this is also used as a context. The overbar is used
for a sequence of constructs; for example, e is used for a possibly empty sequence
e1..en, T x stands for a possibly empty sequence of pairs T1 x1..Tn xn.

The first context argument of a type determines the actual owner of objects
of the type. The abstract context * is used to hide context arguments when they
are not nameable. We do not distinguish syntactically between concrete and
abstract contexts in forming types. However such distinctions are important in
our type rules. For example, the object creation type in a new expression must
be concrete.

Programs consist of a collection of classes with an expression to be evalu-
ated. Classes are parameterized with context parameters having some assumed
ordering expressed by the where clause. The first formal context parameter of a
class determines the owner of this object within the class. Like the original type
systems, the owner of an object is determined by its creation type, and is fixed for
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Table 2. Abstract Syntax for the Oval Source Language

T ::= C〈K〉 types
K, I, E ::= X | this | top | bot | ∗ contexts
P ::= L e programs
L ::= class C[X] � T where X ≺ X {F; M} classes
F ::= [nonrep]opt T f fields
M ::= T m(T x) 〈I, E〉 {e} methods
e ::= terms

x variable
| new T(e) new
| e.f select
| e.m(e) call
| e.f = e assignment

Table 3. Extended Syntax for Oval’s Type Rules

K, I, E ::= ... | ? | Krep contexts
Γ ::= • | Γ , X ≺ X | Γ , x : T environments
S ::= 〈K, I, E〉 stack frames

the lifetime of the object. Unlike the original ownership type systems we do not
insist that the owner is within the other formal parameters of the class, because
we do not use ownership to constrain object references. In the class production,
inheritance � T is optional because our type system does not need a top type.
Each field may optionally be declared to be nonrep, implying that the object’s
own invariant should not depend on it. Each method defines a pair of contexts
〈I, E〉 which specify the validity contract. We interpret the validity invariant as
the down-set of I in the ownership ordering of contexts, and the validity effect is
the up-set of E. The actual validity contract for a method call is determined by
the context binding for the type of the target object (see the lookup [LKP-DEF]

in Table 8). Our term syntax is kept as simple as possible; our interest is focused
on field assignment and method call—the operations which can make changes,
direct or indirect, to objects.

Table 3 extends the abstract syntax for use in the type system. This syntax is
not expressible in programs. The context ? denotes an existential context, that
is, an unknown context. It replaces the general context ∗ when a type is opened
up in a dot expression for a field access or method call (see the [LKP-DEF] rule in
Table 8). Different occurrences of the existential context cannot be compared,
because they represent arbitrarily different, but unknown contexts. Similarly
Krep denotes an existential context whose owner is K. This allows us to expand
the fields of a non-local object without needing to name it as a context (see the
lookups [LKP-FLD-EXP], [LKP-INT’] rules in Table 8). Our earlier paper [18] has
more detail on the topic of context abstractions and existential contexts.

Type environments Γ record the assumed ordering between context parame-
ters, and the types of variables. Stack frames S keep track of the current active
object and the validity contract for the active call. In the dynamic semantics K
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Table 4. Type, Subtype, and Binding Rules

[TYP-OBJ]

defin(C〈K〉, ) = class C ... where K ′ ≺ K ′′ ...
∗ /∈ K Γ 	 K ′ ≺ K ′′

Γ 	o C〈K〉

[TYPE]
Γ 	o T ′ 	 T ′ < T

Γ 	 T

[SUB-EXT]
class C[X] � T ′ ... T = [K/X]T ′

	 C〈K〉 < T

[SUB-RFL] 	 T < T

[SUB-TRA]
	 T < T ′′ 	 T ′′ < T ′

	 T < T ′

[BIN-ABS]
	 K ⊆ K ′

	 C〈K〉 <: C〈K ′〉

[BIN-SUB]
	 T < T ′′ 	 T ′′ <: T ′

	 T <: T ′

corresponds to the current object location; in the static semantics, K is bound to
this in method bodies. 〈I, E〉 denotes the validity contract of the current method.

The type rules proper follow in the next four tables. In addition, Table 8
defines some auxiliary definitions to be used by the type system. We put substi-
tutions and lookups in the auxiliary definitions to keep the type rules simple.

Table 4 provides rules for type well-formedness and subtyping rules for ex-
pressible types. We introduce a separate judgement for bindability to handle
types with existential contexts (which only occur in the type system after field
or method lookup). For expressible types, there is no difference between sub-
typing and bindability. However bindability is not reflexive, because existential
types can only occur on the right-hand side of the binding relation.

Concrete object types are formed by substituting concrete contexts into class
definitions as in [TYP-OBJ]. This rule explicitly excludes context abstraction. By
[TYPE] well-formed expressible types are those that have a valid concrete subtype.
The rules for subtyping are based on substitution in class inheritance [SUB-EXT],
and by reflexive and transitive closure [SUB-RFL], [SUB-TRA]. The binding rules
are governed by a combination of context abstraction [BIN-ABS] and subtyping
[BIN-SUB].

Table 5 defines the context ordering for concrete contexts. It also defines the
rules for context abstraction. [ABS-RFL] ensures that the existential contexts ?
and Krep abstract nothing. Combined with the earlier bindability rule [BIN-ABS]

this ensures that types with existential contexts cannot be associated with the
target of a binding. Finally [SUBCONTRACT] describes rules for enforcing valid-
ity subcontracting, which correspond to the earlier subcontracting definition of
Section 2.2. The fourth case is equivalent to Γ 	 E 
 E ′ ∨E = ownerΓ (E ′). This
highlights the fact that calls that affect the validity invariant can only be made
from the owner context.



218 Y. Lu, J. Potter, and J. Xue

Table 5. Context Ordering, Abstraction and Subcontracting Rules

[ORD-ENV]
K ≺ K ′ ∈ Γ

Γ 	 K ≺ K ′

[ORD-OWN]
K �= bot

Γ 	 K ≺ ownerΓ (K)

[ORD-BOT]
K �= bot

Γ 	 bot ≺ K

[ORD-REP]
Γ 	 Krep ≺ K

[ORD-TRA]
Γ 	 K ≺ K ′ Γ 	 K ′ ≺ E

Γ 	 K ≺ E

[ORD-REF]
Γ 	 K ≺ K ′ or K = K ′

Γ 	 K 
 K ′

[ABS-ANY] 	 K ⊆ ∗

[ABS-RFL]
K �= ? K �= rep

	 K ⊆ K

[SUBCONTRACT]

Γ 	 I ≺ E =⇒ Γ 	 I ′ 
 I

Γ 	 I ′ ≺ E ′ =⇒ Γ 	 E 
 E ′

I = E =⇒ Γ 	 I ′ ≺ I

I ′ = E ′ =⇒ Γ 	 E 
 ownerΓ (E ′)
Γ ; 〈K, I, E〉 	 〈I ′,E ′〉

The rules for well-formed program definitions and declarations are in Table 6.
Themain expressionhas an empty environment, anduses the top context to express
thevalidity contract.Avalid classmusthavevalidfields andmethods, assuming the
given context ordering.The [METHOD] checks thevalidity contract is in oneof the two
correct forms, where the critical set is just this or is empty, and checks the method
body within the appropriate stack frame. If the method is overriding a superclass
method, its validity contract must be a subcontract of its parent.

Table 7 defines expression types. [EXP-NEW] requires that the object creation
type is a valid object type, and that the constructor arguments are bindable.
Field assignment [EXP-ASS] requires that the assigned expression type be bind-
able to the field type. If the field type involves a hidden context, this is not
possible. For default field accessibility, the target expression e must be this, and
it must be allowed to break its validity. For nonrep fields, the validity of the owner
of the target expression must be able to be modified. Method call [EXP-CAL] is
governed by the validity subcontracting rule; note that this check applies in the
context of the call, so the same call may be allowed in some calling contexts and
not in others. This contributes to the context sensitivity of the type system.

4.2 Dynamic Semantics and Properties

To formulate reduction rules, in Table 9 we extend the syntax of terms and
contexts with typed object locations; they provide the runtime context bindings
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Table 6. Program, Class, Method and Field Rules

[PROGRAM]
	 L •; 〈top, top, top〉 	 e : T

	 L e

[CLASS]

Γ = X ′ ≺ X ′′, this : C〈X〉, super : T Γ 	 T Γ 	 M Γ 	 F

ownerΓ (this) = ownerΓ (super) range(F) ∩ dom(fields(T , this)) = •
	 class C[X] � T where X ′ ≺ X ′′ {F; M}

[METHOD]

S = 〈this, I, E〉 Γ , x : T ;S 	 e : T ′′ Γ 	 T , T 	 T ′′ <: T

I = E = this or Γ 	 I ≺ E

method(Γ(super), this, m) = T ′ m(T ′ ) 〈I ′, E ′〉... =⇒
	 T <: T ′ 	 T ′ <: T Γ ; S 	 〈I ′,E ′〉

Γ 	 T m(T x) 〈I, E〉 {e}

[FIELD]
Γ 	 T

Γ 	 [nonrep]opt T f

Table 7. Typing Rules for Expressions

[EXP-VAR]
Γ(x) = T

Γ ; S 	 x : T

[EXP-NEW]
Γ 	o T fields(T , ?) = T Γ ; S 	 e : T ′ 	 T ′ <: T

Γ ; S 	 new T(e) : T

[EXP-SEL]
fieldsΓ

S(e)(f) = T

Γ ; S 	 e.f : T

[EXP-ASS]

Γ ; S 	 e.f : T Γ ; S 	 e ′ : T ′ 	 T ′ <: T

f /∈ nrfieldsΓ
S(e) =⇒ Γ ; S 	 〈bot, e〉 ∧ S = 〈e, ..〉

f ∈ nrfieldsΓ
S(e) =⇒ Γ ; S 	 〈bot, ownerΓ (e)〉

Γ ; S 	 e.f = e ′ : T ′

[EXP-CAL]

methodΓ
S(e, m) = T m〈I, E〉(T )

Γ ; S 	 e : T ′ 	 T ′ <: T Γ ; S 	 〈I, E〉
Γ ; S 	 e.m(e) : T

which serve to structure the heap. Objects are modeled as mappings from fields
to locations (for convenience, the object type is encoded in the object’s location
rather than in the object itself). The heap maps locations to objects.

Amongst the extra definitions in Table 10, note that the well-formedness of
the validity set requires that it contains all objects within the validity invariant
I, and I itself when it is distinct from the validity effect E.

Table 11 presents a big-step reduction semantics. It is of particular interest to
trace how the validity set is affected by the reductions, depending on the validity
contract for method call, and how default and nonrep field assignment differ by
either invalidating the target of the call or its owner.

Finally, we present some of the key properties of the type system. The main
result validity preservation is stated together with the conventional type preser-
vation property in Theorem 1. The first line of the if-then block is the validity
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Table 8. Auxiliary Definitions for Typing Rules

[LKP-DEF]
L = class C[X] ... K ′ = [?/∗]K
defin(C〈K〉, K) = [K ′/X, K/this]L

[LKP-FLD]
defin(T , K) = class ... � T ′ {[nonrep]opt T f; ... }

fields(T , K) = f T , fields(T ′, K)

[LKP-FLD-EXP]
Γ ; S 	 e : T

fieldsΓ
S(e) = fields(T , internalT

S(e))

[LKP-MUT]
class C ... � T {... nonrep T f ...; ... }

nrfields(C〈..〉) = f, nrfields(T)

[LKP-MUT-EXP]
Γ ; S 	 e : T

nrfieldsΓ
S(e) = nrfields(T)

[LKP-MTH]
defin(T , K) = class ... T ′ m(T x){e} ...

method(T , K, m) = T ′ m(T x){e}

[LKP-MTH ′]
defin(T , K) = class ... � T ′ { ... ; M} m /∈ M

method(T , K, m) = method(T ′, K, m)

[LKP-MTH-EXP]
Γ ; S 	 e : T

methodΓ
S(e, m) = method(T , internalT

S(e), m)

[LKP-OWN]
Γ ; • 	 e : T

ownerΓ (e) = owner(T)

[LKP-OWN ′]
owner(C〈K, ..〉) = K

[LKP-INT]
S = 〈K, I, E〉

internalT
S(K) = K

[LKP-INT ′]
S = 〈K, I, E〉 e �= K K ′ = owner(T)

internalT
S(e) = K ′

rep

invariant property; and the second line of the if-then is the type preservation
property. Corollary 1 states that all objects created by the program must be
valid at the end of the execution.

Theorem 1 (Validity Preservation and Type Preservation). Given 	 P,
	 H and H 	 S,

if
{

H; S 	 Σ

•; S 	 e : T
and H; Σ; e ⇓S H ′; Σ ′; l, then

{
H ′; S 	 Σ ′

•; S 	 l : T ′, 	 T ′ <: T and 	 H ′ .

Proof. The proof proceeds by induction on the form of H; Σ; e ⇓S H; Σ; l. Due
to the limited space, we only sketch the proof for validity preservation. Let
S = 〈K, I, E〉. Case [RED-SEL] is trivial. Case [RED-NEW]: we show that the newly
created object is valid by the [OBJECT] rule, then by the [VALIDITY SET] rule we
have the result. Case [RED-ASS]: we need to show assignments cannot invalidate
objects in Σ, by the [EXP-ASS] and the [SUBCONTRACT] rules we have that the
object invalidated by the assignment is equal or outside of E. Since H 	 S, and
by the [STACKFRAME] rule we have I is inside or equal to the invalidated object,
depending on whether or not I and E are the same. Then by the [OBJECT] and
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Table 9. Extended Syntax for Dynamic Semantics

l, lT typed locations
e ::= ... | l terms
K, I, E ::= ... | l contexts
o ::= f �→ l objects
H ::= l �→ o heaps
Σ ::= bot, l valid objects

Table 10. Auxiliary Definitions for Dynamic Features

[EXP-LOC]
Γ ; S 	 lT : T

[HEAP]

∀l ∈ dom(H) · •; • 	 l : T H(l) = f �→ l

fields(T , l) = f T •; • 	 l : T ′ 	 T ′ <: T

	 H

[STACKFRAME]
{K, I, E} ⊆ dom(H) ∪ {top} • 	 I ≺ E or K = I = E

H 	 〈K, I, E〉

[OBJECT]
• 	 l ′ 
 l =⇒ l ′ ∈ Σ

Σ 	 l

[VALIDITY SET]
Σ ⊆ dom(H) ∪ {top} • 	 I ≺ E =⇒ Σ 	 I I = E =⇒ Σ, I 	 I

H; 〈K, I, E〉 	 Σ

Table 11. Reduction Rules

[EXECUTION]
•; bot; e ⇓〈top,top,top〉 H;Σ; l

L e ⇓ H; Σ; l

[RED-CAL]

H;Σ; e ⇓S H ′; Σ ′; l H ′; Σ ′; e ⇓S H ′′; Σ ′′; l
method(l, m) = ...〈I, E〉( x){e ′} H ′′; Σ ′′; [l/x]e ′ ⇓〈l,I,E〉 H ′′′;Σ ′′′; l ′

l = I = E =⇒ Σ ′′′′ = Σ ′′′, l Γ 	 I ≺ E =⇒ Σ ′′′′ = Σ ′′′

H;Σ; e.m(e) ⇓S H ′′′; Σ ′′′′; l ′

[RED-NEW]
H;Σ; e ⇓S H ′; Σ ′; l lT /∈ dom(H ′) fields(T , lT ) = f

H;Σ; new T(e) ⇓S H ′, lT �→ {f �→ l}; Σ ′, lT ; lT

[RED-ASS]

H;Σ; e ⇓S H ′; Σ ′; l H ′; Σ ′; e ′ ⇓S H ′′; Σ ′′; l ′

f /∈ nrfields(l) =⇒ Σ ′′′ = Σ ′′ − l

f ∈ nrfields(l) =⇒ Σ ′′′ = Σ ′′ − owner(l)

H;Σ; e.f = e ′ ⇓S [l �→ H ′′(l)[f �→ l ′]]H ′′;Σ ′′′; l ′

[RED-SEL]
H;Σ; e ⇓S H ′; Σ ′; l

H;Σ; e.f ⇓S H ′; Σ ′; H ′(l)(f)

[VALIDITY SET] rules, we have the result. Case [RED-CAL]: as for the [RED-ASS]

case, except the target object of the call may be invalidated during the call and
is re-validated after the call.
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Corollary 1 (System Validity). Given 	 P, if P ⇓ H; Σ; l then Σ = dom(H).

Proof. After applying Theorem 1 to the [EXECUTION] rule, we have the result
by the [VALIDITY SET] rule.

5 Discussion and Related Work

5.1 Boogie and Universes

Our model for object validity is general, and not tied to any particular language.
The Oval language provides just one possible realization of our general model
for validity contracts. It has been inspired, not only by our own attempt to use
ownership types to reason about object invariants and effects [19], but by various
work on the Boogie methodology [17] and Universes [24]. We now compare the
Universes and Boogie approaches with our general model.

Universes uses a relatively simple ownership type system to arrange objects
into layers. Object invariants may depend on objects in the same and inner lay-
ers. Read-only annotations are used to allow object dependencies between layers,
without providing a general update capability. The layering of objects corresponds
to our object preorder �. The validity invariant should be interpreted as the set of
layers below the currently active layer, and the validity effect corresponds to the
current layer. In Universes, there is no attempt to track the (possibly) invalid call
context E, and so its up-closure is not required.

The Boogie methodology, as manifested in Spec#, is based on a program logic,
accompanied by a model for protecting the validity of object state, which dynam-
ically tracks the ownership of objects. The basic model describes objects as ei-
ther consistent or valid or neither. Consistent or valid objects must satisfy their
own invariant, and may only own consistent objects. Within the scope of an ob-
ject pack/upack block, a valid object may be updated and its invariant may be
broken within that scope. For us, the validity invariant corresponds to the set of
valid or consistent objects, and the validity effect corresponds to those objects that
have currently been unpacked. Interestingly, this model allows dynamic transfer of
ownership. For us, this implies that the preorder � is dynamic, so when reasoning
about I and E, we need to allow for different closures as the ownership structure
changes. This may require some extra consistency constraints, but we believe that
our model for validity contracts as summarized in Table 1 is still applicable. This
is worthy of further investigation. In general, program logics like Boogie increase
the specification overhead significantly. We believe the use of an Oval-like type
system can provide framing assumptions for more detailed specifications, thereby
allowing those specifications to be more concise.

Ownership is useful for expressing partially ordered one-to-many dependency
relation, that is, one object may depend on multiple other objects. This kind of
dependency is particularly useful for enforcing locality in object-oriented pro-
grams to allow localized reasoning on object invariants. However, ownership is
not enough for expressing cyclic, many-to-one or many-to-many dependency re-
lations. For instance, in a double-linked list, a node object has two fields—a
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previous field to reference its predecessor node in the list and a next field to
reference its successor. The invariant of such a node typically requires the next
field in its predecessor and the previous field in its successor to reference back
the node itself. As a result, the invariants of two adjacent nodes are mutual.
Ownership cannot capture such an invariant precisely, instead it requires such
an invariant to be maintained by the list (i.e., the owner of the nodes). This is
a sound solution, but in practice, it may complicate specification and reasoning
[17]. In order to verify the invariant of the list, one has to consider all node
objects owned by the list, but in fact modification of one node can affect only
its predecessor and successor nodes.

Universes and Boogies allow local invariants to depend on the states of objects
which are not owned by the current object; those objects are typically required to
be within the same owner or sufficiently unpacked. For example, a node object’s
invariant may mention fields in its predecessor and successor nodes. This kind of
invariant is called a visibility-based invariant [22,17], because it requires an in-
variant to be visible in every method that might violate the invariant, typically
restricted to be within a module or friend classes. Visibility-based invariants
essentially allow programmers to trade the locality offered by ownership for flex-
ibility in the object invariant. They need to check states which are not local, and
consequently generate more complicated proof obligations. Our general model
introduced in Section 2 is independent of the form of the invariant, whether own-
ership or visibility-based. The Oval language has only used an ownership-based
invariant in demonstrating the general model. This results in several advantages
including less specification overhead (only type annotations are needed) and
significantly simplified proof obligations for verification. In the future, we may
consider extending Oval to handle visibility-based invariants as well.

5.2 Ownership Type Systems

Ownership Types [28,12,11,9] allow programmers to enforce a tree-based encap-
sulation by declaring owners of objects as part of their types. Traditional object-
oriented programs offer no object structure, and can be considered as special case
of ownership types where all objects are owned by a single universal context top.

Effective ownership [19] allows programmers to add contexts to methods as
effect owners. It is an encapsulation-aware effect system which frees ownership
types from reference constraint, i.e. it allows arbitrary reference structure, but
still retains a strict encapsulation on object representation. The effect encapsula-
tion property guarantees that any update to an object’s internal state must occur
(directly or indirectly) via a call on a method of its owner. Ownership types can
be generalized as a special case of effective ownership where all effect owners are
the current context this.

The type system we present in this paper generalizes effective ownership by
adding invariant constraints to methods. The effect owner used in effective own-
ership is indeed the validity effect we have used in our new type system. Effective
ownership is a special case of this type system where all validity invariants are
the special context bot. The actual formalization of effective ownership is slightly
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different, but we are able encode them in our type system. Consequently, the
effect encapsulation property is also true in our type system.

The original ownership types hide knowledge of the identity of an object out-
side itself so that it cannot be named from outside. This kind of naming restriction
may limit the expressiveness of ownership types. In particular, ownership types
are known to be unable to express some common design patterns such as iterators
or callbacks, which typically need to cross the boundary of encapsulation.

There have been a number of proposals made to improve the expressiveness of
ownership types. JOE [10] allows internal contexts to be named through read-
only local variables so that internal representation can be accessed from outside.
Ownership Domains [1] use a similar method where read-only fields (final fields
in Java) are used to name internal domains (partitions of contexts) instead of
read-only variables. The inner class solution [9,8] allows inner classes to name
the outer object directly. These proposals tend to break the strict encapsulation
of ownership types, and do not support localized reasoning on object invariants.

5.3 Read-Only Systems

Read-only systems [23,25,5] use read-only references to cross the boundary of
encapsulation, called observational representation exposure in [5]. Read-only ref-
erences are considered harmless because they are restricted—they can only call
pure methods (methods with no side effect) and return other read-only ref-
erences. For example, they are able to express iterators by using a read-only
reference to access the internal implementation of the list object.

However, these iterators can only return data elements in read-only mode,
that is, the elements stored in the list cannot be updated in this way (unless
using dynamic casting with its associated runtime overheads [25]). This is due
to the fact that traditional read-only references are plain read-only—they are
unaware of any encapsulation structure.

Our proposal here allows references to cross encapsulation boundaries but
ensures these references cannot update the internal states directly, that is, any
update still has to be initiated by the owner object. The novelty is that all
references in our system are encapsulation-aware. A reference can never be used
to mutate states encapsulated by the context where the reference is held, yet they
can always be used to mutate states of or outside of the current context. For
example, iterator objects in our program can be used by a client to mutate data
elements stored by a list object, while still protecting the list’s representation
from external modification. Moreover, the iterator objects may or may not be
used to update the list’s internal implementation depending on the contexts
where the iterators are used—the insert method may be called from within the
list context but never from outside of the list.

6 Conclusion

In this paper, we have presented a general framework for tracking object invari-
ants. The novelty of this model is a behavioural abstraction that specifies two
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sets, the validity invariant and the validity effect. The overlap of these two sets
captures precisely those objects that need to be re-validated at the end of the be-
haviour. To support our general model, we have also presented an object-oriented
programming language that uses ownership types to confine dependencies for ob-
ject invariants, and restricts permissible updates to track where object invariants
hold even in the presence of re-entrant calls.
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